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In this thesis, we study the mean reverting property of the VIX time series,

and use the VIX process as the underlying. We employ various mean reverting

processes, including the Ornstein-Uhlenbeck (OU) process, the Cox-Ingersoll-Ross

(CIR) process and the OU processes driven by Lévy processes (Lévy OU) to fit

historical data of VIX, and calibrate the VIX option prices. The first contribution

of this thesis is to use the Lévy OU process to model the VIX process, in order to

explain the observed high kurtosis. To price the option using the Lévy OU process,

we develop a FFT method.

The second contribution is to build a joint framework to consistently model

the VIX and VIX derivatives together on the entire time series of market data.

We choose multi-factor mean-reverting models, in which we model the VIX process

as a linear combination of latent factors. To estimate the models, we use Euler

approximation to find a discrete approximation for the VIX process. Based on this



approximate, we consider various filter methods, namely, the Unscented Kalman

Filter (UKF), constrained UKF, mixed Gaussian UKF and Particle Filter (PF) for

estimation. The performances of these models are compared and discussed. Radon

Nikodym derivatives of the risk-neutral measure are discussed with respect to the

physical measure for the jumps. A simple dynamic trading strategy was tested on

these models.
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Chapter 1

Introduction

1.1 VIX and VIX Derivatives

The CBOE Volatility Index or VIX was first introduced by CBOE back in 1993

to measure the markets expectation of 30- day volatility implied by at-the-money

S&P 100 option prices. VIX soon became the premier benchmark for U.S. stock

market volatility and is often referred to as the ”fear index” (CBOE 2003 [24]). In

2003, the CBOE revised the definition of VIX. The new VIX is the square root

of one month par variance swap rate on S&P 500. A variance swap is a forward

contract on annualized variance, the square of the realized volatility. The pay off of

a one month variance swap (ignore the notional ) is given by

Payoff =
N

n

n∑
i=1

[log(
Si
Si−1

)]2 −K2 (1.1)

where Si is the stock price, N/n is the annualization factor, N and n are the num-

ber of business days in one year and on month respectively, and K is the quote.

Therefore the value of VIX can be expressed as

V IX2 = EQN

n

n∑
i=1

[log(
Si
Si−1

)]2 (1.2)

where EQ stands for risk-neutral measure. The new VIX estimates expected volatil-

ity by averaging the weighted prices of S&P 500 puts and calls over a wide range of

strike prices. The methodology is based on the finding of Carr and Mandan (1998)
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[19] that a variance swap can be perfectly statistically replicated through vanilla

puts and calls whereas a volatility swap requires dynamic hedging. Most data ser-

vice providers (as well as the CBOE) now provide data for the new VIX calculated

retroactively back to the early 1990s. But apart from its role as a risk indicator,

nowadays it is possible to directly invest in volatility as an asset class by means of

VIX derivatives. VIX futures were introduced by CBOE in March 2004. They are

standard futures contracts on VIX. Further, European-style options on the VIX,

VIX options were introduced in February 2006. VIX options and VIX futures are

among the most actively traded contracts at CBOE and CBOE Futures Exchange

(CFE). The negative correlation of volatility to stock market returns is well docu-

mented and suggests a diversification benefit to including volatility in an investment

portfolio. VIX futures and options are designed to deliver pure volatility exposure

in a single, efficient package(CBOE 2003 [24]).

1.2 VIX Models

In the early 1970s, Black, Scholes and Merton developed the famous Black

Scholes model. The Black-Scholes model, which uses geometric Brownian motion

to model the stock process, is the most celebrated model in the pricing of stock

options. However empirical evidence suggests that the geometric Brownian motion

assumption does not describe the statistical properties of financial time series very

well, mainly in two aspects. In Cont (2001) [21] a more extended list of stylized

features of financial data is given.
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• The log returns do not behave according to a normal distribution.

• The estimated volatilities or the parameters of uncertainty estimated (or more

generally the environment), for instance, the historical volatilities change stochas-

tically over time and are clustered (Schoutens 2003[56]).

The first aspect has encouraged researchers to develop non-Gaussian models

in the stock process. The Lévy models are one category of the successful models.

The second aspect motivates the introduction of models where volatility is itself

stochastic. Empirical data show non-Gaussianity in the VIX process too. In order

to model the stochastic evolution of the VIX, it is reasonable to employ models

developed for stocks and stock indexes. However, the major difference between

the two areas is that VIX is mean-reverting while stocks or stock indexes are not.

Numerous models that describe the general volatility or VIX processes have been

implemented in the literature.

Whaley (1993) [55] used the geometric Gaussian model in the pricing of volatil-

ity options. Grunbichler and Longstaff (1996) [31] proposed the square root pro-

cess, Cox-Ingersoll-Ross (CIR) to model VIX and price the VIX options. Assuming a

stochastic volatility model for the stock process, Howison, Rafailidis, and Rasmussen

(2004) [34] provided closed-form formulas for volatility-average and variance swaps

for a variety of diffusion and jump-diffusion models for volatility, and described a

general partial differential equation framework for volatility derivatives. Lin and

Chang (2009) [45] derived a closed-form VIX option pricing model by using corre-

lated jump diffusion processes to model both the S&P 500 index and the S&P 500
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instantaneous volatility.

Due to incompleteness of the market, the VIX indexes cannot be replicated

by the stocks or options. VIX derivatives are trading instruments. Historical data

are available for the VIX and its derivatives, if we single out the market related to

VIX, the only underlying process is the stochastic VIX index level. In this thesis, we

concentrate one the mean-reverting characteristic of the VIX, using mean-reverting

processes as the underlying process for models. Starting from assuming VIX is a

mean-reverting process Vt, the VIX derivatives are priced by arbitrage-free theory.

Let T be the maturity of the derivative contracts, let r be the interest rate and let

τ = T − t. The fair price of a VIX future is the time t risk-neutral expectation of

the VIX at maturity T ,

F (t, Vt) = EQ
t VT , (1.3)

Similarly, the prices of a European VIX call and put can be written as

C(t, Vt) = e−rτEQ
t (VT −K)+

P (t, Vt) = e−rτEQ
t (K − VT )

+. (1.4)

We compare several mean-reverting models, including the Ornstein-Uhlenbek

(OU) model, the Cox-Ingersoll-Ross (CIR) model and two Lévy OU models. We

estimate their parameters and compare their performance both in physical measure

and risk-neutral measure. The comparisons are done on both in-sample data and

out-of-sample data. Two Lévy OU processes, Variance Gamma OU (or CGMOU)

and CGMY OU (CGMY process see [18]), are used in this research, and have been

proved to perform well. The uneven jump measure in the Lévy OU process yields
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the desired skewness, and a heavy tail weight in the jump measure provides adequate

kurtosis.

1.3 Multi-factor Dynamic Model

Option pricing models constructed for a variety of underlying assets are typi-

cally calibrated to derivative prices at a single time point. In interest rate modeling,

there is an extensive literature on dynamic term structure models that estimate

models across an entire time series of market prices of discount bonds and interest

rate derivatives. Once the parameters are estimated from the historical data, the

models are used to mark to market other over-the-counter derivatives or to make

predictions for the market over a period of time without calibration. Examples in-

clude Duffee (2002) [28], Dai and Singleton (2000) [26]), Heidari and Wu (2003) [32]

and Heidari and Wu (2009) [33].

Heidari and Wu (2009) propose a multi-factor model structure using Gaussian

OU and CIR factors that successfully prices both interest rates and interest rate

options. They employ two models; each has two orthogonal sets of mean reverting

factors with the first set driving the yield curve and the second set driving options

exclusively. The first model uses Gaussian affine or OU factor structure, while

the second model uses a CIR factor structure, which allows for both stochastic

central tendency and stochastic volatility. The estimation results show that the three

yield curve factors explain over 99% of the variation of the yield curve, with three

additional option factors improving the explained percentage variation of implied
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volatilities to over 99%. Both models give comparably satisfactory results.

The VIX has the same mean-reverting character as the interest rate, and

consistent records of time series data of VIX index and its derivatives are available

going back more than four years. Inspired by Heidari and Wu, in the second part of

the research, we use multi-factor mean-reverting models to build a consistent frame

for the time series of index levels and the derivative prices. Under this framework,

the factors capture both the systematic variation of VIX in the physical measure

and the VIX derivative variation in the risk-neutral measure. We begin from the 3-

factor Gaussian OU process (GOU3) and the 3-factor CIR process (CIR3), which are

similar to the models in Heidari’s paper, and then introduce the 2-factor CGMOU

process (CGMOU2), which is a Lévy OU process driven by Variance Gamma factors.

In the multi-factor dynamic models, the VIX is modeled as a linear combi-

nation of mean-reverting factors. The factors are unobservable or latent, while the

VIX price level and the price of the VIX futures and options are the observable

measurements. The idea of the model is formulated below:

xt = F (xt−1) + εt

yt = H(xt; Θ) + et (1.5)

where the first equation is the discretized approximation to the process of the state

factors xt, F (xt−1) is the drift term, and εt is the uncertainty of the dynamic forward

process. In the second equation, yt are the observed prices, H(xt; Θ) represents the

measurement function with respect to the state variables, Θ is the parameter set to

be estimated and et is the measurement noise.
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The estimation of parameters in a dynamic setting is one of the major function

of the filter technique. The non-linear measurement function H(xt; Θ) excludes the

use of the regular Kalman filter. The choice of different filter methods is based on

the assumption about the εt. In the first two multi-factor dynamic models, GOU3

and CIR3, the background driving randomness is Gaussian, and we use Unscented

Kalman filter ( Julier 1997 [36]). For the CGMOU model, whose background driving

randomnesss is a Variance Gamma process, we employ two filter methods to handle

the non-Gaussianity. We can either employ a mixed-Gaussian density to approx-

imate the non-Gaussian εt, or we can directly use the Particle Filter (PF) [17] to

approximate the distribution of the states.

At each time step the filter time-updates the latent xt and gives the prediction

of the measurement mean ỹt. Once the new market observation yt is observed, the

filter updates the state variables according to Bayes’ theorem. The second step is

called measurement update. A filter technique recursively performs time updating

and measurement updating at each time step until it reaches the end of the time

series. We further assume that the forecasting errors on the measurement series

are normally distributed and define the weekly log likelihood function (ignoring the

constant term) as

lt(yt; Θ) = −1
2
(yt − ỹt)

T (At)
−1(yt − ỹt), (1.6)

where At denotes the conditional covariance matrix of the forecasts of the measure-

ment series, yt and ỹt are market observations and model predictions respectively.

