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Abstract

The Crab Pulsar is the prime example of an emitter of giant pulses. These short, very bright pulses are thought to
originate near the light cylinder, at ∼1600 km from the pulsar. The pulsar’s location inside the Crab Nebula offers
an unusual opportunity to resolve the emission regions, using the nebula, which scatters radio waves, as a lens. We
attempt to do this using a sample of 61,998 giant pulses found in coherently combined European VLBI network
observations at 18 cm. These were taken at times of relatively strong scattering and hence good effective
resolution. From correlations between pulse spectra, we show that the giant pulse emission regions are indeed
resolved. We infer apparent diameters of ∼2000 and ∼2400 km for the main and interpulse components,
respectively, and show that with these sizes the correlation amplitudes and decorrelation timescales and
bandwidths can be understood quantitatively, both in our observations and in previous ones. Using pulse-spectra
statistics and correlations between polarizations, we also show that the nebula resolves the nanoshots that comprise
individual giant pulses. The implied diameters of ∼1100 km far exceed light-travel-time estimates, suggesting the
emitting plasma is moving relativistically, with γ; 104, as inferred previously from drifting bands during the
scattering tail of a giant pulse. If so, the emission happens over a region extended along the line of sight by
∼107 km. We conclude that relativistic motion likely is important for producing giant pulses, and may be similarly
for other sources of short, bright radio emission, such as fast radio bursts.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Interstellar scintillation (855); Radio bursts (1339); Very
long baseline interferometry (1769); Supernova remnants (1667)

Supporting material: figure set

1. Introduction

The Crab Pulsar (PSR B0531+21) is the remnant of
supernova SN 1054 and the central star in the Crab Nebula.
It powers the pulsar wind nebula (PWN) that fills the interior of
the Crab Nebula. The PWN is expanding into the freely
expanding supernova ejecta (Chevalier 1977), sweeping up
ejecta into a dense thin shell of material. This shell is subject to
Rayleigh–Taylor instabilities leading to the filamentary struc-
ture seen in optical images of the Crab Nebula (e.g., Chevalier
& Gull 1975; Jun 1998) and the observed acceleration of the
Crab filaments (Trimble 1968).

The pulsar itself was discovered by Staelin & Reifenstein
(1968) through the detection of individual radio pulses and has
since been studied extensively (for a review, see Eilek &
Hankins 2016). Its mean radio profile shows seven compo-
nents, the dominant components of which are the main pulse
(MP) and the interpulse (IP) at frequencies <4 GHz, which are
separated by ∼145° in rotation phase.

The Crab Pulsar is unusual among pulsars in that it shows
“giant pulses,” extremely narrow and bright pulses that occur
randomly within the phase windows of its MP and IP
components (Hankins et al. 2003). At lower observing
frequencies (<4 GHz), the properties of the MP and IP giant
pulses are quite similar, with pulses typically lasting a total of a
few microseconds, but comprising numerous nanoshots that
have durations down to the time resolution with which they
have been observed, some clumping together in microbursts
(Sallmen et al. 1999; Hankins & Eilek 2007). At radio
frequencies above ∼4 GHz, there is also an IP (Moffett &
Hankins 1996). But it is offset by ∼10° in phase from the IP at
low frequencies (∼0.3–3.5 GHz) and has properties sufficiently
different that it is almost certainly a different pulse component
(e.g., Hankins et al. 2016).
The emission mechanism of giant pulses is unknown.

However, the strong alignment of the MP and (low-frequency)
IP components from radio to γ observations to within ∼2 ms
(Moffett & Hankins 1996) offers empirical evidence that both
the radio and high-energy emissions emanate from the same
spatial region. For the MP, this is strengthened by the
correlation between radio giant pulses and optical (Shearer
et al. 2003, 2012) and X-ray pulses (Enoto et al. 2021). Since
pair production strongly absorbs γ-rays near the polar cap,
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giant pulse emissions likely occurs in other magnetospheric
gaps (Romani & Yadigaroglu 1995; Muslimov & Hard-
ing 2004; Harding et al. 2008) or in regions beyond the light
cylinder, rLC= cP/2π≈ 1600 km, (Lyubarskii 1996; Philippov
et al. 2019) where plasma instabilities and magnetic reconnec-
tion can occur.

To help understand the emission mechanism, it would be
useful to have constraints on the locations and sizes of the
emission regions. For this purpose, it may be possible to use the
fact that pulsars scintillate, displaying intensity variations in
time and frequency because of multipath propagations of their
radio emission: if one can retrace those paths, they act like an
interstellar interferometer with which the emission can be
studied at extreme angular resolution. Cordes et al. (1983) first
used scintillation in this way to probe pulsar magnetospheres,
by inferring limits on the transverse separations of the emitting
regions of PSR B0525+21 and PSR B1133+16. Since then,
this method has been applied to several other pulsars
(Wolszczan & Cordes 1987; Smirnova et al. 1996; Gupta
et al. 1999; Pen et al. 2014).

For the Crab Pulsar, observations of its scintillation show a
fairly stable angular broadening, and a highly variable temporal
broadening (Rankin & Counselman 1973). Very long baseline
interferometry (VLBI) measurements favor two screen loca-
tions with angular broadening originating from the interstellar
medium (ISM) and (most) temporal scattering originating at the
filaments inside the Crab Nebula (Vandenberg 1976). For
resolving the Crab’s emission, it is the nebular screen that is
most relevant, as it is closer to the pulsar and thus gives higher
spatial resolving power. Hence, we focus on the nebular screen
in this paper.

For individual Crab giant pulses, if they originated from the
same physical location, one would expect that their radiation
would follow the same paths through the scattering regions and
thus that they would have imprinted on them the same impulse
response function (IRF). Hence, one would expect power
spectra of pulses close in time to correlate strongly. Indeed,
Cordes et al. (2004) found that pulses close in time correlated
strongly, with an average correlation coefficient of 1/3, as
would be expected for pulses that had different intrinsic
frequency structure—associated with the random nanoshots
that they comprise—but that were imprinted with the same
IRF. Similar levels of correlation were also found by
Karuppusamy et al. (2010) for spectra of MPs and IPs in the
same pulse rotation, as well as for spectra between different
microbursts of individual MPs.

In contrast, Main et al. (2021, hereafter Paper I) found a
surprisingly low correlation coefficient of ∼2% when correlat-
ing power spectra of nearby MP–MP pairs and MP–IP pairs.
They suggested this could result if individual giant pulses arose
in different parts of an extended emission region, one larger
than the resolution of the scattering screen. If so, then the
nebular screen must have had lower effective resolution during
the observations of Cordes et al. (2004) and Karuppusamy et al.
(2010); this is indeed consistent with those observations having
had smaller scattering time when scaled to our observing
frequency (see derivation in Section 2). With the large sample
of MPs and IPs in Paper I, it was also possible to see
differences between the scintillation patterns of the two
components, hinting at a projected physical separation between
the emitting regions of 50–400 km.

Another result found in Paper I, the importance of which we
realized only later, was that the mean power in giant pulse
spectra was approximately equal to the standard deviation. This
is not consistent with multiple nanoshots going through the
same screen, as in that case the standard deviation should be

3 times larger than the mean (making the usual assumption
that the IRF has Gaussian statistics; Rickett 1990). Instead, it
suggests that the emission locations of the individual nanoshots
are also separated sufficiently for them to be resolved by the
nebular screen, and that, therefore, the scintillation pattern
imprinted on each nanoshot is different. This has the
paradoxical implication that the nanoshots, which occur within
a few microseconds in the giant pulse and thus must be causally
related to each other, appear to have separations on the sky in
excess of the ∼300 km resolution found in Paper I, i.e., far
more than can naively be understood from light-travel-time
arguments.
In this paper, we use another data set to get a more complete

picture of the Crab’s emission regions. We begin with a brief
review on how scattering screens close to pulsars can be seen
as magnifying lenses in Section 2, and infer the expected
resolution for the Crab Pulsar. In Section 3 we describe our
multi-telescope data sets and in Section 4 their reduction,
including the coherent combination of the data from different
telescopes. We measure scattering times from our data in
Section 5, and correlations between pulses and polarizations in
Section 6. The latter show that in our data both giant pulses and
their constituent nanoshots are imprinted with different IRFs. In
Section 7, we discuss the ramifications for the sizes of the
emission regions and for the screen. We address the paradox of
the resolved nanoshots and conclude it is most easily resolved
if the plasma emitting the pulses moves highly relativistically,
as has also been suggested by Bij et al. (2021) based on drifting
frequency structure in the scattering tail of giant pulses. We
finish with an outlook in Section 8.

2. Interstellar Interferometry

A scattering screen can be seen as a lens, which yields a
certain resolution at the pulsar, over which the interference
pattern changes by order unity. The resolution depends on
where the scattering occurs, improving as the screen is placed
closer to the pulsar. If the probability of scattering is normally
distributed around the line of sight—which yields an
exponential scattering tail as is often observed—the variance
of the distribution is related to the exponential decay time τ by,
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where ds is the distance to the scattering screen and
deff= dpds/(dp− ds) the effective distance, with dp the distance
to the pulsar. For these normally distributed scatterers, the
corresponding angular resolution is λ/2πσL, where λ is the
observing wavelength. Hence, the physical resolution at the
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In the Crab Nebula, as discussed in Paper I, the only
conceivable location for scattering is in the optically emitting
filaments, as only their densities are high enough (of the order
of ne≈ 103 cm−3; Osterbrock 1957). Lawrence et al. (1995)
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and Martin et al. (2021) showed that these filaments reside
within 0.5–2 pc of the pulsar, and Trimble (1973) gave a range
of distances to the pulsar from 1.4–2.7 kpc. For an estimate of
the resolution σx of the lens at the pulsar, we use a nominal
pulsar distance of dp= 2 kpc and distance of the screen from
the pulsar dp− ds= 1 pc along with a geometric time delay
τ= 1 μs at λ= 18 cm (Paper I), to infer σx≈ 290 km.

The above only holds if the scattering time is dominated by
delays in the nebula. It is known, however, that there is a
contribution from the ISM, which may be important at times
that the scattering in the nebula is relatively weak (Rankin &
Counselman 1973; Vandenberg 1976). We can estimate its
contribution by assuming that the interstellar scattering time
does not vary much, so that an upper limit to its contribution is
set by the lowest observed scattering times. Losovsky et al.
(2019) found that at 111MHz the scattering time varies
between 10 and 115 ms, while T. Serafin-Nadeau et al. (2023,
in preparation) found that at 600MHz the lowest scattering
times are ∼10 μs. Scaling with ν−4, both results imply an upper
limit of ∼0.2 μs at λ= 18 cm. If the observed scattering time is
close to this range, the resolution due to the nebular screen will
be poorer than inferred from Equation (2).

We can verify the above result by noting that the interstellar
screen dominates the angular broadening of the Crab Pulsar,
and at λ= 18 cm, Rudnitskii et al. (2016) measured an FWHM
0.5 w 1.3 mas. The range likely reflects that the screen is
not isotropic, but for an estimate we nevertheless assume an
isotropic screen with a normal distribution, such that the lens
size is d w 8 log 2L ss = ( ). For a screen halfway to the
pulsar, Equation (1) then would imply a range in scattering
time of 0.2 τ 1.5 μs. In reality, since the Crab is relatively
far above the Galactic plane, the interstellar screen is likely
closer to us than halfway, which would make the result more
consistent with the upper limit above. Assuming that the actual
value of the interstellar scattering time is close to the upper
limit, τ= 0.2 μs, then to get the maximum observed angular
broadening, w= 1.3 mas, requires a screen distance of
0.24 kpc. Without any nebular contribution, this geometry
would imply a resolution σx; 80,000 km.

