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Abstract — In recent work, we extended the methodology of multiplicity counting in nuclear safeguards by 
elaborating the one-speed stochastic transport theory of the calculation of the so-called multiplicity moments, 
i.e., the factorial moments of the number of neutrons emitted from a fissile item, following a source event from 
an internal neutron source [spontaneous fission and (α; n) reactions]. Calculations were made for solid spheres 
and cylinders, with the source being homogeneously distributed within the item. Recent measurements of the 
Rocky Flats Shells during the Measurement of Uranium Subcritical and Critical (MUSIC) campaign conducted 
by Los Alamos National Laboratory and assisted by the University of Michigan inspired us to extend the model 
to spherical shell geometry with a point source in the middle of the central cavity. Comparison of the calculated 
results with the experimental ones indicated that accounting for fission as the only neutron reaction (the 
standard procedure in the point model, adapted also in our work so far) was not sufficient for reaching good 
agreement with measurements. The model was therefore extended to include elastic scattering into the one- 
speed formalism, whereas the effect of inelastic scattering was accounted for in an empirical way. After these 
extensions, good agreement was found between the calculated and the measured values. The paper describes 
the extension of the theory and provides concrete quantitative results.

Keywords — Multiplicity moments, space-dependent model, shell items, point source, elastic scattering, 
inelastic scattering, Rocky Flats Shells.  

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Determining the parameters of an unknown sample, pri
marily the fission rate, which is proportional to the mass of the 
even number isotope, with passive interrogation methods is 
based on multiplicity counting. This is achieved by measure
ment of the rate of single neutron detections as well as the rate 

of detecting neutrons in double and triple coincidences (the 
singles, doubles, and triples rates). These, in turn, depend on 
the factorial moments of the number of neutrons emitted from 
a fissile sample following a source emission event (also 
referred to as multiplicity moments or just “Böhnel 
moments”)1. These moments depend on the parameters of 
the sample in which one is interested; hence, an expression of 
these moments as functions of the sample parameters make it 
possible to determine the sought parameters from the mea
sured multiplicity moments by an inversion of the 
expressions.

In the traditional method used so far, these multi
plicity moments are derived theoretically in the so-called 
point model, in which the spatial and angular dependence 
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of the neutrons inside the sample is neglected; only the 
number distribution of the neutron emission by the inter
nal source and the internal multiplication within the sam
ple by a uniform first collision probability are accounted 
for.1 By neglecting the spatial and angular aspects of 
neutron transport inside a finite item with given boundary 
conditions, the point model is clearly only an approxima
tion/simplification of the real case and will not be able to 
reconstruct the multiplicity moments exactly. This means 
that the usual method of unfolding the fission rate of the 
unknown sample from the measured multiplicity 
moments based on the point model formulas will lead 
to a biased value. A more realistic and better method of 
calculating the multiplicity moments, which accounts for 
the spatial and angular transport of neutrons in the finite 
item, would increase the accuracy of the identification of 
the sample mass.

In recent publications, we introduced a method for 
the calculation of the multiplicity moments beyond the 
point model, i.e., in a one-speed transport theory model, 
in which the spatial and angular transport of the neutrons 
is taken into account.2–4 A general theory was developed 
for the calculation of the moments in arbitrary geometries 
for solid, homogeneous items. Concrete calculations were 
made for items with spherical and cylindrical geometries 
with a collision number expansion. Because of the sym
metry properties of these shapes, the calculations were 
simplified as compared to an arbitrary geometry.

One limitation of the previous work, even at the level of 
the general theory, was that it was formulated for cases where 
the item was homogeneous, the internal source was distrib
uted evenly and homogeneously inside the item, and the 
angular distribution of the source neutrons was isotropic. 
Recently, a need arose to relax these limitations in connection 
with an ongoing project related to the Measurement of 
Uranium Subcritical and Critical (MUSIC) experimental 
measurements campaign.5–7 The campaign consisted of mea
surements on the Rocky Flats Shells (stacked shells of highly 
enriched metallic uranium, consisting of 93% 235U; see  
Refs. 7 and 8) driven by a 252Cf point source placed in the 
center of each configuration. This measuring arrangement is 
equivalent to a spherical shell having a central spherical 
cavity, a point source in the center, but no source distributed 
in the fissile part.

In order that such a case be treated, extension of the 
theory is needed in several points. One is treatment of the 
central cavity, which means that the item is not uniform and 
homogeneous. Neutrons entering the cavity will travel 
through it without collisions. In other words, the reaction 
cross sections are not constant in space any longer. This fact 
affects the equations for single particle–induced distribution, 

which is the first step when backward master equations are 
used. Another is that the source is not homogeneous in space 
either. This affects the equation connecting the single particle 
induced–distribution, and hence its moments, to the source- 
induced distribution and its moments.9 Treatment of point 
sources in neutron transport is a standard procedure, although 
a point source in the center of the cavity requires some care.

With the model extended to shells with a point source in 
the center of the cavity, preliminary calculations were made 
with data of the Rocky Flats Shells. Comparison with the 
measurements showed that the calculated moments were 
systematically lower than the measured ones. Calculation of 
the critical sizes of pure 235U and 239Pu samples and compar
ison with known criticality data also showed that the model 
underestimates the internal multiplication in the item. To 
improve the accuracy of the predictions, the effect of elastic 
scattering was included in the model. This led to a significant, 
but still not fully satisfactory, improvement with regard to 
both the comparison with the measurements on the Rocky 
Flats Shells and the comparison with critical sizes. To 
improve the agreement further, the effect of inelastic scatter
ing was accounted for in an approximate manner with 
a phenomenological method such that the one-speed charac
ter of the model could still be kept.

With these extensions, rather good agreement was 
found between the calculated and the measured data for 
the Rocky Flats Shells. In the following, these extensions 
will be described one after the other, and quantitative 
values of the calculations will be given.

