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It is well known that land cover and land use change can significantly 

influence the climate system by modulating surface-atmosphere exchanges. Land 

management, such as irrigation, also has a profound influence on the climate system. 

Irrigation can alter the water and energy flux from ground surface to the atmosphere 

and further influence near surface climate. Considering its dramatic expansion during 

the last century, the widespread use of irrigation has had an ongoing impact on our 

climate system. However, until now, this relationship between increased irrigation 

and its effect on climate system has not been well examined. 

The main objective of this dissertation is to quantify the irrigation impacts on 

land surface characteristics and near surface climate over China by using both 

observational (remote sensing and meteorological observation) and modeling studies 

with four specific questions: Where are the irrigated areas in China? What might have 

happened in the past? What will happen as a result of irrigation expansion in the 

future? And what is the relationship between the land cover land use change 

(LCLUC) impact and the irrigation impact on near surface climate in China?  

To answer these questions, I 1) developed three irrigation potential indices 

and produced a high resolution irrigation map of China; 2)analyzed and compared 

meteorological and remote sensing observations in irrigated and non-irrigated 



 
 

agriculture areas of China; 3) simulated both irrigation and LCLUC impact on land 

surface energy balance components (i.e., land surface temperature, latent flux, and 

sensible flux) and near surface climate (i.e., air temperature, water vapor, relative 

humidity) of China in the past (1978-2004) and also in two future time periods (2050 

and 2100) by using the Community Land Model and compared the impact of 

irrigation with that of LUCC. 

Meteorological observations in Jilin Province show that the temperature 

differences between highly and lightly irrigated areas are statistically significant. The 

differences are highly correlated with the effective irrigation area (EIA) and sown 

area of crop (CSA).  Results from satellite observations show that highly irrigated 

areas corresponded to lower albedo and daytime land surface temperature (LST), and 

higher normalized difference vegetation index (NDVI) and evapotranspiration (ET).  

The difference between highly and lightly irrigated areas is bigger in drier areas and 

in drier years.  

The modeling studies show that the irrigation impact on temperature is much 

less in the future than in the 20th century and that irrigation impacts more on the 

maximum air temperature than on the minimum air temperature. Both contemporary 

and future irrigation simulations show, nationally, irrigation decreases daily 

maximum temperature (Tmax) but increase daily minimum temperature (Tmin). 

Daily mean temperature (Tmean) decreases   in contemporary irrigation simulations 

but increases in most of the cases in future irrigation simulations. In the 20th century, 

nationally, the spray irrigation leads to a decrease in Tmax of 0.079K and an increase 

in Tmin of 0.022K. Nationally, the spray irrigation leads to a decrease in Tmax 



 
 

between 0.022K and 0.045K and an increase in Tmin between 0.019K and 0.057K 

under future scenarios.  

This study demonstrates that the irrigation patterns (flood irrigation and spray 

irrigation) have statistically significant impacts on local climate. Moreover, this study 

suggests that, in the national respective, the impacts of changes in land management 

on climate are not comparable to the impacts of changes in land cover land use. 

This dissertation on irrigation and its impact is the first study which focuses 

solely on China using observational and modeling methods. The results from this 

dissertation contribute to a better understanding of the irrigation impact on near-

surface climate which can improve our knowledge of how human activities influence 

climate, guide future policies aimed at mitigating or adapting to climate change, and 

help design a precise model to project the impact of irrigation on the climate system 

and irrigation requirements in the future. It can also be useful in assessing future food 

and water security issues. 
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Chapter 1 Introduction 
1.1Background 

It is well known that land cover and land use change can significantly 

influence the climate system by modulating surface-atmosphere exchanges.  These 

changes include urbanization (Carlson and Arthur 2000; Owen et al. 1998; Paul and 

Meyer 2001), deforestation (Dirmeyer and Shukla 1994; Lean and Rowntree 1997; 

Nobre et al. 1991), crop land expansion (Bondeau et al. 2007; Kucharik et al. 2001; 

Lobell et al. 2006b), and desertification (Xue 1996; Xue and Shukla 1993). Land 

management can also make great impact on the climate system, but current studies 

are thus far inadequate. Irrigation is one of most important land management 

techniques by which people try to grow crops in dry areas, or increase food 

production. It is reported that agricultural irrigation accounts for 84 percent of the 

global water used by the world population (Shiklomanov 2000), and has rapidly 

grown over the past 200 years. Irrigated areas are estimated to have increased from 

about 8 Million ha around 1800, to 47 Million ha around 1900 (Shiklomanov 2000), 

and now to about 274 Million ha around 2000 (Siebert et al. 2005b) (Figure 1-1).  

  
Figure 1-1 Global extent of areas equipped for irrigation in the period 1900–2003 

(Data sources: Shiklomanov 2000; FAOSTAT) 
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Theoretically, an agricultural irrigation system can impact climate in several 

ways both directly and indirectly (Figure 1-2). Excessive evapotranspiration (ET) 

from irrigation in an agricultural system increases water vapor in the atmosphere. 

Water vapor is the most dominant greenhouse gas and thus amplifies the warming 

effect of increased atmospheric levels of carbon dioxide which is regarded as a 

positive feedback in our climate system (Rangwala et al. 2009; Rind 1998; Rind et al. 

1991).  Some reports have linked water vapor to changes in convection and 

precipitation patterns (Barnston and Schickedanz 1984; Chow et al. 2008; Douglas et 

al. 2009). ET also causes changes in the land surface energy partition (de Rosnay et 

al. 2003; Devries 1959) and cools the land surface and near-surface air temperature 

(Kueppers et al. 2007; Lobell and Bonfils 2008; Mahmood et al. 2006; Mahmood et 

al. 2004).  Irrigation also increases soil moisture, which can modify the radiative 

properties of the soil such as albedo, control the partitioning of the heat flux, impact 

land surface processes, and therefore, influence the regional climate system.  

 
Figure 1-2 Schematic of the atmospheric properties and processes potentially induced by irrigation 

(Boucher et al. 2004) 
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The tremendous increase in irrigated areas and the potential impact of 

irrigation on the climate system may have contributed to the formation of the current 

climate system and could continue to influence our future climate system. Hence, it is 

important to explore the irrigation impact on near-surface climate. Such information 

can improve our understanding about how human activities affect climate, guide 

policies aimed at mitigating or adapting to climate change, and help build a precise 

model to project the future impact of irrigation on climate system and irrigation 

requirements under future scenarios as well. 

So far, there have been some reports about the impact of irrigation on near-

surface air temperature (Bonfils and Lobell 2007; Kueppers et al. 2007; Lobell and 

Bonfils 2008; Mahmood et al. 2006), energy fluxes (Devries 1959; Douglas et al. 

2006), groundwater (Kendy et al. 2004), water vapor (Boucher et al. 2004), and 

precipitation (Barnston and Schickedanz 1984; Lee et al. 2009; Lohar and Pal 1995; 

Moore and Rojstaczer 2001; Segal et al. 1998) based on climate observations and 

modeling studies (Table 1-1). Observational studies usually make comparison 

between pre- and post-irrigation temperature trends in irrigated areas (Adegoke et al. 

2003; Mahmood et al. 2004), or between irrigated and non-irrigated areas (Christy et 

al. 2006; Segal et al. 1998). Modeling studies usually compare the output from 

different models (regional or global, coupled or uncoupled) with and without 

irrigation, for example, fixing a high value of soil moisture (Kanamaru and 

Kanamitsu 2008; Lobell et al. 2006a), imposing a fixed amount of ET from irrigated 

areas (Boucher et al. 2004; Segal et al. 1998; Wauer 2007), and designing an 
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irrigation model based water balance between water demand and supply (de Rosnay 

et al. 2003; Haddeland et al. 2006) throughout the growing season. 

Table 1-1 Recent Studies on irrigation impacts 

 

However, both observational and modeling studies are facing some challenges 

Author Method Basic conclusion 
de Rosnay et al. 
(2003) 

Modeling Intensive irrigation increased annual mean latent heat fluxes by 
3.2w/m2 over India during 1987–1988. 

Gordon et al. 
(2005) 

Modeling The vapor flows increased around 2600km3/yr globally during 
1961-1990 due to irrigation. 

Douglas et al. 
(2006) 

Modeling Mean annual vapor fluxes increased by 17% (340km3) and mean 
increase of latent heat flux was estimated to be 9w/m2 over Indian 
because of irrigation. 

Haddeland et al. 
(2006) 

Modeling In the Colorado and Mekong river basins, irrigation caused mean 
annual latent heat flux increase by 1.2 and 1.3w/m2, respectively, 
and corresponding, mean annual temperature decreased by 0.04 °C 
during the period 1979–1999. 

Biggs et al. (2008) Modeling and 
Meteorological 
observation 

Irrigation increased annual evaporation by 166 ± 32 mm and 
decreased sensible heat flux by 12.7 ± 2 w/m2 in the Krishna Basin 
during 1990–2005. 

Douglas et al. 
(2009) 

Modeling Mean sensible heat flux decreased 11w/m2 because of irrigation 
during 16 to 20 July 2002 over the Indian region.  

Lee et al. (2009) Satellite 
observation 

The NDVI increased as long the increase of irrigated area in India 
during 1982-2003 and their correlation coefficient was high up to 
0.87. 

Boucher et al. 
(2004) 

Modeling Irrigation caused water vapor increased by 0.12-0.18% and net 
radiative forcing increased by 0.03-0.1w/m2 globally for the year 
1990. 

Bonfils and Lobell 
(2007) 

Meteorological 
observation 

The maximum temperature decreased by 0.14 to -0.25 °C per 
decade in heavily irrigated area of  California. 

Geerts (2002) Meteorological 
observation 

The annual range of monthly-mean temperatures decreased by 1-2 
K due to irrigation in southeastern Australia. 

Kanamaru and 
Kanamitsu (2008) 

Modeling Daily minimum temperature increased by 3.5 °C in July in the 
California Central Valley. 

Lobell et al.(2009) Modeling In global respective, the cooling effect of irrigation varied in 
different regions, and the highest temperature decrease could be up 
to 10 °C. 

Lobell and Bonfils 
(2008) 

Meteorological 
observation 

Daily maximum temperature decreased by 5.0 °C in fully irrigated 
area of California during 1934-2002. 

Mahmood et al 
(2006) 

Meteorological 
observation 

Mean maximum growing season temperature decreased by 1.01 °C 
in the northern Great Plains after 1945 when irrigation expansion 
occurred. 

Sacks et al (2009) Modeling Globally, annual latent heat fluxes increased by 0.656w/m2. Air 
temperature decreased by 0.061 k averaged over irrigated areas, and 
by 0 averaged globally. 

Ozdogan et al 
(2010) 

Modeling Latent heat flux, ground heat flux, net radiation, ET, runoff 
increased by 9 w/m2, 0.05w/m2 and 1.2w/m2, 0.3mm/day, 
0.01mm/day respectively and Sensible heat flux decreased by 8 w/ 
m2 due to irrigation over the growing season in USA. 

Puma and Cook 
(2010) 

Modeling Annual, globally averaged decrease in temperature was 0.095 k, 
and the increase in precipitation was 0.026 mm d-1 during 1980-
2000. 
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(Bonfils and Lobell 2007; Lobell and Bonfils 2008). For example, meteorological 

observations essentially provide point measurements, which usually do not represent 

area means. It is difficult to clearly distinguish the impact of irrigation on climate 

from other factors since the background of irrigated sites such as land cover type, 

altitude, latitude, and longitude, distance from urban/ocean, and black carbon 

concentration, may vary considerably. The results from modeling rely heavily on the 

input parameters associated with four key aspects of irrigation: where to irrigate, 

when to irrigate, how much to irrigate and how to irrigate (e.g., rain, spray, drip; and 

rate), causing over- or under-estimation  To date,  efforts have been made to map  the 

irrigated area at a global scale (where to irrigate): FAO/University of Frankfurt global 

map of irrigated areas for the fraction of 5 arc minutes by 5 arc minutes cells (Siebert 

et al. 2005b), International Water Management Institute (IWMI)’s Global Map of 

Irrigated Area (Thenkabail et al. 2008; Thenkabail et al. 2006) with 10 km grid 

resolution, and Global data set of monthly irrigated rainfed crop areas (MIRCA2000) 

with 5 arc-minutes by 5 arc-minutes (Portmann et al. 2010). All of them are for 

around the year 2000. The FAO/UF map was produced by combining irrigation 

statistics for 10825 sub-national statistical units and geo-spatial information on the 

location and extent of irrigation schemes (Siebert et al. 2005a; Siebert et al. 2005c). 

The IWMI map was produced through twenty years of AVHRR data and other 

additional data including SPOT VEGETATION, Japanese Earth Resources Satellite 

(JERS-1), and Landsat GeoCover 2000 data. MIRCA 2000 is produced by combining 

irrigation statistics, the FAO/UF map and other sources. It describes monthly growing 

areas of 26 irrigated and rainfed crops including wheat, rice, maize, barley, rye, 
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millet, sorghum, soybeans, sunflower, potatoes, cassava, sugar cane, sugar beet, oil 

palm, rape seed/canola, groundnuts/peanuts, pulses, citrus, date palm, grapes/vine, 

cocoa, coffee, as well as related crop calendars for 402 spatial units.  However, these 

global irrigation maps were assessed by limited ground-truth data. Some regions 

without ground-truth data may be less reliable. 

Another problem in current observational studies is that most evidence about 

irrigation impact on climate is reported in intensive irrigated areas of the USA 

(Bonfils and Lobell 2007; Kanamaru and Kanamitsu 2008; Kueppers et al. 2007; 

Lobell and Bonfils 2008; Lobell et al. 2008; Mahmood et al. 2006; Mahmood et al. 

2004; Weare and Du 2008) and India (Biggs et al. 2008; de Rosnay et al. 2003). Little 

meteorological observation evidence is reported in other places including China, the 

second largest irrigation area (53.8 M ha ), following India (57.3 M ha), in the world 

(Siebert et al. 2005b), which may be caused by several reasons. First, it is limited by 

direct observation. Most Chinese meteorological stations are located within, or near 

cities, and the urbanization influence is highly significant (Zhou et al. 2004).  Second, 

the Asian Monsoon sweeps across China during June to July each year, the growing 

season for major crops in China, which causes the impact of irrigation to be less 

obvious.  Third, the main irrigation pattern in China is supplemental irrigation that 

adds small amounts of water to rainfed crops when rainfall fails to provide sufficient 

moisture for normal plant growth. Hence, it also weakens the atmospheric signature 

of irrigation. Fourth, rapid urbanization along with irrigation expansion during past 

decades exacerbates the difficulty in distinguishing the climatic impact of irrigation.  

Lastly, black carbon aerosol emissions from household burning of biofuels, coal and 
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biomass—which are also theorized as a cause of global climate change—are reported 

to be very high in China (Menon et al. 2002), and  thus make the study of irrigation’s 

impact on climate change particularly difficult (Bonfils and Lobell 2007).   

Considering the weaknesses in current studies mentioned above, future studies 

should consider the following several points in order to better evaluate irrigation 

impact on our climate system: 

First, an irrigation map is one of the most important model inputs; it directly 

decides which grids will be irrigated during simulation. The small uncertainties or 

errors in the irrigation map may lead to great differences of simulation outputs, 

especially at the regional scale. Hence, it is necessary to produce a reliable irrigation 

map. 

Second, to avoid over- or under- estimation of irrigation impact, modeling 

study should reflect reality as much as possible taking into account such factors as 

irrigation patterns (spray irrigation, flood irrigation or drop irrigation), rate and time.  

 Third, remote sensing observation is a promising tool since it can provide 

land parameter information on a large scale including soil moisture, albedo, land 

surface temperature, vegetation cover and so on. It could be a valid method for 

determining the impact of irrigation on the local surface climate—especially in those 

regions where direct observations are limited or obscured by other factors, such as 

urbanization in China.  It also can be integrated into models to better represent reality.  
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Fourth, a comprehensive evaluation method needs to be developed, in which 

evidence from both observational studies (remote sensing and meteorological 

measurement) and modeling studies can validate each other. 

Based on the above considerations, this study proposes a comprehensive 

framework for China to address four questions:  

1. Where are the irrigated areas in China?  

2. What might have happened?  

3. What will happen due to irrigation expansion?  

4. Is the impact of irrigation comparable to that of land cover land use change 

(LCLUC)? 

1.2 Objectives 
The overall objective is to quantify the irrigation impact on land surface 

characteristics and near surface climate by using both observational (remote sensing 

and meteorological observation) and modeling studies.  To be specific, I will: 

1. Develop and implement a new methodology to produce a high resolution 

irrigation area distribution map of China.  

2. Analyze meteorological and remote sensing observations in irrigated and non-

irrigated agricultural areas of China for finding evidence of irrigation impacts 

in China. 

3. Use the Community Land Model (CLM) to simulate irrigation impact on land 

surface energy balance components (e.g., land surface temperature, latent flux, 

and sensible flux) and near surface climate (e.g., air temperature, water vapor, 
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relative humidity etc.) of China by using a high resolution irrigation map 

produced from objective 1. 

4. Estimate the irrigation impact in the future scenarios by CLM with the IPCC 4 

future scenarios. 

5. Simulate the impact of land cover land use change impact on near surface 

climate in China, and compare the impact with that of irrigation. 

1.3 Outline of the Dissertation  
The dissertation consists of five chapters (Error! Reference source not found.). 

The first chapter is the introduction. The second to fourth chapters are presented in 

the self-contained format of a journal article. Chapter 5 concludes the findings and 

contributions of this dissertation and also discusses the limitations of the current study 

as well as future study directions. 
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Figure 1-3  Dissertation structure 
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Chapter 2 Mapping Chinese irrigation in 2000  
In addition to global-scale irrigation maps mentioned in the introduction, 

irrigated area studies at other scales have also been reported (Beltran and Belmonte 

2001; Biggs et al. 2006; Boken et al. 2004; Dheeravath et al. 2010; El-Magd et al. 

2003; Ozdogan and Gutman 2008; Thenkabail et al. 2005; Wriedt et al. 2009). 

Current methods for producing irrigated area datasets can be divided into three basic 

types: census data (such as FAO’s method), remote-sensing-derived maps (IWMI’s 

method), and GIS-derived maps (such as FAO/FU’s method). Census data do not 

provide locational information about irrigated areas (Döll and Siebert 1999; FAO 

2003). Remote-sensing-derived maps exploit advanced remote sensing technology to 

determine both the spatial location and extent of irrigated areas; however, some 

challenges exist. For example, for patchy irrigated areas, remote sensing data with 

fine spatial resolution is needed to accurately detect which fields are irrigated in a 

given year or growing season. Meanwhile, in some cropping systems, a certain field 

can be planted once, twice, or even three times in one year, so the remote sensing data 

used to detect irrigated areas must have a high temporal resolution. However, data 

with both high spatial and high temporal resolution are difficult to obtain for large-

scale studies. Additionally, traditional classification methods sometimes cannot 

effectively distinguish irrigated areas from non-irrigated areas owing to the spectral 

mixture between them, especially for supplemental irrigated areas, causing over- or 

underestimation. On the other hand, collecting a large number of high-quality training 

samples is costly and time-consuming. GIS-derived maps allocate census data on 

irrigated areas from geopolitical units to grids on the basis of predefined rules and 
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have not taken advantage of remote sensing technology in past work, such as the 

FAO/FU’s method.  

In this study, I developed three irrigation potential indices and proposed a 

spatial allocation model for mapping irrigated areas of China. China was selected as 

the study area because no study has attempted to map the irrigated areas of China, 

although it has the second highest irrigated area in the world. The global irrigation 

maps cover China; however, they are perhaps less reliable owing to the lack of 

ground-truth data for China (Ozdogan and Gutman 2008). If a more detailed irrigated 

area map of China can be produced, it will contribute to efforts to map global 

irrigated areas, and also to the study of irrigation water requirements, food and water 

security issues in China.  

Here, I will introduce the proposed method for developing irrigation indices 

and the irrigation spatial allocation model in section 2.1. Section 2.2 describes the 

data used for mapping Chinese irrigation in 2000, and section 2.3 shows irrigation 

map of China in 2000 by using the proposed method.  Discussion and conclusions are 

presented in Section 2.4. A manuscript about the work in this chapter has been 

prepared and submitted for review (Zhu et al. 2011d). 

2.1 Methodology 
It is difficult to distinguish irrigated areas from non-irrigated areas, especially 

for supplemental irrigated areas, since the water that croplands accept can come from 

rainfall, irrigation, or both. An irrigation index indicating how likely cropland is to 

accept water from irrigation is helpful in mapping irrigated areas. Therefore, I built 

up three irrigation indices based on an assumption, and then developed an automatic 
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classification routine to downscale the irrigated area census data from a given 

political unit to each pixel within the unit with the help of the irrigation indices and 

the existing land cover map. 

2.1.1 Assumptions 
My assumption is that the crop productivity is high and stable over a long time 

series in irrigated areas compared with rainfed areas in a given land unit. In other 

words, agricultural areas with little variation in productivity but high irrigation 

demand over a long time period are more likely to be irrigated than agricultural areas 

with great variation in productivity but low irrigation demand (Figure 2-1). In this 

assumption, I emphasize two points: a given land unit and a long time series.  

A land unit here is defined as land with the same characteristics, such as 

productivity, irrigation requirements, climate condition, fertilizer and pesticide use, 

weed control, etc. In this work, I used the boundaries of the administrative units to 

define the land units mainly because the statistics are reported based on the 

administrative units (province, city, or county). Obviously, the smaller the 

administrative unit, the higher the expected accuracy.   

Second, I emphasize that the productivity of crops is stable over a long time 

series in irrigated areas compared with rainfed areas. In other words, I emphasize the 

mean status of the productivity of crops over a long time period. In China, the term 

“irrigated area” refers to land “where there are water sources or complete sets of 

irrigation facilities to lift and move adequate amounts of water for irrigation purposes 

under normal conditions,” and irrigated area statistics are an indication of “drought 

resistance capacity” (China Statistical Yearbook 2008). Therefore, irrigated areas can 

app:ds:weed%20control


 

14 
 

better resist disasters such as drought. Moreover, farmers are more likely to keep 

cropland with an irrigation system than without an irrigation system, and they are 

more likely to maintain better field management such as fertilizer and pesticide use 

and weed control in the irrigated areas because of a much higher crop yield in those 

areas than in the non-irrigated areas especially in dry regions.  
Pr
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Figure 2-1 Assumption for developing the irrigation indices 

2.1.2 Irrigation index 
The Normalized Difference Vegetation Index (NDVI) is strongly related to 

canopy biophysical properties and is often used as a proxy for vegetation productivity 

(Fensholt et al. 2004; Paruelo et al. 1997; Zhao et al. 2005). Here, I use it as a proxy 

for crop productivity. Irrigation demands can be indicated by the aridity index or 

precipitation. Finally, I developed the following formulae to estimate the likelihood 

of irrigation. In Equation 2-1, the pixel with a higher precipitation, but larger NDVI 

variation, has less potential to be irrigated. In Equation 2-2, the pixel with high 

precipitation variation, but stable NDVI, is more like to be irrigated. In Equation 2-3, 

the pixel with stable NDVI, but deceasing precipitation, is more like to be irrigated. 

app:ds:weed%20control


 

15 
 

 

 
'

1,

1000
i

i

NDVI
i

PI

CV
IP

u
−

=
 

Equation 2-1 

 '
2, (1000 )

i ii NDVI PIIP CV CV= − ×
 Equation 2-2 

 

 
'

3, '

1000
i

i

NDVI
i

PI

CV
IP

S
−

=
 

Equation 2-3 

 

Here, IP  is the irrigation potential index. There are three irrigation potential 

indices: 1,iIP , 2,iIP , and 3,iIP .The term  represents the quantile-normalized

 obtained using Equation 2-4 to Equation 2-6, and NDVIi  is the 

coefficient of variance of the growing season NDVI over the studied period at pixel i. 

The quantile-normalization of NDVI aims to reduce the effect of the extreme NDVI 

values. The terms iPIµ and iPICV  are the mean and coefficient of variation of 

precipitation (mm/year), respectively, in the past several decades. 
'

iPIS is the 

normalized obtained by the min-max normalization (Equation 2-8), and  is 

the regression coefficient of precipitation (Equation 2-7) in the past several decades at 

pixel i. The value of  could be negative or positive, where negative  indicates 

a decreasing precipitation trend and positive  indicates an increasing trend. To 

ignore the impact of the sign of  on the calculation of the likelihood of irrigation
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between 0 and 1, where 0 represents the strongest decreasing trend of precipitation 

and 1 represents the strongest increasing trend of precipitation. 

if 
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Where, NDVIi 10qNDVICV  and 90qNDVICV   are the  values of the 10th and 

90th percentiles, respectively. To reduce the effect of extreme values, the 10th and 

90th percentiles of  were set to 0 and 1000, respectively, and the other pixel 

percentile values were scaled linearly between 0 and 1000. To do this,  equals 

10qNDVICV   if  is less than or equal to 10qNDVICV  , and it equals 90qNDVICV   if 

 is greater than 90qNDVICV
. 

 
'
, , ,ii j PI i j i jPI S PI Bias= × +

 Equation 2-7 

 
 

Equation 2-8 

Where  represents the precipitation observation for year j at pixel i 

(mm/year), and it was derived by interpolating precipitation records at observation 

sites to pixels. The terms , ,i jBias  , and 
'
,i jPI  are the regression coefficient, bias, 

and estimate, respectively, of precipitation during the past several decades at pixel i. 
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Of those three variables, only  is further used to calculate the likelihood of 

irrigation. 

2.1.3 An automatic allocation model 
After estimating the likelihood of irrigation of each pixel in a given unit using 

the three possible irrigation indices developed in section 2.2, I downscaled the 

irrigated area census data from a given political unit to each pixel within the unit with 

the help of the irrigation indices and the existing land cover map, in the four steps as 

described below. 

Step 1. The pixel with the highest irrigation potential within the crop grids 

was firstly identified as an irrigated pixel. The irrigation percentage in the irrigated 

pixel equals the crop percentage of this pixel, which is determined using land cover 

maps. In this study, the land cover maps are from the National Land Cover Database 

(NLCD) for China (2000). 

Step 2. The total area covered by the irrigated pixels was calculated and was 

compared with the target number of hectares provided by the census of irrigated areas 

in the Statistical Yearbook. If the total area of the selected pixels was less than the 

target area, the pixel with the next highest irrigation potential was selected.  

Step 3. These steps are repeated until the total irrigated area is greater than the 

target area in a given political unit. 

Step 4. All the irrigated pixels in each given geopolitical unit are combined to 

obtain the irrigation map of the whole study area. 

iPIS
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2.1.4 Mapping irrigated area 
My method for deriving the final irrigation map is shown in Figure 2-2. For 

each irrigation index, I used the automatic allocation model described in section 2.1.3 

to generate a preliminary irrigation map in which the pixel value ranges from 0–100, 

and then transferred the preliminary irrigation map to a binary map by a simple rule: 

If the value of a pixel in the preliminary irrigation map was greater than 0, I defined it 

as 1; otherwise it was given a value of 0 in the binary map. Thus, I generated three 

binary irrigation maps from three different irrigation indices. I summed the three 

binary irrigation maps to produce a new “Irrigation Potential Intensity Map,” in 

which the pixel values range from 0 to 3. A pixel value of 0 indicates that all three 

irrigation indices show that no irrigation occurred in that pixel; a pixel value of 3 in 

the Irrigation Potential Intensity map indicates that all three irrigation indices show 

irrigation may occur in that pixel. For pixels with a value of 3, I then reused the 

irrigation potential calculated from the Irrigation Index 1 (IP1,i) and the automatic 

allocation model to downscale the irrigated area census data from the given political 

units to each pixel within the unit. The procedure terminates if the total irrigated area 

calculated from that pixel with a value of 3 in the Irrigation Potential Intensity map is 

already greater than the target area in a given administrative unit; otherwise, I 

continue to use the automatic allocation model for the pixels with a value of 2. 

