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Although chromium (Cr) is a naturally occurring metal, in the oxidation state +(VI), it is 

a health concern when present in soils and natural waters due to its solubility and toxicity.  

Tartaric acid and isopropyl alcohol were evaluated for reduction of Cr(VI) at 

environmentally relevant pH values, in the presence of soils, and from chromite ore 

processing residue (COPR).  Soil samples were taken from profiles located in 

delineations of five soil mapping units in Maryland, USA: Christiana-Russett Complex, 

Askecksy, Annapolis, Jackland, and Ingleside.  In solution, the rate of reduction of 

Cr(VI) by the tartaric acid-Cr-isopropyl alcohol complex was lowered from 0.128 to 

0.011 h-1 as pH was raised from 3.0 to 5.0; however, in the presence of the Russett and 

Jackland soils, the rates of reduction were 0.037 and 0.020 h-1, respectively despite pH 

values of 5.3 and 5.0.  In addition to Cr(VI) reduction, 97.6 and 89.9 µM Mn(II), and 427 



and 67.6 µM Fe(II) were solubilized from the Russett and Jackland soils, respectively.  

Adding soluble Mn2+ and Fe3+ to the five soils with tartaric acid and isopropyl alcohol 

enhanced reduction of Cr(VI) in all soils, with the addition of Mn2+ enhancing reduction 

by an additional 0.27 mM Cr(VI) in the Jackland soil and to 1.46 mM in the Downer soil.  

Furthermore, the addition of tartaric acid and isopropyl alcohol to Mn-oxide  coated sand 

(1.8x10-1 µmol Mn/mg) showed reductive dissolution of Mn(III,/IV)(hydr)oxides, and the 

resulting Mn(II) enhanced reduction to 1.24 mM (62%) of Cr(VI).  When applied to 

COPR, tartaric acid-Cr-isopropyl alcohol or tartaric acid-Cr-Mn complexes reduced 0.3 

mM (30%) Cr(VI), although when COPR was mixed with the Atsion, Collington, or 

Russett soils, pH values remained below 5.0 and 0.84 mM (84%) of the Cr(VI) was 

reduced.  This work showed that a tartaric acid and isopropyl alcohol solution reductively 

dissolves Mn(III,/IV)(hydr)oxides from soils, and the resulting Mn(II) enhances 

reduction of Cr(VI), which can be potentially applied to the reduction of COPR-derived 

Cr(VI) in a soil remediation strategy.       
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CHAPTER 1 
 

USE OF TARTARIC ACID AND ISOPROPYL ALCOHOL IN THE REDUCTION 
OF HEXAVALENT CHROMIUM AND APPLICATION TO CHROMIUM 

CONTAMINATED SOILS AND CHROMITE ORE PROCESSING RESIDUE: 
LITERATURE REVIEW 

 
 

Challenges to the Remediation of Hexavalent Chromium 
 

Chromium is a naturally occurring, transition metal found in the environment 

mostly in the trivalent state, such as the chromium ore ferrochromite (FeO•Cr2O3).  For 

commercial use, ferrochromite ore is mined and roasted at high temperatures under 

alkaline conditions by addition of sodium carbonate (soda ash); thereby oxidizing 

insoluble Cr(III) to soluble Cr(VI) which is then leached from the roast to be used in a 

wide array of industrial and consumer products (Darrie, 2001).  Chromite ore processing 

residue (COPR), the remaining solid waste product from this process, contains variable 

amounts of unreacted ore and soluble and insoluble forms of Cr(VI), and is a persistent 

source of Cr(VI) contamination in notable locations such as Baltimore, Maryland; 

Hudson County, New Jersey; and Glasgow, Scotland (Burke et al., 1991; Darrie, 2001; 

Deakin et al., 2001).  COPR has also been used as fill material for construction purposes 

because of its resemblance to a sandy soil, such as in the Dundalk Marine Terminal in 

Baltimore, MD (CH2M Hill, 2011); however, residual Cr(VI) can persist as a potential 

pollutant of soils, air, and groundwater from this soil-like material.  For example, in 

Hudson County, New Jersey, it was used to fill wetlands and poorly-drained landscapes 

for use in industrial activity and development during the twentieth century (James, 1996).   

Current remediation practices for COPR use either an Fe- or S-based reducing 

agent, with the former resulting in concretions or clogging of pores with oxidized Fe(III) 
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minerals formed as Cr(VI) is reduced to Cr(III); the use of S results in delayed ettringite 

(Ca6Al2(SO4)3•32H2O) formation, which results in extensive swelling and buckling of 

paved surfaces when used as fill material for roads (Dermatas et al., 2006; Ludwig et al., 

2008).  In contrast to these reducing agents, this research will investigate the potential use 

of tartaric acid in an alcohol-water solution as an effective alternative to Fe- or S-based 

reducing agents in the reduction of COPR derived Cr(VI).  Remediation-by-reduction is a 

soil clean-up strategy that can be used in an attempt to mitigate the toxic effects of Cr(VI) 

and to clean up Cr contaminated sites to meet regulatory standards and protect human 

health (James, 1996).      

 

Health Concerns and Regulatory Context of Hexavalent Chromium 
 

Concerns regarding the presence of Cr in the environment focus on the potential 

adverse health effects of Cr(VI)-contaminated soils, groundwater, and drinking water 

supplies.  Regulation of Cr is currently based, not on the oxidation state of Cr, but on 

total chromium concentration [i.e., the sum of Cr(III) and Cr(VI)].  The U.S. 

