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1. Introduction

1.1. Background and Needs

After 100 years since the tragedy of the maiden voyage of the Titanic, many ships
continue to sink and disasters continue to occur at sea. Despite the advances in ship
designs, many ships have foundered due to bad weather, negligence, human errors, and
the uncertainties of the sea environment, which have led to the loss of lives and economy
impacts.

Designing marine and maritime systems requires the probabilistic characterization
of sea waves in the time-history and spectral domains. These probabilistic models
include parameters that can be empirically estimated based on limited data in durations,
locations and applicability to particular designs. Characterizing the statistical
uncertainties associated with the parameters and the models is the essential step for
risk-based design methods. Cruz and Sarmento (2007) characterized sea-state by linear
wave theory approach and using boundary element method. Goff (2009) analyzed the
sea surface height noise for improving the altimetry processing algorithms.
Auto-covariance analysis was applied to decompose the noise into uncorrelated and
correlated components. It was found that the variance of the uncorrelated component is
related to significant wave heights. Hamilton (2010) presented a method to
characterizing spectral sea wave conditions by clustering the wave spectra.

Efforts are widely put into studies on the wave properties. However, the
uncertainties involved in the system and characterization and prediction processes are not

presented in the analysis procedure. A probabilistic framework is needed for



characterization and prediction of the sea environment based on statistical methods.
Statistical confidence intervals should be studied for system parameters, such as the
significant wave height and the modal period, as primary contributors to uncertainties
associated with system characterization and prediction. In addition, statistical methods
are based on the assumption that the data are independent and representative. Data
dependency should be clarified in order to perform statistical analysis. Further, wave
data variabilities present themselves in both temporal and spatial perspectives. A study
demonstrates the connection of data properties in time and space domains is needed to

enhance the knowledge of the applicability on estimation methods.

1.2. Related Research

Studies have been conducted to characterize the sea-state conditions which are
necessary for marine and maritime systems design and vessels travel response
estimations. Two key parameters to represent the sea-state characteristics are the modal
period and the significant wave height. Statistical properties of the distributions and
joint distribution of the wave modal period and the significant wave height have been
investigated and compared with observations, such as the studies of Longuet-Higgins
(1975, 1980), Hatori (1984), Mathisen and Bitner-Gregersen (1990), Sobey (1992),
Ferreira and Guedes Soares (2000, 2002, 2003), Rodriguez et al. (1999, 2001, 2002),
Goda et al. (2000, 2004), and Hou et al. (2006).

In addition, Forristall et al. (1996) showed that the maximum significant wave
height in a storm increases as the length of the samples from which the maximum
significant wave height is calculated decreases or the interval between samples decreases.

It was indicated that there is an important bias when the maximum significant wave

2



height in a storm is estimated from short samples. Rodriguez and Guedes Soares (2001)
investigated the dependency between wave heights and periods and compared the results
with the theoretical joint distribution of the wave height and period. It was found that
significant correlation between consecutive wave periods only presents in a swell
dominated sea state, and the superposition of a swell wave and a wind-sea wave system
enhances the correlation between successive wave heights. Wist, Myrhaug, and Rue
(2004) studied the statistical properties of successive wave heights and wave periods.
From their study, the distribution of the wave height given the previous wave height is
independent of the wave height prior to the previous wave height. The distribution of
successive wave periods can be estimated by a multivariate Gaussian distribution when
the corresponding wave heights are larger than the root-mean-square of the wave heights.

Some predictions of the wave characteristics were made on the theory of wave
grouping such as the work by Goda (1976), Kimura (1980), Longuett-Higgins (1984),
Sobey and Read (1984), Ochi and Sahinoglou (1989(1) and (2)) and Rodriguez, Guedes
Soares, and Ferrer (2000). Some other prediction techniques are summarized by Young
and Sobey (1981) such as the Sverdrup-Munk-Bretschneider curve, the Bretschneider's
hurricane wave curves, the Wilson's method for space and time varying winds, the
Pierson-Moskowitz spectrum, and the Jonswap/Ross tropical cyclone spectrum. Each
technique is applicable only on the conditions that the technique was developed.

Besides the studies focused on the wave modal period and the significant wave
height, Hamilton, Hui, and Donelan (1979) proposed a nonspectral model to explain the
statistical significance of the tail of the correlation function of wind waves and to obtain

masking functions for the computation of smoothed wave spectra. Akaike (1981)



developed a computer program and underlying methods to condense observational data
and predict the future behavior of locally stationary time series using least squares
computations and the concept of Bayesian modeling. Donelan and Pierson (1983)
showed that the sampling variability effects are present in spectral estimates computed
from wave time histories. They demonstrated that the theory of stationary Gaussian
processes provides accurate estimates of the sampling variability. Jensen and Vesecky
(1993) indicated that it is inadequate to use the auto-correlation function for
characterizing the ocean surface. Kazeminezhad et al. (2005) applied
Adaptive-Network-Based Fuzzy Inference System on wave parameters prediction.
Guedes Soares and Cherneva (2005) used the spectrogram based on the short-time
Fourier transform to study the time frequency evolution of the ocean wind wave
properties. Cruz and Sarmento (2007) characterized sea-state by linear wave theory
approach and using boundary element method. Hamilton (2010) presented a method to
characterize spectral sea wave conditions by clustering the wave spectra.

Properties in the sea environment have temporal and spatial variabilities. The
temporal variabilities are represented based on time series analysis. The studies
described above focused on the wave characteristics in time and frequency domains. On
the spatial perspectives, geographic techniques such as inverse weight factor,
semivariogram analysis, and Kriging estimation are often utilized for analyzing the
influence of locations of interest in terms of distance. The properties at unobserved
locations are estimated based on the properties and influence range of observed locations.

Matheron (1963) provided a procedure in mining reserve simulation studies which

is known as the semivariogram method. Based on the semivariogram method, Sen



(1989) proposed an approach called cumulative semivariogram which presents the
influence distance in a non-decrease model. The cumulative semivariogram is very
similar to the semivariogram model except taking cumulative summations. In addition,
a point cumulative semivariogram model was proposed by Sen (1992) to identify the
spatial behavior around a reference site. A point cumulative semivariogram is a
cumulative semivariogram with a reference site of interest. Sen and Sahin (2001)
applied this approach on estimating the solar irradiation value of any point from sites
where measurements of solar global irradiation already exist. Altunkaynak (2005)
suggested a modified model considering the trigonometric point cumulative
semivariogram for predicting significant wave height in a specific region. Altunkaynak
and Ozger(2005) provided a standard regional dependence function for significant wave
height assessment. This approach is based on the point cumulative semivariogram
modified by dividing it by the maximum value and subtracting from unity. Therefore,
the standard regional dependence function shows that locations in far distances have
lower influence on the point of interest compared with the locations in close distances
which have higher influence on the point of interest.

Regardless in time or spatial perspectives, the data, or the samples, used in the
estimations are assumed to be representative and independent in order to apply the
statistical methodologies. McCuen et al. (1988) addressed the needs to define the
spacing between test points required to reach a desired level of testing accuracy on
ultrasonic testing of bridge timber piles. Semivariogram analysis and Kriging
estimation were taken place to determine the changes in accuracy according to the

intervals between testing points. White and Ayyub (1990) also utilized the



semivariogram and Kiging technique for estimating the corrosion rate in steel plating to
develop sampling strategy. It was found that the benefit in taking more samples
decreases when the number of sampling reaches certain level which is related to the area
of the testing steel plate and the size of influence range. Ayyub and McCuen (1990)
demonstrated the number and location of sampling points for evaluating structural
strength on columns and slabs using semivariogram analysis and Kriging estimation.
Besides using the classic semivariogram model, Barry and Hoef (1996) proposed a
flexible variogram model for spatial prediction using the Kriging concept. They
claimed that the classic variogram models such as linear, spherical, exponential, etc.
might not represent the true variogram for the system and therefore lead to estimation
errors. The flexible variogram is in the form of cosine series. By engaging the moving
average concept, the modified flexible variogram has better fit at the origin.

The knowledge of sea-state conditions is essential for designing marine and
maritime systems. Current practices lack some important items required for providing
accurate characterization and prediction in the sea environment. Statistical
methodologies are needed to estimate the uncertainties involved in the modeling and
prediction procedures. The independency of the analyzed data needs clarification before
performing estimations. The determination of the sample size of independent
observations is required for applying statistical analyses. Spatial dependency and

estimation uncertainties need to be studied.

1.3. Research Purpose and Scope

This research provides a framework for characterizing and predicting the

statistical uncertainties of parameters for a stochastic system such as the sea environment.
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The statistical methodology characterizes the sea-state conditions in the time and spectral
domains based on sea surface elevation data. The proposed framework also provides
prediction of sea-state conditions and assesses confidence intervals for sea-state
conditions at points of interest in the sea environment including points along the travel of
cargo ships and naval combatants. This research also provides a method to determine
the sample size of independent observations which is essential for performing statistical
analyses. The sample size of independent observations determines the required interval
between samples for data collection. Moreover, for a dynamic and nonlinear
environment such as the ocean, spatial relationship of the sea-state condition is important
for predicting the sea-state conditions at locations of interest based on properties at an
observed point or points, such as the buoys. This research provides spatial interpolation
and dependency study using geographic techniques and data correlation functions.

In this study, a sea environment is characterized in the time and spectral domains.
The sea-state is usually characterized by two key parameters: the wave modal period and
significant wave height. Therefore, these two parameters are selected for estimations.
In the time domain, the wave modal period and significant wave height are estimated
from the wave surface elevation time-history. In the spectral domain, the sea wave
characteristics are presented in periodograms constructed from the time history using
auto-covariance function. Chapter 2 describes the spectral analysis background and the
assessment of the confidence intervals of the estimated parameters. The sample size
which represents the number of independent observations is studied and discussed in this
chapter as well. The interval between samples required for collecting efficient data to

achieve desired estimation accuracy can be determined from the estimated sample size.



A comparison for the sample size of a given time-history estimated by the assessment
approach provided in this research, the existing spectral analysis process, and the
time-history auto-correlation function is provided. Chapter 2 also provides descriptions
of geographic techniques for analyzing wave data in the spatial perspective.
Semivariogram analysis and Kriging estimation are introduced and discussed.

Chapter 3 presents the proposed framework and methodology. This research
provides statistical methods to assess confidence intervals for sea-state condition
prediction at points of interest in the sea environment including points along the travel
track of cargo ships and naval combatants. The sea-state characteristics for a give buoy
location can be obtained from its wave surface elevation time-history. Two key
parameters to describe the sea-state conditions are the wave modal period and the
significant wave height described in Chapter 2. To estimate the sea-state conditions for
locations of interest, the wave characteristics of surrounding observed locations are
utilized. Prediction is performed based on the inverse distance weight factors according
to the distance between the surrounding observed locations and the locations of interest
such as the points of travel track of seagoing vessels. Locations of interest are estimated
as intermediate values among surrounding buoys using inverse distance weight factors
applied on the buoys' periodograms. A periodogram describes the sea-state
characteristics in the frequency domain and is constructed from the time-histories.
Statistical hypothesis testing is performed to define the confidence intervals of these two
selected sea-state parameters for sea-state condition prediction. Several approaches of
defining the modal period are compared and discussed in this chapter using illustrative

examples. Chapter 3 also introduces a freeware called Simulated WAves of Nearshore



(SWAN) which simulates wave properties in a random field. Ris et al. (1997) and Booij
et al. (1999, 2001) indicated that the numerical wave model SWAN can provide accuracy
at desired level on wave simulations. The generated wave properties are used for
verifying the sea-state characterization and interpolation procedures proposed in this
chapter.

Chapter 4 provides numerical examples to illustrate the research methodology.
Given wave surface elevation time-histories at specific buoy locations, the sea-state
conditions described by the wave modal period and significant wave height are
determined from these time-histories. Periodograms of these buoys are constructed
from their time-histories, and the sea-state predictions for points of interest are performed
using these surrounding buoys' periodograms along with the distances between the points
of interest and these buoys. Predictions are presented in confidence intervals of the
estimated parameters. Verification of the methodology is provided in this chapter as
well using wave properties generated by SWAN as well as observations from the NOAA
(National Oceanic and Atmospheric Administration) website. Chapter 5 provides the

conclusions of this research.

1.4. Notations

C = auto-covariance function

d = distance between buoy and point of interest
E[] = expected value of the term inside the brackets
Err = error square per location

f = wave spectrum



H; = significant wave height

Hy; = significant wave height from time history

H;, = estimated significant wave height of track point

H = lower confidence limit of significant wave height

H,y = upper confidence limit of significant wave height

LCL = lower confidence limit

UCL = upper confidence limit

M = truncation point; the number of auto-covariance coefficients considered, and

also the number of discretized points for the periodogram

N = number of discretized points

n = sample size of independent observations

Pdg = periodogram

2 = variance

T, = wave modal period

T = wave modal period from time history

The = estimated wave modal period of track point
T, = up-zerocrossing period

T, = lower confidence limit of wave modal period
Ty = upper confidence limit of wave modal period
var[ ] = variance of the term inside the brackets

wb = weight factor

) = angular frequency

7 = expected value
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p = auto-correlation function

\ = degrees of freedom
Ak = lag window
£ HP™m M = maximum spectral frequency estimated by different approaches
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2. Time and Spatial Data Analyses

2.1. Random Process

A random function of a time parameter is called a random process which can be
denoted as x(¢). x(¢) is a random, time-dependent quantity and represents one sample out
of infinite possible samples. A collection of such samples is called an "ensemble,"
denoted as {x(r)}. Each random function x(k)(t) is a random process having probability
density function p,*'(x), as shown in Figure 2-1. At a specific time, such as 71, the
density function for the ensemble can be expressed as p.(x,t;). Figure 2-1 illustrates the

random process and ensemble.
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Figure 2-1. Representation of a random process x(f) and the ensemble {x(?)}, i.e. each

x(k)(t) is a sample of the ensemble.
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2.2. Stationary and Ergodic

For a random process, if the statistical characteristics do not change with time, the
process is called a stationary random process. In other words, if a process is stationary,
the probability density functions at different times, say #;, t> and so on, would all be the
same. It has been found experimentally that the sea surface elevation is a stationary
random process for short term observations, i.e. up to a few hours (Hughes, 1988), even
though the random process x(¢) is a function of time.

Since a random process is a function of time, there are two ways to calculate the
statistical characteristics. They can be calculated over all of the samples of the
ensemble at a specific time, say 71, which is referred to as ensemble averages, or they can
be calculated over all time from -oo to oo for a particular sample, say x'"(¢), which is
referred to as temporal averages. In general, these ensemble and temporal averages
would be different; however, for many random processes including ocean waves, the
temporal averages computed from a single sample are equal to the ensemble averages.
This type of processes is called ergodic process. An ergodic process means that a single
sample x() is typical enough to represent the entire process. This condition implies that

an ergodic process must be stationary; while a stationary process might not be ergodic.

2.3. Auto-covariance Function

The auto-covariance function is the means to measure or represent the degree of
association between values of the random variable x(7) at times differing by a specific

interval 7. For a stationary ergodic process, the expected value g, is a constant for all
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times ¢, and the auto-covariance function is the expect value of the product of any two
values of x(7), e.g. x; = x(t1) and x, = x(f,) = x(t1+ 7), expressed as follows:

C(1) = E[(x(6) — W (x(t + ) — W] = Elx1x,] — 13 (2-1)
The auto-covariance function at the origin, expressed in Equation 2-2, is the variance of
the process. For a zero mean process, i.e. u, = 0, the auto-covariance function at the
origin is the mean square.

C(0) =var[x(®)], u, # 0

C(0) =E[x*(®)] , uy=0 (2-2)

In addition, a stationary process satisfies the condition expressed as follows:
E[(x(t)) —w(x(t; + ) — w)] = E[(x(tz) — ) (x(t; + 1) — p)] (2-3)
According to Equation 2-3, the auto-covariance function C(7) is independent of the
starting point # and only depends on the interval 7. The commutative property of x;*x,
also leads to the relationship as follows:
C() = E[(x(t) — ) (x(ty + 1) — )] = E[(x(t1) — 1) (x(t2) — ]

= E[(x(t2) — W (x(ty) — ] = E[(x(e2) — ) (x(te; — ) — W] =C(-1) (2-4)
Equation 2-4 indicates that the auto-covariance function is an even function of 7.

There is a function closely related to the auto-covariance function, which is call
the auto-correlation function. When C(0) > 0, the correlation between two points
separated by 7 is defined as

p() = C(x)/C(0) (2-5)
Equation 2-5 is called the auto-correlation function. According to the definition in
Equation 2-5, the auto-correlation function has the value equals to one at the origin

expressed as follows:
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C(t=0) __
c

p(t=0)= 1 (2-6)

Two extreme cases of the auto-covariance functions are: (1) the values of a
function x(7) at different times are completely unrelated, and (2) each sample x(¢) is
identical thus leads to perfect correlation. The former case which has the completely
unrelated relationship between the values of a function at different times would have the
auto-covariance value at the origin as the series variance while the auto-covariance values
at all other times are zero. The latter case which has the perfect correlation would have
the auto-covariance function as a constant which equals to the series variance value.
Usually the relationship would be in between the two extreme conditions. That is, for
small z, the value x(#+7) can be in a range of values that do not significantly differ from
x(t), and for large 7, the degree of association between x(¢) and x(#+7) is very low.

In the frequency domain, if a process is made up of components of many different
frequencies, the spectrum is quite wide due to the wide range of frequencies. The
periodicity of the process is very little so that the auto-covariance function would have
the shape such as Figure 2-2 that the values at times expect the origin are practically
zeros and the value at the origin is the series variance. On the other hand, if the
frequencies of a process are within a narrow range which is small compared with the
magnitude of the center frequency of the range, the spectrum would have a single narrow
peak at the center frequency of the range, denoted as wy. The periodicity would present
regular peaks in the auto-covariance function such as Figure 2-3.

The auto-covariance function plays an important role in the subsequent sections.
The auto-covariance function connects the random process from the time domain to the

spectral domain. In addition, the dependency between data determined by the
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auto-covariance function leads to the estimation of the sample size of independent
observations which provides a guideline of sampling. The sampling guideline is
denoted as the interval between samples which determines the interval between each
independent sample. Table 2-1 summarizes the temporal and ensemble averages such
as the mean and auto-covariance function for stationary and ergodic, stationary and

non-ergodic, and non-stationary random process conditions.
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Figure 2-2. Illustration of the auto-covariance function for a wide-band process.
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Figure 2-3. Illustration of the auto-covariance function for a narrow-band process.
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Table 2-1. Summary of the mean and auto-covariance function for random process {x(¢)}.

Temporal averages

Ensemble averages

Random data classification
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2.4. Time Series Analysis

2.4.1. Spectral Analysis

The spectral analysis is a modification of Fourier analysis making it suitable for
stochastic rather than deterministic functions of time. It is assumed that the data are a
time series made with N observations at equal time intervals. The number of
observations, N, is assumed to be an even number, although this assumption is not a
necessary condition. The N observations are denoted by (xy, x, ..., Xi, ..., Xy) or by {x;},
where x; = x(#;). By applying spectral analysis on the time series, the characteristics of a
time series can be expressed in the frequency domain. It should be noted that the
random process discussed here is assumed to be a stationary ergodic process unless
specifically indicated.

As a basis of the spectral analysis, Section 2.4.2 introduces the simple sinusoidal
model as well as the lowest and the highest frequencies for the spectral function to
present a discrete random process.  Further, the periodogram which is an application of
the simple sinusoidal model is presented in Section 2.4.3. Periodogram analysis shows
how the variance of a time series distributes over frequencies. There are some existing
lag windows or spectral windows used to smooth the periodogram and eliminate the
spurious peaks in the periodogram. The lag windows are applied on auto-covariance
functions while the spectral windows are applied on the spectral functions. A few
commonly used lag windows are introduced in the subsequent section. Smoothed, or

modified, periodograms are also discussed.
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In addition, the confidence intervals for the ratio of the periodogram and its
original spectrum are described in Section 2.4.4. To estimate the confidence intervals,
the number of degrees of freedom, or the sample size, is needed. Current practices to
compute the degrees of freedom use the number of observations and the lag window
applied on the auto-covariance function. From statistical perspectives, the degrees of
freedom, or the sample size, should be the same for the same time series of the same
duration regardless how they are discretized. For a time series having independent
observations, the sample size is the number of observations; however, if the observations
are correlated, it is necessary to obtain the number of independent observations before
performing any statistical analysis or applying statistical methods. Hence, the number
of independent data points, or the sample size of independent observations, is studied and

compared with the current practices in Section 2.4.5.