Similar procedures are repeated for pixels with a value of 2 (and then 1) in the 

Irrigation Potential Intensity map until the total irrigated area calculated from the 

automatic allocation model is greater than the target area.  
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>=0 <0

Binary irrigation map  
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Loop 3 times

The order of irrigation potential from highest to lowest(3,2,1,0)

 Final irrigation map with irrigated percentage in each pixel 
[Statistical irrigated area-Σ Crop percentage in one pixel *pixel size]

Automatic  allocation model

 

Figure 2-2 Procedures for developing irrigation map of China 
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2.2 Data and Processing 
2.2.1 Irrigation census data and recalculation 

 

Figure 2-3 Available census of irrigated areas of each province in China from the Statistical Yearbook 
2001. Yellow indicates provinces with county-level irrigation data; green indicates provinces with city-
level irrigation data; pink shows that the province has only irrigation data for the entire province; white 
indicates that no data are available. 

In China, irrigated areas are reported on the basis of census data. Traditional 

local-level Bureaus of Statistics report irrigation census data at the village level, 

which are then aggregated to higher levels, such as the county, city, province, and 

national levels. The National Bureau of Statistics regularly releases data on the 

provincial-level irrigated area in its Statistical Yearbook. Local Bureaus of Statistics 

might release the county- or city-level irrigated area. Considering that the IWMI and 

FAO/UF maps are all from around 2000, in this study, I tried to collect all the 
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available irrigated area data for each province in 2000 (Figure 2-3). I obtained 

county-level irrigated areas in 14 provinces (Jiangsu, Inner Mongolia, Sichuan, 

Tianjin, Anhui, Xinjiang, Henan, Hunan, Fujian, Jilin, Guangxi, Jiangxi, Hainan, and 

Tibet), city-level irrigated areas in 7 provinces (Shandong, Zhejiang, Yunnan, Shanxi, 

Hubei, Liaoning, and Gansu) and 3 municipalities (Chongqing, Beijing, and 

Shanghai), and provincial-level irrigated area in 7 provinces (Ningxia, Guizhou, 

Qinghai, Heilongjiang, Guangdong, Hebei and Shaanxi). No data are available for 

Taiwan, Hong Kong, and Macao. The geopolitical units (city, county, and province) 

are used as land units as described in Section 2.1 to map irrigated areas. 

Before using the irrigation census data to map irrigated areas in China, I 

preprocessed the census data, for two reasons. First, the boundaries and names of 

some areas have been changed since 2000. For example, a county may have been 

upgraded or merged into a city. Therefore, I amended the boundary polygon map and 

update its attributes. Second, in some provinces, such as Xinjiang, Heilongjiang, and 

Hainan, the irrigated area reported in the Yearbooks contains two parts: one from the 

local Bureau of Statistics, which reports city- or county-level irrigated areas, and 

another from the Production and Construction Corps, which reports only the total 

irrigated area in the agricultural land it manages. The agricultural lands managed by 

Production and Construction Corps are distributed across the entire province, and 

there is no polygon map showing their location. Thus, I combined these two parts. 

My method for combining them is as follows: 

'
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_IRR P is the total irrigated area of agricultural land managed by the Production and 

Construction Corps in a target province. _ iIRR C  is the irrigated area reported by the 

local Bureau of Statistics in the county or city i . if  represents attributes of the county 

or city i  that are strongly related to the irrigated area, such as the acreage of 

agricultural land and the agricultural population. In this study, I used the acreage of 

agricultural land as an eigenvalue in Hainan province and the agricultural population 

in Xinjiang province to calculate the total irrigated area in a target city. Table 2-1 

shows an example of the recalculated city-level irrigated area in Hainan province. 

Table 2-1 Recalculated city-level irrigated area in Hainan province 

Regions _ iIRR C  ( kha) if (kha) 

0

n

i i
i

f f
=
∑  

'_ iIRR C  

Haikou 1.07   1.07 
Sanya 6.84 2.24 0.06 7.76 
Wuzhishan 1.84 0.09 0.00 1.87 
Qiongshan 16.78 5.00 0.14 18.84 
Wenchang 12.59 1.93 0.05 13.38 
Qionghai 13.64 0.56 0.02 13.87 
Wanning 8.68 1.02 0.03 9.10 
Ding'an 9.61 1.54 0.04 10.24 
Tunchang 4.05 1.54 0.04 4.68 
Chengmai 10.31 4.11 0.11 12.00 
Lingao 10.62 6.19 0.17 13.16 
Danzhou 16.38 7.08 0.19 19.29 
Dongfang 11.15 0.24 0.01 11.25 
Ledong 15.55 0.99 0.03 15.95 
Qiongzhong 4.25 1.12 0.03 4.71 
Baoting 3.19 0.62 0.02 3.44 
Lingshui 9.14 0.92 0.02 9.52 
Baisha 3.59 1.49 0.04 4.21 
Changjiang 5.30 0.33 0.01 5.43 

_IRR P  15.22 36.98 1.00  
Total 179.78   179.78 

http://en.wikipedia.org/wiki/Wuzhishan_City
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Note: Here, if  is agricultural land occupied by the Production and Construction Corps of Hainan 

province (Kha). _ iIRR C  is the effective irrigated area in a target city (Kha), and _IRR P is the total 
agricultural land occupied by the Production and Construction Corps of Hainan province (Kha). 
 

2.2.2 Time series NDVI  
 I acquired 10-day composite, 1-km SPOT-VEGETATION satellite images 

for 1998–2010 at http://free.vgt.vito.be/. The VEGETATION products fall into three 

categories: VGT-P (Primary), VGT-S (Synthesis), and VGT-D (Directional) 

(Maisongrande et al. 2004). VGT-P products provide top of the atmosphere (TOA) 

reflectances that are corrected by radiometric and geometric corrections. VGT-S 

products are derived from P products and provide daily and 10-day MVC (Maximum 

Value Composite) syntheses. VGT-D products are bidirectional composite syntheses. 

In this study, I used VGT-S10 data to calculate the coefficient of variation of NDVI (

) during a growing season. The growing season is from April to September. 

2.2.3 Precipitation and interpolation process 
The precipitation data used in this study include monthly mean precipitation 

averaged from 1950 to 2000 from WorldClim Global Climate Data at 

http://www.worldclim.org/ (Hijmans et al. 2005) and precipitation observations from 

the National Meteorological Center of the China Meteorological Administration 

(NMCCMA). China has a total of 726 observation sites, 11 of which were excluded 

from further processing in this study because of inconsistent or short-term 

observations. The precipitation obtained from WorldClim Global Climate Data has a 

resolution of 1 km and therefore, does not require further interpolation. It was used as 

 to calculate the first irrigation potential index using Equation 1. However, the 

WorldClim Global Climate Data only provides mean precipitation, and so cannot be 

'
iNDVICV

iPIµ

http://ieeexplore.ieee.org/iel5/4293028/4293029/04293062.pdf
http://free.vgt.vito.be/
http://www.worldclim.org/
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used to calculate the coefficients of variation of precipitation ( ) and regression 

coefficients of precipitation ( ). Therefore, I used the precipitation observations 

from NMCCMA to estimate  and  and then interpolated the and 

values from the observation sites to 1-km resolution grids by the inverse distance 

weighting method (Error! Reference source not found.).  

2.2.4 Other data sets and preprocessing 
The other data used in this study include the FAO/UF map, the IWMI map, 

and the intensively validated National Land Cover Data of China (NLCD2000) 

produced by visual interpretation and digitization of Landsat TM/ETM+ data in 2000 

(Liu et al. 2002; Liu et al. 2005a).  

The FAO irrigation map used in this study is version 4.0.1, which can be 

downloaded at http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm. It 

showed the fraction of 5′ × 5′ cells that was equipped for irrigation in about the year 

2000. The area equipped for irrigation includes areas equipped for full control 

irrigation, equipped lowland areas, and areas equipped for spate irrigation. It does not 

include non-equipped cultivated wetlands and inland valley bottoms or non-equipped 

flood recession cropping areas. The data collected for China in FAO’s AQUASTAT-

programme (available 

at http://www.fao.org/nr/water/aquastat/irrigationmap/cn/index.stm) is actually the 

same as mine (available at http://www.stats.gov.cn/tjsj/ndsj/). The numbers used in 

the FAO/UF map and in my map are consistent in all the provinces except Xinjiang 

(3094.8 Kha in FA map and 3094.3 Kha in our map). Therefore, I can conclude that 

iPICV

iPIS

iPICV
iPIS

iPICV
iPIS

http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm
http://www.fao.org/nr/water/aquastat/irrigationmap/cn/index.stm
http://www.stats.gov.cn/tjsj/ndsj/
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the area equipped for irrigation shown in the FAO/UF map has the same meaning as 

the effective irrigated area in my map and that those two maps are comparable. 

However, the irrigated areas on a county and city level in the FAO/UF map are not 

consistent with the census data (Figure 2-4), which indicate that the FAO/UF map 

still has room for improvement.  

 

Figure 2-4 Regression of irrigated areas between census data and the FAO/UF map at the county level 
(a) and city level (b) (Note: only the cities and counties with available census data were used to 
produce this figure.) 

The IWMI map used in this study is version 2.0, which can be downloaded at 

http://www.iwmigiam.org/info/main/index.asp. The area statistics reported by IWMI 

include annualized irrigated areas (AIA) and total area available for irrigation 

(TAAI). The former considers the intensity of irrigation and the latter does not. In my 

comparison, I used TAAI, which refers to the irrigated areas at any given point in 

http://www.iwmigiam.org/info/main/index.asp
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time as well as the areas left fallow but “equipped for irrigation” at the same point in 

time. From the definition, we can see that the IWMI map and my map are also 

comparable. Therefore, The FAO and IWMI maps were used for comparison with the 

newly produced irrigation map.  

The cropland area of China around the year 2000, as derived by remote 

sensing images, was reported in several previous studies. It was estimated to be 204 

million ha by using the Global Land-use Model (GLM) (Hurtt et al. 2006), 133 

million ha by HYDE from the History Database of the Global Environment 

(Goldewijk et al. 2011), 140 million ha by Houghton and Hackler (Houghton and 

Hackler 2003) and Ramankutty et al. (Ramankutty et al. 2008),  and 141.1 million ha 

by NLCD2000 (Liu et al. 2005c). The census data of the cropland area is reported as 

156.3 million ha in the National Statistical Yearbook 2001. The estimate of the 

cropland by NLCD2000 is closest to the census data. Therefore, the NLCD was used 

to provide the crop percentage information in detected irrigated pixels. NLCD2000 

has six land cover types: cultivated land, forest, grassland, residence, unused land, 

and water body, and 1 km spatial resolution in Albers equal-area conic projection.  

Cultivated land has two sub categories: paddy land and dryland.   

2.3 Results, validation and product intercomparisons  
2.3.1 Results 

Using the method described in Section 2.1, I produced an irrigation map of 

China for the year 2000. In terms of my method, after a pixel was identified as an 

irrigated pixel, the irrigation percentage of this identified irrigation pixel was set as 

equal to the crop percentage of this pixel. The crop percentage is the sum of paddy 
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land and dryland percentages in this pixel. As a result, I obtained three values in one 

irrigated pixels: the percentage of irrigated paddy fields, the percentage of irrigated 

dryland and the total irrigation percentage.  Accordingly, I generated three secondary 

products: irrigated dryland area, irrigated paddy fields, and rainfed area (Figure 2-5). 

The total irrigated land is the sum of the irrigated dryland area and irrigated paddy 

fields, and the rainfed land is the cropland minus the irrigated area.  

 

Figure 2-5 Irrigated and rainfed areas in China in 2000 

2.3.2 Validation 
To validate the accuracy of the new map and facilitate comparison with the 

FAO and IWMI maps, I collected 614 validation samples (262 irrigated samples, 352 

non-irrigated). The samples were obtained from two sources: The first source was the 

crop growth and soil moisture dataset provided by the China Meteorological Data 
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Sharing Service System (CMDSSS). This dataset records the crop type, 

developmental phase, the date of the developmental phase, plant height, plant density, 

soil moisture in the top 10 cm, 20 cm, 50 cm, 70 cm, and 100 cm and the irrigation 

label (irrigated or non-irrigated) of 778 observational sites since 1991.  All sites with 

an irrigation labels were used in this study, and they are totally 352 non-irrigated 

samples and 156 irrigated samples. The irrigated samples from this source are mainly 

located in North China and Southwest China; Southeast China does not have irrigated 

samples.  I therefore collected another 106 irrigated samples by identifying and 

labeling them using Google Earth and irrigation information on large irrigated areas 

provided by the China Irrigation and Drainage Development Center (CIDDC) at 

http://www.dxgq.org.cn/other/AllIrrInfo.aspx. A large irrigated area in China is 

defined as an area where the effective irrigated area is greater than 0.3 million acres. 

This website releases the information on 443 large irrigated areas distributed over the 

whole of mainland China including the name, location, the total cultivated land, the 

irrigation and drainage development history in this area, water resource, crop types, 

and so on. The Google Earth data and CIDDC data were the second source. Unlike 

CMDSSS, CIDDC does not provide the latitudes and longitudes of the irrigated sites, 

but it does describe the irrigation water source of the large irrigated area (e.g., lake, 

canal, reservoir, and river). Therefore, I searched for the location of the irrigation 

water sources by name, using Google Earth, then zoomed in on the high-resolution 

Google Earth images and labeled the farmlands near the irrigation water sources as 

irrigated sites. Figure 2-6 shows the locations of the sites of my validation samples in 

mainland China;  

http://www.dxgq.org.cn/other/AllIrrInfo.aspx
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Figure 2-7 shows three examples of irrigated sites that I collected using 

Google Earth and CIDDC data. 

 

Figure 2-6 Validation samples in mainland China. The first data source is crop growth and soil 
moisture dataset, provided by the China Meteorological Data Sharing Service System; the second data 
source is visual interpretation from Google Earth data and China Irrigation and Drainage Development 
Center data 

   

a b c 
 

Figure 2-7 Three examples of irrigated sites labeled using Google Earth: (a) Wusi Jiang, Guangxi 
Province; (b) The People's Victory Canal, Henan Province; and (c) Xingkai Lake, Heilongjiang 
Province 

http://www.dictall.com/indu/039/03855387702.htm
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In the new irrigation map and the FAO/UF map, the pixel value is the 

percentage of irrigation while the pixel value of IWMI is the class label for the 

irrigation type. In order to validate the data, these irrigation maps need to be 

transformed into binary maps (irrigation and non-irrigation), wherein pixels in these 

three maps with a value greater than 0 were coded as 1, representing irrigated areas; 

other pixels were coded as 0, representing non-irrigated areas.  I then compared the 

class label of each sample in the reference data to the class label of the pixel extracted 

from the irrigation maps at the same location.  

The resolutions of the three irrigation maps are different. The resolution of 

FAO/UF map, IWMI map and new map are 5’ (0.0833333º), 0.0089282º, and 1km, 

respectively. Validating the non-irrigated pixels is more difficult for the FAO/UF map 

because the non-irrigation samples collected in a small region within the 5’ × 5’ grid 

may not represent that the whole 5’ × 5’ grid is non-irrigated. Therefore, we 

calculated the error matrices for the IWMI map and the new irrigation map (Table 2-

2), but for FAO/UF map, we only reported the producer accuracy (Table 2-3).  In 

addition, we resampled the IWMI map and the new irrigation map to the same spatial 

resolution of FAO/UF map, and then computed the producer accuracies of the 

resampled irrigation maps.   

Table 2-2 Confusion matrices for the new irrigation map, IWMI map, and FAO/UF map   

  
      Reference   

  Irrigated Non-irrigated Total 
IWMI map(0.0089282º)  Irrigated 173 151 324 

  Non-irrigated 89 201 290 

  Total 262 352 614 
Overall Accuracy = 60.91%    
Kappa Coefficient = 0.23       
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New map(1km)  Irrigated 164 96 260 

  Non-irrigated 98 256 354 

  Total 262 352 614 
Overall Accuracy = 68.40%    
Kappa Coefficient = 0.35       
 

Table 2-3 Producer accuracies of FAO/UF map, resampled IWMI map and resampled new irrigation 
map of China 

 FAO/UF 
map 

Resampled IWMI map Resampled new map 

Correctly classified irrigation 
pixels 

218 218 228 

Validation irrigation samples 262 262 262 

Producer accuracy 83.2% 83.2% 87.0% 

Note: FAO/UF map, resampled IWMI map and resampled new irrigation map of China have the same 
spatial resolutions (0.0833333º). 

2.3.3 Intercomparisons 
 

 
Figure 2-8 An example of the city-level polygon maps aggregated from three irrigation maps and 

statistics 
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 I aggregated these three maps into two levels (city and county) of subnational 

polygon maps and then compared their similarity and dissimilarity by using the 

Cluster and Outlier Analysis and Hot Spot Analysis tools in ArcGIS. Figure 2-8 

shows an example of the city-level polygon maps. Details about the comparison 

results are shown in following sections.  

2.3.3.1 Similarity between irrigation maps  
 I analyzed the distribution patterns of the irrigated areas as summarized by 

county from the three different irrigation maps by using the Cluster and Outlier 

Analysis and Hot Spot Analysis tools in ArcGIS. The Cluster and Outlier Analysis 

tool was used to identify clusters of irrigated areas. For each feature, it calculates a 

local Moran's I value, a Z score, a p-value, and a code representing the cluster type 

(Mitchell 2005). The cluster types include HH, LL, HL, and LH. HH and LL are 

statistically significant (0.05 level) clusters of high values and low values, 

respectively. HL is a cluster of high values surrounded by low values, and LH is a 

cluster of low values surrounded by high values. The Hot Spot Analysis tool 

calculates the Getis-Ord Gi* statistic. The G-statistic is a Z Score, which is a test of 

statistical significance, and is used to decide whether features with high values or 

features with low values tend to cluster in a study area. Z scores are measures of 

standard deviation. There is no pattern in the area at the 95% confidence level if the Z 

score is between -1.96 and +1.96 standard deviations (SD). There is a clustering of 

high values in the area at the 95% confidence level if the Z score is greater than +1.96 

standard deviations. There is a clustering of low values in the area at the 95% 

confidence level if the Z score is less than -1.96 standard deviations. 
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Figure 2-9 shows the distribution patterns of irrigated areas estimated from the 

three irrigation maps. The figure suggests that both the new map and the FAO/UF 

map effectively depict irrigation patterns with similar types of spatial distributions. 

The North China plain, the Hetao plain, northwestern Xinjiang province, and 

Songnen Pingyuan are four heavily irrigated areas where the HH pattern is dominant. 

Southwestern and southeastern China are lightly irrigated areas where the LL pattern 

is dominant. The IWMI map shows more irrigated area in the Dongting Hu pingyuan, 

Jiang Han pingyuan, and Chengdu pingyuan and less irrigated area in Xinjiang 

province and the Hetao plain than the other two maps. 

2.3.3.2 Dissimilarity among irrigation maps  
To analyze the dissimilarity between the irrigation maps, I summarized the 

irrigated area by county in each map and then subtracted the maps from each other. 

The results are shown in Figure 2-10(a), (c), and (e). Next, I used the Hot Spot 

Analysis tool in ArcGIS to analyze the cluster patterns of the dissimilarity between 

the irrigation maps (Figure 2-10 [b], [d], and [f]). The figure suggests that the new 

map agrees well with the FAO/UF map; the greatest difference between the two 

appears in northeastern China, especially in Jilin and Heilongjiang provinces, Hainan 

province, the Huaihe River, and the lower reaches of the Yangtze River. The IWMI 

map differs greatly from both the FAO/UF map and the new map.  
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Figure 2-9 Hot spot analyses and cluster pattern analyses of three irrigation maps (GIZScore is the Z 
score calculated by Getis-Ord Gi* statistic in the Hot Spot Analysis tool of ArcGIS, and SD is standard 
deviations.) 
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Figure 2-10 The differences between irrigation maps. (a) FAO/UF map minus new map 
(FAO/UF_NEW), (c) IWMI map minus new map (IWMI_NEW) , and (e) IWMI map minus FAO/UF 
map (IWMI_FAO/UF); (b), (d), and (f) are hot spot analyses of (a), (c), and (e), respectively. 
(GIZScore is the Z score calculated by Getis-Ord Gi* statistic in the Hot Spot Analysis tool of ArcGIS, 
and SD is standard deviations.) 
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2.4 Discussion and conclusions 
In this study, I developed three irrigation potential indices by using time series 

NDVI and precipitation data. Using these indices and a spatial allocation model, I 

downscaled the census data on irrigation from geopolitical units to individual pixels 

in China.  

I validated the new irrigation map and also two global irrigation maps (IWMI 

map and FAO/UF map) in China using 614 reference samples including 262 irrigated 

samples and 352 non-irrigated samples. The overall accuracy of the IWMI map 

(0.0089282º) and the new map (1km) are 60.91% and 68.40%, respectively. I also 

resampled the IWMI map and the new map to the spatial resolution of the FAO/UF 

map (0.0833333º), and calculated the producer accuracies for the FAO/UF map, the 

resampled IWMI map and the resampled new irrigation map. They are 83.2%, 83.2% 

and 87.0%, respectively. My validation is the first report on the accuracy of global 

irrigation maps in China, as far as we know. However, in order to validate the data, I 

transferred fraction irrigation maps to binary maps in which a pixel with an irrigation 

percentage great than 0 is defined as 1 (irrigated area). The detailed information 

regarding the acreage of the irrigated area is lost during this transfer process. For 

example, a pixel with an irrigation percentage of 100 and a pixel with an irrigation 

percentage of 1 are both defined as an irrigated pixel, but the acreage of the irrigated 

area in those two pixels differs a lot. Besides, my validation samples are point 

samples. There is a scale problem when validating grids by point samples because it 

is unknown to what extent the point samples could be representative. Therefore, point 
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samples are better for validating high resolution maps than for coarse resolution 

maps.  In the future, I need to investigate square samples rather than point samples in 

order to make a more objective validation on the fractional irrigation map.  

 I also made intercomparisons among the three maps. The comparison results 

suggest that my new map agrees most with the FAO/UF map. Both these maps differ 

greatly from the IWMI map. The greatest differences between the new map and the 

FAO/UF map occur in northeastern China, especially in Jilin and Heilongjiang 

provinces, Hainan province, the Haihe River, and the lower reaches of the Yangtze 

River.  

My method has several advantages. First, its inputs are quite simple, and no 

training samples are needed. Training samples are one of the most important factors 

for successful classification of satellite imagery, but collecting them by field 

investigation is costly and time-consuming. As a result, it is very expensive to update 

these samples regularly.   

Second, my method is general and repeatable. Repeatability is pivotal to an 

approach’s practical applicability. Traditional classification methods always require 

prior knowledge or ground-truth information regarding the study area. The 

classification results vary considerably because of differences in the classifiers or 

training samples. As a result, classification is more likely to be idiosyncratic and lack 

repeatability. In contrast, my method is a standardized procedure and could easily be 

repeated in other similar studies. 

Third, my method can be used to map historically irrigated areas as long as 

the simple inputs needed for equations can be obtained. The case study in China 
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described in this paper demonstrated the procedure for mapping historically irrigated 

areas. 

 However, my model also has some weaknesses. First, the NDVI and the 

variation in NDVI depends not only on irrigation but also on other factors such as 

fertilizer use, plant protection, soil properties, weeds, diseases, and the change of crop 

rotation system. However, irrigation is regarded as the major factor affecting NDVI in 

China for the following three reasons: 1) China constantly faces challenges of food 

security and has undertaken large-scale programs to increase agricultural production 

in order to achieve self-sufficiency in food production. Among those measures, 

irrigation contributes most to increased crop production (Pu-te 2010). Chinese 

farmers are already accustomed to increasing crop productivity using chemical 

fertilizer, insecticides, and herbicides on both irrigated and rainfed areas (Khan et al. 

2009);  2) Drought is the biggest agrometeorological hazard in China, following by 

flood (Simelton 2011). An irrigation system serves both flood control and drought 

relief functions in China. In other words, irrigated areas can better resist natural 

disasters than rainfed areas. Therefore, NDVI in irrigated areas is expected to be more 

stable than in rainfed areas; 3) Changing crop rotation systems within an irrigated 

pixel will increase the variation of NDVI in this pixel, and my method may 

misclassify it as a non-irrigated area. The use of double-cropping techniques was 

reported to decrease by 9% from 1978 to 2008 due to climate change and other 

factors (Yu and Zuo 2010), with a corresponding increase in the use of single-crop 

techniques. The previous study cited in this work did not describe the locations where 

(irrigated or rainfed areas) double-crop agriculture changed to singe crop. However, it 

http://www.nciku.cn/search/en/crop+rotation
http://www.nciku.cn/search/en/crop+rotation
http://www.nciku.cn/search/en/system


 

39 
 

is reasonable to infer that the change from double to single crop is more likely in 

rainfed areas because of the decrease in precipitation. In summary, the assumption 

that crop productivity is high and stable over a long time-series in irrigated areas 

compared with rainfed areas in a given land unit is reasonable in China, but may 

differ in other regions, where irrigation is not the major factor influencing NDVI. 

Second, my method is expected to perform better in dry areas than in humid 

areas, where less irrigation water is required and supplemental irrigation is the 

dominant irrigation type. However, this problem of accuracy is not limited to my 

method; the traditional classification methods are also unable to effectively 

distinguish between irrigated areas and non-irrigated areas planted with identical 

crops, due to the spectral mixture between them, especially in supplemental irrigated 

areas. For example, rainfed corn fields have little spectral difference compared to 

irrigated corn fields. The greatest spectral difference between rainfed and irrigated 

corn occurred in the irrigation period. In supplemental irrigation, irrigation water is 

only applied in key periods of crop growth and development. The key period is short, 

and the spectral differences caused by the extra soil moisture from irrigation are less 

distinct with time, following irrigation. In addition, adjacent farmlands may even be 

irrigated at different times because they are owned by different farmers. Therefore, it 

is very difficult to identify optimal temporal satellite images, especially for detecting 

irrigated areas on a large scale. It is also impossible to effectively distinguish irrigated 

crops from rainfed crops based only on a spectral difference. However, as irrigation 

greatly increases crop yield and irrigation requirements are closely associated with 

climatic conditions, my method used time series NDVI and precipitation data to 
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estimate the irrigation potential of each crop pixel.  I emphasize the average 

precipitation condition, which aims to reflect the irrigation requirements; and the 

average NDVI condition, which aims to reflect the difference in yield between 

irrigated and non-irrigated crops over long time periods. My method may not perform 

better in humid areas than traditional classification methods, but it may still provide 

an alternative approach to assessment.  

Third, the subpixel irrigated area (irrigation percentage) in a detected irrigated 

pixel is inherited from the crop percentage of the land cover map, which assumes that 

the crops in one pixel are all either irrigated or non-irrigated. However, this may not 

be true, especially in agricultural lands that are being irrigated through informal 

sources, say, from ground water. However, the approach can be improved to some 

extent if one uses an NDVI dataset with higher spatial resolution NDVI (such as 

MODIS 250 m NDVI) and a land cover map.  

Finally, the amount of irrigated area is controlled by the irrigation census data, 

which may not represent the real irrigated area. For example, the Statistical 

Yearbooks published in China release data on the effective irrigated area (EIA). The 

EIA refers to an area of land where water sources or complete sets of irrigation 

facilities exist to lift and move sufficient water for irrigation purposes under normal 

conditions; an EIA may not be irrigated in a given year, causing overestimation. On 

the other hand, the EIA does not include land cultivated using informal irrigation 

sources, causing underestimation. However, in China, the EIA is regularly reported in 

the national census data. Therefore, it can be easily used as an input to update the 

irrigation map regularly.   



 

41 
 

 

Chapter 3 Seeking observational evidence of irrigation 
impact in China  

In this observation study, I will analyze and compare meteorological and 

remote sensing observation in irrigated (/highly irrigated area) and non-irrigated 

(/lightly irrigated) agriculture areas. Meteorological observations will mainly focus on 

daily air temperature, and satellite observations will include albedo, LST, NDVI, soil 

moisture, and evapotranspiration. Here, I will introduce my method and results by 

two studies: one is in Jilin Province, and another is in North China. Two manuscripts 

about the work in this chapter have been prepared; one was published (Zhu et al. 

2011e) and another one was accepted (Zhu et al. 2012).  

