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Designing marine and maritime systems requires the probabilistic characterization 

of sea waves in the time-history and spectral domains.  These probabilistic models 

include parameters that can be empirically estimated based on limited data in durations, 

locations and applicability to particular designs.  Characterizing the statistical 

uncertainties associated with the parameters and the models is an essential step for 

risk-based design methods.  A framework is provided for characterizing and predicting 

the stochastic sea-state conditions using sampling and statistical methods in order to 

associate confidence levels with resulting estimates.  Sea-state parameters are analyzed 

using statistical confidence intervals which give a clear insight for the uncertainties 

involved in the system.  Hypothesis testing and goodness-of-fit are performed to 

demonstrate the statistical features.  Moreover, sample size is required for performing 

statistical analysis.  Sample size indicates the number of representative and independent 

observations.  Current practices do not make a distinction between the number of 



 

discretization points for numerical computations and the number of sampling points, i.e. 

sample size needed for statistical analysis.  Sample size and interval between samples to 

obtain independent observations are studied and compared with existing methods.  

Further, spatial relationship of the sea-state conditions describes the wave energy 

transferred through the wave movement.  Locations of interest with unknown sea-state 

conditions are estimated using spatial interpolations.  Spatial interpolation methods are 

proposed, discussed, and compared with the reported methods in the literature.  This 

study will enhance the knowledge of sea-state conditions in a quantitative manner.  The 

statistical feature of the proposed framework is essential for designing future marine and 

maritime systems using probabilistic modeling and risk analysis. 
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1. Introduction 

1.1. Background and Needs 

After 100 years since the tragedy of the maiden voyage of the Titanic, many ships 

continue to sink and disasters continue to occur at sea.  Despite the advances in ship 

designs, many ships have foundered due to bad weather, negligence, human errors, and 

the uncertainties of the sea environment, which have led to the loss of lives and economy 

impacts. 

Designing marine and maritime systems requires the probabilistic characterization 

of sea waves in the time-history and spectral domains.  These probabilistic models 

include parameters that can be empirically estimated based on limited data in durations, 

locations and applicability to particular designs.  Characterizing the statistical 

uncertainties associated with the parameters and the models is the essential step for 

risk-based design methods.  Cruz and Sarmento (2007) characterized sea-state by linear 

wave theory approach and using boundary element method.  Goff (2009) analyzed the 

sea surface height noise for improving the altimetry processing algorithms.  

Auto-covariance analysis was applied to decompose the noise into uncorrelated and 

correlated components.  It was found that the variance of the uncorrelated component is 

related to significant wave heights.  Hamilton (2010) presented a method to 

characterizing spectral sea wave conditions by clustering the wave spectra. 

Efforts are widely put into studies on the wave properties.  However, the 

uncertainties involved in the system and characterization and prediction processes are not 

presented in the analysis procedure.  A probabilistic framework is needed for 
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characterization and prediction of the sea environment based on statistical methods.  

Statistical confidence intervals should be studied for system parameters, such as the 

significant wave height and the modal period, as primary contributors to uncertainties 

associated with system characterization and prediction.  In addition, statistical methods 

are based on the assumption that the data are independent and representative.  Data 

dependency should be clarified in order to perform statistical analysis.  Further, wave 

data variabilities present themselves in both temporal and spatial perspectives.  A study 

demonstrates the connection of data properties in time and space domains is needed to 

enhance the knowledge of the applicability on estimation methods. 

1.2. Related Research 

Studies have been conducted to characterize the sea-state conditions which are 

necessary for marine and maritime systems design and vessels travel response 

estimations.  Two key parameters to represent the sea-state characteristics are the modal 

period and the significant wave height.  Statistical properties of the distributions and 

joint distribution of the wave modal period and the significant wave height have been 

investigated and compared with observations, such as the studies of Longuet-Higgins 

(1975, 1980), Hatori (1984), Mathisen and Bitner-Gregersen (1990), Sobey (1992), 

Ferreira and Guedes Soares (2000, 2002, 2003), Rodriguez et al. (1999, 2001, 2002), 

Goda et al. (2000, 2004), and Hou et al. (2006). 

In addition, Forristall et al. (1996) showed that the maximum significant wave 

height in a storm increases as the length of the samples from which the maximum 

significant wave height is calculated decreases or the interval between samples decreases.  

It was indicated that there is an important bias when the maximum significant wave 
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height in a storm is estimated from short samples.  Rodriguez and Guedes Soares (2001) 

investigated the dependency between wave heights and periods and compared the results 

with the theoretical joint distribution of the wave height and period.  It was found that 

significant correlation between consecutive wave periods only presents in a swell 

dominated sea state, and the superposition of a swell wave and a wind-sea wave system 

enhances the correlation between successive wave heights.  Wist, Myrhaug, and Rue 

(2004) studied the statistical properties of successive wave heights and wave periods.  

From their study, the distribution of the wave height given the previous wave height is 

independent of the wave height prior to the previous wave height.  The distribution of 

successive wave periods can be estimated by a multivariate Gaussian distribution when 

the corresponding wave heights are larger than the root-mean-square of the wave heights. 

Some predictions of the wave characteristics were made on the theory of wave 

grouping such as the work by Goda (1976), Kimura (1980), Longuett-Higgins (1984), 

Sobey and Read (1984), Ochi and Sahinoglou (1989(1) and (2)) and Rodriguez, Guedes 

Soares, and Ferrer (2000).  Some other prediction techniques are summarized by Young 

and Sobey (1981) such as the Sverdrup-Munk-Bretschneider curve, the Bretschneider's 

hurricane wave curves, the Wilson's method for space and time varying winds, the 

Pierson-Moskowitz spectrum, and the Jonswap/Ross tropical cyclone spectrum.  Each 

technique is applicable only on the conditions that the technique was developed. 

Besides the studies focused on the wave modal period and the significant wave 

height, Hamilton, Hui, and Donelan (1979) proposed a nonspectral model to explain the 

statistical significance of the tail of the correlation function of wind waves and to obtain 

masking functions for the computation of smoothed wave spectra.  Akaike (1981) 
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developed a computer program and underlying methods to condense observational data 

and predict the future behavior of locally stationary time series using least squares 

computations and the concept of Bayesian modeling.  Donelan and Pierson (1983) 

showed that the sampling variability effects are present in spectral estimates computed 

from wave time histories.  They demonstrated that the theory of stationary Gaussian 

processes provides accurate estimates of the sampling variability.  Jensen and Vesecky 

(1993) indicated that it is inadequate to use the auto-correlation function for 

characterizing the ocean surface.  Kazeminezhad et al. (2005) applied 

Adaptive-Network-Based Fuzzy Inference System on wave parameters prediction.  

Guedes Soares and Cherneva (2005) used the spectrogram based on the short-time 

Fourier transform to study the time frequency evolution of the ocean wind wave 

properties.  Cruz and Sarmento (2007) characterized sea-state by linear wave theory 

approach and using boundary element method.  Hamilton (2010) presented a method to 

characterize spectral sea wave conditions by clustering the wave spectra. 

Properties in the sea environment have temporal and spatial variabilities.  The 

temporal variabilities are represented based on time series analysis.  The studies 

described above focused on the wave characteristics in time and frequency domains.  On 

the spatial perspectives, geographic techniques such as inverse weight factor, 

semivariogram analysis, and Kriging estimation are often utilized for analyzing the 

influence of locations of interest in terms of distance.  The properties at unobserved 

locations are estimated based on the properties and influence range of observed locations. 

Matheron (1963) provided a procedure in mining reserve simulation studies which 

is known as the semivariogram method.  Based on the semivariogram method, Sen 
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(1989) proposed an approach called cumulative semivariogram which presents the 

influence distance in a non-decrease model.  The cumulative semivariogram is very 

similar to the semivariogram model except taking cumulative summations.  In addition, 

a point cumulative semivariogram model was proposed by Sen (1992) to identify the 

spatial behavior around a reference site.  A point cumulative semivariogram is a 

cumulative semivariogram with a reference site of interest.  Sen and Sahin (2001) 

applied this approach on estimating the solar irradiation value of any point from sites 

where measurements of solar global irradiation already exist.  Altunkaynak (2005) 

suggested a modified model considering the trigonometric point cumulative 

semivariogram for predicting significant wave height in a specific region.  Altunkaynak 

and Ozger(2005) provided a standard regional dependence function for significant wave 

height assessment.  This approach is based on the point cumulative semivariogram 

modified by dividing it by the maximum value and subtracting from unity.  Therefore, 

the standard regional dependence function shows that locations in far distances have 

lower influence on the point of interest compared with the locations in close distances 

which have higher influence on the point of interest. 

Regardless in time or spatial perspectives, the data, or the samples, used in the 

estimations are assumed to be representative and independent in order to apply the 

statistical methodologies.  McCuen et al. (1988) addressed the needs to define the 

spacing between test points required to reach a desired level of testing accuracy on 

ultrasonic testing of bridge timber piles.  Semivariogram analysis and Kriging 

estimation were taken place to determine the changes in accuracy according to the 

intervals between testing points.  White and Ayyub (1990) also utilized the 
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semivariogram and Kiging technique for estimating the corrosion rate in steel plating to 

develop sampling strategy.  It was found that the benefit in taking more samples 

decreases when the number of sampling reaches certain level which is related to the area 

of the testing steel plate and the size of influence range.  Ayyub and McCuen (1990) 

demonstrated the number and location of sampling points for evaluating structural 

strength on columns and slabs using semivariogram analysis and Kriging estimation.  

Besides using the classic semivariogram model, Barry and Hoef (1996) proposed a 

flexible variogram model for spatial prediction using the Kriging concept.  They 

claimed that the classic variogram models such as linear, spherical, exponential, etc. 

might not represent the true variogram for the system and therefore lead to estimation 

errors.  The flexible variogram is in the form of cosine series.  By engaging the moving 

average concept, the modified flexible variogram has better fit at the origin. 

The knowledge of sea-state conditions is essential for designing marine and 

maritime systems.  Current practices lack some important items required for providing 

accurate characterization and prediction in the sea environment.  Statistical 

methodologies are needed to estimate the uncertainties involved in the modeling and 

prediction procedures.  The independency of the analyzed data needs clarification before 

performing estimations.  The determination of the sample size of independent 

observations is required for applying statistical analyses.  Spatial dependency and 

estimation uncertainties need to be studied. 

1.3. Research Purpose and Scope 

This research provides a framework for characterizing and predicting the 

statistical uncertainties of parameters for a stochastic system such as the sea environment.  
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The statistical methodology characterizes the sea-state conditions in the time and spectral 

domains based on sea surface elevation data.  The proposed framework also provides 

prediction of sea-state conditions and assesses confidence intervals for sea-state 

conditions at points of interest in the sea environment including points along the travel of 

cargo ships and naval combatants.  This research also provides a method to determine 

the sample size of independent observations which is essential for performing statistical 

analyses.  The sample size of independent observations determines the required interval 

between samples for data collection.  Moreover, for a dynamic and nonlinear 

environment such as the ocean, spatial relationship of the sea-state condition is important 

for predicting the sea-state conditions at locations of interest based on properties at an 

observed point or points, such as the buoys.  This research provides spatial interpolation 

and dependency study using geographic techniques and data correlation functions. 

In this study, a sea environment is characterized in the time and spectral domains.  

The sea-state is usually characterized by two key parameters: the wave modal period and 

significant wave height.  Therefore, these two parameters are selected for estimations.  

In the time domain, the wave modal period and significant wave height are estimated 

from the wave surface elevation time-history.  In the spectral domain, the sea wave 

characteristics are presented in periodograms constructed from the time history using 

auto-covariance function.  Chapter 2 describes the spectral analysis background and the 

assessment of the confidence intervals of the estimated parameters.  The sample size 

which represents the number of independent observations is studied and discussed in this 

chapter as well.  The interval between samples required for collecting efficient data to 

achieve desired estimation accuracy can be determined from the estimated sample size.  
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A comparison for the sample size of a given time-history estimated by the assessment 

approach provided in this research, the existing spectral analysis process, and the 

time-history auto-correlation function is provided.  Chapter 2 also provides descriptions 

of geographic techniques for analyzing wave data in the spatial perspective.  

Semivariogram analysis and Kriging estimation are introduced and discussed. 

Chapter 3 presents the proposed framework and methodology.  This research 

provides statistical methods to assess confidence intervals for sea-state condition 

prediction at points of interest in the sea environment including points along the travel 

track of cargo ships and naval combatants.  The sea-state characteristics for a give buoy 

location can be obtained from its wave surface elevation time-history.  Two key 

parameters to describe the sea-state conditions are the wave modal period and the 

significant wave height described in Chapter 2.  To estimate the sea-state conditions for 

locations of interest, the wave characteristics of surrounding observed locations are 

utilized.  Prediction is performed based on the inverse distance weight factors according 

to the distance between the surrounding observed locations and the locations of interest 

such as the points of travel track of seagoing vessels.  Locations of interest are estimated 

as intermediate values among surrounding buoys using inverse distance weight factors 

applied on the buoys' periodograms.  A periodogram describes the sea-state 

characteristics in the frequency domain and is constructed from the time-histories.  

Statistical hypothesis testing is performed to define the confidence intervals of these two 

selected sea-state parameters for sea-state condition prediction.  Several approaches of 

defining the modal period are compared and discussed in this chapter using illustrative 

examples.  Chapter 3 also introduces a freeware called Simulated WAves of Nearshore 
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(SWAN) which simulates wave properties in a random field.  Ris et al. (1997) and Booij 

et al. (1999, 2001) indicated that the numerical wave model SWAN can provide accuracy 

at desired level on wave simulations.  The generated wave properties are used for 

verifying the sea-state characterization and interpolation procedures proposed in this 

chapter. 

Chapter 4 provides numerical examples to illustrate the research methodology.  

Given wave surface elevation time-histories at specific buoy locations, the sea-state 

conditions described by the wave modal period and significant wave height are 

determined from these time-histories.  Periodograms of these buoys are constructed 

from their time-histories, and the sea-state predictions for points of interest are performed 

using these surrounding buoys' periodograms along with the distances between the points 

of interest and these buoys.  Predictions are presented in confidence intervals of the 

estimated parameters.  Verification of the methodology is provided in this chapter as 

well using wave properties generated by SWAN as well as observations from the NOAA 

(National Oceanic and Atmospheric Administration) website.  Chapter 5 provides the 

conclusions of this research. 

1.4. Notations 

C = auto-covariance function 

d = distance between buoy and point of interest 

E[ ] = expected value of the term inside the brackets 

Err = error square per location 

f = wave spectrum 
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Hs = significant wave height 

Hst = significant wave height from time history 

Hse = estimated significant wave height of track point 

HsL = lower confidence limit of significant wave height 

HsU = upper confidence limit of significant wave height 

LCL = lower confidence limit 

UCL = upper confidence limit 

M = truncation point; the number of auto-covariance coefficients considered, and 

also the number of discretized points for the periodogram 

N = number of discretized points 

n = sample size of independent observations 

Pdg = periodogram 

S
2
 = variance 

Tm = wave modal period 

Tmt = wave modal period from time history 

Tme = estimated wave modal period of track point 

Tz = up-zerocrossing period 

TL = lower confidence limit of wave modal period 

TU = upper confidence limit of wave modal period 

var[ ] = variance of the term inside the brackets 

wb = weight factor 

ω = angular frequency 

µ = expected value 
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ρ = auto-correlation function 

ν = degrees of freedom 

λ k = lag window 

fp
max; fp

Dm; fp
Mq = maximum spectral frequency estimated by different approaches 
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2. Time and Spatial Data Analyses 

2.1. Random Process 

A random function of a time parameter is called a random process which can be 

denoted as x(t).  x(t) is a random, time-dependent quantity and represents one sample out 

of infinite possible samples.  A collection of such samples is called an "ensemble," 

denoted as {x(t)}.  Each random function x(k)(t) is a random process having probability 

density function px
(k)(x), as shown in Figure 2-1.  At a specific time, such as t1, the 

density function for the ensemble can be expressed as px(x,t1).  Figure 2-1 illustrates the 

random process and ensemble. 

 

Figure 2-1. Representation of a random process x(t) and the ensemble {x(t)}, i.e. each 

x
(k)(t) is a sample of the ensemble. 
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2.2. Stationary and Ergodic 

For a random process, if the statistical characteristics do not change with time, the 

process is called a stationary random process.  In other words, if a process is stationary, 

the probability density functions at different times, say t1, t2 and so on, would all be the 

same.  It has been found experimentally that the sea surface elevation is a stationary 

random process for short term observations, i.e. up to a few hours (Hughes, 1988), even 

though the random process x(t) is a function of time. 

