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Abstract
We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories, and validate 
its effectiveness in a principled way. To model and generate scenarios of trajectories with different lengths, we develop two 
approaches. First, we adapt the Recurrent Conditional Generative Adversarial Networks (RC-GAN) by conditioning on the 
length of the trajectories. This provides us the flexibility to generate variable-length driving trajectories, a desirable feature 
for scenario test case generation in the verification of autonomous driving. Second, we develop an architecture based on 
Recurrent Autoencoder with GANs to obviate the variable length issue, wherein we train a GAN to learn/generate the latent 
representations of original trajectories. In this approach, we train an integrated feed-forward neural network to estimate the 
length of the trajectories to be able to bring them back from the latent space representation. In addition to trajectory gen-
eration, we employ the trained autoencoder as a feature extractor, for the purpose of clustering and anomaly detection, to 
obtain further insights into the collected scenario dataset. We experimentally investigate the performance of the proposed 
framework on real-world scenario trajectories obtained from in-field data collection.

Keywords  Generative Adversarial Networks (GANs) · Time series analysis · Autonomous drive safety verification · 
Clustering · Outlier detection

Introduction

The future of transportation is tightly connected to Autono-
mous Driving (AD). While a lot of progress has been made 
in recent years in these areas, there are still obstacles to 
overcome. One of the most critical issues is the safety veri-
fication of AD. To assess with confidence the safety of AD, 
statistical analyses have shown that fully autonomous vehi-
cles would have to be driven for hundreds of millions of 
kilometers [21]. This is not feasible, particularly in cases 
when we need to assess different system design propos-
als or in case of system changes, since the same amount 

of distance needs to be driven again by the AD vehicle for 
the verification sign-off. Thus, a data-driven scenario-based 
verification approach that shifts performing tests in the fields 
to a virtual environment provides a systematic approach to 
tackle safety verification. This approach requires a scenario 
database to be created by extracting driving scenarios (e.g. 
cut-in, overtaking, etc.) that the AD vehicle is exposed to 
in naturalistic driving situations. Scenarios are obtained 
through time series (sequence of the ego-vehicle states and 
the surrounding objects) which in turn are the processed data 
collected by sensors of the AD vehicle. Once such a scenario 
database is developed, it can be used for test case generation 
and verification of the AD functionality in a virtual environ-
ment [22]. Note that, scenario extraction can, in general, 
be addressed with two approaches: an explicit rule-based 
approach [42] (that requires expert domain knowledge) and 
a (machine learning based) clustering approach [26, 33, 37, 
38], where they can complement each other. Figure 1 illus-
trates the high-level overview of the full process from the 
raw logged data to the scenario database with a sufficient 
number of scenarios for verification.
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However, several challenges should be addressed to 
create a reliable scenario database. First, a huge amount 
of data is still needed to be collected and processed to 
build such a scenario database. In particular, the existing 
data might be imbalanced or insufficient. Second, to assure 
safety in vehicles, AD functionality needs to pass safety 
tests not only based on “real” scenarios (also called test 
cases) collected from field driving tests, but also based on 
many perturbed (similar) trajectories that might have not 
been collected in real driving data collection. To address 
these issues, building generative models (by mimicking 
the variation available in the collected scenario data) to 
create realistic synthetic scenarios is a main focus of this 
work.

Thereby, we propose a unified deep learning framework 
for generation and analysis of driving scenario trajectories, 
and validate its effectiveness in a principled way. We inves-
tigate the performance of different variants of Generative 
Adversarial Networks (GANs) [13] for generating driving 
trajectories. GANs have shown promising results in sev-
eral tasks related to the generation of synthetic data. In this 
paper, since the data are sequential, we employ recurrent 
architectures to extract the sequential nature of data. The 
first approach consists of a recurrent GAN (without an 
autoencoder). We adapt the Recurrent Conditional Genera-
tive Adversarial Networks (RC-GAN) by conditioning on 
the length of the trajectories. This provides us the flexibility 
to generate variable-length driving trajectories, a desirable 
feature for scenario test case generation in AD verification. 
The second approach consists of a recurrent autoencoder 
and a GAN for learning/generating latent-space representa-
tions of trajectories of different lengths. In this approach, it 
is essential to know the length of the trajectories to bring 
them back from the latent space representation. We over-
come this issue by training an integrated feed-forward neural 

network to estimate the lengths based on the latent space 
representations.

At the same time, the recurrent autoencoder can be used 
as a feature extractor. Thus, we analyze such latent space 
features in the context of exploratory data analysis to obtain 
further insights into the collected scenario set via cluster-
ing and anomaly detection. As mentioned earlier, clustering 
can be useful for scenario extraction, as an alternative solu-
tion to explicit rule-based methods that might be subject to 
misspecification. Clustering can also provide an effective 
tool for data visualization and exploration. We demonstrate 
the performance of the framework on real-world in-field 
scenario trajectories collected by Volvo Cars Corporation 
(VCC).

