
A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories

Downloaded from: https://research.chalmers.se, 2023-04-21 14:46 UTC

Citation for the original published paper (version of record):
Demetriou, A., Alfsvåg, H., Rahrovani, S. et al (2023). A Deep Learning Framework for Generation
and Analysis of Driving Scenario Trajectories. SN Computer Science, 4(3).
http://dx.doi.org/10.1007/s42979-023-01714-3

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Vol.:(0123456789)

SN Computer Science (2023) 4:251
https://doi.org/10.1007/s42979-023-01714-3

SN Computer Science

ORIGINAL RESEARCH

A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories

Andreas Demetriou1 · Henrik Alfsvåg1 · Sadegh Rahrovani2 · Morteza Haghir Chehreghani1

Received: 7 July 2022 / Accepted: 28 January 2023
© The Author(s) 2023

Abstract
We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories, and validate
its effectiveness in a principled way. To model and generate scenarios of trajectories with different lengths, we develop two
approaches. First, we adapt the Recurrent Conditional Generative Adversarial Networks (RC-GAN) by conditioning on the
length of the trajectories. This provides us the flexibility to generate variable-length driving trajectories, a desirable feature
for scenario test case generation in the verification of autonomous driving. Second, we develop an architecture based on
Recurrent Autoencoder with GANs to obviate the variable length issue, wherein we train a GAN to learn/generate the latent
representations of original trajectories. In this approach, we train an integrated feed-forward neural network to estimate the
length of the trajectories to be able to bring them back from the latent space representation. In addition to trajectory gen-
eration, we employ the trained autoencoder as a feature extractor, for the purpose of clustering and anomaly detection, to
obtain further insights into the collected scenario dataset. We experimentally investigate the performance of the proposed
framework on real-world scenario trajectories obtained from in-field data collection.

Keywords Generative Adversarial Networks (GANs) · Time series analysis · Autonomous drive safety verification ·
Clustering · Outlier detection

Introduction

The future of transportation is tightly connected to Autono-
mous Driving (AD). While a lot of progress has been made
in recent years in these areas, there are still obstacles to
overcome. One of the most critical issues is the safety veri-
fication of AD. To assess with confidence the safety of AD,
statistical analyses have shown that fully autonomous vehi-
cles would have to be driven for hundreds of millions of
kilometers [21]. This is not feasible, particularly in cases
when we need to assess different system design propos-
als or in case of system changes, since the same amount

of distance needs to be driven again by the AD vehicle for
the verification sign-off. Thus, a data-driven scenario-based
verification approach that shifts performing tests in the fields
to a virtual environment provides a systematic approach to
tackle safety verification. This approach requires a scenario
database to be created by extracting driving scenarios (e.g.
cut-in, overtaking, etc.) that the AD vehicle is exposed to
in naturalistic driving situations. Scenarios are obtained
through time series (sequence of the ego-vehicle states and
the surrounding objects) which in turn are the processed data
collected by sensors of the AD vehicle. Once such a scenario
database is developed, it can be used for test case generation
and verification of the AD functionality in a virtual environ-
ment [22]. Note that, scenario extraction can, in general,
be addressed with two approaches: an explicit rule-based
approach [42] (that requires expert domain knowledge) and
a (machine learning based) clustering approach [26, 33, 37,
38], where they can complement each other. Figure 1 illus-
trates the high-level overview of the full process from the
raw logged data to the scenario database with a sufficient
number of scenarios for verification.

Andreas Demetriou, Henrik Alfsvåg, Sadegh Rahrovani and
Morteza Haghir Chehreghani have contributed equally to this work.

 * Morteza Haghir Chehreghani
 morteza.chehreghani@gmail.com

1 Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

2 Autonomous Drive Department in Volvo Cars, Gothenburg,
Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01714-3&domain=pdf
https://orcid.org/0000-0002-2912-7422

 SN Computer Science (2023) 4:251 251 Page 2 of 14

SN Computer Science

However, several challenges should be addressed to
create a reliable scenario database. First, a huge amount
of data is still needed to be collected and processed to
build such a scenario database. In particular, the existing
data might be imbalanced or insufficient. Second, to assure
safety in vehicles, AD functionality needs to pass safety
tests not only based on “real” scenarios (also called test
cases) collected from field driving tests, but also based on
many perturbed (similar) trajectories that might have not
been collected in real driving data collection. To address
these issues, building generative models (by mimicking
the variation available in the collected scenario data) to
create realistic synthetic scenarios is a main focus of this
work.

Thereby, we propose a unified deep learning framework
for generation and analysis of driving scenario trajectories,
and validate its effectiveness in a principled way. We inves-
tigate the performance of different variants of Generative
Adversarial Networks (GANs) [13] for generating driving
trajectories. GANs have shown promising results in sev-
eral tasks related to the generation of synthetic data. In this
paper, since the data are sequential, we employ recurrent
architectures to extract the sequential nature of data. The
first approach consists of a recurrent GAN (without an
autoencoder). We adapt the Recurrent Conditional Genera-
tive Adversarial Networks (RC-GAN) by conditioning on
the length of the trajectories. This provides us the flexibility
to generate variable-length driving trajectories, a desirable
feature for scenario test case generation in AD verification.
The second approach consists of a recurrent autoencoder
and a GAN for learning/generating latent-space representa-
tions of trajectories of different lengths. In this approach, it
is essential to know the length of the trajectories to bring
them back from the latent space representation. We over-
come this issue by training an integrated feed-forward neural

network to estimate the lengths based on the latent space
representations.

At the same time, the recurrent autoencoder can be used
as a feature extractor. Thus, we analyze such latent space
features in the context of exploratory data analysis to obtain
further insights into the collected scenario set via cluster-
ing and anomaly detection. As mentioned earlier, clustering
can be useful for scenario extraction, as an alternative solu-
tion to explicit rule-based methods that might be subject to
misspecification. Clustering can also provide an effective
tool for data visualization and exploration. We demonstrate
the performance of the framework on real-world in-field
scenario trajectories collected by Volvo Cars Corporation
(VCC).