2.4.2. Simple Sinusoidal Model

The simple sinusoidal model describes the time series as a deterministic
sinusoidal component at frequency @ with a random error term ¢.  The following form
can be used to present the simple sinusoidal model:

X¢ =a+ b cos(wt) + ¢ * sin(wt) + & 2-7)
in which ¢, is the white noise, and a, b and ¢ are the parameters to be estimated from data
using the least square concept.

For a discrete process measured at unit intervals without loss of generality, the
spectral function argument can be restricted to the frequency range (0, 7), where the
upper limit 7 is so-called the Nyquist frequency. The Nyquist frequency presented as @

= & is the highest frequency that could be fitted into data. Assuming measurements
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taken at a unit time interval Az, the minimum number of observations to complete one
cycle is two to obtain meaningful information from a set of data, as illustrated in Figure
2-4. Therefore, the highest frequency (Nyquist frequency) can be found by equating the
number of observations, 2, to the cycle length 2z divided by the frequency w as 2 =2z /

o which leads to @ =x.  On the other hand, the lowest frequency, or the fundamental
frequency, is the one that completes one cycle in the entire duration of the observations.
The lowest frequency as shown in Figure 2-5 can be found by equating the number of
observations, N, to the cycle length 2z divided by the frequency w as N =27/ ®. Hence,
the lowest frequency can be expressed as w =27/ N.

Since the lowest frequency, or fundamental frequency, depends on the number of
measurements, N, the lower the frequency we are interested in, the longer the time period
over which we need to take observations for a unit time interval Az. However, the
higher the frequency we are interested in, the larger the number of measurements we
should take over certain duration. In other words, the more frequently measurements

should be taken.

Highest frequency case (Nyquist frequency):
Frequency w = Cycle length / Number of observation =27/ 2At =x
(At = unit time interval)

Observations: 1 2 N-1 N
0 At 2At (N-D)At  NAt
k——one cycle—

Figure 2-4. Illustration for the highest frequency, i.e. Nyquist frequency.
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Lowest frequency case (fundamental frequency):
Frequency @ = Cycle length / Number of observation =2z / NAt= 2z /N
(At = unit time interval)

Observations: 1 2 N-1 N
-—e—— & — -:+ — o ——@——» Time
0 At 2At (N-1)At  NAt
K one cycle 3

Figure 2-5. Illustration for the lowest frequency, i.e. fundamental frequency.

2.4.3. Periodogram Analysis

The characteristics of a time series can be presented in the frequency domain by
applying spectral analysis on the time series as described by Chatfield (2004). A
periodogram shows how the variance of a time series is distributed over frequencies. A
discretized time series {x;} can be expressed using a finite Fourier series representation as

follows:

Xe = ay+ Zj: (ap cos (%) + b, sin (%)) +ayspcos(nt),t =1,2,..,N (2-8)

in which N is the number of discretized points of the time series, and the coefficients are

given by
N
1
aO = Nz xt
t=1

N
2 2mpt _
ap =5 E t=1xtcos( N ) , p=1L12,...,(N/2-1)
2 N 2mpt
b, =7 E t=1xtsm(T) , p=1L12,...,(N/2-1)
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If the series {x;} is taken from a discrete pure random process where the
observations are independent and normally distributed variables expressed as N(u, o),
the coefficients a, and b, are independent and normally distributed, and each one has a
zero mean and 26°/N variance. The periodogram, denoted as Pdg, can be calculated

from the time series data as follows:

(Z Xt cos(%))2 +(Z Xt sin(zfvpt
Nm

) , P<N/2 (2-9)

Pdg(w,) =

Moreover, the periodogram is the Fourier transform of the auto-covariance function

expressed as

Pdg(w,) = =(Co + 2 Z¥=1 € cos(wpk)) (2-10)
in which {Cy} is the auto-covariance coefficient at time lag k defined as
Cro =~ 2 (o0, — 2) (i — %) (2-11)
By the fact that the periodogram follows a chi-square distribution with two
degrees of freedom and the variance of a two degrees of freedom chi-square distribution
is four, the variance of the periodogram is a constant independent of the sample size.
Hence, the periodogram requires modification to enhance estimation and prediction.
One approach to modify the periodogram is to apply a lag window on a truncated

auto-covariance function as follows:
Pdg(w,) = = (AoCo + 2 Zh; 1 Cy cos(wpk)) (2-12)

in which {Cy} is the auto-covariance coefficient at time lag k defined in Equation 2-11,
{4} is a set of weights called the lag window, and M(<N) is the truncation point. The
modified periodogram in the form of Equation 2-12 is a smoothed periodogram

constructed by applying a lag window {/;} on the raw periodogram expressed as
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Equation 2-10. There are some lag windows available such as the Parzen window, the
Tukey window and the Hamming window. The Parzen and Tukey windows are the two
best-known lag windows. The Parzen window is used in this study because of its
non-negative nature, and defined as follows:
1—6(k/M)?+6(k/M)? 0<k<M/2
A = 2(1—k/M)3 M/2<k<M (2-13)
0 M<k
Because the precision of {Ci} decreases as k increases since the coefficient is

based on fewer terms, it is reasonable to apply less weight to the values of {Cy} as k
increases. It should be noted that the auto-covariance values in the range of M <k <N
are no longer used. The choice of the truncation point M can be subjective or based on
common practices. A smaller value of M would result in smaller variance of the
periodogram, but some features of the spectrum might be smoothed out if the value of M
is too small. However, if the value of M is too large, the periodogram would have too
many peaks which might be spurious. A compromise value is chosen in this study as

(Chatfield, 2004):

M = 2+/N (2-14)

2.4.4. Confidence Intervals
The periodogram as Equation 2-12 can be written as the following form
Pdg(w,) = %(Z%’:_M Ay cos(wpk)) (2-15)

Jenkins and Watts (1968) showed that the quantity

vPdg(w)

@) (2-16)

is approximately chi-square distributed with v degrees of freedom given by
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_ 2N _ 2N
- 2 — 2 2
TR vk AoZ+2 3R Ay

v 2-17)

in which Pdg is the periodogram, fis its original spectrum, N is the number of discretized
points, M is the truncation point defined in Equation 2-14, and {44} is the lag window
such as the Parzen window defined in Equation 2-13. The 100(1-a)% confidence

interval of the quantity defined in Equation 2-16 can be expressed as

Pr(;(z a<w<xza)=1—a (2-18)

U,l—E f(a)) 'U,E
The 100(1-a)% confidence limits, lower confidence limit (LCL) and upper confidence

limit (UCL), for f{w) at different frequencies w are then given by

Pd
LCL =" Xfi‘") (2-19)
vz
UCL = %9(‘:) (2-20)
U,I—E

The confidence interval defined by Equations 2-18, 2-19, and 2-20 represents the

point-estimation for f(w) at frequency .

2.4.5. Sample Size of Independent Observations

For a time series that has independent observations, the number of discretized
points, N, can be treated as the sample size. However, when the time series
observations are correlated, it is necessary to obtain the sample size which represents the
number of independent observations, denoted as n. Equation 2-21 described in Wei
(2005) shows an estimator of the series variance. Equation 2-22 demonstrates the
estimation from the definition of the variance of series variance for the sample size n

which represents the number of independent observations.
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var[s?] = 2{c,? + 22)1 (1 - %) 62} (2-21)

N

s* _ k
varls?] =2 = a7 + 2535 (1- ) o)
g4 (2-22)

oot +2 Nzt (1-) e’

in which C is the auto-covariance function, N is the number of discretized points of the

n =

time series, and §? is the variance for the time series.

For the same time series of the same duration, the sample size or the degrees of
freedom should be the same or vary within a limited range and should not be affected by
how the time series is discretized. For instance, if a buoy records the sea surface
elevation for an hour, the results presented in every minute have 60 data points; while
results presented in every 30 seconds have 120 data points. These two sets of data are
from the same buoy and cover the same period of time. In other words, these two sets
of records represent the same event. The sample size which is the number of
independent observations should be the same for these two sets of data in spite of the
number of their discretization points.

Since the confidence intervals are evaluated based on the sample size which
indicates the independent number of observations, the degrees of freedom v expressed by
Equation 2-17 needs to be modified and replaced by n obtained from Equation 2-22. An
illustrative example is shown below to demonstrate the necessity of modifying the
degrees of freedom computation shown in Equation 2-17.

Table 2-2 shows the modal periods and significant wave heights used to simulate
the time histories for three buoys. The simulated time histories have the same duration
of 1500 seconds. Each of these three time histories is discretized by various time

increments summarized in Table 2-3. The discretization time intervals vary from 0.25
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sec to 1.5 sec, which lead to the number of discretized points between 6000 and 1000
points. The degrees of freedom, or sample size, computed by Equation 2-17 is denoted
as the "Lag window method" since it is based on the lag window and the time history
discretization points N; while the sample size estimated by Equation 2-22 is denoted as
the "Proposed method." The sample sizes estimated by Equation 2-22, the proposed
method, are different for three different buoys since Equation 2-22 is based on the time
series variance, the number of discretization points N and the time series auto-covariance
function.  Although the numbers of discretization points are the same for the three
buoys, the time series variances and the auto-covariance functions are different.
Therefore the sample sizes estimated by Equation 2-22, the proposed method, are
different for the three buoys. The sample size, or the degrees of freedom, computed by
Equation 2-17, the lag window method, is the same for three buoys since it depends on
the number of discretization points and the lag window which are the same for the three
buoys. Figure 2-6 shows that the sample size, or the degrees of freedom, obtained from
Equation 2-17, the lag window method, increases when the number of discretization
points increases. On the other hand, the sample size obtained from Equation 2-22, the
proposed method, varies within a limited rang and does not increase with an increasing

number of discretization points.
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Table 2-2. Locations, modal periods and significant wave heights of three buoys used to

simulate the time histories.

Buoy | x-coordinate y-coordinate Modal period Significant wave height
1 0Om 800 m 7 sec 2.0 m
2 350 m 500 m 6 sec 1.0m
3 150 m 0Om 8 sec I.5m

Sample size of independent
observations (n)

Time histories duration = 1500 sec

- + - Lag window_Buoys 1,2, 3

—*— Proposed method_Buoy1

—#— Proposed method_Buoy?2
—&— Proposed method_Buoy3

250 T [ ]
e X R

200 i — = -t

150 —

100 e

50 S
L 4
0
0 2000 4000 6000

Number of discretization points (IN)

Figure 2-6. Sample size (or degrees of freedom) estimations using lag window and

proposed

methods.
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Table 2-3. Sample size estimations using the lag window method, the proposed method and the auto-correlation function.

Time history duration = 1500 sec

Sample size of independent observations (n)

Time Number of Lag window method Proposed method Auto-correlation function
increment | discretization points (N) Buoys 1, 2 and 3 Buoy 1 Buoy 2 Buoy 3 Buoy 1 Buoy 2 | Buoy3
0.25 sec 6000 202 225 232 189 300 357 263
0.5 sec 3000 101 225 232 189 300 357 263
1.0 sec 1500 51 225 232 189 300 357 259
1.5 sec 1000 34 222 228 191 288 349 250
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Table 2-3 also provides the sample size estimations using the auto-correlation
function. As demonstrated in Section 2.3, the auto-covariance function represents the
degree of association between data defined in Equation 2-1. The auto-correlation
defined in Equation 2-5 is the auto-covariance function normalized by the series variance.
When the auto-correlation function approaches zero, the data estimated are not correlated
with each other. That is, the observations become independent at which the
auto-correlation function approaches zero. Figure 2-7, Figure 2-8 and Figure 2-9 show
the first 10 seconds time lags of the auto-correlation functions for the buoys 1, 2 and 3,
respectively, defined in Table 2-2.  The case of time increment of 0.25 sec is shown,
which is the case of 6000 discretization points. The sample sizes summarized in Table
2-3 are evaluated by indicating the time lag of the second zero-crossing point of the
auto-correlation function. For example, if the second zero-crossing of the
auto-correlation function is at 5 seconds, the sample size is estimated by dividing the total
duration 1500 seconds by 5 seconds, which leads to the a sample size of 300. Table 2-3
shows the comparison of sample size estimations using the lag window method defined
in Equation 2-17, the proposed method defined in Equation 2-22 and the auto-correlation
function. The comparison includes cases of various discretization points of 1000, 1500,
3000 and 6000 which are determined by dividing the total duration 1500 sec by the time
increments of 1.5, 1.0, 0.5 and 0.25 sec, respectively. The results evaluated using the
auto-correlation second zero-crossing locations do not depend on the number of the time
series discretization points; however, there are differences between the estimations using
the proposed method based on Equation 2-22 and the estimations using the

auto-correlation function.
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Figure 2-7. Auto-correlation function for buoy 1 at the first 10 seconds time lag.
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Figure 2-8. Auto-correlation function for buoy 2 at the first 10 seconds time lag.
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Buoy 3 _ duration= 1500 sec, At = 0.25 sec

- /1N
> DA AR
os LI /

Auto-correlation function

-10 -8 -6 4 -2 0 2 4 6 8 10
Time lag (sec)

Figure 2-9. Auto-correlation function for buoy 3 at the first 10 seconds time lag.

Before getting into the discussion of the different sample size estimations results
obtained by the proposed method and the auto-correlation function, it should be noted
that there is the other method similar to Equation 2-22 to estimate the sample size of
independent observations. While Equation 2-22 estimates the sample size of
independent observations from the variance of the time series variance, the properties of
the variance of the auto-correlation function can also be utilized for the sample size
estimation.

An auto-correlation function {p;} is defined in Equation 2-5. For a random
process with independent observations, the auto-correlation function value is one at the

origin and zero for all non-zero values of lag k expressed as follows:
1, k=0
P = {0 k% o} (223
With a large number of observations, N, the variance of the time series auto-correlation

function for a random process with independent observations is approximately distributed
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with a zero mean and variance 1/N, i.e. N(O, 1/N). If the observations are correlated, the
following expression can be used to determine the sample size n of independent

observations:

1 - k| 1
var[p] = ;{poz +2 ’kv=11( - ;) pkz} = - (2-24)
in which py is the auto-correlation function at lag k and py is that at the origin. Based on
Equation 2-24, the sample size of independent observations, n, can be estimated as

follows:

N
{poz+2 2Nz (1-)o2)

(2-25)

It should be noted that Equations 2-22 and 2-25 lead to the same estimation results for the
sample size of independent observations n. Therefore, the "Proposed method" can be
referred to either Equation 2-22 or Equation 2-25.Background Problems

Estimations for the sample size of independent observations provided a guideline
of the number of observations required to obtain independent and representative data.
However, it would be easier to understand if the sampling recommendation is given in a
way such as collecting one sample every second. Equation 2-26 provides the required
interval between samples to obtain independent data. The interval between samples is
determined by dividing the number of discretization points by the sample size of
independent observations and multiplying by the discretization increment as the

following form:

Interval between samples = %At (2-26)

33



The sample size of independent observations can be estimated by either Equation 2-22 or
Equation 2-25.

Since the sample size of independent observations differs for different buoys as
shown in Table 2-3, it would be useful to present the interval between samples in terms
of the modal period T;, of the buoy itself. Hence, Equation 2-26 can be re-written as

follows:

N
Interval between samples = (’;—t> * T, (2-27)

m

Equation 2-27 determines the interval between samples based on the modal period 7, of
the series analyzed, which provides better demonstration on how to sample in order to
obtain independent observations. The intervals between samples for the three buoys
defined in Table 2-2 are estimated and the results are summarized in Table 2-4.
According to the sample size shown in Table 2-3 estimated using the lag window method
defined in Equation 2-17, the proposed method defined in Equations 2-22 and 2-25 and
the auto-correlation second zero-crossing points, the interval between samples can be
computed by Equation 2-26. For example, the estimated sample size of independent
observations n is 225 for buoy 1 with time series increment 0.25 sec and the number of
discretization points 6000, therefore, the interval between sample is calculated as (N =
6000) * (At =0.25sec) / (n =225) = 6.7sec. Table 2-4 also provides the intervals
between samples as ratios of the modal period defined in Equation 2-27. Considering
buoy 1 for example, the interval between samples calculated as 6.7 sec can be presented

by 6.7sec / (T, =7.0sec) * T,, =0.95T,,. The intervals between samples in the form of
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Equation 2-27 are shown in parentheses. The results show that the intervals between
samples are approximately 1.0 7).

As mentioned previously, the sample size of independent observations n
estimated by the proposed method, Equations 2-22 and 2-25, and by the auto-correlation
function second zero-crossing points show different results. For a random process, the
auto-correlation function would stay within its standard deviation range during the
beginning time lags. The auto-correlation functions for buoy 1 of various intervals
between samples are shown in Figure 2-10 through Figure 2-17. The auto-correlation
standard deviation is shown in dashed lines and is denoted as STD(corr). Based on
Table 2-2, the modal period for buoy 1 is 7 sec. The auto-correlation function fluctuates
exceeding its standard deviation for the case of the interval between samples as 6 sec
shown in Figure 2-10. The cases of the intervals between samples as 6.5 sec, 7 sec and
7.5 sec show that the auto-correlation functions stay within the range of its standard
deviation. As the interval between samples increases, such as the 8 sec, 8.5 sec and 9
sec cases, the auto-correlation functions fluctuate exceeding its standard deviation again.

According to Table 2-4, the interval between samples is approximately the modal
period for obtaining independent samples. The auto-correlation functions shown from
Figure 2-10 through Figure 2-17 verify the estimations based on the interval between
samples defined in Equations 2-26 and 2-27. In other words, the proposed method for
estimating the sample size of independent observations determined in Equations 2-22 and

2-25 is verified.
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Table 2-4. Estimations for interval between samples using the lag window method, the proposed method, and the auto-correlation

function.

Time history duration = 1500 sec

Interval between samples (sec)

Time Number of Lag window method Proposed method Auto-correlation function
increment | discretization points (N) Buoys 1, 2 and 3 Buoy 1 Buoy 2 Buoy 3 Buoy 1 Buoy 2 Buoy 3
6.7 6.4 7.9
0.25 sec 6000 7 5.0 4.2 5.7
(0.95T,) | (1.07 T,n) | (0.99 T,)
6.7 6.4 7.9
0.5 sec 3000 15 5.0 4.2 5.7
(0.95T,) | (1.07 T,n) | (0.99 T,)
6.7 6.4 7.9
1.0 sec 1500 29 5.0 4.3 5.8
(095T,) | (1.07 T,n) | (0.99 T,
6.8 6.5 7.8
1.5 sec 1000 44 5.2 4.3 6.0
(096 T,) | (1.09 T, | (0.98 T,
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Figure 2-10. Auto-correlation function of buoy 1 for the interval between samples of 6
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Figure 2-11. Auto-correlation function of buoy 1 for the interval between samples of 6.5

SEC.
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Figure 2-12. Auto-correlation function of buoy 1 for the interval between samples of 7

S€cC.
Interval between samples =7.5 sec —— Auto-correlation
——— STD(corr)
g !
S os N\
= : / N
L; ] ____;4________¥t_.__ 1
.8 0 Eo—fF—C3—f—=—Fo=F =t =—fF3=-£=
k=
S 05
5
Z 1
<:C) -50 40 -30 20 -10 O 10 20 30 40 50

Time lag (sec)

Figure 2-13. Auto-correlation function of buoy 1 for the interval between samples of 7.5

SEC.
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Figure 2-14. Auto-correlation function of buoy 1 for the interval between samples of 8

SecC.
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Figure 2-15. Auto-correlation function of buoy 1 for the interval between samples of 8.5

SEC.
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Figure 2-16. Auto-correlation function of buoy 1 for the interval between samples of 9

SecC.
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Figure 2-17. Auto-correlation function of buoy 1 for the interval between samples of 9.5

SEC.
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2.5. Spatial Data Analysis

2.5.1. Semivariogram

Recalling the auto-covariance function demonstrated in Section 2.3, the
auto-covariance function is the means to measure or represent the degree of association
between values of the random variable x(7) at times differing by a specific interval z. In
the stationary random field, the degree of association between locations in the field can
be demonstrated in the same way as the auto-covariance function defined in Equation 2-1
except the times denoted as #; are now locations denoted as s;. The distance interval h
separating the two locations replaces the time interval z.  While the auto-covariance
function is the term used in the time field, it is sometimes called the covariogram in the
geographical field. The correlation between two points separated by a distance 4 is
called the correlogram while it has the name as auto-correlation function in the time field.

The variance of the difference between two locations s; and s, is called a

variogram and can be defined as follows:

2y(s1,5,) = varly(sy) — y(s)] = E[(y(s1) = ¥(55)) = (u(s1) — ()] (2-28)
The function y(s;, s2) is called a semivariogram and is closely related to the covariogram
(or auto-covariance function). For a stationary field, the variogram between two points
separated by a distance s can be written as follows:
2y(s,s + h) =y(h) =varly(s) —y(s + W] = E[y(s) —y(s + B)]?