This work is an extension of our publication in [7]. The 
extension includes different aspects such as (i) further elabo-
ration of the methods on trajectory generation using GANs, 
(ii) a clustering method consistent with the proposed deep 
learning framework, in particular with the respective latent 
representation, (iii) an outlier detection mechanism of the 
trajectories based on the latent space representation using 
the developed recurrent autoencoder, (iv) discussion on the 
applicability of the proposed clustering and outlier detection 
mechanisms for Autonomous Driving applications, and (v) 
novel experimental studies and investigations, in particular 
for the clustering and outlier detection components.

Background

Problem Description

We are provided with the data collected by Volvo Cars Cor-
poration. This dataset consists of information about the ego 
vehicle and its surroundings such as detected objects, road 
conditions, etc. We focus on generating realistic scenario 
trajectories, in particular, the cut-in trajectories for a specific 
tracked vehicle, and their analysis in the context of explora-
tory data analysis. To describe a trajectory, we consider two 
features: the relative lateral and longitude positions of the 
vehicle with respect to the ego vehicle.

To generate and analyze trajectories, our framework per-
forms the following steps.

•	 Extract scenarios from the logged data, which is done 
with explicit rules defined by an expert. Note that all sur-
rounding/target cars in the field of view (of the ego car), 
and the lane marking signals are available. So the rule-
based scenario functions work based on this information 
and they assign a start time stamp and end timestamp 
to a scenario (e.g., start the cut-in scenario a couple of 
seconds before the target car passes the lane marking 
and enters the ego car’s lane, and stop cut-in after the 

Fig. 1   The full workflow from raw data to scenario database
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target car becomes the lead car in front of the ego car). 
This will be discussed more in the next section, Scenario 
Extraction.

•	 Build the generative models for synthesizing/generating 
trajectories similar to the ones collected from the in-field 
test.

•	 Evaluate the obtained results and compare the generated 
trajectories versus the real ones. This step is done by 
visual inspection and the metrics that will be introduced.

Besides the explicit rule-based approach for scenario extrac-
tion, a clustering method can be used as well. Clustering has 
some advantages. Firstly, it enables one to detect scenarios 
that lie on the border of two scenario classes and thus finds 
more complex driving patterns/scenarios. Second, explicit 
rules could miss outliers. Moreover, explicit rules require 
expert domain knowledge and a hard threshold to define sce-
narios, which is nontrivial to formulate and calibrate when 
the dimensionality of data increases. Thus, clustering, when 
used in combination with an explicit rule-based approach, 
provides exploratory insights from the data and is suitable 
w.r.t. scalability. Also, the labels provided by the explicit 
rule-based approach can be verified by the clustering-based 
approach for consistency, where the false positive/negative 
cases can be investigated further by camera sensors video 
check. Calibration of scenario definition threshold could be 
done afterwards, when these valuable misclassified labels 
have been investigated. This consistency check between the 
two approaches can accelerate the label verification process 
considerably since only a limited number of video checking 
might be required.

Related Work

Generation

One approach to generate driving trajectories is based 
on simulations of physical models, including the vehicle 
dynamics and driver model. This is a promising approach, 
but it needs to be used in combination with other solutions, 
as validating those simulation models is as challenging as 
the verification of the AD problem. Also, the simulation 
of high-fidelity models can be computationally demanding 
w.r.t. computational and storage resources.

GANs [13] are the most popular paradigms for synthetic 
data generation in the context of modern deep neural net-
works. They have been employed and developed in several 
applications such as image processing, computer vision, text 
generation, natural language processing and translation [6, 
20, 23, 25, 41].

A related work has been developed based on generat-
ing errors for the sensors’ measurements using recurrent 
conditional GANs [1]. This method can be used to make 

simulated data look more realistic. The study in [24] con-
siders the rather similar problem of maneuver modeling 
with InfoGAN and �-VAE. These generative models show 
satisfactory results. However, the data in this work are col-
lected by a drone which we consider to be a limitation. In [8] 
presents ‘Multi-vehicle Trajectory Generator’ (MTG) that 
is an improved version of �-VAE with recurrent networks. 
Moreover, it shows that the proposed MTG produces more 
stable results than InfoGAN or �-VAE.

Clustering

Several methods have been proposed for clustering based 
on time series and trajectory analysis [2, 27], in particu-
lar for vehicle trajectories clustering [19, 26, 33, 37]. Some 
methods use Hidden Markov Models (HMM) to deal with 
the sequential aspects of time series and trajectories, which 
are usually computationally expensive [29, 36, 39]. Recent 
work uses Mixture of Hidden Markov Models (MHMM) that 
has shown promising results [33]. An advantage of HMM is 
simplicity and interpretation.