3.1 Case study in Jilin Province 
Jilin is one of the main dryland grain production provinces in China; 

supplemental irrigation is responsible for contributing to a vast increase of food 

production and resistance to drought disasters.  Spring corn, middle rice, and 

soybeans are predominant crops in Jilin Province, and irrigation water is used in their 

growing season (April to late September).  Like other regions in China, Jilin Province 

features an array of issues that challenge the study of the irrigation cooling effect in 

China, such as a rapid urbanization process and continuously increased coal energy 

consumption, the biggest contributor of black carbon (Figure 3-1). Fortunately, the 

effective irrigation area (EIA) and sown area of crop (CSA) in Jilin Province 

fluctuated during last 50 years. The effective irrigated area underwent three phases: a 

rapid increase after 1949, because the new nation invested significant capital towards 

fostering agricultural development, including construction of irrigation systems; a 
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decrease starting in 1978, when China began a series of economic reforms (with a 

greater decrease from 1991-1996); and then resumed again after 1996.   The mean 

crop sown area was around 4.47 M ha from 1955-1965, increasing to about 17 

percent over the next 12 years (1966-1978), and then decreasing again, remaining at 

approximately 4.07M ha from 1979-1999.   

 

Figure 3-1 Background of study area  

(a. urbanization ratio (UR) (%); b. Energy consumption (EC) (×107 tons of standard coal equivalents 
(SCE); c. EIA and CSA (M ha)); d. Average maximum, mean, and minimum temperature of Jilin 
province.  Note: UR is equal to urban population divided by total population. Urban population and 
total population of Jilin Province are taken from the Jilin statistical yearbook 2007 compiled by Jilin 
Bureau of Statistics. EC for Jilin Province is calculated by unit EC (×107 ton SCE/person) multiplied 
by total population in Jilin Province in a given year; and unit EC is total EC divided by total population 
of China in a given year.  Total EC and the population statistics before 1991 are from the China 
Statistical Yearbook 1992, and after 1991 are from China Statistical Yearbook 2008; both of which are 
published by the National Bureau of Statistics of China. The cultivated area over 1949-2007, and 
effective irrigation area over 1972-2007, are from the Chinese website http://www.zzys.gov.cn/. 
Average maximum, mean, and minimum temperature of Jilin provinces are derived from observations 
of 28 meteorological stations located in Jilin Province. 

Jilin is one of thirteen provinces in China that are major grain producers 

(Figure 3-2). It has a temperate continental climate with cold winters, and warm and 
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wet summers. There are approximately 120 frost-free days each year. Annually, there 

is an average of 2259 to 3016 hours of sunshine. The active accumulative daily air 

temperatures are 2700–3600ºC which satisfies the sunshine requirement for single 

cropping (Yao et al. 2009). Rainfall averages are 400 to 1000mm yearly, mostly 

occurring in the summer and in the eastern area of Jilin. The rainfall amount during 

April and May accounts for 13 percent of the yearly total rainfall. Hence, the 

frequency of drought is high during spring, especially within the western areas of this 

province.  

Spring corn, mid-season rice, and soybean are the predominant crops in Jilin 

Province. The growing season lasts from April to late September (Table 3-1). For 

spring corn, the leaf to jointing stage occurs early June to middle July, and the 

teaseling to filling stage occurs during late July to middle August, which 

encompasses 30 to 33 percent of the water consumed over the course of the growing 

cycle. For middle rice, most evaporation is lost during the transplanting stage in 

middle and late May, and transpiration is primarily lost during booting to tasting stage 

in late July and early August. For soybean, the flowering to seed filling stages, which 

occur from late July to early September, used 61 to 66 percent of the water consumed 

in its growing cycle. In these key crop phenological stages, people in Jilin province, 

especially in the western areas, often use supplemental irrigation to meet crop water 

requirements. During the past 50 years, the sown area of crops in Jilin province has 

increased from 4.38 M ha in 1949 to 4.94M ha in 2007. Additionally, the effective 

irrigation area increased from 0.796 M ha in 1972 to 1.6137 M ha in 2005. 
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Figure 3-2 Study area (Note: Irrigated and rainfed corn, rice and soybean maps are subset of 
MIRCA2000 data(Portmann et al. 2010); cultivated land of Jilin is a subset of Land Cover Dataset 
(NLCD) of China; irrigation map of Jilin province is a subset of FAO/UF MAP.) 
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Table 3-1 Crop phonological stages (1, 2, and 3 mean the first, second and third ten days of each 
month, respectively) 

Month April May June July August September 

 1 2 3 1 2 3  1 2 3 1 2 3 1 2 3 

Spring corn  Sowing Seedling Leaf -Jointing Tasseling-filling Ripening Maturity 

Middle rice Sowing Seedling Nursing Transplanting Tillering Booting -filling Ripening Maturity 

Soybean  Sowing Seedling Leafing-Branching  Flowering-Podding-
Seedfilling Maturity 

 

3.1.1 Data  
Spring corn, middle rice, and soybean are the principal crops in Jilin Province; 

irrigation water is used during the growing season (April to late September) for these 

crops. Hence, my study focused on April to late September.  

The data used here include three parts: meteorological observations, satellite 

observations and three ancillary maps. The first dataset was used to calculate the 

long-term growing season mean yearly maximum, minimum, and mean air 

temperature. The second dataset was used to calculate the growing season land 

surface biogeophysical parameters. The three ancillary maps were used to choose 

suitable meteorological observation sites and to classify the areas with high irrigation 

percentages and those with low irrigation percentages.  

3.1.1.1 Meteorological observations 
The meteorological observations include daily maximum, minimum and mean 

air temperatures and precipitation for the period 1956-2008 from the National 

Meteorological Center of the China Meteorological Administration. In this study, the 

mean temperature is not the average between maximum and minimum daily 

temperature, but an average of observations at the local times: 02:00, 08:00, 14:00, 

and 20:00. 
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3.1.1.2 Satellite observations 
The satellite observations (Table 3-2) include albedo, land surface temperature 

(LST), the Normalized Difference Vegetation Index (NDVI), soil moisture (SM), and 

evapotranspiration (ET). 

Surface albedo is the fraction of solar energy (shortwave radiation) reflected 

from the earth back into space, and measures the reflectivity of the earth's surface 

(Liang 2004). Since water absorbs solar energy, and irrigation increases the soil 

wetness, it is expected that irrigation decreases surface abledo.  The surface albedo 

dataset we used is from the MODerate-resolution Imaging Spectroradiometer 

(MODIS) Albedo product (MCD43C3: Albedo 16-Day L3 Global 0.05Deg CMG). 

MCD43C3 provides both Black-Sky Albedo (BSA), which denotes directional-

hemispheric reflectance (at local solar noon), and White-Sky albedo (WSA) for bi-

hemispheric reflectance. WSA represents reflectance under conditions of isotropic 

illumination for seven spectral bands (MODIS channels 1–7), and another three 

broadbands: visible (VIS, 0.3–0.7µm), near-infrared (NIR, 0.7–5.0µm) and shortwave 

(SW, 0.3–5.0µm).  

LST is a key parameter in the physics of land surface processes, combining 

surface-atmosphere interactions and the energy fluxes between the atmosphere and 

the ground. Irrigation decreases LST, and the LST will decrease further in daytime, 

compared with nighttime, due to two factors. First, irrigation increases 

evapotranspiration in daytime which will reduce the energy for heating the land 

surface, causing lower LST. Correspondingly, irrigation increases near-surface water 

vapor and decreases the shortwave radiation absorbed by the land surface, which also 
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causes lower LST. Second, the evapotranspiration in nighttime is lower than daytime, 

so more energy is necessary to heat the land surface during nighttime. At the same 

time, the increased near-surface water vapor during nighttime absorbs longwave 

radiation, which increases near-surface air temperature and slows the cooling of the 

land surface temperature.  The LST dataset I used in this study is from MODIS/Aqua 

Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG 

(MYD11C3) products.  

Table 3-2 Land surface parameters data used in this study 

 

Spatial 
resolution 

Temporal 
resolution  time period Projection Source 

Albedo 0.05°  8-day 02/ 2000-2008 
Geographi

c  
 MODIS 

(MCD43C3) 

LST 0.05° monthly 08/2002 -2008 
Geographi

c 
MODIS 

(MYD11C3)  

NDVI1 0.05° monthly 02/2000-2008 
Geographi

c 
MODIS 

(MOD13C2)  
soil 

moisture 25 km daily 2003-2008 EASE  AMSR-E L3  

*NDVI2 0.05° 16-day 2000-06/2005 
Geographi

c 
MODIS 

(MOD13C1) 

* sR ↓ sR ↑  

* lR ↓ lR ↑  1 ° daily 2000-06/2005 
Geographi

c GEWEX (SRB)  

*T 1 ° daily 2000-06/2005 
Geographi

c NMCMA 

*Tmax, 
*Tmin 1.875° daily 2000-06/2005 

Geographi
c 

NCEP/NCAR 
Reanalysis 1: 
Surface Flux 

Note: MODIS (MCD43C3): MODerate-resolution Imaging Spectroradiometer (MODIS) Albedo 
product (MCD43C3: Albedo 16-Day L3 Global 0.05Deg CMG).MODIS(MYD11C3): MODIS/Aqua 
Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG (MYD11C3) products. 
MODIS (MOD13C2): MODIS Vegetation Indices Monthly L3 Global 0.05Deg CMG (MOD13C2) 
product. MODIS (MOD13C1): MODIS Vegetation Indices 16-Day L3 Global 0.05Deg 
CMG(MOD13C1) product. GEWEX (SRB): NASA/GEWEX Surface Radiation Budget (SRB) 
Release-3.0 data sets. NMCMA: National Meteorological Center of the China Meteorological 
Administration AMSR_E: AMSR-E L3 Surface Soil Moisture products. EASE: Grid global cylindrical 
projection. The parameters with asterisk were used to calculate daily ET. 

NDVI, defined as the ratio of (NIR-Red) and (NIR+Red), is still a frequently 

used tool for evaluating changes in vegetation and assessing the impact of 

environmental phenomena. Irrigation assists in growing crops in dry areas, or 

app:ds:asterisk
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increasing food production. Thus, the crops within areas that include irrigation 

facilities have a greater ability to resist dry climate conditions, and are expected to be 

healthier in dry areas. Correspondingly, NDVI values of areas with irrigated facilities 

are expected to be higher compared to non-irrigated areas in dry areas. The NDVI 

dataset I used in this study is from MODIS Vegetation Indices Monthly L3 Global 

0.05Deg CMG (MOD13C2) product.  

Soil moisture is the most important component of the metrological memory. 

Soil moisture can modify the radioactive properties of the soil, control the 

partitioning of the heat flux, impact land surface processes, and therefore, influence 

the regional climate system.  The soil moisture data I used in this study are from the 

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) L3 

Surface Soil Moisture products provided by National Snow and Ice Data Center 

(Njoku 2005). 

ET, a combination of evaporation from land surface and transpiration from 

plant leaves, has a complex influence on the hydrologic cycle and land surface energy 

budget by changing vapor and energy flux. It is frequently used when estimating 

irrigation water requirements, planning water resource management, and when 

improving hydrological, land surface, and weather/climate prediction models. Many 

algorithms have been developed to estimate ET. In this study, ET was calculated 

using the statistical equation (Wang and Liang 2008): 

(0.1440 0.6495 0.0090 - 0.0163 ( max- min))ET R NDVI T T Tn= × + × + × ×  Equation 3-1 

R Rs sR R Rn l l= ↓ − ↑ + ↓ − ↑  Equation 3-2 

http://davesgarden.com/guides/terms/go/943/
http://davesgarden.com/guides/terms/go/2309/
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Where nR is monthly-average net radiation (W/m2). ↓sR , ↑sR , ↓lR , ↑lR

are  daily incoming shortwave radiation, outgoing shortwave radiation, incoming 

longwave radiation, and outgoing longwave radiation (W/m2). All of these are of 

1°x1° spatial resolution and from the NASA/GEWEX Surface Radiation Budget 

(SRB) Release-3.0 data sets (available at 

http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html.) T is the daytime-

averaged air temperature with a 1°x1° resolution from National Meteorological 

Center of the China Meteorological Administration. NDVI is the 16-Day Normalized 

Difference Vegetation Index. Tmax  and Tmin  are daily maximum and minimum 

temperature from NCEP/NCAR Reanalysis (available at: 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html.) 

3.1.1.3 Other data sets 
Other data sets used in this study include the global irrigation map derived by 

the Food and Agriculture Organization (FAO/UF MAP) (Siebert et al. 2005b), which 

shows the fraction of 5’ by 5’ cells that were equipped for irrigation in 2000, the 

global irrigated area map (GAIM) and global map of rainfed cropland areas 

(GMRCA) generated by the International Water Management Institute (IWMI) ( 

http://www.iwmigiam.org), and the intensively validated National Land Cover 

Dataset (NLCD) of China produced by visual interpretation and digitization of 

Landsat TM/ETM+ data from around 2000 (Liu et al. 2005b), which has six land 

cover types: cultivated land, forest, grassland, residence, unused land, and water 

body.  The NLCD has 1 km spatial resolution in Albers equal-area conic projection.  

http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
http://www.iwmigiam.org/
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3.1.2 Methodology 
Temperature changes could be caused by many factors besides irrigation, such 

as longitude and latitude, terrain, land cover type, aerosols, and urbanization. Some of 

these factors, such as irrigation, could change with time. Therefore, some authors 

suggested that evaluation of the impact of irrigation on temperature should be 

conducted both temporally and spatially (Bonfils and Lobell 2007; Lobell and Bonfils 

2008). In accordance with this point, I conducted my study both temporally and 

spatially. Temporally, I used meteorological observations because they provide a 

long-term dataset. Spatially, I used satellite observations because of their large spatial 

coverage. 

3.1.2.1 Temporal dimension test 
 

 
Figure 3-3 The location of study area and observation sites 
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For a temporal dimension test, I first chose suitable sites using the following 

criteria: 1) they are identified as irrigation areas on FAO/UF MAP, which shows the 

fraction of 5’ × 5’ cells equipped for irrigation as of the year 2000 (Siebert et al. 

2005b). 2) The irrigation percentage at a given site should be consistent with the 

classification indicated on the GAIM and GMRCA generated by the IWMI 

(http://www.iwmigiam.org). For example, if the irrigation percentage of a site is 

equal to or greater than 50, but the IWMI map indicated the site is rainfed, then the 

site will be excluded. In contrast, if the irrigation percentage of a site is smaller than 

50 and the IWMI map indicated the site is rainfed, then the site will be included. 3) 

The sites must be located on cultivated land. I excluded sites located in urban and 

residential areas by intensively reviewing the validated National Land Cover Dataset 

(NLCD) of China (Liu et al. 2005b) and Google Earth, and finally determined four 

sites from a total of 28 in Jilin Province (Figure 3-3 and Table 3-3). Over the course 

of this study the two sites with a relatively high irrigation percentage are denoted as 

HIP, and the other two with a relatively low irrigation percentage as LIP.  

Although there are only four sites, the data quality is reliable because in the 

early 1990s, as well as during the period 2001–2002 and in 2004, the National 

Meteorological Center made three separate quality control audits on historical 

meteorological observations including a homogeneity and internal consistency 

review, climate extremes evaluation, 

http://d.wanfangdata.com.cn/Periodical_qxkj200801022.aspx, and confidence interval 

control. The differences created by changes in station location and observation 

instruments were revised using QXT22-2004, a professional standard for the 

http://www.iwmigiam.org/
http://d.wanfangdata.com.cn/Periodical_qxkj200801022.aspx


 

52 
 

meteorological field in China (China Meteorological Administration 2004). There are 

no extreme points and outliers in the data based on the box-plot examination (Figure 

3-4). Moreover, considering that the autocorrelation of a time series could make the 

traditional statistical analysis invalid, I first tested the temporal autocorrelation of the 

mean, maximum and minimum air temperature for each month during the growing 

season (April–September). I tested the temporal autocorrelation of the average mean, 

maximum and minimum air temperature of the growing season by using the Durbin-

Watson (DW) method(Durbin and Watson 1950), which includes three steps: first, 

using linear regression to fit the time series of the meteorological observations; then, 

constructing a series of residuals; and finally, calculating the DW values based on 

Equation 3-3.  
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∑
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Equation 3-3 

     

where e is the residual associated with the observation at time t, and d is the 

DW value. To test for autocorrelation at significance α, the test statistic d is compared 

to the lower and upper critical values (dL,α and dU,α), which is related to the level of 

significance (α), the number of observations, and the number of predictors in the 

regression equation. In this study, the number of observations was 53, the predictor 

was 1; thus, dL,α and dU,α are 1.356 and 1.428, respectively, under 0.01 significant 

level. If dU,α < d < 4-dU, there is no autocorrelation. If dL,α < d < dU,α or dL,α < (4 

− d) < dU,α the test is inconclusive. From Figure 3-5, we can see that there is no 

autocorrelation between any of the time series observations, except the September 
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time series maximum air temperature of Tongyu, which is inconclusive. Overall, the 

time series data was considered to have had no autocorrelation.  

 
Table 3-3 Information on the chosen observation sites 

Site name Altitude(m) Latitude Longitude FAO/UF map (%) IWMI map UR(%) 

Qian Gorlos  136.2 45.08 124.87 15.6 irrigation 27.0 

Huadian 263.3 42.98 126.75 26.8 irrigation 42.9 

Tongyu 149.5 44.78 123.07 7.4 Rainfed 31.5 

Changling 188.9 44.25 123.97 6.7 Rainfed 17.4 

 

 
Figure 3-4 Box-plot examination for extreme points and outliers 
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Figure 3-5 DW values of growing season time series mean, maximum, and minimum air temperature 
of 1956-2008, where G indicates the average air temperature of the growing season time series; 4-9 
indicates the air temperature time series of April to September, respectively 

I then conducted comparisons by subtracting the growing season mean 

maximum, minimum, and mean temperatures of HIP from the growing season mean 

maximum, minimum, and mean temperatures of LIP. I denote them as DTmax, 

DTmin, and DTmean, respectively. I also evaluated the significance of the 

temperature difference between the HIP and LIP locations by using an independent 

sample T-test and calculated the correlation of DTmax, DTmin, and DTmean with the 

EIA and CSA over the study period. Moreover, I calculated the standard precipitation 

index for a 12 month rainfall total(SPI12) for each selected observation site over the 

period 1956 to 2008 based on the code downloaded from 

http://www.drought.unl.edu/monitor/spi/program/spi_program.htm and then 

calculated the correlation of DTmax, DTmin, and DTmean with SPI12. The 

standardized precipitation index (SPI) is a tool for defining and monitoring drought. It 
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can be used to determine the rarity of a drought at a given time scale of interest for 

any rainfall station with historic data. SPI is between -3 and 3. A low SPI value 

indicates a low precipitation event (or drought), a high SPI value indicates a heavy 

precipitation event, and SPI around 0 indicates a normal precipitation event over the 

time period specified.  

3.1.2.2 The spatial dimension test 
For the spatial dimension test, I used a four-step process to compare the land 

surface parameters between cultivated areas featuring a high percentage of irrigated 

land, and those with a low irrigation percentage. Step 1: I re-projected NLCD onto a 

new map using a geographic projection, and then applied majority rules to coarsen the 

new map to a 0.05° spatial resolution; in which the new pixel class is dominant 

among the six land cover types within a 0.05° spatial extent. In this new map, if the 

new pixel class is cultivated land, I defined it as 1; otherwise I defined it as 0. This 

resulted in the creation of a binary map (1 cultivated land, 0 non-cultivated land). 

Step 2:  I resized the 5’ spatial resolution of the FAO/UF map to 0.05 degrees, and 

used the binary map derived from first step as a mask to exclude the non-cultivated 

areas from the FAO/UF map. I then divided the remaining pixels into 10 categories 

with a 10 percentage irrigation interval. The pixels with an irrigation percentage 

smaller than 10 were classified as “reference” areas (RA). The pixels with an 

irrigation percentage greater than 30 and 50 were denoted as “target1” and “target2” 

areas, respectively. Step 3: I re-projected the EASE-Grid global cylindrical projection 

of the AMSR-E soil moisture onto the geographic projection and resized it to a 0.05° 

spatial resolution. Step 4: I calculated the mean surface albedo, LST, SM, and ET, 

with the cloud-free dataset described above for “reference” areas target1 and target2. 
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I then subtracted the land surface parameters of the “reference” areas from target1 

and target2, which are denoted as target1_RA and target2_RA. Lastly, these were 

compared. 

3.1.3 Results and discussions 
3.1.3.1 Results of temporal tests from meteorological observations 

3.1.3.1.1 Temperature difference of HIP and LIP 

The comparative results of HIP and LIP locations over the study period are 

shown in Figure 3-6. DTmax, DTmin, and DTmean are all negative, which indicates 

that the growing season mean maximum, minimum, and mean temperatures at HIP 

locations were lower than at LIP locations. The independent samples T-Test verifies 

that the differences in maximum and mean air temperature are significant at both the 

α = 0.05 level and a = 0.01 level while the differences in minimum air temperature 

are significant only at the α = 0.05 level. The magnitude of DTmax was almost twice 

that of DTmin for each examined period, and the linear regression coefficient of the 

DTmax time series was more than three times that of the DTmin time series. Hence, 

irrigation has more impact on the maximum temperature than the minimum 

temperature, which is similar to results from other studies (Adegoke et al. 2003; 

Kueppers et al. 2008; Lobell and Bonfils 2008). Considering the fact that urbanization 

has a much larger influence on minimum temperature (Kalnay and Cai 2003; Zhou et 

al. 2004), and the average urbanization ratio for HIP locations (35%) is even greater 

than that of LIP locations (24%), it is reasonable to assume that the temperature 

differences between the HIP and LIP sites are not caused by urbanization. 



 

57 
 

 

Figure 3-6 Temperature difference (a is the regression coefficient, DTmax, DTmin, and DTmean are 
daily maximum, minimum and mean temperature differences between highly and lightly irrigated area, 
respectively. )  

3.1.3.1.2 The correlation between temperature difference and CSA/EIA 

To measure the strength of the linear dependence between DTmin, DTmax, 

DTmean, and CSA/EIA, I first test to see if all these variables have a normal 

distribution based on the one-Sample Kolmogorov-Smirnov Test. The results show 

that all of the variables except CSA have a normal distribution. Therefore, I 

calculated the Spearman's rho instead of the Pearson correlation between them 

because Spearman's rho has no requirement on the distribution of the variable. 

Results are shown in Table 3-4. Based on the table, DTmax and DTmean are 

significantly correlated to both CSA and EIA, and DTmin is significantly correlated 

to CSA. 
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Table 3-4 Spearman correlation between DTmin, DTmax, DTmean and CSA/EIA 

 DTmean DTmax DTmin 
EIA -.295(*) -.329(*) -0.057 
CSA -.517(**) -.443(**) -.451(**) 

**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
 

3.1.3.1.3 The correlation of Temperature difference between HIP and LIP with SPI12 

I calculated the SPI12 for each selected observation site over the period 1956 

to 2008 and show my results in Figure 3-7. The SPI12 of each observation site has a 

normal distribution based on the one-Sample Kolmogorov-Smirnov Test. Next, I 

calculated the Pearson correlation between SPI12 and DTmin, DTmax, and DTmean, 

and the results are shown in Table 3-5. Based on the table, we find that 1) DTmax and 

DTmean are significantly correlated to SPI12 of LIP sites; 2) the correlation between 

DTmax and SPI12 of LIP sites is more significant than the correlation between 

DTmin and SPI12 of LIP sites; 3) the correlation between temperature difference 

(DTmin, DTmax, and DTmean) and SPI12 of HIP sites is not statistically significant. 

These results indicate that the precipitation condition in the LIP sites has a strong 

relationship with the temperature difference between LIP and HIP. This is 

understandable because in China, the term “irrigated area” refers to land “where there 

are water sources or complete sets of irrigation facilities to lift and move adequate 

amounts of water for irrigation purposes under normal conditions,” and irrigated area 

statistics is an indication of “drought resistance capacity”. Moreover, the irrigation 

water in Jilin province mainly comes from underground water sources (Li et al. 

2005). Therefore, a highly irrigated area is expected to have a higher resistance to 

precipitation change and drought than an area with low irrigation. Consequently, the 
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temperature difference between HIP and LIP is bigger in a drier year and is mainly 

caused by lower precipitation levels at the LIP sites. 

 
Figure 3-7 SPI12 of (a) 2 HIP sites and (b) 2 LIP sites 

Table 3-5 Pearson correlation between SPI12 and DTmin, DTmax, and DTmean 
 
 DTmean DTmax DTmin 
SPI12 of Qian Gorlos 0.262 0.144 0.076 
SPI12 of Huadian 0.115 0.082 0.045 
 Average SPI12 of 2 HIP sites 0.214 0.128 0.07 
SPI12 of Tongyu .609(**) .574(**) .312(*) 
SPI12 of Changling .559(**) .556(**) 0.206 
Average SPI12 of 2 LIP sites .641(**) .620(**) .284(*) 
Average SPI12 of 4 sites .518(**) .459(**) 0.216 
**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
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3.1.3.2 Results of spatial tests from satellite observations 

3.1.3.2.1 Land surface parameters of irrigated areas 

The land surface parameters were extracted from satellite images and 

analyzed during the growing season from 2000 to 2008. The intra-annual variations 

of the land surface parameters within irrigated areas are shown in Figure 3-8 and 

Figure 3-9. Monthly ET rapidly increased since the crops were planted in April, and 

reached a plateau during July to August, before decreasing in harvest month 

(September). The average monthly ET of April, May, June, July, August, and 

September were 16.8W/m2, 27.9W/m2, 44.0W/m2, 61.0W/m2, 63.9W/m2, and 

36.4W/m2, respectively. The lowest ET occurred in January and was only 0.2 percent 

of the average ET for August. The ET consumed in June, July, and August accounted 

for 62.7 percent of the total ET consumed in one year. 

The average monthly soil moisture for 2003-2008 was highest in April, with 

an average 0.154 g/cm3, followed by the growing season of May, and highest in 

October during the non-growing season (although the rainfall was concentrated in 

summer.) The high soil moisture in April could be caused by irrigation before seeding 

used for crop sowing. The low soil moisture during June to September might have 

resulted from high ET.  

From 2000-2008, the average monthly NDVI for April, May, June, July, 

August, and September were 0.23, 0.33, 0.61, 0.77, 0.79, and 0.69, respectively. With 

an average of 0.79, the highest average monthly NDVI occurred in August, which is 

the same as Piao’s report (Piao et al. 2003). Spring corn, soybean and middle rice are 

in the grain filling period in the first 20 days of August, and get ripen in the last 10 
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days of August (see Table I). During the grain filling period, leaf chlorophyll content 

was almost the highest (Ciganda et al. 2009) which can contribute to the highest 

NDVI value. The NDVI is the average monthly value, the high NDVI during the first 

20 days probably leads to a high average monthly NDVI. 

In 2002-2008, the average monthly LST for April, May, June, July, August 

and September were 294.6K, 300.3K, 302.8K, 299.4K, 298.4K, and 296K 

respectively. The highest average monthly LST was in June. 

The black sky albedos of NIR, shortwave, VIR broadband, are denoted as 

VIS-BB, SW-BB, NIR-BB, and have similar values with white sky albedo. Therefore, 

I only provide black sky albedo results in this study. VIS-BB, SW-BB, and NIR-BB 

albedos follow different trends during the growing season (Figure 3-9). NIR-BB 

albedo has an increasing-decreasing mode: increasing from 0.182 at DOY (day of 

year) 89 to 0.268 at DOY 209; then decreasing to 0.205 at the end of the growing 

season (DOY 289). The SW-BB albedo has a decreasing-increasing-stable mode: 

decreasing from 0.13 at DOY 89 to 0.124 at DOY 161; increasing to 0.154 at DOY 

209; and then maintaining at approximately 0.148. The VIS-BB band has a 

decreasing-increasing mode: decreasing from 0.081 at DOY 89 to 0.036 at DOY 217, 

and then increasing to 0.084 at DOY 289. 
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Figure 3-8 Time series ET, LST, SM, NDVI, VIS-BB, SW-BB, NIR-BB of target 2 during 2000-2008 
(black and gray lines are mean and range of land surface parameter of target 2 in a given time, 
respectively. VIS-BB, SW-BB, NIR-BB are the black sky albedos of near-infrared, shortwave, visible 
broadband, respectively.)  