II. TREATMENT OF THE CAVITY

Since the central spherical cavity does not affect the 
spherical symmetry, in this piece of work for the treatment 
of the item with a nonhomogeneous material distribution, we 
will use the spherical geometry model of Ref. 3 as the starting 
point. Also, since we want to model the case of a spontaneous 
fission source with a pure metallic uranium sample, the α 
factor will be taken as zero throughout. Including a nonzero α 
factor is a matter of triviality since it requires only the rescal
ing of the probability distribution of the source neutrons.1,10

Since the multiplicity moments, even in the point 
model, are described by backward-type master equa
tions, one needs first an equation for the number dis
tribution of the emitted neutrons due to one starting 
particle.a Then, another equation is needed to connect 

a This approach, also called the regeneration point technique, was 
originally developed in connection with cosmic electron-photon 
showers.11
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Fig. 1. Illustration of the neutron paths for μ > μcr and 
for μ < μcr in the shell with a central cavity. 

SPACE-DEPENDENT CALCULATION OF MULTIPLICITY MOMENTS FOR SHELLS · PÁZSIT et al. 3

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2023                                                                         

the distribution (or its generating function) of the single particle–induced event with that of the case starting with 
a source emission event (a random number of particles starting the process). The presence of the cavity affects 
primarily the single particle–induced distribution; hence, in this section, only this will be treated. The relationship 
between the single neutron–induced and source event–induced distributions will be treated in connection with the 
point source; Sec. III.

In Refs. 2 and 3, assuming a homogeneous sphere of radius R and that the induced fission neutrons have an isotropic 
angular distribution, the following master equation was derived for the distribution pðn ¼ njr; μÞ; pðnjr; μÞ of emission of 
a total number of n neutrons, due to one starting neutron at radial position r and directional cosine μ with respect to the position 
vector: 

pðnjr; μÞ ¼ e� ,ðr;μÞΣf δn;1 þ Σf

ð,ðr;μÞ

0
dse� s Σf

X1

0
prðkÞ

X

n1þn2þ...þnk¼n

ð1

� 1

dμ1
2

dμ2
2

. . .
dμk
2

� pðn1jr0ðsÞ; μ1Þ pðn2jr0ðsÞ; μ2Þ . . . pðnkjr0ðsÞ; μkÞ :
ð1Þ

Introducing the generating function gðzjr; μÞ of pðnjr; μÞ as

gðzjr; μÞ ¼
X1

n¼0
zn pðnjr; μÞ ð2Þ

and switching to optical units (distances measured in units 
of the mean free path), one obtains a substantially simpler 
equation for the generating function in the form

gðzjr; μÞ ¼ ze� ,ðr;μÞ þ

ð,ðr;μÞ

0
dse� s qr gðzjr0ðsÞÞ½ � : ð3Þ

In the above, n is a random variable and n is a realization 
of it, qr is the generating function of the number distribu
tion of the induced fission neutrons,

gðz jrÞ ¼
1
2

ð1

� 1
dμgðz jr; μÞ ð4Þ

is the “scalar” generating function,

r0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 þ 2rsμ

p
ð5Þ

is the radial position of the neutron at a distance s away 
from the starting point r along direction μ, and

,ðr; μÞ ¼ � rμ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrμÞ2 þ ðR2 � r2Þ

q

¼ � rμ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 ðμ2 � 1Þ þ R2
q

ð6Þ

is the distance to the boundary of the sphere of radius 
R from radial position r along direction μ, the latter 
being the polar angle between the neutron position 
vector at the starting point and the neutron velocity 

vector. Here, all distance units are measured in dimen
sionless optical path units, i.e., units of the mean free 
path 1=Σf (the only reaction is assumed to be fission). 
The use of the optical path in the equations simplifies 
the notations and makes the formalism more 
transparent.

To apply the same equation for a shell with a central 
cavity of radius r0, the expressions for the solid sphere 
are modified as follows. As is illustrated in Fig. 1, for 
each radial starting position r; there is a critical polar 
angle, with a corresponding μcr, equal to



μcrðrÞ; μcr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
r2

0
r2

r

� 0 ; ð7Þ

which separates the trajectories into two classes. Neutrons starting from a point r with

μ � μcr ð8Þ

will not pass the cavity; hence, the distance ,ðr; μÞ to the boundary from point r into direction cosine μ has to be 
calculated exactly as before, whereas neutrons with

μ < μcr ð9Þ

will have part of their trajectory in the cavity, where no reactions can take place. This is the section of the path between 
the points s1 and s2 in Fig. 1, in terms of the path length. These points, valid only for μ < μcr, are given as

s1;2 ; s1;2ðr; μÞ ¼ � rμ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrμÞ2 � ðr2 � r2
0Þ

q

: ð10Þ

One way of treating the cavity is to rewrite Eq. (3) for the single particle–induced generating function to the case where 
the cross section of the material is a function of space. To keep the advantages of using the optical path, corresponding 
to the medium, we define the normalized cross section

σðrÞ ¼
ΣðrÞ
Σf

; ð11Þ
where

ΣðrÞ ¼ Σf for r � r0
0 for r < r0

�

ð12Þ

with Σf being the constant fission cross section inside the shell. From Eqs. (11) and (12), it immediately follows that

σðrÞ ¼ Δðr � r0Þ ; ð13Þ

where ΔðxÞ is the unit step function.

