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Abstract 

Pedigree inference, for example determining whether two persons are second cous-
ins or unrelated, can be done by comparing their genotypes at a selection of genetic 
markers. When the data for one or more of the persons is from low-coverage next gen-
eration sequencing (lcNGS), currently available computational methods either ignore 
genetic linkage or do not take advantage of the probabilistic nature of lcNGS data, rely-
ing instead on first estimating the genotype. We provide a method and software (see 
familias.name/lcNGS) bridging the above gap. Simulations indicate how our results are 
considerably more accurate compared to some previously available alternatives. Our 
method, utilizing a version of the Lander-Green algorithm, uses a group of symmetries 
to speed up calculations. This group may be of further interest in other calculations 
involving linked loci.

Keywords:  LcNGS, Pedigree inference, Bayesian

Introduction
Genetic marker data has been used to resolve questions about relationships for several 
decades [1–4]. The core idea is to leverage how differences in the Mendelian inheritance 
of alleles through alternative pedigrees will result in probabilistic differences in how gen-
otypes of tested persons relate. In forensic genetics, traditional software such as Familias 
[5, 6] and DNAview [7] can be used to efficiently compute the likelihood ratio for two or 
more hypotheses about possible pedigrees, when genetic markers are unlinked. In op. 
cit., versions of the Elston Stewart algorithm [8] are used which efficiently handle large 
pedigrees, modelling mutations throughout the pedigree. In medical genetics and link-
age analysis, software such as Merlin [9] implements a version of the Lander-Green algo-
rithm [10] efficiently handling linked markers on smaller pedigrees.

Advances in genetic sequencing (e.g. next-generation sequencing, NGS) [11, 12] have 
decreased the cost of whole genome sequencing (WGS) considerably and also brought 
about several new panels targeting a greater number of genetic markers. Tillmar et al. 
published a panel of genetic markers with relevance to forensic and population genetics, 
encompassing roughly 4000 kinship informative single nucleotide polymorphism (SNP) 
markers [13]. The panel can be analyzed on low-end benchtop genetic sequencers such 
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as the MiSeq (Illumina) or the Ion S5 (Thermo Scientific) instruments. In medical and 
population studies, high density SNP microarrys are commonly used, where data for 
hundreds of thousands of markers are simultaneously genotyped. However, for samples 
with low quality and quantity, such as forensic grade or archaeological samples, genetic 
sequencing is often a superior choice [14] yielding more information to be used in the 
ensuing evaluations.

A standard procedure, having access to good quality and high-coverage next genera-
tion sequencing data, is to apply a threshold-based approach to call the genotypes, and 
then proceed as above, even if the called genotypes may then either contain many errors, 
or a lot of missing data, or both [15–17]. In this paper, we focus on situations where at 
least some of the data is of low-coverage next generation sequencing (lcNGS) type and/
or DNA samples contain very little or degraded DNA and is derived from a sequencing 
analysis. There is no generally agreed definition of low-coverage in this context. Average 
sample coverage of 30X or more can mean high coverage, while 1X or less is clearly low-
coverage. In this paper, we use 10X or below to mean low-coverage sequence data. Due 
to an expected high proportion of no calls/missing data using the standard procedure for 
such datasets, we explore a more probabilistic approach where we establish a likelihood 
for all possible genotypes of the tested persons given the observed data, and use such 
genotype likelihoods directly in calculations relating to hypotheses about relatedness.

The program NgsRelate [18], widely used to infer relatedness from lcNGS data, uses 
a maximum likelihood approach to find the most likely set of Jacquard coefficients 
between all pairs of individuals in a given data set, although the method does not con-
sider genetic linkage between markers. On the other hand, the program Merlin [9] 
computes likelihoods for genotype data given different hypotheses about relationships 
accounting for genetic linkage and a simple model for genotyping errors but fails to 
implement a complete model for data from sequencing.

We will show that our approach can give more reliable likelihood results than using 
algorithms that first determine a genotype, or ignore linkage. Further, we show that 
our approach can yield useful results even for lcNGS data with low coverage, or when 
using samples based on very little DNA, so that many heterozygote balances are off. We 
believe our approach is unique in combining a probabilistic observational data model 
for sequencing read data with an inheritance model accounting for genetic linkage for 
hypotheses about relationship concerning two or more individuals. An implementation 
is available from https://familias.name/lcNGS.

Materials and methods
In Sects. 2.2 through 2.6 we will define a method that, given lcNGS data for two or more 
individuals and two alternative pedigrees relating them, computes a likelihood ratio. 
Combining this ratio with a prior odds yields a posterior odds which may be used to 
choose between the pedigrees. To assess such a method, the best alternative is of course 
to apply it and competing methods to large numbers of cases where the true pedigree is 
known in each case. Such comparisons are limited by the availability of data.