 

 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

100

E
T[

w
/m

2 ]

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
250

300

LS
T[

k]

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0.1

0.2

S
M

[g
/c

m
3 ]

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

1.0

N
D

V
I

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

0.5

1

N
IR

-B
B

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

0.5

1

S
W

-B
B

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0

0.5

1

V
IS

-B
B

 

 

Year



 

63 
 

 
Figure 3-9 Average monthly ET, Soil moisture, NDVI, LST and 8-day NIR-BB SW-BB and VIS-BB 
of target (VIS-BB, SW-BB, NIR-BB are the black sky albedos of near-infrared, shortwave, visible 
broadband, respectively.) 

3.1.3.2.2 Irrigation intensity impacts 

To evaluate the land surface attributes under different irrigation intensities I 

determined land surface parameters by subtracting the land surface parameters of 

reference areas from target1 and target2 denoting them as target1_RA and 

target2_RA (Figure 3-10). First, target2_RA and target1_RA have similar attributes. 

The NDVI, ET, and soil moisture are positive, which means wetter soil, healthier 

crops, and more ET loss in highly irrigated areas versus areas with less irrigation. The 

VIS-BB, SW-BB, and NIR-BB albedos are negative because wetter soil in highly 

irrigated areas absorbs more shortwave radiation, causing the albedo to decrease. This 

provides more water for intense heat flux and less energy for heating the land surface, 
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resulting in lower LST. Second, during 2000-2008 the magnitudes of target2 _RA of 

NDVI, ET, soil moisture, LST, NIR_BB, SW_BB, and VIS_BB are all greater than 

the target1_RA. This indicates that the highly irrigated areas could have a much 

greater influence on land surface parameters. For example, in 2003 the target2_RA of 

NDVI, ET, soil moisture, LST, NIR-BB, SW-BB, and VIS-BB are 0.10, 4.53W/m2, 

0.01g/cm3, -2.57, -0.03, -0.02, -0.03, which are 13.2, 17.9, 40.0, 22.3, 10.7, 12.0, and 

13.5 percent greater than the target1_RA, respectively.

 

Figure 3-10 Comparison of land surface parameters between highly and lightly irrigated areas  

3.1.4 Conclusion  
In this study, I evaluated the impacts of agricultural irrigation on air 

temperature and land surface parameters during the growing season in Jilin Province, 

China. Results from both meteorological and satellite observations show an irrigation 
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cooling effect in Jilin Province. Consistent with other studies, irrigation in my case 

also displayed more of an impact on the maximum air temperature than on the 

minimum air temperature during the last 53 years. The magnitude of the difference in 

maximum air temperature was almost twice that of the difference in minimum air 

temperature, and the linear regression coefficient of the time series of the difference 

in maximum air temperature was greater than three times that of the minimum air 

temperature. This is because that evapotranspiration is increased by irrigation during 

daylight hours, reducing the energy for heating the land surface and causing lower 

LST (Boucher et al. 2004; Kueppers et al. 2007). At the same time, irrigation 

increases the near-surface water vapor, an important greenhouse gas, decreasing the 

shortwave radiation absorbed by the land surface, which also causes lower LST. 

However, at nighttime, water vapor can help hold the energy out of space, reducing 

the cooling effect.  The temperature difference between HIP and LIP are statistically 

significant and highly correlated to EIA, CSA and as well as SPI12 of the LIP sites. 

Moreover, the temperature difference between HIP and LIP is bigger in a drier year. 

Results from satellite observation show that the land surface parameters of 

irrigated areas had obvious intra-annual variations. Monthly ET rapidly increased 

since crops were planted in April, reached a plateau during June to August, and then 

decreased again in the harvest month (September). The highest average monthly soil 

moisture, LST, and NDVI was in April, June and August. Three broadband albedos 

follow different trends during the growing season, with an increasing-decreasing 

mode, decreasing-increasing-stable mode, and deceasing-increasing mode. Moreover, 
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highly irrigated areas always corresponded to a lower albedo and LST, and higher soil 

moisture, NDVI and ET over the study period of 2000-2008.  

Overall, this study may provide some substantive evidence that a cooling 

effect from agricultural irrigation exists in China. However, this conclusion does not 

mitigate the potential of other factors to influence the air temperature of my study 

sites, since the climate system is so complex. No one single factor can be attributed to 

regional climate changes. More observations and evidence are needed in order to 

attain a greater understanding of the influence of irrigation on local climate in China.  

Moreover, this study proved that satellite observations are sufficiently valid to 

determine the impact of irrigation on land surface parameters, and provide another 

viable method for understanding the impact of irrigation on local climate, especially 

in those regions where direct observations are limited or obscured by other factors, 

such as urbanization in China. Urbanization can change land surface parameters such 

as land surface temperature. The higher urbanization is corresponding to the higher 

land surface temperature (Wang et al. 2007). With the rapid urbanization, for example 

in China, most meteorological stations are becoming located within, or near cities 

(Zhou et al. 2004), which can impact the atmospheric signature of irrigation in two 

ways. First, the difference of irrigated and non-irrigated sites might be caused by 

different urbanization levels at these sites rather than by irrigation itself which 

exacerbates the difficulty in distinguishing the impacts of irrigation. Second, 

urbanization increases land surface temperature, while irrigation decreases land 

surface temperature. As a result, urbanization can weaken the impacts of irrigation. 

app:ds:stained


 

67 
 

3.2 Case study in North China 
 

The first case study already proved that satellite observation can effectively 

assess the irrigation impact on land surface parameters and provide another valid 

method for determining the impact of irrigation on the local surface climate. 

However, the first case study covered only a small area, (Jilin Province, in China). 

Taking into account operational problems such as large gaps in data and lower quality 

due to cloud contamination in current satellite products, the applications of satellite 

products could be limited on a large scale. Therefore, the efficiency of satellite data to 

detect the impact of irrigation on land surface attributes needs to be validated over a 

large area. 

Here, a similar method and data source that are described in the first case 

study were used to analyze the irrigation impact on land surface parameters in North 

China via a new irrigation map of China. The main objective of this study is to verify 

if satellite observations are capable of detecting the impact of irrigation on land 

surface parameters over a large area. 

The study areas are 17 provinces in North China (Figure 3-11): Liaoning 

(LN), Jilin (JL), Heilongjiang (HLJ), Inner Mongolia (IN), Hebei (HEB), Henan 

(HEN), Shandong (SD), Jiangsu (JS), Anhui (AH), Shanxi (SX), Shaanxi (SAX), 

Gansu (GS), Qinghai (QH), Ningxia (NX) and Xinjiang (XJ), Beijing(BJ), and 

Tianjin (TJ). The background information for these provinces is summarized in Table 

3-6. Based on the climate characteristics, geographical locations and planting 

structures of these provinces, the whole study area was further classified into three 

regions: Northeast (NE), Northwest (NW), and the North China Plain (NCP).
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Table 3-6 Background information for studied areas (AT is the accumulated temperature steadily 
above 10 ℃, AAT is annual average temperature, ASH is annual sunlight hours, AR is annual rainfall, 
ASR is annual amount of solar radiation, FFS is frost-free days in one year) 

Province AT 
(℃) 

AAT 
(℃) 

ASH 
(H) 

AR 
(MM) 

ASR 
(MJ/M2) 

FFD 
(DAY) 

SUMMER 
GRAINS AUTUMN GRAINS  

IM 2000-
3200 0-8 2600-

3400 
50-
450 

5000-
6700 50-150  

Apr-Aug, Spring 
Corn, Spring  Wheat 

JL 2700-
3200 2-6 2200-

3000 
400-
900 

4363-
5276 130-150  

Apr-Sep, Middle 
Rice, Spring  wheat, 
Spring  Corn 

LN 2700-
3700 7-11 2270-

2990 
440-
1130 

4187-
8374 125-215  

Apr-Sep, Middle 
Rice, Spring  Corn 

HlJ 2000-
3000 -4-5 2300-

2800 
400-
650 

4600-
5000 100-140  

Apr-Sep, Middle 
Rice, Spring  wheat, 
Spring  Corn 

NX 1900-
3300 5-10 2200-

3300 
167-
647 

4932-
6096 127-195  

Apr-Sep, Middle 
Rice, Spring  wheat, 
Spring  Corn 

QH 2914 -6-9 2328-
3575 

18-
764 

5880-
7560 30-185  

Apr-Aug, Spring  
Corn, Spring wheat 

SX 2000-
4600 

-4-
14 

2200-
2900 

400-
700 

5000-
6680 110-220 

Sep-Next 
Jun, winter 
wheat 

Apr-Oct, Spring  
Corn, Summer 
Corn, Cotton 

SAX 1945-
5000 9-16 1400-

2900 
340-
1280 

3768-
5862 160-250 

Sep-Next 
Jun, winter 
wheat 

Apr-Oct, Spring  
Corn, Summer 
Corn, Cotton 

GS 2804-
4000 0-14 1700-

3300 
300-
860 

3517-
4521 140-280 

Sep-Next 
Jun, winter 
wheat 

Apr-Aug, Spring  
Corn, Spring wheat 

XJ 4162-
5501 

-4-
14 

2600-
3400 

25-
200 

5000-
6500 140-220 

Sep-Next 
Jun, winter 
wheat 

Apr-Oct, Spring 
wheat, Spring  Corn, 
Summer Corn, 
Cotton 

HEB 2100-
5200 2-14 2400-

3100 
350-
815 

4854-
5981 80-205 

Oct-Next 
Jun, winter 
wheat 

Apr-Oct, Spring  
Corn, Summer 
Corn, Cotton, 
Middle rice 

SD 3800-
4600 

11-
14 

2300-
2900 

550-
950 

4810-
5400 180-220 

Oct-Next 
Jun, winter 
wheat 

Apr-Oct, Summer 
Corn, Cotton, Later 
rice 

HEN 4200-
4900 

12-
16 

2000-
2600 

500-
900 

5000-
5850 190-230 

Oct-Next 
May, winter 
wheat 

Apr-Oct, Summer 
Corn, Cotton 

JS 4400-
5100 

13-
16 

2000-
2600 

870-
1100 

4564-
4982 207-258 

Oct-Next 
May, winter 
wheat, 
Spring corn 

Apr-Oct, Middle 
Rice, Cotton 

AH 4600-
5300 

14-
17 

1800-
2500 

770-
1700 

4396-
5443 200-250 

Oct-Next 
May, winter 
wheat, Early 
rice 

Apr-Sep, Middle 
rice 

BJ 4000 10-
12 

2000-
2800 

600-
700 

4689-
5694 180~200 

Oct-Next 
Jun, winter 
wheat 

Apr-Oct, Spring  
Corn, Summer 
Corn, Middle Rice 

TJ 2000-
4200 

11-
13 

2500-
2900 

550 -
 680  

3758-
5932 196~246 

Oct-Next 
Jun, winter 
wheat 

Apr-Oct, Spring  
Corn, Summer 
Corn, Middle Rice 
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Figure 3-11 Study areas 
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3.2.1 Data  
The land surface biogeophysical parameters used in this study include the 

albedo, land surface temperature (LST), normalized difference vegetation index 

(NDVI), and evapotranspiration (ET). The albedo is from the moderate-resolution 

imaging spectroradiometer (MODIS) albedo product MCD43C3, which has a 16-day 

temporal resolution and 0.05° spatial resolution. The LST is from the MODIS/Aqua 

Land Surface Temperature/Emissivity Monthly L3 Global 0.05° CMG (MYD11C3) 

products. NDVI is from the MODIS Vegetation Indices 16-Day L3 Global 0.05° 

CMG (MOD13C1) product. The temporal coverage of MCD43C3 and MOD13C1 is 

from 02/24/2000-current, and the temporal coverage of MYD11C3 is 08/01/2002-

current.The final time periods used in this study are 2000-2010 for of  NDVI and 

albedo, and 2003-2010 for LST . Similar to  the first case study, ET was calculated 

using statistical equations (Wang and Liang 2008). The new irrigation map with 1 km 

resolution is from the section 4.  

Other data sets used in this study include the irrigation map of China and a 

rainfed map of China produced in chapter 2 and the intensively validated National 

Land Cover Dataset (NLCD) of China mentioned above. 

3.2.2 Methodology 
In order to simplify the method, this study only focused on the period of April 

to October which is the most common growing season (GS) in North China. The 

specific starting and ending days of the year (DOY) for GS (Table 3-7) depend on the 

data source. For example, for the monthly MODIS LST with a spatial resolution of 

0.05°, the data for April are recorded from DOY 91 in a normal year and DOY 92 in a 
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leap year; however, for the 8-day albedo with a resolution of 0.05°, DOY 97 is the 

closest date to April 1st that contains albedo data. 

Table 3-7 Time periods used in this study for different MODIS products (DOY: Day of year) 

MODIS Data JJA GS 
8-day albedo (MCD43C3) DOY 153- 241 DOY 97 - 305  
monthly LST (MYD11C3) DOY 152/153 -213/214 DOY 91/92 - 274/275 
monthly NDVI (MOD13C1) DOY 152/153 - 213/214 DOY 91/92 - 274/275 

 

The methodology include the following steps: First, the NLCD was re-

projected onto a new map using a geographic projection, and then applied majority 

rules to coarsen the new map to a 0.05° spatial resolution, in which the new pixel 

class is dominant among the six land cover types within a 0.05° spatial extent. In this 

new map, if the new pixel class is comprised of cultivated land, it was defined as 1; 

otherwise it was defined as 0. This resulted in the creation of a binary map (1; 

cultivated land, 0; non-cultivated land). 

Second, the irrigation map and rainfed map mentioned above were re-

projected and resized to 0.05 degrees, and then I used the binary map derived from 

first step as a mask to exclude the non-cultivated areas from the maps. 

Third, for better understanding of the impact of irrigation on land parameters, 

the analyses were carried in the whole of North China as well as three sub-regions, 

namely, Northeast China, Northwest China, and the North China Plain. All the 

irrigation agriculture pixels for North China were extracted and defined as two areas 

of interest: high irrigation areas (e.g. irrigation percentage≥ 50%) and low irrigation 

areas (e.g. irrigation percentage <50%) based on the difference in irrigation 

percentage. Rainfed areas where the crop percentage in a pixel is larger than 50 

(thereafter, simply called them as rainfed areas) were also extracted. Considering that 
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the magnitude of irrigation impacts on land surface parameters could be different 

because of the differences in altitude and regional climate of different irrigated pixels, 

the mean value of each land surface parameter for high irrigation areas, low irrigation 

areas and rained areas during the growing season were first calculated province by 

province. Then, for each land surface parameter, this study averaged the mean values 

of 17 provinces, over the whole study area, averaged the mean value of each land 

surface parameter of 4 provinces (Liaoning, Jilin, Heilongjiang, and Inner Mongolia) 

for the NE, 6 provinces (Shanxi, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang) for 

the NW, and 7 provinces (Hebei, Henan, Shandong, Jiangsu, Anhui, Beijing, and 

Tianjin) for the NCP to get the final mean land surface parameter value, and then 

analyzed the differences in land surface parameters between high irrigation areas  and 

low irrigation areas(/rainfed areas).  

3.2.3 Results and discussions 
In order to detect the impact of irrigation on land surface parameters over a 

large area, this study analyzed the differences between highly irrigated area and 

lightly irrigated/rainfed area in 17 provinces located in North China during both 

growing season and summer time. Results are shown in Figure 3-12, Table 3-8,Table 

3-9 and Table 3-10. Generally, highly irrigated areas show the higher nighttime LST, 

NDVI, and ET, and lower daytime LST and albedo than both lightly irrigated areas 

(Table 3-8) and rainfed areas (Table4). Theoretically, excessive ET from irrigated 

agricultural land causes a change in the land surface energy distribution, which cools 

the land surface and near-surface air temperature during the day. ET also increases 

the atmospheric water vapor, which is the most dominant greenhouse gas with a 

significant and positive feedback on our climate system. At nighttime, more water 
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vapor in the atmosphere can increase the near-surface temperature. Meanwhile, 

irrigation increases soil moisture. The specific heat of water is higher than that of the 

land surface; hence, more moisture in the soil can reduce the cooling process of the 

land surface at nighttime. Soil moisture can also modify the radioactive properties of 

the soil, such as decreasing its albedo. In addition, irrigation assists crop growth in 

dry areas or increases in food production. Thus, crops within areas that include 

irrigation facilities have a greater ability to resist dry climate conditions, and are 

expected to be healthier in dry areas. Correspondingly, the NDVI values of areas with 

irrigated facilities are expected to be higher than those of non-irrigated areas in dry 

areas. In sum, results of this study are generally consistent to theoretical expectations. 

The mean differences of land surface parameters between highly irrigated area 

and lightly irrigated areas (rainfed areas) are higher during summer time than during 

whole growing season. For all the parameters (daytime and nighttime, LST, and 

NDVI), the differences between the highly irrigated areas and the rainfed areas are 

larger than the differences between the high and the low irrigation areas (Table 3-8 

and Table 3-9). Among three sub-regions, the differences between highly irrigated 

area and lightly irrigated/rainfed areas are largest in Northwest China although the 

North China Plain (NCP) is the most heavily irrigated area in China. One possible 

reason is that the effects of irrigation are more obvious in dry climate conditions such 

as those in the NW which is the driest area of China.  The magnitudes of the irrigation 

effects are influenced by many factors: the acreage of the irrigated area, the absolute 

irrigation water consumption, the ratio of irrigation water consumption to total water 

consumption (irrigation and precipitation), and so on. A fully irrigated pixel might 
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accept less water in wet areas than in dry areas. The extra water from irrigation would 

amplify the impact caused by differences in the water condition between highly and 

lightly irrigated areas (or irrigated and non-irrigated areas) much more easily in a dry 

climate than in a wet climate. The previous modeling study also reported that 

irrigation has more impact in dry areas than wet areas when same amounts of 

irrigation water are used (Sacks et al. 2009).  

Given that highly and lightly irrigated areas were compared in this study, a 

different choice of threshold for defining them might affect the results. Besides the 

threshold of irrigation percentages of 50, another different threshold (irrigation 

percentages of 30) was also used to define highly and lightly irrigated areas. The 

results from the two different thresholds were quite similar in terms of this study 

(Table 3-10).  

 
Figure 3-12 The mean of land surface parameters of rainfed areas and highly and lowly irrigated areas 
in North China during growing season (here, highly and lightly irrigated areas are separated by a 
threshold of irrigation percentages of 50) 

app:ds:amplify
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Table 3-8 The mean differences of land surface parameters between highly and lowly irrigated areas in 
north China and three sub-regions during both growing season and summer (June-July-August, JJA) 

 

GS JJA 

 

North 

China NE NCP NW 

North 

China NE NCP NW 

LST_Day -0.209 -0.322 0.079 -0.471* -0.401*** -0.624 0.189 

-

0.939*** 

LST_Night 0.062 0.177 -0.068 0.138 0.156 0.206 0.068 0.225 

NDVI 0.037*** 0.017** 

0.028**

* 0.061*** 0.052*** 0.045*** 

0.021

* 0.092*** 

Vis_Albed

o -0.003*** 

-

0.002** 0.001 

-

0.008*** -0.004*** 

-

0.004*** 0.002 

-

0.011*** 

ET 2.532* 0.039 1.769 5.083*** 3.278 1.565 0.412 7.764*** 

T-test for equality of means of highly and lightly irrigated areas by independent samples tests (here, 
highly and lightly irrigated area are separated by a threshold of irrigation percentages of 50) 
* p<0.1 
*** p<0.05 
*** p<0.01 
 
Table 3-9 The mean differences of land surface parameters between highly irrigated areas and rainfed 
areas in north China and three sub-regions during both growing season and summer (June-July-August, 
JJA) 

 

GS JJA 

  

North 

China NE NCP NW 

North 

China NE NCP NW 

LST_Day -0.368* -0.317 -0.247 -0.544* -0.601*** -0.602 -0.181 -1.092*** 

LST_Night 0.345*** 0.460*** 0.087 0.570*** 0.398* 0.423 0.143 0.462 

NDVI 0.046*** 0.017** 0.039*** 0.074*** 0.062*** 0.040** 0.032** 0.113*** 

Albedo -0.004*** -0.002 -0.002** -0.007*** -0.005*** -0.003*** -0.001 -0.010*** 

ET 3.778** 0.575 2.998 6.824*** 5.189** 2.582 2.264 10.340*** 

T-test for equality of means of highly irrigated areas and rainfed area by independent samples tests 
(here, highly irrigated areas are areas with irrigation percentages in a pixel bigger than 50) 
* p<0.1 
*** p<0.05 
*** p<0.01 
  
Table 3-10 Mean land surface parameters during growing season over the studied periods in North 
China 

Areas NDVI VIS_albedo LST_Day (K) LST_Night (K) ET(W/m2) 

Irrigation Percentage <50 0.470 0.081 301.815 283.683 57.167 

Irrigation Percentage >50 0.507 0.078 301.606 283.745 59.699 

Irrigation Percentage <30 0.466 0.081 301.841 283.664 56.897 

Irrigation Percentage >30 0.496 0.079 301.668 283.743 58.990 

Rainfed area 0.461 0.081 301.137 283.379 55.921 
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3.2.4 Conclusion  
In previous studies, a number of authors indicated that regional impacts of 

irrigation were as large as those from changes in land cover (Puma and Cook 2010; 

Sacks et al. 2009). Furthermore, some authors suggested that irrigation might mask 

the warming signal caused by an increase in greenhouse gases to some degree 

(Kueppers et al. 2007). Most of these studies are based on modeling research with 

irrigation maps. This raises a number of questions. Does irrigation really have such 

large effects on land surface parameters and near-surface systems? Do observations 

support the conclusions from modeling studies? In the future, a comprehensive 

method for evaluating the impact of irrigation needs to be developed, in which 

evidence from both observational studies (remote sensing and meteorological 

measurements) and modeling studies can validate one another. Satellite observation is 

a potential tool for studying the impact of irrigation because it can provide land 

parameter information on a large scale; however, the efficiency of satellite data in 

detecting the impact of irrigation on land surface attributes on a large scale has not 

been explored in previous studies.  

In this study, the impacts of irrigation on land surface parameters in North 

China were analyzed by using a new irrigation map of China. Theoretically, irrigation 

can increase ET, NDVI, and nighttime LST, as well as decrease albedo and daytime 

LST. Overall, my results show that ET, NDVI, and nighttime LST are greater in 

highly irrigated areas than in lightly irrigated/ rainfed areas, whereas the albedo and 

daytime LST are lower in highly irrigated areas than in lightly irrigated/rainfed areas 
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in my study area. The consistency of results from this study to theoretical expectation 

indicates that satellite observation is a promising tool for studying the impact of 

irrigation on a large scale although additional similar examination need to be done in 

other irrigated areas. 
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Chapter 4 Modeling the irrigation impact over China  
China experienced both large landscape changes and extensive irrigation 

growth in the past several decades. From the 1980s to 2000, the cropland increased by 

3.0 million ha, woodland decreased by 2.9 million ha, grassland decreased by 0.4 

Million ha, and built-up increased by 1.8 million ha (Liu et al. 2005c) in China. China 

has the second largest irrigation area (53.8 million ha ), following India (57.3 Million 

ha), in the world (Siebert et al. 2005b). More than 45% of China’s crop land will be 

irrigated in 2050 (Wu et al. 2010). Total irrigated area in China increased almost 

monotonically from 15.0 million ha  to 58.5 million ha and agricultural water 

withdrawal increased from 100.1 billion m3 to 366.4 billion m3 between 1949 and 

2008 (Wu et al. 2010). Therefore, both land cover change and land management 

(irrigation) may have contributed to the formation of the current climate system and 

could continue to influence our future climate system.  

The following questions are worthy of exploration in order to improve our 

understanding about how human activities affect climate and to guide policies aimed 

at mitigating or adapting to climate change in China: 1) Is the impact of irrigation on 

climate  comparable to the impact of land cover change on climate in China? 2) Did 

irrigation significantly impact the climate in China in the past? 3) How will irrigation 

impact the future climate in China? To answer those questions, I simulated both the 

irrigation impacts and land cover change impacts on the climate in China in one past 

time period (1978-2004) and two future time periods (2050 and 2100) via a land 

surface model, and then compared the differences among those simulations.  
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Here, I will introduce my modeling method and data in section 4.1. Section 

4.2 presents the results and a discussion, and section 2.5 summarizes conclusion.  

Three manuscripts about the work in this chapter have been prepared; two were 

submitted (Zhu et al. 2011a, c) and another one is in preparation (Zhu et al. 2011b). 

4.1 Method and data 

 
Figure 4-1 Flowchart of the modeling method 

Figure 4-1 shows my main procedure for the modeling study, in which I 

simulated both the irrigation impact and land use land cover change (LULUC) 

impact.  Both of them used the Community Land Model as a tool. For the irrigation 

simulation, four questions need to be considered: where to irrigate, how much to 

irrigate, when and how to irrigate (e.g., rain, spray, drip; and rate).  In my simulation, 

I used the irrigation map which I made in Chapter 2 to control the irrigated grid and 

used a time series gridded datasets of annual irrigation water withdrawal in China 
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from 1978 to 2008 to control irrigation amount. I also built an irrigation module in the 

community land model to control the irrigation rate and time. For the LCLUC impact, 

two high-resolution National Land-Use/Land-Cover datasets of China (NLCD1980 

and NLCD2000) were reconstructed and used as land surface input to run CLM. 

More details are described in the following subsections. 

4.1.1 Community land model 
The land surface model used in this study is version 4.0 of the Community 

Land Model (CLM4.0, hereafter simply referred to as CLM). In the CLM, land 

surface heterogeneity in a grid cell is represented by a sub-grid hierarchy. The first 

sub-grid hierarchy is the land unit. There are five different land units in the CLM: 

glacier, lake, wetland, urban, and vegetated. The second sub-grid hierarchy is the 

column. Soil and snow state variables can only be changed at the column level. In the 

current default configuration of version 4.0, the urban land unit has five columns, and 

each of the other land units has one column. The third sub-grid hierarchy incorporates 

plant functional type (PFT) and bare ground. There are 16 PFTs in the CLM: 

temperate needleleaf evergreen tree (NET Temperate), boreal needleleaf evergreen 

tree (NET Boreal), boreal needleleaf deciduous tree (NDT Boreal), tropical broadleaf 

evergreen tree (BET Tropical), temperate broadleaf evergreen tree (BET Temperate), 

tropical broadleaf deciduous tree (BDT Tropical), temperate Broadleaf deciduous 

(BDT Temperate), boreal broadleaf deciduous tree (BDT Boreal), temperate 

broadleaf evergreen shrub (BES Temperate), temperate broadleaf deciduous shrub 

(BDS Temperate), boreal broadleaf deciduous shrub (BDS Boreal), C3 arctic grass, 

C3 grass, C4 grass, crop1, and crop2. The same atmospheric forcing is used to force 

all sub-grid units within one grid cell. Biogeophysical and biochemical processes are 
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simulated for each sub-grid landunit, column, and PFT independently. The surface 

variables and fluxes output from the model are obtained by averaging the sub-grid 

quantities weighted by their fractional areas. 

4.1.2 Land surface data 
In order to simulate the impact of land cover change on the local climate over 

China, two high-resolution National Land-Use/Land-Cover datasets of China 

(NLCD1980 and NLCD2000) were used. Both of these were produced by the 

Chinese Academy of Sciences using visual interpretation and digitization of TM 

images at the scale of 1:100,000 (Liu et al. 2005c). These two datasets are reported to 

have high accuracy and have been used by many previous studies (Liu et al. 2002). It 

is reported that the average interpretation accuracy is 92.9% for land cover 

classification and 97.6% for land-cover change detection (Liu et al. 2005c). These 

two maps have the same hierarchical classification system of 6 classes and 25 sub-

classes (Table 4-1). More details about these classes can be found in reference(Liu et 

al. 2005a).  

  Table 4-1 Classification system of National Land-Use/Land-Cover datasets of China 
 

Class Subclass 

Farmland Paddy, Dry farming 

Forest Forest, Shrub, Woods, others 

Grassland Dense grass, Moderate grass, Spare grass 

Man-made Built-

up 

City built-up, Rural settlements, Others 

Water body River, Lake, Reservoir and ponds, Permanent ice and snow, Beach and Shore, 

Bottomland 

Unused Wetland, Sand  Gobi, Salina, Bare Soil, Bare Rock, Others 
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The surface data for running the CLM require percentages of glacier, lake, 

wetland, urban, and each PFT. Because the classification system of NLCD is not 

directly compatible with the surface data of the CLM, I reconstructed the NLCD 

maps to correspond to the CLM surface data as follows. First, farmlands, forests, and 

grasslands of the NLCD maps were combined together as PFTs of the CLM surface 

data. The crop, grass, and tree types were distinguished and the time course of leaf 

area index (LAI) for them were prescribed with the help of the present day PFT 

dataset of the CLM downloaded from the public subversion input data repository at 

http://www.cesm.ucar.edu/models/cesm1.0/. The present day PFT dataset of the CLM 

was produced by Lawrence and Chase (2007). Second, the man-made built-up 

category of the NLCD was assigned to the urban class of the CLM surface data. 