With the above space-dependent relative cross section, which defines a generalized optical path length, Eq. (3) will take the form

gðzjr; μÞ ¼ ze
�

ð ,ðr;μÞ

0 σðr0ðsÞÞds
þ

ð,ðr;μÞ

0
dsσðr0ðsÞÞe� σðr0ðsÞÞ s qr gðzjr0ðsÞÞ½ � : ð14Þ

Here, in contrast to Eq. (1), the multiplying cross section in the second term on the right-hand side had to be moved 
inside the integral because the cross sections are now space dependent in order to account for the central cavity. 
Rewriting Eq. (13) in terms of the path length variable s as

σðsÞ ¼ 1 for μ � μcr
Δðs1 � sÞ þ Δðs � s2Þ for μ < μcr

�

ð15Þ

and substituting Eq. (15) into Eq. (14) leads to the equation for the single particle–induced generating function in the 
form

gðzjr; μÞ ¼ Δðμ � μcrðrÞÞ ze� ,ðr;μÞ þ

ð,ðr;μÞ

0
dse� s qr gðzjr0ðsÞÞ½ �

( )

þΔðμcrðrÞ � μÞ ze� ,ðr;μÞþðs2ðr;μÞ� s1ðr;μÞÞ þ

ðs1ðr;μÞ

0
dse� s qr gðzjr0ðsÞÞ½ �

�

þeðs2ðr;μÞ� s1ðr;μÞÞ
ð,ðr;μÞ

s2ðr;μÞ
dse� s qr gðzjr0ðsÞÞ½ �

�

: ð16Þ
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It is also interesting to write down the equation for the scalar (angularly integrated) generating function, from which the 
scalar moments can be derived. This is partly because in the Neumann-series solution, one needs only the scalar 
moments. Moreover, if the source is distributed in the item and is isotropic, then one actually needs only the scalar 
single particle–induced moments to calculate the source-induced moments. But, even if the angular moments are needed 
(which is the case of a source in a cavity, as we will soon see), it is still sufficient to obtain a solution for the scalar 
moments, from which the angularly dependent moments can be easily calculated with a simple quadrature. This will be 
shown explicitly below.

Therefore, for both the generating function of the single particle–induced distribution and the moments, we will 
also list the equations for the scalar quantities. By integrating Eq. (16) with respect to μ, one obtains the equation for the 
scalar generating function as

gðzjrÞ ¼ zg0ðrÞ þ
1
2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s qr gðzjr0ðsÞÞ½ �

(

þe½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s qr gðzjr0ðsÞÞ½ �

)

þ
1
2

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s qr gðzjr0ðsÞÞ½ � ;

ð17Þ

where

g0ðrÞ ¼ n0ðrÞ ¼
1
2

ðμcr

� 1
dμe� ½,ðr;μÞ� s2ðr;μÞþs1ðr;μÞ� þ

ð1

μcr

dμe� ,ðr;μÞ

" #

: ð18Þ

From Eq. (16), equations can be derived for the angular factorial moments by successive derivation with respect to z. 
For the first moment

nðr; μÞh i; nðr; μÞ ¼
qgðz jr; μÞ

z

�
�
�
�
z¼1

; ð19Þ

one obtains

nðr; μÞ ¼ Δðμ � μcrðrÞÞ½e� ,ðr;μÞ þ νr;1

ð,ðr;μÞ

0
dse� s nðr0ðsÞÞ�

þΔðμcrðrÞ � μÞ½e� ,ðr;μÞþðs2ðr;μÞ� s1ðr;μÞÞ þ νr;1

ðs1ðr;μÞ

0
dse� s nðr0ðsÞÞ

þ νr;1 e½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s nðr0ðsÞÞ� :

ð20Þ

From Eqs. (17) and (18), or alternatively, angularly integrating Eq. (20), one obtains for the scalar first moment nðrÞ the 
equation

nðrÞ ¼ n0ðrÞ þ νr;1
2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s nðr0ðsÞÞ

("

þe½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s nðr0ðsÞÞ

)

þ

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s nðr0ðsÞÞ

#

;

ð21Þ

where n0ðrÞ is defined in Eq. (18).

Similar equations can be derived for the second and third factorial moments mðr; μÞ and wðr; μÞ, respectively. For 
the second angular moment, ðnðr; μÞðnðr; μÞ � 1Þh i; mðr; μÞ; one obtains
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mðr; μÞ ¼ Δðμ � μcrðrÞÞ
ð,ðr;μÞ

0
dse� s

�

νr;2 n2ðr0ðsÞÞ þ νr;1 mðr0ðsÞÞ
�

þΔðμcrðrÞ � μÞ
�ðs1ðr;μÞ

0
dse� s

�

νr;2 n2ðr0ðsÞÞ þ νr;1 mðr0ðsÞÞ
�

þeðs2ðr;μÞ� s1ðr;μÞÞ
ð,ðr;μÞ

s2ðr;μÞ
dse� s

�

νr;2 n2ðr0ðsÞÞ þ νr;1 mðr0ðsÞÞ�
�

ð22Þ

whereas for the scalar second moment, one has

mðrÞ ¼ m0ðrÞ þ
νr;1

2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s mðr0ðsÞÞ

("

þe½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s mðr0ðsÞÞ

)

þ

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s mðr0ðsÞÞ

#

ð23Þ

with

m0ðrÞ ¼
νr;2

2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s n2ðr0ðsÞÞ

("

þe½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s n2ðr0ðsÞÞ

)

þ

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s n2ðr0ðsÞÞ

#

: ð24Þ

The third factorial moment, ðnðr; μÞðnðr; μÞ � 1Þ Þðnðr; μÞ � 2Þh i;wðr; μÞ; can be derived in an analogous manner. 
One obtains

wðr; μÞ ¼ Δðμ � μcrðrÞÞ
ð,ðr;μÞ

0
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ þ νr;1 wðr0ðsÞÞ

� �

þ ΔðμcrðrÞ � μÞ
ðs1ðr;μÞ

0
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ þ νr;1 wðr0ðsÞÞ

� �
"

þ eðs2ðr;μÞ� s1ðr;μÞÞ
ð,ðr;μÞ

s2ðr;μÞ
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ þ νr;1 wðr0ðsÞÞ

� �
#

ð25Þ

whereas the equation for the scalar moment will read as

wðrÞ ¼ w0ðrÞþ
νr;1

2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s wðr0ðsÞÞ

("

þ e½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s wðr0ðsÞÞ

)

þ

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s wðr0ðsÞÞ

#

ð26Þ

with

w0ðrÞ ¼
1
2

ðμcr

� 1
dμ

ðs1ðr;μÞ

0
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ

� �
("