3. Observations

We analyze a total of 7.31 hr of European VLBI Network
(EVN) dual-polarization data, taken at four epochs between
2015 October and 2017 May (see Table 1). For our analysis,

we use data only from the up to eight telescopes that had
relatively clean signals in both polarizations and covered the
full frequency range of 1594.49–1722.49MHz. At each
telescope, real-sampled data in both circular polarizations were
recorded in either 2 bit MARK 5B or VDIF format, covering
the frequency range in either eight contiguous 16MHz wide
bands or four contiguous 32MHz wide bands. During each
observation run, the telescopes regularly switched to calibrator
sources resulting in short breaks in our data.
The use of multiple telescopes at baselines of up to

10,000 km as an interferometer allows us to achieve a
resolution of ∼4 mas. For our purposes here, this is useful as
it resolves the radio-bright nebula of angular size 6 4~ ¢ ´ ¢, the
dominant source of noise. The angular resolution is not high
enough, however, to resolve the nebular or interstellar
scattering screens (which, at our frequency, have sizes of
∼0.005 and ∼0.5–1.3 mas, respectively; Vandenberg 1976;
Rudnitskii et al. 2016).

4. Data Reduction

In order to combine individual telescope data coherently and
obtain sensitive measurements of giant pulses, we first need to
align the voltage data in both time and phase. The largest
delays come from differences in path length traveled by the
signal to each telescope. We used the software program
CALC1010 (Ryan & Vandenberg 1980) through a wrapper from
the Super FX Correlator (SFXC; Keimpema et al. 2015) to
calculate these geometric delays. The geocentric frame was
chosen as the reference frame, and the geometric delays were
generated at 1 s intervals, which we interpolate with an Akima
(1970) spline in our beamformer pipeline. The second largest
delays come from differences between each telescope’s local
clock. We obtained the clock offset and rate information from
the post-observation VEX file,11 which were obtained from
standard VLBI clock searching techniques. With these
corrections, giant pulses common between telescopes are
aligned to within ∼10 ns (see Figure 1). Lastly, cables and
electronic components, and the atmosphere also introduce time
delays and phase rotations. Since the time-averaged emission of
the Crab Pulsar is not very bright relative to the nebula, we

Table 1
Observation and Giant Pulse Log

Observation texp
a DMc K Giant PulsesdK

Code Date (hr) Telescopes Usedb (pc cm−3) N NMP NIP rMP (s−1) rIP (s−1)

EK036 A 2015 Oct 18–19 3.27 Ef, Bd, Hh, Jb, O8, Sv, Wb, Zc 56.7772 21735 18941 2794 1.6082 0.2372
EK036 B 2016 Oct 31–Nov 1 1.65 Ef, Bd, Hh, O8, Sv, Wb, Zc 56.7668 18891 15176 3715 2.5618 0.6271
EK036 C 2017 Feb 25 1.15 Ef, Bd, Hh, Jb, O8, Sv, Wb, Zc 56.7725 8399 7203 1196 1.7433 0.2895
EK036 D 2017 May 28 1.25 EF, Bd, Hh, Jb-II, O8, Sv, Wb, Zc 56.7851 12973 10725 2248 2.3881 0.5006

Notes.
a Total on-source time, i.e., excluding telescope setup and calibration.
b Telescope abbreviations are: Ef: Effelsberg; Bd: the 32 m at Badary; Hh: the 26 m in Hartebeesthoek; Jb: the Lovell telescope; Jb-II: Mark II Telescope at the Jodrell
Bank Observatory; O8: the 25 m at Onsala; Sv: the 32 m at Svetloe; Wb: a single dish from the Westerbork Synthesis Radio Telescope; and Zc: the 32 m at
Zelenchukskaya. Other telescopes participated in some of these observation runs, but we did not use their data because of a variety of problems.
c Inferred from giant pulses (see Section 4.1).
d The number of giant pulses and their rates (per second) listed here are found using a detection threshold of 8σ on coherently summed data in a 16 μs window (see
Section 4.2). This corresponds to a limiting flux of about 15–18 Jy, depending on the number of telescopes combined.

10 https://space-geodesy.nasa.gov/techniques/tools/calc_solve/calc_
solve.html
11 https://vlbi.org/vlbi-standards/vex/
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determined these time delays and phase rotations using just the
giant pulses themselves.

We present our beamformer pipeline in Section 4.1. In
Sections 4.2 and 4.3 we describe how we identified giant pulses
from our data, and how we then use these giant pulses to find
fringe solutions, respectively. We present results of our
coherently combined data in Section 4.4.

4.1. Beamformer Pipeline

Our pipeline closely follows that used for the Large
European Array for Pulsars, as described by Bassa et al.
(2016) and Smits et al. (2017), and SFXC as described by
Keimpema et al. (2015).

We first bring the signal from each telescope to the
geocentric frame using the predetermined geometric and clock
delays. Given a geocentric time tgeo, the corresponding time at
a telescope is

t t , 3tel geo geo clock, telt= + + ( )

where τgeo + clock, tel is the geometric and clock delay for the
telescope of interest. We use BASEBAND (Van Kerkwijk et al.
2020) and PULSARBAT (Mahajan & Lin 2023) to read in the
baseband data to the nearest integer time sample, flip lower-
sidebands so that frequencies are all in increasing order, and
convert the real-sampled data to complex.12 This real-to-
complex conversion shifts the frequency from the edge of each
sub-band to the center. Since the integer geometric and clock
delay compensation was applied when reading in the data

(before the real-to-complex conversion), we need to shift the
integer delay compensation frequency to the center of the sub-
band. This was done by applying the shift

N , 4geo clock, tel
intf p= - + ( )

where Ngeo clock, tel
int

+ is the geometric and clock delay in integer
number of samples. The residual fractional delay manifests
itself as a phase error across the frequency band and is removed
by rotating the signal by

N
2

SR
, 5

geo clock, tel
frac

f n p n= - +( ) ( )

where Ngeo clock, tel
frac

+ is the fractional delay, ν is the baseband
frequency, and SR is the sampling rate. Due to varying radial
velocities between the different telescopes, the signals are
Doppler shifted relative to each other; we correct for this
frequency shift by a phase rotation in the time domain,

t t2 , 6geo clock, tel skyf p t n= +( ) ( )

where geo clock, telt + is the time derivative of the geometric and
clock delays (which encodes the Doppler shift), and νsky is the
central observing frequency of the sub-band. Lastly, the above
time shifts in the down-converted baseband signal do not
correct for the phase rotation of the radio waves at each
telescope at the central observing frequency. We corrected for
this by rotating the phase of the signal by

2 , 7geo clock, tel skyf pt n= + ( )

a process called fringe stopping.
In the corrections outlined above, only single values of the

delay and its rate are used. This is only acceptable at short
timescales where the delay is approximately constant. Thus, we
apply our corrections in data chunks of no more than 128
samples (8 μs), which ensures drifts in delay of less than
0.000192 sample (0.012 ns) even for the maximum,
∼1.5 μs s−1 delay rate on terrestrial baselines.
After applying the geometric and clock delays, we removed

radio frequency interference (RFI) from our data in chunks of
224 samples (1.048576 s). We start by removing obvious RFI
and those mentioned in each telescope’s log files. To detect
residual RFI, we first channelized our data into 8192 frequency
channels per sub-band. We then normalized these by the square
root of the time-averaged power spectrum, thus correcting for
the fact that the passband is not perfectly flat, with roll-offs at
the edges of the band and some other structures. RFI spikes and
highly variable channels were flagged by comparing with a
128-channel median-filter (0.25MHz), removing all signals
above a 5σ cutoff. We also normalized time-variability
resulting from instrumentation by dividing by the square root
of the frequency averaged power spectrum smoothed over
8.192 ms.
Next, we coherently de-dispersed the data. For the

dispersion measure (DM), we started with initial guesses
from Crab monitoring data13 (Lyne et al. 1993), and then
adjusted the value to ensure the profiles of bright giant pulses
were aligned in frequency, leaving us with the final values
listed in Table 1.

Figure 1. Time delays between Ef and Bd from EK036 B for the frequency
band 1594.49–1610.49 MHz in left circular polarization, after correcting for
geometric and clock delays. The gray shaded regions indicate when the
telescope was off-source. Top: time offset due to remaining instrumental and
ionospheric variations between the two telescopes, as tracked by giant pulses.
The opacity of the individual points scales with the square root of the signal-to-
noise ratio (S/N) of the giant pulse. A polynomial fit of the time offset is
represented by the solid red line. Bottom: residuals of our delay fit. The pink
shaded range shows the rms scatter. The range of the y-axis corresponds to one
time sample (62.5 ns).

12 The conversion is done by computing the analytic representation of the
signal via a Hilbert transform, removing the negative frequency components,
and then shifting the signal down in frequency by half the bandwidth. −B/2,
where B is the bandwidth of the signal (either 16 or 32 MHz for our data). 13 http://www.jb.man.ac.uk/~pulsar/crab.html
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At this point, we incoherently summed the data from each
telescope and searched for giant pulses (see Section 4.2) as the
telescope data are aligned to within a sample in time.

Once we have modeled the delays and phase rotations
resulting from instruments and atmospheric variations using
giant pulses (using Effelsberg as a reference; see Section 4.3),
we applied the fringe delay and phase solutions

2 8fringe delay fringe phasef n pnt f= - -( ) ( )

to the baseband data.
After all of the delay and phase corrections are applied, we

weighed the data from each telescope by the amplitude of their
gains to ensure maximum signal-to-noise ratio (S/N) in the
coherently added baseband data (given that the nebula
dominates the system temperature, the different telescopes
have very similar gain; see below). A final normalization of the
coherently summed voltage data was performed such that the
intensity of the noise level is unity in each sub-band and
polarization. Finally, we applied a parallactic angle correction
to the coherent beam, as appropriate for the Crab at our
reference telescope (Effelsberg). The rotation measure (RM)
toward the Crab Pulsar is ∼45 rad m−2 (Sobey et al. 2019).
Thus, at our observing wavelength of 18 cm, the expected
phase rotation across our total bandwidth is ∼0.1 rad. Since this
is small and we do not detect RM or cable delay in our sub-
bands, we do not correct for it.

4.2. Giant Pulse Search

We searched for giant pulses in two separate passes, the first
using incoherently summed data to determine fringe solutions
and the second using coherently added data. In both passes we
summed the power over both polarizations and all eight sub-
bands. Peaks above 8σ in a 16 μs wide running average of the
intensity time stream (with the window size roughly matched to
the typical width of a giant pulse) were flagged as potential
giant pulses. We define the start time of a giant pulse as the
start of the first window where we detect it.

We created a folded pulse profile from our list of potential
giant pulses using polyco files generated with TEMPO2 (Hobbs
& Edwards 2012). The polyco file contains a polynomial model
of the pulsar phase as a function of time at the geocenter for our
central observing frequency and observation window. From the
folded pulse profile, we determined the MP and IP phase
windows, and any potential giant pulses that did not fall within
these phase windows were discarded. As we had removed most
of the RFI from our data, there were only about ∼10 false
detections per observation; visual inspection showed these
were clearly RFI. Given the narrowness of the pulse windows,
our sample should thus contain no spurious pulses.

In Table 1, we list the resulting number of MP and IP
detections for each observation in our coherent data, as well as
their rate of occurrence. One sees that the rates vary
significantly between the observations, something that has
been seen before (Bera & Chengalur 2019), but is not
understood.