The model parameters are estimated by maximizing the sum of log likelihoods de-
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fined in Equation (1.6) over all time steps t = 1, . . . , T :

Θ̂ = argmax
Θ

T∑
t=1

lt(yt; Θ). (1.7)

In this dissertation, Chapter 2 introduces the Lévy process and three types of

mean-reverting process: the Gaussian OU, CIR and general Lévy OU. Chapter 3

applies the mean-reverting process to estimate the parameters both in the physical

measure and the risk-neutral measure and compares their performances. Chapter 4

briefly introduces filter techniques and focuses mainly on the filter methods employed

in the dissertation. The algorithms of Unscented Kalman Filter, mixed-Gaussian

Filter and Particle Filter are reviewed. In Chapter 5, using the mean-reverting

processes described above, we build multifactor dynamic models for the joint phys-

ical measure and risk-neutral measure. Then we apply various filter techniques to

estimate the parameters for those models. Their performances are compared.
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Chapter 2

Lévy Process and Mean Reverting Process

2.1 Lévy Process

2.1.1 Introduction

Brownian motion has been the most widely studied stochastic process in math-

ematical finance since Bachelier [6] introduced the Brownian motion to model asset

prices. Bachelier’s model led to the celebrated Black-Scholes model (Black and Sc-

holes 1973) [12], where the asset price follows geometric Brownian motion. However,

empirical data does not agree with the Brownian models very well. For instance,

the historical log returns do not have a normal distribution. They have fat tails

or excess kurtosis. The Black-Scholes model cannot explain the so-called volatility

smile. In order to overcome this imperfection, non-normal Lévy models were de-

veloped and have become increasingly popular in the last decade. Mandelbrot [43]

studied the first non-normal exponential Lévy process in the 1960s and introduced

the α-stable Lévy motion with index α < 2. Later, models based on three or more

general pure jump Lévy processes, such as variance gamma (VG), normal inverse

Gaussian (NIG) and CGMY, were developed and studied.

The Lévy process, named after the French mathematician Paul Lévy, is a

stochastic process which is continuous in probability and has independent and sta-
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tionary increments.

The Lévy process can be thought of as an analogue of random walk in contin-

uous time. Every Lévy processes has a càdlàg, i.e. right continuous with left limits,

modification which is itself a Lévy process. The formal definition can be written as

follows:

Definition 1 (Lévy Process) A càdlàg stochastic process (xt)t�0 on (Ω,F ,P)

with x0 = 0 is called a Lévy process if it possesses the following properties citeSchoutens:

• Independent increments: for any 0 < t0 < t1 < ... < tn, the random variables

xt0, xt1 − xt0, xt2 − xt1, . . ., xtn − xtn−1 are independent.

• Stationary increments: the law of xt+h − xt does not depend on t.

• Stochastic continuity: ∀ε > 0, limh→0 P (|xt+h − xt| � ε) = 0.

The independent stationary increments property of a Lévy process leads to

infinite divisibility of the marginal distribution. For any positive integer n, if we

sample the path of a Lévy process with n equal time intervals, xt can be written as

a sum of n iid random variables. In other words, the characteristic function of xt is

the nth power of another characteristic function. This property of the distribution

is called infinite divisibility, because of which the characteristic function φxt(u) of

Lévy process xt can be expressed in a simple form

φxt(u) = E[eiuxt ] = etψ(u),

where ψ(u) is called the characteristic exponent of the Lévy process [22].
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A Lévy process can be decomposed into three independent components: a

deterministic drift with rate γ, a continuous path diffusion with volatility σ and a

jump process with Lévy measure ν. Hence, a Lévy process can be fully characterized

by (γ, σ2, ν). We call (γ, σ2, ν) the characteristic triplet of the Lévy process.

Definition 2 (Lévy Measure) Let (Xt)t�0 be a Lévy process on Rd. The measure

ν on Rd defined by:

ν(A) = E[#{t ∈ [0, 1] : Δxt �= 0,Δxt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of x: ν(A) is the expected number of jumps per unit time

whose size belongs to A. If the Lévy measure is of the form ν(dx) = K(x)dx, we

call K(x) the Lévy density.

For a one-dimensional Lévy process, the Lévy -Khintchine formula gives the

expression for characteristic exponent.

Theorem 1 (Lévy-Khintchine Representation) Let (xt)t�0 be a Lévy process

on R. The characteristic exponent ψx1(u) can be decomposed as follows:

ψx1(u) = iuγ − 1

2
σ2u2 +

∫
R\{0}

(eiux − 1− iux1|x|<1)ν(dx). (2.1)

with
∫
R\{0}(1 ∧ x2)ν(dx) <∞.

The quantity
∫
R\{0} ν(dx) denotes the total arrival rate or activity of a Lévy

process. The Lévy process is of finite activity if
∫
R\{0} ν(dx) < ∞. Otherwise the

Lévy process has infinite activity. The quantity
∫
R\{0} |x|ν(dx) denotes the total

variation. If
∫
R\{0} |x|ν(dx) <∞, the Lévy process is of finite variation.

11



The Brownian motion and the Poisson process are special cases of the Lévy

process. When ν = 0, the Lévy process does not have jumps, the path is continuous,

and the process becomes a Brownian motion. When the Lévy measure ν(dx) =

λδ(1), λ is a constant, δ(1) is the Dirac function at 1, and the process becomes a

Poisson process. When σ2 = 0, the Lévy process has no diffusion part and becomes a

pure jump process. Pure jump Lévy processes have no Brownian motion component

but their tiny jumps mimic continuous movement. The Variance Gamma (VG)

(Madan and Seneta 1987[42]) and CGMY (Carr et el 2002[18]) are two well known

pure jump Lévy processes.

2.1.2 Variance Gamma Process

A Variance Gamma process can be expressed in two forms [41]. A VG process

V G can be expressed as a Brownian motion θt + σWt time-changed by a gamma

process gt(1, ν):

xt(θ, σ, ν) = θgt(1, ν) + σW (gt(1, ν)), (2.2)

where W = (Wt; t ≥ 0) is a standard Brownian motion and the independent subor-

dinator (i.e. an increasing, positive Lévy process), gt(1, ν) is a gamma process with

unit mean rate and variance rate ν. A gamma process is a random process with in-

dependent gamma distributed increments and it has a gamma marginal distribution

[3].

Alternatively, a VG process V G can be represented as the difference of two

12



gamma random processes gt(C, 1/M) and gt(C, 1/G):

xt(C,G,M) = gt(C, 1/M)− gt(C, 1/G) (2.3)

where

C = 1/ν,

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1
,

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1
.

The following equations give the characteristic exponent and Lévy density of

a VG process:

• Characteristic exponent

ψV G(u) = −1/ν log (1− iθνu+ (σ2ν/2)u2
)

= −C(log(1− iu/M) + log(1 + iu/G))

• Lévy density

KV G(x) =

{ CeGx

|x| x < 0

Ce−Mx

x x ≥ 0

(2.4)

The VG process has infinite activity. That is the VG process has infinitely

many jumps in any finite time interval. The VG process also has paths of finite

variation with no Brownian component. The popularity of the VG process lies in

its flexibility in handling skewness and excess kurtosis. When θ = 0, or G = M ,

13



the distribution is symmetric. Negative values of θ or G > M result in negative

skewness in the distribution. Similarly, the parameter ν = 1/C primarily controls

the kurtosis.

2.1.3 CGMY Process

Through introduction of a fourth parameter Y to the second parameterization

VG(C,G,M), the Variance Gamma process is extended to a new model. The gener-

alized model is called the CGMY model as developed by Carr et al 2002 [18]. The

parameter Y is added to the power of the denominator x in the expression for the

Lévy density of the VG process

KCGMY (x) =

{ CeGx

|x|1+Y x < 0

Ce−Mx

x1+Y
x ≥ 0

(2.5)

where C,G,M > 0, Y < 2. Y < 2 is needed to guarantee a finite second moment.

Adding the fourth parameter Y allows us to have more flexibility to control the

behavior of the path. For Y < 0 the Lévy process is of finite activity; for 0 ≤ Y < 1,

the process is of infinite activity but finite variation; for 1 ≤ Y < 2 the process is of

infinite activity and infinite variation. The VG process is a special case of CGMY

with Y = 0.

The characteristic exponent of CGMY is given by

ψCGMY (u) = CΓ(−Y ) ((M − iu)Y −MY + (G+ iu)Y −GY
)

(2.6)

where Γ(·) is the gamma function. The cumulants of V G(θ, σ, ν) and CGMY (C,G,M, Y )

are summarized in Table 2.1:
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Table 2.1: Cumulants of V G and CGMY

Cumulants V G(θ, σ, ν) CGMY (C,G,M, Y )

Mean θt tCΓ(1− Y )(MY−1 −GY−1)

Variance σ2t+ νθ2t tCΓ(2− Y )(MY−2 −GY−2)

c3 3σ2θνt+ 2θ3ν2t tCΓ(3− Y )(MY−3 −GY−3)

c4 3σ4νt+ 6θ4ν3t+ 12σ2θ2ν2t tCΓ(4− Y )(MY−4 −GY−4)

2.1.4 Equivalence of Measures for Lévy processes

Definition 3 Let P and Q be two probability measures on the same measurable

space (Ω,F ). We say P and Q are equivalent if for all F ∈ F

P(F ) = 0 ⇔ Q(F ) = 0.

The Radon-Nikodym derivative denoted by Λ = dQ/dP is a positive random

variable such that ∀A ∈ F , Q(A) =
∫
A
ΛdP. One property of the Radon-Nikodym

derivative is that for any random variable Z, we have

EQ[Z] = EP

{
Z
dQ

dP

}
.

Proposition 1 (Equivalence of measures for Brownian motions with drift)

Let (X,P) and (X,Q) be two Brownian motions on (Ω,Ft) with volatilities σP > 0

and σQ > 0 and drifts μP and μQ. The measures P and Q are equivalent if σP = σQ

and singular otherwise. When they are equivalent the Radon-Nikodym derivative is

dQ

dP
|Ft = exp

{
μQ − μP

σ2
Xt − 1

2

μQ − μP

σ2
t

}
. (2.7)
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A more general version of this result is given by Giranov theorem [?]

Proposition 2 (Equivalence of measures for general Lévy Processes [?]Sata 1999Sato

Let (X,P) and (X,Q) be two Lévy processes on R with characteristic triplets (σ2, ν, γ)

and (σ
′2, ν ′, γ′). Then P and Q are equivalent if and only if the three following con-

ditions are satisfied:

1. σ = σ′;

2. the Lévy measures are equivalent with

∫ ∞

−∞
(eφ(x)/2 − 1)2ν(dx) <∞

where φ(x) = log(dν ′/dν);

3. if σ = 0 then we must in addition have

γ′ − γ =

∫ 1

−1
x(ν ′ − ν)(dx).

When P and Q are equivalent, the Radon-Nikodym derivative is

dQ

dP
|Ft = eUt

with

Ut = ηXc
t −

η2σ2t

2
− ηγt

+limε→0(
∑

s≤t,|ΔXs|>ε
φ(ΔXs)− t

∫
|x|>ε

(eφ(x)−1ν(dx))).

Here (Xc
t ) is the continuous part of (Xt) and η is such that

γ′ − γ −
∫ 1

−1
x(ν ′ − ν)(dx) = σ2η

if σ > 0 and η = 0 if σ = 0.
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From the Lévy measure, one can show that a CGMY process can be decom-

posed into the difference of a positive jump process and a negative jump process:

Xt = X+
t −X−

t .

For a VG process X+
t and X−

t are both gamma processes.

Proposition 3 (Change of Measure for CGMY process (Fu 2007[29])) Let

P and Q be two probability measures on the path space generated by two processes

CGMY(C,G,M,Y) and CGMY(C ′, G′,M ′, Y ′). The measures P and Q are equiva-

lent if and only if C = C ′ and Y = Y ′. If they are equivalent, the Radon-Nikodym

derivative dQ/dP|Ft depends only on the accumulated positive jumps X+
t and neg-

ative jump X−
t instead of the whole path ΔX±

s , s ≤ t, and

dQ

dP
|Ft = e−tZφ+(X+)φ−(X−)

where

Z =

∫ ∞

−∞
(ν ′ − ν)(dx)

φ−(x) = e−(G
′−G)|x|, x < 0

φ+(x) = e−(M
′−M)|x|, x > 0.
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2.2 Ornstein Uhlenbeck (OU) Process

2.2.1 Definition

Mean reversion is a tendency for a stochastic process to remain near, or tend

to return over time to a long-run mean. Many finance data exhibit mean-reverting

properties, for instance interest rate and volatility. The simplest and most widely

used mean reverting process is Ornstein Uhlenbeck (OU) Process.