An alternative, used in this paper, is to compare competing methods on simulated 
data. The assessment is then divided into two tasks: Showing that the simulation model 
yields data that is realistic in relevant ways, and comparing methods on the simulated 
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data. The simulation model used in this paper uses population models and inheritance 
models presented in Sects.  2.3 and  2.4, where the inheritance model includes linkage 
(i.e., effects of crossovers inside the considered pedigree). When two loci are strongly 
linked, their alleles will often be inherited together, as haplotypes, through the pedigree, 
thus strongly influencing the information about the pedigree contained in the data. This 
motivates why data simulation should contain linkage.

The population model includes important standard features such as kinship, however, 
it does not include linkage disequilibrium (LD, i.e., effects of crossovers outside of the 
considered pedigree). This means that the effect of LD on competing methods is not 
assessed. Current methods for handling LD include grouping markers together [9] or 
using an multiorder Markov chain [19]. Both ideas may be possible to combine with our 
approach. We have chosen to defer treatment of LD to a later paper.

Section  2.2 presents the observational model we use to simulate lcNGS data from 
simulated genotypes. This is a simplified model simulating only counts of reads at each 
locus. Section 3.1 contains a small study and an argument why we believe this observa-
tional model captures features of lcNGS data essential for relationship inference, in par-
ticular when one or more of the samples are based on small amounts of DNA.

Our likelihood method for pedigree inference uses exactly the same likelihood as the 
one used in data simulation. In any simulation study, when simulation is done using a 
particular probability distribution, it will be optimal to use the same distribution for like-
lihood computations. What our study illustrates is the size of the performance reduction 
when using a likelihood method that ignores linkage or the uncertainty in genotypes that 
is inherent in lcNGS data. Finally, we compare our approach with NgsRelate [18] which 
uses a maximum likelihood procedure to find the most likely Jacquard coefficients. 
NgsRelate does not account for genetic linkage between the included genetic markers.

Model overview

We assume we have data concerning N autosomal loci for T tested persons. For each 
considered pedigree we would like to compute the probability of the observed data 
given the pedigree. We model this probability using a population model including an Fst 
adjustment [20] but no linkage disequilibrium (LD), an inheritance model including a 
Poisson crossover model but no mutations, and an observational model featuring reads 
that are sampled from true alleles with some possibilities for errors. The text below is 
formulated in terms of markers with at most four alleles, which is the nature of SNPs. 
However, the model is not per se restricted to tetra-allelic data.

Observational model

At a given genetic locus for a tested person, we assume the data consists of a vector 
c = (c1, c2, c3, c4) of counts of reads corresponding to nucleotides A, C, G, T, respectively. 
Assume the true genotype at this locus is g = (g1, g2) , coded as two indices between 1 
and 4. We describe the relationship between c and g as a result of two separate stochastic 
events: First, the proportion q of DNA segments after PCR that are based on g1 among 
those based on either g1 or g2 is modelled as q = k/m where k ∼ Binomial(m, 1/2) . Here 
m is an integer parameter connected to the sample, representing the approximate num-
ber of DNA templates from the sample that end up founding PCR amplicons for this 
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locus. For high m, we have q ≈ 1/2 , while for lower m, q can be close or even equal to 0 
or 1, meaning that one of the alleles failed to be picked up in the PCR process.

Writing C = c1 + c2 + c3 + c4 and β = (β1,β2,β3,β4) , we model 
c | q, g ∼ Multinomial(C ,β) where for i = 1, 2, 3, 4,

where e is a small positive model parameter1 relating to e.g. sequencing or mapping 
errors. In other words, for each observation of a read, there is a small probability e that 
it is in fact unrelated to the underlying genotypes, and the probability is then 1/4 for 
reporting each genotype. With probability 1− e , the read is based on g1 with probability 
q and on g2 with probability 1− q . Putting the two stochastic events together we get that

In Sect.  3.1 we compare calculated probabilities from the model above with real data 
to argue that the two parameters m and e in our model can capture the most important 
features of variability in observational data. We note that low quality and quantity DNA 
samples can be modelled with a low m (sometimes in the range 5–10), since few and 
damaged DNA molecules is directly correlated to a low m. On the other hand, e, usually 
attributed to sequencing or mapping errors, is generally low (quite close to zero) with 
modern sequencing and bioinformatic tools [21].

To make likelihood computations for case sample data with the model above, a user 
has to provide information about the parameters m and e. One possibility is to use the 
results of Sect. 3.1 to select values. Alternatively a user may provide priors: If M possible 
values m1,m2, . . . ,mM with probabilities p1, p2, . . . , pM approximately describes prior 
knowledge about the parameter m, and similarly E possible values e1, . . . , eE with prob-
abilities q1, . . . , qE describes a prior for the parameter e, then we may compute

Population model

We assume population independence between different loci, i.e. there is no association 
(linkage disequilibrium, LD) between alleles at different loci. At a locus, assume there 
are F “founding alleles”, so that the remaining alleles in the pedigree are inherited from 
these. We provide a stochastic model for the vector h = (h1, h2, h3, h4) of counts of how 
many of the F founding alleles are of each of the four possible types. Assume the popula-
tion frequencies of the four possible alleles are f = (f1, f2, f3, f4) . We then model

(1)βi = (1− e)(qI(g1 = i)+ (1− q)I(g2 = i))+
e

4

(2)Pr(c | g) =

m

k=0

Pr(c | q = k/m, g)
m
k

2−m.

