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Classifiability of crossed products by
nonamenable groups

By Eusebio Gardella at Gothenburg, Shirly Geffen at Münster, Julian Kranz at Münster and
Petr Naryshkin at Münster

Abstract. We show that all amenable, minimal actions of a large class of nonamenable
countable groups on compact metric spaces have dynamical comparison. This class includes
all nonamenable hyperbolic groups, many HNN-extensions, nonamenable Baumslag–Solitar
groups, a large class of amalgamated free products, lattices in many Lie groups, zA2-groups, as
well as direct products of the above with arbitrary countable groups. As a consequence, crossed
products by amenable, minimal and topologically free actions of such groups on compact met-
ric spaces are Kirchberg algebras in the UCT class, and are therefore classified by K-theory.

1. Introduction

One of the most remarkable achievements in C �-algebra theory in the last decade was
the completion of the classification programme initiated by George Elliott over 30 years ago.
The outcome is the combination of the work of a large number of mathematicians over several
decades, and can be phrased as follows:

Theorem (Classification). Simple, separable, unital, nuclear, Z-stable C �-algebras
satisfying the Universal Coefficient Theorem (UCT) are classified by the Elliott invariant
(K-theory and traces).

By Kirchberg’s dichotomy, [44, Theorem 4.1.10], a C �-algebra satisfying the assump-
tions of the above theorem (also called classifiable) is either stably finite or purely infinite. The
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currently available proof of the classification theorem considers the stably finite and purely
infinite cases separately: while the purely infinite case was settled over twenty years ago by
Kirchberg and Phillips (see [42]), the stably finite case was only settled in the last five years
as a combination of [10, 17, 47]. We refer the reader to Winter’s ICM address [51] for a recent
survey and further references on the topic.

With such a powerful classification theorem at our disposal, it becomes an imperative task
to identify interesting classes ofC �-algebras to which it can be applied. One of the most natural
families of C �-algebras arises from topological dynamics via the crossed product construction.
In recent years, a lot of work has been done to establish dynamical criteria for an actionG Õ X

of a countable group on a compact metric space that ensure that the associated crossed product
C.X/ ÌG satisfies the assumptions of the classification theorem. Unitality and separability
of C.X/ ÌG are automatic, while nuclearity of C.X/ ÌG is equivalent to amenability of
G Õ X (see Definition 2.1). Moreover, if G Õ X is amenable, then C.X/ ÌG automatically
satisfies the UCT by [49, Theorem 10.9], and it is simple if and only if G Õ X is minimal and
topologically free by [5, Theorem 2]. In particular, amenability, minimality, and topological
freeness are necessary conditions for classifiability ofC.X/ ÌG, and it remains to decide when
C.X/ ÌG is Z-stable. Kirchberg’s dichotomy takes a particularly nice form in this setting,
since a nuclear crossed product C.X/ ÌG is stably finite if and only if G is amenable. (This is
a combination of celebrated results in [7, 12, 25], as well as Lemma 2.2). Not surprisingly, the
techniques used to establish Z-stability of C.X/ ÌG are quite different depending on whether
the group G is amenable or not.

On the amenable side, one of the first results in this direction is due to Toms and Winter,
who showed in [48] that C.X/ Ì Z is Z-stable whenever Z Õ X is free and minimal, and
dim.X/ <1. The efforts to extend this result to more general groups led Kerr to introduce
the notion of almost finiteness for topological actions of amenable groups in [29], and prove
that crossed products by free, minimal and almost finite actions are Z-stable. Almost finite-
ness has been verified in a number of cases of interest [31], and the most recent result in this
setting is by Kerr and Naryshkin [30], who proved that free actions of elementary amenable
groups on finite-dimensional spaces are automatically almost finite. It is not possible to com-
pletely remove the finite-dimensionality assumption in these: Giol and Kerr constructed in [23]
a free, minimal homeomorphism of an infinite dimensional space X such that C.X/ Ì Z is not
Z-stable. The dividing line regarding Z-stability for crossed products by amenable groups is
expected to be mean dimension zero (or the conjecturally equivalent notion of the small bound-
ary property), which is weaker than finite-dimensionality of the space. In this direction, Elliott
and Niu showed in [18] that C.X/ Ì Z is Z-stable whenever Z Õ X is free and minimal, and
has mean dimension zero; this was generalized by Niu [40] to Zd -actions. It has been conjec-
tured by Phillips and Toms that the converse should also be true, and there have been some
partial results in this direction; see [27].

Much less seems to be known in the nonamenable setting, although certain classes of
actions have been successfully studied from this point of view. For example, Laca and Spielberg
proved in [35] that crossed products by minimal, topologically free, strong boundary actions
are purely infinite. As a consequence, for actions as above which are in addition amenable, such
crossed products are nuclear and thus O1-stable by Kirchberg’s absorption theorem [32, Theo-
rem 3.15], so they are in particular Z-stable. Similar results were obtained independently by
Anantharaman-Delaroche in [2]. In [28], Jolissaint and Robertson proved analogous results for
the larger class of n-filling actions.
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A property that is key in the study of dynamical systems is Kerr’s notion of dynamical
comparison. Given nonempty open sets U; V � X , we write U � V if every closed subset of
U admits a finite open cover whose elements can be transported via the group action to pair-
wise disjoint subsets of V (see Definition 2.4). A system G Õ X has dynamical comparison
if U � V whenever �.U / < �.V / for all G-invariant probability measures �. Establishing
dynamical comparison is a powerful tool for proving Z-stability of crossed products, both in
the amenable and in the nonamenable settings. For amenable groups, the small boundary prop-
erty implies almost finiteness (and thus Z-stability) in the presence of dynamical comparison;
see [31, Theorem A]. As it turns out, dynamical comparison has been verified in many inter-
esting cases: for free actions of groups with subexponential growth on Cantor spaces in [16],
and for arbitrary minimal actions of groups with polynomial growth in [39]. The latter result
gives a large class of groups for which the small boundary property implies Z-stability. For
amenable, minimal, topologically free actions of nonamenable groups, Ma proved that com-
parison implies pure infiniteness of the crossed product (see [36], and see Theorem 2.8 for
a simple proof). Not surprisingly, establishing dynamical comparison is often very challenging.

In this work, we prove that all amenable and minimal actions of a large class of non-
amenable groups automatically satisfy dynamical comparison. As a consequence, for actions
which are additionally topologically free, the crossed products are purely infinite (and thus
satisfy the assumptions of the classification theorem). The following is the main definition of
this work.

Definition A. Given n 2 N, we say that a countable group G admits n-paradoxical
towers, if for every finite subset D � G there are A1; : : : ; An � G and g1; : : : ; gn 2 G such
that:

(1) the sets dAi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint,

(2) G D
Sn
iD1 giAi .

We say that G admits paradoxical towers if it admits n-paradoxical towers for some n 2 N.

It is easy to see that a group admitting paradoxical towers is necessarily nonamenable.
Elementary methods allow one to show that the free group Fn admits paradoxical towers; see
Proposition 3.2, and see Theorem C for more examples. There exist nonamenable groups which
do not admit paradoxical towers, such as F2 � Z; see Example 4.16.

We show that every amenable and minimal action of a group with paradoxical towers has
dynamical comparison. In fact, our methods allow us to deal with products of such groups with
arbitrary groups; see Theorem 3.6.

Theorem B. LetH be a countable group with paradoxical towers, letK be an arbitrary
countable group, and set G D H �K. Then every amenable, minimal action G Õ X on a
compact metrizable space has dynamical comparison. If G Õ X is moreover topologically
free, then the crossed product C.X/ ÌG is a Kirchberg algebra satisfying the UCT.

By [45, Theorem 6.11], every nonamenable exact group admits a large family of minimal,
amenable, topologically free actions on compact metrizable spaces.

The above result shows an unexpected phenomenon in the nonamenable setting: clas-
sifiability of C.X/ ÌG does not require finite dimensionality of X or any version of mean
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dimension zero for actions of nonamenable groups. There is thus a genuine difference between
the amenable and the nonamenable cases. For a nonamenable group G not covered by Theo-
rem B, we do not know if a simple, nuclear crossed product of the form C.X/ ÌG can be
finite, although we strongly suspect that this is not the case1). If G contains F2, we show in
Theorem 3.9 that a simple, nuclear crossed product of the form C.X/ ÌG is always prop-
erly infinite.

We complement Theorem B by proving that large classes of nonamenable groups admit
paradoxical towers; see Section 4. We summarize some of the results:

Theorem C. The following classes of groups admit paradoxical towers:

(1) Acylindrically hyperbolic groups; see Proposition 4.7. In particular, all nonamenable
hyperbolic groups and thus all nonabelian free groups.

(2) Highly transitive faithful non-ascending HNN-extensions; see Proposition 4.9. In par-
ticular, Baumslag–Solitar groups BS.m; n/ with jmj; jnj > 1 and jmj ¤ jnj; see Exam-
ple 4.10.