þe½s2ðr;μÞ� s1ðr;μÞ�
ð,ðr;μÞ

s2ðr;μÞ
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ

� �
)

þ

ð1

μcr

dμ
ð,ðr;μÞ

0
dse� s νr;3 n3ðr0ðsÞÞ þ 3νr;2 nðr0ðsÞÞmðr0ðsÞÞ

� �
#

: ð27Þ
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The above moment equations, both for the scalar and the 
angular moments, can be solved numerically with the 
same Neumann-series expansion (collision number 
expansion) method as was the case for the solid sphere 
and cylinder in Refs. 3 and 4. This possibility is much 
better visible from the equations for the scalar moments, 
where the inhomogeneous parts n0ðrÞ, m0ðrÞ; and w0ðrÞ
are explicitly separated from the integration kernels, these 
latter constituting the homogeneous part of the equations. 
Altogether, in practice, it is simpler to use to collision 
number iterations on the scalar moments, even if, as will 
be seen in the next section, with the point source in 
a cavity, one will need the angular moments taken at 
μ ¼ 1. However, one can either extract this value from 
the last step of the collision number iterations for the 
scalar moments, or one can use the final iterated value 
of the scalar moments to extract the angular moments at 
μ ¼ 1 with one single quadrature. For the first moments, 
from Eq. (20), this is given as

nðr; μ ¼ 1Þ ¼ e� ðR� rÞ þ νr;1

ððR� rÞ

0
dse� s nðr þ sÞ ð28Þ

since ,ðr; 1Þ ¼ R � r and r0ðsÞ ¼ r þ s for μ ¼ 1. Similar 
expressions can be derived for mðr; 1Þ and wðr; 1Þ.

III. THE POINT SOURCE

We turn now to the case of the point source and the 
case of nonisotropic source. As will be seen, treating an 
isotropic source in a cavity will necessitate the treatment 
of nonisotropic sources. First, we treat the case of a point 
source in the center of a solid sphere.

III.A. Isotropic Point Source in a Homogeneous 
Medium (Solid Sphere)

In Refs. 3 and 4, it was assumed that the probability 
of a source event was uniformly distributed in the item. 
Hence, one had in the general case the probability density 
being constant: 

prðrÞ ¼
1
V
; ð29Þ

where V is the volume of the item. Accounting also for 
the isotropic character of the source, the equation con
necting the generating function GðzÞ of the source event– 
induced emission number and the single particle–induced 
generating function reads as

GðzÞ ¼
ð

V
drprðrÞqs gðzjrÞ½ �

¼
1
V

ð

V
drqs gðzjrÞ½ � ; ð30Þ

where qs½:::� is the generating function of the number 
distribution of source neutrons, with the single particle– 
induced generating function being its argument in the 
above.

An isotropic point source in the center of a sphere 
preserves spherical symmetry; hence, one has

prðrÞ ¼
δðrÞ
4πr2 ; ð31Þ

and since because of the spherical symmetry,

dr ¼ 4πr2 dr ; ð32Þ

one arrives at the particularly simple expression

GðzÞ ¼ qs gðzj0Þ½ �: ð33Þ

This yields the compact results for the first, second, and 
third factorial moments N , M ; and W , respectively, of the 
number of neutrons emitted from the sample for one 
source event as

N ¼ νs;1 nð0Þ ; ð34Þ

M ¼ νs;2 n2ð0Þ þ νs;1 mð0Þ ; ð35Þ

and

W ¼ νs;3 n3ð0Þ þ 3νs;2 nð0Þmð0Þ þ νs;1 wð0Þ : ð36Þ

In Eq. (33), gðzjrÞ is still the one corresponding to 
a homogeneous solid sphere, whose moments, which 
appear in Expressions (34), (35), and (36), were already 
calculated in Ref. 3. Expressions (34), (35), and (36) are 
actually easier to evaluate than those for a distributed 
source since one does not need to integrate the single 
particle–induced moments over the volume of the item.

Some numerical examples in Fig. 2 show the first 
three factorial moments as a function of the radius of the 
sphere in optical units. For comparison with the case of 
the distributed source, each figure also shows the 
moments corresponding to the same sphere with 
a distributed source.
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The input data of the spontaneous and induced fis
sion multiplicities are given in Table I. These were taken 
from the material data of the Rocky Flats Shells (93% 
235U and 7% 238U) and a 252Cf source.5,6

The plots in Fig. 2 show that for the same size of the 
sphere, the moments corresponding to the source of the 
same strength and multiplicity located in the center are 
larger than those corresponding to the distributed source. 
This is expected since neutrons starting from the center of 
the sphere have a higher importance than those closer to 
the surface.

III.B. Point Source in a Cavity of a Shell

The treatment of an isotropic point source in the 
cavity requires some care because of the vacuum sur
rounding the source. In this vacuum the angular distribu
tion of the neutrons is highly anisotropic, actually 
singular, since they are progressing radially out of the 
source. The isotropy of the source means that each neu
tron obeys an angular density δðμ � μiÞ such that μi is 
distributed evenly between ½� 1; 1�.