Urban properties such as building height, street width, heat capacity, and thermal 

conductivity were selected from the present day CLM urban dataset produced by 

(Jackson et al. 2010). Third, the river, lake, reservoir, and ponds categories of the 

NLCD were assigned to the lake class of the CLM surface data. Fourth, the 

permanent ice and snow categories of the NLCD were assigned to the glacier class of 

the CLM surface data. Fifth, the wetland, bottomland, beach, and shore categories of 

the NLCD were assigned to the wetland class of the CLM surface data. Finally, the 

sand, Gobi, Salina, bare soil, and bare rock categories of the NLCD were assigned to 

the bare ground class of the CLM surface data. Subsequently, the percentages of lake, 

wetland, glacier, urban, and each PFT are calculated by aggregating the redefined 

NLCD 1-km grid to a CLM 0.5° grid. The percentage of lake, wetland, glacier, and 

urban areas are calculated with respect to the entire grid cell. The percentage of each 

http://www.cesm.ucar.edu/models/cesm1.0/
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PFT is with regard to the vegetated portion of the grid cell and the sum of the PFTs is 

100%. The above steps were carried out for both the NLCD1980 and the NLCD2000. 

The land surface datasets produced are referred to as CLM_NLCD1980 and 

CLM_NLCD2000, hereafter. 

4.1.3 Irrigation map 
The irrigation map of China from Chapter 2 was used to indicate where 

irrigation happened in my simulation. The new irrigation map was produced by 

allocating the statistics of irrigation areas from geopolitical units to individual pixels 

via an irrigation spatial allocation model. In the  irrigation spatial allocation model, 

three irrigation potential indices were developed based on an assumption that the 

productivity of crops remains high and stable for a long time series in the irrigated 

area compared with rainfed crops in a given land unit. A land unit refers to land with 

certain characteristics such as productivity, irrigation requirements, and climate 

conditions. Then, an automated classification routine was used, in which the pixel 

with the highest irrigation potential within the crop grids is identified as an irrigated 

pixel. The irrigation percentage in the irrigated pixel equals the crop percentage of 

this pixel, obtained from China’s NLCD. The cumulative area covered by irrigated 

pixels was then calculated. This cumulative area was compared with the target 

number of hectares provided by the census of irrigated area given in the statistics 

yearbook. If the total area of the selected pixels was less than the target area, then the 

pixel with the next highest irrigation potential was selected. These steps were 

repeated until the target area for the province was exceeded.  
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4.1.4 Irrigation water withdrawals in the past 
There are two types of data sources for irrigation water withdrawal in China. 

One source is the estimates obtained from modeling studies (Doll and Siebert 2002; 

Thomas 2008; Yang et al. 2010); the other source is the official statistical data 

collected by the Ministry of Water Resources of China. Irrigation modeling can 

simulate the irrigation requirement for optimal crop growth; however, the estimated 

irrigation amount may drift away from the actual amount owing to two reasons. First, 

water crises are more serious in the current era than at any other time because of the 

rapid population increase, continuous economic growth, and extended drought 

disasters. Farmers are more likely to use supplemental rather than full irrigation in 

order to increase grain yield under great water stress. In other words, the irrigation 

requirement is more likely to be higher than the real irrigation water quota. Second, 

agricultural water is consumed not only by field crops but is also wasted in the 

process of delivery from water source to the fields. In many countries, especially in 

poor developing countries, the inadequately maintained irrigation infrastructures, 

backward water management systems, and deficient agriculture investments 

contribute to lower the water use efficiency. As a result, more water is consumed than 

the actual water required for growing healthy crops. Conversely, official statistical 

data of agricultural water withdrawal might be more relevant to the actual water 

consumption in the agriculture sector. However, agricultural water withdrawal is 

always reported on the basis of geopolitical units or river basins, without detailed 

distribution information.  

 In this study, I developed a time series gridded dataset of annual irrigation 

water withdrawal in China from 1978 to 2008 by using the historical agricultural 



 

85 
 

water withdrawal data and the irrigation maps of China around 2000 and used this 

dataset to control the irrigation amount in irrigation simulations. 

Generally, my method is a serial of downscaling processes: downscaling 

national agricultural water withdrawal (AWW) to provincial AWW, downscaling 

provincial AWW to water consumption of irrigated dryland and paddy filed in a 

given province, and calculating the AWW per square kilometer (km2) of irrigated 

dryland and irrigated paddy field in this province.  Finally, the AWW of a given pixel 

equals to AWW of irrigated dryland within this pixel plus AWW of irrigated paddy 

field within this pixel.  Besides the previous process, a conversion from agricultural 

water withdrawal to irrigation water withdrawal is also needed. More details are 

described below. 

First, national agricultural water withdrawal data from 1997 to 2008 were 

taken from the China Statistical Yearbook of 1998 to 2009 and those of 1978, 1980, 

1985, 1990, 1993, and 1995 were from reference (Wang et al. 2010). The missing 

national agricultural water withdrawal data were filled by applying linear 

interpolation with the following equation: 

 ( )p o
j j o o

p o

EIA EIA
EIA EIA

AWW AWW
AWW AWW

 −
×  −

− +


=
 

Equation 4-1 

where  AWWj is the calculated agricultural water withdrawal (m3) of China in 

year j; EIAj  is the effective irrigated area (Kha) of China in year j;  AWWp and 

AWWo  are the reported agricultural water withdrawal of China in years p and o, 

respectively; and EIAp and EIAo are the effective irrigated area of China in years p 
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and o, respectively. p and o are the nearest year with available data before and after 

year j, respectively. EIA refers to land “where there are water sources or complete 

sets of irrigation facilities to lift and move adequate amounts of water for irrigation 

purposes under normal conditions,” and irrigated area statistics are an indication of 

“drought resistance capacity” (China Statistical Yearbook 2008). In China, irrigated 

areas are reported on the basis of census data. Conventional local-level Bureau of 

Statistics reports include irrigation statistics at the village level, which is then 

aggregated to higher levels such as county, city, province, and national levels. The 

National Bureau of Statistics regularly releases data on national and provincial 

irrigated areas in its Statistics Yearbook.  

Second, the provincial agricultural water withdrawal after 2001 is reported in 

China Statistical Yearbook and the provincial agricultural water withdrawal before 

2002 was derived by downscaling the nation AWW via the following formulas: 

 
,2002 2008 ,

,

,2002 2008 ,
1

( )

( ( ) )

i i j
i j j i j n

i i j
i

mean GIQ EIA
AWW AWW R AWW

mean GIQ EIA

−

−
=

×
= × = ×

×∑
 

Equation 4-2 

Where ,i jAWW  and ,i jEIA  are agricultural water withdrawal (m3) and effective 

irrigated area (k ha) of province i in year j, respectively. jAWW  is the agricultural 

water withdrawal of China (m3) in year j (data are taken from the National Statistical 

Yearbook for most years or calculated from the first step in the missing years). Ri is 

the ratio of the AWW of province i to the national AWW; it is decided by two 

factors: the Gross Irrigation Quota (GIQ) and EIA. GIQ is defined as the ratio of the 

agricultural irrigation water quantity to the effective irrigation area (Wu et al. 2010). 
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The annual provincial agricultural water withdrawal information since 2002 has been 

reported in the China Statistical Yearbook. The China Statistical Yearbook also lists 

the effective irrigation area for each province. Therefore, I can calculate the GIQ for 

each province i from 2002 to 2008, and further calculate the mean GIQ of each 

province i during 2002 to 2008 (denoted as ,2002 2008( )imean GIQ − , shown in Table 4-2). 

Variable i goes from 1 to n, where n is the number of provinces, excluding Hong 

Kong, Macao, and Taiwan due to lack of available EIA for them in the China 

Statistics Yearbook. It should be noted that n changed to 31 after 1997 when 

Chongqing separated from the Sichuan province, and it was 30 during 1987–1996 and 

29 during 1978–1986 because no data for that period was available from Hainan 

province. j covers the period from 1978 to 2008.  

Table 4-2 The mean GIQ of each province during 2002 to 2008 

Province mean GIQ (mm) Province mean GIQ (mm) Province mean GIQ (mm) 

Beijing 625 Anhui 363 Chongqing 317 

Tianjin 351 Fujian 1089 Sichuan 479 

Hebei 335 Jiangxi 724 Guizhou 696 

Shanxi 294 Shandong 338 Yunnan 730 

Inner Mongolia 544 Henan 257 Tibet 1726 

Liaoning 578 Hubei 652 Shaanxi 412 

Jilin 442 Hunan 753 Gansu 919 

Heilongjiang 776 Guangdong 1686 Qinghai 1117 

Shanghai 687 Guangxi 1402 Ningxia 1615 

Jiangsu 703 Hainan 1965 Xinjiang 1436 

Zhejiang 755 
    

Third, I calculated the total irrigation water withdrawal of each province via 

Equation 4-3. 

 , ,i j i i jr Arr WWI = ×
 

Equation 4-3 
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where ,i jIrr  is the irrigation water withdrawal(m3) of province i in year j. ir  is the ratio 
of irrigation water withdrawal of farmland to agricultural water withdrawal in 

province i. The ir  is colleted from different sources and shown in Table 4-3. 

Table 4-3 The ratio of irrigation water withdrawal to agricultural water withdrawal of each province 

Num Province Ratio Source 

1 Beijing 0.79 (Song et al. 2010) 

2 Tianjin 0.99 Tianjin Water Resources Bulletin 2001 

3 Hebei 0.96 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

4 Shanxi 0.96 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

5 
Inner 

Mongolia 
0.95 

Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

6 Liaoning 0.98 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

7 Jilin 0.95 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

8 
Heilongjia

ng 
0.92 

Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

9 Shanghai 0.92 (Wang et al. 2010) 

10 Jiangsu 0.94 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

11 Zhejiang 0.92 (Wang et al. 2010) 

12 Anhui 0.95 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

13 Fujian 0.92 (Wang et al. 2010) 

14 Jiangxi 0.92 (Wang et al. 2010) 

15 Shandong 0.95 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

16 Henan 0.93 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

17 Hubei 0.92 (Wang et al. 2010) 

18 Hunan 0.97 Hunan Water Resources Bulletin 2007 

19 
Guangdon

g 
0.83 

China Water Resources 

(http://www.cws.net.cn/cwsnet/gazette/zhujiang/2004/4.html) 
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20 Guangxi 0.94 

Guangxi Water Resources 

(http://www.gxwater.gov.cn/szbg.asp?blx=xnr&nd=1998&bt=%D3%C3%

CB%AE%C1%BF) 

21 Hainan 0.77 Hainan Water Resources Bulletin 2008 

22 
Chongqin

g 
0.92 Chongqin Water Resources Bulletin 2001 

23 Sichuan 0.96 (He and Lu 2007) 

24 Guizhou 0.95 Guizhou Water Resources Bulletin 2001 

25 Yunnan 0.97 Yunnan Water Resources Bulletin 2000 

26 Tibet 0.61 (Wa 2009) 

27 Shaanxi 0.92 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

28 Gansu 0.95 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

29 Qinghai 0.83 Qinghai Water Resources Bulletin 2007 

30 Ningxia 0.92 
Thematic Database for Human-Earth System available at 

http://www.data.ac.cn/ 

31 Xinjiang 0.77 Xinjiang Water Resources Bulletin 2001 

 

Fourth, I calculated the irrigation water withdrawal per square kilometer (km2) 

of irrigated dryland (Irr_drylandi,j, unit: m) and irrigated paddy filed (Irr_paddyi,j, 

unit: m) in a given province and a given year via Equation 4-4 and Equation 4-5.  

,
, ,
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NIR paddy addy NIR drylandS p S dryland× + ×

×=
 

Equation 4-4 
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NIR drylandIrr dryland Irr
NIR paddy addy NIR drylanS p S drylandd× + ×

×=
 

Equation 4-5 

where S_Paddyi,j and S_Drylandi,j  are the area (km2) of irrigated paddy field 

and irrigated dryland of province i in year j, respectively. Since it is impossible to 

obtain the time series values of S_Paddyi,j and S_Drylandi,j, the values of S_Paddyi,j 

and S_Drylandi,j in 2000 are used in each year. The values of S_Paddyi,j and 
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S_Drylandi,j  in 2000 can be derived from the irrigation map of China for 2000. 

NIR_paddyi,j and NIR_drylandi,j are the estimated net irrigation requirements (mm) of 

paddy filed and dryland in province i, which are derived by referencing to (Liu et al. 

2009) and shown in Table 4-4. Liu et al. (2009) divided China into 216 subregions 

based on differences in climate conditions and water sources, chose a typical 

meteorological station for each subregion, and collected the daily meteorological 

observations including precipitation, mean air temperature, maximum air 

temperature, minimum air temperature, wind speed, relative humidity, and sunshine 

hours from 1970 to 2000. They then calculated the net irrigation requirement by 

subtracting effective precipitation from the irrigation requirement during crop 

growing season in each subregion. The crop irrigation requirement was calculated 

using the Penman-Monteith method. They reported the average net irrigation 

requirements (NIR) of the main crops (including corn, wheat, rice etc.) in different 

areas of China during 1970–2000. Because wheat and corn are planted in dryland and 

rice is planted is paddy field, in this study, I summed up the NIR of wheat (spring 

wheat, winter wheat) and corn (spring corn, summer corn) estimated by Liu et al. 

(2009)   to get the NIR of dryland ( NIR_dryland), and summed up the NIR of rice 

(including early rice, middle rice and late rice) estimated by Liu et al. (2009)  to get 

the NIR of paddy field for each province. 

Table 4-4 Mean net irrigation requirements for dryland and paddy field in different provinces of China 
from 1970-2000 

Province NIR_drylandi NIR_paddy fieldi Province NIR_drylandi NIR_paddy fieldi 

Beijing 375 475 Hubei 100 460 

Tianjin 375 475 Hunan 100 460 

Hebei 375 475 Guangdong 100 460 
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Shanxi 730 550 Guangxi 100 460 

Inner Mongolia 755 675 Hainan 100 460 

Liaoning 115 265 Chongqing 225 150 

Jilin 115 265 Sichuan 285 150 

Heilongjiang 115 265 Guizhou 190 300 

Shanghai 100 285 Yunnan 190 300 

Jiangsu 250 285 Tibet 350 - 

Zhejiang 100 750 Shaanxi 445 550 

Anhui 250 750 Gansu 730 550 

Fujian 100 630 Qinghai 350 - 

Jiangxi 100 460 Ningxia 755 675 

Shandong 375 475 Xinjiang 785 750 

Henan 375 475 

    

 Finally, the irrigation water withdrawal of each irrigated pixel can be 

calculated via the following equation. 

, , , , ,
6[ _ _ _ ] 0_ 1k j i j k j i j k jIrr Irr paddy Perc paddy Irr dryland Perc Dryland= × + × ×  Equation 4- 6 

Prec_Paddyk,j and Perc_Drylandk,j  are the irrigation percentages of the paddy 

fields and dryland at pixel k in year j. The pixel size is 1 km2. Again, because it is 

impossible to obtain the time series values of Prec_Paddyk,j and Perc_Drylandk,j  the 

values of Prec_Paddyk,j and Perc_Drylandk,j  in 2000 derived from the irrigation map 

of China for 2000 are used in each year.  Irrk,j is the total irrigation withdrawal(m3) at 

pixel k in year j. 

4.1.5 Irrigation water withdrawals in the future 
To estimate the irrigation water withdrawals in the future, I first estimated the 

ratio of the net irrigation requirement (IR) in the past to the net IR in the future, and 

then multiplied the ratio by mean irrigation water withdrawal in the past estimated in 

section 4.1.4.  
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The net irrigation requirement per unit during the growing season was 

computed as the difference between crop-specific potential evapotranspiration (PET) 

and effective precipitation (Peff) (FAO 1992). PET is calculated using the Hargreaves 

and Samani function (Hargreaves and Samani 1982).  

 ( ) 0.0135 17.8 /PET T RSDS λ= × + ×   Equation 4-7 

 effNIR Kc PET P= × −  if Kc×PET > Peff Equation 4- 8 

  0NIR =  otherwise Equation 4- 9 

 (4.17 0.2 ) / 4.17eff r rP P P= −  For  Pr < 8.3 mm/d
 

Equation 4- 10 

  For  Pr  ≥ 8.3 mm/d Equation 4- 11 

Where PET is potential evapotranspiration (mm/d), T is air temperature (ºC) , 

λ is latent heat of vaporization (2.45 MJ/kg), RSDS is downwelling shortwave 

radiation (MJ/[m2•d]), Pr is the daily total precipitation (mm/d), Peff is the fraction of 

Pr available to the crop and called effective precipitation (mm/d), and Kc is crop 

coefficient (dimensionless), which is a function of the crop type and the day of the 

growing season (Table 4-5). Three main crops (wheat, corn, and rice) were selected 

for estimating NIRs in China. Paddy rice includes early, middle, and late rice, grown 

mainly in the Yangtze River Valley, southern China, and on the Yunnan-Guizhou 

Plateau;wheat includes spring and winter wheat, planted mainly on the North China 

Plain; and corn includes spring and summer corn, planted mainly in the northeastern, 

northern, and southwestern provinces. According to the China Statistical Yearbook 

2009, the total sown area was 156.3 million ha, and the sown area of grain crops was 

106.8 million ha in 2008. The sown areas of rice, wheat, and corn took up 77.5% of 

the sown area of grain crops. Rice, wheat, and corn outputs accounted for 36.2%, 

21.3%, and 31.4% of the total output of grain (528.7 million tons), respectively. The 

cropping systems, planting dates, and harvest dates for each of these crops in each 

4.17 0.1eff rP P= +
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province have been reported online by the Chinese government since 2000 

(http://www.zzys.gov.cn/; accessed September 12, 2011). The planting and harvest 

dates of each crop during the past decade are quite stable. The average planting dates 

and harvest dates of rice, wheat, and corn from 2000 to 2008 were calculated for each 

province and are shown in Table 4-6. 

Table 4-5 Length of crop stages as a fraction of the whole growing period for initial (L_ini), crop 
development (L_dev), mid-season (L_mid), and late season (L_late) and crop coefficients for initial 
period (kc_ini), mid-season (kc_mid) and end of season (kc_end) (Siebert and Döll 2008) 

crop Length of crop development stage Crop coefficients 

 L_ini L_dev L_mid L_late Kc_ini Kc_mid Kc_ini 

wheat 0.15 0.25 0.40 0.20 0.40 1.15 0.30 

Crop 0.17 0.28 0.33 0.22 0.30 1.20 0.40 

Rice 0.17 0.18 0.44 0.21 1.05 1.20 0.75 

 

Table 4-6  The growing season of main crops in each province of China 

 Growing season 
Area Wheat Corn Early rice Middle rice Late rice 

Beijing Sep 21-next Jun 
10  

Jun 11 - Sep 
10 

 Apr 11 - Sep 
10 

 

Tianjin Sep 21-next Jun 
11 

Jun 11 - Sep 
10 

 Apr 11 - Sep 
10 

 

Hebei Sep 21-next Jun 
12 

Jun 11 - Sep 
10 

 Apr 11 - Sep 
10 

 

Shanxi Sep 21 - next Jun 
10  

Apr 21 - Aug 
20 

   

Inner 
Mongolia 

 Mar 21 - Aug 
31 

   

Liaoning  Apr 11 - Sep 
10 

 Apr 11 - Sep 
10 

 

Jilin  Apr 11 - Sep 
11 

 Apr 11 - Sep 
10 

 

Heilongjiang  Apr 11 - Sep 
12 

 Apr 11 - Sep 
10 

 

Shanghai    Apr 21 - Sep 
20 

 

Jiangsu Oct 1 - next May 
10 

  Apr 11 - Sep 
20 

 

Zhejiang   Mar 21 - Jul 
10 

May 21 - Sep 
30 

Jun 11 - Oct 
10 

Anhui Oct 21 - next May 
10 

 Apr 1- Jul 10 Apr 11 - Aug 
31 

Jun 11 - Oct 
10 

Fujian   Mar 1 - Jul 
10 

Apr 11 - Sep 
10 

Jun 11 - Oct 
20 

http://www.zzys.gov.cn/
http://www.zzys.gov.cn/
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Jiangxi  Feb 21 - Jun 
20 

Mar 21 - Jul 
10 

 Jun 11 - Oct 
10 

Shandong Oct 1 - next May 
10 

Jun 11 - Sep 
10 

 Apr 21 - Sep 
10 

 

Henan Oct 1 - next May 
10 

Jun 1 - Aug 31  Apr 11 - Sep 
10 

 

Hubei  Mar 21 - Jul 
10 

 Apr 11 - Aug 
31 

 

Hunan  Feb 21 - Jun 
20 

Mar 21 - Jul 
10 

 Jun 1 - Sep 
30 

Guangdong   Feb 11 - Jul 
10 

 Jul 1 -Oct 20 

Guangxi   Mar 1 - Jul 
10 

 Jun 21 - Oct 
20 

Hainan   Jan 1 - May 
20 

 Jun 11 - Oct 
10 

Chongqing Oct 21 - next Apr  
10 

  Mar 11 - Aug 
21 

 

Sichuan Oct 21 - next Apr 
20 

May 21 - Aug 
10 

 Mar 11 - Aug 
20 

 

Guizhou      
Yunnan  May 1 - Aug 

10 
 Mar 21 - Aug 

31 
 

Tibet Oct 11 - next Jul 
10 

    

Shaanxi Sep 11 - next May 
20 

Jun 1 - Sep 10  Apr 1 - Sep 10  

Gansu Sep 11 - next Jun 
10  

Apr 21 - Aug 
10 

   

Qinghai Mar 21 - next Aug 
10 

    

Ningxia  Apr 1 - Aug 
20 

 Apr 11 - Sep 
10 

 

Xinjiang Sep 21 - next Jun 
10 

Jun 11 - Sep 
10 

   

 

The NIR in the past was calculated during 1961-2000, and NIR in the future 

was calculated during two future time periods: 2046-2065 and 2081-2100. Daily 

precipitation (Pr), downwelling shortwave radiation (RSDS), and mean temperature 

(T) during 1961-2000 are from the Climate of the 20th Century (20C3m) Experiment 

of IPCC 4. The Pr, RSDS, and T during 2 future time periods (2046-2065 and 2081-

2100) are from 3 IPCC 4 scenarios (B1, A1B, and A2). Scenario A1 assumes that 

economic growth occurs rapidly in the future with the introduction of new and more 

efficient technologies and that the global population will peak in the middle of the 
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21st century. A1 is divided into 3 groups (A1FI, A1T, and A1B) based on the 

alternative directions of technological change. A1FI refers to fossil intensive, A1T 

refers to non-fossil energy resources, and A1B is a balance of all sources. Scenario 

B1 assumes a convergent world. Similar to A1, it assumes that the global population 

will peak in the middle of the 21st century but that the economic structure changes 

rapidly to a service and information economy. Scenario A2 describes a very 

heterogeneous world. Under this scenario, population growth is high, and economic 

development and technological change are slow (Pachauri and Reisinger 2007). All 

data were downloaded from the WCRP CMIP3 multi-model database 

(https://esg.llnl.gov:8443/home/publicHomePage.do). A total of 24 models are 

included in IPCC 4. This study uses the results from 8 of those models (Table 4-7). 

All 8 models provide daily data over the same time periods and are interpolated to 

0.5º latitude/longitude because the data from different models have different spatial 

resolutions.  

Table 4-7 Climate change models used in this study 

Num Model name Short name Country Resolution (degree) 

1 cccma_cgcm3_1 CGMR Canada 3.75×3.71 

2 cnrm_cm3 CNCM3 France 2.81×2.79 

3 csiro_mk3_0 CSMK30 Australia 1.88×1.87 

4 csiro_mk3_5 CSMK35 Australia 1.88×1.87 

5 gfdl_cm2_0 GFCM20 USA 2.50×2.00 

6 gfdl_cm2_1 GFCM21 USA 2.50×2.00 

7   miroc3_2_medres   MIMR Japan 2.81×2.79 

8 mri_cgcm2_3_2a MRCGCM Japan 2.81×2.79 

 

https://esg.llnl.gov:8443/home/publicHomePage.do
https://esg.llnl.gov:8443/home/publicHomePage.do
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4.1.6 Irrigation modeling 
I used the irrigation map, described above, to prescribe the locations and used 

the irrigation water withdrawal maps to decide annual amounts of irrigation in the 

model. I assumed that irrigation occurs during April to September and from 6:00 am 

to 6:00 pm. Then, when April began, the irrigation crop column is irrigated at the 

following rate: 

 ,

183 12 60
ann i

i s
W

R T= ×
× ×  

Equation 4-12 

Where Ri is  the irrigation rate over the crop soil column in grid cell i (mm/s), 

Wann,i is the annual irrigation amount in grid cell i from irrigation water data set 

(mm/year), Ts is the simulated time step in CLM (3 hours in default configuration of 

CLM). The total days from April to September are 183; the total irrigation hours in 

each day are 12; and there are 60 total minutes in each hour. Irrigation only happened 

over irrigated crop soil column. This means I didn’t irrigate a grid cell without crop or 

a grid with crop but without irrigation. Irrigation water was used by two different 

ways: one applied water above a canopy to simulate spray irrigation (IRRc), and 

another one applied water directly on the ground to simulate flood irrigation (IRRg). 

4.1.7 Future forcing data 
Forcing data in offline CLM requires incident solar, precipitation, surface 

pressure, temperature, wind speed, and specific humidity. Among 8 models used in 

estimating irrigation water requirement in the future, cnrm_cm_3 has the most 3-

hourly atmosphere data including incident solar, precipitation, surface pressure and 

temperature. Thus, the atmosphere data from cnrm_cm_3 is finally used in this study. 

However, cnrm_cm_3 just has daily data for wind speed and specific humidity. 
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Therefore, the time resolution of the wind speed and specific humidity are daily rather 

than 3-hourly in my future forcing data.  All data mentioned above covers two years: 

2050 and 2100. 

The aerosol deposition is also required for offline CLM. They include 

hydrophilic BC wet deposition, hydrophilic BC dry deposition, hydrophobic BC dry 

deposition, DSTX01 dry deposition flux at bottom, DSTX01 wet deposition flux at 

bottom, DSTX02 dry deposition flux at bottom, DSTX02 wet deposition flux at 

bottom, DSTX03 dry deposition flux at bottom, DSTX03 wet deposition flux at 

bottom, DSTX04 dry deposition flux at bottom, DSTX04 wet deposition flux at 

bottom, hydrophilic OC wet deposition, hydrophilic OC dry deposition, and 

hydrophobic OC dry deposition. In this study, the aerosol depositions in 2050 and 

2100 were extracted from Representative Concentration Pathway (RCP4.5), which 

can be accessed from the public subversion input data repository at 

http://www.cesm.ucar.edu/models/cesm1.0/. 

In terms of the IPCC4.0 report (available at 

http://www.ipcc.ch/ipccreports/tar/wg1/531.htm), the CO2 abundances of   ISAM 

model under Scenario B1, A1B and A2 were defined as 488 ppm, 532 ppm, and 532 

ppm in 2050, and 549 ppm, 717 ppm and 856 ppm in 2100, respectively. The 

CO2 abundances of Bern-CC model under Scenario B1, A1B and A2 were defined as 

482 ppm, 522 ppm, and 522 ppm in 2050, and 540 ppm, 703 ppm, and 863 ppm, 

respectively. In this study, referring to CO2 abundances of ISAM model and Bern-CC 

model, the CO2 abundances under Scenario B1, A1B and A2 were defined as 

http://www.cesm.ucar.edu/models/cesm1.0/
http://www.ipcc.ch/ipccreports/tar/wg1/531.htm
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485ppm, 527ppm, and 527ppm in 2050, and 544.5, 846, and 710 ppm in 2100, 

respectively. 