(3) All free productsG �H of nontrivial groups with jH j > 2; see Example 4.11 for a larger
class.

(4) Lattices in a real connected semisimple Lie group without compact factors and with finite
center (such as SLn.Z/ for n � 3); see Example 4.13.

(5) zA2-groups; see Example 4.14.

(6) Discrete subgroups of isometries of a visibility manifold with finite covolume; see Exam-
ple 4.15.

After these results appeared on the arXiv, further examples of groups with paradoxical
towers and purely infinite crossed products were obtained by Ma and Wang in [37]. Moreover,
some of the techniques developed here have also been successfully used in the study of actions
on simple C*-algebras; see [21].

Based on the evidence provided in this work, we expect that the conclusion of Theorem B
should hold for arbitrary nonamenable groups:

Conjecture D. Let G be a countable nonamenable group and let X be a compact
metrizable space. Then every amenable, minimal action G Õ X has dynamical comparison.

A positive solution to the above conjecture would imply that crossed products by amen-
able, minimal and topologically free actions of nonamenable groups are always classifiable.
Our conjecture would also imply a strengthening of Kirchberg’s dichotomy for crossed prod-
ucts: if C.X/ ÌG is simple and nuclear, then it is either stably finite (if and only if G is
amenable) or purely infinite (if and only if G is nonamenable), regardless of whether it is
Z-stable or not.

1) Lemma 2.2 implies that such crossed products are never stably finite, and Conjecture D below predicts
that such crossed products are always purely infinite.
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2. Amenable actions and dynamical subequivalence

In this section, we collect a number of elementary definitions and results that will be
needed in the rest of the work. All countable groups will be endowed with the discrete topology.
All measures on locally compact spaces are assumed to be regular Borel measures. If G is
a discrete group, we denote by Prob.G/ � `1.G/ the set of all probability measures on it. If
� 2 Prob.G/ and g 2 G, we denote by g � � the probability measure given by

.g � �/.E/ D �.g�1E/

for g 2 G and E � G.
The following definition, introduced by Anantharaman-Delaroche and Renault in [3], is

standard by now.

Definition 2.1. An action G Õ X of a countable group G on a compact metrizable
space X is said to be amenable if there exists a sequence .�n/n2N of continuous maps

�nWX ! Prob.G/

such that for all g 2 G we have

sup
x2X

k�n.g � x/ � .g � �n/.x/k1
n!1
����! 0:

Note that a countable group is amenable if and only if it acts amenably on the one point
space. More generally, an actionG Õ X on a compact Hausdorff space is amenable if and only
if C.X/ Ìr G is nuclear; see [3, Corollary 6.2.14, Theorem 3.3.7], in which case the full and
reduced crossed products of G Õ X agree. The following lemma is folklore, and we include
the proof for the convenience of the reader.

Lemma 2.2. Let G Õ X be an amenable action of a countable group on a compact
metrizable space. Then G is amenable if and only if there exists a G-invariant probability
measure on X .

Proof. For the “only if” implication, assume that G is amenable and fix a G-invariant
mean �W `1.G/! C. Let � be any probability measure on X . The Poisson map

P�WC.X/! `1.G/

defined by

P�.f /.g/ D

Z
X

f .g � x/ d�.x/

for f 2 C.X/ and g 2 G, is a unital positive G-equivariant map. Then � ı P�WC.X/! C is
a G-invariant state giving rise to a G-invariant probability measure on X . For the “if” implica-
tion, let .�n/n2N be as in Definition 2.1, and let � be a G-invariant probability measure on X .
For n 2 N, define �n 2 Prob.G/ by

�n.E/ D

Z
X

�n.x/.E/ d�.x/

for all E � G. Then k�n � g � �nk1
n!1
����! 0 for all g 2 G, and thus G is amenable.
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Remark 2.3. Recall that any trace on C.X/ ÌG induces a G-invariant probability
measure on X by restriction, and conversely any such measure induces a trace on C.X/ ÌG
via the canonical conditional expectation C.X/ ÌG ! C.X/. It thus follows from Lemma 2.2
that a nuclear crossed product C.X/ ÌG has a trace if and only if G is amenable.

We need the notion of dynamical subequivalence for tuples of sets, which is the partial
order used to define the type semigroup of a dynamical system.

Definition 2.4. Let G Õ X be an action of a discrete group on a compact Hausdorff
space. Let U1; : : : ; Un; V1; : : : ; Vm be open subsets of X . We say that the family .Ui /niD1 is
dynamically subequivalent to .Vj /mjD1, and write .Ui /niD1 � .Vj /

m
jD1, if for any closed sub-

sets Ai � Ui , for i D 1; : : : ; n, there exist finite open covers Wi of Ai , elements g.i/W 2 G for
W 2 Wi , and a partition

C1 t � � � t Cm D ¹.i;W /W i D 1; : : : ; n; W 2 Wiº;

such that, for each j D 1; : : : ; m the sets g.i/W �W , for .i;W / 2 Cj , are pairwise disjoint and
contained in Vj . Given a nonnegative integer r , we write

.Ui /
n
iD1 �r .Vj /

m
jD1

if .Ui /niD1 � .Vj /jD1;:::;m;kD1;:::;rC1; in other words, if the family .Ui /niD1 is subequivalent to
r C 1 disjoint copies of the family .Vj /mjD1.

We will identify tuples containing one element with their unique element, and will thus
write U �r V instead of .U / �r .V /. Note that this definition of dynamical r-subequivalence
for open sets agrees with Kerr’s [29, Definition 3.1]. We record here the observation that � is
transitive.

Lemma 2.5. Let G Õ X be an action of a discrete group on a compact Hausdorff
space, and let U1; : : : ; Un; V1; : : : ; Vm; W1; : : : ; Wr � X be open sets satisfying

.Ui /
n
iD1 � .Vj /

m
jD1 and .Vj /

m
jD1 � .Wk/

r
kD1:

Then .Ui /niD1 � .Wk/
r
kD1

.

Proof. LetAi � Ui , for i D 1; : : : ; n, be closed subsets. Using that .Ui /niD1 � .Vj /
m
jD1,

find open covers Wi ofAi and elements g.i/W 2 G, for i D 1; : : : ; n andW 2 Wi , and a partition

C1 t � � � t Cm D ¹.i;W /W i D 1; : : : ; n; W 2 Wiº

such that for each j D 1; : : : ; m, the sets g.i/W W for .i;W / 2 Cj are pairwise disjoint and
contained in Vj . By shrinking the elements of the open covers Wi if necessary, we can without
loss of generality assume that for each j D 1; : : : ; m, the set

Bj WD
[

.i;W /2Cj

g
.i/
W W

is contained in Vj as well. Using that .Vj /mjD1 � .Wk/
r
kD1

, find open covers Yj of Bj and
elements h.j /Y 2 G, for j D 1; : : : ; m and Y 2 Yj , and a partition

D1 t � � � tDr D ¹.j; Y /W j D 1; : : : ; m; Y 2 Yj º
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such that for each k D 1; : : : ; r , the sets h.j /Y Y for .j; Y / 2 Dk are pairwise disjoint and con-
tained in Wk . For i D 1; : : : ; n;W 2 Wi , j D 1; : : : ; m, with .i;W / 2 Cj , and Y 2 Yj , we
define an open set

ZW;Y WD W \
�
g
.i/
W

��1
.Y / � Ai \

�
g
.i/
W

��1
.Bj /:

Then for each i D 1; : : : ; n, the family

Zi WD ¹ZW;Y WW 2 Wi ; Y 2 Yj ; .i;W / 2 Cj º

is an open cover of Ai . For k D 1; : : : ; r , we define

Ek WD ¹.i; ZW;Y /WW 2 Wi ; Y 2 Yj ; .i;W / 2 Cj ; .j; Y / 2 Dkº:

Note that
E1 t � � � t Er D ¹.i; Z/W i D 1; : : : ; n; Z 2 Ziº:

For i D 1; : : : ; n, j D 1; : : : ; m and ZW;Y 2 Zi with Y 2 Yj , set

t
.i/
W;Y
WD h

.j /
Y g

.i/
W :

For fixed k D 1; : : : ; r , it easily follows from the construction that the sets t .i/W;YZW;Y for
.i; ZW;Y / 2 Ek are pairwise disjoint and contained in Wk . This shows that

.Ui /
n
iD1 � .Wk/

r
kD1;

as desired.

We will ultimately only be interested in comparing individual open sets, but the perspec-
tive using tuples will be helpful in the proof of Theorem 3.6, since it will allow us to decrease
the number of colors we need to obtain comparison. The reason for this is that U � .Vj /mjD1 is
a much stronger condition than U �m�1

Sm
jD1 Vj . For instance, it follows from the previous

lemma that U � .Vj /mjD1 �r W implies U �r W , while the direct argument using
Sm
jD1 Vj

instead of .Vj /mjD1 would only yield U �.rC1/m�1 W .