(3)Pr(data | pedigree) =

M
∑

i=1

E
∑

j=1

Pr(data | pedigree,mi, ej)piqj .

1  Note that an alternative parametrization could use a parameter e′ representing the probability of observing a different 
allele than the true one. Then e′/3 = e/4.
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Here, θ is the kinship parameter (population fixation parameter) Fst [20] while γ is a 
small positive number and f  is a vector with general probabilities for observing A, C, G, 
or T for any of the markers. Note that with this model, after having observed k alleles of 
type i and s − k alleles of other types, the probability for observing another allele of type 
i is

Note also that Eq. 5 reduces to the traditional Fst formula [20] when γ = 0.
To motivate why one might use a number larger than zero for γ , consider the follow-

ing example: We compute the likelihood ratio comparing the alternatives of two per-
sons being unrelated or half-siblings using data at a single locus. Assume data for both 
persons contains 50 reads indicating nucleotide G, while the population frequency of 
G is zero. With γ = 0 , all reads for G will be attributed to read errors (which may seem 
unreasonable) and the likelihood ratio would be approximately 1. With γ some small 
positive number, the likelihood ratio in favour of unrelatedness would instead be approx-
imately equal to the probability of observing a second G allele among the founder alleles 
of the case data after having observed a first G allele, which in our model would be

Finally, note that our model can be interpreted as using frequencies from a database of 
size (1/θ − 1)(1− γ ) and a pseudo-count vector (1/θ − 1)γ f .

Inheritance model

Given a pedigree consisting of K parent–child relationships. Consider the set A consist-
ing of vectors r of length K where each component is either 0 or 1, with 0 indicating that 
the child in the corresponding relationship has inherited the parent’s maternal allele, 
while 1 indicates inheritance of the paternal allele. We call such a vector an inheritance 
pattern. Each value of r organizes the alleles of the persons in the pedigree into subsets 
of alleles that must be identical as long as we disregard mutations, which is reasonable to 
do for SNPs. Restricting ourselves to the typed persons, we represent such a partition as 
a vector of length 2T of subset indices, with each of the T pairs representing the mater-
nal and paternal alleles of a person. We enumerate the subsets using consecutive inte-
gers starting from zero. For any two subsets, if there exists one or more persons in which 
alleles from exactly one of the subsets occur, consider the first person, in a fixed ordering 
of the persons, in which this happens, and the subset with an allele in this person. This 
subset will then be indexed with a lower integer compared to the other subset. Finally, 
for each pair of integers representing the alleles of a single person, if the first integer is 
larger than the second, we switch the two integers. This creates a unique code for each 
partitioning of unordered pairs of alleles: We call this an IBD code.

As an example, consider a nephew and his paternal uncle. We get two possible IBD 
codes (0, 1, 2, 3) and (0, 1, 0, 2). As the pedigree may be defined by K = 5 relationships, 

(4)h | f , θ , γ ∼ Dirichlet-Multinomial
(

F , (1/θ − 1)
[

f (1− γ )+ γ f
])

.

(5)
k + (1/θ − 1)(fi(1− γ )+ γ f i)

s + 1/θ − 1
=

θk + (1− θ)(fi(1− γ )+ γ f i)

1+ θ(s − 1)
.

(6)θ + (1− θ)γ f 3.
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we have that the corresponding r vector has 25 = 32 possible values. Each of these values 
map to one of the IBD codes above. If we assign equal probability to each of the possible 
r vectors, the induced probabilities on the two IBD codes above are both 0.5.

Let us now write ri for the inheritance pattern at locus i. Let h(r) denote the IBD 
code for an r ∈ A . Given the IBD code for a locus and the observational and popula-
tion models above, we may compute the probability of the observed data at the locus by 
conditioning on and summing over all possible combinations of alleles for the subsets 
indicated by the IBD code. Write Li(h(ri)) for the probability2 of the data at locus i. The 
functions Li are determined by our observational and population models. The complete 
model probability can now be written

where we sum over all possible inheritance patterns for all loci.
It remains to specify the joint probability model for the vectors r1, r2, . . . , rN . To sim-

plify we assume a Markov model so that each ri+1 is independent of r1, . . . , ri−1 given ri . 
Specifically, we assume there is a given probability pi for an odd number of crossovers 
between locus i and i + 1 independently for all relationships defining the pedigree. This 
yields the conditional probabilities

where we write ri = (ri1, ri2, . . . , riK ) and ri+1 = (ri+1,1, ri+1,2, . . . , ri+1,K ) . The Markov 
assumption together with a uniform probability on r1 now yields a joint probability 
model for r1, r2, . . . , rN .