4.1.8 Experiments 
28 experiments were conducted in this study to evaluate the irrigation impact. 

Those experiments can be divided into two groups in terms of the different aims of 

the experiments. The experiments in the first group try to answer the following 

questions: 1) what are the irrigation impacts over China in the past? 2) Do different 

irrigation patterns (spay irrigation and flood irrigation) have different impacts? 3) Is 

the impact of irrigation is comparable to that of LCLUC on near surface climate over 

China in the past?   The experiments in the second group try to explore the irrigation 

impacts over China in the future. Meanwhile, group two tries to explore the LCLUC 

impact in the future by assuming that the LCLUC occurred during 1980 to 2000 will 

happen again in the future, and then compare the irrigation impact and LCLUC 

impact to see if their relationship will be  comparable or incomparable in the future. 

Overall, the experiments in the first group focus on contemporary simulations, while 

the experiments in the second group focus on the future simulations. The land cover 

status, forcing data and irrigation information about those experiments can be found 

in Table 4-8. Their specific details are explained below. 

The first group (Group I) includes four experiments: LCLUC_1980, 

LCLUC_2000, IRRc_2000 and IRRg_2000. LCLUC_1980 and LCLUC_2000 were 

used as control tests, while IRRc_2000 and IRRg_2000 were performed to investigate 

irrigation impact on local climate over China. The comparisons between 

LCLUC_1980 and LCLUC_2000 (named as Dif_LCLUC thereafter) are used to 
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analyze the land cover land use change (LCLUC) impact on local climate over China 

in the past. The comparisons between IRRc_2000 and IRRg_2000 are used to analyze 

the differences of irrigation impact caused by different irrigation patterns.  The 

comparisons between LCLUC_2000 and IRRc_2000/ IRRg_2000 are used to analyze 

the irrigation impact on local climate over China in the past.  

The Second group (Group II) includes 6 subgroups and each subgroup has 4 

experiments. The 4 experiments in each subgroup are quite similar, but for different 

future times (2050 or 2100) and for different scenarios (A1B, A2 or B1).  Thus, I take 

the experiments in first subgroup (Group II-1) as examples to explain my experiment 

design. In Group II-1, there are four experiments: two irrigation simulations 

(IRRc_B1_2050 and IRRg_B1_2050), and two LCLUC simulations 

(LCLUC1980_B1_2050 and LCLUC2000_B1_2050). The comparisons between 

LCLUC1980_B1_2050 and LCLUC2000_B1_2050 are used to analyze LCLUC 

impact on local climate over China around 2050 under scenario B1. The comparisons 

between IRRc_B1_2050 and IRRg_B1_2050 are used to analyze the difference of 

irrigation impact caused by different irrigation patterns around 2050 under scenario 

B1. The comparisons between LCLUC2000_B1_2050 and IRRc_B1_2050/ 

IRRg_B1_2050 are used to analyze the irrigation impact on local climate over China 

around 2050 under scenario B1. 
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Table 4-8 Experiments designed for this study 

Group Experiment Spin-up  

Land surface status 

Irrigation simulation Climate forcing 

I 

LCLUC_1980 1980 No Qian 

LCLUC_2000 2000 No Qian 

IRRc_2000 2000 Spray irrigation Qian 

IRRg_2000 2000 Flood irrigation Qian 

II-1 

LCLUC1980_ B1_2050 1980 No Scenario B1 2050 

LCLUC2000_ B1_2050 2000 No Scenario B1 2050 

IRRc_B1_2050 2000 Spray irrigation Scenario B1 2050 

IRRg_B1_2050 2000 Flood irrigation Scenario B1 2050 

II-2 

LCLUC1980_A1B_2050 1980 No Scenario A1B 2050 

LCLUC2000_A1B_2050 2000 No Scenario A1B 2050 

IRRc_A1B_2050 2000 Spray irrigation Scenario A1B 2050 

IRRg_ A1B_2050 2000 Flood irrigation Scenario A1B 2050 

II-3 

LCLUC1980_A2_2050 1980 No Scenario A2 2050 

LCLUC2000_A2_2050 2000 No Scenario A2 2050 

IRRc_A2_2050 2000 Spray irrigation Scenario A2 2050 

IRRg_ A2_2050 2000 Flood irrigation Scenario A2 2050 

II-4 

LCLUC1980_ B1_2100 1980 No Scenario B1 2100 

LCLUC2000_ B1_2100 2000 No Scenario B1 2100 

IRRc_B1_2100 2000 Spray irrigation Scenario B1 2100 

IRRg_B1_2100 2000 Flood irrigation Scenario B1 2100 

II-5 

LCLUC1980_A1B_2100 1980 No Scenario A1B 2100 

LCLUC2000_A1B_2100 2000 No Scenario A1B 2100 

IRRc_A1B_2100 2000 Spray irrigation Scenario A1B 2100 

IRRg_ A1B_2100 2000 Flood irrigation Scenario A1B 2100 

II-6 

LCLUC1980_A2_2100 1980 No Scenario A2 2100 

LCLUC2000_A2_2100 2000 No Scenario A2 2100 

IRRc_A2_2100 2000 Spray irrigation Scenario A2 2100 

IRRg_ A2_2100 2000 Flood irrigation Scenario A2 2100 

All of the experiments run the CLM at approximately 0.5° resolution (0.47° × 

0.63°) and in offline mode but with different forcing data. In the first group, all 
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experiments were run with the standard forcing provided by the model from 1978 to 

2004. The standard forcing is a 57-year (1948–2004) dataset produced by Qian et al. 

(2006) and has a 3-hourly temporal resolution. The other experiments from the 

second seventh groups were run with the future forcing data mentioned above  in 

subsection 4.1.7. Before carrying out the experiments, the initial conditions for each 

experiment were taken from a 285-year spin-up with CLM Carbon-Nitrogen Model to 

ensure a near-equilibrium initial state.  Except the LCLUC_1980 in which initial data 

were derived by spinning up the CLM Carbon-Nitrogen Model with land surface data 

from 1980, all other experiments’ initial data were derived by spinning up the CLM 

Carbon-Nitrogen Model with land surface data from 2000. 

4.2 Results and discussions 
4.2.1 Irrigation water 

In this study, I developed a time series gridded datasets of annual irrigation 

water withdrawal in China from 1978 to 2008. Figure 4-2shows the mean irrigation 

water withdrawal during 1978 to 2008. Table 4-9, Table 4-10 and Table 4-11 show 

the provincial AWW during 1978 to 2008. In irrigation simulations IRRc_2000 and 

IRRg_2000,  the gridded datasets of annual irrigation water withdrawal in China just 

from 1978 to 2004 were used because the standard forcing of CLM produced by Qian 

et al. (2006) is ended in 2004. Table 4-12 reports the irrigation amounts used to force 

irrigation simulations. 
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Table 4-9 Agricultural water withdrawal during 1978 to 1987 

 

Agricultural water withdrawal (108m3) 

 Provinces 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 

Beijing 27.7 28.3 26.2 26.0 25.5 26.2 26.0 25.3 25.1 25.2 

Tianjin 16.9 17.8 16.4 16.2 15.8 15.6 15.4 14.7 14.2 14.3 

Hebei 159.0 163.3 149.7 144.9 143.6 146.1 145.8 143.2 141.9 144.1 

Shanxi 41.6 43.8 40.5 39.7 38.9 39.5 39.4 38.0 36.9 37.8 

Inner Mongolia 46.7 85.4 74.1 68.8 67.2 67.7 64.8 62.8 65.2 67.4 

Liaoning 84.3 61.7 54.2 50.6 50.3 47.7 48.8 50.1 50.3 53.0 

Jilin 50.3 33.5 39.9 40.1 39.0 38.6 38.2 36.8 37.8 39.7 

Heilongjiang 64.9 62.3 64.2 66.1 62.9 60.3 58.7 63.1 66.6 71.0 

Shanghai 31.6 31.9 29.6 29.1 28.7 29.0 28.5 27.5 26.8 26.8 

Jiangsu 295.4 314.5 296.1 296.2 294.2 299.7 307.0 301.8 296.4 295.1 

Zhejiang 147.3 152.4 142.1 140.2 138.7 140.4 140.2 138.1 134.7 134.8 

Anhui 112.8 121.4 109.2 105.9 101.1 98.6 95.2 91.5 90.5 93.4 

Fujian 121.8 127.1 118.4 111.0 106.5 108.8 106.3 102.6 118.6 119.8 

Jiangxi 154.0 159.2 149.2 147.5 138.5 159.4 159.3 157.0 156.5 157.4 

Shandong 193.4 197.7 183.8 182.7 182.4 187.0 186.9 184.7 183.1 180.7 

Henan 124.0 124.1 112.1 106.1 101.0 100.6 102.3 98.1 98.4 99.7 

Hubei 199.0 203.8 188.7 188.5 186.2 185.4 182.9 178.9 175.0 172.0 

Hunan 250.5 244.8 224.5 221.6 215.0 254.7 253.8 249.3 248.7 239.5 

Guangdong 467.6 481.6 438.5 426.5 415.7 420.3 405.4 391.1 384.4 373.2 

Guangxi 267.3 272.1 247.9 241.6 237.3 240.0 235.5 226.2 225.6 229.9 

Hainan - - - - - - - - - - 

Chongqing - - - - - - - - - - 

Sichuan 167.8 176.0 166.4 165.1 163.4 166.1 160.9 148.5 145.1 146.1 

Guizhou 44.9 43.4 39.2 38.2 36.7 38.4 35.1 39.9 44.1 44.7 

Yunnan 85.3 88.2 82.3 81.8 81.2 85.3 85.2 84.3 84.1 84.8 

Tibet 35.2 35.0 31.6 30.7 28.6 25.5 23.4 27.5 25.0 26.7 

Shaanxi 64.8 67.7 63.5 62.8 61.9 62.3 59.0 58.1 61.1 61.9 

Gansu 101.6 103.3 96.8 95.1 93.7 94.8 94.6 91.4 90.4 91.5 

Qinghai 22.2 22.8 22.0 21.7 21.3 21.4 21.5 21.4 21.8 22.0 

Ningxia 48.7 50.2 46.3 44.9 45.2 46.0 46.2 46.1 47.3 48.8 

Xinjiang 485.2 497.1 462.6 461.9 451.4 461.6 460.8 447.6 463.4 469.7 
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Table 4-10 Agricultural water withdrawal during 1988 to 1997 

 Agricultural water withdrawal (108m3) 

Provinces 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 

Beijing 25.3 25.3 24.9 23.1 22.6 23.3 22.9 23.9 23.8 23.3 

Tianjin 14.4 14.4 14.4 13.8 13.8 14.4 14.5 14.7 14.5 14.4 

Hebei 145.4 147.8 149.4 146.0 148.1 155.9 157.6 160.4 167.7 168.5 

Shanxi 38.6 39.3 39.5 38.4 38.9 40.9 41.4 41.9 41.8 36.2 

Inner 

Mongolia 
70.2 75.2 80.8 99.4 104.6 112.8 113.3 114.5 118.6 

124.8 

Liaoning 52.7 52.6 72.7 71.4 74.7 80.0 81.2 82.4 83.6 85.9 

Jilin 40.9 44.3 46.3 46.3 45.8 47.5 47.7 47.4 48.7 55.4 

Heilongjiang 68.6 72.3 99.3 98.3 101.7 106.8 93.5 100.6 122.1 145.1 

Shanghai 26.6 26.4 26.1 24.8 24.5 24.3 23.7 23.4 23.1 22.5 

Jiangsu 293.9 297.5 331.3 306.9 307.3 318.1 317.1 319.3 317.9 313.9 

Zhejiang 133.9 134.0 132.4 126.4 125.2 129.4 128.0 126.2 125.7 123.4 

Anhui 96.1 100.2 113.5 111.9 113.9 121.1 124.0 126.2 127.1 128.8 

Fujian 120.3 118.0 120.7 116.0 116.5 121.8 121.4 120.8 120.0 118.3 

Jiangxi 157.3 158.4 157.8 151.7 152.2 159.7 156.2 161.3 161.1 160.1 

Shandong 174.7 176.4 179.1 174.5 176.1 185.0 186.3 186.8 186.9 186.3 

Henan 103.2 105.8 108.3 107.1 110.1 117.7 119.9 123.2 126.9 129.6 

Hubei 169.4 171.7 179.9 174.9 174.1 175.9 173.2 168.0 183.2 163.2 

Hunan 240.1 241.3 239.2 228.8 228.8 238.5 239.5 239.2 236.6 234.6 

Guangdong 338.9 342.2 341.2 413.5 406.7 299.2 293.2 297.4 295.8 297.4 

Guangxi 224.2 223.5 248.0 240.5 240.5 248.3 247.7 244.6 242.9 242.9 

Hainan 31.5 32.8 33.3 52.0 52.4 40.7 40.4 41.9 40.5 51.9 

Chongqing - - - - - - - - - 18.8 

Sichuan 147.3 148.8 148.5 142.9 143.7 150.9 152.1 153.2 153.7 131.3 

Guizhou 45.3 45.8 45.5 44.8 46.2 49.2 50.1 50.5 50.7 51.1 

Yunnan 86.3 89.2 91.3 89.6 91.4 97.6 102.3 108.2 110.4 112.2 

Tibet 24.9 25.0 25.9 26.5 26.9 28.8 39.3 33.1 30.0 31.4 

Shaanxi 61.1 61.3 61.8 59.9 60.9 64.3 64.8 65.4 62.5 62.0 

Gansu 92.2 92.7 93.2 96.3 98.7 97.8 99.7 97.2 101.7 102.1 

Qinghai 21.8 22.4 22.7 28.5 29.4 23.3 23.3 23.4 23.2 26.6 

Ningxia 49.3 49.9 49.9 58.7 60.2 52.6 52.9 53.2 53.5 71.4 

Xinjiang 474.6 469.2 487.1 462.4 463.1 477.6 477.0 473.2 480.7 486.3 
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Table 4-11 Agricultural water withdrawal during 1998 to 2008 

 Agricultural water withdrawal (108m3) 

Provinces 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Beijing 22.3 22.6 22.1 21.9 15.5 12.9 13.0 12.7 12.0 11.7 11.4 

Tianjin 13.6 13.5 13.4 13.5 10.7 11.2 12.0 13.6 13.4 13.8 13.0 

Hebei 162.2 166.8 162.1 162.9 161.4 149.6 147.1 150.2 152.6 151.6 143.2 

Shanxi 34.7 36.0 35.1 35.2 35.5 33.3 32.9 32.7 34.2 34.3 32.9 

Inner 

Mongolia 
124.1 137.0 139.2 145.8 158.8 146.1 149.4 143.9 142.2 141.8 134.1 

Liaoning 85.1 89.9 89.9 92.9 83.2 83.5 85.7 87.2 91.5 91.7 90.9 

Jilin 61.0 64.0 62.7 66.2 83.6 67.5 66.4 66.4 70.4 67.5 69.3 

Heilongjiang 155.4 170.8 170.2 175.8 174.8 171.4 186.3 192.1 208.3 214.8 218.2 

Shanghai 21.0 21.2 21.2 20.9 12.0 16.3 18.8 18.5 18.4 16.2 16.7 

Jiangsu 299.0 306.0 296.0 297.2 289.2 223.1 288.5 263.8 270.7 268.5 287.3 

Zhejiang 115.4 118.5 114.3 114.6 118.1 110.2 107.3 106.7 101.1 100.2 98.7 

Anhui 124.2 128.2 125.3 127.0 127.9 93.8 121.7 113.6 136.4 120.6 151.9 

Fujian 112.1 113.7 110.5 111.3 111.5 101.0 104.2 101.5 98.0 100.9 99.3 

Jiangxi 151.5 154.2 148.7 148.9 136.8 104.1 128.5 134.6 132.9 151.4 148.9 

Shandong 178.3 181.9 176.0 177.2 188.3 157.0 154.3 156.3 169.4 159.7 157.6 

Henan 128.0 133.8 131.1 132.8 145.7 113.3 124.5 114.5 140.2 120.1 133.5 

Hubei 155.5 155.6 145.8 143.3 136.1 136.2 131.7 142.1 143.0 132.6 142.8 

Hunan 222.2 216.4 217.6 218.5 205.9 209.4 202.3 201.3 198.4 193.9 193.2 

Guangdong 279.4 285.9 269.0 264.5 250.4 242.6 240.3 230.7 226.9 224.8 227.7 

Guangxi 227.1 232.1 227.2 230.9 225.9 205.4 210.1 225.4 222.3 208.4 202.9 

Hainan 38.3 37.8 38.1 38.5 35.8 35.7 37.9 35.1 36.7 35.8 35.6 

Chongqing 21.5 22.0 21.4 21.7 20.7 20.7 20.3 21.4 18.1 18.7 18.9 

Sichuan 126.3 130.3 127.6 131.5 122.3 121.7 121.2 121.8 121.2 118.7 113.6 

Guizhou 49.0 50.2 49.1 49.8 51.3 52.2 51.9 50.5 54.3 48.7 51.6 

Yunnan 108.7 112.3 110.6 112.7 110.7 109.6 109.7 108.4 105.6 105.9 105.1 

Tibet 28.6 29.2 29.2 28.9 27.3 22.6 25.7 30.3 31.8 33.4 33.9 

Shaanxi 59.2 60.4 58.2 58.7 54.6 50.7 49.7 52.2 56.8 55.5 57.7 

Gansu 97.7 100.1 97.3 97.9 97.3 96.4 96.7 95.0 94.3 96.1 96.9 

Qinghai 23.1 23.7 25.5 25.2 20.4 21.7 21.8 21.1 21.8 20.5 22.4 

Ningxia 69.0 62.2 69.5 71.0 76.0 58.4 68.6 72.3 71.7 64.8 68.0 

Xinjiang 472.7 493.0 479.6 488.5 448.9 454.9 457.0 464.4 470.0 476.8 486.2 
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Figure 4-2 The mean irrigation water withdrawal during 1978 to 2008 

Table 4-12 The irrigation amounts used to force irrigation simulations 

Year IR(108m3) Year IR (108m3) Year IR(108m3) 

1978 3534.414 1989 3256.633 2000 3431.709 

1979 3621.295 1990 3405.354 2001 3470.791 

1980 3356.866 1991 3409.821 2002 3397.083 

1981 3299.365 1992 3432.798 2003 3114.134 

1982 3228.649 1993 3448.936 2004 3255.368 

1983 3317.202 1994 3447.990 2050_A1B 3676.661 

1984 3282.436 1995 3465.269 2050_A2 3616.330 

1985 3206.524 1996 3516.774 2050_B1 3594.180 

1986 3216.582 1997 3552.316 2100_A1B 3788.030 

1987 3226.833 1998 3415.680 2100_A2 3911.737 

1988 3223.760 1999 3508.179 2100_B1 3628.531 
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4.2.2 Irrigation impact in the past 
The differences of 2-m air daily mean temperature (Tmean), 2-m air daily 

minimum temperature (Tmin), 2-m air daily maximum temperature (Tmax), ground 

temperature(TG), specific humidity (Q2M), relative humidity (RH2M), wind speed 

(WS), sensible heat flux (FSH), latent heat flux (FLH) and ground heat flux (FGR) 

between two irrigation simulations by the CLM are statistically significant in terms of 

this study (Table 4-13). However, the differences between two irrigation simulations 

and control tests are quite similar.  Therefore, just the simulation results of spray 

irrigation are reported in the following texts in order to avoid redundancy and 

repetition. The simulation results of flood irrigation simulation can be found in Table 

4-13 and Table 4-14. 

Nationally, spray irrigation simulated by the CLM led to an increase in annual 

FLH of7.074 W/m2, and a decrease in annual FSH of 4.760 W/m2.  When only 

considering the irrigated grids, the decrease in FLH is around 1.5 times as much as 

the decrease in FLH averaged over the whole of China. The greater FLH decrease in 

North China led to the bigger temperature changes in North China as compared to 

South China. Irrigation has especially, impacted more impact in North China Plain, 

Xinjiang Province, Hetao of Yellow River, Hexi Corridor, Weihe Basin of Shaanxi 

Province, and Fenhe Basin of Shanxi Province (Figure 4-3 and Figure 4-4). 
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Table 4-13 Annual mean differences between different simulations, averaged over the whole of China, only irrigated area in China (IA), irrigated area in North 
China (IA_North), and irrigated area in South China (IA_South) 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M(%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC 0.086*** 0.110*** 0.071*** 0.158*** -0.027*** -0.646*** -0.017*** 3.096*** -1.916*** -0.699*** 

 
IRRc_IRRg -0.019*** -0.012*** 0.001*** -0.022*** 0.031*** 0.305*** -0.009*** -0.672*** 1.034*** 0.005*** 

 
IRRc_NIRR -0.045*** 0.022*** -0.079*** -0.232*** 0.102*** 0.822*** -0.017*** -4.760*** 7.074*** -0.078*** 

 
IRRg_NIRR -0.026*** 0.034*** -0.080*** -0.210*** 0.070*** 0.517*** -0.008*** -4.088*** 6.041*** -0.082*** 

IA Dif_LCLUC 0.119*** 0.152*** 0.104*** 0.227*** -0.039*** -0.928*** -0.023*** 4.363*** -2.868*** -0.925*** 

 
IRRc_IRRg -0.028*** -0.018*** 0.001*** -0.033*** 0.047*** 0.453*** -0.013*** -0.999*** 1.536*** 0.007*** 

 
IRRc_NIRR -0.066*** 0.032*** -0.117*** -0.344*** 0.151*** 1.222*** -0.025*** -7.073*** 10.512*** -0.115*** 

 
IRRg_NIRR -0.038*** 0.051*** -0.119*** -0.312*** 0.104*** 0.768*** -0.012*** -6.074*** 8.976*** -0.122*** 

IA_North Dif_LCLUC 0.185*** 0.234*** 0.132*** 0.400*** -0.057*** -1.431*** -0.014*** 6.115*** -3.109*** -1.650*** 

 
IRRc_IRRg -0.034*** -0.020*** 0.005*** -0.028*** 0.065*** 0.626*** -0.014*** -0.494*** 0.934*** 0.007*** 

 
IRRc_NIRR -0.106*** 0.067*** -0.210*** -0.595*** 0.255*** 2.043*** -0.038*** -11.622*** 17.362*** -0.163*** 

 
IRRg_NIRR -0.073*** 0.087*** -0.215*** -0.567*** 0.190*** 1.417*** -0.025*** -11.128*** 16.429*** -0.170*** 

IA_South Dif_LCLUC 0.054*** 0.073*** 0.086*** 0.042*** -0.023*** -0.439*** -0.040*** 2.875*** -3.093*** -0.141*** 

 
IRRc_IRRg -0.026*** -0.020*** -0.004*** -0.045*** 0.031*** 0.311*** -0.015*** -1.856*** 2.622*** 0.008*** 

 
IRRc_NIRR -0.026*** -0.008*** -0.017*** -0.078*** 0.042*** 0.367*** -0.013*** -2.400*** 3.448*** -0.075*** 

 
IRRg_NIRR 0.000 0.012*** -0.013*** -0.033*** 0.011*** 0.056*** 0.002*** -0.544*** 0.826*** -0.083*** 

Note:  
Dif_LCLUC is the difference between LCLUC_2000 and LCLUC_1980 and calculated by LCLUC_2000 minus LCLUC_1980. 

IRRC_IRRG is the difference between IRRc_2000 and IRRg_2000 and calculated by IRRc_2000 minus IRRg_2000. 

IRRc_NIRR is the difference between IRRc_2000 and LCLUC_2000 and calculated by IRRc_2000 minus LCLUC_2000. 

IRRg_NIRR is the difference between IRRg_2000 and LCLUC_2000 and calculated by IRRg_2000 minus LCLUC_2000. 

*** indicates that the difference is significant at 0.001 level. 

** indicates that the difference is significant at 0.01 level. 
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Table 4-14 Comparison between the magnitude of impacts of irrigation and those of land cover change 

  

Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M(%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China LCLUC_IRRcNIRR 0.041*** 0.089*** -0.008** -0.073*** -0.075*** -0.176*** 0.000 -1.664*** -5.158*** 0.621*** 

 

LCLUC_IRRgNIRR 0.060*** 0.076*** -0.009** -0.051*** -0.043*** 0.129*** 0.009* -0.992*** -4.124*** 0.617*** 

IA LCLUC_IRRcNIRR 0.053*** 0.120*** -0.013** -0.117*** -0.112*** -0.294*** -0.002 -2.710*** -7.644*** 0.809*** 

 

LCLUC_IRRgNIRR 0.081*** 0.102*** -0.015** -0.085*** -0.065*** 0.160*** 0.011*** -1.711*** -6.108*** 0.803*** 

IA_North LCLUC_IRRcNIRR 0.079*** 0.167*** -0.078*** -0.195*** -0.198*** -0.612*** -0.024*** -5.507*** -14.254*** 1.487*** 

 

LCLUC_IRRgNIRR 0.113*** 0.147*** -0.083*** -0.167*** -0.133*** 0.014 -0.011*** -5.013*** -13.320*** 1.480*** 

IA_South LCLUC_IRRcNIRR 0.029*** 0.065*** 0.069*** -0.036*** -0.019*** 0.072*** 0.027*** 0.475*** -0.355** 0.067*** 

 

LCLUC_IRRgNIRR 0.054*** 0.061*** 0.073*** 0.008 0.012*** 0.383*** 0.039*** 2.331*** 2.267*** 0.059*** 

Note: 

The values in this table are the magnitudes of the impacts of land cover change minus the magnitudes of the impacts of irrigation. 

LCLUC_IRRcNIRR is calculated by the modulus of Dif_LCLUC minus the modulus of IRRc_NIRR. 

LCLUC_IRRgNIRR is calculated by the modulus of Dif_LCLUC minus the modulus of IRRg_NIRR. 

*** indicates that the magnitude difference between the impacts of irrigation and those of land cover change is significant at 0.001 level. 

**indicates that the magnitude difference between the impacts of irrigation and those of land cover change is significant at 0.01 level. 

*indicates that the magnitude difference between the impacts of irrigation and those of land cover change is significant at 0.05 level
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Figure 4-3 The Tmean, Tmin, Tmax and TG difference between IRRc _2000 and NIRR_2000 
(IA_North refers to irrigated areas located in North China and IA_South refers to irrigated areas 
located in South China) 

 
Figure 4-4 The FSH, FLH, and FGR difference between IRRc _2000 and NIRR_2000 

Temporally, FLH increased throughout the whole year due to the irrigation 

and the biggest increase of FLH was in the summer (JJA). Correspondingly, Tmax 

decreased throughout the whole year and the biggest decrease of Tmax was in the 

summer (JJA) (Figure 4-5). Tmin decreased in the summer (JJA) and increased in 

other seasons in the irrigation simulation. The biggest Tmin increase was in winter 

(DJF). The impact of irrigation on daily Tmean depends more on its impact on Tmin 

in winter time (DJF) and depends more on Tmax in other seasons. As a result, daily 

Tmean increased in winter time and decreased in other seasons. Finally, irrigation led 

to a decrease in annual Tmean (Table 4-13).  
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Figure 4-5 Comparison of the mean seasonal difference between LCLUC_1980 and LCLUC_2000 , 
and between IRRc_2000 and LCLUC_2000 
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Irrigation shows a greater impact on Tmax than Tmin, which is consistent 

with previous studies (Sacks et al. 2009). Moreover, the irrigation impact on Tmin is 

more complicated than the impact on Tmax. The Tmax decrease due to irrigation 

occurred almost over all China, while Tmin increased in northeast, southwest and 

northwest China and decreased in the North China Plain and in southeast China 

(Figure 4-3). Nationally, irrigation led to increases in Tmin of 0.022 K in the spay 

irrigation simulation and 0.034 K in the flood irrigation simulation. But in the south 

irrigated area, irrigation led to a decrease in Tmin of 0.008 K in the spray irrigation 

simulation and to an increase in Tmin of 0.012 K in the flood irrigation simulation. 

