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A Bayesian optimization framework is used to investigate scenarios for disruptions
mitigated with combined deuterium and neon injection in ITER. The optimization cost
function takes into account limits on the maximum runaway current, the transported
fraction of the heat loss and the current quench time. The aim is to explore the dependence
of the cost function on injected densities, and provide insights into the behaviour of the
disruption dynamics for representative scenarios. The simulations are conducted using
the numerical framework DREAM (Disruption Runaway Electron Analysis Model). We
show that, irrespective of the quantities of the material deposition, multi-megaampere
runaway currents will be produced in the deuterium–tritium phase of operations, even in
the optimal scenarios. However, the severity of the outcome can be influenced by tailoring
the radial profile of the injected material; in particular, if the injected neon is deposited
at the edge region it leads to a significant reduction of both the final runaway current and
the transported heat losses. The Bayesian approach allows us to map the parameter space
efficiently, with more accuracy in favourable parameter regions, thereby providing us with
information about the robustness of the optima.

Key words: fusion plasma, runaway electrons, plasma simulation

1. Introduction

One of the threats to reliable tokamak operation are off-normal events known as
disruptions, which are induced by a sudden loss of plasma confinement (Boozer 2012).
When this occurs, the ensuing heat and particle transport results in a rapid temperature
drop – a thermal quench (TQ) – that is accompanied by a decrease in the electrical
conductivity of the plasma. The reduced conductivity leads to a decay in plasma current – a
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2 I. Pusztai and others

current quench (CQ) – that is counteracted by the induction of an electric field, which may
accelerate runaway electrons (REs) to relativistic energies (Breizman et al. 2019). The REs
could potentially strike the wall and lead to subsurface melting of the wall components.

The plasma current in future devices will be around an order of magnitude higher than
in present experiments. Correspondingly, the magnetic energy in the plasma will increase
(∼400 MJ in ITER vs ∼10 MJ in JET) (Hender et al. 2007), along with the kinetic energy,
thus the available energy that can be released in a disruption is significantly higher than in
present devices. It is therefore essential to develop effective disruption mitigation systems.

An effective disruption mitigation system in a tokamak should limit the exposure of
the wall to localized heat losses and to the impact of high current RE beams, and avoid
excessive forces on the structure (Hollmann et al. 2015). To avoid damage to the first wall
on ITER, at least 90 % of the thermal energy loss must be lost in the form of radiation.
The RE current should be kept below 150 kA in order to avoid melting of plasma facing
components, in the case of localized loss (Lehnen & the ITER DMS task force 2021). The
CQ time, i.e. the time it takes for the ohmic component of the current to decay, should
be kept between 50 and 150 ms. Current quench times below 50 ms will lead to excessive
forces due to eddy currents in the structures surrounding the plasma. On the other hand,
CQ times above 150 ms are expected to lead to intolerably large halo currents in plasma
facing components.

In ITER, the envisaged disruption mitigation system is based on massive material
injection (Lehnen et al. 2015). The injected material can radiate away a large fraction
of the thermal energy and it can also inhibit RE generation by increasing the critical
energy for electron runaway. Furthermore, it can also be used to control the temperature
during the CQ, which directly influences the CQ duration. However, the question of what
mixture of material should be injected, and how it should be deposited, to accommodate
all requirements on the disruption mitigation system simultaneously, if it is at all possible,
is still open.

In this paper, we describe a Bayesian optimization framework applied to simulations of
ITER-like disruption scenarios mitigated with combined injection of deuterium and neon.
The aim is to find the injected material quantities and deposition profiles for which the
outcome of the disruption is tolerable with respect to the expected RE current, transported
heat fraction and CQ time. Bayesian optimization has several attractive features: it does
not rely on gradient information, it can handle non-deterministic (noisy) functions and
it is suitable for relatively high-dimensional optimization problems and computationally
expensive function evaluations. However, its main advantage concerning the current study
is that it informs us about the properties of promising parameter regions – in particular the
robustness of the optima to variations in the control parameters.

The rest of the paper is structured as follows. The methods are explained in § 2, detailing
the set-up of the disruption simulations in 2.1 and the Bayesian optimization in 2.2. The
results are presented in § 3, first mapping out the optimization landscape with constant
injected densities in § 3.1 followed by a detailed analysis of some representative scenarios
in § 3.2. Then, we present optimization results allowing radially varying injection in § 3.3.
Finally, we study the parametric sensitivities of the optima and reflect on the beneficial
effects of radial profile variations in § 3.4, before we conclude and discuss our findings
in § 4.

2. Bayesian optimization of simulated disruptions

We employ an open source Bayesian optimization routine that treats the disruption
simulations as a black-box function that produces a single scalar output, the cost function,
and accepts inputs for injected material densities and deposition profiles in specified
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ranges – these are the input parameters that we want to optimize. In the following we
will discuss the disruption simulations, and provide details of the optimization algorithm.

2.1. Simulation set-up
The disruption simulations assume an initially (t < 0) pure fully ionized deuterium–tritium
(D–T) plasma with 50–50 % isotope concentrations. Specifically, the initial electron
density is spatially constant 1020 m−3, the temperature is parabolic with 20 keV on axis and
the total plasma current is 15 MA. The simulations use an ITER-like magnetic geometry
with major radius R0 = 6 m, minor radius a = 2 m, wall radius b = 2.833 m, on-axis
toroidal magnetic field B(r = 0) = 5.3 T and a resistive wall time of τw = 0.5 s, as well
as a Miller model equilibrium (Miller et al. 1998) with realistic, radially varying shaping
parameters; further information is given in Appendix A.

The simulations are performed by the DREAM (Disruption Runaway Electron Analysis
Model) code that captures the particle acceleration and energy dissipation processes
following a disruption (Hoppe, Embreus & Fülöp 2021). It solves a set of coupled transport
equations describing the evolution of temperature, ion charge state densities, current
density and electric field in arbitrary axisymmetric geometry. The temperature evolution
includes ohmic heating, radiated power using atomic rate coefficients, collisional energy
transfer from hot electrons and ions, as well as dilution cooling.