Environmental Protection Agency’s national standard for total Cr in drinking water is 100 

µg/L (100 ppb), except in California, whose current drinking water standard is 50 µg/L 

(CDPH, 2009; USEPA, 2010).  In 1999, California set a Public Health Goal of 2.5 µg/L, 

which was based on a 1968 study in Germany that found stomach tumors in animals that 

repeatedly ingested Cr(VI). The EPA rejected that study as flawed and determined there 

was no evidence it was carcinogenic in water, which resulted in the state rescinding its 

goal in 2001 and reverting back to the 50 µg/L standard (CDPH, 2009).  The point of 
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contention regarding the 1968 study was on whether Cr(VI) is reduced to Cr(III) in the 

stomach by gastric acids at pH 1-2. 

Chromium(VI) is genotoxic in a number of in vitro and in vivo toxicity assays 

(IARC, 1990).  Because the mechanisms of genotoxicity and carcinogenicity are not fully 

understood, the National Toxicology Program (NTP) conducted animal tests to assess the 

potential for cancer due to ingestion of Cr(VI) (Stout et al., 2009).  Reduction of Cr(VI) 

to Cr(III) is hypothesized to occur primarily in the stomach, as a mechanism of 

detoxification.  In this 2-year NTP study, observed increases in abnormal growths in the 

small intestine of mice, toxicity to red and white blood cells and bone marrow, and 

uptake of Cr(VI) into tissues suggested that at least a portion of the administered Cr(VI) 

was not reduced in the stomach (Stout et al., 2009).   

This finding, in addition to the absence of increases in abnormal growths in the 

small intestine in rats or mice exposed to chromium picolinate monohydrate (CPM), an 

organically bound form of Cr(III) (NTP, 2008), provides evidence that Cr(VI) is not 

completely reduced in the stomach and is responsible for these carcinogenic effects.  

Additionally, it should be noted that Cr(III), like that found in CPM, is essential for 

human health in trace amounts as an activator of insulin (ATSDR, 2000), but exists 

predominantly in nature in cationic forms that are only sparingly-soluble in near-neutral 

pH soils, plants, cells, and natural waters (Kimbrough et al., 1999).   

There is currently no national, regulated standard for Cr in soils.  Regulated 

standards for Cr(VI) and Cr(III) are determined and enforced at the state level.  Due to 

extensive soil contamination from COPR disposal on and in soils of Hudson County, NJ, 

the New Jersey Department of Environmental Protection (NJDEP) has set the allowable 
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Cr(VI) level in soils at 20 mg/kg based on a risk assessment analysis reviewed by a 

NJDEP-established Chromium Workgroup (NJDEP, 2010).  This is the lowest standard 

set by any state.  In order to successfully apply a remediation strategy that could meet a 

standard of 20 mg Cr(VI)/kg soil, a thorough understanding of the dissolution, solubility, 

reduction, and potential oxidation of Cr from Cr-containing minerals in COPR and 

COPR-contaminated soils is essential.    

 

Chromite Ore Processing Residue (COPR) 
 

 In oxidizing insoluble Cr(III) and extracting Cr(VI) from chromite ore 

(FeO•Cr2O3) in a high-temperature lime roasting process, chromite ore processing residue 

(COPR) is produced.  This process separates metal impurities, such as Fe, Mg, and Al 

from Cr and isolates Cr as soluble sodium chromate (Na2CrO4) (Lioy et al., 1992).  

Added lime (CaO) forms Cr(III) and Cr(VI) minerals with a highly alkaline pH 

approximately 11-12, and total Cr levels up to 46,000 mg/kg (Lioy et al., 1992).    

 Although each sample of COPR varies in mineralogical and chemical properties 

from location to location and depending on how much CaO was added, some 

commonalities of mineralogical properties important to understanding the chemical 

behavior of COPR during reduction processes have been investigated (Chrysochoou et 

al., 2010; Hillier et al., 2003; Tinjum et al., 2008).  The most abundant metals other than 

Cr found in COPR samples are Ca, Mg, Fe, and Al (Chrysochoou et al., 2010).  

Additionally, Hillier et al. (2003) rationalized that there are three main categories of 

mineral compositions in COPR samples.  The first is chromite, a relic of the chromite ore.  

The second category consists of minerals formed at the high temperatures during the 
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roasting process, such as brownmillerite and periclase, and the third category of minerals 

includes ones that are presumed to have formed after COPR has been deposited and 

exposed to more natural conditions, such as the leaching of elements with the influx of 

water and uptake of CO2.  Although there are many different minerals that can be 

assigned to these three categories, there are four common minerals in COPR that have 

been found to incorporate Cr(VI) by substitution for Fe or Al in their structures: 

brownmillerite (Ca2(Fe,Al)2O5), ettringite (Ca6Al2(SO4)3(OH)12•26H2O), hydrocalumite 

(Ca2(Al,Fe)(OH)6(OH) •3H2O), and hydrogarnet (Ca3(Al,Fe)2(H4O4)3) (Chrysochoou et 

al., 2010; Hillier et al., 2003).  Additionally, up to 30% of the mineralogical makeup of 

COPR can be paracrystalline in structure (Hillier et al., 2003).       

 Column studies assessing the reduction of COPR with the influx of FeSO4-H2SO4 

or polysulfides (CaSx) demonstrated that the hydraulic conductivity of the COPR 

decreased following reduction treatment due to formation of precipitates in the pores 

(Tinjum et al., 2008).  One of the main issues with COPR reduction is ensuring that the 

reductant is able to reach Cr(VI) entrained in Cr(VI)-bearing minerals.  The addition of 

SO4
2- with the reductant, such as FeSO4 enhances the amount of Cr(VI) reduced through 

anion exchange; SO4
2- is able to displace CrO4

2- in Cr(VI)-bearing minerals (Geelhoed et 

al., 2003).  Once displaced and leached from COPR, soluble Cr(VI) can be reduced and 

once reduced, Cr(III) will precipitate, but also possibly oxidized back to Cr(VI) if 

sufficient levels of  Mn(III,IV)(hydr)oxides are present (Bartlett and James, 1979).   