Definition 4 (Ornstein Uhlenbeck (OU) Process) A càdlàg stochastic process

(xt)t�0 on (Ω,F ,P) is called an Ornstein Uhlenbeck (OU) process if it possesses the

following properties:

• Stationary: for any 0 < t0 < t1 < ... < tn and h > 0, the random variables

(xt1 , xt2 , . . . , xtn) and (xt1+h, xt2+h, . . . , xtn+h) are identically distributed; that

is, time shifts leave joint probabilities unchanged,

• Gaussian: for any 0 < t0 < t1 < ... < tn, the random variables (xt1, xt2 , . . . , xtn)

are multivariate normally distributed,

• Markovian: for any 0 < t0 < t1 < ... < tn, P (xtn ∈ A|xtn−1 , xtn−2 , . . . , x0) =

P (xtn ∈ A|xtn−1), ∀A ∈ B(Rn)

• Stochastic continuity: ∀ε > 0, limh→0 P (|xt+h − xt| � ε) = 0.

Theorem 2 A stochastic process is an OU process if it satisfies the following stochas-

tic differential equation:

dxt = κ(m− xt)dt+ σdWt (2.8)
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where Wt is a standard Brownian motion, κ is the rate of mean reversion, and m is

the long run mean.

Starting from x0, the solution of the SDE is given by

xt = e−κtx0 − (1− e−κt)m+ e−κt(2κ)−
1
2W(e2κt−1). (2.9)

Conditional on x0, xt has a Gaussian marginal distribution. In the one dimensional

case, the first and second moments are given below

E(xt|x0) = e−κtx0 − (1− e−κt)m,

Cov(xs, xt|x0) =
σ2

2κ
(e−κ|s−t| − e−κ|s+t|), .

and the long term mean (i.e. as t→ ∞) is m.

2.3 Cox-Ingersoll-Ross (CIR) Process

Another widely used mean reverting process, especially in modeling interest

rates, is the Cox-Ingersoll-Ross (CIR) Process, or square root diffusion process. It is

the underlying process of the well-known Cox-Ingersoll-Ross term structure model

(Cox et al 1985[25]).

The CIR process xt ∈ R satisfies the stochastic differential equation

dxt = κ(m− xt)dt+ σ
√
xtdWt

where m, σ, and κ are the parameters. Here κ is the rate of mean reversion, m is

the long run mean, and σ corresponds to volatility.
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Conditional on a positive initial state x0, xt is distributed as 1/γ(t) times

a non-central chi-square distribution with d degrees of freedom and non-centrality

parameter λ(t) (Cox et al 1985[25]):

xt/γ(t) ∼ χ2(d, λ(t)),

where

d = 4κm/σ2,

γ(t) =
4κ

σ2(1− e−κt)
,

λ(t) = x0γ(t)e
−κt.

If m, σ, κ are all positive, and 2κm > σ2, the CIR process is well-defined, always

positive.

2.4 Lévy OU Process

In the OU process, the Brownian motionWt is the driving force, and thus called

the Background Driving Process. As we discussed, the randomness in empirical

financial data most often shows non-Gaussianity. Barndorff-Nielsen and Shephard

2001 [10] introduced the Lévy OU process, which is driven by a more generalized

Background Lévy Process (BDLP) zt. The Lévy OU process is more flexible, and

can be used to explain the non-Gaussianity in the observations.

The generalized Lévy OU process is a stochastic process satisfying the SDE

dxt = κ(m− xt)dt+ σdzt (2.10)
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where zt is a Lévy process. Given initial value x0, The SDE has solution

xt = x0e
−κt +m(1− e−κt) +

∫ t

0

eκ(s−t)dzs. (2.11)

The last term is the stochastic integral of the nonrandom function eκ(s−t). If zt has

characteristic triplet (γ, σ2, ν, ), then

∫ t

0

es−tdzs = γ
∫ t
0
eκ(s−t)ds+ σ

∫ t
0
es−tdWs

+
∫ t
0

∫
|x|≤1 e

κ(s−t)J̃z(ds× dx)

+
∫ t
0

∫
|x|>1

eκ(s−t)J̃z(ds× dx), (2.12)

where Jz(A) is the jump measure, which counts the number of jumps with jump size

in set A, and J̃z(A) is the compensated jump measure. If z is a Brownian motion, xt

is the Gaussian OU process. If zt is a jump process with finite activity, the jumps of

xt are the same as the jumps of zt. Between the jumps zt, xt decays exponentially due

to the linear damping term. This results in a more realistic asymmetric behavior for

volatility than in diffusion models: volatility jumps up suddenly but simmers down

gradually (Tankov 2003[50]).

Let ψ(u) be the characteristic exponent of the BDLP zt. The characteristic

function of Xt is given by

φxt(u) = exp{iu[(X0 −m)e−κt +m] +

∫ t

0

ψ(ueκ(s−t)ds)}. (2.13)

Assuming the characteristic triplet of BDLP (γ, σ2, ν) defined as above, the

distribution of xt is infinitely divisible for every t and has characteristic triplet

(γyt , (σ
y
t )

2, νyt ), where
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γyt =
γ

κ
(1− e−κt) + x0e

−κt

(σyt )
2 =

σ2

2κ
(1− e−2κt)

νyt =

∫ eκt

1

ν(εB)
dε

κε
. (2.14)
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Chapter 3

One-Factor Model

VIX process displays a mean reverting property. We use various mean revert-

ing processes to model the historical movements of the VIX in physical measure.

We also try various mean reverting processes to calibrate the VIX option prices in

risk neutral measure. From the comparison the performances among those mean

reverting processes, we choose candidates for the dynamic multifactor joint model.

3.1 Estimate the VIX Process in Physical Measure

VIX process is mean reverting in the physical measure. We can see this from

the historical path in Figure 3.1. Most time the VIX fluctuates around its long-term

mean; it jumps high during economic crises. For instance, during the last crisis that

began in 2007 the VIX climbs to a peak in late 2008 and then tapers off. We use

various mean reverting processes to model the historical movements of the VIX,

estimate their parameters and compare their performances.

3.1.1 Gaussian OU

We first assume a Gaussian OU process for the VIX movement and estimate

the Gauss OU model. We do ordinary least squares linear regression on daily changes

of VIX using the following relationship. We obtain the estimated parameters and
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Figure 3.1: Historical VIX path from January 1990 to September 2010.

the regression residuals σεt

Vt+Δt − Vt = −(1− e−κΔt)Vt +m(1− e−κΔt) + σεt.

The PDF of the residuals is plotted in the top left panel of Figure 3.2. The residuals

have a skewness of 0.9104 and excess kurtosis of 18.5009, which is large enough to

invalidate the normal assumption in the Gaussian OU model. The Kolmogorov-

Smirnov distance (K-S distance) for different models are summarized in Table 3.1.

The large K-S distance distance also shows that the BDLP is badly fitted by normal

distribution.
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3.1.2 CIR

We next test the Cox-Ingersoll-Ross (CIR) model. According to the SDE of

the CIR model below,

dVt = −κ(Vt −m)dt+ σ
√
VtdWt. (3.1)

We do ordinary least squares linear regression on VIX daily data using

Vt+Δt − Vt√
Vt

=
κmΔt√

Vt
− κ
√
VtΔt+ σεt. (3.2)

The residuals σεt from the CIR model have a skewness of 1.0113, and excess kurtosis

of 10.4275. The large excess kurtosis again casts a doubt on the assumption of

normality. The large K-S distance shows that the CIR model does not fit either.

3.1.3 Lévy OU

To fit the VIX data, we introduce non-Gaussianity into the BDLP. The general

Lévy OU models employ OU processes driven by non-Gaussian background Lévy

processes (BDLP) zt:

Vt = −κ(Vt −m)dt+ dzt.

We have tried various Lévy OU processes. The BDLP’s in CGMOU, CGMYOU are

the CGM (Variance Gamma), and the CGMY processes. Barndorff-Nielsen (2001)

[10] proposes a positive non-Gaussian OU process to describe the movement of

volatility. To test whether a Lévy OU process with only positive jumps can model

the VIX process, we test the CMOU and CMYOU, whose BDLP are a Gamma

process and a CGMY process with only positive jumps respectively.
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To estimate the Lévy OU process, we first obtain V ′ by subtracting the decay

term from the daily VIX value and then standardize V ′ into Ṽ . The density is fitted

by Ũ , or standardized Ũ . The quantities V ′, Ṽ , U and Ũ are given below:

V ′ = Vt+Δt − e−κΔtVt

Ṽ =
S −Mean(V ′)

S(V ′)
,

U =

∫ Δt

0

es−ΔtdZs

Ũ =
U − E(U)

Stdv(U)
,

where Mean(·), S(·) E(·) and Stdv(·) stand for the sample mean, sample standard

deviation, expectation and the standard deviation respectively. We choose a range

from -6 to 6, then divide the range into bins of width 0.1. We run the MLE on

the middle point of the bins bi. The density pi are given through FFT of the

characteristic function of U . We count the frequencies niof Ṽ fallen within the

ith bin. The parameters are estimated by maximizing the sum of Log Likelihood

ni log(pi).

3.1.4 Results

The empirical distribution Fn for n iid observations Xi is defined as

Fn(x) =
1

n

n∑
i=1

I{Xi≤x},
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where I{Xi≤x} is the indicator function. The Kolmogorov-Smirnov distance (K-S

distance) for a given CDF is defined as the supremum of the distance between the

empirical and the hypothesized distribution

Dn = sup
x

|Fn(x)− F (x; θ̂)|.

Smaller K-S distance indicates goodness of fit. The K-S distance and the estimated

parameters of each model were computed for estimated VIX data and are tabulated

in Table 3.1.

The estimations are based on the time series of daily VIX data from January

2, 1990 to October 27, 2010. The VIX data are obtained from Yahoo.com.

We can see from the results that neither the Gaussian OU nor the CIR model

fits well. They both have large K-S distances. The positive Lévy OU processes, the

CMOU and the CMYOU have large K-S distances. This shows that positive jumps

are not enough to fit the time series of VIX data and negative jumps need to be

included in the model. A large G value in the CGMOU and the CGMYOU model

shows that it is necessary to include an occasional negative jump or a less significant

diffusion in the background processes. Therefore, we will discard the positive OU

processes from now on. The Lévy OU models with VG and CGMY as BDLP give

satisfactory results, and CGMYOU does better at the price of adopting an extra

parameter.

Figure 3.2 illustrates the K-S distance for different models. The solid lines

represent the hypothesized PDFs calculated by MLE, while the circles represent the

empirical PDFs.
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The computation is done by a MATLAB program running on an AMD Quad-

Core processor at 2.30 GHz. The estimation for Gaussian OU and CIR takes less

than 1 second, while for the other models, there is no significant difference in the

computation time, which is around 100 seconds.

Table 3.1: Result of estimation in physical measure. Parameters are estimated on

VIX data from January 2, 1990 to October 27, 2010.

