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The current study examines the performance of a Bayesian Inference Network 

(BIN) for modeling Learning Progressions (LP) as a longitudinal design approach.  

Recently, Learning Progressions, defined by measurable pathways that a student may 

follow in building their knowledge and gaining expertise over time (National Research 

Council, 2007; Shin, Stevens, Short & Krajcik, 2009), have captured attention in 

mathematics and science education (Learning Progressions in Science Conference, 2009). 

While substantive, psychological, instructional, and task developmental aspects has been 

proposed in the LP framework, few assessment design frameworks have been designed to 

link the theory embodied in a progression, tasks that provide evidence about a student’s 

level on that progression, and psychometric models that can link them.  Specially, few 

psychometric models have been proposed to characterize the relationship between student 

performance and levels on learning progressions in a longitudinal design approach.  This 



 

 

dissertation introduces an approach to modeling LPs over multiple time points using 

Bayesian Inference Networks, referred to as dynamic Bayesian Inference Networks 

(DBINs).  The DBINs are a framework for modeling LPs over time by integrating the 

theory embodying LPs, assessment design, and interpretation of student performances.  

The technical aspects of this dissertation cover the fundamental concepts of the graphical 

model for constructing a DBIN.  It is shown that this modeling strategy for change over 

multiple time points is equivalent to a hidden Markov model.  An expectation-

maximization (EM) algorithm is presented for estimating the parameters in the model. 

Two simulation studies are conducted that focus on the construction of a simple DBIN 

model and an expanded DBIN model with a covariate.  The extension that incorporates a 

covariate for students is useful for studying the effect of instructional treatments, students’ 

background, and motivation on a student’s LP.  An application illustrates the ideas with 

real data from the domain of beginning computer network engineering drawn from work 

in the Cisco Networking Academy.  
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CHAPTER 1: INTRODUCTION 

 

Learning Progressions (LPs) are defined by measurable pathways that a student 

may follow in the process of building their knowledge and gaining expertise over time 

(National Research Council, 2007; Shin, Stevens, Short & Krajcik, 2009).  LPs are 

hypotheses about how a student’s understanding of knowledge, skills, and abilities in a 

targeted area develops over time (Corcoran, Mosher, & Rogat, 2009).  Generally, LPs 

consist of several levels or units, each of which represents a given state of knowledge, 

skill, and abilities (KSAs) required for a student to achieve mastery at that level.  As an 

example, Gotwals, Songer, and Bullard (2009) developed a LP about complex inquiry 

reasoning for building evidence-based explanations in biodiversity and ecology (see 

Table 1).  The LP consists of five levels which contain a given state of KSAs required for 

a student to be at that level in the domain of biodiversity and ecology.  The five levels are 

hierarchically structured so that level 5 requires higher KSAs than level 4, level 4 

requires higher KSAs than level 3, and so on.  
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Table 1  

 

An example of a learning progression regarding biodiversity content adapted from  

 

Gotwals, Songer, and Bullard (2009) 

 

Level Description 

Level0
1
 No systematic understanding of biodiversity     

Level1 Student understands that a habitat is a place that provides food, water, 

shelter, and space for living things.  

Level2 Student understands that animals have different features that they use to 

survive in different habitats.  

Student understands that there are observable internal and external 

differences.  

Student understands that some of these differences are used to 

distinguish major groups.  

Level3 Student understands that richness and abundance are two different 

measures of the amount of animal life in a habitat or area.  

Level4 Student understands that biodiversity is a measure of the number and 

variety of different organism in a particular area (habitat, ecosystem, or 

biome).  

Level5 Student understands that an area has high biodiversity if it has both high 

richness and high abundance. 

Note. The description of level 0
1
 has been modified from the original LP so as to describe 

a progression of students’ understanding.   

 

Since LPs provide useful information for improving student learning, they have recently 

captured the attention of professionals in mathematics and science education (Learning 

Progressions in Science conference, 2009).  The major objectives in the study of LPs are 

to provide (1) information regarding the state of a student with respect to the level of 

understanding of a given concept and (2) diagnostic information regarding the strength 

and weakness of a student’s understanding along a curriculum (Gotwals, Songer, & 

Bullard, 2009; Schwarz, et al., 2009; Shin, Stevens, Short & Krajcik, 2009).  To provide 

such information about the learning states of a student (i.e., the current, past, and future 

levels of a student on LPs), the first step is to develop tasks for gathering student 
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responses that provide evidence about students’ KSAs relative to their levels on LPs.  

More specifically, once key task features that can evoke evidence about student states 

have been identified by drawing on research, the information can be used for constructing 

the tasks that can elicit student responses containing evidence about student KSAs.  In the 

measurement community, there has been a shift in the development of assessments to the 

incorporating the cognitive aspects about structure and acquisition of knowledge into the 

assessment development system in order to accurately represent the knowledge, skills, 

and abilities with respect to the purpose of the assessment (Mislevy, 1994; Nichols, 

Chipman, & Brennan, 1995). This movement allows assessments to produce diagnostic 

feedback based on the expected ways in which students understand and solve tasks in 

addition to providing an overview of each student’s ability level (Leighton & Gierl, 2007; 

Mislevy, 1994; Nichols, Chipman, & Brennan, 1995).  

Furthermore, the emphasis on the connection between cognitive psychology and 

measurement contributes to providing meaningful information for instructional uses.  

Linn (1986) stated that traditional standardized assessments have very little instructional 

uses in terms of what should be done to improve a student’s level of achievement.  Put 

another way, overall test scores from transitional standardized assessments provide 

relatively less information about the nature of a student’s weaknesses, strengths, and 

errors than cognitively developed assessments. Huff and Goodman (2007) found that a 

large percentage of teachers wished they had more individualized diagnostic information 

from these assessments.  The National Research Council (NRC) (2001) reported that 

formative and timely feedback is important to students in their development.  In order to 
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address these issues, Mislevy (1995) called for the importance of creating assessments 

that were able to provide meaningful information regarding students by collaborating 

cognition and instruction.  This call, in part, motivated the introduction of formative 

assessment (Black & Wiliam, 1998; Wiliam, 2007).  The notion of formative assessment 

was initially based on concept of “mastery learning”, in which students do not progress to 

the next learning objective until they have mastered the current one (Bloom, Hastings, & 

Madaus, 1971).  Recently, the use of formative assessment was expanded to identify a 

gap between actual student levels and desired levels of performance and to provide 

information for reducing student weaknesses.  For this purpose, Wiliam and Black (1998) 

stated that an assessment must produce evidence of student levels and elicit performance 

associated with KSAs at that level.  Consequently, they suggest that a combination of 

cognitive theory of learning, assessment design, measurement models, and curriculum 

provides the most beneficial information for student learning.  

Expressing a similar viewpoint, the NRC proposed the Assessment Triangle 

containing three vertices: cognition, observation, and interpretation (Pellegrino, 

Chudowsky, & Glaser, 2001).  The Assessment Triangle emphasizes the theoretical and 

empirical connections among theory, task design, and analytic methods in order to create 

valid assessment and provide reliable inferences.  This notion is also applied to the study 

of LPs. One of the major challenges in the study of LPs is to develop a suitable 

framework of linking among theory embodied in LPs, tasks that provide observable 

evidence about a student’s capability relative to those LPs, and analytic models that 

interpret student performance (Learning Progressions in Science Conference, 2009).  
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Evidence Centered Design is an assessment design framework that provides guidance for 

generating tasks that evoke evidence about students’ KSAs, and for coherently 

connecting between theory embodied in an application and task design, and for choosing 

analytic models that characterize the relationship among them (Mislevy, 2003).  This 

dissertation addresses how the Evidence Centered Design approach helps to solve the 

challenges in the study of LPs.  

Once tasks have been developed, another major issue in the study of LPs is 

modeling the relation that links student performance on assessment tasks to their levels 

on the LPs (West, et al., 2009).  One of the roles of psychometric models is to 

characterize the relation between student performance and levels on the LPs.  Previously, 

measurement of proficiency change in accordance with development theory, cognitive 

psychology, and learning science has been a significant issue in educational and 

psychological research such as Piaget’s (1950) stages of cognitive development, Siegler’s 

(1981) multiple strategies in proportional reasoning ability of children, and Rock and 

Pollack-Ohls’s (1987) math learning as a dynamic latent variable consisting of a series of 

discrete stages.   

Following this trend, various approaches in psychometric models have been 

proposed for addressing the measurement of proficiency change with different 

perspectives in terms of (1) focusing on group differences or individual differences, (2) 

considering proficiency as either a quantitative growth or a qualitative growth, and (3) a 

sampling issue of a static modeling approach based on cross-sectional design or a 

dynamic modeling approach by repeated measurement with same students.  The 
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modeling approach in the study of LPs differs from the previous transitional development 

theory-based research of proficiency change in that the modeling LPs requires a highly 

integrated approach among (1) theory embodied to LPs, (2) developing assessments to 

elicit student responses relative to an LP, and (3) interpreting student performance 

relative to their levels on LPs.  As such, the study of LPs not only offers the opportunity 

to explore student progressions in their knowledge and practices over time across a 

variety of contexts such as classroom based environments and standardized assessment 

environment, but also provides useful information for designing effective instructional 

materials that help students develop meaningful engagement in the practices and content 

over time (Schwarz, et al., 2009).   

The particular analytic methods for measuring proficiency change investigated in 

this dissertation need to be designed with the following distinguishing features that are 

best matched to learning progression research: (1) observations of student responses to 

assessment tasks are categorical variables, (2) latent variables are discrete variables with 

levels representing LPs of qualitative growth, (3) the qualitative growth focuses on 

proficiency change within the same individual over time in a longitudinal fashion (a 

dynamic modeling approach), (4) the role of the measurement model formalizes the 

characteristics of the underlying latent variables of which the observations are indictors, 

(5) theory provides information about the nature and structure of expected change, and (6) 

theory and task design provide a theoretical framework for creating and modeling 

observable evidence.  



7 

 

Some psychometric models matched to these statistical characteristics have been 

proposed in Latent Class Analysis, Rule Space model (Tatsuoka, 1983), Cognitive 

Diagnosis models (Leighton & Gierl, 2007), and hidden Markov models (Wiggins, 1955; 

Collins & Wugalter, 1992).  This dissertation introduces Bayesian Inference Networks 

(BINs) over multiple time points, referred to as dynamic Bayesian Inference Network 

(DBINs).  The BIN is one of the statistical modeling frameworks that have capabilities of 

modeling proficiency change by integrating substantive theory, designing assessment 

tasks, and the interpretation of student performances on the assessment (West et al., 

2010).  Statistically, the BINs offer efficient statistical estimation methods to handle 

computational challenges arising in longitudinal analyses (Almond, Mislevy, Steinberg, 

Williamson, & Yan, in progress).  

This dissertation contains four parts. The first part (chapter 2) addresses the 

assessment design framework using the ECD approach.  The second part (chapters 3 and 

4) describes how BINs can be used to model learning progressions over multiple time 

points.  Specifically, it addresses the questions of how the current, past, and future levels 

of a student on LPs are inferred.  Consequently, these two parts explain the issue of how 

the BINs can model LPs over time by connecting defined LPs, assessment design, and the 

interpretation of student performances.  The third part (chapter 6 and 7) examines two 

simulation studies for evaluating the performances of DBINs in the context of an LPs 

study.  The evaluation focuses on how different constraints on the relation between 

observables and LPs and the relation of the LPs between two consecutive measurement 
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points effect parameter recovery in estimation using Netica software.  The research 

questions related to the two simulation studies are as follows: 

 

Study 1: The first simulation study focuses on a simple DBIN model. The 

research questions for the first simulation study are as follows: 

(1) How well can parameter estimates of conditional probabilities for observable 

variables be recovered?  

(2) How well can parameter estimates of transition probabilities between two 

latent variables be recovered? 

(3) How well can the distribution of students indicating student classification of 

levels at the first measurement occasion and the second measurement occasion be 

recovered?  This will indicate the classification of students into the levels on an 

LP.   

The factors that will be varied in the simulation are (1) sample size, (2) task size, 

(3) distributions of the students on the LP at the first measurement occasion, (4) 

types of transition probability tables, and (5) types of conditional probability 

tables of tasks.  Bias, Root Mean Squared Difference (RMSD), and Standard 

Deviation of Estimate (SDE) are used for evaluating the parameter recovery.  

 

Study 2: The second simulation study incorporates a covariate for students into 

the DBIN model (i.e., incorporating a covariate into a transition probability 

matrix), which would be useful for studying the effect of instructional treatments, 
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students’ background, and motivation on student learning progressions.  The 

research questions of the second simulation study are as follows: 

(1) How well can parameter estimates of conditional probabilities for observable 

variables with respect to different values of a covariate be recovered?,  

(2) How well can parameter estimates of transition probabilities between two 

latent variables with respect to different values of a covariate be recovered?, and 

(3) How well can the distribution of students indicating student classification in 

terms of their levels at the first measurement occasion and the second 

measurement occasion be recovered with respect to the values of a covariate?  

The factors that will be varied in the simulation are (1) sample size, (2) task size, 

(3) types of transition probability tables, (4) types of conditional probability tables 

of tasks, and (5) proportions of group membership on a covariate. Bias, Root 

Mean Squared Difference (RMSD), and Standard Deviation of Estimate (SDE) 

are used for evaluating the parameter recovery.  

The last part (chapter 8) carries out an analysis with DBINs using real data from the 

domain of beginning computer network engineering drawn from work in the Cisco 

Networking Academy in order to confirm the results of the simulation studies.   

As technical aspects of a BIN, the fundamental concepts of the graphical models 

for constructing a BIN are described.  Belief updating is presented from the approach of 

the junction tree method.  Parameter estimation in a BIN (often called “learning” in the 

BIN and expert systems literature) is presented from the approach of the expectation-

maximization (EM) algorithm for Bayesian modal estimates.  This part will also show 
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how this BIN’s modeling strategy for proficiency change over multiple time points is 

equivalent to hidden Markov models (HMMs) (chapters 3, 4, and 6) 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter provides a review of assessment design framework to integrate the 

substantive context of an application, psychometric modeling, and task design.  In 

particular, the sections in this chapter review (1) current perspectives of learning 

progressions, (2) task designs to elicit observable evidence to the learning progressions, 

and (3) psychometric models that can be used to identify and accumulate evidence for 

managing the uncertainty of the relation between learning progressions and student 

performances. 

Assessment Triangle 

 

 

The National Research Council (NRC) (2001) defined an assessment triangle with 

three vertices: cognition, observation, and interpretation (Figure 1) that must work 

coherently in order to develop valid assessments.  Cognition is defined as the theory of 

proficiency and performance that is embodied in the application.  Observation is defined 

as the tasks or situations used to elicit student performance regarding what one desires to 

measure.  The observation activities are related to the design of assessment tasks.  

Interpretation concerns the mapping of the observations onto cognition.  The activity of 

choosing an appropriate measurement model is related to the interpretation.  

 

 

 

 

 

 

Figure 1. Assessment Triangle 

Cognition 

Observation: Task Design  
Interpretation: Measurement model 
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One of the major challenges in the study of LPs is to develop a suitable framework of 

linking among theory embodied in LPs, tasks that provide observable evidence about a 

student’s capability relative to that LPs, and analytic models that interpret student 

performance (Learning Progressions in Science conference, 2009).  The notion of the 

assessment triangle corresponds to the Evidence Centered Design framework (Mislevy, 

Almond, & Lukas, 2003).  The challenge in the study of LPs can be addressed through 

the assessment design framework using the ECD approach.    

 

Assessment Design Framework 

 

 

Assessments developed under the trait psychology perspective have been reliable 

indicators of the general state of students KSAs when the purpose of measurement was to 

compare students’ abilities and to select students.  However, such an overall score 

probably does not provide sufficient information for the purposes of (1) measuring 

complex aspects of KSAs and evaluating student learning progressions, (2) understanding 

distinguishable systematic patterns associated with different characteristics of groups, 

task features, and ways to solve the tasks, and (3) providing diagnostic information 

connected with curriculum and instruction.  For these purposes, more information is 

needed for designing assessments and interpreting student performances. The findings 

from cognitive research have been discussed as improving validity in educational 

assessment for these purposes by embracing the principles in defining abilities, designing 

assessment, constructing items/tasks, defining principles for automated scoring, modeling 
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psychometric models to analyze observations, and interpreting the results (Embretson, 

2000; Mislevy, 1995; Nichols, Chipman, & Brennas, 1995).   

Assessment necessitates containing tasks that reflect aspects of targeted KSAs and 

their measured structures.  At this point, understanding the structure of knowledge, 

acquisition, and other attributes is essential.  Advances in cognitive research provides (1) 

representations of the structure of knowledge and (2) distinguishable features from expert 

and novice in perception, procedures, and acquisition, how students are progressing, and 

different types of learning (Leighton & Gierl, 2007; Mislevy, 1995; Nichols, Chipman, & 

Brenna, 1995).  This information helps to specify the complex aspects of KSAs that are 

supposed to be measured in assessment, the task key features for distinguishing students, 

and the rationales for identifying and accumulating evidence from complex data (Mislevy, 

2003).  In addition to defining the structure of complex KSAs and identifying tasks 

features, cognitive research helps psychometric models to be meaningfully structured for 

accumulating evidence by specifying the relation of linking student performance on 

assessment tasks to theory (Mislevy, 2003).  Furthermore, the connection among theory, 

task design, and analytic method provides information about how students are 

progressing and where they are having difficulties solving the tasks. The information is 

useful in the selection of instructional strategies such as re-teaching, utilizing alternative 

instructional approaches, altering the difficulty level of tasks or assignments, or offering 

more opportunities for practice (Shute et al., 2009).   

The Evidence Centered Design (ECD) framework (Mislevy, Almond, & Lukas, 

2003) as a structured assessment design framework guides the incorporation of findings 
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from cognitive research into assessment design, so that (1) all tasks have been generated 

to provide the opportunity to obtain evidence about the targeted KSAs, (2) the scoring 

systems are designed to capture the features of student work that serve as evidence about 

the KSAs, and (3) the characteristics of student in terms of the targeted KSAs are 

summarized based on evidence (Mislevy, 2003).  Since this dissertation introduces the 

psychometric model given a condition where substantive theory provides a theoretical 

framework for creating tasks and accumulating evidence, the following section reviews 

the ECD as an assessment design framework and explains what is meant to explicitly 

incorporate cognitive theory into the assessment.  

 

Evidence Centered Design (ECD) Framework 

 

 

The ECD framework is a general assessment framework which supports the 

notion that an assessment is built upon evidential argument.  For an assessment to be 

considered as an evidential argument, it consists of a series of descriptive models that 

addresses the following three questions: (1) what complex of knowledge, skills, or other 

attributes should be assessed?, (2) what behaviors or performances should reveal those 

constructs, and what are the connections?, and (3) what tasks or situations should elicit 

those behaviors? (Mislevy, Steinberg, & Almond, 2003).  Based on these questions, the 

ECD framework provides guidance when developing assessments for various purposes as 

evidentiary argument.  Figure 2 shows each stage in the framework (Mislevy, Steinberg, 

& Almond, 2003).  
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Figure 2. Layers of the Evidence Centered Design Framework  

 

Specially, the Domain Modeling and Conceptual Assessment Framework are closely 

associated with the facet of incorporating substantive theory into psychometric modeling.  

In the Domain Modeling, information from analyses of which complex KSAs are central 

to a domain is organized to form the assessment arguments.  Through a tool called 

Design Pattern, assessment designers can create the substance and structure of an 

assessment argument. The Conceptual Assessment Framework (CAF) provides technical 

specifications for operational elements, which explain how the information gathered and 

organized in domain modeling can coherently serve as evidential arguments while 

operating the assessment.  The CAF specifies five models: (1) the student models, (2) the 

task models, (3) the evidence models, (4) the assembly model, and (5) the presentation 

model.  Figure 3 shows the CAF model.  
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Figure 3. The conceptual assessment framework  

    

The five models address the five questions below (Mislevy, Steinberg, & Almond, 2003).  

 What complex of knowledge, skills, or other attributes should be assessed?  

In the student model, aspects of knowledge, skills, or abilities and their 

configuration are supposed to be specifically addressed. Later, the 

configuration in the student model will be used as a representation of the 

variables in a BIN. Since various structures and different levels of complexity 

in the student model can be constructed, this raises an issue of determining of 

which set of the student model variables is minimally sufficient to 

differentiate student performances in terms of the purpose of an assessment. 

With regard to this, psychological perspectives can offer the rationales 

involved in constructing the student model variables because different 

psychological perspectives suggest different notions of knowledge, acquisition, 
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and learning processes.  For this purpose, statistical methods such as model fit 

statistics can also be utilized to determine an adequate structure for the student 

model.  From the two procedures, one can construct a student model that can 

afford to capture sufficient evidence for the purpose of an assessment.   

For LP research, the student model can be built by the findings of 

developmental theory, learning science, and cognitive psychology.  The 

student model variables can be specified by the aspects of KSAs associated 

with levels, progresses, stages of learning progressions, and diagnostic 

information.  For example, a student model variable can represent either a LP 

of a particular domain or a level of a particular LP. The student model 

contains information about how many levels are useful in defining a LP, what 

specifications of levels of a LP are defined, and providing information on 

what evidence is needed to evaluate the LPs of a student. Therefore, the 

structure of the student model for assessing LPs would be more complex than 

a traditional assessment with the same observables. This structure can be 

verified and confirmed by statistical model comparison methods. In the case 

of the first example of the LPs in chapter 1, the student model can consist of 

either (1) one student model variable with five classes corresponding to the LP 

with five levels or (2) five student model variables corresponding to each level 

of the LP. In any case, the model shows that five levels are defined for 

assessing the LP in the domain of biodiversity and ecology and contain 

information regarding what KSAs are required for students at that level. In 
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addition to this information, the structure of the student model variables is 

also specified at this model. For this LP, a hierarchical relationship among the 

student model variables could be one of the adequate structures. The student 

model is connected with the task model through the evidence model, 

explaining how each observable depends on the student model variables.  

 What behaviors or performances should reveal those constructs? How they are 

connected? 

The evidence model defines how evidence from observables can be identified, 

accumulated, and linked to the student model variables.  It explains the nexus 

of observables and expectations defined in the student model.  The evidence 

model contains two components: Evidence Rules and Statistical model.  The 

Evidence Rules specify the rules to identify evidence from the work products 

that a student produced from a particular task.  The measurement model 

explains how evidence is accumulated and synthesized across tasks in terms 

of student model variables. Various psychometric models such as classical test 

theory, item response theory models, and cognitive diagnostic models are 

involved in this part depending on the purpose of an assessment; therefore, 

one of the issues here is to choose the suitable psychometric model for the 

purpose of an assessment.   

For the study of LPs, the evidence model provides (1) information about 

how student performances are modeled and interpreted relative to the level of 
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an LP, (2) information about the criterion for comparing observed and 

expected LPs, and (3) information about feedback within and across task level.  

Consequently, the evidence model provides inferential reasoning from 

observables of tasks and expectations in the student model.  For example, in 

the case of the first LP example in chapter 1, a student response pattern of 

tasks is used for inferring which levels the student has reached. This 

dissertation will focus on addressing this area. The DBIN is investigated as 

one of the suitable psychometric models for modeling LPs.  

 What tasks or situations should elicit those behaviors? 

The task model provides a set of specifications for the situations, 

environments, and contexts to elicit student performances to obtain evidence 

needed for the evidence model.  The task model contains presentation material, 

work product, and task model variables.  The presentation material describes 

the material which is presented to the student.  The work products are student 

performances and responses to tasks. The task model variables are 

specifications of aspects/features of tasks which are more likely to evoke the 

desired evidence. They can be varied depending on the targeted KSAs and 

degrees of difficulty.   

For assessing LPs, the task model provides information for developing 

tasks to elicit student performances relative to the levels of a learning 

progression. Specifically, it contains the following information:  (1) the key 
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features of tasks are important to elicit student’s understanding with respect to 

the targeted KSAs at a particular level of a LP, (2) the key features of tasks 

which are more likely to distinguish student performances into different levels 

of a LP, (3) the key features which make a task more or less difficult, (4) other 

characteristics/contexts of a task that effect its difficulty, and (5) the aspects 

and features that inform the quality of tasks for assessing LPs. In the case of 

the first LP example in chapter 1, task designers and domain experts identify 

what key task features can produce different response patterns among 

different levels of students.  For example, the key features that are able to 

distinguish between students who understand the concept of biodiversity and 

those who do not are identified and incorporated into designing tasks to elicit 

different response patterns.  

 How much do we need to measure?  

The assembly model describes how the three models above work together to 

form a balanced assessment properly reflecting what is needed to be measured.  

For assessing LPs, the assembly model describes how the three models are 

combined for inferring a student learning progression in a given assessment 

situation. For instance, the number of tasks (i.e., task size) with respect to the 

different levels on a LP and the task type are determined to construct an 

optimized assessment.  

 How does assessment look? 
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The presentation model describes how a task is provided to students.  There 

are many different means for delivering an assessment such as paper and 

pencil format, computer and web-based format, and simulation and game-

based format.  The requirements for presenting assessments differ depending 

on the format.  

In the assessment framework through the ECD model, the substantive theory is 

explicitly reflected in the development of assessment and psychometric models. The next 

section discusses the substantive evidence of LPs. The section to follow addresses how 

tasks are designed for eliciting LPs and what psychometric models are suitable for this 

purpose.  

Substantive Research on Learning Progressions 

 

 

LPs are descriptions of increasingly sophisticated ways of thinking about or 

understanding a topic (National Research Council, 2007).  The differences from other 

developmental approaches are that the LPs can be nonlinear progressions, have the 

possibility to provide diagnostic information about student’ progress connected with 

instructions, and curriculum is closely linked to assessment tasks, curriculum, and 

instruction (Schwarz et al., 2009).  Therefore, the LPs are more integrated concepts for 

defining aspects of KSAs in the LPs, identifying what levels are addressed by a specific 

LP, determining how they are to be assessed, how they can provide diagnostic feedback, 

and identifying how they are linked to instructions and curriculum.  The research of LPs 

offers the opportunity to explore how students build their KSAs over time, what evidence 
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is needed not only for assessing students’ learning, but also for evaluating and refining 

the defined learning progressions, curricula, and instruction (Schwarz et al, 2009).   

Specifically in assessment, the LPs are also characterized as measurable and 

testable pathways that a student may follow in building his other knowledge and gaining 

expertise over time (National Research Council, 2007; Shin, Stevens, Short & Krajcik, 

2009).  Although there are many possible pathways where students may progress, 

common expected natures of paths exist and can be defined (West, et al., 2009).  These 

legitimated pathways are used as grounded concepts of assessing LPs (West, et al., 2009). 

  LPs research is gaining popularity in the science education and mathematics 

community (Learning Progressions Science Conference, 2009).  For instance, Schwarz et 

al (2009) developed related to the construction and use of a scientific model in science. 

The Berkeley Evaluation and Assessment Research (BEAR) Assessment System has 

been studied in developing LPs in Living by Chemistry (Clasesgens, Scalise, Wilson ,& 

Stacy, 2009) and Carbon Cycle (Mohan, Chen, & Anderson, in press).  Draney (2009) 

presented LPs in the domains of Living by Chemistry and Carbon Cycle.  The study 

described an integrated Assessment System that provides meaningful interpretations of 

student performances relative to LPs linked to the cognitive and developmental goals of a 

curriculum (Draney, 2009).  Alonzo and Steedle (2009) have developed LPs in the 

science content domains of earth science, life science, and physical science.  Briggs and 

Alonzo (2009) have developed an LP for the conceptual understanding of Earth and the 

Solar System and an associated set of items.  The LP describes students’ developing 

understanding of a target idea in earth science according to National Science Education 
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Standards documents (Briggs & Alonzo, 2009).  Table 2 is the example of the LP of 

Earth and the Solar System.  

Table 2 

 

An example of a learning progression of Earth and Solar System adapted from  

 

Briggs and Alonzo, 2009 

 

Level Description 

Level0
1
 No systematic understanding of earth and solar system 

Level1 Student does not recognize the systematic nature of the appearance of 

objects in the sky. Student may not recognize that the Earth is spherical. 

Level2 Student recognizes that the sun appears to move across the sky every day 

and the observable shape of the Moon changes every 28 days. 

Level3 Student knows that the Earth orbits the Sun, the Moon orbits the Earth, 

and the Earth rotates on its axis.  

Level4 Student is able to coordinate apparent and actual motion of objects in the 

sky. 

Level5 Student is able to put the motions of the Earth and Moon into a complete 

description of motion in the Solar System. 

Note. The description of level 0 has been modified from the original LP so as to describe 

a progression of students’ understanding.   

 

West, et al. (2009) developed a learning progression of IP (Internet Protocol) addressing 

skills in the field of computer networking.   

As the development of assessments, curriculum, and instruction associated with 

LPs are of interest in various disciplines, challenges arise in many areas, including (1) 

designing a coherent assessment system, (2) inferring student learning progression levels 

based on the responses to assessment tasks, and (3) interpreting the difference between 

expected and observed students’ progress mapped to the conceptually defined learning 

progression.  More specifically, a number of inferential challenges of modeling LPs have 

arisen (Learning Progressions Science Conference, 2009): (1) deciding what 

methodologies can be used for the inference about students’ learning progression levels 
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based on student performance on a set of assessment tasks, (2) determining how students’ 

inconsistent patterns can be explained and modeled, (3) how observed student responses 

could be compared to expected student responses, (4) understanding how the substance of 

learning progressions and assessment tasks could be refined by the implications of 

differences between observed and expected responses, (5) what technologies could be 

used for explaining student movement along the learning progression with a non-linear 

sequence of change rather than a simple linear path by longitudinal accounts of student 

learning beyond the cross-sectional research (Briggs & Alonzo, 2009), and (6) 

establishing how to model complex LPs to explain different subgroups that have different 

learning progressions in terms of exogenous variables. 

 Wilson (2009) did research on assessment structures that one could build to 

undergird a learning progression through construct map.  The research focused on 

measurement perspective exploring whether to use a traditional form of a uni- or 

multidimensional model, or to include elements of structural equation modeling, or even 

more complex ones such as the Structured Constructs model as well as the task design. 

The majority of this dissertation focuses on psychometric modeling using BIN over 

multiple time points to address these inferential challenges. Specially, this dissertation 

will address the challenges of (1), (5), and (6) above. This chapter described conceptual 

developments of LPs.  The next section will illustrate task design that provides evidence 

about the level of the LP a student may have research.   
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Task Design of Assessing the Learning Progressions and Validity 

 

 

Assessment must be thoughtfully designed so as to obtain evidence about the 

targeted knowledge, skills, and abilities (NRC, 2001).  Evidence Centered Design 

provides guidance for designing assessment tasks to elicit student performances for 

obtaining evidence about the aspects of KSAs that need to be measured.  Particularly, the 

previous section discussed the idea that the task model in the Conceptual Assessment 

Framework serves to identify the key features of tasks that allow for distinguishing 

student performances and constructing the tasks that provide evidence with respect to 

targeted aspects of KSAs.  Through the assessment design framework, tasks are 

generated to reflect the targeted aspects of KSAs by means of incorporating the identified 

task features that evoke evidence about the KSAs or the targeted strategies.  Therefore, 

the change in one of the task features can require students to use different KSAs.  It is 

possible to generate isomorphic items by incorporating different features to require 

students to use the same KSAs.   

In a similar view, Embretson (1998) has discussed integrating the principles of 

cognitive psychology into the assessment design through the Cognitive Design System. 

Embretson’s (1998) Cognitive Design System shared a similar lens to the Conceptual 

Framework Assessment (Mislevy, 2003) through the task model, the student model, and 

the evidence model.  Embretson (1998) applied task features in terms of different rules in 

solving the tasks of Raven progression matrix, which identified different rules in solving 

matrix problems through cognitive research (Carpenter, et al. (1990).  They found that the 

different rules in solving the tasks cause individual differences of working memory 
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capacity and abstraction capacity.  Specifically, the rules are as follows (Embretson, 

1998): (a) Identify relations: An element is the same across the row or column entries, (b) 

Pairwise progression relations: An element changes systematically from entry to entry 

(i.e., size increases across the rows), (c) Figure addition or subtraction relations: The first 

two entries in the row or column sum to the last entry, (d) Distribution of three relations: 

An object or attribute appears just once in each row and column, and (e) Distribution of 

two relations: Distribution of three relations have null values (i.e., one matching element 

is missing).  Based on the findings of Carpenter, et al. (1990), Embretson (1998) 

identified task features that examinees are required to use different rules in solving a task.  

She found that using tasks generated by different features can distinguish examinees who 

use different rules for solving tasks as well as those who have different levels of working 

memory and abstraction capacity.  Embretson (1998) illustrated one example in her study 

(Figure 4).  This task requires the highest level rule, in which examinees need to 

understand the distribution of three relations and determine which is missing an element 

in solving the task.  The first illustration is missing a diamond shape with two horizontal 

parallel bars, determined by the previous patterns of two rows and columns.  The second 

one has a missing element of a square with a horizontal bar given the previous patterns. 

The two tasks require the examinee to use the same rule in completing the tasks while 

their surface features differ.  Also, the two tasks measure the same level of working 

memory capacity and abstraction capacity.  
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Figure 4. An example of a task in Raven Progressive Matrix  

 

As another example, Figure 5 shows that the task required the use of Rule C.  In 

order to solve both tasks, examinees are required to understand that the first two 

entries in the row or column sum to the last entry.  This rule requires examinees to 

use a lower level of working memory capacity and abstraction capacity than the first 

example task.  Furthermore, the examples show that it is possible to generate some 

isomorphic tasks which require the same rules, but appear with different features. In 

contrast, the tasks can be generated to measure the different rules, but appear with 

similar features.  Through these principles, assessment tasks can be generated by 

systematically varying and expanding the task stimulus features.  
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Figure 5. An example of a task in Raven Progressive Matrix  

 

In the study of LPs, by designing assessment tasks that target different levels 

associated with different aspects of targeted KSAs, it becomes possible (1) to obtain the 

level of the LPs a student may have attained, (2) to draw conclusions about the value, 

sequence, and structure of a student’s learning, and (3) to gather empirical evidence to 

guide the development and refinement of the hypothesized LPs associated with 

assessment and curriculum. 

 Gotwals, Songer, and Bullard (2009) presented a set of designed tasks that were 

linked to the LP of inquiry reasoning in order to gather evidence of how students use their 

content knowledge to formulate scientific explanations associated with a range of 

ecology, classification, and biodiversity domains.  By using the key task features 

associated with the LP, they can determine which level a student may have attained and 

what a student knows about the domain of the LPs.  For example, the Task in Figure 6 

has a scenario for assessing the concept of biodiversity.  Given the scenario, two tasks are 

generated relative to different levels of the LP of biodiversity.  Both of the tasks ask the 

student to provide an answer and the rationale.  The first question (Question A) relating 

to the lower level of the LP, asks students to identify which zone has the highest richness. 
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The answer and its evidence are straightforward in the task because the Zone B clearly 

has the highest animal richness. Whereas, the other task (Question B) related to a higher 

level of the LP is to ask students to identify which zone has the highest biodiversity, 

given the same scenario. While the answer is the same as the previous task (Zone B), 

providing appropriate and sufficient evidence of the answer is not as straightforward 

because students need to understand different concepts between the richness of animals 

and the abundance of animals (Gotwals, Songer, & Bullard, 2009). 

 

Question A Question B 

Which zone has the highest richness, given 

the same scenario? 

Which zone has the highest biodiversity, 

given the same scenario? 

Make a Claim: 

Write a sentence that answers the scientific 

question. 

Answer: 

 

 

 

Make a Claim: 

Write a sentence that answers the scientific 

question. 

Answer: 

 

 

 

Give your Reasoning: 

Write the scientific concept or definition 

that you thought about to make your claim  

Answer: 

 

 

 

Give your Reasoning: 

Write the scientific concept or definition 

that you thought about to make your claim  

Answer: 

 

 

 

Figure 6. An example of a task taken from Gotwals, Songer, and Bullard (2009) 
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In another example, West, et al. (2009) identified the features of tasks relative to different 

levels of the LP in IP Addressing Skills.  Two tasks in Figure 7 require different level of 

IP Addressing skills to obtain a correct answer.  The two tasks look similar on the surface, 

but the stem of Task A is /24, while that of Task B is /28.  This change requires students 

to use a more advanced IP addressing skill (West, et al., 2009).   

Task A  Task B  

It is necessary to block all traffic 

from an entire subnet with a 

standard access control list. What 

IP address and wildcard mask 

should be used in the access 

control list to block only hosts 

from the subnet on which the 

host 192.168.16.43/24 resides? 

 It is necessary to block all traffic 

from an entire subnet with a 

standard access control list. What 

IP address and wildcard mask 

should be used in the access 

control list to block only hosts 

from the subnet on which the host 

192.168.16.43/28 resides? 

 

A.192.168.16.0 0.0.0.15  A.192.168.16.0 0.0.0.15  

B.192.168.16.0 0.0.0.31  B.192.168.16.0 0.0.0.31  

C.192.168.16.16 0.0.0.31  C.192.168.16.16 0.0.0.31  

D.192.168.16.32 0.0.0.15  **D.192.168.16.32 0.0.0.15  

E.192.168.16.32 0.0.0.16  E.192.168.16.32 0.0.0.16  

**F.192.168.16.0 0.0.0.255  F.192.168.16.0 0.0.0.255  

Figure 7. An example of a task taken from West, et al (2009) 

 

If the purposes of an assessment are to provide evidence about the level of an LP 

where a student may have reached, the learning trajectory of a student over time, and 

diagnostic feedback relative to a student LP beyond a general proficiency of a student, it 

is important that assessment tasks are designed to cover students with a variety of ability 

levels.  Appropriate and sufficient evidence with respect to all levels in LPs can be 
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obtained by incorporating task features, given that the task features are associated with 

the key aspects that students require certain levels of understanding to complete the task.  

The previous two sections explained the theory embodied LPs and task design. 

The next section emphasizes the role of analytic models that characterize the connections 

between theoretical aspects and empirical evidence from student performances based on 

assessment tasks.  Statistical models such as latent class models, Rule Space model, 

cognitive diagnostic models, and hidden Markov models are useful tools for reasoning 

from observed change patterns to expected change patterns on student performances.  

The next section discusses several psychometric models that are useful for analyzing data 

for LP research.  

Psychometric Modeling 

 

Many psychometric models have been proposed for measuring change over time 

in latent variables.  The psychometric models can be distinguished by conceptual 

differences between (1) quantitative growth and qualitative growth, (2) static and 

dynamic latent variables, and (3) a cross-sectional sample design approach and a 

longitudinal sample design approach.  Proficiency change as a continuous variable is 

often expressed as quantitative growth, modeled by means of latent growth curve 

approaches (e.g., McArdle & Hamagami, 1991; Willett & Sayer, 1994, 1996).  In this 

case, the quantitative growth can be defined in terms of an increase or decrease in the 

amount of knowledge or ability.  In contrast, movement between stages or stage 

sequential change is often described by qualitative growth (Collins & Flaherty, 2002).  A 
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typical example of the qualitative growth is Piaget’s model based on the cognitive 

development of children.  The qualitative growth focuses on the critical pinpoints that 

represent a qualitatively different way of thinking and doing (Collins & Flaherty, 2002). 

Collins (1996) defined the conceptual distinction between static and dynamic latent 

variables.  The static latent variables are not expected to change over time, or, put another 

way, the change is not of interest, rather group differences at a particular time are of 

interest in static modeling of latent variables.  On the other hand, dynamic latent variables 

examine change in systematic over time (Collins & Flaherty, 2002).  Depending on the 

interests and research questions, the same variable can be often seen as either static or 

dynamic. The distinction between them is often drawn by what kinds of the sample 

design approaches are used such as a cross sectional sample design and a longitudinal 

sample design (Collins & Flaherty, 2002).  The modeling strategies and the selection of a 

suitable model can be determined by (1) a careful consideration of substantive theory, (2) 

what are observed from the assessment tasks, (3) the purpose of an assessment, and (4) 

the desired level of precision at which student characteristic.  

   This dissertation will focus on psychometric models that are best matched to LP 

research.  Specifically, since proficiency change aligned with theory embodied learning 

progressions over time is of interest, the models considered here have three key 

properties. (1) Observations are student responses to assessment tasks, so observables are 

categorical variables. (2) An LP is operationalized as a latent variable with several latent 

classes representing qualitatively different levels in the learning progression, and (3) 

psychometric models make inferences about latent level change on an LP over time when 
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the variable of interest is unobservable, but task design and theory provide a theoretical 

framework for creating and modeling observable evidence as well as information about 

nature and structure of expected change.  The next subsections review key terminologies 

of latent class models, Rule Space models, diagnostic classification models, and hidden 

Markov models.  