TimeNet, proposed in [32], is a multilayered recurrent 
neural network for feature extraction from time series. The 
authors demonstrate the performance of TimeNet on tasks 
such as classification and clustering where they compute an 
embedding based on t-SNE [31]. Embedding the time-series 
has been also studied in [35], where the proposed method, 
called m-TSNE, uses Dynamic Time Wrapping (DTW) [12] 
as a metric between multidimensional time series embedded 
by t-SNE. The work in [19] develops a trajectory clustering 
method based on embedding temporal relations via DTW 
and deep learning, and then extracting the transitive rela-
tions via minimax distances [15, 17]. Finally, it is notable 
that clustering sequential data clustering is beyond trajectory 
analysis and has been studied for example for tree-structured 
sequences in [4].

Driving Scenario Data Source

Scenario Extraction

The objects’ trajectories are extracted from the raw data 
(sensor measurements) and fused sensor data, which are 
mounted on the ego car. Thus, the reference/coordinate sys-
tem is the ego car. Since it is a moving reference, then all 
the measured signals (i.e., the position of the surrounding 
cars/objects) are relative with respect to the ego car. These 
trajectories can vary in length from 1 s up to 1 h. The length 
depends on how long the object is tracked by the ego-vehicle 
in the field of view (FoV). The specific scenarios of high 
interest are cut-ins. There are many different definitions of 
what constitutes a cut-in. We define them as vehicles that 
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approach the ego vehicle from the left lane and then overtake 
the ego vehicle by switching to its lane. Therefore, the cut-
ins vary in aggressiveness. More specifically, our definition 
of a cut-in also requires the vehicle to stay in front of the ego 
vehicle for at least 2 s. An example of the extracted trajec-
tory is illustrated in Fig. 2. Note that plotting trajectories as 
a line as shown in Fig. 2a has the disadvantage of eliminat-
ing the time component as compared to Fig. 2b. However, 
we find this way more expressive, as otherwise, it becomes 
extremely cluttered when multiple trajectories overlap.

On the Issue of Variable‑Length Trajectories

One of the main issues in analyzing the trajectories is the 
variable-length input/output, which in our case varies from 
30 to 70 time frames (from 3 to 7 s given the sampling 
rate of 10Hz). One solution is to train the model with pad-
ding. To apply padding, a pad token has to be defined. For 
instance, in natural language processing, it is common to 
employ word embedding and then to use zero vectors as a 
pad token [5]. Unfortunately, it is not a trivial task to define 
a pad token in case of real coordinates as any pair of real 
numbers is a realistic point in space. A possible solution 
is to pad sequences with the last point. However, it does 
not seem a feasible approach in our case due to the high 
variation in length (the shortest sequence after padding will 
contain more than 50% pad tokens). These paddings not 
only may affect the distribution of the generated samples 
significantly, but also might call for post-processing of the 
samples. For example, if the last n points are the same they 

should be considered as padding and erased. This yields an 
intrinsic problem as the definition of ‘being the same’ is 
non-obvious in particular when some noise is added during 
the generation. Such problems can be avoided by feeding the 
sequences to the model one-by-one. However, this approach 
will greatly decline the performance.

Thus, in the proposed approach, we group the sequences 
with the same length together to form a batch. In this way, we 
train a model for the whole data but with different batches, 
where each batch represents a specific trajectory length. For 
example, assume trajectories of the following lengths (1–30 
denotes that the trajectory number 1 has length 30): 1–30, 
2–32, 3–32, 4–32, 5–34, 6–34, 7–34, and 8–34. Then, the 
following batches are formed: {1}, {2, 3, 4}, {5, 6, 7, 8} . If 
one propagation through the model takes 1 unit of time, then 
training the model with these batches would take 3 units 
of time, compared to 8 units of time with the one-by-one 
trajectory processing approach. The next steps depend on 
the architecture of the generative model, to be studied later.

Trajectory Generation Framework

To model and generate scenarios of trajectories with differ-
ent lengths, we develop and propose two methods: (i) An 
architecture based on combined Recurrent Autoencoder with 
GANs, where to obviate the variable length issue, the GAN 
is trained to learn/generate the hidden representation of orig-
inal trajectories, instead of the original sequential data. (ii) 
A Recurrent Conditional GANs (RC-GAN) architecture that 

Fig. 2   The extracted cut-in in 
different forms: (a) and (b) 
show the longitudinal and 
lateral distances w.r.t. time, and 
(c) and (d) illustrate the lateral 
distance w.r.t. longitudinal 
distance
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enables us to generate driving sequences with pre-specified 
length, which is a desirable and useful feature when gen-
erating test cases for AD verification. In the following, we 
explain on each of the two methods in detail.

The Architecture: Autoencoder with GANs (AE‑GAN)

This solution is based on the architecture proposed for text 
generation in [9]. It consists of an autoencoder for time 
series as shown in Fig. 3 and GAN for latent space repre-
sentation and data generation.