This work is an extension of our publication in [7]. The
extension includes different aspects such as (i) further elabo-
ration of the methods on trajectory generation using GANs,
(ii) a clustering method consistent with the proposed deep
learning framework, in particular with the respective latent
representation, (iii) an outlier detection mechanism of the
trajectories based on the latent space representation using
the developed recurrent autoencoder, (iv) discussion on the
applicability of the proposed clustering and outlier detection
mechanisms for Autonomous Driving applications, and (v)
novel experimental studies and investigations, in particular
for the clustering and outlier detection components.

Background

Problem Description

We are provided with the data collected by Volvo Cars Cor-
poration. This dataset consists of information about the ego
vehicle and its surroundings such as detected objects, road
conditions, etc. We focus on generating realistic scenario
trajectories, in particular, the cut-in trajectories for a specific
tracked vehicle, and their analysis in the context of explora-
tory data analysis. To describe a trajectory, we consider two
features: the relative lateral and longitude positions of the
vehicle with respect to the ego vehicle.

To generate and analyze trajectories, our framework per-
forms the following steps.

• Extract scenarios from the logged data, which is done
with explicit rules defined by an expert. Note that all sur-
rounding/target cars in the field of view (of the ego car),
and the lane marking signals are available. So the rule-
based scenario functions work based on this information
and they assign a start time stamp and end timestamp
to a scenario (e.g., start the cut-in scenario a couple of
seconds before the target car passes the lane marking
and enters the ego car’s lane, and stop cut-in after the

Fig. 1 The full workflow from raw data to scenario database

SN Computer Science (2023) 4:251 Page 3 of 14 251

SN Computer Science

target car becomes the lead car in front of the ego car).
This will be discussed more in the next section, Scenario
Extraction.

• Build the generative models for synthesizing/generating
trajectories similar to the ones collected from the in-field
test.

• Evaluate the obtained results and compare the generated
trajectories versus the real ones. This step is done by
visual inspection and the metrics that will be introduced.

Besides the explicit rule-based approach for scenario extrac-
tion, a clustering method can be used as well. Clustering has
some advantages. Firstly, it enables one to detect scenarios
that lie on the border of two scenario classes and thus finds
more complex driving patterns/scenarios. Second, explicit
rules could miss outliers. Moreover, explicit rules require
expert domain knowledge and a hard threshold to define sce-
narios, which is nontrivial to formulate and calibrate when
the dimensionality of data increases. Thus, clustering, when
used in combination with an explicit rule-based approach,
provides exploratory insights from the data and is suitable
w.r.t. scalability. Also, the labels provided by the explicit
rule-based approach can be verified by the clustering-based
approach for consistency, where the false positive/negative
cases can be investigated further by camera sensors video
check. Calibration of scenario definition threshold could be
done afterwards, when these valuable misclassified labels
have been investigated. This consistency check between the
two approaches can accelerate the label verification process
considerably since only a limited number of video checking
might be required.

Related Work

Generation

One approach to generate driving trajectories is based
on simulations of physical models, including the vehicle
dynamics and driver model. This is a promising approach,
but it needs to be used in combination with other solutions,
as validating those simulation models is as challenging as
the verification of the AD problem. Also, the simulation
of high-fidelity models can be computationally demanding
w.r.t. computational and storage resources.

GANs [13] are the most popular paradigms for synthetic
data generation in the context of modern deep neural net-
works. They have been employed and developed in several
applications such as image processing, computer vision, text
generation, natural language processing and translation [6,
20, 23, 25, 41].

A related work has been developed based on generat-
ing errors for the sensors’ measurements using recurrent
conditional GANs [1]. This method can be used to make

simulated data look more realistic. The study in [24] con-
siders the rather similar problem of maneuver modeling
with InfoGAN and �-VAE. These generative models show
satisfactory results. However, the data in this work are col-
lected by a drone which we consider to be a limitation. In [8]
presents ‘Multi-vehicle Trajectory Generator’ (MTG) that
is an improved version of �-VAE with recurrent networks.
Moreover, it shows that the proposed MTG produces more
stable results than InfoGAN or �-VAE.

Clustering

Several methods have been proposed for clustering based
on time series and trajectory analysis [2, 27], in particu-
lar for vehicle trajectories clustering [19, 26, 33, 37]. Some
methods use Hidden Markov Models (HMM) to deal with
the sequential aspects of time series and trajectories, which
are usually computationally expensive [29, 36, 39]. Recent
work uses Mixture of Hidden Markov Models (MHMM) that
has shown promising results [33]. An advantage of HMM is
simplicity and interpretation.

TimeNet, proposed in [32], is a multilayered recurrent
neural network for feature extraction from time series. The
authors demonstrate the performance of TimeNet on tasks
such as classification and clustering where they compute an
embedding based on t-SNE [31]. Embedding the time-series
has been also studied in [35], where the proposed method,
called m-TSNE, uses Dynamic Time Wrapping (DTW) [12]
as a metric between multidimensional time series embedded
by t-SNE. The work in [19] develops a trajectory clustering
method based on embedding temporal relations via DTW
and deep learning, and then extracting the transitive rela-
tions via minimax distances [15, 17]. Finally, it is notable
that clustering sequential data clustering is beyond trajectory
analysis and has been studied for example for tree-structured
sequences in [4].

Driving Scenario Data Source

Scenario Extraction

The objects’ trajectories are extracted from the raw data
(sensor measurements) and fused sensor data, which are
mounted on the ego car. Thus, the reference/coordinate sys-
tem is the ego car. Since it is a moving reference, then all
the measured signals (i.e., the position of the surrounding
cars/objects) are relative with respect to the ego car. These
trajectories can vary in length from 1 s up to 1 h. The length
depends on how long the object is tracked by the ego-vehicle
in the field of view (FoV). The specific scenarios of high
interest are cut-ins. There are many different definitions of
what constitutes a cut-in. We define them as vehicles that

 SN Computer Science (2023) 4:251 251 Page 4 of 14

SN Computer Science

approach the ego vehicle from the left lane and then overtake
the ego vehicle by switching to its lane. Therefore, the cut-
ins vary in aggressiveness. More specifically, our definition
of a cut-in also requires the vehicle to stay in front of the ego
vehicle for at least 2 s. An example of the extracted trajec-
tory is illustrated in Fig. 2. Note that plotting trajectories as
a line as shown in Fig. 2a has the disadvantage of eliminat-
ing the time component as compared to Fig. 2b. However,
we find this way more expressive, as otherwise, it becomes
extremely cluttered when multiple trajectories overlap.