Latent Class Models 

 

Latent class models are statistical methods often used to identify homogenous 

subgroups and to differentiate heterogeneous subgroups by their responses to 

dichotomous or polychromous items.  Through the analysis of the models, students are 

identified as homogenous groups with respect to membership in a latent class, while they 

are identified as heterogeneous groups between latent classes.  The latent class models 

are also referred to as finite mixture models (McLachlan & Peel, 2000) or 

unrestricted/unconstrained latent class models.  In latent class models, observations are 

used to estimate the probability of class membership for the latent class variables and the 

probability of responses to an item given the latent class membership.  The models 

assume that the probability of a particular response on any one item is independent of the 

probability of any given response on any other item after conditioning on latent class 

membership; this is known as the local independence assumption (Lazarsfeld & Henry, 

1968).  The general forms for the latent class models are as follows: 

Assuming that there are C classes with levels c = 1,  . . . , C, the probability of latent class 

membership has two constraints: 
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1 , 0 1c c

c

       for all c                      (1) 

Then, conditional probability of responses to item i for student j given latent class c is as 

follows:                                

                

(2)  

Assuming local independence within each latent class, the conditional probability of 

response pattern given latent class c is as follows: 

       (3)    

Therefore, marginal probability of response pattern Xj is as follows: 

                                    (4)  

The latent class models have three general constraints: (1) the parameters are non-

negative, (2) the mixing proportions should sum to 1, and (3) the conditional probabilities 

also should sum to 1 for each item within each latent class.  In terms of learning 

progressions research, since a learning progression is a categorical latent variable, the 

latent class models can be directly applied by considering each latent class as a level on a 

learning progression.  There are different modeling strategies by combining the latent 

class models with other models.  One of the modeling strategies is to explicitly 

incorporate variables that characterize substantive features of tasks. Specifically, 

cognitive diagnostic modeling, often referred to as cognitive diagnostic models (Leighton 

& Gierl, 2007), or diagnostic classification models (Rupp, Templin, & Henson, 2010), 

has taken the strategy that makes them possible to provide diagnostic information.  
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Another modeling strategy is combining Markov chain model with latent class model, 

referred to as the hidden Markov models, latent Markov models (Wiggins, 1955), or 

latent transition model (Collins & Wugalter, 1992; Graham et al.; Hansen, 1991).  These 

models are helpful for analyzing a series of latent class models over multiple time points.  

The next section will discuss the key terminology of a unified model (Henson, Templin, 

& Willse, 2009) of diagnostic classification models, Rule Space model, and hidden 

Markov models.  

Diagnostic Classification Models 

 

Diagnostic classification models are statistical models that were developed to 

classify students in terms of their mastery states on each attribute (DiBello, Roussos, 

Stout, & Junker, 2007; Rupp & Templin, 2008; Rupp, Templin, & Henson, 2010).  The 

Diagnostic Classification models contain multiple attributes.  The term attribute refers to 

latent aspects of knowledge, skills, and abilities that are supposed to be measured in an 

assessment.  Student mastery states on the attributes of interests are estimated based on 

students’ observed response patterns.  A composite of the student mastery states on the 

attributes is referred to as an attribute profile (Rupp et al., 2010).  Therefore, the attribute 

profile is a pattern used for providing diagnostic feedback.  Many models such as 

Deterministic inputs, noisy and gate (DINA: e.g., Junker & Sijtsma, 2001; Templin & 

Henson, 2006), Deterministic inputs, noisy or gate (DINO: e.g., Junker & Sijtsma, 2001; 

Templin & Henson, 2006), and reparameterized unified model in DCMs have been 

proposed.  These models differ depending on what variables are of interest and which 
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condensation rules are used for modeling attributes; however, a central concept of 

modeling is linking findings from cognitive psychology (Rupp & Templin, 2008).  Since 

there is more than one attribute involved and tasks can depend on multiple attributes, 

their relations are represented by a loading structure, often called a Q matrix (Tatsuoka, 

1990).  The Q matrix contains the targeted attributes and specification of which attributes 

are measured by which task(s) based on substantive theory.  In the case of an LP, the Q 

matrix can be constructed as hierarchy attribute relationship along different levels in an 

LP.  Table 3 shows an example of the Q matrices with 8 tasks for the study of LPs.  

Table 3 

 Exemplary Q-matrix in the case of a learning progression with four levels 

 

Task Attribute1 

Required KSAs 

at level 1 

Attribute 2 

Required KSAs 

at level 2 

Attribute 3 

Required KSAs        

at level 3 

Attribute 4 

Required KSAs  

at level 4 

1 1 0 0 0 

2 1 0 0 0 

3 0 1 0 0 

4 0 1 0 0 

5 0 0 1 0 

6 0 0 1 0 

7 0 0 0 1 

8 0 0 0 1 

 

Rows indicate tasks, columns correspond to attributes, and values indicate which 

attributes are measured by which tasks.  Task 1 and Task 2 measure the KSAs required to 

be at level 1 in the LP.  In other words, aside from slips, mastery of the KSAs is required 

to correctly answer Task 1 or Task 2.  To construct a Q matrix, many sources may be 

used.  In the case of LPs research, cognitive developmental theory, learning science and 
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objectives about learning in curriculum can be sources for specifying Q matrix (Buck & 

Tatsuoka, 1998).   

 The general model for DCMs is as follows (Rupp et al, 2010): 


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 Different DCMs provide different parameterizations of icp  based on the relation between 

tasks and attributes, and among attributions (Rupp et al., 2010).  A unified model referred 

to as the log-linear cognitive diagnosis model (LCDM) framework (Henson, Templin, & 

Willse, 2009) can capture the different DCMs such as DINA, DINO, and RUM.  The 

LCDM is as follows (Rupp et al, 2010): 

       (6) 

where i and j denote student and task, respectively; 0j is an intercept and j
`
 represents a 

vector of coefficient indicating the effects of attribute mastery on the response probability 

for item j; and h(i, qj) is a set of linear combinations of i and qj.  The intercept can be 

interpreted as a guessing parameter and ju parameters represent the main effects of each 

attribute u on the response probability for item j, and the juv parameters represent the 

two-way interaction effects of the combination of the mastery states of attributes u and v 

on the response probability for item j.  Depending on the number of attributes included in 

the assessment, the LCMD can have different number of main effects, two-way, and 

three-way interactions effects.  For example, suppose that there is a task associated with 

two attributes.  Various structures between tasks and attributes that affect the probability 
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of correctly response to the task can be modeled.  The first case could be a situation 

where a student can get correct answer to the task when both attributes have been 

mastered. In this case, the response probability for this task is modeled computed by 

reducing the LCMD only with interaction effects as follows (Rupp et al, 2010): 

             
(7) 

This model is referred to as the DINA model because the DINA model reflects a case 

where the mastery of attributes cannot compensate for the lack of mastery of any other 

attribute(s) (de la Torre, 2008; Junker & Sijtsma, 2001).  The second case could be a 

situation where a student can have a correct answer to the task when one of the attributes 

has been mastered, which is referred to as the DINO model.  The DINO model can be 

modeled by the three LCMD models as follows (Rupp et al, 2010): 

    (8) 

Since the DINO model reflects the assumption that mastery of subset of attribute(s) can 

compensate for the lack of mastery of other attribute(s), the LCMD models can be 

modeled with only main effects, only interaction effects, or both of them (Rupp et al, 

2010).  Lastly, the compensatory RUM can be also specified by the LCMD model by 

considering a situation where the probability of getting a correct response to the task 

increase as the number of attributes mastered increases.  The compensatory RUM model 

in the LCMD framework is as follows (Rupp et al, 2010): 
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(9)

 

In the case of an LP research, depending on the structures among LPs and relationship 

between LPs and tasks, DCMs can be modeled as special cases of DINA, DINO, or RUM.  

Rule Space Model 

 

 Rule Space model is a statistical method for classifying students into one or more 

pre-specified attribute mastery profiles (K. Tatsuoka & M. Tatsuoka, 1990; K. Tatsuoka, 

1993).  The attributes are associated with different cognitive skills, processing skills, 

strategies, and knowledge components in order to successfully complete tasks.  The 

model is used to assess whether a student has mastered the cognitive skills or attributes 

required to solve tasks, to diagnose a student’s misconception, and to provide meaningful 

information to guide instruction.  For these purposes, the Rule Space model explicitly 

incorporates cognitive theory into designing tasks and classifying student responses. 

Mainly, the Rule Space model addresses two issues: (1) the identification of task features 

and task design by incorporating the task features and (2) statistical analysis for 

classifying student responses into the patterns.   

An adjacency matrix, reachability matrix, and incidence matrix are constructed in 

the task design phase.  The adjacency matrix expresses the direct relation between 

attributes.  The reachability matrix specifies the indirect as well as the direct relation 

among attributes.  Hence, the reachability matrix is directly used for constructing the 

incidence matrix, often referred to as Q matrix, which represents each task by the 
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attributes being assessed.  Since the initial Q matrix constructed by the reachability 

matrix represents all combinations of the relations between tasks and attributes, the Q 

matrix sometimes can be reduced or constrained depending on a particular relation 

among attributes.  In general, the curriculum specialists, domain experts, and cognitive 

researchers provide the specification of the attributes in a specific content area.  In the 

statistical classification phase, under the assumption that the relations among attributes 

are true, ideal item response patterns can be produced by using the Q matrix.   

Furthermore, the ability continuum based on one dimensional IRT analysis is 

derived using the ideal item response patterns.  As such, it can be expected that a student 

having high value of θ would have an ideal item response pattern with many 1s and few 

0s, while a student having low value of θ would have an ideal item response pattern with 

many 0s and few 1s as well as it can be reported by values located on the IRT scale.  On 

the other hand, the observed student response patterns are often subject to fluctuations. 

That is, there are some cases in which students of high ability get easy items incorrect or 

students of low ability get hard items correct.  These inconsistent patterns are called 

response unusualness, referred to as ζ in the Rule space.  Both the ideal response patterns 

and the actual student response patterns are then plotted on a two-dimensional Cartesian 

coordinate system, called the Rule Space, characterized by the θ (the ability continuum 

derived from an item response analysis ) and ζ (response unusualness) (Tatsuoka, 1995). 

In order to classify a student response pattern into one of the ideal response patterns, the 

Mahalanobis distance is computed between the ideal response patterns and the observed 

student response pattern.  The observed student response pattern is classified to the ideal 
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response pattern that embraces the student’s point in the smallest value of the 

Mahalanobis distance.  

In the case of LP research, relations among the attributes could be structured as a 

liner hierarchy order based on learning paths.  Figure 8 indicates a possible hierarchy 

attributes for an LP study.  In Figure 8, attribute 1 is prerequisite to attribute 2, attribute 2 

is prerequisite to attribute 3, and attribute 3 is prerequisite to attribute 4.   

 

Figure 8. A hierarchical relation 

 

This hierarchical relation can be expressed in each row of the adjacency matrix 

Table 4 

 

Exemplary Adjacency matrix in the case of a learning progression with four levels 

 

 A1* 

Required  

at L1*  

A2* 

Required  

at L2* 

A3* 

Required  

at L3* 

A4* 

Required  

at L4* 

A1* Required at L1* 0 1 0 0 

A2* Required at L2* 0 0 1 0 

A3* Required at L3* 0 0 0 1 

A4* Required at L4* 0 0 0 0 

Note. A1* indicates attribute 1. A2* indicates attribute 2. A3* indicates attribute 3. A4* 

indicates attribute 4. L1* indicates level1, L2* indicates level2, L3* indicates level3, and 

L4* indicates level4.  

 

The linear hierarchy structure is one of the attribute structures that are addressed 

in Attribute Hierarchy Method (AHM: Leighton, Gierl, & Hunka, 2004).  The AHM is a 

variation of Rule Space model and a psychometric method for classifying examinees’ test 

item responses into a set of structured attribute patterns associated with different 
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components from a cognitive model of task performance.  The structured attribute 

patterns are varied in terms of different types of hierarchical structures (Figure 9).   

 

Figure 9. Four hierarchical structures using six attributes 

 

The AHM addresses the issue that the cognitive attributes that describe the problem 

solving process are not isolated pieces, but rather working in a certain hierarchical related 

mode .  Similar to the Rule Space model, the AHM has two stages including the structure 

identification and the statistical classification analysis.  Once the hierarchical structures 

are identified, the fit of the hierarchy is evaluated relative to the actual student response 

data from the random sample, and then the attribute probabilities are computed in order 

to provide examinees with specific information about their attribute patterns.  Therefore, 

as in other cognitive diagnosis models, the validity of the results of statistical 

classification of Rule Space model and the AHM depends on how correctly the structure 

of attributes is identified, how well each task is generated based on the Q matrix, and the 

amount of error in the student’s responses (Birenbaum, Kelly, & Tatsuoka, 1993).   
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Most research on DCMs and the Rule Space model has focused on the 

classification at a given time point, the movements from one attribute at one point in time 

to others at the next point in time are not of interest.  In other words, transition 

proportions of skills, levels, and strategies between consecutive measurement time points 

are not explained. Consequently, DCMs and Rule Space model cannot be directly applied 

for modeling learning progressions over multiple time points. The models would need to 

be extended by connecting a series of cross-sectional latent class models or combining 

multiple adjacent matrices over multiple time points.  In other words, multiple latent class 

models along consecutive measurements may be linked so as to capture as closely as 

possible change over time.  Markov chain models can describe transition proportions of 

latent classes between consecutive time points.  The explanation of Markov chain models 

is provided in the next section.  

Markov Chain Models 

 

Multiple latent class models can be linked to make the statements about what 

happens from the first measurement to the next measurement.  The core statistical models 

for the study of change in qualitative status over time are Markov chain models.  The 

Markov chain models have been applied in situations such as attitude change, learning, 

cognitive development, and epidemiology (Langeheine & van de Pol, 2002).  Variations 

of the  Markov chain models (i.e., hidden Markov models, mixed hidden Markov models, 

and mixed hidden Markov models with several groups) have been proposed (Langeheine 

& van de Pol, 2002).  The models concern modeling change over time in observed 
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categorical variables by using transition probabilities.  The transition probabilities of the 

all models can be constrained to be the same for all time point changes.  Central to these 

models is the Markov property.  The first-order Markov property assumes that only the 

status on the most recent occasion is important for predicting the present status 

(Langeheine & van de Pol, 2002).  A simple Markov model for three time points is 

specified as follows: 

23121 || jkijiijkP 
            (10)

  

where 
1i

 indicates the observed initial marginal distribution at Time 1; 12 |ij
  is the 

observed transition probability for a transition from Time 1 to Time 2; and 
 
 is the 

observed transition probability for a transition from Time 2 to Time 3. 

In the context of LPs research, we can consider a situation where student levels on 

an LP are measured at three discrete time points.  Since the Markov chain model assumes 

all variables are observable, an LP with some levels is an observed categorical variable in 

the Markov chain model.  The subscripts, i, j, and k, are the manifest levels in a learning 

progression for Times 1, 2, and 3; hence, if four levels are specified in a learning 

progression, i = 1, 2, 3, and 4, j = 1, 2, 3, and 4, and k = 1, 2, 3, and 4 from Time 1 to 

Time 3, respectively. 1i
  is the observed probability of students at Time 1 who are at 

levels 1,2,3, and 4, which correspond to the initial marginal distribution of the levels. 

12 |ij
  and 23 | jk

 are the transition probabilities between two consecutive time points.  12 |ij


 

represents the observed transition probabilities from Time 1 to Time 2 for those in level j 

at Time 2, given that they were in level i at the Time1; hence, the transition probabilities
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contain information of movements from a certain level at Time 1 to other levels at Time 2.   

Similarly, the 12 |ij


 and  23 | jk


indicate the transition probabilities from Time 2 to Time 3 

for those in level k at Time 3, given that they were in level j at the Time 2.   

Since the data of interest in the Markov chain model are manifest observed 

responses, the Markov model assumes that the responses are measured without error. 

This may not be a reasonable assumption in psychological and educational research. 

Extensions of the Markov chain model by incorporating the notion of latent class analysis 

have been proposed in order to account for measurement error (Langeheine & van de Pol, 

2002).  In these extensions, the classification of students is based on a hypothesized latent 

structure.  The appropriateness of the hypothesized latent structure can be examined 

through the measures of model fit to the observed responses.  In the context of LPs 

research, students’ observable responses to assessment tasks are not perfectly reliable 

measures of students’ latent levels on LPs.  Instead, the observable responses serve as the 

indicators to make inferences of students’ learning progressions.  For example, there 

could be some situations where a student with a high level on an LP gets an incorrect 

answer to an easy task, while a student with a low level of an LP gets a correct answer to 

a hard task.  The incorporation of the notion of latent class analysis to Markov chain 

models addresses these inconsistent patterns, often referred to as measurement error.  
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Hidden Markov Model 

 

The hidden Markov model combines certain features of latent class model and 

those of a simple Markov chain model.  The model is also referred to as latent Markov 

models as proposed by Wiggins (1955) or a Latent Transition Analysis (Collins & 

Wugalter, 1992).  Wiggins (1955) proposed the latent Markov Model. This model has 

been applied for identifying unobservable latent state change such as strategies, levels, 

and skills by analyzing observable student responses at each point in time. For three time 

points, the model is specified as follows: 

ckbcbjabai

A

c

B

b

C

c
aijkP

||||| 32321211 

     
(11)

  

where ijkP is the model expected probability that student may belong to i, j, and k 

categories in the variable of interest at time points 1, 2, and 3;
 

1a
 is the latent initial 

marginal distribution with respect to latent states at Time1; 
ai |1 refers to the response 

probability associated with category i given latent state a at Time 1; 12 |ab
 is the transition 

probability for transitions from Time 1 to Time 2.  

The subscripts, a, b, and c, indicate latent states at Time 1, Time 2, and Time 3, 

respectively.  The subscripts, i, j, and k, refer to responses to a categorical variable.  The 

response probabilities in this model serve to take measurement error into account.  In the 

case of LPs study, an LP with some levels is considered as a latent variable with some 

classes.  The subscripts, a, b, and c, are the latent levels in the LP for Times 1, 2, and 3.  

1a
 refers to the latent initial marginal states in the learning progression at Time 1.  ai |1
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indicates conditional probabilities of response, given the latent levels in the LP at Time 1.  

12 |ab
  refers to the transition probabilities from the latent levels at Time 1 to others at 

Time 2.  

Latent transition analysis (Collins & Wugalter, 1992) captures the same notions of 

the hidden Markov model.  There is no fundamental difference between the latent 

transition analysis and the latent Markov model.  The difference is that the latent 

transition analysis incorporates multiple indicators at each time point into the model and 

expresses all Time t points while the hidden Markov model incorporates a single 

indicator at each time points.  

The main issue of the family of Markov chain models is modeling the transition 

probabilities between at consecutive time points (Rost, 1989).  Theory-based information 

can be incorporated into the transition probability matrix by imposing some constraints.  

For example, in the LPs research, forward movements where students always learn or 

stay can be considered in order to explain transitions over time.  The transition 

probability matrix for the forward movements can be modeled by imposing a constraint 

that all transition probabilities in backward movements to be zeros.  Different patterns in 

transitions matrix depending on substantive theory can be modeled by imposing some 

restrictions such as (1) sets of transition probabilities must to be particular values, or (2) 

must be equal to each other. 
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Hidden Mixed Markov Model 

 

Manifest variables (e.g., different instructions, interventions, and individuals’ 

demographic background) and latent exogenous variables (e.g., attitude, intelligence, and 

other abilities) can impact the status change over time (Langeheine & van de Pol, 2002).  

The latent Markov model can be extended to explain the impact of manifest or latent 

exogenous variables on change (Van de Pol & Langeheine, 1990). In the context of LP 

study, a manifest/latent variable (e.g., instructions, curriculum, and attitude) can influence 

student learning progressions over time.  The extended model can explain the 

effectiveness of the manifest/latent variable on a student learning progression over 

multiple time points.  As compared with the Hidden Markov model, the Hidden Mixed 

Markov model contains an additional person parameter for group membership in the form 

of a manifest/latent exogenous variable. Also, all other sets of parameters are conditional 

on the group membership (Collins & Wugalter, 1992; Chung, Walls, & Park, 2007; 

Langeheine & van de Pol, 2002).  For three time points, the model can be specified as 

follows: 


G

g
cgkgbcbgjgabagi

A

c

B

b

C

c
gagijkP

|||||| 32321211 
   

(12) 

where ijkP is the model expected probability that student may belong to i, j, and k 

categories in the variable of interest at time points 1, 2, and 3;
 g  is the proportion of 

group membership in a manifest/latent variable. The model shows that all other 

parameters are conditional on the group membership.  
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Similar to the Hidden Markov model, the subscripts, a, b, and c, indicate the 

latent states at Time 1, Time 2, and Time 3.  The subscripts, i,  j, and k, refer to student 

responses in a categorical variable. All responses probabilities and transition probabilities 

are conditional on the group membership of the manifest/latent variable as well as the 

latent classes at each time point.  In the case of LPs research, a learning progression with 

some levels is considered as a latent variable with some classes.  The subscripts, a, b, and 

c, are the latent levels in a learning progression for Times 1, 2, and 3.  
ga |1
 refers to the 

latent initial marginal states in a learning progression at Time 1, given the group 

membership of the manifest/latent variable.  All conditional responses probabilities, agi |1 , 

bgj |2 , and
cgk |3   are conditional on the latent levels in the learning progression at each 

time point and the group membership of the manifest/latent variable.  Similarly, transition 

probabilities and gbc 23 |
 are conditional on the latent levels in the LP at previous time 

point and group membership of the manifest/latent variable. The parameters being 

estimated here are the latent initial probabilities, conditional probabilities of responses, 

and transition probabilities. Later, in the Bayes nets, the parameters being estimated are 

probabilities in Bernoulli and categorical distributions, specially, probabilities in tables of 

marginal and conditional probabilities.   
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CHAPTER 3: A BAYESIAN INFERENCE NETWORKS 

  

This chapter introduces a Bayesian Inference Network as a psychometric 

modeling method for measuring student status in an LP. The BINs are different from the 

psychometric models that were previously mentioned, in that the BIN is a probability 

based statistical modeling framework, instead of a specific statistical model (Rutstein & 

Mislevy, in press); hence it is a very flexible statistical modeling method.  A BIN 

represents the probabilistic relations among variables by means of probability theory and 

graphical models (Almond et al, in progress).  Because the BINs are a flexible modeling 

framework, modeling BINs comes with more decisions: definitions of variables, relations 

among them, and reasoning from observations of the variables.   

Depending on sampling design, there may be two modeling approaches under the 

BINs for the case of LPs research. A static modeling approach using a cross sectional 

sampling design focuses on inferences of student levels on LPs at a given measurement 

time point. Therefore, this approach could provide an interesting view of group 

differences with different abilities under the ordered latent variable representing the LP.  

For example, students are provided with an assessment that consists of the tasks that 

measure different levels on LPs.  Some of the tasks were constructed by using the distinct 

features that can allow students to use KSAs at level 1, some of the tasks constructed by 

using the distinct features that can allow students to use KSAs at level 2, and so on. 

Given the one administered assessment, the levels of students under the ordered LP can 

be measured.  
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In contrast, a dynamic modeling approach using repeated measurement is aimed 

to make inferences of level change through an LP over multiple time points. The 

explanation of BINs starts with the static modeling approach.  The sections in this chapter 

review the (1) fundamental notion of probability based reasoning and (2) key terminology 

and concepts of BINs.  The next chapter will move toward to the dynamic modeling 

approach with BIN for measuring a student’s level of change in an LP over multiple time 

points, referred to as DBINs.   

Probability Based Reasoning 

 

It is difficult or sometimes even impossible to construct a model covering all 

aspects of real world situations.  Rather, a model can be constructed as a simplified 

representation focused on certain key aspects of real world situations (Ingham & Gilbert, 

1991).  Modeling real situations is a process of building a coherent system by extracting 

distinct features of the real world situations and constructing their relations (Ingham & 

Gilbert, 1991).  Mislevy (2009) described model based reasoning in terms of how 

reconceiving a real world situation can be constructed through a model.  Specifically, it 

explains not only how a representational system of complex real world situations is 

constructed with distinct entities and their relations, but also how the system deals with 

uncertainty in explaining, predicting, and inferring for real world situations.  Since the 

model is a simplified representational system, there may not be an exact correspondence 

between the real world entities and the idealizations in the model (West et al, 2010).  That 

is, a student’s performance across different tasks may provide inconsistent patterns 
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compared to the idealized patterns from a model.  Probability theory is a prevailing 

method for dealing with the inconsistent patterns (Kjaerulff & Madsen, 2007).  BINs are 

a probability based statistical modeling framework for reasoning and making decisions 

with uncertain and inconsistent patterns.  In the case of LPs, student performances on 

assessment tasks are a particular real world situation.  A model is built to explain student 

levels and level change on LPs, given an expected performance.  Modeling LPs is a 

process of mapping between student performances and LPs.  There may not be an exact 

correspondence between student responses to assessment tasks and the expected 

responses from the model.  For example, there may be some students who have reached a 

high level in a LP, yet may get incorrect answers to a task that requires only skills on a 

low level of the LP, or some students who have reached only a low level in a LP, yet may 

get correct answers to a task that requires skills on a high level of the LP.  BIN is a 

probability based reasoning framework that allows us to manage these problems of 

uncertainty and inconsistent patterns.  In addition to this, it technically provides a 

compact representation and an efficient method for gathering evidence from data 

(Kjaerulff & Madsen, 2008).  

There are some requirements in order for BINs to be reasonably modeled, 

(Kjaerulff & Madsen, 2008).  First, variables and their possible values in a BIN must be 

well defined.  Secondly, information about the structure of the variables must be 

available, so that the structure can be identifiable.  Thirdly, there must be uncertainty 

associated with problem such as measurement error.  Therefore, modeling LPs using 

BINs can be more valuable when integrating the work of the development of LPs, task 
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design, and the interpretation of student performances relative to their levels on the LPs. 

The following section will consider basic terminology, fundamental concepts, and a 

graphical representation of BINs.  

Bayesian Inference Networks: Graph Theory and Graphical Model 

 

Bayesian Inference Networks combine probability theory and graph theory to 

represent the probabilistic relations among variables under uncertainty.  To facilitate an 

efficient representation of complex situations with many variables, the BINs use a 

graphical representation to represent dependence and independence relations among the 

variables (Kjaerulff & Madsen, 2008).  The graphical representation is based on a finite 

acyclic directed graph (DAG). The acyclic directed graphs are directed graphs containing 

no directed cycles (Almond et al, in progress).   

The graphical model consists of three main concepts: (1) nodes representing 

unobservable or observable variables, (2) edges representing relations among variables, 

and (3) a joint probability distribution over all the variables in the network, implied by 

conditional probability distributions indicated by the edges.  A graph is a pair   = ( ,  ), 

where   is a set of nodes (variables) and   is a set of edges in which one edge is a line 

between two vertices (Almond et al, in progress).  Each variable,  i, is associated with a 

finite set of possible values {ai,1, ai,2, . . . , ai,n-1 , ai,n}.  An edge is expressed by the two 

variables it connects (  1,   2).  The meaning of the directed groups is that the edges are 

directed, usually expressed as arrows.  
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In the directed graph (  = ( ,  )), there is a dependent relationship among the 

variables and additional terminologies are incorporated to express this dependent 

relationship.  The sets of variables with an arrow pointing from themselves to another set 

of variables ( ) are called parents of  .  They are denoted pa ( |  ) or simply pa( ). 

The variable   with an edge toward it are the children of  . If a directed graph contain 

no directed cycles, the graph is referred to as an acyclic directed graph.  The acyclic 

directed graph is a key graphical model of BINs.  

The graphical representation of BINs can be expressed by three probability 

distributions: marginal probability, conditional probability, and joint probability.  A 

direct dependency among variables represented by an arrow in a directed graph is 

expressed by a conditional distribution.  The states of variables that do not have any 

parents in a directed graph are expressed by a marginal distribution.  The joint product of 

the probability distributions of all variables in a directed graph is a joint probability 

distribution for the full set of variables.  The formal notation of the conditional 

probability distribution associated with each variable given all of its parents’ variables is 

as follows (Almond et al, in progress): 

))(|( iii ApaaAP     
  (13) 

Since the joint probability distribution of a set of finite valued variables (Ai, . . . , An) is 

represented recursively in terms of the product of conditional distributions, the formal 

notation of a joint distribution associated with BINs is as follows (Almond et al, in 

progress): 

  ))(|(),...,( iiinnii ApaaAPaAaAP
            (14) 
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If there are no parents (i.e., pa(A) is empty), then the conditional probability is regarded 

as a marginal probability. These marginal, conditional, and joint probability distributions 

are the formal relationship of BINs to probability theory.  

To understand the concepts, consider an example of an acyclic directed graph 

with three variables (Figure 10). 
 

   

 

Figure 10. An Acyclic Directed Graph 

 

The acyclic directed graphs are represented by a joint probability distribution over three 

variables, A, B, and C, which can be decomposed into a product of conditional 

probability distributions.  The conditional dependences of the variables correspond to the 

acyclic directed graphs.  The factorization is as follows: 

P(A,B,C) = P(C|A,B) P(B|A) P(A)   (15) 

P(C|A,B) is a conditional distribution of variable C, given the variable of A and B. P(B|A) 

is a conditional distribution, given the variable A. P(A) is a marginal distribution.  These 

probability distributions correspond to the directed graphical model (Figure 10).  For 

example, P(C|A,B) is the probability distribution of variable C that is conditionally on its 

parents of variable A and B in the directed graph. Because there is no direct edge from A 

to C, P(C|A,B) simplifies to P(C|B).  That is, A and C are conditionally independent 

given B.  
   

Once all of the interrelationships are expressed in terms of the recursive 

representation of the joint distribution of variables, it is possible to calculate the updated 

A C B 
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states of any variables by the effect of new information about another set of variables 

through Bayes’ rule (Almond, Mislevy, Steinberg, Williamson, and Yan, in progress).  

For example, suppose that there are two variables X and Y, P(X,Y). The variable X is 

given the variable Y. Bayes Theorem is obtained as follows: 

 P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X), therefore, P(Y|X) = P(X) / [P(X|Y)P(Y)] 

When X=x is observed, P(Y|x) can be calculated by Bayes Theorem: 

    (16) 

Two probability expressions for Y are involved in this expression. The first is the 

prior distribution, P(Y), expressing the initial belief about Y before any observations have 

been made. The second is the posterior distribution, P(Y|x), expressing updating belief 

about Y based on the observation X=x.  In Equation 16, the posterior distribution, 

P(Y|X=x), is proportional to the likelihood, P(X=x|Y), multiplied the prior distribution, 

P(Y).   

As the number of variables increases updating the full joint distribution using the 

Bayes theorem becomes prohibitive due to the increased number of parameters  (Almond 

et al, in progress).  Efficient calculation methods in BIN have been proposed (Lauritzen 

& Spiegelhalter, 1988).  Lauritzen and Spiegelhalter (1988) and Jensen, Olesen, and 

Andersen (1990) developed updating methods for BINs based on the concept of the 

message passing in a tree structure, referred to as a junction tree (Kjaerulff & Madsen, 

2008).  The process of updating BINs through the junction tree algorithm is explained in 

the Appendix A.  

P( | ) P( )P( | )Y X x Y X x Y  
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Bayesian Inference Network: Estimation 

 

In addition to the belief updating through the junction tree algorithm, a second 

mathematical part of BINs is estimating probability matrices from data through 

Maximum Likelihood (ML) method or Bayesian estimation method.  If we could observe 

all observations for all variables, latent as well as observable, learning (estimation) would 

be easy by the ML method or Bayesian estimation method.  

The ML method finds the maximum likelihood estimates (MLEs) of the 

parameter values which maximize the likelihood of the data.  The likelihood function is 

follows as: 

)|(...)|()|( 1  ndPdPDPL    (17)
 

where D consists of n independent cases: d1, d2, …, dn; Θ indicates a set of the parameters 

in the probability matrices.  (In this dissertation, the probabilities are estimated directly, 

so the parameters are the conditional probabilities.  It is possible, however, to model 

the probabilities more parsimoniously as parametric functions (Almond et al., in 

progress), in which case the parameters of these functions are the parameters to be 

estimated and serve the role of  in this equation.)  

The likelihood can be re-expressed by taking its logarithm, to produce the log likelihood 

function is as follows: 

))|(log(...))|(log())|(log()log( 1  ndPdPDPL   (18)
 

The ML method finds the parameter values which maximize the log likelihood function 

of the data, which are the same values that maximize the likelihood itself. 
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The Bayesian estimation incorporates a prior on the parameter.  A common point 

estimate, called Maximum A Posterior (MAP), are estimates which find the parameter 

values that yields the maximizing value for the realized data.  If there is prior information 

about the variables before the estimation starts from data, the prior knowledge can be 

considered as part of the data and combined with the new information.  Based on Bayes 

rule, combining prior information is expressed as follows:  

)()|()|(  PDPDP    (19)
 

There are two terms in this equation.  The first term, )|( DP , is determined by data.  

The second term, )(P , expresses prior information.  If the logarithm of the equation is 

obtained, the equation 20 is expressed as follows: 

))(log())|(log(  PDP     (20) 

The log likelihood function, ))|(log( DP , consists of n independent cases: d1,d2, . . ,dn, 

so the ))|(log( DP  is expressed as follows: 

)).|(log(...))|(log())|(log())|(log( 21  ndPdPdPDP
 

(21) 

Each of the term )|(log( idP  is obtained by data or cases. The term of ))(log( P is 

obtained from prior information.  Finally, )|( DP   are computed by combining the 

))|(( idP
 
from data and )(P from prior information.  There are many ways to 

determine the term, )(P , such as prior knowledge and previous experience from data 

analysis or domain experts.  As noted above, estimating the probability matrices would 

be straightforward if the observations could be directly observed.  However, in 

educational and psychological settings, latent variables are involved in measurement 



59 

 

models.  In other words, by their nature, the values of the latent variables can never be 

observed.  There are three techniques for dealing with the latent variables that are 

commonly used in BINs software programs: Expectation and Maximization (EM) 

algorithm, gradient ascent, and Markov Chain Monte Carlo Estimation (MCMC).  This 

dissertation uses the EM algorithm in the Bayesian estimation paradigm (Dempster, Laird 

& Rubin, 1977).  The details regarding these two conceptions with respect to DBINs will 

be provided in Section 5.2.  

Identification Issues in Estimation 

 

Estimation in latent class analysis is subject to model identification issues on 

estimation, one of which is the label switching problem (Dai, 2009).  The issue of the 

label switching problem is not avoided under Bayesian estimation. Some approaches to 

deal with it in the context of latent class analysis have been suggested such as artificial 

identification constraints (Diebolt & Robert, 1994), relabeling of algorithms to perform a 

k-means type clustering of the MSMS samples (Celeux, 1998), label invariant loss 

functions (Celeux, Hurn, & Robert, 2000), and considering parameters as known prior 

information (Chung, Loken, & Schafer, 2004).  Specifically, the method suggested by 

Chung, Loken, & Schafer (2004) is a relatively simple solution to tackle the label 

switching issue.  This dissertation followed Chung’s method.  

Label switching is not a significant issue in the application study using real data 

because the labels switched can be fixed through prior information, thus making it 

possible that the results can be directly interpreted.  However, it is a significant issue in 
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the simulation study using many replications for evaluating parameter recovery or in the 

application study if there is any prior information about latent classes.  In BINs, there are 

some feasible solutions to deal with the label switching issue.  The possible ways to fix 

the label switching issue in BINs are (1) considering the latent variables as variables with 

many missing values (i.e, supplying a small number of parameters as known values) 

(Chung, Loken, & Schafer, 2004), (2) reconstructing the BINs by incorporating a 

constraint variable node into the BINs, and (3) incorporating prior information when 

estimating parameters.  

This study uses the third method that incorporates prior information when 

estimating parameters.  If there is prior information or experiences about the variables 

before the learning starts from data, the prior knowledge / previous experience can be 

considered as part of the data and combined with the new information to construct BINs. 

The incorporation of prior information into the parameters from data is analytically 

explained using Bayesian estimation: two terms, (1) )|( DP , which is determined by 

data, and (2) )(P , which is prior information.  The use of a prior to avoid label 

switching is tantamount to adding a small amount of data to the actual data, in order to 

bias the resulting solution to one particular labeling among all those that would be 

consistent with the likelihood. 

The Netica software program has a function that can incorporate the prior 

probabilities into a variable in the BINs before EM estimation starts (Netica-C API 

manual, 2006).  When estimating )|( DP  , furthermore, different degrees of the weights 

can be applied to initial prior information (Netica -C API manual, 2006).  This 
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dissertation used this function to deal with the label switching issue.  For instance, the 

prior probability table for a variable can be set as below.  Then, the degree of experience 

can be chosen as a weight of the prior probability table using the function of 

SetNodeExperience. The weight is known as the number of cases. This procedure would 

predispose the solution toward one of a number of possible labeling. 

(1) Setting prior probabilities of variable A given variable B  

 A 

B 

 A1 A2 A3 A4 

B1 0.1 0.1 0.5 0.3 

B2 0 0.1 0.2 0.7 

B3 0 0 0.5 0.5 

B4 0 0 0 1 

 

(2) Setting a degree of experience for the variable A using the function below. 

SetNodeExperience_bn (A  parent_states,  1.0) 

The BINs can be used for modeling student performances in education setting.  The next 

section will illustrate a simple example of BINs in education setting.  

Bayesian Inference Networks: An Example in Educational Setting 

 

Mislevy (e.g., 1999, 2002, and 2003) has constructed BINs for modeling student 

performance in educational settings.  This section illustrates a simple example that uses 

BINs for modeling student performance in an education setting.  The example has a 
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proficiency variable representing students’ mastery states in a particular domain and three 

tasks designed to measure the proficiency of the proficiency variable.  A BIN can be 

constructed by using the plausible hypothesized conditional probability for each task and 

the marginal probability of the proficiency variable.  Figure 11 displays an initial BIN 

representation of students’ performance on the assessment with the three tasks in Netica 

(Norsys Software Corporation, 2008).  

 

Figure 11. An initial BIN for a simple example with three tasks measuring proficiency in 

a domain. 

 

The structure of the BIN in this example echoes traditional Item Response Theory 

(IRT) assumptions: Unidimensionality (i.e., there is only one ability variable for students)   

and Local Independence (i.e., the responses to any two items are independent given the 

students’ ability in a domain).  In the BIN, there is a direct arrow from the proficiency 

variable to each of the tasks, while there are not any direct arrows between the tasks.  It 

states that the probabilities of whether or not a student correctly answers each task are 

dependent on the student’s status in the proficiency variable, while they are independent 

of the responses to other tasks.  The difference between IRT and BINs is that a student’s 

ability is represented on a continuous continuum in IRT, while it is represented as a 

discrete latent variable with some states in BINs.   
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In this example, the proficiency variable has two values, representing the mastery 

and non-mastery states of each student.  The task variable has two values for correct and 

incorrect responses.  The proficiency variable and task variables have their own 

probability tables.  For the proficiency variable, equal probabilities are considered as 

being able to take the values of mastery and non-mastery when there is no information 

regarding students’ proficiency and any information regarding the task has not been 

observed.  For the task variables, hypothesized conditional probabilities reflecting task 

characteristics associated with the states of the proficiency variable are considered.  The 

initial marginal probability table for the proficiency variable is listed in Table 5.  The 

conditional probability tables for the task variables are listed in Table 6.  

Table 5 

 

 Initial marginal Probabilities of two states in the proficiency variable  

 

            Proficiency Variable 

Status Low Medium  

Probability 0.5 0.5  

  

Table 6  

 

Conditional probabilities of answering correctly to three tasks given the student’s states  

 

on the proficiency variable.  

 

  Task1 Task2 Task3 

  Correct Incorrect Correct Incorrect Correct Incorrect 

Profic-

iency 

no 

mastery 

0.3 0.7 0.2 0.8 0.1 0.9 

 mastery  0.8 0.2 0. 6 0.4 0.4 0.6 
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The hypothesized conditional probabilities are set to reflect the task characteristics.  In 

this example, tasks are of increasing difficulty: Task 3 is more difficult than Task 2 and 

Task 2 is more difficult than Task 1. The nature of these tasks corresponds to the pattern 

of the conditional probabilities of the three tasks that the probability of getting correct 

answer decreases from Task 1 to Task 3.  The conditional probabilities can be determined 

either by reflecting on the nature of the tasks from domain experts or by estimating from 

actual student responses to the tasks.  The notation of joint distribution associated with 

the BIN in this example can be written as follows: 

)()|(),,...,( 3311 jjiijiiii xXPXyYPxXyYyYP     (22) 

where Xj is the mastery states of a student and Yni is the outcome of a task.  

Once a student’s response to Task1 has been observed, that information is 

propagated through the network via Bayes’ theorem to yield the posterior probability 

distribution of the student’s states.  Furthermore, the probabilities of answering correctly 

to Task 2 and 3 are updated based on the updated probabilities of a student’s status on the 

proficiency variable.  Figure 12 shows that all probabilities of the proficiency variable 

and tasks are updated.   

Figure 12. The same BIN as the Figure 3.3.1, but the response to Task 1 has been made. 
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From knowing that a student gets a correct answer to Task 1, it can be inferred that the 

student is more likely to have mastered the proficiency. Consequently, it is shown that the 

probabilities of answering correctly Task 2 and 3 increases. This updating can be written 

as follows based on Bayes rule: 
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This is often written as: 

1 1( | 1) P( 1| ) ( )j j iP X Y Y X P X  
      (24) 

Equation 24 states that the posterior distribution of the proficiency variable is 

proportional to the product of the likelihood of the proficiency variable given the 

response to Task 1 and the prior distribution of the proficiency variable.  The likelihood 

of the proficiency variable can be found once the response to the task has been observed. 

Then, the posterior distribution is obtained by multiplying the prior distribution of the 

proficiency variable and the likelihood. This procedure can be found in Table 7. 