Model Parameters K-S distance

Gaussian OU κ : 0.1155, m : 20.4071, σ : 24.1118 0.1152

CIR κ : 0.0135, m : 20.4080, σ : 4.5745 0.0822

CGMOU κ : 0.0368, m : 11.3075, C : 0.8110, 0.0572

G : 1.3961, M : 0.9669

CGMYOU κ : 0.2401, m : 11.0121, C : 2.3011, 0.0505

G : 9.7808, M : 0.0436, Y : 1.1245

CMOU κ : 0.5468, m : 10.2103, C : 1.0487, 0.1014

M : 0.0729

CMYOU κ : 0.5468, m : 10.5798, C : 1.0140, 0.0948

M : 0.4932, Y : −1.7832
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Figure 3.2: Empirical PDF of Ṽ and model PDF of Ũ for Gaussian OU, CIR, CG-

MOU,CGMYOU, CMOU and CMYOU models. After Ṽ are binned, the empirical

PDF is given by the ratio of the number of points in each bin over the total number

of points divided by the bin width.
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3.2 Model Calibration using Option Price

We assume a mean reverting stochastic Markovian process model for the VIX

Vt at present time t. Let T be the maturity date of the derivative contract, r be the

interest rate and τ = T − t. The fair price of a VIX future is the time t risk-neutral

expectation of VIX at maturity T :

F (t, Vt) = EQ
t VT .

Similarly, the prices of a European VIX call and put for given strike K can be

written as

C(t, Vt) = e−rτEQ
t (VT −K)+

P (t, Vt) = e−rτEQ
t (K − VT )

+.

From the VIX option and VIX future prices we can calibrate the risk-neutral measure

using various models. The calibration is done by minimizing the sum of squared

errors between the historical option prices on a certain day with all maturities and

the model predicted prices.

3.2.1 CIR

Grunbichler and Longstaff (1996) [31] derived formulas for volatility options

by assuming that the volatility index follows a CIR process under risk neutrality.

According to Cox, Ingersoll and Ross (1985) [25], Vt follows a noncentral Chi-square

distribution, which leads to the following pricing formula for the call option:
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C(Vt, K, T ) = e−rτ [e−κτVtG(γK; ν + 4, λ)

+m(1− e−κτ )G(γK; ν + 2, λ)−KG(γK; ν, λ)] (3.3)

with G(·; ν + iλ) denoting the complementary distribution function for the

noncentral Chi-square distribution χ2(ν + i, λ) with ν + i degrees of freedom and

noncentral parameter λ. γ, ν, λ are given by

γ =
4κ

σ2(1− e−κτ )

ν =
4mκ

σ2

λ = γe−κτVt.

3.2.2 Lévy OU and Pricing Option Using FFT

When an analytical formula for option price is not available but the charac-

teristic exponent of its BDLP is, FFT can be used to price the option.

Assuming that Vt (VIX) has a characteristic function Φ under the risk neutral

measure, the general Fourier transform of a call price is given by Equation (3.5)

Ψc(u) =

∫ ∞

0

eiuKC(K)dK (3.4)

= e−rτ
{
1

u2
[1− Φ(u)] +

i

u
Fτ

}
, (3.5)

where u = a + bi, a ≥ 0 is a constant, b ∈ R, and Fτ is the future price with

maturity τ . By calculating the inverse Fourier transform of Ψc(u) using the Fast

Fourier Transform, we can obtain the option price. The derivation of Equation (3.5)

is in Appendix A.
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However, since the domain of Vt is the positive axis, the FFT result diverges

near 0. When Vt approaches 0 or infinity, the truncation error of the numerical

integral of Ψ becomes large, and the convergence is slow. The convergence can be

dramatically improved by subtracting a pseudo gamma call option from the call

option of interest.

We assume X ∼ Gamma(a, θ), a call option on X price is given by

Cgamma(K) = E(X −K)+ =

∫ ∞

K

(x−K)xa−1θ−ae−x/θdx

= aθG(K, a+ 1, θ)−KG(K, a, θ), (3.6)

where K is the strike and G is the complementary CDF.

We make the underlying asset price of the pseudo Gamma call has the same

mean and variance as the VIX. Then the call option of the VIX is given by

C(K) = Cgamma(K) + e−rτFFT−1(
1

u2
[Φgamma(K)− Φ(K)]). (3.7)

Here is an example for an imaginary VIX, which has an Inverse Gaussian

(IG) distribution with mean 10 and variance 6. The PDFs of the IG and the

Gamma distribution which approximates it are presented in the upper panel of

Figure 3.3. The bottom figure gives the call option of the IG distributed VIX using

Equation (3.7). We use 512 points in the FFT. The convergence is fast and the

curve is smooth.
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Figure 3.3: Inverse Gaussian distribution with mean 10 and variance 6 and its call

calculated by FFT

3.2.3 Numerical Results

We have applied various models to historical option prices at five consecutive

Wednesday, February 28, 2006 through March 28, 2006. We compute the following
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error statistics to measure the quality of the fits:

APE =
N∑
i=1

|Ai −Mi|
N

/ N∑
i=1

Ai
N
,

AAE =
N∑
i=1

|Ai −Mi|
N

,

ARPE =
1

N

N∑
i=1

|Ai −Mi|
Ai

,

RMSE =

√√√√ 1

N

N∑
i=1

(Ai −Mi)2

N
,

where Ai is the actual value andMi is the model predicted value. The average error

statistics are presented in Table 3.2 below.

Table 3.2: The average error statistics of various models in the estimation of VIX

options. The error statistics are computed for five consecutive Wednesdays , Febrary

28, 2006 through March 28, 2006, and then averaged.

Model Mean AAE RMSE ARPE APE

OU -0.4555 0.5034 0.5910 0.6147 0.187

CIR -0.0704 0.2683 0.3057 0.8841 0.096

CGMOU -0.0240 0.2261 0.2692 0.2357 0.061

CGMYOU -0.0233 0.1622 0.2592 0.1746 0.049

CMOU 0.0741 0.2731 0.3729 0.5131 0.098

CMYOU 0.0802 0.2800 0.3166 0.4806 0.110

The comparison shows that the Lévy OU models overall have smaller error
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statistics than the CIR and the Gaussian OU models do, while the CGMYOU

performs better than the CGMOU. However, given the fact that the CGMYOU has

an extra parameter, the difference in their performances are reasonable. The Gauss

OU model gives poor results. The comparison of performance between the Gaussian

OU model and the CGMOU model is illustrated in Figure 3.4 and Figure 3.5. The

two models are calibrated on the option price of March 7, 2006. The figures illustrate

the model fitted call price and the historical price at the same maturity of 22 days.

The positive Lévy CMYOU model performs worse than those allowing negative

jumps, but not significant as its counterpart in the physical measure. This may

be because, in the risk-neutral measure, the VIX process has more frequent big

positive jumps than negative jumps. This can be explained as the buyers’ greater

concern about big positive jumps than negative jumps. This phenomenon of more

frequent big jumps can be proved from the parameters estimated by CGMOU and

CGMYOU through small M and big G, since small M means less damped positive

jumps and small G means less damped positive jumps in the Variance Gamma

process and the CGMY process. The parameters estimated vary significantly across

dates. Thus the one-factor model is not suitable for the cross date estimation. The

estimated parameters of CGMOU and their G/M ratios are presented in Table 3.3.

The computation for the Gaussian OU and CIR models are fast while the other

models need longer time.
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Figure 3.4: The Gaussian OU model fitted call price and the historical price on Feb

28, 2006 with maturity of 78 days

Figure 3.5: The CGMOU model fitted call price and the hisorical price on Feb 28,

2006 with maturity of 78 days
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Table 3.3: The estimated parameters and the G/M ratios using CGMOU model.

The parameters are estimated from VIX options for five consective Wednesdays.

date κ m C G M G/M

Feb 28, 2006 18.5414 1.9698 226.6668 8.1209 0.9607 8.45

Mar 7, 2006 26.8292 0.1203 416.6761 22.1531 1.1445 19.36

Mar 14, 2006 52.2444 2.0948 906.7771 5.1851 1.2233 4.24

Mar 21, 2006 19.5233 5.8237 254.0834 32.7185 1.4621 22.38

Mar 28, 2006 8.9324 0.1160 226.3220 5.4397 1.2856 4.23

3.3 Conclusions

From the result of the tests for various mean reverting models both in physical

measure and risk neutral measure, we make the following conclusions

1. The driving processes in VIX are better modeled as jump processes than Brow-

nian motion both in the physical measure and the risk-neutral measure.

2. The Lévy OU process with only positive jumps does not fit the VIX process

in physical measure. It is better to include negative jumps in the Lévy OU

process.

3. In the risk neutral measure, for the Lévy OU processes with jumps, there are

more frequent positive jumps than negative jumps.
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4. Both in the physical measure and the risk neutral measure, the CGMOU and

CGMYOU models perform better than other models. The CGMYOU model

performs slightly better than the CGMOU at the cost of computing time.

5. The parameters estimate from VIX option calibration vary significantly across

time. The one-factor model is not suitable for the cross date estimation

Given the facts that CGMOU and CGMYOU performs both in physical mea-

sure and risk neutral measure, that CGMYOU need longer computational time, and

that one-factor model is not suitable for the cross date estimation. in later joint

estimation of VIX and VIX derivatives, we choose multifactor CGMOU model as

the multifactor Lévy OU model.
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Chapter 4

Filter Methods

4.1 Filter Problem

Since 1960, when R.E. Kalman [38] published his famous paper describing a

recursive solution to the discrete data linear filtering problem , filter methods have

been the subject of extensive research and application. More filter methods were

devised to deal with more general filtering problems with non-Gaussian noise and

non-linear systems. Many filter methods found their applications in quantitative

finance.

Filter methods recursively estimate the latent state of a dynamic system from

a series of incomplete or noisy measurements. Let xk be the states, yk be the

measurement at time k and y1:k be the sequence of measurement observations up to

time k. We have the discrete dynamic system as follows:

xk = fk(xk−1) + νk (4.1)

yk = hk(xk) + wk, (4.2)

where fk is the propagation function perturbed by an uncertainty, hk is the mea-

surement function, νk is the process uncertainty and wk is the measurement noise.

To further simplify the model, we assume the process xt is Markovian and wk is

pure white noise.
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The xk’s are random variables, and the goal of the filter method is to find

the posterior distribution p(xk|y1:k) of xk given y1:k. We assume the initial density

p(x0) � p(x0|y0) is given and that we reach the distribution p(xk−1|y1:k−1) at time

k− 1. The estimation consists of two steps. First propagate the distribution to the

time k, obtaining the prior p(xk|y1:k−1), and then invoke Bayes’ theorem using new

acquired yk to update the distribution of xk, obtaining the posterior p(xk|y1:k).

• Time Update According to the theorem of total probability, the propagated

distribution is given by Equation (4.3):

p(xk|y1:k−1) =

∫
p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (4.3)

The second equality holds because of the Markov property, namely the infor-

mation of y1:k−1 has been included in xk−1. If the uncertainty νk is normal

and the propagating functions fk and measurement functions hk are linear,

p(xk|y1:k−1) and p(xk|y1:k) are normal too. Only the propagation of mean

and variance is needed and their analytic forms are available. This gives the

Kalman filter method. Otherwise, the storage of the entire PDF in Equa-

tion (4.3) is equivalent to an infinite dimensional vector, and thus to obtain

a tractable solution becomes impossible. If νk is normal, and fk is nonlinear,

we can use a set of points called sigma points to approximate the density of

p(xk−1|y1:k−1). We propagate the sigma points instead of the density and use

the propagated points to approximate the posterior density. This is the ba-

sic idea behind the unscented Kalman filter. If νk is not normal, and fk is
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nonlinear, the only general approach is to apply Monte-Carlo sampling tech-

niques that essentially convert integrals to finite sums, which converge to the

true solution at the limit. The particle filter discussed in a later section is an

example of such an approach.