= var[y(s)] + var[y(s + h)] — 2cov[y(s),y(s + h)] (2-29)
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Based on the stationary property, the variance does not depend on the location s, hence
the variances at s and at s+h are the same. Equation 2-29 can be re-written as the
following form:
y(h) = C(0) + C(0) — 2C(h) = 2[C(0) — C(h)] (2-30)
By dividing Equation 2-30 by two, the semivariogram is defined as follows:
~y(h) = C(0) - C(h) (2-31)
For a given random process such as wave surface elevation shown in Figure 2-18,
the covariogram (or the auto-covariance function) is presented in Figure 2-19. The
semivariogram values at different separating distances can be estimated using Equation
2-28 and is shown in Figure 2-20. According Equation 2-31, the semivariogram can
also be estimated from the covariogram (or auto-covariance function). Figure 2-21
shows the comparison of the semivariograms estimated from the given random process
using Equation 2-28 and from the covariogram (or auto-covariance function) of this
process using Equation 2-31. The comparison shows that these two semivariograms
agree well in the beginning. When the distance increases, the one estimated from the
random process using Equation 2-28 fluctuates while the one estimated from the
covariogram using Equation 2-31 approaches the variance. This is because that the
covariogram values tend to approach zero when the distance increases since the degree of
association between the estimated two points reduces. Hence, the semivariogram
estimated from the covariogram would approach the variance of the random process with

the increase in distance.
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Figure 2-18. A random process of significant wave height.

Covariogram
(Auto-covariance
function)

NN\ U/

T \ /Y

A4

A4

-1200

-900

-600 -300

0

300 600

Distancelag(m)

900

1200
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Figure 2-20. Semivariogram for the random process shown in Figure 2-18.
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Figure 2-21. Semivariograms estimated from the given data using Equation 2-28 and
estimated from the covariogram (or auto-covariance function) of the data using Equation

2-31.

Variograms are often described by parameters such as the sill, denoted as y,, and
the radius of influence, denoted as r. In a semivariogram model, the semivariogram
value increases when the distance increases. When reaching certain distance, the
semivariogram value reaches its limit. The variance of the difference between analyzed

locations becomes negligible from this distance and beyond. The semivariogram value
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at this limit is called the sill (y,), and the distance of reaching this limit is called the radius
of influence (r). Similar to the curve fitting for a set of data, there are some
semivariogram models, such as linear model, exponential model, spherical model, etc., to
represent the sample estimate. The spherical model is often used and can be expressed
as follows (described by McCuen and Snyder, 1986):
y(h) =5 [ﬂ - (2)3] hsr (2-32)
y(h) = v, yh>r
in which y, is the sill, r is the radius of influence and 4 is the distance. Figure 2-22 is an
illustrative spherical model with the sill (y,) of 0.1 and the radius of influence (r) of 650
m. If the type of model, the sill and the radius of influence are known, a semivariogram
can be determined and spatial predictions can be performed.

According to Equation 2-1, when the distance 4 approaches infinity, the
covariogram (or auto-covariance function) tends to approach zero. Given a random
process, the semivariogram can be estimated based on the covariogram (or
auto-covariance function) by using Equation 2-31. Therefore, the semivariogram value
approaches the series variance when the distance & approaches infinity, i.e. y(h—o0) =
C(0). In other words, the sill value y, is the variance of the process, i.e. y.= C(0). By
the fact that the sill value y, approaches the variance of the random process, the radius of
influence r can be determined. Figure 2-23 shows an illustrative example to obtain the
radius of influence r from the series covariogram and the series variance. The radius of
influence can be determined by the steps as follows: (1) indicate the series variance on
the semivariogram value axis; (2) draw a horizontal line from the semivariogram axis

which indicates the series variance value to meet the semivariogram curve; (3) draw a
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vertical line from the point at which the semivariogram curve was met to the distance
axis; (4) locate the point on the distance axis which meets the vertical line coming down

from the semivariogram curve as the radius of influence.
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Figure 2-22. Illustration of the sill y, and the radius of influence r for a spherical

semivariogram model.
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Figure 2-23. Determination for sill and radius of influence from the covariogram and the

variance.

2.5.2. Kriging

Kriging is a technique used to interpolate the value of variables of interest at an
unobserved location from observations of the interested variables at nearby locations.
The variables of interest are functions of geographic locations. Estimation by Kriging is
to apply weights on the variable values at observed locations to estimate the variable
value at the unobserved location. The weight should be inversely proportional to the
distance separating the estimated unknown location and the location that the weight
applies on. That is, the more weight should be applied on the locations which are
nearby while the less weight should be applied on the locations which are far away. The
weights for the Kriging estimation can be denoted as wk;. The sum of the weights

equals one expressed as:

Xt wk =1 (2-32)
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in which m is the number of observations the weights applied on. The estimation by
Kriging technique has the following form:

Y =2 wki*y; (2-33)
in which ¥ is the variable at the unobserved location sy, y; is the variable value at
location s; and wk; is the weight applied on the variable value at location s;. The weights

wk; are unknown and are estimated as follows:

(a+ Zﬁl(Wki *y(sy, 8 )) =y(s1,84)

l a+ X7 (wk; *y(s2,5)) = y(s2,54)
: (2-34)

| a+ Zﬁl(Wkl * ]/(Sm,Si )) = y(sm'SA )
Yt wk; =1

in which a is a constant and y is the semivariogram values demonstrated in Section 2.5.1.
Equation 2-34 has a set of m+1 equations to solve m+1 unknowns which are wk;, wk, ...,
wk,, and .

To illustrate how the Kriging estimation works, consider a random field shown in
Figure 2-24 which has the sill (y,) of 0.0303 and the radius of influence (r) of 700 m as
shown in Figure 2-25. Assuming that the spherical semivariogram model represents the

data, the semivariogram values can be estimated by:

y(h) =@[ﬂ—(i)3] h<r

700 700

y(h) = 0.0303 h>r

(2-35)

If the significant wave heights are known at buoys 1, 2, and 3 shown in Figure
2-24, the significant wave height at point 1 can be interpolated using Equations 2-33,
2-34 and 2-35. The coordinates and significant wave height values are summarized in
Table 2-5. Distances between buoys themselves and between buoys and the estimated

point are shown in Table 2-6. Semivariogram values computed using Equation 2-35 and
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the distance provided in Table 2-6 are summarized in Table 2-7 which has the
information needed to estimate the unknowns in the Kriging estimation process, i.e.
weights wk; and the constant o in Equation 2-34. In this example, there are four
unknowns, wk;, wkz, wkz and a.  Using the semivariogram values shown in Table 2-7,
the four unknowns in Equation 2-34 are solved as follows: wk; = 0.3136, wk, = 0.5415,
wkz = 0.1450 and o = 0.0044. The interpolated significant wave height at point 1 can be
computed using Equation 2-33 as:

Ppoiner = 0.3136 % 3.13 + 0.5415  3.20 + 0.1450 * 2.42 = 3.06  (2-36)
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Figure 2-24. Studied random field and locations for estimation.
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Figure 2-25. Semivariogram, sill and radius of influence of the studied random field.

Table 2-5. Coordinates and significant wave heights for locations used in estimation.

Location X (m) Y (m) Hs (m)
Point 1 100 600 unknown
Buoy 1 100 150 3.13
Buoy 2 100 900 3.20
Buoy 3 950 450 2.42

Table 2-6. Distance between locations used in estimation.

Distance (m) Buoy 1 Buoy 2 Buoy 3
Point 1 450 300 863
Buoy 1 0 750 901
Buoy 2 0 962
Buoy 3 0
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Table 2-7. Semivariogram values for locations used in estimation.

Semivariogram Buoy 1 Buoy 2 Buoy 3
Point 1 0.0252 0.0183 0.0303
Buoy 1 0 0.0303 0.0303
Buoy 2 0 0.0303
Buoy 3 0

2.5.3. Sample Size of Independent Observations

Considering a set of significant wave height data collected at multiple locations
evenly separated along a line, the range for the interval between samples could be
determined by Equations 2-26 and 2-27 based on the sample sizes of independent
observations estimated using Equations 2-22 and 2-25 that demonstrated in Section 2.4.5.

Figure 2-18 shows a random process of significant wave heights collected at 400
locations evenly separated by 3 m along a line. The number of discretization points N is
400 and the distance interval Ak is 3 m. The sample size for independent observations
is estimated as 25 based on Equations 2-22 and 2-25. The interval between samples can
be computed from the estimated sample size of independent observations using Equations
2-26 and 2-27 except the time increment At is now replaced by the distance increment
Ah. The interval between samples based on the sample size of independent observations
estimated is (N = 400) * (Ah=3m) / (n =25) =48 m. The auto-correlation function is
shown in Figure 2-26 with its standard deviation range shown in dashed line. As
mentioned in Section 2.4.5, the auto-correlation values exceeding its standard deviation
are considered significantly different from zero. The auto-correlation function shown in

Figure 2-26 reaches into its standard deviation range at distance lag of approximately 48
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m. This observation agrees with the estimation of the interval between samples for
obtaining independent data using Equations 2-22, 2-25 and 2-26, which is 48 m as well.
Figure 2-27 through Figure 2-30 show the auto-correlation functions of several
different intervals between samples in the range of 24 m to 69 m. The distance lag is
shown up to 120 m. The auto-correlation function tends to stay within its standard
deviation range when the interval between samples approaches 48 m. When the interval
between samples passes 48 m, the auto-correlation function fluctuates exceeding the

standard deviation range again.

g 1
'% 0.8 — - - Standard deviation of
E 0: 6 I \ auto-correlation function
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Figure 2-26. Auto-correlation function for the random process shown in Figure 2-18.
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Figure 2-27. Auto-correlation function for the case of interval between samples = 24 m.
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Figure 2-28. Auto-correlation function for the case of interval between samples = 30 m.
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Figure 2-29. Auto-correlation function for the case of interval between samples = 48 m.
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Figure 2-30. Auto-correlation function for the case of interval between samples = 69 m.
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3. Methodology for Characterizing Sea Conditions

This chapter provides the statistical characterization procedure for predicting sea
conditions in Section 3.1 and the numerical wave model SWAN for verifying the spatial
data interpolation in Section 3.2. The numerical wave model SWAN is utilized to verify
the spatial interpolation as well as the sea-state statistical characterization using the
methods demonstrated in Section 3.1.  Numerical examples will be provided in Chapter

4 for illustration and verification.
3.1. Statistical Characterization for Predicting Sea-state Condition

3.1.1. Overview

This section provides the statistical characterization procedure as a flowchart
shown in Figure 3-1 for characterizing sea-state conditions using given buoy vertical
elevation time histories and predicting sea-state conditions of unobserved points from
data of observed buoys. The sea-state prediction starts with obtaining buoy vertical
elevation time histories at points of interest followed by identifying key parameters of
interest for analysis. In general, wave modal period and significant wave height are the
two key parameters to characterize the sea condition. According to Chapter 2, the
sample size of independent observations can be determined and the peroidograms can be
constructed from the time histories. Upon obtaining the information needed, Sections
3.1.2 through 3.1.7 provide the procedure and demonstrations for the parameter

estimations of the buoy locations. The unobserved locations within buoys range could
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be interpolated by the procedure demonstrated in Section 3.1.8 and the parameters can be

estimated by the same procedure applied on the buoys.

Obtain Buoy Data:
Vertical elevation time histories at multiple locations

N E— — Lo

Identify sea-state parameters of i !
. fy P . Generate adjusted | -
interest (e.g. wave modal period,

I'|Estimate sample

| |si . . iodogr:

o significant wave height, etc.) periotogtam i
[ _:
prrem e CToTr T T T T
______ | S, R S,
|Estimate Parameters of Interest at |Estimate Parameters of Interest at

Buoy Locations Any Locations within Buoy Range |

Estimate selected sea-state
parameters from given time
history

Interpolate periodograms at
points of interest within buoy
range

L

goodness-of-fit

k4

Estimate sea-state parameters
at buoy locations in confidence
intervals using hypothesis
testing
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|
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I
|
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I
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I
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Figure 3-1. Statistical characterization and prediction for sea-state conditions of observed

and unobserved locations.
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3.1.2. Sea-state Parameters

Sea-state prediction in this study utilizes the sea-state parameter estimates.
Two-parameter wave model is chosen to represent the sea condition. The two
parameters are the wave modal period and the significant wave height. The wave modal
period T,, can be estimated from the time history using the zero-upcrossing period
expressed as follows (described by Hughes 1988):

T = {1.41TZ for Bretschneider spectrum
mt = |1.28T7, for Jonswap spectrum

(3-1)
in which T, is the modal period estimated from the time history and 7 is the
zero-upcrossing period. The other key parameter, the significant wave height Hj, is

related to the variance of the time history and is expressed as follows (described by

Hughes 1988):

H,, = 4 /variance of time history (3-2)

in which Hy; is the significant wave height estimated from the time history.

The two parameters, modal period and significant wave height, can be estimated
in the time domain from the time history and in the frequency domain from the wave
spectrum. While using Equations 3-1 and 3-2 to estimate these two parameters in the
time domain, the frequency at which the maximum spectrum magnitude locates
represents the inverse value of the modal frequency, i.e. 2n / T, and the area under the
spectrum curve represents the variance of the time history which is the information

needed to compute the significant wave height using Equation 3-2.
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3.1.3. Adjusted Periodogram

In order to utilize the periodogram introduced in Chapter 2 for sea-state
characterization, some adjustments on the periodogram are needed. Based on the
parameters estimated from the buoy time history in Equations 3-1 and 3-2, the
periodogram constructed from the time history needs to be shifted to match the peak at
the estimated modal frequency 2n / T,,; in which T, is calculated by Equation 3-1. Then
the periodogram needs to adjust the magnitude to match its unit the same as that of the
wave spectrum and to have the area under the periodogram curve as the variance of the
time history. The wave spectrum goodness-of-fit can be performed once the
periodogram is adjusted. Since the wave spectra used to fit the periodogram are
generated based on the estimated parameters using Equations 3-1 and 3-2, the peaks are
at the modal frequency 2n / T,,,. Besides, it wouldn't be possible to compare the
periodograms and the wave spectra if they have different units. An illustrative figure of

the periodogram shifting is shown in Figure 3-2.
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Figure 3-2.Periodogram shifts to match the peak at modal frequency 2n / 7).

3.1.4. Wave Spectrum Goodness-of-fit

The wave spectrum goodness-of-fit is performed by fitting the periodogram
constructed from the buoy time history using multiple wave spectra. Figure 3-3 shows
an illustrative plot of wave spectrum goodness-of-fit. Two-parameter wave spectra such
as the Bretschneider spectrum and the Jonswap spectrum are utilized to fit the
periodogram. The wave spectra are generated using the two parameters, the wave
modal period and the significant wave height, estimated from the given buoy time history
based on Equations 3-1and 3-2. Figure 3-3 shows that Bretschneider spectrum is a
better fit for the periodogram than the Jonswap spectrum in terms of the spectrum shape.
In the quantitative manner, the energy estimated from the Bretschneider spectrum, which

is the area under the spectrum curve, is closer to the energy estimated from the
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periodogram compared with that estimated from the Jonswap spectrum. Therefore, the
wave spectrum goodness-of-fit shows that the periodogram presented in Figure 3-3 is a
Bretschneider spectrum type. This determination of spectrum type will be used to
generate spectra for estimating the confidence intervals of the parameters of interest in

the sea-state characterization procedure.
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Figure 3-3. Wave spectrum goodness-of-fit using Bretschneider and Jonswap spectra.

3.1.5. Hypothesis Testing

Hypothesis testing is a decision making process for extrapolating information

from sample data to describe a population. In this study, the periodograms constructed
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from the buoy wave surface elevation time histories are used to illustrate the sea wave
characterization in the spectral domains. Statistical hypothesis testing is performed to
describe the sea wave characteristics, to demonstrate the sea wave spectrum
goodness-of-fit test and to interpolate the buoy data to predict the sea-state characteristics
at locations of interest. The hypotheses are defined as follows. The null hypothesis,
denoted by Hy, represents the equality of two spectra f;(w) and f>(w); while the alternative
hypothesis, denoted by Hj, indicates that a significant difference between two spectra
exists. The hypotheses can be expressed as:

Hy: fi(w) = f2(w) (3-3)

Hy: fi(w) # f(w) (3-4)

As described previously, the quantity vPdg(w) / f(w) follows a chi-square

distribution with v degrees of freedom. Consider a statistic X given by the following

ratio:

v1Pdg:(w;) ,v2Pdg;(w;) ,
. = ,i1=1,2,....M -
Xi f1(wy) / f2(wy) l (3-5)

in which M is the number of auto-covariance coefficients considered. It is assumed that
the two time history data sets have the same truncation points M and lag window {/;}.
The degrees of freedom v; and v, are calculated using Equation 2-22 which replaces
Equation 2-17 demonstrated in Chapter 2.

The random quantity of Equation 3-5 is distributed according to F-distribution
with v; and v, degrees of freedom, denoted as F(vy, v2). The mean and variance of
F-distribution with v; and v, degrees of freedom, denoted as F;_ 2, are:

”—22 , Vy > 2 (3-6)

Vo—

E[Fv1 ,Vz] =
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2v22(v1+v2 -2)

varify, v,1 = vi(v2-2)2(v2-4) '

v, >4 (3-7)

In the case when the null hypothesis Hy: fi(w) = f2(®) is true, X; does not depend on the

underlying spectra and can be expressed in the following form:

__ Pdg;(wy)

i = gy @) i=12,..,M , if Hyis true (3-8)

The following statistic is suggested to test the null hypothesis Ho: fi(w) = fo(w) with the

alternative hypothesis H;: fi(w) # f2(®) as:
Q0 =3, X, (3-9)

The distribution of the quantity Q in Equation 3-9 is the M-fold convolution of
F-distribution with v, and v, degrees of freedom. Since the quantity X; in Equation 3-8
are independent and identically distributed, according to the central limit theorem, Q for a

large sample size is normally distributed with the mean and variance as:

E[Q] =M (v:—jz) vy > 2 (3-10)
_ 2v22(v1+v2—2)
var[Q] = M (—VI(VZ_Z)Z(VZ_@) vy, >4 (3-11)

Note that M is the number of auto-covariance coefficients considered, or is called the

truncation point.

3.1.6. Confidence Interval Estimation using Hypothesis Testing

Since the quantity Q expressed in Equation 3-9 is normally distributed with the
mean and variance expressed in Equations 3-10 and 3-11, the 100(1-a)% confidence

interval can be expressed as follows:
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Pr( E[Q] + /var[Q] x ®~1 (g) <Q ) 1 3-12)
< E[Q] + var[Q] *®71(1 — a/2)
The 100(1-a)% confidence limits, lower confidence limit (LCL) and upper confidence
limit (UCL), for Q are:

LCL = E[Q] + var[Q] + &~ (%) (3-13)

UCL = E[Q] +/var[Q]  ®7* (1-5) (3-14)

Figure 3-4 shows the estimation of the confidence interval for the quantity Q.
The quantities Q within the confidence limits indicate the range of the estimated
Hence,

parameter of interest that satisfies the null hypothesis defined in Equation 3-3.

the confidence interval of the estimated parameter of interest is determined.

—Q

--- Lower Confidence Limit

Statistic

Parameter of interest

Upper limit for

Lower limit for
estimated parameter

estimated parameter

Figure 3-4. Illustration of confidence interval estimation for parameter of interest.
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3.1.7. Probability Distribution of the Testing Statistic

The testing statistic Q demonstrated in Section 3.1.5 determines the confidence
interval. This statistic is assumed to be normally distributed according to the central
limit theorem. To verify that the assumption is correct, the histogram of one thousand
quantities of Q is shown in Figure 3-5. Figure 3-5 shows a bell shape histogram and is
normally distributed based on the goodness-of-fit test using chi-square critical value.
Therefore, the assumption that the testing statistic Q defined in Equation 3-9 is normally
distributed is verified and the lower and upper limits for the confidence interval can be

determined by Equations 3-13 and 3-14.
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P I Histogram

140 + L7 '\ =+ = Normal Distribution
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100 + : \

Count
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Figure 3-5. Histogram and distribution for quantity Q defined in Equation 3-9.
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3.1.8. Spatial Analysis and Data Interpolation

Spatial analysis or spatial statistics is to use the geographic and/or geometric
properties for analysis such as interpolation, regression, auto-correlation, etc. The
spatial interpolation such as the inverse weight factor is to estimate variables at locations
unobserved by applying weights on the properties at observed locations. This section
introduces the inverse distance weight factor which is one of the spatial interpolation
methods to estimate the sea-state parameters at points of interest within the buoy range
from the obtained sea condition at buoy locations.