4.3. Fringe Solution

To determine the delay and phase models for coherent
combination, we used giant pulses with an S/N> 50 (as
measured on the incoherently summed data). We chose

Effelsberg to be the reference location and time standard
because of its relatively clean signal.
In the first processing stage, after correcting for the

geometric delays and clock offsets (see Section 4.1), there
will be further delays due to instrumental effects and
ionospheric variations. To measure these, we correlated giant
pulses observed at each individual telescope with the reference
telescope in voltage, and fit the resulting offsets using a
polynomial across each observation, weighting the results for
each pulse by its S/N.
Since each polarization and sub-band may be affected by

instrumentation and the atmosphere differently, we modeled
them separately. We achieved fringe delay solutions for each
baseline to Effelsberg with average rms deviation of 5 ns, i.e.,
better than 8% of a 62.5 ns time sample. An example is shown
in Figure 1.
In the second processing stage, after correcting for the fringe

delays, we determined and modeled the fringe amplitudes and
phases. To solve for the time-varying complex telescope gains
in each polarization and sub-band, we first cross-correlate the
voltage series of giant pulses between pairs of telescopes,
integrating over time, to form complex visibilities. A matrix of
complex visibilities was then created for each giant pulse,
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where Vi,j denotes the visibility of telescope pairs and the
telescopes are numbered from 1 to n. Note that autocorrelation
data were not included (the diagonals are set to 0) and a
minimum of four telescopes was used to create the visibility
matrix in order to satisfy both closure phase and closure
amplitude (Thompson et al. 2017), ensuring that any residual
telescope based errors canceled out. We then performed an
eigenvalue decomposition on these visibility matrices. The
eigenvectors corresponding to the dominant eigenmode give
the relative complex gain between telescopes up to a complex
constant. The gain amplitudes were modeled by fitting a
polynomial across the whole observation, and the complex
gains were modeled by a sum of sinusoids that we then convert
to phases. We show an example of our gain calibration in
Figure 2. The average rms deviation for our phase model is
0.11 rad (implying S/N; 9 per sub-band, polarization, and
telescope, consistent with what is expected given S/N; 50 for
the incoherently summed signal over eight telescopes, eight
sub-bands, and two polarizations, taking into account that this
is measured over 16 μs, while most of the signal is within the
scattering time of ∼5 μs).

4.4. Combined Data

Our pipeline achieves the expected coherence, as can be seen
from the example giant pulse shown in Figure 3: the voltage
series from multiple telescopes align well after delay and phase
corrections, and the coherently summed giant pulse profile has
S/N higher by the number of telescopes than the profiles of the
single dishes, much better than the incoherently summed giant
pulse profile where the S/N increase only by the square root of
the number of telescopes. In the single-dish data, one sees that
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the intensities are very similar in units of the off-pulse noise,
independent of telescope aperture. This reflects that the total
system noise is roughly the same, as it is dominated by the
radio emission from the Crab Nebula itself, which has a flux
density of S 833 JyCN » at our observing frequency (Bieten-
holz et al. 1997), while the nominal system equivalent flux
(SEFD) for a telescope ranges between Stel≈ 19 and 450 Jy,14

with an average 〈Stel〉; 300 Jy. Thus, the SEFD for our tied-
array beam, which largely resolves out the nebula, can be
estimated as S S N 140 160 JyCN tel+ á ñ »( ) – (depending on the
number of telescopes N used).

In Figure 4, we highlight an IP and some other interesting
giant pulses that we found. Two pulses with distinct multiburst
structure are shown in Figure 5; we will return to the properties
of pulses with multiple bursts in Section 6.3.

5. Scattering Timescale

Emission from the Crab Pulsar passes through two scattering
screens, one originating at the optical filaments in the Crab
Nebula and one in the ISM. The temporal broadening is usually
dominated by the nebular screen (Vandenberg 1976), and one
sees its effect in Figures 3–5 in the roughly exponential tail

shared by all pulses, with a timescale of ∼5 μs. One also sees
that the pulses have internal structure on a similar timescale.
To measure the timescale more precisely—and thus help

determine the resolution at the pulsar (Section 2)—we
construct average pulse profiles for the MP and IP components
separately, by aligning and stacking giant pulses with S/N
above 100 (removing profiles with obvious multiple bursts like
those shown in Figure 5). For the alignment, we fit the pulse
intensities with an exponentially modified Gaussian of the form
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where A, t0, and p are the amplitude, centroid, and standard
deviation of the Gaussian, respectively, τ is the scattering
timescale, and C is the background intensity. We then create
our stacked pulse profiles by adding MPs and IPs aligned using
the individual t0, and fit the same exponentially modified
Gaussian profile above to the stacks.
Our pulse stacks and fits are shown in Figure 6, and relevant

fit parameters are given in Table 2. One sees that the fits are not
formally acceptable: they do not capture the relatively slow rise
in intensity, suggesting that a Gaussian is not a good model for
the average giant pulse profile, and the scattering tail shows
bumps inconsistent with smooth exponential decay. Hence, the
formal errors of the fits have little meaning, and we instead use
bootstrapping, determining the standard deviations in the fit
parameters from 8192 sets of pulse profiles created using
random selection with replacement from our input profiles.
Note that the bad fits are not surprising: the individual pulses

are made up of nanoshots and their average distribution does

Figure 2. Complex gain of Bd relative to Ef from EK036 B for the frequency
band 1594.49–1610.49 MHz in left circular polarization. The gray shaded
regions indicate when the telescope was off-source. Top: relative amplitudes as
inferred from giant pulses. The opacity of individual points indicates the S/N
of the giant pulse. A third-degree polynomial fit of the amplitude is represented
by the solid red line. Note that the amplitude is very close to unity, as expected
given that the dominant source of noise for each telescope comes from the Crab
Nebula. Middle: relative fringe phases determined from performing an
eigenvalue decomposition on matrices of visibilities of the individual giant
pulses. The red line shows our fit. Bottom: residuals of our phase fit, with the
rms scatter indicated by the pink shaded range.

Figure 3. Top: delay and phase-corrected complex baseband data in the
frequency band 1594.49–1610.49 MHz and left circular polarization, of the
brightest giant pulse in EK036 B at multiple telescopes. Bottom: pulse profile
of this pulse (which happens to be an MP) as detected at each telescope
(colored lines), and after summing incoherently (dotted black line) and
coherently (solid black line). For these profiles, the intensities in all sub-bands
and both polarizations were summed, and were divided by the background, so
that the profile is in S/N units. The time resolution is 62.5 ns.

14 http://old.evlbi.org/cgi-bin/EVNcalc
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not have to resemble a Gaussian, and the scattering tail can
have structure arising from individual scattering filaments.
Indeed, the scattering tail for EK036 B shows clear evidence
for echoes (see Figure 6B), with both the MP and IP profile
showing similar structure in the scattering tail. These echo
features appear on all high S/N giant pulse profiles in EK036 B
(at lower S/N, it is difficult to make out echoes by eye). Echoes
have previously been seen at lower frequencies, from
327–1400MHz (Backer et al. 2000; Lyne et al. 2001; Crossley
et al. 2007; Driessen et al. 2019), so the present study extends it
to 1660MHz. Echoes were not seen at 4.9 GHz during a period
when echoes were present at 1.4 GHz (Crossley et al. 2007),
but this may just reflect that echoes are frequency dependent, as
expected if they arise in refraction in nebular structures.

In EK036 A and EK036 C, the modified exponential fits the
scattering tail quite well with no apparent echoes. In EK036 D,
however, there are deviations from an exponential scattering

tail. Furthermore, the inferred intrinsic profile is much broader,
with a larger σ. Since it seems unlikely the actual intrinsic
average giant pulse profile changed, this may reflects an echo
as well, one that is at a delay of only a few microseconds.
For all of our observations, we see that the sharp rise of the

model does not fit the intrinsic pulse structure of giant pulses
well, especially for the MP profiles. Comparing MP and IP
profiles, one sees that the former are systematically broader,
with larger fitted σ and τ. The larger σ suggests MPs have
intrinsically longer durations over which nanoshots are emitted
than IPs. The longer scattering times likely also reflect some
intrinsic difference in emission, e.g., that the nanoshots in MPs
have a more skewed intensity distribution, falling off more
slowly at the tail end, and that this skewed distribution leads to
fits with τ biased high.
From the above, we conclude that among our measurements

of the scattering time, those from the IP are probably more
reliable, although even for those the errors are likely under-
estimated. For the purpose of a rough estimate, however, taking
the scattering time in all epochs to be τ; 5 μs should be good
to about 50%.

6. Correlations

For regular pulsars, auto-correlations of dynamic spectra can
be used to infer the scintillation bandwidth and timescale, and
to learn about possible spatial offsets between pulse emission
regions. For the Crab Pulsar’s randomly occurring giant pulses,
we follow Cordes et al. (2004) and Paper I and construct the
normalized time and frequency correlation by first correlating
pairs of giant pulse power spectra and then binning the
correlations by the time separation between the giant pulses.
The correlation coefficient ρ(P1, P2) between two power

spectra P1 and P2 sampled at k frequencies can be estimated

Figure 4. Images: waterfalls of giant pulses with 500 ns time resolution and 2 MHz frequency resolution from EK036 B. Top panels: pulse profiles in 250 ns bins.
Right panels: pulse spectra containing emission from 0–16 μs, in 500 kHz channels. A: an IP arriving with a strong initial burst; B: an MP pulse with banded spectra;
C: an MP with two distinct peaks; and D: an MP that increases slowly in emission power, likely because it also has multiple components.

Figure 5. Pulse profiles showing distinct microbursts using time bins of 125 ns
(from EK036 B). Likely, these consist of multiple giant pulses occurring in the
same rotation by chance.
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where m and s are estimates of the average and standard
deviation of the power spectra, respectively. The second term
accounts for noise biases (see Paper I and Appendix A), using
that the mean and standard deviation of the noise power spectra
are 1 as we have normalized our data by the background noise.
To construct our correlations, we create power spectra of

giant pulses, discarding the 15% of each sub-band near each
edge where little signal is detected because the passband rolls
off. We then correlate spectra in each sub-band separately over
frequency, taking into account that for larger frequency offsets
fewer points contribute, giving individual estimates of the
correlation as a function of frequency offset Δν and time offset
Δt. Next, we construct the normalized 2D correlations by
binning all pulse pairs by time separation, using a bin width of
1 s. We average pairs across sub-bands and polarizations using
optimal weights,
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appropriate for our case where the correlations are low (see
Appendix A, Equation (A9)).
Below, in Section 6.1, we discuss the correlations between

MP–MP and MP–IP pairs of pulses, and in Section 6.2 we take
a look at differences between the correlations for the first and
second halves of pulses. Next, in Section 6.3, we focus on the
correlations between multiple bursts within a given pulse, and
in Section 6.4, we look at correlations between the left and
right circular polarizations. We make qualitative comparisons
with previous work and with expectations based on the
scintillation screen’s resolution, but leave the interpretation in
terms of physical properties of the emission regions to
Section 7.

6.1. Correlations of Pulse Pairs in Time and Frequency

We correlate MP–MP pairs and MP–IP pairs in both time
and frequency using power spectra of giant pulses with S/Ns
greater than 8, and without obvious multiple components (for
those, see Section 6.3). The power spectra are created using the
first 16 μs of each giant pulse (see Section 4.2 where we define
the start of a giant pulse), yielding a frequency resolution of
62.5 kHz. We show the resulting time–frequency correlations
for both the MP–MP and MP–IP pairs from EK036 B in
Figure 7 (a figure set for all observations (4 images) is
available).
The binned correlations for all epochs are fitted with

bivariate Gaussians, with, as parameters, the amplitude (A),
the time (σt) and frequency (σν) widths, the correlation between
time and frequency (ρf,t), and, for the MP–IP correlations,
possible time (Δt0) and frequency (Δν0) offsets (which are
relative to the MP, i.e., a positive sign of the time offset
indicates that the IP trails the MP),
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The results of the fits for all four epochs are collected in
Table 3, where we also list values from Cordes et al. (2004) and
Paper I. One sees that the biggest differences between our data
and the ones from the literature are seen for the correlation

Figure 6. Stacked MP (blue line) and IP (red line) components normalized to
the peak of the exponentially modified Gaussian fit (dark blue and dark red
lines, respectively) and centered so that t0 is at 0 μs. Fit values are given in
Table 2. We also show the residuals between the best-fit model and the data for
each of our observations. A: stacked pulses from EK036 A. B: stacked pulses
from EK036 B. It is clear that the same echo features, which are indicated by
arrows, (around ∼6, 12 and 18 μs) appear in both MP and IP components. C:
stacked pulses from EK036 C. D: Stacked pulses from EK036 D showing an
echo feature around ∼8 μs as well as possibly one near a few microseconds
that causes the profile to be substantially broader than is the case in the other
epochs.