• Measurement Update After the observation yk becomes available, Bayes’

theorem is applied to update the distribution of xk

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk . (4.4)

For reasons similar to those described above, it is impossible to apply Equa-

tion (4.4) over the whole density. The Kalman filter applies when the mea-

surement noise wk is normal and measurement function hk is linear. The UKF

applies when wk is normal and hk is nonlinear. Othewise we have to resort to

a Monte Carlo method like the Particle Filter.

4.2 Kalman Filter

The Kalman Filter assumes the progress function fk and the measurement

function hk are linear, and the noises ν and w are Gaussian.

• fk, hk are linear, fk(x) = Fkx, hk(x) = Hkx;

• νk and wk are normal with variance Qk and Rk.

Under the assumption above, it is easy to show that the probability P (xk|y1:k−1) and

P (xk|y1:k) are normally distributed. Thus only the mean and covariance are needed
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to recover the distribution of xk. Let x̂k|k−1 and Pk|k−1 denote the prior estimate

of the mean and covariance, and x̂k|k and Pk|k denote the posterior estimate of the

mean and covariance after the newest update. The Kalman filter algorithm is carried

out as follows:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = Qk−1 + FkPk−1|k−1F T
k

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1)

Pk|k = Pk|k−1 −KkSkK
T
k

where Sk = HkPk|k−1HT
k + Rk is the covariance of the innovation term, and Kk =

Pk|k−1HT
k S

−1
k is called the Kalman gain. The last equation shows that the Kalman

Filter helps reduce the covariance of the state with the reception of new information.

The posterior covariance Pk|k equals the prior covariance Pk|k−1 less KkSkK
T
k , which

is the amount of variance reduction coming from the new observation of yk through

the Kalman gain.

4.3 Unscented Kalman Filter

The Kalman Filter is the only optimal solution under the aforementioned

assumptions. However, in cases where the measurement functions are nonlinear,

suboptimal solutions such as the Extended Kalman Filter (EKF) and the Unscented

Kalman Filter (UKF) are needed. The Extended Kalman filter (EKF) applies Taylor

series to approximate the nonlinear fk, while the unscented Kalman (UKF) uses the

unscented transformation (UT)(Julier 1997 [37]). The latter gives a derivative-
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free alternative to the EKF and provides superior performance with an equivalent

computational complexity (Wan 2001[53]).

4.3.1 Unscented Transformation

The Unscented Transformation (UT) calculates the statistics of a random vari-

able undergoing a nonlinear transformation by propagating a set of sigma points.

Let state x have a dimension d, mean μx and covariance Px, where x undergoes a

nonlinear transformation y = f(x). To calculate the statistics of y, we first choose a

set of sigma points X = (xi,Wi), i = 1, . . . , 2d+ 1 so that their mean and covariance

match μx and Px,

X0 = μx

Xi = μx + (
√
(d+ λ)Px)i, i = 1, . . . , d

Xi = μx − (
√
(d+ λ)Px)i, i = d+ 1, . . . , 2d.

where λ = α2(d + κ) − d is a scaling parameter. The constant α determines the

spread of the sigma points around the mean, κ and β are parameters to refine the

prior distribution of x , and (
√
(d+ λ)Px)i is the ith column of the matrix square

root e.g., lower triangular Cholesky factorization) (Julier 1997[37]).

Propagating the sigma points X through f(·), we get the transformed sigma

points. Then we approximate the mean μy and covariance Py using a weighted
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sample mean and covariance of the sigma points

Yi = f(X)

μy ≈
2L∑
i=0

Wm
i Yi

Py ≈
2L∑
i=0

W c
i (Yi − μy)(Yi − μy)

T .

with weights Wi given by

Wm
0 = λ/(d+ λ)

W c
0 = λ/(d+ λ) + (1− α2 + β)

Wm
i = W c

i = 1/[2(d+ λ)] i = 1, . . . , 2d,

The unscented approximations are accurate to the third order for Gaussian input

for all nonlinearities. The constant κ is usually set to 0 or 3 − d, and β is set

to 2 for Gaussian. The Unscented Kalman Filter generally applies to Gaussian

state variables. For non-Gaussian inputs, the skewness and kurtosis are needed

beforehand to adjust the parameters α, β and κ. The approximations are accurate

to at least the second order, with the accuracy of third and higher order moments

determined by the choice of α and β (Wan 2001 [53]). In the multidimensional

non-Gaussian case, all states have the same skewness and kurtosis, which may not

be desirable.

4.3.2 Algorithm

The unscented Kalman Filter (UKF) recursively executes the unscented trans-

formation. The algorithm initializes by choosing the sigma points according to initial
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mean and covariance. The sigma points propagate through the nonlinear transfor-

mation, yielding a new set of points. The new estimated mean and covariance are

then computed from the transformed point set and updated by the observation of

y by Bayes’ theroem. A set of new sigma points is then generated based on the

updated mean and covariance.
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Algorithm 1 (Unscented Kalman Filter)

Initialize with

x̂0 = E[x0] and P0 = Cov[x0]

For k ∈ 1, . . . , T

Calculate sigma points Xk−1 = [x̂k−1, x̂k−1 + γ
√
Pk−1, x̂k−1 − γ

√
Pk−1 ]

• Time update:

X∗
k|k−1 = fk(Xk−1)

x̂−k =
2d∑
0

Wm
i Xk|k−1

P−k =
2d∑
0

W c
i [X

∗
i,k|k−1 − x̂−k ][X

∗
i,k|k−1 − x̂−k ]

T +Q

Xk|k−1 = [x̂k, x̂
−
k + γ

√
Pk, x̂k − γ

√
Pk ]

Yk|k−1 = hk(Xk|k−1)

ŷ−k =
2d∑
0

Wm
i Yk|k−1

• Measurement update:

P−yk,yk =
2d∑
0

W c
i [Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ȳ−k ]

T

P−xk,yk =
2d∑
0

W c
i [Xi,k|k−1 − x̂k][Xi,k|k−1 − x̂k]

T

Kk = Pxk,yk ∗ P−1yk,yk

x̂k = x̂−k +Kk(yk − ŷ−k )

Pk = P−k −KkPyk,ykK
T
k

where γ =
√
d+ λ, λ is a composite scaling parameter.
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4.3.2.1 Constrained UKF

In practical estimation problems, the states are often bounded or have con-

straints. For example, the interest rate is non-negative. However, the constraints

are handled neither by the Kalman Filter nor by the UKF. The simplest way to

incorporate the constraints in the KF is projecting the unconstrained KF estimates

onto the boundary of the feasible region at each time step (See Simon 2002 [49],

Ungarala 2007 [52]). The constraints information can be incorporated in the UKF

algorithm in a simple way during the time-update step. After the propagation, the

unconstrained transformed UKF estimate outside the feasible region are projected

onto the boundary of the feasible region and we continue with the further steps. Let

Wk be the weighting matrix at time k, x̂k|kthe unconstrained estimates and C be

the feasible region. The projected estimates x̂Pk|k are given by

x̂Pk|k = arg min
xk∈C

(xk − x̂k|k)TW−1
k (xk − x̂k|k).

Figure 4.1 illustrates the estimation with state constraints. At t = k the three un-

constrained estimates which are outside the feasible region are projected onto the

boundary. The mean and covariance of the constrained sigma points now repre-

sent the a priori UKF estimate, and they are further updated in the update step

(Kandepu 2008 [39]).
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Figure 4.1: Illustration of estimation with state constraints

4.3.3 Mixed-Gaussian UKF

Lemma 1 (Anderson 1979 [2]) Any density p(x) associated with an n dimensional

vector x can be approximated as closely as desired by a weighted combination of

Gaussian densities of the form

pA(x) =
N∑
i=1

aiN (x; νi,Σi)

for some integer N , and positive scalars ai with
∑N

i=1 ai = 1. Here N (·) is normal

PDF.

It can be shown that the density pA(x) converges uniformly to any density function

of practical interest by letting the number of terms increase and each elemental

covariance approach to zero (Anderson 1979 [2]). According to the lemma above,

non-Gaussian noise densities can be approximated empirically by Gaussian sums.

For a state-space model, it is possible to obtain both the predicted and posterior

densities as Gaussian sums. The Unscented Kalman Filter generally only applies

to the Gaussian state variables, especially in the multidimensional case. The mixed

Gaussian model provides an approach to solve the non-Gaussian state estimation
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problem. In this section, we assume that the progress noise ν is non-Gaussian and

use a Gaussian mixture to approximate its density,

p(νk) =
J∑
i=1

ωikN (νk;μ
i
k, Q

i
k)

where
∑J

i=1 ω
i
k = 1. It is easily extended to the cases in which the measurement

noise is non-Gaussian too.

The sigma pointsXi, i = 1 : I at time k−1 are time-updated and measurement-

updated based upon the mixture parameters {ωjk−1, μjk−1, P j
k−1}Jj=1, and then the

mixture weights are updated according to Bayes’ therom. At each step, each sigma

point generates J new points due to J settings of the mixture parameters, so the

size of the sigma points (2d+ 1)Jk increases geometrically and so does the compu-

tational complexity. A clipping technique is applied to reduce the size of the sigma

points. When the weight is lower than a preset threshhold, the point is discarded

(Arasaratnam 2007 [4]).
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Algorithm 2 ( Mixed-Gaussian UKF)

Initialize with: Choose x̂0, ω
j
0, μ

j
0 and Qj

0 according to the initial distribution

p(x0). Generate sigma points X0 =
⋃J
j=1[x̂0 + μj0 + γ

√
P j
0 , x̂0 + μj0 − γ

√
P j
0 ]

Assume there are n sigma points at time k − 1, Xk−1 = {xi,Wi}ni=1

Time update and Measurement update

Time update and measurement update Xk−1 for each parameter set {ωjk, μjk, Qj
k}

and obtain sigma set Xk with n× J points according to UKF algorithm.

Weight update

Wi,j =
ωjkWiN (yk; ȳ

j
k, P

j
yk,yk

)∑
i,j ω

j
kWiN (yk; ȳ

j
k, P

j
yk,yk)

Clip Discard the points if Wi,j < threshold

Renormalize the weights.

4.4 Particle Filter

Particle filter (PF) provides an alternative algorithm to solve the non-Gaussian

state estimation problem. Instead of updating only the mean and covariance, PF

uses an ensemble of particles to empirically approximate the posterior distribution

of interest. To approximate a continuous distribution by a finite number of particles

is sub-optimal. We can increase the precision by using more particles at the cost

of computational complexity. Given that computing power has improved rapidly in

recent years, the particle filter technique offers great flexibility in estimating state-

space models without restricted assumptions [57].
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4.4.1 Importance Sampling

Let {X i
k,W

i
k}Ns

i=1 denote the particle set (and associated weights) that approx-

imate the posterior density p(xk|y1:k)

p(xk|y1:k) ∼
Ns∑
i=1

W i
kδ(xk −X i

k), (4.5)

where δ(·) is the delta function.