 
Hexavalent Chromium 

 
Remediation-by-reduction strategies in soils aim to reduce Cr(VI) to Cr(III),which 

can be done either in situ with the soil or ex situ (James, 1996).  This dissertation will 
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focus on the reduction of Cr(VI) by tartaric acid, which is a four-carbon, α-hydroxy 

organic acid with two hydroxyl and two carboxylic acid groups:  

(COOH(CHOH)2COOH).  The oxidation of tartaric acid by Cr(VI) can be negligible if 

pH is above 5.0; however, an isopropyl alcohol-water solution will enhance oxidation due 

to an interaction between Cr(VI), the organic acid, and the alcohol, resulting in reduction 

of Cr(VI) to Cr(III) and co-oxidation of the alcohol to acetone.   

Westheimer and Novick (1943) first presented the mechanism for the oxidation of 

isopropyl alcohol by chromic acid.  Several important concepts needed for understanding 

aqueous Cr(VI) solutions and its oxidation of isopropyl alcohol were put forth in this 

early paper.  First, Westheimer and Novick demonstrated that HCrO4
- is more important 

in oxidation reactions than Cr2O7
2- (Westheimer and Novick, 1943).  Equation 1 

illustrates the equilibrium between Cr2O7
2- and HCrO4

-; however at high Cr 

concentrations and/or low pH values, Cr2O7
2- increases in importance. 

Cr2O7
2- + H2O ↔ 2HCrO4

- ↔ CrO4
- + 2H+ (1) 

 These authors also showed that as concentrations of HCrO4
- were lowered, the 

rate constants increased, and that kinetically the rate of isopropyl alcohol oxidation was 

pseudo-first order with respect to Cr(VI).  The rate constant also increased as the 

concentration of isopropyl alcohol increased.  An investigation of interferences in the 

reaction showed that Fe3+ and Al3+ did not affect the oxidation of the alcohol; however, 

Mn2+ added as MnCl2 lowered the rate of oxidation by half (Westheimer and Novick, 

1943).  In a solution of Cr(VI) and Mn2+, but no isopropyl alcohol, no oxidation of Mn2+ 

was observed, and so the authors hypothesized that an intermediate Cr(VI)-isopropyl 

alcohol compound formed and enhanced the reactivity with Mn2+.   
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 Further work by Westheimer and colleagues supported monoisopropyl chromate 

as the intermediate species, and proposed that tetravalent chromium Cr(IV) was the 

intermediate Cr species produced following the 2-electron transfer from isopropyl alcohol 

to Cr(VI) in the oxidation of isopropyl alcohol to acetone (Holloway et al., 1951; 

Watanabe and Westheimer, 1949).  The authors proposed a monoisopropyl chromate 

ester as the activated complex (Figure 1-1).  The formation of the ester is necessary for 

the electron transfer to occur, but it was determined that it is the decomposition or 

cleavage of the ester bond that is the rate-limiting step in 

determining the overall rate of oxidation.  Kwart and Francis 

(1959) working with secondary alcohols further 

demonstrated that the ester decomposition step was the rate 

limiting step in the reaction.  

 From these studies, the two electron transfer from isopropyl alcohol to Cr(VI) to 

form acetone and Cr(IV) via a monoisopropyl chromate ester is summarized in equations 

2 and 3.          

 CH3CHOHCH3 + H2CrO4
-  →  (CH3)2CHOCrO3H + H2O                                  (2) 

 (CH3)2CHOCrO3H  + OH- →  (CH3)2CO + HCrO3
- + H2O                                  (3) 

The overall oxidation-reduction reaction for Cr(VI) being reduced to Cr(III) is illustrated 

in equation 4. 

 1.5CH3CHOH CH3 + HCrO4
- + 2H+ → 1.5CH3COCH3 + Cr(OH)3 + H2O         (4) 

Rahman and Rocek (1971) used acrylamide as a free-radical scavenger to provide insight 

into the reactions that occur in equations 2 and 3 by presenting the following mechanistic 

scheme: 

Figure 1-1 
Monoisopropyl-Cr(VI) 
ester 
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Cr(VI) + isopropyl alcohol  →  Cr(IV) + acetone                                                (5) 

Cr(IV) + isopropyl alcohol →  Cr(III) + ketyl free-radical                                  (6) 

Cr(VI) + ketyl free-radical →  Cr(V) + acetone                                                   (7) 

Cr(V) + isopropyl alcohol →  Cr(III) + acetone                                                   (8) 

These authors suggested that the full reduction from Cr(VI) to Cr(III) requires both 

transitional oxidation states Cr(V) and Cr(IV) as well as the production of a ketyl free-

radical.       

 Further work done by Hasan and Rocek (1972) showed an increase in the 

oxidation rate with 1x10-4 to 1.0 M isopropyl alcohol, 4.2x10-4 to 4.2x10-2 M H2CrO4, 

1.9x10-5 to 0.2 M oxalic acid, and in up to 0.5 M perchloric acid.  The rates ranged from 

1.7x10-4 to 4.8x10-2 (sec-1), and the reaction (total average reaction time was under 20 

mins) increased with increasing oxalic acid concentrations until the reaction became zero 

order in oxalic acid.  The authors proposed that Cr(VI), isopropyl alcohol, and oxalic acid 

formed an intermediate complex that allowed for a three-electron transfer resulting in the 

reduction of Cr(VI) to Cr(III) (Hasan and Rocek, 1972).  In addition to being the first 

work completed with these unique constituents, this is also the first time a three-electron 

oxidation step involving Cr(VI) had been proposed.     