DREAM allows modelling of the REs at different degrees of approximation ranging
from fluid to fully kinetic. As we do not require kinetic outputs, we limit our modelling
to the least computationally expensive, fluid treatment of the plasma. This means that the
thermal bulk of cold electrons and the small runaway population are modelled as two
separate fluid species. The former is characterized by a density ne, a temperature Te as
well as an ohmic current density johm, and the REs are described by their density nRE. It
is assumed that the REs move with the speed of light parallel to the magnetic field, hence
their associated current density is jRE = ecnRE. The simulations include Dreicer, hot-tail
and avalanche sources, as well as REs generated by Compton scattering of γ photons
and tritium decay. These are modelled as quasi-stationary sources feeding electrons into
the runaway population (Fülöp et al. 2020). The runaway generation rates used in the
simulations have been benchmarked with the corresponding kinetic results (Hoppe et al.
2021). Further details on the simulations are given in Appendix A.

Neutral neon and deuterium are introduced with zero temperature at the start of the
simulation (t = 0). At the same time an elevated transport of electron heat and energetic
electrons is activated, using a Rechester–Rosenbluth-type model (Rechester & Rosenbluth
1978) with a radially constant normalized magnetic perturbation amplitude δB/B. This
is done to emulate the break-up of flux surfaces during the TQ, and leads to heat
losses, with a heat diffusivity proportional to R0vte(δB/B)2, where vte = √

2Te/me is
the local electron thermal speed. The full expression is given by (B.5) of Hoppe et al.
(2021). In four optimization runs δB/B is scanned over the range 0.2 %–0.5 % that falls
within the range of values observed in magnetohydrodynamic simulations of the TQ
(Hu et al. 2021).

During the TQ we also account for a diffusive transport of REs using a diffusion
coefficient of similar form, but assuming a parallel streaming along the perturbed field
lines at the speed of light, DRE = πR0c(δB/B)2. This approach neglects the momentum
space variation of the transport coefficients (Särkimäki et al. 2020), as well as the form of
the RE distribution function, which would reduce the effect of runaway transport. Thus,
using this expression provides an upper bound on the effect of runaway transport for a
given magnetic perturbation amplitude (Svensson et al. 2021). We employ here the same
δB/B as for electron heat transport for consistency.
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The injected material is ionized by its interaction with the plasma, and cools it by
radiation and dilution. When the average electron temperature falls below 10−3 times the
maximum initial temperature (here 20 eV), we assume that the TQ is completed and the
flux surfaces reform. After the TQ the transport of energetic electrons is switched off, and
a significantly reduced, but finite electron heat diffusivity is used (δB/B = 0.04 %). This is
to avoid the development of non-physical narrow hot ohmic channels during the CQ. Such
ohmic channels are soliton-like solutions of the problem (Putvinski et al. 1997) without
sufficient heat diffusivity. In a physical system the corresponding excessive temperature
and current gradients would be expected to destabilize these formations well before they
could fully form. Note, that the diffusive heat transport is subdominant compared with
radiative heat losses at the low post-TQ temperatures, thus this heat transport has no effect
besides not allowing hot channels to form.

2.2. Optimization
The optimization problem involves multiple objectives, i.e. multiple quantities need to be
within certain limits simultaneously. The maximum value of the total RE current and the
fraction of transported heat losses must be small, while the CQ time should be within
certain limits. These quantities are normalized and combined into a single scalar cost
function L ≥ 0 which is to be minimized. Denoting the control vector containing the
parameters by x, we wish to find the x∗ that minimizes L, where x resides in a specified
volume V ⊂ R

d of the control space (where d is the dimensionality of the optimization).
We employ Bayesian optimization (Brochu, Cora & de Freitas 2010) using Gaussian

process regression (Rasmussen & Williams 2005), using the Bayesian Optimization
(Nogueira 2014) Python package. A Gaussian process is fitted to the already sampled
points {xi}n

i=1, and the expected improvement acquisition strategy (described in
Appendix B) is used to choose the next point to be sampled, xn+1. The Gaussian process
contains information on both the expected value μ(x) and the uncertainty of the estimate
of L, quantified in terms of the covariance k(x, x′) between any two points x and x′. In this
process there is a balance between exploration and exploitation, i.e. search within regions
with high uncertainty, as well as in regions that are most likely to host the global optimum.

The cost function we use is of the form

L = Imax
RE

Itol
RE

+ Ifin
ohm

Itol
ohm

+ 10
ηcond

ηtol
cond

+ 100 θ(tCQ), (2.1)

where Imax
RE is the maximum RE current in the simulation, Itol

RE = 150 kA represents the
tolerable RE current in ITER and Ifin

ohm is the ohmic current at the end of the (150 ms
long) simulation. A significant remnant ohmic current may be the sign of an incomplete
TQ, and it can still potentially be converted to a RE current. Thus it is treated on equal
footing with the RE current, so we also set Itol

ohm = 150 kA. Here, ηtol
cond = 0.1 is the tolerable

transported heat loss fraction. The prefactor 10 in the ηcond term is used to get a penalty
for non-tolerable transported heat losses comparable to typical penalties obtained for
mega-ampere (MA) size currents. Finally, to penalize CQ times tCQ below tL = 50 ms
and above tU = 150 ms we use the penalty function

θ(tCQ) = Θ̃(tL − tCQ) + Θ̃(tCQ − tU), (2.2)

where Θ̃(t) = 1
2 [1 + tanh(t/�t)] is a function similar to a step function but smooth with

a transition width set by �t = 3.3 ms. Values of tCQ outside the tolerable range yield a
penalty as high as the maximum achievable penalty for any of the other terms in (2.1), due
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to the prefactor 100 in front of θ . We calculate the CQ time as tCQ = [t(Iohm = 0.2I0
p) −

t(Iohm = 0.8I0
p)]/0.6 (Hender et al. 2007), where Iohm(t) is the total ohmic current and I0

p
is the initial plasma current.

In addition we set L = 500 for simulations where the TQ is not complete within 20 ms,
our condition for which is that the average temperature falls to below 10−3Te(r = 0, t = 0).
Finally, as it is difficult to completely avoid simulations that fail due to numerical issues,
we use L = 500 for these as well.