Table 7  

Computation of the posterior distribution of the proficiency variable  

 

 

  Prior 

Probability  

Likeli-

hood 

Likeli- 

hood * 

Prior 

Normali- 

zation 

Constant 

Posterior 

Probability 

Proficiency Mastery  0.5 0.8 0.40 0.55 0.727 

 Non-

Mastery 

0.5 0.3 0.15 0.55 0.273 



66 

 

Suppose that a student’s response pattern for all tasks has been obtained.  Figure 13 

shows a situation in which all observations of the tasks have been made.  Once a 

student’s response pattern of all tasks has been observed, the probabilities of the student’s 

mastery statues on the proficiency variable are updated.  Considering a situation in which 

a student has the response pattern [1, 1, 0] for each task, the probability that the student 

has mastered the proficiency is 0.842 and the probability that the student has not 

mastered the proficiency is 0.158.  From the posterior distribution of the proficiency 

variable, it can be inferred that the student is more likely in the mastery status, with a 

probability of 0.842.  

 

Figure 13. The same BIN, but the observations of the task 1, 2 and 3 have been made. 

 

The BIN in an education setting is useful for understanding both task 

characteristics and student characteristics. With respect to a student, the BIN is useful for 

making inferences about student’s status on latent variable(s) of interest.  With respect to 

a task, the BIN is useful for examining the quality of a task by comparing the expected 

conditional probability and the data driven conditional probability.  The next example 

models LPs using BINs with a static approach.      
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A Sample Static Approach for Modeling Learning Progressions 

 

The static approach for modeling LPs is based on a cross-sectional sample design 

in which group differences are of interest.  The following example describes a modeling 

of a LP in a static model approach based on a cross-sectional sample design through 

BINs. The building of BINs for LPs starts by developing the structure of LPs through the 

statistical method (e.g., model comparison for determining number of latent classes) and 

substantive theory grounded in the findings of contemporary research in cognition, 

developmental education, and the learning sciences.  For a simple example, it is assumed 

that there is a latent variable representing a LP with four different levels.  In terms of 

tasks, there are sixteen observable variables.  It is assumed that all tasks have been 

designed with respect to a set of knowledge, skills, and abilities that students would be 

expected to possess at each status.  Figure 14 displays a BIN representation of the LP 

with the four levels and sixteen tasks constructed in Netica.  

 

Figure 14. A BIN representation of LPs with a static approach 
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The latent variable representing an LP here is called LPs_Measurement1, which 

has an initial prior distribution where there are equal probabilities of being at each level.  

Since it is assumed that each task has been designed to evoke evidence about one or more 

targeted levels on the LP by means of key task features that differentiate students on the 

four levels, each task has a different conditional probability structure with respect to each 

level.  In this BIN example, 16 tasks were used with the following assumptions; Tasks 1 

through 4 were designed to have the particular task features associated with Level 1, Task 

5 through Task 8 were designed to have the particular task features associated with Level 

2, Task 9 through Task 12 were generated to have the particular task features associated 

with Level 3, and Task 13 through Task 16 were designed to have particular task features 

for Level 4.  

It is noted that the conditional probabilities of responses to each task correspond 

to what tasks are designed because the level of task difficulty is ordered across tasks.  As 

an example, Table 8 indicates a hypothetical conditional probability table for Task 8.  It 

specifies conditional probabilities for a hypothetical observed variable at different levels 

of the latent variable (LP_Measurement1).  As mentioned above, this task is designed for 

differentiating between Level 1 and Level 2; hence there is a significant gap between the 

probability of correct response given Level 1 and one given Level 2.   
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Table 8  

Conditional Probability Table for Task 8  

  Task 8 

  Incorrect Correct 

LP_Measurement1 Level1 0.6 0.4 

 Level2 0.3 0.7 

 Level3 0.2 0.8 

 Level4 0.1 0.9 

 

As another example, Table 9 shows a conditional distribution table for Task 16.  It is 

shown that only students at Level 4 are relatively higher probability to correct response to 

Task 16 than those at other levels. 

Table 9  

Conditional Probability Table for Task 16 

  Task 8 

  Incorrect Correct 

LP_Measurement1 Level1 0.90 0.10 

 Level2 0.80 0.20 

 Level3 0.55 0.35 

 Level4 0.30 0.70 

  

These hypothesized conditional probabilities can be compared with the observed 

conditional probabilities obtained from students’ actual responses to each task in order to 

examine how well the task has been designed to classify students in terms of the levels 

and evaluate the BIN structure.   

Once a student’s responses have been observed, that information is propagated 

through the network via Bayes’ theorem.  The posterior distribution in the 

LP_Measurement 1 variable can be obtained by combining the initial prior distribution 

with likelihood of the LP_Measurement 1 given the student’s response.  From the 
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posterior distribution, it can be inferred where the student is most likely in one among the 

four levels. Figure 15 shows the BINs for a student who has completed six tasks.   

 

Figure 15. A BIN representation of LPs with a static approach. The 6 tasks has been 

observed 

 

The first four tasks were correctly answered and the next two were incorrectly 

answered.  Given this response pattern, the posterior probabilities of being on levels 

are .76, .16, .035, and .01 respectively.  From this information, it can be inferred that the 

student with this response pattern is most likely in Level 1.  Figure 16 shows the BIN for 

a student who has completed sixteen tasks.  The student correctly answered all tasks. The 

response pattern is [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. Given this response pattern, the 

posterior probabilities of being in the levels are .0002, .0013, .0785, and .92 respectively. 

From this information, it can be inferred that the student with this response pattern is 

most likely in level 4.  
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Figure 16. A BIN representation of LPs with a static approach. The 16 tasks have been  

observed.  

 

Again, the BIN is useful (1) for assessing the quality of tasks with respect to measuring a 

student level on LP and (2) for classifying students in terms of the levels in the LP. The 

static BINs described above work well for modeling LP at a given point in time (Rutstein 

& Mislevy, in press; West, et al, 2009), but educators are also interested in analyzing 

proficiency change over time.   A longitudinal sample design has the benefit of allowing 

change to be examined within the same individuals over time, although it also poses 

challenges in educational applications (e.g., practice effect and item drift).  In other 

words, the observations can provide evidence of students’ past and future states as well as 

their current states using longitudinal design approach.  The next chapter will explain 

BINs with a dynamic approach and illustrate the ideas with some examples. 
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CHAPTER 4: DYNAMIC BAYESIAN INFERENCE NETWORK 

  

This chapter introduces the Dynamic Bayesian Inference Network (DBINs) as one 

of the psychometric modeling methods for measuring LPs over multiple time points. In 

particular, the sections in this chapter include (1) fundamental concepts and formal 

notations for DBINs, (2) an example of DBINs for modeling LPs, and (3) an example of 

DBINs of modeling LPs with a covariate.  

Dynamic Bayesian Inference Networks: Fundamental Concepts 

 

Dynamic Bayesian Inference Networks (DBINs) are a way to extend a static BINs 

to model probability distributions over multiple time points (Murphy, 2002).  Hence, a 

common approach to representing DBINs is combining several static BINs for a desired 

number of time slices. In this respect, the DBIN is also referred to as a time-sliced BIN 

(Kjaerulff & Madson, 2008).  In the static approach, the probabilistic network is 

restricted to represent the state of a system at a certain point in time.  In contrast, the 

DBINs consider the problem of monitoring the state of a dynamic process over a specific 

period of time.  In the previous example, the BINs consider student states of an LP at a 

certain measurement occasion; however, it may also be of interest to monitor the state 

change over multiple measurement occasions.  The DBINs can be used to make 

inferences about the previous states, current states, and future states of a system over a 

specific period of time.  The mathematical procedures for inference and updating 

procedures in DBINs are the same as for the static approach.  
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The setting of interest in DBIN is the situation in which there are underlying 

hidden states of the phenomena that generate the observations, and in which the hidden 

states evolve over time (Murphy, 2002).  As a simple example for understanding how to 

extend a static BIN to the structure of DBIN, Figure 10 considers the acyclic directed 

graph.  Assume that a given BIN is an appropriate model for representing a phenomenon 

of interest at a certain point in time.  A DBIN can be constructed based on the static 

network by copying the nodes of the static network and linking appropriately across time 

points.  Figure 17 is the DBIN based on extending the BIN in Figure 10, in which each 

time slice consists of the structure shown in the original acyclic directed graph, while 

they are linked across multiple time slices.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Time 1                  Time 2            Time 3                 Time 4 

 

Figure 17. A representation of dynamic Bayesian Network 

  

For the case of a BIN for modeling LPs, the DBIN contains a prior of the hidden 

state, P(X1), a transition function of the hidden states over multiple time points, 
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P(Xt| X1:t-1), and an observation function given the hidden state, P(Yt| Xt).   

 There are two techniques for parameter estimation commonly used in 

commercial software programs: gradient ascent and EM (expectation maximization). This 

dissertation uses the EM to evaluate learning. The technical details will be provided in 

chapter 5.2.  Another aspect of DBINs supports the monitoring of observations 

concerning the change of the system over a specific period of time. Once an observation 

has been made on a subset of the variables in the network at a certain point in time, 

researchers are able to make inferences about the remaining unobserved variables in the 

network at any given time points. In other words, the DBINs reflect the states at previous 

and future points in time as well as the current state because the states at the current point 

in time will impact the state in the future and are impacted by the state in the past 

(Kjaerulff & Madson, 2008). There are three main inferences that can be performed using 

DBIN (Kjaerulff & Madson, 2008; Murphy, 2002): 

 

Smoothing: the process of monitoring states at previous time t-1 given evidence at 

time t,  

Filtering: the process of monitoring states at the current time given evidence at 

the current time t,  

Prediction: the process of monitoring states at future time t+1 given evidence at 

time t.  
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Regarding the inferences and learning of parameters, this dissertation assumes three 

properties.  

First, the links of time slices are defined by the conditional probability of the 

variables at a current Time t given the variables at previous Time t-1.  This property is 

called the first-order Markov property, under which the variables at Time t+1 are d-

separated from the variables at Time t-1 given the variables at Time t (Kjaerulff & 

Madson, 2008).  In other words, the states at Time t+1 only depend on the states at time t. 

Under the assumption, the transition probability, P(Xt | X1:t-1), can be denoted as  

P(Xt| Xt-1).  The formal notation for linking variables over multiple time points under the 

assumption of the first-order Markov property is denoted as follows: 

         

  







1

1121111

Pr

PrPr...PrPr,...,Pr

tt

ttttt
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XXXXXXXXX

 
 (25)

 

Second, observations are structured under the assumptions of conditional 

independence of observations and the first-order Markov property.  The assumption of 

conditional independence indicates that P(Yt) is conditionally independent of P(Yt`), 

given the Xt, where t ≠ t`.  Under the assumption of conditional independence,  

P(Yt|Y1:t-1,Xt) simplifies to P(Yt|Xt).  The assumption of the first-order Markov property 

indicates that P(Xt+1) is conditionally independent to P(Xt-1), given the Xt. Third, the term 

of dynamic suggests a modeling system that refers to state change over time, not 

networks or structures change over time. 

Under the three assumptions, the formal notation of DBIN at Time t can be 

expressed with respect to a graphical model (Murphy,2002).  
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where At = (Xt, Yt). The variable A consists of the latent variable (X) and the observation 

(Y).  

The joint probability distribution is as follows:  
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For a simple example in an educational setting, the example of the BINs with the static 

approach above (Figure 13) can be extended to a representation of DBINs. Suppose that 

the same students have been repeatedly measured three times with three tasks.  To 

construct a DBIN for this situation, the first step is to build three static BINs 

corresponding to each measurement occasion, and then, the proficiency variable of each 

static BIN is linked to each other across time points.  Figure 18 shows the DBIN for this 

situation.  

 

Time 1    Time 2    Time 3  

Figure 18. A representation of DBIN extended the BINs with static approach 
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Notice that there are three identical structures associated with the three time slices.  The 

DBINs contain two kinds of reasoning: (1) reasoning about a student’s current, past, and 

future proficiency, (2) reasoning about conditional probabilities of the tasks given the 

student’s proficiency states.  Once the responses to the three tasks have been made at the 

first measurement, the probabilities of which states the students are likely to at the first 

measurement occasion are estimated.  In addition to reasoning about the current state, the 

states that the student will be more likely to be at mastery or non-mastery at future points 

in time can be inferred.  As another example, the next section will introduce an example 

of the DBINs for modeling LPs that extends the example of the BINs with the static 

approach discussed in the previous chapter. 

Bayesian Inference Networks: A Simple Example of a Dynamic Approach for 

Modeling Learning Progressions 

             In addition to a cross-sectional approach for modeling LPs, the longitudinal 

modeling of a student’s LP over multiple time points can be investigated.  In an 

educational setting, such testing situations can be considered where the same students are 

repeatedly measured at more than one point during a period of instruction (e.g., a course 

in a semester or an intervention).  The tasks used are designed by incorporating task 

features in which students can be differentiated in terms of their levels of understanding 

and achievement that are theoretically grounded in cognitive developmental theory.  In 

such situations, the investigation of the patterns of student level change across 

measurement occasions can offer diagnostic information that is customized to reflect 

individual learning and provide an informative evaluation of the effectiveness of 
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instruction.  For a simple example for modeling LPs through the DBINs, suppose that 

four measurements are designed.  At each time point, there is a latent variable 

representing a LP and the observables that depend on them in probability.  It is assumed 

that four levels are identified in the LP by domain experts.  Each measurement consists of 

sixteen tasks across time points, which means that they have the same task characteristics 

reflecting the same set of knowledge, skills, and abilities over four measurement time 

points.  Figure 19 shows an example of modeling LPs with a DBIN. This example shows 

an initial status of a DBIN with a latent variable and sixteen tasks with four measurement 

occasions when no observations have been made yet. 
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Figure 19. An initial representation of DBIN for modeling LPs   

 

The DBIN contains two parts; (1) four latent variables for LPs where the latent variable 

at each measurement occasion is connected to the latent variable at the previous 

measurement occasion and (2) sixteen observables at each time point linked to the latent 

variable for that time point.  Reasoning about status change over time can be investigated 

by focusing on transition probability tables for the four latent variables in the DBIN.  To 
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understand inference about student level change, Figure 19 shows the network containing 

the four latent variables. 

 

 

Figure 20.  A DBIN representation of the four latent variables without tasks 

 

The LP_Measurement 1 indicates the LP at the first measurement occasion, the 

LP_Measurement 2 indicates the LP at the second measurement occasion, and so on. In 

the network, each variable is connected to its previous variable. Two types of probability 

tables are involved: an initial probability table at the first measurement and the transition 

probability tables between two consecutive time points. The initial probability table and 

three transition probability tables are shown in table 10, 11, 12, and 13 below.  
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Table 10 

 Initial marginal Probabilities of three states in the proficiency variable  

 

             LP_Measurement1  

Status Level1 Level2 Level3 Level4  

Probability 0.25 0.25 0.25 0.25  

 

 

Table 11 

Transition Probability Table for LP_Measurement2 given LP_Measurement1  

  LP_Measurement2 

  Level1 Level2 Level3 Level4 

LP_ 

Measurement1 

Level1 0.30 0.55 0.10 0.05 

 Level2 0 0.20 0.60 0.20 

 Level3 0 0 0.30 0.60 

 Level4 0 0 0 1 

 

Table 12 

Conditional Probability Table for LP_Measurement3 given LP_Measurement2  

 

  LP_Measurement3 

  Level1 Level2 Level3 Level4 

LP_ 

Measurement2 

Level1 0.20 0.60 0.15 0.05 

 Level2 0 0.20 0.60 0.20 

 Level3 0 0 0.30 0.70 

 Level4 0 0 0 1 
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Table 13 

 Conditional Probability Table for LP_Measurement3 given LP_Measurement3  

 

  LP_Measurement3 

  Level1 Level2 Level3 Level4 

LP_ 

Measurement3 

Level1 0.15 0.60 0.20 0.05 

 Level2 0 0.20 0.60 0.20 

 Level3 0 0 0.25 0.75 

 Level4 0 0 0 1 

 

For this example, the probabilities are hypothetically set in order to illustrate the structure 

of a DBIN. They could be estimated by observations or determined by theory or domain 

expert opinion, as discussed in Section 3.2 and 5.2. Table 10 contains the hypothesized 

initial probabilities at the first measurement where the probability of being at each level is 

0.25.  Tables 11, 12, and 13 are the three hypothesized conditional probability tables of 

LP_Measurement2, LP_Measurement3, and LP_Measurement3 given all possible values 

of the previous levels on the LP, referred to as the transition probability tables.  The 

variables in the DBIN representation in Figure 19 show the marginal probability tables of 

each variable. The computation of the marginal probabilities is as follows, where 

subscript c indicates the latent level and the superscript number indicates time: 

 

Measurement Point 1: 

P(θ
1
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P(θ
1

c=1) , P(θ
1

c=2) , P(θ
1

c=3) , and P(θ
1

c=3) are the initial marginal probabilities of the LP at 

the first measurement; P(θ
2

c=1), P(θ
2

c=2), P(θ
2

c=3) and P(θ
2

c=3) are the marginal 

probabilities of each level at the second measurement occasion, and so on. P(θ
t+1

c| θ
t
c) is 

the transition probability. For example, P(θ
2

c=2 | θ
1

c=1) indicates the probability of moving 

from Level 1 at the first measurement occasion to Level 2 at the second measurement 
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occasion; as another example, P(θ
3

c=3 | θ
2

c=2) is the probability of moving from Level 2 at 

the second measurement occasion to Level 3 at the third measurement occasion. 

 In this example, the hypothesized transition probabilities are restricted in such a 

way that all the probabilities of reverse changes are zero. This constraint reflects an LP 

considering only forward movements over time. Other types of transition probability 

patterns can be considered depending on different substantive theory embodied LPs.  The 

different patterns can be modeled by (1) constraining sets of transition probabilities to be 

equal to zero, (2) restricting them to be a particular value, or (3) fixing them to be equal 

to each other. Table 14, 15, and 16 show the different types of the transition matrix 

patterns including a forward movement, an adjacent movement, and all possible 

movements.   

Table 14 

Forward movements LPs model between two measurement points  

 

  LP_Measurement2  

  Level1 Level2 Level3 Level4 Marginal 
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Table 15 

Adjacent movements LPs model between two measurement points   
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  Level1 Level2 Level3 Level4 Marginal 
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Table 16 

All possible movements LPs model between two measurement points  
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 To understand how the transition function works for the purpose of investigating 

state change over time, one could consider a situation where student status at the first 

measurement occasion is known. This information is propagated through the network by 

Bayes theorem. The posterior distribution of the next three variables given the student’s 

states at the first measurement occasion can be updated by using the transition function. 
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Figure 21 shows the posterior distributions of three variables given a student latent Level 

1 at the first measurement occasion. It can be inferred that the student is most likely at 

Level 2 at the second measurement occasion with .55, at Level 3 with .405 at the third 

measurement occasion, and at Level 4 with .61 at the fourth measurement occasion, 

respectively. Figure 22 depicts a situation where a student was at level 2 at the first 

measurement occasion. The probabilities of the student being at Level 3 at the second 

measurement, at Level 4 at the third measurement, and at Level 4 at the fourth 

measurement are .6,.66,and .89, respectively.  

 

Figure 21.  A DBIN representation of the four latent variables given a student latent  

    Level 1 at the first measurement occasion  

 

Figure 22.  A DBIN representation of the four latent variables without task given a  

student latent Level 2 at the first measurement occasion  

 

The next step considers the DBIN with tasks. Once a student’s responses have 

been observed at any given time point, that information is propagated through the 

network via Bayes’ theorem.  The posterior distributions of the latent variable at that time 

point as well as the latent variables at previous and future time points are obtained.  
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Figure 23 shows a situation in which observations, [1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0], have 

been made at the first measurement occasion.  Based on these observations, the posterior 

distributions of the four latent variables are updated.  It is shows that the student is more 

likely to be at Level 1 at the first with 0.99, at Level 2 at the second with 0.55, at Level 3 

at the third with .30, and at Level 4 at the fourth with 0.61 when the student has the 

particular response pattern given 16 tasks at the first measurement occasion.  

 

Figure 23. A representation of DBIN when the student has the particular response pattern  

given 16 tasks at the first measurement occasion 
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Figure 24 shows a situation in which the observations of all 32 tasks have been made, 

[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0] at the first measurement, [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] 

at the second measurement, [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0] at the third measurement, and 

[1,1,1,1,1,1,1,1,1,1,1,0] at the fourth measurement. It is shown that the posterior 

distributions of the four latent variables are updated when a student has the responses 

pattern given 32 tasks at the four measurement occasions. It can be inferred that the 

probability of the student being at level 1 at the first occasion is .99, the probability of the 

student being at level 2 is.81, the probability of the student being at level 3 is.77, and the 

probability of the student being at level 3 is .86 given their particular response patterns in 

each of the 32 tasks.  In other words, from the posterior distributions, it can be inferred 

that the student with this particular responses pattern is most likely at Level 1 at the first 

measurement occasion, at Level 2 at the second measurement occasion, at Level 3 at the 

third measurement occasion, and at Level 4 at the fourth measurement occasion.   
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Figure 24. A representation of DBIN with the observation of all 32 tasks. 

 

In addition to making inferences about students’ status changes over multiple time points, 

the DBIN can be also used for examining the quality of tasks to see if the task is 

appropriately located at the expected level on LPs.  A comparison between the expected 

conditional probability table and the observed conditional probability table of each task 

provides evidence of task quality.  If there is a sufficient amount of difference between 

them, one should consider checking whether the task has been appropriately designed.  
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The BINs can be easily extended to more complex models by incorporating 

covariate or more measurement occasions.  The next example considers how to extend a 

DBIN to more complex models by incorporating a covariate. 

A Dynamic Model Approach with Covariate 

 

A manifest variable (e.g., different instructions, interventions, or individuals’ 

demographic backgrounds) or a latent exogenous variable (e.g., attitude, intelligence, or 

social economic status) can impact students’ status change.  It can be investigated by 

constructing more complex DBINs that incorporate any such variables into a transition 

probability.  This section demonstrates how a DBIN can be extended for inferring status 

change when a covariate for students is incorporated.  For the case of LPs research, 

different instruction can differently influence student LPs with respect to different levels.  

For example, suppose that a DBIN is constructed with two measurement occasions.  The 

latent variable representing an LP at each measurement occasion has four levels. 

Additionally, the DBIN contains a variable indicating two sets of instruction connected to 

the latent variable at the second measurement.  Figure 25 shows the initial status of the 

DBIN with two latent variables, four tasks at each measurement, and an observed 

instruction-related variable, in the state where no evidence of the mode of instruction that 

has been entered.  
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Figure 25. A representation of DBIN with a covariate 

 

Figure 26 illustrates changes in student levels on the LP from one time point to the next 

after instruction A.  In contrast, Figure 27 demonstrates a change in student levels on the 

LP from one time point to the next if a student has received instruction B. Comparing the 

marginal probabilities of the LP_Measurement 2 variable in Figure 26 and Figure 27 

shows that the instruction A was more effective for students at Level 2 while the 

instruction B was more effective for students at Level 3. Thus, when instruction A was 

used, most of the students at Level 2 changed to Level 3, while most of the students at 

Level 3 have changed to Level 4 when instruction B was used.  

 

Figure 26. A representation of DBIN with a covariate when instruction A was used 
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Figure 27. A representation of DBIN with a covariate when instruction B was used 

 

The detailed movements with respect to the instruction variable can be investigated by 

estimating transition probability tables, to the extent that the instruction variable has 

different effects on the transition probabilities. Table 17 and Table 18 are hypothesized 

transition probabilities used for constructing the DBINs. Notice that the transition 

probabilities are dependent on the type of instruction received. The different probabilities 

yield different marginal probabilities of the LP_Measurement2 variable.   

Table 17  

Transition Probability Table for LP_Measurement2 given LP_Measurement1 with the 

instruction A 

  LP_Measurement2 

  Level1 Level2 Level3 Level3 

LP_Measure- 

ment1 

Level1 0.1 0.5 0.3 0.1 

Level2 0 0.1 0.6 0.3 

Level3 0 0 0.7 0.3 

Level4 0 0 0 1 
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Table 18  

 Transition Probability Table for LP_Measurement2 given LP_Measurement1 with the 

instruction B 

     LP_Measurement2 

  Level1 Level2 Level3 Level4 

LP_Measure- 

ment1 

Level1 0.60 0.20 0.15 0.05 

Level2 0 0.60 0.25 0.15 

Level3 0 0 0.30 0.70 

Level4 0 0 0 1 

 

Therefore, if the transition probabilities can be estimated with respect to a covariate in LP, 

it can be used to evaluate the effectiveness of an instruction that may have differential 

effectiveness in terms of different latent levels (Graham et al, 1991).  
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CHAPTER 5 DBINS, HMMS, AND EMALGORITHM 

 

HMMs can be expressed in the representation of a DBIN.  The elements of 

DBINs correspond to a standard algebraic expression of HMMs.  In addition, the 

structural relationships between the elements of DBINs correspond to those in HMMs 

through the concept of Markov property and conditional independence. This chapter 

compares two models to describe how their statistical properties are related to the same 

concept.  In addition to the comparison, this chapter explains the EM algorithm as the 

estimation method for the parameters of DBINs.   

Correspondence between DBINs and HMMs 

 

An HMM is comprised of a Markov chain and observables (Cappé et al, 2005).  A 

Markov chain is a sequence of discrete random variables with the Markov property. By 

the term hidden, a Markov chain is latent, denoted by Xt containing n possible states, Xt = 

{1,…,n}. What are directly observable are other sets of observables called indicators 

linked to the Markov chain, denoted by Yt containing n possible states, Yt = {1,…,n}. 

There are parameters in three distributions being estimated: (1) The initial state 

distribution,      representing a multinomial distribution, (2) the transition model,        

representing a conditional multinomial distribution, and (3) the observation model,  

P(Yt | Xt) (Murphy, 2002).  

The initial state distribution,     , corresponds to the initial probability 

distribution, P(X1= i) in DBINs. The transition model,       , is the transition probability 
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distribution, P(Xt = j |Xt-1 = i) in DBINs. The observation model, P(Yt | Xt), corresponds 

to the conditional probability distribution of observables, P(Yt | Xt) in DBINs. The formal 

probabilistic notation of a hidden Markov chain in the HMMs is denoted as follows: 

 

         

  







1

1121111 ...,...,

tt

ttttt

XXP

XPXXPXXPXXPXXP

 (28) 

Under the assumptions of conditional independence and the first-order Markov property 

defines that the observations {Yn} are independent given the states of a hidden Markov 

chain {Xn} at a given time point:         

    nnnn XYPXXYYP ,...,,..., 111

                (29) 

Additionally, an extended probability-based model can be expressed by incorporating a 

covariate, shown below:  

     nnnnn GXXGGXX ,Pr,...,|,,...,Pr 111

           (30)

 

where nG
 
is of the value of a covariate.  

EM algorithm 

 

DBINs have parameters in initial probability distribution, P(Xt), transition 

probability distribution, P(Xt|Xt-1), and conditional probability matrix, P(Yt|Xt).   If it was 

possible to observe observations for the variables in DBINs, estimation could be done by 

using the maximum likelihood (ML) method or the Bayesian estimation method 

(Maximum a posterior (MAP)).  The ML method finds the maximum likelihood 
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estimates (MLEs) of the parameters of each probability distribution (i.e., the parameter 

values which maximize the likelihood of the data).  The log likelihood in DBINs from the 

equation 31 is follows as: 

             

))(|(log)(|(loglog
1 1 11

i

t

i

t

T

t

T

t

N

i

N

i

i

t

i

t ApaAPApaAPL  
  



           (31)

 

The log-likelihood function decomposes into a series of terms per node (Murphy, 2002).  

Specifically, BINs have categorical variables, so the distributions of the variables take the 

form of either Bernoulli distributions or multinomial distributions.  If there are just two 

categories for the outcomes of a variable, the random variable follows a Bernoulli 

distribution. If there are more than two categories in variable, the random variable 

follows a multinomial distribution.  The Bernoulli distribution is as follows: 

                                  

rnrnrp  )1(),|( 
                               (32)

 

where   is the probability that an event of success will occur; 1-  is the probability of 

the occurrence of a failure.  

Once n trials occur and r successes are observed, Equation 33 is interpreted as a 

likelihood function, L( | r, n). From the likelihood function, the maximum likelihood 

estimate (MLE) of   is obtained as the value that maximizes the likelihood. If there are 

more than two categories in a variable, the random variable follows a multinomial 

distribution. 


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where k ,...,1  is the probability that a success or occurrence event in category k from n 

independent samples of the categorical variable. rk is the count of the number of 

observations in category k, so 



K

k

k nr
1

.  

 The equation 33 is interpreted as a likelihood function, L(π |r, n).  From the likelihood 

function, the MLEs of π are obtained as the values that maximize the likelihood.  

 The Bayesian estimation method incorporates a prior on the parameter to the 

likelihood. A common point estimate in this case is called a maximum a posterior (MAP) 

estimates; that is, what parameter value yields the maximizing value for the realized data.  

If a conjugate prior for the Bernoulli and multinomial distribution is used in the Bayesian 

estimation method, this has the advantage of eliminating concerns about the normalizing 

constant. The conjugate prior for the Bernoulli distribution is beta distribution. Therefore,  

the posterior distribution about π after combining the beta prior distribution and the 

likelihood through Bayes theorem is as follows: 

))(,|(),|(),|(),|(),|( rnbraBetanrLbabetanrLbap  

 

           (34)

 

The conjugate prior for the multinomial distribution is a Dirichlet distribution as follows:   

11

11
1),...,|(


 ka

k

a

kaap π

                    (35)

 

Therefore, the posterior distribution about π can be thought of as the results of combining 

the Dirichlet prior distribution and the likelihood through the Bayes theorem as follows:  
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 (36)

 

If there were observations of latent variables, the estimation of the parameters in 

the distribution of the latent variables would be simple. However, the values representing 

the levels of LPs are not directly observed in LPs research. Expectation and 

Maximization (EM) algorithm, gradient ascent, and Markov chain Monte Carlo 

Estimation (MCMC) are commonly used in BINs software programs in order to estimate 

the values of the parameters of the distributions of the latent variables. This dissertation 

uses the EM algorithm to estimate parameters of DBINs (Dempster, Laird, & Rubin, 

1977).  

The basic idea of EM algorithm is to estimate parameters in iterative cycles. The 

first step is to start with an initial guess of parameters, and then compute the expected 

sufficient statistics in the E (expectation) step. The second step is the M step. The M step 

estimates parameters using the expected sufficient statistics as if they were actually 

sufficient statistics computed from the data. This procedure finds the values to maximize 

the expected complete data log-likelihood. The EM procedure is repeated until 

convergence criterion is met. At iteration k, the expectation of the likelihood in DBINs is 

as follows: 
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  (37)

 

In the Bayesian estimation method, this is additionally multiplied by the priors. In the E 

step, the expectation of the complete data log likelihood is calculated. Then, the next step 

is the M (maximization) step. The M step is performed with the expected values from the 
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E step. This procedure finds the values to maximize the expected complete data log-

likelihood.  

)|( Kmax1K  

 Q            

 (38) 

The cycles of the E step and M step continues until the criterion of convergence is met. 

For instance, the parameters of the transition probability table are computed as follows. 

The E step expected values of the count of each category given the provisional 

parameters:  

E[P(Xt-1=i, Xt=j | Θ)]   (39) 

The )|,([ K

1  jXiXPE tt is called the expected sufficient statistic (ESS) for the 

transition matrix. Since the prior of the transition probability is a Dirichlet distribution, 

the Dirichlet prior distribution is combined with the likelihood.  

Then, the M step finds the values to maximize the expected complete data log-likelihood.  

The cycle of the E step and M step continues until convergence.  
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CHAPTER 6: SIMULATION DATA STUDY 1: A SIMPLE DBIN 

 

This chapter investigates a simulation data study for evaluating the performance 

of a simple DBIN in the context of an LPs study.  In particular, the sections in this 

chapter contain the overview of the simulation study, an explanation of the method of 

data generation, a description of simulation conditions, and a discussion of the results. 

The evaluation of the performances of a simple DBIN focuses on how different 

constraints on (1) the relation between observables (tasks) and LPs and (2) the relation of 

the LPs between two consecutive measurement points affect parameter recovery in 

estimation using Netica software (Norsys Software Corp, 2008). 

Overview 

 

The first simulation study focused on the construction of a simple DBIN model. 

In the case examined, there were two measurement occasions and each measurement has 

multiple observable variables measuring one LP.  Figure 28 displays the model that was 

examined in this study.  

 

 

 

 

 

        Time 1          Time 2 

 

Figure 28. A model for the first simulation data study 

LP LP 

 

OV1 OV2 
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The LP assumed that there were four levels.  Based on a literature review, four levels is a 

common number of levels used in practice (Learning Progression in Science Conference, 

2009).  Further research may be applied to LPs with more than four levels. Each level 

represents the aspects of knowledge, skills, and ability for students required at the level 

on an LP. Table 19 includes the parameters that needed to be estimated for this model. 

Table 19  

Parameters that need to be estimated for the first simulation study 

 

Parameters  

Latent Variable at the first 

measurement occasion 

Transition 

probability matrix 

Conditional 

probability of all 

tasks, given levels 

 

P(LPt=1=1) 

P(LPt=1=2) 

P(LPt=1=3) 

P(LPt=1=4) 

P(LPt=2=1| LPt=1=1) 

P(LPt=2=2| LPt=1=1) 

P(LPt=2=3| LPt=1=1) 

P(LPt=2=4| LPt=1=1) 

P(LPt=2=2| LPt=1=2) 

P(LPt=2=3| LPt=1=2) 

P(LPt=2=4| LPt=1=2) 

P(LPt=2=3| LPt=1=3) 

P(LPt=2=4| LPt=1=3) 

P(LPt=2=4| LPt=1=4) 

At time 1, 

P(OVj| LPi) 

For each task 

 

At time 2, 

P(OVj| LPi) 

For each task 

 

j = task 

i= level 

 

 

The research questions for this first simulation study were: 

(1) How well can parameter estimates of conditional probabilities for observable 

variables be recovered? 

(2) How well can parameter estimates of transition probabilities between two 

latent variables be recovered? 
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 (3) How well can the proportions of students at the first measurement (indicating 

student classifications of levels at the first measurement) and the proportions 

(marginal probabilities) of an LP at the second measurement occasion (indicating 

student classifications of levels at the second measurement) be recovered?  

These research questions were addressed by computing (1) Root Mean Squared 

Difference (RMSD), (2) bias, and (3) Standard Error (SE). 

Data Generation and Simulation Conditions  

 

Data was simulated using R. The proportions of each level on the LP at the first 

time point, the transition probabilities, and the conditional probabilities of correctly 

responding to each task given each level of the LP were considered for generating 

response data.  

The fixed factors of this simulation study were included in the structure of the 

DBIN.  The structure of the DBIN considered here includes two measurement occasions 

and four levels in each LP.  

The factors varied in this simulation study were (1) sample size, (2) the number of 

tasks, (3) distributions of the students on LPs at the first measurement, (4) the types of 

transition probability tables, and (5) the types of conditional probability tables of the 

tasks. 

Three cases were considered for the distributions of students on LPs at the first 

measurement occasion. Table 20 displays the different distributions of students. The first 

case represents an equal probability of students being at each of the four levels. The 
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second case represents the students who are mostly of high ability. The third case 

represents the students who are mostly of low ability.   

Table 20  

Distribution of student on LP at the first measurement 

 

Case Description Level 1 Level 

2 

Level 

3 

Level 

4 

1(Equal) Equal probability at all levels 

representing general 

population 

0.25 

 

0.25 0.25 0.25 

2 (High) High ability students 0.05 0.10 0.25 0.60 

3(Low) Low ability students 0.15 0.60 0.15 0.10 

 

Two cases for the conditional probability table of observables were considered. 

The rationale of the probabilities chosen here is taken from the literature of cognitive 

diagnosis or mastery testing using probabilities for true and false positive probabilities 

used in some studies (Leighton & Gierl, 2007). The first case represents that the tasks are 

well designed for classifying students into their levels. The case uses the probability of .2 

of answering the task incorrectly if students are at a lower level than the levels that task 

requires. The probability of .85 is used for answering the task correctly if students are at 

the level or at higher levels than the task requires. The value .2 corresponds to the 

probability of getting correct multiple choice tasks with 5 options. On the other hand, the 

second case represents that tasks are relatively poorly designed for classifying students 

into their levels, therefore, the probabilities of answering the task incorrectly are chosen 

with the higher number while the probabilities of answering the task correctly are chosen 

with the lower number than the first case.  The probability of .35 of answering the task 
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incorrectly is used for students who are at a lower level than the levels that task requires. 

The probability of .70 of answering the task correctly is used for students who are at the 

level or at higher levels than the task requires.  Table 21 displays the first case of the 

conditional probability table with nine tasks. The probabilities indicate the probabilities 

of answering the task correctly given each level. This basic structure will be used in order 

to duplicate more tasks.   

Table 21  

The first case of conditional probability table 

 

  Task  

 Level1 Level2 Level3 

Level of 

Student 

1 2 3 1 2 3 1 2 3 

Level 1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Level 2  0.85 0.85 0.85 0.20 0.20 0.20 0.20 0.20 0.20 

Level 3 0.85 0.85 0.85 0.85 0.85 0.85 0.20 0.20 0.20 

Level 4 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

 

Table 22 displays the second case of the conditional probability table.  The differences in 

values of the conditional probabilities between the two levels are smaller than the first 

case in Table 21. This structure is duplicated for generating 30 tasks.  
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Table 22  

The second case of conditional probability table 

 

                         Task 

 Level1 Level2 Level3 

Level of 

Student 

1 2 3 1 2 3 1 2 3 

Level 1 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Level 2  0.70 0.70 0.70 0.35 0.35 0.35 0.35 0.35 0.35 

Level 3 0.70 0.70 0.70 0.70 0.70 0.70 0.35 0.35 0.35 

Level 4 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

 

For the types of transition probability tables, three cases were considered for the 

transition probability tables.  In this study, based on developmental theory, only the 

forward directions in transitions were considered by setting two constraints into the 

transition probabilities matrix.  The two constraints are: 1) the sums of all probabilities at 

each row in a transition matrix are constrained to one and 2) the probabilities in backward 

directions such as moving from high levels to low levels in the transition matrix are 

constrained as zeros. Table 23 shows the three cases in the transition probability table.  
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Table 23  

Nine cases of transition probability table 

 

 

Transition 

Probability 

Description 

     Equal 

     Transition 

     

     Large 

Transition 

     

     Small 

Transition 

P(1|1) 0.25 0.10 0.60 

P(2|1) 0.25 0.10 0.20 

P(3|1) 0.25 0.50 0.10 

P(4|1) 0.25 0.30 0.10 

P(2|2) 0.33 0.10 0.70 

P(3|2) 0.33 0.20 0.20 

P(4|2) 0.33 0.70 0.10 

P(3|3) 0.50 0.10 0.90 

P(4|3) 0.50 0.90 0.10 

P(4|4)  1.00 1.00 1.00 

 

The simulation conditions in the transition probability table reflect the following 

situations: 

 The first case has the equal transition probability for each cell. This indicates 

that students at all levels have the same probability of staying at the same 

level or moving to higher levels with same probability.  

 The second case suggests that students have a high probability of moving to 

higher levels, while the transition probabilities that students stay at the same 
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level are small. For example, P(2|0) is 0.5, P(3|1) is 0.8, and P(3|2) is 0.9; but, 

P(0|0), P(1|1), and P(2|2) are only value 0.1.  

 The third case represents low probabilities that students will transition to 

higher levels, while the transition probabilities that students will stay at the 

same level are relatively large. For example, P(2|0) is 0.1, P(3|1) is 0.1, and 

P(3|2) is 0.1; but, P(0|0) is 0.5, P(1|1) is 0.7, and P(2|2) are 0.9.  

Different sample sizes and task sizes were also considered.  In their review of 

literature, Harwell and Stone (1996) found that a sample size of 100 or less sample size is 

generally considered a small sample, a sample size of around 500 is considered a medium 

sample, and a sample size of 1000 is considered a large sample. Estimating conditional 

probabilities for items in Bayes nets is analogous to estimating item parameters for the 

same tests. This study estimates a small number of conditional probabilities for item 

response conditional on a latent proficiency variable. The only difference from the study 

in IRT literature is that the latent ability is discrete rather than continuous. Therefore, 

following the literature, two sample sizes of 100 and 1000 are considered in this study.  

The 100 sample size is considered a small sample size.  The 1000 sample size is 

considered a large number of students. The purpose of comparing different sample sizes 

is to investigate how large a sample size may be needed to provide reliable results.  

The task sizes used in this study are 9 and 30. The 9 task size is considered a 

small task size.  If there are too few observables, the model will not be identified. 

Almond, et al (2008) used three observables per level in order to keep the model simple 

but identified. Following the literature, three tasks for each level in the latent variable 
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representing a LP were used as the minimum task size in this simulation study.  Each task 

in this study was assumed to be dichotomously scored and was designed to measure only 

one level of the LP.  The relation between the task and the latent variable was set at a 

medium relationship by using .8 as the probability of a correct response given that the 

student has the skill level required by the task. In order to consider a medium or more 

than medium task size, a task size of 30 was additionally examined in this simulation 

study.  

With the combination of (1) different distributions of students at the first 

measurement, (2) different transition probability tables, (3) different conditional 

probability tables, (4) sample size, and (5) task size, the total number of cells for this 

study is 72 conditions. 100 replications were chosen  in each cell based on the previous 

simulation studies (Harwell and Stone, 1996). The simulation conditions are summarized 

in Table 24.  