Definition 2.6 ([29, Definition 3.2]). Let X be a compact space, and let r be a nonneg-
ative integer. An action G Õ X of a discrete group G is said to have dynamical r-comparison,
if for any two nonempty open subsets U; V � X satisfying �.U / < �.V / for all G-invariant
probability measures � on X , we have U �r V .

If r D 0, we say that G Õ X has dynamical comparison.

When G Õ X is an amenable action of a nonamenable group, we have seen in Lem-
ma 2.2 that there are no G-invariant probability measures on X . In particular, G Õ X has
dynamical r-comparison precisely when U �r V for all nonempty open sets U; V � X . By
transitivity, it suffices to check this for U D X , since every open set is subequivalent to the
whole space.

While we will be interested in establishing dynamical comparison, the tools and argu-
ments we use will only give dynamical r-comparison. For actions of nonamenable groups
without invariant probability measures, the following lemma shows that the two properties are
in fact equivalent. This should be compared with [39, Lemma 2.3], where it is shown that
r-comparison implies comparison for minimal actions of amenable groups.
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Figure 1. X � V .

Lemma 2.7. LetG Õ X be an action of a discrete group on a compact Hausdorff space
with no invariant probability measures, and let r be a nonnegative integer. Then G Õ X has
dynamical r-comparison if and only if G Õ X has dynamical comparison.

Proof. We prove the nontrivial implication, so we assume that G Õ X has dynam-
ical r-comparison. One readily shows, arguing as in the discussion after [36, Definition 2.4],
that G Õ X is minimal and X has no isolated points. As explained above, it suffices to fix
a nonempty open set V � X and show that X � V . Fix x 2 V , and note that V \G � x
is an infinite set. Find t1; : : : ; trC1 2 G such that tk � x 2 V for all k D 1; : : : ; r C 1 and
tk � x ¤ t` � x whenever k ¤ `. Using that X is Hausdorff, find an open set W � X such that
x 2 W and ¹tk �W º

rC1
kD1

are pairwise disjoint sets in V . Since X �r W by assumption, there
exist a finite open cover O D O1 t � � � tOrC1 of X , and gO 2 G for O 2 O, such that the
sets gO �O , for O 2 Ok are pairwise disjoint subsets of W , for every k D 1; : : : ; r C 1. Now,
¹tkgO �OºO2Ok ;kD1;:::;rC1 is a collection of pairwise disjoint sets in V , verifying that X � V
as desired.

We close this section by giving a simple proof of [36, Theorem 1.1], which avoids the use
of scaling elements and hereditary subalgebras in favor of Cuntz semigroup techniques. (We
refer the reader to [4, Chapter 2] or [22, Sections 2 and 3] for an introduction to these.) Given
positive elements a and b in a C �-algebra A, we say that a is Cuntz subequivalent to b in A,
written a - b in A, if there exists a sequence .cn/n2N in A such that limn!1 c�nbcn D a. We
write a � b if a - b and b - a. We will use the fact that if A is abelian, then a - b if and
only if the open support of a is contained in that of b. In particular, in a general C �-algebra,
if a and b commute and 0 � a � b, then a - b.

Theorem 2.8 (Ma). LetG Õ X be a minimal and topologically free action of a discrete
group on a compact Hausdorff space. Assume that G Õ X has dynamical comparison and
admits no invariant probability measures. Then C.X/ Ìr G is simple and purely infinite.

Proof. Simplicity follows from [5, Theorem 2], so we prove pure infiniteness. To this
end, let a;b 2C.X/Ìr G be nonzero positive contractions. We show that b - a inC.X/Ìr G,
which implies that C.X/ Ìr G is purely infinite by [33, Defintion 4.1]. Since b - 1C.X/, it is
enough to show that 1C.X/ - a in C.X/ Ìr G. By [43, Lemma 7.9], there exists a nonzero
positive contraction f 2 C.X/ such that f - a in C.X/ Ìr G. Set W D ¹x 2 X Wf .x/ > 0º,
and choose U to be a nonempty open subset of W such that U � W . There exists a pos-
itive contraction g 2 C.X/ such that g D 0 on X nW and g D 1 on U . Since X � U , it
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follows from [29, Lemma 12.3] that 1C.X/ - g in C.X/ Ìr G. On the other hand, we have
g - f since ¹x 2 X Wg.x/ > 0º � W D ¹x 2 X Wf .x/ > 0º. Transitivity of Cuntz subequiv-
alence gives 1C.X/ - f , and so 1C.X/ - a, as desired.

3. Paradoxical towers give dynamical comparison

In this section, we introduce the notion of paradoxical towers, which is the main technical
tool in this work. For (certain extensions of) groups admitting paradoxical towers, we show that
amenable, minimal actions always have dynamical comparison; see Theorem 3.6. Using this,
we establish classifiability of a large class of crossed products in Corollary 3.8. Examples are
discussed in Section 4.

Definition 3.1. Let n 2 N. We say that a countable group G admits n-paradoxical
towers if for every finite subset D � G there are A1; : : : ; An � G and g1; : : : ; gn 2 G such
that:

(1) the sets dAi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint,

(2) G D
Sn
iD1 giAi .

We say that G admits paradoxical towers if there is n 2 N such that G admits n-paradoxical
towers.

It is easy to see that a group admitting paradoxical towers is necessarily nonamenable.
The class of groups admitting paradoxical towers is very large, but it does not exhaust all non-
amenable groups; for example, F2 � Z does not admit paradoxical towers (see Example 4.16).
We postpone this discussion until Section 4, and we only present here the following basic
example (see Proposition 4.7 for a much larger class).

Proposition 3.2. The free group F2 admits 2-paradoxical towers. In fact, given a finite
subset D � F2 there are nonempty subsets A1; A2; A3 � F2 and g1; g2; g3 2 F2 such that:

(1) the sets dAj , for d 2 D and j D 1; 2; 3, are pairwise disjoint,

(2) the sets F2 n gjAj , for j D 1; 2; 3, are pairwise disjoint.

Proof. We begin by observing that the property in the statement implies that F2 has
2-paradoxical towers. Indeed, condition (2) implies that

; D .F2 n g1A1/ \ .F2 n g2A2/;

and by taking complements we get F2 D g1A1 [ g2A2. In particular,A1; A2 and g1; g2 satisfy
the conditions of Definition 3.1 for n D 2.

Denote by a; b the generators of F2, and set L D ¹a; b; a�1; b�1º. For h 2 F2, we write
W.h/ � F2 for the set of all reduced words with letters from L which start with h. If x 2 L
is the last letter of h, then a generic element of W.h/ has the form hg with g … W.x�1/. In
particular,

(3.1) F2 n h
�1W.h/ D W.x�1/:
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For r � 0, we write Br for the set of all reduced words of length at most r ; note that we have
BrBs D BrCs for all r; s > 0. Let D � F2 be a finite set. Find m � 0 with D � Bm, and
define

h1 D a
2mba; h2 D a

2mba�1; h3 D a
2mb2:

For i D 1; 2; 3, set Ai D W.hi /. We claim that these sets satisfy condition (1). Since every
element ofD has length at mostm, it suffices to check that whenever e 2B2m and i; j D 1; 2; 3
satisfy eAi \ Aj ¤ ;, then e D 1 and i D j . Given e; i; j as above, if eAi intersects Aj , then
there is g 2 Ai such that eg, after reduction, starts with 2m copies of a. Since the .2mC 1/-st
letter of g is not an a, it follows that the product of e and g cannot have any cancelations, and
thus e D ak for some 0 � k � m. On the other hand, akhi never has hj as an initial segment
unless k D 0 and i D j . This proves the claim.

For i D 1; 2; 3, set gi D h�1i . Using (3.1), we get

F2 n g1A1 D W.a
�1/; F2 n g2A2 D W.a/; F2 n g3A3 D W.b

�1/;

and these sets are clearly pairwise disjoint. This finishes the proof.

We will need some auxiliary lemmas. In the following, for m D 1 we just get the def-
inition of paradoxical towers. In general, the strengthening is that the towers A.j /i are jointly
(and not just separately) D-free.

Lemma 3.3. Let n 2 N and let G be a countable group with n-paradoxical towers,
and let D � G be a finite subset. For every m 2 N, there exist subsets A.j /i � G and group
elements g.j /i 2 G, for i D 1; : : : ; n and j D 1; : : : ; m, such that:

(1) the sets dA.j /i , for d 2 D, i D 1; : : : ; n, and j D 1; : : : ; m, are pairwise disjoint,

(2) G D
Sn
iD1 g

.j /
i A.j /i for every j D 1; : : : ; m.