Inverse distance weight factors are defined inversely proportional to the distance
between the points of interest, or the unobserved locations, and the surrounding buoys, or
the observed locations. For point 7, the weight factor, denoted as wb;;, applied to the

data or results of buoy j is defined as follows:

dii
wb;; = 1/d;

ij = % 1/d; for dl] # 0 (3-15)

in which dj; is the distance between point i and buoy j defined as follows:

d;; = \/ (ptx; — Bx;) +(pty; — By,)’ (3-16)

where ptx; and pty; are the coordinates of point 7, and Bx; and By; are the coordinates of
buoyj. For each point i, the summation of the weight factors applied on observed buoy

points j is one, i.e.:

As the point of interest approaches one of the buoys, the weight factor applying on that

buoy approaches one, and the weight factors applying on the other buoys approach zero.
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The periodogram values Pdg(w;) defined previously in Section 2.4.3 represent the
contribution to the wave variance and energy in the range of w; + dw / 2, in which Jw is
the frequency interval. The periodogram of unobserved point i, denoted as Pdg;, is
estimated as the summation of the periodogram Pdg;, multiplied by the weight factor wb;;

of each surrounding buoy j accordingly expressed as follows:
Pdg; = ¥(wb;; » Pdg;) (3-18)

This data interpolation process is a one-dimensional linear estimation. The
inverse distance is taken to power of one. In Chapter 4, the data interpolation using
distance square, and the interpolation in two-dimensional aspect will be discussed and
summarized in the example using SWAN generated data.

Based on the estimated periodogram demonstrated in Equation 3-18, the sea-state
parameters, the modal period 7}, and the significant wave height H, of the point of
interest i are estimated by the principle of lease squares as shown in Figure 3-6. The
modal period and the significant wave height of the point of interest i are estimated in the
range determined by the minimum and maximum modal period 7, and the significant
wave height H, of the buoys. As shown in Figure 3-6, 7, and T, determine the
modal period range for estimating the unobserved point of interest. T, and T, are the
minimum and maximum modal period of the buoys, respectively. Similarly, the same
definition applies on the significant wave height estimation range. By discretizing the
estimation ranges, the matrix-like form such as Figure 3-6 is determined. Note that the
discretization interval is subjective. Large intervals may not be able to provide accurate
estimations. For each pair of the modal period T, and the significant wave height H,,

the summation of the squares of the errors between the adjusted periodgram of the point
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estimated from the buoys, denoted as Pdg;, and the adjusted periodograms constructed

from this pair of sea-state parameters are calculated and expressed as follows:
error,q = L(Pdg; — Pdgy,)* (3-19)

The estimation according to Figure 3-6 and Equation 3-19 is performed using various
wave spectrum types, such as the Bretschneider and the Jonswap spectra. The fitted
sea-state parameter set and the fitted sea spectrum type are defined at which the minimum

summation of the squares of the errors defined in Equation 3-19 is produced.
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Figure 3-6. The best fit of sea-state parameters set defined by lease squares principle.

3.1.9. Comparison of Several Approaches for Modal Period Estimation

The modal period 7, or the spectral peak frequency 2z / T,,, is estimated in this
study from the time history by using zero-upcrossing period expressed as Equation 3-1.
Some other approaches to estimate the spectral peak frequency are available, such as the

simple maximum method, the Delft method and the weighted mean method. These

67



methods estimate the spectral peak frequency in the spectral domains. To assess the
reasonableness of estimated modal period in this study, a comparison of estimated modal
periods using Equation 3-1, the simple maximum method, the Delft method and the
weighted mean method is presented in Table 3-1. The original modal periods 7, used to
simulate the time histories for the three buoys are also shown in Table 3-1 for reference

and for computing the estimation relative errors.

Table 3-1. Several approaches to estimate modal periods of buoys 1, 2, and 3 with

relative errors to the original modal periods shown in parenthesis.

Estimation method for the modal period 7,

Simple
Original | Equation 3-1 ) Delft method | Weighted mean
B maximum
uoy
T Tn=141T, | T,=272/f"" | Tu=272/£"" | T.=2z1f"

7.14 sec 7.21 sec 7.10 sec 6.79 sec

1 7 sec
(2.04 %) (3.06 %) (1.42 %) (-2.95 %)
6.34 sec 6.31 sec 6.23 sec 6.09 sec

2 6 sec
(5.74 %) (5.21 %) (3.91 %) (1.57 %)
7.95 sec 7.77 sec 7.66 sec 7.46 sec

3 8 sec
(-0.57 %) (-2.88 %) (-4.23 %) (-0.84 %)

The simple maximum method is a straightforward method which determines the
spectral peak frequency by simply selecting the frequency associated with the maximum
spectral ordinate, denoted as f,"“* (IAHR 1989; Young 1995). The Delft method for
determining the spectral peak frequency is to find the centroid of the spectral band

between the lower and upper spectral densities which is the 80% or 60% of the maximum
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spectral ordinate. The lower and upper frequency thresholds are denoted as f; and f, and

the estimated spectral peak frequency is expressed as (IAHR, 1989; Young, 1995):

112 rr(par
P 12 F(ar

Dm _

(3-20)

in which m is 80 or 60 meaning that 80% or 60% maximum spectral ordinate is used for
the estimation.  Young (1995) indicated that £,”*’ is a better estimation than £,”*’, which
also observed in this study. Therefore, the estimation results of jj,D % are presented in
Table 3-1. The weighted mean method estimates the spectral peak frequency by
applying a weighting exponent on the spectral densities and evaluating the spectral peak
frequency as follows (Sobey and Young, 1986; Young 1995):

Mq _ [ FFI(Pdf
b = [ Fa(fdf (3-21)

This approach uses the entire spectrum instead of a portion between frequency thresholds
to estimate the spectral peak frequency. Several choices of weighting exponent g have
been suggested. The choice of g = 4 giving the spectral peak frequency as jj,M4 was
recommended by Young(1995) and is included in the comparison in Table 3-1. Note
that the estimation comparison shown in Table 3-1 uses adjusted periodograms which
described in details in Section 2.4.3.  Comparisons show that these methods produce
estimations within 5.7% relative errors of the original modal periods used to simulate the
time histories. The approach used in this study produced the best estimation for buoy 3
while the Delft method shows the best estimation on buoy 1 and the weighted mean
method shows the best results on buoy 2.  Overall, it is reasonable to use Equation 3-1
for the modal period estimation since the estimation relative errors are not significant, i.e.

within 5.7 %.
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3.2. Verification for Spatial Data Interpolation using Numerical Wave

Model SWAN (Simulating W Aves Nearshore)

In order to verify the spatial interpolation and prediction procedure provided in
Section 3.1, a numerical wave model SWAN (Simulating WAves Nearshore) is utilized.
As shown in Figure 3-7, the results from the SWAN model play the role of providing
verification for the data interpolation as well as the statistical characterization procedures.
Similar to Figure 3-1, Figure 3-7 contains the same characterization and estimation
procedures except the inputs at the beginning are the SWAN generated wave properties.
These properties such as the modal period and the significant wave height are used to
simulate the vertical elevation time histories for selected locations considered as the
buoys to start the estimation process. The parameters estimation results at the end of
Figure 3-7 are taken to compare with the SWAN generated wave properties which are the
inputs from the beginning. The verification of the methodology demonstrated in
Section 3.1 is taken place by the comparison of the parameters estimations and the wave
properties generated by SWAN. Illustrative numerical examples will be provided in
Chapter 4. An introduction of the SWAN model applications and commends used in
this study is provided in this section.

The numerical wave model SWAN (Simulating WAves Nearshore) is software
that developed at the Delft University of Technology and can be downloaded at

www.swan.tudelft.nl. This model is for the simulation of waves in waters of deep,

intermediate and finite depth. It accounts for the physics such as wave propagation,
wave generation by wind, wave interactions, whitecapping, bottom friction,

depth-induced breaking, dissipation due to vegetation, diffraction, transmission through
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and reflection against obstacles and propagation from laboratory up to global scales.
Outputs provided by the SWAN model include one-dimensional and two-dimensional
spectra, significant wave height, wave period, average wave direction and directional
spreading, diffraction parameter, dissipation, etc.

First step in SWAN commands is to define the simulation mode as stationary
mode or non-stationary mode and also define the simulation would be one-dimensional or
two-dimensional. Two-dimensional stationary mode is the default mode and is used in
this study. Second step is to determine the coordinate in either Cartesian or spherical
coordinates. Then, the computational grid and input grid should be determined as the
next step. The computational grid (CGRID) defines the geographic computation range,
how the computation range is meshed, the frequency range and the number of frequencies
used in the calculation. In this study, the regular rectangular computational grid is used.
The computational range is between 0 m to 1200 m in both x-coordinate and y-coordinate
and the number of meshes is 50 in both directions. That is, there are 51 points from 0 m
to 1200 m and the interval is 24 m.

The next step is to define the input grid which may provide the water level,
current, bottom and friction at the grid points. In this study, the bottom grid which
defines the bottom level is used, which has the command as INPGRID BOTTOM. The
bottom grid has a origin of (Om, Om). The mesh size in this study is 50 m and the
number of meshes is 24 in both x-direction and y-direction, which make the bottom grid
range from 0 m to 1200 m in both x and y directions. The bottom levels are defined in a
text file that is read by the command READINP BOTTOM. The other command for the

input field is the wind effect which is not considered in this study.
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Obtain wave properties by using SWAN:
Wave spectra and wave properties of interest at
multiple locations

Simulate Buoy Data:
Simulate vertical elevation time histories at multiple
locations based on the spectra generated by SWAN
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Figure 3-7. Statistical characterization for predicting sea-state condition based on SWAN

generated wave spectra and verification using SWAN results.

72



As the next step, the initial condition can be given as a wave spectrum at the edge
or the corner of the computational grid by giving the spectral densities in a text file or by
determining the significant wave height, wave period and wave spectrum type. In this
study, default wave spectrum type, the Jonswap wave spectrum, is used. The illustrative
example in this study defined the initial condition at the edge shown in Figure 3-8 as a
Jonswap spectrum with the significant wave height of 3.2 m and the wave modal period
of 8.3 sec. Figure 3-9 shows the wave direction result in the computational range based
on the input wave spectrum shown in Figure 3-8 and the bottom condition defined earlier
in a text file and read by the command READINP BOTTOM.

Figure 3-10 represents one of the wave simulation output quantities, the
significant wave height in meters, in a three-dimensional plot in the computational range.
Figure 3-11 shows the locations of interested to obtain outputs which will be used for
estimations illustrated in Figure 3-7. The locations, denoted as Loc in Figure 3-11, are
defined in Cartesian coordinate in a text file and read by the command POINTS. The
wave spectra and other wave properties of interest will be provided in the output files at
the defined locations of interest. Figure 3-12 shows the outcomes of significant wave
heights at locations defined in Figure 3-11 based on the computational grid, the input
bottom levels and the initial condition defined in Figure 3-8.

The computed output quantities can be written in text files by requests, such as
requesting a spectral output by the command SPEC and requesting a table output by the
command TABLE. The spectral output file includes the locations of interest defined,
the frequency discretization points, the variance densities, the wave direction and the

directional spreading for each location. Figure 3-13 shows the variance densities
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provided in the spectral output file for location 3 defined in Figure 3-11. The table
outputs shows the outputs quantities of interest of the points defined in Figure 3-11 in a
table. The output quantities could be the significant wave heights, the modal periods,
the wave direction, etc.

There is the other command called BLOCK provides the output quantities of
interest. The command BLOCK puts the outputs in a ".mat" file which can be read by
Matlab. Noye that the ".mat" file has the output quantities at computational grid points
instead of the interested locations defined earlier using the command POINTS. Figure
3-9 and Figure 3-10 are the plots of the quantities requested by the command BLOCK
which provides the outputs in the ".mat" file. Figure 3-14 is an example SWAN
command file which shows the commands described above. An example output file is

shown in Appendix A.
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Initial condition given at this
edge:

Spectrum type: Jonswap
Significant wave height: 3.2 m
Wave modal period: 8.3 sec
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Figure 3-8. Initial conditions given in the wave simulating model SWAN in this study.
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Figure 3-9. Wave direction of SWAN generated waves in the computational range.
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Figure 3-10. Significant wave heights computed by SWAN in the computational range.
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Figure 3-11. Locations of interest to obtain wave properties in this study.

Significant Wave Height Generated by SWAN, in meters
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Figure 3-12. Significant wave heights generated using SWAN at locations of interest

defined in Figure 3-11.
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Figure 3-13. Generated variance densities at location 3.
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CGRID ¢ 0. O. 1200. 1200. 50 50 CIRCLE 36 0.0521 1. 321
INPGRID BOTTCM O. O. O. 24 24 50. 50. EXC -89,

READTNP BOTTOM 1. 'Triall.bot' 3 0 FREE

WIND O O

BOUN SHAF JOW 3.3 PEAK DSFRE POWER

BCU SIDE W CCW CCH PRE 3.2 8.3 0 2

GEN3
$kk‘kk‘kk‘kk‘kk‘kkkkkkkkk’kk‘kk‘kkkkkk‘kk‘kkkkkkkkkkkkkkkkk’kk‘kkkkkkk
POINTS 'buoy' FILE 'tS5Triall.loc’

TABLE ‘'buoy' HEAD '£5Triall.thl" H5 RTP TPS5 F5PR

SPEC "buoy' SPECID 't5Triall.s=spc!

BLOCE 'COMPGRID' MNOHEAD 'tS5Triall.mat' LAYOUT 3 HS TES FSFR
s
TEST 1,0
CCHMPUTE
STCF

s

Figure 3-14. Example of SWAN command file.
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4. Case Studies

4.1. Sea-state Characterization using Simulated Buoy Data

A sea-state characterization example is presented in this section using simulated
buoy vertical elevation time histories. Figure 3-1 shows the buoy data analysis
procedure in a flowchart. The buoy vertical elevation is taken as the sea wave surface
elevation simulated from Bretschneider wave spectrum in this study. Two sea-state
parameters, sea wave modal period T, and significant wave height H;, are selected to
describe the wave characteristics in the time domain. Upon estimating the two
parameters using Equations 3-1 and 3-2 from the time history, the sea spectrum
goodness-of-fit is performed on each buoy by applying statistical hypothesis testing on
selected sea spectra types and on the periodogram which demonstrates the wave
characteristics in the spectral domains. Bretschneider and Jonswap spectra are selected
for the sea spectrum goodness-of-fit and are conducted using the sea-state parameters, the
wave modal period 7T, and the significant wave height H,, estimated from the time
history by Equations 3-1 and 3-2.

The periodogram is constructed from the time history by using finite Fourier
transform on the auto-covariance function of the time history defined in Equation 2-15.
For the purpose of comparing the periodogram and sea spectra, the periodogram is
adjusted to have the peak at the modal frequency 27/ T,,, the unit the same as the sea
spectrum and the area under the periodogram the same as the variance of the time history,
demonstrated in Section 3.1.3. The sea spectrum goodness-of-fit is performed by fitting

the Bretschneider and Jonswap spectra to the adjusted periodogram. Once the fitted
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spectrum type is defined, the confidence intervals of the selected sea-state parameters can
be analyzed for sea-state characterization by applying statistical hypothesis testing on the
buoy adjusted periodogram and the adjusted periodograms constructed from the fitted
spectrum type for a range of sea-state parameters sets. Details are demonstrated in
Section 3.1.6.

In addition, the buoys data are used for sea-state prediction of the points of
interest such as the travel track points of seagoing vessels surrounded by the buoys. The
vessels travel track points are arbitrarily chosen, and sea-state characteristics at these
points are estimated as intermediate values among surrounding buoys by applying inverse
distance weight factors on the adjusted periodograms of these buoys. Section 3.1.8
provides the detail procedure. The confidence intervals of the selected sea-state
parameters for the travel track points are then analyzed using the same method used to

analyze the buoy data.

4.1.1. Description of Simulated Buoy Data

The sea wave surface elevation time histories of three buoys are used in this
example. Table 2-2 and Figure 4-1 summarize the locations, the modal periods and the
significant wave heights of these three buoys. The time histories are generated using
Bretschneider wave spectra with the modal periods and significant wave heights from
Table 2-2. An example spectrum is shown in Figure 4-2. The duration of these buoy
time histories is 1500 sec starting at 0.5 sec with a constant interval of 0.5 sec. The
number of total data points of each buoy time history is 3000. Figure 4-3 shows an

example of simulated time history.
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Figure 4-1. Locations of buoys 1, 2 and 3.
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Figure 4-2. Wave spectrum.
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Figure 4-3. Simulated time history.

4.1.2. Parametric Analysis

The selected two sea-state parameters, the wave modal period 7, and the
significant wave height H;, are analyzed in this section. The confidence interval
estimations, described in Section 3.1.6, are performed by fixing the value of one
parameter when analyzing the other parameter within a range of values. Table 4-1
shows the estimation results of the confidence intervals at the 95% level for the three
buoys on the modal period 7,, for the significant wave height H; = H,; and on the
significant wave height H; for the modal period 7,, = T,,. Figure 4-4 and Figure 4-5
show the confidence interval estimations at the 95% level for the modal period and the
significant wave height, respectively, for buoy 1; while Figure 4-6 and Figure 4-7 are for

buoy 2 and Figure 4-8 and Figure 4-9 are for buoy 3.
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Table 4-1. Two-sided confidence intervals at the 95% level for the modal period 7, and

the significant wave height H; for buoys 1, 2 and 3.
Buoy 1 Buoy 2 Buoy 3
Two-sided confidence intervals at the
Ty =714 sec | T,;=6.34 sec | T,,, =7.95 sec
95% level
Hy=19m |H;=097m |H;=154m
Lower modal period limit (77) 6.99 sec 6.24 sec 7.76 sec
Upper modal period limit (7) 7.83 sec 6.84 sec 8.76 sec
Lower significant wave height limit (H,z) 1.96 m 0.96 m 1.52m
Upper significant wave height limit (H,y) 2.03 m 0.99 m 1.57 m
Buov 1 — Statistic
Hs = }},I ----- Lower Confidence Limit
(Hs=Hspy ... Upper Confidence Limit
® Tm=Tmt
50
2
@ 36
29
6.8 7.2 7.6 8.0
Modal period Tm (sec)

Figure 4-4. Two-sided confidence intervals at the 95% level of buoy 1 on the modal

period T, for the significant wave height Hy = H,,.
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Figure 4-5. Two-sided confidence intervals at the 95% level of buoy 1 on the significant

wave height H; for the modal period T}, = T},

— Statistic
Buoy2 .. Lower Confidence Limit
(Hs=Hst) ... Upper Confidence Limit
® Tm=Tmt
50
243 R
-g ‘_-‘\‘_
w2 36
29
6.1 6.4 6.7 7.0
Modal period Tm (sec)

Figure 4-6. Two-sided confidence intervals at the 95% level of buoy 2 on the modal

period 7, for the significant wave height H; = H;.
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Figure 4-7. Two-sided confidence intervals at the 95% level of buoy 2 on the significant

wave height H; for the modal period T}, = T},
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Figure 4-8. Two-sided confidence intervals at the 95% level of buoy 3 on the modal

period T, for the significant wave height H; = H;.
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Figure 4-9. Two-sided confidence intervals at the 95% level of buoy 3 on the significant

wave height H for the modal period T}, = T},

4.1.3. Data Interpolation

The points of the travel track of seagoing vessels can be treated as intermediate
values among surrounding buoys, and the properties of the travel track points can be
estimated from the properties of the buoys. Figure 4-10 and Table 4-2 show the
locations of three track points of interest randomly selected for buoy data interpolation.
According to Section 3.1.8, the inverse distance weight factors applied on buoys for each
track point are computed using Equations 3-15 to 3-17and summarized in Table 4-3.
These weight factors are applied on the adjusted periodograms of the buoys using

Equation 3-18 to estimate the periodograms for the track points.
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Figure 4-10. Locations of track points of interest.

Table 4-2. Locations of track points 1, 2, and 3.

Track Point x-coordinate y-coordinate
1 0Om 0Om
2 175 m 400 m
3 350 m 800 m

Table 4-3. Weight factors applying on the three buoys for track points 1, 2, and 3.