 The mechanistic scheme for the intermediate complex was further described by 

Mahapatro et al. (1980) using 2-hydroxy-2-methylbutyric acid and isopropyl alcohol.  

The proposed reaction is illustrated in equations 9 - 13: 
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(2-hydroxy-2-
methylbutyric acid 

 (9) 

 

 (10) 

 (11) 

 

CH3CH2C•OHCH3  + Cr(VI)  →  CH3CH2COHCH3  + Cr(V) (12) 

 

    + Cr(V)   →   CH3CH2COHCH3  + CO2  + Cr(III)                   (13) 

 

 

Equation 9 shows the first step of the mechanism, which is the formation of a 

bimolecular cyclic complex between Cr(VI) and the 2-hydroxy-2-methylbutyric acid.  In 

equation 10, this complex reacts with isopropyl alcohol to form a termolecular complex.  

Equation 11 shows the oxidative decomposition of this complex to yield acetone, carbon 

HCrO4- H+

(2-hydroxy-2-
methylbutyric acid) 

(isopropyl alcohol) 
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dioxide, trivalent chromium, and the free radical formed from the partial oxidation of 2-

hydroxy-2-methylbutyric acid.  This α-hydroxy free radical reacts with a molecule of 

Cr(VI) in equation 12 to form Cr(V), which can react with 2-hydroxy-2-methylbutyric 

acid in equation 13 to yield carbon dioxide and trivalent chromium (Hasan and Rocek, 

1973a; Mahapatro et al., 1980). At concentrations of 2-hydroxy-2-methylbutyric acid at 

0.1 M, Cr(VI) at 5x10-4M, and isopropyl alcohol at 0.05 M, these authors showed the 

reaction rate varied as a function of acidity, ranging from 0.30 sec-1 at 5x10-3 M 

perchloric acid to 62 sec-1 at 1.9 M perchloric acid.     

Other work by Hasan and Rocek (1973b) demonstrated that in addition to 2-

hydroxy-2-methylbutyric acid, this reaction occurs with other α-hydroxy carboxylic 

acids, such as maleic, malic, tartaric, and citric acid.  Kabir-ud-Din et al. (2002) showed 

the reduction of Cr(VI) by tartaric acid in the three-electron transfer pathway, with the 

intermediate production of Cr(V) and free radicals.  As earlier studies have shown, the 

ephemeral Cr(V) species is important as an intermediate Cr species involved in the 

oxidation of tartaric acid and of isopropyl alcohol.  Sun et al. (2009) demonstrated the 

reduction of Cr(VI) in the presence of Fe(III) with tartaric, citric, malic, and n-butyric 

acids.  The authors showed that the extent of reaction increased as the number of 

hydroxyl groups increased, due to the electron withdrawing nature of the hydroxyl group 

increasing the tendency of the carboxyl group to leave the molecule in a reductive 

decarboxylation step (Houghton, 1979).   
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Chromium Redox in Soils 

Soils are a key medium for terrestrial ecosystems, and provide nutrients, water, 

and physical space for plants and animals to reside.  Microorganisms and macrofauna that 

reside in the rhizosphere, or root zone of soils, are diverse and interact with their 

environment in dynamic processes that alter that environment both physically and 

chemically.  The organic and inorganic solid phases of the soil matrix are also chemically 

dynamic, and can consist of redox active species, such as Fe(II)/Fe(III)- and Mn(II, III, 

IV)(hydr)(oxides), sulfur compounds, nitrogen compounds, soil organic matter, and 

organic acids.  The interaction of these chemical species with microorganisms, as well as 

with each other, often with fluctuations in dissolved O2 concentrations due to the rise and 

fall of water tables, can make soil redox processes and Cr redox cycling in soils dynamic 

and challenging to study.   

Solubility  Hexavalent Cr forms tetrahedral, oxo(compounds) in aqueous 

solution,  whereas Cr(III) forms many stable, amphoteric compounds of which many are 

octahedral, kinetically inert complexes (Niki, 1985).  Chromium(III), when not 

complexed by an organic chelating (or complexing) agent, will form Cr(OH)3 and 

precipitate out of solution at approximately pH 5.5 and higher.  Equation 14 shows the 

formation of the Cr(III) hydroxide with Ksp = 10-12 (mol/L) at pH 7 given (James and 

Brose, In press): 

Cr(OH)3(S)  ↔ Cr3+ + 3OH-                                                                                 (14) 

The low Ksp value indicates that the hydroxide will be stable thermodynamically and 

precipitate out of solution.  In the presence of excess hydroxide ions, the formation of the 

hydroxo-chromite ion Cr(OH)4
- is possible, and is represented by equation 15.   
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Cr(OH)4
- ↔  Cr(OH)3 + OH-                                                    (15) 

Other precipitated forms for Cr(III) include chromium arsenate (CrAsO4) and chromite 

(FeO∙Cr2O3) with Ksp values (pH 7) of 10-10 and 10-20 mol/L, respectively (James and 

Brose, In press).  Also contributing to solubility is the ability of Cr(III) to form both 

organic and inorganic complexes (Cotton and Wilkinson, 1980; James and Bartlett, 

1983a; Mandiwana et al., 2007; Puzon et al., 2008).  If complexed with organic acids 

such as fulvic or citric acid, Cr(III) will remain soluble at pH values up to 6.7 depending 

in part on the pKa of the organic acid and the COOH-Cr(III) ratio (James and Bartlett, 

1983b).  The complexation of Cr(III) with organic ligands allows for organic-Cr(III) 

complexes to remain soluble and resistant to biodegradation in soils and natural waters, 

because complexed Cr inhibits the ligand serving as a carbon and energy source for 

microbial growth (Puzon et al., 2008).   