To handle such a source, one has to consider a more 
general description of the number distribution angular 
density of the source neutrons, as it was introduced in 
connection to the energy description of spallation 
neutrons.12 In a one-speed description, still in spherical 
symmetry, one should consider the source distribution 
function PSðk; r; μ1; μ2; . . . μkÞ such that

PSðk; r; μ1; μ2; . . . μkÞr
2drdμ1 . . . dμk ð37Þ

is the probability that in one source event, there will be k 
neutrons emitted around r and μ1; μ2; . . . μk. This general 
expression can be simplified if the number of neutrons 
generated is independent of the position and the direc
tions are independent of both each other and the number 
of neutrons generated in the source event and the posi
tion. Further, if the angular distributions are uniform, then 
PSðk; r; μ1; μ2; . . . μkÞ will be simplified to

PSðk; r; μ1; μ2; . . . μkÞ ¼ psðkÞprðrÞ fμðμÞk ; ð38Þ

where fμðμÞ is the uniform angular density.
Coming back now to the source in the cavity, since in 

the equation of the single particle–induced distributions 
only neutrons starting within the medium are considered, 
a practical way of treating the central source is to neglect 
the free flight of the neutrons and consider them only 
when they arrive at the surface of the cavity. Since all 
neutrons will arrive at the surface of the spherical cavity 
at the same radial distance r0 in a direction perpendicular 
to the surface of the cavity, one will have
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Fig. 2. First, second, and third moments of the num
ber of neutrons emitted from a solid sphere for 
a distributed source (dashed lines, blue) and 
a central point source (solid lines, red) as functions 
of the outer radius R. 
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PSðk; r; μ1; μ2; . . . μkÞ ¼ psðkÞ
δðr � r0Þ

r2 δkðμ � 1Þ : ð39Þ

Using this in the master equation leading to an expression 
for the generating function GðzÞ will result in

GðzÞ ¼ qs gðzjr0; 1Þ½ � : ð40Þ

Similarly to the case of the point source in the solid 
sphere, Eq. (33), the factorial moments obtained from 
Eq. (40) have the simple form

N ¼ νs;1 nðr0; 1Þ ; ð41Þ

M ¼ νs;2 n2ðr0; 1Þ þ νs;1 mðr0; 1Þ ; ð42Þ

and

W ¼ νs;3 n3ðr0; 1Þ þ 3νs;2 nðr0; 1Þmðr0; 1Þ
þ νs;1 wðr0; 1Þ : ð43Þ

Apart from the fact that unlike in Eqs. (34), (35), and 
(36), it is the angular moments that occur and not the 
scalar ones, Eq. (41), (42), and (43) have the same 
advantageous property that no integrals over the volume 
of the item need to be taken. Since the scalar single 
particle–induced moments can be calculated only through 
the calculation of their angular moments, the computa
tional effort would be the same. However, it has to be 
kept in mind that both the generating function gðzjr; μÞ
and hence also its moments are not the same here as for 
the homogeneous medium. The moments in Eqs. (34), 
(35), and (36) are calculated for the solid sphere, which 
has already been done in Ref. 3. The angular moments in 
Eqs. (41), (42), and (43), on the other hand, have to be 
calculated from the more involved equations such as 
Eqs. (20), (22) and (25), or from the scalar moment 
Eqs. (21), (23), and (26), and by converting them to the 
corresponding angular moments by relations of the 
Eq. (28) type.

Calculations for shells have been performed for cases 
with various inner and outer shell radii, with the same 
material data as in Table I. One set of results with a fixed 
inner radius and varying outer radii is shown in Fig. 3. It 
is seen that as it could be expected, all moments for the 
sphere with an equal outer radius are higher than for the 
shell. This is naturally due to the lower internal multi
plication (smaller mass) of the shell, due to the central 
cavity.

It is worth adding that the main incentive of the work 
described so far is not to show that a central source leads 
to higher internal multiplication than an equivalent dis
tributed one or that a solid sphere leads to higher internal 
multiplication than a shell with the same central point 
source. These results are trivial and could be predicted 
without calculations, and the fact that they could be 
reproduced just makes the results, and hence the formal
ism, plausible. The main purpose was to elaborate 
a formalism that makes it possible to obtain quantitative 
results such that they can be used for multiplicity count
ing for items with a shell geometry and a central source 
and that can also be compared against the measurements, 
as will be done in the next section.

IV. INCLUSION OF SCATTERING

Results of calculations based on the formalism devel
oped above for shells were compared with the prelimin
ary results of the measurements made on the Rocky Flats 
Shells during the MUSIC campaign.5–8 The building 
blocks of these shells are highly enriched hemispheres 
of metallic uranium (93% 235U and 7% 238U), which can 
be nested into each other to form solid spheres or thick 
shells of various sizes from pairs of identical hemi
spheres. Measurements were analyzed for four configura
tions of the Rocky Flats Shells measured by the Neutron 
Multiplicity Array Detector (NoMAD), 15 tubes 
embedded within a high-density polyethylene (HDPE) 
matrix.13 Evaluation of the singles, doubles, and triples 
(S, D, and T) rates on shells with the same inner radius 
and four different outer radii, using a 252Cf source in the 

TABLE I 

Input Parameters Used in the Calculations 

First Moment Second Moment Third Moment

Spontaneous fission (252Cf) νsf ;1 ¼ 3:757 νsf ;2 ¼ 11:962 νsf ;3 ¼ 31:812
Induced fission (93% 235U + 7% 238U at 2 MeV) νr;1 ¼ 2:637 νr;2 ¼ 5:623 νr;3 ¼ 9:476
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central cavity were completed.14 The factorial moments 
of the source-induced emission were derived from the S, 
D, and T rates, using the source intensity and the detector 
efficiency of the detectors used in the experiment.

The calculations were first performed for the same 
physical sizes as the experiments, assuming induced fis
sion as the only neutron reaction, similarly to the proce
dure used in the point model. The measurements were 
made with a compilation of Rocky Flats Shell sets with 
an inner radius of 2.0126 cm and outer radii of 
R ¼ 5.6692, 6.6696, 7.3296, and 8.0027 cm, respec
tively. The quantitative results obtained from the formu
las developed in the preceding sections deviated from the 
measured ones; all calculated moments were systemati
cally lower than the measured ones (shown later in 
Fig. 5). This indicated that the calculations underesti
mated the internal multiplication.

One might assume some reasons for this difference 
between the measurements and the calculations. One 
reason could be possible uncertainties in the extraction 
of the factorial moments from the measured S, D, and 
T rates in the measurements. Also, there is the further 
circumstance that the calculations were made for solid 
hemispheres whereas in the Rocky Flats Shells, there are 
gaps between the layers of the nested hemispheres.7,8

Hence, a somewhat more straightforward and unam
biguous way of checking the fidelity of the calculated 
results was chosen. It is the calculation of the critical radii 
of pure solid spheres of 235U and 239Pu for which well- 
known data are available in the literature. Although in 
principle this only proves the correctness of the calcula
tion of the first moment, it is still a good indicator of the 
fidelity of the model.