Proof. LetD � G be a finite subset. SinceG is infinite, there exist s1; : : : ; sm 2 G such
that Dsj , for j D 1; : : : ; m, are pairwise disjoint sets. Set zD D

Fm
jD1Dsj , which is a finite

subset ofG. SinceG admits n-paradoxical towers, there are setsA1; : : : ; An � G and elements
g1; : : : ; gn 2 G such that the sets zdAi , for zd 2 zD and i D 1; : : : ; n, are pairwise disjoint, and
G D

Sn
iD1 giAi .

For i D 1; : : : ; n and j D 1; : : : ; m, set

A.j /i D sjAi and g.j /i D gis
�1
j :

One readily checks that conditions (1) and (2) in the statement are satisfied.

Given a metric space .X; d/, a set U � X and " > 0, we set

U�" D ¹x 2 U W d.x;X n U/ > "º:

Lemma 3.4. Let G Õ X be an action of a countable group on a compact metric
space X , let n be a nonnegative integer, let " > 0, and let D � G be a finite symmetric set.

(1) Let V;U0; : : : ; Un � X be open sets and let RWX ! Œ0;1/ be a function satisfying

j¹g 2 D2Wg � x 2 V ºj CR.x/ <

nX
kD0

j¹g 2 DWg � x 2 U�"k ºj
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for all x 2 X . Then for every closed subset A � V there exist 0 < z" < ", a finite open
cover O of A, group elements sO 2 G, for O 2 O, and a partition O D O0 t � � � tOn
satisfying the following properties:

(a) for every k D 0; : : : ; n, the family ¹sO �OWO 2 Okº consists of pairwise disjoint
subsets of Uk ,

(b) with Bk denoting the closure of
S
O2Ok

sO �O and zUk D Uk n Bk , we have

R.x/ <

nX
kD0

j¹g 2 DWg � x 2 zU�z"k ºj

for all x 2 X .

(2) Let V1; : : : ; Vm; U � X be open sets satisfying
mX
jD1

j¹g 2 D2Wg � x 2 Vj ºj < .nC 1/j¹g 2 DWg � x 2 U
�"
ºj

for all x 2 X . Then .Vj /mjD1 �n U .

Proof. (1) This is proved exactly as [39, Lemma 3.1]. We omit the proof.
(2) We prove this by repeatedly applying part (1). For each j D 1; : : : ; m, let Aj � Vj

be a closed subset. Set

".1/ D " and U
.1/
0 D � � � D U .1/n D U :

For j D 1; : : : ; m, let R.j /WX ! Œ0;1/ be given by

R.j /.x/ D

mX
iDj

j¹g 2 D2Wg � x 2 Viºj

for x 2 X . By construction, we have

j¹g 2 D2Wg � x 2 V1ºj CR
.1/.x/ <

nX
kD0

j¹g 2 DWg � x 2 .U
.1/

k
/�"

.1/

ºj

for all x 2 X . By part (1), there exist 0 < ".2/ < ".1/, an open cover O.1/ ofA1, group elements
s
.1/
O 2 G, for O 2 O.1/, and a partition O.1/ D O

.1/
0 t� � �tO

.1/
n satisfying the following two

properties:

(a.1) for every k D 0; : : : ; n, the family ¹sO �OWO 2 O
.1/

k
º consists of pairwise disjoint sub-

sets of U .1/
k

,

(b.1) with B.1/
k

denoting the closure of
S
O2O

.1/

k

sO �O and U .2/
k
D U

.1/

k
n Bk � U , we have

R.1/.x/ <

nX
kD0

j¹g 2 DWg � x 2 .U
.2/

k
/�"

.2/

ºj

for all x 2 X .

By construction, we get

j¹g 2 D2Wg � x 2 V2ºj CR
.2/.x/ <

nX
kD0

j¹g 2 DWg � x 2 .U
.2/

k
/�"

.2/

ºj
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for all x 2 X . One continues applying part (1) inductively. After m steps, we will have con-
structed, for each j D 1; : : : ; m, an open cover O.j / of Aj , group elements s.j /O 2 G, for
O 2 O.j /, and a partition O.j / D O

.j /
0 t � � � tO

.j /
n such that for every k D 0; : : : ; n, the fam-

ily ¹sO �OWO 2 O
.j /

k
º consists of pairwise disjoint subsets of U .j /

k
� U . For j D 1; : : : ; m,

set
Cj D ¹.k;O/W k D 1; : : : ; n;O 2 O

.j /

k
º;

and note that

C1 t � � � t Cn D ¹.k;O/W k D 1; : : : ; n;O 2 O
.j /

k
; j D 1; : : : ; mº:

Since the sets U .j /
k

, for j D 1; : : : ; m are pairwise disjoint subsets of U , it follows that
the above choices witness the fact that .Vj /mjD1 �n U , as desired.

In the following lemma, note that we cannot demand that the sets eBj for e 2 E and
j D 1; : : : ; m be pairwise disjoint, as this cannot happen if K is amenable.

Lemma 3.5. Let K be a countable group and let E � K be a finite symmetric subset
containing the unit of K. Set m D jE2j. Then there is a finite partition

K D B1 t � � � t Bm

such that for each j D 1; : : : ; m, the sets eBj , for e 2 E, are pairwise disjoint.

Proof. Consider the Cayley graph G D Cay.K;E2/ whose vertices are the elements
of K and whose edges are of the form .k; gk/, for k 2 K and g 2 E2 n ¹1º. Note that every
vertex in G has exactly m � 1 edges coming out of it, and that there are no loops in G . The
greedy coloring algorithm then implies that we can color the vertices of G using at most m
colors, in such a way that every two adjacent vertices have different colors.2) For j D 1; : : : ; m,
let Bj � K denote the vertices with the j -th color. Then B1 t � � � t Bm D K. Moreover, for
j D 1; : : : ; m, we have gBj \ Bj D ; for all g 2 E2 n ¹1º. Thus the sets eBj , for e 2 E, are
pairwise disjoint for each j D 1; : : : ; m.

The following is the main result of this work. The main consequence is the classifia-
bility of the associated crossed products; see Corollary 3.8. In its proof, we will work with
doubly-indexed sets Vi;j for i D 1; : : : ; n and j D 1; : : : ; m. To lighten the notation, we will
write .Vi;j /

n;m
i;jD1 for .Vi;j /iD1;:::;n;jD1;:::;m, and similarly for their union

Sn;m
i;jD1, or for sumsPn;m

i;jD1 indexed both by i and j .

Theorem 3.6. Let H be a countable group admitting paradoxical towers, let K be any
countable group, and set G D H �K. Then any amenable, minimal action of G on a compact
metrizable space has dynamical comparison.

Proof. Let X be a compact metrizable space and let G Õ X be an amenable, minimal
action. Let n 2 N be such thatH admits n-paradoxical towers. By Lemma 2.2 and Lemma 2.7,
and since G is nonamenable, it suffices to show that G Õ X has dynamical n-comparison.

2) One way to do this is to enumerate the vertices and then color them inductively.
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Let U � X be a nonempty open set. Fix a metric on X inducing its topology, and choose
" > 0 such that U�" 6D ;. By minimality of G Õ X , there is a finite set F0 � G such that
F�10 � U

�" D X . Without loss of generality, we assume that F0 contains the unit of G, and has
the form F0 D D0 �E for finite sets D0 � H and E � K with E D E�1. Set m D jE4j.

SinceH is infinite, we can find t1; : : : ; tm 2 H such that the setsD0tj , for j D 1; : : : ; m,
are pairwise disjoint. Let D be any finite symmetric subset of H containing

Fm
jD1D0tj , set

F D D �E, which is finite and symmetric. With sj D .tj ; 1/ 2 G, note that the sets F0sj are
pairwise disjoint and contained in F .

Claim 1. For all x 2 X , we have

(3.2) j¹g 2 F Wg � x 2 U�"ºj � m:

To prove the claim, fix x 2 X and j D 1; : : : ; m. Denote by Fx the set in the left-hand
side of the displayed equation above. Since

s�1j F�10 � U
�"„ ƒ‚ …

DX

D X;

there is fj 2 F0 such that fj sj � x 2 U�", and thus fj sj belongs to Fx (in addition to F0sj ).
Hence jFx \ F0sj j � 1 for all j D 1; : : : ; m, and since the sets F0sj are pairwise disjoint, this
shows that jFxj � m, as desired.

Since H admits n-paradoxical towers, use Lemma 3.3, to find A.j /i � H and h.j /i 2 H
for i D 1; : : : ; n and j D 1; : : : ; m satisfying:

(a.1) the sets dA.j /i , for d 2 D2, i D 1; : : : ; n, and j D 1; : : : ; m, are pairwise disjoint,

(a.2)
Sn
iD1 h

.j /
i A

.j /
i D H for every j D 1; : : : ; m.