Table 24  

Simulation conditions of the first study 

 

Simulation Condition  # of 

Case 

 

Distribution of student at the first 

measurement 

Conditional probability table 

Transition probability table 

Sample size 

Task size 

Total 

Replication 

Equal, high, and Low 

 

Case 1 and 2 

Case 1, 2, and 3 

 50 and 1000 

9 and 30 

 

 

3 

 

2 

3 

2 

2 

72 

100 
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Estimation 

 

Once the task responses were generated, an EM estimation implemented in the 

Netica C API (Norsys Software Corp, 2008) was used to estimate the parameters.  R code 

for generating responses and evaluating parameter recovery were written. One 

disadvantage of the Netica application is that it does not have any function that 

automatically runs many replications.  Therefore, the Netica C API was used for this 

simulation study.  The Netica C API has the same capabilities as the Netica application 

such as building, modifying, learning, and inferring networks. However, it is a complete 

library of C-callable functions for working with BINs. Equations can also be embedded 

into programs written in any language as long as the language can call C functions. The 

visual studio (2010) was used to call Netica C API in this study. The syntax for 

implementing the DBINs in this simulation study has been written in C language.  The 

syntax of the Netica C API can be found in Appendix B.  

In order to implement an EM algorithm, two criteria needed to be set to stop 

iterations. Two criteria were default in Netica: One was the maximum number of iteration 

steps and the other was the minimum change in data log likelihood between consecutive 

iterations. This simulation study used the defaults: (1) 1000 for the maximum number of 

iterations and (2) 1.0e-5 for the minimum change in data log likelihood between two 

iterations. The iteration was terminated when either of the two conditions was met. All 

replications in all cells were convergent before 1000 iterations in this simulation study.  

A label switching issue occurred.  In order to handle this label switching issue in 

the simulation study, the method described above of incorporating prior information 
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when estimating parameters was used. The Netica contains a function that is able to 

incorporate the prior probability table of each variable in the BINs before EM learning 

starts (Netica C API manual, 2006). The different degrees of weights can be applied to 

initial prior information. The value of 1 was used as the weight of prior, which is 

equivalent to the amount of information contained in a data set with sample size of 1 

(Netica C API manual, 2006).  The detailed information is in chapter 3.   

Results 

 

Parameter recovery in terms of the different conditions was examined by 

comparing estimates with true parameter values used for response data.  100 replications 

were run.  Three criteria were used to evaluate the overall accuracy of the method in each 

condition: (1) Root Mean Squared Difference (RMSD), (2) Bias, and (3) Standard 

Deviation of Estimates (SDE), often called Standard Error (SE).   

 

Root Mean Squared Difference 

 

I
RMSD i

i 



2)ˆ( 

    (40)
 

where I is the number of replication, i̂  is the estimate, and   is the true parameter. 

Bias 

 

  ˆBias
          (41)
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where ̂  is the mean of the estimates and   is the true parameter.. 

Standard error 

 

I
SD i

i 



)ˆˆ( 

       
(42) 

where I is the number of replication, i̂  is the estimate and ̂  is the mean of the estimates  

Gifford and Swaminathan (1990) stated that the Root Mean Squared Difference (RMSD) 

for any particular parameter across replications can be separated into bias in estimation 

and the variance of the estimates across replications.  Harwell (1996) reported that the 

three criteria are interrelated in that the squared RMSD is equal to the sum of the squared 

bias and the squared SDE.  In other words, RMSD can be seen as a measure of the total 

error of parameter estimation, and is composed of a systematic error element (Bias) and a 

random error element (SE).  Harwell (1996) said that smaller values of this index suggest 

that the estimates are fairly stable and reliable, while larger values indicate that the 

estimates may be unreliable.  The three criteria were computed for each simulation 

condition. The results chapter contains three parts. The first part shows the values of bias, 

RMSD, and SDE of the parameters of all probability tables in terms of simulation 

conditions. The second part displays graphs that show a comparison of the different 

simulation conditions in terms of the parameters of all probability tables. The graphs 

provide information about which simulation conditions influenced the parameter of 
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estimation the most. The third part shows the results of ANOVA analysis with all 72 

simulation conditions.  In the first part, the values of bias, RMSD, and SDE were 

organized by the simulation conditions of the sample size, task size, types of initial 

probability distributions, transition probability tables, and conditional probability tables. 

 

Sample Sizes 

Table 25 

Bias for the student distribution at the first measurement in terms of the different sample 

sizes 

Sample Size = 100  Sample Size = 1000 

Bias  Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

0.01047 0.00491 -0.01906 0.00368 -0.00451 0.00209 0.00000 0.00241 

 

 

Table 26 

Bias for the transition probability in terms of the different sample sizes 

 

Bias 

Sample Size = 100 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0385 0.0336 -0.0332 -0.0390 

   Level 2 0.0062 -0.0447 0.0273 0.0112 

   Level 3 0.0029 0.0082 -0.0590 0.0479 

   Level 4 0.0014 0.0071 0.0081 -0.0167 

Sample Size = 100 

   Level 1 -0.0070 0.0044 0.0052 -0.0026 

   Level 2 0.0000 -0.0071 -0.0018 0.0089 

   Level 3 0.0014 0.0001 -0.0037 0.0022 

   Level 4 0.0004 0.0000 0.0012 -0.0016 
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Table 27 

Bias for conditional probability tables of the first type of the tasks in terms of the 

different sample sizes 

 

 

Table 28 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement in terms of the different sample sizes 

                     Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct  Incorrect 

   Level 1 0.01002 -0.01002 0.00329 -0.00329 

   Level 2 0.02391 -0.02391 0.00025 -0.00025 

   Level 3 -0.01055 0.01055 -0.00568 0.00568 

   Level 4 0.00189 -0.00189 0.00302 -0.00302 

 

 

 

 

 

 

                      Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00524 -0.00524 -0.00189 0.00189 

   Level 2 0.00019 -0.00019 -0.00451 0.00451 

   Level 3 0.00658 -0.00658 0.00136 -0.00136 

   Level 4 0.00158 -0.00158 0.00218 -0.00218 
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Table 29 

Bias for conditional probability tables of the third type of the tasks at the first 

measurement in terms of the different sample sizes 

                      Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct  Incorrect 

   Level 1 0.00130 -0.00130 0.00131 -0.00131 

   Level 2 0.00336 -0.00336 -0.00223 0.00223 

   Level 3 -0.00632 0.00632 -0.00339 0.00339 

   Level 4 -0.01355 0.01355 -0.00513 0.00513 

 

Table 30 

 

Bias for conditional probability tables of the first type of the tasks at the first 

measurement in terms of the different sample sizes 

                  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.04947 -0.04947 0.00219 -0.00219 

   Level 2 0.00305 -0.00305 -0.00217 0.00217 

   Level 3 -0.00475 0.00475 -0.01182 0.01182 

   Level 4 0.00023 -0.00023 -0.00007 0.00007 

 

Table 31 

Bias for conditional probability tables of the second type of the tasks at the second 

measurement in terms of the different sample sizes 

                      Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.02029 -0.02029 0.00570 -0.00570 

   Level 2 0.04714 -0.04714 -0.00374 0.00374 

   Level 3 0.00543 -0.00543 -0.00188 0.00188 

   Level 4 0.00592 -0.00592 -0.00018 0.00018 
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Table 32 

Bias for conditional probability tables of the third type of the tasks at the second 

measurement in terms of the different sample sizes 

                        Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00941 -0.00941 0.00289 -0.00289 

   Level 2 0.00586 -0.00586 -0.00550 0.00550 

   Level 3 0.01551 -0.01551 0.00223 -0.00223 

   Level 4 -0.00588 0.00588 -0.00091 0.00091 

 

Table 33 

 

Average of RMSDs for the different sample sizes 

 

Condition Sample Size = 100 Sample Size = 1000 

 RMSD RMSD 

Parameters   

     DS* at Time1 0.064614 0.038974 

     TPT* 0.095234 0.040602 

     Average of 

CPTT* 
0.076190 0.038426 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  
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Table 34 

 

Average of SDE for the different sample sizes  

 

Condition Sample Size = 100 Sample Size = 1000 

 SD SD 

Parameters   

     DS* at Time1 0.004252 0.001283 

     TPT* 0.006366 0.002052 

     Average of CPTT* 0.017728 0.006381 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.   

       CPTT* is the conditional probability table of each task.  

 

 

Tables above show the bias of the initial probability distribution parameters (DS) 

in terms of the two different sample sizes.  Table 26 shows the bias of the transition 

probability table parameters (TPT) in terms of the sample of 100 and the sample of 1000.  

Table 27, Table 28, and Table 29 indicate the bias of the conditional probability table 

parameters of the tasks used at the first measurement. Table 30, Table 31, and Table 32 

show the bias of the conditional probability table parameters of the tasks implemented at 

the second measurement.  The bias values decreased as the sample size increased, that is, 

the bias values were dramatically lower with a sample size of 1000 than a sample size of 

100. Table 33 shows the average of the RMSDs of the parameters of DS, TPT, and CPT.  

The RMSDs were lower as the number of sample size increased. Among the parameters 

of DS, TPT, and CPT, it was observed that TPT seems to be the most affected by the 

sample size. A similar pattern was also observed for SDE values. In terms of two 

different samples sizes, SDEs with 1000 samples were lower than those with 100 samples.  
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To summarize, the results showed that more samples reduced bias and variance of the 

estimates for all parameters of the probability distribution tables under the different 

conditions considered in this study. Among the parameters of DS, CPT, and TPT, TPT 

seems to be the most affected by different sample sizes compared the others. TPT seems 

to be more biased compared to the others and CPT seems to have more error variance 

than others. A following section will use analysis of variance to test for the statistical 

significance of these prima facie effects.  

Task Sizes 

Table 35 

 

Bias for the student distribution at the first measurement in terms of the different task  

 

sizes 

Task Size = 9  Task Size = 30 

Bias  Bias 

Level 1 Level 2 Level 3 Level 4  Level 1 Level 2 Level 3 Level 4 

0.00646 0.00729 -0.0161 0.00236 -0.0005 -0.0003 -0.0029 0.00374 
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Table 36 

 

Bias for the transition probability in terms of the different task sizes 

 

Bias 

Task Size = 9 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.02603 0.01791 -0.02745 -0.01649 

   Level 2 0.00521 -0.02790 0.00204 0.02066 

   Level 3 0.00399 0.00796 -0.02030 0.00833 

   Level 4 0.00182 0.00636 0.00346 -0.01160 

Task Size = 30 

   Level 1 0.00544 0.02016 -0.00051 -0.02509 

   Level 2 0.00100 -0.02392 0.02348 -0.00056 

   Level 3 0.00030 0.00034 -0.04237 0.04172 

   Level 4 0.00000 0.00077 0.00585 -0.00662 

 

Table 37 

Bias for conditional probability tables of the first type of the tasks at the first 

measurement in terms of the different task sizes 

Task Size = 9 Task Size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00123 -0.00123 0.00212 -0.00212 

   Level 2 -0.00079 0.00079 -0.00353 0.00353 

   Level 3 0.00907 -0.00907 -0.00112 0.00112 

   Level 4 0.00203 -0.00203 0.00173 -0.00173 
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Table 38 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement in terms of the different task sizes 

                     Task Size = 9 Task Size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01563 -0.01563 -0.00231 0.00231 

   Level 2 0.02134 -0.02134 0.00283 -0.00283 

   Level 3 -0.01374 0.01374 -0.00249 0.00249 

   Level 4 0.00335 -0.00335 0.00155 -0.00155 

 

Table 39 

 

Bias for conditional probability tables of the third type of the tasks at the first 

measurement in terms of the different task sizes 

                     Task Size = 9 Task Size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00384 -0.00384 -0.00123 0.00123 

   Level 2 -0.00031 0.00031 0.00144 -0.00144 

   Level 3 -0.00822 0.00822 -0.00149 0.00149 

   Level 4 -0.01311 0.01311 -0.00557 0.00557 

 

Table 40 

 

Bias for conditional probability tables of the first type of the tasks at the second 

measurement in terms of the different task sizes 

                  Task Size = 9 Task Size = 30 

  Bias Bias 

 

     Correct Incorrect Correct Incorrect 

   Level 1 0.04141 -0.04141 0.01025 -0.01025 

   Level 2 -0.00021 0.00021 0.00109 -0.00109 

   Level 3 -0.01724 0.01724 0.00067 -0.00067 

   Level 4 0.00003 -0.00003 0.00013 -0.00013 
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Table 41 

Bias for conditional probability tables of the second type of the tasks at the second 

measurement in terms of the different task sizes 

 

                  Task Size = 9 Task Size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.02259 -0.02259 0.00340 -0.00340 

   Level 2 0.03717 -0.03717 0.00622 -0.00622 

   Level 3 0.00237 -0.00237 0.00118 -0.00118 

   Level 4 0.00570 -0.00570 0.00004 -0.00004 

 

Table 42 

Bias for conditional probability tables of the third type of the tasks at the second 

measurement in terms of the different task sizes 

                    Task Size = 9 Task Size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00923 -0.00923 0.00307 -0.00307 

   Level 2 0.00161 -0.00161 -0.00125 0.00125 

   Level 3 0.01440 -0.01440 0.00334 -0.00334 

   Level 4 -0.00560 0.00560 -0.00119 0.00119 
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Table 43 

Average of RMSD for the different task sizes 

Condition Task Size = 9 Task Size =30 

 RMSD RMSD 

Parameters   

     DS* at Time1 0.073203 0.018310 

     TPT* 0.093266 0.044939 

     Average of CPTT* 0.079744 0.030369 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 44 

 

Average of SDE for the different task sizes  

 

Condition Task Size = 9 Task Size =30 

 SD SD 

Parameters   

     DS* at Time1 0.003301 0.002234 

     TPT* 0.004878 0.003540 

     Average of CPTT* 0.011927 0.012182 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 35 shows the bias of the DS in terms of the two different task sizes.  Table 36 

shows the bias of the TPT in terms of a task size of 9 and a task size of 30. Table 37, 

Table 38, and Table 39 indicate the bias of the CPT parameters of the tasks used at the 

first measurement. Table 40, Table 41, and Table 42 show the bias of the CPT parameters 

of the tasks implemented at the second measurement. The bias values decreased as the 
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task size increased. Compared to the condition of sample size, the size of the sample 

resulted in a larger difference than the task size in the parameters of TPT. However, there 

were similar differences between two conditions of sample size and task size in the 

parameters of DS and CPT. The reduced amount of bias values of the CPT parameters 

was the largest among other parameters (DS and TPT) when the number of tasks 

increased. It implied that the precision of estimates in the CPT were more sensitive to the 

task size implemented than the other parameters (DS and TPT). Table 42 shows the 

comparison of the average of RMSDs between two different task sizes of 9 and 30.  It 

was observed that RMSD decreased as the task size increased.   

In summary, the results showed that the precision of estimates increased as more 

tasks were used.  Among the parameters of DS, CPT, and TPT, DS and CPT seem to be 

more effected by different task sizes. TPT seems to be more biased compared to the 

others and CPT seems to have more error variance than others. The variances of 

estimation were less reduced as task size increased compared to samples size increased. 

The statistical significance of the effects will be addressed in a following section using 

analysis of variance.  
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Initial Probability Distributions 

Table 45 

 

Bias for the student distribution at the first measurement in terms of the different initial 

probability distributions 

      Bias 

Condition Level 1 Level 2 Level 3 Level 4 

Equal distribution -0.00006 -0.01106 0.00695 0.00417 

Negatively skewed distribution 0.00407 0.01377 -0.03108 0.01324 

Positively skewed distribution 0.00492 0.00780 -0.00446 -0.00826 

  

Table 46 

 

Bias for the transition probability in terms of the different initial probability distributions 

 

Bias 

Equal distribution 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00938 0.02372 -0.01675 -0.01636 

   Level 2 0.00252 -0.01064 0.00441 0.00372 

   Level 3 0.00583 0.00919 -0.04080 0.02578 

   Level 4 0.00192 0.00113 0.00490 -0.00796 

Negatively skewed distribution 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00749 0.02815 -0.01995 -0.01568 

   Level 2 0.00592 -0.05278 0.00953 0.03733 

   Level 3 0.00061 0.00073 -0.00257 0.00123 

   Level 4 0.00011 0.00273 0.00891 -0.01176 

Positively skewed distribution 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.03034 0.00523 -0.00523 -0.03033 

   Level 2 0.00088 -0.01432 0.02434 -0.01091 

   Level 3 0.00000 0.00254 -0.05061 0.04808 

   Level 4 0.00070 0.00684 0.00014 -0.00768 
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Table 47 

 

Bias for conditional probability tables of the first type of the tasks in terms of the 

different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00059 -0.00059 0.00267 -0.00267 0.00177 -0.00177 

   Level 2 -0.00761 0.00761 0.00633 -0.00633 -0.00520 0.00520 

   Level 3 0.01043 -0.01043 -0.00477 0.00477 0.00626 -0.00626 

   Level 4 0.00038 -0.00038 0.00413 -0.00413 0.00113 -0.00113 

 

 

Table 48 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement in terms of the different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.01559 -0.01559 0.00036 -0.00036 0.00402 -0.00402 

   Level 2 -0.00636 0.00636 0.03135 -0.03135 0.01126 -0.01126 

   Level 3 -0.01575 0.01575 -0.00264 0.00264 -0.00595 0.00595 

   Level 4 0.00965 -0.00965 0.00124 -0.00124 -0.00353 0.00353 
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Table 49 

Bias for conditional probability tables of the third type of the tasks at the first 

measurement in terms of the different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 -0.00136 0.00136 0.00721 -0.00721 -0.00192 0.00192 

   Level 2 0.00133 -0.00133 -0.00582 0.00582 0.00617 -0.00617 

   Level 3 -0.01099 0.01099 -0.00294 0.00294 -0.00064 0.00064 

   Level 4 -0.00664 0.00664 -0.01007 0.01007 -0.01130 0.01130 

 

 

Table 50 

 

Bias for conditional probability tables of the first type of the tasks at the first 

measurement in terms of the different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.01865 -0.01865 0.02079 -0.02079 0.03805 -0.03805 

   Level 2 -0.00539 0.00539 0.01189 -0.01189 -0.00518 0.00518 

   Level 3 -0.00690 0.00690 -0.00988 0.00988 -0.00808 0.00808 

   Level 4 0.00096 -0.00096 -0.00011 0.00011 -0.00060 0.00060 
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Table 51 

Bias for conditional probability tables of the second type of the tasks at the second 

measurement in terms of the different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00684 -0.00684 0.00801 -0.00801 0.02413 -0.02413 

   Level 2 0.01965 -0.01965 0.02054 -0.02054 0.02491 -0.02491 

   Level 3 -0.00504 0.00504 0.00287 -0.00287 0.00749 -0.00749 

   Level 4 0.00430 -0.00430 0.00315 -0.00315 0.00116 -0.00116 

 

Table 52 

Bias for conditional probability tables of the third type of the tasks at the second 

measurement in terms of the different initial probability distributions 

  Equal distribution 

Negatively skewed 

distribution 

Positively skewed 

distribution 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.01940 -0.01940 -0.00177 0.00177 0.00082 -0.00082 

   Level 2 -0.00101 0.00101 -0.00050 0.00050 0.00205 -0.00205 

   Level 3 0.00645 -0.00645 0.01090 -0.01090 0.00926 -0.00926 
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Table 53 

Average of RMSD for the different types of initial probability distributions 

Condition 
Equal 

Distribution 

High  

Distribution 

Low  

Distribution 

 RMSD RMSD RMSD 

Parameters  
 

 

     DS* at Time1 0.054772 0.050501 0.048445 

     TPT* 0.077904 0.078355 0.069776 

     Average of CPTT* 0.059979 0.061253 0.059772 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 

Table 54 

Average of SDE for the different types of initial probability distributions 

Condition 
Equal 

Distribution 

High  

Distribution 

Low  

Distribution 

 SD SD SD 

Parameter  
 

 

     DS* at Time1 0.002749 0.002993 0.002559 

     TPT* 0.004199 0.004703 0.003724 

     Average of CPTT* 0.011237 0.013054 0.011872 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 Table 45 shows the bias values of the DS in terms of the different initial 

probability distributions.  It seems that the negatively skewed distribution has higher bias 

values at the higher levels compared to the equal distribution and the positively skewed 
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distribution. Table 46 shows the bias of the TPT. There do not seem to be any patterns 

exhibited. Table 47, Table 48, and Table 49 indicate the bias of the CPT parameters of 

the tasks used at the first measurement. Table 50, Table 51, and Table 52 show the bias of 

the CPT parameters of the tasks implemented at the second measurement. Similarly, the 

bias values of the CPT parameters do not seem to have any distinct patterns in terms of 

the different initial probability distributions. Table 53 and Table 54 show the RMSDs and 

SDEs computed in terms of the different types of initial probability distributions. The 

RMSDs were similar to each other across three different types of initial probability 

distributions. This suggests that the different types of initial probability tables did not 

influence the precision of estimates. Table 54 shows the SDE. Similarly, there is no 

distinct pattern across the different types of initial probability tables. The SDEs of the 

parameters of the conditional probability tables were relatively higher than other 

parameters, meaning that the estimates of the conditional probability table of each task 

exhibited more fluctuation than other parameters.  

To summarize, the results showed that the different types of initial probability 

distributions did not influence the error variances. DS, CPT, and TPT had similar bias 

values and variances of estimation across the different types of initial probability 

distributions.  
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Conditional Probability Tables 

Table 55 

Bias for the student distribution at the first measurement in terms of the different types of 

conditional probability tables 

Conditional Probability Table 1 Conditional Probability Table 2 

Bias Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

-0.00121 0.00281 -0.00402 0.00242 0.00716 0.00419 -0.01503 0.00368 

 

Table 56 

Bias for the transition probability in terms of the different types of conditional probability 

tables 

 

 

 

 

 

 

 

 

 

Bias 

Conditional Probability Table 1 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00156 0.03562 -0.01734 -0.01984 

   Level 2 0.00345 -0.02489 0.03125 -0.00980 

   Level 3 0.00032 0.00390 -0.03214 0.02792 

   Level 4 0.00010 0.00004 0.00226 -0.00241 

Conditional Probability Table 2 

   Level 1 0.02991 0.00245 -0.01061 -0.02175 

   Level 2 0.00276 -0.02693 -0.00573 0.02990 

   Level 3 0.00398 0.00440 -0.03051 0.02214 

   Level 4 0.00172 0.00709 0.00704 -0.01585  
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Table 57 

Bias for conditional probability tables of the first type of the tasks at the first 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00137 0.00137 0.00472 -0.00472 

   Level 2 -0.00111 0.00111 -0.00321 0.00321 

   Level 3 0.00076 -0.00076 0.00719 -0.00719 

   Level 4 0.00042 -0.00042 0.00334 -0.00334 

 

Table 58 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00171 -0.00171 0.01161 -0.01161 

   Level 2 0.00234 -0.00234 0.02182 -0.02182 

   Level 3 -0.00004 0.00004 -0.01619 0.01619 

   Level 4 -0.00092 0.00092 0.00583 -0.00583 

 

Table 59 

 

Bias for conditional probability tables of the third type of the tasks at the first 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00065 -0.00065 0.00197 -0.00197 

   Level 2 -0.00069 0.00069 0.00181 -0.00181 

   Level 3 -0.00355 0.00355 -0.00616 0.00616 

   Level 4 -0.00836 0.00836 -0.01031 0.01031 
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Table 60 

Bias for conditional probability tables of the first type of the tasks at the second 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01955 -0.01955 0.03211 -0.03211 

   Level 2 0.00197 -0.00197 -0.00109 0.00109 

   Level 3 0.00050 -0.00050 -0.01707 0.01707 

   Level 4 -0.00062 0.00062 0.00078 -0.00078 

 

Table 61 

Bias for conditional probability tables of the second type of the tasks at the second 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00275 -0.00275 0.02324 -0.02324 

   Level 2 0.01849 -0.01849 0.02491 -0.02491 

   Level 3 0.00270 -0.00270 0.00085 -0.00085 

   Level 4 0.00079 -0.00079 0.00495 -0.00495 

 

Table 62 

Bias for conditional probability tables of the third type of the tasks at the second 

measurement at the different types of conditional probability tables 

  Conditional Probability Table 1 Conditional Probability Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00334 -0.00334 0.00896 -0.00896 

   Level 2 -0.00213 0.00213 0.00249 -0.00249 

   Level 3 0.01624 -0.01624 0.00150 -0.00150 

   Level 4 0.00329 -0.00329 -0.01008 0.01008 
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Table 63 

 

Average of RMSD for the different types of conditional probability tables 

 

Condition 
Conditional Probability 

Table 1 

Conditional Probability Table 

2 

 RMSD RMSD 

Parameter   

     DS* at Time1 0.038068 0.065151 

     TPT* 0.045469 0.093009 

     Average of CPTT* 0.043223 0.073575 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 64 

 

Average of SDE for the different types of conditional probability tables 

 

Condition 
Conditional Probability Table 

1 

Conditional Probability Table 

2 

 SD SD 

Parameter   

     DS* at Time1 0.002020 0.003515 

     TPT* 0.003569 0.004849 

     Average of CPTT* 0.010836 0.013273 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 Table 55 shows the bias of the DS in terms of the different initial probability 

distributions.  The bias values were slightly smaller in the first conditional distribution 

table than the second conditional distribution table. Table 56 shows the bias of the TPT. 
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There was almost no difference between the two conditions. Unlike the DS and TPT, the 

bias values of the CPT parameters show some differences between the two types of 

conditional distribution tables. Table 57, Table 58, and Table 59 show the bias of the 

CPT parameters of the tasks implemented at the first measurement. Table 60, Table 61, 

and Table 62 show the bias of the CPT parameters of the tasks implemented at the second 

measurement. As shown in the tables, the bias values were higher when using the second 

conditional distribution table than using the first conditional distribution table. This 

implies that the type of conditional distribution table influences the precision of the CPT 

parameters.  

Table 63 and Table 64 show the RMSDs and SDEs. A similar pattern of results 

was observed for RMSDs and SDEs. It was observed that RMSDs of the first type of 

conditional probability table were smaller than the second type of conditional probability 

table. This implies that the precision of estimates increased when the tasks were well 

designed for classifying students with different levels. The SDEs of the first conditional 

probability table were smaller than those of the second conditional probability table. The 

results suggest that the estimates were more reliable when the task that was well designed 

for classifying students with different levels was implemented.  

In summary, the results showed that when the conditional probabilities of each 

task with respect to each level were distinct (i.e., tasks could be considered to be 

relatively well designed for the purpose of classifying students with different levels), the 

error variances of estimates were reduced. Among the parameters of DS, CPT, and TPT, 

TPT and CPT seem to be more effected by different types of conditional probability 
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tables of each task. TPT and CPT seem to be more biased compared to DS. CPT seemed 

to have more error variance than DS and TPT. The statistical significance of these effects 

will be examined in a following section.  

Transition Probability Tables 

Table 65 

 

Bias for the student distribution at the first measurement in terms of the different  

 

transition probability distributions 

 

      Bias 

Condition Level 1 Level 2 Level 3 Level 4 

Transition Probability 1 0.00179 -0.00540 -0.00064 0.00425 

Transition Probability 2 0.00041 0.00394 -0.00951 0.00515 

Transition Probability 3 0.00673 0.01197 -0.01844 -0.00026 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 

 

 

 

Table 66 

 

Bias for the transition probability in terms of the different transition probability  

 

distributions 

Bias 

Transition Probability 1 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.02686 -0.00347 -0.01524 -0.00815 

   Level 2 0.00343 -0.03771 0.03910 -0.00483 

   Level 3 0.00017 0.00629 -0.06982 0.06336 

   Level 4 0.00152 0.00683 0.00246 -0.01081 

Transition Probability 2 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.02949 0.03070 -0.01426 -0.04593 

   Level 2 0.00221 0.01261 -0.01164 -0.00318 

   Level 3 0.00225 0.00034 -0.00589 0.00330 

   Level 4 0.00056 0.00001 0.00680 -0.00737 

Transition Probability 3 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.00915 0.02987 -0.01243 -0.00829 

   Level 2 0.00367 -0.05264 0.01081 0.03815 

   Level 3 0.00401 0.00583 -0.01827 0.00843 

   Level 4 0.00066 0.00386 0.00469 -0.00921 

 

Table 67 

Bias for conditional probability tables of the first type of the tasks in terms of the 

different transition probability distributions 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00356 -0.00356 0.00099 -0.00099 0.00048 -0.00048 

   Level 2 -0.00017 0.00017 -0.00103 0.00103 -0.00528 0.00528 

   Level 3 0.00259 -0.00259 0.00023 -0.00023 0.00910 -0.00910 

   Level 4 0.00305 -0.00305 0.00495 -0.00495 -0.00237 0.00237 
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Table 68 

 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement in terms of the different transition probability distributions 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00038 -0.00038 0.01070 -0.01070 0.00889 -0.00889 

   Level 2 0.01783 -0.01783 0.00310 -0.00310 0.01532 -0.01532 

   Level 3 -0.00358 0.00358 -0.01373 0.01373 -0.00703 0.00703 

   Level 4 -0.01056 0.01056 0.00862 -0.00862 0.00930 -0.00930 

 

Table 69 

Bias for conditional probability tables of the third type of the tasks at the first 

measurement in terms of the different transition probability distributions 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 -0.00141 0.00141 0.00234 -0.00234 0.00299 -0.00299 

   Level 2 0.00006 -0.00006 -0.00181 0.00181 0.00344 -0.00344 

   Level 3 0.00104 -0.00104 -0.00815 0.00815 -0.00746 0.00746 

   Level 4 -0.00930 0.00930 -0.00815 0.00815 -0.01056 0.01056 
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Table 70 

 

Bias for conditional probability tables of the first type of the tasks at the first 

measurement in terms of the different transition probability distributions 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.02391 -0.02391 0.04776 -0.04776 0.00582 -0.00582 

   Level 2 0.00916 -0.00916 -0.00467 0.00467 -0.00316 0.00316 

   Level 3 -0.00716 0.00716 -0.00279 0.00279 -0.01490 0.01490 

   Level 4 -0.00307 0.00307 0.00043 -0.00043 0.00289 -0.00289 

 

 

Table 71 

Bias for conditional probability tables of the second type of the tasks at the second 

measurement in terms of the different transition probability distributions 

 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00128 -0.00128 0.03157 -0.03157 0.00614 -0.00614 

   Level 2 0.00437 -0.00437 0.06120 -0.06120 -0.00047 0.00047 

   Level 3 0.00174 -0.00174 0.00566 -0.00566 -0.00208 0.00208 

   Level 4 0.00044 -0.00044 0.00088 -0.00088 0.00729 -0.00729 
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Table 72 

Bias for conditional probability tables of the third type of the tasks at the second 

measurement in terms of the different transition probability distributions 

 

  

Transition  

Probability 1 

Transition  

Probability 2 

Transition  

Probability 3 

  Bias Bias Bias 

 

Correct Incorrect Correct Incorrect Correct Incorrect 

   Level 1 0.00351 -0.00351 0.01305 -0.01305 0.00189 -0.00189 

   Level 2 -0.00438 0.00438 -0.00127 0.00127 0.00619 -0.00619 

   Level 3 0.00352 -0.00352 0.02625 -0.02625 -0.00316 0.00316 

   Level 4 -0.00312 0.00312 0.00399 -0.00399 -0.01106 0.01106 

 

Table 73 

 

Average of RMSD for the different types of transition probability tables 

 

Condition TD1 TD2 TD3 

 RMSD RMSD RMSD 

Parameter  
 

 

     DS* at Time1 0.054818 0.048109 0.047131 

     TPT* 0.073189 0.069639 0.069639 

     Average of 

CPTT* 
0.055768 

0.075002 
0.046763 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 

 

 

 



139 

 

 

Table 74 

 

Average of SDE for the different types of transition probability tables 

 

Condition 
Equal 

Distribution 
High Distribution Low Distribution 

 SDE SDE SDE 

Parameter  
 

 

     DS* at Time1 0.003135 0.002503 0.002665 

     TPT* 0.005476 0.003942 0.003209 

     Average of 

CPTT* 
0.012126 0.013333 0.010703 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

Table 65 shows the bias of the DS in terms of the different transition probability 

tables. It was observed that bias values were similar across the different transition 

probability tables in DS, TPT, and CPT. Distinct patterns were not found in their bias 

values with respect to the different transition probability tables. Table 73 shows the 

RMSDs of the initial probability distribution parameters, transitional probability table 

parameters, and conditional probability table parameters in terms of the three different 

types of transition probability tables. It was also reported that RMSDs were very similar 

to each other across the different types of transition probability tables. This implies that 

three types of transition probability tables did not influence the level of estimate precision. 

A similar pattern of results was also observed for SDE values (Table 74). The 

SDE values were similar to each other across three types of transition probability tables.  

To summarize, regardless of what types of transition probability tables were used, 

the results seem to indicate that the precision and reliability of estimates were similar to 
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each other in DS and TPT. However, CPT seemed to be more effected by different types 

of transitional probability tables than the others.  The statistical significance of these 

effects will be examined in a following section.  

In order to understand the effect of the different conditions on the precision and 

reliability of estimates, the graphical representations of RMSDs were drawn, and are 

presented in the next part of this dissertation.  

 

 

Figure 29. RMSDs of the DS at the first measurement with different conditions 

 

The three graphs (Figure 29, Figure 30, and Figure 31) display the RMSDs of all 

the conditions with respect to the parameters of DS, TPT, and CPT of each task. For the 

parameters of the distribution of students at the first measurement (Figure 29), the 

simulation conditions of task size, sample size, and conditional probability table of each 

task seem to influence the precision of estimates more than other factors. As shown in 
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Figure 29, the plots of three types of initial distribution tables and the plots of three types 

of transition probability tables were clustered to each other more than other factors, 

meaning that their RMSDs were similar to each other. Therefore, the effect of the 

different types of the transition probability tables and the initial probability tables seems 

to be small.  

 

Figure 30. RMSDs of the TPT with different conditions 

 

A similar pattern of results was also observed for the transition probability tables.  

The RMSDs of the different conditions in the task size, the sample size, and the 

conditional probability tables seem to have more effect on the precision of estimates than 

the other factors (i.e., the distribution of students at the first measurement and the 

transition probability table). As shown in Figure 30, two plots representing the different 

task sizes, sample sizes, and two types of conditional probability tables were relatively 
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located far from each other, meaning that there were some differences in RMSDs 

between two conditions; whereas, the three conditions of two factors (i.e., the distribution 

of students and transition probability tables) were clustered to each other, implying that 

the precision of estimates seem to be similar no matter what type of transition probability 

tables were used and no matter how students were initially distributed at the first 

measurement.  

 

Figure 31.  RMSDs of the CPT with different conditions 

 

A slightly different pattern of results was observed for the conditional probability 

table of each task (see Figure 31). As with other probability tables, RMSDs of the 

different conditions in three factors (task size, sample size, and conditional probability 

table of each task) seemed to affect the precision of estimates more than the other factors. 

However, the three conditions of the transition probability tables also resulted in different 
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values of RMSDs. Like the other parameters, the similar values of RMSDs were reported 

no matter how students were distributed at the first measurement.  

Since 72 conditions were investigated in this study, the simple descriptive 

statistics and the graphical representations do not seem to be an efficient way of detecting 

important effects and of estimating the magnitude of effects. Harwell (1991) noted that 

simply reporting the results by descriptive analyses increases the chance that important 

effects will go undetected and that the magnitude of effects will be misestimated. 

Therefore, the results of this simulation study are summarized by both descriptive and 

inferential analyses in order to provide meaningful evidence concerning the research 

questions (Harwell, 1991; Harwell & Stone, 1996).  

ANOVA (Analysis of Variance) was used for the inferential analyses of this study. 

Because the purpose of the simulation study was to evaluate the parameter estimation of 

the success of parameters recovery, the RMSD was used as the dependent variable (e.g., 

Harwell & Janosky, 1991; Kim, Cohen, Baker, Subkoviak, & Leonard, 1994; Stone, 

1992). The simulation conditions served as the independent variables. The main effect for 

each independent variable and the interaction effects among them were examined. The 

results were summarized in terms of each parameter table (i.e., the distribution of 

students at the first measurement, transition probability table, and conditional probability 

table of each task). Before conducting the ANOVA, the dependent variable was 

investigated to see if there was a lack of model fit. It was found that the distributions of 

RMSD values of all parameters were very positively skewed, implying that the normality 
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assumption was violated. Therefore, the RMSD was transformed using a log 

transformation, so that it had an approximate normal distribution.  

A three-way ANOVA with the independent variables was fit to the transformed 

RMSD values for the parameters of the distribution of students at the first measurement 

with a main effect model followed by an interaction model by two variables and the three 

variables at a time. Because there were no significant second-order interaction effects 

(i.e., three variables at a time), the second-order interactions were not included in the 

model. The results are reported in Table 75. The magnitude of significant effects was 

estimated using η
2
 (see Table 75).   

Table 75 

ANOVA results for RMSD values for the DSs at the first measurement 

 

Source DF F P η
2
 

SampleSize 1 61.497 .000 .147 

TaskSize 1 118.344 .000 .284 

CPT 1 149.628 .000 .359 

TPT 2 1.872 .164 .009 

IPT 2 .264 .769 .001 

SampleSize  x TaskSize 1 .000 .999 .000 

SampleSize x CPT 1 .885 .351 .002 

SampleSize x TPT 2 .486 .618 .002 

TaskSize x CPT 1 22.917 .000 .055 

TaskSize x TPT 2 .806 .452 .004 

CPT x TPT 2 .214 .808 .001 

Error 55    

a. R Squared = .868 (Adjusted R Squared = .830) 

Note. CPT indicates the conditional distribution table. TPT is the transition probability 

table. IPT indicates the initial probability table.   
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Using an alpha level of 0.05, the ANOVA revealed three significant main effects and an 

interaction effect. The condition of sample size was found to be statistically significant, 

F(1, 55) = 61.497, p < 0.00. The condition of task size was observed to be statistically 

significant, F(1, 55) = 118.344, p < 0.00. The condition of conditional probability table 

was found to be statistically significant, F(1, 55) = 149.628, p < 0.00. The results 

described above suggested that there were influences of sample size, task size, and types 

of conditional probability table on the accuracy of the estimates. In addition to the main 

effects, the task size x CPT interaction effect was found to be statistically significant, F(1, 

55) = 22.917, p < 0.00. It provided evidence that the mean difference among the levels of 

the factor (sample sizes) is not constant across the types of conditional probability tables. 

In order words, there is a joint effect of the conditions of sample sizes and CPT. Using η
2
 

as the measure of effect size, the different types of the conditional tables has the largest 

effect size, which accounted for 36% of the total variability in the RMSD of the DS 

parameters. It means that more discriminating tasks lead to better estimates of parameters 

in the model than less discriminating tasks.  It implies for practitioners to make effects to 

try to make high quality tasks. If there are the situations that lower discriminating tasks 

are avoidable, making longer tests to get good estimates of the model parameters would 

be an alternative solution. The task size made more difference than the sample size in the 

DS parameters.  
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      Note. Inlog indicates the log transformed RMSD of DS at the first measurement.  

 

Figure 32. Profile Plot of task size and CPT for DS 

 

To provide assistance in graphically understanding the interaction effect, the profile plot 

of task size and CPT is displayed (Figure 32). On the X axis are the levels of task size (9 

and 30 tasks), and the Y axis provides the cell means on the dependent variable. The plot 

shows that the influence of task size was greater when using well designed tasks than 

when using poorly designed tasks. In other words, the quality of the task was an 

important factor that influenced the accuracy of the estimate as well as the number of 

tasks implemented.  

A three-way ANOVA with the independent variables was also fit to the RMSD 

values for the parameters of the transition probability table with a main effect model 
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followed by an interaction model by two variables and the three variables at a time. There 

were no significant second-order interaction effects (i.e., three variables at a time). 

Therefore, the second-order interactions were not included in the model. The results are 

reported in Table 76.  

 

Table 76 

ANOVA results for RMSD values for TPTs  

 

Source DF F P η
2
 

SampleSize 1 195.491 .000 .405 

TaskSize 1 75.348 .000 .156 

CPT 1 97.565 .000 .202 

TPT 2 4.635 .014 .019 

IPT 2 .260 .772 .001 

SampleSize * 

TaskSize 

1 16.847 .000 .035 

SampleSize * CPT 1 25.651 .000 .053 

SampleSize * TPT 2 .593 .556 .002 

TaskSize * CPT 1 .048 .827 .000 

TaskSize * TPT 2 1.539 .224 .006 

CPT * TPT 2 .434 .650 .002 

Error 55    

a. R Squared = .886 (Adjusted R Squared = .853) 

 

Using an alpha level of 0.05, this test revealed four significant main effects and two 

interaction effects. For the main effects, the conditions of sample size, task size, CPT, 

and TPT were found to be statistically significant, F(1, 55) = 195.491, p < 0.00, F(1, 55) 

= 75.348, p < 0.00, F(1, 55) = 97.565, p < 0.00, and F(1, 55) = 4.635, p < 0.014 
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respectively. The results suggested that there were influences of sample size, task size, 

and types of conditional probability table on the accuracy of estimate. The means of 100 

samples and 1000 samples were statistically significantly different averaging over all 

other factors.  The means of 9 tasks and 30 tasks were significantly different averaging 

over all other factors. Also, the means of two types of CPT significantly differed 

averaging over other factors. Lastly, the means of three types of TPT were significantly 

different averaging over other factors. Using η
2
 as the measure of effect size, the 

condition of sample size had the largest effect size, which accounted for 41% of the total 

variability in the RMSD of the TPT parameters.  