On the Issue of Variable‑Length Trajectories

One of the main issues in analyzing the trajectories is the
variable-length input/output, which in our case varies from
30 to 70 time frames (from 3 to 7 s given the sampling
rate of 10Hz). One solution is to train the model with pad-
ding. To apply padding, a pad token has to be defined. For
instance, in natural language processing, it is common to
employ word embedding and then to use zero vectors as a
pad token [5]. Unfortunately, it is not a trivial task to define
a pad token in case of real coordinates as any pair of real
numbers is a realistic point in space. A possible solution
is to pad sequences with the last point. However, it does
not seem a feasible approach in our case due to the high
variation in length (the shortest sequence after padding will
contain more than 50% pad tokens). These paddings not
only may affect the distribution of the generated samples
significantly, but also might call for post-processing of the
samples. For example, if the last n points are the same they

should be considered as padding and erased. This yields an
intrinsic problem as the definition of ‘being the same’ is
non-obvious in particular when some noise is added during
the generation. Such problems can be avoided by feeding the
sequences to the model one-by-one. However, this approach
will greatly decline the performance.

Thus, in the proposed approach, we group the sequences
with the same length together to form a batch. In this way, we
train a model for the whole data but with different batches,
where each batch represents a specific trajectory length. For
example, assume trajectories of the following lengths (1–30
denotes that the trajectory number 1 has length 30): 1–30,
2–32, 3–32, 4–32, 5–34, 6–34, 7–34, and 8–34. Then, the
following batches are formed: {1}, {2, 3, 4}, {5, 6, 7, 8} . If
one propagation through the model takes 1 unit of time, then
training the model with these batches would take 3 units
of time, compared to 8 units of time with the one-by-one
trajectory processing approach. The next steps depend on
the architecture of the generative model, to be studied later.

Trajectory Generation Framework

To model and generate scenarios of trajectories with differ-
ent lengths, we develop and propose two methods: (i) An
architecture based on combined Recurrent Autoencoder with
GANs, where to obviate the variable length issue, the GAN
is trained to learn/generate the hidden representation of orig-
inal trajectories, instead of the original sequential data. (ii)
A Recurrent Conditional GANs (RC-GAN) architecture that

Fig. 2 The extracted cut-in in
different forms: (a) and (b)
show the longitudinal and
lateral distances w.r.t. time, and
(c) and (d) illustrate the lateral
distance w.r.t. longitudinal
distance

SN Computer Science (2023) 4:251 Page 5 of 14 251

SN Computer Science

enables us to generate driving sequences with pre-specified
length, which is a desirable and useful feature when gen-
erating test cases for AD verification. In the following, we
explain on each of the two methods in detail.

The Architecture: Autoencoder with GANs (AE‑GAN)

This solution is based on the architecture proposed for text
generation in [9]. It consists of an autoencoder for time
series as shown in Fig. 3 and GAN for latent space repre-
sentation and data generation.

We adapt and extend this architecture to deal with vari-
able-length input/output. It is essential to know the length
of the sequence to bring it back from the latent-space rep-
resentation. During the autoencoder training, the length is
known from the input, but for the artificial latent-space vec-
tors generated by GANs it is necessary to estimate the length
of the trajectory. We address this issue by training a separate
feed-forward neural network to estimate the lengths based
on the latent space representation.

Hence, once the autoencoder is trained, all trajectories are
encoded to the latent space using the encoder. During this
process, the length of each trajectory is stored. Thus, two
sets are created: X: the set of latent representations, and Y:
the set of the lengths for each trajectory. With these sets, the
task of length estimation from latent space can be considered
a supervised regression task which can be solved using a
feed-forward neural network, as shown in Fig. 4.

At this stage, GANs are used to generate new latent-space
representations. Even though it seems reasonable to imple-
ment both the generator and the discriminator as standard
fully-connected neural networks, we will also investigate the
ResNet model [18] to mitigate the problems related to gradi-
ent instability, similar to the work in [9]. To train GANs, we
consider two alternatives: the standard GAN and the Was-
serstein GAN with Gradient Penalty (WGAN-GP) [14].

As the latent-space representation is generated, it is used
as an input to the decoder. To determine how many times
to apply LSTM cell, we employ the aforementioned neural
network in Fig. 4.

The Architecture: Recurrent Conditional GANs
(RC‑GAN)

Recurrent GANs (RecGANs) have shown promising results
for generating time series in several applications such as
music generation [34], real-valued medical data [10] and
sensor error modeling [1]. In this paper, we adapt them for
our task as follows. Both the generator and discriminator are
Recurrent NNs (RNNs) based on LSTM cells. For the dis-
criminator, we choose a bidirectional architecture. At every
time step i, each LSTM cell in the generator receives a ran-
dom input (i.e., z drawn from N(0, 1)) and the hidden vec-
tor from the previous cell, to generate pi . For the first cell,
the previous hidden vector is initialized to 0. The sequence
p1...pn forms the final trajectory, that is passed to the dis-
criminator. Then, the discriminator computes a sequence of

Fig. 3 Schematic structure of
recurrent autoencoder

Fig. 4 Structure of the decoder part of the autoencoder combined
with a Length Estimator to reconstruct trajectories from latent space
representation

 SN Computer Science (2023) 4:251 251 Page 6 of 14

SN Computer Science

probabilities (� in Fig. 5) identifying whether the trajec-
tory is real or fake. The ground truth is a sequence of ones
for the real trajectories and zeros for the fakes. RecGANs
can also be conditional. With Recurrent Conditional GANs
(RCGANs), the condition might be passed as an input into
each cell for both the discriminator and the generator. As
shown in [10], the condition can be simply concatenated
to the generator’s input and output (Fig. 5). This allows the
discriminator to distinguish between reals and fakes w.r.t.
to condition, that in turn forces the generator to produce
samples w.r.t condition. To adapt this architecture to our
task, we use the length of a trajectory as a condition and
attach it to the input.

Evaluation

An important and challenging task is to choose proper met-
rics to evaluate the quality of the generated trajectories [30].
One might first evaluate the results via visualization to see
whether they do make sense. However, as the results improve
it becomes harder to determine precisely how good they are.
Thus, it is important to consider quantitative evaluation metrics

as well, such that one can objectively quantify the similarity of
the generated trajectories with the original ones.