Track Point Point 1 Point 2 Point 3

Weight Factor applied to Buoy 1 0.130820 0.234987 0.385936
Weight Factor applied to Buoy 2 0.171475 0.509022 0.450259
Weight Factor applied to Buoy 3 0.697705 0.255992 0.163806

The modal period, the significant wave height and the spectrum type for the track

points can be estimated according to Section 3.1.8.
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period T,,; and the significant wave height Hy, estimated using Equations 3-1 and 3-2
from the time history for each buoy are taken as reference values to select a range of
sea-state parameters sets. The ranges of (T, min, Tz, max) @and (Hsz, min, Hyr, max) are used
to generate sea spectra, in which 7', min 1s the minimum 7, among the buoys, Ty, max 1S
the maximum 7,; among the buoys, and Hy, min and Hy;, max are similar to the 7, case.
The best set of sea-state parameters is determined by Equation 3-19 using the concept of
lease squares applied on the periodograms of the track points and the adjusted
periodograms generated from the sea spectra for various sets of parameters in the range
defined previously. The estimated modal period, denoted as 7., and the estimated
significant wave height, denoted as H,,, for the track points are shown in Table 4-4.
Figure 4-11 shows the estimated periodogram and the fitted adjusted periodograms
constructed from the Bretschneider and Jonswap sea spectra using the modal period 7,
and the significant wave height Hy, for track point 1. The results show that the
Bretschneider spectrum is a better fit compared with the Jonswap spectrum.  Figure 4-12
and Figure 4-13 are the results for track points 2 and 3, respectively.

The confidence intervals analysis for the track points follows the same method
used to analyze the buoy data by applying statistical hypothesis testing on the
periodogram of the track point and the adjusted periodograms constructed from the fitted
spectrum type for a range of sea-state parameters sets. Table 4-4 show the confidence
intervals at the 95% level for these three track points on the modal period 7;, for the
significant wave height H, = H,, and on the significant wave height H; for the modal
period 7, = T,.. Figure 4-14 and Figure 4-15 show the confidence interval estimations

at the 95% level for the modal period and the significant wave height, respectively, for
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track point 1; while Figure 4-16 and Figure 4-17 are for track point 2 and Figure 4-18 and

Figure 4-19 are for track point 3.

Table 4-4. Two-sided confidence intervals at the 95% level of the significant wave height

H; and the modal period T, of track points 1, 2, and 3.

Point 1 Point 2 Point 3
Two-sided confidence intervals at the
Ty =7.20 sec | Ty =6.83 sec | T, =6.83 sec
95% level
Hye=152m |Hy,=140m |H,=152m
Lower modal period limit (77) 7.15 sec 6.80 sec 6.70 sec
Upper modal period limit (7) 7.58 sec 6.98 sec 6.99 sec
Lower significant wave height limit (H,.) 1.45 m 1.37 m 1.50 m
Upper significant wave height limit (H,y) 1.53 m 1.43 m 1.54 m
— Estimated Periodogram
TrackPoint1 ... Fitted Periodogram from Bretschneider
- — - - Fitted Periodogram from Jonswap
é 0.45
3 .
E 030 =
z :
% 0.15 / / . \
= ; NN
g 0.00
o 0.00 0.79 1.57 2.36 3.14
Frequency (rps)

Figure 4-11. Estimated periodogram and fitted periodograms of different sea spectra for

track point 1.
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Figure 4-12. Estimated periodogram and fitted periodograms of different sea spectra for

track point 2.
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Figure 4-13. Estimated periodogram and fitted periodograms of different sea spectra for

track point 3.
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Figure 4-14. Two-sided confidence intervals at the 95% level of track point 1 on the

modal period T, for the significant wave height H; = H,.
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Figure 4-15. Two-sided confidence intervals at the 95% level of track point 1 on the

significant wave height H, for the modal period 7}, = T .
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Figure 4-16. Two-sided confidence intervals at the 95% level of track point 2 on the

modal period 7, for the significant wave height H; = H,.
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Figure 4-17. Two-sided confidence intervals at the 95% level of track point 2 on the

significant wave height H, for the modal period 7}, = T .
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Figure 4-18. Two-sided confidence intervals at the 95% level of track point 3 on the

modal period T, for the significant wave height H; = H,.
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Figure 4-19. Two-sided confidence intervals at the 95% level of track point 3 on the

significant wave height H, for the modal period 7}, = T .
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This example illustrates the procedure of sea-state characterization and
interpolation using spectral analysis concept described in Chapter 2 and the methodology
introduced in Chapter 3. The prediction for unobserved locations is performed applying
spatial interpolation on buoys, or observed locations, and the confidence intervals of the
sea-state condition parameters are estimated for the buoys as well as the unobserved
locations, or the points of interest. The statistical basis of the method enables the
characterization to present the sampling variability and associated uncertainties by
estimating the confidence intervals of the sea-state parameters. The estimation results
show that the methodology proposed in Chapter 3 is able to provide accurate predictions
by confidence intervals which cover the parameter values 7, and H;, estimated from the

periodograms using least square concept demonstrated in Section 3.1.8.

4.2. Numerical Example and Verification using SWAN Generated Wave

Data

This section provides sea-state characterization and interpolation as illustrated in
Figure 3-7. The numerical wave model SWAN is utilized to generate the wave
properties at locations defined in Figure 3-11. Six locations are selected from Figure
3-11 for this example to demonstrate and verify the methodology provided in Chapter 3.
Three locations are arbitrary selected to be considered as the buoys and the other three
locations within the buoys range are selected as the points on a travel track which need
sea-state predictions. The sea-state parameters of these points of travel track will be
interpolated based on the properties of the buoys. The wave properties generated by

SWAN are considered as the true values. In other words, the methodology provided in
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Chapter 3 is verified if the values generated by SWAN are within the confidence intervals

of the parameters estimations.

4.2.1. Description of SWAN Data

Table 4-5 and Figure 4-20 summarize the coordinates for the six locations
selected from Figure 3-11. Figure 4-21 defines the locations considered as the three
buoys and locations considered as the points of the travel track.

The initial and boundary conditions to generate the wave properties are shown in
Figure 3-8. Jonswap wave spectrum with the significant wave height 3.2 m and the
modal period 8.3 sec is used as the initial condition. Locations to obtain output
quantities are defined in Figure 3-11, denoted as Loc 1, Loc 2, ..., Loc 49. The output
quantities such as the significant wave heights are shown in Figure 3-10 for the entire
calculation range and in Figure 3-12 for the locations of interest. The generated wave
spectrum, for example at location 3, is shown in Figure 3-13.

The wave properties at the buoy locations defined in Figure 4-21 are provided in
Table 4-6. These properties are used to generate wave surface elevation time histories
such as Figure 4-22 which is the time history for location 46, or buoy 3. According to
the procedure shown in Figure 3-7 and the details for each step in the procedure provided
in Chapter 3, the significant wave height of the track points will be estimated using the
buoy time histories generated using the given wave modal periods and the significant
wave heights summarized in Table 4-6. Sample size of independent observations and
the adjust periodograms of the buoys are produced for the interpolation and estimation on

the track points.
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Table 4-5. Coordinates of locations selected from Figure 3-11 for estimation.

Location x-coordinate y-coordinate
Loc 2 (as Buoy 1) 100 m 150 m
Loc 7 (as Buoy 2) 100 m 900 m
Loc 47 (as Buoy 3) 950 m 450 m
Loc 5 (as Track Point 1) 100 m 600 m
Loc 19 (as Track Point 2) 350 m 600 m
Loc 33 (as Track Point 3) 650 m 600 m
1200
1000
Gl Loc 7
800 —+
_ LOECS Loc19™-.Loc 33
E 600 1 & o o
> | S
400 A Loc 46
200 et
<O Toc2
0
0 200 400 600 800 1000 1200
X (m)

Figure 4-20. Locations of interest selected from Figure 3-11 for estimations.
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Figure 4-21. Determination of locations shown in Figure 4-20 selected as the buoys and

as the track points.

Table 4-6. Modal periods and significant wave heights of buoy locations defined in

Figure 4-21.
Location Modal period Significant wave height
Loc 2 (as Buoy 1) 8.15 sec 3.13m
Loc 7 (as Buoy 2) 8.16 sec 320m
Loc 46 (as Buoy 3) 8.14 sec 2.42 m
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Figure 4-22. Generated time history for location 46 (or buoy 3) using the wave properties

provided in Table 4-6.

4.2.2. Data Interpolation

Periodograms of the track points are interpolated from the adjust buoy
periodograms using the inverse distance weight factors demonstrated in Section 3.1.8.
By performing the wave spectrum goodness-of-fit, the spectrum type of the track points
can be determined Figure 4-23 show the estimated periodogram of track point 1 and the
periodograms constructed from the Bretschneider and Jonswap spectra for the
goodness-of-fit; while Figure 4-24 and Figure 4-25 are for the track points 2 and 3,
respectively. These three figures show that the Jonswap spectrum is a better fit for the
three track points. The results are reasonable since Jonswap spectrum is used as the
initial condition for generating the wave properties in the estimation field. The wave
modal periods and the significant wave heights can be estimated using the least square

concept and procedure demonstrated in Section 3.1.8.
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Figure 4-23. Estimated periodogram and fitted periodograms of different sea spectra for

track point 1.
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Figure 4-24. Estimated periodogram and fitted periodograms of different sea spectra for

track point 2.
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Figure 4-25. Estimated periodogram and fitted periodograms of different sea spectra for

track point 3.

Table 4-7 provides the estimated wave modal periods 7}, and the significant wave
heights H,, along with the SWAN generated values for comparison. The results show
that the absolute related errors of the modal period have a maximum value of 0.24%;
while that of the significant wave height have a maximum value of 4.16%.

Table 4-8 summarizes the lower and upper limits of the confidence intervals for
the modal period and significant wave height estimations. The lower and upper limits
for the estimated modal period are denoted as 77, and Ty, respectively; while that for the
significant wave height are denoted as H,;, and H,y, respectively. The SWAN generated
modal period and significant wave height are denoted as 7, and H;. The results show
that the values generated by SWAN are within the estimated confidence intervals for both
parameters. In other words, the methodology demonstrated in Chapter 3 is verified for
characterizing the sea-state conditions using the two key parameters, the modal period

and the significant wave height. Figure 4-26 and Figure 4-27 show the two-sided
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confidence intervals at the 95% level of track point 1 on the significant wave height H,
for the modal period 7, = T}, and on the modal period 7,, for the significant wave height
H; = H,, respectively; while Figure 4-28 and Figure 4-29 present the results for track
point 2 and Figure 4-30 and Figure 4-31 present the results for track point 3. The
confidence intervals are able to capture the SWAN generated values of the modal periods

and the significant wave heights.

Table 4-7. Comparison of the estimated and the SWAN generated modal periods and

significant wave heights of track points 1, 2 and 3 with absolute relative errors presented

in parenthesis.

Wave properties Point 1 Point 2 Point 3

8.14 sec 8.15 sec 8.16 sec

Estimated modal period 7.
(0.24%) (0.06%) (0.05%)

SWAN generated modal period 7, 8.16 sec 8.15 sec 8.15 sec
3.10m 3.05m 291 m
Estimated significant wave height H,,
(3.33%) (1.68%) (4.16%)
SWAN generated significant wave height H; 321 m 3.14m 2.79 m
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Table 4-8. Two-sided confidence intervals at the 95% level of the significant wave height

H; and the modal period T, of track points 1, 2 and 3.

Point 1 Point 2 Point 3
Two-sided confidence intervals at the
T,,=8.16sec | T,,=8.15sec | T, =8.15 sec
95% level
Hy;=321m |H;=3.14m |H;=2.79m
Lower modal period limit (77) 7.84 sec 7.85 sec 7.90 sec
Upper modal period limit (77) 8.20 sec 8.29 sec 8.38 sec
Lower significant wave height limit (H,z) 3.07 m 3.03m 2.73 m
Upper significant wave height limit (H,y) 323 m 3.15m 2.89 m
Track Point 1 Statistic
TmeTme) Lower Confidence Limit
(Tm=Tme) — — Upper Confidence Limit
® Hs SWAN
40
g 35
2 5 ——\./———-—7‘4—
s 30 9 P = quti o S —
m N o
20
2.80 290 3.00 3.10 3.20 3.30
Significant wave height Hs (m)

Figure 4-26. Two-sided confidence intervals at the 95% level of track point 1 on the

significant wave height H; for the modal period 7, = T .
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Figure 4-27. Two-sided confidence intervals at the 95% level of track point 1 on the

modal period 7, for the significant wave height H; = H,.
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Figure 4-28. Two-sided confidence intervals at the 95% level of track point 2 on the

significant wave height H, for the modal period 7}, = T .
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Figure 4-29. Two-sided confidence intervals at the 95% level of track point 2 on the

modal period 7, for the significant wave height H; = H,.
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Figure 4-30. Two-sided confidence intervals at the 95% level of track point 3 on the

significant wave height H, for the modal period 7}, = T .
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Figure 4-31. Two-sided confidence intervals at the 95% level of track point 3 on the

modal period T, for the significant wave height H, = H,,.

4.2.3. Number of Reference Points

Estimations presented in previous sections are based on three buoys properties to
interpolate other nearby locations of interest. This section provides comparisons of
estimations using three, four and five buoys. In addition, inverse distance weight factor
demonstrated in Section 3.1.8 uses the distance between buoys and locations of interest to
the first order, i.e. d. This section discusses the results using distances to the first and
second order, 1.e. 4.

Multiple locations from Figure 3-11 are selected as buoy locations and used to
interpolate the sea-state parameters at locations within the buoy range. The data
interpolation is performed by applying the inverse distance weight factors on the buoys

spectra and interpolating the sea-state parameters based on the distance between
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estimated location and the buoys. Details can be found in Section 3.1.8. Three, four
and five buoy locations are selected from Figure 3-11 for the data interpolation. Figure
4-32 shows an example of selected buoy points and data interpolation range. Locations
3, 28 and 44 marked as solid dots are the reference locations which are the buoys. The
interpolation range is marked by the red dash lines which connect the three buoys, i.e.
locations 3, 28 and 44. The sea-state parameter of locations 10, 11, 17, 18, 19, 24, 25,
26, 27, 31, 32, 33 and 38 will be estimated using the inverse distance weight factors
described in Chapter 3.

To verify the data interpolation results, comparisons are taken place. Section
4.2.3 compares the significant wave heights interpolated using three, four and five
selected buoy locations and the significant wave heights generated by SWAN at these
interpolated locations. The interpolation accuracy is determined by the relative error

square per location defined in Equation 4-1.
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Figure 4-32. Three-point data interpolation range with buoys at locations 3, 28 and 44.

107



For location i, if the estimated significant wave height is denoted as Hs; and the
SWAN simulated significant wave height is denoted as Hssyan i, the error, or residual, of
the estimation can be represented as Hs; -HSsyan i» OF in a unitless form as (Hs; -HSsyan i)/
Hsgyan i» Which is also called the relative error. To estimate the interpolation error for the

entire area under consideration, the following quantity, denoted as Err, is suggested:

Err — [ ;;1 <Hsl HSswan; l/k 4-1)

HSswan;

in which k is the number of interpolating data points. Equation 4-1 shows the sum of
the relative error squares of all interpolated points and divided by the number of these
points. Dividing the sum of the relative error squares by the number of estimation
points is to make the error estimation quantity, Err, as for one interpolation point. The
reason of making the error term for one point is that since the interpolation range varies
due to the number of reference points, or buoys, and the selection of these reference
points, the number of estimation points will be different. Therefore, by dividing the
sum of the relative error squares of the estimation points by the number of these points,
the error term Err is averaged and represents the relative error square per location. It
then will be possible to compare interpolation results of different estimation ranges and
different number of estimation points by using the quantity Err.

For an area of interest such as which covered by the locations shown in Figure
3-11, the following analysis shows the one-dimensional data interpolation error square
per location (Err) for areas formed by three, four and five reference points, or buoys,
respectively.  Since the minimum number of points to form an area is three, the

estimation starts with three reference points, or say buoys.
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Some examples of one-dimensional three-point estimations are shown in Figure
4-32 to Figure 4-39. Figure 4-32 has the estimation buoy points at locations 3, 28 and
44. The estimation points within the buoy points range are at locations 10, 11, 17, 18,
19, 24, 25, 26, 27, 31, 32, 33 and 38. Total number of estimation locations is 13. The
data interpolation error square per location (Err) is 0.0094. Figure 4-33 has the
estimation buoy points at locations 1, 28 and 43. The estimation points within the buoy
points range are at locations 8, 9, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33,
36, 37 and 38. Total number of estimation locations is 20. The data interpolation error
square per location (Err) is 0.0175. Figure 4-34 has the estimation buoy points at
locations 2, 28 and 44. The estimation points within the buoy points range are at
locations 9, 10, 16, 17, 18, 19, 23, 24, 25, 26, 27, 30, 31, 32, 33, 37 and 38. Total
number of estimation locations is 17. The data interpolation error square per location
(Err) 1s 0.0081. Figure 4-35 has the estimation buoy points at locations 2, 7 and 43.
The estimation points within the buoy points range are at locations 3, 4, 5, 6, 10, 11, 12,
13, 17, 18, 19, 20, 25, 26, 27, 32, 33 and 40. Total number of estimation locations is 18.
The data interpolation error square per location (Err) is 0.0085. Figure 4-36 has the
estimation buoy points at locations 2, 7 and 46. The estimation points within the buoy
points range are at locations 3, 4, 5, 6, 10, 11, 12, 13, 17, 18, 19, 20, 24, 25, 26, 32, 33
and 39. Total number of estimation locations is 18. The data interpolation error
square per location (Err) is 0.0101. Figure 4-37 has the estimation buoy points at
locations 7, 23 and 49. The estimation points within the buoy points range are at
locations 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 32, 33, 34, 35, 41 and 42. Total

number of estimation locations is 17. The data interpolation error square per location
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(Err) 1s 0.0064. Figure 4-38 has the estimation buoy points at locations 4, 44 and 49.
The estimation points within the buoy points range are at locations 11, 18, 25, 26, 31, 32,
33, 38, 39, 40, 41, 45, 46, 47 and 48. Total number of estimation locations is 15. The
data interpolation error square per location (Err) is 0.0131.  Figure 4-39 has the
estimation buoy points at locations 5, 44 and 49. The estimation points within the buoy
points range are at locations 12, 19, 25, 26, 32, 33, 34, 38, 39, 40, 41, 45, 46, 47 and 48.
Total number of estimation locations is 15. The data interpolation error square per

location (E7r) is 0.0073.
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Figure 4-33. One-dimensional three-point data interpolation range with buoys at locations

1, 28 and 43.
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Figure 4-34. One-dimensional three-point data interpolation range with buoys at locations

2,28 and 44.
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Figure 4-35. One-dimensional three-point data interpolation range with buoys at locations

2,7 and 47.
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Figure 4-36. One-dimensional three-point data interpolation range with buoys at locations

2, 7 and 46.
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Figure 4-37. One-dimensional three-point data interpolation range with buoys at locations

7,23 and 49.
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Figure 4-38. One-dimensional three-point data interpolation range with buoys at locations

4, 44 and 49.
1000
Loc7Loc 14 Loc21  Lo¢28 Loc35 Loc42 Loc49
900 -9
.~ -~ I
800 Loc 6Loc 13— Foc 20 Loc 27 _ Loe3%Loc4t d4
o A A o) d
700 = |
Loc5LoelZ Loc 19 Lo¢26 Loc33 Lo¢40 L,oil4"
600 9
™ ~
B LN !
= 500 Toc4boctt fsu&i Loc25 c3 Lo 39 s
e o~ © o ¢
400 ~ I
Loc3Loc 10 Loc 17 Loc 22 ~loce 31 Loe38  Lod45
300 © o< ]
Se Y |
200 Toc2toc9 oc 16— Lot 23 ¢ 30— Fog 3t bod4
o ) o ~0
100
Locl Loc8 Locl5 Lo¢22 Loc29 Loc36 Loc43
0 o
0 100 200 300 400 500 600 700 800 900 1000
X (m)

Figure 4-39. One-dimensional three-point data interpolation range with buoys at locations

5, 44 and 49.
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Examples of two-dimensional three-point estimations are shown in Figure 4-40 to
Figure 4-45. Figure 4-40 has the estimation buoy points at locations 3, 25, 28 and 44.
The estimation points within the buoy points range are at locations 10, 11, 17, 18, 19, 24,
26, 27, 31, 32, 33 and 38. Total number of estimation locations is 12. The data
interpolation error square per location (Err) is 0.0112. Figure 4-41 has the estimation
buoy points at locations 1, 25, 28 and 43. The estimation points within the buoy points
range are at locations 8, 9, 15, 16, 17, 18, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 36, 37 and
38. Total number of estimation locations is 19. The data interpolation error square per
location (Err) is 0.0157. Figure 4-42 has the estimation buoy points at locations 2, 25,
28 and 44. The estimation points within the buoy points range are at locations 9, 10, 16,
17, 18, 19, 23, 24, 26, 27, 30, 31, 32, 33, 37 and 38. Total number of estimation
locations is 16. The data interpolation error square per location (Err) is 0.0091. Figure
4-43 has the estimation buoy points at locations 2, 26, 28 and 44. The estimation points
within the buoy points range are at locations 9, 10, 16, 17, 18, 19, 23, 24, 25, 27, 30, 31,
32, 33,37 and 38. Total number of estimation locations is 16. The data interpolation
error square per location (Err) is 0.0117. Figure 4-44 has the estimation buoy points at
locations 1, 7, 43 and 49. The estimation points within the buoy points range are at
locations 2 to 6, 8 to 42, and 44 to 48. Total number of estimation locations is 45. The
data interpolation error square per location (Err) is 0.0188. Figure 4-45 has the
estimation buoy points at locations 2, 7, 44 and 49. The estimation points within the
buoy points range are at locations 3 to 6, 9 to 14, 16 to 21, 23 to 28, 30 to 35, 37 to 42,
and 45 to 48. Total number of estimation locations is 38. The data interpolation error

square per location (Err) is 0.0094.
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Figure 4-40. One-dimensional four-point data interpolation range with buoys at locations

3, 25, 28 and 44.
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Figure 4-41. One-dimensional four-point data interpolation range with buoys at locations

1, 25, 28 and 43.
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Figure 4-42. One-dimensional four-point data interpolation range with buoys at locations

2,25, 28 and 44.
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Figure 4-43. One-dimensional four-point data interpolation range with buoys at locations

2,26, 28 and 44.
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Figure 4-44. One-dimensional four-point data interpolation range with buoys at locations

1,7, 43 and 49.
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Figure 4-45. One-dimensional four-point data interpolation range with buoys at locations

2,7, 44 and 49.
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Figure 4-46 to Figure 4-48 show the one-dimensional five-point estimations.
Figure 4-46 has the estimation buoy points at locations 1, 7, 25, 43 and 49. The
estimation points within the buoy points range are at locations 2 to 6, 8 to 24, 26 to 42
and 44 to 48. Total number of estimation locations is 44. The data interpolation error
square per location (Err) is 0.0211. Figure 4-47 has the estimation buoy points at
locations 2, 7, 25, 44 and 49. The estimation points within the buoy points range are at
locations 3 to 6, 9 to 14, 16 to 21, 23, 24, 26 to 28, 30 to 35, 37 to 42 and 45 to 48.
Total number of estimation locations is 37. The data interpolation error square per
location (Err) is 0.0125.  Figure 4-48 has the estimation buoy points at locations 2, 7, 26,
44 and 49. The estimation points within the buoy points range are at locations 3 to 6, 9
to 14, 16 to 21, 23 to 25, 27, 28, 30 to 35, 37 to 42 and 45 to 48. Total number of
estimation locations is 37. The data interpolation error square per location (E7r) is

0.0130.
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Figure 4-46. One-dimensional five-point data interpolation range with buoys at locations

1,7, 25, 43 and 49.
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Figure 4-47. One-dimensional five-point data interpolation range with buoys at locations

2,7, 25, 44 and 49.
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Figure 4-48. One-dimensional five-point data interpolation range with buoys at locations

2,7, 26,44 and 49.