Independently of their dimensionality, the optimizations use 400 samples, chosen
according to the acquisition function through sequential function evaluations, following
20 randomly selected initial samples. As the parameter space of injected quantities ranges
across multiple orders of magnitude, the logarithm of the injected quantities is used as
optimization parameters.

3. Bayesian optimization of disruption mitigation with material injection

The goal is to identify what densities of injected neon and deuterium produce the
most favourable outcomes in a disruption mitigation, corresponding to the minimum of
the cost function. Modelling the details of the material injection is outside the scope of
the present work, instead, we assume the material to be instantaneously deposited in the
form of neutrals, either uniformly distributed over the magnetic flux surfaces, described in
§§ 3.1–3.2 or with radially varying distribution, described in § 3.3.

3.1. Optimization landscape with constant concentrations
First, we perform optimization in the two-dimensional (2-D) parameter space of radially
constant injected deuterium and neon densities, nD,inj and nNe,inj. The ranges of injected
densities we consider are nD,inj ∈ [1018, 3.16 × 1022] m−3, and nNe,inj ∈ [1016, 1020] m−3.

Figure 1 shows the estimated mean of the cost function μ on a logarithmic contour
plot for four different values of δB/B, with blue shades representing favourable and red
shades unfavourable values. Each panel used 420 samples, indicated by grey dots, while
the optima are indicated with black stars. The area of favourable values (with blue shades)
decreases with increasing δB/B, and this is mostly due to the increasing transported heat
fraction, and to a lesser degree to an increasing RE current, to be discussed further in
relation to figure 5. In general, the lower left corner of the plots is occupied by cases
with an incomplete TQ. In this case the plasma tends to get reheated after the prescribed
transport event, leading to long CQ times (i.e. tCQ > 150 ms). With an increasing δB/B the
incomplete TQ region shrinks somewhat.

Another general feature is a relatively narrow corridor of favourable parameters in the
vicinity of nD,inj = 1022 m−3, extending from the lowest nNe,inj values plotted to a bit above
nNe,inj = 1019 m−3. The optima also reside in these corridors at nNe,inj values of a few times
1018 m−3. Additionally, a wider corridor of moderate values of L extends to the left of
the optima, in the range nNe,inj ≈ 3 × 1018–2 × 1019 m−3, which is most pronounced in the
δB/B = 0.3 % and 0.4 % cases. At nNe,inj values above that, L increases, and decreases
again around the highest nNe,inj values included in this optimization. Before analysing the
characteristic behaviours in these different regions of the current optimization landscape
in § 3.2, we shall discuss the detailed dynamics at the optima.

We consider the behaviour of the representative optimum obtained in the δB/B = 0.3 %
case (indicated by the black star in figure 1b), located at nD,inj = 9.4 × 1021 m−3 and
nNe,inj = 2.9 × 1018 m−3, shown in figure 2. Following the instantaneous material injection
at t = 0, the temperature profile drops by a factor of ≈100 within a μs, due to dilution.
This is followed by an approximately exponential cooling with a characteristic time of
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(a) (b)

(c) (d)

FIGURE 1. The estimated mean of the cost function of Bayesian optimizations in the
nD,inj–nNe,inj space for various normalized magnetic perturbation amplitudes. The colour code
varies from blue to red tones, representing favourable and unfavourable values of μ; (a) δB/B =
0.2 %, (b) 0.3 %, (c) 0.4 %, (d) 0.5 %. Black stars indicate the locations of the optima. Grey dots
show the samples taken; note that these are more numerous in the vicinity of the optima. Circles
with case identifiers in panel (b) indicate the cases discussed in § 3.2.

τ ≈ 1.5 ms. After the initial exponential cooling, a cold front starts to propagate radially
inward from the edge. This inward propagating cooling is seen in the t = 2 ms curve in
figure 2(b). This cooling proceeds until almost the entire plasma settles at around 5 eV (see
the t = 10 ms curve), representing the equilibrium between ohmic heating and radiation
corresponding to the ion composition and current density of the plasma. Then there is
another inward propagating cooling happening over the next 50 ms. As the ohmic current
density drops during the CQ, the equilibrium temperature falls from ≈5 to ≈ 1.2 eV. The
temperature is radially uniform at this level at 60 ms (black curve), and remains there until
the end of the simulation.

The ohmic current density gradually decreases in the core and it drops rapidly across
the cold front at the edge; compare the 10 ms curves in figure 2(b,c). This front propagates
inward in the first 40 ms, after which the ohmic current gets rapidly replaced by RE current;
see the process in terms of total current components in figure 2(a), and RE current density
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(a) (b)

(c) (d)

FIGURE 2. The best performing case for the optimization in the nD,inj–nNe,inj space, for δB/B =
0.3 %. (a) The time evolution of the total plasma current (dashed), and its ohmic (solid) and RE
(dash-dotted) components. (b–d) Radial profiles of quantities in a few time points, indicated
by their respective figure legends; with increasing time corresponding to darker colours.
(b) Electron temperature. (c) Ohmic (solid) and RE (dashed) current density. (d) Parallel electric
field (solid). The effective critical electric field is also indicated for t = 60 ms (dotted); note that
it does not vary appreciably over time.

at 60 ms in figure 2(c) (dashed line). The electric field exceeds the effective critical field
Eeff

c – calculated as in appendix C2 of Hoppe et al. (2021) – first in the edge, then it grows
to an approximately radially constant value around 30 V m−1, approximately 4 times Eeff

c ,
where it stays until the macroscopic RE conversion starts. Then it drops into the vicinity
of Eeff

c , such that in the core E‖ is pinned to Eeff
c , and it takes radially decreasing values

at the edge; compare E‖ (solid black curve) with Eeff
c (dotted) in figure 2(d). Then the

electric field remains like that until most of the RE current dissipates away. Physically,
the dissipation of the RE current, in the absence of transport losses, is caused by a
collisional slowing down and thermalization of the REs when E‖ < Eeff

c . In the employed
fluid RE model it is technically accounted for by allowing the avalanche growth rate to
become negative for E‖ < Eeff

c values. The corresponding decay of the RE current is quite
pronounced in this case.