We adapt and extend this architecture to deal with vari-
able-length input/output. It is essential to know the length 
of the sequence to bring it back from the latent-space rep-
resentation. During the autoencoder training, the length is 
known from the input, but for the artificial latent-space vec-
tors generated by GANs it is necessary to estimate the length 
of the trajectory. We address this issue by training a separate 
feed-forward neural network to estimate the lengths based 
on the latent space representation.

Hence, once the autoencoder is trained, all trajectories are 
encoded to the latent space using the encoder. During this 
process, the length of each trajectory is stored. Thus, two 
sets are created: X: the set of latent representations, and Y: 
the set of the lengths for each trajectory. With these sets, the 
task of length estimation from latent space can be considered 
a supervised regression task which can be solved using a 
feed-forward neural network, as shown in Fig. 4.

At this stage, GANs are used to generate new latent-space 
representations. Even though it seems reasonable to imple-
ment both the generator and the discriminator as standard 
fully-connected neural networks, we will also investigate the 
ResNet model [18] to mitigate the problems related to gradi-
ent instability, similar to the work in [9]. To train GANs, we 
consider two alternatives: the standard GAN and the Was-
serstein GAN with Gradient Penalty (WGAN-GP) [14].

As the latent-space representation is generated, it is used 
as an input to the decoder. To determine how many times 
to apply LSTM cell, we employ the aforementioned neural 
network in Fig. 4.

The Architecture: Recurrent Conditional GANs 
(RC‑GAN)

Recurrent GANs (RecGANs) have shown promising results 
for generating time series in several applications such as 
music generation [34], real-valued medical data [10] and 
sensor error modeling [1]. In this paper, we adapt them for 
our task as follows. Both the generator and discriminator are 
Recurrent NNs (RNNs) based on LSTM cells. For the dis-
criminator, we choose a bidirectional architecture. At every 
time step i, each LSTM cell in the generator receives a ran-
dom input (i.e., z drawn from N(0, 1) ) and the hidden vec-
tor from the previous cell, to generate pi . For the first cell, 
the previous hidden vector is initialized to 0. The sequence 
p1...pn forms the final trajectory, that is passed to the dis-
criminator. Then, the discriminator computes a sequence of 

Fig. 3   Schematic structure of 
recurrent autoencoder

Fig. 4   Structure of the decoder part of the autoencoder combined 
with a Length Estimator to reconstruct trajectories from latent space 
representation
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probabilities ( � in Fig. 5) identifying whether the trajec-
tory is real or fake. The ground truth is a sequence of ones 
for the real trajectories and zeros for the fakes. RecGANs 
can also be conditional. With Recurrent Conditional GANs 
(RCGANs), the condition might be passed as an input into 
each cell for both the discriminator and the generator. As 
shown in [10], the condition can be simply concatenated 
to the generator’s input and output (Fig. 5). This allows the 
discriminator to distinguish between reals and fakes w.r.t. 
to condition, that in turn forces the generator to produce 
samples w.r.t condition. To adapt this architecture to our 
task, we use the length of a trajectory as a condition and 
attach it to the input.

Evaluation

An important and challenging task is to choose proper met-
rics to evaluate the quality of the generated trajectories [30]. 
One might first evaluate the results via visualization to see 
whether they do make sense. However, as the results improve 
it becomes harder to determine precisely how good they are. 
Thus, it is important to consider quantitative evaluation metrics 

as well, such that one can objectively quantify the similarity of 
the generated trajectories with the original ones.

One commonly used method to measure similarities 
between time series is Dynamic Time Warping (DTW). Thus, 
to compare sets of time series, we build a matrix of pairwise 
DTW distances between the samples from the two sets as 
shown in Table 1. Such a matrix can be used to find the most 
similar samples from the two investigated sets. In addition, we 
analyze this pairwise matrix using the following two metrics. 
In the following, we describe two methods for the analysis of 
results based on matching the time series.

Matching + Coverage

We match each sample from the generated set (called GSM 
with M samples) with the closest sample from the real set 
(called RSN with N samples). The matching criterion is defined 
by

Even if reasonable results are achieved with this metric, it 
does not necessarily indicate that the model performs well, 
since many generated samples can be ‘mapped’ to the same 
real sample. In this case, the coverage of the model is low. 
Thus, we also measure a coverage metric as follows.

However, even the combination of these two metrics still 
has shortcomings. For instance, if there are two (or more) 
similar samples in the real set and many generated samples 
are ‘mapped’ to one of the real samples, then the cover-
age decreases. However, this does not mean that the model 
performs poorly. Since the sets are very diverse, we con-
sider GSM and RSN with M > N . In our experiments, we use 
M = 4 ∗ N.