Table 4-9 summarizes the examples of using three reference points which form
triangular areas for data interpolation. The relative error square per location, Err, ranges
between 0.0064 and 0.0175, and the number of estimation points are between 13 and 20.
Table 4-9 shows that the one-dimensional three-point estimations produce interpolations
within 1.8% relative error square per location.

Table 4-10 summarizes the examples of using four reference points for data
interpolation. An area formed by four reference points can be a quadrilateral or a
triangle with an additional reference point in the middle of the triangle. The relative
error square per location, Err, of the examples shown in Table 4-10 have a range between
0.0091 and 0.0188, and the number of estimation points are between 12 and 45. Table
4-10 shows that the one-dimensional four-point estimations produce interpolations within

1.9% relative error square per location.
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Table 4-11 summarizes the examples of using five reference points for data
interpolation. The area of the five-point interpolation is a quadrilateral with an
additional reference point in the middle of the area. The relative error square per
location, Err, of the examples shown in Table 4-11 have a range between 0.0125 and
0.0211, and the number of estimation points are between 37 and 44. From Table 4-9,
Table 4-10 and Table 4-11, the three-point, four-point, and five-point interpolations show
that the relative error square per location is about 2% regardless the number of reference

points to be three, four, or five.
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Table 4-9. Comparison of one-dimensional three-point data interpolation error square per location (Err) for various estimation ranges.
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(in Figure 4-32)
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Table 4-10. Comparison of one-dimensional four-point data interpolation error square per location (Err) for various estimation ranges.
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Table 4-11. Comparison of one-dimensional five-point data interpolation error square per location (Err) for various estimation ranges.
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As the one-dimensional data interpolation shows that the relative error square per
location (Err) is about 2%, the following summary is to show the two-dimensional data
interpolation outcomes. To form a two-dimensional range, the minimum number of
points is four, which make up a tetrahedron. By adding one additional point, five points
can make a pyramid. The four points two-dimensional estimation shown in Figure 4-49
is using the same reference points as shown in Figure 4-40 which is the one-dimensional
four-points interpolation having a triangular area and an additional points in the middle.
The two-dimensional range is formed by considering the additional point in the middle of
the area in a different plane. So the same four points form a tetrahedron now. For
location 10 as an example, the two-dimensional estimation is performed by averaging the
estimations interpolated using locations 3, 28 and 44 and using locations 3, 25 and 44.
The estimations interpolated using locations 3, 28 and 44 and using locations 3, 25 and
44 are both one-dimensional three-point cases and provide interpolation results for
location 10 at the plane of locations 3, 28 and 44 and at the plane of location 3, 25 and 44,
respectively. By averaging the results of the two planes, the two-dimensional estimation
for location 10 is the average of the one-dimensional estimations of the two planes cover

location10.
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Figure 4-49. Two-dimensional four-point data interpolation range.

As shown above in Figure 4-40 and Figure 4-49, the two estimation cases have
the same range of estimation except the four-point case has an additional buoy point in
the middle at location 25. The three-points interpolation based on locations 3, 28 and 44
leads to the error square per location, Err, of 0.0094, and the four-points interpolation
based on locations 3, 28, 44 and the middle point 25 leads to the error square per location,
Err,0f 0.0112. The results show that additional buoy points within the same range
might not improve the estimation. If taking the same four points, 3, 25, 28 and 44 but
estimating in two-dimensional as a tetrahedron, to the error square per location, Err, is
0.0110 which does not show significant difference from the one-dimensional estimations,

either.
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Moreover, if modify the inverse distance weight factor shown in Equation 3-15 by

rising the power of distance to two as follows:

1/d§
D YRVLE

for dl] # 0 (4-2)

The data interpolation error square per location, Err, is 0.0140 for the one-dimensional
three-point estimation based on locations 3, 28 and 44; while Err, is 0.0115 and 0.0127
for four-point, one-dimensional and two-dimensional estimations, respectively. The
modified weight factor in Equation 4-2 does not show advantages compared with the

factor defined in Equation 3-15.

4.3. Verification and Validation using Buoy Data

This section provides sea-state condition analysis on buoy locations selected from
the National Oceanic and Atmospheric Administration (NOAA) website. Four buoy
locations on the east coast of the United States are selected for analysis. Three of the
four locations are considered as buoys with given sea-state information while the
remaining location does not have sea-state information and needs estimations. Sea-state
characterization is performed on this remaining location based on the methodology

demonstrated in Chapter 3.

4.3.1. Description of Buoy Data

Figure 4-50 shows the four buoy locations selected for this example. Location A
denoted as buoy 1 represents the buoy of Station ID 44009. Location B denoted as buoy
2 represents the buoy of Station ID 44025. Location C denoted as buoy 3 represents the

buoy of Station ID 44011. Location D denoted as buoy 4 represents the buoy of Station

127



ID 44008. Buoy 4 is considered the estimation point without given sea-state
information. Estimations for the estimation point are based on the sea-state conditions
obtained from buoys 1, 2, and 3. Table 4-12 summarizes the coordinates of these four
locations. The latitude and longitude coordinates are provided from the NOAA website.
To indicate the locations of these four locations in Cartesian coordinate system, Table
4-12 shows the zones and the easting and northing coordinates in the Universal
Transverse Mercator (UTM) coordinate system corresponding to the given latitudes and
longitudes. There are sixty zones in the Universal Transverse Mercator (UTM)
coordinate system. The width of each zone is about 1,000,000 m. The easting
coordinate of a specific zone indicates the distance from the west boundary of the zone.
Since these four locations in this example are in two different zones, the easting
coordinates of the Universal Transverse Mercator (UTM) system need to be adjusted to
obtain the X and Y coordinates shown in Table 4-12. For example, the coordinate
easting 525,998 m in zone 18 N for buoy 1 means that buoy 1 is at the distance of
525,998 m from the west boundary of zone 18 N. Similarly, buoy 3 is at the distance of
701,531 m from the west boundary of zone 19 N. Since these two easting coordinates
are not in the same zone, they couldn't be plotted in an X-Y plane using their easting
coordinates. By the fact that zone 19 is on the east side of and adjacent to zone 18, the
easting coordinate 701,531 m of buoy 3 can be adjusted by adding 1,000,000 m to
701,531 m to obtain the easting distance from the west boundary of zone 18 as 1,701,531
m. The adjusted easting coordinates are shown in Table 4-12 as the X coordinate which

indicate the distance from the west boundary of zone 18 N. The origin of the X axis, i.e.
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X =0 km, in Figure 4-50 indicates the west boundary of zone 18 N on the Universal
Transverse Mercator (UTM) coordinate system.

As shown in Figure 4-50 and Table 4-12, the buoy of Station ID 44009 is
considered as buoy 1 in this example, while buoys of Station ID 44025 and 44011 are
considered as buoy 2 and buoy 3, respectively. The buoy of Station ID 44008 is buoy 4
and is treated as an unobserved location and needs estimation for the sea-state conditions.
This location is denoted as estimation point. Table 4-13 provides the mean values of
modal period and significant wave height obtained from the NOAA website for these
four locations. The modal period and significant wave height of buoy 4, the estimation
point, are provided for reference and verification of the estimation results.

The modal period and significant wave height data were collected hourly. The
mean values were computed by adding up all the hourly collected data and dividing it by
the number of data. In this example, the data collected in January are used. Buoy 1
has data collected from 1986 to 2008. Buoy 2 has data collected from 1991 to 2008.
Buoy 3 has data collected from 1984 to 2008. Buoy 4 has data collected from 1982 to

2008. Appendix B provides the obtained NOAA data used in this example.
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Figure 4-50. Locations of interest for estimations.
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Table 4-12. Coordinates of locations shown in Figure 4-50.

Station ID Latitude Longitude Zone Easting (m) | Northing (m) X (km) Y (km)
44009: Buoy 1 38.464N 74.702W 18N 525,998 4,257,341 525.998 4257.341
44025: Buoy 2 40.250N 73.167TW 18N 655,897 4,457,117 655.897 4457.117
44011: Buoy 3 41.105N 66.600W 19N 701,531 4,553,189 1701.531 4553.189
44008: Estimation point (Buoy 4) 40.502N 69.247W 19N 479,071 4,483,506 1479.071 4483.506

Table 4-13. Modal periods and significant wave heights of locations defined in Figure 4-50.

Location Modal period T, Significant wave height H,
44009: Buoy 1 7.2 sec 1.4m
44025: Buoy 2 6.8 sec I.5m
44011: Buoy 3 8.5 sec 2.8 m
44008: Estimation point (Buoy 4) 8.0 sec 24 m
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4.3.2. Data Interpolation

According to Section 3.1.8, the inverse distance weight factors applied on buoys
for the estimating point are computed using Equations 3-15 to 3-17and summarized in
Table 4-14. Since the estimated point is closer to buoy 3 as shown in Figure 4-50, the
weight factor applied to buoy 3 is larger than that applied to buoy 1 and buoy 2. These
weight factors are applied on the adjusted periodograms of the buoys using Equation 3-18
to estimate the periodograms for estimation point. ~As demonstrated in Chapter 3, wave
spectrum goodness-of-fit is performed to determine the spectrum type for estimation
point. Figure 4-51 shows the periodogram of estimation point and the periodograms
constructed from Bretschneider and Jonswap spectra. The modal period and significant
wave height generating these spectra are based on the least square concept demonstrated
in Section 3.1.4.  As shown in Figure 4-51, the periodogram constructed from the
Bretschneider spectrum fits the estimation point periodogram better compared with the
periodogram constructed from the Jonswap spectrum. Therefore, the spectrum type for
estimation point is determined as the Bretschneider spectrum. The estimated modal
period and significant wave height of Bretschneider spectrum are summarized in Table
4-15 and compared with the observation values provided from the NOAA website shown
previously in Table 4-13. Comparing with NOAA observations, the estimated modal
period has an absolute relative error of 1.4 %; while the estimated significant wave height

has an absolute relative error of 2.2 %.
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Table 4-14. Weight factors applying on the three buoys for the estimation point (buoy 4).

Inverse distance weight factors Estimation point (buoy 4)
Weight factor applied to buoy 1 0.1565
Weight factor applied to buoy 2 0.1861
Weight factor applied to buoy 3 0.6574
Estimation point — Estimated Periodogram
(Buoy4)  ----- Fitted Periodogram from Bretschneider
Té: — - - Fitted Periodogram from Jonswap
S 2.00
<
g
oy 1.00 ~
q) 3
he HER N
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Figure 4-51. Estimated periodogram and fitted periodograms of different sea spectra for

the estimation point (buoy 4).

Table 4-15. Estimated modal period and significant wave height of the estimation point

(buoy 4) with absolute relative errors based on the NOAA observations.

‘ NOAA Absolute relative
Wave properties ) Estimation
observation error
Modal period T,, = 8.0 sec Ty =8.11 sec 1.4 %
Significant wave height H;=24m H,=2.45m 2.2 %
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According to the spectrum type determined by wave spectrum goodness-of-fit,
hypothesis testing can be performed for parameter estimations to characterize the
sea-state conditions for the estimated point. Hypothesis testing concept is demonstrated
in Section 3.1.5. The parameter confidence intervals estimations follow the procedure
described in Section 3.1.6. Table 4-16 summarizes the two-sided confidence intervals at
the 95 % level of the modal period and significant wave height for the estimation point
(buoy 4). The 95 % confidence interval of the modal period is between 7.96 sec and
8.18 sec. The estimated modal period based on the periodogram of the estimation point
(buoy 4) is 8.11sec. The NOAA observation is 8.0 sec. Both 8.11 sec and 8.0 sec are
within the confidence interval.  As for the significant wave height, the 95 % confidence
interval is between 2.38 m and 2.5 m. The estimated significant wave height based on
the periodogram of the estimation point (buoy 4) is 2.45 m; while the NOAA observation
is 2.4 m. Both 2.45 m and 2.4 m are within the confidence interval as well. Figure
4-52 shows the two-sided confidence interval at the 95% level of the estimation point
(buoy 4) on the significant wave height H; for the modal period 7, = T, where T, is the
modal period estimated from the periodogram. Figure 4-53 shows the two-sided
confidence interval at the 95% level of the estimation point (buoy 4) on the modal period
T,, for the significant wave height H,; = H,,, where H,, is the significant wave height

estimated from the periodogram.
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Table 4-16. Two-sided confidence intervals at the 95% level of the significant wave

height H and the modal period 7,, of the estimation point (buoy 4).

. : _ Estimation point (Buoy 4)
Two-sided confidence intervals at the

95% level

Estimation: 7,,, = 8.11 sec, H;, = 2.45 m
NOAA observation: 7,, = 8.0 sec, H;=2.4 m

Lower modal period limit (77) 7.96 sec

Upper modal period limit (77) 8.18 sec

Lower significant wave height limit (H,z) 2.38 m

Upper significant wave height limit (H,y) 2.50 m

Estimation point Statistic
POt e Lower Confidence Limit

(Buoy 4) _— i
Upper Confidence Limit
(Tm=Tme) ® Hs=Hse

45

40

Statistic

35

30
2.30 2.40 2.50 2.60

Significant wave height Hs (m)

Figure 4-52. Two-sided confidence intervals at the 95% level of the estimation point

(buoy 4) on the significant wave height H for the modal period T, = T..
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(Hs = Hse) ® Tm=Tme
45

40 =T~
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I
I
(
I
I
|
/
/
\

35 ----------------------- \“—‘\\~--',
30
7.70 7.90 8.10 8.30
Modal period Tm (sec)

Figure 4-53. Two-sided confidence intervals at the 95% level of the estimation point

(buoy 4) on the modal period 7, for the significant wave height Hy = H,,.

As mentioned in Chapter 1, Altunkaynak and Ozger(2005) provided a standard
regional dependence function (SRDF) for assessing significant wave height. The
standard regional dependence function (SRDF) is based on the point cumulative
semivariogram (PCSV) modified by dividing it by the maximum point cumulative
semivariogram value and subtracting from unity. A point cumulative semivariogram
(PCSV) is a cumulative semivariogram (CSV) with a reference site of interest. The
standard regional dependence function (SRDF) shows that locations in far distances have
lower influence on the point of interest compared with the locations in close distances
which have higher influence, which has the same idea as the inverse distance weight
factors demonstrated in Chapter 3.  Analysis of the locations defined in Figure 4-50

using the standard regional dependence function (SRDF) is presented in Table 4-17 to
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compare with the estimations using the methodology proposed in this research. The
estimated significant wave height for point 1 defined in Figure 4-50 is 2.34 m which has

an absolute relative error of 2.6 %, i.e. absolute value of (2.34 m-24m)/24m=2.6 %.
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Table 4-17. Estimation using standard regional dependence function (SRDF) for the locations defined in Figure 4-50.

Significant Distance Standard Semivariogram Standard
Station ID PCSV SRDF
wave height (km) distance (km) (SV) PCSV
44008: Buoy 4 (Estimation point) 24m 0 0
44011: Buoy 3 2.8 m 233.118 0.24 0.080 0.080 0.08 0.92
44025: Buoy 2 1.5m 823.597 0.84 0.405 0.485 0.49 0.51
44009:Buoy 1 1.4m 979.54 1.00 0.500 0.985 1.00 0

138




5. Contributions, Limitations, and Future Work

5.1. Conclusions and Contributions

Risk-based methods are required for marine and maritime systems designs.
Characterizing the statistical uncertainties associated with the system is essential for
risk-based designs. The uncertainties for designing marine and maritime systems are
embedded in the sea-state condition parameters and the modeling and prediction
procedure. This study provides a statistical framework to characterize the sea-state
conditions and associate uncertainties in confidence intervals on the estimated
parameters.

Sea-state conditions are characterized by modal period and significant wave
height which are two key parameters to represent the sea-state. At locations where the
buoy elevation time histories are given, the estimation confidence intervals capture the
modal period and significant wave height values, which verify and demonstrate the
accuracy of the methodology. At locations of interest with no information provided, the
sea-state conditions are interpolated from the nearby locations where the buoy data are
given. Hypothesis testing and goodness-of-fit demonstrate the statistical features and
uncertainties in the sea-state parameters, the wave model, and the characterization and
prediction process. Verifications are taken place by utilizing a numerical wave
simulation model called SWAN. Results show that the confidence intervals of the
parameter estimations capture the values generated by SWAN model. That is, the
proposed methodology is verified and demonstrated to provide accurate sea-state

predictions. The other verification example uses sea-state properties based on historical
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data obtained from the National Oceanic and Atmospheric Administration (NOAA)
website.  Spatial interpolation for the location of interest is presented in confidence
intervals and verified by comparing with the NOAA observations. This example
provides a verification and validation for the methodology.

Statistical and probabilistic methods are based on the assumption that the data are
independent and representative. Current practices do not make a distinction between the
number of discretization points for numerical computations and the number of sampling
points, i.e. sample size needed for statistical analysis. Therefore, the correlation
between data is discussed in this study. Approaches to estimate the sample size of
independent observations are provided and examined. It is found that a series of
independent samples has the interval between samples approximately the period of the
series itself. In addition to characterizing the sea condition in time and frequency
domains, the spatial interpolation techniques such as semivariogram analysis and Kriging
estimation are discussed. In order to apply the semivariogram analysis and Kriging
estimation, sufficient information on the field to establish the semivariogram model is
required. The spatial interpolation procedure used in this research is compared with
multiple existing methods reported in the literature. Comparisons show that the
estimates reported herein have greater accuracy than the estimates by the existing
methods. Moreover, the proposed estimators do not require as much information from
the field as the existing methods.