For the critical radii of a solid sphere of pure 
235U and pure 239Pu, the calculations yield the following 
values, respectively:

RU235
crit ¼ 10:46 cm; ðtrue value : 8:5 cmÞ ð44Þ

and

RPu239
crit ¼ 5:33 cm; ðtrue value : 4:97 cmÞ : ð45Þ

For the Rocky Flats Shells, the critical size of a solid 
sphere is about 8.83 cm, but this is partly because the 
shells consist of 93% 235U and 7% 238U and partly 
because of the gap between the shell layers.7,8

The above differences for the factorial moments and 
the critical sizes both point to the same direction, namely, 
that the model developed on the same assumptions as the 
point model, which regards the reactions that the neutrons 
undergo (only fission), underestimates the internal multi
plication (or overestimates leakage). Since the boundary 
conditions are properly accounted for in the model, 
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a rather natural first guess for the reason for this deviation 
is that other processes, and primarily scattering, are not 
taken into account. For instance, at the average energy of 
the source neutrons, taken in the present one-speed model 
as 2 MeV (the same energy value usually used in the 
point model), the macroscopic elastic scattering cross 
section for 235U is about three times larger than the 
fission cross section. Scattering within the item has 
a similar effect as a reflector surrounding the core; i.e., 
it increases the internal multiplication; hence, its effect 
has to be taken into account.

The reason why in the point model, scattering is not 
explicitly accounted for is that in the point model equa
tions, in which phase-space coordinates such as position 
and direction of traveling do not appear, scattering is 
a “non-event,” consisting of a reaction where one neutron 
before the collision produces one outgoing neutron. This 
is a situation similar to the traditional point theory of the 
Feynman-alpha and Rossi-alpha methods, where only 
fission and absorption are accounted for. In the point 
model of multiplicity counting, the influence of the posi
tion and velocity direction on leakage is condensed into 
the first collision probability (embedded into the leakage 
multiplication), which is one of the unknowns of the 
process.

Therefore, it appears advisable to try to include 
elastic scattering as a first step into the generalization 
of the model. As it turns out, accounting for elastic 
scattering in the model is relatively straightforward. 
Since elastic scattering of neutrons on heavy nuclei 
can be assumed to be isotropic to a very good approx
imation and since energy loss of the neutrons can be 
neglected, the hitherto used one-speed transport theory 
with isotropic scattering can be kept. In this model, 
elastic scattering is equivalent to a fission event with 
one fission neutron generated. One can include such 
a process in the model by switching to using the number 
distribution of neutrons per reaction as a weighted aver
age of the number distribution of induced fission and the 
singular distribution (a Kronecker delta) of the scatter
ing and correspondingly using the total cross section for 
the unit of the mean free path. The procedure is com
pletely analogous to how the joint number distribution 
of source neutrons is calculated as a weighted average of 
the distributions of spontaneous fission neutrons and 
that of the ðα; nÞ neutrons or how the number distribu
tion of the number of neutrons from a reaction is calcu
lated from the number distribution of induced fission 
and absorption in Ref. 9. We mention here in passing 
that likewise, absorption can be included in the present 
model as a fission event with zero generated neutrons. 

However, because of the negligibly small absorption 
cross section, this possibility is not considered here.

In formulas, we introduce the total cross section as

ΣT ¼ Σf þ Σel ð46Þ

and the number distribution of neutrons from a reaction 
(also called secondaries) as the weighted sum

prðkÞ ¼
Σf

ΣT
fk þ

Σel

ΣT
δk;1 ; αs fk þ βs δk;1 : ð47Þ

Here, as before, fk stands for the number distribution of 
induced fission neutrons; δk;1 is a Kronecker symbol; and 
αs and βs are the fractional contributions of fission and 
elastic scattering cross sections to the total cross section, 
respectively. Then, the size of the item in optical units is 
determined by ΣT whereas the number distribution of the 
neutrons per reaction is given by Eq. (47). As mentioned 
above, Eqs. (46) and (47) could easily be extended to 
include absorption, containing a δn;0 term. However, 
since absorption is low at these neutron energies in the 
given nuclei, this inclusion is not considered here.

The above means that the factorial moments 
νr;i; i ¼ 1; 2; 3 of the distribution prðkÞwill enter the moment 
equations. From Eq. (47), these are readily obtained as

νr;i ¼ αs νf ;i þ βs δi;1 : ð48Þ

To see the effect of scattering on the quantitative values 
of the factorial moments, first, the following conceptual 
calculations were performed. We started with a solid 
sphere with no scattering—only fission included. To 
calculate the size of the sphere in optical units (which 
is employed in the formulas), the 235U fission cross 
section at 2 MeV, Σf = 0.0621125 cm–1, was used. 
Thereafter, we added scattering such that the scattering 
cross section became 25%, 50%, and 75% of the total 
cross section. The case of only fission thus corresponds 
to βs ¼ 0, and the realistic case for 235U is close 
to βs ¼ 0:75:

The effect of scattering is illustrated in Fig. 4, show
ing the factorial moments as functions of the physical 
sphere radius for different values of the relative weight βs 
of the elastic scattering cross section to the total cross 
section. Calculations were made for a sphere radius up to 
7 cm. In the plots, the physical size of the sphere was 
used as the independent variable because when scattering 
is included, the total cross section and hence also the 
optical path length change. Thus, although the physical 
size of the sphere does not change, its size in terms of the 

SPACE-DEPENDENT CALCULATION OF MULTIPLICITY MOMENTS FOR SHELLS · PÁZSIT et al. 11

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2023                                                                         



mean free path changes for different extents of scattering 
included. For a fair comparison, we need to use the 
physical size as the independent variable.