Since a random process is a function of time, there are two ways to calculate the 

statistical characteristics.  They can be calculated over all of the samples of the 

ensemble at a specific time, say t1, which is referred to as ensemble averages, or they can 

be calculated over all time from -∞ to ∞ for a particular sample, say x
(1)(t), which is 

referred to as temporal averages.  In general, these ensemble and temporal averages 

would be different; however, for many random processes including ocean waves, the 

temporal averages computed from a single sample are equal to the ensemble averages.  

This type of processes is called ergodic process.  An ergodic process means that a single 

sample x(t) is typical enough to represent the entire process.  This condition implies that 

an ergodic process must be stationary; while a stationary process might not be ergodic. 

2.3. Auto-covariance Function 

The auto-covariance function is the means to measure or represent the degree of 

association between values of the random variable x(t) at times differing by a specific 

interval τ.  For a stationary ergodic process, the expected value µx is a constant for all 
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times t, and the auto-covariance function is the expect value of the product of any two 

values of x(t), e.g. x1 = x(t1) and x2 = x(t2) = x(t1+ τ), expressed as follows: 

 ���� = �����	� − �����	 + �� − ��
 = ������
 − ��� (2-1) 

The auto-covariance function at the origin, expressed in Equation 2-2, is the variance of 

the process.  For a zero mean process, i.e. µx = 0, the auto-covariance function at the 

origin is the mean square. 

 
��0� = ������	�
	, �� ≠ 0��0� = �����	�
			,			�� = 0 (2-2) 

In addition, a stationary process satisfies the condition expressed as follows: 

 �����	�� − �����	� + �� − ��
 = �����	�� − �����	� + �� − ��
 (2-3) 

According to Equation 2-3, the auto-covariance function C(τ) is independent of the 

starting point t and only depends on the interval τ.  The commutative property of x1*x2 

also leads to the relationship as follows: 

 ���� = �����	�� − �����	� + �� − ��
 = �����	�� − �����	�� − ��
 
 = �����	�� − �����	�� − ��
 = �����	�� − �����	� − �� − ��
 = ��−�� (2-4) 

Equation 2-4 indicates that the auto-covariance function is an even function of τ. 

There is a function closely related to the auto-covariance function, which is call 

the auto-correlation function.  When C(0) > 0, the correlation between two points 

separated by τ is defined as 

 ���� = ����/��0� (2-5) 

Equation 2-5 is called the auto-correlation function.  According to the definition in 

Equation 2-5, the auto-correlation function has the value equals to one at the origin 

expressed as follows: 
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 ��� = 0� = ���������� = 1 (2-6) 

Two extreme cases of the auto-covariance functions are: (1) the values of a 

function x(t) at different times are completely unrelated, and (2) each sample x(t) is 

identical thus leads to perfect correlation.  The former case which has the completely 

unrelated relationship between the values of a function at different times would have the 

auto-covariance value at the origin as the series variance while the auto-covariance values 

at all other times are zero.  The latter case which has the perfect correlation would have 

the auto-covariance function as a constant which equals to the series variance value.  

Usually the relationship would be in between the two extreme conditions.  That is, for 

small τ, the value x(t+τ) can be in a range of values that do not significantly differ from 

x(t), and for large τ, the degree of association between x(t) and x(t+τ) is very low. 

In the frequency domain, if a process is made up of components of many different 

frequencies, the spectrum is quite wide due to the wide range of frequencies.  The 

periodicity of the process is very little so that the auto-covariance function would have 

the shape such as Figure 2-2 that the values at times expect the origin are practically 

zeros and the value at the origin is the series variance.  On the other hand, if the 

frequencies of a process are within a narrow range which is small compared with the 

magnitude of the center frequency of the range, the spectrum would have a single narrow 

peak at the center frequency of the range, denoted as ω0.  The periodicity would present 

regular peaks in the auto-covariance function such as Figure 2-3. 

The auto-covariance function plays an important role in the subsequent sections.  

The auto-covariance function connects the random process from the time domain to the 

spectral domain.  In addition, the dependency between data determined by the 
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auto-covariance function leads to the estimation of the sample size of independent 

observations which provides a guideline of sampling.  The sampling guideline is 

denoted as the interval between samples which determines the interval between each 

independent sample.  Table 2-1 summarizes the temporal and ensemble averages such 

as the mean and auto-covariance function for stationary and ergodic, stationary and 

non-ergodic, and non-stationary random process conditions. 

 

 

Figure 2-2. Illustration of the auto-covariance function for a wide-band process. 
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Figure 2-3. Illustration of the auto-covariance function for a narrow-band process. 

 

 

A
u

to
co

v
ar

ia
n
ce

Time Lag 

0

Variance



 
 

18 
 

Table 2-1. Summary of the mean and auto-covariance function for random process {x(t)}. 
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2.4. Time Series Analysis 

2.4.1. Spectral Analysis 

The spectral analysis is a modification of Fourier analysis making it suitable for 

stochastic rather than deterministic functions of time.  It is assumed that the data are a 

time series made with N observations at equal time intervals.  The number of 

observations, N, is assumed to be an even number, although this assumption is not a 

necessary condition.  The N observations are denoted by (x1, x2, ..., xi, ..., xN) or by {xi}, 

where xi = x(ti).  By applying spectral analysis on the time series, the characteristics of a 

time series can be expressed in the frequency domain.  It should be noted that the 

random process discussed here is assumed to be a stationary ergodic process unless 

specifically indicated. 

As a basis of the spectral analysis, Section 2.4.2 introduces the simple sinusoidal 

model as well as the lowest and the highest frequencies for the spectral function to 

present a discrete random process.  Further, the periodogram which is an application of 

the simple sinusoidal model is presented in Section 2.4.3.  Periodogram analysis shows 

how the variance of a time series distributes over frequencies.  There are some existing 

lag windows or spectral windows used to smooth the periodogram and eliminate the 

spurious peaks in the periodogram.  The lag windows are applied on auto-covariance 

functions while the spectral windows are applied on the spectral functions.  A few 

commonly used lag windows are introduced in the subsequent section.  Smoothed, or 

modified, periodograms are also discussed. 
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In addition, the confidence intervals for the ratio of the periodogram and its 

original spectrum are described in Section 2.4.4.  To estimate the confidence intervals, 

the number of degrees of freedom, or the sample size, is needed.  Current practices to 

compute the degrees of freedom use the number of observations and the lag window 

applied on the auto-covariance function.  From statistical perspectives, the degrees of 

freedom, or the sample size, should be the same for the same time series of the same 

duration regardless how they are discretized.  For a time series having independent 

observations, the sample size is the number of observations; however, if the observations 

are correlated, it is necessary to obtain the number of independent observations before 

performing any statistical analysis or applying statistical methods.  Hence, the number 

of independent data points, or the sample size of independent observations, is studied and 

compared with the current practices in Section 2.4.5. 

2.4.2. Simple Sinusoidal Model 

The simple sinusoidal model describes the time series as a deterministic 

sinusoidal component at frequency ω with a random error term ε.  The following form 

can be used to present the simple sinusoidal model: 

 �0 = � + 1 ∗ 345�6	� + 3 ∗ 578�6	� + 90 (2-7) 

in which εt is the white noise, and a, b and c are the parameters to be estimated from data 

using the least square concept. 

For a discrete process measured at unit intervals without loss of generality, the 

spectral function argument can be restricted to the frequency range (0, π), where the 

upper limit π is so-called the Nyquist frequency.  The Nyquist frequency presented as ω 

= π is the highest frequency that could be fitted into data.  Assuming measurements 
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taken at a unit time interval Δt, the minimum number of observations to complete one 

cycle is two to obtain meaningful information from a set of data, as illustrated in Figure 

2-4.  Therefore, the highest frequency (Nyquist frequency) can be found by equating the 

number of observations, 2, to the cycle length 2π divided by the frequency ω as 2 = 2π	/ 
ω which leads to ω =	π.  On the other hand, the lowest frequency, or the fundamental 

frequency, is the one that completes one cycle in the entire duration of the observations.  

The lowest frequency as shown in Figure 2-5 can be found by equating the number of 

observations, N, to the cycle length 2π divided by the frequency ω as N = 2π / ω.  Hence, 

the lowest frequency can be expressed as ω = 2π / N. 

Since the lowest frequency, or fundamental frequency, depends on the number of 

measurements, N, the lower the frequency we are interested in, the longer the time period 

over which we need to take observations for a unit time interval Δt.  However, the 

higher the frequency we are interested in, the larger the number of measurements we 

should take over certain duration.  In other words, the more frequently measurements 

should be taken. 

 

 

Figure 2-4. Illustration for the highest frequency, i.e. Nyquist frequency. 
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Figure 2-5. Illustration for the lowest frequency, i.e. fundamental frequency. 

 

2.4.3. Periodogram Analysis 

The characteristics of a time series can be presented in the frequency domain by 

applying spectral analysis on the time series as described by Chatfield (2004).  A 

periodogram shows how the variance of a time series is distributed over frequencies.  A 

discretized time series {xi} can be expressed using a finite Fourier series representation as 

follows: 

�0 = �� + / ;�< cos ;�@<0- A + 1< sin ;�@<0- AACDE�
<�� + �-/� cos�F	� , 	 = 1, 2, … , .	 (2-8)	

in which N is the number of discretized points of the time series, and the coefficients are 

given by 

�� = 1. / �0
-

0��
 

�-/� = �- I �−1�0�0-0�� 	 	
�< = �- / �0 cos ;�@<0- A-

0�� 			,			J = 1, 2, … , �./2 − 1�	 	
1< = �- / �0 sin ;�@<0- A-

0�� 			,			J = 1, 2, … , �./2 − 1�	 	
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If the series {xi} is taken from a discrete pure random process where the 

observations are independent and normally distributed variables expressed as N(µ, σ2), 

the coefficients ap and bp are independent and normally distributed, and each one has a 

zero mean and 2σ2/N variance.  The periodogram, denoted as Pdg, can be calculated 

from the time series data as follows: 

 K)LM6<N = ;∑ �P QRS;DTUPC AADV;∑ �P SWX;DTUPC AAD
-@ 			,			J ≤ ./2	 (2-9)	

Moreover, the periodogram is the Fourier transform of the auto-covariance function 

expressed as 

 K)LM6<N = �@ M�� + 2 ∑ �( cosM6<ZN-E�(�� N (2-10) 

in which {Ck} is the auto-covariance coefficient at time lag k defined as 

 �( = �- ∑ ��0 − �̅���0V( − �̅�-E(0��  (2-11) 

By the fact that the periodogram follows a chi-square distribution with two 

degrees of freedom and the variance of a two degrees of freedom chi-square distribution 

is four, the variance of the periodogram is a constant independent of the sample size.  

Hence, the periodogram requires modification to enhance estimation and prediction. 

One approach to modify the periodogram is to apply a lag window on a truncated 

auto-covariance function as follows: 

 K)LM6<N = �@ M\��� + 2 ∑ \(�( cosM6<ZN](�� N (2-12) 

in which {Ck} is the auto-covariance coefficient at time lag k defined in Equation 2-11, 

{λk} is a set of weights called the lag window, and M(<N) is the truncation point.  The 

modified periodogram in the form of Equation 2-12 is a smoothed periodogram 

constructed by applying a lag window {λk} on the raw periodogram expressed as 
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Equation 2-10.  There are some lag windows available such as the Parzen window, the 

Tukey window and the Hamming window.  The Parzen and Tukey windows are the two 

best-known lag windows.  The Parzen window is used in this study because of its 

non-negative nature, and defined as follows: 

 \( = ^1 − 6�Z/`�� + 6�Z/`�a2�1 − Z/`�a0 						 0 ≤ Z ≤ `/2`/2 ≤ Z ≤ `` < Z c (2-13) 

Because the precision of {Ck} decreases as k increases since the coefficient is 

based on fewer terms, it is reasonable to apply less weight to the values of {Ck} as k 

increases.  It should be noted that the auto-covariance values in the range of M < k < N 

are no longer used.  The choice of the truncation point M can be subjective or based on 

common practices.  A smaller value of M would result in smaller variance of the 

periodogram, but some features of the spectrum might be smoothed out if the value of M 

is too small.  However, if the value of M is too large, the periodogram would have too 

many peaks which might be spurious.  A compromise value is chosen in this study as 

(Chatfield, 2004): 

 ` = 2√. (2-14) 

2.4.4. Confidence Intervals 

The periodogram as Equation 2-12 can be written as the following form 

 K)LM6<N = �@ M∑ \(3( cosM6<ZN](�E] N (2-15) 

Jenkins and Watts (1968) showed that the quantity 

 
efgh�i�j�i�  (2-16) 

is approximately chi-square distributed with ν degrees of freedom given by 
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 k = �-∑ l�Dm�nom = �-lpDV� ∑ l�Dm�nq  (2-17) 

in which Pdg is the periodogram, f is its original spectrum, N is the number of discretized 

points, M is the truncation point defined in Equation 2-14, and {λk} is the lag window 

such as the Parzen window defined in Equation 2-13.  The 100(1-α)% confidence 

interval of the quantity defined in Equation 2-16 can be expressed as 

 Pr tuv,�EwD
� < efgh�i�j�i� < uv,wD� x = 1 − α (2-18) 

The 100(1-α)% confidence limits, lower confidence limit (LCL) and upper confidence 

limit (UCL), for f(ω) at different frequencies ω are then given by 

 z�z = efgh�i�{|,wD
D  (2-19) 

 }�z = efgh�i�{|,qowD
D  (2-20) 

The confidence interval defined by Equations 2-18, 2-19, and 2-20 represents the 

point-estimation for f(ω) at frequency ω. 

2.4.5. Sample Size of Independent Observations 

For a time series that has independent observations, the number of discretized 

points, N, can be treated as the sample size.  However, when the time series 

observations are correlated, it is necessary to obtain the sample size which represents the 

number of independent observations, denoted as n.  Equation 2-21 described in Wei 

(2005) shows an estimator of the series variance.  Equation 2-22 demonstrates the 

estimation from the definition of the variance of series variance for the sample size n 

which represents the number of independent observations. 
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 ����5�
 = �- ~��� + 2 ∑ ;1 − |(|- A �(�-E�(�� � (2-21) 

 

 

����5�
 = ���
� = �- ~��� + 2 ∑ ;1 − |(|- A �(�-E�(�� �

8 = ��
qC~�pDV� ∑ ;�E|�|C A��DCoq�nq �

 (2-22) 

in which C is the auto-covariance function, N is the number of discretized points of the 

time series, and S2 is the variance for the time series. 

For the same time series of the same duration, the sample size or the degrees of 

freedom should be the same or vary within a limited range and should not be affected by 

how the time series is discretized.  For instance, if a buoy records the sea surface 

elevation for an hour, the results presented in every minute have 60 data points; while 

results presented in every 30 seconds have 120 data points.  These two sets of data are 

from the same buoy and cover the same period of time.  In other words, these two sets 

of records represent the same event.  The sample size which is the number of 

independent observations should be the same for these two sets of data in spite of the 

number of their discretization points. 

Since the confidence intervals are evaluated based on the sample size which 

indicates the independent number of observations, the degrees of freedom ν expressed by 

Equation 2-17 needs to be modified and replaced by n obtained from Equation 2-22.  An 

illustrative example is shown below to demonstrate the necessity of modifying the 

degrees of freedom computation shown in Equation 2-17. 

Table 2-2 shows the modal periods and significant wave heights used to simulate 

the time histories for three buoys.  The simulated time histories have the same duration 

of 1500 seconds.  Each of these three time histories is discretized by various time 

increments summarized in Table 2-3.  The discretization time intervals vary from 0.25 
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sec to 1.5 sec, which lead to the number of discretized points between 6000 and 1000 

points.  The degrees of freedom, or sample size, computed by Equation 2-17 is denoted 

as the "Lag window method" since it is based on the lag window and the time history 

discretization points N; while the sample size estimated by Equation 2-22 is denoted as 

the "Proposed method."  The sample sizes estimated by Equation 2-22, the proposed 

method, are different for three different buoys since Equation 2-22 is based on the time 

series variance, the number of discretization points N and the time series auto-covariance 

function.  Although the numbers of discretization points are the same for the three 

buoys, the time series variances and the auto-covariance functions are different.  