Table 2
Scattering Timescales and Intrinsic Widths

Observation K MP K K IP K

Code τ (μs) p (μs) τ (μs) p (μs)

EK036 A 5.08 ± 0.15 0.76 ± 0.05 3.75 ± 0.14 0.43 ± 0.07
EK036 B 8.90 ± 0.19 0.63 ± 0.08 5.8 ± 0.3 0.34 ± 0.05
EK036 C 6.17 ± 0.16 1.00 ± 0.10 5.1 ± 0.2 0.62 ± 0.15
EK036 D 8.45 ± 0.14 2.31 ± 0.06 6.8 ± 0.2 1.94 ± 0.18

Note. The scattering timescales, τ, and intrinsic widths, p, of stacked MP and
IP giant pulse profiles are presented here. The uncertainties from bootstrapping
are likely underestimated, mostly because of the presence of echoes in the
scattering tail (see Section 5).
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amplitudes, which are very low for all of our observations, at
A; 0.6% on average, which is about three times lower than
found in Paper I, and a factor ∼50 lower than what was seen by
Cordes et al. (2004). In contrast, the scintillation timescale of
about tscint≈ 10 s on average is similar to that measured in
Paper I, but substantially shorter than the ∼27 s inferred by
interpolating in the measurements of Cordes et al. (2004), while
the typical decorrelation bandwidth we find, of

νdecorr; 0.4MHz on average, is about half what was found
in Paper I, yet similar to what one infers from Cordes et al.
(2004). We will argue in Section 7 that these apparently
contradictory trends can be understood from considering
differences in effective resolution of the scintillation screens
between the different observations.
Like in Paper I, we find that MP–IP correlations are weaker

and broader than the MP–MP correlations. For EK036 B, we
also find a marginal time offset, of Δt0=− 0.4± 0.4 s, as well
as a slightly more significant frequency offset, of
Δν0=+ 0.05± 0.02MHz. Both have the opposite sign of
those found in Paper I. The measurements for epochs A and D
are less reliable, but the small frequency offsets are again
inconsistent with those of Paper I.

6.2. Differences in Correlation between Pulse Halves

The high detection rate and large number of strong giant
pulses in EK036 B allows us to look for differences in
correlation with time of the pulse, and thus use signals that
traveled to the scattering screen at increasing distance from the
line of sight. To do this, we divide our giant pulses in half and
create spectra from the first 8 μs and second 8 μs, resulting in
125 kHz channels. We then correlate spectra of the first half
(corresponding to the inner regions of the scattering screen) and
second half (corresponding to the outer regions of the scattering
screen) separately and bin in time.
The resulting averaged correlations are shown in Figure 8,

and the fit parameters are listed in Table 3. From those, most
striking is the change in frequency decorrelation width, which
nearly halves. This is not unexpected, as the interference
pattern from the outer scattering regions probed at later time
will have finer structure. The decrease in amplitude by about
10% between the first and second half also seems qualitatively
consistent with an increase in resolution, as it means two
separate pulses are less likely to be in the same resolution
element. Clearly, however, even in the first half, the correlation
amplitude of ∼1% is still much less than the 1/3 expected if
giant pulses pass through the same part of the scattering screen.
In contrast to the frequency and amplitude, the time
decorrelation remains the same. That the timescale does not
decrease suggests again that it is determined not by the size of
the effective resolution element produced by the scintillation
screen but rather by the size of the region in which giant pulses
occur.
In an attempt to better constrain the MP–IP correlation offset

in time, we also correlated the first halves of MP–IP pairs. We
found that while these yielded a slightly higher amplitude than
what we inferred from the correlation of spectra from the full,
16 μs windows on the giant pulses, the uncertainties on the
offsets were not smaller (see Table 3).
We also attempted to correlate IP–IP pairs for EK036 B, but

as there are few giant pulse pairs with sufficiently high S/N, we
do not trust the fit parameters, and we do not list them in
Table 3.

6.3. Correlation of Nearby Microbursts

Sometimes, multiple microbursts occur within one rotation.
So far, we have excluded these from our analysis as we wished
to avoid the risk of contamination of the power spectra, but we
can check whether they correlate differently. We focus on
EK036 B, where we found 1302 MP and 163 IP cases where

Figure 7. Cross-correlations of giant pulse spectra between MP–MP (top) and
MP–IP pairs (bottom) from EK036 B. The MP–MP correlation is symmetric by
construction while the MP–IP correlation is not. For both, we correlated spectra
of pulse pairs that have frequency resolution of 62.5 kHz and binned these in
1 s time bins. The correlations are fitted with a 2D Gaussian (as described in
Section 6.1), with the white contour representing 1σ away from the peak (fitted
values are listed in Table 3). The attached panels show the average correlation
within the corresponding regions marked by the dashed white lines, and the red
line shows the fit, also averaged over the dashed white lines. The red bars
indicate the best-fit time and frequency offsets in the MP–IP correlation. Here,
IP precedes MP, though the difference from zero is not significant. The
complete figure set (4 images) is available.

(The complete figure set (4 images) is available.)
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we detected multiple giant pulses from the same rotation (with
S/N greater than 8 and separated from each other by at least
16 μs): 1185 MP and 151 IP with two microbursts, 105 MP and
12 IP with three microbursts, 11 MP with four microbursts, and
1 MP with five microbursts.

The expectation for the correlation depends on whether the
multiple bursts in a rotation are causally related, i.e.,
consequences of the same physical events, or whether they
are due to multiple observable giant pulses happening to be
emitted in a single rotation. To estimate the fraction of
multiples expected by chance, we can use that for EK036 B we
detect an MP or IP giant pulse roughly every 12 and 48
rotations, respectively. Chance coincidences of N pulses should
happen roughly at those rates raised to the power N. Given that
we observed for about 177,404 periods, we would thus expect
to see about 1299 MP and 78 IP pairs, about 111 MP and 2 IP
triples, about 10 MP and 0.03 IP quadruples, and about 1 MP
and 0.0007 IP quintuples. For the MP, the observed numbers
are roughly consistent with the expected ones, but for the IP
they are significantly higher, suggesting some causal connec-
tion between multiple IP bursts.

If most pairs are not causally related, we expect the
correlation between them to be similar to what is seen between
giant pulses that occurred nearby in time. As can be seen in
Figure 9, this is indeed the case for the MP: the average
weighted correlation amplitude of microbursts within the MP
component is 1.8%± 0.4%, a bit higher than but still consistent
with the MP–MP correlations in Section 6.1. The average
weighted correlation amplitude of microbursts within the IP
component is nominally higher, at 6%± 3%, perhaps again
suggesting some causal connection between IP microbursts.

For both MP and IP, the correlation amplitude is much less
than what was found by Karuppusamy et al. (2010), consistent
with the suggestion that they were observed at a time when the
scattering time was shorter, the screen’s resolution poorer, and
the scintillation pattern for different bursts thus more similar.

6.4. Frequency Correlation between Polarizations

At high frequencies, the MP giant pulses are observed to consist
generally of multiple nanoshots, which have different center
frequencies, bandwidths, and polarization (Hankins et al. 2016).

If the same held at lower frequencies and if all nanoshots passed
through the same scattering screen, one would expect the power
spectra of giant pulses to have a variance three times larger than the
mean squared. As mentioned in Section 1, this is not the case for
the observations of Paper I and it is not the case for ours either: the
variance of the power spectra equals their mean squared (see
Appendix A and Figure 17). This suggests that if a burst is indeed
composed of multiple nanoshots, the shots are imprinted with
different IRFs.
Correlating the two polarizations provides a way to verify

this conclusion independently of the number of nanoshots, only
relying on the fact that scintillation should not depend on the
polarization. This is because the number of nanoshots
influences both the degree of polarization of the giant pulse
as a whole and the expected strength of the correlation, with the
latter depending on whether the nanoshots are imprinted with
the same or with different IRFs.
One can see that this would be the case by first considering a

single nanoshot: since individual nanoshots are usually very
highly polarized, one expects a high degree of polarization.
Furthermore, this single signal is unlikely to be resolved by the
screen, so its two polarizations should correlate perfectly. As
one adds more nanoshots, all highly polarized but in roughly
random directions, the polarization will start to average out,
down to zero for a large number of nanoshots. The correlation
between polarizations will also decrease, but differently
depending on whether the nanoshots are all imparted with the
same IRF, in which case the limiting correlation coefficient
would be 1/3, or whether they have different IRFs, in which
case the correlation would tend to zero.
In order to look for this, we calculated Stokes parameters and

correlation coefficients between left and right polarization for
all pulses with S/N> 100. We follow the PSR/IEEE
convention (van Straten et al. 2010), and the Stokes parameters
are defined by

I E E , 142 2= á ñ + á ñ- +∣ ∣ ∣ ∣ ( )

RQ E E2 , 15= á ñ- +*{ } ( )

IU E E2 , 16= á ñ- +*{ } ( )

V E E , 172 2= á ñ - á ñ- +∣ ∣ ∣ ∣ ( )

Table 3
Correlation Characteristics of Main Pulse, Main Pulse Pairs, and Main Pulse Interpulse Pairs

Observation/Reference Correlation Pair A (%) tscint (s) νdecorr (MHz) Δt0 (s) Δν0 (MHz) ρf,t

EK036 AK MP–MP 0.701 ± 0.016 9.3 ± 0.2 0.492 ± 0.011 L L −0.32 ± 0.03
MP–IP 0.52 ± 0.05 12.1 ± 1.0 0.47 ± 0.04 +0.1 ± 0.7 −0.03 ± 0.03 −0.25 ± 0.11

EK036 BK MP–MP 0.815 ± 0.013 10.45 ± 0.16 0.463 ± 0.007 L L −0.14 ± 0.02
MP–MP1 halfst 1.01 ± 0.02 10.1 ± 0.2 0.509 ± 0.010 L L −0.01 ± 0.03
MP–MP2 halfnd 0.94 ± 0.04 10.1 ± 0.5 0.26 ± 0.012 L L −0.39 ± 0.05

MP–IP 0.65 ± 0.03 11.4 ± 0.5 0.49 ± 0.02 −0.4 ± 0.4 +0.05 ± 0.02 −0.17 ± 0.06
MP–IP1 halfst 0.74 ± 0.04 12.6 ± 0.7 0.59 ± 0.03 −1.1 ± 0.5 +0.10 ± 0.03 −0.06 ± 0.08

EK036 CK MP–MP 0.52 ± 0.03 8.7 ± 0.6 0.35 ± 0.02 L L +0.04 ± 0.09
EK036 DK MP–MP 0.48 ± 0.02 10.8 ± 0.4 0.342 ± 0.014 L L −0.27 ± 0.05

MP–IP 0.46 ± 0.06 12.3 ± 1.5 0.25 ± 0.03 −0.3 ± 1.1 +0.03 ± 0.03 −0.16 ± 0.17
Main et al. 2021K MP–MP 1.80 ± 0.03 9.24 ± 0.13 1.10 ± 0.02 L L L

MP–IP 0.97 ± 0.07 10.7 ± 0.8 1.44 ± 0.10 +1.0 ± 0.5 −0.34 ± 0.09 L
Cordes et al. 2004K MP–MP ∼30 ∼27 ∼0.6 L L L

Note. The scintillation timescale tscint and frequency decorrelation νdecorr are defined as the values where the correlation function drops to 1/e and 1/2, respectively.
For EK036 C, there were too few MP–IP pairs to derive a meaningful correlation. For Cordes et al. (2004), the values are approximate, as they were interpolated
between their 1.48 and 2.33 GHz observations (assuming νdecorr ∝ ν4 and tscint ∝ ν).
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where E− and E+ are the left (−) and right (+) polarized
electric field, R ...{ } and I ...{ } indicate the real part of the
complex values, and the angular brackets 〈L〉 denote averages
over a pulse. In terms of the Stokes parameters, the total, linear,
and circular degrees of polarization of a pulse are given by,
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respectively, where we subtract 2 from the intensities to correct
for the contribution from background noise (as appropriate
given that we normalized our data by the intensity of the noise
level in each sub-band and polarization; see Section 4.1).
In Figure 10, we show the inferred polarization properties.