Theoretically, excessive ET from irrigated agricultural land causes a change in 

the land surface energy distribution, which cools the land surface and near-surface air 

temperature during the day. Tmax always happens during daytime. Therefore, 

irrigation decreases Tmax. ET also increases the atmospheric water vapor, which is 

the most dominant greenhouse gas with a significant and positive feedback on our 

climate system. At nighttime, more water vapor in the atmosphere can increase the 

near-surface temperature. Meanwhile, irrigation increases soil moisture. The specific 

heat of water is higher than that of the land surface; hence, more moisture in the soil 

can reduce the cooling process of the land surface at nighttime. Tmin usually happens 

at nighttime, and there is a little ET generation at nighttime because of low 

temperature. Therefore, Tmin is more expected to increase because the warming 

effect from the increased water vapor offsets the cooling effect from the increased 

soil moisture. 
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Comparing the impacts of irrigation with those of land cover change can 

indicate how changes in land management compare to changes in land cover in terms 

of their effects on climate. So, in this study, we also simulated LCLUC impact on 

climate over China. The difference between the two LCLUC simulations shows 

nationally FLH decreased 1.916 W/m2 and FSH increased 3.096 W/m2 (Table 4-13) 

when transferring land surface status from 1980 to 2000.  Nationally, the annual mean 

Tmean, Tmin, and Tmax increased 0.086K, 0.110K, and 0.071K respectively due to 

LCLUC.  

Nationally, land cover change had more impact on Tmean, Tmin, FGR, and 

WS, and less impact on Tmax, TG, Q2M, RH2M, FSH, and FLH than irrigation 

(Table 4-14).  The differences between the impacts of irrigation and those of land 

cover change are more obvious in irrigated areas of North China.  For example, the 

Tmean differences between LCLUC simulation and irrigation simulation averaged 

over  the irrigated areas of North China (0.079 k and 0.113 K, respectively) are 

around 1.9 times as much as those  averaged over whole China(0.041K and0.060K, 

respectively) (Table 4-13).  

The directions of the impacts of irrigation, and those of land cover change are 

opposite in most of cases (Table 4-13). Irrigation significantly increased Q2M, 

RH2M, and FLH while land cover change significantly decreased them.  Irrigation 

significantly decreased Tmean, Tmax, TG, and FSH while land cover change 

significantly increased them. Nationally, both irrigation and land cover change 

increased Tmin, and decreased WS and FGR. 
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To investigate whether changes in land management are comparable to 

changes in land cover in terms of their effects on climate in China, I compared the 

impacts of irrigation with those of land cover change by a paired-t test. Results are 

also shown in Table 4-14. Here, one point which should be mentioned is that, in 

paired t-test, I compared the magnitude of the impacts of irrigation with those of land 

cover change because the directions of their impacts are opposite in most of cases. 

Therefore, before making the paired-t test, I first calculated the absolute values of the 

impacts of irrigation and those of land cover change. From Table 4-14, we can see 

LCLUC has more impact on Tmean, Tmin, and FGR, and less impact on Tmax, TG, 

Q2M, RH2M, FSH, and FLH. The difference in magnitude between LCLUC 

simulations and irrigation simulations pass paired t-test at 0.001 level in almost all 

cases, which suggest that changes in land management are incomparable to changes 

in land cover in terms of their effects on climate in China. This finding is different 

from the previous study by Sacks et al. (2009).This maybe because I used the offline 

CLM while Sacks et al coupled the CLM with the CAM.  Sacks et al. (2009) 

suggested that more irrigation cooling effect was due to non-local processes such as 

changes in cloud cover, rather than changes in ET. The offline mode in this study 

cannot reflect the indirect cooling effect such as cooling from an increase in cloud-

reflected solar radiation, and may cause an underestimate of the irrigation impact in 

this study. However, this study suggests that changes in land management are not 

comparable to changes in land cover when only considering their effects on climate 

due to the changes in heat flux partition in China. 
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Considering the magnitude of irrigation and land cover change impact on 

Tmax and Tmean are significantly different and the direction of their impacts are 

opposite. Therefore, the irrigation may mask the greenhouse gases impact on Tmax 

and Tmean in the past.  In contrast, the irrigation may have enhanced the warming 

effect of greenhouse gases on Tmin to some degree in the past because both land 

cover change and irrigation increased Tmin.  

4.2.3 Irrigation impact in the future 
The results for future simulations are shown in Table 4-15 to Table 4-21. 

Similar to the results reported in 4.2.2, the differences between two irrigation 

simulations by CLM under future scenarios are also statistically significant according 

to this study. Spray irrigation shows more impact on FSH and FLH, and less impact 

on FGR than flood irrigation. In spray irrigation simulations, the irrigation shows 

similar impacts on heat flux in irrigation areas located in South China and in 

irrigation areas located in North China. However,in flood irrigation simulations, the 

irrigation shows more impacts on heat flux in irrigation areas located in North China 

than those located in South China. For example, nationally, spray irrigation simulated 

by the CLM leads to an increase in annual FLH of 1.721 W/m2, a decrease in annual 

FSH of 1.162 W/m2 and a decrease in annual FGR of 0.061 W/m2 in 2050 under 

scenarios A1B(Table 4-15).   Flood irrigation simulated by the CLM leads to an 

increase in annual FLH of 0.529 W/m2, a decrease in annual FSH of 0.402 W/m2 and 

a decrease in annual FGR of 0.067 W/m2 in 2050 under scenarios A1B. When only 

considering the irrigated grids, the changes in FLH and FSH are around 1.5 times as 

much as the changes in FLH and FSH averaged over the whole of China in the spray 

irrigation simulation. In spray irrigation simulation, the decrease in FLH (2.701 
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W/m2) in irrigation areas of South China is as much as that (2.815 W/m2) in irrigation 

areas of North China, but in flood irrigation, the decrease in FLH (1.354 W/m2) in 

irrigation areas of North China is 7 times as much as that (0.183) in irrigation areas of 

South China. 
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Table 4-15 Annual mean differences between different simulations, averaged over the whole of China, only irrigated area in China (IA), irrigated area in North 
China (IA_North), and irrigated area in South China (IA_South) under scenario A1B in 2050 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M (%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2050A1B 0.083*** 0.100*** 0.131*** 0.157*** -0.035*** -0.717*** -0.001*** 2.927*** -2.428*** -0.686*** 

 
IRRc_IRRg_2050A1B -0.019*** -0.007*** -0.011*** -0.023*** 0.047*** 0.396*** -0.007*** -0.760*** 1.192*** 0.006*** 

 
IRRc_NIRR_2050A1B -0.001*** 0.031*** -0.022*** -0.012*** 0.063*** 0.437*** -0.004*** -1.162*** 1.721*** -0.061*** 

 
 IRRg_NIRR_2050A1B 0.018*** 0.038*** -0.012*** 0.012*** 0.015*** 0.041*** 0.003*** -0.402*** 0.529*** -0.067*** 

IA Dif_LCLUC_2050A1B 0.112*** 0.133*** 0.188*** 0.219*** -0.052*** -1.005*** -0.001*** 4.109*** -3.500*** -0.913*** 

 
IRRc_IRRg_2050A1B -0.028*** -0.010*** -0.016*** -0.035*** 0.070*** 0.589*** -0.010*** -1.130*** 1.772*** 0.009*** 

 
IRRc_NIRR_2050A1B -0.002*** 0.046*** -0.033*** -0.018*** 0.093*** 0.650*** -0.006*** -1.727*** 2.558*** -0.090*** 

 
 IRRg_NIRR_2050A1B 0.027*** 0.056*** -0.018*** 0.017*** 0.023*** 0.061*** 0.005*** -0.597*** 0.786*** -0.099*** 

IA_North Dif_LCLUC_2050A1B 0.221*** 0.244*** 0.216*** 0.457*** -0.057*** -1.659*** 0.015*** 6.033*** -4.793*** -1.561*** 

 
IRRc_IRRg_2050A1B -0.027*** -0.009*** -0.011*** -0.030*** 0.078*** 0.684*** -0.009*** -0.866*** 1.461*** 0.009*** 

 
IRRc_NIRR_2050A1B 0.015*** 0.082*** -0.041*** -0.009*** 0.115*** 0.801*** -0.002*** -1.918*** 2.815*** -0.094*** 

 
 IRRg_NIRR_2050A1B 0.042*** 0.091*** -0.030*** 0.021*** 0.037*** 0.117*** 0.007*** -1.052*** 1.354*** -0.103*** 

IA_South Dif_LCLUC_2050A1B -0.012*** 0.011*** 0.187*** -0.055*** -0.055*** -0.329*** -0.023*** 2.344*** -2.454*** -0.229*** 

 
IRRc_IRRg_2050A1B -0.035*** -0.014*** -0.025*** -0.047*** 0.073*** 0.574*** -0.014*** -1.693*** 2.518*** 0.011*** 

 
IRRc_NIRR_2050A1B -0.025*** 0.006*** -0.030*** -0.031*** 0.081*** 0.574*** -0.012*** -1.802*** 2.701*** -0.103*** 

 
 IRRg_NIRR_2050A1B 0.011*** 0.020*** -0.005*** 0.016*** 0.008*** 0.000 0.003*** -0.109*** 0.183*** -0.114*** 

 
Note:  
Dif_LCLUC_2050A1B is the difference between LCLUC2000_A1B_2050 and LCLUC1980_A1B_2050 and calculated by LCLUC2000_A1B_2050 minus 

LCLUC1980_A1B_2050. 

IRRc_IRRg_2050A1B is the difference between IRRc_A1B_2050 and IRRg_A1B_2050 and calculated by IRRc_A1B_2050 minus IRRg_A1B_2050. 

IRRc_NIRR_2050A1B is the difference between IRRc_A1B_2050 and LCLUC2000_A1B_2050 and calculated by IRRc_A1B_2050 minus LCLUC2000_ A1B_2050. 

IRRc_NIRR_2050A1B is the difference between IRRg_A1B_2050 and LCLUC2000_ A1B_2050 and calculated by IRRg_A1B_2050 minus LCLUC2000_ A1B_2050. 

*** indicates that the difference is significant at 0.001 level. 
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Table 4-16 Annual mean differences between different simulations, averaged over the whole of China, only irrigated area in China (IA), irrigated area in North 
China (IA_North), and irrigated area in South China (IA_South) under scenario A2 in 2050 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M (%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2050A2 0.022*** 0.066*** 0.041*** 0.063*** 0.015*** -0.164*** -0.018*** -4.297*** 6.483*** -0.799*** 

 
IRRc_IRRg_2050A2 -0.013*** -0.002** -0.009*** -0.016*** 0.036*** 0.312*** -0.007*** -0.729*** 1.140*** 0.005*** 

 
IRRc_NIRR_2050A2 0.002** 0.031*** -0.022*** -0.016*** 0.053*** 0.359*** -0.004*** -1.256*** 1.847*** -0.051*** 

 
IRRc_NIRR_2050A2 0.015*** 0.033*** -0.013*** 0.000 0.017*** 0.046*** 0.003*** -0.527*** 0.707*** -0.056*** 

IA Dif_LCLUC_2050A2 0.040*** 0.091*** 0.082*** 0.104*** 0.011*** -0.326*** -0.022*** -4.657*** 7.418*** -1.034*** 

 
IRRc_IRRg_2050A2 -0.019*** -0.003** -0.013*** -0.024*** 0.053*** 0.464*** -0.011*** -1.084*** 1.694*** 0.007*** 

 
IRRc_NIRR_2050A2 0.003** 0.046*** -0.033*** -0.024*** 0.078*** 0.533*** -0.006*** -1.867*** 2.745*** -0.076*** 

 
IRRc_NIRR_2050A2 0.022*** 0.049*** -0.019*** 0.000 0.025*** 0.069*** 0.004*** -0.783*** 1.051*** -0.083*** 

IA_North Dif_LCLUC_2050A2 0.156*** 0.190*** 0.169*** 0.367*** 0.011*** -0.971*** 0.001*** 0.640*** 2.751*** -1.749*** 

 
IRRc_IRRg_2050A2 -0.019*** -0.003 -0.008*** -0.020*** 0.066*** 0.586*** -0.009*** -0.812*** 1.381*** 0.008*** 

 
IRRc_NIRR_2050A2 0.015*** 0.078*** -0.041*** -0.030*** 0.111*** 0.728*** -0.003*** -2.220*** 3.281*** -0.086*** 

 
IRRc_NIRR_2050A2 0.034*** 0.080*** -0.033*** -0.011*** 0.044*** 0.141*** 0.006*** -1.408*** 1.901*** -0.094*** 

IA_South Dif_LCLUC_2050A2 -0.105*** -0.022*** -0.018*** -0.224*** 0.013*** 0.465*** -0.057*** -12.538*** 14.989*** -0.286*** 

 
IRRc_IRRg_2050A2 -0.023*** -0.005*** -0.023*** -0.033*** 0.045*** 0.391*** -0.015*** -1.648*** 2.429*** 0.007*** 

 
IRRc_NIRR_2050A2 -0.013*** 0.013*** -0.028*** -0.020*** 0.050*** 0.376*** -0.011*** -1.753*** 2.556*** -0.077*** 

 
IRRc_NIRR_2050A2 0.010*** 0.018*** -0.006*** 0.013*** 0.005*** -0.014*** 0.003*** -0.106*** 0.127*** -0.084*** 

Note:  
Dif_LCLUC_2050A2 is the difference between LCLUC2000_A2_2050 and LCLUC1980_A2_2050 and calculated by LCLUC2000_A2_2050 minus LCLUC1980_A2_2050. 

IRRc_IRRg_2050A2 is the difference between IRRc_A2_2050 and IRRg_A2_2050 and calculated by IRRc_A2_2050 minus IRRg_A2_2050. 

IRRc_NIRR_2050A2 is the difference between IRRc_A2_2050 and LCLUC2000_ A2_2050 and calculated by IRRc_A2_2050 minus LCLUC2000_ A2_2050. 

IRRc_NIRR_2050A2 is the difference between IRRg_A2_2050 and LCLUC2000_ A2_2050 and calculated by IRRg_A2_2050 minus LCLUC2000_ A2_2050. 

*** indicates that the difference is significant at 0.001 level. 

** indicates that the difference is significant at 0.01 level. 
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Table 4-17 Annual mean differences between different simulations, averaged over the whole of China, only irrigated area in China (IA), irrigated area in North 
China (IA_North), and irrigated area in South China (IA_South) under scenario B1 in 2050 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M(%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2050B1 0.082*** 0.103*** 0.133*** 0.137*** -0.031*** -0.721*** -0.00009** 3.080*** -2.250*** -0.780*** 

 
IRRc_IRRg_2050 B1 -0.017*** -0.005*** -0.010*** -0.019*** 0.045*** 0.383*** -0.007*** -0.747*** 1.167*** 0.007*** 

 
IRRc_NIRR_2050 B1 0.002 0.057*** -0.045*** -0.056*** 0.083*** 0.590*** -0.004*** -2.311*** 3.326*** -0.061*** 

 
IRRc_NIRR_2050 B1 0.019*** 0.062*** -0.036*** -0.037*** 0.038*** 0.207*** 0.002*** -1.564*** 2.159*** -0.068*** 

IA Dif_LCLUC_2050B1 0.115*** 0.145*** 0.190*** 0.200*** -0.046*** -1.008*** 0.0002*** 4.328*** -3.206*** -1.048*** 

 
IRRc_IRRg_2050 B1 -0.025*** -0.007*** -0.014*** -0.029*** 0.067*** 0.568*** -0.010*** -1.110*** 1.733*** 0.010*** 

 
IRRc_NIRR_2050 B1 0.003*** 0.085*** -0.067*** -0.084*** 0.124*** 0.876*** -0.006*** -3.434*** 4.942*** -0.090*** 

 
IRRc_NIRR_2050 B1 0.028*** 0.091*** -0.053*** -0.055*** 0.057*** 0.308*** 0.004*** -2.324*** 3.208*** -0.101*** 

IA_North Dif_LCLUC_2050B1 0.225*** 0.257*** 0.226*** 0.438*** -0.045*** -1.639*** 0.018*** 6.336*** -4.211*** -1.784*** 

 
IRRc_IRRg_2050 B1 -0.023*** -0.006*** -0.009*** -0.026*** 0.074*** 0.648*** -0.008*** -0.890*** 1.467*** 0.012*** 

 
IRRc_NIRR_2050 B1 0.020*** 0.143*** -0.099*** -0.129*** 0.171*** 1.205*** -0.004*** -4.886*** 7.014*** -0.105*** 

 
IRRc_NIRR_2050 B1 0.043*** 0.149*** -0.089*** -0.103*** 0.096*** 0.557*** 0.004*** -3.996*** 5.546*** -0.117*** 

IA_South Dif_LCLUC_2050B1 -0.010*** 0.023*** 0.177*** -0.077*** -0.055*** -0.364*** -0.023*** 2.495*** -2.485*** -0.273*** 

 
IRRc_IRRg_2050 B1 -0.031*** -0.009*** -0.024*** -0.038*** 0.071*** 0.571*** -0.014*** -1.611*** 2.413*** 0.010*** 

 
IRRc_NIRR_2050 B1 -0.019*** 0.024*** -0.039*** -0.040*** 0.086*** 0.608*** -0.011*** -2.165*** 3.139*** -0.088*** 

 
IRRc_NIRR_2050 B1 0.012*** 0.033*** -0.015***v -0.002*** 0.014*** 0.037*** 0.003*** -0.553*** 0.726*** -0.098*** 

Note:  
Dif_LCLUC_2050B1 is the difference between LCLUC2000_B1_2050 and LCLUC1980_B1_2050 and calculated by LCLUC2000_B1_2050 minus LCLUC1980_B1_2050. 

IRRc_IRRg_2050B1 is the difference between IRRc_B1_2050 and IRRg_B1_2050 and calculated by IRRc_B1_2050 minus IRRg_B1_2050. 

IRRc_NIRR_2050B1 is the difference between IRRc_B1_2050 and LCLUC2000_ B1_2050 and calculated by IRRc_B1_2050 minus LCLUC2000_ B1_2050. 

IRRc_NIRR_2050B1 is the difference between IRRg_B1_2050 and LCLUC2000_ B1_2050 and calculated by IRRg_B1_2050 minus LCLUC2000_ B1_2050. 

*** indicates that the difference is significant at 0.001 level. 

** indicates that the difference is significant at 0.01 level. 
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Table 4-18 Annual mean differences between different simulations, averaged over whole China, only irrigated area in China (IA), irrigated area in North China 
(IA_North), and irrigated area in South China (IA_South) under scenario A1B in 2100 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M(%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2100A1B 0.092*** 0.115*** 0.143*** 0.169*** -0.044*** -0.798*** 0.0004*** 3.193*** -2.679*** -0.656*** 

 
IRRc_IRRg_2100A1B -0.021*** -0.005*** -0.010*** -0.021*** 0.062*** 0.450*** -0.008*** -0.893*** 1.423*** 0.009*** 

 
IRRc_NIRR_2100A1B -0.018*** 0.028*** -0.038*** -0.085*** 0.109*** 0.639*** -0.011*** -2.304*** 3.439*** -0.068*** 

 
 IRRg_NIRR_2100A1B 0.003*** 0.033*** -0.028*** -0.064*** 0.047*** 0.190*** -0.003*** -1.411*** 2.016*** -0.076*** 

IA Dif_LCLUC_2100A1B 0.127*** 0.159*** 0.205*** 0.241*** -0.065*** -1.131*** 0.001*** 4.466*** -3.863*** -0.877*** 

 
IRRc_IRRg_2100A1B -0.031*** -0.007*** -0.015*** -0.031*** 0.092*** 0.668*** -0.012*** -1.327*** 2.114*** 0.013*** 

 
IRRc_NIRR_2100A1B -0.027*** 0.042*** -0.056*** -0.126*** 0.162*** 0.950*** -0.017*** -3.424*** 5.110*** -0.100*** 

 
 IRRg_NIRR_2100A1B 0.004*** 0.049*** -0.041*** -0.095*** 0.069*** 0.282*** -0.004*** -2.097*** 2.996*** -0.113*** 

IA_North Dif_LCLUC_2100A1B 0.235*** 0.268*** 0.224*** 0.470*** -0.065*** -1.700*** 0.017*** 6.230*** -4.843*** -1.512*** 

 
IRRc_IRRg_2100A1B -0.024*** -0.004** -0.010*** -0.020*** 0.092*** 0.685*** -0.010*** -0.934*** 1.615*** 0.016*** 

 
IRRc_NIRR_2100A1B -0.024*** 0.067*** -0.078*** -0.193*** 0.208*** 1.187*** -0.019*** -4.489*** 6.708*** -0.105*** 

 
 IRRg_NIRR_2100A1B 0.000 0.070*** -0.069*** -0.172*** 0.116*** 0.502*** -0.009*** -3.555*** 5.093*** -0.121*** 

IA_South Dif_LCLUC_2100A1B 0.010*** 0.046*** 0.218*** -0.017*** -0.078*** -0.592*** -0.020*** 2.979*** -3.297*** -0.204*** 

 
IRRc_IRRg_2100A1B -0.045*** -0.013*** -0.025*** -0.051*** 0.110*** 0.772*** -0.018*** -2.098*** 3.173*** 0.011*** 

 
IRRc_NIRR_2100A1B -0.035*** 0.017*** -0.038*** -0.061*** 0.131*** 0.817*** -0.017*** -2.665*** 3.964*** -0.113*** 

 
 IRRg_NIRR_2100A1B 0.010*** 0.029*** -0.013*** -0.010*** 0.021*** 0.045*** 0.001*** -0.568*** 0.791*** -0.124*** 

 
Note:  
Dif_LCLUC_2100A1B is the difference between LCLUC2000_A1B_2100 and LCLUC1980_A1B_2100 and calculated by LCLUC2000_A1B_2100 minus 

LCLUC1980_A1B_2100. 

IRRc_IRRg_2100A1B is the difference between IRRc_A1B_2100 and IRRg_A1B_2100 and calculated by IRRc_A1B_2100 minus IRRg_A1B_2100. 

IRRc_NIRR_2100A1B is the difference between IRRc_A1B_2100 and LCLUC2000_A1B_2100 and calculated by IRRc_A1B_2100 minus LCLUC2000_ A1B_2100. 

IRRc_NIRR_2100A1B is the difference between IRRg_A1B_2100 and LCLUC2000_ A1B_2100 and calculated by IRRg_A1B_2100 minus LCLUC2000_ A1B_2100. 

*** indicates that the difference is significant at 0.001 level. 

** indicates that the difference is significant at 0.01 level. 
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Table 4-19 Annual mean differences between different simulations, averaged over whole China, only irrigated area in China (IA), irrigated area in North China 
(IA_North), and irrigated area in South China (IA_South) under scenario A2 in 2100 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M (%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2100A2 0.085*** 0.097*** 0.134*** 0.155*** -0.033*** -0.695*** -0.001*** 2.996*** -2.707*** -0.606*** 

 
IRRc_IRRg_2100A2 -0.018*** -0.005*** -0.013*** -0.027*** 0.041*** 0.307*** -0.009*** -1.076*** 1.612*** 0.004*** 

 
IRRc_NIRR_2100A2 -0.009*** 0.019*** -0.023*** -0.031*** 0.059*** 0.373*** -0.007*** -1.465*** 2.179*** -0.058*** 

 
 IRRg_NIRR_2100A2 0.009*** 0.023*** -0.010*** -0.004*** 0.018*** 0.066*** 0.002*** -0.388*** 0.567*** -0.062*** 

IA Dif_LCLUC_2100A2 0.114*** 0.128*** 0.191*** 0.215*** -0.049*** -0.971*** -0.002*** 4.184*** -3.873*** -0.805*** 

 
IRRc_IRRg_2100A2 -0.027*** -0.007*** -0.019*** -0.041*** 0.061*** 0.456*** -0.013*** -1.599*** 2.395*** 0.006*** 

 
IRRc_NIRR_2100A2 -0.013*** 0.028*** -0.034*** -0.046*** 0.088*** 0.554*** -0.010*** -2.177*** 3.238*** -0.086*** 

 
 IRRg_NIRR_2100A2 0.014*** 0.035*** -0.015*** -0.006*** 0.027*** 0.098*** 0.003*** -0.577*** 0.843*** -0.092*** 

IA_North Dif_LCLUC_2100A2 0.205*** 0.219*** 0.209*** 0.414*** -0.041*** -1.406*** 0.014*** 5.802*** -4.917*** -1.397*** 

 
IRRc_IRRg_2100A2 -0.021*** -0.004*** -0.014*** -0.031*** 0.062*** 0.470*** -0.010*** -1.170*** 1.840*** 0.003*** 

 
IRRc_NIRR_2100A2 0.000 0.051*** -0.039*** -0.047*** 0.107*** 0.644*** -0.006*** -2.153*** 3.242*** -0.087*** 

 
 IRRg_NIRR_2100A2 0.021*** 0.055*** -0.025*** -0.016*** 0.045*** 0.174*** 0.004*** -0.984*** 1.402*** -0.090*** 

IA_South Dif_LCLUC_2100A2 0.015*** 0.033*** 0.202*** -0.007*** -0.070*** -0.580*** -0.023*** 2.838*** -3.226*** -0.175*** 

 
IRRc_IRRg_2100A2 -0.040*** -0.012*** -0.029*** -0.061*** 0.071*** 0.524*** -0.019*** -2.470*** 3.582*** 0.010*** 

 
IRRc_NIRR_2100A2 -0.033*** 0.002* -0.035*** -0.055*** 0.079*** 0.540*** -0.017*** -2.620*** 3.845*** -0.101*** 

 
 IRRg_NIRR_2100A2 0.007*** 0.015*** -0.006*** 0.006** 0.008*** 0.017*** 0.002*** -0.149*** 0.262*** -0.111*** 

Note:  
Dif_LCLUC_2100A2 is the difference between LCLUC2000_A2_2100 and LCLUC1980_A2_2100 and calculated by LCLUC2000_A2_2100 minus LCLUC1980_A2_2100. 

IRRc_IRRg_2100A2 is the difference between IRRc_A2_2100 and IRRg_A2_2100 and calculated by IRRc_A2_2100 minus IRRg_A2_2100. 

IRRc_NIRR_2100A2 is the difference between IRRc_A2_2100 and LCLUC2000_A2_2100 and calculated by IRRc_A2_2100 minus LCLUC2000_ A2_2100. 

IRRc_NIRR_2100A2 is the difference between IRRg_A2_2100 and LCLUC2000_ A2_2100 and calculated by IRRg_A2_2100 minus LCLUC2000_ A2_2100. 

*** indicates that the difference is significant at 0.001 level. 

** indicates that the difference is significant at 0.01 level. 

* indicates that the difference is significant at 0.05 level. 
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Table 4-20 Annual mean differences between different simulations, averaged over whole China, only irrigated area in China (IA), irrigated area in North China 
(IA_North), and irrigated area in South China (IA_South) under scenario B1 in 2100 

  
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M (%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

China Dif_LCLUC_2100B1 0.086*** 0.103*** 0.137*** 0.154*** -0.028*** -0.667*** -0.002*** 2.973*** -2.445*** -0.684*** 

 
IRRc_IRRg_2100B1 -0.016*** -0.004*** -0.010*** -0.020*** 0.044*** 0.351*** -0.007*** -0.833*** 1.278*** 0.006*** 

 
IRRc_NIRR_2100B1 0.000 0.033*** -0.025*** -0.023*** 0.066*** 0.425*** -0.004*** -1.420*** 2.127*** -0.094*** 

 
 IRRg_NIRR_2100B1 0.015*** 0.037*** -0.015*** -0.003** 0.022*** 0.074*** 0.003*** -0.588*** 0.849*** -0.101*** 

IA Dif_LCLUC_2100B1 0.117*** 0.141*** 0.196*** 0.219*** -0.042*** -0.936*** -0.002*** 4.181*** -3.509*** -0.912*** 

 
IRRc_IRRg_2100B1 -0.023*** -0.006*** -0.015*** -0.029*** 0.065*** 0.521*** -0.011*** -1.238*** 1.899*** 0.010*** 

 
IRRc_NIRR_2100B1 -0.001 0.050*** -0.038*** -0.034*** 0.098*** 0.631*** -0.006*** -2.111*** 3.160*** -0.140*** 

 
 IRRg_NIRR_2100B1 0.022*** 0.055*** -0.023*** -0.004*** 0.033*** 0.110*** 0.005*** -0.873*** 1.261*** -0.150*** 

IA_North Dif_LCLUC_2100B1 0.219*** 0.240*** 0.228*** 0.441*** -0.043*** -1.495*** 0.013*** 5.939*** -4.452*** -1.569*** 

 
IRRc_IRRg_2100B1 -0.020*** -0.003*** -0.011*** -0.022*** 0.076*** 0.608*** -0.009*** -0.913*** 1.525*** 0.008*** 

 
IRRc_NIRR_2100B1 0.014*** 0.085*** -0.049*** -0.038*** 0.130*** 0.810*** -0.002*** -2.454*** 3.715*** -0.166*** 

 
 IRRg_NIRR_2100B1 0.035*** 0.089*** -0.039*** -0.017*** 0.055*** 0.201*** 0.006*** -1.541*** 2.189*** -0.175*** 

IA_South Dif_LCLUC_2100B1 0.006*** 0.038*** 0.191*** -0.034*** -0.050*** -0.375*** -0.023*** 2.650*** -2.927*** -0.215*** 

 
IRRc_IRRg_2100B1 -0.031*** -0.009** -0.024*** -0.045*** 0.063*** 0.505*** -0.015*** -1.900*** 2.751*** 0.013*** 

 
IRRc_NIRR_2100B1 -0.021*** 0.012*** -0.030*** -0.034*** 0.074*** 0.514*** -0.012*** -2.056*** 3.025*** -0.133*** 

 
 IRRg_NIRR_2100B1 0.011*** 0.021*** -0.006*** 0.011*** 0.011*** 0.010*** 0.004*** -0.155*** 0.274*** -0.146*** 

Note:  
Dif_LCLUC_2100B1 is the difference between LCLUC2000_B1_2100 and LCLUC1980_B1_2100 and calculated by LCLUC2000_B1_2100 minus LCLUC1980_B1_2100. 