Therefore the sample sizes estimated by Equation 2-22, the proposed method, are 

different for the three buoys.  The sample size, or the degrees of freedom, computed by 

Equation 2-17, the lag window method, is the same for three buoys since it depends on 

the number of discretization points and the lag window which are the same for the three 

buoys.  Figure 2-6 shows that the sample size, or the degrees of freedom, obtained from 

Equation 2-17, the lag window method, increases when the number of discretization 

points increases.  On the other hand, the sample size obtained from Equation 2-22, the 

proposed method, varies within a limited rang and does not increase with an increasing 

number of discretization points. 
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Table 2-2. Locations, modal periods and significant wave heights of three buoys used to 

simulate the time histories. 

Buoy x-coordinate y-coordinate Modal period Significant wave height 

1 0 m 800 m 7 sec 2.0 m 

2 350 m 500 m 6 sec 1.0 m 

3 150 m 0 m 8 sec 1.5 m 

 

 

Figure 2-6. Sample size (or degrees of freedom) estimations using lag window and 

proposed methods. 
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Table 2-3. Sample size estimations using the lag window method, the proposed method and the auto-correlation function. 

Time history duration = 1500 sec Sample size of independent observations (n) 

Time 

increment 

Number of 

discretization points (N) 

Lag window method Proposed method Auto-correlation function 

Buoys 1, 2 and 3 Buoy 1 Buoy 2 Buoy 3 Buoy 1 Buoy 2 Buoy 3 

0.25 sec 6000 202 225 232 189 300 357 263 

0.5 sec 3000 101 225 232 189 300 357 263 

1.0 sec 1500 51 225 232 189 300 357 259 

1.5 sec 1000 34 222 228 191 288 349 250 
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Table 2-3 also provides the sample size estimations using the auto-correlation 

function.  As demonstrated in Section 2.3, the auto-covariance function represents the 

degree of association between data defined in Equation 2-1.  The auto-correlation 

defined in Equation 2-5 is the auto-covariance function normalized by the series variance.  

When the auto-correlation function approaches zero, the data estimated are not correlated 

with each other.  That is, the observations become independent at which the 

auto-correlation function approaches zero.  Figure 2-7, Figure 2-8 and Figure 2-9 show 

the first 10 seconds time lags of the auto-correlation functions for the buoys 1, 2 and 3, 

respectively, defined in Table 2-2.  The case of time increment of 0.25 sec is shown, 

which is the case of 6000 discretization points.  The sample sizes summarized in Table 

2-3 are evaluated by indicating the time lag of the second zero-crossing point of the 

auto-correlation function.  For example, if the second zero-crossing of the 

auto-correlation function is at 5 seconds, the sample size is estimated by dividing the total 

duration 1500 seconds by 5 seconds, which leads to the a sample size of 300.  Table 2-3 

shows the comparison of sample size estimations using the lag window method defined 

in Equation 2-17, the proposed method defined in Equation 2-22 and the auto-correlation 

function.  The comparison includes cases of various discretization points of 1000, 1500, 

3000 and 6000 which are determined by dividing the total duration 1500 sec by the time 

increments of 1.5, 1.0, 0.5 and 0.25 sec, respectively.  The results evaluated using the 

auto-correlation second zero-crossing locations do not depend on the number of the time 

series discretization points; however, there are differences between the estimations using 

the proposed method based on Equation 2-22 and the estimations using the 

auto-correlation function. 
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Figure 2-7. Auto-correlation function for buoy 1 at the first 10 seconds time lag. 

 

 

Figure 2-8. Auto-correlation function for buoy 2 at the first 10 seconds time lag. 
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Figure 2-9. Auto-correlation function for buoy 3 at the first 10 seconds time lag. 

 

Before getting into the discussion of the different sample size estimations results 

obtained by the proposed method and the auto-correlation function, it should be noted 

that there is the other method similar to Equation 2-22 to estimate the sample size of 

independent observations.  While Equation 2-22 estimates the sample size of 

independent observations from the variance of the time series variance, the properties of 

the variance of the auto-correlation function can also be utilized for the sample size 

estimation. 

An auto-correlation function {ρk} is defined in Equation 2-5.  For a random 

process with independent observations, the auto-correlation function value is one at the 

origin and zero for all non-zero values of lag k expressed as follows: 

 �( = �1, Z = 00, Z ≠ 0� (2-23) 

With a large number of observations, N, the variance of the time series auto-correlation 

function for a random process with independent observations is approximately distributed 

-1

-0.5

0

0.5

1

-10 -8 -6 -4 -2 0 2 4 6 8 10A
u
to

-c
o
rr

el
at

io
n

 f
u
n

ct
io

n

Time lag (sec)

Buoy 3 _ duration = 1500 sec, ∆t = 0.25 sec



 

33 
 

with a zero mean and variance 1/N, i.e. N(0, 1/N).  If the observations are correlated, the 

following expression can be used to determine the sample size n of independent 

observations: 

 �����
 = �- ~��� + 2 ∑ ;1 − |(|- A �(�-E�(�� � ≅ �� (2-24) 

in which ρk is the auto-correlation function at lag k and ρ0 is that at the origin.  Based on 

Equation 2-24, the sample size of independent observations, n, can be estimated as 

follows: 

 8 = -~�pDV� ∑ ;�E|�|C A��DCoq�nq � (2-25) 

It should be noted that Equations 2-22 and 2-25 lead to the same estimation results for the 

sample size of independent observations n.  Therefore, the "Proposed method" can be 

referred to either Equation 2-22 or Equation 2-25.Background Problems 

Estimations for the sample size of independent observations provided a guideline 

of the number of observations required to obtain independent and representative data.  

However, it would be easier to understand if the sampling recommendation is given in a 

way such as collecting one sample every second.  Equation 2-26 provides the required 

interval between samples to obtain independent data.  The interval between samples is 

determined by dividing the number of discretization points by the sample size of 

independent observations and multiplying by the discretization increment as the 

following form: 

 �8	�����	1�	���8	5��J��5 = -� Δ	 (2-26) 
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The sample size of independent observations can be estimated by either Equation 2-22 or 

Equation 2-25. 

Since the sample size of independent observations differs for different buoys as 

shown in Table 2-3, it would be useful to present the interval between samples in terms 

of the modal period Tm of the buoy itself.  Hence, Equation 2-26 can be re-written as 

follows: 

 �8	�����	1�	���8	5��J��5 = �C��0
#� � ∗ &� (2-27) 

Equation 2-27 determines the interval between samples based on the modal period Tm of 

the series analyzed, which provides better demonstration on how to sample in order to 

obtain independent observations.  The intervals between samples for the three buoys 

defined in Table 2-2 are estimated and the results are summarized in Table 2-4.  

According to the sample size shown in Table 2-3 estimated using the lag window method 

defined in Equation 2-17, the proposed method defined in Equations 2-22 and 2-25 and 

the auto-correlation second zero-crossing points, the interval between samples can be 

computed by Equation 2-26.  For example, the estimated sample size of independent 

observations n is 225 for buoy 1 with time series increment 0.25 sec and the number of 

discretization points 6000, therefore, the interval between sample is calculated as (N = 

6000) * (∆t = 0.25sec) / (n = 225) = 6.7sec.  Table 2-4 also provides the intervals 

between samples as ratios of the modal period defined in Equation 2-27.  Considering 

buoy 1 for example, the interval between samples calculated as 6.7 sec can be presented 

by 6.7sec / (Tm = 7.0sec) * Tm = 0.95Tm.  The intervals between samples in the form of 
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Equation 2-27 are shown in parentheses.  The results show that the intervals between 

samples are approximately 1.0 Tm. 

As mentioned previously, the sample size of independent observations n 

estimated by the proposed method, Equations 2-22 and 2-25, and by the auto-correlation 

function second zero-crossing points show different results.  For a random process, the 

auto-correlation function would stay within its standard deviation range during the 

beginning time lags.  The auto-correlation functions for buoy 1 of various intervals 

between samples are shown in Figure 2-10 through Figure 2-17.  The auto-correlation 

standard deviation is shown in dashed lines and is denoted as STD(corr).  Based on 

Table 2-2, the modal period for buoy 1 is 7 sec.  The auto-correlation function fluctuates 

exceeding its standard deviation for the case of the interval between samples as 6 sec 

shown in Figure 2-10.  The cases of the intervals between samples as 6.5 sec, 7 sec and 

7.5 sec show that the auto-correlation functions stay within the range of its standard 

deviation.  As the interval between samples increases, such as the 8 sec, 8.5 sec and 9 

sec cases, the auto-correlation functions fluctuate exceeding its standard deviation again. 

According to Table 2-4, the interval between samples is approximately the modal 

period for obtaining independent samples.  The auto-correlation functions shown from 

Figure 2-10 through Figure 2-17 verify the estimations based on the interval between 

samples defined in Equations 2-26 and 2-27.  In other words, the proposed method for 

estimating the sample size of independent observations determined in Equations 2-22 and 

2-25 is verified. 
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Table 2-4. Estimations for interval between samples using the lag window method, the proposed method, and the auto-correlation 

function. 

Time history duration = 1500 sec Interval between samples (sec) 

Time 

increment 

Number of 

discretization points (N) 

Lag window method Proposed method Auto-correlation function 

Buoys 1, 2 and 3 Buoy 1 Buoy 2 Buoy 3 Buoy 1 Buoy 2 Buoy 3 

0.25 sec 6000 7 
6.7 

(0.95 Tm) 

6.4 

(1.07 Tm) 

7.9 

(0.99 Tm) 
5.0 4.2 5.7 

0.5 sec 3000 15 
6.7 

(0.95 Tm) 

6.4 

(1.07 Tm) 

7.9 

(0.99 Tm) 
5.0 4.2 5.7 

1.0 sec 1500 29 
6.7 

(0.95 Tm) 

6.4 

(1.07 Tm) 

7.9 

(0.99 Tm) 
5.0 4.3 5.8 

1.5 sec 1000 44 
6.8 

(0.96 Tm) 

6.5 

(1.09 Tm) 

7.8 

(0.98 Tm) 
5.2 4.3 6.0 
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Figure 2-10. Auto-correlation function of buoy 1 for the interval between samples of 6 

sec. 

 

 

Figure 2-11. Auto-correlation function of buoy 1 for the interval between samples of 6.5 

sec. 
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Figure 2-12. Auto-correlation function of buoy 1 for the interval between samples of 7 

sec. 

 

 

Figure 2-13. Auto-correlation function of buoy 1 for the interval between samples of 7.5 

sec. 
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Figure 2-14. Auto-correlation function of buoy 1 for the interval between samples of 8 

sec. 

 

 

Figure 2-15. Auto-correlation function of buoy 1 for the interval between samples of 8.5 

sec. 
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Figure 2-16. Auto-correlation function of buoy 1 for the interval between samples of 9 

sec. 

 

 

Figure 2-17. Auto-correlation function of buoy 1 for the interval between samples of 9.5 

sec. 
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2.5. Spatial Data Analysis 

2.5.1. Semivariogram 

Recalling the auto-covariance function demonstrated in Section 2.3, the 

auto-covariance function is the means to measure or represent the degree of association 

between values of the random variable x(t) at times differing by a specific interval τ.  In 

the stationary random field, the degree of association between locations in the field can 

be demonstrated in the same way as the auto-covariance function defined in Equation 2-1 

except the times denoted as ti are now locations denoted as si.  The distance interval h 

separating the two locations replaces the time interval τ.  While the auto-covariance 

function is the term used in the time field, it is sometimes called the covariogram in the 

geographical field.  The correlation between two points separated by a distance h is 

called the correlogram while it has the name as auto-correlation function in the time field.  

The variance of the difference between two locations s1 and s2 is called a 

variogram and can be defined as follows: 

 2��5�, 5�� = ������5�� − ��5��
 = �+M��5�� − ��5��N − M��5�� − ��5��N,�
(2-28) 

The function γ(s1, s2) is called a semivariogram and is closely related to the covariogram 

(or auto-covariance function).  For a stationary field, the variogram between two points 

separated by a distance h can be written as follows: 

 2��5, 5 + ℎ� = ��ℎ� = ������5� − ��5 + ℎ�
 = ����5� − ��5 + ℎ�
�  

 = ������5�
 + ������5 + ℎ�
 − 234����5�, ��5 + ℎ�
 (2-29) 
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Based on the stationary property, the variance does not depend on the location s, hence 

the variances at s and at s+h are the same.  Equation 2-29 can be re-written as the 

following form: 

 ��ℎ� = ��0� + ��0� − 2��ℎ� = 2���0� − ��ℎ�
 (2-30) 

By dividing Equation 2-30 by two, the semivariogram is defined as follows: 

 
�� ��ℎ� = ��0� − ��ℎ� (2-31) 

For a given random process such as wave surface elevation shown in Figure 2-18, 

the covariogram (or the auto-covariance function) is presented in Figure 2-19.  The 

semivariogram values at different separating distances can be estimated using Equation 

2-28 and is shown in Figure 2-20.  According Equation 2-31, the semivariogram can 

also be estimated from the covariogram (or auto-covariance function).  Figure 2-21 

shows the comparison of the semivariograms estimated from the given random process 

using Equation 2-28 and from the covariogram (or auto-covariance function) of this 

process using Equation 2-31.  The comparison shows that these two semivariograms 

agree well in the beginning.  When the distance increases, the one estimated from the 

random process using Equation 2-28 fluctuates while the one estimated from the 

covariogram using Equation 2-31 approaches the variance.  This is because that the 

covariogram values tend to approach zero when the distance increases since the degree of 

association between the estimated two points reduces.  Hence, the semivariogram 

estimated from the covariogram would approach the variance of the random process with 

the increase in distance. 
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Figure 2-18. A random process of significant wave height. 

 

 

Figure 2-19. Covariogram (or auto-covariance function) for the random process shown in 

Figure 2-18. 
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Figure 2-20. Semivariogram for the random process shown in Figure 2-18. 

 

 

Figure 2-21. Semivariograms estimated from the given data using Equation 2-28 and 

estimated from the covariogram (or auto-covariance function) of the data using Equation 

2-31. 
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at this limit is called the sill (γr), and the distance of reaching this limit is called the radius 

of influence (r).  Similar to the curve fitting for a set of data, there are some 

semivariogram models, such as linear model, exponential model, spherical model, etc., to 

represent the sample estimate.  The spherical model is often used and can be expressed 

as follows (described by McCuen and Snyder, 1986): 

 
��ℎ� = ��� �a�� − ;��Aa�		 , ℎ ≤ �
��ℎ� = �� 																								, ℎ > � (2-32) 

in which γr is the sill, r is the radius of influence and h is the distance.  Figure 2-22 is an 

illustrative spherical model with the sill (γr) of 0.1 and the radius of influence (r) of 650 

m.  If the type of model, the sill and the radius of influence are known, a semivariogram 

can be determined and spatial predictions can be performed. 

According to Equation 2-1, when the distance h approaches infinity, the 

covariogram (or auto-covariance function) tends to approach zero.  Given a random 

process, the semivariogram can be estimated based on the covariogram (or 

auto-covariance function) by using Equation 2-31.  Therefore, the semivariogram value 

approaches the series variance when the distance h approaches infinity, i.e. γ(h→∞) = 

C(0).  In other words, the sill value γr is the variance of the process, i.e. γr = C(0).  By 

the fact that the sill value γr approaches the variance of the random process, the radius of 

influence r can be determined.  Figure 2-23 shows an illustrative example to obtain the 

radius of influence r from the series covariogram and the series variance.  The radius of 

influence can be determined by the steps as follows: (1) indicate the series variance on 

the semivariogram value axis; (2) draw a horizontal line from the semivariogram axis 

which indicates the series variance value to meet the semivariogram curve; (3) draw a 
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vertical line from the point at which the semivariogram curve was met to the distance 

axis; (4) locate the point on the distance axis which meets the vertical line coming down 

from the semivariogram curve as the radius of influence. 

 

 

Figure 2-22. Illustration of the sill γr and the radius of influence r for a spherical 

semivariogram model. 
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Figure 2-23. Determination for sill and radius of influence from the covariogram and the 

variance. 

 

2.5.2. Kriging 
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in which m is the number of observations the weights applied on.  The estimation by 

Kriging technique has the following form: 

 �� = ∑ �Z* ∗ �*�*��  (2-33) 

in which �� is the variable at the unobserved location sA, yi is the variable value at 

location si and wki is the weight applied on the variable value at location si.  The weights 

wki are unknown and are estimated as follows: 

 

��
 
�¡ ¢ + ∑ M�Z* ∗ ��5�, 5* 	�N�*�� = ��5�, 5£	�¢ + ∑ M�Z* ∗ ��5�, 5* 	�N�*�� = ��5�, 5£	�⋮¢ + ∑ M�Z* ∗ ��5� , 5* 	�N�*�� = ��5� , 5£	�∑ �Z*�*�� = 1

c (2-34) 

in which α is a constant and γ is the semivariogram values demonstrated in Section 2.5.1.  