One sees that the degree of polarization varies over the full
range, but with most pulses being only modestly polarized,

Figure 8. Cross-correlations of giant pulse spectra between the first (top) and
second (bottom) half of MP–MP pairs from EK036 B. The frequency
resolution here is 125 kHz, and the layout, time binning, and Gaussian fits
are as in Figure 7. One sees that the frequency decorrelation scale decreases
drastically, while the amplitude drops a little and the timescale does not change
significantly. Combined, this suggests the scintillation screen resolves the
region in which giant pulses are emitted.

Figure 9. Correlation of microburst pairs within each pulse component, with
MP pairs (387 pairs) in blue and IP pairs (eight pairs) in orange. We omitted
any correlations for which the uncertainty exceeded 0.15. The opacity of the
individual points scales with the uncertainty of the correlation. The level of
correlation is as low as seen for nearby pairs in different rotations, as expected
given that the pairs are likely not causally related but rather due to chance
coincidence.

Figure 10. Fractional circular degree of polarization as a function of total
degree of polarization for bright MP (blue) and IP (orange) giant pulses. The
opacity of the individual points scales with the square root of the S/N of the
giant pulse. One sees that the typical degree of polarization is not very high,
consistent with the giant pulses being composed of multiple fully polarized
nanoshots. The giant pulses are also predominantly linearly polarized (for
randomly polarized pulses, one expects dV/d ; 1/2).
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with an rms value of 〈d2〉1/2; 0.45. If individual nanoshots are
fully but randomly polarized, one would expect that
〈d2〉; 1/ns, where ns is the number of nanoshots, so we infer
that, typically, ns; 5 nanoshots contribute (or a few more
taking into account that the nanoshots will likely have a range
in brightness; see Appendix B). This is of the same order as
seen by Hankins et al. (2016) at higher frequencies, where
nanoshots can be resolved.

One also sees that most pulses have little circular polariza-
tion, much less than the dV/d= 1/2 expected for (an average
over) randomly polarized impulses. This is especially true at a
high degree of polarization, where a pulse is more likely to be
dominated by just a few nanoshots. It is consistent with what is
observed at high frequency, where individual nanoshots have
been observed to be strongly linearly polarized (Jessner et al.
2010; Hankins et al. 2016).

Turning now to the correlation between left and right circular
polarization, we first compare in Figure 11 pulse profiles and
power spectra in left and right polarization for one highly
polarized and one weakly polarized pulse. One sees that, as
expected, for the highly polarized pulse, left and right are very
similar, while for the weakly polarized one, the power spectra
in particular are quite different.

For the case that each nanoshot is imprinted with a different
IRF, it turns out that it is possible to write the correlation
coefficient directly in terms of Stokes parameters (see
Appendix B.2), as

r P P
Q U

I V
, , 0

2
, 21

2 2

2 2
nD = =

+
- -
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where we once again subtract 2 from the intensities to correct
for the contribution from background noise. Hence, the
expected dependence is on something close to the degree of
linear polarization, not the degree of polarization itself (though
for our case, where the giant pulses are mostly linearly
polarized, 〈V〉2 is small and one expects r(P−, P+); d2). For
the case that all nanoshots are imprinted with the same IRF, no
such direct relation is possible, but, as noted above, the

expectation is that toward zero polarization, the average
correlation will be 1/3 (see Appendix B.1).
We show the observed correlation coefficients as a function

of (Q2+U2)/(I2− V2) in Figure 12. We find that the
correlation scales nearly perfectly as Equation (21), approach-
ing zero for pulses with small polarization. This confirms that
individual nanoshots are imprinted with different IRFs.
As for pulse pairs, we construct weighted averages of the

correlations between left and right polarization as a function of
frequency, both for MP and IP. As one can see in Figure 13,
these show a narrow, strong component and a wide, weak one,
which can be reasonably well fit by a combination of two
Gaussians (see Table 4). The narrow component is due to the
part of the signal from the nanoshots that is shared between
polarizations (i.e., the noncircularly polarized parts of indivi-
dual nanoshots), with amplitude Anarrow; 15% and width
νnarrow; 0.037MHz. This component’s width is consistent
with the scattering time (1/2πνnarrow; 4 μs). The wide
component reflects the correlation between different nanoshots:
its small amplitude Awide; 2% and large width νwide;
0.32MHz show again that the emission region is resolved.
The fact that the amplitude is larger and the width smaller than
what is found for pulse pairs, however, suggests that the region
in which the nanoshots of a given pulse arise is less resolved
and thus smaller than that spanned by pulse pairs.

7. Emission Regions

Our analysis suggests that the Crab Pulsar’s emission regions
can be resolved by the scintillation screen. Since the amount
and geometry of the scattering material changes over timescales
of the order of months (Vandenberg 1976), the extent to which
the emission regions are resolved will change as well, and thus
different observations can give complementary information.
In this section, we aim to sketch out what the emission

regions may look like as projected on the sky, trying to follow
what a consistent picture would look like starting from the
measurements of Cordes et al. (2004), and then including those
of Paper I and the current paper. Below, we focus on the two
emission regions from which the giant pulses that comprise the
MP and IP originate. In addition, we can constrain the

Figure 11. Left and right circular polarization pulse profiles and spectra for a giant pulse with high degree of polarization (d = 0.95; top) and one with low degree of
polarization (d = 0.18; bottom). Left: pulses profiles in 125 ns bins. Right: pulse spectra for the 16 μs containing the pulses, in 500 kHz channels.
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properties of the parts of the regions from which the nanoshots
originate that make up a given giant pulse, since we found in
Section 6.4 that these parts are also resolved in our
observations. We show our sketch of the constraints on the
emission regions in Figure 14, beginning with the results of
Cordes et al. (2004) in panel A, and ending with what we infer
from all observations in panel D; a side view of the latter is
shown in Figure 15. In Figure 16 we show how the MP–MP

correlation parameters allow us to place constraints on the
emission region size from which MPs originate.
For our numerical estimates, we calculate resolutions from

the scattering time τ using Equation (2), assuming
dp− ds; 1 pc (which is much smaller than dp; 2 kpc, and
thus the term dp/ds; 1). We will ignore dependencies of the
prefactor in Equation (2) on the degree of anisotropy of the
scattering screen. We will also use the following relations,
derived in Appendix C, that link the scattering time τ,
resolution σx, the size of the emission region σs, the typical
number ns of nanoshots per giant pulse, and the relative
velocity between the pulsar and screen vrel with our
observables, the amplitude A, decorrelation bandwidth νdecorr,
and scintillation timescale tscint:
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Here, all sizes are defined as standard deviations of normal
distributions. The intermediate quantities σc and ng are the
effective spatial correlation scale and effective number of
resolution elements, respectively; for unresolved emission,
σc; σx and ng; 1, while for highly resolved emission,
σc; 2σs and n 2g s x

2s s( ) . We write σc,∥ as a reminder that
the scintillation time depends on the sizes parallel to the
direction of motion.
For the pulsar velocity, we use the value inferred by Kaplan

et al. (2008) from the proper motion (12.5 mas yr−1 at an angle
of 290° east of north): vp= 120(dp/2 kpc) km s−1. For the
screen velocity, we will assume that it has negligible average
velocity with respect to the pulsar, but that it can vary, with
velocities ranging up to ∼70 km s−1 like for the optical
filaments (Trimble 1968).

7.1. Constraints from Unresolved Observations

From the average correlation amplitude of ∼1/3 of MP
spectra at small time delays, Cordes et al. (2004) suggested that
the MP emission region is one where giant pulses comprise
multiple nanoshots that pass through the same scintillation
element, i.e., the emission region is not resolved.
In the limit of unresolved emission, the scintillation time-

scale is determined by the speed with which the pulsar crosses
a scintillation resolution element, t v2xscint , ps( )  (see
Equation (26)), where σx,∥ is the resolution along the direction
of motion. Cordes et al. (2004) measured tscint= 25± 5 and

Figure 12. Correlation between left and right polarization of MP (blue) and IP
(orange) giant pulses as a function of (Q2 + U2)/(I2 − V2), with opacity of the
individual points scaled with the square root of the S/N of the giant pulse. The
observations follow the one-to-one correspondence (solid red line) predicted
for the case that the nanoshot components of giant pulses have different IRFs.
If they had passed through the same IRF, the correlations should follow the
dashed red line, approaching 1/3 at low polarization, and have larger scatter
(see Appendix B).

Figure 13. Average correlation between left and right polarization of MP (blue)
and IP (orange) giant pulses as a function of frequency, with fits using the sum
of two Gaussians overdrawn. The narrow peak is due to signals from individual
nanoshots shared between polarizations, and its width is as expected from the
scattering time. The wide peak reflects the correlation between the nanoshots;
the small amplitude and large width show that these are resolved on the sky by
the scattering screen.

Table 4
Correlations between Left and Right Polarization

Anarrow νnarrow Awide νwide
Comp. (%) (MHz) (%) (MHz)

MP 16.7 ± 0.2 0.0367 ± 0.0007 2.11 ± 0.13 0.324 ± 0.018
IP 14.1 ± 0.7 0.038 ± 0.002 3.1 ± 0.4 0.32 ± 0.03
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35± 5 s at 1.48 and 2.33 GHz, respectively, which yields
σx,∥= 4240 and 5940 km, respectively. Since σx scales linearly
with wavelength (see Equation (2)), the two results are
consistent with each other.

Another estimate of the resolution can be made from the
scattering time τ (Section 2). Cordes et al. (2004) did not
measure τ directly, but for an unresolved source it can be
inferred from the decorrelation bandwidth. At 1.48 GHz, they
can only set a limit, νdecorr 0.8 MHz, which implies
τ1480; 1/2πνdecorr 0.2 μs, but at 2.33 GHz, they measure
νdecorr; 2.3 MHz, which implies τ2330; 0.07 μs.15 If this
scattering were dominated by the nebula, one would infer, from

Equation (2), σx 730 km and σx; 790 km at 1.48 and
2.33 GHz, respectively (again consistent with each other given
the dependence on wavelength). This is much smaller than
inferred above from the scintillation time. This might be taken
to suggest a very anisotropic screen, but more likely is the
assumption that the nebula dominates scattering does not hold.
As estimated in Section 2, the interstellar screen should have
τ; 0.2 μs at 1.66 GHz. Hence, the interstellar screen likely
contributed to the scattering (though it cannot have dominated
it completely, since that would imply a scintillation time of
several minutes).
We conclude from the Cordes et al. (2004) observations that

the emission region is small enough to not contribute to the
scintillation time. From Equation (22), one sees that for given
size σs of the region in which giant pulses are emitted, the
relevant ratio that determines whether it contributes is 2σs/σx
(see Appendix C and Gwinn et al. 1998 for derivations).
Taking this ratio to be smaller than unity and using the smaller
of the two constraints on σx,∥ inferred from the scintillation
timescale, we conclude that the emission region has a size
σs,∥ 4240/2= 2120 km.