Relative to Cr(III) cationic compounds, Cr(VI) anionic compounds are more 

soluble over the pH range of natural environments, i.e. 4.0 to 8.0,  leading to a greater 

concern about the potential mobility of Cr(VI) in soils and natural waters; however, 

chromium (VI) salts, such as PbCrO4 and BaCrO4 with Ksp values (pH 7) of 1.8 x 10-6 

and 1.7x10-3 mol/L, respectively, are only sparingly-soluble (James and Brose, In press).   

Iron oxides are one of the most common minerals found in soils, with goethite (α-

FeOOH) existing in almost every soil in all climate regimes, with greater concentrations 

occurring in wetter and cooler climates (Essington, 2004).  Other Fe(III)(hydr)oxides 

relevant to the current research are hematite (α-Fe2O3) and ferrihydrite (Fe5HO8•4H2O).   

Mn(hydr)oxides in +III or +IV oxidation states are generally microcrystalline, 

poorly-ordered (non-stoichiometric), and often occur as coatings on ped faces and pore 
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surfaces as concretions or nodules (Essington, 2004).  Because of the paracrystalline 

nature of naturally-occurring Mn(III,IV)(hydr)oxides, they are challenging to 

characterize, especially in soils.  Birnessite is one of the most common soil Mn minerals 

and has a mixed +III/IV oxidation state and layered structure that commonly forms 

surface coatings on clay and other mineral surfaces (Oze et al., 2007; Sparks, 2003). 

  Sorption  In colloidal environments, such as soils and sediments with clays and 

metal (hydr)oxides, sorption processes (cation exchange, precipitation, and surface-

induced hydrolysis) can immobilize cationic metals.  Generally, the most important 

parameters affecting sorption of metals in soils are other metal hydroxides, clay, organic 

matter, oxidation state, concentration, solid-to-solution ratio, contact time, and most 

importantly soil pH (Bradl, 2004).  There are two main interactions between solute and 

solid phases relevant to the current research that can be used to understand metal sorption 

in soils.  The first are inner-sphere surface complexes between the metal and surface site, 

and second are electrostatic interactions, which consist of outer-sphere complexes where 

the metal is at a distance from the surface site.  The number of surface sites available 

imparts cation exchange capacity (CEC) to the soil; the amount of negative charge of a 

soil determines CEC and comprises of a constant charge component and a variable 

charge (Sparks, 2003).  The constant charge is due to isomorphic substitution in 

secondary minerals, such as phyllosilicate clay minerals that result in a permanent 

negative charge.  Variable charge is attributed to the deprotonation and protonation of 

functional groups on hydroxide groups on exposed edges of  octahedral sheets of clays, 

metal (hydr)oxides, silicates coated with metal oxides, and soil organic matter (Sparks, 

2003).   
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Although CrO4
2- and HCrO4

- can adsorb to positively-charged surfaces similarly 

to SO4
2-, the net negative charge of soils relevant to the current research will make 

sorption of cations, such as Cr3+ more likely; however, under low pH conditions, some 

surfaces sites can be protonated and allow for electrostatic adsorption of HCrO4
-.  This 

sorption may be reversible and will allow anions to again be solubilized, or via 

chemisorption, sorbed HCrO4
- can potentially be incorporated into the structure of a 

mineral surface (James and Bartlett, 1983c).  Kantar et al. (2008) demonstrated the 

“ligand-like” behavior of Cr(VI) in a soil column study, with maximum sorption of 

Cr(VI) at acidic pH values and decreasing rapidly with an increase in pH.     

Cr(III) was shown to be rapidly adsorbed by Fe(III) and Mn(III,IV)(hydr)oxides 

and clay minerals, with adsorption increasing with increasing pH (Bradl, 2004).  

Adsorption of Cr(III) decreased in the presence of competing anions for sorption sites.  

Han et al. (2004) demonstrated the importance of contact time in that Cr(III)  in 

undisturbed and unpolluted soils was strongly bound to solid mineral phases, whereas 

Cr(III)  in newly contaminated soils was less strongly bound and was more associated 

with soil organic matter making this form of Cr(III) potentially more labile.   

Oxidation  Soluble Cr(III) salts and freshly-precipitated hydroxides oxidize 

rapidly to Cr(VI) in the presence of  Mn(III,IV)(hydr)oxides in moist soils (Bartlett and 

James, 1979).  Mn(III,IV)(hydr)oxides, such as birnessite and todorokite have a low point 

of zero charge (PZC) in the range of pH 1-2, resulting in their being negatively charged 

in near-neutral, natural environments, and capable of attracting cations such as Cr3+ and 

CrOH2+ (Kim et al., 2002).  Cr(III) oxidation followed a first-order reaction dependent on 

Cr(III) concentration with four Mn(III,IV)(hydr)oxides: todorokite, birnessite, 
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lithiophorite, and pyrolusite, with more Cr(III) being oxidized at pH 4 than pH 7 (Kim et 

al., 2002).   