One commonly used method to measure similarities
between time series is Dynamic Time Warping (DTW). Thus,
to compare sets of time series, we build a matrix of pairwise
DTW distances between the samples from the two sets as
shown in Table 1. Such a matrix can be used to find the most
similar samples from the two investigated sets. In addition, we
analyze this pairwise matrix using the following two metrics.
In the following, we describe two methods for the analysis of
results based on matching the time series.

Matching + Coverage

We match each sample from the generated set (called GSM
with M samples) with the closest sample from the real set
(called RSN with N samples). The matching criterion is defined
by

Even if reasonable results are achieved with this metric, it
does not necessarily indicate that the model performs well,
since many generated samples can be ‘mapped’ to the same
real sample. In this case, the coverage of the model is low.
Thus, we also measure a coverage metric as follows.

However, even the combination of these two metrics still
has shortcomings. For instance, if there are two (or more)
similar samples in the real set and many generated samples
are ‘mapped’ to one of the real samples, then the cover-
age decreases. However, this does not mean that the model
performs poorly. Since the sets are very diverse, we con-
sider GSM and RSN with M > N . In our experiments, we use
M = 4 ∗ N.

One‑to‑One Matching with Hungarian Method

The Hungarian algorithm is a matching method for one-to-
one matching. Applying it to Table 1 yields mapping each
sample from the generated set to exactly one sample from
the real set. This mapping ensures that the sum of distances
of the paired samples is minimal. The main disadvantage of
this method is the sample distributions in the real and gener-
ated sets may not be identical. For example, the last 10% of
the matched samples can be outliers that are from irrelevant
parts of the distribution.

Once the aforementioned metrics are defined it is still an
open question which ground truth should be used as a refer-
ence to compare the results with. To address this question,

(1)matching =

∑M

i
minj (dist(GSi,RSj))

M
.

(2)coverage =
|argminj(dist(GSi,RSj)),∀i = 1,M|

N
.

Fig. 5 The schematic structure of RC-GAN

Table 1 Pairwise distances between trajectories from two sets, here tr
stands for the trajectory

Set 1

tr
1

tr
2

. tr
n

Set 2
 tr′

1
dist(tr�

1
, tr1) dist(tr�

1
, tr2) . dist(tr�

1
, tr

n
)

 tr′
2

dist(tr�
2
, tr1) dist(tr�

2
, tr2) . dist(tr�

2
, tr

n
)

 . . . ⋱ .
 tr′

n
dist(tr�

n
, tr1) dist(tr�

n
, tr2) . dist(tr�

n
, tr

n
)

SN Computer Science (2023) 4:251 Page 7 of 14 251

SN Computer Science

we split the real dataset into different subsets and apply these
metrics among the different subsets. We use the results as a
baseline when analyzing the trajectories obtained from the
generation models.

Exploratory Analysis of Latent Space
Representations

GANs provide an unsupervised learning approach to gen-
erate samples consistent with a given set of real trajecto-
ries. In the following, we investigate other unsupervised
learning methods in the context of clustering and outlier
detection, to obtain exploratory insights from the driv-
ing trajectories of the surrounding objects, collected by
sensors of the ego car. In addition, as mentioned before,
these methods can be useful for the safety verification of
AD. Consistent with the proposed GAN architectures, our
clustering and outlier analysis mechanisms are also per-
formed based on the latest space representation obtained
from training the autoencoder. This helps us to benefit
from the representation that encodes the temporal aspects
of the trajectories and simplifies the process. We note that
the solution from the latent space representations can be
transferred to the original trajectories, to provide a solu-
tion in the original data space.

Performing for example the clustering on original tra-
jectories might require methods such as DTW to model
the temporal aspects first. Then, we may apply a high-
dimensional data visualization and grouping method such
as t-SNE [31]. The method proposed in [35] and called
m-TSNE applies t-SNE to DTW-based (dis)similarity
matrix. However, it is computationally very expensive,
when working with a large number of scenario trajec-
tories. In the case of n trajectories of length m, it needs
to calculate n2 pairwise distances and each distance is
computed with DTW that runs in O(m2) . Thus, the overall
performance is O(n2m2) . In our setup, we have relatively
long trajectories (50 time step on average) and relatively
a large number of them. Therefore, we employ the already
trained autoencoder which encodes the temporal depend-
encies properly. We assume that clustering and outlier
detection at latent space is an easier task with reasonable
computational costs.

Clustering on Latent Space with Autoencoder

Here, we study clustering the latent space representation of
trajectories, obtained by recurrent autoencoder. For this pur-
pose, we extract three types of scenarios: cut-in, left drive-by
and right drive-by, as shown in Fig. 6.

Drive-by occurs much more frequently. Thus, the cut-
in set contains fewer trajectories compared to the drive-by
set. To address this issue, we do oversampling for the cut-in
set and undersampling for the drive-by sets. Then, we train
the autoencoder and encode all the trajectories. This step
converts all trajectories to fixed-size vectors. Even though
the resultant latent space representations are fixed-size, they
are still high dimensional. Thus, it might be challenging to
cluster them directly with distance-based algorithms such as
K-means or DBSCAN. Therefore, we reduce the dimension-
ality with methods such as Principal Component Analysis
(PCA) and t-SNE. Finally, we apply the clustering method
(e.g., DBSCAN [11]) and analyze the results. The procedure
is described in Fig. 7, where the encoder part is the same
for all trajectories and pi represents lateral and longitudinal
positions in our case. In this way, each trajectory is mapped
to a two-dimensional representation.

Outlier Detection with Autoencoder

Being able to detect anomaly driving patterns and outliers
among scenario trajectories is very valuable in different
aspects in particular when the data is imbalanced. First, it
can be used to assess the quality of the original data and
to find possible sensor reading anomalies/errors. A more
detailed investigation can be then performed afterwards, by
checking the camera videos and LIDAR sensor reads, to
gain more insights about the detected anomalies. Second,
it can be used to find the minority sub-groups in the data.
For example, aggressive driving of the surrounding vehicles
w.r.t. ego vehicle is an important test case for verification of
AD functionality. Having this information about anomalies
can also improve the quality of the generation process by
treating them differently. Third, it is often important to deter-
mine if a set of data is homogeneous and balanced before
any statistical technique is applied. Finally, this informa-
tion can help us to re-calibrate our explicit rule-based cut-in
finder functions. These functions, which usually are defined
based on a hard threshold for a scenario, might perform
poorly on anomalies.