7.2. The Emission Regions Resolved

The observations presented in Paper I and here were both
taken at times during which the scattering time was
substantially longer than those of Cordes et al. (2004), and
therefore dominated by the nebular screen. The scattering times
of τ1660; 1 and 5 μs, respectively, imply resolutions of
σx= 290 and 130 km. In both observations, the maximum
correlation amplitudes are greatly reduced compared to the 1/3
found by Cordes et al. (2004), to ∼1.8% and 0.6%,
respectively, and the decorrelation bandwidths are substantially
larger, at 1.1 and 0.4MHz, respectively, than expected from the
scattering time (1/2πτ= 0.16 and 0.03MHz, respectively).
Both of these indicate the emission regions are resolved. If

two giant pulses, even close in time, arise from a region much
larger than the scintillation elements, they are imprinted with
typically different IRFs and hence the correlation amplitudes
will be low. Given that they will correlate best at the start of the
scattering tail, with the paths still close to the line of sight and
the effective resolution poor, and poorly correlated at later

Figure 14. Sketch of the giant pulse MP and IP emission regions as projected on the sky (not to scale). The pulsar velocity and spin axis, Ω, are shown on the top left,
and the resolution element is shown on the right side of each panel. A: the information from Cordes et al. (2004) suggests that at the time of their observations, the
resolution element covered the full MP emitting region. For simplicity, we assume that the emission region is circular. Since no information about the IP emitting
region size/location is known but there is an IP emission region somewhere, we show this region in gray. B: the clues from Paper I suggest that the MP and IP
emission regions are resolved and that the size of the MP and IP region along the direction of the pulsar motion is larger than the physical resolution at the pulsar, Δx.
In addition, the slight positive time offset, Δt0, indicates that the MP emission region precedes the IP emission region but that the regions likely overlap. C: in all of
our EVN observations, the physical resolution at the pulsar is smaller than in the previous observations. We also find that the size of the IP regions is larger than the
MP region along the pulsar motion. D: in order to have sign changes inΔt0 andΔν0, the emission regions cannot be oriented along the direction of the pulsar velocity.
Rotating them, we arrive at our final picture of the emission regions. We use smaller circles within the larger MP and IP emission regions to indicate the regions where
nanoshots of a giant pulse may arise.

Figure 15. Sketch of the giant pulse emission regions as seen from the side (not
drawn to scale). The black circle on the left indicates the pulsar. Blobs of
highly relativistic material are ejected from around the light cylinder, at radius,
RLC, and emit nanoshots at some specific locations along their trajectory, as
indicated with the orange circles. Projected on the sky, these occur within a
smaller part, of ∼1100 km, of the full ∼2400 km emission region. Along the
line of sight, giant pulse emission occurs over ∼107 km.

15 In Paper I, the scattering time was inferred from the value of τ610 ; 0.1 ms
observed at 610 MHz by McKee et al. (2018) at the time of the Cordes et al.
(2004) observation. Using the usual ν−4 scaling, that value implies
τ2330 = 0.5 μs. We noticed, however, that McKee et al. (2018) found few
lower scattering times from their fits to the average profiles, while from our
own studies of the profiles of individual giant pulses in the same data
(T. Serafin-Nadeau et al. 2023, in preparation), it is clear that lower values,
down to 0.01 ms, are common. This suggests that values of τ610  0.1 ms
should be treated as upper limits; we confirmed with McKee (2022, private
communication) that this is possible. And indeed, at 111 MHz, Losovsky et al.
(2019) found τ111 = 15 ms at the time of the Cordes et al. (2004) observation,
which implies τ2330 ; 0.08 μs, consistent with what we infer from the
decorrelation bandwidth.
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times when the resolution is higher, only the coarser frequency
structure in the power spectra will correlate and thus the
decorrelation bandwidth will be relatively large (as derived for
resolved sources by Gwinn et al. 1998). Following the same
logic, the even lower amplitude of the MP–IP correlation
suggests that the IP emission region is even more resolved and
thus somewhat larger.

We also found that the regions from which nanoshots of
given giant pulses arise are resolved. This is surprising, since
the nanoshots are causally related and occur within a few
microseconds. We return to this in Section 7.5, but here recall
that if they were not resolved, i.e., if all nanoshots were
imprinted with the same IRF, the variance of the power spectra
should be three times larger than the mean squared. In contrast,

in both our observations and those of Paper I, the variance is
equal to the mean squared as expected if nanoshots are
imprinted with different IRFs (see Appendix A). Furthermore,
the correlations between the left and right circular polarization
approach zero for pulses with low polarization (see
Section 6.4), which can only be understood if the nanoshots
are imprinted with different responses, i.e., if their physical
separations as projected on the sky are resolved (see
Appendix B).
We can use Equation (24) to estimate the number of

scintillation resolution elements ng from the observed ampli-
tudes and the number of nanoshots per giant pulse, ns; 5 (see
Section 6.4). We find that the emission region covers
approximately 55 and 165 resolution elements in the data
from Paper I and presented here, respectively.
As a consistency check, we can use the decorrelation

bandwidth, which, for low correlation amplitude, depends on
the amplitude and scattering time as A1 2decorrn pt( )
(see Equation (25)). Inserting numbers, we find νdecorr= 1.2
and 0.4 MHz, respectively, reasonably consistent with what we
observe (1.1 and 0.4 MHz, respectively; see Table 3).
Following the same logic for the correlations between the

two polarizations of individual pulses, for which we found an
amplitude of ∼2% for the wide component for epoch B, we
infer that the regions in which nanoshots from individual pulses
arise cover about 50 resolution elements. The implied
decorrelation bandwidth is νdecorr= 0.23MHz, reasonably
consistent with the observed width (∼0.32MHz; see
Table 4), although not as close as we found for the pulse pairs.

7.3. Emission Region Sizes

If the emission regions are larger than the resolution
elements, the time decorrelation scale should reflect the time
required for an emission region to move by its own size,
independent of resolution. Indeed, we find that the time
decorrelation scale is similar between the observations
of Paper I and ours, at tscint, MP−−MP ; 10 s. Thus, along
the direction of motion, the size of the MP emitting
region should be v t 2 850 kmpMP, scint, MP MPs »-- (see
Equation (26)). Note that here we ignore any contribution of
the screen motion, which, at up to 70 km s−1, introduces an
uncertainty of about 30%. Indeed, variations in screen
velocity likely are responsible for the fact that the individual
scintillation times are not quite the same within the
measurement errors (see Table 3, in particular epoch C).
Above, we found that the resolution elements had size σx; 290

and 130 km in the observations of Paper I and here, respectively,
and that the MP emitting region spans about ng; 55–165
resolution elements, respectively. Since in the limit of well-
resolved emission, n 2g xMP

2s s( ) (Equation (23)), one infers

n 1075x gMP
1

2
s s = and 835 km, respectively. These num-
bers are pleasingly close to what we inferred from the scintillation
time above, with the small differences perhaps due to changes in
screen distance within the nebula, or deviations from isotropy.
The low amplitude and increased time and frequency widths

of the MP–IP correlations in both our data sets and those of
Paper I suggest that the MP emission size is slightly smaller
than the IP emission size. We can estimate the IP emission
size along the direction of the pulsar velocity from the
scintillation times for MP–MP and MP–IP, by IP,s =

v t t 1040 kmp scint, MP IP
2 1

2 scint, MP MP
2 1 2

--- --( )  .

Figure 16. The correlation amplitude A, scintillation time tscint, and
decorrelation bandwidth νdecorr as a function of scattering time τ. The
measurements for the MP are shown by the points (see Tables 2 and 3).
Overdrawn with a solid line is what is expected (Equations (24)–(26) and
Appendix C) for an emission region size σMP = 835 km, using a pulsar
distance dp = 2 kpc and distance between the screen and the pulsar of
dp − ds = 1 pc; the shading shows the effect of varying these within
1.4 � dp � 2.7 kpc and 0.5 � dp − ds � 2 pc. For comparison, the dotted and
dashed blue lines show the expectations for emission sizes of σMP = 102.5 and
103.5 km. At long τ, the size of the resolution element 1xs tµ is smaller
than the emission region size, and hence the scintillation time is constant, while
the amplitude and decorrelation bandwidth decrease as 1/τ and 1 t ,
respectively. Conversely, at short τ, the resolution is poorer, and the
scintillation time is proportional to 1 t , while the amplitude approaches 1/
3, and the decorrelation bandwidth approaches 1/2πτ. The model’s assumption
of negligible contribution from interstellar scattering breaks down at short τ:
the solid gray region indicates where interstellar scattering likely dominates,
and the hatched gray one indicates where it contributes significantly. A
significant contribution from interstellar scattering means the model cannot
reproduce the measurements of Cordes et al. (2004).
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Unfortunately there are insufficient pairs of IP pulses to construct
an IP–IP correlation meaningful enough for a complementary
measurement, though for completeness we note that the very
noisy result is certainly consistent with what is implied by the
above size: n 2 255g xIP,

2s s( )  and thus AIP−−IP;
1/ng; 0.4% and n 2 0.5 MHzgdecorr,IP IPn pt--   .

As noted, the correlations between polarizations imply that
the screen also resolves the region in which the nanoshots that
comprise individual giant pulses originate. Using ng; 50, we
infer σnano; 460 km.

Overall, we infer that the MP and IP emission regions, if
described by normal distributions, have sizes σMP ; 835 km
and σIP ; 1040 km, or in terms of FWHM, about 2000 and
2400 km, respectively. The constituent nanoshots arise in
somewhat smaller regions, σnano ; 460 km (or FWHM of
∼1100 km). In Figures 14D and 15 we show how we
envisage the nanoshot emission regions to fit within the
larger ones.

7.4. Orientation and Separation between Emission Regions

Time and frequency offsets in the MP–IP correlations can
only occur if the respective emissions regions are offset as
projected on the sky. Time offsets are easiest to interpret, as
they reflect mostly how one region will move through the same
resolution element at a slightly different time than the other. In
both our observations and those of Paper I, marginally
significant time offsets up to ∼1 s are detected. Treating those
as upper limits suggests that the MP and IP emission regions
are coincident along the pulsar motion to within a few 100 km.
If we instead take them as measurements, we need to consider
that the sign is different. This is possible only if the two regions
are not aligned along the pulsar motion and the scattering
screen is anisotropic on both occasions, but with a different
orientation (see Figure 14D). In that case, for a given angle ψ
between the short axis of the resolution element (long axis of
the scattering screen) and the proper motion, the projected
separation would be v t cosp 0 y~ D , i.e., ∼170 km for a typical
angle ψ= 45°.

Independent evidence for anisotropy comes from the
measurement of significant time–frequency covariance ρf,t in
the correlations. Furthermore, frequency offsets can only
happen for an anisotropic screen. For those, one requires
knowledge of the screen to infer a spatial offset, but a lower
limit is given by (w/2)Δν0/νdecorr (where w is the FWHM of
the resolution element), which implies offsets of 80 and
20 km for Paper I and epoch B, respectively.

Overall, we conclude that the MP and IP emission regions
overlap substantially, but are likely offset by a few hundred
kilometers, i.e., about 10% of their diameter, in a direction
different from the direction of the proper motion.

7.5. Evidence for Superluminal Velocity

From our observations, it seems clear the individual
nanoshots that make up a giant pulse are resolved by the
scattering screen, arising in a region on the sky with width
σnano; 460 km. Yet, the nanoshots in a given giant pulse are
clearly causally related, and arrive within σt; 0.6 μs (Table 2),
which at face value suggests a physical separation of
0.18 km.

As mentioned in Section 1, a similar problem was
encountered by Bij et al. (2021), who found that in order to

reproduce the drifting bands seen during the scattering tail of
one particular giant pulse, the screen had to resolve the
constituent nanoshots, which therefore had to be separated by
∼60 km. Bij et al. (2021) suggested that the discrepancy could
be resolved if the nanoshots were emitted by blobs of material
moving highly relativistically, with γ; 104. Highly relativistic
motion would also naturally explain why the nanoshots are
resolved in our observation; they require γ 3× 103.
One implication of relativistic motion is that the nanoshots

are emitted over a region that is extended along the line of sight
by another factor γ, i.e., several gigameters, or of the order of
103 light cylinder radii. Given that, our measured sizes would
be upper limits to the sizes of the regions where the plasma
causing the emission originates, and the differences in apparent
size between the IP and MP that we find may reflect differences
in γ rather than true size.
A better measure of the true size may be the observed pulse

phase widths of ∼7°.6 and ∼9°.4 for MP and IP, respectively.
These are much larger than the beaming angle implied by the
relativistic motion, of 1 1g~ ¢, suggesting that the blobs are
emitted in a small range of directions, and thus also from a
range of positions. Assuming the source is near the light
cylinder radius, the implied widths perpendicular to the spin
axis (and also roughly perpendicular to the direction of the
pulsar velocity) are ∼210 and 260 km, respectively.