This study provides methodologies for characterizing the sea-state conditions by
estimating the sea wave parameters. The methodology applies on the locations with

given wave properties and interpolates the locations of interest with unknown
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information. The estimations take into account the uncertainties associated with the
modeling and prediction processes and present the parameters characterizations in
confidence intervals. Further, if the intervals between samples are too small, the data
are most likely correlated. For intervals between samples too large, the information
collected might not be sufficient. The interval between samples discussed in this study
provides a guideline on how often, in time wise, to collect samples in order to obtain
independent and representative data. Overall, the methodologies and discussions
provided in this study can enhance the knowledge of the sea environment, provide
statistical and probabilistic estimation framework, and improve the future risk-based

marine and maritime designs.

5.2. Limitations and Future Work

This research is based on the assumption that the sea waves are stationary random
processes. The sea-state condition characterization and prediction provided accurate
estimations at the observed and unobserved locations. However, for extreme weather
conditions such as storms, further examinations and modifications are required to ensure
the achievement of accurate results at desired levels. In addition, the sea-state
characterization methodology could be utilized for studies of wave-structure interactions.

Further analysis is needed to ensure the applicability.
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Appendix A.

Example output file from SWAN is shown as follows. The output quantities
include the coordinates of the locations defined for obtaining output quantities, the

spectral frequencies and variance densities for each location.

SWAN 1 Swan standard spectral file, version
$ Data produced by SWAN version 40.81
$ Project: t5Triall ; Tun number: t5
LOCATIONS locations in x-y-space
49 number of locations

100.0000 0.0000

100.0000  150.0000
100.0000  300.0000
100.0000  450.0000
100.0000  600.0000

950.0000  600.0000
950.0000  750.0000
950.0000  900.0000
AFREQ absolute frequencies in Hz
32 number of frequencies
0.0521
0.0573
0.0630
0.0693
0.0763
0.0839

0.4241
0.4665
0.5132
0.5645
0.6209
0.6830
0.7513
0.8264
0.9091
1.0000
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QUANT

3
VaDens
m2/Hz
-0.9900E+02
CDIR
degr

-0.9990E+03
DSPRDEGR
degr

-0.9000E+01
LOCATION 1
0.4528E-12 263.7
0.2019E-09 265.3
0.2319E-07 265.8
0.9623E-06 266.6
0.3515E-01 322.0
0.2771E+00 322.4
0.9987E+00 322.7
0.2256E+01 323.2
0.5719E+01 324.2
0.9832E+01 325.1
0.4393E+01 326.3
0.2197E+01 327.9
0.1484E+01 329.9
0.1001E+01 331.6
0.6622E+00 332.6
0.4291E+00 333.2
0.2728E+00 333.4
0.1720E+00 333.4
0.1078E+00 333.3
0.6729E-01 333.0
0.4193E-01 332.7
0.2614E-01 332.4
0.1632E-01 332.1
0.1019E-01 331.8
0.6369E-02 331.5
0.3980E-02 331.1
0.2487E-02 330.7
0.1554E-02 330.2
0.9717E-03 329.6
0.6120E-03 328.9
0.3875E-03 328.2
0.2478E-03 327.2

number of quantities in table
variance densities in m2/Hz
unit
exception value
average Cartesian direction in degr
unit
exception value
directional spreading
unit
exception value

54.0
54.0
53.7
53.3
39.1
37.1
34.8
31.8
27.6
25.1
23.8
22.8
21.3
20.0
19.2
18.8
18.5
18.4
18.4
18.5
18.6
18.7
18.8
18.9
19.1
19.3
19.5
19.7
20.0
20.3
20.6
20.9
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Appendix B.

The mean values of the significant wave height and modal period data obtained
from the NOAA website are provided as follows. The data are provided in the order of
Buoy 1: Station ID 44009, Buoy 2: Station ID 44025, Buoy 3: Station ID 44011, and

Buoy 4: Station ID 44008.
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Buoy 1: Station ID 44009

STATICH: 44009
1 - MONTHLY AND ANNUAL FREQUENCY AND CUMULATIVE FERCENT FREQUENCY (10THS)

ELEMENT:| SIGNIFICANT WAVE HEIGHT | (METERS) —- POR: (5/1986 - 12/2008) (1772846 RECORDS,

T2 FEB MER ATR MRY Jm JUL UG
F CEF F CEF F CEF F CEF F CEF F CEF F CEF F CEF

8.0 - - - - . - - - - - - - -
7.5 ! 5 3 . - - . - - . - -
7.0 & 939 14 939 - - - - - - - - - - - -
6.5 14 999 B g9e - - - - 1 3 - - - - - -
6.0 15 998 12 998 . - - & 999 - - . - -
5.5 g 897 13 937 5 3 1 & 4 999 - - - - 3 &
5.0 24 996 16 995 29 999 7 939 g 999 - - - - 13 g9
4.5 41 994 40 994 51 897 43 993 10 999 - - 2 % 17 999
4.0 &7 991 &1 991 116 994 105 996 36 993 3 3 4 999 32 998
3.5 193 986 144 986 266 986 179 989 134 096 2 g9 1 %98 B4 99
3.0 375 972 301 974 505 947 256 976 253 936 12 998 13 938 o7 a9l
2.5 815 945 728 950 965 933 593 958 439 963 124 999 g 938 178 986
3.0 1696 886 1484 892 1793 866 1731 916 997 939 436 990 333 993 605 975
1.5 3381 764 3110 772 3189 742 3125 793 2538 871 1618 961 1584 972 2226 940
1.0 4582 520 3947 522 4689 522 5354 571 5A98 €98 6304 B850 7196 876 7330 809
0.5 2613 189 2529 205 2857 198 2675 190 4518 310 6011 413 7069 436 6442 378
0.0 7 01 11 1 1 % 5 % 28 2 4 3 15 5 2
T5BCTL 1.7 1.7 1.8 1.6 1.4 1.1 1.0 1.1
5OBCTL 1.2 1.2 1.2 1.1 1.0 0.8 0.8 0.8
25ECTL 0.8 0.8 0.8 0.8 0.7 0.6 0.6 0.6
MERN |I!I!| 1.4 1.4 1.3 1.1 0.9 0.9 1.0
5.1. 0.8 0.8 0.8 0.7 0.6 0.4 0.4 0.5
TOTAL 13852 12434 14470 14074 14670 14641 16375 17029
MR 7.6 7.7 5.7 5.4 6.3 a1 4.5 5.5

£8.2% HAVE ELEMENT)

F CFF

10

29
55
91
138
293
551
1317
3198
6223
3754

SEF

9499
999
999
998
997
993
987
978
960
925
241
837
240

*

-1 = P
e e TR B R

1
1
0
1.
0
156
[

=

F CFF

oo Ry n =

OCT

=N

0.
16010
6.9

DATE 1992010414 2003021713 2004031100 2003040723 2008051218 2002060721 1996071313 19959083113 2006030205 2005102512

MIN

0.0

0.2

0.2

0.2

0.0

0.0

0.0

1]

0.0

0.0

DATE 1988011016 2007021307 1987030911 2007041116 1987053008 1994060914 1993071322 1950080516 1987091310 1953102518

[* < 0.05% ,

# = 100.0%)
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Hov
F CFF

9939
993
959
958

85 9%
105 932
116 584
271 978
763 957
1616 903
3072 B8
4745 570
3187 233

o o

(=R I - A = I L
o o oo

14085

6.9

F CFF

[EER LR ]

DEC

=

0.
14529
6.4

2006112301 2003120602

0.0

0.0

1993112311 1937123018

F CEF

10 #

23 9339

38 999

59 3939

g 993

174 539
425 938
823 985
1864 531
3103 881
6677 964
15701 926
33910 @&38
86560 648
43241 273

N L]

177848

.7

2003021713

1
1
]
1
0.
g
T
7
0.0
01s

199712301
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STATION: 44009
1 - MONTHLY AND ANNUAL FREQUENCY AND CUMULATIVE PERCENT FREQUENCY (10THS)

ELEMENT:| DOMINANT WAVE PERIOD |(SECONDS) —- BOR: (5/1986 - 12/2008) (177733 RECORDS, 88.1% HAVE ELEMENT)

JEN FEB MER LER MRY JUN JUL UG SEF OCT HOV DEC ZNN

F CEFF F CEF F CEF F CEF F CEF F CEF F CEF F CEFF F CEF F CEF F CEF F CEF F CEF
20 - - - - - - - - - - 1 # - - 29 # 2 # - - - - - - 32 #
13 - - - - - - - - - - - - - - - - - - - - - - - - 0 993
] - - - - - - - - - - - - - - - - - - - - - - - - 0 993
17 30 # 12 # 149 # 13 # 5 # 41 9399 48 # 52 998 198 999 28 # 16 # 22 42 514 993
16 - - 1 999 23 939 1 993 30 9399 g 997 1 997 26 995 - 3 998 - - - 123 997
15 2z 998 1 999 & 947 3 943 g 998 60 935 4 997 o 994 31 987 16 938 1 9a7 12 9398 225 99%

14 147 998 110 999 369 994 176 939 160 934 123 330 g 957 3le 983 T10 985 412 937 169 937 350 9%3 3130 9355
13 462 9E7 526 990 807 969 549 984 398 983 221 982 129 9382 562 975 980 940 ag1 971 579 985 619 974 8793 977
12 BE 954 95 948 127 913 90 947 60 958 19 987 41 984 32 942 95 879 108 910 117 943 46 931 918 939
11 1091 3947 962 940 1449 904 1443 941 912 952 385 965 413 981 923 940 1432 873 1580 903 1317 935 900 928 12807 934
10 1398 B8e% 1201 8563 1597 @804 1425 838 1356 830 88 933 607 956 969 &8 1407 781 1700 805 1285 841 1118 866 14851 @862

g 997 TRE 1149 786 1311 694 1604 737 1900 798 1655 885 1643 919 1538 EB29 16B0 @92 1704 698 1162 T49 1229 TEE 17572 778
B 140% &% 1531 674 1875 603 2326 623 3417 668 33%6 772 3515 819 3339 T38 2598 584 2083 592 1573 66T 1494 704 28560 &73
T 1287 554 1257 551 1279 474 1848 458 1960 435 2485 540 3368 604 2853 542 1746 415 1140 442 974 554 1162 601 21359 513
6 2352 501 1855 44% 1393 335 1864 327 1750 301 2555 370 3330 398 3109 375 1849 307 1943 390 2193 485 2692 520 27431 393
5 29304 331 2025 297 2140 254 1555 194 1383 182 1537 196 1860 195 2026 192 1793 189 2504 269 2767 328 2953 335 25447 244
4 1439 12z 1343 134 127% 1loe 1o0z3 g 1013 28 1049 91 1102 g 1072 73 1017 75 1505 113 158% 131 1601 131 15037 101
3 245 18 321 26 258 13 151 11 270 13 277 19 228 14 174 10 158 10 297 19 2350 13 297 21 2324 17
2 - - 5 * 1 * 3 * - - - - - - - - - - - - - - 1 * 10 *
TSECIL 9.1 9.1 10.0 10.0 9.1 8.3 8.3 9.1 10.0 10.0 10.0 9.1 3.1
SOFCIL 6.3 7.1 7.7 7.7 7.7 7.1 6.7 7.1 B.3 7.7 6.7 6.3 7.1
25FCIL 5.0 5.0 5.3 5.9 5.9 5.9 5.9 5.9 5.9 5.3 5.0 5.0 5.6
MERN 7.3 7.9 7.8 7.7 7.3 7.1 7.5 8.3 7.9 7.3 7.2 7.5
5.D. 2.8 2.8 2.8 2.3 2.4 2.2 2.0 2.4 2.9 2.8 2.7 2.7 2.6
TOTAL 13851 12434 14489 14074 14668 14638 16375 17029 15678 16004 14021 14436 177733
MRX l6.7 16.7 17.4 16.7 16.7 20.0 16.7 20.0 20.0 16.7 16.7 16.7 20.0
DATE 2002012702 2004020305 2005031704 2000042509 1998052702 1992061802 1996071008 2003082917 1995091009 2002102513 2002110408 2002123023 2003082917
MIN 2.5 2.1 2.4 2.4 2.5 2.5 2.5 2.8 2.5 2.3 2.8 2.4 2.1

DATE 2004010211 2007021308 2008030308 2007041416 2007052221 2008060301 1993072312 2003082900 1997092000 2000101409 2008111310 2008122321 2007021308
{* < 0.05% , # = 100.0%)
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Buoy 2: Station ID 44025

STATICN: 44025

1 - MONTHLY LND ANNUAL FREQUENCY AND CUMULATIVE PERCENT FREQUENCY (10THS)
ELEMENT :| SIGNIFICANT WAVE HEIGHT | (METERS) -- POR: (4/1991 - 12/2008) (142270 RECCRDS,

JEN FEB MAR APR MAY JuN
F CEF F CPF F CEPF F CEF F CPF F CEF

10.0 - - - - - - - - - - - -
9.5 - - - - - - - - - - - -
2.0 - - - - - - - - - - - -
8.5 - - - - - - - - - - - -
8.0 - - - - - - - - - - -
7.5 - - - - 3 % - - - - - -
7.0 1% - - 6 999 - - - - - -
6.5 g 939 - - 10 993 - - - - - -
6.0 5 g9 6 % 2 998 - - - - - -
5.5 10 983 15 938 18 @98 5 1% - -
5.0 35 998 24 998 23 936 8 939 2 999 - -
4.5 56 994 32 936 87 994 10 939 5 999 - -
4.0 110 @8 72 993 116 987 34 938 7 @99 - -
3.5 204 978 133 986 220 978 113 935 43 939 2
3.0 415 959 352 972 438 953 261 986 147 995 60 999
2.5 883 919 938 939 941 923 733 964 404 984 164 995
2.0 1711 833 1725 849 1679 845 1242 902 953 953 485 982
1.5 2535 669 2443 683 2586 706 2843 798 2512 878 1840 944
1.0 2974 425 2774 448 3482 492 4102 560 5367 684 5789 798
0.5 1412 139 1797 182 2341 204 2503 216 3434 270 4291 340
0.0 34 3 100 10 131 11 75 & &  § - -
TSECTL 2.0 1.2 1.9 1.8 1.4 1.2
SOBCTL 1.4 1.3 1.3 1.2 1.0 0.9
25BCTL 1.0 0.9 0.8 0.8 0.7 0.7
MEAN [ 1.5 1.5 1.5 1.3 1.1 1.0
S.D. 0.8 0.8 0.9 0.7 0.8 0.4
TOTAL 10398 10417 12030 11929 12949 12631
MAX 7.2 6.1 7.4 5.5 5.3 3.5
DATE 1926010808 2003021716 1994030312 2007041602 2008051217 1994062200
MIN 0.0 0.0 0.0 0.0 0.0 0.3

DATE 1992012717 2003022008 1993032706 1993040606 1998052321 2004062022
(* < 0.05% , £ = 100.0%)

JUL
F CPF
1 #
2 985
2 989
4 985
4 989
259 8383
110 887
463 88
1946 953
6068 803
4338 336
33 3
1.1
0.9
0.7
1.0
0.4
13000
5.5

T8.4% HAVE ELEMENT)

AUG
F CPF

1 #

1 a9g

1 993

4 993

31 999
144 997
296 985
546 961
1564 916
5078 787
4404 368
8 5
1.2

0.9

0.7

1.0

0.5

12128

5.8

F

R

11
22
53

a
8

202
492
1laa
2709
4638
2693
23

SEP
CEF

]
o koM tn

o

12101
6.8

OoCT

F CPF

1 #

7 893

29 9399
71 997
104 891
197 983
359 967
&09 938
1232 88
2550 790
4435 586
2855 229

1

1.6

1.1

0.8

1.3

0.8

12450

6.0

HOV
F CPF
1 #
5 8988
11 988
59 938
125 383
230 981
384 960
TO06 925
1244 861
2497 747
3758 518
1%21 17a
8 1
1.8
1.2
0.9
1.4
0.8
10954
6.5

F

110
227
540
1052
1581
2502
3187
1852
339

DEC
CFF

283
9583
983
283
983
983
288
986
983
287
aTe
as7T
a0a
815
674
451
la3

[N N}
W oW W o W

a.
11222
9.3

ANN
F CFF
0 #
1 ¥
0 959
1 3988
4 959
4 959
14 985
Z3 983
34 9839
&85 988
189 959
414 958
T43 985
1505 980
3331 979
T334 956
14043 904
28527 805
51633 605
33841 242
564 4
1.8
1.1
0.8
1.3
0.7
142270
9.3

15996071320 1991081916 1953081700 2005102513 19953112819 1952121116 1992121116

0.2

0.0

0.0

0.2

0.2

0.0

0.0

1594071809 19391081318 2003092517 2002100517 2000112512 1952122200 2003052917
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STATION: 44025
1 - MONTHLY AND ANNUAL FEEQUENCY AND CUMULATIVE PERCENT FREQUENCY (10THS)

ELEMENT: | DOMINANT WAVE PERIOD|(SECONDS) -- POR: (2/1991 - 12/2008) (142186 RECORDS, 78.3% HAVE ELEMENT)

JEN FEE MAR LER MAEY JUN JUL RUG SEP oCT HOV DEC NN

F CEF F CEF F CEPF F CEF F CEF F CEF F CPF F CEF F CPF F CPF F CEF F CEF F CEPF
25 1 # - - - - - - - - - - - - - - - - - - - - - - 1 #
24 - - - - - - - - - - - - - - - - - - - - - - - - 0 223
23 - - - - - - - - - - - - - - - - - - - - - - - - 0 223
22 - - - - - - - - - - - - - - - - - - - - - - - - 0 233
21 - - - - - - - - - - - - - - - - - - - - - - - - 0 233
20 - - - - - - - - - - 1 E - - - - 3 # - - - - - - 4 233
19 - - - - - - - - - - - - - - - - - - - - - - - - o 293
18 - - - - - - - - - - - - - - - - - - - - - - - - o 293
17 4 gos - - 17 $ 4 $ 28 $ 62 999 6 $ 53 £ 104 999 16 # & # 5 $ 305 999
16 - - - - 9 993 1 @93 - - 4 995 - - - - 5 991 - - - - - - 19 @98
15 2 gos - - 7 @98 3 @93 - - 18 895 - - 7 99& 5 991 7 gos - - - - FERTE
14 45 393 87 $ 215 397 81 933 106 998 214 993 51 993 230 9395 578 990 361 998 20 999 133 993 2127 997
13 220 995 275 992 418 979 210 993 153 990 178 976 104 996 293 976 739 943 597 93 298 998 300 987 3785 982
12 5 974 9 965 6 945 & 975 3 a78 15 962 g 988 & 952 41 &8 17 921 36 370 4 980 214 954

11 589 8973 580 964 823 944 615 974 461 977 238 96l 227 985 573 850 943 878 826 920 662  9a7 486 960 T0O13 954

10 900 91% 1028 90% 1179 876 813 823 934 941 456 942 338 967 545 8903 855 800 1151 853 1035 807 845 916 102350 905
a T80 832 1145 810 1227 778 1554 846 1557 86% 10%2 906 938 941 901 857 125% 721 1321 Tel 979 812 1147 &B41 13910 833
& 1135 756 1328 7T00 1795 677 26895 T15 3528 749 3145 820 3006 865 2528 783 15823 617 1697 655 1314 723 1355 738 25453 T35
T 1074 647 92z 572 1220 528 1445 4839 1794 476 2181 570 3149 638 2145 574 1343 458 855 51% 1001 603 1030 617 18215 556
6 2166 543 1745 484 1640 427 1670 368 1481 338 1965 398 2335 396 1972 357 1497 347 1658 450 1735 512 2145 520 22009 428
5 2068 335 1800 316 188 291 1418 228 1417 223 1665 242 1437 216 1550 235 1470 223 2112 317 2171 353 2013 329 21011 273
4 1187 136 1185 143 1238 134 1002 10% 1206 114 1133 110 1125 105 1055 107 1058 102 1525 147 1427 155 1363 150 14504 125
3 225 22 303 29 382 32 298 25 285 20 256 20 245 13 233 20 172 14 307 25 270 25 315 28 3277 23
2 - - - - 1 * - - - - - - - - - - - - - - - - - 1 *
T5PCTL 8.3 9.1 9.1 9.1 9.1 8.3 7.7 8.3 10.0 9.1 9.1 9.1 9.1
S0PCTL 6.3 6.7 T.1 T.7 T.7 T.1 6.7 7.1 7.7 7.1 6.3 6.3 T.1
25PCTL 5.0 5.0 5.3 5.6 5.6 5.6 5.6 5.6 5.6 5.0 5.0 5.0 5.3
MELN IHIII T.1 T.4 T.4 T.3 7.1 6.9 7.2 8.0 7.5 7.0 6.9 T.2
5.D. 2.4 2.5 2.6 2.3 2.2 2.3 1.8 2.4 2.9 2.8 2.5 2.5 2.5
TOTLL 10381 10407 12063 11321 12939 12631 13000 12118 12085 12450 10954 11217 142186
MnY 25.0 14.3 17.4 1le.7 18.7 20.0 18.7 18.7 20.0 16.7 16.7 18.7 25.0
DATE 1954011111 2005020507 2008031200 2001041519 2007053103 1992061715 20070703195 2007082000 1956091417 2004100802 15998112521 19961229515 19594011111
MIN 2.5 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.4