A possible computational algorithm

The Markov assumption above makes it possible to use an iterative algorithm to com-
pute the value of Eq. 7, in fact, a version of the Lander-Green algorithm [10]. Specifically, 
let us write di for the data at locus i and suppress the pedigree from the notation. For 
i = 1, . . . ,N  and all values of ri , we may compute

and (for i < N)

Noting that Pr(di | ri) = Li(h(ri)) , that Pr(ri+1 | ri) = Ti(ri, ri+1) , and that

(7)Pr(data | pedigree) =
∑

(r1,...,rN )

Pr(r1, . . . , rN )

N
∏

i=1

Li(h(ri))

(8)Ti(ri, ri+1)
def
= Pr(ri+1 | ri) =

K
∏

j=1

p
I(rij �=ri+1,j)

i (1− pi)
I(rij=ri+1,j),

(9)Pr(d1, . . . , di, ri) = Pr(d1, . . . , di−1, ri)Pr(di | ri)

(10)Pr(d1, . . . , di, ri+1) =
∑

ri

Pr(d1, . . . , di, ri)Pr(ri+1 | ri).

2  In fact, we adjust each Li function with a factor so that its largest value is 1, to reduce problems with numerical under-
flow. This does not change the final likelihood ratio results.
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we obtain the following algorithm:
Initialize a vector z of length 2K  with values 1/2K  , so that it represents the prior prob-

ability distribution on r1 . Then, for each locus i = 1, . . . ,N  : 

1	 Compute a vector of length 2K  by computing Li(h(ri)) for all possible values of ri . 
Multiply it term-wise with z to get a vector representing Pr(d1, . . . , di, ri) for all pos-
sible values of ri.

2	 If i < N  , compute a matrix M of size 2K × 2K  representing Ti(ri, ri+1) for all possible 
values of ri and ri+1 . Then set z equal to the matrix product zM, so that z now repre-
sents Pr(d1, . . . , di, ri+1).

Finally, sum the elements of z to obtain the probability we wanted to compute.
The computed number will in real examples be extremely small, so that one needs to 

compute its logarithm to avoid numerical underflow. In practice we re-scale the values 
in z in every loop above, storing separately the logarithm of a common factor.

An improved algorithm using symmetries

An important problem with the algorithm above is that 2K  can be a large number even 
for fairly small K, so that the (2K × 2K ) matrix M representing Ti(ri, ri+1) can become 
too large to handle. However, it turns out that in practice the vector z will contain many 
repeated values. This opens up the possibility of using a “compressed” matrix M∗ for 
computations.

Specifically, consider a subdivision

of the set of inheritance patterns A into disjoint subsets where for all v and v∗ in a com-
mon subset there exists a permutation g on A so that (1) for all r ∈ A h(g(r)) = h(r) , (2) 
for all r, r′ ∈ A g(r) and g(r′) differ in the same number of components as r and r′ , and 
(3) g(v) = v∗ . Then we will show in the Additional file 1 Appendix that

and that for all i = 1, . . . ,N − 1 and k = 1, . . . , J

yielding the following improved algorithm:
Initialize a vector z of length J with values 1/2K  . Then, for i = 1, . . . ,N  : 

1	 Compute a vector of length J by computing Li(h(vj1)) for j = 1, . . . , J  . Multiply it 
term-wise with z to get a vector representing Pr(d1, . . . , di, ri = vj1) for j = 1, . . . , J .

(11)Pr(data | pedigree) = Pr(d1, . . . , dN ) =
∑

rN

Pr(d1, . . . , dN , rN ),

(12)
A ={v11, v12, . . . , v1n1} ∪ {v21, v22, . . . , v2n2} ∪ . . .

· · · ∪ {vJ1, vJ2, . . . , vJnJ }

(13)Pr(d1, . . . , di, ri = v) = Pr(d1, . . . , di, ri = v∗)

(14)Pr(d1, . . . , di, ri+1 = vk1) =

J
∑

j=1

Pr(d1, . . . , di, ri = vj1)

( nj
∑

s=1

Ti(vjs, vk1)

)
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2	 If i < N  , compute a matrix M∗ of size J × J  representing 
∑nj

s=1 Ti(vjs, vk1) for 
j, k = 1, . . . , J  . Then set z equal to the matrix product zM∗ , so that z now represents 
Pr(d1, . . . , di, ri+1 = vj1) for j = 1, . . . , J .

Finally, sum the elements of z to obtain the probability we wanted to compute.
To use this algorithm, one needs to find a subdivision like the one described above. 

See the Appendix for an algorithm that derives the optimal subdivision. We also need to 
compute the matrix M∗ for each i. In the Appendix we show that

where

In other words, the entries of the matrix is a polynomial in pi , with integer coefficients 
found by counting the differences between inheritance pattern representatives. Note 
that, to any pedigree there is associated a unique such matrix of polynomials. As they 
may play a fundamental role in pedigree computations using Markov-modelled linkage, 
we believe such matrices should be studied further. We look at a number of examples in 
Sect. 3.2.