Since the factor of TPT had three levels, it required a follow-up test in order to 

determine which types of TPT were significantly different. The post-hoc Tukey HSD test 

was conducted. The results indicated that the means of type 1 and type 2 were statistically 

significantly different and the means of type 1 and type 2 were significantly different, 

whereas the means of type 2 and type 3 did not differ (Table 77).  

Table 77 

Tukey HSD of  TPT 

 

  Mean Difference Std. Error P 

Type1 Type2 .3902 .1534 .036 

Type1 Type3 .4792 .1534 .008 

Type2 Type3 .0890 .1534 .831 

The error term is Mean Square (Error) = .282. 

 

In addition to the main effects, Sample size x Task size interaction effect and Sample size 

x CPT interaction effect were found to be statistically significant,  F(1, 55) = 16.847, p < 
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0.00, F(1, 55) = 25.651, p < 0.00 respectively. This provided evidence that the mean 

difference among the levels of the factor (sample size) was not constant across the types 

of conditional probability tables. Also, the mean difference among the levels of sample 

size was not equal across the levels of task size. In other words, there was a combined 

effect of the conditions of sample size and CPT and a joint effect to the conditions of 

sample size and task size. To understand the interaction effect, the profile plots were 

drawn (Figure 29 and Figure 30).  

 
      Note. Trlog indicates the log transformed RMSD of TPT  

 

Figure 33.Profile plot of sample size and CPT for TPT 
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      Note. Trlog indicates the log transformed RMSD of TPT  

Figure 34. Profile plot of task size and sample size for TPT 

 

 

A three-way ANOVA with the independent variables was also fit to the RMSD 

values for the parameters of the conditional probability table of each task with a main 

effect model followed by two variables at a time interaction models and three variables at 

a time interaction models. No significant second-order interaction effects were found (i.e., 

three variables at a time). Therefore, the second-order interactions were not included in 

the model. The results are reported in Table 78. The magnitude of significant effects was 

estimated using η
2
 (see Table 78).    
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Table 78 

ANOVA results for RMSD values for CPTs  

 

Source DF F P η
2
 

SampleSize 1 158.010 .000 .318 

TaskSize 1 128.525 .000 .259 

CPT 1 101.660 .000 .205 

TPT 2 16.646 .000 .067 

IPT 2 .780 .463 .003 

SampleSize * 

TaskSize 

1 .384 .538 .001 

SampleSize * CPT 1 6.767 .012 .014 

SampleSize * TPT 2 .075 .928 .000 

TaskSize * CPT 1 2.711 .105 .005 

TaskSize * TPT 2 .678 .512 .003 

CPT * TPT 2 .704 .499 .003 

Error 55    

a. R Squared = .889 (Adjusted R Squared = .857) 

 

Using an alpha level of 0.05, the ANOVA revealed that the factor of sample size was 

found to be statistically significant, F(1, 55) = 158.010, p < 0.00, the factor of task size 

was observed to be statistically significant, F(1, 55) = 128.525, p < 0.00, the factor of 

conditional probability table was found to be statistically significant, F(1, 55) = 101.660, 

p < 0.00, and the factor of TPT was observed to be statistically significant, F(1, 55) = 

16.646, p < 0.00. The results suggested that there were influences of sample size, task 

size, types of conditional probability table, and the types of transition probability table on 

the accuracy of estimates. Using η
2
 as the measure of effect size, the sample size had the 
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largest effect size, which accounted for 32% of the total variability in the RMSD of the 

CPT parameters.  

Since the factor of TPT had three levels, the post-hoc Tukey HSD test was 

conducted in order to determine which types of TPT were significantly different. The 

results indicate that the means of all pairs were statistically significantly different,  

d = -.3250, p < 0.007, d = .3071,  p < 0.01, and d = -.6321, p < 0.00 respectively.   

Table 79  

Tukey HSD test 

 

  Mean Difference Std. Error P 

Type1 Type2 -.3250 .10220 .007 

Type1 Type3 .3071 .10220 .011 

Type2 Type3 -.6321 .10220 .000 

The error term is Mean Square (Error) = .282. 

 

Furthermore, the sample size and CPT interaction effect was found to be statistically 

significant, F(1,55) = 6.767, p < 0.012. This provided evidence that there was a joint 

effect of sample size and CPT.  For graphically understanding the interaction effect, the 

profile plot of sample size and CPT was displayed (Figure 31). On the X axis are the 

levels of sample size (100 and 1000 tasks), and the Y axis provides the cell means on the 

dependent variable. The plot shows that the effect of sample size on the accuracy of 

estimate increases when using well designed tasks as opposed to using poorly designed 

tasks.  



153 

 

 
      Note. Colog indicates the log transformed RMSD of CPTs.  

 

Figure 35. Profile plot of sample size and CPT for CPTs 

 

Discussion 

 

This first simulation study evaluated the simple DBIN model with the different 

conditions of sample size, task size, types of conditional probability tables, types of initial 

probability tables, and types of transition probability tables. In summary, for the 

parameters of the initial distribution table, it was observed that the different conditions of 

sample size, task size, and types of conditional probability table statistically influence the 

accuracy of estimates. As sample size and task size increased, the accuracy of estimates 

increased. When tasks that were well designed for classifying different levels were used, 

the estimates were more stable and reliable. A similar pattern was found for the 

parameters of the transition probability table. There were statistically significantly 
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influences of the different conditions of sample size, task size, conditional probability 

tables, and transition probability tables on the accuracy of estimates. Additionally, the 

different types of transition probability tables were found to be a factor that influenced 

the accuracy of the estimates. According to the follow-up test, the equal transition has 

significantly lower RMSD values than the unequal transitions (i.e., large transition and 

small transition).  

A similar pattern of results was observed for the conditional probability table 

parameters. Three factors of sample size, task size, and the types of conditional 

probability table were also found to be significant. The task size of 30 had significantly 

lower RMSD than the task size of 9 and the sample size of 1000 had significantly lower 

RMSD than the sample size of 100. Furthermore, the task design for classifying student 

levels was found to be an important factor that affected the precision of estimates. In 

addition, the different transitions also influenced the accuracy of estimates of the 

conditional probability table parameters.  

The next chapter describes the second simulation study with a more complex 

DBIN model incorporating a covariate with the similar simulation conditions. The 

accuracy of estimates will be compared between a simple DBIN model and a complex 

DBIN model.  
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CHAPTER 7: SIMULATION DATA STUDY 2: A DBIN WITH A COVARIATE 

 

A manifest variable (e.g., different instruction, interventions, and individual 

demographic background) or a latent exogenous variable (e.g., attitude, intelligence, and 

social economic status) may differently impact student change with respect to different 

levels.  This impact can be investigated by constructing more complex DBINs by 

incorporating covariate variables as parents of transition probabilities. This chapter 

investigates a simulation data study that incorporates a covariate for students to the 

simple DBIN model. Although it is possible to extend the model to adding continuous 

covariates (Clogg & Goodman, 1985), this simulation study considered a discrete 

covariate. The Bayes net framework focuses on discrete variables and Netica C API can 

be currently utilized only for the discrete variables. However, it can be incorporated in by 

discretizing the continuous variable, which is an option for example in the Netica. 

The sections in this chapter contain the overview, data generation methods, 

simulation conditions, and preliminary results. The evaluation of the performance of the 

extended DBIN focuses on how different constraints on (1) the relationship between the 

observables and LPs and (2) the relationship of the LPs between two consecutive 

measurement points with respect to a covariate effects parameter recovery in estimation 

using Netica C API. 

Overview 

 

The second simulation study focuses on the construction of a DBIN with a 

covariate. The case examined is one in which there are two measurement occasions and 
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each measurement has multiple observable variables measuring one LP. In addition to 

this simple model, a covariate variable is involved in the transition probability matrix.  

Figure 37 displays the model that is examined in this study.  

 

 

 

 

 

 

 

 

 

 

 

      Time 1          Time 2 

 

 

Figure 36. A model for the second simulation data study 

 

As in the first simulation study, the latent variable representing an LP at each 

measurement occasion has four levels. Additionally, the DBINs contain a variable 

indicating two different types of instruction connected to the latent variable (indicating 

the learning progression) at the second measurement. Table 80 includes the parameters 

that need to be estimated for this model. 

 

 

 

LP LP 

 

OV1 OV2 

COVARIATE 
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Table 80 

Parameters that need to be estimated for the second simulation study 

 

Latent Variable 

 at the first  

measurement  

occasion 

Transition 

 probability  

matrix 

 given a covariate =1 

Transition  

Probability 

 matrix 

 given a covariate =2 

Observable  

Variables 

 

 

P(LPt=1=1) 

P(LPt=1=2) 

P(LPt=1=3) 

P(LPt=1=4) 

P(LPt=2=1| LPt=1=1,C=1) 

P(LPt=2=2| LPt=1=1, C=1) 

P(LPt=2=3| LPt=1=1, C=1) 

P(LPt=2=4| LPt=1=1, C=1) 

P(LPt=2=2| LPt=1=2, C=1) 

P(LPt=2=3| LPt=1=2, C=1) 

P(LPt=2=4| LPt=1=2, C=1) 

P(LPt=2=3| LPt=1=3, C=1) 

P(LPt=2=4| LPt=1=3, C=1) 

P(LPt=2=4| LPt=1=4, C=1) 

P(LPt=2=1| LPt=1=1, C=2) 

P(LPt=2=2| LPt=1=1, C=2) 

P(LPt=2=3| LPt=1=1, C=2) 

P(LPt=2=4| LPt=1=1, C=2) 

P(LPt=2=2| LPt=1=2, C=2) 

P(LPt=2=3| LPt=1=2, C=2) 

P(LPt=2=4| LPt=1=2, C=2) 

P(LPt=2=3| LPt=1=3, C=2) 

P(LPt=2=4| LPt=1=3, C=2) 

P(LPt=2=4| LPt=1=4, C=2) 

P(OVj| LPi) 

For each 

task 

P(OVj| LPi) 

For each 

task 

 

j = task 

i= level 

 

 

The research questions in this second simulation study were: 

(1) How well can the parameters of the conditional probabilities for observable 

variables, including a covariate, be recovered? 

(2) How well can the parameters of the transition probabilities between two latent 

variables including a covariate be recovered? 

 (3) How well can the distribution of students indicating student classification of 

levels at the first measurement occasion be recovered? 

(4) How well can the proportions of students at the second measurement 

indicating student classifications at each level on the LP, including a covariate, be 

recovered?  

These research questions were addressed by computing (1) the Root Mean Squared 

Difference (RMSD), (2) bias, and (3) standard error. 
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Data Generation and Simulation Condition 

 

Data was simulated by using R. The transition probabilities with respect to the 

values of a covariate, conditional probabilities of correctly responding to each task given 

each state of the LP, and the distribution of students on the LP at the first time point, and 

group memberships of the covariate were considered for generating response data. Once 

the item responses were generated, EM estimation implemented in the Netica C API 

(Norsys Software Corp, 2008) was used to estimate the parameters. 

The fixed factors of this simulation study were included in the structure of the 

DIBN. The structure of the DBIN considered here includes two measurement occasions 

and four levels on each LP. The factors that vary in this simulation study are (1) sample 

size, (2) task size, that is, number of tasks, (3) types of transition probability tables, (4) 

types of conditional probability tables of tasks, and (5) proportions of group membership 

on a covariate. 

One case is considered for the distribution of students on an LP at the first 

measurement occasion. Table 81 displays the distribution of students. This case is the 

equal probability of students being at each of the four levels.  

Table 81 

 

Distribution of student on LP at the first measurement 

 

Case Description Level 1 Level 2 Level 3 Level 4 

1(Equal) Equal probability at all levels 

representing general 

population 

0.25 

 

0.25 0.25 0.25 
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Like the first simulation study, two cases for the conditional probability matrix of 

observables were considered. The first case represents that tasks are well designed for 

classifying students into their levels. The second case represents that tasks are relatively 

poorly designed for classifying students into their levels.  Table 82 displays the first case 

of the conditional probability table with 9 tasks. Each of the three tasks was designed to 

measure each level. This structure is duplicated for 30 tasks.  

Table 82 

 

The first case of conditional probability table 

 

  Task  

 Level1 Level2 Level3 

Level of 

Student 

1 2 3 1 2 3 1 2 3 

Level 0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Level 1  0.85 0.85 0.85 0.20 0.20 0.20 0.20 0.20 0.20 

Level 2 0.85 0.85 0.85 0.85 0.85 0.85 0.20 0.20 0.20 

Level 3 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

 

Table 83 displays the second case of the conditional probability table.  The differences in 

values of the conditional probabilities between two levels are smaller than the first case. 

This structure is duplicated for generating 30 tasks.  
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Table 83  

 

The second case of conditional probability table 

 

                         Task 

 Level1 Level2 Level3 

Level of 

Student 

1 2 3 1 2 3 1 2 3 

Level 0 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

Level 1  0.70 0.70 0.70 0.35 0.35 0.35 0.35 0.35 0.35 

Level 2 0.70 0.70 0.70 0.70 0.70 0.70 0.35 0.35 0.35 

Level 3 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

 

Four cases are considered for the transition probability tables. The first case included an 

equal transition probability and no covariate effect. The rest of the three cases had a 

covariate effect. Table 84 shows the four cases for a transition probability table.  

Table 84  

 

Four cases of transition probability table 

 
Case Case 1 Case 2 Case 3 Case 4 

Covariate C=1 C=2 C=1 C=2 C=1 C=2 C=1 C=2 
P(0|0) 0.25 0.25 0.1 0.7 0.1 0.7 0.7 0.7 
P(1|0) 0.25 0.25 0.5 0.1 0.5 0.1 0.1 0.1 
P(2|0) 0.25 0.25 0.3 0.1 0.3 0.1 0.1 0.1 
P(3|0) 0.25 0.25 0.1 0.1 0.1 0.1 0.1 0.1 
P(1|1) 0.33 0.33 0.8 0.1 0.8 0.8 0.1 0.8 
P(2|1) 0.33 0.33 0.1 0.6 0.1 0.1 0.6 0.1 
P(3|1) 0.33 0.33 0.1 0.3 0.1 0.1 0.3 0.1 
P(2|2) 0.5 0.5 0.9 0.9 0.9 0.2 0.8 0.2 
P(3|2) 0.5 0.5 0.1 0.1 0.1 0.8 0.2 0.8 
P(3|3) 1 1 1 1 1 1 1 1 

- 

The simulation conditions in the transition probability table reflect the following 

situations: 



161 

 

 The first case demonstrates that there was no covariate effect on a transition 

probability. Therefore, the two transition probability tables with respect to each 

value of the covariate are equal to each other. In addition to the property, the 

transition probabilities are equal per each cell, so there are no weights to any of 

the four levels, and thus none of the four levels is favored. In other words, the 

proportions of moving students are equal across the all levels.  

 The second case has a covariate effect: the first value of the covariate has an 

effect on the level change of students at Level 0 and the second value of the 

covariate had an effect on the level change of students at Level 1.  

 The third case had a covariate effect: the first value of the covariate had an effect 

on the level change of students at Level 0 and the second value of the covariate 

has an effect on the level change of students at Level 2.  

 The fourth case also had a covariate effect: the first value of the covariate affected 

the level change of students at Level 1 and the second value of the covariate 

affected the level change of students at Level 2.     

The sample sizes used in this study are 100 and 1000 as same as the first simulation 

study. The task sizes used in this study are 9 and 30, the same task sizes used in the first 

simulation study.  

Two cases of group memberships on a covariate were considered.  The first case 

represents that group memberships are equality distributed in terms of the covariate, 

while the second case represents that there is a skewed distribution of group membership 

on the covariate. Table 85 shows the distributions of students on a covariate.  
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Table 85 

 

Two cases of the distributions of students 

 

Case Description Covariate  

=1 

Covariate 

=2 

1 

2 

Equal proportion of group 

membership 

Skewed proportion of group 

membership 

0.5 

0.2 

0.5 

0.8 

 

With the combination of different transition probability tables, different 

conditional probability tables, different transition probability tables, sample size, task size, 

different distributions of group memberships on a covariate, the total number of cells for 

this study was 62conditions. The simulation conditions are summarized in Table 86.  

Table 86 

 

Simulation conditions of the first study 

 

Simulation Condition  # of 

Case 

 

Distribution of student at the first 

measurement 

Conditional probability table 

Transition probability table 

Sample size 

Task size 

Proportion of group memberships on a 

covariate 

Total number of cells 

Replications per cell 

Total Simulation Runs 

Equal 

 

Case 1 and 2 

Case 1, 2, 3, and 4 

50 and 1000 

9 and 30 

Equal and Skewed 

 

 

 

1 

 

2 

4 

2 

2 

2 

 

64 

100 

6400 
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Estimation 

 

Once the task responses were generated, EM estimation implemented in the 

Netica C API (Norsys Software Corp, 2008) was used to estimate the parameters, just as 

was done in the first simulation study.  R code for generating responses and evaluating 

parameter recovery was written. The visual studio (2010) was used to call Netica C API 

in this study. The same criteria of stopping iteration were set as in the first simulation 

study: (1) 1000 for the maximum number of iterations and (2) 1.0e-5 for the minimum 

change in data log likelihood between two iterations. The iteration was terminated when 

either of the two conditions was met. All cells were convergent in this simulation study.  

A label switching issue occurred as in the first simulation study.  In order to 

handle this label switching issue in the simulation study, the method of incorporating 

prior information when estimating parameters was used. The different degrees of weights 

can be applied to initial prior information. The value of 1 was used as the weight of prior, 

which is equivalent to the amount of information contained in a data set with sample size 

of 1 (Netica C API manual, 2006).  The detailed information and function about this 

method was described in chapter 3.   

Results 

 

The results of the second simulation study are summarized in the same way as the 

first simulation study. Parameter recovery in terms of the different conditions was 

examined by comparing estimates with the true parameter values used for response data 

generated for the different conditions. One hundred replications were run. Three criteria 
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were used to evaluate the overall accuracy of the method in each condition: (1) Root 

Mean Squared Difference (RMSD), (2) Bias, and (3) Standard Deviation of Estimates 

(SDE). The three criteria were computed for each simulation condition. The results are 

organized by the simulation conditions. 

Sample Sizes 

 

Table 87 

 

Bias for the student distribution at the first measurement in terms of the different sample  

 

sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size = 100 Sample Size = 1000 

Bias Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

0.01949 -0.01047 0.05208 -0.06111 0.00462 0.01757 0.02956 -0.05175 
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Table 88 

Bias for the transition probability in terms of the different sample sizes 

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00395 0.01246 0.00866 -0.0251 

   Level 2 0.00647 -0.0027 0.03123 -0.0351 

   Level 3 0.00199 0.00295 -0.0331 0.02814 

   Level 4 0.01427 0.0477 0.069 -0.1003 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.0103 0.02126 -0.001 -0.01 

   Level 2 0.00627 -0.0023 0.02147 -0.0254 

   Level 3 0.00026 0.00288 -0.0442 0.04109 

   Level 4 0.01356 0.01703 0.06986 -0.1304 

 

 

Covariate = 2 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.01038 -0.0233 0.00209 0.0108 

   Level 2 0.01069 -0.0657 0.04903 0.00597 

   Level 3 0.00509 0.0011 -0.0828 0.07664 

   Level 4 0.02577 0.05056 0.04739 -0.1237 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00222 -0.0166 0.00487 0.0095 

   Level 2 0.01306 -0.0532 0.01958 0.02058 

   Level 3 0.00144 0.00261 -0.1058 0.10179 

   Level 4 0.01505 0.01912 0.02728 -0.0615 
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Table 89 

Bias for conditional probability tables of the first type of the tasks in terms of the 

different sample sizes 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1  0.02564 -0.02564  0.00468 -0.00468 

   Level 2 -0.01109  0.01109  0.00222 -0.00222 

   Level 3 -0.00243  0.00243 -0.00191  0.00191 

   Level 4 0.01353 -0.01353 -0.00119  0.00119 

 

 

Table 90 

 

Bias for conditional probability tables of the second type of the tasks at the first  

 

measurement in terms of the different sample sizes 

 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01194 -0.01194 -0.00280 0.00280 

   Level 2 0.00549 -0.00549 0.01974 -0.01974 

   Level 3 -0.00185 0.00185 0.00726 -0.00726 

   Level 4 -0.00781 0.00781 -0.01035 0.01035 
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Table 91 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different sample sizes 

 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00427 -0.00427 0.00002 -0.00002 

   Level 2 -0.00177 0.00177 -0.00418 0.00418 

   Level 3 0.06412 -0.06412 0.04727 -0.04727 

   Level 4 -0.01077 0.01077 0.04145 -0.04145 

 

Table 92 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different sample sizes 

 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.03394 -0.03394 0.00827 -0.00827 

   Level 2 -0.00584 0.00584 -0.00054 0.00054 

   Level 3 -0.01766 0.01766 -0.01079 0.01079 

   Level 4 -0.00561 0.00561 0.00052 -0.00052 

 

 

Table 93 

 

Bias for conditional probability tables of the second type of the tasks at the second  

 

measurement in terms of the different sample sizes 

 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00603 -0.00603 0.00172 -0.00172 

   Level 2 0.01913 -0.01913 0.00814 -0.00814 

   Level 3 0.00090 -0.00090 0.00291 -0.00291 

   Level 4 -0.01088 0.01088 0.00018 -0.00018 
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Table 94 

 

Bias for conditional probability tables of the third type of the tasks at the second  

 

measurement in terms of the different sample sizes 

 

  Sample Size = 100 Sample Size = 1000 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00952 -0.00952 -0.00236  0.00236 

   Level 2 0.00625 -0.00625 0.00007 -0.00007 

   Level 3 0.03786 -0.03786 0.01214 -0.01214 

   Level 4 0.00517 -0.00517 0.01015 -0.01015 

 

Table 95 

 

Average RMSDs for the different sample sizes 

 

Condition Sample Size = 100 Sample Size = 1000 

 RMSD RMSD 

Parameter   

     DS* at Time1 0.077044 0.063177 

     TPT* 0.101078 0.067127 

     Average of CPTT* 0.082984 0.045033 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  
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Table 96 

 

Average SDE for the different sample sizes  

 

Condition Sample Size = 100 Sample Size = 1000 

 SDE SDE 

Parameter   

     DS* at Time1 0.004482 0.001591 

     TPT* 0.009105 0.003229 

     Average of CPTT* 0.015077 0.005345 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.   

       CPTT* is the conditional probability table of each task.  

 

Table 87 shows the bias of the initial probability distribution parameters (DS)  

in terms of the two different sample sizes. Table 88 shows the bias values of the 

transition probability table parameters (TPT) given two different values of the covariate 

in terms of the sample size of 100 and the sample size of 1000.  Table 89, Table 90, and 

Table 91 indicate the bias of the conditional probability table parameters of the tasks used 

at the first measurement. Table 92, Table 93, and Table 94 show the bias of the 

conditional probability table parameters of the tasks implemented at the second 

measurement.  In all cases, the bias values decreased as the sample size increased. 

Compared to the bias values of the first simulation study, the bias values were higher in 

the second simulation study.  This implies that estimates are less precise for the more 

complex model than the simple model.  

 Table 95 shows the RMSDs of the initial probability distribution parameters, 

transitional probability table parameters, and conditional probability table parameters in 
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terms of two sample sizes. RMSDs were lower for 1000 samples than for 100 samples, 

which indicate that the precision of the estimate increased as sample size increased. A 

similar result was also observed for SDE values. In terms of the two different sample 

sizes, SDEs with 1000 samples were lower than those with 100 samples; therefore, 

parameter estimates seemed to be more reliable when using more samples.  

 To summarize, the results show that using a larger sample reduced error variances 

for all probability distribution table parameters in the different conditions considered in 

this study. Among the parameters of DS, CPT, and TPT, CPT and TPT seem to be more 

affected by different sample sizes compared the others (TPT was the parameter set that 

was the most effected by different sample size in the first simulation study.)  Overall, 

TPT seems to be more biased than the others. Compared to the first simulation study, all 

values of bias, RMSD, and SDE were larger in the second simulation study.  A following 

section will examine the significance of these effects using analysis of variance.  

Task Sizes 

Table 97 

 

Bias for the student distribution at the first measurement in terms of the different task  

 

sizes 

 

Task Size = 9  Task Size = 30 

Bias Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

0.01791 0.00387 0.03801 -0.05979 0.00621 0.00324 0.04363 -0.05307 
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Table 98 

 

Bias for the transition probability in terms of the different task sizes  

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0095 -0.0159 0.0042 0.0022 

   Level 2 0.0041 -0.0401 0.0445 -0.0085 

   Level 3 0.0036 0 -0.0701 0.0664 

   Level 4 0.037 0.0629 0.0579 -0.1578 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.004 0.0033 -0.0008 0.0015 

   Level 2 0.0092 -0.0558 0.0379 0.0087 

   Level 3 0.0017 0.0036 -0.0971 0.0918 

   Level 4 0.0001 0.0017 0.0051 -0.007 

 

 

Covariate = 2 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0096 0.0143 0.0063 -0.0302 

   Level 2 0.0063 0.0009 0.0198 -0.027 

   Level 3 0.0021 0.0034 -0.0181 0.0125 

   Level 4 0.0173 0.0253 0.0778 -0.1204 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.004 0.0004 -0.0003 -0.0041 

   Level 2 0.0006 -0.0093 0.0266 -0.018 

   Level 3 0.0001 0.0001 -0.0625 0.0623 

   Level 4 0.0008 0.0125 0.0095 -0.0228 
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Table 99 

 

Bias for conditional probability tables of the first type of the tasks in terms of the  

 

different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.02053 -0.02053 -0.00614 0.00380 

   Level 2 -0.00758 0.00758 0.00501 -0.00501 

   Level 3 0.00180 -0.00180 0.00378 -0.00378 

   Level 4 0.00734 -0.00734 0.01548 -0.01548 

 

 

Table 100 

 

Bias for conditional probability tables of the second type of the tasks at the first  

 

measurement in terms of the different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00537 -0.00537 -0.00468 0.00468 

   Level 2 0.00975 -0.00975 -0.00135 0.00135 

   Level 3 0.01009 -0.01009 0.00378 -0.00378 

   Level 4 -0.01680 0.01680 0.01548 -0.01548 
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Table 101 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00008 -0.00008 0.05095 -0.05095 

   Level 2 -0.00563 0.00563 0.00100 -0.00100 

   Level 3 0.06044 -0.06044 0.00378 -0.00378 

   Level 4 0.02968 -0.02968 0.01548 -0.01548 

 

 

Table 102 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.02992 -0.02992 -0.00381 0.00381 

   Level 2 -0.00473 0.00473 -0.00490 0.00490 

   Level 3 -0.02464 0.02464 0.00378 -0.00378 

   Level 4 -0.00018 0.00018 0.01548 -0.01548 
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Table 103 

 

Bias for conditional probability tables of the second type of the tasks at the second  

 

measurement in terms of the different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00289 -0.00289 -0.00270 0.00270 

   Level 2 0.01953 -0.01953 -0.00402 0.00402 

   Level 3 0.00651 -0.00651 0.00378 -0.00378 

   Level 4 -0.00669 0.00669 0.01548 -0.01548 

 

 

Table 104 

 

Bias for conditional probability tables of the third type of the tasks at the second  

 

measurement in terms of the different task sizes 

 

  Task size = 9 Task size = 30 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00342 -0.00342 0.00805 -0.00805 

   Level 2 0.00315 -0.00315 -0.00192 0.00192 

   Level 3 0.04194 -0.04194 0.00378 -0.00378 

   Level 4 0.01724 -0.01724 0.01548 -0.01548 
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Table 105 

 

Average RMSD for the different task sizes 

 

Condition Task Size = 9 Task Size = 30 

 RMSD RMSD 

Parameter   

     DS* at Time1 0.07460 0.06619 

     TPT* 0.09238 0.08553 

     Average of 

CPTT* 
0.08280 0.04535 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 

Table 106 

 

Average SDE for the different task sizes 

  

Condition Task Size = 9 Task Size =30 

 SDE SDE 

Parameter   

     DS* at Time1 0.003162 0.002911 

     TPT* 0.006303 0.006030 

     Average of 

CPTT* 
0.011060 0.009632 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 97 shows the bias of the DS in terms of the two different task sizes.  Table 

98 shows the bias of the TPT in terms of a task size of 9 and a task size of 30. Table 99, 

Table 100, and Table 101 indicate the bias of the CPT parameters of the tasks used at the 
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first measurement. Table 102, Table 103, and Table 104 show the bias of the CPT 

parameters of the tasks implemented at the second measurement. The bias values 

decreased as the task size increased. Compared to the condition of sample size, the 

condition of task size resulted in similar influence. The reduced amount of bias values of 

the CPT parameters was the largest among other parameters (DS and TPT) when the 

number of tasks increased. This implied that the precision of estimates in the CPT was 

more sensitive to the task size implemented than other parameters (DS and TPT). Table 

105 shows the comparison of the average of RMSDs between two different task sizes of 

9 and 30. It was observed that RMSD decreased as the task size increased. A similar 

results pattern was also observed for SDEs.   

In summary, the results showed that the precision of estimates increases as more 

tasks were used.  Compared to the simple model, estimates in the more complex model 

are less precise given the different task sizes.  Among the parameters of DS, CPT, and 

TPT, CPT seemed to be more influenced by different task sizes than the others (DS and 

CPT seemed to be more influenced by different task sizes in the first simulation study).  

Overall, TPT seemed to be more biased compared to the others.  A following section will 

examine the significance of these effects. 
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Covariate Distributions 

 

Table 107 

 

Bias for the student distribution at the first measurement in terms of the different  

 

covariate distributions 

 

Equal Distribution Skewed Distribution 

Bias Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

0.00957 0.01115 0.03229 -0.05300 0.01455 -0.00404 0.04935 -0.05986 
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Table 108 

 

Bias for the transition probability in terms of the different covariate distributions 

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0034 0.004 -0.0015 -0.0058 

   Level 2 0.0002 -0.0427 0.0628 -0.0204 

   Level 3 0.0039 0.001 -0.0988 0.0939 

   Level 4 0.0221 0.0455 0.0358 -0.1033 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0022 -0.0166 0.0049 0.0095 

   Level 2 0.0131 -0.0532 0.0196 0.0206 

   Level 3 0.0014 0.0026 -0.1058 0.1018 

   Level 4 0.0151 0.0191 0.0273 -0.0615 

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0239 -0.0066 0.0071 -0.0243 

   Level 2 0.0007 -0.0061 0.025 -0.0196 

   Level 3 0.002 0.0006 -0.0488 0.0462 

   Level 4 0.0045 0.022 0.0487 -0.0752 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.0103 0.0213 -0.001 -0.01 

   Level 2 0.0063 -0.0023 0.0215 -0.0254 

   Level 3 0.0003 0.0029 -0.0442 0.0411 

   Level 4 0.0136 0.047 0.0699 -0.1304 
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Table 109 

 

Bias for conditional probability tables of the first type of the tasks in terms of the  

 

different covariate distributions 

 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01112 -0.01112 0.01451 -0.01451 

   Level 2 -0.00100 0.00100 -0.00319 0.00319 

   Level 3 -0.00044 0.00044 0.00203 -0.00203 

   Level 4 0.00488 -0.00488 0.01216 -0.01216 

 

Table 110 

 

Bias for conditional probability tables of the second type of the tasks at the first 

measurement in terms of the different covariate distributions 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00187 -0.00187 0.00259 -0.00259 

   Level 2 0.01500 -0.01500 0.00554 -0.00554 

   Level 3 0.00448 0.00044 0.00203 -0.00561 

   Level 4 -0.00351 0.00351 -0.00996 0.00996 

 

 

Table 111 

 

Bias for conditional probability tables of the third type of the tasks at the first  

 

measurement in terms of the different covariate distributions 

 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00053 0.00053 0.00013 -0.00013 

   Level 2 -0.00269 0.00269 -0.00794 0.00794 

   Level 3 0.05193 0.00044 0.00203 -0.05477 

   Level 4 0.02287 -0.02287 0.01251 -0.01251 
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Table 112 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different covariate distributions 

 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01759 -0.01759 0.01994 -0.01994 

   Level 2 0.00186 -0.00186 -0.00355 0.00355 

   Level 3 -0.01236 0.00044 0.00203 0.01140 

   Level 4 0.00148 -0.00148 -0.00187 0.00187 

 

Table 113 

 

Bias for conditional probability tables of the second type of the tasks at the second  

 

measurement in terms of the different covariate distributions 

 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00363 0.00363 0.00669 -0.00669 

   Level 2 0.01068 -0.01068 0.01190 -0.01190 

   Level 3 0.00567 0.00044 0.00203 -0.00283 

   Level 4 -0.00749 0.00749 0.00147 -0.00147 

 

Table 114 

 

Bias for conditional probability tables of the third type of the tasks at the second  

 

measurement in terms of the different covariate distributions 

  Equal Distribution Skewed Distribution 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00226 -0.00226 0.00022 -0.00022 

   Level 2 0.00224 -0.00224 -0.00061 0.00061 

   Level 3 0.02512 0.00044 0.00203 -0.02019 

   Level 4 0.00879 -0.00879 0.01122 -0.01122 
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Table 115 

 

Average RMSD for the different types of covariate distributions 

 

Condition Equal Distribution Skewed Distribution 

 RMSD RMSD 

Parameter   

     DS* at Time1 0.060164 0.079546 

     TPT* 0.089519 0.090479 

     Average of CPTT* 0.067685 0.082984 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 

Table 116 

 

Average SDE for the different types of covariate distributions 

 

Condition Equal Distribution Skewed Distribution 

 SDE SDE 

Parameter   

     DS* at Time1 0.003003 0.003070 

     TPT* 0.005798 0.006536 

     Average of CPTT* 0.010037 0.010385 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

RMSD, bias, and SDE were computed in terms of the different distributions of a 

covariate. Table 107 shows the bias of the DS in terms of two types of the covariate.  
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Table 108 shows the bias of the TPT in terms of an equal distribution and an unequal 

distribution of a covariate.  Table 109, Table 110, and Table 111 indicate the bias of the 

CPT parameters of the tasks used at the first measurement. Table 112, Table 113, and 

Table 114 show the bias of the CPT parameters of the tasks implemented at the second 

measurement.  It was observed that the bias values and RMSD values were similar for the 

two types of covariate distribution.  This suggests that the type of covariate distribution 

did not seem to influence the precision of the estimate.  A similar results pattern was also 

observed for SDEs. To summarize, the results show that using different types of covariate 

distribution did not seem to affect the error variances of estimates.   

Conditional Probability Tables 

Table 117 

 

Bias for the student distribution at the first measurement in terms of the different  

 

conditional probability tables 

 

Conditional Probability Table 1 Conditional Probability Table 2 

Bias Bias 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

0.00101 -0.00226 0.00271 -0.00150 0.02307 0.00948 0.07880 -0.11136 
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Table 118 

 

Bias for the transition probability in terms of the different conditional probability tables 

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.0005 0.0014 -0.004 0.0032 

   Level 2 0.0032 -0.0331 0.0175 0.0128 

   Level 3 0.0008 0 -0.0223 0.0223 

   Level 4 0.0001 0.0028 0.0054 -0.0086 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0061 -0.014 0.0075 0.0005 

   Level 2 0.01 -0.0618 0.0643 -0.0125 

   Level 3 0.0046 0.0036 -0.1441 0.1359 

   Level 4 0.037 0.0617 0.0575 -0.1562 

 

Covariate = 1 

  Conditional Probability Table 1 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 0.0231 -0.0087 0.0023 -0.0172 

   Level 2 0.0006 0.0142 -0.0029 -0.0124 

   Level 3 0.0002 0.0034 -0.0125 0.0091 

   Level 4 0.0002 0.0012 0.0046 -0.0061 

  Conditional Probability Table 2 

  Bias 

 
Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.0102 0.0236 0.0037 -0.0171 

   Level 2 0.0062 -0.0231 0.0495 -0.0326 

   Level 3 0.0021 0 -0.0678 0.0657 

   Level 4 0.0179 0.0366 0.0825 -0.1371 
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Table 119 

 

Bias for conditional probability tables of the first type of the tasks in terms of the  

 

different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability 

Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00199 -0.00199 0.02829 -0.02829 

   Level 2 0.00047 -0.00047 -0.00934 0.00934 

   Level 3 0.00108 0.00044 0.00203 0.00310 

   Level 4 -0.00006 0.00006 0.01241 -0.01241 

 

Table 120 

 

Bias for conditional probability tables of the second type of the tasks at the first  

 

measurement in terms of the different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability 

Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00058 -0.00054 0.00857 -0.00857 

   Level 2 -0.00168 0.00172 0.02695 -0.02695 

   Level 3 -0.00090 0.00044 0.00203 -0.00641 

   Level 4 -0.00125 0.00123 -0.01693 0.01693 
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Table 121 

 

Bias for conditional probability tables of the first type of the tasks at the third 

 

measurement in terms of the different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability 

Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00118 -0.00119 0.00305 -0.00305 

   Level 2 -0.00156 0.00159 -0.00436 0.00436 

   Level 3 0.00239 0.00044 0.00203 -0.10895 

   Level 4 0.00196 -0.00193 0.02876 -0.02876 

 

Table 122 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability 

Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01049 -0.01044 0.03146 -0.03146 

   Level 2 -0.00139 0.00145 -0.00493 0.00493 

   Level 3 -0.00117 0.00044 0.00203 0.02728 

   Level 4 -0.00191 0.00191 -0.00317 0.00317 
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Table 123 

 

Bias for conditional probability tables of the second type of the tasks at the second  

 

measurement in terms of the different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability 

Table 2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00013 -0.00013 0.00762 -0.00762 

   Level 2 0.00530 -0.00530 0.02196 -0.02196 

   Level 3 0.00154 0.00044 0.00203 -0.00227 

   Level 4 0.00050 -0.00050 -0.01121 0.01121 

 

Table 124 

 

Bias for conditional probability tables of the third type of the tasks at the second  

 

measurement in terms of the different conditional probability tables 

 

  

Conditional Probability 

Table 1 

Conditional Probability Table 

2 

  Bias Bias 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00003 0.00003 0.00719 -0.00719 

   Level 2 0.00330 -0.00330 0.00302 -0.00302 

   Level 3 0.00281 0.00044 0.00203 -0.04718 

   Level 4 0.00218 -0.00218 0.01314 -0.01314 
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Table 125 

 

Average RMSD for the different types of conditional probability tables 

 

Condition 
Conditional Probability Table 

1 

Conditional Probability Table 

2 

 RMSD RMSD 

Parameter   

     DS* at Time1 0.011092 0.099117 

     TPT* 0.064320 0.109819 

     Average of 

CPTT* 
0.023166 0.091530 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 126 

 

Average SDE for the different types of conditional probability tables 

 

Condition 
Conditional Probability  

Table 1 

Conditional Probability 

Table 2 

 SDE SDE 

Parameter   

     DS* at Time1 0.001925 0.004148 

     TPT* 0.004081 0.008252 

     Average of 

CPTT* 
0.008460 0.011962 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

Table 117 shows the bias of the DS in terms of the two different task sizes.  Table 

118 show the bias of the TPT in terms of two types of conditional probability tables. 

Table 119, Table 120, and Table 121 indicate the bias of the CPT parameters of the tasks 

used at the first measurement. Table 122, Table 123, and Table 124 show the bias of the 
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CPT parameters of the tasks implemented at the second measurement. The bias values for 

the first conditional probability table were smaller than for the second conditional 

probability table. This implies that the precision of estimates increased when the tasks 

were well designed for classifying students according to the different levels on a LP. A 

similar result was also observed for RMSD and SDE. RMSDs for the first type of 

conditional probability table were smaller than for the second type of conditional 

probability table. SDEs for the first conditional probability table were smaller than those 

for second conditional probability table. In summary, the results show that when the 

conditional probabilities of each task were distinct across levels, so that each task was 

relatively well designed for the purpose of classifying students according to the different 

levels, the error variances of the estimates seem to be reduced in this simulation study. 

All the parameters of DS, CPT, and TPT seemed to be influenced by two types of 

conditional probability tables. Overall, TPT had more biased values than the other 

parameters.  A following section will examine the significance of these effects. 