In Fig. 4, the left column shows the results for the 
whole range (R between 0 and 7 cm) whereas the right 
column does it for the half range 0 < R < 3:5 cm since in 
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the full-range plot, the differences in the various 
moments for small R values are not visible. The figure 
shows that inclusion of scattering increases the factorial 
moments; the higher the contribution from scattering is, 
the higher the moments become. Scattering processes 
close to the boundary might both increase leakage and 
act as a reflector whereas scattering farther away from 
the boundary might mostly act as a reflector. It appears 
that the reflector effect dominates over the outscatter 
processes, and increasingly so for increasing sphere 
radii.

It is also seen that even with a relative contribution of 
scattering with βs ¼ 0:75, for small sizes, up to about 
R ¼ 2 cm, the effect of scattering is minor. However, 
the deviation between the cases of no scattering and 
scattering increases fast with increasing size of the sys
tem; moreover, the relative deviation increases also with 
the moment order. Approaching the critical size of the 
case with scattering (which is smaller than with only 
fission), the deviations diverge.

It is now interesting to check the improvement in the 
fidelity of the model both by calculating the critical sizes 
of pure 235U and 239Pu spheres and by comparing the 
factorial moments obtained experimentally for the Rocky 
Flats Shells. With regard to critical sizes, making calcula
tions with the inclusion of scattering and using the elastic 
scattering cross sections of 235U and 239Pu at 2 MeV yield 
the results

RU235
crit ¼ 8:043 cm; ðtrue value : 8:5 cmÞ ð49Þ

and

RPu239
crit ¼ 4:527 cm; ðtrue value : 4:97 cmÞ : ð50Þ

A comparison with the case when only fission is 
accounted for, Eqs. (44) and (45), shows that the accuracy 
of calculated critical radius is now significantly better, 
especially for 235U. It is also seen that accounting for 
elastic scattering, the model now slightly overestimates 
the internal multiplication. The same tendency is seen 
also on the calculated factorial moments. These are now 
larger than without scattering, but they are also larger 
than the measured ones, as is seen in Fig. 5, showing 
both the preliminary experimental results and the calcu
lated results with and without scattering (βs ¼ 0:753 and 
0, respectively).

Figure 5 also shows that unlike for the critical radii, the 
deviation between the measured and the calculated values is 
larger when scattering is included than without scattering. 

This indicates that accounting for elastic scattering, even if 
it improves the fidelity of the model, is still not sufficient for 
good agreement with measurements. The remaining possible 
reason for the difference between the calculated and the 
measured values can be sought in the neglect of inelastic 
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scattering. In an inelastic scattering event, the neutron energy 
decreases significantly. At the lower energy of the inelasti
cally scattered neutrons, both the cross sections and the fission 
neutron multiplicities are different, which may have 
a nonnegligible impact on the internal multiplication and 
transport process.

The present one-speed transport theory model used 
so far is obviously not suitable to treat inelastic scatter
ing. In order to extend the model to be able to handle 
inelastic scattering properly, one should introduce energy 
dependence and anisotropic scattering. Formally, both of 
these aspects can easily be included in the model, as will 
be shown in coming publications.15 However, the main 
stumbling block will be the fact that the cross sections, 
the fission neutron multiplicities, and the scattering func
tion will become energy dependent. Even if it is possible 
to restrict the relevant energy range to above the reso
nance region, this will require the handling of extensive 
data tables and excessive running times.

Although the above path will be explored in future 
work, for the time being, we note that there exists 
a simpler, even if empirical, fix to account for inelastic 
scattering approximately in a one-speed model. In  
Ref. 16, it is suggested that in view of the fact that the 
average energy of once inelastically scattered neutrons is 
about 1 MeV, one gets a better estimate of the critical 
mass if the relevant cross sections and multiplicities are 
taken at 1 MeV.

We tested this suggestion first for the critical masses 
predicted by the model. The multiplicities for induced 
fission of 235U and 239Pu at 1 MeV are available in  
Ref. 17. Taking into account fission and elastic scattering 
with cross sections at 1 MeV, the following results are 
obtained:

RU235
crit ¼ 8:623 cm; ðtrue value : 8:5 cmÞ ð51Þ

and

RPu239
crit ¼ 5:295 cm; ðtrue value : 4:97 cmÞ : ð52Þ

Compared with Eqs. (49) and (50), an improvement is 
seen in the prediction of the critical radius, especially for 
235U. It is also seen that with this empirical correction, 
the model again underestimates the internal multiplica
tion (overestimates the critical radius).

A more interesting question is how the use of the cross 
sections and multiplicities at 1-MeV neutron energy would 
affect the calculated values of the factorial moments, which 
by using data at 2 MeV overestimate the measured ones 

significantly. Here, too, one might expect a larger effect of 
using data at 1 MeV since the fission cross section–induced 
fission neutron multiplicities are all lower than at 2 MeV, 
especially for 238U content.

The factorial moments of the number of neutrons 
emitted per one source event (252Cf spontaneous fission) 
from an item with the geometrical and material properties 
of the Rocky Flats Shells were calculated with the cross 
sections and multiplicities of 235U and 238U taken at 
1 MeV. The fission and elastic scattering cross sections 
of the mixture of the two isotopes were calculated in the 
standard way, that is,18

Σx
i ¼ σx

i wi ρ
NAvo

Mi
ð53Þ

with x representing the reaction type and i the nuclide index 
in question (235 or 238), wi being the weight fraction of the 
corresponding isotope, and ρ ¼ 18.664 g/cm3 being the 
density of the compound. The fission number distribution fk 
of the compound was calculated as

fk ¼
Σ235

f

Σf
f 235
k þ

Σ238
f

Σf
f 238
k ð54Þ

with Σf ¼ Σ235
f þ Σ238

f . The number distributions f 255
k and 

f 238
k ðkÞ were taken from Verbeke et al.17 With these, 

similarly to Eq. (47), the number distribution prðkÞ of 
the secondaries in a reaction when both fission and scat
tering are accounted for is obtained as

prðkÞ ¼
Σf

ΣT
fk þ

Σel

ΣT
δk;1; αs fk þ βs δk;1: ð55Þ

Here, Σel ¼ Σ235
el þ Σ238

el and ΣT ¼ Σf þ Σel. Naturally, 
the formal relationships between the factorial moments 
of pure fission and those of fission plus scattering are the 
same as in Eq. (48); that is,