3.2. Characteristic cases with constant concentrations
In order to understand the typical dynamics in various regions in the nD,inj–nNe,inj space, we
consider six representative cases in the δB/B = 0.3 % optimization, with case C1 being
the optimum discussed above. The cases are indicated in figure 1(b) and corresponding
injected quantities and figures of merit are listed in table 1. Cases C2 and C3 are taken in
the high nD,inj region of the space; C2 is located in the favourable channel at low nNe,inj,
and C3 at even higher nD,inj than the optimum. Cases C4 to C6 are taken at a fixed nD,inj =
1020 m−3, at respectively increasing value of nNe,inj. We discuss C1–C3 and C4–C6 in the
following subsections.
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Case ID nD,inj (1020 m−3) nNe,inj (1018 m−3) Imax
RE (MA) Ifin

ohm (MA) tCQ (ms) ηcond (%) L
C1 93.9 2.88 4.2 0.33 59 8.9 39
C2 160 0.032 4.8 0.33 54 43 88
C3 316 2.88 8.2 0.0007 5 1.4 156
C4 1 5.01 6.3 0.059 88 80 122
C5 1 31.6 8.1 0.092 26 72 226
C6 1 100 8.9 0.159 15 23 163

TABLE 1. Characteristic cases from the nD,inj–nNe,inj optimization landscape for δB/B = 0.3 %,
their four figures of merit and corresponding cost function values. The cases are marked in
figure 1(b); C1 is the optimum.

(a) (b) (c)

FIGURE 3. Time evolution of quantities of interest for the high nD,inj representative cases:
C1–C3. Line colour darkens and dashes shorten with increasing case number, and case numbers
are indicated with callouts. (a) Runaway electron current. (b) Electron temperature at mid-radius.
(c) Electric field normalized to critical electric field at mid-radius. (Note the longer time range
plotted in panel a.)

3.2.1. Representative cases at high nD,inj

In the RE plateau the electric field tends to stay close to the effective field Eeff
c , as

expected (Breizman 2014). In particular, following the RE conversion, all E‖/Eeff
c values

(taken at mid-radius) settle around unity, as shown in figure 3(c). The high nD,inj cases are
all characterized by a significant decay rate of the RE current after it reaches its maximum
value; see figure 3(a). This is consistent with their E‖/Eeff

c being lower than unity towards
the edge, as we have seen for C1 in figure 2(d). This is due to the relatively high value of
Eeff

c typical at these high nD,inj values.
The dynamics of the RE current in C1 and C2 is fairly similar, as seen in figure 3(a).

It may be surprising that E‖/Eeff
c is almost all the time higher in C1 than C2 – shown

in figure 3(c) – but the maximum RE current in C2 is still higher, and is reached a bit
earlier. The reason for this is that the temperature drops to 1.09 eV in C2 already at t ≈
10 ms (figure 3b), a temperature where 44 % of the hydrogenic species is recombined,
thereby increasing the total-to-free electron density ratio and the avalanche growth rate in
proportion. Meanwhile in C1 the temperature does not drop to this low temperature until
the RE conversion is over.

The effect of the hydrogen recombination is even more pronounced in C3, where the
temperature drops to 1.02 eV within a millisecond. The reason for this fast cooling is
the very high dilution that brings the temperature down to a range where radiative losses
are strong and can effectively (and rapidly) cool the plasma further. That the temperature
drops immediately to its final value, without stopping at some higher, intermediate value,
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can be explained by how the temperature dependence of the total radiative losses (P) is
affected by the very high hydrogen content. Depending on the hydrogen (including D
and T) and neon densities, the curve P(Te) can exhibit a local minimum in the few eV
range between a low Te peak caused by hydrogen and a higher Te peak from neon. The
large hydrogen density in C3 leads to an elevated value of P at this minimum, thereby
effectively eliminating the bottleneck this minimum represents concerning the cooling.
While 1.02 eV is just slightly cooler than the final temperature in C2, now 70 % of the
hydrogenic species are recombined, which, in combination with the early high value of
E‖/Eeff

c , leads to an extremely fast RE conversion and the highest RE current among these
three cases.

In terms of figures of merit, C3 is not only problematic due to a high Imax
RE value, but also

because of the extremely short tCQ ≈ 5 ms. While Imax
RE is not too much higher in C2 than

in C1, it has a ηcond ≈ 44 %, exceeding the tolerable 10 %, unlike C1 and C3. This is due
to the small neon content in C2.

The remarkably short cooling times, of the order of 2 ms, observed at large deuterium
injections, such as C3, may be partly due to our simplifying assumption of instantaneous
deposition. However, in realistic material injection scenarios, the cooling at a given flux
surface can be as rapid as observed here, even if the time scale needed for pellet shards
flying at 500 m s−1 to travel between the edge and the centre of an ITER plasma is longer
(≈4 ms). As the local cooling time is the crucial factor to get a large hot-tail seed, and
furthermore, the rapid avalanche rate depends on the final temperature, similar behaviour
is also observed in shattered pellet injection simulations (Vallhagen et al. 2022). Ion
convection time scales across the radius in a TQ can also be in the ms range. The excessive
runaway generation is thus not an artefact of the instantaneous deposition, however, the
detailed temperature evolution is expected to be different once the injection dynamics is
resolved.

3.2.2. Representative cases at low nD,inj

The cases at nD,inj = 1020 m−3 – C4 to C6 – are not affected by hydrogen recombination
as their temperature never drops below 2 eV. They reach much higher values of E‖/Eeff

c
than the high nD,inj cases, as they have low Eeff

c ; compare figures 3(c) and 4(c). Their RE
conversion timing and magnitude well correlates with when the peak of E‖/Eeff

c is reached,
and its magnitude. This, in turn, depends on the first equilibrium temperature reached,
varying between approximately 5 and 11 eV, see figure 4(b). This temperature decreases
monotonically with increasing injected neon quantity, while the magnitude of the final
RE current increases, and the time of RE conversion shifts earlier. Once the conversion
is complete, the temperature falls further into the 2–4 eV range. Note that at these low
nD,inj cases the dissipation rate of the RE current in the RE plateau is negligible during the
simulation, due to the lower Eeff

c values.
Only in C4 does tCQ fall into the acceptable range, in the other two cases it is too short

due to the early RE conversion. The reason for the non-monotonic dependence of L with
increasing nNe,inj, i.e. it is higher for C5 than for C6, is that it is caused by the reduction
in the transported heat loss fraction from the 70 %–80 % range to 23 % (that is still not
acceptably low though).