Transition Probability Tables 

Table 127 

 

Bias for the student distribution at the first measurement in terms of the different types of  

 

transition probability tables 

 

Bias 

 

Level 1 Level 2 Level 3 Level 4 

Transition Probability Table 1 0.02236 0.00863 0.04770 -0.07868 

Transition Probability Table 2 0.00212 0.00895 0.02856 -0.03963 

Transition Probability Table 3 0.00518 -0.00297 0.05472 -0.05693 

Transition Probability Table 4 0.01748 -0.00037 0.03039 -0.04750 
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Table 128 

 

Bias for the transition probability in terms of the different types of transition probability 

 

 Tables 

 

Bias 

Covariate 1 

Transition Probability 1 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.01476 0.03073 -0.03365 -0.01184 

   Level 2 0.01020 -0.06147 0.07125 -0.01998 

   Level 3 0.00210 0.00004 -0.11390 0.11175 

   Level 4 0.00800 0.03634 0.01608 -0.06041 

Transition Probability 2 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.01715 -0.05727 0.01876 0.02136 

   Level 2 0.00708 -0.07851 0.06594 0.00549 

   Level 3 0.00145 0.00322 -0.05303 0.04837 

   Level 4 0.01558 0.00255 0.04847 -0.06659 

Transition Probability 3 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.01969 -0.03528 0.02151 -0.00592 

   Level 2 0.00661 -0.03553 -0.00249 0.03141 

   Level 3 0.00604 0.00187 -0.08025 0.07234 

   Level 4 0.02637 0.06686 0.00317 -0.09640 

Transition Probability 4 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.03809 0.03446 0.00005 0.00358 

   Level 2 0.00256 -0.01528 0.02824 -0.01552 

   Level 3 0.00104 0.00202 -0.08202 0.07896 

   Level 4 0.02286 0.02212 0.05495 -0.09993 
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Bias 

Covariate 2 

Transition Probability 1 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.01538 0.00920 -0.00991 -0.01467 

   Level 2 0.00998 -0.00346 0.02653 -0.03304 

   Level 3 0.00040 0.00577 -0.10604 0.09987 

   Level 4 0.01654 0.03276 0.01378 -0.06308 

Transition Probability 2 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 -0.01819 0.02802 0.01447 -0.02431 

   Level 2 0.00001 0.00204 0.04224 -0.04429 

   Level 3 0.00403 0.00001 -0.04265 0.03861 

   Level 4 0.00864 0.00300 0.06584 -0.07748 

Transition Probability 3 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.02486 -0.01060 0.00151 -0.01577 

   Level 2 0.00310 0.00218 0.00600 -0.01128 

   Level 3 0.00002 0.00082 0.00101 -0.00186 

   Level 4 0.01065 0.03004 0.03618 -0.07686 

Transition Probability 4 

 

Level 1 Level 2 Level 3 Level 4 

   Level 1 0.00489 0.00252 0.00562 -0.01303 

   Level 2 0.00073 -0.01653 0.01708 -0.00128 

   Level 3 0.00006 0.00032 -0.01261 0.01223 

   Level 4 0.00028 0.00921 0.05534 -0.06482 
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Table 129 

 

Bias for conditional probability tables of the first type of the tasks the different types of 

 

 transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.02086 -0.02086 0.01341 -0.01341 

   Level 2 0.00189 -0.00189 -0.00810 0.00810 

   Level 3 -0.00052 -0.00073 -0.00838 0.00745 

   Level 4 0.00941 -0.00941 -0.00281 0.00281 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01521 -0.01521 0.01049 -0.01049 

   Level 2 -0.00848 0.00848 -0.00288 0.00288 

   Level 3 -0.00138 0.00013 0.00150 -0.00268 

   Level 4 0.00980 -0.00980 0.00781 -0.00781 

 

Table 130 

 

Bias for conditional probability tables of the second type of the tasks at the first  

 

measurement in terms of the different types of transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00226 -0.00226 0.00907 -0.00907 

   Level 2 0.02387 -0.02387 0.01872 -0.01872 

   Level 3 0.00145 -0.00145 0.00390 -0.00390 

   Level 4 -0.01838 0.01838 -0.01999 0.01999 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00111 -0.00111 0.00551 -0.00551 

   Level 2 -0.00068 0.00068 0.00805 -0.00805 

   Level 3 0.00017 -0.00017 0.00499 -0.00499 

   Level 4 0.00439 -0.00439 -0.00220 0.00220 
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Table 131 

 

Bias for conditional probability tables of the third type of the tasks at the first  

 

measurement in terms of the different types of transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.00037 -0.00037 0.00916 -0.00916 

   Level 2 -0.00917 0.00917 0.00221 -0.00221 

   Level 3 0.07915 -0.07915 0.04861 -0.04861 

   Level 4 0.00970 -0.00970 0.00865 -0.00865 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00038 0.00038 -0.00053 0.00053 

   Level 2 -0.00102 0.00102 -0.00368 0.00368 

   Level 3 0.03761 -0.03761 0.05403 -0.05403 

   Level 4 0.02364 -0.02364 0.01825 -0.01825 

 

 

Table 132 

 

Bias for conditional probability tables of the first type of the tasks at the first  

 

measurement in terms of the different types of transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.05372 -0.05372 0.00287 -0.00287 

   Level 2 -0.00266 0.00266 -0.00698 0.00698 

   Level 3 -0.01159 0.01159 -0.02290 0.02290 

   Level 4 0.00051 -0.00051 -0.00555 0.00555 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 0.01946 -0.01946 0.00789 -0.00789 

   Level 2 -0.00406 0.00406 0.00088 -0.00088 

   Level 3 -0.01599 0.01599 -0.00604 0.00604 

   Level 4 -0.00175 0.00175 -0.00318 0.00318 
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Table 133 

 

Bias for conditional probability tables of the second type of the tasks at the second  

 

measurement in terms of the different types of transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00620 0.00620 0.01502 -0.01502 

   Level 2 0.03127 -0.03127 0.01828 -0.01828 

   Level 3 0.00911 -0.00911 -0.00349 0.00349 

   Level 4 0.00464 -0.00464 -0.02356 0.02356 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00355 0.00355 0.00963 -0.00963 

   Level 2 0.01309 -0.01309 -0.00764 0.00764 

   Level 3 -0.00079 0.00079 0.00263 -0.00263 

   Level 4 -0.00257 0.00257 0.00007 -0.00007 

 

 

 

Table 134 

 

Bias for conditional probability tables of the third type of the tasks at the second  

 

measurement in terms of the different types of transition probability tables 

 

  TPT1 TPT2 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00131 0.00131 0.02170 -0.02170 

   Level 2 0.00822 -0.00822 -0.00489 0.00489 

   Level 3 0.01680 -0.01680 0.03365 -0.03365 

   Level 4 0.00996 -0.00996 -0.00304 0.00304 

 

TPT3 TPT4 

 

Correct Incorrect Correct Incorrect 

   Level 1 -0.00484 0.00484 -0.00116 0.00116 

   Level 2 0.00833 -0.00833 0.00092 -0.00092 

   Level 3 0.00900 -0.00900 0.03816 -0.03816 

   Level 4 0.01209 -0.01209 0.01095 -0.01095 
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Table 135 

 

Average RMSD for the different types of transition probability tables 

 

Condition TD1 TD2 TD3 TD4 

 RMSD RMSD RMSD RMSD 

Parameter  
 

  

     DS* at 

Time1 
0.078939 0.061694 0.071633 0.068745 

     TPT* 0.097702 0.093572 0.092467 0.092360 

     Average of 

CPTT* 
0.073806 0.060949 0.062812 0.068684 

       DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task.  

 

 

Table 136 

 

Average SDE for the different types of transition probability tables 

 

Condition TD1 TD2 TD3 TD4 

 SDE SDE SDE SDE 

Parameter  
 

  

     DS* at 

Time1 
0.003682 0.003114 0.002648 0.002701 

     TPT* 0.007300 0.005084 0.006600 0.005683 

     Average of 

CPTT* 
0.010859 0.01029 0.009631 0.010065 

      DS* indicates the distribution of students at the first measurement occasion.  

       TPT* is the transition probability table.  

       CPTT* is the conditional probability table of each task. 

 

Table 127 shows the bias of the DS in terms of four different types of transition 

probability tables. Table 128 shows the bias of the TPT in terms of three different types 
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of transition probability tables.  Table 129, Table 130, and Table 131 indicate the bias of 

the CPT parameters of the tasks used at the first measurement. Table 132, Table 133, and 

Table 134 show the bias of the CPT parameters of the tasks implemented at the second 

measurement. It shows that the bias values and RMSD values were very similar to each 

other across the four different types of transition probability tables. This implies that the 

four types of transition probability tables do not seem to influence the level of precision 

of estimates. A similar result was also observed for SDE values. However, the 

conditional probability table for each task had relatively higher SDEs, implying that the 

variance of the conditional probability table for each task estimate was greater than for 

the others.  To summarize, regardless of the type of transition probability tables, the 

results show that the precision and reliability of estimates were similar to each other.  

In order to understand the effect of different conditions on the precision and 

reliability of estimates, the graphical representations of RMSDs across all conditions are 

presented. The three graphs (Figure 38, Figure 39, and Figure 40) display the RMSDs of 

all conditions with respect to the initial probability table, transition probability table, and 

conditional probability table for each task. For the distribution of students at the first 

measurement (Figure 38), the types of covariate distribution and the conditional 

probability table for each task seemed to influence the precision of estimates more than 

other factors 
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Figure 37. RMSDs of distribution of students at the first measurement with different  

conditions for initial probability table 

 

As shown in Figure 38, the plots for task size, sample size, and the transition 

probability table were clustered more closely to each other compared to the conditions of 

covariate distribution and the conditional distribution table. 
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Figure 38. RMSDs of distribution of students at the first measurement with different  

conditions for transition probability table 

 

Figure 39 shows the RMSDs for the transition probability table. The task size, 

sample size, and conditional probability table of each task seemed to affect the precision 

of estimates more than the other factors. As shown in Figure 39, two plots representing 

different sample size and two types of conditional probability tables were located far 

from each other, meaning that their RMSDs represent large differences between the two 

conditions. In contrast, the plots of the task size, covariate distributions, and transition 

probability tables were clustered close to each other, implying that the precision of the 

estimates were similar to each other no matter what type of transition probability tables 

were used and no matter how the covariate was distributed. 
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Figure 39.  RMSDs of distribution of students at the first measurement with different  

conditions for conditional probability table 

 

Similar results were observed for the conditional probability table for each task 

(see Figure 40). Like other probability tables, the task size, sample size, and conditional 

probability table for each task affected the precision of estimates more than other factors; 

on the other hand, the conditions for the transition probability table and the covariate 

distribution yielded similar RMSDs. This implies that the precision of estimates for the 

conditional probability table seemed to be influenced by different types of transition 

probability tables and the covariate distribution.  

Since 64 conditions were investigated in this study, simple descriptive statistics 

and graphical representations did not seem to be an efficient way of detecting important 

effects and estimating the magnitude of these effects. For this reason, the inferential 

analyses are conducted in the next section.  
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ANOVA (Analysis of Variance) was used for the inferential analyses of this study. 

Because the purpose of the simulation study was to evaluate parameter estimation of the 

success of parameters recovery, the RMSD was used as the dependent variable (e.g., 

Harwell & Janosky, 1991; Kim, Cohen, Baker, Subkoviak, & Leonard, 1994; Stone, 

1992). The simulation conditions served as the independent variables. The main effect for 

each independent variable and the interaction effects among them were examined. The 

results are summarized in terms of each parameter table (i.e., the distribution of students 

at the first measurement, the transition probability table, and the conditional probability 

table of each task). Before conducting an ANOVA, the dependent variable was 

investigated to determine model fit. It was found that the distributions of RMSD values 

for all parameters were positively skewed, implying that the normality assumption was 

violated. Therefore, the RMSDs were transformed using a log transformation, so that it 

had an approximately normal distribution.  

A three-way ANOVA with the independent variables was fit to the transformed 

RMSD values for the parameters of the distribution of students at the first measurement 

with a main effect model followed by two variables at a time interaction models and three 

variables at a time interaction models. Because no significant second-order interaction 

effects (i.e., three variables at a time) were observed, the second-order interactions were 

not included in the model. The results are reported in Table 137. The magnitude of 

significant effects was estimated using partial eta squared (see Table 137).   
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Table 137 

 

ANOVA results for the distribution of students at the first measurement (initial  

 

probability table) 

 

Note. CPT indicates the conditional distribution table. TPT is the transition probability 

table.  

 

Using an alpha level of 0.05, the ANOVA revealed three significant main effects and two 

interaction effects. The condition of sample size was found to be statistically significant: 

F(1, 53) = 24.214, p < 0.00. The condition of task size was observed to be statistically 

significant: F(1, 53) = 91.242, p < 0.00. The condition of conditional probability table 

was found to be statistically significant: F(1, 53) = 347.047, p < 0.00. The results 

described above suggest that sample size, task size, and types of conditional probability 

table influenced the accuracy of estimates. In addition to the main effects, the sample size 

x task size and the task size x CPT interaction effects were found to be statistically 

significant: F(1, 53) = 25.186, p < 0.00 and F(1, 53) = 24.334, p < 0.00. This implies that 

the mean difference among the levels of the factor (sample sizes) was not constant across 

Source Df F P η
2
 

Sample Size 1 24.214 .000 .043 

Task Size 1 91.242 .000 .161 

CPT 1 347.047 .000 .611 

TPT 3 1.246 .303 .007 

Covariate 1 1.856 .179 .003 

Sample Size * Task Size 1 25.186 .000 .044 

Sample Size * CPT 1 .741 .393 .001 

Task Size * CPT 1 24.334 .000 .043 

Error 53    

a. R Squared = .907 (Adjusted R Squared = .889) 
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the levels of the factor (task size). The mean difference among the levels of the factor 

(task size) was not equal across the types on the conditional probability table. In order 

words, there was a joint effect of the conditions of sample sizes and CPT. To graphically 

understand the interaction effects, the profile plots of sample size x task size and the task 

size x CPT are displayed.  Using η
2 

as the measure of effect size, the different types of the 

conditional probability tables had the largest effect size to explain the RMSD values of 

the DS parameters. This factor accounted for 61% of the total variability in the RMSD of 

the DS parameters. This result is the same as the first simulation study.  

 
 

 

Figure 40 Estimated marginal means of the log transformed RMSD of DS in terms of 

task size and sample size 
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This profile plot shows that the RMSD values of 9 tasks did not differ between 

100 samples and 1000 samples while the RMSD values of 30 tasks dramatically 

decreased as sample size increased.   

 
Note. The dotted line is the second conditional probability table and the solid line is the 

first conditional probability table.  

Figure 41. Estimated marginal means of the log transformed RMSD of DS in terms of 

task size and conditional probability table 

This profile plot shows that the task size and the task design had a positive 

relation to the improvement of the accuracy of estimates. When a well-designed task is 

implemented, the RMSD dramatically decreases. In order words, the quality of task is an 

important factor that influenced the accuracy of estimates as well as the number of tasks 

implemented.  

A three-way ANOVA with the independent variables was also fitted to the RMSD 

values for the parameters of the transition probability table with a main effect model 
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followed by two variables at a time interaction models and three variables at a time 

interaction models. It was also found that there were no significant second-order 

interaction effects (i.e., three variables at a time). Therefore, the second-order interactions 

were not included in the model. The results were reported in Table 138.  

 

Table 138 

ANOVA results for transition probability table  

 

Source Df F P η
2
 

Sample Size 1 67.185 .000 .247 

Task Size 1 11.341 .001 .042 

CPT 1 123.322 .000 .453 

TPT 3 1.292 .287 .014 

covariate 1 .321 .573 .001 

Sample Size * Task 

Size 

1 8.817 .004 .032 

Sample Size * CPT 1 2.981 .090 .011 

Task Size * CPT 1 .369 .546 .001 

Error 53    

a. R Squared = .805 (Adjusted R Squared = .768) 

 

Using an alpha level of 0.05, this test was found to have three significant main effects and 

one interaction effect. For the main effects, the conditions of sample size, task size, and 

CPT were found to be statistically significant: F(1, 53) = 67.185, p < 0.00, F(1, 53) = 

11.341, p = 0.01, and  F(1, 53) = 123.322, p < 0.01 respectively. The results suggest that 

there were significant influences for sample size, task size, and types of conditional 

probability table on the accuracy of estimate averaging for other factors. In addition to 
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the main effects, the sample size x task size interaction effect was found to be statistically 

significant: F(1, 53) = 8.817, p = 0.004. This provides evidence that the mean difference 

among the levels of the factor (sample size) were not constant across the levels of the 

factor (task size). In order words, there was a combined effect of sample size and task 

size. To understand the interaction effect, the profile plot was drawn (Figure 38 and 

Figure 39). Using η
2 

as the measure of effect size, the CPT condition had the largest 

effect size to explain the RMSD values. It accounted for 45% of the total variability in 

the RMSDs of the TPT parameters. The sample size had the next largest effect size; 25% 

of the total variability in the RMSDs was explained by the different sample sizes. In the 

previous section, the sample size had the largest effect size in explaining the precision of 

estimates for the TPT parameters in the simple model. Based on the second simulation 

study, the task design seemed to be a very important factor in yielding precise and 

reliable estimates as the complexity of the model increases.  

 

 
Figure 42 Estimated marginal means of the log transformed RMSD of TPT in terms of 

task size and sample size 
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When the sample size was 100, the RMSD values for 9 tasks and 30 tasks were very 

similar. On the other hand, when the sample size was 1000, the RMSD values were 

different between 9 tasks and 30 tasks. This means that the effect of task size on the 

precision of estimates increased when sample size increased.  

A three-way ANOVA with the independent variables was also fitted to the 

transformed RMSD values for the parameters of the conditional probability table for each 

task with a main effect model followed by two variables at a time interaction models and 

three variables at a time interaction models. It was also found that there were no 

significant second-order interaction effects (i.e., three variables at a time). Therefore, the 

second-order interactions were not included in the model. The results are reported in 

Table 139.  
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Table 139 

ANOVA results for transition probability table for conditional probability table 

 

Source DF F P η
2
 

Sample Size 1 98.031 .000 .238 

Task Size 1 51.886 .000 .126 

CPT 1 178.887 .000 .434 

TPT 3 3.629 .020 .026 

covariate 1 1.556 .219 .004 

Sample Size * Task 

Size 

1 3.856 .056 .009 

Sample Size * CPT 1 .437 .512 .001 

Task Size * CPT 1 9.684 .003 .024 

Sample Size * TPT 3 1.878 .147 .014 

Task Size * TPT 3 .812 .494 .006 

CPT * TPT 3 .521 .670 .004 

Error 44    

a. R Squared = .893 (Adjusted R Squared = .847) 

 

Using an alpha level of 0.05, the ANOVA revealed that the factors for sample size, task 

size, CPT, and TPT were found to be statistically significant: F(1, 44) = 98.031, p < 0.00, 

F(1, 44) = 51.886, p < 0.01, F(1, 44) = 178.887, p < 0.01, and F(3, 44) = 3.629, p < 0.02, 

respectively. The results suggest that there were significant influences of sample size, 

task size, and types of conditional probability table, the types of transition probability 

table on the accuracy of estimate. Since the factor of TPT has four levels, the post-hoc 

Tukey HSD test was additionally conducted in order to determine which types of TPT 

were significantly different. The results indicate that the means of all types with respect 
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to type 1 were statistically significantly different (i.e. type 1 vs. type 2, d = .4176; type 1 

vs. type 3, d= .3900; type 1 vs. type 4, d= .4056).  It suggests that the mean of RMSD of 

the equal transition was significantly less than the other types of transition (favored any 

level on Learning Progression). Using η
2 

as the measure of effect size, the different types 

of the conditional probability tables had the largest effect size to explain the RMSD 

values. This factor accounted for 44% of the total variability in the RMSD of the CPT 

parameters. In the previous simulation study, the sample size and task size had the largest 

effect size in accounting for the total variability of the RMSD values of the CPT 

parameters. However, the quality of the task design seemed to be the most important 

factor in yielding precise and reliable estimates as the complexity of the model increased.  

Table 140  

 

Tukey HSD test for TPT 
 

  Mean Difference Std. Error P 

Type1 Type2 .4176 .14485 .030 

Type1 Type3 .3900 .14485 .047 

Type1 Type4 .4056 .14485 .037 

Type2 Type3 -.0277 .14485 .997 

Type2 Type4 -.0120 .14485 1.000 

Type 3 Type4 .0156 .14485 1.000 

The error term is Mean Square(Error) = .168. 

 

Furthermore, task size x CPT interaction effect was found to be statistically significant: 

F(1, 44) = 9.684, p = 0.03. This provides evidence that a joint effect of task size and task 

design affected the precision of estimates. To graphically understand the interaction 

effect, the profile plot of task size x CPT is displayed.  
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Note. The dotted line is the second conditional probability table and the solid line is the 

first conditional probability table.  

Figure 43. Estimated marginal means of the log transformed RMSD of CPT in terms of 

task size and conditional probability table. 

Discussion 

 

 Overall, it was observed that Bias, RMSD, and SDE were higher in the second 

simulation study than the first simulation study. That is, the more complex model yielded 

less precise and reliable estimates. That is because more complex latent variable model 

needs to estimate more parameters. Although some additional data from the covariate 

lead more precise estimation, in this study, the increase in model complexity had  more 

influence than  the additional information. To summarize the descriptive statistics and 

inference statistics, the results show that more samples reduced error variances for all 

probability distribution table parameters within the different conditions considered in this 

study. Regarding the task size, the results show that more tasks significantly increased the 



209 

 

precision of estimates for all probability distribution table parameters. The type of 

conditional probability tables had a significant effect on the precision of estimates for all 

parameters of the probability distribution table. It was observed that the mean of RMSD 

for the first type of conditional probability table was significantly smaller than the second 

type of conditional probability table. In summary, the results showed that when the 

conditional probabilities of each task with respect to each level were distinct, so that each 

task was relatively well designed for the purpose of classifying students according to the 

different levels, the error variances of estimates were dramatically reduced.  

Only the estimates of CPT parameters were influenced by the simulation 

condition of the different types of transition probability tables. Specifically, the equal 

transition produced a significantly lower RMSD value than the other unequal transitions 

(i.e., the transition of favor with level 0 and 1, the transition of favor with level 0 and 2, 

and the transition of favor with level 1 and 2). On the other hand, no matter what type of 

transition probability table was used, the results showed that the precision of estimates of 

DS parameters and TPT parameters were not influenced by the different types of 

transition probability tables. Regarding the condition of two types of distributions of a 

covariate, the precisions of estimates of all parameters were not influenced by the 

different types of covariate distribution. A similar pattern was observed for Bias values. 

In terms of the SDE values, the SDE values of the CPT parameters were relatively higher 

than the DS and TPT parameters. This suggests that the estimates of the conditional 

probability table of each task fluctuated more than other parameters in the complex 

model. Compared to the simulation study for the simple model, the quality of task design 
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was the most important factor in influencing the accuracy of estimates of all parameters 

in the complex model.    
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CHAPTER 8: APPLICATION OF MODEL 

Introduction to Data and Analysis Procedure 

 

An application with a real data study was conducted.  The data is taken from a 

course of the Cisco Networking Academy (CNA).  The CNA is a global program in 

which information technology is taught through a blended program of face to face 

classroom instruction, an online curriculum, and online assessment (West, et al, 2009). 

Each course contains several chapter exams and a final exam. Students take several 

chapter exams and a final exam during each course.  Therefore, the same students were 

measured several times over the course of the curriculum.  The target populations of the 

courses are high schools, 2- and 3-year community colleges and technical schools, and 4 

year colleges and universities.  For this application study, the learning progression of IP 

Addressing skills was used.  The LP of IP addressing skills has been identified by domain 

experts.  The LP originally contained five levels.  However, CISCO does not have any 

tasks for the highest level on the chapter exams at the course level addressed in this study, 

which means that there are not data with sufficient tasks at the highest level taken by the 

same students.  Therefore, this dissertation collapses level 4 and level 5.  In addition, the 

previous study (West, 2001) showed that the 4-Class model demonstrated the best fit to 

the data, based on statistical fit in terms of the BIC (Schwarz, 1978) and the bootstrapped 

likelihood ratio test (McLachlan & Peel, 2000; Nylund, Asparouhov, & Muthén, 2007) 

conducted in Mplus (Muthén & Muthén, 1998-2006).  The study examined IP addressing 

LP with 35 items as conditionally independent observable variables, dependent on a 

single discrete latent variable with values that indicate LP levels. Table 141 is the LP of 
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the IP Addressing skills used for this study.  Four levels were in the LP of the IP 

Addressing skills. Level 1 can be defined for novice students that possibly have pre-

course KSAs. Each level contains the descriptions of KSAs. 
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Table 141 

Learning Progression of IP Addressing Skill 

 

IP Addressing Skills Progression 

Level 1 –  Novice -Knowledge/Skill (possibly pre-course knowledge and skills) 

 1 

 

2 

 

3 

4 

5 

6 

 

 

Student can navigate the operating system to get to the appropriate screen to 

configure the address.   

Student knows that four things need to be configured:  IP address, subnet 

mask, default gateway and DNS server. 

Student can enter and save IP addressing information that has been provided. 

Student can use a web browser to verify network and or Internet 

connectivity. 

Student can verify that the provided information was correctly entered. 

Student knows that DNS translates names to IP addresses 

 

Level 2 – Basic – Knows Fundamental Concept 

1 Student understands that an IP address corresponds to a source or destination 

host on the network. 

2 Student understands that an IP address has two parts, one indicating the 

individual unique host and one indicating the network that the host resides 

on. 

3 Student understands how the subnet mask indicates the network and host 

portions of the address. 

4 Student understands the concept of local –vs- remote networks. 

5 Student understands the purpose of a default gateway and why it must be 

specified. 

6 Student knows that IP address information can be assigned dynamically. 

7 Student is able to create a simple IP addressing scheme based on host or 

network requirements. 

8 Describe the need and features of IPv6 addresses. 

Level 3 – Intermediate – Knows More Advanced Concepts 

1 Student understands the difference between physical and logical 

connectivity. 

2 Student understands the difference between Layer 2 and Layer 3 networks. 

3 Student understands that a local IP network corresponds to a local IP 

broadcast domain. (both the terms and the functionality) 

4 Student knows how a device uses the subnet mask to determine which 

addresses are on the local Layer 3 broadcast domain and which addresses are 

not. 
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5 Student can use the subnet mask to create an addressing scheme that 

accommodates design requirements for number of hosts per subnet and 

number of networks. 

6 Student understands why the default gateway IP address must be on the 

same local broadcast domain as the host. 

7 Student understands the ARP process and the role of Layer 2 addresses 

within a Layer 3 broadcast domain. 

8 Student knows how to interpret a network diagram in order to determine the 

local and remote networks. 

9 Student understands how DHCP dynamically assigns IP addresses. 

10 Student knows the purpose of private, public, and special reserved addresses 

such as multicast and loopback, IP address spaces and when to use either 

one. 

11 Student recognizes reserved IPv6 addresses. 

Level 4 –Advanced – Can Apply Knowledge and Skills in Context 

1 Student can create an IP addressing scheme for a network using VLSM  

2 Student can use a network diagram to find the local network where the 

configured host is located. 

3 Student can use a network diagram to find the other networks attached to the 

local gateway device. 

4 Student can use the PING utility to test connectivity to the gateway and to 

remote devices. 

5 Student can recognize the symptoms that occur when the IP address or 

subnet mask is incorrect. 

6 Student can recognize the symptoms that occur if an incorrect default 

gateway is configured. 

7 Student can recognize the symptoms that occur if an incorrect DNS server 

(or no DNS server) is specified. 

8 Student knows why DNS affects the operation of other applications and 

protocols, like email or file sharing. 

9 Student can use NSlookup output to determine if DNS is functioning 

correctly. 

10 Student can create a DHCP addressing scheme recognizing the importance 

of excluding addresses.  

11 Student is able to convert an IPv4 address to an IPv6 address. 

 

Since the tasks in CNA have enough information about what KSAs are measured 

through design pattern documents, the levels on LPs were able to be matched to each task. 
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Once the levels of the LP had been determined for each task by content experts, a DBIN 

was constructed in Netica.  

Twenty-six tasks and a sample size of 1450 students were used for this 

application study. The DBIN of this LP model after estimating the conditional probability 

table with the data set is Figure 45.   

 

Figure 44 DBIN representation of application study 

Estimation 

 

An EM algorithm was used in order to estimate the probability distributions on 

DBINs.  Netica can incorporate the prior information before the estimating starts with 

data. The prior information can be considered as part of the data by setting a weight to 

each probability of each variable. This analysis used 1 as the weight of the prior 

information. The prior probability of each variable was provided by a content expert. The 

use of the prior information helped to fix the label switching issue and to effect the 

constraint of no backward movement suggested by the substantive theory of LP research. 

The value of prior weight is approximately equivalent to the sample size in the nature of 



216 

 

its effect on posterior distributions for model parameters; hence the weight has sometimes 

been called the “equivalent sample size”. The prior values were used as the starting 

values of EM algorithm. The data analyses were investigated by two aspects regarding 

task inferences and student inferences.  

Task Inferences 

 

A task was classified as being “at the level” if it supported an interpretation that 

students reaching that level would likely be able to solve or complete the task, whereas 

students at lower levels would be unlikely to be successful. To classify tasks, the 

conditional probability table of each task was examined. The results indicated that most 

of the tasks discriminated between the targeted level and the remaining levels. For 

example, Figure 46 is the conditional probability table for task 7 at the first measurement 

provided by Netica. The conditional probability table shows clearly that students at level 

2, level 3, and level 4 are likely to successfully solve task 7, whereas students at level 1 

are unlikely to successfully solve task 7. Therefore, this task aids in classifying students 

between level 1 and the higher levels.  

 

Figure 45 Table 7 at the first measurement 



217 

 

As another example, Figure 47 shows the conditional probability table for task 7 at the 

second measurement.  It is seen clearly that only students at level 4 (the highest) level are 

likely to solve the task successfully, whereas students at the lower levels are unlikely to 

have a correct answer to the task. This task aids in distinguishing students at level 4 from 

the lower levels.  

 

Figure 46. Task 7 at the second measurement 

 

There were a few tasks that were not consistent with the expert based expectations 

provided by content experts.  For instance, Figure 48 displays the conditional probability 

table for task 5 at the second measurement.  It was suggested as being at level 4 by 

content experts, but it seems to aid in classifying students between at level 3-4 and at 

level 1-2 based on the data analysis.  
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Figure 47 Task 5 at the second measurement 

 

As another example, Figure 49 shows the conditional probability table for task 8 at the 

second measurement. This task was suggested as being at level 4 by content expert, but 

the data analysis showed that this task is useful for classifying students between at level 

1-2 and at level 3-4. 

   

Figure 48 Task 8 at the second measurement 

 

The last example is task 9 at the second measurement.  The content experts identified this 

task as being level 4, but the data analysis indicated that this task aids in classifying 

students between at level 3-4 and at level 1-2 (figure 50). 
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Figure 49 Task 9 at the second measurement 

 

Task 4, 6, and 20 at the first measurement and Task 3 and 6 at the second 

measurement were more ambiguous patterns in terms of their levels. For instance, the 

conditional probabilities demonstrated a pattern where students at the lower level have 

little higher probability of completing the task correctly than students at the higher level.   

Across all tasks, eighteen tasks out of 26 exhibited clear and distinct patterns and 

were consistent with the experts’ expectations. They classified between levels as 

predicted by experts.  However, three tasks out of 26 tasks seem to be mismatched with 

the experts’ expectations.  That is, they were not located at the expected levels.  Initial 

reviews of these results were passed on to content experts to provide feedback that would 

help the tasks more sharply target the concepts at their intended levels.  

Student Inferences 

 

Once the response pattern had been observed, the conditional probability tables of 

the LPs also provide information about student levels at two measurements.  The 

information about a student response patterns is propagated through the network via 
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Bayes theorem to yield posterior distributions of student levels on the LP. The posterior 

distribution provides the probabilities that a student has reached a specified level.  On this 

basis, it can be inferred that the student is likely to have reached one of the levels.  For 

instance, Figure 46 contains the DBIN for a student who has completed 21 tasks at the 

first measurement. 

 

Figure 50 DBIN for a student who has complete 21 tasks at the first measurement 

 

The student has the response pattern of [1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,0,0] at the first 

measurement. On the basis of this evidence, the posterior distributions for the student’s 

LP1 and LP2 indicate that the student has a probability of being at levels 1-4 

of .002, .179, .807, and .146, respectively at the first measurement and a probability of 

being at levels 1-4 of .000, .048, .442, and .510. On this basis it may be inferred that the 

student is more likely to be level 3 at the first measurement and is more likely to be level 

3 and level 4 at the second measurement.  However, there still remains uncertainty. The 

inclusion of more evidence from the data collection would help to reduce uncertainty 

regarding the student inference at the second measurement.  
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Transition Probabilities 

 

In addition to the inference of a student’s level change over time, the DBIN offers 

the probabilities of the transition between two measurements through the transition 

probability table.  Before cleaning abnormal data, the strange and awkward transition 

from level 4 down to level 1 was observed although the prior distribution was imposed. It 

means that if the data strongly indicated backwards transitions, they could appear in the 

posteriors. This finding helped to detect some problematic cases (e.g., students who got 

all tasks correctly at the first measurement, but got all missing responses or all tasks 

incorrect at the second measurement). After cleaning the problematic data set, the results 

were more plausible. Figure 51 is the resulting transition probability table, which shows 

the probabilities of students having reached each level at the second measurement given 

their levels at the first measurement.  For instance, 19.7% of students at level 1 at the first 

measurement had moved to level 2 at the second measurement.  For the backward 

transition movements, almost zero probabilities were estimated.  That was because not 

only a constraint of no-backward movements was set using the prior information, but also 

because the data indicated little or no evidence of this phenomenon. With this 

information, we can infer the proportions of students that stay at the same level and move 

to different higher levels between the two consecutive measurements.  
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Figure 51Transition probability table 

Communicating with Content Experts 

 

The results based on empirical data analysis can serve to aid the development of 

KSAs that constitute the LP and student inferences.  In some cases, the results for tasks 

were consistent with the expert-based expectation.  For other tasks, the results were more 

ambiguous or suggest an alternative interpretation to that of the experts.  The results of 

the data analysis may be taken back to the content experts for consultation and possible 

refinements in terms of the definition of the LP, the tasks that assess the aspects of the LP, 

and the utility of additional tasks for modeling students’ progression.   

       Among three tasks that were not consistent with the expert expectations, the 

content expert agreed that the level of Task 5 needed to be refined. Task 5 was originally 

identified as at being level 4 by the content expert, but the data analysis suggested that 

the task would be useful for classifying students between level 1-2 and level 3-4 (Figure 

48). 

The content expert commented that the Task 8 and Task 9 fit perfectly into the 

levels that have been originally identified although the data analysis suggested the 

different levels.  However, he has pointed that Task 8 requires cognitively simple recall 

process to complete the task, which might make them easier than other tasks at the same 
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levels.  In other words, although the tasks measure the higher level of KSAs in terms of 

content, they required a lower level of cognitive ability to solve the tasks. This may be a 

possible reason that the data analysis suggested the lower level (level 3) rather than their 

expectation (level 4).  The content expert had a strong belief that task 9 should keep the 

same level originally identified. The task has relatively higher p-value (0.7) than other 

tasks in the same level (level 4).  Therefore, there may be other factors that influence the 

level of task difficulty such as difficult distracters and task format. Table 142 shows the 

summary of the agreement between expectation and data analysis.  P-value (i.e., percent-

correct) does not provide sufficient information to see if a task is cofrrectly located. For 

instance, Task 1 at the first measurement seems to be incorrectly located based on the p-

value (i.e., it has relatively low p-value). However, the task performed very well for 

classifying the students between at level 1 and level 2, 3, and 4 (Figure 52). 

 

 

Figure 52. Task 1 at the first measurement 
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 Table 142 

Consistency of expert expectation and data analysis 

Chapter 6 

Task Expectation Data Suggestion P-value 

LP1_Task1 Level 2 Level 2 0.560 

LP1_Task2 Level 2 Level 2 0.874 

LP1_Task3 Level 2 Level 2 0.922 

LP1_Task4 Level 2 Ambiguous 0.923 

LP1_Task5 Level 2 Level 2 0.509 

LP1_Task6 Level 2 Ambiguous 0.874 

LP1_Task7 Level 2 Level 2 0.796 

LP1_Task8 Level 3 Level 3 0.587 

LP1_Task9 Level 3 Level 3 0.655 

LP1_Task10 Level 3 Level 3 0.683 

LP1_Task11 Level 3 Level 3 0.706 

LP1_Task12 Level 3 Level 3 0.732 

LP1_Task13 Level 3 Level 3 0.690 

LP1_Task14 Level 3 Level 3 0.680 

LP1_Task19 Level 4 Level 4 0.757 

LP1_Task20 Level 4 Ambiguous 0.760 

LP1_Task21 Level 4 Level 4 0.603 

 

Final Exam 

Task Expectation Data Suggestion P-value Comments 

LP2_Task1 Level 2 Level 2 0.745257  

LP2_Task2 Level 2 Level 2 0.596841  

LP2_Task3 Level 3 Ambiguous 0.522898  

LP2_Task4 Level 3 Level 3 0.702869  

LP2_Task5 Level 4 Level 3 0.733876 Refined as level 3  

LP2_Task6 Level 4 Ambiguous 0.608219  

LP2_Task7 Level 4 Level 4 0.557299  

LP2_Task8 Level 4 Level 3 0.754278 Cognitively simple 

LP2_Task9 Level 4 Level 3 0.703274  
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CHAPTER 9: CONTRIBUTIONS, LIMITATIONS, AND FUTURE STUDY 

 

Contributions of This Study 

 

Formative assessments are increasingly of interest in the field of education where 

the focus of assessment is moving toward assessing students’ learning progress during 

instruction rather than focusing only on their end of program achievements. The use of 

formative assessment is being expanded to identify a gap between actual student levels 

and desired levels of performance and to provide information for reducing student 

weaknesses.  For this purpose, an assessment must produce evidence for revealing 

student levels and their change over time. The DBIN is a useful statistical modeling 

method that can make inferences about level change over time when task design and 

theory provide not only a theoretical framework for creating and modeling observable 

evidence, but also information about the nature and structure of expected change.  It 

provides real-time updating of estimates for student level during instruction, so that it 

offers beneficial information to students, instructors, and curriculum developers for 

enhancing student learning.  

 Simulation-based assessments, learning systems, and intelligent tutoring systems 

increasingly have captured attention in education with some potential benefits (VanLehn, 

2006). The learning systems have students enter steps leading up to the solution of a 

problem and it can give feedback and hints on those steps as well as the final answer 

(Corbett, Koedinger, & Anderson, 1997; Rickel, 1989; VanLehn, 2006).  Therefore, 

learning systems can gather information about student performances on intermediate 
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steps as well as the final answer, so that they can measure not only what a student knows, 

but also how a student solves problems and what strategies the student used to complete a 

task. It offers information about which parts or steps are difficult for a student to learn as 

well as how well the student is doing during a course. In order to obtain such evidence, 

decisions must be made about monitoring learning and making instructional choices. 

Bayes nets have been useful on this level (VanLehn, 2006). For instance, a set of 

knowledge components corresponding to the steps or small pieces of domain knowledge 

that a student should learn can be built as the nodes of Bayes nets. Then, the probability 

of mastery of a knowledge component (each node in Bayes nets) can be estimated. The 

distribution of the probabilities of each knowledge component can reveal which 

knowledge components have lower probabilities of mastery and higher probabilities of 

mastery. The knowledge components having lower probabilities can indicate the concepts 

that students have difficulty understanding.  Whereas, the knowledge components having 

higher probabilities can indicate the concepts that students understand well.  

In addition to formative assessment and learning systems, LPs are increasingly of 

interest in education. The research related to LPs informs the state of a student with 

respect to their level of understanding of a given concept and diagnostic information 

regarding the strengths and weaknesses of a student’s understanding along a curriculum. 

Furthermore, the study of LPs offers the opportunity to explore how students build their 

KSAs over time, and what evidence is needed not only for assessing students’ learning, 

but also for evaluating and refining the defined learning progressions, curricula, and 

instructions.  
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However, there has been relatively little work on measurement modeling in the 

context of LPs, Challenges arise in many areas of LPs research, including (1) designing a 

coherent assessment system, (2) inferring student learning progression levels based on the 

responses to assessment tasks, and (3) interpreting the difference between expected and 

observed students’ progress mapped to the conceptually-defined learning progression.  

More specifically, in terms of inferential challenges of modeling LPs, issues have arisen, 

including (1) deciding what methodologies can be used for the inference about students’ 

learning progression levels based on student performance on a set of assessment tasks, (2) 

determining how students’ inconsistent patterns can be explained and modeled, (3) 

determining how observed student responses could be compared to expected student 

response, and (4) understanding how the substance of learning progressions and 

assessment tasks could be refined by the implications of differences between observed 

and expected responses.  Bayes nets can be a useful tool for modeling LPs by linking the 

theory embodied in a progression, tasks that provide evidence about a student’s level on 

that progression, and psychometric models that can characterize the relationship between 

student performance and levels on learning progressions.  

DBINs are a framework for modeling LPs in a longitudinal design approach. This 

dissertation showed the potential benefits of using BINs for this purpose, focusing on the 

dynamic case. This dissertation extends the paradigm to changes over time, and 

additionally includes a covariate structure that can be useful for guiding and evaluating 

instructional options. The extension that incorporates a covariate for students is useful for 
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studying the effect of instructional treatments, students’ background, and motivation on 

student learning progressions.  

The BIN approach has the advantage of building on a structure that can be based 

on theory and expert opinion, and then data can be accumulated for improving the 

estimates. Since it is a flexible statistical modeling framework that can build any 

statistical model in accordance with substantive theory, it can be utilized for a complex 

performance assessment as well as a simple assessment. In other words, it can be easily 

extended to complex tasks or multiple aspects of a performance, and also provide real-

time updating of estimates for students’ proficiency. In the LP research, the work of BINs 

in light of LPs helps make LPs more useful other than providing student inferences with 

respect to the level on a LP. Using BINs to model LPs can help lead to efficient and valid 

task design. The process of identifying initial LPs helps test developers focus on the 

theory of cognition in the domain and defines the characteristics of individuals at various 

levels of the LP. BINs confirm these levels and progressions by comparing the results 

from data analysis, allowing task designers to specify the levels of KSAs at which they 

are aiming assessment tasks. This helps make task design more principled, well planned, 

and ultimately more valid. The BINs also help connect curriculum to assessment. For 

example, curriculum designers can take information from a BIN structure and make 

decisions about which content areas are more important to emphasize so that students 

will have a greater probability of mastering future KSAs (DiCerbo & Behrens, 2008). 