νr;i ¼ αs νf ;i þ βs δi;1 ; ð56Þ

where i is the moment order.
The numerical values of the cross sections of the com

pound, used in the calculations, are given in Table II, and the 
factorial moments of the number distribution of fission neu
trons and those of the secondaries with elastic scattering 
included are given in Table III. The factorial moments of the 
source emission neutrons are the same as given in the first row 
of Table I.
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Figure 6 compares the preliminary results of the mea
surements and the calculated values, with and without scatter
ing. The figure shows that with accounting for elastic 
scattering and assuming an average neutron energy of 
1 MeV, the calculated values agree with the measured ones 
remarkably well, especially for the first moment. With 
increasing moment order, the agreement slightly worsens.

It might sound contradictory that one accounts for the 
effect of inelastic scattering by merely changing the average 
energy of neutrons in the system but without accounting for 
the cross section of inelastic scattering. However, it has to be 
kept in mind that this is only a phenomenological, approx
imative treatment. Neglecting the actual inelastic scattering 
events is compensated by the fact that one takes 1 MeV as the 
average energy of neutrons in the system whereas in reality, 
1 MeV is only the average energy of the neutrons after one 
inelastic collision, which is less than half of all neutrons 
generated in a single chain.

In summary, accounting for elastic scattering properly in 
the formalism and modifying the model empirically to account 
for inelastic scattering in an approximate manner, we found 
good agreement between calculations and measurements. This 
is very promising from the point of view that by accounting for 
inelastic scattering properly in an energy-dependent treatment 
with anisotropic scattering, even better agreement will be 
found. Work is already underway in this direction.

V. CONCLUSIONS

With the extension of the one-speed transport theory 
model, developed in our earlier work, to shells with 
a central cavity and central point source with inclusion of 

elastic scattering, and accounting for the effect of inelastic 
scattering in an empirical way, rather good agreement was 
found between the calculated values of the factorial 
moments with the preliminary results of the measurements 
made on the Rocky Flats Shells.5,6 This suggests that it is 
worth pursuing the extension of the model to include 
energy dependence and anisotropic scattering such that 
the effect of inelastic scattering can be accounted for in 
an exact way. The conceptual extension of the model is 
rather straightforward15; on the practical side, the complex
ity of the calculations will increase significantly, and the 
computational burden might prove prohibitive.

It is also seen that in the transport model developed 
by us, most aspects of the physical process, such as the 
various reaction types, presence of a mixture of different 
nuclides, arrangement geometry, etc., can be taken into 
account, which the point model cannot do. This means 
that for a given item, the factorial moments can be pre
dicted with a much higher accuracy than the point model 
would do. The question is, however, how much this 
enhanced capability can be utilized for the very purpose 
of material identification, i.e., to solve the inverse task of 
determining the fissile mass of the item from the mea
sured S, D, and T rates. Namely, the enhanced capabilities 
of the model come with the price that it contains a large 
number of parameters, all of which in principle would 
need to be determined (and/or several be known in 
advance) in an unfolding procedure in order to extract 
the only important parameter, the source fission rate. This 
would be even more complicated if (α; n) reactions were 
included. Despite all the approximations that its applica
tion incurs, the advantages of the point model, as is the 
case with all lumped parameter models such as the 

TABLE II 

Macroscopic Cross Sections of the Rocky Flats Shells at 1 MeV* 

93% 235U 7% 238U 93% 235U + 7% 238U
Σf Σ235

f ¼ 0:05351 Σ238
f =0.0000482 Σf ¼ 0:05355

Σel Σ235
el ¼ 0:17225 Σ238

el ¼ 0:014068 Σel ¼ 0:18632
ΣT ΣT = 0.23988

*In units of cm−1. 

TABLE III 

Factorial Moments of the Rocky Flats Shells at 1 MeV 

First Moment Second Moment Third Moment

Induced fission νf ;1 ¼ 2:52359 νf ;2 ¼ 5:10119 νf ;3 ¼ 8:00135
Fission plus elastic scattering νr;1 ¼ 1:34015 νr;2 ¼ 1:13887 νr;3 ¼ 1:78635
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Feynman-alpha and Rossi-alpha methods, are that it con
tains a very small set of parameters, which can be 

unfolded by an analytical inversion of the simple alge
braic formulas, and that the model is robust, i.e., not very 
sensitive to fine geometrical and material details (within 
certain limits).

For the space-dependent model, an analytical unfold
ing procedure is obviously not possible since even the 
direct task, i.e., the calculation of the factorial moments, is 
only possible numerically. However, an unfolding is 
achievable based on machine learning methods (artificial 
neural networks). It is here that the larger resolution of the 
details in the space-dependent model may come to an 
advantage. Namely, since the properties of both the fissile 
and the fissionable material are included in the calculation 
of the factorial moments, it might be possible to deter
mine the amount of fissile mass contained in the sample, 
which is impossible using the point model, which can 
determine only the fissionable content of the sample, 
that usually plays the role of the source. Examining the 
potentials of the space-dependent model for determining 
sample parameters is the most important next step that 
will need to be explored.
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Fig. 6. Comparison of measured and calculated first, second, 
and third moments of the number of neutrons emitted from the 
Rocky Flats Shells for four different outer radii and with an 
inner radius of 2.0126 cm. In the calculated values, the material 
properties correspond to those of the isotopic composition of 
the Rocky Flats Shells at a neutron energy of 1 MeV. 
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