One‑to‑One Matching with Hungarian Method

The Hungarian algorithm is a matching method for one-to-
one matching. Applying it to Table 1 yields mapping each 
sample from the generated set to exactly one sample from 
the real set. This mapping ensures that the sum of distances 
of the paired samples is minimal. The main disadvantage of 
this method is the sample distributions in the real and gener-
ated sets may not be identical. For example, the last 10% of 
the matched samples can be outliers that are from irrelevant 
parts of the distribution.

Once the aforementioned metrics are defined it is still an 
open question which ground truth should be used as a refer-
ence to compare the results with. To address this question, 

(1)matching =

∑M

i
minj (dist(GSi,RSj))

M
.

(2)coverage =
|argminj(dist(GSi,RSj)),∀i = 1,M|

N
.

Fig. 5   The schematic structure of RC-GAN

Table 1   Pairwise distances between trajectories from two sets, here tr 
stands for the trajectory
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we split the real dataset into different subsets and apply these 
metrics among the different subsets. We use the results as a 
baseline when analyzing the trajectories obtained from the 
generation models.

Exploratory Analysis of Latent Space 
Representations

GANs provide an unsupervised learning approach to gen-
erate samples consistent with a given set of real trajecto-
ries. In the following, we investigate other unsupervised 
learning methods in the context of clustering and outlier 
detection, to obtain exploratory insights from the driv-
ing trajectories of the surrounding objects, collected by 
sensors of the ego car. In addition, as mentioned before, 
these methods can be useful for the safety verification of 
AD. Consistent with the proposed GAN architectures, our 
clustering and outlier analysis mechanisms are also per-
formed based on the latest space representation obtained 
from training the autoencoder. This helps us to benefit 
from the representation that encodes the temporal aspects 
of the trajectories and simplifies the process. We note that 
the solution from the latent space representations can be 
transferred to the original trajectories, to provide a solu-
tion in the original data space.

Performing for example the clustering on original tra-
jectories might require methods such as DTW to model 
the temporal aspects first. Then, we may apply a high-
dimensional data visualization and grouping method such 
as t-SNE [31]. The method proposed in [35] and called 
m-TSNE applies t-SNE to DTW-based (dis)similarity 
matrix. However, it is computationally very expensive, 
when working with a large number of scenario trajec-
tories. In the case of n trajectories of length m, it needs 
to calculate n2 pairwise distances and each distance is 
computed with DTW that runs in O(m2) . Thus, the overall 
performance is O(n2m2) . In our setup, we have relatively 
long trajectories (50 time step on average) and relatively 
a large number of them. Therefore, we employ the already 
trained autoencoder which encodes the temporal depend-
encies properly. We assume that clustering and outlier 
detection at latent space is an easier task with reasonable 
computational costs.

Clustering on Latent Space with Autoencoder

Here, we study clustering the latent space representation of 
trajectories, obtained by recurrent autoencoder. For this pur-
pose, we extract three types of scenarios: cut-in, left drive-by 
and right drive-by, as shown in Fig. 6.

Drive-by occurs much more frequently. Thus, the cut-
in set contains fewer trajectories compared to the drive-by 
set. To address this issue, we do oversampling for the cut-in 
set and undersampling for the drive-by sets. Then, we train 
the autoencoder and encode all the trajectories. This step 
converts all trajectories to fixed-size vectors. Even though 
the resultant latent space representations are fixed-size, they 
are still high dimensional. Thus, it might be challenging to 
cluster them directly with distance-based algorithms such as 
K-means or DBSCAN. Therefore, we reduce the dimension-
ality with methods such as Principal Component Analysis 
(PCA) and t-SNE. Finally, we apply the clustering method 
(e.g., DBSCAN [11]) and analyze the results. The procedure 
is described in Fig. 7, where the encoder part is the same 
for all trajectories and pi represents lateral and longitudinal 
positions in our case. In this way, each trajectory is mapped 
to a two-dimensional representation.

Outlier Detection with Autoencoder

Being able to detect anomaly driving patterns and outliers 
among scenario trajectories is very valuable in different 
aspects in particular when the data is imbalanced. First, it 
can be used to assess the quality of the original data and 
to find possible sensor reading anomalies/errors. A more 
detailed investigation can be then performed afterwards, by 
checking the camera videos and LIDAR sensor reads, to 
gain more insights about the detected anomalies. Second, 
it can be used to find the minority sub-groups in the data. 
For example, aggressive driving of the surrounding vehicles 
w.r.t. ego vehicle is an important test case for verification of 
AD functionality. Having this information about anomalies 
can also improve the quality of the generation process by 
treating them differently. Third, it is often important to deter-
mine if a set of data is homogeneous and balanced before 
any statistical technique is applied. Finally, this informa-
tion can help us to re-calibrate our explicit rule-based cut-in 
finder functions. These functions, which usually are defined 
based on a hard threshold for a scenario, might perform 
poorly on anomalies.