Although BIN provides a promising means by which to model student 

performance and their flexibility makes them particularly useful in modeling a various 
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range of assessment situations, there are many decisions that must be made when 

building a BIN for modeling an assessment. The structure of the relation among variables 

must be determined. The structure can be determined by communicating with content 

experts as well as by using statistical methods such as Structural Equation Modeling. In 

addition, it may need information about the probability distributions of variables in the 

BIN as prior information. While the probability distributions can be determined from data, 

the structure can be determined before data is collected. Therefore, it is important to keep 

in mind the purpose of the assessment in order to determine which relations are important 

to model. This process is not always straightforward and may require some iterative work 

before the model can be said to be good enough. 

Limitations of the Current Study 

 

 This current study was initially designed for modeling a LP over two 

measurements. The study focused on two inferences: (1) how well a task classifies 

students with different levels on a LP (quality of a task in terms of a classification) and (2) 

what would a student’s learning path be over two measurements given a LP. The first 

question can be answered by investigating the conditional probability table of a task. This 

current study did not address the statistical methods that can evaluate the power of a task 

as to how well the task discriminates among students with different LP levels, but the 

conditional probability tables have been inspected to see if there is a distinct pattern. The 

use of analytic methods such as computing the odds ratio could provide more accurate 

information about the quality of a task. Regarding the student inference about a path over 

multiple time points through a LP, this current study was designed only for two 
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measurements. However, it may also be of interest to monitor the level change over more 

than two measurements. If the situation where students are measured more than two times 

is considered, it may be of interest to consider the higher-order Markov property other 

than the first-order Markov property.  This current study considered the first-order 

Markov property in the transition probability table because two measurements were 

designed.  The designing of DBINs with more than two measurements with the higher-

order Markov property could reflect a more realistic educational setting.   

This current study explored the forward movement transition (i.e., there are no 

backward movements) in order to coincide with the substantive theory of LPs.  This 

constraint may be very strong, but this is a good candidate to start to learn about DBIN 

for modeling LP. Other types of movement can be easily designed by imposing 

constraints.  The other types of movements could be built in accordance with the 

substantive theory or the system of curriculum and instruction during a course.  For 

instance, researchers may be interested in a situation where once a student passed a 

certain level, the student could move to the adjacent levels at the next measurement.  If 

there is no theory or background information, the appropriate transition model can be 

determined by statistical model comparison with data.  

On the estimation, Bayesian method was used by incorporating prior information. 

Therefore, the estimates were influenced by prior information as well as data.  Netica has 

a function of what degree prior information influences the estimates. The current study 

used one degree as a weight of prior information (i.e., theoretically, one degree is 

equivalent to a sample size of 1). This is very mild prior information.  However, the 
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effect of prior information on the estimates has not been carefully investigated in this 

study.    

Through the preliminary analysis and literature review, only two different 

conditions of sample size and task size were chosen in the simulation studies. However, 

different sample sizes and task sizes other than the conditions considered could be of 

interest.  

In the second simulation study, a covariate was incorporated into the simple 

DBIN model. This covariate was considered as a manifest variable, which the 

observations regarding the covariate have been made before starting the estimation.  In 

other words, group membership of each student in terms of a covariate is known. 

However, a latent variable such as motivation, attitude, and intelligence could be 

considered as a covariate.  In this case, observable variables posited to depend on it, such 

as responses to a survey or to an interviewer, would be included in the model as 

indicators of the latent covariate. 

The item equating that this current study used is essentially concurrent calibration. 

It is assumed that there is no item parameter drift. However, to the extent that there is 

drift, it introduces a tendency to overestimate examinee’s capabilities. This possibility is 

beyond the scope of the current study.  

The current study did not examine all possible conditions in the two simulation 

studies. This does not reflect all possible situations in real educational setting.  
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Issues for Future Study 

 

Multidimensionality.  This current study was initially designed with one LP 

variable corresponding to a domain. However, more than one LP reflecting more than 

one domain may be of interest to be modeled over time. For example, tasks can depend 

on more than one LP and students might have different learning patterns in terms of 

multiple LPs representing different domains. More specifically, a task may require a 

student to be at higher level on one LP while additionally requiring a lower level on 

another LP. In the case of multiple LPs, different learning paths along the multiple LPs 

can be modeled over time. Modeling multidimensional LPs for can be investigated in a 

future study.  

Different types of transition movement. The current study considered only the 

forward transition movement in the two simulation studies because the forward transition 

movement is the most appropriate structure for representing student movements along a 

LP. This is a strong constraint but a usual hypothesis and the first natural one to learn 

about DBIN for modeling LP. However, there can be different types of transition 

structures such as the backward transition movement and all transition movement. The 

modeling of the transition probability matrix is very flexible, as effected by imposing 

different types of restrictions depending on theory (Kaplan, 2008). The transition 

probability matrix for the forward movements can be modeled by imposing a constraint 

that all transition probabilities in backward movements are zeros. Different patterns in 

transition matrices depending on substantive theory can be modeled by imposing some 

restrictions by (1) constraining sets of transition probabilities to be equal to zero, (2) 
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restricting them to be a particular value, or (3) fixing them to be equal to each other. The 

scope of this dissertation was the investigation of the forward transition movement, 

which is the most appropriate structure for representing LPs. It is left to future studies to 

investigate the selection of the best fit transition movement structure.  

Higher-order Markov property. The current study investigated the first-order 

Markov property to explain transition movements. However, there may be situations that 

a student’s status at more than one previous time point affects the student’s current status 

(higher-order Markov property).  The investigation of the higher-order Markov property 

is left to future study. Moreover, the two simulation studies included in this dissertation 

only considered two measurement time points. If the higher-order Markov property is 

investigated, more than two measurement time points would be necessary in the future 

study.   

Psychometric model.  Parameters of both transition probability table and 

conditional probability table can put into parametric forms such as the Samejima-Dibello 

model (Mislevy et al, 2002).  These models increase the complexity of the mathematical 

structure of the model, but reduce the number of parameters to be estimated and thus can 

improve stability and accuracy in estimation. Addressing these models as compared to an 

unconstrained BIN framework would be of interest in the future study.   

Prior Information. The current study uses prior information to control the label 

switching issue, but the effect of different prior information on parameter recovery was 

not investigated in this dissertation. BINs can have different weights of prior information 



234 

 

when estimating parameters.  Effects of prior information on parameter recovery can be 

investigated in future studies.  
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Appendix A: Bayesian Inference Network: Belief Updating through Junction Tree 

method 

 

The junction tree method is a popular method that most of the software packages of 

BINs are used. The belief updating through junction tree algorithm can follow the seven 

steps below (Almond, Mislevy, Steinberg, Williamson, and Yan, in progress). 

(1) Recursive representation of the joint distribution of variables 

(2) Acyclic directed graph representation of the probability distribution 

(3) Representation as a moralized and triangulated undirected graph 

(4) Determination of cliques and clique intersections 

(5) Junction tree representation 

(6) Potential tables 

(7) Calculations with potential tables 

(8) Receiving evidence 

(9) Updating potential tables 

 

For example, the DAG (figure 10) can be transferred to a junction tree representation  

 

 

 

Figure A.1. A junction tree of the acyclic directed graph  

 

The nodes containing both variables, {A,B} and {B,C}, express interrelationships among 

variables that directly influence one another, called clique nodes.  The node for the 

individual variable, {B}, is the intermediate area where information common to adjacent 

P(A,B)   P(B) P(B,C) 
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cliques, called intersection nodes, is found.  Each node in the junction tree stores a 

potential table.  The calculation of potential tables can start with the clique nodes.  

Suppose that there are hypothetical probability distributions of P(B|A), P(C|B), and P(A).  

Table A1  

 

Probability distribution of P(A) 

 

            Variable A 

Values A1=0 A2=1  

Probability 0.5 0.5  

  

Table A2 

 

Probability distribution of P(B|A)  

 

  Variable B 

  B1=0 B2=1 

Variable A A1=0 0.3 0.7 

 A2=1 0.8 0.2 

 

Table A3 

 

Probability distribution of P(C|B)  

 

  Variable C 

  C1=0 C2=1 

Variable B B1=0 0.8 0.2 

 B2=1 0.6 0.4 

 

By combining two probability distributions of P(A) and P(B|A), a potential 

corresponding to the clique node of {A,B} can be constructed. 

 

P(A1=0, B1=0) = P(B1=0| A1=0)P(A1=0) =0.3 * 0.5 = 0.15 

P(A2=1, B1=0) = P(B1=0| A2=1)P(A2=1) =0.8 * 0.5 = 0.40 

P(A1=0, B2=1) = P(B2=1| A1=0)P(A1=0) =0.7 * 0.5 = 0.30 

P(A2=1, B2=1) = P(B1=1| A1=1)P(A1=1) =0.2 * 0.5 = 0.10 
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Table A4 

 

A Potential Table of {A,B}  

 

  Variable B  

  B1=0 B2=1 Sum 

Variable A A1=0 0.15 0.35 0.50 

 A2=1 0.40 0.10 0.50 

 Sum 0.55 0.45 1 

 

From the potential of {A,B}, the potential of the intersection node of {B} can be 

calculated by marginalizing out the variable A.   

 

Table A5 

 

 A Potential Table of {B} 

 

            Variable B 

Values B1=0 B2=1  

Probability 0.55 0.45  

  

The potential of {B} connects to the new clique node of {B,C}. Through the same 

procedure, the potential of the {B,C} can be computed by combining the probability 

distributions of P(B) and P(C|B). 

 

P(B1=0, C1=0) = P(C1=0| B1=0)P(B1=0) =0.8 * 0.55 = 0.44 

P(B2=1, C1=0) = P(C1=0| B2=1)P(B2=1) =0.6 * 0.45 = 0.27 

P(B1=0, C2=1) = P(C2=1| B1=0)P(B1=0) =0.2 * 0.55 = 0.11 

P(B2=1, C2=1) = P(C1=1| B1=1)P(B1=1) =0.4 * 0.45 = 0.18 
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Table A6  

 

A Potential Table of {B,C}  

 

  Variable C  

   C1=0 C2=1  Sum 

Variable B B1=0 0.44 0.11 0.55 

 B2=1 0.27 0.18 0.35 

 Sum 0.71 0.29 1 

 

Lastly, the potential of {C} can be calculated by marginalizing out the variable B.   

Table A7 

 

 Potential Table of {C} 

 

            Variable C 

Values C1=0 C2=1  

Probability 0.71 0.29  

 

 

The updating belief can be carried out with the junction tree in the same matter, once 

evidence (observation),{e}, has arrived about variable C.  Suppose the observation about 

variable C is as follows: 

Table A8 

 

 Evidence for {C} 

 

            Variable C 

Values C1=0 C2=1  

Probability 1 0  

 

By combining {e} with the previous potential of {B,C}, the potential of {B,C} is updated, 

referred as new{B,C|e}.   
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      newP(B1=0, C1=0) = oldP(B1=0, C1=0) P(C1=0) =0.44 * 1 = 0.44 

     newP(B2=1, C1=0) = oldP(B2=1, C1=0) P(C1=0) =0.27 * 1= 0.27 

newP(B1=0, C2=1) = oldP(B1=0, C2=1) P(C2=1) =0.11* 0 = 0 

newP(B2=1, C2=1) = oldP(B2=1, C2=1) P(C2=1) =0.18 * 0 = 0 

 

Table A9  

 

A New Potential Table of {B,C|e}  

 

  Variable C  

   C1=0 C2=1 Sum 

Variable B B1=0 0.44*1 0.11*0 0.44 

 B2=1 0.27*1 0.18*0 0.27 

 Sum 0.71 0 0.71 

 

By marginalizing out variable C, the new potential of {B} can be computed.  The new {B} 

is an intersection node in the junction tree, connecting two clique nodes.  Since there is 

the old potential of {B}, the adjustment can be obtained by dividing the new potential of 

{B} by the old one. 

 

Table A10 

 

A Potential Table for {B} 

 

                        Variable B 

Values B1=0 B2=1  

Probability 0.44/0.55=0.8 0.27/0.45=0.6  

 

Lastly, the potential of {A,B} is updated by combining the adjusted potential of {B} and 

the old potential of {A,B}.   

   newP(A1=0, B1=0) = oldP(A1=0, B1=0) P(B1=0) = 0.15 * 0.8 = 0.12 

 newP(A2=1, B1=0) = oldP(A2=1, B1=0) P(B1=0) = 0.4 * 0.8 = 0.32 

   newP(A1=0, B2=1) = oldP(A1=0, B2=1) P(B2=1) = 0.35 * 0.6 = 0.21 

 newP(A2=1, B2=1) = oldP(A2=1, B2=1) P(B2=1) = 0.1 * 0.6 = 0.06 
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Table A11 

 

A Potential Table of {A,B}  

 

  Variable B  

  B1=0 B2=1 Sum 

Variable A A1=0 0.12 0.21 0.33 

 A2=1 0..32 0.06 0.38 

 Sum 0.44 0.27 0.71 

 

The clique node {A,B} is the last node in the Junction tree, so the procedure of updating 

the BIN is complete.  The joint distribution of the tree is P(A,B,C|e). If one wants to 

interpret the marginal probability distributions for one or more variables, the values of the 

potential tables are necessary to be normalized to sum to one (Almond, Mislevy, 

Steinberg, Williamson, & Yan, in progress). For instance, the normalization constant of 

{A} is 0.71. The marginal probability of potential of {A} is normalized by dividing each 

probability by the normalization constant. The normalization of the potential table of {A } 

is as follows: 

 

P(A1=0) = 0.33/0.71 = 0.365 

P(A2=1) = 0.38/0.71 = 0.535 

 

Table A12  

 

A normalized probability table of variable A 

 

                         Variable A 

Values A1=0 A2=1 Sum  

Probability 0.33 0.38 0.71  

Normalized  0.365 0.535 1  
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Table A12 is the posterior probability table of variable A updated by the observation of 

variable C.  Compared to the prior probability table of variable A (table A1), it is shown 

that the probability of each state on variable A has changed and learned from observation 

of variable C.   
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Appendix B: Netica C-API syntax  

 

 

#include <stdio.h> 

#include <stdlib.h> 

#include "Netica.h" 

#include "NeticaEx.h" 

 

#define CHKERR  {if (GetError_ns (env, ERROR_ERR, NULL))  goto error;} 

 

environ_ns* env; 

 

int main (void){ 

 net_bn *net = NULL; 

node_bn 

*T1,*T2,*T3,*T4,*T5,*T6,*T7,*T8,*T9,*T10,*T11,*T12,*T13,*T14,*T15,*T1

6,*T17,*T18,*T19,*T20,*T21,*T22,*T23,*T24,*T25,*T26,*T27,*T28,*T29,*T

30, 

*Ta1,*Ta2,*Ta3,*Ta4,*Ta5,*Ta6,*Ta7,*Ta8,*Ta9,*Ta10,*Ta11,*Ta12,*Ta13,*

Ta14,*Ta15,*Ta16,*Ta17,*Ta18,*Ta19,*Ta20,*Ta21,*Ta22,*Ta23,*Ta24,*Ta25

,*Ta26,*Ta27,*Ta28,*Ta29,*Ta30, 

 *Mone,*Mtwo; 

 const nodelist_bn* nodes; 

 state_bn parent_states[10]; 

 stream_ns* casefile = NULL; 

 caseset_cs* cases = NULL; 

 learner_bn *learner = NULL; 

 char mesg[MESG_LEN_ns]; 

 int res; 

 report_ns* err; 

 int pn; 

 

 env = NewNeticaEnviron_ns (NULL, NULL, NULL); 

 res = InitNetica2_bn (env, mesg); 

 printf ("%s\n", mesg); 

 if (res < 0)  exit (-1); 

  

 /* Build the net */ 

 

 net = NewNet_bn ("Sim1_task30", env); 

 CHKERR 

 

 T1 = NewNode_bn ("T1", 2, net); 

 T2 = NewNode_bn ("T2", 2, net); 



243 

 

 T3 = NewNode_bn ("T3", 2, net); 

 T4 = NewNode_bn ("T4", 2, net); 

 T5 = NewNode_bn ("T5", 2, net); 

 T6 = NewNode_bn ("T6", 2, net); 

 T7 = NewNode_bn ("T7", 2, net); 

 T8 = NewNode_bn ("T8", 2, net); 

 T9 = NewNode_bn ("T9", 2, net); 

 T10 = NewNode_bn ("T10", 2, net); 

 T11 = NewNode_bn ("T11", 2, net); 

 T12 = NewNode_bn ("T12", 2, net); 

 T13 = NewNode_bn ("T13", 2, net); 

 T14 = NewNode_bn ("T14", 2, net); 

 T15 = NewNode_bn ("T15", 2, net); 

 T16 = NewNode_bn ("T16", 2, net); 

 T17 = NewNode_bn ("T17", 2, net); 

 T18 = NewNode_bn ("T18", 2, net); 

 T19 = NewNode_bn ("T19", 2, net); 

 T20 = NewNode_bn ("T20", 2, net); 

 T21 = NewNode_bn ("T21", 2, net); 

 T22 = NewNode_bn ("T22", 2, net); 

 T23 = NewNode_bn ("T23", 2, net); 

 T24 = NewNode_bn ("T24", 2, net); 

 T25 = NewNode_bn ("T25", 2, net); 

 T26 = NewNode_bn ("T26", 2, net); 

 T27 = NewNode_bn ("T27", 2, net); 

 T28 = NewNode_bn ("T28", 2, net); 

 T29 = NewNode_bn ("T29", 2, net); 

 T30 = NewNode_bn ("T30", 2, net); 

 

 Ta1 = NewNode_bn ("Ta1", 2, net); 

 Ta2 = NewNode_bn ("Ta2", 2, net); 

 Ta3 = NewNode_bn ("Ta3", 2, net); 

 Ta4 = NewNode_bn ("Ta4", 2, net); 

 Ta5 = NewNode_bn ("Ta5", 2, net); 

 Ta6 = NewNode_bn ("Ta6", 2, net); 

 Ta7 = NewNode_bn ("Ta7", 2, net); 

 Ta8 = NewNode_bn ("Ta8", 2, net); 

 Ta9 = NewNode_bn ("Ta9", 2, net); 

 Ta10 = NewNode_bn ("Ta10", 2, net); 

 Ta11 = NewNode_bn ("Ta11", 2, net); 

 Ta12 = NewNode_bn ("Ta12", 2, net); 

 Ta13 = NewNode_bn ("Ta13", 2, net); 

 Ta14 = NewNode_bn ("Ta14", 2, net); 

 Ta15 = NewNode_bn ("Ta15", 2, net); 
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 Ta16 = NewNode_bn ("Ta16", 2, net); 

 Ta17 = NewNode_bn ("Ta17", 2, net); 

 Ta18 = NewNode_bn ("Ta18", 2, net); 

 Ta19 = NewNode_bn ("Ta19", 2, net); 

 Ta20 = NewNode_bn ("Ta20", 2, net); 

 Ta21 = NewNode_bn ("Ta21", 2, net); 

 Ta22 = NewNode_bn ("Ta22", 2, net); 

 Ta23 = NewNode_bn ("Ta23", 2, net); 

 Ta24 = NewNode_bn ("Ta24", 2, net); 

 Ta25 = NewNode_bn ("Ta25", 2, net); 

 Ta26 = NewNode_bn ("Ta26", 2, net); 

 Ta27 = NewNode_bn ("Ta27", 2, net); 

 Ta28 = NewNode_bn ("Ta28", 2, net); 

 Ta29= NewNode_bn ("Ta29", 2, net); 

 Ta30 = NewNode_bn ("Ta30", 2, net); 

 

 

 Mone = NewNode_bn ("Mone", 4, net);// the latent node; 

 Mtwo = NewNode_bn ("Mtwo", 4, net);// the latent node; 

 

 SetNodeStateName_bn (T1, 0, "correct"); 

 SetNodeStateName_bn (T1, 1, "incorrect"); 

 SetNodeStateName_bn (T2, 0,"correct"); 

 SetNodeStateName_bn (T2, 1,"incorrect"); 

 SetNodeStateName_bn (T3, 0, "correct"); 

 SetNodeStateName_bn (T3, 1, "incorrect"); 

 SetNodeStateName_bn (T4, 0,"correct"); 

 SetNodeStateName_bn (T4, 1,"incorrect"); 

 SetNodeStateName_bn (T5, 0,"correct"); 

 SetNodeStateName_bn (T5, 1,"incorrect"); 

 SetNodeStateName_bn (T6, 0, "correct"); 

 SetNodeStateName_bn (T6, 1, "incorrect"); 

 SetNodeStateName_bn (T7, 0,"correct"); 

 SetNodeStateName_bn (T7, 1,"incorrect"); 

 SetNodeStateName_bn (T8, 0, "correct"); 

 SetNodeStateName_bn (T8, 1, "incorrect"); 

 SetNodeStateName_bn (T9, 0,"correct"); 

 SetNodeStateName_bn (T9, 1,"incorrect"); 

 SetNodeStateName_bn (T10, 0,"correct"); 

 SetNodeStateName_bn (T10, 1,"incorrect"); 

 SetNodeStateName_bn (T11, 0, "correct"); 

 SetNodeStateName_bn (T11, 1, "incorrect"); 

 SetNodeStateName_bn (T12, 0,"correct"); 

 SetNodeStateName_bn (T12, 1,"incorrect"); 
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 SetNodeStateName_bn (T13, 0, "correct"); 

 SetNodeStateName_bn (T13, 1, "incorrect"); 

 SetNodeStateName_bn (T14, 0,"correct"); 

 SetNodeStateName_bn (T14, 1,"incorrect"); 

 SetNodeStateName_bn (T15, 0,"correct"); 

 SetNodeStateName_bn (T15, 1,"incorrect"); 

 SetNodeStateName_bn (T16, 0, "correct"); 

 SetNodeStateName_bn (T16, 1, "incorrect"); 

 SetNodeStateName_bn (T17, 0,"correct"); 

 SetNodeStateName_bn (T17, 1,"incorrect"); 

 SetNodeStateName_bn (T18, 0, "correct"); 

 SetNodeStateName_bn (T18, 1, "incorrect"); 

 SetNodeStateName_bn (T19, 0,"correct"); 

 SetNodeStateName_bn (T19, 1,"incorrect"); 

 SetNodeStateName_bn (T20, 0,"correct"); 

 SetNodeStateName_bn (T20, 1,"incorrect"); 

 SetNodeStateName_bn (T21, 0, "correct"); 

 SetNodeStateName_bn (T21, 1, "incorrect"); 

 SetNodeStateName_bn (T22, 0,"correct"); 

 SetNodeStateName_bn (T22, 1,"incorrect"); 

 SetNodeStateName_bn (T23, 0, "correct"); 

 SetNodeStateName_bn (T23, 1, "incorrect"); 

 SetNodeStateName_bn (T24, 0,"correct"); 

 SetNodeStateName_bn (T24, 1,"incorrect"); 

 SetNodeStateName_bn (T25, 0,"correct"); 

 SetNodeStateName_bn (T25, 1,"incorrect"); 

 SetNodeStateName_bn (T26, 0, "correct"); 

 SetNodeStateName_bn (T26, 1, "incorrect"); 

 SetNodeStateName_bn (T27, 0,"correct"); 

 SetNodeStateName_bn (T27, 1,"incorrect"); 

 SetNodeStateName_bn (T28, 0, "correct"); 

 SetNodeStateName_bn (T28, 1, "incorrect"); 

 SetNodeStateName_bn (T29, 0,"correct"); 

 SetNodeStateName_bn (T29, 1,"incorrect"); 

 SetNodeStateName_bn (T30, 0,"correct"); 

 SetNodeStateName_bn (T30, 1,"incorrect"); 

   

 SetNodeStateName_bn (Ta1, 0, "correct"); 

 SetNodeStateName_bn (Ta1, 1, "incorrect"); 

 SetNodeStateName_bn (Ta2, 0,"correct"); 

 SetNodeStateName_bn (Ta2, 1,"incorrect"); 

 SetNodeStateName_bn (Ta3, 0, "correct"); 

 SetNodeStateName_bn (Ta3, 1, "incorrect"); 

 SetNodeStateName_bn (Ta4, 0,"correct"); 
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 SetNodeStateName_bn (Ta4, 1,"incorrect"); 

 SetNodeStateName_bn (Ta5, 0,"correct"); 

 SetNodeStateName_bn (Ta5, 1,"incorrect"); 

 SetNodeStateName_bn (Ta6, 0, "correct"); 

 SetNodeStateName_bn (Ta6, 1, "incorrect"); 

 SetNodeStateName_bn (Ta7, 0,"correct"); 

 SetNodeStateName_bn (Ta7, 1,"incorrect"); 

 SetNodeStateName_bn (Ta8, 0, "correct"); 

 SetNodeStateName_bn (Ta8, 1, "incorrect"); 

 SetNodeStateName_bn (Ta9, 0,"correct"); 

 SetNodeStateName_bn (Ta9, 1,"incorrect"); 

 SetNodeStateName_bn (Ta10, 0,"correct"); 

 SetNodeStateName_bn (Ta10, 1,"incorrect"); 

 SetNodeStateName_bn (Ta11, 0, "correct"); 

 SetNodeStateName_bn (Ta11, 1, "incorrect"); 

 SetNodeStateName_bn (Ta12, 0,"correct"); 

 SetNodeStateName_bn (Ta12, 1,"incorrect"); 

 SetNodeStateName_bn (Ta13, 0, "correct"); 

 SetNodeStateName_bn (Ta13, 1, "incorrect"); 

 SetNodeStateName_bn (Ta14, 0,"correct"); 

 SetNodeStateName_bn (Ta14, 1,"incorrect"); 

 SetNodeStateName_bn (Ta15, 0,"correct"); 

 SetNodeStateName_bn (Ta15, 1,"incorrect"); 

 SetNodeStateName_bn (Ta16, 0, "correct"); 

 SetNodeStateName_bn (Ta16, 1, "incorrect"); 

 SetNodeStateName_bn (Ta17, 0,"correct"); 

 SetNodeStateName_bn (Ta17, 1,"incorrect"); 

 SetNodeStateName_bn (Ta18, 0, "correct"); 

 SetNodeStateName_bn (Ta18, 1, "incorrect"); 

 SetNodeStateName_bn (Ta19, 0,"correct"); 

 SetNodeStateName_bn (Ta19, 1,"incorrect"); 

 SetNodeStateName_bn (Ta20, 0,"correct"); 

 SetNodeStateName_bn (Ta20, 1,"incorrect"); 

 SetNodeStateName_bn (Ta21, 0, "correct"); 

 SetNodeStateName_bn (Ta21, 1, "incorrect"); 

 SetNodeStateName_bn (Ta22, 0,"correct"); 

 SetNodeStateName_bn (Ta22, 1,"incorrect"); 

 SetNodeStateName_bn (Ta23, 0, "correct"); 

 SetNodeStateName_bn (Ta23, 1, "incorrect"); 

 SetNodeStateName_bn (Ta24, 0,"correct"); 

 SetNodeStateName_bn (Ta24, 1,"incorrect"); 

 SetNodeStateName_bn (Ta25, 0,"correct"); 

 SetNodeStateName_bn (Ta25, 1,"incorrect"); 

 SetNodeStateName_bn (Ta26, 0, "correct"); 
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 SetNodeStateName_bn (Ta26, 1, "incorrect"); 

 SetNodeStateName_bn (Ta27, 0,"correct"); 

 SetNodeStateName_bn (Ta27, 1,"incorrect"); 

 SetNodeStateName_bn (Ta28, 0, "correct"); 

 SetNodeStateName_bn (Ta28, 1, "incorrect"); 

 SetNodeStateName_bn (Ta29, 0,"correct"); 

 SetNodeStateName_bn (Ta29, 1,"incorrect"); 

 SetNodeStateName_bn (Ta30, 0,"correct"); 

 SetNodeStateName_bn (Ta30, 1,"incorrect"); 

 

 SetNodeStateName_bn (Mone, 0,"level1"); 

 SetNodeStateName_bn (Mone, 1,"level2"); 

 SetNodeStateName_bn (Mone, 2,"level3"); 

 SetNodeStateName_bn (Mone, 3,"level4"); 

 SetNodeStateName_bn (Mtwo, 0,"level1"); 

 SetNodeStateName_bn (Mtwo, 1,"level2"); 

 SetNodeStateName_bn (Mtwo, 2,"level3"); 

 SetNodeStateName_bn (Mtwo, 3,"level4"); 

 

 AddLink_bn (Mone,T1); 

 AddLink_bn (Mone,T2); 

 AddLink_bn (Mone,T3); 

 AddLink_bn (Mone,T4); 

 AddLink_bn (Mone,T5); 

 AddLink_bn (Mone,T6); 

 AddLink_bn (Mone,T7); 

 AddLink_bn (Mone,T8); 

 AddLink_bn (Mone,T9); 

 AddLink_bn (Mone,T10); 

 AddLink_bn (Mone,T11); 

 AddLink_bn (Mone,T12); 

 AddLink_bn (Mone,T13); 

 AddLink_bn (Mone,T14); 

 AddLink_bn (Mone,T15); 

 AddLink_bn (Mone,T16); 

 AddLink_bn (Mone,T17); 

 AddLink_bn (Mone,T18); 

 AddLink_bn (Mone,T19); 

 AddLink_bn (Mone,T20); 

 AddLink_bn (Mone,T21); 

 AddLink_bn (Mone,T22); 

 AddLink_bn (Mone,T23); 

 AddLink_bn (Mone,T24); 

 AddLink_bn (Mone,T25); 
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 AddLink_bn (Mone,T26); 

 AddLink_bn (Mone,T27); 

 AddLink_bn (Mone,T28); 

 AddLink_bn (Mone,T29); 

 AddLink_bn (Mone,T30); 

 

 AddLink_bn (Mtwo,Ta1); 

 AddLink_bn (Mtwo,Ta2); 

 AddLink_bn (Mtwo,Ta3); 

 AddLink_bn (Mtwo,Ta4); 

 AddLink_bn (Mtwo,Ta5); 

 AddLink_bn (Mtwo,Ta6); 

 AddLink_bn (Mtwo,Ta7); 

 AddLink_bn (Mtwo,Ta8); 

 AddLink_bn (Mtwo,Ta9); 

 AddLink_bn (Mtwo,Ta10); 

 AddLink_bn (Mtwo,Ta11); 

 AddLink_bn (Mtwo,Ta12); 

 AddLink_bn (Mtwo,Ta13); 

 AddLink_bn (Mtwo,Ta14); 

 AddLink_bn (Mtwo,Ta15); 

 AddLink_bn (Mtwo,Ta16); 

 AddLink_bn (Mtwo,Ta17); 

 AddLink_bn (Mtwo,Ta18); 

 AddLink_bn (Mtwo,Ta19); 

 AddLink_bn (Mtwo,Ta20); 

 AddLink_bn (Mtwo,Ta21); 

 AddLink_bn (Mtwo,Ta22); 

 AddLink_bn (Mtwo,Ta23); 

 AddLink_bn (Mtwo,Ta24); 

 AddLink_bn (Mtwo,Ta25); 

 AddLink_bn (Mtwo,Ta26); 

 AddLink_bn (Mtwo,Ta27); 

 AddLink_bn (Mtwo,Ta28); 

 AddLink_bn (Mtwo,Ta29); 

 AddLink_bn (Mtwo,Ta30); 

 

 AddLink_bn (Mone,Mtwo); 

 CHKERR 

 

 SetNodeProbs(T1,"level1", 0.2,0.8); 

 SetNodeProbs(T1,"level2", 0.85,0.15); 

 SetNodeProbs(T1,"level3", 0.85,0.15); 

 SetNodeProbs(T1,"level4", 0.85,0.15); 
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 SetNodeProbs(T2,"level1", 0.2,0.8); 

 SetNodeProbs(T2,"level2", 0.85,0.15); 

 SetNodeProbs(T2,"level3", 0.85,0.15); 

 SetNodeProbs(T2,"level4", 0.85,0.15); 

 SetNodeProbs(T3,"level1", 0.2,0.8); 

 SetNodeProbs(T3,"level2", 0.85,0.15); 

 SetNodeProbs(T3,"level3", 0.85,0.15); 

 SetNodeProbs(T3,"level4", 0.85,0.15); 

 SetNodeProbs(T4,"level1", 0.2,0.8); 

 SetNodeProbs(T4,"level2", 0.85,0.15); 

 SetNodeProbs(T4,"level3", 0.85,0.15); 

 SetNodeProbs(T4,"level4", 0.85,0.15); 

 SetNodeProbs(T5,"level1", 0.2,0.8); 

 SetNodeProbs(T5,"level2", 0.85,0.15); 

 SetNodeProbs(T5,"level3", 0.85,0.15); 

 SetNodeProbs(T5,"level4", 0.85,0.15); 

 SetNodeProbs(T6,"level1", 0.2,0.8); 

 SetNodeProbs(T6,"level2", 0.85,0.15); 

 SetNodeProbs(T6,"level3", 0.85,0.15); 

 SetNodeProbs(T6,"level4", 0.85,0.15); 

 SetNodeProbs(T7,"level1", 0.2,0.8); 

 SetNodeProbs(T7,"level2", 0.85,0.15); 

 SetNodeProbs(T7,"level3", 0.85,0.15); 

 SetNodeProbs(T7,"level4", 0.85,0.15); 

 SetNodeProbs(T8,"level1", 0.2,0.8); 

 SetNodeProbs(T8,"level2", 0.85,0.15); 

 SetNodeProbs(T8,"level3", 0.85,0.15); 

 SetNodeProbs(T8,"level4", 0.85,0.15); 

 SetNodeProbs(T9,"level1", 0.2,0.8); 

 SetNodeProbs(T9,"level2", 0.85,0.15); 

 SetNodeProbs(T9,"level3", 0.85,0.15); 

 SetNodeProbs(T9,"level4", 0.85,0.15); 

 SetNodeProbs(T10,"level1", 0.2,0.8); 

 SetNodeProbs(T10,"level2", 0.85,0.15); 

 SetNodeProbs(T10,"level3", 0.85,0.15); 

 SetNodeProbs(T10,"level4", 0.85,0.15); 

 

 SetNodeProbs(T11,"level1", 0.2,0.8); 

 SetNodeProbs(T11,"level2", 0.2,0.8); 

 SetNodeProbs(T11,"level3", 0.85,0.15); 

 SetNodeProbs(T11,"level4", 0.85,0.15); 

 SetNodeProbs(T12,"level1", 0.2,0.8); 

 SetNodeProbs(T12,"level2", 0.2,0.8); 

 SetNodeProbs(T12,"level3", 0.85,0.15); 
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 SetNodeProbs(T12,"level4", 0.85,0.15); 

 SetNodeProbs(T13,"level1", 0.2,0.8); 

 SetNodeProbs(T13,"level2", 0.2,0.8); 

 SetNodeProbs(T13,"level3", 0.85,0.15); 

 SetNodeProbs(T13,"level4", 0.85,0.15); 

 SetNodeProbs(T14,"level1", 0.2,0.8); 

 SetNodeProbs(T14,"level2", 0.2,0.8); 

 SetNodeProbs(T14,"level3", 0.85,0.15); 

 SetNodeProbs(T14,"level4", 0.85,0.15); 

 SetNodeProbs(T15,"level1", 0.2,0.8); 

 SetNodeProbs(T15,"level2", 0.2,0.8); 

 SetNodeProbs(T15,"level3", 0.85,0.15); 

 SetNodeProbs(T15,"level4", 0.85,0.15); 

 SetNodeProbs(T16,"level1", 0.2,0.8); 

 SetNodeProbs(T16,"level2", 0.2,0.8); 

 SetNodeProbs(T16,"level3", 0.85,0.15); 

 SetNodeProbs(T16,"level4", 0.85,0.15); 

 SetNodeProbs(T17,"level1", 0.2,0.8); 

 SetNodeProbs(T17,"level2", 0.2,0.8); 

 SetNodeProbs(T17,"level3", 0.85,0.15); 

 SetNodeProbs(T17,"level4", 0.85,0.15); 

 SetNodeProbs(T18,"level1", 0.2,0.8); 

 SetNodeProbs(T18,"level2", 0.2,0.8); 

 SetNodeProbs(T18,"level3", 0.85,0.15); 

 SetNodeProbs(T18,"level4", 0.85,0.15); 

 SetNodeProbs(T19,"level1", 0.2,0.8); 

 SetNodeProbs(T19,"level2", 0.2,0.8); 

 SetNodeProbs(T19,"level3", 0.85,0.15); 

 SetNodeProbs(T19,"level4", 0.85,0.15); 

 SetNodeProbs(T20,"level1", 0.2,0.8); 

 SetNodeProbs(T20,"level2", 0.2,0.8); 

 SetNodeProbs(T20,"level3", 0.85,0.15); 

 SetNodeProbs(T20,"level4", 0.85,0.15); 

 

 SetNodeProbs(T21,"level1", 0.2,0.8); 

 SetNodeProbs(T21,"level2", 0.2,0.8); 

 SetNodeProbs(T21,"level3", 0.2,0.8); 

 SetNodeProbs(T21,"level4", 0.85,0.15); 

 SetNodeProbs(T22,"level1", 0.2,0.8); 

 SetNodeProbs(T22,"level2", 0.2,0.8); 

 SetNodeProbs(T22,"level3", 0.2,0.8); 

 SetNodeProbs(T22,"level4", 0.85,0.15); 

 SetNodeProbs(T23,"level1", 0.2,0.8); 

 SetNodeProbs(T23,"level2", 0.2,0.8); 
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 SetNodeProbs(T23,"level3", 0.2,0.8); 

 SetNodeProbs(T23,"level4", 0.85,0.15); 

 SetNodeProbs(T24,"level1", 0.2,0.8); 

 SetNodeProbs(T24,"level2", 0.2,0.8); 

 SetNodeProbs(T24,"level3", 0.2,0.8); 

 SetNodeProbs(T24,"level4", 0.85,0.15); 

 SetNodeProbs(T25,"level1", 0.2,0.8); 

 SetNodeProbs(T25,"level2", 0.2,0.8); 

 SetNodeProbs(T25,"level3", 0.2,0.8); 

 SetNodeProbs(T25,"level4", 0.85,0.15); 

 SetNodeProbs(T26,"level1", 0.2,0.8); 

 SetNodeProbs(T26,"level2", 0.2,0.8); 

 SetNodeProbs(T26,"level3", 0.2,0.8); 

 SetNodeProbs(T26,"level4", 0.85,0.15); 

 SetNodeProbs(T27,"level1", 0.2,0.8); 

 SetNodeProbs(T27,"level2", 0.2,0.8); 

 SetNodeProbs(T27,"level3", 0.2,0.8); 

 SetNodeProbs(T27,"level4", 0.85,0.15); 

 SetNodeProbs(T28,"level1", 0.2,0.8); 

 SetNodeProbs(T28,"level2", 0.2,0.8); 

 SetNodeProbs(T28,"level3", 0.2,0.8); 

 SetNodeProbs(T28,"level4", 0.85,0.15); 

 SetNodeProbs(T29,"level1", 0.2,0.8); 

 SetNodeProbs(T29,"level2", 0.2,0.8); 

 SetNodeProbs(T29,"level3", 0.2,0.8); 

 SetNodeProbs(T29,"level4", 0.85,0.15); 

 SetNodeProbs(T30,"level1", 0.2,0.8); 

 SetNodeProbs(T30,"level2", 0.2,0.8); 

 SetNodeProbs(T30,"level3", 0.2,0.8); 

 SetNodeProbs(T30,"level4", 0.85,0.15); 

 

 SetNodeProbs(Ta1,"level1", 0.2,0.8); 

 SetNodeProbs(Ta1,"level2", 0.85,0.15); 

 SetNodeProbs(Ta1,"level3", 0.85,0.15); 

 SetNodeProbs(Ta1,"level4", 0.85,0.15); 

 SetNodeProbs(Ta2,"level1", 0.2,0.8); 

 SetNodeProbs(Ta2,"level2", 0.85,0.15); 

 SetNodeProbs(Ta2,"level3", 0.85,0.15); 

 SetNodeProbs(Ta2,"level4", 0.85,0.15); 

 SetNodeProbs(Ta3,"level1", 0.2,0.8); 

 SetNodeProbs(Ta3,"level2", 0.85,0.15); 

 SetNodeProbs(Ta3,"level3", 0.85,0.15); 

 SetNodeProbs(Ta3,"level4", 0.85,0.15); 

 SetNodeProbs(Ta4,"level1", 0.2,0.8); 
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 SetNodeProbs(Ta4,"level2", 0.85,0.15); 

 SetNodeProbs(Ta4,"level3", 0.85,0.15); 

 SetNodeProbs(Ta4,"level4", 0.85,0.15); 

 SetNodeProbs(Ta5,"level1", 0.2,0.8); 

 SetNodeProbs(Ta5,"level2", 0.85,0.15); 

 SetNodeProbs(Ta5,"level3", 0.85,0.15); 