8. Conclusions and Ramifications

We find that in our observations, when the scattering was
relatively strong and dominated by the nebular screen, the
physical resolution at the pulsar was ∼130 km. From
correlations between spectra of our large numbers of giant
pulses, it is clear that this resolves the giant pulse emission
regions.
We infer apparent diameters of ∼2000 and 2400 km for the

emission regions of the MP and IP components. This strongly
favors emission arising beyond the light cylinder radius. Slight
time and frequency offsets in the MP–IP correlations suggest
that MP and IP emission regions overlap significantly but not
completely, with changes in sign suggesting that they are not
aligned along the direction of the pulsar motion.
The largest surprise is that we also resolve the parts of the

emission region from which the ∼5 nanoshots that comprise a
given giant pulse arise: this is clear both from the statistics of
the giant pulse power spectra as well as from the dependence of
the correlation between polarizations on polarization proper-
ties. From the frequency dependence of the polarization
correlations, we infer that the nanoshots arise in a region with
diameter of ∼1100 km, smaller than but of the same order as
the size of the region in which giant pulses occur. Since
nanoshots are causally related, the simplest solution seems to
be that the plasma emitting them moves at highly relativistic
speeds with γ; 104, generalizing to all pulses what was found
for a single pulse from drifting bands in its scattering tail (Bij
et al. 2021). It thus provides additional support for models that
require highly relativistic motion (e.g., Lyutikov 2021).

8.1. Implications for FRB-substructure

Several lines of evidence suggest that at least some repeating
fast radio bursts (FRBs) are generated by young magnetars
(see, e.g., Petroff et al. 2022, for a recent review). Observa-
tional support for such a scenario is given by, e.g., the FRB-like
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signals from the Galactic magnetar SGR 1935+2154 (Boche-
nek et al. 2020; CHIME/FRB Collaboration et al. 2020) and
the extreme magneto-ionic environment of FRB 20121102A
(Spitler et al. 2016; Michilli et al. 2018).

Additionally, substructure on microsecond and nanosecond
scales has been reported for FRB 20180916B (Nimmo et al.
2021) and FRB 20200120E (Nimmo et al. 2022), respectively.
Such short timescale variation translates to light travel times of
the order of 1 km and below, i.e., similar in extent to what one
would expect given the time separation between nanoshots
making up an individual giant pulse of the Crab Pulsar
(Table 2, Section 7.5). The evidence for superluminal motion
discussed above may also play a role in FRB emission,
suggesting that relativistic effects cannot be neglected when
modeling FRBs. In fact, relativistic beaming would help
explain the high brightness temperatures of FRBs, and may
even be directly responsible for the emission, if the plasma
blobs can act as a magnetic mirror (Yalinewich & Pen 2022).

8.2. Future Work

To improve our understanding of the orientation and sizes of
the giant pulse emission regions, further observations may help.
In particular, probing the emission regions at different
scattering timescales will further constrain the size of the
emission regions and place bounds on the transverse velocities
of the optical filaments. Similarly, observations at higher
frequencies will result in a lower resolution at the pulsar, which
can also help to quantify the size of the emitting regions. With
additional MP–IP correlations, we can more confidently
determine whether there is a spatial offset between the emission
regions and also map changes in the shapes of the resolution
elements.

Our beamformed data show the greatly improved sensitivity
gained using multiple telescopes. With even more telescopes,
we can perhaps detect more IPs and obtain more meaningful
IP–IP correlations, which will constrain the size of the IP
region directly. As already mentioned in Paper I, some of the
uncertainty in our determination for the resolution element size
comes from not having well-constrained distances to the Crab
Pulsar and the optical filaments; a good parallax distance would
resolve this.
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Appendix A
Optimal Estimates of Intrinsic Correlations from Power

Spectra

For two observed power spectra P1(ν) and P2(ν) sampled at k
frequencies νi, the sample correlation coefficient is given by,

r P P
P m P m

s s
, , A1k i

k
i i

1 2

1

1 1 1, 1 2, 2

1 2
=

å - -
- =( )

( )( )
( )

where m and s are the sample mean and standard deviation16

of the power spectra, given by m P
k i i
1= å and s2=

P m
k i i

1

1
2å -

-
( ) , respectively.

We wish to determine the intrinsic degree of correlation, ρ,
between pairs of power spectra from multiple pairs of
measurements, correcting the individual estimates for biases
due to noise, and combining them using optimal weights, i.e.,
for a set of pairs ij to determine an optimal

r
w c r

w
, A2

ij ij ij ij

ij ij
opt =

å

å
¯ ( )

where in general one would expect that the weights wij and
correction factors cij would depend primarily on the S/Ns of
the input power spectra. Paper I already addressed the
correction factors, but as we need those for the optimal
weights as well, we briefly repeat the logic here.
The power spectra we are considering are Fourier transforms

of the measured electric field of a giant pulse, given by

E S N , A3n n n= +( ) ( ) ( ) ( )

where S(ν) and N(ν) are the pulse signal convolved with the
IRF and the measurement noise, respectively. Since we are
working with complex data, the measured power is,

R

P E E S N

S N2 , A4

2 2n n n n n
n n

= = +
+

*
*

( ) ( ) ( ) ∣ ( )∣ ∣ ( )∣
{ ( ) ( )} ( )

where |...| indicates absolute values, and R ...{ } indicates the
real part of the complex values.
We wish to determine the correction to the correlation

coefficient to make it an estimate of the intrinsic correlation
ρ(S1, S2). As noted in Paper I, the presence of (uncorrelated)
noise does not bias the sample covariance, which is the
numerator in Equation (A1), but it does bias the standard
deviations in the denominator. Hence, ρ(S1, S2) will be related
to the expectation value ρ(P1, P2) for the correlation coefficient

16 We use Greek letters to indicate population statistics and Latin numerals to
indicate sample statistics.
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by

S S
S S P P
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Thus, to calculate the bias, we need to relate the variances P
2s

and S
2s . The expectation values μP and P

2s of the sample mean
and variance mP and sP

2 are given by

,

2 , A6
P S N

P S N S N
2 2 2

m m m

s s s m m

= +

= + + ( )

where we assumed that S(ν) and N(ν) are independent and used
μS, μN, S

2s , and N
2s to represent their means and variances. Note

that while the cross-term between signal and noise that
originates from the squaring of the voltages does not contribute
to the mean, it does contribute to the variance.

With the above, one sees that one could make an estimate of
S
2s by s s m m m2P N P N N

2 2- - -( ) , but as noted in Paper I, this
will lead to difficulties since sP is a noisy estimate of σP (the
estimate of mP is better, and those of μN and σN much better,
since these are based on more data). A better estimate is
possible using information on the distribution of S(ν) and N(ν).
In particular, if both are normally distributed, with zero mean
but different variances, their powers will be distributed like
scaled χ2 distributions with 2 degrees of freedom (real and
imaginary parts). Hence, one will have S S

2 2m s= and N N
2 2m s= ,

which implies P S N S N P
2 2 2 2s s s m m m= + = + =( ) ( ) . If S(ν) is

not χ2 distributed, as in the case where each giant pulse
comprises many nanoshots with the same IRF, then 3S S

2 2s m=
(see Section B). We show that S(ν) is indeed χ2 distributed in
Figure 17. This allows one to estimate c12 more simply,

S S P P c P P, , ,

. A7P
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´
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To determine the weights wij for an optimal estimate of ropt¯ ,
we need to know the uncertainties in the sample correlation
coefficients. The general case depends on both ρ and the nature
of the distributions, but for the case of no intrinsic correlation

(i.e., ρ= 0), the variance of ρ is simply Var(ρ)= 1/(k− 1), i.e.,
independent of the S/N. In our case, we expect this to hold
roughly as well, since we have low ρ. Hence, for our estimate
of the intrinsic correlation, the expected variance is,

S S
k

c
k

Var ,
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1
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Given this variance, if we choose weights equal to its inverse,

w k 1 , A9P N P N

P P

12
,1 ,1

2
,2 ,2

2

,1
2

,2
2

m m m m

m m
= - ´

- -
( )

( ) ( )
( )

we will have an optimal estimate ropt¯ (even for higher ρ, this
likely is reasonably optimal). Note that this implies that for
high signal-to-noise pulses, with μP? μN, the weight
approaches a constant: all such pulses bring equal information,
independent of exactly how high their S/N is. But for low
signal-to-noise pulses, with μP 2μN (i.e., S/N per channel
dropping below 1), the weight decreases as they bring little
information.

Appendix B
Correlation between Circular Polarizations and Stokes

Parameters

If individual nanoshots are fully polarized, but with a
random direction, then the ensemble should be less polarized.
With a random walk like picture, one expects that while the
intensity will be just be the sum of the intensities of the
individual pulses, I=∑iIi, the polarized intensity will be
I Ip i i

2 1 2å( ) and thus the degree of polarization
d I I I Ip i i

2 1 2= å( ( ) ) . For ns equal-intensity nanoshots,
one would thus expect d n1 s .
We describe polarizations using the Poincaré sphere, with

latitude 2χ(
2

 p being fully left (−) and right (+) polarized) and
longitude 2ψ(2ψ= 0, π/2, π, 3π/2 being horizontal, diagonal,
vertical, and antidiagonal, respectively), and write the Jones

Figure 17. Left polarization power spectra mean and standard deviation ratios of giant pulses detected in EK036 B. MPs are shown in blue, and IPs are shown in
orange. The ratio averages to 1, indicated by the red line, and is independent of S/N. The dashed gray line shows the expected m s 1 3S S

2 2 = if nanoshots in S(ν) have
the same IRF.
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vector for a single pulse in left-right basis as

A i
A i

A i

A i
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where A A A2 2 2= +- + is the total amplitude, and f is a random
angle of the wave. For random polarizations, 2ψ will be uniform
in [0, 2π), while sin 2c will be uniform in [−1, 1]. Since,

sin sin 22
4

1

2

1

2
c c+ = +p( ) and cos sin 22

4

1

2

1

2
c c+ = -p( ) ,

we see that for random polarization, A A 2
+( ) is uniform in [0,

1] and A A A A12 2= -- +( ) ( ) .
For multiple nanoshots, the voltage spectra are given by

E A iexp , B2
i

i i i,ån f n y=  ( ) [ ( ( ) )] ( )

where the sum is over the number of shots ns. The
corresponding Stokes parameters (see Equations (14)–17)
following the PSR/IEEE convention (van Straten et al. 2010)
are

I I I I , B3
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i
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i iå å c= = ( ) ( )

where we defined I Ai i, ,
2º  , and assumed everywhere that

differences in angles fi(ν) causes the cross-terms between
nanoshots to cancel. For the polarized flux, one finds

B7

I Q U V I I I

I

2 cos 2 cos 2 cos 2

sin 2 sin 2 ,

p
i

i
i j

i j i j ij

i j
i

i

2 2 2 2 2

2

å å

å

c c y

c c

= + + = + D
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where the approximate equality uses the assumption that the
polarizations of the individual shots are random, so that the
cross-terms cancel. Hence, we reproduce the expectation
above, that the expected degree of polarization
is d I I n1i i s

2 2 2å ( )  .
In order to see the effect of scattering of the pulses in a

screen, we should include an IRF gi(ν) in Equation (B2) for the
voltages. We will assume that all gi(ν) have the same total
power, i.e., the same μg= 〈|g(ν)|2〉, and that the real and
imaginary parts are normally distributed, so that |g(ν)|2 is
distributed as a χ2 distribution with 2 degrees of freedom and
hence gg g g

2 2 2 2s n m m= á - ñ =(∣ ( )∣ ) . For the Stokes para-
meters, which are frequency averages of linear additions of
the nanoshots, this will introduce a factor μg in all equations,
which we will absorb in the definition of the intensities, i.e.,
I Ai g i, ,

2m=  . Below we discuss two cases, one where all
nanoshots have the same IRF (Appendix B.1) and one were
they all have different IRFs (Appendix B.2).