The enhanced oxidation at lower pH values may be attributed to the proton 

consuming nature of Mn(III,IV) reduction and also the decreased solubility of 

Cr(III)(hydr)oxides at higher pH values.  Additionally, the electron transfer between 

Mn(III,IV) surfaces and Cr(III) species was shown to occur rapidly at pH 3, but was 

inhibited at higher pH values, possibly due to a change in the charge on the mineral 

surface induced by initial Cr(III) concentrations (Fendorf and Zasoski, 1992).  Higher 

initial Cr(III) concentrations resulting in the surface becoming less negatively charged, 

resulted in the Mn(III/IV)(hydr)oxide being less able to adsorb Cr(III) in solution.  

Alternately, Negra et al. (2005) demonstrated that the strongest oxidizing forms of Mn 

had the greatest Mn(IV)/Mn(III) ratio, and that more Cr(III) oxidation was associated 

with higher soil pH due to a greater proportion of Mn being in the +IV oxidation state.     

Reduction  In aerobic soils, Fe is predominantly immobile and found in the 

oxidation state Fe(III) (Lemanceau et al., 2009).  In a reducing environment, such as a 

flooded soil, Fe(III) can be reduced to Fe(II) and migrate with moving water.  The 

reduction of Fe(III) to Fe(II) has a standard potential of +0.771 V and is illustrated in 

equation 16 (Heusler and Lorenz, 1985).       

Fe3+  +  e-  →   Fe2+                                                                                             (16) 

The addition of a reducing agent to a soil with Fe(III) and Cr(VI) may result in the 

reduction of Fe(III) to Fe(II), and in Fe(II) reducing Cr(VI) (Yang et al., 2008).  Citric 

acid was shown to effectively reduce Cr(VI) in the presence of “red soil”, and also in the 

presence of Fe(III), which yielded a catalytic effect by being reduced to Fe(II) which then 
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reduced Cr(VI).  It was also shown that the extent of reduction decreased as the pH was 

raised from 3.3 to 5.1 (Yang et al., 2008).   

Hug et al. (1997) demonstrated the complexity involved in the reduction of 

Cr(VI) in natural environments having oxalate and Fe(III).  A mechanistic kinetic model 

was presented to explain both dark and photochemical reactions with oxalate where 

superoxide (O2
•-), hydroperoxyl radical (HO2), and Fe(II) were formed, which were likely 

reductants for intermediate Cr(V) and Cr(IV) species.  Following reduction, the main 

product formed was a soluble Cr(III)-oxalate compound (Hug et al., 1997).  Kantar et al. 

(2008) also demonstrated the enhanced reduction of Cr(VI) by Fe(II) in adding the 

organic acids galacturonic and glucuronic acids to systems with or without soil.  The 

reduction of Cr(VI) with these organic acids resulted in a delay in the breakthrough of Cr 

in column studies, due to sorption of the newly formed Cr(III) to the soil.      

In addition to Fe(II) as a reducing agent in soils, soil organic matter can also 

contribute significantly to redox pathways.  Generally, soil organic matter can be 

considered to consist of humin, humic acids, and fulvic acids (Sparks, 2003).  Soil humin 

is regarded as the (paracrystalline) organic material that is neither soluble in acid nor 

base.  Soil humin has several distinct qualities, such as aromatic rings with carboxyl, 

hydroxyl, carbonyl, and alkyl groups; significant amounts of C-1 to C-20 alkyl chains; 

aromatic rings and alkyl groups with C-to-C bonds; and simple and polymeric 

proteinaceous and carbohydrate groups associated along a randomly ordered backbone 

(Baldock and Broos, 2012). 

Humic and fulvic acids have many of the functional groups that contribute to 

many of the chemical characteristics of a soil; these include carboxyl, phenolic, quinone, 
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alcoholic, ketone, amine, and amide groups (Sparks, 2003).  Phenolic groups are 

important in complexation reactions with metals, and can also be further oxidized to 

produce quinones, which are considered to be the major electron donor and acceptor 

moieties of humic material (Tan, 2003). Under aerobic conditions, humic acids express 

significant reducing capacity, and although Fe(II) bound to humic acids can also 

contribute electrons in reduction reactions, relative to humic acids its contribution can be 

considered negligible (Peretyazhko and Sposito, 2006).  

 

Thermodynamics 

The redox reactions involving Cr(VI) and Cr(III) are not only dependent on pH, 

but are also dependent on the pe, or “electron activity”, of the system.  Electron activity, 

or the potential for the electron to do electrical work, is measured as a voltage, Eh, and is 

often expressed in Nernstian form as pe, where pe = Eh (V)/0.059. Although its activity 

(related to concentration) is dimensionless due to the electron having negligible mass, it 

is analogous to pH as the measure of proton activity (James and Brose, 2012).  The large 

charge-to-size ratio of the electron, again similar to the proton, (charge-to-size ratio for 

H+ is small relative to e-) makes it ephemeral in free form, however, it is a strong 

reducing agent with a potential of -2.7 V relative to hydrogen (James and Brose, 2012).   

In soils and natural waters, the range for pH is approximately 3 to 12, and -10 to 

17 for pe (Stumm and Morgan, 1996).  These pe values correspond to Eh values of -591 

to 1005 mV, where the more positive a value, the lower the electron activity.  In soils, the 

higher the Eh value the more the soil can be considered oxic.  The pe and pH of a system 

can be thought of as being in balance on a see-saw where a rise in one value corresponds 
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to a fall in the other, and vice-versa (James, 1996).  One use of pe and pH data is to 

represent which species of an element predominates, and is thermodynamically favorable, 

at given electron and proton conditions.  The pe-pH relationships for different species of 

Cr(VI) and Cr(III) are illustrated with a pe-pH diagram, as shown in Figure 1-2. 