Fig. 6 Three types of explicit-
rule extracted trajectories: cut-
ins, right- and left drive-by

 SN Computer Science (2023) 4:251 251 Page 8 of 14

SN Computer Science

In the following, we describe a method to detect and
analyze outliers using the trained autoencoder. We assume
a high reconstruction loss in the autoencoder implies
some anomaly in the respective trajectory, i.e., the sample
is an outlier. We may define a threshold for the loss and
consider all the trajectories that yield a higher reconstruc-
tion loss than the threshold as outliers. However, choos-
ing a hard threshed might be nontrivial. On the other, a
hard assignment might not be very robust. Therefore, we
follow a ‘soft’ approach instead, where we compute the
probability of a trajectory (si) being an outlier.

where s∗ corresponds to the trajectory with maximal recon-
struction loss. We note that instead of normalization by
exp(l(s∗)) , one may use any other normalization which might
makes sense depending on the context.

(3)p(si is outlier) =
exp(l(si))

exp(l(s∗))
,

Experimental Results

In this section, we investigate the different aspects of the
proposed methods on real-world data and scenarios.

Figure 8a shows 100 real trajectories wherein a cut-in
occurs. It is clear that the distribution is not even and uni-
form. There are a lot more samples in the 20-60 ms longitu-
dinal region while only a few are seen past 100 ms. Another
observation is that the majority of the trajectories have a
trend to increase in the longitudinal distance through time.
However, there are several samples for which the longitudi-
nal distance decreases instead. This can be interpreted as the
cut-ins wherein the tracked vehicle accelerates or decelerates
respectively. It seems worth checking if the proposed models
capture these different trends and outliers.

Autoencoder

We start with examining the results from the autoencoder.
Figure 8 illustrates the real and reconstructed trajectories.
The main difference between them is the smoothness of the
reconstructed ones which is a typical and expected property
of an autoencoder.

We perform two experiments: the first experiment with
the trajectories from 3 to 5 s, and the second experiment
with the trajectories from 3 to 7 s. In both cases, a two-
layer LSTM cell is used. The loss values with respect to
different sizes of hidden states are shown in Table 2. For the
first experiment, a hidden state of size 32 is sufficient and
produces meaningful results from a visual inspection point
of view. However, for the second experiment, we choose
the size of the hidden state to be 64 as it decreases the loss
drastically. Note that close loss values for trajectories with
different lengths does not necessarily imply the same per-
formance for the autoencoder, since the mean is calculated
with respect to a different number of samples.

Fig. 7 Clustering process with AE

Fig. 8 Comparison of 100 real
trajectories in (a), and their
reconstruction by autoen-
coder in (b)

SN Computer Science (2023) 4:251 Page 9 of 14 251

SN Computer Science

Generative Models: AE‑GAN & RC‑GAN

Figures 9 and 10 illustrate the trajectories generated respec-
tively with RC-GAN and AE-GAN. Obviously, both mod-
els capture the trends of the data. However, some of the
generated trajectories can be distinguished from the real
ones. The samples from RC-GAN are noisier compared to
the real ones, while samples generated with AE-GAN are
more smooth. From a visual inspection, both models seem
to capture the distribution of the trajectories. Similar to the
real dataset, there are more trajectories generated close to the
ego-vehicle and less further away. Both models also generate
accelerating and decelerating cut-ins.

Our proposed RC-GAN is conditioned on the length of
the trajectory. It is therefore possible to generate trajecto-
ries with a pre-specified length. This condition works as

expected. As it can be seen in Fig. 9, all trajectories end up
in region 0 (from a lateral perspective), which means they
are complete cut-ins. For example, there are no trajectories
that are just truncated halfway after 3 s.

With AE-GAN, we start our experiments for trajecto-
ries from 3 to 5 s with fully-connected neural networks and
original GANs. The results of this experiment are illustrated
in Fig. 10a. Unfortunately, this setting does not produce
meaningful results for the 3 to 7 s trajectories. Thus, we
experiment with the WGAN-GP and ResNet architecture
for the generator and the discriminator. The ResNet archi-
tecture does not introduce any great improvement. However,
WGAN-GP allows us to generate trajectories from 3 to 7 s
as shown in Fig. 10b. Figure 11 illustrates the trajectories
with minimal DTW distances from RC-GAN and AE-GAN.

Quantitative Comparisons

We first apply the proposed metrics to the real set to obtain
a baseline. Each experiment is done 5 times and the average
score together with the maximum and minimum scores are
reported in Tables 3 and 4 for the first and second metrics,
respectively. Note that the experiments with RC-GAN and
AE-WGAN-GP are performed for 3 to 7 s trajectories while
the results with AE-GAN are only for 3 to 5 s trajectories.

Table 2 Comparison between different sizes of hidden state (hs) for
two sets consisting of trajectories between 3 to 5 s (I) and 3 to 7 s (II)

Size of hs Val.Loss I Train Loss I Val.Loss II Train Loss II

32 0.0633 0.0652 0.0648 0.0637
64 0.0619 0.0620 0.0469 0.0469
128 0.0601 0.0610 0.0451 0.0471

Fig. 9 The trajectories gener-
ated with RC-GANs. (a): Tra-
jectories of length 3 to 4
seconds, and (b): trajectories
of length 6 to 7 seconds

Fig. 10 The trajectories gener-
ated with AE-GAN and AE-
WGAN-GP. (a): Trajectories
of length 3 to 5 seconds, and
(b): trajectories of length 3 to 7
seconds

 SN Computer Science (2023) 4:251 251 Page 10 of 14

SN Computer Science

Based on the results of the Matching+Coverage metric in
Table 3, RC-GAN yields the highest coverage and the low-
est matching error among the generated sets. The matching
metric for RC-GAN is even lower than the real set which
can be explained by a lower coverage: calculating the aver-
age for about 60% of the best matched samples in the real
set produces a lower score. On the other hand, as discussed
in Figs. 9 and 10, the AE-WGAN-GP trajectories are sig-
nificantly smoother compared to the RC-GAN trajectories.
Since the performance of AE-WGAN-GP is still close to

the real sets in particular w.r.t. the Matching metric, thus it
might be preferred in practice.