B.1. Same Impulse Response Function

If all nanoshots are affected by the same IRF, then the left
and right pulse power spectra are

B8P g A A A2 cos ,
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where we have abbreviated Δf±,ij(ν)= (fi(ν)− fj(ν))±
(ψi− ψj). The means and variances of these power spectra are
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where in the approximate equality we used that I±,i; I±/ns.
For a large ns, one thus has 32 2s m= .
The covariance between the two polarizations is given by
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polarizations, Q U Q Ui i i
2 2 2 2+ å +( ) . Combined with the

product of the variances, n I I3 2 ss s - =- + - +( )
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2 2- -( )( ), the expected correlation coefficient is
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For large ns, ρ; 1/3, as noted by Cordes et al. (2004).
Of course, we do not know ns a priori, but we can use the

degree of polarization as an estimate. In Figure 18, we compare
simulations with the prediction for a combination akin to
the degree of linear polarization, d Q2= +˜ ( U2)
I V2 2-( ), which we find below is expected to be a good
approximation for the correlation coefficient for the case that
nanoshots are imprinted with different IRFs. For our case,
given that Q2;U2; V2; I2/3ns, one expects
d n2 3 1s -˜ ( ) and thus d d2 3 2r + -( ˜) ( ˜) . One sees
that the simulation confirms the expectation, albeit with fairly
large scatter for individual simulated pulses. This is because the
correlation coefficient for a given pulse depends on the
polarizations of its constituent nanoshots; the approximations
only hold for the average over a large number of pulses.
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B.2. Different Impulse Response Functions

Turning now to the case that each nanoshot is imprinted with
a different IRF, gi(ν), the left and right pulse power spectra are
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Here, the variances are smaller because the cross-terms
between the different nanoshots now cancel. Similar cancella-
tion happens for the covariance between the left and right
polarizations, leading to
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where used the same simplifications as in Equation (B11) as
well as that cos cos cos 2g g

1

2
f f f f yá D + D D + D ñ = D- +( ) ( ) ( ).

The product of the left and right standard deviations
I V1

4
2 2s s = -- + ( ), and thus the expected correlation coeffi-

cient is
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where for the approximate equality we used that
Q2;U2; V2; I2/3ns. Note that unlike for the same-IRF
case, for a given pulse with measured Stokes parameters, one
does not have to rely on the last approximation—the result is
known independent of any approximation for the individual
properties of the nanoshots. Hence, comparing with simulations
in Figure 18, one sees that even for individual pulses, the
predictions are good; there is only some scatter due to the
random wave angles, which causes imperfect cancellation of
cross-terms.

Appendix C
Effects of Resolving the Emission Region

The correlation between giant pulses is low, much lower
even than the ρ= 1/3 expected for giant pulses consisting of
large numbers of nanoshots. Furthermore, the ratio of mean to
variance of pulse spectra as well as the correlation between
polarizations suggests that the different nanoshots generally are
imprinted with different IRFs. Here, we derive expected
correlation coefficients assuming each giant pulse consists of
ns nanoshots, which arise randomly in some larger emission
region, which is resolved by the screen. We will assume that

Figure 18. Correlation between left and right polarization powers for simulated pulses as a function of polarization properties. In the simulations, a giant pulse consists
of ns nanoshots with different polarization, imprinted with response functions that either are all the same (left) or are all different (right). The polarization of each
nanoshot is drawn randomly from the full Poincaré sphere, and its amplitude is drawn from a power law with index α = − 2.8, mimicking what we see in our data and
others (Bera & Chengalur 2019); the frequency bandwidth, number of channels and scattering timescale are chosen to be as in our EK036 B data set. We show 500
randomly selected giant pulses for ns = 2, 8, and 32 (as indicated). The red lines mark expectations for large samples of pulses, with the bold markers indicating where
ns = 2, 8, and 32. One sees that the simulations confirm the expectations. The scatter is much larger for the case that the response functions are the same, because the
expectation is only for the average over many pulses, in which polarization properties average out. In contrast, the expectation for different response functions is for
individual giant pulses, only relying on averaging out random wave angles.
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the nanoshots are true impulses, without spectral structure,
which randomly sample the whole emission region without any
spatial correlation within a pulse.

For a first, simple derivation, we assume the emission region
is resolved by the screen into ng different patches, each of
which have completely independent IRFs. We write the electric
field as in Equation (B2), as a sum of impulses with amplitudes
Ai seen through possibly different IRFs gi(ν). Inspecting the
results above for the power spectra for the case of nanoshots
that all share the same IRF or all have different ones
(Equations (B8)–(B10) and (B13)–(B15), respectively), one
sees that the mean, μP, is always the same, but the variance, P

2s ,
will depend on the number of pairs ncorr that share their IRF
(and thus correlate fully with each other), as,

n

n

n
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where we assumed that all nanoshots have the same amplitude
A ni P sm= (for different amplitudes, one could rewrite
using some effective number of pulses and pairs), and where in
the second equality, we used that for any given pair of
nanoshots, the probability that they share the same IRF is
simply the inverse of the number of patches, so that
ncorr= ns(ns− 1)/2ng.

Similarly, for the covariance between two giant pulse
spectra, one finds

P P
n

n n n
Cov ,

1
, C2

s s g
1 2 1 2

corr

,1 ,2
1 2m m m m= =( ) ( )

where in the second equality, we again used that the probability
for a given pair to share the same IRF is 1/ng and thus that
ncorr= ns,1ns,2/ng.

Combining the above, one finds that the correlation
coefficient for two separate pulses is expected to be

P P
n n

,
1

2 1 1
. C3

g s
1 2r =

+ -
( )

( )
( )

Thus, for two single-shot pulses, one has the expected ρ(P1,
P2)= 1/ng and for pulses with large ns, ρ(P1, P2); 1/
(ng + 2).

The above derivation is a simplification in that it assumes
that the screen resolves the region in a fixed number of patches,
while in reality the resolution of the screen varies throughout
the scattering tail, from very poor early on, when the paths
along which radiation travels are all close to the line of sight, to
much better later on. Indeed, in Section 6.1, we found that
spectra taken in the first half of pulses correlated more strongly
with each other than those taken in the second half.

In order to take this into account, we first start by rewriting
the above in terms of a fraction of the IRF that is correlated.
Next, to understand not just the amplitude of the correlations at
zero lag, but also the correlation at other Δν and thus the
decorrelation width νdecorr, we consider the behavior of the IRF
in the time domain, g(t).

To take into account that part of the IRF of nanoshot i is
shared with that of other nanoshots, we write the IRF in terms
of a shared (correlated) part gc(ν) that contributes a fraction fc
of its power, and a different (uncorrelated) part gu,i(ν) that

contributes the rest, i.e.,

g g f g f1 . C4i ic c u, cn n n n n= + -( ) ( ) ( ) ( ) ( ) ( )

Note that we implicitly assume all IRFs are normalized the
same way, i.e., all have the same ∫ν|g(ν)|

2dν. With this,
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where we use fc̄ to indicate an appropriate average over
frequency of fc(ν) (note that for relatively narrow-band
observations like ours, the dependence on frequency can be
safely ignored). Thus, identifying n f1g c

2= ¯ and ns =

P i i
2 2m må one recovers Equation (C1). Similarly, for the

correlation coefficient (assuming both pulses have the same
effective ns),
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Turning now to the time domain, without much loss of
generality, we can take g(t) to be amplitude-modulated noise,
i.e.,

g t a t N 0, 1 , C7=( ) ( ) ( ) ( )

where N 0, 1( ) is the complex normal distribution with mean
zero and variance one, and a(t) is normalized to give unit total
power, i.e., ∫p(t)dt= 1 with p(t)= a2(t). For two impulses
arising from different locations, the fraction fc(t) of the response
that is shared (and thus correlates) will decrease with increasing
time, i.e., the part phased coherently will have reduced power
pc(t)= p(t)fc(t).
We can relate this to the frequency domain by noting that

generalizing the cross-correlation coefficient in
Equation (C6) to a function of Δν, the covariance term
becomes a cross-covariance, which requires the autocorrela-
tion of |gc(ν)|

2. Using the cross-correlation theorem, we can
write the latter as
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c c
2

n n n=

=

-∣ ( )∣ ∣ ( )∣ {∣ {∣ ( )∣ }∣ }
{∣ ( ) ( )∣ } ( )

where  indicates a Fourier transform, and  1- indicates its
inverse. Using that the expectation for the autocorrelation
power between the part of impulses that is shared in the time
domain is given by the autocorrelation of their power
envelopes, the expectation value for the autocorrelation is

  g g p t p t p . C9c
2

c
2

c c c
2n n ná ñ = = D∣ ( )∣ ∣ ( )∣ { ( ) ( )} ∣ ( )∣ ( )

The precise shape of the autocorrelation of |gc(ν)|
2 will

depend on p(t) and fc(t), but one can gain insight using a simple
assumption, that both p(t) and fc(t) are exponentials. For p(t),
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this is reasonable, as the pulse profiles can be modeled fairly
well as the convolution of a Gaussian arising from nanoshots
with an exponential scattering tail (see Section 5). It is also the
expected profile for an isotropic scattering screen in which the
scattering points are distributed normally. Since the profile has
to be normalized, one has p t texp t t= -( ) ( ) (for t� 0)
where τ is the scattering timescale.

For the shared fraction fc(t) averaged over many pulses, an
exponential distribution may also be plausible: if the locations
of the individual pulses are distributed roughly isotropically
with a normal distribution in each direction, then squared
distances between pulse pairs will follow an exponential
distribution. Hence, while for close pairs fc(t) will extend
further in time than for distant pairs, on average one may
expect f t texpc ct-( ) ( ) , with τc corresponding to the time
delay for which the IRFs of two typical pulses will start to
differ significantly. Thus, the correlated power envelope will be

p t t t t
1

exp exp
1

exp , C10c c
t

t t
t

t= - - = - ¢( ) ( ) ( ) ( ) ( )

with c ct tt t t¢ = +( ). The autocorrelation in time is
p p t t2 expc c

2t t tD = ¢ - D ¢( )( ) ( ) ( ∣ ∣ ), and hence in the fre-
quency domain, one expects a Lorentzian,

p
1

1 2
. C11c

2
2

2
⎛
⎝

⎞
⎠

n
t
t p nt

D =
¢

+ D ¢
∣ ( )∣

( )
( )

Comparing with Equation (C6), we can identify fc t t= ¢¯ .
The half-width at half-maximum is given by 1 2decorrn pt= ¢,
which is larger than the 1/2πτ one would infer from the
measured scattering time τ by a factor f1 c̄. For well-resolved
emission, i.e., small fc̄, the dependence on the number of pulses
drops out, and one expects a scaling with amplitude A of the
decorrelation width as A1 2decorrn pt( ) .

As noted above, an exponential for fc(t) is expected if the
nanoshots are distributed roughly isotropically on the sky, with
a normal distribution. Assuming they have a variance s

2s in
each direction, differences in position between pairs will have a
variance 2 s

2s in each direction. Hence, the distance squared r2

between pairs will follow an exponential distribution
rexp 4 s

2 2s-( ), and the typical distance is 2σs. Thus, like
Gwinn et al. (1998), we find that 2σs/σx is the relevant measure
of the degree to which the emission region is resolved. We
confirmed using simulations that the average amplitude for a
pair of pulses equals 1 2 s x

2 2 1t t s s¢ = + -( ) ( ( ) ) .
The amplitude is inversely related to the effective number of

resolution elements (see Equation (C3)), which suggests
defining an effective spatial correlation scale cs =

2x s
2 2 1 2s s+( ( ) ) , such that one has ng xc

2s s= ( ) (and thus
f nx gc c

1 2t t s s¢ = = = -¯ and n 2gdecorrn pt= ). The cor-
relation scale σc can be related to the spatial separation ℓscint

between giant pulses at which the correlation will decrease by
1/e, which is useful for comparing with the scintillation time
tscint= ℓscint/vrel. Since amplitudes vary with separation ℓ as

ℓexp 22
c
2s-( ), the correlation, which is a fourth-order product,

will fall off as ℓexp 2 2
c
2s-( ). Hence, one infers ℓ 2scint cs=

(which we also confirmed with simulations).
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