IRRc_IRRg_2100B1 is the difference between IRRc_B1_2100 and IRRg_B1_2100 and calculated by IRRc_B1_2100 minus IRRg_B1_2100. 

IRRc_NIRR_2100B1 is the difference between IRRc_B1_2100 and LCLUC2000_B1_2100 and calculated by IRRc_B1_2100 minus LCLUC2000_ B1_2100. 

IRRc_NIRR_2100B1 is the difference between IRRg_B1_2100 and LCLUC2000_ B1_2100 and calculated by IRRg_B1_2100 minus LCLUC2000_ B1_2100. 

*** indicates that the difference is significant at 0.001 level. 
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Table 4-21 Comparison between the magnitude of impacts of irrigation and those of land cover change in two future time periods and under three future 
scenarios, averaged over whole China 

 
Tmean(k) Tmin(k) Tmax(k) TG(k) Q2M(g/kg) RH2M(%) WS(m/s) FSH(W/m2) FLH(W/m2) FGR(W/m2) 

LCLUC_IRRcNIRR_2050A1B 0.082*** 0.069*** 0.108*** 0.145*** -0.028*** 0.279*** -0.003*** 1.765*** 0.707*** 0.625*** 

LCLUC_IRRgNIRR_2050A1B 0.001*** 0.031*** 0.022*** 0.012*** 0.063*** 0.437*** 0.004*** 1.162*** 1.721*** 0.061*** 

LCLUC_IRRcNIRR_2050A2 0.021*** 0.035*** 0.019*** 0.047*** -0.037*** -0.195*** 0.014*** 3.040*** 4.636*** 0.748*** 

LCLUC_IRRgNIRR_2050A2 0.002*** 0.031*** 0.022*** 0.016*** 0.053*** 0.359*** 0.004*** 1.256*** 1.847*** 0.051*** 

LCLUC_IRRcNIRR_2050B1 0.080*** 0.046*** 0.087*** 0.080*** -0.053*** 0.131*** -0.004*** 0.769*** -1.076*** 0.719*** 

LCLUC_IRRgNIRR_2050B1 0.002*** 0.057*** 0.045*** 0.056*** 0.083*** 0.590*** 0.004*** 2.311*** 3.326*** 0.061*** 

LCLUC_IRRcNIRR_2100A1B 0.074*** 0.087*** 0.105*** 0.085*** -0.065*** 0.158*** -0.011*** 0.888*** -0.760*** 0.589*** 

LCLUC_IRRgNIRR_2100A1B 0.018*** 0.028*** 0.038*** 0.085*** 0.109*** 0.639*** 0.011*** 2.304*** 3.439*** 0.068*** 

LCLUC_IRRcNIRR_2100A2 0.076*** 0.078*** 0.111*** 0.123*** -0.026*** 0.322*** -0.005*** 1.531*** 0.528*** 0.548*** 

LCLUC_IRRgNIRR_2100A2 0.009*** 0.019*** 0.023*** 0.031*** 0.059*** 0.373*** 0.007*** 1.465*** 2.179*** 0.058*** 

LCLUC_IRRcNIRR_2100B1 0.085*** 0.070*** 0.111*** 0.131*** -0.038*** 0.243*** -0.002*** 1.553*** 0.319*** 0.590*** 

LCLUC_IRRgNIRR_2100B1 0.000*** 0.033*** 0.025*** 0.023*** 0.066*** 0.425*** 0.004*** 1.420*** 2.127*** 0.094*** 
Note: 
The values in this table are the magnitudes of the impacts of land cover change minus the magnitudes of the impacts of irrigation. 
LCLUC_IRRcNIRR_2050A1B is calculated by the modulus of Dif_LCLUC_2050A1B minus the modulus of IRRc_NIRR_2050A1B. 
LCLUC_IRRgNIRR_2050A1B is calculated by the modulus of Dif_LCLUC_2050A1B minus the modulus of IRRg_NIRR_2050A1B. 
LCLUC_IRRcNIRR_2050A2 is calculated by the modulus of Dif_LCLUC_2050A2 minus the modulus of IRRc_NIRR_2050A2. 
LCLUC_IRRgNIRR_2050A2 is calculated by the modulus of Dif_LCLUC_2050A2 minus the modulus of IRRg_NIRR_2050A2. 
LCLUC_IRRcNIRR_2050B1 is calculated by the modulus of Dif_LCLUC_2050B1 minus the modulus of IRRc_NIRR_2050B1. 
LCLUC_IRRgNIRR_2050B1 is calculated by the modulus of Dif_LCLUC_2050B1 minus the modulus of IRRg_NIRR_2050B1. 
LCLUC_IRRcNIRR_2100A1B is calculated by the modulus of Dif_LCLUC_2100A1B minus the modulus of IRRc_NIRR_2100A1B. 
LCLUC_IRRgNIRR_2100A1B is calculated by the modulus of Dif_LCLUC_2100A1B minus the modulus of IRRg_NIRR_2100A1B. 
LCLUC_IRRcNIRR_2100A2 is calculated by the modulus of Dif_LCLUC_2100A2 minus the modulus of IRRc_NIRR_2100A2. 
LCLUC_IRRgNIRR_2100A2 is calculated by the modulus of Dif_LCLUC_2100A2 minus the modulus of IRRg_NIRR_2100A2. 
LCLUC_IRRcNIRR_2100B1 is calculated by the modulus of Dif_LCLUC_2100B1 minus the modulus of IRRc_NIRR_2100B1. 
LCLUC_IRRgNIRR_2100B1 is calculated by the modulus of Dif_LCLUC_2100B1 minus the modulus of IRRg_NIRR_2050B1. 
*** indicates that the magnitude difference between the impacts of irrigation and those of land cover change is significant at 0.001 level. 
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Figure 4-6 Spray irrigation impact on temperature in 2050 under three future scenarios 

Temporally, Tmax decreases throughout the whole year and the biggest 

decrease of Tmax is in summer (JJA) in the future simulations (Figure 4-8). Tmin 

decreases in summer (JJA) and increases in other seasons in irrigation simulation in 

the future simulations. The biggest Tmin increase is in winter (DJF). The impact of 

irrigation on daily Tmean depends more on its impact on Tmax in summer time (JJA) 

and depends more on Tmin in other seasons. As a result, daily Tmean decreases in 

summer and increases in other seasons. Finally, irrigation leads to an increase in 

annual Tmean in most of cases in the future irrigation simulations (Table 4-15 to 

Table 4-20).  
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Figure 4-7 Spray irrigation impact on temperature in 2100 under three future scenarios 

Generally, irrigation shows more impact on Tmin than Tmax with opposite 

direction under the future scenarios. For example, nationally, spray irrigation 

simulated by the CLM led to an increase in annual Tmin of 0.031K under scenario 

A1B, 0.031 under scenario A2, and 0.057 under scenario B1 and an decrease in 

annual Tmax of 0.022 under scenario A1B, 0.022 under scenario A2, and 0.045 under 

scenario B1 in 2050. 

Comparing the impacts of irrigation with those of land cover change in the 

future simulations shows that land cover change has more impact on temperature than 

irrigation. For example, under scenario A1B in 2050, the difference between two 

LCLUC simulations shows, nationally, the annual mean Tmean, Tmin, and Tmax 
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increased 0.083K, 0.100K, and 0.131K due to LCLUC, respectively (Table 4-15). 

The Tmean change due to LCLUC is 83 times as much as the Tmean change due to 

spray irrigation (0.001 K). The Tmin change due to LCLUC is 3 times as much as the 

Tmin change due to spray irrigation (0.031 K). The Tmax change due to LCLUC is 6 

times as much as the Tmax change due to spray irrigation (0.022 K). I also compared 

the magnitude of the impacts of irrigation with those of land cover change in the 

future simulations by t-test (Table 4-21) and results show that the impact of LCLUC 

on temperature are significantly higher than the impact of irrigation on temperature in 

the future. In other words, this study suggests that changes in land management are 

not comparable to changes in land cover over China in the future in terms of their 

impact on temperature. 

Comparing irrigation simulations in the past (IRRc_2000 and IRRg_2000, 

Table 4-13) with those in the future (e.g. IRRc_A1B_2050 and IRRg_A1B_2050 etc., 

Table 4-15to Table 4-20), we can find the irrigation has less impact on Tmax and 

Tmean in the future. For example, nationally, spray irrigation leads to a decrease in 

Tmax of 0.022 K in IRRc_A1B_2050 experiment, which is as much as 28% of that 

(0.079 K) in IRRc_2000 experiment. Spray irrigation leads to a decrease in Tmean of 

0.001 in IRRc_A1B_2050 experiment, which is as much as 2% of that (0.045 K) in 

IRRc_2000 experiment. The reduced impacts of irrigation on Tmax and Tmean in the 

future are caused by the reduced evaporative cooling effect. Nationally, the decreased 

wind speed and downward shortwave radiation projected in the future forcing data 

may contribute to the decrease of ET in the future simulations. Besides, in future 

scenarios, the increased precipitation in non-irrigated area reduce the difference of 
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water capability between irrigated and non-irrigated area and contribute the decreased 

difference of ET between irrigated and non-irrigated area. 

 

 
Figure 4-8 Mean irrigation impact during four seasons in 2050 and 2100 and under three scenarios 
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Comparing LCLUC simulations in the past (LCLUC_2000 and 

LCLUC_1980, Table 4-13 ) with those (e.g. LCLUC2000_A1B_2050 and 

LCLUC1980_A1B_2050 etc., Table 4-15 to Table 4-20) in the future, we can find the 

LCLUC generally has more impact on Tmax in the future. Nationally, LCLUC leads 

to an increase in Tmax of 0.131 K under scenario A1B, 0.041 K under scenario A2 

and 0.133 K under scenario B1 in 2050, and leads to an increase in Tmax of  0.143 K 

under scenario A1B, 0.134 K under scenario A2 and 0.137 K in 2100. Transferring 

land status from 1980 to 2000 in the contemporary LCLUC simulation shows an 

increase in Tmax of 0.071K, averaged over the whole of china (Table 4-13). 

4.3 Conclusions 
In this study, I simulated both the irrigation impacts and land cover change 

impacts on climate in China in one past time period(1978-2004) and in two future 

time periods (2050 and 2100) via the Community Land Model. By comparing the 

differences among those simulations, I found that:  

1) The irrigation pattern has a statistically significant different impact on local 

climate in terms of the magnitude of their impact. 

2) Irrigation shows more impacts on Tmax than Tmin. Moreover, the 

irrigation impact on Tmin is more complicated than the impact on Tmax. Both 

contemporary and future irrigation simulations show, nationally, irrigation decreases 

Tmax but increases Tmin. Tmean is a combination of Tmax and Tmin. Tmean 

decreases   in contemporary irrigation simulations but increases in most of cases in 

future irrigation simulations. In general, results from this study do not support the 

former argument that irrigation might mask the warming signal caused by an increase 



 

128 
 

in greenhouse gases. Furthermore, the irrigation impact on temperature is much less 

in the future than in the 20th Century because the evaporative cooling effect will 

decrease as a result of increased precipitation, decreased downward shortwave 

radiation and decreased wind speed in the future scenarios.   

3) The irrigation and land cover change show statistically significant 

differences in terms of the magnitude of their impact on local climate in this study. 

Overall, LCLUC shows more impacts on climate in both contemporary and future 

simulations. Nationally, the differences of the impact magnitude between LCLUC 

and spray irrigation are -0.008K for Tmax, 0.089K for Tmin, and 0.04K for Tmean in 

20th Century, respectively. In the future scenarios, the differences of the impact 

magnitude between LCLUC and spray irrigation range from 0.019K to 0.111K for 

Tmax, from 0.035K to 0.087K for Tmin, and from 0.021K to 0.085K, respectively. 
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Chapter 5 Conclusions 
 

Land cover and land use change can significantly influence the climate system 

by modulating surface-atmosphere exchanges. Land management, such as irrigation 

also has a profound influence on the climate system. Irrigation can alter the water and 

energy flux from ground surface to the atmosphere and further influence near surface 

climate. Considering its dramatic expansion during the last century, the widespread 

use of irrigation has had an ongoing impact on our climate system. However, until 

now, this relationship between increased irrigation and its effect on climate system 

change has not received the serious examination, and attention deserves.  

In this dissertation, I used both observational and modeling methods to 

explore the impact of irrigation in China. The main goals are to explore what might 

have happened in the past, what will happen as a result of irrigation expansion in the 

future and what is the relationship between LCLUC impact and irrigation impact on 

near surface climate in China. To answer those questions, I undertook three tasks in 

this dissertation. 

First, I developed a set of irrigation potential indices by using time series 

NDVI and precipitation data. Based on these indices, I further developed an irrigation 

spatial allocation model to allocate the statistics of irrigation from geopolitical units 

to individual pixels. Finally, I made an irrigation map of China in 2000 and three 

secondary products (irrigated dryland area, irrigated paddy field and rainfed area). 

Second, I analyzed land surface parameters and near surface temperature 

observations in irrigated and non-irrigated agriculture areas in two study areas of 
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China. One is Jilin province in which both satellite and meteorological observations 

were used.  Another much larger area is North China including 17 provinces where 

only satellite observations were used. 

Third, I simulated the irrigation and LCLUC impacts over China in the past 

and also two future time periods (2050 and 2100) under three scenarios by the CLM 

and compared the impact of irrigation with that of LCLUC. Unlike irrigation 

simulations in previous studies, I developed a time series gridded datasets of annual 

irrigation water withdrawal in China from 1978 to 2008 by using the historical 

effective irrigated area and agricultural water withdrawal data, and used this dataset 

to control the irrigation amount. 

The main findings and contributions of this dissertation are summarized in 5.1 

and 5.2, respectively.  Section 5.3 describes future research directions. 

5.1 Main findings 
 Meteorological observations in Jilin Province show that the temperature 

differences between highly and lightly irrigated areas are statistically significant. The 

differences are highly correlated to the effective irrigation area (EIA), sown area of 

crops (CSA) and as well as the standard precipitation index for a 12 month rainfall 

total (SPI12) of the LIP sites. Moreover, the temperature difference between highly 

and lightly irrigated areas is larger in a drier year.           

Results from satellite observation show that the land surface parameters of 

irrigated areas had obvious intra-annual variations.  Highly irrigated areas 

corresponded to a lower albedo and daytime LST, and higher NDVI and ET.  And the 

difference between highly and lightly irrigated areas is bigger in drier areas. 
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Consistent with other studies, irrigation from both observational and modeling 

studies in this dissertation also displayed a larger impact on the maximum air 

temperature than on the minimum air temperature. The irrigation impact on minimum 

air temperature/nighttime LST is more complicated. Both contemporary and future 

irrigation simulations show, nationally, that irrigation decreases Tmax but increases 

Tmin. Tmean decreases   in contemporary irrigation simulations but increases in most 

of cases in future irrigation simulations. Irrigation impact on temperature is much less 

in the future than in the 20th Century.  In general, results from this study do not 

support the former argument that irrigation might mask the warming signal caused by 

an increase in greenhouse gases. This study indicates that the irrigation pattern has a 

statistically significant different impact on local climate in terms of the magnitude of 

its impact. Besides, LCLUC shows a much greater impact on climate than irrigation 

in both contemporary and future simulations. 

5.2 Main contributions 
The irrigation map of China around 2000 produced in this dissertation is the 

first irrigation map which focuses only on China .The validation results show my new 

map has the highest overall accuracy, which indicates that my method is a promising 

tool for mapping irrigated areas. Besides, my method also has several advantages. 

First, its inputs are quite simple, and no training samples are needed. Second, my 

model is general and repeatable. Third, it can be used to map historically irrigated 

areas.  

This dissertation is the first study which focuses solely on China, 

systematically using both satellite and meteorological observation and also a 
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modeling method.   The studies in Jilin province and North China provide some 

substantive evidence that a cooling effect from agricultural irrigation exists in China. 

Moreover, this study proved that satellite observations are sufficiently valid to 

determine the impact of irrigation on land surface parameters, and provide another 

valuable method for understanding the impact of irrigation on local climate, 

especially in those regions where direct observations are limited or obscured by other 

factors, such as urbanization in China. 

In this study, I developed time series gridded dataset of annual irrigation water 

withdrawal in China from 1978 to 2008 by using the historical effective irrigated area 

and agricultural water withdrawal data. These new maps are the first gridded datasets 

that portray a spatially explicit distribution of the actual water withdrawal for both 

irrigated paddy fields and drylands in China, with a higher resolution and covering a 

longer time period. The time series gridded datasets of annual irrigation water 

withdrawal in China from 1978 to 2008 can help accurately simulate the irrigation 

impact on the near surface climate in China. Furthermore, the new dataset can 

improve our ability to estimate the crop yield, water stress, drought resistance, and 

water use efficiency in China. 

In previous studies, no one has simulated both land cover change impacts and 

land management (irrigation) impacts on local climate at the same time. So, results 

from direct comparisons between irrigation impact and LCLUC impact have not been 

reported yet. This study simulated both the irrigation impact and land cover change 

impact on climate in China in one previous time period (1978-2004) and two future 
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time periods (2050 and 2100) via the Community Land Model and compared the 

differences among those simulations. 

5.3 Future directions 
Both the observational and the modeling studies need information on the 

distribution of irrigated areas. To date, there are three irrigation maps covering 

mainland China: The FAO/ University of Frankfurt global map of irrigated areas with 

a fraction of 5 arc-minutes by 5 arc-minutes cells (Siebert et al. 2007) , the 

International Water Management Institute (IWMI)’s Global Map of Irrigated Area 

(Thenkabail et al. 2009) with a 10 km grid resolution, and the new irrigation map of 

China 2000 with a 1-km resolution developed in this study. Based on my validation, 

my map has the highest overall accuracy (68.40%), but the accuracy still has room for 

improvement. Errors in irrigation map certainly will lead to the uncertainty in 

irrigation simulations. Therefore, a highly accurate irrigation map is needed. Besides, 

more validation of the current irrigation map is also needed. 

The study on the irrigation impact by meteorological observations in Jilin 

Province provides some substantive evidence that a cooling effect from agricultural 

irrigation exists in China. However, this conclusion does not mitigate the other factors 

that influence the air temperature of the study sites, since the climate system is so 

complex. No single factor can be attributed to regional climate changes. More 

observations and evidence are needed in order to attain a greater understanding of the 

influence of irrigation on local climate in China, especially in wetter area of China.  

The study on the irrigation impact by satellite observations in Jilin Province 

and North China proved that satellite observations are sufficiently valid to determine 
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the impact of irrigation on land surface parameters, and provide another valuable 

method for understanding the impact of irrigation on local climate, especially in those 

regions where direct observations are limited or obscured by other factors, such as 

urbanization in China. However, the performance of satellite observations in studying 

the irrigation impact in wetter areas was not validated in this dissertation. In wet 

areas, supplemental irrigation is the main irrigation method and the difference in soil 

moisture between non-irrigated and irrigated areas is likely to be very slight. As a 

result, the climate difference  caused by extra irrigation water in an  irrigated area 

with a wetter climate may be not as clear as that in irrigated areas with a dry climate, 

which contributes to the difficultly of validating the performance of satellite 

observations in wet areas. In future, the performance of satellite observations in 

studying the irrigation impact in wetter areas needs to be validated. 

 Besides, there are still some other limitations to my irrigation simulations. 

First, I developed time series gridded datasets of annual irrigation water withdrawal 

in China from 1978 to 2008 and used this dataset to control irrigation amount in 

modeling. However, there are some uncertainties in this dataset due to several factors:  

1) Agricultural water is withdrawn not only for irrigation purposes but also for 

other agricultural sectors such as fisheries. Irrigation is not only applicable to 

cropland management, but also to forestry and pasture management. In my method, I 

collected the ratio of irrigation water withdrawal to agricultural water withdrawal for 

the year 2000, and used this data over the whole study period. However, the ratio of 

irrigation water withdrawal for farmland is estimated to decrease with time, as more 

and more agricultural water is consumed by forestry, pasture, and fishery sectors 
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because of changes in the agricultural structure. As a result, the irrigation water 

withdrawal before 2000 calculated using my method might be underestimated. 

 2)  In my method, I used the irrigation map of China for 2000 to represent the 

irrigated area from 1978 to 2008 and ignored the changes in the irrigated area over 

the past 31 years.  The lack of archived information makes it impossible to obtain a 

time-series irrigation map in China for this period. The extent of the irrigated area in 

2000 is clearly larger than that in 1978; consequently, the irrigation water for irrigated 

pixels in 1978 is expected to be overestimated. Conversely, the irrigation water of 

irrigated pixels in 2008 is expected to be underestimated.  

3) The irrigated area in the irrigation maps shows areas that were equipped for 

irrigation (it is also called as effective irrigation area (EIA), not the real irrigated area. 

The real irrigated area might be larger or smaller than the EIA. Accordingly, the real 

irrigation water consumption will be slightly different from my estimation.  

4) The irrigation percentages of the paddy fields and dryland in each irrigated 

pixel in 2000 derived from the new irrigation map of China are used as an estimate of 

the same ratio over the whole study period (1978-2008). However, the area of 

irrigated paddy fields and dryland changed during those years.  

5) In my method, I used the irrigation requirements for the main crops 

reported by Liu et al. (2009) to estimate the irrigation water consumption for each 

main crop in a given province. The irrigation requirements reported by Liu et al. are 

provincial average estimates from 1970 to 2000. However, the real irrigation 

requirements vary year–by-year and pixel-by-pixel, as a function of the different 

climate and soil conditions.   
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Second, to simulate irrigation impact in the future, I first estimated the 

irrigation requirement (IR) in two future time periods (2050 and 2100) under three 

scenarios (B1, A1B and A2) and further calculated the irrigation water withdrawal in 

the future by combining the future IR and mean irrigation water withdrawal during 

1978-2008. There are some limitations in IR estimation:  

1) I assumed that the cropland area and growing season would remain 

unmodified by climate change. Considering the higher temperatures of the future, 

however, both cropland area and sowing date might change. Increased CO2 

concentrations may also directly affect crop transpiration by decreasing bulk stomatal 

conductance and influence the evapotranspiration generated by crops in the future. 

These considerations are beyond the scope of my current study.  

2) I estimated IR simply from the difference between evapotranspiration and 

effective precipitation. IR is impacted not only by climate factors (temperature, 

downward solar radiation, precipitation, etc.) but also by factors such as the water-

holding capacity of soil. Information about soil type, soil context, and soil moisture 

are difficult to get. I ignored IR differences owing to the water-holding capacities of 

soil in this study.  

3) I calculated the net IR, not the actual IR. Actual IR, but not net IR, can 

reflect actual agricultural water requirements and water stress. Actual IR is the total 

water requirement of the procedure of transferring irrigation water from water 

resources (rivers, reservoirs, and aquifers) to fields. To calculate actual IR, more 

information is needed, especially irrigation water use efficiency; however, changes in 

irrigation water use efficiency differ from province to province owing to the 
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differences in financial investment by local government, current development level, 

and the improvement potential of irrigation systems. In future, a more complex 

method for estimating future IR is needed. 

Third, the CLM cannot simulate paddy rice which is the dominant crop type in 

South China. So, in this dissertation, I did not distinguish rice from other crop types, 

and treat all crops as the same.  However, paddy rice has very different biophysics 

and biochemical characteristics from wheat and corn, both of which can be simulated 

by CLM. Paddy rice has more drainage and runoff loss and also releases more 

methane, an important greenhouse gas. Hence, paddy rice should be added in the 

CLM in a future study. 

Finally, my irrigation simulation is based on the CLM offline mode rather 

than CLM online mode in order to save computing time. It will cost one month to do 

a 10-year run with coupled CLM on a server with 20 processes and 24G system 

memory. In my dissertation, I designed 28 experiments; 4 of them are 27-year runs 

and another 24 of them are 50-year runs. Finishing the 28 experiments by coupled 

CLM needs several years. This significant temporal component for analysis is beyond 

the scope of this research. Finally, I used the offline CLM in this dissertation. 

However, the offline mode might underestimate the irrigation impact on near surface 

climate because the offline mode cannot reflect the indirect cooling effect such as 

cooling from an increase in cloud-reflected solar radiation. As a result, the finding 

that at national scale, changes in land management are not comparable to changes in 

land cover in terms of their effects on the climate of China, need to be validated by 

coupling CLM with CAM.  
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This study has significant implications for policy making at both national- and 

provincial-levels makers regarding food security in China. As the most populous 

country in the world, China always faces challenges for food security. The country 

has less than 10% of the world's arable land to feed its 1.3 billion people (Wu et al. 

2010). Arable land and available water resources are distributed unevenly in China. 

Most arable lands are concentrated near river valleys and along the southern and 

eastern coasts. The North China Plain is the biggest agricultural area but has access to 

only own 24% of the total fresh water available in China. South China has abundant 

water and fertile soils, but available cropland has shrunk significantly during past 

decades owing to the urbanization and the expansion of large-scale industry (Deng et 

al. 2009; Liu et al. 2008; Liu and Tian 2010). To realize self-sufficiency in food 

production, China has undertaken large-scale programs to increase agricultural 

production, such as using chemical pesticides and fertilizers, developing new strains 

of genetically modified crops, and investing in irrigation infrastructure. Among those 

measures, agricultural irrigation has been reported to have made the largest 

contribution to crop yield increase and poverty reduction in rural areas (Huang et al. 

2006).  The information about the amount and extent of currently irrigated area 

provides a data support for land management department to make polices related to 

land use/management. For example, how much irrigated area will be needed and how 

much rainfed cropland needs to be transformed into irrigated cropland in order to 

afford the increased population. 

The time series gridded dataset of annual irrigation water withdrawal from 

1978 to 2008 produced in this study and the future irrigation water withdrawal 



 

139 
 

estimated in this study also have some implications for policy makers on water 

security in China. Water use can be divided into domestic, industrial, agricultural, and 

ecological uses. Agricultural use includes water for farmland irrigation, forestry, 

animal husbandry, and fisheries. The water use structure of China is changing along 

with economic development. More and more water has been diverted to the industrial, 

ecological, and domestic sectors. The irrigation water for farmland is also shrinking. 

To achieve sustainable economic development and satisfy increased requirements 

needed to supply food for an expanding population, the government must develop 

appropriate water management strategies to harmonize the water use structure among 

different sectors as well as within the agricultural sector The information about the 

amount and distribution of irrigation water consumption help water management 

department to estimate the total water consumption and water use efficiency, locate 

the hotspots with high water stress, develop optimized water use structure and smartly  

invest in water infrastructure, irrigation systems, and irrigation equipment. 

The results about impact of irrigation from this dissertation contribute to a 

better understanding of the irrigation impact on near-surface climate which can 

improve our knowledge of how human activities influence climate, guide future 

policies aimed at mitigating or adapting to climate change, and help design better 

models to project the impact of irrigation on the climate system and irrigation 

requirements in the future.  
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