Data, and simulation and comparison procedure

The assessment of our observation model in Sect. 3.1 uses the Coriell sample NA12878, 
a genomic reference material (Coriell Institute) sequenced in Tillmar et al. [13] on a Illu-
mina MiSeq instrument. Results for samples with varying amounts of DNA and varying 
allelic depths are shown in Table 1.

The simlation uses 3929 SNPs from Tillmar et  al. [13], describing a SNP panel 
with autosomal SNPs evenly spread across the chromosomes. Genetic positions are 

(15)
nj
∑

s=1

Ti(vjs, vk1) =

K
∑

r=0

Ar(vj1, vk1)p
r
i (1− pi)

K−r

(16)Ar(vj1, vk1) = #
{

vjs : vjs andvk1 differ atr locations
}

.

Table 1  Drop-in and drop-out measurements for 12 samples.

Drop-in is measured as the proportion of reads indicating an allele that is not present in the genotype the read reports for. 
Drop-out is measured as the proportion of heterozygous loci where there are reads for only one allele type

Sample Input(ng) Mean coverage Drop-in Drop-out

1 20 657 0.0195 0

2 20 40 0.0227 0

3 20 20 0.0237 0.0040

4 20 8 0.0243 0.0537

5 20 4 0.0220 0.2597

6 20 2 0.0167 0.6160

7 20 1 0.0067 0.9223

8 1 105 0.0179 0

9 0.25 59 0.0143 0.0196

10 0.125 35 0.0129 0.0822

11 0.031 12 0.0092 0.5558

12 0.015 9 0.0091 0.7461
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downloaded from Ruther’s repository [22]. From Tillmar et  al, we further use gen-
otype data for the Coriell sample NA12878 to obtain coverage statistics. Allele fre-
quencies are extracted for individuals with European ancestry (CEU) from the 1000 
Genomes project [23]. We generate founder alleles through the population model in 
Sect. 2.3 with θ = 0.01 and γ = 0.001 . We continue to drop alleles through the ped-
igree using the inheritance model in Sect.  2.4, with crossover probabilities derived 
from the genetic positions alluded to above. Next, to mimic low coverage data 
(lcNGS) based on reduced-quality samples, we use the model in Sect. 2.2 with m = 10 
and e = 0.02 to generate sequence read data. The allelic depths are drawn indepen-
dently for each locus using a discretized Gamma distribution, first with expectation 
10 and standard deviation 2 for Figs. 2 and 3 and then with expectation 3 and stand-
ard deviation 1 for Figs. 4 and 5.

In the simulation study in Sect.  3.3 we focus on whether two persons are second 
cousins (see Fig. 1) or unrelated. For each relationship 1000 cases are simulated and 
a Likelihood Ratio in favour of relatedness is computed using three different meth-
ods: Our proposed method, an amended version where linkage is ignored, and an 
amended version where genotypes are called. To make it optimally competitive, the 
calling algorithm uses the same likelihood as in our model, combining it with prior 
probabilities for genotypes based on allele frequencies and selecting the genotype that 
maximizes the resulting posterior. In other words, the called genotype is the one that 

Fig. 1  Our five example pedigrees. For each we indicate the numbering of the persons, the numbering of 
the parent–child relationships and which persons are tested (filled symbols)
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maximizes the product of the population frequency of the genotype and the likeli-
hood of the data given the genotype, where the likelihood is computed as in Sect. 2.2.

For each simulated case we also estimate Jacquard coefficients using NgsRelate 
[18]. We use VCF-files as input, with PL-fields derived from the same data likelihoods 
we use in our proposed method. The Euclidean distances from the estimated point 
k = (k0, k1, k2) of non-inbred coefficients to corresponding points representing the sec-
ond cousin relationship or unrelatedness are computed. Comparing the difference in 
distances to a cutoff value yields a classification of cases into related or unrelated. Vary-
ing the cutoff value yields receiver operating characteristic (ROC) curves seen in Figs. 3 
and  5. For comparison, the figures also show results for other methods, converted to 
ROC curves using the LR as cutoff.

Implementation

R-code with our algorithm is available at https://familias.name/lcNGS. To val-
idate the correctness of our implementation, we used the software Merlin [9] which has 
been widely used to compute likelihoods for pedigrees and genetic data. We constructed 
input files for Merlin using data for a range of cases with simulated data for the SNP 
markers published in Tillmar et al [13]. Likelihoods were computed in Merlin and in the 
R script alluded to above implementing our model and subsequently compared.

Our R implementation of the pedigree preprocessing step had running times of 2–3 s 
for a pedigree of second cousins on a standard 2.6 GHz laptop. A complete example 
computation provided at the link above, involving preprocessing and comparing 5 pedi-
grees, had a running time of about a minute.

Results
Our method for computing pedigree likelihoods can be described as consisting of two 
steps: First, the pedigree is pre-processed, in the sense that its IBD codes and symme-
tries are computed, as well as the matrices of Eq. 16. Such results may be of interest in 
their own right, and Sect. 3.2 provides a number of examples. In the second step, the 
probability of sample data given alternative pedigrees is computed, as in Sect. 2.6.