3.3. Radially varying material injection
Next, we relax the assumption of spatially homogeneous injection, and allow profile
variations with a simple model for the injected densities, where the inward or outward
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(a) (b) (c)

FIGURE 4. Time evolution of quantities of interest for the low nD,inj representative cases:
C4–C6. Line colour darkens and dashes shorten with increasing case number, and case numbers
are indicated with callouts. (a) Runaway electron current. (b) Electron temperature at mid-radius.
(c) Electric field normalized to critical electric field at mid-radius. (Note the longer time range
plotted in panel a.)

peaking of the profile is set by a single parameter ci per species i

ñi,inj ∝ 1 + tanh
[

ci

(
r
a

− 1
2

)]
, (3.1)

where the tilde indicates that ñi,inj is a radially varying quantity. The notation ni,inj is
reserved to the scalar parameter that appears in the optimization. The factor multiplying
the expression in (3.1) is determined such that the total number of injected particles in the
plasma is the same as in an injection of a constant density ni,inj. Negative/positive values
of ci correspond to densities peaked in the plasma centre/edge, and in the optimization we
allow values in the [−10, 10] range.

Figure 5 shows the Imax
RE and ηcond figures of merit, along with the cost function L at

the optima found for different δB/B values, when radially constant injection is employed
(dotted line, referred to as 2D) and when profile variation is allowed (dashed, 4D). In
the latter case, the additional degrees of freedom allow us to find optima with better
properties. Since in all cases the remaining ohmic current is much smaller than Imax

RE (in
the 300-400 kA range), and tCQ is also in the tolerable range, L is dominated by the two
figures of merit plotted. In none of the cases considered is Imax

RE tolerably small; it is around
4 MA independently of δB/B in the 2-D optimization, and it reduces almost by a factor of
2 in four dimensions (without any clear trend with δB/B), as seen in figure 5(a).

There are two main reasons for obtaining such high values even in the optimal cases. We
consider D–T plasmas, and we include RE seed sources relevant for activated operation,
tritium decay and Compton scattering of γ photons, in addition to Dreicer and hot-tail RE
generation. The tritium decay and Compton sources can provide a significant RE seed even
after the TQ, during which the transport due to magnetic perturbations decimates the initial
hot-tail and Dreicer seed population. This circumstance also explains the weak sensitivity
of Imax

RE to δB/B in the 2-D simulations. A simulation identical to the 2-D optimum at
δB/B = 0.3 %, but without activated seed sources (i.e. only Dreicer, hot-tail and avalanche
sources active) yields a negligibly small Imax

RE = 4.1 kA instead of 4.2 MA.
A similarly important factor is the realistic radius of the conducting wall, which is

chosen to match the energy in the poloidal magnetic field due to the plasma current within
the conducting wall to that observed in JOREK simulations. If in the 2-D optimum at
δB/B = 0.3 % we reduce the wall radius from 2.833 to 2.15 m, which was used in previous
work, e.g. by Vallhagen et al. (2020), the RE current reduces to the – non-negligible, but
still significantly lower – value of 1 MA.
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(a) (b) (c)

FIGURE 5. Variation of (a) the maximum RE current, (b) the transported heat loss fraction and
(c) the corresponding cost function in optimizations, for a range of δB/B values, when optimizing
only for injected densities (circle markers, blue short dashed curve) and when including profile
variation as well in the optimization (squares, red long dashed). In panels (a,b), below the
thin solid line the values are considered tolerable. In panel (a) simulations with the parameters
corresponding to the 2-D optimum at δB/B = 0.3 % but without activated sources is indicated
with a black rectangle marker, and a simulation with a reduced wall radius of 2.15 m is shown
with a black asterisk.

The fraction of transported heat losses, shown in figure 5(b), increases strongly with
δB/B in the 2-D cases, which is not surprising, since the heat transport during the TQ
is then increasing, while the radiated losses are not directly impacted by δB/B. However,
when profile variation is allowed ηcond is almost independent of δB/B; the reason for this
will be explained in relation to figure 7.

3.4. Sensitivity of the optima
To gauge the sensitivity of the optima to the input parameters, we investigate the regions
occupied by samples within some range of L above the optimal values. The location of the
optima in the optimization space is marked in figure 6 (⊗ markers). In the 2-D optimization
study we also scatter plot all samples in the 10 % vicinity of the optimum, figure 6(a);
this is such a narrow range in L, that any point in this point cloud can be considered
equally well performing as the optimum itself. In the 4-D optimization study we show
points in the 25 % vicinity of the optima, figure 6(b–d). As the total number of samples
is the same in both the 2-D and 4-D optimization studies, the higher dimensionality in
four dimensions implies a sparser exploration in the vicinity of the optimum compared
with two dimensions; hence the lower number of points in spite of the wider relative range
included.

First, considering the 2-D optimization, figure 6(a), we find that the relative extent of
the point clouds is significantly larger in the nNe,inj direction, than in the nD,inj direction; for
instance in the δB/B = 0.2 % case nNe,inj spans more than an order of magnitude, while
nD,inj spans only a bit more than a factor of two. In practice it translates to the need of
a higher precision concerning the injected amount of deuterium than that of neon. The
negative correlation between nD,inj and nNe,inj seen from the arrangement of the point cloud
indicates that there are similarities in the effects of these two injected species. These
features are also reflected in the favourable valleys (blue tone regions) seen in figure 1.
The favourable parameter range indicated by the point clouds shrinks with δB/B. Note
that the region covered by the optima at different δB/B values is even smaller than the
smallest (black) point cloud; thus we should not read much into how the actual location of
the optima varies with δB/B.