The results for the second metric that is based on one-
to-one matching (i.e., the Hungarian method) are shown in
Table 4. The best result belongs to AE-WGAN-GP which
is 229.91. It is about three times higher than the result of
the real set. However, such behavior is expected due to an
uneven distribution of trajectories. To obtain more use-
ful insights from the one-to-one matching, the distances
between the matched samples are plotted in Fig. 12. We can

Fig. 11 Illustration of 10 closest
samples between generated and
real sets. (a) shows the gener-
ated trajectories with RC-GAN,
and the respective closest real
trajectories are visualized in
(b). (c) shows the generated
trajectories with AE-GAN, and
the respective closest real trajec-
tories are illustrated in (d)

Table 3 The results for
Matching and Coverage metric.
Min, Max and Average are
computed from 5 experiments

Set Matching Coverage

Min Max Average Min Max Average

Real Set (Baseline) 39.78 45.46 43.28 0.85 0.89 0.875
RC-GAN 29.08 31.93 30.37 0.63 0.68 0.66
AE-GAN 48.85 56.13 53.31 0.39 0.45 0.42
AE-WGAN-GP 39.04 52.65 44.70 0.54 0.59 0.56

Table 4 The results for
Hungarian distance. Min, Max
and Average are computed from
5 experiments

Set Hungarian Hungarian (75%)

Min Max Average Min Max Average

Real Set (Baseline) 62.01 84.58 75.2 29.84 40.14 36.10
RC-GAN 330.38 500.66 430.33 121.14 151.83 138.56
AE-GAN 330.3 424.59 358.69 121.94 141.74 130.02
AE-WGAN-GP 159.15 284.36 229.91 63.47 102.68 79.32

SN Computer Science (2023) 4:251 Page 11 of 14 251

SN Computer Science

clearly see similar behavior between the generated and real
sets. The scale of these graphs is different, and the matched
distances for generated sets explode more compared to the
real set. We assume this behavior is a combination of two
factors: the dissimilar distribution of trajectories and some
generated samples that are far from being realistic. From
Fig. 12 it is observed that none of the plots explodes until
150 out of 200 samples. Thus, we also compute an average
of the matched distances for only the first 75% of samples, as
shown in Table 4. According to these results, the generated
samples (in particular by AE-WGAN-GP) are more consist-
ent with the real trajectories.

Clustering

In the following, we investigate clustering and in particular
the DBSCAN method on latent space representations. As
mentioned before, to handle the high dimensionality issues,
DBSCAN [11] is used in combination with dimensionality
reduction techniques to reduce the number of dimensions:
PCA, SVD and t-SNE. Figure 13 shows the results of dif-
ferent methods in two dimensions. We observe that neither
PCA nor SVD transform the data such that it can be clus-
tered properly, i.e., the clusters have overlaps. PCA performs
slightly better than SVD, thus we skip SVD. Unlike PCA
and SVD, t-SNE provides a non-overlapping and well-sepa-
rated embedding. With PCA and SVD, we obtain a diagonal
matrix Σ with singular values and based on them, it is possi-
ble to calculate a percentage of variance introduced by each
component. This information can help to find an optimal
number of principal components to capture enough informa-
tion from the original data to distinguish clusters while at the
same time avoid the curse of dimensionality.

According to Fig. 13, we find the embedding produced by
t-SNE to be the most promising choice to perform clustering.
The results of DBSCAN with � = 9 and minNeighbors = 25

are shown in Fig. 14a, where five clusters are obtained. Fine-
tuning the parameters of DBSCAN, especially, setting � =
9.6 yields a clustering exactly equivalent to the ground-truth
solution. Whereas for a wide range of parameters we obtain
the five clusters. These five clusters are consistent with the
three ground-truth clusters, i.e., none of them is included in
more than one ground-truth clusters. This implies that our
solution provides a finer and more detailed representation
of the data. It is worth mentioning that the labels we obtain
from explicit rule-based approach might not describe the real
clusters at a sufficient level, i.e., there might exist finer clus-
ters, especially when dealing with complex scenarios. One
may use a hierarchical variant of DBSCAN [3] to produce
more refined clusters, which can help the domain expert to
find and analyze these scenarios in more detail and inves-
tigate if we need to expand our scenario catalog with more
new scenario classes or keep merging those sub-clusters into
a larger scenario class.

We note that t-SNE was originally developed for visu-
alisation and it may sometimes produce misleading results
[40]. However, there are cases that t-SNE produces a satis-
factory embedding for clustering [28] as in our case.

In Fig. 14b, we apply PCA with four principal com-
ponents (that cover 75% of variance) and then apply the
clustering method. As it is impossible to plot results in four
dimensions, a two-dimensional representation of the tra-
jectories obtained from t-SNE is used to plot the results.
While K-means does not produce meaningful results in this
four-dimensional space (we assume there is no spherical
distribution expected by K-means), more reasonable results
are achieved when applying DBSCAN instead. This can be
seen in Fig. 14b, where four clusters are found. DBSCAN
can extract complex and elongated clusters via establishing
transitive relations, similar to minimax distance measures
[16, 17] used in [19]. It is important to note that some points
shown in red are labeled as noise.

Fig. 12 The pairwise distances
between matched samples in
one-to-one matching: real: Red,
RC-GAN: blue, AE-GAN:
green, AE-WGAN: grey

 SN Computer Science (2023) 4:251 251 Page 12 of 14

SN Computer Science

Processing and Detection of Outliers

Finally, we investigate the use of large reconstruction loss
in autoencoder to detect anomalies of trajectories. Fig-
ure 15 illustrates the trajectories with high reconstruction
loss within the studied set of 2000 cut-ins, say by having
a threshold for max reconstruction (relative) error, as dis-
cussed in the previous section. We observe that most of
the anomaly detected cut-ins are from decelerated cut-ins,
which are a minority group w.r.t. all of the 2000 investi-
gated cut-ins. Also, most of the anomalies (around one
percent of the whole set with a high probability to be an
outlier) are due to high jumps in the relative longitudi-
nal distance between the ego and the detected surround-
ing car. This, in general, could be due to various reasons:

anomalies in sensing reads of the surrounding object,
sudden changes of the two drivers at the same time that
can cause considerable changes in the measured relative
distance, etc. Note that some jumps in longitudinal/lateral
reads could be due to switching of the detected side of
the surrounding cars, detected by the ego car sensor sys-
tems. Sensors calculate the relative distance based on the
distance of the ego to the mid-point of the closest side of
the adjacent cars. However, this side could switch when
a car passes the ego car which leads to some jumps in the
sensor readings.