Equation 2-34 has a set of m+1 equations to solve m+1 unknowns which are wk1, wk2, ..., 

wkm and α. 

To illustrate how the Kriging estimation works, consider a random field shown in 

Figure 2-24 which has the sill (γr) of 0.0303 and the radius of influence (r) of 700 m as 

shown in Figure 2-25.  Assuming that the spherical semivariogram model represents the 

data, the semivariogram values can be estimated by: 

 
��ℎ� = �.�a�a� � a�¦�� − ; �¦��Aa�		 , ℎ ≤ �
��ℎ� = 0.0303																										, ℎ > �  (2-35) 

If the significant wave heights are known at buoys 1, 2, and 3 shown in Figure 

2-24, the significant wave height at point 1 can be interpolated using Equations 2-33, 

2-34 and 2-35.  The coordinates and significant wave height values are summarized in 

Table 2-5.  Distances between buoys themselves and between buoys and the estimated 

point are shown in Table 2-6.  Semivariogram values computed using Equation 2-35 and 
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the distance provided in Table 2-6 are summarized in Table 2-7 which has the 

information needed to estimate the unknowns in the Kriging estimation process, i.e. 

weights wki and the constant α in Equation 2-34.  In this example, there are four 

unknowns, wk1, wk2, wk3 and α.  Using the semivariogram values shown in Table 2-7, 

the four unknowns in Equation 2-34 are solved as follows: wk1 = 0.3136, wk2 = 0.5415, 

wk3 = 0.1450 and α = 0.0044.  The interpolated significant wave height at point 1 can be 

computed using Equation 2-33 as: 

 ��<¨*�0� = 0.3136 ∗ 3.13 + 0.5415 ∗ 3.20 + 0.1450 ∗ 2.42 = 3.06 (2-36) 

 

 

Figure 2-24. Studied random field and locations for estimation. 
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Figure 2-25. Semivariogram, sill and radius of influence of the studied random field. 

 

Table 2-5. Coordinates and significant wave heights for locations used in estimation. 

Location X (m) Y (m) Hs (m) 

Point 1 100 600 unknown 

Buoy 1 100 150 3.13 

Buoy 2 100 900 3.20 

Buoy 3 950 450 2.42 

 

Table 2-6. Distance between locations used in estimation. 

Distance (m) Buoy 1 Buoy 2 Buoy 3 

Point 1 450 300 863 

Buoy 1 0 750 901 

Buoy 2  0 962 

Buoy 3   0 
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Table 2-7. Semivariogram values for locations used in estimation. 

Semivariogram Buoy 1 Buoy 2 Buoy 3 

Point 1 0.0252 0.0183 0.0303 

Buoy 1 0 0.0303 0.0303 

Buoy 2  0 0.0303 

Buoy 3   0 

 

2.5.3. Sample Size of Independent Observations 

Considering a set of significant wave height data collected at multiple locations 

evenly separated along a line, the range for the interval between samples could be 

determined by Equations 2-26 and 2-27 based on the sample sizes of independent 

observations estimated using Equations 2-22 and 2-25 that demonstrated in Section 2.4.5. 

Figure 2-18 shows a random process of significant wave heights collected at 400 

locations evenly separated by 3 m along a line.  The number of discretization points N is 

400 and the distance interval ∆h is 3 m.  The sample size for independent observations 

is estimated as 25 based on Equations 2-22 and 2-25.  The interval between samples can 

be computed from the estimated sample size of independent observations using Equations 

2-26 and 2-27 except the time increment ∆t is now replaced by the distance increment 

∆h.  The interval between samples based on the sample size of independent observations 

estimated is (N = 400) * (∆h = 3m) / (n = 25) = 48 m.  The auto-correlation function is 

shown in Figure 2-26 with its standard deviation range shown in dashed line.  As 

mentioned in Section 2.4.5, the auto-correlation values exceeding its standard deviation 

are considered significantly different from zero.  The auto-correlation function shown in 

Figure 2-26 reaches into its standard deviation range at distance lag of approximately 48 
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m.  This observation agrees with the estimation of the interval between samples for 

obtaining independent data using Equations 2-22, 2-25 and 2-26, which is 48 m as well. 

Figure 2-27 through Figure 2-30 show the auto-correlation functions of several 

different intervals between samples in the range of 24 m to 69 m.  The distance lag is 

shown up to 120 m.  The auto-correlation function tends to stay within its standard 

deviation range when the interval between samples approaches 48 m.  When the interval 

between samples passes 48 m, the auto-correlation function fluctuates exceeding the 

standard deviation range again. 

 

 

Figure 2-26. Auto-correlation function for the random process shown in Figure 2-18. 
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Figure 2-27. Auto-correlation function for the case of interval between samples = 24 m. 

 

 

Figure 2-28. Auto-correlation function for the case of interval between samples = 30 m. 
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Figure 2-29. Auto-correlation function for the case of interval between samples = 48 m. 

 

 

Figure 2-30. Auto-correlation function for the case of interval between samples = 69 m. 
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3. Methodology for Characterizing Sea Conditions 

This chapter provides the statistical characterization procedure for predicting sea 

conditions in Section 3.1 and the numerical wave model SWAN for verifying the spatial 

data interpolation in Section 3.2.  The numerical wave model SWAN is utilized to verify 

the spatial interpolation as well as the sea-state statistical characterization using the 

methods demonstrated in Section 3.1.  Numerical examples will be provided in Chapter 

4 for illustration and verification. 

3.1. Statistical Characterization for Predicting Sea-state Condition 

3.1.1. Overview 

This section provides the statistical characterization procedure as a flowchart 

shown in Figure 3-1 for characterizing sea-state conditions using given buoy vertical 

elevation time histories and predicting sea-state conditions of unobserved points from 

data of observed buoys.  The sea-state prediction starts with obtaining buoy vertical 

elevation time histories at points of interest followed by identifying key parameters of 

interest for analysis.  In general, wave modal period and significant wave height are the 

two key parameters to characterize the sea condition.  According to Chapter 2, the 

sample size of independent observations can be determined and the peroidograms can be 

constructed from the time histories.  Upon obtaining the information needed, Sections 

3.1.2 through 3.1.7 provide the procedure and demonstrations for the parameter 

estimations of the buoy locations.  The unobserved locations within buoys range could 
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be interpolated by the procedure demonstrated in Section 3.1.8 and the parameters can be 

estimated by the same procedure applied on the buoys. 

 

 

Figure 3-1. Statistical characterization and prediction for sea-state conditions of observed 

and unobserved locations. 
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3.1.2. Sea-state Parameters 

Sea-state prediction in this study utilizes the sea-state parameter estimates.  

Two-parameter wave model is chosen to represent the sea condition.  The two 

parameters are the wave modal period and the significant wave height.  The wave modal 

period Tm can be estimated from the time history using the zero-upcrossing period 

expressed as follows (described by Hughes 1988): 

 &�0 = �1.41&«1.28&« c 									for	Bretschneider	spectrumfor	Jonswap	spectrum  (3-1) 

in which Tmt is the modal period estimated from the time history and Tz is the 

zero-upcrossing period.  The other key parameter, the significant wave height Hs, is 

related to the variance of the time history and is expressed as follows (described by 

Hughes 1988): 

 ¹̧0 = 4	ºvariance	of	time	history (3-2) 

in which Hst is the significant wave height estimated from the time history. 

The two parameters, modal period and significant wave height, can be estimated 

in the time domain from the time history and in the frequency domain from the wave 

spectrum.  While using Equations 3-1 and 3-2 to estimate these two parameters in the 

time domain, the frequency at which the maximum spectrum magnitude locates 

represents the inverse value of the modal frequency, i.e. 2π / Tm, and the area under the 

spectrum curve represents the variance of the time history which is the information 

needed to compute the significant wave height using Equation 3-2. 
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3.1.3. Adjusted Periodogram 

In order to utilize the periodogram introduced in Chapter 2 for sea-state 

characterization, some adjustments on the periodogram are needed.  Based on the 

parameters estimated from the buoy time history in Equations 3-1 and 3-2, the 

periodogram constructed from the time history needs to be shifted to match the peak at 

the estimated modal frequency 2π / Tmt in which Tmt is calculated by Equation 3-1.  Then 

the periodogram needs to adjust the magnitude to match its unit the same as that of the 

wave spectrum and to have the area under the periodogram curve as the variance of the 

time history.  The wave spectrum goodness-of-fit can be performed once the 

periodogram is adjusted.  Since the wave spectra used to fit the periodogram are 

generated based on the estimated parameters using Equations 3-1 and 3-2, the peaks are 

at the modal frequency 2π / Tmt.  Besides, it wouldn't be possible to compare the 

periodograms and the wave spectra if they have different units.  An illustrative figure of 

the periodogram shifting is shown in Figure 3-2. 
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Figure 3-2.Periodogram shifts to match the peak at modal frequency 2π / Tmt. 

 

3.1.4. Wave Spectrum Goodness-of-fit 

The wave spectrum goodness-of-fit is performed by fitting the periodogram 

constructed from the buoy time history using multiple wave spectra.  Figure 3-3 shows 

an illustrative plot of wave spectrum goodness-of-fit.  Two-parameter wave spectra such 

as the Bretschneider spectrum and the Jonswap spectrum are utilized to fit the 

periodogram.  The wave spectra are generated using the two parameters, the wave 

modal period and the significant wave height, estimated from the given buoy time history 

based on Equations 3-1and 3-2.  Figure 3-3 shows that Bretschneider spectrum is a 

better fit for the periodogram than the Jonswap spectrum in terms of the spectrum shape.  

In the quantitative manner, the energy estimated from the Bretschneider spectrum, which 

is the area under the spectrum curve, is closer to the energy estimated from the 
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periodogram compared with that estimated from the Jonswap spectrum.  Therefore, the 

wave spectrum goodness-of-fit shows that the periodogram presented in Figure 3-3 is a 

Bretschneider spectrum type.  This determination of spectrum type will be used to 

generate spectra for estimating the confidence intervals of the parameters of interest in 

the sea-state characterization procedure. 

 

 

Figure 3-3. Wave spectrum goodness-of-fit using Bretschneider and Jonswap spectra. 
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from the buoy wave surface elevation time histories are used to illustrate the sea wave 

characterization in the spectral domains.  Statistical hypothesis testing is performed to 

describe the sea wave characteristics, to demonstrate the sea wave spectrum 

goodness-of-fit test and to interpolate the buoy data to predict the sea-state characteristics 

at locations of interest.  The hypotheses are defined as follows.  The null hypothesis, 

denoted by H0, represents the equality of two spectra f1(ω) and f2(ω); while the alternative 

hypothesis, denoted by H1, indicates that a significant difference between two spectra 

exists.  The hypotheses can be expressed as: 

 �̧:	¾��6� = ¾��6� (3-3) 

 �̧:	¾��6� ≠ ¾��6� (3-4) 

As described previously, the quantity νPdg(ω) / f(ω) follows a chi-square 

distribution with ν degrees of freedom.  Consider a statistic X given by the following 

ratio: 

 ¿* = eqfghq�iÀ�jq�iÀ� / eDfghD�iÀ�jD�iÀ� 			 , 7 = 1,2, … , ` (3-5) 

in which M is the number of auto-covariance coefficients considered.  It is assumed that 

the two time history data sets have the same truncation points M and lag window {λk}.  

The degrees of freedom ν1 and ν2 are calculated using Equation 2-22 which replaces 

Equation 2-17 demonstrated in Chapter 2. 

The random quantity of Equation 3-5 is distributed according to F-distribution 

with ν1 and ν2 degrees of freedom, denoted as F(ν1, ν2).  The mean and variance of 

F-distribution with ν1 and ν2 degrees of freedom, denoted as Fν1, ν2, are: 

 ��Áeq	,eD
 = eDeDE� 		,			k� > 2 (3-6) 
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 ����Áeq	,eD
 = �eDD�eqVeDE��eq�eDE��D�eDEÂ� 		,			k� > 4 (3-7) 

In the case when the null hypothesis H0: f1(ω) = f2(ω) is true, Xi does not depend on the 

underlying spectra and can be expressed in the following form: 

 ¿* = fghq�iÀ�fghD�iÀ� 			,			7 = 1,2, … , `			,			if	 �̧	is	true (3-8) 

The following statistic is suggested to test the null hypothesis H0: f1(ω) = f2(ω) with the 

alternative hypothesis H1: f1(ω) ≠ f2(ω) as: 

 Ã = ∑ ¿*]*��  (3-9) 

The distribution of the quantity Q in Equation 3-9 is the M-fold convolution of 

F-distribution with ν1 and ν2 degrees of freedom.  Since the quantity Xi in Equation 3-8 

are independent and identically distributed, according to the central limit theorem, Q for a 

large sample size is normally distributed with the mean and variance as: 

 ��Ã
 = ` ; eDeDE�A		,			k� > 2 (3-10) 

 ����Ã
 = ` ; �eDD�eqVeDE��eq�eDE��D�eDEÂ�A		,			k� > 4 (3-11) 

Note that M is the number of auto-covariance coefficients considered, or is called the 

truncation point. 

3.1.6. Confidence Interval Estimation using Hypothesis Testing 

Since the quantity Q expressed in Equation 3-9 is normally distributed with the 

mean and variance expressed in Equations 3-10 and 3-11, the 100(1-α)% confidence 

interval can be expressed as follows: 
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 Pr Ä ��Ã
 + º����Ã
 ∗ ΦE� ;Æ�A < Ã
< ��Ã
 + º����Ã
 ∗ ΦE��1 − ¢/2�Ç = 1 − α (3-12) 

The 100(1-α)% confidence limits, lower confidence limit (LCL) and upper confidence 

limit (UCL), for Q are: 

 z�z = ��Ã
 + º����Ã
 ∗ ΦE� ;Æ�A  (3-13) 

 }�z = ��Ã
 + º����Ã
 ∗ ΦE� ;1 − Æ�A (3-14) 

Figure 3-4 shows the estimation of the confidence interval for the quantity Q.  

The quantities Q within the confidence limits indicate the range of the estimated 

parameter of interest that satisfies the null hypothesis defined in Equation 3-3.  Hence, 

the confidence interval of the estimated parameter of interest is determined. 

 

 

Figure 3-4. Illustration of confidence interval estimation for parameter of interest. 
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3.1.7. Probability Distribution of the Testing Statistic 

The testing statistic Q demonstrated in Section 3.1.5 determines the confidence 

interval.  This statistic is assumed to be normally distributed according to the central 

limit theorem.  To verify that the assumption is correct, the histogram of one thousand 

quantities of Q is shown in Figure 3-5.  Figure 3-5 shows a bell shape histogram and is 

normally distributed based on the goodness-of-fit test using chi-square critical value.  

Therefore, the assumption that the testing statistic Q defined in Equation 3-9 is normally 

distributed is verified and the lower and upper limits for the confidence interval can be 

determined by Equations 3-13 and 3-14. 

 

 

Figure 3-5. Histogram and distribution for quantity Q defined in Equation 3-9. 
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3.1.8. Spatial Analysis and Data Interpolation 

Spatial analysis or spatial statistics is to use the geographic and/or geometric 

properties for analysis such as interpolation, regression, auto-correlation, etc.  The 

spatial interpolation such as the inverse weight factor is to estimate variables at locations 

unobserved by applying weights on the properties at observed locations.  This section 

introduces the inverse distance weight factor which is one of the spatial interpolation 

methods to estimate the sea-state parameters at points of interest within the buoy range 

from the obtained sea condition at buoy locations. 