In the 4-D optimization, the resulting point clouds are more scattered, when projected
into the nD,inj–nNe,inj subspace, see figure 6(b). If anything, there is still a weak
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(a) (b)

(c) (d)

FIGURE 6. Scatter plot of input parameters for samples with the lowest L values in each
optimization case. When (a) optimizing only for injected densities (two dimensions) they
represent an additional 10 % range above the optimum, and when (b–d) including profile
variation as well in the optimization (four dimensions), they represent a 25 % range. Darkening
colour indicates increasing value of δB/B, as given in panel (b), and the optima are indicated by
⊗ markers. (a,b) Concentration space, (c,d) correlating concentration with profile parameter of
an injected species. Note that in the 4-D δB/B = 0.3 % case there is no sample within the 25 %
range above the optimum.

anti-correlation between the injected quantities, but the poor statistics makes it less clear.
Similarly to the 2-D optimization, the range covered in nD,inj is smaller than that in nNe,inj.
We can also see that there are no cases within a relative range of 25 % of the optimum for
δB/B = 0.3 %. In addition, the optimum itself appears far in the parameter space from the
other three overlapping clouds. Namely, it appears at the highest nD,inj and lowest nNe,inj
values. We omit this outlier case in the following discussion, but will return to it at the end
of this section.

The point clouds occupy the relatively narrow cD ∈ [−1.5, 1.2] range, as seen in
figure 6(c), corresponding to modest profile variation. We find a positive correlation
between nD,inj and cD. It means that higher injected content corresponds to more
edge-localized peaking. In particular, the injected densities at the plasma centre occupy
a narrower range than at the edge (see table 2); apparently, the deuterium density value at
the edge is less important. We also observe that lower δB/B corresponds to higher cD and
nD,inj values.

For the injected neon profiles, a strong outward peaking is preferred, with values of
cNe ∈ [5, 10], as seen in figure 6(d). The total injected quantities are typically higher than
those in the 2-D optimization, covering mostly the nNe,inj ∈ [1019, 1020] m−3 range – an
order of magnitude higher than in two dimensions. It is interesting to note that, similarly
to deuterium, there is a positive correlation between cNe and nNe,inj.
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δB/B nD(0) (1020 m−3) nD(a) (1020 m−3) nNe(0) (1018 m−3) nNe(a) (1018 m−3)

0.2 % 80 160 0.14 62
0.3 % 55 320 0.19 3 × 10−4

0.4 % 87 110 0.10 20
0.5 % 140 60 0.02 54

TABLE 2. Total hydrogenic (including the background) and neon densities at the plasma centre
(r = 0) and at the edge (r = a) in the 4-D optimization in the various δB/B cases.

(a) (b) (c)

FIGURE 7. Comparison of the optimal cases in the 2-D (dashed curves) and the 4-D (solid
curves) optimization for δB/B = 0.5 %. (a) Radial total hydrogenic density, nD+T+D,inj (blue),
and neon density, nNe (red). (b) The RE current density profiles taken at the time point when the
total RE current takes its maximum, t = 42 ms (50 ms) in the 2-D (4-D) case. (c) Time evolution
of the heat loss power in the first millisecond, when most of the thermal energy is lost from the
plasmas (note the log scale). Blue curves represent the transported heat losses, red curves are the
radiated losses.

To understand why the optima in the 4-D optimization perform better than those of two
dimensions, we compare the respective δB/B = 0.5 % cases, where the figures of merit
are most disparate. The hydrogenic (blue curves) and neon (red) density profiles of the
2-D (dashed curves) and 4-D (solid) optima, are shown in figure 7(a). For deuterium, the
4-D optimization finds a moderate inward peaking (cD = −0.92), while the neon profile
is strongly peaked at the edge (cNe = 8.67), covering a density range over three orders of
magnitude.

The neon content has two major effects on our figures of merit. An increasing
neon concentration corresponds to a lower quasi-equilibrium temperature during the RE
conversion, typically leading to higher final RE currents. This is the same trend that we
have witnessed moving from C4 to C6. At the same time, a higher neon concentration
can help increase the radiated fraction of heat losses (this was also clear when comparing
C5 with C6). However, the neon concentration affects the final RE current most strongly
where the RE growth is strongest. This happens to be the plasma core in the parameter
region of interest, without a radial variation of the neon density. In addition, to achieve
a low ηcond value it is sufficient to have enough radiating impurities in the edge. Both
requirements can be satisfied by an outward peaking neon concentration, which is indeed
what the 4-D optima tend to develop.

We find that the 2-D optimum produces a centrally peaked RE current, as seen in
figure 7(b) (dashed curve), while the 4-D optimum has a RE profile peaked off axis (solid
curve), as expected for the low core concentration of neon. We note that, in this case,
the runaway and the centrally peaked ohmic currents decay together after the RE current
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reaches its maximum, and only towards the end of the simulation (≈ 140 ms) does the total
current profile become truly hollow.1

The time evolution of the volume-integrated heat losses is shown in figure 7(c) in
the first millisecond. This is when the vast majority of the thermal energy content of
the plasma is lost, while the fraction of magnetic-to-thermal energy conversion is still
negligible. Again, the dashed curves correspond to the 2-D optimum; in this case, the
transported loss (dashed blue) reaches comparable values to the radiated losses (dashed
red). The entire energy loss process varies relatively smoothly over the plotted time
range. In contrast, in the 4-D optimum case the transported heat losses (solid blue) are
approximately two orders of magnitude lower than the radiated losses (solid red), and both
of these channels have a strong peak at t = 0, related to the ionization and equilibration of
the injected material.

After having discussed the representative behaviour at the optima we return to the
analysis of the outlier case, the 4-D optimum at δB/B = 0.3 %. In this case the injected
neon density is roughly three orders of magnitude lower than in the other three cases,
and as such, it exhibits reheating following the TQ in the plasma centre. This reheated
region supports a relatively slowly decaying ohmic current, hence the CQ time is on the
long side tCQ = 123 ms (while still tolerable). The slowly decaying ohmic current and
the high value of the effective critical electric field Eeff

c , owing to the high nD,inj, lead to the
RE growth stopping just before the RE current grows to macroscopic values. The strong
dilution is able to rapidly reduce the temperature to sufficiently low values at the edge,
so that even in the presence of a low neon content the cooling can continue to ≈1 eV.
As then most of the heat transported to the edge is radiated away by the recombined
deuterium, the resulting transported heat loss also remains small in this case. This is a
fragile case nevertheless; indeed there is no sample within 25 % of the L value reached
by this optimum. Some parameter combinations in the vicinity of this optimum yield a
behaviour reminiscent of C3, with an extremely rapid RE conversion and then a strongly
decaying RE current. Thus, even though this optimum performs better than the other three
cases in four dimensions, it should not be targeted in a experiment, due to the lack of
robustness.