Section  3.3 contains our simulation study where our proposed method is compared 
with various alternatives. We also look at the extent to which our method can yield cor-
rect conclusions even with very low allelic depths. However, we start with Sect.  3.1, 
exploring whether our observational model appears appropriate for lcNGS data.

Behavior of observational model

Discrepancies between true genotypes and bioinformatically called genotypes based on 
lcNGS data can take various forms. For instance, alleles may drop in, i.e. reads for alleles 
not in the genotype are present. Main causes of drop-in are sequencing errors, mapping 
errors and contamination. Assuming a contamination is discovered with other tools, we 
focus on modelling the occurrence of sequencing and mapping errors.

For the test samples listed in Table 1 (see Sect. 2.7 for details) drop-in rates for bio-
informatically called genotypes vary hugely, from zero (sample 1) to 0.1057 (sample 
5), as such rates are very influenced by allelic depth. However, if we instead count the 
rate at which a read represents an allele not present in its underlying genotype, we get 
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much more stable numbers, as seen in Table 1. For homozygous loci, our observational 
model predicts that each read has an independent probability 3e/4 of being of a type not 
present in the genotype; for heterozygous loci the probability is 2e/4. As the genotype 
on which the samples are based has a 57% proportion of homozygous loci, we expect a 
drop-in rate of 0.6425e as defined above. Comparing with the table, we see that we can 
use values of e around 0.02 (or in the interval 0.01−0.04) for samples of the type listed in 
the table. When different setups of the sequencing machinery or different settings of the 
bioinformatic pipeline are used, other values for e may be more appropriate. See, e.g., 
[24] and [25] for some relevant studies.

The main challenge for lcNGS data is generally allelic drop-out, meaning in practice 
that reads of only one allele are observed for a true heterozygous genotype. Homozy-
gote genotypes can naturally drop out, but will be interpreted as missing data which is 
not as problematic. At low allelic depths, drop-out can occur by chance during the tar-
get enrichment or sequencing process. Additionally, with low input amounts of DNA an 
allele can drop out completely even before the target enrichment, or the balance of two 
alleles will be skewed during enrichment, increasing the probability of drop-out at the 
sequencing stage. Table 1 lists the proportion of heterozygous loci in our samples where 
reads for only one of the alleles are seen.

We model drop-out with the m parameter together with the Eqs. 1 and 2. At a het-
erozygous locus with allelic depth d, we get the probability

that all reads are of one of the true alleles. Table 2 lists this probability for various combi-
nations of m and d, using e = 0.02 . We see that by using m = 10 we can to some degree 
reproduce the behaviour of drop-out probabilities for samples 1 through 7. Samples 8 
through 12 can be roughly represented using m values 10, 5, 4, 2, and 1, respectively. We 
see that the appropriate value for m decreases with the amount of DNA in the sample, in 
correspondence with our motivation for the observational model.

The comparisons above between actual observations and model predictions is quite 
rough, ignoring for example variability in allelic coverage between loci. The stochastic 
processes giving rise to lcNGS data are quite complex, and our simplistic observational 
model captures only a small part of this complexity. However, we argue that our model is 
still useful as a first approximation. The above is intended both as a motivation that our 
model is relevant, and a guide to understanding and setting the parameters e and m. A 
fuller statistical analysis comparing the model to alternatives is planned for a later paper.
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k
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Table 2  Values for am,d of Euqation 17, using e = 0.02

m\d 1 2 4 10 20 40 100

1 0.99 0.9703 0.9413 0.8597 0.7391 0.5463 0.2206

2 0.99 0.7302 0.5307 0.4307 0.3696 0.2732 0.1103

4 0.99 0.6101 0.3146 0.1327 0.0936 0.0683 0.0276

5 0.99 0.5861 0.2733 0.0864 0.0489 0.0342 0.0138

10 0.99 0.5381 0.1939 0.0243 0.0041 0.0012 0.0004
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Preprocessing of pedigrees

In order to do likelihood computations involving linked loci, our method includes a 
pre-processing, which can be applied to any pedigree containing a list of tested persons. 
First, we compute a set of IBD codes, a set of representative inheritance patterns for each 
IBD code, and for all pairs of representatives a polynomial which may afterwards be used 
in likelihood computations. The theory for obtaining these results is given in Sects. 2.4 
through  2.6 and in the Appendix. In the following section we show results from pre-
processing the five example pedigrees illustrated in Fig. 1.

At any given autosomal locus, two half siblings have one allele IBD with probability 
0.5, and zero alleles IBD with probability 0.5. In Table  3, the two corresponding IBD 
codes produced by our algorithm are shown, together with the two representatives for 
each IBD code. For example, the representative r = (00) should be interpreted as person 
1 inheriting the maternal allele from the mother, and person 2 also inheriting the mater-
nal allele from the mother. For the representative r = (10) person 1 inherits the paternal 
allele while person 2 inherits the maternal allele.