Inverse distance weight factors are defined inversely proportional to the distance 

between the points of interest, or the unobserved locations, and the surrounding buoys, or 

the observed locations.  For point i, the weight factor, denoted as wbij, applied to the 

data or results of buoy j is defined as follows: 

 �1*È = �/ÉÊË∑ �/ÉÊËË 				for	)*È ≠ 0 (3-15) 

in which dij is the distance between point i and buoy j defined as follows: 

 )*È = ÌMJ	�* − Í�ÈN�+MJ	�* − Í�ÈN�
 (3-16) 

where ptxi and ptyi are the coordinates of point i, and Bxj and Byj are the coordinates of 

buoy j.  For each point i, the summation of the weight factors applied on observed buoy 

points j is one, i.e.: 

 ∑ �1*ÈÎ = 1 (3-17) 

As the point of interest approaches one of the buoys, the weight factor applying on that 

buoy approaches one, and the weight factors applying on the other buoys approach zero. 
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The periodogram values Pdg(ωi) defined previously in Section 2.4.3 represent the 

contribution to the wave variance and energy in the range of ωi ± δω / 2, in which δω is 

the frequency interval.  The periodogram of unobserved point i, denoted as Pdgi, is 

estimated as the summation of the periodogram Pdgj, multiplied by the weight factor wbij 

of each surrounding buoy j accordingly expressed as follows: 

 K)L* = ∑ M�1*È ∗ K)LÈNÎ  (3-18) 

This data interpolation process is a one-dimensional linear estimation.  The 

inverse distance is taken to power of one.  In Chapter 4, the data interpolation using 

distance square, and the interpolation in two-dimensional aspect will be discussed and 

summarized in the example using SWAN generated data. 

Based on the estimated periodogram demonstrated in Equation 3-18, the sea-state 

parameters, the modal period Tm and the significant wave height Hs, of the point of 

interest i are estimated by the principle of lease squares as shown in Figure 3-6.  The 

modal period and the significant wave height of the point of interest i are estimated in the 

range determined by the minimum and maximum modal period Tm and the significant 

wave height Hs of the buoys.  As shown in Figure 3-6, Tmin and Tmax determine the 

modal period range for estimating the unobserved point of interest.  Tmin and Tmax are the 

minimum and maximum modal period of the buoys, respectively.  Similarly, the same 

definition applies on the significant wave height estimation range.  By discretizing the 

estimation ranges, the matrix-like form such as Figure 3-6 is determined.  Note that the 

discretization interval is subjective.  Large intervals may not be able to provide accurate 

estimations.  For each pair of the modal period Tq and the significant wave height Hsp, 

the summation of the squares of the errors between the adjusted periodgram of the point 



 

67 
 

minimum error 

estimated from the buoys, denoted as Pdgi, and the adjusted periodograms constructed 

from this pair of sea-state parameters are calculated and expressed as follows: 

 ���4�<Ï = ∑�K)L* − K)L<Ï��    (3-19) 

The estimation according to Figure 3-6 and Equation 3-19 is performed using various 

wave spectrum types, such as the Bretschneider and the Jonswap spectra.  The fitted 

sea-state parameter set and the fitted sea spectrum type are defined at which the minimum 

summation of the squares of the errors defined in Equation 3-19 is produced. 

 

 
T1 = Tmin T2 .. Tq = Tm .. Tk = Tmax 

Hs1 = Hsmin error11 error12 
  

error1k 

Hs2 error21 
     

: 
  

 

 

Hsp = Hs  

  
errorpq 

  
: 

      
Hsn = Hsmax errorn1 

    
errornk 

Figure 3-6. The best fit of sea-state parameters set defined by lease squares principle. 

 

3.1.9. Comparison of Several Approaches for Modal Period Estimation 

The modal period Tm, or the spectral peak frequency 2π / Tm, is estimated in this 

study from the time history by using zero-upcrossing period expressed as Equation 3-1.  

Some other approaches to estimate the spectral peak frequency are available, such as the 

simple maximum method, the Delft method and the weighted mean method.  These 
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methods estimate the spectral peak frequency in the spectral domains.  To assess the 

reasonableness of estimated modal period in this study, a comparison of estimated modal 

periods using Equation 3-1, the simple maximum method, the Delft method and the 

weighted mean method is presented in Table 3-1.  The original modal periods Tm used to 

simulate the time histories for the three buoys are also shown in Table 3-1 for reference 

and for computing the estimation relative errors. 

 

Table 3-1. Several approaches to estimate modal periods of buoys 1, 2, and 3 with 

relative errors to the original modal periods shown in parenthesis. 

Estimation method for the modal period Tm 

Buoy 

Original Equation 3-1 
Simple 

maximum 
Delft method Weighted mean 

Tm Tm = 1.41 Tz Tm = 2F / fp
max Tm = 2F / fp

D60 Tm = 2F / fp
M4 

1 7 sec 
7.14 sec 

(2.04 %) 

7.21 sec 

(3.06 %) 

7.10 sec 

(1.42 %) 

6.79 sec 

(-2.95 %) 

2 6 sec 
6.34 sec 

(5.74 %) 

6.31 sec 

(5.21 %) 

6.23 sec 

(3.91 %) 

6.09 sec 

(1.57 %) 

3 8 sec 
7.95 sec 

(-0.57 %) 

7.77 sec 

(-2.88 %) 

7.66 sec 

(-4.23 %) 

7.46 sec 

(-0.84 %) 

 

The simple maximum method is a straightforward method which determines the 

spectral peak frequency by simply selecting the frequency associated with the maximum 

spectral ordinate, denoted as fp
max (IAHR 1989; Young 1995).  The Delft method for 

determining the spectral peak frequency is to find the centroid of the spectral band 

between the lower and upper spectral densities which is the 80% or 60% of the maximum 
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spectral ordinate.  The lower and upper frequency thresholds are denoted as f1 and f2 and 

the estimated spectral peak frequency is expressed as (IAHR, 1989; Young, 1995): 

 ¾<Ð� = Ñ jÒ�j�gjÓDÓqÑ Ò�j�gjÓDÓq
 (3-20) 

in which m is 80 or 60 meaning that 80% or 60% maximum spectral ordinate is used for 

the estimation.  Young (1995) indicated that fp
D60 is a better estimation than fp

D80, which 

also observed in this study.  Therefore, the estimation results of fp
D60 are presented in 

Table 3-1.  The weighted mean method estimates the spectral peak frequency by 

applying a weighting exponent on the spectral densities and evaluating the spectral peak 

frequency as follows (Sobey and Young, 1986; Young 1995): 

 ¾<]Ï = Ñ jÒÔ�j�gjÑ ÒÔ�j�gj  (3-21) 

This approach uses the entire spectrum instead of a portion between frequency thresholds 

to estimate the spectral peak frequency.  Several choices of weighting exponent q have 

been suggested.  The choice of q = 4 giving the spectral peak frequency as fp
M4 was 

recommended by Young(1995) and is included in the comparison in Table 3-1.  Note 

that the estimation comparison shown in Table 3-1 uses adjusted periodograms which 

described in details in Section 2.4.3.  Comparisons show that these methods produce 

estimations within 5.7% relative errors of the original modal periods used to simulate the 

time histories.  The approach used in this study produced the best estimation for buoy 3 

while the Delft method shows the best estimation on buoy 1 and the weighted mean 

method shows the best results on buoy 2.  Overall, it is reasonable to use Equation 3-1 

for the modal period estimation since the estimation relative errors are not significant, i.e. 

within 5.7 %. 



 

70 
 

3.2. Verification for Spatial Data Interpolation using Numerical Wave 

Model SWAN (Simulating WAves Nearshore)  

In order to verify the spatial interpolation and prediction procedure provided in 

Section 3.1, a numerical wave model SWAN (Simulating WAves Nearshore) is utilized.  

As shown in Figure 3-7, the results from the SWAN model play the role of providing 

verification for the data interpolation as well as the statistical characterization procedures.  

Similar to Figure 3-1, Figure 3-7 contains the same characterization and estimation 

procedures except the inputs at the beginning are the SWAN generated wave properties.  

These properties such as the modal period and the significant wave height are used to 

simulate the vertical elevation time histories for selected locations considered as the 

buoys to start the estimation process.  The parameters estimation results at the end of 

Figure 3-7 are taken to compare with the SWAN generated wave properties which are the 

inputs from the beginning.  The verification of the methodology demonstrated in 

Section 3.1 is taken place by the comparison of the parameters estimations and the wave 

properties generated by SWAN.  Illustrative numerical examples will be provided in 

Chapter 4.  An introduction of the SWAN model applications and commends used in 

this study is provided in this section. 

The numerical wave model SWAN (Simulating WAves Nearshore) is software 

that developed at the Delft University of Technology and can be downloaded at 

www.swan.tudelft.nl.  This model is for the simulation of waves in waters of deep, 

intermediate and finite depth.  It accounts for the physics such as wave propagation, 

wave generation by wind, wave interactions, whitecapping, bottom friction, 

depth-induced breaking, dissipation due to vegetation, diffraction, transmission through 
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and reflection against obstacles and propagation from laboratory up to global scales.  

Outputs provided by the SWAN model include one-dimensional and two-dimensional 

spectra, significant wave height, wave period, average wave direction and directional 

spreading, diffraction parameter, dissipation, etc. 

First step in SWAN commands is to define the simulation mode as stationary 

mode or non-stationary mode and also define the simulation would be one-dimensional or 

two-dimensional.  Two-dimensional stationary mode is the default mode and is used in 

this study.  Second step is to determine the coordinate in either Cartesian or spherical 

coordinates.  Then, the computational grid and input grid should be determined as the 

next step.  The computational grid (CGRID) defines the geographic computation range, 

how the computation range is meshed, the frequency range and the number of frequencies 

used in the calculation.  In this study, the regular rectangular computational grid is used.  

The computational range is between 0 m to 1200 m in both x-coordinate and y-coordinate 

and the number of meshes is 50 in both directions.  That is, there are 51 points from 0 m 

to 1200 m and the interval is 24 m. 

The next step is to define the input grid which may provide the water level, 

current, bottom and friction at the grid points.  In this study, the bottom grid which 

defines the bottom level is used, which has the command as INPGRID BOTTOM.  The 

bottom grid has a origin of (0m, 0m).  The mesh size in this study is 50 m and the 

number of meshes is 24 in both x-direction and y-direction, which make the bottom grid 

range from 0 m to 1200 m in both x and y directions.  The bottom levels are defined in a 

text file that is read by the command READINP BOTTOM.  The other command for the 

input field is the wind effect which is not considered in this study. 
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Figure 3-7. Statistical characterization for predicting sea-state condition based on SWAN 

generated wave spectra and verification using SWAN results. 

 



 

73 
 

As the next step, the initial condition can be given as a wave spectrum at the edge 

or the corner of the computational grid by giving the spectral densities in a text file or by 

determining the significant wave height, wave period and wave spectrum type.  In this 

study, default wave spectrum type, the Jonswap wave spectrum, is used.  The illustrative 

example in this study defined the initial condition at the edge shown in Figure 3-8 as a 

Jonswap spectrum with the significant wave height of 3.2 m and the wave modal period 

of 8.3 sec.  Figure 3-9 shows the wave direction result in the computational range based 

on the input wave spectrum shown in Figure 3-8 and the bottom condition defined earlier 

in a text file and read by the command READINP BOTTOM. 

Figure 3-10 represents one of the wave simulation output quantities, the 

significant wave height in meters, in a three-dimensional plot in the computational range.  

Figure 3-11 shows the locations of interested to obtain outputs which will be used for 

estimations illustrated in Figure 3-7.  The locations, denoted as Loc in Figure 3-11, are 

defined in Cartesian coordinate in a text file and read by the command POINTS.  The 

wave spectra and other wave properties of interest will be provided in the output files at 

the defined locations of interest.  Figure 3-12 shows the outcomes of significant wave 

heights at locations defined in Figure 3-11 based on the computational grid, the input 

bottom levels and the initial condition defined in Figure 3-8. 

The computed output quantities can be written in text files by requests, such as 

requesting a spectral output by the command SPEC and requesting a table output by the 

command TABLE.  The spectral output file includes the locations of interest defined, 

the frequency discretization points, the variance densities, the wave direction and the 

directional spreading for each location.  Figure 3-13 shows the variance densities 
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provided in the spectral output file for location 3 defined in Figure 3-11.  The table 

outputs shows the outputs quantities of interest of the points defined in Figure 3-11 in a 

table.  The output quantities could be the significant wave heights, the modal periods, 

the wave direction, etc. 

There is the other command called BLOCK provides the output quantities of 

interest.  The command BLOCK puts the outputs in a ".mat" file which can be read by 

Matlab.  Noye that the ".mat" file has the output quantities at computational grid points 

instead of the interested locations defined earlier using the command POINTS.  Figure 

3-9 and Figure 3-10 are the plots of the quantities requested by the command BLOCK 

which provides the outputs in the ".mat" file.  Figure 3-14 is an example SWAN 

command file which shows the commands described above.  An example output file is 

shown in Appendix A. 
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Figure 3-8. Initial conditions given in the wave simulating model SWAN in this study. 
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Figure 3-9. Wave direction of SWAN generated waves in the computational range. 
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Figure 3-10. Significant wave heights computed by SWAN in the computational range. 
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Figure 3-11. Locations of interest to obtain wave properties in this study. 

 

 

Figure 3-12. Significant wave heights generated using SWAN at locations of interest 

defined in Figure 3-11. 
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Figure 3-13. Generated variance densities at location 3. 

 

 

Figure 3-14. Example of SWAN command file. 

 

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

V
ar

ia
n

ce
 d

en
si

ty
 (m

^
2

/H
z)

Frequancy (Hz)



 

80 
 

4. Case Studies 

4.1. Sea-state Characterization using Simulated Buoy Data 

A sea-state characterization example is presented in this section using simulated 

buoy vertical elevation time histories.  Figure 3-1 shows the buoy data analysis 

procedure in a flowchart.  The buoy vertical elevation is taken as the sea wave surface 

elevation simulated from Bretschneider wave spectrum in this study.  Two sea-state 

parameters, sea wave modal period Tm and significant wave height Hs, are selected to 

describe the wave characteristics in the time domain.  Upon estimating the two 

parameters using Equations 3-1 and 3-2 from the time history, the sea spectrum 

goodness-of-fit is performed on each buoy by applying statistical hypothesis testing on 

selected sea spectra types and on the periodogram which demonstrates the wave 

characteristics in the spectral domains.  Bretschneider and Jonswap spectra are selected 

for the sea spectrum goodness-of-fit and are conducted using the sea-state parameters, the 

wave modal period Tmt and the significant wave height Hst, estimated from the time 

history by Equations 3-1 and 3-2. 

The periodogram is constructed from the time history by using finite Fourier 

transform on the auto-covariance function of the time history defined in Equation 2-15.  

For the purpose of comparing the periodogram and sea spectra, the periodogram is 

adjusted to have the peak at the modal frequency 2F / Tmt, the unit the same as the sea 

spectrum and the area under the periodogram the same as the variance of the time history, 

demonstrated in Section 3.1.3.  The sea spectrum goodness-of-fit is performed by fitting 

the Bretschneider and Jonswap spectra to the adjusted periodogram.  Once the fitted 
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spectrum type is defined, the confidence intervals of the selected sea-state parameters can 

be analyzed for sea-state characterization by applying statistical hypothesis testing on the 

buoy adjusted periodogram and the adjusted periodograms constructed from the fitted 

spectrum type for a range of sea-state parameters sets.  Details are demonstrated in 

Section 3.1.6. 

In addition, the buoys data are used for sea-state prediction of the points of 

interest such as the travel track points of seagoing vessels surrounded by the buoys.  The 

vessels travel track points are arbitrarily chosen, and sea-state characteristics at these 

points are estimated as intermediate values among surrounding buoys by applying inverse 

distance weight factors on the adjusted periodograms of these buoys.  Section 3.1.8 

provides the detail procedure.  The confidence intervals of the selected sea-state 

parameters for the travel track points are then analyzed using the same method used to 

analyze the buoy data. 

4.1.1. Description of Simulated Buoy Data 

The sea wave surface elevation time histories of three buoys are used in this 

example.  Table 2-2 and Figure 4-1 summarize the locations, the modal periods and the 

significant wave heights of these three buoys.  The time histories are generated using 

Bretschneider wave spectra with the modal periods and significant wave heights from 

Table 2-2.  An example spectrum is shown in Figure 4-2.  The duration of these buoy 

time histories is 1500 sec starting at 0.5 sec with a constant interval of 0.5 sec.  The 

number of total data points of each buoy time history is 3000.  Figure 4-3 shows an 

example of simulated time history. 
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Figure 4-1. Locations of buoys 1, 2 and 3. 

 

 

Figure 4-2. Wave spectrum. 
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Figure 4-3. Simulated time history. 
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Table 4-1. Two-sided confidence intervals at the 95% level for the modal period Tm and 

the significant wave height Hs for buoys 1, 2 and 3. 