A combination of different reasons could also be the root
cause. Outlier detection can provide valuable information,
even if we cannot precisely pinpoint the cause. It can be
used to improve the quality of the original trajectory dataset,

Fig. 13 Latent space repre-
sentation of trajectories in two
dimensions with ground-truth
labels. green: right drive by,
purple: left, red: cut-in

Fig. 14 Results of DBSCAN on
t-SNE embedding (a) and on
PCA embedding (b). In (b) the
visualization is based on t-SNE,
but the labels are obtained by
applying DBSCAN on PCA
clustering

SN Computer Science (2023) 4:251 Page 13 of 14 251

SN Computer Science

after some more detailed investigations of these anomalies
are performed.

Conclusion

We developed a generic framework for generation and analy-
sis of driving scenario trajectories based on modern deep
neural network models. For trajectory generation, we studied
the two generative models AE-GAN (with AE-WGAN-GP
extension) and RC-GAN. We adapted them adequately to
handle trajectories with variable length via proper batching
the trajectories and integrating a neural component to learn
the trajectory lengths. We also studied in detail the evalu-
ation of the generated trajectories and elaborated several
metrics accordingly.

In the following, we studied exploratory analysis of the
latent representation from the recurrent autoencoder in a
consistent way. In particular, we studied clustering and out-
lier detection mechanisms based the output of the trained
recurrent autoencoder, where both of them demonstrate
promising results.

The proposed framework can be extended in various ways
as future work. (i) One direction could be a more sophisti-
cated adjustment of the hyperparameters of the proposed
models with more elegant techniques, rather than the simple
grid search used in this work. (ii) AE-GAN is not a condi-
tional model. Hence, to train the length estimator, we col-
lected ground-truth labels for the length of each encoded
trajectory. Then, these labels can be used as a condition to
train a similar conditional model. (iii) Considering more fea-
tures apart from only lateral and longitudinal positions could
be possibly helpful for more complex scenarios.

Acknowledgements The work of Morteza Haghir Chehreghani was
partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. We would like to acknowledge Volvo Cars for providing
the data and the computational resources. We thank Viktor Wänerlöv
and Rune Suhr from Volvo Cars, Scenario Analysis team, who helped
us throughout the project.

Author Contributions The authors have contributed equally to this
work. They have been involved in different steps.

Funding Open access funding provided by Chalmers University of
Technology. The work of Morteza Haghir Chehreghani was partially
supported by the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

Data Availability Statement The data are produced by Volvo Cars and
does not contain any sensitive information, and all the personal infor-
mation have been removed.

Declarations

 Conflict of interest Not Applicable. No conflict of interest occurs.

 Ethical approval This research is mainly focused on conceptual and
methodological developments and the experimental studies use the
datasets which do not contain any private and sensitive information.

 Consent to participate Not applicable. There is no human study in
this research.

 Consent for publication Not applicable. No human study is performed
in this research. There is no sensitive information.

 Code availability The code will be available through the author’s home
page and will be maintained there with a reference to this publication.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Arnelid H, Zec EL, Mohammadiha N. Recurrent conditional
generative adversarial networks for autonomous driving sensor
modelling. In 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), IEEE, 2019, pp 1613–8.

 2. Chehreghani MH. Adaptive trajectory analysis of replicator
dynamics for data clustering. Mach Learn. 2016;104(2–3):271–89.

Fig. 15 Trajectories with a high probability of being an outlier,
obtained by analysis of the autoencoder reconstruction loss

http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2023) 4:251 251 Page 14 of 14

SN Computer Science

 3. Chehreghani MH, Abolhassani H, Chehreghani MH. Improving
density-based methods for hierarchical clustering of web pages.
Data Knowl Eng. 2008;67(1):30–50.

 4. Chehreghani MH, Rahgozar M, Lucas C, Chehreghani MH. A
heuristic algorithm for clustering rooted ordered trees. Intell Data
Anal. 2007;11(4):355–76.

 5. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, Bengio Y. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. 2014. arXiv
preprint arXiv: 1406. 1078

 6. de Masson d’Autume C, Mohamed S, Rosca M, Rae J. Train-
ing language Gans from scratch. Adv Neural Inf Process Syst.
2019;32:4300–11.

 7. Demetriou A, Allsvåg H, Rahrovani S, Chehreghani MH. Genera-
tion of driving scenario trajectories with generative adversarial
networks. In: 23rd IEEE International Conference on Intelligent
Transportation Systems, ITSC, 2020, pp. 1–6.

 8. Ding W, Wang W, Zhao D. A new multi-vehicle trajectory genera-
tor to simulate vehicle-to-vehicle encounters. 2018. arXiv preprint
arXiv: 1809. 05680

 9. Donahue D, Rumshisky A. Adversarial text generation without
reinforcement learning. 2018. arXiv preprint arXiv: 1810. 06640

 10. Esteban C, Hyland SL, Rätsch G. Real-valued (medical) time
series generation with recurrent conditional gans. 2017. arXiv
preprint arXiv: 1706. 02633

 11. Ester M, Kriegel H-P, Sander J, Xu X, et al. A density-based
algorithm for discovering clusters in large spatial databases with
noise. Kdd. 1996;96:226–31.

 12. Gold O, Sharir M. Dynamic time warping and geometric edit
distance: breaking the quadratic barrier. ACM Trans Algorithms.
2018;14(4):1–17.

 13. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y. Generative adversarial nets.
In: Advances in neural information processing systems. Cham:
Springer; 2014. p. 2672–80.

 14. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC.
Improved training of wasserstein gans. In: Advances in neural
information processing systems 30 (NIPS). Cham: Springer; 2017.
p. 5767–77.