Fig. 6   Three types of explicit-
rule extracted trajectories: cut-
ins, right- and left drive-by
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In the following, we describe a method to detect and 
analyze outliers using the trained autoencoder. We assume 
a high reconstruction loss in the autoencoder implies 
some anomaly in the respective trajectory, i.e., the sample 
is an outlier. We may define a threshold for the loss and 
consider all the trajectories that yield a higher reconstruc-
tion loss than the threshold as outliers. However, choos-
ing a hard threshed might be nontrivial. On the other, a 
hard assignment might not be very robust. Therefore, we 
follow a ‘soft’ approach instead, where we compute the 
probability of a trajectory ( si ) being an outlier.

where s∗ corresponds to the trajectory with maximal recon-
struction loss. We note that instead of normalization by 
exp(l(s∗)) , one may use any other normalization which might 
makes sense depending on the context.

(3)p(si is outlier) =
exp(l(si))

exp(l(s∗))
,

Experimental Results

In this section, we investigate the different aspects of the 
proposed methods on real-world data and scenarios.

Figure 8a shows 100 real trajectories wherein a cut-in 
occurs. It is clear that the distribution is not even and uni-
form. There are a lot more samples in the 20-60 ms longitu-
dinal region while only a few are seen past 100 ms. Another 
observation is that the majority of the trajectories have a 
trend to increase in the longitudinal distance through time. 
However, there are several samples for which the longitudi-
nal distance decreases instead. This can be interpreted as the 
cut-ins wherein the tracked vehicle accelerates or decelerates 
respectively. It seems worth checking if the proposed models 
capture these different trends and outliers.

Autoencoder

We start with examining the results from the autoencoder. 
Figure 8 illustrates the real and reconstructed trajectories. 
The main difference between them is the smoothness of the 
reconstructed ones which is a typical and expected property 
of an autoencoder.

We perform two experiments: the first experiment with 
the trajectories from 3 to 5 s, and the second experiment 
with the trajectories from 3 to 7 s. In both cases, a two-
layer LSTM cell is used. The loss values with respect to 
different sizes of hidden states are shown in Table 2. For the 
first experiment, a hidden state of size 32 is sufficient and 
produces meaningful results from a visual inspection point 
of view. However, for the second experiment, we choose 
the size of the hidden state to be 64 as it decreases the loss 
drastically. Note that close loss values for trajectories with 
different lengths does not necessarily imply the same per-
formance for the autoencoder, since the mean is calculated 
with respect to a different number of samples.

Fig. 7   Clustering process with AE

Fig. 8   Comparison of 100 real 
trajectories in (a), and their 
reconstruction by autoen-
coder in (b)
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Generative Models: AE‑GAN & RC‑GAN

Figures 9 and  10 illustrate the trajectories generated respec-
tively with RC-GAN and AE-GAN. Obviously, both mod-
els capture the trends of the data. However, some of the 
generated trajectories can be distinguished from the real 
ones. The samples from RC-GAN are noisier compared to 
the real ones, while samples generated with AE-GAN are 
more smooth. From a visual inspection, both models seem 
to capture the distribution of the trajectories. Similar to the 
real dataset, there are more trajectories generated close to the 
ego-vehicle and less further away. Both models also generate 
accelerating and decelerating cut-ins.

Our proposed RC-GAN is conditioned on the length of 
the trajectory. It is therefore possible to generate trajecto-
ries with a pre-specified length. This condition works as 

expected. As it can be seen in Fig. 9, all trajectories end up 
in region 0 (from a lateral perspective), which means they 
are complete cut-ins. For example, there are no trajectories 
that are just truncated halfway after 3 s.

With AE-GAN, we start our experiments for trajecto-
ries from 3 to 5 s with fully-connected neural networks and 
original GANs. The results of this experiment are illustrated 
in Fig. 10a. Unfortunately, this setting does not produce 
meaningful results for the 3 to 7 s trajectories. Thus, we 
experiment with the WGAN-GP and ResNet architecture 
for the generator and the discriminator. The ResNet archi-
tecture does not introduce any great improvement. However, 
WGAN-GP allows us to generate trajectories from 3 to 7 s 
as shown in Fig. 10b. Figure 11 illustrates the trajectories 
with minimal DTW distances from RC-GAN and AE-GAN.

Quantitative Comparisons

We first apply the proposed metrics to the real set to obtain 
a baseline. Each experiment is done 5 times and the average 
score together with the maximum and minimum scores are 
reported in Tables 3 and 4 for the first and second metrics, 
respectively. Note that the experiments with RC-GAN and 
AE-WGAN-GP are performed for 3 to 7 s trajectories while 
the results with AE-GAN are only for 3 to 5 s trajectories.