There are 4 possible inheritance patterns in this case. However, because of symme-
tries, we need not compute explicitly with the patterns (01) and (11). Instead we use for 
computations a (2× 2) matrix with entries given in Table 4, where p is the probability on 
a single chromosome of an odd number of crossovers between loci i and i + 1.

The second case involves an uncle/nephew relationship, which has the same IBD 
probabilities as half siblings. However, as well known [26, 27], pedigree computations 
using linked loci will be different. We now need to use the four representatives listed in 
Table 5. The entries of the (4 × 4) T matrix are listed in Table 6.

Considering an extension of the previous example, assume there are three tested 
persons (see Fig.  1). The IBD codes become vectors of length 6. Table  7 lists the 

Table 3  IBD codes and representatives for the half sibling case

IBD codes Prob Represenatives

(0, 1, 0, 2) 0.5 1:(00)

(0, 1, 2, 3) 0.5 2:(10)

Table 4  Transition matrix for the half sibling case

j s ∑nj
k=1

Ti(vjk , vs)

1 1 (1− p)2 + p2

1 2 2p(1− p)

2 1 2p(1− p)

2 2 (1− p)2 + p2

Table 5  The IBD codes and representatives for the nephew case

IBD codes Prob Represenatives

(0, 1, 0, 2) 0.5 1:(00000), 2:(01000)

(0, 1, 2, 3) 0.5 3:(11000), 4:(01010)
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possible IBD codes and representative inheritance patterns, for this pedigree. Each 
IBD code has probability 1/8 at each locus. The T matrix becomes a (16× 16) matrix 
and is not listed.

The fourth case describes an incestuous relationship between two half siblings. 
The IBD codes for their two children and representatives are listed in Table 8. The T 
matrix has size (20× 20) and is not listed.

The final case describes two second cousins, who have probability 0.0625 for shar-
ing one allele IBD. The IBD codes and representatives are listed in Table  9. Note 
how computations may be done with 21 representatives, instead of with each of the 
28 = 256 inheritance patterns. This illustrates the power of using symmetries. Note 
how our algorithm finds more symmetries than those obtained by permuting the 
paternal and maternal alleles of founders or by switching the untyped parents.

Table 6  Transition matrix for the nephew case

j s ∑nj
k=1

Ti(vjk , vs)

1 1 (1− p)5 + p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + p4(1− p)+ p5

1 2 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

1 3 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

1 4 4p2(1− p)3 + 4p3(1− p)2

2 1 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

2 2 (1− p)5 + 2p2(1− p)3 + 4p3(1− p)2 + p4(1− p)

2 3 p(1− p)4 + 4p2(1− p)3 + 2p3(1− p)2 + p5

2 4 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

3 1 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

3 2 p(1− p)4 + 4p2(1− p)3 + 2p3(1− p)2 + p5

3 3 (1− p)5 + 2p2(1− p)3 + 4p3(1− p)2 + p4(1− p)

3 4 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

4 1 4p2(1− p)3 + 4p3(1− p)2

4 2 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

4 3 2p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + 2p4(1− p)

4 4 (1− p)5 + p(1− p)4 + 2p2(1− p)3 + 2p3(1− p)2 + p4(1− p)+ p5

Table 7  IBD codes and representatives for the two uncles case

IBD codes Prob Represenatives

(0, 1, 0, 2, 0, 2) 0.125 1:(0000000), 2:(0100000)

(0, 1, 2, 3, 2, 3) 0.125 3:(1100000), 8:(0100100)

(0, 1, 0, 2, 0, 3) 0.125 4:(0010000), 6:(0110000)

(0, 1, 2, 3, 0, 2) 0.125 5:(1010000), 10:(1010100)

(0, 1, 0, 2, 2, 3) 0.125 7:(1110000), 12:(1110100)

(0, 1, 2, 3, 2, 4) 0.125 9:(0010100), 11:(0110100)

(0, 1, 2, 3, 0, 4) 0.125 13:(0010010), 14:(1110010)

(0, 1, 0, 2, 3, 4) 0.125 15:(1110010), 16:(0110110)
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Simulation results

As described in Sect.  2.7 we simulated lcNGS data for 1000 cases where two per-
sons are second cousins, and 1000 cases where they are unrelated. We then computed 
Likelihood Ratios in favour of relatedness using our proposed method, our proposed 
method with called genotypes, and our proposed method disregarding linkage. For 
the cases where the persons are related, Fig. 2 shows the proportion of LRs above the 
cutoff value given on the x-axis. Similarly, the proportion of LRs below the cutoff is 
shown for cases where the persons are unrelated.

We see that most cases can be correctly resolved with the FORCE panel of SNPs 
and perfect knowledge about the genotypes, corroborating the results in Tillmar et al 
[13]. Also, the power to solve cases is only slightly reduced when using lcNGS data 
with average allelic depth 10 together with our proposed method. When the method 
is amended by calling genotypes, there is a small reduction in power, while there is a 
large reduction in power when the method is amended to ignored linkage. The same 
conclusions can be drawn from Fig. 3, which also includes results from NgsRelate. We 
see that using maximum likelihood estimates of Jacquard coefficients gives consider-
ably less power to solve cases.