 SetNodeProbs(Ta5,"level4", 0.85,0.15); 

 SetNodeProbs(Ta6,"level1", 0.2,0.8); 

 SetNodeProbs(Ta6,"level2", 0.85,0.15); 

 SetNodeProbs(Ta6,"level3", 0.85,0.15); 

 SetNodeProbs(Ta6,"level4", 0.85,0.15); 

 SetNodeProbs(Ta7,"level1", 0.2,0.8); 

 SetNodeProbs(Ta7,"level2", 0.85,0.15); 

 SetNodeProbs(Ta7,"level3", 0.85,0.15); 

 SetNodeProbs(Ta7,"level4", 0.85,0.15); 

 SetNodeProbs(Ta8,"level1", 0.2,0.8); 

 SetNodeProbs(Ta8,"level2", 0.85,0.15); 

 SetNodeProbs(Ta8,"level3", 0.85,0.15); 

 SetNodeProbs(Ta8,"level4", 0.85,0.15); 

 SetNodeProbs(Ta9,"level1", 0.2,0.8); 

 SetNodeProbs(Ta9,"level2", 0.85,0.15); 

 SetNodeProbs(Ta9,"level3", 0.85,0.15); 

 SetNodeProbs(Ta9,"level4", 0.85,0.15); 

 SetNodeProbs(Ta10,"level1", 0.2,0.8); 

 SetNodeProbs(Ta10,"level2", 0.85,0.15); 

 SetNodeProbs(Ta10,"level3", 0.85,0.15); 

 SetNodeProbs(Ta10,"level4", 0.85,0.15); 

 

 SetNodeProbs(Ta11,"level1", 0.2,0.8); 

 SetNodeProbs(Ta11,"level2", 0.2,0.8); 

 SetNodeProbs(Ta11,"level3", 0.85,0.15); 

 SetNodeProbs(Ta11,"level4", 0.85,0.15); 

 SetNodeProbs(Ta12,"level1", 0.2,0.8); 

 SetNodeProbs(Ta12,"level2", 0.2,0.8); 

 SetNodeProbs(Ta12,"level3", 0.85,0.15); 

 SetNodeProbs(Ta12,"level4", 0.85,0.15); 

 SetNodeProbs(Ta13,"level1", 0.2,0.8); 

 SetNodeProbs(Ta13,"level2", 0.2,0.8); 

 SetNodeProbs(Ta13,"level3", 0.85,0.15); 

 SetNodeProbs(Ta13,"level4", 0.85,0.15); 

 SetNodeProbs(Ta14,"level1", 0.2,0.8); 

 SetNodeProbs(Ta14,"level2", 0.2,0.8); 

 SetNodeProbs(Ta14,"level3", 0.85,0.15); 

 SetNodeProbs(Ta14,"level4", 0.85,0.15); 
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 SetNodeProbs(Ta15,"level1", 0.2,0.8); 

 SetNodeProbs(Ta15,"level2", 0.2,0.8); 

 SetNodeProbs(Ta15,"level3", 0.85,0.15); 

 SetNodeProbs(Ta15,"level4", 0.85,0.15); 

 SetNodeProbs(Ta16,"level1", 0.2,0.8); 

 SetNodeProbs(Ta16,"level2", 0.2,0.8); 

 SetNodeProbs(Ta16,"level3", 0.85,0.15); 

 SetNodeProbs(Ta16,"level4", 0.85,0.15); 

 SetNodeProbs(Ta17,"level1", 0.2,0.8); 

 SetNodeProbs(Ta17,"level2", 0.2,0.8); 

 SetNodeProbs(Ta17,"level3", 0.85,0.15); 

 SetNodeProbs(Ta17,"level4", 0.85,0.15); 

 SetNodeProbs(Ta18,"level1", 0.2,0.8); 

 SetNodeProbs(Ta18,"level2", 0.2,0.8); 

 SetNodeProbs(Ta18,"level3", 0.85,0.15); 

 SetNodeProbs(Ta18,"level4", 0.85,0.15); 

 SetNodeProbs(Ta19,"level1", 0.2,0.8); 

 SetNodeProbs(Ta19,"level2", 0.2,0.8); 

 SetNodeProbs(Ta19,"level3", 0.85,0.15); 

 SetNodeProbs(Ta19,"level4", 0.85,0.15); 

 SetNodeProbs(Ta20,"level1", 0.2,0.8); 

 SetNodeProbs(Ta20,"level2", 0.2,0.8); 

 SetNodeProbs(Ta20,"level3", 0.85,0.15); 

 SetNodeProbs(Ta20,"level4", 0.85,0.15); 

 

 SetNodeProbs(Ta21,"level1", 0.2,0.8); 

 SetNodeProbs(Ta21,"level2", 0.2,0.8); 

 SetNodeProbs(Ta21,"level3", 0.2,0.8); 

 SetNodeProbs(Ta21,"level4", 0.85,0.15); 

 SetNodeProbs(Ta22,"level1", 0.2,0.8); 

 SetNodeProbs(Ta22,"level2", 0.2,0.8); 

 SetNodeProbs(Ta22,"level3", 0.2,0.8); 

 SetNodeProbs(Ta22,"level4", 0.85,0.15); 

 SetNodeProbs(Ta23,"level1", 0.2,0.8); 

 SetNodeProbs(Ta23,"level2", 0.2,0.8); 

 SetNodeProbs(Ta23,"level3", 0.2,0.8); 

 SetNodeProbs(Ta23,"level4", 0.85,0.15); 

 SetNodeProbs(Ta24,"level1", 0.2,0.8); 

 SetNodeProbs(Ta24,"level2", 0.2,0.8); 

 SetNodeProbs(Ta24,"level3", 0.2,0.8); 

 SetNodeProbs(Ta24,"level4", 0.85,0.15); 

 SetNodeProbs(Ta25,"level1", 0.2,0.8); 

 SetNodeProbs(Ta25,"level2", 0.2,0.8); 

 SetNodeProbs(Ta25,"level3", 0.2,0.8); 
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 SetNodeProbs(Ta25,"level4", 0.85,0.15); 

 SetNodeProbs(Ta26,"level1", 0.2,0.8); 

 SetNodeProbs(Ta26,"level2", 0.2,0.8); 

 SetNodeProbs(Ta26,"level3", 0.2,0.8); 

 SetNodeProbs(Ta26,"level4", 0.85,0.15); 

 SetNodeProbs(Ta27,"level1", 0.2,0.8); 

 SetNodeProbs(Ta27,"level2", 0.2,0.8); 

 SetNodeProbs(Ta27,"level3", 0.2,0.8); 

 SetNodeProbs(Ta27,"level4", 0.85,0.15); 

 SetNodeProbs(Ta28,"level1", 0.2,0.8); 

 SetNodeProbs(Ta28,"level2", 0.2,0.8); 

 SetNodeProbs(Ta28,"level3", 0.2,0.8); 

 SetNodeProbs(Ta28,"level4", 0.85,0.15); 

 SetNodeProbs(Ta29,"level1", 0.2,0.8); 

 SetNodeProbs(Ta29,"level2", 0.2,0.8); 

 SetNodeProbs(Ta29,"level3", 0.2,0.8); 

 SetNodeProbs(Ta29,"level4", 0.85,0.15); 

 SetNodeProbs(Ta30,"level1", 0.2,0.8); 

 SetNodeProbs(Ta30,"level2", 0.2,0.8); 

 SetNodeProbs(Ta30,"level3", 0.2,0.8); 

 SetNodeProbs(Ta30,"level4", 0.85,0.15); 

 

 SetNodeProbs(Mone, 0.25, 0.25,0.25,0.25); 

 SetNodeProbs(Mtwo, "level1", 0.25, 0.25,0.25,0.25); 

 SetNodeProbs(Mtwo, "level2", 0, 1/3 ,1/3 ,1/3); 

 SetNodeProbs(Mtwo, "level3", 0,0,0.5,0.5); 

 SetNodeProbs(Mtwo, "level4", 0,0,0,1); 

 CHKERR 

 

for (pn = 0;  pn < 2;  ++pn)  parent_states[pn] = EVERY_STATE; 

 

SetNodeExperience_bn (Mone,  NULL,  1.0); 

SetNodeExperience_bn (Mtwo,  parent_states,  1.0); 

SetNodeExperience_bn (T1,  parent_states,  1.0); 

SetNodeExperience_bn (T2,  parent_states,  1.0); 

SetNodeExperience_bn (T3,  parent_states,  1.0); 

SetNodeExperience_bn (T4,  parent_states,  1.0); 

SetNodeExperience_bn (T5,  parent_states,  1.0); 

SetNodeExperience_bn (T6,  parent_states,  1.0); 

SetNodeExperience_bn (T7,  parent_states,  1.0); 

SetNodeExperience_bn (T8,  parent_states,  1.0); 

SetNodeExperience_bn (T9,  parent_states,  1.0); 

SetNodeExperience_bn (T10,  parent_states,  1.0); 

SetNodeExperience_bn (T11,  parent_states,  1.0); 
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SetNodeExperience_bn (T12,  parent_states,  1.0); 

SetNodeExperience_bn (T13,  parent_states,  1.0); 

SetNodeExperience_bn (T14,  parent_states,  1.0); 

SetNodeExperience_bn (T15,  parent_states,  1.0); 

SetNodeExperience_bn (T16,  parent_states,  1.0); 

SetNodeExperience_bn (T17,  parent_states,  1.0); 

SetNodeExperience_bn (T18,  parent_states,  1.0); 

SetNodeExperience_bn (T19,  parent_states,  1.0); 

SetNodeExperience_bn (T20,  parent_states,  1.0); 

SetNodeExperience_bn (T21,  parent_states,  1.0); 

SetNodeExperience_bn (T22,  parent_states,  1.0); 

SetNodeExperience_bn (T23,  parent_states,  1.0); 

SetNodeExperience_bn (T24,  parent_states,  1.0); 

SetNodeExperience_bn (T25,  parent_states,  1.0); 

SetNodeExperience_bn (T26,  parent_states,  1.0); 

SetNodeExperience_bn (T27,  parent_states,  1.0); 

SetNodeExperience_bn (T28,  parent_states,  1.0); 

SetNodeExperience_bn (T29,  parent_states,  1.0); 

SetNodeExperience_bn (T30,  parent_states,  1.0); 

SetNodeExperience_bn (Ta1,  parent_states,  1.0); 

SetNodeExperience_bn (Ta2,  parent_states,  1.0); 

SetNodeExperience_bn (Ta3,  parent_states,  1.0); 

SetNodeExperience_bn (Ta4,  parent_states,  1.0); 

SetNodeExperience_bn (Ta5,  parent_states,  1.0); 

SetNodeExperience_bn (Ta6,  parent_states,  1.0); 

SetNodeExperience_bn (Ta7,  parent_states,  1.0); 

SetNodeExperience_bn (Ta8,  parent_states,  1.0); 

SetNodeExperience_bn (Ta9,  parent_states,  1.0); 

SetNodeExperience_bn (Ta10,  parent_states,  1.0); 

SetNodeExperience_bn (Ta11,  parent_states,  1.0); 

SetNodeExperience_bn (Ta12,  parent_states,  1.0); 

SetNodeExperience_bn (Ta13,  parent_states,  1.0); 

SetNodeExperience_bn (Ta14,  parent_states,  1.0); 

SetNodeExperience_bn (Ta15,  parent_states,  1.0); 

SetNodeExperience_bn (Ta16,  parent_states,  1.0); 

SetNodeExperience_bn (Ta17,  parent_states,  1.0); 

SetNodeExperience_bn (Ta18,  parent_states,  1.0); 

SetNodeExperience_bn (Ta19,  parent_states,  1.0); 

SetNodeExperience_bn (Ta20,  parent_states,  1.0); 

SetNodeExperience_bn (Ta21,  parent_states,  1.0); 

SetNodeExperience_bn (Ta22,  parent_states,  1.0); 

SetNodeExperience_bn (Ta23,  parent_states,  1.0); 

SetNodeExperience_bn (Ta24,  parent_states,  1.0); 

SetNodeExperience_bn (Ta25,  parent_states,  1.0); 
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SetNodeExperience_bn (Ta26,  parent_states,  1.0); 

SetNodeExperience_bn (Ta27,  parent_states,  1.0); 

SetNodeExperience_bn (Ta28,  parent_states,  1.0); 

SetNodeExperience_bn (Ta29,  parent_states,  1.0); 

SetNodeExperience_bn (Ta30,  parent_states,  1.0); 

      

CHKERR 

  

 nodes = GetNetNodes_bn (net); 

 

 /* Read the case file into a caseset */ 

 

 cases = NewCaseset_cs ("cond1_1", env); 

 casefile = NewFileStream_ns ("Data Files\\con1_1.cas", env, NULL); 

 AddFileToCaseset_cs (cases, casefile, 1.0, NULL); 

 

 /* Learning the case file into a caseset */ 

 learner = NewLearner_bn (EM_LEARNING, NULL, env); 

 SetLearnerMaxIters_bn (learner, 200); /* terminate at 200 iterations */ 

 

 LearnCPTs_bn (learner, nodes, cases, 1.0); 

 

 WriteNet_bn (net,  NewFileStream_ns ("Data Files\\S1_1.dne", env, NULL)); 

 CHKERR 

  CompileNet_bn (net); 

 

end: 

 DeleteLearner_bn (learner); 

 DeleteStream_ns (casefile); 

 DeleteCaseset_cs (cases); 

 DeleteNet_bn (net); 

 res= CloseNetica_bn (env, mesg); 

 printf ("%s\n", mesg); 

 printf ("Press <enter> key to quit ", mesg); 

 getchar(); 

 return (res < 0 ? -1 : 0); 

 

error: 

 err = GetError_ns (env, ERROR_ERR, NULL); 

 fprintf (stderr, "LearnLatent: Error %d %s\n",  

          ErrorNumber_ns (err), ErrorMessage_ns (err)); 

 goto end; 

} 
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Appendix C: ANOVA with non-transformed data 

 Although ANOVA is robust to the violation of normality assumption, the F test is 

affected by serious light –tailedness, heavy tailedness, or skewed distribution. Based on 

literature review, the lack of normality assumption can be examined through computing 

skewness and kurtosis. There are certain rules of thumb in terms of the different sizes of 

sample. If the sample is small (n < 100), then calculate z-scores for skewness and kurtosis 

and reject as non-normal those variables with either z-score greater than an absolute 

value of 1.96. If the sample is of medium size (100 < n < 300), then calculate z-scores for 

skew and kurtosis and reject as non-normal those variables with either z-score greater 

than an absolute value of 3.29. With sample sizes greater than 300, absolute values above 

2 are likely to indicate substantial non-normality (De Carlo, 1997; Minium, King, & Bear, 

1993). Table C1 and C2 have the values of skewness and kurtosis of RMSDs used in two 

simulation studies.  

Table C1.  

The values of skewness and kurtosis in the simulation study 1 

 Skewness Kurtosis 

RMSD Statistic Std. Error Statistic Std. Error 

IPT 2.226 .283 4.913 .559 

TPT 1.301 .283 1.770 .559 

CPT 1.021 .283 -.037 .559 
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Table C2.  

The values of skewness and kurtosis in the simulation study 2 

 Skewness Kurtosis 

RMSD Statistic Std. Error Statistic Std. Error 

IPT .918 .299 -.556 .590 

TPT 1.586 .299 2.021 .590 

CPT 1.249 .299 .686 .590 

The values of skewness and kurtosis indicate the violation of the normality assumption.  

Consequently, the results of ANOVA with the nontransformed RMSDs are different from 

the results with the transformed RMSDs. The conclusions of the significant variables are 

not the same between the transformed RMSDs and non transformed RMSDs.  When the 

original data has extreme values of skewness, outliers influence the results. The influence 

was reduced by the transformation in this study.  Furthermore, the original data sets of 

IPT and TPT were extreme values of kurtosis. Excessive kurtosis tends to effect 

procedures based on variance and covariances, which lead different results (DeCarlo, 

1997). This influence was also reduced by the transformation. 

Table C3, C4, and C5 are the ANOVA results using non-transformed variables in the first 

simulation study.   
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Table C3.  

ANOVA of RMSD values of the parameters of the initial probability table 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .085
a
 16 .005 5.420 .000 

Intercept .067 1 .067 69.047 .000 

SampleSize .013 1 .013 13.648 .001 

TaskSize .024 1 .024 24.477 .000 

CDT .019 1 .019 19.170 .000 

TPT .002 2 .001 1.016 .369 

IPT .001 2 .000 .285 .753 

SampleSize * 

TaskSize 

.005 1 .005 4.892 .031 

SampleSize * CDT .014 1 .014 14.247 .000 

SampleSize * TPT .001 2 .001 .704 .499 

TaskSize * CDT .002 1 .002 1.808 .184 

TaskSize * TPT .002 2 .001 1.052 .356 

CDT * TPT .001 2 .001 .679 .511 

Error .054 55 .001   

Total .205 72    

Corrected Total .138 71    

a. R Squared = .612 (Adjusted R Squared = .499) 
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Table C4.  

ANOVA of RMSD values of the parameters of the transition probability table 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .134
a
 16 .008 10.341 .000 

Intercept .213 1 .213 263.497 .000 

SampleSize .054 1 .054 66.507 .000 

TaskSize .028 1 .028 34.943 .000 

CDT .034 1 .034 41.853 .000 

TPT .003 2 .001 1.632 .205 

IPT .000 2 .000 .070 .933 

SampleSize * 

TaskSize 

.001 1 .001 1.639 .206 

SampleSize * CDT .001 1 .001 .854 .359 

SampleSize * TPT .000 2 .000 .262 .771 

TaskSize * CDT .010 1 .010 12.383 .001 

TaskSize * TPT .000 2 .000 .265 .768 

CDT * TPT .000 2 .000 .306 .737 

Error .044 55 .001   

Total .386 72    

Corrected Total .178 71    

a. R Squared = .751 (Adjusted R Squared = .678) 
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Table C5.  

ANOVA of RMSD values of the parameters of the conditional probability table. 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .094
a
 16 .006 27.572 .000 

Intercept .159 1 .159 746.451 .000 

SampleSize .025 1 .025 115.245 .000 

TaskSize .032 1 .032 150.758 .000 

CDT .019 1 .019 87.055 .000 

TPT .007 2 .004 17.098 .000 

IPT .000 2 .000 .163 .850 

SampleSize * 

TaskSize 

.003 1 .003 14.181 .000 

SampleSize * CDT .000 1 .000 .483 .490 

SampleSize * TPT .001 2 .001 2.864 .066 

TaskSize * CDT .004 1 .004 16.899 .000 

TaskSize * TPT .002 2 .001 5.109 .009 

CDT * TPT .000 2 .000 .042 .959 

Error .012 55 .000   

Total .262 72    

Corrected Total .106 71    

a. R Squared = .889 (Adjusted R Squared = .857) 

 

Table C6, C7, and C8 are the ANOVA results using non-transformed variables in the 

second simulation study 

 

 



262 

 

 

Table C6.  

ANOVA of RMSD values of the parameters of the initial probability table. 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .274
a
 10 .027 10.125 .000 

Intercept .409 1 .409 151.132 .000 

SampleSize .071 1 .071 26.263 .000 

TaskSize .009 1 .009 3.415 .070 

CDT .163 1 .163 60.141 .000 

TPT .002 3 .001 .250 .861 

covariate .001 1 .001 .256 .615 

SampleSize * 

TaskSize 

.001 1 .001 .433 .513 

SampleSize * CDT .019 1 .019 7.146 .010 

TaskSize * CDT .007 1 .007 2.425 .125 

Error .143 53 .003   

Total .827 64    

Corrected Total .418 63    

a. R Squared = .656 (Adjusted R Squared = .592) 
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Table C7.  

 

ANOVA of RMSD values of the parameters of the transition probability table. 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .114
a
 19 .006 10.863 .000 

Intercept .145 1 .145 263.544 .000 

SampleSize .020 1 .020 35.690 .000 

TaskSize .017 1 .017 31.282 .000 

CDT .056 1 .056 102.121 .000 

TPT .002 3 .001 1.390 .258 

covariate .000 1 .000 .319 .575 

SampleSize * 

TaskSize 

.000 1 .000 .236 .629 

SampleSize * CDT .005 1 .005 8.796 .005 

TaskSize * CDT .009 1 .009 16.095 .000 

SampleSize * TPT .002 3 .001 1.224 .312 

TaskSize * TPT .001 3 .000 .711 .551 

CDT * TPT .001 3 .000 .463 .710 

Error .024 44 .001   

Total .285 64    

Corrected Total .138 63    
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Table C7.  

 

ANOVA of RMSD values of the parameters of the transition probability table. 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .114
a
 19 .006 10.863 .000 

Intercept .145 1 .145 263.544 .000 

SampleSize .020 1 .020 35.690 .000 

TaskSize .017 1 .017 31.282 .000 

CDT .056 1 .056 102.121 .000 

TPT .002 3 .001 1.390 .258 

covariate .000 1 .000 .319 .575 

SampleSize * 

TaskSize 

.000 1 .000 .236 .629 

SampleSize * CDT .005 1 .005 8.796 .005 

TaskSize * CDT .009 1 .009 16.095 .000 

SampleSize * TPT .002 3 .001 1.224 .312 

TaskSize * TPT .001 3 .000 .711 .551 

CDT * TPT .001 3 .000 .463 .710 

Error .024 44 .001   

Total .285 64    

Corrected Total .138 63    

a. R Squared = .824 (Adjusted R Squared = .748) 
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Table C8.  

 

ANOVA of RMSD values of the parameters of the conditional probability table. 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model .114
a
 19 .006 10.863 .000 

Intercept .145 1 .145 263.544 .000 

SampleSize .020 1 .020 35.690 .000 

TaskSize .017 1 .017 31.282 .000 

CDT .056 1 .056 102.121 .000 

TPT .002 3 .001 1.390 .258 

covariate .000 1 .000 .319 .575 

SampleSize * 

TaskSize 

.000 1 .000 .236 .629 

SampleSize * CDT .005 1 .005 8.796 .005 

TaskSize * CDT .009 1 .009 16.095 .000 

SampleSize * TPT .002 3 .001 1.224 .312 

TaskSize * TPT .001 3 .000 .711 .551 

CDT * TPT .001 3 .000 .463 .710 

Error .024 44 .001   

Total .285 64    

Corrected Total .138 63    

a. R Squared = .824 (Adjusted R Squared = .748) 
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Appendix D: ANOVA including all 3-way 

Appendix D shows the ANOVA results including all 3 ways. The results do not give 

important insights.  

Table D1.  

All 3 way ANOVA of the initial probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 226.178
a
 46 4.917 9.809 .000 

Intercept 1124.656 1 1124.656 2243.552 .000 

SampleSize 8.819 1 8.819 17.592 .001 

TaskSize 38.918 1 38.918 77.637 .000 

CDT 141.625 1 141.625 282.525 .000 

TPT 1.006 3 .335 .669 .583 

covariate .522 1 .522 1.042 .322 

SampleSize * TaskSize 8.437 1 8.437 16.831 .001 

SampleSize * CDT .165 1 .165 .329 .574 

SampleSize * TPT 3.360 3 1.120 2.234 .121 

SampleSize * covariate .014 1 .014 .028 .869 

TaskSize * CDT 11.155 1 11.155 22.254 .000 

TaskSize * TPT 2.128 3 .709 1.415 .273 

TaskSize * covariate .006 1 .006 .012 .914 

CDT * TPT .851 3 .284 .566 .645 

CDT * covariate .160 1 .160 .319 .579 

TPT * covariate .414 3 .138 .275 .842 

SampleSize * TaskSize 

* CDT 

1.616 1 1.616 3.223 .090 

SampleSize * CDT * 

TPT 

.223 3 .074 .148 .929 

SampleSize * TPT * 

covariate 

.049 3 .016 .033 .992 
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TaskSize * CDT * TPT 1.214 3 .405 .807 .507 

TaskSize * TPT * 

covariate 

.302 3 .101 .201 .894 

CDT * TPT * covariate 1.665 3 .555 1.107 .374 

SampleSize * TaskSize 

* TPT 

1.923 3 .641 1.279 .313 

SampleSize * TaskSize 

* covariate 

.103 1 .103 .205 .656 

TaskSize * CDT * 

covariate 

.088 1 .088 .175 .681 

Error 8.522 17 .501   

Total 1380.273 64    

Corrected Total 234.700 63    

a. R Squared = .964 (Adjusted R Squared = .865) 
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Table D2.  

 

All 3 way ANOVA of the transition probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 85.290
a
 46 1.854 6.747 .000 

Intercept 587.498 1 587.498 2137.905 .000 

SampleSize 21.575 1 21.575 78.511 .000 

TaskSize 3.371 1 3.371 12.268 .003 

CDT 39.244 1 39.244 142.808 .000 

TPT 1.232 3 .411 1.494 .252 

covariate .110 1 .110 .402 .535 

SampleSize * TaskSize 2.970 1 2.970 10.806 .004 

SampleSize * CDT .976 1 .976 3.552 .077 

SampleSize * TPT 1.333 3 .444 1.617 .223 

SampleSize * covariate .095 1 .095 .346 .564 

TaskSize * CDT .157 1 .157 .573 .460 

TaskSize * TPT .766 3 .255 .930 .448 

TaskSize * covariate .628 1 .628 2.285 .149 

CDT * TPT .941 3 .314 1.142 .361 

CDT * covariate .039 1 .039 .143 .710 

TPT * covariate .946 3 .315 1.148 .358 

SampleSize * TaskSize 

* CDT 

.000 1 .000 .001 .975 

SampleSize * CDT * 

TPT 

1.959 3 .653 2.376 .106 

SampleSize * TPT * 

covariate 

.296 3 .099 .359 .783 

TaskSize * CDT * TPT 1.116 3 .372 1.354 .290 

TaskSize * TPT * 

covariate 

2.037 3 .679 2.471 .097 

CDT * TPT * covariate 1.347 3 .449 1.634 .219 

SampleSize * TaskSize 

* TPT 

.467 3 .156 .567 .644 
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SampleSize * TaskSize 

* covariate 

.178 1 .178 .647 .432 

TaskSize * CDT * 

covariate 

.156 1 .156 .568 .461 

Error 4.672 17 .275   

Total 700.945 64    

Corrected Total 89.961 63    

a. R Squared = .948 (Adjusted R Squared = .808) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



270 

 

Table D3.  

 

All 3 way ANOVA of the conditional probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 66.293
a
 46 1.441 8.686 .000 

Intercept 776.724 1 776.724 4681.422 .000 

SampleSize 15.212 1 15.212 91.688 .000 

TaskSize 8.294 1 8.294 49.989 .000 

CDT 30.104 1 30.104 181.439 .000 

TPT 1.294 3 .431 2.600 .086 

covariate .168 1 .168 1.015 .328 

SampleSize * TaskSize .641 1 .641 3.861 .066 

SampleSize * CDT .030 1 .030 .182 .675 

SampleSize * TPT 1.171 3 .390 2.352 .108 

SampleSize * covariate .021 1 .021 .125 .728 

TaskSize * CDT 1.591 1 1.591 9.589 .007 

TaskSize * TPT .412 3 .137 .828 .497 

TaskSize * covariate .142 1 .142 .859 .367 

CDT * TPT .406 3 .135 .815 .503 

CDT * covariate .028 1 .028 .167 .688 

TPT * covariate .189 3 .063 .379 .769 

SampleSize * TaskSize 

* CDT 

.888 1 .888 4.353 .073 

SampleSize * CDT * 

TPT 

.836 3 .279 1.680 .209 

SampleSize * TPT * 

covariate 

.111 3 .037 .223 .879 

TaskSize * CDT * TPT .731 3 .244 1.469 .258 

TaskSize * TPT * 

covariate 

.447 3 .149 .899 .462 

CDT * TPT * covariate .324 3 .108 .651 .593 

SampleSize * TaskSize 

* TPT 

.073 3 .024 .147 .930 

SampleSize * TaskSize 

* covariate 

.008 1 .008 .051 .824 
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TaskSize * CDT * 

covariate 

.277 1 .277 1.668 .214 

Error 2.821 17 .166   

Total 869.219 64    

Corrected Total 69.114 63    

a. R Squared = .959 (Adjusted R Squared = .849) 
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Table D4.  

 

All 3 way ANOVA of the initial probability table in simulation study 2  

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 205.533
a
 51 4.030 7.340 .000 

Intercept 1483.462 1 1483.462 2701.809 .000 

SampleSize 30.343 1 30.343 55.264 .000 

TaskSize 62.902 1 62.902 114.563 .000 

CDT 76.850 1 76.850 139.966 .000 

TPT 1.717 2 .859 1.564 .234 

IPT .288 2 .144 .262 .772 

SampleSize * TaskSize .058 1 .058 .106 .749 

SampleSize * CDT .361 1 .361 .658 .427 

SampleSize * TPT .481 2 .241 .438 .651 

SampleSize * IPT .212 2 .106 .193 .826 

TaskSize * CDT 9.875 1 9.875 17.985 .000 

TaskSize * TPT .603 2 .301 .549 .586 

TaskSize * IPT .352 2 .176 .321 .729 

CDT * TPT .306 2 .153 .278 .760 

CDT * IPT 2.429 2 1.215 2.212 .136 

TPT * IPT 2.540 4 .635 1.156 .359 

SampleSize * TaskSize 

* CDT 

.331 1 .331 .602 .447 

SampleSize * CDT * 

TPT 

.073 2 .037 .067 .936 

SampleSize * TPT * 

IPT 

2.728 4 .682 1.242 .325 

TaskSize * CDT * TPT 1.027 2 .514 .935 .409 

TaskSize * TPT * IPT 2.293 4 .573 1.044 .409 

CDT * TPT * IPT .320 4 .080 .146 .963 

SampleSize * CDT * 

IPT 

3.655 2 1.828 3.329 .057 

SampleSize * TaskSize 

* IPT 

.332 2 .166 .303 .742 

TaskSize * CDT * IPT 1.002 2 .501 .913 .417 



273 

 

SampleSize * TaskSize 

* TPT 

.384 2 .192 .350 .709 

Error 10.981 20 .549   

Total 1758.632 72    

Corrected Total 216.514 71    

a. R Squared = .949 (Adjusted R Squared = .820) 
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Table D5.  

 

All 3 way ANOVA of the transition probability table in simulation study 2  

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 129.840
a
 51 2.546 7.976 .000 

Intercept 876.493 1 876.493 2745.972 .000 

SampleSize 54.049 1 54.049 169.330 .000 

TaskSize 21.683 1 21.683 67.930 .000 

CDT 26.619 1 26.619 83.395 .000 

TPT 2.626 2 1.313 4.113 .032 

IPT .121 2 .061 .190 .829 

SampleSize * TaskSize 5.159 1 5.159 16.163 .001 

SampleSize * CDT 6.947 1 6.947 21.763 .000 

SampleSize * TPT .333 2 .167 .522 .601 

SampleSize * IPT .232 2 .116 .363 .700 

TaskSize * CDT .000 1 .000 .001 .975 

TaskSize * TPT .776 2 .388 1.215 .318 

TaskSize * IPT .467 2 .233 .731 .494 

CDT * TPT .226 2 .113 .354 .706 

CDT * IPT .161 2 .080 .251 .780 

TPT * IPT 2.059 4 .515 1.612 .210 

SampleSize * TaskSize 

* CDT 

.526 1 .526 1.647 .214 

SampleSize * CDT * 

TPT 

.193 2 .096 .302 .742 

SampleSize * TPT * 

IPT 

1.331 4 .333 1.043 .410 

TaskSize * CDT * TPT .247 2 .123 .386 .684 

TaskSize * TPT * IPT 1.129 4 .282 .884 .491 

CDT * TPT * IPT .450 4 .113 .352 .839 

SampleSize * CDT * 

IPT 

1.263 2 .632 1.978 .164 

SampleSize * TaskSize 

* IPT 

.089 2 .044 .139 .871 

TaskSize * CDT * IPT .076 2 .038 .120 .888 
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SampleSize * TaskSize 

* TPT 

.350 2 .175 .548 .587 

Error 6.384 20 .319   

Total 1048.634 72    

Corrected Total 136.223 71    

a. R Squared = .953 (Adjusted R Squared = .834) 
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Table D6.  

 

All 3 way ANOVA of the conditional probability table in simulation study 2 

  

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 59.225
a
 51 1.161 7.588 .000 

Intercept 823.401 1 823.401 5380.199 .000 

SampleSize 19.023 1 19.023 124.299 .000 

TaskSize 16.518 1 16.518 107.930 .000 

CDT 12.636 1 12.636 82.567 .000 

TPT 3.885 2 1.943 12.693 .000 

IPT .201 2 .100 .656 .530 

SampleSize * TaskSize .117 1 .117 .762 .393 

SampleSize * CDT .884 1 .884 5.778 .026 

SampleSize * TPT .009 2 .004 .028 .973 

SampleSize * IPT .035 2 .017 .114 .893 

TaskSize * CDT .487 1 .487 3.183 .090 

TaskSize * TPT .050 2 .025 .165 .849 

TaskSize * IPT .396 2 .198 1.293 .297 

CDT * TPT .205 2 .102 .669 .523 

CDT * IPT .208 2 .104 .680 .518 

TPT * IPT .392 4 .098 .640 .640 

SampleSize * TaskSize 

* CDT 

.806 1 .806 4.265 .073 

SampleSize * CDT * 

TPT 

.286 2 .143 .933 .410 

SampleSize * TPT * 

IPT 

.551 4 .138 .899 .483 

TaskSize * CDT * TPT .159 2 .079 .518 .603 

TaskSize * TPT * IPT .216 4 .054 .352 .839 

CDT * TPT * IPT .409 4 .102 .668 .622 

SampleSize * CDT * 

IPT 

.175 2 .087 .572 .574 

SampleSize * TaskSize 

* IPT 

.054 2 .027 .176 .840 

TaskSize * CDT * IPT .070 2 .035 .228 .798 
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SampleSize * TaskSize 

* TPT 

.118 2 .059 .386 .685 

Error 3.061 20 .153   

Total 919.545 72    

Corrected Total 62.286 71    

a. R Squared = .951 (Adjusted R Squared = .826) 
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Appendix E. ANOVA with SDs 

 Before running ANOVA, I also computed the skewness and kurtosis. It was 

observed that the distributions of the dependent variables depart from the normal 

distribution. Therefore, the transformed data were used in ANOVA. Table E1and E2 

shows the values of Skewness and Kurtosis.  

Table E1.  

The values of skewness and kurtosis in the simulation study 1 

 Skewness Kurtosis 

RMSD Statistic Std. Error Statistic Std. Error 

IPT 1.022 .283   .018 .559 

TPT  .893 .283  -.458 .559 

CPT  .297 .283 -1.236 .559 

Table E2.  

The values of skewness and kurtosis in the simulation study 2 

 Skewness Kurtosis 

RMSD Statistic Std. Error Statistic Std. Error 

IPT 1.141 .299 1.207 .590 

TPT 1.992 .299 5.842 .590 

CPT .371 .299 -1.343 .590 

The following tables are the ANOVA results with transformed SDs. The ANOVA results 

do not provide important additional information other than the results using RMSD.  
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Table E3.  

ANOVA of SDs of the initial probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 60.109
a
 16 3.757 33.536 .000 

Intercept 2830.246 1 2830.246 25264.422 .000 

SampleSize 28.516 1 28.516 254.555 .000 

TaskSize 9.634 1 9.634 85.995 .000 

CDT 10.724 1 10.724 95.729 .000 

TPT .484 2 .242 2.162 .125 

IPT .331 2 .165 1.476 .237 

SampleSize * 

TaskSize 

.582 1 .582 5.194 .027 

SampleSize * CDT .008 1 .008 .075 .786 

SampleSize * TPT .386 2 .193 1.722 .188 

TaskSize * CDT 8.205 1 8.205 73.240 .000 

TaskSize * TPT .427 2 .213 1.905 .159 

CDT * TPT .301 2 .151 1.344 .269 

Error 6.161 55 .112   

Total 2910.364 72    

Corrected Total 66.270 71    

a. R Squared = .907 (Adjusted R Squared = .880) 

 

Sample size, task size, and CPT were statistically significant. Also, two interaction 

effects (sample size X task size, Task size X CDP) were statistically significant.  
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Table E4.  

ANOVA of SDs of the transition probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 50.532
a
 16 3.158 24.724 .000 

Intercept 2440.922 1 2440.922 19108.245 .000 

SampleSize 27.023 1 27.023 211.544 .000 

TaskSize 4.165 1 4.165 32.602 .000 

CDT 4.203 1 4.203 32.902 .000 

TPT 2.952 2 1.476 11.556 .000 

IPT .770 2 .385 3.016 .057 

SampleSize * 

TaskSize 

.066 1 .066 .518 .475 

SampleSize * CDT .018 1 .018 .140 .709 

SampleSize * TPT .011 2 .006 .044 .957 

TaskSize * CDT 11.040 1 11.040 86.426 .000 

TaskSize * TPT .307 2 .154 1.202 .308 

CDT * TPT .322 2 .161 1.261 .291 

Error 7.026 55 .128   

Total 2503.478 72    

Corrected Total 57.558 71    

a. R Squared = .878 (Adjusted R Squared = .842) 

 

Sample size, task size, CPT, and TPT were statistically significant. Also, an interaction 

effects (Task size X CDP) were statistically significant. 
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Table E5.  

ANOVA of SDs of the conditional probability table in simulation study 1 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 22.059
a
 16 1.379 51.193 .000 

Intercept 1498.999 1 1498.999 55661.585 .000 

SampleSize 19.688 1 19.688 731.049 .000 

TaskSize .002 1 .002 .092 .762 

CDT .795 1 .795 29.531 .000 

TPT .727 2 .364 13.506 .000 

IPT .274 2 .137 5.091 .009 

SampleSize * 

TaskSize 

.091 1 .091 3.383 .071 

SampleSize * CDT .005 1 .005 .189 .665 

SampleSize * TPT .036 2 .018 .677 .512 

TaskSize * CDT .137 1 .137 5.085 .028 

TaskSize * TPT .107 2 .054 1.989 .147 

CDT * TPT .096 2 .048 1.790 .177 

Error 1.481 55 .027   

Total 1528.667 72    

Corrected Total 23.540 71    

a. R Squared = .937 (Adjusted R Squared = .919) 

Sample size, CPT, TPT, and IPT were statistically significant. Also, an interaction 

effects (Task size X CDP) were statistically significant 
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Table E6.  

 

ANOVA of SDs of the initial probability table in simulation study 2 

 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 46.828
a
 10 4.683 20.291 .000 

Intercept 2450.733 1 2450.733 10619.426 .000 

SampleSize 18.265 1 18.265 79.146 .000 

TaskSize 2.276 1 2.276 9.863 .003 

CDT 14.575 1 14.575 63.155 .000 

TPT .750 3 .250 1.083 .364 

covariate .132 1 .132 .570 .454 

SampleSize * 

TaskSize 

.345 1 .345 1.496 .227 

SampleSize * CDT .261 1 .261 1.130 .293 

TaskSize * CDT 9.598 1 9.598 41.589 .000 

Error 12.231 53 .231   

Total 2504.656 64    

Corrected Total 59.059 63    

a. R Squared = .793 (Adjusted R Squared = .754) 

 

 

Sample size, task size, CPT, and TPT were statistically significant. Also, an interaction 

effects (Task size X CDP) were statistically significant 
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Table E7.  

 

ANOVA of SDs of the transition probability table in simulation study 2 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 38.733
a
 10 3.873 31.010 .000 

Intercept 1877.806 1 1877.806 15033.563 .000 

SampleSize 16.044 1 16.044 128.450 .000 

TaskSize 1.956 1 1.956 15.657 .000 

CDT 12.078 1 12.078 96.696 .000 

TPT .675 3 .225 1.801 .158 

covariate .145 1 .145 1.159 .287 

SampleSize * 

TaskSize 

.690 1 .690 5.526 .022 

SampleSize * CDT .001 1 .001 .008 .928 

TaskSize * CDT 6.557 1 6.557 52.497 .000 

Error 6.620 53 .125   

Total 1920.284 64    

Corrected Total 45.354 63    

a. R Squared = .854 (Adjusted R Squared = .826) 

 

Sample size, task size, and CPT were statistically significant. Also, an interaction effects 

(sample size X task size, Task size X CDP) were statistically significant. 
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Table E7.  

 

ANOVA of SDs of the conditional  probability table in simulation study 2 

 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Corrected Model 20.203
a
 19 1.063 16.074 .000 

Intercept 1436.746 1 1436.746 21719.403 .000 

SampleSize 17.026 1 17.026 257.381 .000 

TaskSize .369 1 .369 5.574 .023 

CDT 1.997 1 1.997 30.183 .000 

TPT .257 3 .086 1.293 .289 

covariate .020 1 .020 .310 .581 

SampleSize * 

TaskSize 

.085 1 .085 1.291 .262 

SampleSize * CDT .061 1 .061 .915 .344 

TaskSize * CDT .059 1 .059 .888 .351 

SampleSize * TPT .094 3 .031 .474 .702 

TaskSize * TPT .224 3 .075 1.128 .348 

CDT * TPT .099 3 .033 .500 .684 

Error 2.911 44 .066   

Total 1471.277 64    

Corrected Total 23.114 63    

a. R Squared = .874 (Adjusted R Squared = .820) 

 

Sample size, CPT, TPT, and IPT were statistically significant. Also, an interaction effects 

(Task size X CDP) were statistically significant. 
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