However, the posterior density p(xk|y1:k) is unknown. The particles XNs
i=1 are

drawn from a proposal density q(x) called the importance density. The principle

of choosing the density and weights is called Importance Sampling [11][27]. The

weights are defined by Equation (4.6):

W ∗i
k ∝ p(X i

k|y1:k)
q(X i

k|y1:k)
. (4.6)

Again, since the density p(xk|y1:k) is unkown, we cannot rely on Equation(4.6) to

compute the weights W ∗i
k . We first choose a suitable importance density, and arbi-

trary weights (usually equally weighted) to draw the particles, and then use Beyes’

theorem to update the weights. Here we use W i
k to denote the computed weight

W i
k ∝ p(yk|X i

k)p(X
i
k|X i

k−1)p(X
i
k−1|y1:k−1)

q(X i
k|X i

k−1, y1:k)q(X
i
k−1|y1:k−1)

= W i
k−1

p(yk|X i
k)p(X

i
k|X i

k−1)
q(X i

k|X i
k−1, y1:k)

.

The last equation holds because of the Markovian assumption. The importance

density q(·) is chosen to minimize the variance of W ∗i
k , the true weight. The greater

the variance of the weights is, the more easily the particles run into degeneracy.

This degeneracy implies that a large computational effort is devoted to updating
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particles whose contribution to the approximation is almost zero. A suitable measure

of degeneracy of the algorithm is the effective sample size introduced in Bergman

1999 [11] and defined as

Neff =
Ns

1 + V ar(W ∗i
k )
.

The quantity Neff cannot be evaluated exactly; in practice, it is usually estimated

by

N̂eff =
1∑Ns

i=1(W
i
k)

2
. (4.7)

Notice that Neff ≤ Ns, and small Neff indicates severe degeneracy. In the Particle

Filter, an often-used criteria is to maximize the estimated effective sample size.

There are two approaches to reducing degeneracy: wise choice of importance density

and use of resampling. The optimal choice of importance density may be either

impossible or the computational cost may be too high. It is often convenient to

choose the importance density to be the prior (Arulampalam 2002 [5])

q(xk|X i
k−1, yk) = p(xk|X i

k−1).

Then Equation (4.7) becomes

W i
k ∝ W i

k−1p(yk|X i
k). (4.8)

Sequential Importance Sampling (SIS) is a simple algorithm for Particle Filter. We

first draw particles from the prior distribution, propagate the particles through

the dynamic system and finally evaluate the posterior weights according to Equa-

tion (4.8). We repeat the process through the time span. An unavoidable phe-

52



nomenon is that after a few iterations, all but one or two particles will have negli-

gible weight (Doucet 1998[27]). This phenomenon is called degeneracy. Whenever

a significant degeneracy is observed (i.e., when the variance of W i
k falls below some

threshold), the particles have to be resampled to avoid degeneracy. The resampling

procedure is to split particles that carry large weights evenly into small particles, so

technically it is to map a discrete measure {X i
k,W

i
k} into another discrete measure

{X i∗
k ,

1
Ns
} of equal weights [57].

Algorithm 3 (Particle Filter)

[{X i
k,W

i
k}Ns

i=1] = PF [{X i
k−1,W

i
k−1}Ns

i=1, yk]

• For i = 1 : Ns

- Draw X i
k ∼ q(Xk|X i

k−1, yk) = p(X i
k|X i

k−1)

- Calculate the weight

W i
k =

W i
kp(yk|Xi

k)∑N
j=1W

i
kp(yk|Xi

k)
End for

• Calculate N̂eff

• if N̂eff < threshold

-Resample using

[{X i
k,W

i
k}Ns

i=1] = Resample[{X i
k,W

i
k}Ns

i=1]
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Algorithm 4 (Resampling)

[{X i
k,W

i
k}Ns

i=1] = Resample[{X i
k,W

i
k}Ns

i=1]

• Initialize c1 = W 1
k

• For i = 2 : Ns - ci = ci−1 +W i
k

• End For Draw random number n1 ∼ Unif [0; 1/N ], set i = 1

• For i = 2 : Ns

- Let uj = u1 +
j−1
Ns

-While uj > ci

- i = i+ 1

- Assign X i∗
k = X i

k and W
i
k =

1
Ns

End for
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Chapter 5

Multifactor Model

In interest rate modeling, there is an extensive literature on dynamic term

structure models that estimates models on an entire time series of market prices

of discount bonds and interest rate derivatives. As shown in Chapter 3, one-factor

models have proved less effective at fitting the VIX option data across dates. This

setup is in line with the conclusion of Heidari and Wu 2003 [32] which showed that

one-factor models give poor result and three factors in the dynamics are adequate

to explain more than 99% of the yield curve data historically. In this Chapter, we

use multi-factor models to build a joint framework for consistently describing both

VIX historical data and the VIX derivative data.

5.1 Data

Consistent records of time series data of the VIX index and its derivatives are

available. We obtain the VIX historical data from Yahoo finance, VIX future data

from COBE, and VIX option data from Optionmatrix. The VIX and VIX futures

begin from March 30, 2004, VIX options begin from February 28, 2006 and all data

end on October 28, 2009. To avoid weekday effects in the estimation, we only sample

data weekly every Wednesday. The settle price is taken as the future price, and the

average of ask and bid is taken as the option price. The future data include the
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prices at different maturities for each date, and the option data include the option

prices from different maturities and different strikes. We use the data from March

30, 2004 to December 16, 2008 as in-sample data to estimate model parameters.

We test the model’s out-of-sample performance on period from December 23, 2008

to October 27, 2009. If the model is well specified, we would expect the models

out-of-sample performance to be similar to its in-sample performance.

5.2 The Basic Model Structure

We fix two filtered complete probability spaces with finite fixed time span

satisfying the usual technical conditions (right continuity and P-completeness). The

first space has the physical probability measure P and the second has the risk-neutral

probability measure Q. Let xt denote a vector Markov process in some state space

Sm ⊂ Rm, where m is the dimension of xt. Assume the VIX process Vt is a linear

function of xt:

Vt = a+ bxt. (5.1)

As xt moves along the discrete time points according to the setting of the model,

we have

xk = f(xk−1) + ν(k), (5.2)

where f(xk−1) is the drift term or mean reverting trend, and ν(k) is the uncertainty

due to the randomness of xt process.
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The VIX derivatives are priced under the risk-neutral measure Q.

F (t, Vt) = EQ
t VT

C(t, Vt) = e−rτEQ
t (VT −K)+

P (t, Vt) = e−rτEQ
t (K − VT )

+. (5.3)

These prices are model predicted prices. We summarize the predicted level of VIX

and the prices of the VIX derivatives at time k as the vector ỹt = h(xt), and denote

the observed value as yt. We assume yk is the sum of ỹt and a noise term wk as

shown below:

yk = h(xk) + w(k). (5.4)

Given the propagation Equation (5.2) and measurement Equation (5.4), we

recursively employ appropriate filter methods to time-update and measurement-

update the state, to calculate the model prediction ỹt at each time step and the log

likelihood defined in Equation (1.4). We estimate the parameters of the model by

maximizing the sum of the log likelihood over all time steps .

5.3 GOU3 Model with UKF

We assume that the VIX process Vt is a linear combination of three indepen-

dent factors xt = [x1t, x2t, x3t]

dVt = a+ bxt = a+
3∑
i=1

bixit (5.5)
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where xt is a three dimensional Gaussian OU process, governed by the following the

SDE in the physical measure:

dxt = −κxtdt+ dWt, (5.6)

where Wt is a standard 3-dimensional Brownian motion and κ, a diagonal matrix,

controls the mean-reverting property of the state process xt. We normalize the state

vector xt to have zero long-run means and identity volatility matrices. We further

assume an affine market price of risk

r(xt) = c+ fxt (5.7)

with c ∈ R3 and diagonal f ∈ R3×3. Given the market price of risk specifications,

xt remains a Gaussian OU under the risk-neutral Q, but with adjustments to the

drift terms:

dxt = −(c+ κ̂xt)dt+ dWQ
t , (5.8)

with κ̂ = f +κ. Under this setting, in the risk-neutral measure conditional on x0 at

t = 0, xt has a Gaussian distribution with mean μ and variance Σ. The ith element

of μ and Σ are given by

μi = EQxit = e−κ̂itx0 − ci
κ̂i
(1− e−κ̂it) (5.9)

Σi = V arQxit =
1

2κ̂i
(1− e−2κ̂it). (5.10)

Here, κi is the ith diagonal element of κ̂.
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5.3.1 VIX Futures and Options

Let the present time be 0 and let the maturity be t. Under the model assump-

tion, we can easily get the VIX future price,

F (0, V0) = EQVt = a+ bμ, (5.11)

with μ given by Equation (5.9) and the price of a VIX call

C(0, V0) = e−rtEQ(Vt −K)+ (5.12)

= e−rtσ{fn(h)− h(1− N(h))} (5.13)

where V arVt = bTΣb, h = (K−μ)/σ, and fn(·), N(·) are the PDF, CDF of standard

normal distribution. The price of the put option can be derived from the put-call

parity

P (t, Vt) = C + e−rτ (K − F (0, V0)). (5.14)

5.3.2 Parameter Estimation

Since propagation noise ν is Gaussian in the Gaussian OU model, we apply

the Unscented Kalman Filter (UKF) to estimate the parameters. We use an Euler

approximation of the SDE Equation (5.6) as propagation equation. At time t

xt = xt−1e−κΔt + I
√
Δtεt, (5.15)

where Δt = 1/52 is the weekly discrete time interval, I is the identity matrix, IΔt

denotes the instantaneous covariance matrix and εt denotes an independent and

identically distributed sequence of trivariate standard normal vectors. The model
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predictions ỹt are computed as follows: Vt are predicted by the linear combination

of the mean of the factor xt ,

Vt = a+
3∑
i=1

bie
−κiΔtxt−1, (5.16)

and the prices of VIX futures, calls and puts are predicted by Equation (5.11),

Equation (5.13) and Equation (5.14). The corresponding observation yt are the

historical VIX and VIX derivative data. We further assume that the forecasting

errors on the measurement series are normally distributed and define the weekly log

likelihood function (ignoring the constant term) as

lt(yt; Θ) = −1
2
(yt − ỹt)

T (At)
−1(yt − ỹt), (5.17)

where At denotes the conditional covariance matrix of the forecasts of the measure-

ment series. For convenience we take At equal to identity matrix I. The model

parameters are estimated by maximizing the sum of log likelihoods defined in Equa-

tion (5.17) over all time steps t = 1, . . . , T :

Θ̂ = argmax
Θ

T∑
t=1

lt(yt; Θ). (5.18)

For the GOU3 model, the Parameters to be estimated and the results are a,

b, c, κ, κ̂, x0, total of 15 numbers, where x0 is the initial state. The parameters

estimated by MLE are tabulated in Table 5.1.
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Table 5.1: In-sample maximum likelihood parameter estimates of GOU3 model with

Unscented Kalman filter from March 30, 2004 to December 16, 2008

a b c x0

0.1100

⎡
⎢⎢⎢⎢⎢⎢⎣

9.9435

13.5958

8.5187

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0728

−2.0197

−0.7863

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.2432

0.3370

0.6664

⎤
⎥⎥⎥⎥⎥⎥⎦

κ ˆkappa⎡
⎢⎢⎢⎢⎢⎢⎣

1.6506 0 0

0 0.1403 0

0 0 0.0016

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

34.0849 0 0

0 5.1299 0

0 0 0.5141

⎤
⎥⎥⎥⎥⎥⎥⎦

5.3.3 In-Sample Test

The error statistics between model predictions ỹt and historical data yt from

March 30, 2004 to December 16, 2008 are summarized in Table 5.2.