Two-sided confidence intervals at the 

95% level 

Buoy 1 

Tmt =7.14 sec 

Hst =1.99 m 

Buoy 2 

Tmt =6.34 sec 

Hst =0.97 m 

Buoy 3 

Tmt =7.95 sec 

Hst =1.54 m 

Lower modal period limit (TL) 6.99 sec 6.24 sec 7.76 sec 

Upper modal period limit (TU) 7.83 sec 6.84 sec 8.76 sec 

Lower significant wave height limit (HsL) 1.96 m 0.96 m 1.52 m 

Upper significant wave height limit (HsU) 2.03 m 0.99 m 1.57 m 

 

 

Figure 4-4. Two-sided confidence intervals at the 95% level of buoy 1 on the modal 

period Tm for the significant wave height Hs = Hst. 
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Figure 4-5. Two-sided confidence intervals at the 95% level of buoy 1 on the significant 

wave height Hs for the modal period Tm = Tmt. 

 

 

Figure 4-6. Two-sided confidence intervals at the 95% level of buoy 2 on the modal 

period Tm for the significant wave height Hs = Hst. 
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Figure 4-7. Two-sided confidence intervals at the 95% level of buoy 2 on the significant 

wave height Hs for the modal period Tm = Tmt. 

 

 

Figure 4-8. Two-sided confidence intervals at the 95% level of buoy 3 on the modal 

period Tm for the significant wave height Hs = Hst. 
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Figure 4-9. Two-sided confidence intervals at the 95% level of buoy 3 on the significant 

wave height Hs for the modal period Tm = Tmt. 
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Figure 4-10. Locations of track points of interest. 

 

Table 4-2. Locations of track points 1, 2, and 3. 

Track Point x-coordinate y-coordinate 

1 0 m 0 m 

2 175 m 400 m 

3 350 m 800 m 

 

Table 4-3. Weight factors applying on the three buoys for track points 1, 2, and 3. 

Track Point Point 1 Point 2 Point 3 

Weight Factor applied to Buoy 1 0.130820 0.234987 0.385936 
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period Tmt and the significant wave height Hst, estimated using Equations 3-1 and 3-2 

from the time history for each buoy are taken as reference values to select a range of 

sea-state parameters sets.  The ranges of (Tmt, min, Tmt, max) and (Hst, min, Hst, max) are used 

to generate sea spectra, in which Tmt, min is the minimum Tmt among the buoys, Tmt, max is 

the maximum Tmt among the buoys, and Hst, min and Hst, max are similar to the Tmt case.  

The best set of sea-state parameters is determined by Equation 3-19 using the concept of 

lease squares applied on the periodograms of the track points and the adjusted 

periodograms generated from the sea spectra for various sets of parameters in the range 

defined previously.  The estimated modal period, denoted as Tme, and the estimated 

significant wave height, denoted as Hse, for the track points are shown in Table 4-4.  

Figure 4-11 shows the estimated periodogram and the fitted adjusted periodograms 

constructed from the Bretschneider and Jonswap sea spectra using the modal period Tme 

and the significant wave height Hse for track point 1.  The results show that the 

Bretschneider spectrum is a better fit compared with the Jonswap spectrum.  Figure 4-12 

and Figure 4-13 are the results for track points 2 and 3, respectively. 

The confidence intervals analysis for the track points follows the same method 

used to analyze the buoy data by applying statistical hypothesis testing on the 

periodogram of the track point and the adjusted periodograms constructed from the fitted 

spectrum type for a range of sea-state parameters sets.  Table 4-4 show the confidence 

intervals at the 95% level for these three track points on the modal period Tm for the 

significant wave height Hs = Hse and on the significant wave height Hs for the modal 

period Tm = Tme.  Figure 4-14 and Figure 4-15 show the confidence interval estimations 

at the 95% level for the modal period and the significant wave height, respectively, for 
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track point 1; while Figure 4-16 and Figure 4-17 are for track point 2 and Figure 4-18 and 

Figure 4-19 are for track point 3. 

 

Table 4-4. Two-sided confidence intervals at the 95% level of the significant wave height 

Hs and the modal period Tm of track points 1, 2, and 3. 

Two-sided confidence intervals at the 

95% level 

Point 1 

Tme =7.20 sec 

Hse =1.52 m 

Point 2 

Tme =6.83 sec 

Hse =1.40 m 

Point 3 

Tme =6.83 sec 

Hse =1.52 m 

Lower modal period limit (TL) 7.15 sec 6.80 sec 6.70 sec 

Upper modal period limit (TU) 7.58 sec 6.98 sec 6.99 sec 

Lower significant wave height limit (HsL) 1.45 m 1.37 m 1.50 m 

Upper significant wave height limit (HsU) 1.53 m 1.43 m 1.54 m 

 

 

Figure 4-11. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 1. 
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Figure 4-12. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 2. 

 

 

Figure 4-13. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 3. 

 

0.00 

0.15 

0.30 

0.45 

0.00 0.79 1.57 2.36 3.14 S
p

ec
tr

al
 d

en
si

ty
 (
m

^
2

/r
p

s)

Frequency (rps)

Track Point 2
Estimated Periodogram

Fitted Periodogram from Bretschneider

Fitted Periodogram from Jonswap

0.00 

0.15 

0.30 

0.45 

0.00 0.79 1.57 2.36 3.14 S
p

ec
tr

al
 d

en
si

ty
 (m

^2
/r

p
s)

Frequency (rps)

Track Point 3
Estimated Periodogram

Fitted Periodogram from Bretschneider

Fitted Periodogram from Jonswap



 

92 
 

 

Figure 4-14. Two-sided confidence intervals at the 95% level of track point 1 on the 

modal period Tm for the significant wave height Hs = Hse. 

 

 

Figure 4-15. Two-sided confidence intervals at the 95% level of track point 1 on the 

significant wave height Hs for the modal period Tm = Tme. 
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Figure 4-16. Two-sided confidence intervals at the 95% level of track point 2 on the 

modal period Tm for the significant wave height Hs = Hse. 

 

 

Figure 4-17. Two-sided confidence intervals at the 95% level of track point 2 on the 

significant wave height Hs for the modal period Tm = Tme. 
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Figure 4-18. Two-sided confidence intervals at the 95% level of track point 3 on the 

modal period Tm for the significant wave height Hs = Hse. 

 

 

Figure 4-19. Two-sided confidence intervals at the 95% level of track point 3 on the 

significant wave height Hs for the modal period Tm = Tme. 
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This example illustrates the procedure of sea-state characterization and 

interpolation using spectral analysis concept described in Chapter 2 and the methodology 

introduced in Chapter 3.  The prediction for unobserved locations is performed applying 

spatial interpolation on buoys, or observed locations, and the confidence intervals of the 

sea-state condition parameters are estimated for the buoys as well as the unobserved 

locations, or the points of interest.  The statistical basis of the method enables the 

characterization to present the sampling variability and associated uncertainties by 

estimating the confidence intervals of the sea-state parameters.  The estimation results 

show that the methodology proposed in Chapter 3 is able to provide accurate predictions 

by confidence intervals which cover the parameter values Tme and Hse estimated from the 

periodograms using least square concept demonstrated in Section 3.1.8. 

4.2. Numerical Example and Verification using SWAN Generated Wave 

Data 

This section provides sea-state characterization and interpolation as illustrated in 

Figure 3-7.  The numerical wave model SWAN is utilized to generate the wave 

properties at locations defined in Figure 3-11.  Six locations are selected from Figure 

3-11 for this example to demonstrate and verify the methodology provided in Chapter 3.  

Three locations are arbitrary selected to be considered as the buoys and the other three 

locations within the buoys range are selected as the points on a travel track which need 

sea-state predictions.  The sea-state parameters of these points of travel track will be 

interpolated based on the properties of the buoys.  The wave properties generated by 

SWAN are considered as the true values.  In other words, the methodology provided in 
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Chapter 3 is verified if the values generated by SWAN are within the confidence intervals 

of the parameters estimations. 

4.2.1. Description of SWAN Data 

Table 4-5 and Figure 4-20 summarize the coordinates for the six locations 

selected from Figure 3-11.  Figure 4-21 defines the locations considered as the three 

buoys and locations considered as the points of the travel track. 

The initial and boundary conditions to generate the wave properties are shown in 

Figure 3-8.  Jonswap wave spectrum with the significant wave height 3.2 m and the 

modal period 8.3 sec is used as the initial condition.  Locations to obtain output 

quantities are defined in Figure 3-11, denoted as Loc 1, Loc 2, ..., Loc 49.  The output 

quantities such as the significant wave heights are shown in Figure 3-10 for the entire 

calculation range and in Figure 3-12 for the locations of interest.  The generated wave 

spectrum, for example at location 3, is shown in Figure 3-13. 

The wave properties at the buoy locations defined in Figure 4-21 are provided in 

Table 4-6.  These properties are used to generate wave surface elevation time histories 

such as Figure 4-22 which is the time history for location 46, or buoy 3.  According to 

the procedure shown in Figure 3-7 and the details for each step in the procedure provided 

in Chapter 3, the significant wave height of the track points will be estimated using the 

buoy time histories generated using the given wave modal periods and the significant 

wave heights summarized in Table 4-6.  Sample size of independent observations and 

the adjust periodograms of the buoys are produced for the interpolation and estimation on 

the track points. 
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Table 4-5. Coordinates of locations selected from Figure 3-11 for estimation. 

Location x-coordinate y-coordinate 

Loc 2 (as Buoy 1) 100 m 150 m 

Loc 7 (as Buoy 2) 100 m 900 m 

Loc 47 (as Buoy 3) 950 m 450 m 

Loc 5 (as Track Point 1) 100 m 600 m 

Loc 19 (as Track Point 2) 350 m 600 m 

Loc 33 (as Track Point 3) 650 m 600 m 

 

 

Figure 4-20. Locations of interest selected from Figure 3-11 for estimations. 
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Figure 4-21. Determination of locations shown in Figure 4-20 selected as the buoys and 

as the track points. 

 

Table 4-6. Modal periods and significant wave heights of buoy locations defined in 

Figure 4-21. 
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Loc 2 (as Buoy 1) 8.15 sec 3.13 m 

Loc 7 (as Buoy 2) 8.16 sec 3.20 m 
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Figure 4-22. Generated time history for location 46 (or buoy 3) using the wave properties 

provided in Table 4-6. 

 

4.2.2. Data Interpolation 

Periodograms of the track points are interpolated from the adjust buoy 

periodograms using the inverse distance weight factors demonstrated in Section 3.1.8.  

By performing the wave spectrum goodness-of-fit, the spectrum type of the track points 

can be determined  Figure 4-23 show the estimated periodogram of track point 1 and the 

periodograms constructed from the Bretschneider and Jonswap spectra for the 

goodness-of-fit; while Figure 4-24 and Figure 4-25 are for the track points 2 and 3, 

respectively.  These three figures show that the Jonswap spectrum is a better fit for the 

three track points.  The results are reasonable since Jonswap spectrum is used as the 

initial condition for generating the wave properties in the estimation field.  The wave 

modal periods and the significant wave heights can be estimated using the least square 

concept and procedure demonstrated in Section 3.1.8. 
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Figure 4-23. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 1. 

 

 

Figure 4-24. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 2. 
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Figure 4-25. Estimated periodogram and fitted periodograms of different sea spectra for 

track point 3. 
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heights Hse along with the SWAN generated values for comparison.  The results show 

that the absolute related errors of the modal period have a maximum value of 0.24%; 

while that of the significant wave height have a maximum value of 4.16%. 

Table 4-8 summarizes the lower and upper limits of the confidence intervals for 

the modal period and significant wave height estimations.  The lower and upper limits 

for the estimated modal period are denoted as TL and TU, respectively; while that for the 

significant wave height are denoted as HsL and HsU, respectively.  The SWAN generated 

modal period and significant wave height are denoted as Tm and Hs.  The results show 

that the values generated by SWAN are within the estimated confidence intervals for both 

parameters.  In other words, the methodology demonstrated in Chapter 3 is verified for 

characterizing the sea-state conditions using the two key parameters, the modal period 

and the significant wave height.  Figure 4-26 and Figure 4-27 show the two-sided 

0.00 

0.50 

1.00 

1.50 

0.00 0.79 1.57 2.36 3.14 

S
p

ec
tr

al
 d

en
si

ty
 (
m

^2
/r

p
s)

Frequency (rps)

Track Point 3
Estimated Periodogram

Fitted Periodogram from Bretschneider

Fitted Periodogram from Jonswap



 

102 
 

confidence intervals at the 95% level of track point 1 on the significant wave height Hs 

for the modal period Tm = Tme and on the modal period Tm for the significant wave height 

Hs = Hse, respectively; while Figure 4-28 and Figure 4-29 present the results for track 

point 2 and Figure 4-30 and Figure 4-31 present the results for track point 3.  The 

confidence intervals are able to capture the SWAN generated values of the modal periods 

and the significant wave heights. 

 

Table 4-7. Comparison of the estimated and the SWAN generated modal periods and 

significant wave heights of track points 1, 2 and 3 with absolute relative errors presented 

in parenthesis. 

Wave properties Point 1 Point 2 Point 3 

Estimated modal period Tme 
8.14 sec 

(0.24%) 

8.15 sec 

(0.06%) 

8.16 sec 

(0.05%) 

SWAN generated modal period Tm 8.16 sec 8.15 sec 8.15 sec 

Estimated significant wave height Hse 
3.10 m 

(3.33%) 

3.05 m 

(1.68%) 

2.91 m 

(4.16%) 

SWAN generated significant wave height Hs 3.21 m 3.14 m 2.79 m 
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Table 4-8. Two-sided confidence intervals at the 95% level of the significant wave height 

Hs and the modal period Tm of track points 1, 2 and 3. 

Two-sided confidence intervals at the 

95% level 

Point 1 

Tm =8.16sec 

Hs =3.21 m 

Point 2 

Tm =8.15 sec 

Hs =3.14 m 

Point 3 

Tm =8.15 sec 

Hs =2.79 m 

Lower modal period limit (TL) 7.84 sec 7.85 sec 7.90 sec 

Upper modal period limit (TU) 8.20 sec 8.29 sec 8.38 sec 

Lower significant wave height limit (HsL) 3.07 m 3.03 m 2.73 m 

Upper significant wave height limit (HsU) 3.23 m 3.15 m 2.89 m 

 

 

 

Figure 4-26. Two-sided confidence intervals at the 95% level of track point 1 on the 

significant wave height Hs for the modal period Tm = Tme. 
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Figure 4-27. Two-sided confidence intervals at the 95% level of track point 1 on the 

modal period Tm for the significant wave height Hs = Hse. 

 

 

Figure 4-28. Two-sided confidence intervals at the 95% level of track point 2 on the 

significant wave height Hs for the modal period Tm = Tme. 
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Figure 4-29. Two-sided confidence intervals at the 95% level of track point 2 on the 

modal period Tm for the significant wave height Hs = Hse. 

 

 

Figure 4-30. Two-sided confidence intervals at the 95% level of track point 3 on the 

significant wave height Hs for the modal period Tm = Tme. 

 

20

25

30

35

7.60 7.85 8.10 8.35 8.60 

S
ta

ti
st

ic

Modal period Tm (sec)

Track Point 2
(Hs = Hse)

Statistic
Lower Confidence Limit
Upper Confidence Limit
Tm_SWAN

20

25

30

35

40

2.65 2.75 2.85 2.95 

S
ta

ti
st

ic

Significant wave height Hs (m)

Track Point 3
(Tm = Tme)

Statistic
Lower Confidence Limit
Upper Confidence Limit
Hs_SWAN



 

106 
 

 

Figure 4-31. Two-sided confidence intervals at the 95% level of track point 3 on the 

modal period Tm for the significant wave height Hs = Hse. 
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estimated location and the buoys.  Details can be found in Section 3.1.8.  Three, four 

and five buoy locations are selected from Figure 3-11 for the data interpolation.  Figure 

4-32 shows an example of selected buoy points and data interpolation range.  Locations 

3, 28 and 44 marked as solid dots are the reference locations which are the buoys.  The 

interpolation range is marked by the red dash lines which connect the three buoys, i.e. 

locations 3, 28 and 44.  The sea-state parameter of locations 10, 11, 17, 18, 19, 24, 25, 

26, 27, 31, 32, 33 and 38 will be estimated using the inverse distance weight factors 

described in Chapter 3. 

To verify the data interpolation results, comparisons are taken place.  Section 

4.2.3 compares the significant wave heights interpolated using three, four and five 

selected buoy locations and the significant wave heights generated by SWAN at these 

interpolated locations.  The interpolation accuracy is determined by the relative error 

square per location defined in Equation 4-1. 