Use Lemma 3.5, with E2 in place of E, to find subsets B1; : : : ; Bm � K such that

(b.1) for each j D 1; : : : ; m, the sets eBj , for e 2 E2, are pairwise disjoint,

(b.2) K D B1 t � � � t Bm.

For i D 1; : : : ; n and j D 1; : : : ; m, set

Ci;j D A
.j /
i � Bj � G and gi;j D .h

.j /
i ; 1/ 2 G:

We proceed to show the following:

(i) the sets f Ci;j for f 2 F 2, i D 1; : : : ; n, and j D 1; : : : ; m, are pairwise disjoint,

(ii)
Sn;m
i;jD1 gi;jCi;j D G.

To check part (i), let i; i 0 D 1; : : : ; n, let j; j 0 D 1; : : : ; m, and let f; f 0 2 F 2. Write
�H WG ! H for the projection onto the first coordinate, and �K WG ! K for the projection
onto the second one. Assume that

(3.3) f Ci;j \ f
0Ci 0;j 0 ¤ ;:

Apply �H to (3.3) to get �H .f /A
.j /
i \ �H .f

0/A
.j 0/
i 0 ¤ ;. Since �H .F 2/ D D2, condition

(a.1) above implies that i D i 0, j D j 0 and �H .f / D �H .f 0/. Applying �K to (3.3) now
gives �K.f /Bj \ �K.f 0/Bj ¤ ;. Since �K.F 2/ D E2, it thus follows from (b.1) above that
�K.f / D �K.f

0/ and thus f D f 0. This proves (i).
Part (ii) is immediate from (a.2) and (b.2).
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Now fix 0 < ı < .2nm.nmC 1//�1. Use amenability of G Õ X to find a continuous
map �WX ! Prob.G/ satisfying

(3.4) sup
x2X

k�.g � x/ � g � �.x/k1 < ı

for all g 2 F 2 [ ¹gi;j º
n;m
i;jD1. For i D 1; : : : ; n and j D 1; : : : ; m, set

Vi;j D

²
x 2 X W�.x/.Ci;j / >

1

nmC 1
C ı

³
;

and note that Vi;j is an open subset of X .

Claim 2. We have X � .Vi;j /
n;m
i;jD1.

For i D 1; : : : ; n and j D 1; : : : ; m, define

Wi;j D

²
x 2 X W�.x/.gi;jCi;j / >

1

nmC 1
C 2ı

³
:

ThenWi;j is open inX . Fix x 2 X . Since �.x/ is a probability measure onG, by condition (ii)
there are ix 2 ¹1; : : : ; nº and jx 2 ¹1; : : : ; mº such that

�.x/.gix ;jx
Cix ;jx

/ �
1

nm
>

1

nmC 1
C 2ı:

In other words, x 2 Wix ;jx
, and thus X D

Sn;m
i;jD1Wi;j . Using (3.4) again, we get

g�1i;jWi;j �

²
x 2 X W�.x/.Ci;j / >

1

nmC 1
C ı

³
D Vi;j

for i D 1; : : : ; n and j D 1; : : : ; m. This shows that X � .Vi;j /
n;m
i;jD1, as desired.

Claim 3. We have .Vi;j /
n;m
i;jD1 �n U .

To prove the claim, note that by (3.4) and the fact that F D D �E is symmetric, we
have

f Vi;j �

²
x 2 X W�.x/.f Ci;j / >

1

nmC 1

³
for all f 2 F 2, i D 1; : : : ; n, and j D 1; : : : ; m. Since the sets f Ci;j are pairwise disjoint
by condition (i) above, for any x 2 X at most nm of them can have �.x/-measure more
than 1

nmC1
. We deduce that each x 2 X belongs to at most nm of the sets f Vi;j , for f 2 F 2,

i D 1; : : : ; n and j D 1; : : : ; m. That is, for all x 2 X , we get by (3.2),

n;mX
i;jD1

j¹f 2 F 2Wf � x 2 Vi;j ºj � nm < .nC 1/j¹f 2 F Wf � x 2 U�"ºj:

By part (2) of Lemma 3.4, we conclude that .Vi;j /
n;m
i;jD1 �n U .

Combining Claims 2 and 3, we get X � .Vi;j /
n;m
i;jD1 �n U , which implies X �n U by

Lemma 2.5. This concludes the proof.

Remark 3.7. The above proof does not show that H �K admits paradoxical towers.
Indeed, although the sets Ci;j satisfy the conditions for nm-paradoxical towers, the number
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m depends on the finite subset E � K. In fact, one can show that G D H �K never has
paradoxical towers if K is infinite and amenable; see Example 4.16.

By [45, Theorem 6.11], every exact nonamenable group admits a large family of amen-
able, minimal, free actions on compact metric spaces. In particular, actions satisfying the
assumptions of Theorem 3.6 always exist.

We obtain the following corollary:

Corollary 3.8. Let H be a group admitting paradoxical towers, let K be any count-
able group, and set G D H �K. Let G Õ X be an amenable, minimal and topologically free
action on a compact metrizable space X . Then the crossed product C.X/ ÌG is a Kirchberg
algebra satisfying the UCT.

Proof. It is well known that C.X/ ÌG is simple, separable, unital and nuclear, and it
satisfies the UCT by [49, Theorem 10.9]. Finally, it is purely infinite by the combination of
Theorem 3.6 and Theorem 2.8.

Corollary 3.8 reveals an unexpected phenomenon in the nonamenable setting: classifi-
ability of C.X/ ÌG, for the groups G to which the corollary applies, does not require any
finite dimensionality assumption on X , or any version of mean dimension zero. There is thus
a genuine difference between the amenable and the nonamenable case.

It is an interesting and challenging problem to compute the possible K-groups of Kirch-
berg algebras arising as in Corollary 3.8. Some progress in this direction has been made
in [19].

For a nonamenable group G, a simple, nuclear crossed product of the form C.X/ ÌG
cannot be stably finite by Lemma 2.2, but we do not know if it can ever be finite if G is not
covered by Corollary 3.8 (although Conjecture D predicts that this can never happen). Using
a weak version of paradoxical towers, we show below that if G contains F2, then a simple,
nuclear crossed product C.X/ ÌG is automatically properly infinite; see Theorem 3.9. Recall
(see [44, Definition 1.1]) that a unital C �-algebra A is properly infinite if there exist two
mutually orthogonal projections in A, each of which is Murray–von Neumann equivalent to
the unit.

Theorem 3.9. Let G be a countable group containing a nonabelian free group. If
G Õ X is an amenable, minimal and topologically free action on a compact metrizable space,
then C.X/ ÌG is a properly infinite, simple, separable, nuclear, unital C �-algebra.

Proof. We only need to show that C.X/ ÌG is properly infinite. By [11, Proposi-
tion 2.2], it suffices to show that there is an isometry in C.X/ ÌG which is not a unitary.
Let H � G be a nonabelian free subgroup of rank 2. Let h 2 H n ¹1º and set D D ¹1; hº. By
Proposition 3.2, there exist nonempty sets B1; B2; B3 � H and h1; h2; h3 2 H such that

(1) the sets dBj , for d 2 D and j D 1; 2; 3, are pairwise disjoint, and

(2) the sets H n hjBj , for j D 1; 2; 3, are pairwise disjoint.

Observe that the above conditions imply

(3) h1; h2; h3 are pairwise distinct.
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Indeed, if hj D hk with j ¤ k, then hjBj and hjBk are disjoint sets with disjoint comple-
ments. This implies that G D hjBj t hjBj , and hence G D Bj t Bk , which contradicts the
fact that B1; B2; B3 are pairwise disjoint and nonempty.

Let S � G be a set containing exactly one representative of each right coset in HnG, so
that G D

F
s2S Hs. For j D 1; 2; 3, set Aj D

F
s2S Bj s. We claim that

(a) the sets dAj , for d 2 D and j D 1; 2; 3, are pairwise disjoint, and

(b) the sets G n hjAj , for j D 1; 2; 3, are pairwise disjoint.

To see (a), let d; e 2 D and let j; k 2 ¹1; 2; 3º. Using that Hs \Ht D ; for s; t 2 S with
s ¤ t , we get

dAj \ eAk D
� G
s2S

dBj s
�
\

�G
t2S

eBkt
�
D

G
s;t2S

dBj s \ eBkt„ ƒ‚ …
�Hs\Ht

D

G
s2S

.dBj \ eBk/s:

If the above intersection is nonempty, then we must have dBj \ eBk ¤ ;, which implies d D e
and j D k by (1). To check condition (b), let j; k 2 ¹1; 2; 3º. Arguing as above, we have

.G n hjAj / \ .G n hkAk/ D
� G
s2S

.Hs n hjBj s/
�
\

�G
t2S

.Ht n hkBkt /
�

D

G
s2S

�
.H n hjBj / \ .H n hkBk/

�
s;

which is empty if j ¤ k by (2).
Set " D 1

24
, and use amenability of G Õ X to find a continuous function

�WX ! Prob.G/

satisfying

(3.5) sup
x2X

k�.g � x/ � g � �.x/k1 < "

for all g 2 ¹h�1; h1; h2; h3º. For j D 1; 2; 3, set

Vj D

²
x 2 X W�.x/.Aj / >

1

2
C "

³
;

and define V D V1 [ V2 [ V3. By (3.5), for d 2 D D ¹1; hº we have

dVj �

²
x 2 X W�.x/.dAj / >

1

2

³
for j D 1; 2; 3. Since the sets dAj , for d 2 D and j D 1; 2; 3, are pairwise disjoint, it follows
that for each x 2 X at most one of these sets can have �.x/-measure more than 1

2
. We deduce

that the sets dVj , for d 2 D and j D 1; 2; 3, are pairwise disjoint. In particular, we have:

(i) V D V1 t V2 t V3.