Finally, we comment on the numerical efficiency of the Bayesian approach. We estimate
that to achieve a similar level of resolution in the regions that contain samples within
25 % of the optima would require more than 12 000 points in two dimensions and 800 000
points in four dimensions, should we decide to use equidistant scans over the entire search
domains. These estimates are based on the average minimum distance between samples (in
the search space mapped to the unit hyper-cube). As a reference, we use only 420 samples
in both the 2-D and the 4-D optimizations. In uninteresting regions with high cost function
values the resolution is much lower.

The Bayesian results can be confirmed with calculations on a uniform grid. In a detailed
study of a similar problem presented by Bergström & Halldestam (2022), it was shown
that the mean function obtained by the Gaussian process regression accurately recovered
the cost function calculated on a uniform grid in the vicinity of the optimum, and showed
a good agreement even in regions with high cost values. In terms of finding the global
optimum the Bayesian method outperformed Powell’s method (Powell 1964).

1The magnetohydrodynamic stability of the current density is not monitored in the DREAM simulations; a hollow
current profile might well be unstable to macroscopic plasma instabilities; this aspect of the simulated current evolution
is outside the scope of this study.
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4. Discussion and conclusions

We have used Bayesian optimization to find optimal parameters characterizing massive
material injection. This is a multi-objective problem where the cost function we aim to
minimize accounts for the maximum RE current, the transported heat loss fraction, the CQ
time and the final ohmic current. Bayesian optimization is well suited to this problem, as it
is a computationally efficient method for finding global optima, providing also uncertainty
quantification. In the disruption context, it has also been used recently for validation of
simulations of a CQ in a JET plasma discharge with an argon induced disruption (Järvinen
et al. 2022).

We find that, even in the optimal case, RE currents of several megaampere are predicted.
Magnetic perturbations strongly affect the RE dynamics through inducing transport losses
of heat and seed REs. Then the optimization is, to a large degree, searching for a balance
between sufficiently low transported heat loss – typically favouring large injected impurity
quantities and low magnetic perturbation amplitudes – and tolerable final RE current –
favouring the opposite conditions. The importance of such a balance has previously been
pointed out by Svenningsson et al. (2021). In each optimization we kept the normalized
magnetic perturbation level constant, in the range 0.2 %–0.5 %. This range of magnetic
perturbation levels is motivated by magnetohydrodynamic simulations, We note that
higher values are also reached in some recent studies (Särkimäki et al. 2020; Nardon et
al. 2021), which, based on the trends we observe in figure 5, is not expected to have a
significant effect on the final RE current, while it would impact the transported heat loss
fraction negatively.

The optimum is generally found at a rather high injected deuterium density nD,inj ≈
1022 m−3, while at a lower neon density nNe,inj ≈ 3 × 1018 m−3. The sensitivity of the
optimum to an inaccuracy of the injected deuterium quantity is much stronger than that of
the injected neon. The strong sensitivity to the deuterium quantity is due to the possibility
of extremely rapid cooling through dilution and subsequent radiation at sufficiently high
deuterium densities, which leads to an effective seed generation. In addition, deuterium
recombination steeply increases above a certain deuterium density, allowing the already
large seed to avalanche more effectively. We also find that neon deposited at the edge
is advantageous, where it can produce sufficient radiative heat losses, without making the
avalanche RE generation problem more severe, for which the conditions are typically more
favourable in the core. Whether an outward peaking impurity density can be sustained long
enough to see these benefits can only be answered using higher fidelity simulations. In this
sense, our 4-D optimization results can be considered as optimistic bounds.

We point out the importance of choosing the wall radius carefully, as it determines the
magnetic energy reservoir for RE generation; a tightly fitted conducting wall may lead
to too optimistic results concerning the maximum RE current (yielding 1 MA instead of
4 MA in our example). As we allow for activated RE seed generation mechanisms we
cannot find parameter regions where all objectives fall within their respective tolerable
ranges; we see, however, that this may not need to be the case with non-activated seed
sources only.

The megaampere-scale RE currents predicted even in the optimal scenarios are
concerning, thus these results should prompt further studies accounting for additional
effects that can impact RE current generation. The most important effects to consider
are: (i) magnetohydrodynamic and kinetic instabilities, (ii) vertical displacement and
the associated interaction of the current-carrying plasma column with the wall, (iii) the
possibility of magnetic surface re-healing taking place significantly later than the end of
the TQ and (iv) the possible disappearance of closed flux surfaces below a finite – still
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megaampere-level – plasma current. In addition, the dynamics of the injection – which
is not resolved here – has a direct impact on the transported heat fraction, and more
generally it may affect the temperature evolution and in turn the RE dynamics (mostly the
Dreicer and hot-tail seed generation, and as such, it is expected to be more consequential in
non-activated operation). Employing this Bayesian framework for the optimization of the
more directly accessible parameters describing the injection (for instance the composition
and timing of the injected pellets in shattered pellet injection) is thus a natural next step to
pursue.

The results are quite robust with respect to the choice of the cost function. The most
important trade-off between the various figures of merit appears between achieving a
low runaway current and a low transported heat fraction. For instance, in the δB/B =
0.3 % 2-D case, changing the weight of ηcond in the cost function by ±10 % moves
the optimum by ±1.5 % in nNe,inj, and by 0.4 % in nD,inj. These figures are calculated
relative to the extent of the 10 % neighbourhood of the optimum on a logarithmic scale
(i.e. the size of the corresponding point cloud in figure 6a). The lower bound of the
10 % neighbourhood of the optimum changes by ±5 %, while the other bounds change
by 1 % or less. The functional form and weight of the various components in the cost
function are ultimately chosen by the user. Currently this arbitrariness of the weights
cannot be fully eliminated, partly because of a detailed knowledge about the (monetary)
cost of a given value of a figure of merit is lacking, and such estimated figures may
never be available. In addition, the current modelling provides too coarse information
on the outcome of a given scenario. Indeed, RE beams with the same RE current may
cause serious damage, or no detectable effect at all, depending on how the beam is lost
to the wall. Recent results indicate that a combination of a low impurity concentration
bulk plasma and large-scale magnetohydrodynamic instabilities may enable termination
of megaampere-level RE currents without damage to the wall (Paz-Soldan et al. 2021;
Reux, Cédric et al. 2021).
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Appendix A. Simulation details