Figure 5.1 compares the historical VIX value and the GOU3 model predicted

value, Figure 5.2 compares the historical VIX future price and the GOU3 model

predicted price, and Figure 5.3 compares the historical VIX option price and the

GOU3 model predicted price. The error statistics for the test are summarized in

Table 5.2.
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Table 5.2: In-sample error statistics (GOU3 model) for VIX and VIX derivatives

from March 30, 2004 to December 16, 2008

Mean AAE RMSE ARPE APE

VIX 0.5478 2.2878 3.6650 0.1014 0.1085

VIX Futures 0.0631 1.0757 1.62469 0.0502 0.0515

VIX Options 0.2120 0.8605 1.5053 0.8219 0.1588

Figure 5.1: In-sample test (GOU3 model) for VIX from March 30, 2004 to December

16, 2008.
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Figure 5.2: In-sample test (GOU3 model) for VIX Futures on October 21, 2008 and

December 16, 2008.
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Figure 5.3: In-sample test (GOU3 model) for VIX calls and puts on October 21,

2008 with maturities 36, 64, 92, 127, 155 days.

5.3.4 Out-of-Sample Test

We test the model’s out-of-sample performance in period from December 23,

2008 to October 27, 2009. Conditional on the estimated states xt on December

16, 2008, we test the performance of the model during the out-of-sample period.

The model prices, predicted from the UKF, are compared with the historic prices

for both VIX and VIX derivatives. The out-of-sample test of VIX, VIX futures and

VIX options are illustrated in Figure 5.4, Figure 5.5 and Figure 5.6 respectively. The

error statistics of the out-of- sample tests are summarized in Table 5.3. From the
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error statistics ARPE and APE, we can see the model’s out-of-sample performance

is similar to its in-sample performance, which proves that the model is well specified

and the estimated parameters are stable.

Table 5.3: Out-of-sample error statistics (GOU3 model) for VIX and VIX derivatives

for VIX from March 23, 2008 to October 27, 2009

Mean AAE RMSE ARPE APE

VIX 0.4022 3.1038 4.0411 0.0882 0.0914

VIX Futures 0.1474 1.6744 2.4175 0.0459 0.0491

VIX Options 0.7022 1.2724 2.0344 0.5662 0.0989
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Figure 5.4: Out-of-sample test (GOU3 model)for VIX from March 23, 2008 to Oc-

tober 27, 2009.
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Figure 5.5: Out-of-sample test (GOU3 model) for VIX Futures on June 23, 2009

and October 6, 2009.

Figure 5.6: Out-of-sample test (GOU3 model) on VIX calls and puts on October 6,

2009 with maturities 15, 43, 71, 106, 134 days

The estimates of c reveal a negative market price for the driving random
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factors. Due to Girsanov’s Theorem,

Λt = exp

{
−
∫ t

0

γ(xs, s)dWs − 1

2

∫ t

0

γ(xs, s)
2ds

}
(5.19)

the Radon-Nikodym derivative Λt has a factor e−cWt . The investors assign high

probability to the higher level of diffusion. This is consistent with the Heidari’s [33]

result for the mean reverting short rate and option market’s negative volatility risk

premium.

5.4 CIR3 Model with Constrained UKF

Our second model is a three-factor CIR model (or CIR3). In the CIR3 model,

Equation (5.1) still holds, xt = [x1t, x2t, x3t] and xit, i = 1, 2, 3 are independent CIR

factors. To simplify the calculation, we assume x1t, x2t, and x3t are independent. To

further reduce the number of parameters, we let b = [1, 1, 1], which is not included

in the estimation, so that

Vt = a+ x1t + x2t + x3t. (5.20)

We assume that the xit’s are CIR factors both in physical measure and risk-neutral

measure, but with different parameters:

dxit = κi(mi − xit) + σi
√
xitdwit in physical measure,

dxit = κ̂i(m̂i − xit) + σ̂i
√
xitdŵit in risk-neutral measure. (5.21)

The propagation equation uses an Euler approximation of the SDE, similar to the

GOU3 model. Under the risk-neutral measure, as described in Section 2.3, condi-

tional on the initial xi0, xit has a scaled noncentral Chi-square distribution, whose
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characteristic function is analytically known. We calculate the option price by FFT

as described in Section 3.2.2. The future price is given by

F (0, V0) = a+
3∑
i=1

μi. (5.22)

Where μi = e−κ̂itxi0 − (1− e−κ̂it)κ̂−1m̂i. The parameter estimation in CIR3 model

is similar to that in GOU3 model. At each time step t, the model predictions

ỹt are computed and imputed to Equation (5.17) with historical data to obtain

the likelihood. The model parameters are estimated by maximizing according to

Equation (5.18).

Since the CIR factor xi’s are assumed to be nonnegative, the nonnegative

constraints on states need to be included in the estimation. We introduce a simple

constrained UKF algorithm, during the time-update step, simply projecting the

estimated state xt into the space of nonnegative values.

5.4.1 Results

The parameters to be estimated are a, κi, κ̂i,mi, m̂iσi, σ̂i, x0 for i = 1, 2, 3 and

the MLEs are presented in Table 5.4.
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Table 5.4: In-sample maximum likelihood parameter estimates of CIR3 model with

Constrained Unscented Kalman filter from March 30, 2004 to December 16, 2008

a m k σ m̂ κ̂ σ̂ x0

2.0276

26.8231

12.9768

34.8199

0.3528

0.3720

0.3021

3.0590

3.0785

2.0476

2.6828

24.0528

22.3116

0.2787

0.2616

0.2017

3.1168

2.8000

3.2946

6.6154

3.7761

7.5197

We do the in-sample and out-of-sample tests for the same data as for CIR3.

Error statistics are summarized in Table 5.5 and Table 5.6 respectively.

Table 5.5: In-sample error statistics (CIR3) for VIX and VIX derivatives

Mean AAE RMSE ARPE APE

VIX 0.4834 2.5886 3.7572 0.1067 0.1072

VIX Futures 0.0275 1.0561 1.5986 0.0498 0.0505

VIX Options 0.2199 0.8634 1.5121 0.7840 0.1593
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Table 5.6: Out-of-sample error statistic (CIR3) for VIX and VIX derivatives

Mean AAE RMSE ARPE APE

VIX 0.6501 3.1063 4.0155 0.0878 0.0915

VIX Futures 0.0719 1.7087 2.4415 0.0468 0.0501

VIX Options 0.7030 1.2787 2.0377 0.5586 0.0824

5.5 CGMOU2 with Mixed-Gaussian UKF

As in the CIR3 model, we assume Vt = a + x1t + x2t, we assume xit’s are

CGMOU processes. Since UKF does not apply to multi-dimensional non-Gaussian

randomness, we get around it by using the mixed-Gaussian model to approximate

the non-Gaussian propagation uncertainty, which is done in this section, or by using

the Particle Filter, which is done in the next section. We choose a two-factor model

for the Lévy OU, because its number of parameters (21) is comparable to the GOU3

model (16) and the CIR3 model (21):

xit = κi(xit −mi)dt+ dzit, i = 1, 2. (5.23)

In the physical measure, we use a mixture of two normal distributions to approximate

the driving randomness of xit,

p(ΔZk) =
2∑
i=1

ωikN (xk;μ
i
k, Q

i
k),

where Δzk is the discrete random change of zt at time step k. We use an Euler

approximation to obtain the propagation equation. Assuming the factors follow
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CGMOU processes in the risk-neutral measure, the characteristic function for each

factor is given by Equation (2.13). The characteristic function of Vt has an analytical

form. The VIX options are priced by FFT. VIX is predicted by Equation (5.16) and

VIX futures are priced by Equation (5.11). The parameters are estimated by MLE

and the filter method is Mixed-Gaussian UKF.

The parameters to be estimated are a, κi, pi, σi1, σi2, κ̂i,mi, Ci,Mi, x0 for i =

1, 2, and the results are presented in Table 5.7. Table 5.11 and Table 5.12 show the

in-sample and out-of-sample error statistics.

Table 5.7: In-sample maximum likelihood parameter estimates of CGMOU2 model

with Mixed-Gaussian UKF from March 30, 2004 to December 16, 2008

a p1 p2 σ1 σ2 κ

0.1623 6.3140 2.3954
0.2311

0.4420

6.5784

7.4923

0.4123

3.4051

κ̂ m Ĉ M̂ Ĝ x0

7.2122

4.4175

6.3140

2.3954

1.2201

3.2024

0.2345

0.4657

0.9818

0.6745

15.2240

3.1000
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Table 5.8: In-sample error statistics (CGMOU2, Mixed Gaussian UKF) for VIX and

VIX derivatives

Mean AAE RMSE ARPE APE

VIX 0.5629 2.4400 3.9318 0.1038 0.1157

VIX Futures 0.0105 1.0572 1.5841 0.0502 0.0506

VIX Options 0.2004 0.8809 1.5438 0.8757 0.1425

Table 5.9: Out-of-sample error statistic (CGMOU2, Mixed Gaussian UKF) for VIX

and VIX derivatives

Mean AAE RMSE ARPE APE

VIX -0.0467 3.1030 3.9816 0.0893 0.0914

VIX Futures -0.2602 1.7293 2.4590 0.0475 0.0507

VIX Options 0.6911 1.2590 2.0090 0.5595 0.0879

5.6 CGMOU2 with Particle Filter

In this section we use a Particle Filter to estimate the CGMOU2 model. Both

in the physical measure and the risk-neutral measure, Vt is assumed to be a constant

a plus two CGMOU factors. We use an ensemble of particles to approximate the

posterior distribution of the states of the xi’s. We propagate the distribution by
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propagating the particles. As discussed in Section 4.4, we can increase the preci-

sion by using more particles. However, an increase in the number of particles will

significantly increase the computational time. By trial and error, we picked 150 as

a practical number. According to the Euler approximation, the jumps of the state

processes have a Variance Gamma distribution, which is simulated by the difference

of two Gamma random variables. We choose the prior as importance density and

resample the particles when the estimated effective sample size is less than a pre-

set threshold. The VIX futures and VIX options are priced under the risk-neutral

measure, as in the previous model.

In the CGMOU model, the source of the risk is the jumps in the Background

Driving Lévy Process (BDLP). We are interested in how the market views those

jumps. We assume that the physical measure and risk-neutral measure of the BDLP,

which is Variance Gamma in this model, are equivalent. According to Chapter 2

Proposition 3, the probability measures generated by the paths of Variance Gamma

processes are equivalent if and only if the parameter C’s of the two processes are the

same. Thus we assume the same C for both the physical measure and risk-neutral

measure.