Cr(VI) and Cr(III) redox reactions in soils and natural waters can also be 

predicted using thermodynamic data and reduction half-reactions for Cr, Mn, 

anthraquinone-2,6-disulfonate (AQDS), tartaric acid, and citric acid (Table 1-1).  

Although the oxidized species of tartaric and citric acids were not indicated in the 

reference, standard electron potentials (relative to SHE) were given (Milazzo et al., 

1978).  The compound AQDS is a chemical analog for dissolved humic substances in 

soils and natural waters (Lovley, 1996).  The log K values of these equations can be 

compared to predict which species may be oxidizing and which ones may be reducing.  

 The protonation of the chromate ion is important in considering the 

thermodynamics of reduction and oxidation reactions of Cr.  Take for example the ΔGr 

values for the reduction reactions of HCrO4
- and CrO4

2- by tartaric acid.  For the reaction 

with HCrO4
- reduced by tartaric acid, the ΔGr value is -95.3 kJ/eq, whereas for the 

reaction involving tartaric acid and CrO4
2- the ΔGr value is -107.3 kJ/eq.  The reduction 

of CrO4
2- by tartaric acid is more favorable than that for HCrO4

-.  The standard electron 

potentials for these values are determined at pH 0, and referring back to the pe-pH 

diagram for Cr(VI) and Cr(III), as pH decreases Cr(VI) reduction may occur at higher Eh 

values.  Neither the pe-pH diagram nor Table 1-1 allow inference into the rate of  
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reduction of Cr(VI), but instead only indicate if a reaction could be thermodynamically 

favorable.   

Another important soil constituent regarding Cr redox is Mn(III,IV)(hydr)oxides.  

The log K value for γ-MnO2 (20.8) is greater than the log K for HCrO4
- (18.9) indicating 

that the oxidation of Cr(III) to Cr(VI) is thermodynamically favorable (Table 1-1).  There 

is great uncertainty in the exact composition of Mn(III,IV)(hydr)oxides and due to their 

being non-stoichiometric, the thermodynamic predictions towards redox behavior are also 

uncertain (James, 2002).   

The thermodynamic predictions derived from this table have been explored 

experimentally and were found to hold true (Brose, 2008; Brose and James, 2010).  In the 

Species Equation E0 (V) Log K ΔGr
0 

(kJ/mol) 

A γ-MnOOH γ-MnOOH + e- + 3H+ → Mn2+ + 2H2O 1.50 25.4 -145.0 

B CrO4
2- 1/3CrO4

2- + e- + 5/3H+ → 1/3Cr(OH)3 + 1/3 H2O 1.24 21.0 -119.9 

C γ-MnO2 1/2 γ-MnO2 + e- + 2H+ → 1/2Mn2+ + H2O 1.23 20.8 -118.8 

D HCrO4
- 1/3HCrO4

- + e- + 4/3H+ → 1/3Cr(OH)3 + 1/3 H2O 1.11 18.9 -107.9 

E Fe(OH)3 Fe(OH)3 + e- + 3H+ → Fe2+ + 3 H2O 0.93 15.8 -90.1 

F AQDS 1/2AQDS + e- + 2H+ → 1/2 AH2DS 0.22 3.9 -22.3 

G Lactic acid 1/2 pyruvate + e- + H+ → 1/2 lactate 0.23 3.9 -22.3 

H Citric acid Oxidized species not indicated 0.19 3.2 -18.3 

I Tartaric acid Oxidized species not indicated 0.13 2.2 -12.6 

J CH2O 1/4CO2 + e- + H+ → 1/4 CH2O + 1/4H2O -0.07 -1.9 6.9 

Table 1-1 Reduction half reactions for Cr(VI) and other species likely to be present in 
soils (AQDS= anthraquinone-2,6-hydroxy acid).  These reactions can be combined to 
form redox reactions, many of which are energetically favorable as indicated by 
negative ∆Gr values.  Data from James and Brose, In press; Milazzo et al., 1978; 
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presence of anthraquinone-2,6-disulfonate (AQDS), lactic acid reduced 0.18 mM soluble 

Cr(VI) in 14 days with an initial pH value of 5.5, initial Cr concentration of 0.2 mM, and 

under aerobic conditions (22 ± 2º C).  Using the same initial conditions, but conducted 

with a soil sampled from the Ap horizon of a Watchung series mapping unit (Typic 

Albaqualf), reduction was complete in 11 days.  Both of these results showed more 

reduction of Cr(VI) occurred in samples with AQDS than those without, indicating its 

contribution to Cr(VI) reduction by acting as an electron shuttle.  In the absence of 

AQDS and soil, lactic acid did not reduce any Cr(VI) over the course of 14 days (Figure 

1-3, Brose and James, 2010).  The results are presented in net reduction terms due to the 

possible re-oxidation of Cr(III) by Mn(III,IV)(hydr)oxides.  In fact, soluble Mn, assumed 

to be Mn(II) but measured as total soluble Mn, increased with time during the 14 day 

trial.  The reducing ability of the lactic acid-AQDS system was non-selective towards 

Cr(VI) and also appeared to be reducing Mn(III,IV)(hydr)oxides.  The co-reduction of 

Mn suggests strong reducing conditions, which inhibited any potential re-oxidation of 

freshly-reduced Cr(III) back to Cr(VI).   

This interaction among organic acids, Cr(VI), and soils leads to the current work 

that investigated the use of tartaric acid and isopropyl alcohol in the reduction of Cr(VI) 

in aqueous solutions, in the presence of five Maryland soils, and with chromite ore 

processing residue (COPR)-derived Cr(VI) in aqueous solutions and with the same 

Maryland soils.   
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This work addressed the following research questions: 

• How does the rate of reduction vary with the addition of tartaric acid and 

isopropyl alcohol to aqueous solutions of Cr(VI) at environmentally relevant pH 

values, i.e. 3-6? 