Table 2   Comparison between different sizes of hidden state (hs) for 
two sets consisting of trajectories between 3 to 5 s (I) and 3 to 7 s (II)

Size of hs Val.Loss I Train Loss I Val.Loss II Train Loss II

32 0.0633 0.0652 0.0648 0.0637
64 0.0619 0.0620 0.0469 0.0469
128 0.0601 0.0610 0.0451 0.0471

Fig. 9   The trajectories gener-
ated with RC-GANs. (a): Tra-
jectories of length 3 to 4 
seconds, and (b): trajectories 
of length 6 to 7 seconds

Fig. 10   The trajectories gener-
ated with AE-GAN and AE-
WGAN-GP. (a): Trajectories 
of length 3 to 5 seconds, and 
(b): trajectories of length 3 to 7 
seconds
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Based on the results of the Matching+Coverage metric in 
Table 3, RC-GAN yields the highest coverage and the low-
est matching error among the generated sets. The matching 
metric for RC-GAN is even lower than the real set which 
can be explained by a lower coverage: calculating the aver-
age for about 60% of the best matched samples in the real 
set produces a lower score. On the other hand, as discussed 
in Figs. 9 and 10, the AE-WGAN-GP trajectories are sig-
nificantly smoother compared to the RC-GAN trajectories. 
Since the performance of AE-WGAN-GP is still close to 

the real sets in particular w.r.t. the Matching metric, thus it 
might be preferred in practice.

The results for the second metric that is based on one-
to-one matching (i.e., the Hungarian method) are shown in 
Table 4. The best result belongs to AE-WGAN-GP which 
is 229.91. It is about three times higher than the result of 
the real set. However, such behavior is expected due to an 
uneven distribution of trajectories. To obtain more use-
ful insights from the one-to-one matching, the distances 
between the matched samples are plotted in Fig. 12. We can 

Fig. 11   Illustration of 10 closest 
samples between generated and 
real sets. (a) shows the gener-
ated trajectories with RC-GAN, 
and the respective closest real 
trajectories are visualized in 
(b). (c) shows the generated 
trajectories with AE-GAN, and 
the respective closest real trajec-
tories are illustrated in (d)

Table 3   The results for 
Matching and Coverage metric. 
Min, Max and Average are 
computed from 5 experiments

Set Matching Coverage

Min Max Average Min Max Average

Real Set (Baseline) 39.78 45.46 43.28 0.85 0.89 0.875
RC-GAN 29.08 31.93 30.37 0.63 0.68 0.66
AE-GAN 48.85 56.13 53.31 0.39 0.45 0.42
AE-WGAN-GP 39.04 52.65 44.70 0.54 0.59 0.56

Table 4   The results for 
Hungarian distance. Min, Max 
and Average are computed from 
5 experiments

Set Hungarian Hungarian (75%)

Min Max Average Min Max Average

Real Set (Baseline) 62.01 84.58 75.2 29.84 40.14 36.10
RC-GAN 330.38 500.66 430.33 121.14 151.83 138.56
AE-GAN 330.3 424.59 358.69 121.94 141.74 130.02
AE-WGAN-GP 159.15 284.36 229.91 63.47 102.68 79.32
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clearly see similar behavior between the generated and real 
sets. The scale of these graphs is different, and the matched 
distances for generated sets explode more compared to the 
real set. We assume this behavior is a combination of two 
factors: the dissimilar distribution of trajectories and some 
generated samples that are far from being realistic. From 
Fig. 12 it is observed that none of the plots explodes until 
150 out of 200 samples. Thus, we also compute an average 
of the matched distances for only the first 75% of samples, as 
shown in Table 4. According to these results, the generated 
samples (in particular by AE-WGAN-GP) are more consist-
ent with the real trajectories.

Clustering

In the following, we investigate clustering and in particular 
the DBSCAN method on latent space representations. As 
mentioned before, to handle the high dimensionality issues, 
DBSCAN [11] is used in combination with dimensionality 
reduction techniques to reduce the number of dimensions: 
PCA, SVD and t-SNE. Figure 13 shows the results of dif-
ferent methods in two dimensions. We observe that neither 
PCA nor SVD transform the data such that it can be clus-
tered properly, i.e., the clusters have overlaps. PCA performs 
slightly better than SVD, thus we skip SVD. Unlike PCA 
and SVD, t-SNE provides a non-overlapping and well-sepa-
rated embedding. With PCA and SVD, we obtain a diagonal 
matrix Σ with singular values and based on them, it is possi-
ble to calculate a percentage of variance introduced by each 
component. This information can help to find an optimal 
number of principal components to capture enough informa-
tion from the original data to distinguish clusters while at the 
same time avoid the curse of dimensionality.