The parameters to be estimated are a, κi, pi, σi1, σi2, κ̂i,mi, Ci,Mi, x0 for i =

1, 2 and the results is showed in Table 5.10. Table 5.11 and Table 5.12 show the

in-sample and out-of-sample error statistics.
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Table 5.10: In-sample maximum likelihood parameter estimates of CGMOU2 model

with Particle filter from March 30, 2004 to December 16, 2008

a κ C M G

1.2366
1.7342

1.0772

4.3112

6.5431

0.5542

1.2877

0.7221

1.8688

κ̂ m M̂ Ĝ x0

5.6322

2.5487

7.1004

4.6028

0.2075

0.3697

3.7259

5.3162

10.1751

1.4963

Table 5.11: In-smaple error statistic (CGMOU2, PF) for VIX and VIX derivatives

Mean AAE RMSE ARPE APE

VIX 0.2801 2.2819 3.6469 0.1017 0.1082

VIX Futures 0.1283 1.1238 1.6914 0.0522 0.0538

VIX Options 0.1838 0.8676 1.5070 0.8689 0.1501
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Table 5.12: Out-of-sample error statistic (CGMOU2, PF)for VIX and VIX deriva-

tives

Mean AAE RMSE ARPE APE

VIX -0.0381 2.6110 3.1573 0.1278 0.1215

VIX Futures 0.0076 0.9095 1.1557 0.0354 0.0343

VIX Options -0.3345 0.9632 1.1086 0.2521 0.0868

5.7 Tests on the Models

5.7.1 Radon-Nikodym Derivative

Much empirical work suggests that risk-neutral index volatility generally ex-

ceeds physical return volatility. The literature includes the researches of Canina and

Figlewski (1993)[15], Lamoureux and Lastrapes (1993) [44], Bakshi et al. (2000) [7],

and Christoffersen et al. (2005) [23] based on implied volatility; and that of Bakshi

and Kapadia (2003) [9], Bollerslev et al. (2005) [13], Britten-Jones and Neuberger

(2000) [14], Carr and Wu (2004) [20], Jiang and Tian (2005) [35], and Polimenis

(2006) [46] on formal measures of risk-neutral volatility. Bakshi and Madan (2006)

[8] formalize the departure between risk-neutral and physical index return volatili-

ties, termed volatility spreads, and connect them to the higher-order physical return

moments and the pricing kernel process. They theoretically and empirically prove

the existence of positive volatility spreads when investors are risk averse and when
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the physical index distribution is negatively skewed and leptokurtic. Theorem 1 in

Bakshi and Madan (2006) [8] states:

Suppose that the aggregate investor behavior is modeled through a class of

pricing kernels m(R), satisfying the Taylor expansion around zero. The τ -period

volatility spreads are theoretically determined as

σ2
rn − σ2

p

σ2
p

≈ ∂m/∂R|R=0(σ
2
p)

1/2 × θp

+
1

2
∂2m/∂R2|R=0σ

2
p ×

(
κp − 1− 2

(∂m/∂R|R=0)
2

∂2m/∂R2|R=0

)

where R is the return of index, σ2
p, σ

2
rn are the volatility in the physical measure and

the risk-neutral measure respectively, and θp and κp are the skewness and the kur-

tosis of the physical distribution. The decreasing risk aversion assumption implies

∂m/∂R < 0 and ∂2m/∂R2 > 0. Historical return data shows a mitigated skewness

and a signifcant kurtosis. Thus the major cause of positive volatility spread is the

interaction between the risk-aversion of the pricing kernel and the large kurtosis of

the distribution of the return.

Risk-neutral probabilities are physical probabilities revised by investors risk

preference as determined by the pricing kernel (Harrison and Kreps 1979). An

economic interpretation of the positive volatility spreads is that Rational investors

are averse to extreme loss and are willing to counteract these exposures by buying

protection. The desire to cover these losses typically drives up the risk-neutral

probability relative to the actual probability. Since the volatility itself is stochastic,

stochastic volatility models such as Heston (1993) have become popular. In the

stochastic volatility setting, the positive volatility spread means that the investor has
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a twisted view on the distribution of the volatility. The investor’s higher perception

of higher volatility relative to the actual probability shifts the probability mass to

risk-neutral tails. Bakshi and Kapadia (2003) [9] examine the statistical properties

of delta hedged option portfolios (buy the option and hedge with stock) confirm

that option prices support the negative volatility risk premium and thus the twist

of probability measure.

In Chapter 3, we have showed that the statistics of the historical VIX have

an outstanding kurtosis. Furthermore, we have shown that the risk-neutral mea-

sure behaves more volatile; in the risk-neutral measure, the VIX has more upward

jumps than downward jumps. In the this section, we investigate whether a similar

distortion of probability measure exists in the VIX market.

Under the assumptions for the model, the probability measures generated by

the path of Variance Gamma processes are equivalent, and the Radon-Nikodym

Derivative depends on the terminal positive jump and negative jump. Here we use

x > 0 to denote the absolute jump size.

Since the positive jumps and negative jumps are independent,

dQ

dP

+

|Ft =
exp{−(M ′ −M)x}

exp{t ∫∞
0
(e−M ′x − e−Mx))/xdx} (5.24)

dQ

dP

−
|Ft =

exp{−(G′ −G)x}
exp{t ∫ 0

−∞(e
−G′x − e−Gx))/xdx} (5.25)

Figure 5.8 plots the Radon-Nikodym derivatives for positive jumps and neg-

ative jumps of the two factors x1t and x2t. For positive jumps of both factors, the

Radon-Nikodym derivatives for positive jumps monotonically increase, while for the

negative jumps, the Radon-Nikodym derivatives decrease. These effects can be ex-
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plained by the market’s greater concern about large positive jumps, which twists

the probability space.

Figure 5.7: Radon-Nikodym derivatives for BDLP factor x1 and x2

Let us focus on the positive jump first. Denote by X ∈ X the accumulated

positive jump from time 0 to t. The expectation of X under the risk-neutral measure

is given by

EQX = E[ΛX].

The Radon-Nikodym derivative Λ : [0, 1] → [0, 1] is the distortion function of the

physical probability P . From Eqn 5.24, we can see that Λ is an Esscher transform

that is, Λ = e−(M
′−M)X/Ee−(M

′−M)X . In our result, M ′−M < 0, which means Λ is
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an increasing exponential function; the effect of the distortion function is to assign

a higher probability weighting to tail probability for positive jumps, or to the big

jumps. This coincides with the prediction of positive volatility spreads in Bakshi

and Madan (2006) and with the expectation that the agent is averse to the large

jump in the VIX.

5.7.2 Trade Strategy Test

Dynamic trading strategies have been developed based on Heidari and Wu

(2003) [33] ’s Model in the financial market. In these strategies, historical data,

including LIBOR, swap rates and interest caps, are used to estimate the both pa-

rameters of the physical measure and risk neutral measure, and the states. The

estimated parameters and states are use to forecast the prices of bond and the in-

terest rate derivatives. The investors make decisions to purchase or sell. Inspired

by Heidari and Wu (2003), we develop a dynamic trading strategy. First estimate

model parameters and end states from VIX and VIX derivatives every Wednesday

during in-sample period. Then we use the parameters and states to forecast the

future price daily in the out-of-sample period. We enter a position by selling a fu-

ture if its market price is higher than the forecasted price and buying if lower. We

close a outstanding position when it is outstanding for five days or at the first time

the relationship between market price and forecasted price reverses. We want to

check if this strategy can make money on our models. The in-sample period is from

March 30, 2004 to May 5, 2009 and the out-of-sample period is from May 6, 2009 to
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October 30, 2009. The cash flow and its daily gain are recorded. Unfortunately, the

results show that the daily gain fluctuates and the cash flow has a random pattern,

and the trade strategy does not make money. The daily gain and cash flow are

graphed below.

Figure 5.8: Radon-Nikodym Derivative for BGLV factor x1 and x2

5.8 Conclusion

From the comparison of the results of the different models, we find that all

the multifactor models show quality fit to the historical data, and demonstrated

certain forecasting power. With parameters estimated from the in-sample period,
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all models give predictions with satisfactory err range to not only for VIX for quite

a period, but also for VIX derivatives.

All error statistics are comparable among the five model either in-sample or

out-of-sample. We cannot tell significant difference among the performance of the

models.

Except for the GOU3 model, all models have intense computational complex-

ity. The Fourier transformation is necessary for all and numerical integration is

needed for the CGMOU2. Furthermore, the Particle filter requires large number

of particles for the Monte Carlo simulation. The estimation time for the Gaussian

optimization is on average about 2 hours, while the CIR3 optimization takes more

than 20 hours and the CGMOU2 models take several days. With computational

time in consideration, we recommend GOU3 for the joint estimation. The multi-

factors Gaussian OU models show strength not only in fitting data across time but

also in fitting the randomness with higher moments.

From the Radon-Nikodym Derivative tests, both GOU3 and CGMOU2 suggest

that the market assigns higher probability weighting to a higher level of randomness.

CGMOU2 model shows that market assigns higher probability weighting to big

positive jumps.

The simple dynamic trading strategy does not make money on these multifac-

tor models. There is an inconsistency in the procedures, since the parameter and

state are estimated in weekly data, while the strategy are tested in daily date. We

will use daily date in future research and make more tests.
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Chapter 6

Conclusion and Future Study

In this dissertation, we explore how to employ different mean reverting pro-

cesses to model the VIX movement, and how to use these models to price the VIX

options. for particular, we introduce the Lévy OU models, and FFT with imaginary

Gamma option in the option pricing. In the one-factor models, we find that the

VIX process both in physical measure and risk-neutral is better presented as a Lévy

OU processes with jump process rather than as a Gaussian OU process. Negative

jumps need to be included in the Lévy OU process. In the risk-neutral measure, for

the Lévy OU processes with jumps, positive jumps occur more frequently.

We use multi-factor mean reverting processes build a joint frame for both the

physical measure and the risk-neutral measure. To estimate the various models,

we employ several filter techniques, namely, Unscented Kalman Filter (UKF), con-

strained UKF, mixed-Gaussian UKF and Particle Filter. We find all the multi-factor

models show fitting to the historical data, and demonstrated some forecasting power.

We find no significant difference in the performance of the different models. Except

for the GOU3 model, all models show intense computation complexity and take a

long time. As present results suggest, we recommend the GOU3 model for the joint

framework task. We also investigated the Radon-Nikodym derivative in the GOU3

and CGMOU2 models. The results show that the market assigns higher probability
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weighting to positive shocks in VIX. We tested a dynamic trading strategy on those

joint models, and got random pattern cash flow.

For future study, we can investigate how to improve the computation in the

CIR3 and CGMOU2 model and reduce the complexity. We can improve the Gaus-

sian Mixed UKF and particle filter implementation, to make these models take less

time. We can study the effects of introducing more factors to the multifactor mean

reverting model. We can try more trading strategy with the expectation to find a

model applicable to the financial market.
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A.1 The Derivation of VIX Call Price

Assuming the Vt (VIX) has a characteristic function Φ(·) under risk neutral

measure, The general Fourier transform of a call price is given by Equation (1).

Ψc(u) =

∫ ∞

0

eiuKC(K)dK

= e−rτ{ 1
u2
[1− Φ(u)] +

i

u
Fτ}, (1)

where u = a+ bi, Fτ is future price with maturity τ , a ≥ 0 is a constant and b ∈ �.

The derivation of Equation (1) is given as follows. let f(x) be the PDF of VIX

x at maturity.

Ψc(u) =

∫ ∞

0

eiuKC(K)dK

=

∫ ∞

0

eiuKe−rτEQ(X −K)+dK

= e−rτ
∫ ∞

0

eiuK
∫ ∞

K

(x−K)f(x)dxdK

= e−rτ
∫ ∞

0

f(x)dx

∫ x

0

eiuK(x−K)dK

= e−rτ
∫ ∞

0

f(x)dx
−eiux + iux+ 1

u2

= e−rτ{
∫ ∞

0

f(x)dx
−eiux + 1

u2
dx+

i

u
EQ(X)}

= e−rτ{ 1
u2
[1− Φ(u)] +

i

u
Ft}.
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