 

Figure 4-32. Three-point data interpolation range with buoys at locations 3, 28 and 44. 
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For location i, if the estimated significant wave height is denoted as Hsi and the 

SWAN simulated significant wave height is denoted as Hsswan i, the error, or residual, of 

the estimation can be represented as Hsi -Hsswan i, or in a unitless form as (Hsi -Hsswan i)/ 

Hsswan i, which is also called the relative error.  To estimate the interpolation error for the 

entire area under consideration, the following quantity, denoted as Err, is suggested: 

 ��� = Õ∑ tÖ¹ÀEÖ¹×ØÙ�ÀÖ¹×ØÙ�À x�(*�� Ú ZÛ  (4-1) 

in which k is the number of interpolating data points.  Equation 4-1 shows the sum of 

the relative error squares of all interpolated points and divided by the number of these 

points.  Dividing the sum of the relative error squares by the number of estimation 

points is to make the error estimation quantity, Err, as for one interpolation point.  The 

reason of making the error term for one point is that since the interpolation range varies 

due to the number of reference points, or buoys, and the selection of these reference 

points, the number of estimation points will be different.  Therefore, by dividing the 

sum of the relative error squares of the estimation points by the number of these points, 

the error term Err is averaged and represents the relative error square per location.  It 

then will be possible to compare interpolation results of different estimation ranges and 

different number of estimation points by using the quantity Err.  

For an area of interest such as which covered by the locations shown in Figure 

3-11, the following analysis shows the one-dimensional data interpolation error square 

per location (Err) for areas formed by three, four and five reference points, or buoys, 

respectively.  Since the minimum number of points to form an area is three, the 

estimation starts with three reference points, or say buoys. 
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Some examples of one-dimensional three-point estimations are shown in Figure 

4-32 to Figure 4-39.  Figure 4-32 has the estimation buoy points at locations 3, 28 and 

44.  The estimation points within the buoy points range are at locations 10, 11, 17, 18, 

19, 24, 25, 26, 27, 31, 32, 33 and 38.  Total number of estimation locations is 13.  The 

data interpolation error square per location (Err) is 0.0094.  Figure 4-33 has the 

estimation buoy points at locations 1, 28 and 43.  The estimation points within the buoy 

points range are at locations 8, 9, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 

36, 37 and 38.  Total number of estimation locations is 20.  The data interpolation error 

square per location (Err) is 0.0175.  Figure 4-34 has the estimation buoy points at 

locations 2, 28 and 44.  The estimation points within the buoy points range are at 

locations 9, 10, 16, 17, 18, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 37 and 38.  Total 

number of estimation locations is 17.  The data interpolation error square per location 

(Err) is 0.0081.  Figure 4-35 has the estimation buoy points at locations 2, 7 and 43.  

The estimation points within the buoy points range are at locations 3, 4, 5, 6, 10, 11, 12, 

13, 17, 18, 19, 20, 25, 26, 27, 32, 33 and 40.  Total number of estimation locations is 18.  

The data interpolation error square per location (Err) is 0.0085.  Figure 4-36 has the 

estimation buoy points at locations 2, 7 and 46.  The estimation points within the buoy 

points range are at locations 3, 4, 5, 6, 10, 11, 12, 13, 17, 18, 19, 20, 24, 25, 26, 32, 33 

and 39.  Total number of estimation locations is 18.  The data interpolation error 

square per location (Err) is 0.0101.  Figure 4-37 has the estimation buoy points at 

locations 7, 23 and 49.  The estimation points within the buoy points range are at 

locations 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 32, 33, 34, 35, 41 and 42.  Total 

number of estimation locations is 17.  The data interpolation error square per location 
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(Err) is 0.0064.  Figure 4-38 has the estimation buoy points at locations 4, 44 and 49.  

The estimation points within the buoy points range are at locations 11, 18, 25, 26, 31, 32, 

33, 38, 39, 40, 41, 45, 46, 47 and 48.  Total number of estimation locations is 15.  The 

data interpolation error square per location (Err) is 0.0131.  Figure 4-39 has the 

estimation buoy points at locations 5, 44 and 49.  The estimation points within the buoy 

points range are at locations 12, 19, 25, 26, 32, 33, 34, 38, 39, 40, 41, 45, 46, 47 and 48.  

Total number of estimation locations is 15.  The data interpolation error square per 

location (Err) is 0.0073. 

 

 

Figure 4-33. One-dimensional three-point data interpolation range with buoys at locations 

1, 28 and 43. 
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Figure 4-34. One-dimensional three-point data interpolation range with buoys at locations 

2, 28 and 44. 

 

 

Figure 4-35. One-dimensional three-point data interpolation range with buoys at locations 

2, 7 and 47. 
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Figure 4-36. One-dimensional three-point data interpolation range with buoys at locations 

2, 7 and 46. 

 

 

Figure 4-37. One-dimensional three-point data interpolation range with buoys at locations 

7, 23 and 49. 
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Figure 4-38. One-dimensional three-point data interpolation range with buoys at locations 

4, 44 and 49. 

 

 

Figure 4-39. One-dimensional three-point data interpolation range with buoys at locations 

5, 44 and 49. 
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Examples of two-dimensional three-point estimations are shown in Figure 4-40 to 

Figure 4-45.  Figure 4-40 has the estimation buoy points at locations 3, 25, 28 and 44.  

The estimation points within the buoy points range are at locations 10, 11, 17, 18, 19, 24, 

26, 27, 31, 32, 33 and 38.  Total number of estimation locations is 12.  The data 

interpolation error square per location (Err) is 0.0112.  Figure 4-41 has the estimation 

buoy points at locations 1, 25, 28 and 43.  The estimation points within the buoy points 

range are at locations 8, 9, 15, 16, 17, 18, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 36, 37 and 

38.  Total number of estimation locations is 19.  The data interpolation error square per 

location (Err) is 0.0157.  Figure 4-42 has the estimation buoy points at locations 2, 25, 

28 and 44.  The estimation points within the buoy points range are at locations 9, 10, 16, 

17, 18, 19, 23, 24, 26, 27, 30, 31, 32, 33, 37 and 38.  Total number of estimation 

locations is 16.  The data interpolation error square per location (Err) is 0.0091.  Figure 

4-43 has the estimation buoy points at locations 2, 26, 28 and 44.  The estimation points 

within the buoy points range are at locations 9, 10, 16, 17, 18, 19, 23, 24, 25, 27, 30, 31, 

32, 33, 37 and 38.  Total number of estimation locations is 16.  The data interpolation 

error square per location (Err) is 0.0117.  Figure 4-44 has the estimation buoy points at 

locations 1, 7, 43 and 49.  The estimation points within the buoy points range are at 

locations 2 to 6, 8 to 42, and 44 to 48.  Total number of estimation locations is 45.  The 

data interpolation error square per location (Err) is 0.0188.  Figure 4-45 has the 

estimation buoy points at locations 2, 7, 44 and 49.  The estimation points within the 

buoy points range are at locations 3 to 6, 9 to 14, 16 to 21, 23 to 28, 30 to 35, 37 to 42, 

and 45 to 48.  Total number of estimation locations is 38.  The data interpolation error 

square per location (Err) is 0.0094. 
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Figure 4-40. One-dimensional four-point data interpolation range with buoys at locations 

3, 25, 28 and 44. 

 

 

Figure 4-41. One-dimensional four-point data interpolation range with buoys at locations 

1, 25, 28 and 43. 
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Figure 4-42. One-dimensional four-point data interpolation range with buoys at locations 

2, 25, 28 and 44. 

 

 

Figure 4-43. One-dimensional four-point data interpolation range with buoys at locations 

2, 26, 28 and 44. 
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Figure 4-44. One-dimensional four-point data interpolation range with buoys at locations 

1, 7, 43 and 49. 

 

 

Figure 4-45. One-dimensional four-point data interpolation range with buoys at locations 

2, 7, 44 and 49. 
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Figure 4-46 to Figure 4-48 show the one-dimensional five-point estimations.  

Figure 4-46 has the estimation buoy points at locations 1, 7, 25, 43 and 49.  The 

estimation points within the buoy points range are at locations 2 to 6, 8 to 24, 26 to 42 

and 44 to 48.  Total number of estimation locations is 44.  The data interpolation error 

square per location (Err) is 0.0211.  Figure 4-47 has the estimation buoy points at 

locations 2, 7, 25, 44 and 49.  The estimation points within the buoy points range are at 

locations 3 to 6, 9 to 14, 16 to 21, 23, 24, 26 to 28, 30 to 35, 37 to 42 and 45 to 48.  

Total number of estimation locations is 37.  The data interpolation error square per 

location (Err) is 0.0125.  Figure 4-48 has the estimation buoy points at locations 2, 7, 26, 

44 and 49.  The estimation points within the buoy points range are at locations 3 to 6, 9 

to 14, 16 to 21, 23 to 25, 27, 28, 30 to 35, 37 to 42 and 45 to 48.  Total number of 

estimation locations is 37.  The data interpolation error square per location (Err) is 

0.0130. 

 

 

 

 

 

 

 

 

 



 

119 
 

 

Figure 4-46. One-dimensional five-point data interpolation range with buoys at locations 

1, 7, 25, 43 and 49. 

 

 

Figure 4-47. One-dimensional five-point data interpolation range with buoys at locations 

2, 7, 25, 44 and 49. 
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Figure 4-48. One-dimensional five-point data interpolation range with buoys at locations 

2, 7, 26, 44 and 49. 

 

Table 4-9 summarizes the examples of using three reference points which form 

triangular areas for data interpolation.  The relative error square per location, Err, ranges 

between 0.0064 and 0.0175, and the number of estimation points are between 13 and 20.  

Table 4-9 shows that the one-dimensional three-point estimations produce interpolations 

within 1.8% relative error square per location. 

Table 4-10 summarizes the examples of using four reference points for data 

interpolation.  An area formed by four reference points can be a quadrilateral or a 

triangle with an additional reference point in the middle of the triangle.  The relative 

error square per location, Err, of the examples shown in Table 4-10 have a range between 

0.0091 and 0.0188, and the number of estimation points are between 12 and 45.  Table 

4-10 shows that the one-dimensional four-point estimations produce interpolations within 

1.9% relative error square per location. 
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Table 4-11 summarizes the examples of using five reference points for data 

interpolation.  The area of the five-point interpolation is a quadrilateral with an 

additional reference point in the middle of the area.  The relative error square per 

location, Err, of the examples shown in Table 4-11 have a range between 0.0125 and 

0.0211, and the number of estimation points are between 37 and 44.  From Table 4-9, 

Table 4-10 and Table 4-11, the three-point, four-point, and five-point interpolations show 

that the relative error square per location is about 2% regardless the number of reference 

points to be three, four, or five. 
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Table 4-9. Comparison of one-dimensional three-point data interpolation error square per location (Err) for various estimation ranges. 

 
(in Figure 4-32) 

 
(in Figure 4-33) 

 
(in Figure 4-34) 

 
(in Figure 4-35) 

Err = 0.0094 Err = 0.0175 Err = 0.0081 Err = 0.0085 

 
(in Figure 4-36) 

 
(in Figure 4-37) 

 
(in Figure 4-38) 

 
(in Figure 4-39) 

Err = 0.0101 Err = 0.0064 Err = 0.0131 Err = 0.0073 
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Table 4-10. Comparison of one-dimensional four-point data interpolation error square per location (Err) for various estimation ranges. 

 
(in Figure 4-40) 

 
(in Figure 4-41) 

 
(in Figure 4-42) 

Err = 0.0112 Err = 0.0157 Err = 0.0091 

 
(in Figure 4-43) 

 
(in Figure 4-44) 

 
(in Figure 4-45) 

Err = 0.0117 Err = 0.0188 Err = 0.0094 
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Table 4-11. Comparison of one-dimensional five-point data interpolation error square per location (Err) for various estimation ranges. 

 
(in Figure 4-46) 

 
(in Figure 4-47) 

 
(in Figure 4-48) 

Err = 0.0211 Err = 0.0125 Err = 0.0130 
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As the one-dimensional data interpolation shows that the relative error square per 

location (Err) is about 2%, the following summary is to show the two-dimensional data 

interpolation outcomes.  To form a two-dimensional range, the minimum number of 

points is four, which make up a tetrahedron.  By adding one additional point, five points 

can make a pyramid.  The four points two-dimensional estimation shown in Figure 4-49 

is using the same reference points as shown in Figure 4-40 which is the one-dimensional 

four-points interpolation having a triangular area and an additional points in the middle.  

The two-dimensional range is formed by considering the additional point in the middle of 

the area in a different plane.  So the same four points form a tetrahedron now.  For 

location 10 as an example, the two-dimensional estimation is performed by averaging the 

estimations interpolated using locations 3, 28 and 44 and using locations 3, 25 and 44.  

The estimations interpolated using locations 3, 28 and 44 and using locations 3, 25 and 

44 are both one-dimensional three-point cases and provide interpolation results for 

location 10 at the plane of locations 3, 28 and 44 and at the plane of location 3, 25 and 44, 

respectively.  By averaging the results of the two planes, the two-dimensional estimation 

for location 10 is the average of the one-dimensional estimations of the two planes cover 

location10. 
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Figure 4-49. Two-dimensional four-point data interpolation range. 

 

As shown above in Figure 4-40 and Figure 4-49, the two estimation cases have 

the same range of estimation except the four-point case has an additional buoy point in 

the middle at location 25.  The three-points interpolation based on locations 3, 28 and 44 

leads to the error square per location, Err, of 0.0094, and the four-points interpolation 

based on locations 3, 28, 44 and the middle point 25 leads to the error square per location, 

Err, of 0.0112.  The results show that additional buoy points within the same range 

might not improve the estimation.  If taking the same four points, 3, 25, 28 and 44 but 

estimating in two-dimensional as a tetrahedron, to the error square per location, Err, is 

0.0110 which does not show significant difference from the one-dimensional estimations, 

either. 

Loc 1

Loc 2

Loc 3

Loc 4

Loc 5

Loc 6

Loc 7

Loc 8

Loc 9

Loc 10

Loc 11

Loc 12

Loc 13

Loc 14

Loc 15

Loc 16

Loc 17

Loc 18

Loc 19

Loc 20

Loc 21

Loc 22

Loc 23

Loc 24

Loc 25

Loc 26

Loc 27

Loc 28

Loc 29

Loc 30

Loc 31

Loc 32

Loc 33

Loc 34

Loc 35

Loc 36

Loc 37

Loc 38

Loc 39

Loc 40

Loc 41

Loc 42

Loc 43

Loc 44

Loc 45

Loc 46

Loc 47

Loc 48

Loc 49

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

Y
 (

m
)

X (m)



 

127 
 

Moreover, if modify the inverse distance weight factor shown in Equation 3-15 by 

rising the power of distance to two as follows: 

 �1*È = �/ÉÊËD∑ �/ÉÊËDË 				for	)*È ≠ 0 (4-2) 

The data interpolation error square per location, Err, is 0.0140 for the one-dimensional 

three-point estimation based on locations 3, 28 and 44; while Err, is 0.0115 and 0.0127 

for four-point, one-dimensional and two-dimensional estimations, respectively.  The 

modified weight factor in Equation 4-2 does not show advantages compared with the 

factor defined in Equation 3-15. 

4.3. Verification and Validation using Buoy Data 

This section provides sea-state condition analysis on buoy locations selected from 

the National Oceanic and Atmospheric Administration (NOAA) website.  Four buoy 

locations on the east coast of the United States are selected for analysis.  Three of the 

four locations are considered as buoys with given sea-state information while the 

remaining location does not have sea-state information and needs estimations.  Sea-state 

characterization is performed on this remaining location based on the methodology 

demonstrated in Chapter 3. 

4.3.1. Description of Buoy Data 

Figure 4-50 shows the four buoy locations selected for this example.  Location A 

denoted as buoy 1 represents the buoy of Station ID 44009.  Location B denoted as buoy 

2 represents the buoy of Station ID 44025.  Location C denoted as buoy 3 represents the 

buoy of Station ID 44011.  Location D denoted as buoy 4 represents the buoy of Station 
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ID 44008.  Buoy 4 is considered the estimation point without given sea-state 

information.  Estimations for the estimation point are based on the sea-state conditions 

obtained from buoys 1, 2, and 3.  Table 4-12 summarizes the coordinates of these four 

locations.  The latitude and longitude coordinates are provided from the NOAA website.  