 15. Haghir CM. Classification with minimax distance measures. In:
Thirty-First AAAI Conference on Artificial Intelligence (AAAI),
2017, pp. 1784–90.

 16. Haghir CM. Efficient computation of pairwise minimax distance
measures. In: 2017 IEEE International Conference on Data Min-
ing (ICDM), 2017, pp. 799–804.

 17. Haghir CM. Unsupervised representation learning with minimax
distance measures. Mach Learn. 2020;109(11):2063–97.

 18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–8.

 19. Hoseini FS, Rahrovani S, Chehreghani MH. Vehicle motion tra-
jectories clustering via embedding transitive relations. In: 24th
IEEE International Intelligent Transportation Systems Confer-
ence, ITSC, IEEE, 2021, pp. 1314–21.

 20. Hwang U, Jung D, Yoon S. Hexagan: generative adversarial nets
for real world classification. In: Chaudhuri K, Salakhutdinov R,
editors. International conference on machine learning, vol. 97.
London: ICML; 2019. p. 2921–30.

 21. Kalra N, Paddock SM. Driving to safety: how many miles of driv-
ing would it take to demonstrate autonomous vehicle reliability?
Transp Res Part A. 2016;94:182–93.

 22. Kim B, Kashiba Y, Dai S, Shiraishi S. Testing autonomous vehicle
software in the virtual prototyping environment. IEEE Embed Syst
Lett. 2016;9(1):5–8.

 23. Kniaz VV, Knyaz V, Remondino F. The point where reality meets
fantasy: mixed adversarial generators for image splice detection.
In: Advances in neural information processing systems. Cham:
Springer; 2019.

 24. Krajewski R, Moers T, Nerger D, Eckstein L. Data-driven
maneuver modeling using generative adversarial networks and
variational autoencoders for safety validation of highly automated
vehicles. In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), IEEE, pp. 2383–90.

 25. Kurach K, Lucic M, Zhai X, Michalski M, Gelly S. A large-scale
study on regularization and normalization in gans. In: Chaudhuri
K, Salakhutdinov R, editors. International conference on machine
learning. London: ICML; 2019. p. 3581–90.

 26. Li X, Hu W, Hu W. A coarse-to-fine strategy for vehicle motion
trajectory clustering. Int Conf Pattern Recognit. 2006;1:591–4.

 27. Liao TW. Clustering of time series data-a survey. Pattern Recogn.
2005;38(11):1857–74.

 28. Linderman GC, Steinerberger S. Clustering with t-sne, provably.
SIAM J Math Data Sci. 2019;1(2):313–32.

 29. Liu S, Zheng K, Zhao L, Fan P. A driving intention prediction
method based on hidden markov model for autonomous driving.
2019. arXiv preprint arXiv: 1902. 09068

 30. Lucic M, Kurach K, Michalski M, Gelly S, Bousquet O. Are gans
created equal? A large-scale study. In: Advances in neural infor-
mation processing systems. Cham: Springer; 2018. p. 700–9.

 31. Maaten LVD, Hinton G. Visualizing data using t-sne. J Mach
Learn Res. 2008;9:2579–605.

 32. Malhotra P, Tv V, Vig L, Agarwal P, Shroff G. Timenet: pre-
trained deep recurrent neural network for time series classifica-
tion. 2017. arXiv preprint arXiv: 1706. 08838

 33. Martinsson J, Mohammadiha N, Schliep A. Clustering vehicle
maneuver trajectories using mixtures of hidden markov models.
In: 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), IEEE, 2018, pp. 3698–705.

 34. Mogren O. C-rnn-gan: Continuous recurrent neural networks with
adversarial training. 2016. arXiv preprint arXiv: 1611. 09904

 35. Nguyen M, Purushotham S, To H, Shahabi C. m-tsne: A frame-
work for visualizing high-dimensional multivariate time series.
2017. arXiv preprint arXiv: 1708. 07942

 36. Takano W, A. Matsushita, K. Iwao, and Y. Nakamura. Recognition
of human driving behaviors based on stochastic symbolization of
time series signal. In: 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2008, pp. 167–72.

 37. Wang W, Ramesh A, Zhu J, Li J, Zhao D. Clustering driving
encounter scenarios using connected vehicle trajectories. IEEE
Trans Intell Veh. 2020;5:485–96.

 38. Wang W, Zhao D. Extracting traffic primitives directly from natu-
ralistically logged data for self-driving applications. IEEE Robot
Autom Lett. 2018;3(2):1223–9.

 39. Wang W, Zhao D. Extracting traffic primitives directly from natu-
ralistically logged data for self-driving applications. IEEE Robot
Autom Lett. 2018;3(2):1223–9.

 40. Wattenberg M, Viégas F, Johnson I. How to use t-sne effectively.
Distill. 2016.

 41. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas
DN. Stackgan++: realistic image synthesis with stacked genera-
tive adversarial networks. IEEE Trans Pattern Anal Mach Intell.
2019;41(8):1947–62.

 42. Zhao D, Guo Y, Jia YJ. Trafficnet: An open naturalistic driving
scenario library. In: 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), IEEE, 2017, pp. 1–8.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1809.05680
http://arxiv.org/abs/1810.06640
http://arxiv.org/abs/1706.02633
http://arxiv.org/abs/1902.09068
http://arxiv.org/abs/1706.08838
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/1708.07942

	A Deep Learning Framework for Generation and Analysis of Driving Scenario Trajectories
	Abstract
	Introduction
	Background
	Problem Description
	Related Work
	Generation
	Clustering

	Driving Scenario Data Source
	Scenario Extraction
	On the Issue of Variable-Length Trajectories

	Trajectory Generation Framework
	The Architecture: Autoencoder with GANs (AE-GAN)
	The Architecture: Recurrent Conditional GANs (RC-GAN)
	Evaluation
	Matching + Coverage
	One-to-One Matching with Hungarian Method

	Exploratory Analysis of Latent Space Representations
	Clustering on Latent Space with Autoencoder
	Outlier Detection with Autoencoder

	Experimental Results
	Autoencoder
	Generative Models: AE-GAN & RC-GAN
	Quantitative Comparisons
	Clustering
	Processing and Detection of Outliers

	Conclusion
	Acknowledgements
	References