(ii) V ¤ X , since hV \ V D ;.
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We will now show that X � V . For j D 1; 2; 3, set

Wj D

²
x 2 X W�.x/.G n hjAj / <

1

2
� 2"

³
:

We claim that

(iii) W1 [W2 [W3 D X ,

(iv) h�1j Wj � Vj for j D 1; 2; 3.

Note that 1
2
� 2" > 1

3
. By condition (b) above, for every x 2 X at least one of either

G n h1A1, G n h2A2 or G n h3A3 must have �.x/-measure less than 1
2
� 2". This implies

(iii). To show (iv), fix j D 1; 2; 3. Given x 2 X , the fact that �.x/ is a probability measure on
G implies that

�.x/.G n Aj / D 1 � �.x/.Aj /:

Using the above at the second step, we get

h�1j Wj
(3.5)
�

²
x 2 X W�.x/.G n Aj / <

1

2
� "

³
D

²
x 2 X W�.x/.Aj / >

1

2
C "

³
D Vj ;

as desired.
To simplify the notation, we set gj D h�1j for j D 1; 2; 3. Let f1; f2; f3 2 C.X/ be

a partition of unity subordinate to the open cover ¹W1; W2; W3º of X ; see (iii) above. Denote
by ˛ the action of G on C.X/ induced by the given action G Õ X . For g 2 G, we write
ug 2 C.X/ ÌG for the canonical unitary satisfying ugf D ˛g.f /ug for all f 2 C.X/. We
denote by EWC.X/ ÌG ! C.X/ the canonical conditional expectation, which is determined
by E.ug/ D 0 whenever g 2 G n ¹1º.

Set v D
P3
jD1 ˛gj

.f
1=2
j /ugj

, and note that

v D

3X
jD1

ugj
f
1=2
j :

Since ˛gj
.f

1=2
j / is supported on gjWj and gjWj \ gkWk D ;whenever j ¤ k by (iv) and (i)

above, we have

(3.6) ˛gj
.f

1=2
j /˛gk

.f
1=2

k
/ D 0

whenever j ¤ k. Using this, we get

v�v D

3X
j;kD1

u�gj
˛gj

.f
1=2
j /˛gk

.f
1=2

k
/ugk

(3.6)
D

3X
jD1

u�gj
˛gj

.fj /ugj

D

3X
jD1

fj D 1:
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Thus v is an isometry. On the other hand, we have

vv� D

3X
j;kD1

ugj
f
1=2
j f

1=2

k
u�gk
D

3X
j;kD1

˛gj
.f

1=2
j f

1=2

k
/ugjg

�1
k
:

We will show that vv� ¤ 1 by showing that E.vv�/ ¤ 1. We apply E to the expression above
and use (3) to get

E.vv�/ D

3X
jD1

˛gj
.fj /:

In particular, E.vv�/ is supported on
F3
jD1 gjWj � V . As V ¤ X by (ii), the above expres-

sion cannot equal 1, and hence v is not a unitary, as desired.

We point out that the argument used in the theorem above is somewhat different from
the one used to prove Theorem 3.6. Indeed, the reasoning used in Theorem 3.6 would only
give the existence of a nontrivial open set V satisfying X �1 V , which suffices to show
infiniteness of M2.C.X/ ÌG/, but not of C.X/ ÌG. In order to obtain X �0 V , we need
the strengthening of 2-paradoxical towers proved for F2 in Proposition 3.2.

4. Examples of groups with paradoxical towers

In this section we exhibit large classes of nonamenable groups which admit paradoxical
towers; see Theorem C in the introduction. In addition to proving some preservation prop-
erties for the class of groups admitting paradoxical towers, the main tool to construct such
groups is given in Proposition 4.6, where we show that one can produce paradoxical towers in
groups admitting some topologically free n-filling action on a completely metrizable (but not
necessarily locally compact) space. Using this, we give several concrete and explicit examples.

We begin by looking at extensions of groups with paradoxical towers, both by finite
groups (Proposition 4.1) and by other groups with paradoxical towers (Proposition 4.2).

Proposition 4.1. Let n 2 N, let G be a group, and let K � G a finite normal subgroup
such that G=K has n-paradoxical towers. Then G has njKj-paradoxical towers.

Proof. Denote by � WG ! G=K the quotient map, let F � G be a finite subset, and set
D0 D �.F / and m D jKj. Since G=K is infinite, there exist t1; : : : ; tm 2 G=K with t1 D 1
such that D0tj , for j D 1; : : : ; m, are pairwise disjoint sets. Set

(4.1) D D

mG
jD1

D0tj ;

which is a finite subset of G=K. Since G=K admits n-paradoxical towers, it follows that there
are sets A1; : : : ; An � G=K and elements h1; : : : ; hn 2 G=K such that

(i) the sets dAi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint, and

(ii) G=K D
Sn
iD1 hiAi .
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Fix an arbitrary enumeration K D ¹k1; : : : ; kmº. Let sWG=K ! G be a section for � . For
i D 1; : : : ; n and j D 1; : : : ; m, set

(4.2) Ci;j D s.tjhi
�1/s.hiAi / � G and gi;j D kj s.tjhi

�1/�1 2 G:

We claim that the above are paradoxical towers in G for F . To check the first condition
in Definition 3.1, let d; d 0 2 F , let i; i 0 D 1; : : : ; n and let j; j 0 D 1; : : : ; m satisfy

(4.3) dCi;j \ d
0Ci 0;j 0 6D ;:

Applying � in the equation above and using (4.2), we obtain

�.d/tjAi \ �.d
0/tj 0Ai 0 6D ;:

Note that �.d/tj and �.d 0/tj 0 belong toD. By condition (i), we deduce that �.d/tj D �.d 0/tj 0
and i D i 0. The identity in (4.1) implies that j D j 0 and �.d/ D �.d 0/. In other words, d�1d 0

belongs to K. Combining this with (4.3) and (4.2), we get

ds.tjhi
�1/s.hiAi / \ d

0s.tjhi
�1/s.hiAi / 6D ;;

and thus

s.hiAi / \ s.tjhi
�1/�1

2K‚…„ƒ
d�1d 0 s.tjhi

�1/„ ƒ‚ …
2K; sinceK is normal

s.hiAi / 6D ;:

Since s is a section, we have ks.G=K/ \ s.G=K/ 6D ; for some k 2 K if and only if k D 1. It
follows that s.tjhi�1/�1d�1d 0s.tjhi�1/ D 1 and thus d D d 0, as desired.

We check the second condition in Definition 3.1. By condition (ii), we have

s.G=K/ D

n[
iD1

s.hiAi /:

Using that G D
Fm
jD1 kj s.G=K/ at the last step, we obtain

n;m[
i;jD1

gi;jCi;j
(4.2)
D

n;m[
i;jD1

kj s.tjhi
�1/�1s.tjhi

�1/s.hiAi /

D

n;m[
i;jD1

kj s.hiAi / D G:

This proves that G has nm-paradoxical towers, as desired.

Proposition 4.2. LetG be a group, letK � G be a normal subgroup. Assume thatG=K
has n-paradoxical towers and that K has m-paradoxical towers. Then G has nm-paradoxical
towers.

Proof. Let � WG ! G=K be the canonical quotient map, and let sWG=K ! G be any
section for it. Let F � G be a finite subset, and set E0 D F 2 \K and D D �.F /. With-
out loss of generality, we assume that F is symmetric and contains the identity of G. Since
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G=K has n-paradoxical towers, there exist subsets A1; : : : ; An � G=K and group elements
h1; : : : ; hn 2 G=K such that

(a.1) the sets dAi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint,

(a.2) G=K D
Sn
iD1 hiAi .

SetE D
Sn
iD1 s.hi /E0s.hi /

�1, which by normality is a (finite) subset ofK. AsK hasm-para-
doxical towers, there exist subsets B1; : : : ; Bm � K and group elements k1; : : : ; km 2 K such
that

(b.1) the sets eBj , for e 2 E and j D 1; : : : ; m, are pairwise disjoint,

(b.2) K D
Sm
jD1 kjBj .