To indicate the locations of these four locations in Cartesian coordinate system, Table 

4-12 shows the zones and the easting and northing coordinates in the Universal 

Transverse Mercator (UTM) coordinate system corresponding to the given latitudes and 

longitudes.  There are sixty zones in the Universal Transverse Mercator (UTM) 

coordinate system.  The width of each zone is about 1,000,000 m.  The easting 

coordinate of a specific zone indicates the distance from the west boundary of the zone.  

Since these four locations in this example are in two different zones, the easting 

coordinates of the Universal Transverse Mercator (UTM) system need to be adjusted to 

obtain the X and Y coordinates shown in Table 4-12.  For example, the coordinate 

easting 525,998 m in zone 18 N for buoy 1 means that buoy 1 is at the distance of 

525,998 m from the west boundary of zone 18 N.  Similarly, buoy 3 is at the distance of 

701,531 m from the west boundary of zone 19 N.  Since these two easting coordinates 

are not in the same zone, they couldn't be plotted in an X-Y plane using their easting 

coordinates.  By the fact that zone 19 is on the east side of and adjacent to zone 18, the 

easting coordinate 701,531 m of buoy 3 can be adjusted by adding 1,000,000 m to 

701,531 m to obtain the easting distance from the west boundary of zone 18 as 1,701,531 

m.  The adjusted easting coordinates are shown in Table 4-12 as the X coordinate which 

indicate the distance from the west boundary of zone 18 N.  The origin of the X axis, i.e. 
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X = 0 km, in Figure 4-50 indicates the west boundary of zone 18 N on the Universal 

Transverse Mercator (UTM) coordinate system. 

As shown in Figure 4-50 and Table 4-12, the buoy of Station ID 44009 is 

considered as buoy 1 in this example, while buoys of Station ID 44025 and 44011 are 

considered as buoy 2 and buoy 3, respectively.  The buoy of Station ID 44008 is buoy 4 

and is treated as an unobserved location and needs estimation for the sea-state conditions.  

This location is denoted as estimation point.  Table 4-13 provides the mean values of 

modal period and significant wave height obtained from the NOAA website for these 

four locations.  The modal period and significant wave height of buoy 4, the estimation 

point, are provided for reference and verification of the estimation results. 

The modal period and significant wave height data were collected hourly.  The 

mean values were computed by adding up all the hourly collected data and dividing it by 

the number of data.  In this example, the data collected in January are used.  Buoy 1 

has data collected from 1986 to 2008.  Buoy 2 has data collected from 1991 to 2008.  

Buoy 3 has data collected from 1984 to 2008.  Buoy 4 has data collected from 1982 to 

2008.  Appendix B provides the obtained NOAA data used in this example. 
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Figure 4-50. Locations of interest for estimations. 
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Table 4-12. Coordinates of locations shown in Figure 4-50. 

Station ID Latitude Longitude Zone Easting (m) Northing (m) X (km) Y (km) 

44009: Buoy 1 38.464N 74.702W 18N 525,998 4,257,341 525.998 4257.341 

44025: Buoy 2 40.250N 73.167W 18N 655,897 4,457,117 655.897 4457.117 

44011: Buoy 3 41.105N 66.600W 19N 701,531 4,553,189 1701.531 4553.189 

44008: Estimation point (Buoy 4) 40.502N 69.247W 19N 479,071 4,483,506 1479.071 4483.506 

 

Table 4-13. Modal periods and significant wave heights of locations defined in Figure 4-50. 

Location Modal period Tm Significant wave height Hs 

44009: Buoy 1 7.2 sec 1.4 m 

44025: Buoy 2 6.8 sec 1.5 m 

44011: Buoy 3 8.5 sec 2.8 m 

44008: Estimation point (Buoy 4) 8.0 sec 2.4 m 
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4.3.2. Data Interpolation 

According to Section 3.1.8, the inverse distance weight factors applied on buoys 

for the estimating point are computed using Equations 3-15 to 3-17and summarized in 

Table 4-14.  Since the estimated point is closer to buoy 3 as shown in Figure 4-50, the 

weight factor applied to buoy 3 is larger than that applied to buoy 1 and buoy 2.  These 

weight factors are applied on the adjusted periodograms of the buoys using Equation 3-18 

to estimate the periodograms for estimation point.  As demonstrated in Chapter 3, wave 

spectrum goodness-of-fit is performed to determine the spectrum type for estimation 

point.  Figure 4-51 shows the periodogram of estimation point and the periodograms 

constructed from Bretschneider and Jonswap spectra.  The modal period and significant 

wave height generating these spectra are based on the least square concept demonstrated 

in Section 3.1.4.  As shown in Figure 4-51, the periodogram constructed from the 

Bretschneider spectrum fits the estimation point periodogram better compared with the 

periodogram constructed from the Jonswap spectrum.  Therefore, the spectrum type for 

estimation point is determined as the Bretschneider spectrum.  The estimated modal 

period and significant wave height of Bretschneider spectrum are summarized in Table 

4-15 and compared with the observation values provided from the NOAA website shown 

previously in Table 4-13.  Comparing with NOAA observations, the estimated modal 

period has an absolute relative error of 1.4 %; while the estimated significant wave height 

has an absolute relative error of 2.2 %. 
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Table 4-14. Weight factors applying on the three buoys for the estimation point (buoy 4). 

Inverse distance weight factors Estimation point (buoy 4) 

Weight factor applied to buoy 1 0.1565 

Weight factor applied to buoy 2 0.1861 

Weight factor applied to buoy 3 0.6574 

 

 

Figure 4-51. Estimated periodogram and fitted periodograms of different sea spectra for 

the estimation point (buoy 4). 

 

Table 4-15. Estimated modal period and significant wave height of the estimation point 

(buoy 4) with absolute relative errors based on the NOAA observations. 

Wave properties 
NOAA 

observation 
Estimation 

Absolute relative 

error 

Modal period Tm = 8.0 sec Tme = 8.11 sec 1.4 % 

Significant wave height Hs = 2.4 m Hse = 2.45 m 2.2 % 
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According to the spectrum type determined by wave spectrum goodness-of-fit, 

hypothesis testing can be performed for parameter estimations to characterize the 

sea-state conditions for the estimated point.  Hypothesis testing concept is demonstrated 

in Section 3.1.5.  The parameter confidence intervals estimations follow the procedure 

described in Section 3.1.6.  Table 4-16 summarizes the two-sided confidence intervals at 

the 95 % level of the modal period and significant wave height for the estimation point 

(buoy 4).  The 95 % confidence interval of the modal period is between 7.96 sec and 

8.18 sec.  The estimated modal period based on the periodogram of the estimation point 

(buoy 4) is 8.11sec.  The NOAA observation is 8.0 sec.  Both 8.11 sec and 8.0 sec are 

within the confidence interval.  As for the significant wave height, the 95 % confidence 

interval is between 2.38 m and 2.5 m.  The estimated significant wave height based on 

the periodogram of the estimation point (buoy 4) is 2.45 m; while the NOAA observation 

is 2.4 m.  Both 2.45 m and 2.4 m are within the confidence interval as well.  Figure 

4-52 shows the two-sided confidence interval at the 95% level of the estimation point 

(buoy 4) on the significant wave height Hs for the modal period Tm = Tme, where Tme is the 

modal period estimated from the periodogram.  Figure 4-53 shows the two-sided 

confidence interval at the 95% level of the estimation point (buoy 4) on the modal period 

Tm for the significant wave height Hs = Hse, where Hse is the significant wave height 

estimated from the periodogram. 
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Table 4-16. Two-sided confidence intervals at the 95% level of the significant wave 

height Hs and the modal period Tm of the estimation point (buoy 4). 

Two-sided confidence intervals at the 

95% level 

Estimation point (Buoy 4) 

Estimation: Tme = 8.11 sec, Hse = 2.45 m 

NOAA observation: Tm = 8.0 sec, Hs = 2.4 m 

Lower modal period limit (TL) 7.96 sec 

Upper modal period limit (TU) 8.18 sec 

Lower significant wave height limit (HsL) 2.38 m 

Upper significant wave height limit (HsU) 2.50 m 

 

 

Figure 4-52. Two-sided confidence intervals at the 95% level of the estimation point 

(buoy 4) on the significant wave height Hs for the modal period Tm = Tme. 
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Figure 4-53. Two-sided confidence intervals at the 95% level of the estimation point 

(buoy 4) on the modal period Tm for the significant wave height Hs = Hse. 

 

As mentioned in Chapter 1, Altunkaynak and Ozger(2005) provided a standard 
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standard regional dependence function (SRDF) shows that locations in far distances have 
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compare with the estimations using the methodology proposed in this research.  The 

estimated significant wave height for point 1 defined in Figure 4-50 is 2.34 m which has 

an absolute relative error of 2.6 %, i.e. absolute value of (2.34 m - 2.4 m) / 2.4 m = 2.6 %. 
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Table 4-17. Estimation using standard regional dependence function (SRDF) for the locations defined in Figure 4-50. 

Station ID 
Significant 

wave height 

Distance 

(km) 

Standard 

distance (km) 

Semivariogram 

(SV) 
PCSV 

Standard 

PCSV 
SRDF 

44008: Buoy 4 (Estimation point) 2.4 m 0 0     

44011: Buoy 3 2.8 m 233.118 0.24 0.080 0.080 0.08 0.92 

44025: Buoy 2 1.5 m 823.597 0.84 0.405 0.485 0.49 0.51 

44009:Buoy 1 1.4 m 979.54 1.00 0.500 0.985 1.00 0 
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5. Contributions, Limitations, and Future Work 

5.1. Conclusions and Contributions 

Risk-based methods are required for marine and maritime systems designs.  

Characterizing the statistical uncertainties associated with the system is essential for 

risk-based designs.  The uncertainties for designing marine and maritime systems are 

embedded in the sea-state condition parameters and the modeling and prediction 

procedure.  This study provides a statistical framework to characterize the sea-state 

conditions and associate uncertainties in confidence intervals on the estimated 

parameters. 

Sea-state conditions are characterized by modal period and significant wave 

height which are two key parameters to represent the sea-state.  At locations where the 

buoy elevation time histories are given, the estimation confidence intervals capture the 

modal period and significant wave height values, which verify and demonstrate the 

accuracy of the methodology.  At locations of interest with no information provided, the 

sea-state conditions are interpolated from the nearby locations where the buoy data are 

given.  Hypothesis testing and goodness-of-fit demonstrate the statistical features and 

uncertainties in the sea-state parameters, the wave model, and the characterization and 

prediction process.  Verifications are taken place by utilizing a numerical wave 

simulation model called SWAN.  Results show that the confidence intervals of the 

parameter estimations capture the values generated by SWAN model.  That is, the 

proposed methodology is verified and demonstrated to provide accurate sea-state 

predictions.  The other verification example uses sea-state properties based on historical 
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data obtained from the National Oceanic and Atmospheric Administration (NOAA) 

website.  Spatial interpolation for the location of interest is presented in confidence 

intervals and verified by comparing with the NOAA observations.  This example 

provides a verification and validation for the methodology. 

Statistical and probabilistic methods are based on the assumption that the data are 

independent and representative.  Current practices do not make a distinction between the 

number of discretization points for numerical computations and the number of sampling 

points, i.e. sample size needed for statistical analysis.  Therefore, the correlation 

between data is discussed in this study.  Approaches to estimate the sample size of 

independent observations are provided and examined.  It is found that a series of 

independent samples has the interval between samples approximately the period of the 

series itself.  In addition to characterizing the sea condition in time and frequency 

domains, the spatial interpolation techniques such as semivariogram analysis and Kriging 

estimation are discussed.  In order to apply the semivariogram analysis and Kriging 

estimation, sufficient information on the field to establish the semivariogram model is 

required.  The spatial interpolation procedure used in this research is compared with 

multiple existing methods reported in the literature.  Comparisons show that the 

estimates reported herein have greater accuracy than the estimates by the existing 

methods.  Moreover, the proposed estimators do not require as much information from 

the field as the existing methods. 

This study provides methodologies for characterizing the sea-state conditions by 

estimating the sea wave parameters.  The methodology applies on the locations with 

given wave properties and interpolates the locations of interest with unknown 
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information.  The estimations take into account the uncertainties associated with the 

modeling and prediction processes and present the parameters characterizations in 

confidence intervals.  Further, if the intervals between samples are too small, the data 

are most likely correlated.  For intervals between samples too large, the information 

collected might not be sufficient.  The interval between samples discussed in this study 

provides a guideline on how often, in time wise, to collect samples in order to obtain 

independent and representative data.  Overall, the methodologies and discussions 

provided in this study can enhance the knowledge of the sea environment, provide 

statistical and probabilistic estimation framework, and improve the future risk-based 

marine and maritime designs. 

5.2. Limitations and Future Work 

This research is based on the assumption that the sea waves are stationary random 

processes.  The sea-state condition characterization and prediction provided accurate 

estimations at the observed and unobserved locations.  However, for extreme weather 

conditions such as storms, further examinations and modifications are required to ensure 

the achievement of accurate results at desired levels.  In addition, the sea-state 

characterization methodology could be utilized for studies of wave-structure interactions.  

Further analysis is needed to ensure the applicability. 
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Appendix A. 

Example output file from SWAN is shown as follows.  The output quantities 

include the coordinates of the locations defined for obtaining output quantities, the 

spectral frequencies and variance densities for each location. 

 

SWAN   1                                Swan standard spectral file, version 
$   Data produced by SWAN version 40.81                
$   Project: t5Trial1        ;  run number: t5   
LOCATIONS                               locations in x-y-space 
    49                                  number of locations 
      100.0000        0.0000 
      100.0000      150.0000 
      100.0000      300.0000 
      100.0000      450.0000 
      100.0000      600.0000 
          . 
          . 
          . 
      950.0000      600.0000 
      950.0000      750.0000 
      950.0000      900.0000 
AFREQ                                   absolute frequencies in Hz 
    32                                  number of frequencies 
    0.0521 
    0.0573 
    0.0630 
    0.0693 
    0.0763 
    0.0839 
      . 
      . 
      . 
    0.4241 
    0.4665 
    0.5132 
    0.5645 
    0.6209 
    0.6830 
    0.7513 
    0.8264 
    0.9091 
    1.0000 
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QUANT 
     3                                  number of quantities in table 
VaDens                                  variance densities in m2/Hz 
m2/Hz                                   unit 
   -0.9900E+02                          exception value 
CDIR                                    average Cartesian direction in degr 
degr                                    unit 
   -0.9990E+03                          exception value 
DSPRDEGR                                directional spreading                    
degr                                    unit 
   -0.9000E+01                          exception value 
LOCATION     1 
  0.4528E-12  263.7   54.0 
  0.2019E-09  265.3   54.0 
  0.2319E-07  265.8   53.7 
  0.9623E-06  266.6   53.3 
  0.3515E-01  322.0   39.1 
  0.2771E+00  322.4   37.1 
  0.9987E+00  322.7   34.8 
  0.2256E+01  323.2   31.8 
  0.5719E+01  324.2   27.6 
  0.9832E+01  325.1   25.1 
  0.4393E+01  326.3   23.8 
  0.2197E+01  327.9   22.8 
  0.1484E+01  329.9   21.3 
  0.1001E+01  331.6   20.0 
  0.6622E+00  332.6   19.2 
  0.4291E+00  333.2   18.8 
  0.2728E+00  333.4   18.5 
  0.1720E+00  333.4   18.4 
  0.1078E+00  333.3   18.4 
  0.6729E-01  333.0   18.5 
  0.4193E-01  332.7   18.6 
  0.2614E-01  332.4   18.7 
  0.1632E-01  332.1   18.8 
  0.1019E-01  331.8   18.9 
  0.6369E-02  331.5   19.1 
  0.3980E-02  331.1   19.3 
  0.2487E-02  330.7   19.5 
  0.1554E-02  330.2   19.7 
  0.9717E-03  329.6   20.0 
  0.6120E-03  328.9   20.3 
  0.3875E-03  328.2   20.6 
  0.2478E-03  327.2   20.9 
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Appendix B. 

The mean values of the significant wave height and modal period data obtained 

from the NOAA website are provided as follows.  The data are provided in the order of 

Buoy 1: Station ID 44009, Buoy 2: Station ID 44025, Buoy 3: Station ID 44011, and 

Buoy 4: Station ID 44008. 
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Buoy 1: Station ID 44009 
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Buoy 2: Station ID 44025 
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Buoy 3: Station ID 44011 
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Buoy 4: 44008 
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