The magnetic geometry and the initial plasma temperature and current density profiles
are shown in figures 8(a) and 8(b,c), respectively. The parallel current density component

https://doi.org/10.1017/S0022377823000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000193


Optimization of massive material injection 17

(a) (b)

(c)

FIGURE 8. (a) Magnetic geometry with flux surfaces (grey curves), the outermost modelled
flux surface r = a is indicated by the thick blue line, and the effective wall is shown in red. The
rest of the panels show initial plasma parameter profiles. (b) Electron temperature. (c) Current
density.

j is taken at the outboard mid-plane. The magnetic geometry uses a model equilibrium
parametrization similar to the Miller equilibrium (Miller et al. 1998), with the profiles
of elongation, triangularity, Shafranov shift and toroidal magnetic field variation being
identical to those shown in appendix A of Pusztai, Hoppe & Vallhagen (2022). The
on-axis value is B0 = 5.3 T. The magnetic equilibrium is not evolved self-consistently in
the simulation, instead these shaping parameters, as well as the plasma position, are held
fixed throughout the simulation.

The DREAM simulations are performed in fluid mode. The Dreicer RE generation rate
is calculated using a neural network (Hesslow et al. 2019b), which takes effects of partial
screening into account. Compton scattering and tritium decay seed sources are accounted
for as in Vallhagen et al. (2020). The hot-tail seed is calculated using the model described
in appendix C.4 in Hoppe et al. (2021). The avalanche growth rate accounts for partial
screening (Hesslow et al. 2019a). Trapping effects are accounted for in the conductivity
through the model by Redl et al. (2021), and in the avalanche and hot-tail RE generation
rates.

The bulk electron temperature evolution is calculated from the time-dependent energy
balance throughout the simulation, according to (43) in Hoppe et al. (2021), accounting
for ohmic heating, line and recombination radiation and bremsstrahlung, as well as a
radial heat transport. Since the RE population is not resolved in momentum space, the
kinetic term – in (44) of Hoppe et al. (2021) – describing heating by REs is zero.
However, the latter process is approximately accounted for by a term jREEc, with Ec =
e3ne ln Λc/(4πε0mec2) the critical electric field, ε0 the vacuum permittivity and me the
electron mass. We evolve the temperatures of the ion charge states separately according to
(45) in Hoppe et al. (2021) which accounts for collisional heat exchange among various
charge states as well as with electrons. We neglect current density profile flattening
(Pusztai et al. 2022) associated with the flux surface breakup.

Opacity effects have been shown to have significant effect on the post-TQ plasma
temperature and indirectly on the avalanche gain (Vallhagen et al. 2022). These effects are
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taken into account by using ionization, recombination and radiation rates for the hydrogen
isotopes that are based on the assumption of the plasma being opaque to Lyman radiation.

The simulations use 20 radial grid cells. During the TQ that takes a few milliseconds the
solver uses adaptive time stepping with time steps estimated from the relative change of
the free electron density within a time step (referred to as ionization-based adaptive time
stepping), with allowed minimum and maximum time steps 10−11 s and 2 × 10−6 s. The
rest of the 150 ms long simulation uses 2 × 104–2 × 105 equidistant time steps as needed
for convergence.

Appendix B. Details of Bayesian optimization

After n steps our sample data Dn := (Xn, Yn) are a collection of control vectors Xn = {xi}
and the corresponding function outputs Yn = {f (xi)} where the function f runs DREAM to
obtain the four objectives and combines them using the cost function L. The basic idea
of Bayesian optimization is that f (x) is a random variable for each x and that, given the
observations Dn, the joint distribution of all these random variables is a Gaussian process.
The corresponding mean and covariance functions are defined as the expected values

μ(x) = E[ f (x)], (B1)

k(x, x′) = E[( f (x) − μ(x))( f (x′) − μ(x′))]. (B2)

In our case the DREAM simulation runs are deterministic, which means that the function
μ will exactly coincide with f on the samples observed so far. In other points the Gaussian
process model provides a smooth interpolation of the cost (something we used to visualize
the cost function in figure 1).

The covariance between two points is modelled by the Matérn kernel (Matérn 1986;
Stein 1999)

kM(x, x′) = 1
2ζ−1Γ (ζ )

(
2
√

ζ |x − x′|
)ζ

Kζ

(
2
√

ζ |x − x′|
)

, (B3)

where Γ denotes the gamma function and Kζ is the modified Bessel function of the second
kind. We use a fixed smoothness parameter of ζ = 5/2. The distance between two points in
the D-dimensional parameter space is calculated as |x − x′| = ∑D

i=1(xi − x′
i)

2/θ 2
i , with the

correlation length parameters θi (which are updated after each new sampling to maximize
the marginal likelihood of Dn).

We use the expected improvement EIn(x) acquisition function to find the most promising
next point to sample. The following thought experiment (Frazier 2018) illustrates this
acquisition strategy. Let f ∗

n be the minimal value of f based on the current sample, and let
x∗

n be the corresponding input. If the optimization procedure is terminated at this sample
size, x∗

n would be returned as the best estimate of the actual optimum location x∗. Suppose
that an additional evaluation is to be performed at any point x yielding f (x). After this,
the minimal observed value of f is either f (x) if f (x) < f ∗

n or remain to be f ∗
n otherwise.

We might define the improvement we gain by performing this additional evaluation to
be f ∗

n − f (x) in the former case – the amount we could decrease the best value found so
far – and 0 in the latter. We aim to maximize this improvement, while f (x) is, as of yet,
still unknown. Instead, he next sample location is chosen to maximize the expectation
value of the improvement, given the information at hand, that is

xn+1 = argmax
{
En

[
max(0, f ∗

n − f (x))
]} = argmax {EIn(x)} , (B4)

where En[·] should be understood as the expectation under the posterior distribution, given
the previously evaluated Dn.
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