For i D 1; : : : ; n and j D 1; : : : ; m, set

Ci;j D s.hi /
�1Bj s.hiAi / and gi;j D kj s.hi /:

Note that �.Ci;j / D Ai for all i D 1; : : : ; n and j D 1; : : : ; m.
We claim that the above are paradoxical towers in G for F . It is immediate to check that

n;m[
i;jD1

gi;jCi;j D G

using (a.2) and (b.2). Given f; f 0 2 F , i; i 0 D 1; : : : ; n and j; j 0 D 1; : : : ; m, suppose that

f Ci;j \ f
0Ci 0;j 0 ¤ ;:

Applying � gives �.f /Ai \ �.f 0/Ai 0 ¤ ;, which by condition (a.1) implies that i D i 0 and
f �1f 0 2 K. Set e D f �1f 0 2 E0. Substituting in the equation above, we get

s.hi /
�1Bj s.hiAi / \ es.hi /

�1Bj 0s.hiAi / ¤ ;:

Choose a; a0 2 Ai , b 2 Bj and b0 2 Bj 0 such that

s.hi /
�1bs.hia/ D es.hi /

�1b0s.hia
0/:

Applying � to the identity above gives a D a0, so we get

s.hi /
�1b D es.hi /

�1b0;

which implies that Bj \ .s.hi /es.hi /�1/Bj 0 ¤ ; since F contains the identity of G. Since
s.hi /es.hi /

�1 belongs to E, condition (b.1) implies that s.hi /es.hi /�1 D 1 and j D j 0. Thus
e D 1 and f D f 0, as desired.

Lemma 4.3. Let n 2 N, and let G be a group that can be expressed as an increas-
ing union G D

S
k2N Gk of groups Gk that admit n-paradoxical towers. Then G admits

n-paradoxical towers.

Proof. Let D � G be a finite subset, and find k 2 N such that D � Gk . Find subsets
B1; : : : ; Bn � Gk and g1; : : : ; gn 2 Gk such that

(1) the sets dBi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint, and

(2)
Sn
iD1 giBi D Gk .
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Let S � G be a set containing exactly one representative of each right coset in GknG,
so that G D

F
s2S Gks. For i D 1; : : : ; n, set Ai D

F
s2S Bis. It is then immediate to check

that A1; : : : ; An � G and g1; : : : ; gn 2 G satisfy the conditions of Definition 3.1.

The following notion was introduced in [28] for actions on compact spaces.

Definition 4.4. Let n 2 N. An action G Õ Z of a countable group on a Hausdorff
space Z is said to be n-filling if for any nonempty open sets U1; : : : ; Un � Z, there exist
g1; : : : ; gn 2 G such that

Sn
jD1 giUi D Z.

In the definition above, we do not assume the space Z to be compact, or even locally
compact. It is not hard to see that if G Õ Z is n-filling and Z is locally compact, then Z must
in fact be compact. There exist, however, interesting n-filling actions on spaces that are not
locally compact; see Proposition 4.7.

Remark 4.5. Actions that are 2-filling are also called strong boundary actions, and their
C �-algebraic crossed products were studied in [35]. They have also been studied under the
name extremely proximal actions by Glasner in [24] and are called extreme boundary actions
in [8].

Recall that a topological space is called Baire if the conclusion of the Baire category
theorem holds: a countable intersection of open dense subsets is dense. The class of Baire
spaces includes all locally compact Hausdorff spaces as well as all completely metrizable ones.

Proposition 4.6. Let n 2 N and let G be a countable, infinite group. Assume that there
exists a topologically free n-filling action of G on a Hausdorff Baire space. Then G admits
n-paradoxical towers.

Proof. LetZ be a Hausdorff Baire space and letG Õ Z be a topologically free n-filling
action. LetD � G be a finite subset, and assume without loss of generality thatD contains the
unit 1G of G. Since G Õ Z is topologically free, for every g 2 G n ¹1Gº, the open set

Ug D ¹z 2 ZWg � z ¤ zº

is dense in Z. Since G is countable and Z is Baire, the set

Y WD
\

g2Gn¹1Gº

Ug

is dense in Z, and in particular nonempty. Fix z1 2 Y , so that StabG.z1/ D ¹1Gº. Using that
G is infinite, for i D 2; : : : ; n, we can choose zi 2 Z recursively satisfying

zi 2 G � z1 n .D
�1D � z1 [ � � � [D

�1D � zi�1/:

Note that dzi D d 0zi 0 for d; d 0 2 D and i; i 0 D 1; : : : ; n implies d D d 0 and i D i 0. Since Z
is Hausdorff, there exist open neighborhoods U1; : : : ; Un of z1; : : : ; zn, respectively, such that
dUi , for d 2 D and i D 1; : : : ; n, are pairwise disjoint sets in Z. Since G Õ Z is n-filling,
there exist g1; : : : ; gn 2 G such that

n[
iD1

giUi D Z:
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For i D 1; : : : ; n, set
Ai D ¹g 2 GWg � z1 2 Uiº:

One checks that A1; : : : ; An and g1; : : : ; gn satisfy the conditions of Definition 3.1.

We turn to examples of groups which admit paradoxical towers. The first class we will
consider is that of acylindrically hyperbolic groups, as introduced by Osin in [41, Defini-
tion 1.3]; see Proposition 4.7. This class includes all nonamenable hyperbolic groups (in par-
ticular, all nonabelian free groups), all but finitely many mapping class groups, the outer
automorphism group Out.Fn/ of Fn, nonelementary CAT.0/-groups containing a rank-one
element, and many fundamental groups of hyperbolic 3-manifolds; see [41, Appendix].

Proposition 4.7. LetG be an acylindrically hyperbolic group. ThenG admits paradox-
ical towers.

Proof. Let us first assume that G has no nontrivial finite normal subgroups. By defini-
tion, G admits a nonelementary acylindrical action by isometries on a (not necessarily proper)
Gromov-hyperbolic space Y . By [41, Theorem 1.2], we can even assume that the action is
cobounded (as we can take the space to be the Cayley graph associated to a suitable generating
set). Let Z denote the (not necessarily compact) Gromov boundary 𝜕Y of Y . Since G has no
nontrivial finite normal subgroups, [1, Proposition 4.1] ensures that the induced action G Õ Z

is minimal and topologically free.
We claim that G Õ Z is 2-filling.3) Let U; V � Z be nonempty open subsets. Since

the action G Õ Y is nonelementary, there exists a loxodromic element h 2 G (see [41, Theo-
rem 1.2]). Denote by h�1 the repelling point of h. By the minimality of G Õ Z, there is
t 2 G with t � h�1 2 U . By definition (see the paragraph before [41, Theorem 1.1]), there is
y 2 Y such that .h�n � y/n2N converges to h�1, and h�1 is independent of y. In particular,
G acts on the limit points of loxodromic elements by conjugation on the group, namely, for the
loxodromic element g D tht�1 we have t � h�1 D g�1.

Again by minimality, there is an element s 2 G and an open neighborhood W of the
attracting point gC1 2 Z such that s �W � V . Since g is loxodromic, there is n 2 N such
that gn � .Z n U/ � W (see [26, Lemma 4.3] or the proof of [50, Theorem 2B]). In particular,
we have sgn.Z n U/ � V . Thus U [ g�ns�1 � V D Z, which proves that G Õ Z is 2-filling.

Note that by [14, Proposition 3.4.18] Z D 𝜕Y is a completely metrizable space. By
Proposition 4.6, G admits 2-paradoxical towers.

If G is an arbitrary acylindrically hyperbolic group, then G contains a unique maximal
finite normal subgroup K.G/ by [13, Theorem 6.14]. We claim that G=K.G/ is acylindri-
cally hyperbolic. To see this, use [41, Theorem 1.2] to find a proper, infinite, hyperbolically
embedded subgroup H ,!h G (see [41, Definition 2.9]). By [13, Theorem 6.14], we have
K.G/ � H . By [13, Lemma 8.3], the map H=K.G/! G=K.G/ induced by H ,!h G is
a hyperbolic embedding. By [41, Theorem 1.2], this shows that G=K.G/ is acylindrically
hyperbolic.

Since G=K.G/ clearly contains no nontrivial finite normal subgroups, it follows from
the claim above and the first part of the proof that G=K.G/ admits 2-paradoxical towers. We
conclude from Proposition 4.1 that G admits 2jK.G/j-paradoxical towers.

3) This argument is inspired by [35, Example 2.1], but note that 𝜕Y is not necessarily compact.
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The following is a concrete application of the example above to the work of Klisse [34].

Example 4.8. Let W be a nonamenable finite rank irreducible right-angled Coxeter
group. Denote by 𝜕W its boundary in the sense of [34, Definition 3.1]. Then the crossed product
C.𝜕W / ÌW is classifiable Kirchberg algebra.