According to Fig. 13, we find the embedding produced by 
t-SNE to be the most promising choice to perform clustering. 
The results of DBSCAN with � = 9 and minNeighbors = 25 

are shown in Fig. 14a, where five clusters are obtained. Fine-
tuning the parameters of DBSCAN, especially, setting � = 
9.6 yields a clustering exactly equivalent to the ground-truth 
solution. Whereas for a wide range of parameters we obtain 
the five clusters. These five clusters are consistent with the 
three ground-truth clusters, i.e., none of them is included in 
more than one ground-truth clusters. This implies that our 
solution provides a finer and more detailed representation 
of the data. It is worth mentioning that the labels we obtain 
from explicit rule-based approach might not describe the real 
clusters at a sufficient level, i.e., there might exist finer clus-
ters, especially when dealing with complex scenarios. One 
may use a hierarchical variant of DBSCAN [3] to produce 
more refined clusters, which can help the domain expert to 
find and analyze these scenarios in more detail and inves-
tigate if we need to expand our scenario catalog with more 
new scenario classes or keep merging those sub-clusters into 
a larger scenario class.

We note that t-SNE was originally developed for visu-
alisation and it may sometimes produce misleading results 
[40]. However, there are cases that t-SNE produces a satis-
factory embedding for clustering [28] as in our case.

In Fig. 14b, we apply PCA with four principal com-
ponents (that cover 75% of variance) and then apply the 
clustering method. As it is impossible to plot results in four 
dimensions, a two-dimensional representation of the tra-
jectories obtained from t-SNE is used to plot the results. 
While K-means does not produce meaningful results in this 
four-dimensional space (we assume there is no spherical 
distribution expected by K-means), more reasonable results 
are achieved when applying DBSCAN instead. This can be 
seen in Fig. 14b, where four clusters are found. DBSCAN 
can extract complex and elongated clusters via establishing 
transitive relations, similar to minimax distance measures 
[16, 17] used in [19]. It is important to note that some points 
shown in red are labeled as noise.

Fig. 12   The pairwise distances 
between matched samples in 
one-to-one matching: real: Red, 
RC-GAN: blue, AE-GAN: 
green, AE-WGAN: grey
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Processing and Detection of Outliers

Finally, we investigate the use of large reconstruction loss 
in autoencoder to detect anomalies of trajectories. Fig-
ure 15 illustrates the trajectories with high reconstruction 
loss within the studied set of 2000 cut-ins, say by having 
a threshold for max reconstruction (relative) error, as dis-
cussed in the previous section. We observe that most of 
the anomaly detected cut-ins are from decelerated cut-ins, 
which are a minority group w.r.t. all of the 2000 investi-
gated cut-ins. Also, most of the anomalies (around one 
percent of the whole set with a high probability to be an 
outlier) are due to high jumps in the relative longitudi-
nal distance between the ego and the detected surround-
ing car. This, in general, could be due to various reasons: 

anomalies in sensing reads of the surrounding object, 
sudden changes of the two drivers at the same time that 
can cause considerable changes in the measured relative 
distance, etc. Note that some jumps in longitudinal/lateral 
reads could be due to switching of the detected side of 
the surrounding cars, detected by the ego car sensor sys-
tems. Sensors calculate the relative distance based on the 
distance of the ego to the mid-point of the closest side of 
the adjacent cars. However, this side could switch when 
a car passes the ego car which leads to some jumps in the 
sensor readings.

A combination of different reasons could also be the root 
cause. Outlier detection can provide valuable information, 
even if we cannot precisely pinpoint the cause. It can be 
used to improve the quality of the original trajectory dataset, 

Fig. 13   Latent space repre-
sentation of trajectories in two 
dimensions with ground-truth 
labels. green: right drive by, 
purple: left, red: cut-in

Fig. 14   Results of DBSCAN on 
t-SNE embedding (a) and on 
PCA embedding (b). In (b) the 
visualization is based on t-SNE, 
but the labels are obtained by 
applying DBSCAN on PCA 
clustering
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after some more detailed investigations of these anomalies 
are performed.

Conclusion

We developed a generic framework for generation and analy-
sis of driving scenario trajectories based on modern deep 
neural network models. For trajectory generation, we studied 
the two generative models AE-GAN (with AE-WGAN-GP 
extension) and RC-GAN. We adapted them adequately to 
handle trajectories with variable length via proper batching 
the trajectories and integrating a neural component to learn 
the trajectory lengths. We also studied in detail the evalu-
ation of the generated trajectories and elaborated several 
metrics accordingly.

In the following, we studied exploratory analysis of the 
latent representation from the recurrent autoencoder in a 
consistent way. In particular, we studied clustering and out-
lier detection mechanisms based the output of the trained 
recurrent autoencoder, where both of them demonstrate 
promising results.

The proposed framework can be extended in various ways 
as future work. (i) One direction could be a more sophisti-
cated adjustment of the hyperparameters of the proposed 
models with more elegant techniques, rather than the simple 
grid search used in this work. (ii) AE-GAN is not a condi-
tional model. Hence, to train the length estimator, we col-
lected ground-truth labels for the length of each encoded 
trajectory. Then, these labels can be used as a condition to 
train a similar conditional model. (iii) Considering more fea-
tures apart from only lateral and longitudinal positions could 
be possibly helpful for more complex scenarios.
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