When the average allelic depth is reduced to 3, as in Fig.  4, we see that there is 
a considerable information loss in lcNGS data compared to data containing true 

Table 8  IBD codes and representatives for the incest case

IBD codes Prob Represenatives

(0, 1, 0, 1) 0.21875 1:(000000), 4:(110000), 11:(000010),

14:(110010), 20:(111110)

(0, 1, 0, 2) 0.43750 2:(100000), 3:(010000), 6:(011000),

12:(100010), 13:(010010),

17:(111010), 19:(110110)

(0, 0, 1, 2) 0.03125 5:(101000)

(0, 0, 0, 1) 0.06250 7:(111000)

(0, 1, 2, 2) 0.03125 8:(010100)

(0, 1, 0, 0) 0.06250 9:(110100)

(0, 0, 0, 0) 0.03125 10:(111100)

(0, 1, 2, 3) 0.12500 15:(101010), 16:(011010), 18:(010110)

Table 9  IBD codes and representatives for the second cousins case

IBD codes Prob Represenatives

(0, 1, 2, 3) 0.9375 1:(00000000), 3:(01000000), 4:(11000000),

5:(00100000), 7:(01100000), 8:(11100000),

9:(00001000), 10:(10001000), 11:(00101000),

12:(10101000), 13:(01101000), 14:(11101000),

15:(00000001), 16:(01000001), 17:(00100001),

18:(01100001), 19:(00001001),

20:(00101001), 21:(01101001)

(0, 1, 0, 2) 0.0625 2:(10000000), 6:(10100000)
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genotypes. Nonetheless, our proposed method is able to resolve most cases. Note that 
calling the genotypes naturally leads to a much larger further loss of information at 
this allelic depth than at depth 10. These conclusions are also illustrated in Fig. 5.

Clearly, classification results for our proposed method will be worse for real data com-
pared to results shown, as real data will not follow our stochastic model exactly. For 
example, setting the population fixation parameter Fst to a value inappropriate for your 
population is likely to bias classification results. Regarding the γ parameter, we simulated 
100 cases with γ = 0.001 and analyzed them with γ = 0.001 , γ = 0.00001 , and γ = 0 . 
ROC curves were indistinguishable for γ = 0.001 and γ = 0.00001 , with insignificant 
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differences to the case γ = 0 . Using inappropriate parameters m and e for the observa-
tional model is likely to impair results, but further study, involving real data, is needed to 
clarify these issues.

Discussion
We describe a new model for likelihood computations with application to low count 
sequencing data. Essentially we report two advancements: An adaptation of the Lander-
Green algorithm, including a general method to exploit symmetries for efficient compu-
tation, and a new proposed observational model for lcNGS data. The two advancements 
can be considered fairly independently.
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The observational model can be used for likelihood computations for any purpose 
when lcNGS data is involved. It could be most useful when sample quality is not high. 
Several model improvements could be considered, such as involving quality information 
recorded for each locus in each sample. Clearly more analysis of real data is required, 
and we hope to return to this issue.

Our proposed algorithm for computations with linked loci can in principle be com-
bined with any observational model. Indeed, our R code can take as input VCF-files 
where PL-fields indicate genotype likelihoods.

The general method should work if closely clustered SNPs are collected into “super-
loci” with a correspondingly high number of possible alleles, ignoring the within-ped-
igree possibilities for crossovers between the clustered SNPs. This approach would be 
similar to [28]. However, there may also be other ways to include LD into the algorithm.

For now, one may choose between ignoring LD or extracting markers from the marker 
set such that LD is limited or absent from the panel where computations are performed. 
A pruning procedure may be used if whole genome data is used whereby, for instance, 
LD is computed for adjacent markers and removed if the degree of association is greater 
than some threshold.

Even STR markers could in principle be included. However, within-pedigree muta-
tions would probably need to be ignored, which may not be an optimal choice.

An important job is to validate our approach on real cases, and to make it easy and 
accessible to use, and efficient to run. The current implementation in R is restricted to 
single core computations, however using parallelization is a fairly simple extension, for 
instance across chromosomes.

Conclusion
Probabilistic pedigree inference may be done using low-coverage whole genome 
sequencing (lcNGS) data. We supply computational solutions by providing an R script. 
Computational time for a single likelihood ratio computation is about 1 min or less for 
the types of pedigrees investigated in this paper.

For high allelic depths and high-quality samples, computations may reliably be done 
by calling the genotype for each sample and locus based on read counts. For lower allelic 
depths or low-quality samples, reliable results may still be obtained, but require a proba-
bilistic approach like the one we have implemented, rather than calling alleles.

Our method extends the Lander-Green algorithm to lcNGS data, and also implements 
use of a group of symmetries to speed up calculations with linked loci.
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