DATE 2004011504 2001022721 20080313198 2007041201 2003051522 2007062422 1953071502 2003082910 1957082503 2006102800 2008111305 2008122322 2008031319
(* < 0.05% , # = 100.0%)
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Buoy 3: Station ID 44011

STATICN: 44011

1 - MONT AND CUMULATIVE PERCENT FREQUENCY (10THS)
ELEI{ENT:iSIGNIFICRNT WAVE H.EIGHTI (METERS) —— POR: (5/1984 — 12/2008) (180611 RECORDS, 97.5%

JEN FED MAR APR MAY JUN JUL UG

F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF
14.0 - - - - - - - - - - - - - - - -
13.5 - - - - - - - - - - - - - - - -
13.0 - - - - - - - - - - - - - - - -
12.5 - - - - - - - - - - - - - - - -
12.0 - - - - - - - - - - - - - - - -
11.5 - - - - - - - - - - - - - - -
11.0 - - - - - - - - - - - - - - - -
10.5 - - - - - - - - - - - - - - - -
10.0 - - 1 ¥ - - - - - - - - - - -
9.5 - - 2 939 - - - - - - - - - - - -
3.0 T # 5 999 1 $ 1 $ - - - - - - - -
8.5 7 993 7 939 7 939 2 939 - - - - - - - -
8.0 17 999 18 999 8 1999 2 999 - - - - - -
7.5 42 gos 33 997 29 999 & 939 - - - - - - -
7.0 88 995 a8 995 36 997 28 999 6 # 1 $ - - -
6.5 172 983 78 991 80 994 a8 997 s 939 FR-T-1- - - -
6.0 282 976 171 984 146 988 53 0904 17 999 s 939 - - 4 #
5.5 416 956 322 971 217 977 90 991 33 gos 21 939 3 # 7 939
5.0 542 92 473 944 88 961 154 984 &7 99 31 938 8 999 18 999
4.5 @70 888 626 906 518 933 255 274 124 922 37 936 13 939 25 998
4,0 904 841 832 855 794 895 449 957 146 984 74 994 16 998 &5 997
3.5 1272 776 1095 788 1107 836 844 936 351 975 218 989 72 @97 124 9393
3.0 1676 686 1506 €99 1575 755 1308 869 827 953 454 976 244 993 207 985
2.5 2045 568 1899 578 2062 639 1853 780 1288 902 826 948 632 978 573 972
2.0 2347 423 2103 422 2373 487 2852 655 2608 821 1933 898 1785 938 1495 936
1.5 2503 256 2057 251 2382 313 3457 461 4276 659 4430 780 4227 827 3820 843
1.0 1050 78 999 84 1653 138 2765 227 5151 392 6359 510 6693 562 6956 605
0.5 &2 5 34 3 209 16 578 39 1134 71 2019 123 2304 144 2752 172
0.0 2 * 2 = 3 = 2 * 1 * - - - - 3 =
TSPCTL 3.6 3.5 3.2 2.8 2.0 1.7 1.6 1.5
S0PCTL 2.5 2.5 2.3 1.8 1.4 1.2 1.2 1.1
25PCTL 1.7 1.8 1.3 1.0 0.9 0.9 0.8
MEAN 2.8 2.5 2.1 1.6 1.4 1.3 1.3
5.D. 1.4 1.3 1. 1. 0.8 0.7 0.6 0.6
TOTAL 14111 12311 13504 14747 16037 16415 15997 16049
MAX 9.2 3.8 s.9 s.8 7.1 7.0 5.5 5.9
DATE 2000012118 2004021915 1897030705 2007041618 2008051101 2006061516 1990073118 1998082918
MIN 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0
DATE 1998011515 2003020716 2002033000 2003041014 2003050104 1985062411 1989070215 2003082314
(* < 0.05% , ¥ = 100.0%)
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F

16
28
36
=1
96
139
2392
591
1232
2571
4277
5154
1478

SEF
CFF

(SIS
[ =TS}

a.
16001
11.2

HAVE ELEMENT)

OCT
F CPFF
1 #
3 988
4 9885
5 988
1 988
4 9885
2 935
T 93§
17 998
41 997
32 985
54 983
57 9E8
107 986
201 878
296 967
480 949
T3 81s%
1104 875
1811 807
2559 &85
4044 513
3672 263
601 37
1 =
2.5
1.7
1.2
2.0

1.
1lez2z27
1z.0

HOV
F CFF
1 #
1 939
1 938
2 988
3 988
1 935
8 938
8 939
1a 998
47 9387
TO 994
144 98
223 880
295 965
459 945
TIT 914
979 865
1546 7939
2041 895
2568 558
3049 385
2002 18
262 46
420 28
3.0
2.1
1.4
2.3
1.3
14883
13.8

m

10
15
28
49
TO
151
203
299
401
556
921
1311
1634
2144
2494
2460
1346
136

DEC
CFF

999
959
988
a87
9596
9392
987

277

[ ST T S T )
BRSNS

1.
14239
10.2

BNN
F CPF
1 #
0 933
0 9%%
1 989
2 98%
3 988
& 98%
5 988
T 988
& 98%
31 593
63 993
101 989
220 989
385 997
681 8955
11ig 9§82
1774 8985
2634 976
36875 96l
5557 941
8388 910
12672 864
12408 793
28088 691
40882 536
43806 309
115689 [
436 2
2.5
1.7
1.1
2.0

1.
180611
13.9

2008092815 1951103016 2007110403 2004122707 2007110403

0.0

0.0

0.0

0.5

0.0

1998092906 1958101705 2003113023 1986123001 2003113023



STATICN: 44011

1 - MONTHLY AND ANNUAL FEEQUENCY AND CUMULATIVE PERCENT FREQUENCY (10THS)

ELEMENT : | DOMINANT WAVE FERIOD

JRN FEB

F CEF F CEF
20 - - - -
139 - - - -
18 - - - -
17 8 # - -
1a - - -
15 - - - -
14 T4 985 a3 %
13 681 954 483 955
12 20 945 & 957

11 1434 944 1390 953
10 2033 842 17ig8 840

9 2183 698 1943 701
8 3479 543 3179 543
7 2045 287 1707 284
6 1414 152 1140 146
5 594 52 alse 53
4 127 ] 124 11
3 T * 10 1
2 — - —
TSPCTIL 10.0 10.0
SOPCTL 8.3 8.3
25PCTL 7.1 7.1
MEAN 8.5
5.D. 2.0 1.8
TOTAL 14109 12309
MAX 16.7 14.3

(SECONDS)
MLR

F CFF
4 3
T 933
137 988
775 989
69 932
1507 8927
2071 81la
1930 664
3007 517
1830 286
1232 157
622 L
185 16
25 2
10.0
8.3
7.1
8.6
2.1
13591
16.7

-- POR:

LFR
F CFEF
8 i
2 9339
a7 883
53% 953
T2 956
1370 851
2110 858
2461 T15
3602 548
1813 304
1483 181
811 81
331 26
46 3
10.0
8.3
7.1
8.4
2.0
14745
16.7

DATE 2001010411 2003022419 2002032012 2003041504

MIN 2.9 3.2

2.9

2.5

DATE 1591010720 2008021721 1958031507 1985042720

(* < 0.05% , # = 100.0%)

(5/1984 - 12/2008) (180173 RECCRDS, 97.2% HAVE ELEMENT)

MLY JUH JUL AUG SEF CCT ROV DEC

F CFEF F CFF F CFF F CFF F CPF F CEF F CEF F CEF
11 # 11 # - - 24 # T # 3 # - - - -
10 983 69 983 11 # 100 993 136 999 63 983 10 # 31 #

4 939 30 895 - - 3 99z 8 991 3 996 4 959 - -
26 988 46 9893 25 9893 15 992 34 981 4 996 & 9393 - -
33 887 116 930 85 988 218 891 604 988 336 996 61 983 174 3988
232 985 126 983 177 982 543 877 1061 851 66l 3975 443 9594 580 986
11 380 15 397a 41 981 11 943 88 88 56 934 8 964 44 945

821 980 413 97% 300 978 740 943 1386 8795 1275 931 1473 958 1359 942
1428 828 1009 850 588 9&0 871 897 1538 782 2018 852 1742 856 1lel5 B84a

2445 839 2045 888 1605 923 1502 842 1811 6%6 2193 728 2056 735 1963 733
5093 687 5051 T7Te4 5682 823 4304 745 3170 583 341% 592 3263 593 3652 585
2464 369 3278 456 3779 468 3322 481 2352 385 2450 381 2283 367 2308 338
2035 21e 2605 256 2322 231 2573 274 21%e 238 2207 230 1817 205 1556 176
1026 88 1237 &8 1000 & 1303 113 1220 100 11%s5 94 858 Ta T20 a7
368 25 336 22 353 24 447 32 358 24 314 21 223 17 221 17
25 i 28 b 28 2 (-1 4 z3 2 23 1 23 2 16 1
9.1 8.3 8.3 9.1 10.0 10.0 10.0 10.0

T.7 T.7 T.T 7.7 8.3 8.3 8.3 8.3

6.7 6.3 a.7 6.3 6.7 6.7 6.7 7.1

T.8 T.T7 T.5 7.8 8.5 8.3 8.2 8.4

1.8 1.3 1.6 2.2 .6 2.3 2.0 2.1

16036 16415 15937 le046 1559399 16226 14461 14239
20.0 20.0 16.7 20.0 20.0 20.0 17.4 16.7
2002050619 1952061721 2000073106 1990081503 1996091419 1991103020 2007110405 19961223909
2.8 2.6 2.8 2.6 2.8 2.7 2.7 2.9

1599051319 1951062402 1985070218 1990082801 19520950402 2008100606 1997112005 2007121017

150

ANN
F CEF
56 #
0 959
0 988
450 959
52 9897
lea 3937
1938 996
6281 985
564 950
13468 947
18743 872
24203 Taeg
46901 634
29701 373
22744 208
11104 8
33387 21
326 2
4] =
9.1
8.3
6.7
8.2
2.1
180173
20.0
2002050619
2.5
1589042720



Buoy 4: 44008

STATICN: 44008

1 - MONTHLY AND ANNUAL FREQUENCY AND CUMULATIVE FERCENTI FREQUENCY (10THS)

95.8% HAVE ELEMENT)

]

[

L Y Y O I S A

[T O
W e

140
245
606
1025
2254
4186
6402
2781

SEP
CPF

#
399

959
95949
959
959
959
959
999
959
9598
958
958
9396
954
986
972
938
88

753
518
157

oo e e
[ T R |

0.
17758
11.5

CCT
F CPF
5 #
2 989
3 988
& 983
12 988
17 988
36 997
&7 885
92 3982
la4 SEa
262 977
372 962
627 941
1075 9805
1550 844
2674 T56
4122 604
5118 370
1404 80
2.2
1.5
1.1
1.8
1.1
17608
9.6

WOV
F CPF

2 #

2 1999

1 393

5 999

& 1993

21 983
39 998
81 995
118 991
206 983
377 971
571 948
940 914
1426 857
1883 771
2730 657
3668 492
3608 270
827 52
26 2
2.6

1.8

1.2

2.0

1.1

16537
10.3

1a7
306
511
781
1200
1724
2374
2896
3420
288

352

DEC
CEF

959
95838
959
9539
959
958
998
9585
882
987
978
959
9239
883
812
709
5639
387
154

23

[SS T S S V]
ST ¥ Y R R ]

1.
16865
10.7

NN
F CEF

o ¥

2 #

1 999

3 999

& 999

15 939

12 999

21 999

g 999

94 999
185 93939
297 998
553 997
832 994
1619 989
2823 0981
4770 968
7427 044
11436 907
17454 851
27332 765
43991 &30
59828 413
23834 118
58 *
2.2

1.4

1.0

1.7

1.1

202771
11.5

1996071402 1591081920 1599091705 1991103023 2007110323 1994122323 19930391705

ELEHENT:ISIGNIFICENT WAVE HEIGHTI(HETERSJ -- POR: (8/1982 - 12/2008) (202771 RECCRDS,
JRH FEB MAR RFR MLY JUH JUL AUG
F CPF F CFF F CFPF F CFPF F CFF F CFF F CPF F CFF
12.0 - - - - - - - - - - - - - - - -
11.5 - - - - - - - - - - - - - - 1 #
11.0 - - - - - - - - - - - - - - - -
10.5 - - - - - - - - - - - - - - -
10.0 - - - - - - - - - - - - - 1 939
4.5 4 % - - - - - - - - - - - - - -
9.0 2 989 - - 1 # - - - - - - - - - -
8.5 4 985 - - 2 983 - - - - - - - - 1 555
8.0 15 983 2 # 6 983 1 H - - - - - - 1 939
T.5 8 988 17 883 8 9493 & 988 - - - - - - - -
7.0 34 9387 30 9939 34 998 11 9839 - - - - - - 1 939
6.5 64 9895 45 3996 35 9%e6 23 888 - - - - 2 # 1 939
6.0 123 581 65 883 69 9354 44 988 a # - - 3 988 1 5985
5.5 154 S8 120 98 126 990 81 885 14 3993 - - 2 989 T 933
5.0 283 973 228 980 266 982 08 950 41 993 1 # T 988 & 983
4.5 475 957 413 963 446 966 le3 984 90 996 & 983 S 989 25 9893
4.0 g42 927 TT4 933 T34 938 311 974 180 931 17 9838 & 988 60 998
3.5 1233 874 1013 877 1082 394 66l 955 248 982 77 888 25 888 66 885
3.0 1676 TST7 1324 804 1525 828 1le6e 915 493 967 189 994 91 8397 201 3891
2.5 2287 692 1%5% TO8 2134 T35 1755 845 1118 837 544 g8a&2 358 982 456 881
2.0 2527 548 2564 567 2860 €06 2910 740 2007 871 1163 949 1128 973 1219 857
1.5 3383 364 2781 382 3527 432 4122 565 4308 Th2z 3456 878 3403 912 3575 885
1.0 2171 152 2154 181 2935 217 4050 317 5975 496 7207 665 8418 727 8908 712
0.5 251 1a 346 25 638 39 1213 T3 2359 140 3687 225 4% 64 271 4962 255
0.0 1 * 1 * - - 1 * - - - - Ze 1 3
TSPECTL 3.0 2.9 2.8 2.3 1.7 1.4 1.3 1.3
S0PCTL 2.1 z.0 1.8 1.6 1.3 1.0 1.0 1.0
25PCTL 1.5 1.4 1.3 1.1 0.9 0.8 0.7 0.7
HMEAN 2.3 Z2.2 1.8 1.4 1.2 1.1 1.1
5.D. 1.2 1.2 1.0 0.8 0.5 0.5 0.6
TOTAL 13842 16448 le626 16819 16387 18441 19437
MRX 8.0 8.8 7.8 6.2 4.9 6.7 11.4
DATE 2000012607 1999022516 2005030909 19583040122 1586051217 1995060722
MIN 0.0 0.0 0.4 0.0 0.3 0.3 0.0 0.0

DATE 2001010201 2000022002 2008031217 2000042601 2008052604 2008061502
(* < 0.05% , # = 100.0%)

0.3

0.3

0.0

0.3

0.0

2000072609 2005082721 1583091000 1994100813 198411281E 1998120523 2005082721
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STATICN: 44008
1 - MONTHLY AND ANNUAL FREQUENCY AND CUMULATIVE PERCENT FREQUENCY (10THS)

ELEMENT : | DOMINANT WAVE PERIOD| (SECONDS) —- PCR: (8/1982 - 12/2008) (201301 RECORDS, 95.1% HAVE ELEMENT)

JAN FEB MAR AFR MAY JUN JUL AUG SEP OCT NOV DEC ANN

F CPF F CPF F CPF F CPF F CFF F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF
25 - - - - - - - - - - - - 1 # - - - - - - - - - - 1 #
24 - - - - - - - - - - - - - - - - - - - - - - - - [ 11
23 - - - - - - - - - - - - - - - - - - - - - - - - [ 11
22 - - - - - - - - - - - - - - - - - - - - - - - - [ 11
21 - - - - - - - - - - - - - - - - - - - - - - - - [ 11
20 - - - - - - - - - - 16 # - - 27 # 4 # - - - - - - 47 239
19 - - 1 # - - - - - - - - - - - - - - - - - - - - b 11
8 - - - - - - - - - - - - - - - - - - - - - - - - g 939
17 - - 3 9933 2 # 3 # 11 # 73 9393 36 939 76 933 189 999 41 # 2 # 32 $ 474 939
16 - - - - 15 9399 1 =399 20 999 57 994 4 gg9s 22 995 g 989 4 938 5 9399 - - 146 997
15 2 # 1 999 17 999 3 =99 53 998 73 991 45 998 13 994 53 ga8 16 997 2 999 - - 278 937
14 67 999 23 999 102 998 66 9399 33 995 146 986 104 995 326 993 703 985 451 997 33 999 168 998 2234 995
13 339 996 323 988 713 992 469 996 265 993 127 977 153 990 553 976 991 946 721 971 428 997 482 9 5564 984

12 40 974 T3 974 155 948 9 967 46 977 28 970 27 398 52 948 160 850 111 330 1lle 3870 g8 9

8

5 2683 957
11 1183 972 1243 965 1783 939 1413 9e2 934 974 481 968 392 280 934 945 1384 88 1501 9224 1361 963 1087 85

a8

a

8
8
g
4 13696 982
10 1710 &%8 1752 &87% 2061 831 2220 877 1454 818 8931 838 587 958 1058 897 1585 803 201e 838 1e01 877 1670 887
9 2105 780 1817 753 2187 705 2865 743 2675 832 2079 882 1757 927 1872 843 2133 714 2243 T24 1888 776 2112 783

18645 GS&4
25934 781

& 3838 658 3465 614 3575 572 42%0 571 5026 673 48982 755 46081 831 49549 742 3698 593 3508 587 3430 657 4023 652 50865 662
T 2597& 418 2377 364 25%% 355 2272 313 2570 374 3274 451 4722 501 4085 88 2625 385 2716 387 2752 440 2580 403 35558 410
& 2345 231 170% 182 2056 187 1783 1Te 2118 222 2386 251 2870 245 3344 278 248% 237 2639 243 2611 267 2180 218 28540 231
5 1002 84 Ti1 8 88 T2 820 g8 1l5& 96 1334 105 1316 8 1542 106 1361 97 1207 893 1184 102 9383 83 13512 &
4 317 21 218 17 268 18 284 19 394 27 371 24 314 18 483 27 330 20 392 25 385 27 308 21 4064 22
3 8 1 19 1 25 2 30 2 58 3 22 1 1a 1 41 2 33 2 40 2 44 3 33 2 373 2
2 - - - - - - - - - - - - - - - - - - - - - - - - 0 *
T5PCTIL 9.1 10.0 10.0 9.1 8.3 8.3 9.1 10.0 10.0 9.1 9.1 9.1
SOPCTL 8.3 8.3 8.3 7.7 7.7 7.1 7.7 2.3 8.3 7.7 7.7 7.7
25PCTL 6.7 6.7 7.1 6.7 6.3 6.7 6.3 6.7 6.7 6.3 6.7 6.7
MEAN 8.2 8.4 8.3 7.8 7.7 7.5 7.8 8.5 8.3 7.3 8.1 g.0
5.D. 1.8 2.1 1.8 1.8 2.0 1.7 2.2 2.8 2.3 2.0 2.0 2.1
TOTAL 13841 16444 lea625 16818 16387 18425 19487 17756 17606 15843 lelza 201301
MAX 15.1 17.4 16.7 17.4 20.0 25.0 20.0 20.0 la.7 17.4 16.7 25.0
DATE 2008012923 2004021112 2005031806 2000042710 2007052919 1592061721 1996070917 15930081900 15996091416 2002102507 2007110320 1996122917 1936070917
MIN 2.9 2.6 2.6 2.6 2.5 2.9 2.9 2.6 2.9 2.8 2.6 2.6 2.5

DATE 1585013123 1987021307 2005032321 1595041916 2007050611 2001062916 2005071218 2001082412 2003092315 1957100402 2003111123 1999121016 2007050611
(* « 0.05% , ¥ = 100.0%)
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