Proof. We claim that W is acylindrically hyperbolic. By [46, Theorem 1.3], it suf-
fices to show that W has a rank-one isometry and acts properly and cocompactly on a proper
CAT.0/-space. The fact that a nonamenable (also called nonaffine) Coxeter group acts prop-
erly and cocompactly on a proper CAT.0/-space is a classical theorem of Moussong, and the
fact that W contains a rank-one isometry follows from [9, Corollary 4.3 and Proposition 4.5].
This proves that W is acylindrically hyperbolic, and thus it admits paradoxical towers by
Proposition 4.7.

The actionW Õ 𝜕W is amenable by [34, Theorem 0.2], minimal by [34, Theorem 3.19],
and topologically free by [34, Lemma 3.25]. Thus C.𝜕W / ÌW is purely infinite by Corol-
lary 3.8.

Recall that an HNN-triple .G;H; �/ consists of a groupG, a subgroupH , and an injective
group homomorphism � WH !G. The HNN-extension HNN.G;H; �/ associated to .G;H; �/
is the quotient of the free product G � Z D hG; xi by the relation xh D �.h/x for all h 2 H .
The HNN-extension � D HNN.G;H; �/ is said to be faithful if its natural action on the asso-
ciated Bass–Serre tree is faithful. Moreover, � is said to be ascending if either G D H or
G D �.H/.

For the definition of a highly transitive group, we refer the reader to the introduction
of [20].

Proposition 4.9. Every faithful highly transitive non-ascending HNN-extension has
2-paradoxical towers.

Proof. Let .G;H; �/ be a non-ascending HNN-triple with � D HNN.G;H; �/ faith-
ful and highly transitive. By [8, Proposition 4.16], the natural action of � on the Bass–Serre
tree T associated to .G;H; �/ is strongly hyperbolic. Since this action is always minimal (see
the comments before [8, Proposition 4.16]), it follows from [8, Lemma 3.5] that the induced
action � Õ 𝜕T is 2-filling (see Remark 4.5). By [20, Theorem B], the action � Õ 𝜕T is topo-
logically free, and therefore also � Õ 𝜕T is topologically free. The result thus follows from
Proposition 4.6.

A concrete and relevant class of groups covered by Proposition 4.9 is that of Baumslag–
Solitar groups. These groups are never acylindrically hyperbolic by [20, Remark 8.4], and are
thus not covered by Proposition 4.7.

Example 4.10. Let m; n 2 Z with jmj; jnj > 1 and jmj ¤ jnj. Then the associated
Baumslag–Solitar group

BS.m; n/ D ha; bW abm D bnai

has 2-paradoxical towers.
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Proof. We identify the group BS.m; n/ as an HNN-extension as in [8, Example 4.21]:
we take G D Z D hai, with H D mZ D hami and � WmZ! Z determined by �.am/ D an;
we denote this map by � n

m
. Since jmj; jnj > 1, the HNN-extension is non-ascending. More-

over, BS.m; n/ D HNN.Z; mZ; � n
m
/ is highly transitive by [20, Proposition 8.8], and is faithful

by [38] (see also [15, Remark (iii) before Proposition 19]). Thus the claim follows from
Proposition 4.9.

A further class of groups we can treat with our methods is that of amalgamated free prod-
ucts. Given groups A and B containing a common subgroup C , for each k � 0 the subgroup
Ck � C is defined after [15, Corollary 2].

Example 4.11. Let A and B be groups containing a common subgroup C . Assume that
the following conditions hold:

(1) ŒA W C � > 1 and ŒB W C � > 2.

(2) There is k � 1 such that Ck D ¹1º.

Then the amalgamated free product � D A �C B has 2-paradoxical towers. In particular, a free
product G �H of nontrivial groups with jH j > 2 always has 2-paradoxical towers.

Proof. Let T denote the Bass–Serre tree of � . By [15, Proposition 19], the action of
� on T is minimal and strongly hyperbolic. Therefore, by [8, Lemma 3.5], the action of �
on 𝜕T is 2-filling. By [15, Proposition 19] and [8, Proposition 3.8], the action of � on 𝜕T is
topologically free, which implies that the action of � on 𝜕T is topologically free as well. The
claim follows from Proposition 4.6.

There is a generalization of Proposition 4.9 and Example 4.11 to groups acting on trees,
as follows:

Remark 4.12. Let a group � act on a tree T . Assume that the action � Õ T is minimal
and strongly hyperbolic. Then the action � Õ 𝜕T is 2-filling by [8, Lemma 3.5]. Assume
moreover that the fixator subgroup of every half-tree of T is trivial, which is equivalent to
topological freeness of the action of � on 𝜕T , by [8, Proposition 3.8] and [8, Remark 2.1].
Then � has 2-paradoxical towers by Proposition 4.6.

Next, we establish the existence of paradoxical towers in certain lattices in Lie groups.
Note that the following example covers SLn.Z/ for n � 3 (while SL2.Z/ is covered by Propo-
sition 4.7).

Example 4.13. Let � be a lattice in a real connected semisimple Lie group G without
compact factors and with finite center. Then � admits paradoxical towers.

Proof. Let us first assume that G has trivial center. Then the action of � on the Fursten-
berg boundary G=P of G is topologically free and n-filling for some n 2 N by [28, Proposi-
tion 2.5 and Remark 2.6] and the proof of [2, Proposition 3.4]. Thus � has paradoxical towers
by Proposition 4.6.
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We now treat the general case, so suppose that the center K of G is finite, and set
K� D � \K, which is a finite normal subgroup of � . Then G=K is a real connected semi-
simple Lie group without compact factors and with trivial center, and it is easy to see that
�=K� � G=K is a lattice. Then �=K� admits paradoxical towers by the paragraph above, and
hence � admits paradoxical towers by Proposition 4.1.

The following, in combination with Corollary 3.8, generalizes [28, Proposition 4.2]. We
refer the reader to [28, Sections 3 and 4] and references therein for the definitions of buildings
of type zA2 and actions on them.

Example 4.14. Let G a group which acts simply transitively in a type rotating manner
on the vertices of a building � of type zA2. (Such groups are called zA2-groups in [28].) Then
G admits paradoxical towers.

Proof. The action of the groupG on the boundary of� is topologically free and 6-filling
by [28, Theorem 3.8 and Proposition 4.1]. Thus G admits paradoxical towers by Proposi-
tion 4.6.

For the following example, we refer the reader to the discussion just before [2, Proposi-
tion 3.5].

Example 4.15. Let G be a countable subgroup of isometries of a visibility manifold X
with vol.X=G/ <1. Then G admits paradoxical towers.

Proof. It follows from [28, Proposition 2.5] and [6, Theorem 2.8, Theorem 2.2] (see also
[2, p. 218]) that the action of G on 𝜕X is topologically free and n-filling for some n. Therefore
G admits paradoxical towers by Proposition 4.6.

To conclude, we give examples of nonamenable groups that do not have paradoxical
towers. Observe, however, that many of these groups are covered by Theorem B.

Example 4.16. LetH be a nonamenable group and letK be an infinite amenable group.
Then G D H �K is a nonamenable group that does not have paradoxical towers.

Proof. Assume by contradiction that G has n-paradoxical towers for some n 2 N. Let
D � K be a subset with jDj � nC 1. We canonically identify D with ¹1º �D � G. Since
G has n-paradoxical towers, it follows that there are subsets A1; : : : ; An � G and elements
g1 D .h1; k1/; : : : ; gn D .hn; kn/ 2 G such that:

(1) the sets dAi , for d 2 D and j D 1; : : : ; n, are pairwise disjoint,

(2) G D
Sn
jD1 gjAj .

Fix a finitely additive left-invariant probability measure � on K, and denote by �K WG ! K

the canonical projection. Given h 2 H;d 2 D and j D 1; : : : ; n, we have

�K..¹hº �K/ \ dAj / D d�K..¹hº �K/ \ Aj /:

By condition (1) above, for different d 2 D and j D 1; : : : ; n, the above sets are pairwise
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disjoint. Since � is left-invariant, we get

�
�
�K..¹hº �K/ \ Aj /

�
�

1

nC 1

for all h 2 H and j D 1; : : : ; n. Denote by 1G the unit of G. Using condition (2) at the second
step, we get

1 D �.K/

D �

 
�K

 
.¹1Gº �K/ \

 
n[

jD1

.hj ; kj /Aj

!!!

D �

 
.�K

 
n[

jD1

.hj ; kj /..¹h
�1
j º �K/ \ Aj /

!!

D �

 
n[

jD1

kj�K..¹h
�1
j º �K/ \ Aj /

!

�

nX
jD1

�
�
�K..¹h

�1
j º �K/ \ Aj /

�
�

n

nC 1
;

a contradiction.
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