• Does the addition of tartaric acid and isopropyl alcohol enhance the effect of 

reduction of Cr(VI) in Maryland surface soil samples? 

• Can a novel in-situ remediation strategy be employed in which tartaric acid and 

isopropyl alcohol can be applied in the reduction of Cr(VI) from chromite ore 

processing residue (COPR) and COPR-contaminated soils? 

 

The literature review on the reduction of Cr(VI) with isopropyl alcohol and 2-

hydroxy-2-methylbutric acid or oxalic acid were conducted at concentrations up to 1 M 

perchloric acid.  The rate of these reactions were in s-1, with the average of the oxalic acid 

experiments lasting only 20 minutes.  These conditions suit the purpose of that work, 

which was to infer mechanisms by investigating the kinetics of the reaction, but using 

this chemistry in environmental applications will require knowledge about how these 

reactions would “behave” under conditions more like what is found in soils and natural 

waters.  The first research question is explored in Chapter 2, which explores how the rate 

changes under varying conditions of isopropyl alcohol, tartaric acid, Cr(VI), and 

importantly, pH.   

Reactions in aqueous solutions may not correlate to observations in the field, and 

the second research question explores how reduction reactions of Cr(VI) by tartaric acid 

and isopropyl alcohol would vary in five Maryland soils.  Previous work with a 
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Watchung soil A horizon soil sampled showed that reduction of Cr(VI) by lactic acid was 

enhanced in the presence of this soil.  The five soil mapping units (Russett-Christiana, 

Askecksy, Annapolix, Jackland, and Ingleside) were sampled in order to capture a range 

of characteristics, such as texture, percent organic carbon, and levels of Fe(III)- and 

Mn(III/IV)(hydr)oxides.  Chapter 3 explores how reduction varied with time in the 

presence of each of these soils.   

The final research question posed addresses the remediation of chromite ore 

processing residue (COPR), and applying the chemistry involving the tartaric acid-Cr-

isopropyl alcohol complex to the reduction of COPR-derived Cr(VI).  This was the last of 

the three research questions explored, and as seen in Chapter 4, included the lessons 

learned from the work with the aqueous solutions and soils.   

This dissertation research is presented in the next three chapters, with the last 

chapter, Chapter 5, providing concluding remarks on the research and implications of the 

results.  Each of the next three chapters has been written to stand apart from each other 

and submittable individually as a journal article manuscript.  Chapter 2 will provide a 

characterization of the reduction reaction between tartaric acid and Cr(VI) in isopropyl 

alcohol, Chapter 3 applies this chemistry to the reduction of Cr(VI) in five Maryland 

surface soil samples (see Appendix B for complete sampling details and soil 

characterization data), and Chapter 4 applies this chemistry to the reduction of Cr(VI) 

from chromite ore processing residue (COPR) in an attempt to develop a novel in-situ 

remediation strategy.   
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CHAPTER 2 

 
HEXAVALENT CHROMIUM REDUCTION IN AQUEOUS SOLUTIONS:  

THE ROLE OF ISOPROPYL ALCOHOL AND TARTARIC ACID 
   

 

Introduction 

Chromium is a naturally occurring, transition metal found mostly in the trivalent 

state; however, concerns regarding the presence of Cr in the environment focus on the 

potential adverse health effects of Cr(VI)-contaminated soils, groundwater, and drinking 

water supplies.  Regulation of Cr is currently based, not on the oxidation state of Cr, but 

on total chromium concentration [i.e., the sum of Cr(III) and Cr(VI)].  The U.S. 

Environmental Protection Agency’s (USEPA) national standard for total Cr in drinking 

water is 100 µg/L (USEPA, 2010).  Chromium(VI) is genotoxic in a number of in vitro 

and in vivo toxicity assays, and was found to be carcinogenic when administered in 

laboratory animals (IARC, 1990; Stout et al., 2009).  Thus, reducing Cr(VI) in 

contaminated soils and natural waters to Cr(III) is a remediation strategy that would 

detoxify the metal.   

Soluble α-hydroxy carboxylic acids have been explored as reducing agents in the 

treatment of Cr(VI), but alone they demonstrate negligible rates of reduction of Cr(VI).  

When dissolved in an isopropyl alcohol-water solution, however, the reduction of Cr(VI) 

will be significantly enhanced (Hasan and Rocek, 1973; Mahapatro et al., 1980).  α-

hydroxy carboxylic acids in isopropyl alcohol enhance the reduction of Cr(VI) due to the 

formation of a single termolecular complex that forms from the esterification of the 

alcohol and the α-hydroxy carboxylic acid with Cr (Mahapatro et al., 1980; Hasan and 
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Rocek, 1973; Westheimer and Novick, 1943).  The work of these authors demonstrated 

an instantaneous three-electron transfer resulting in the oxidation of isopropyl alcohol 

and α-hydroxy carboxylic acids.  The present work will focus on tartaric acid, a four 

carbon α-hydroxy carboxylic acid with two hydroxyl groups and two carboxylic acid 

groups.  The stoichiometry of the reaction results in two moles Cr(VI) reduced for every 

one mole tartaric acid and isopropyl alcohol, as shown in equation 1: 

 

COOH(CHOH) 2COOH  +  CH3CHOHCH3  +  2HCrO4
-   →        (1) 

 
 

 
 HCOCOOH   +   CH3COCH3  +  2CO2 +  2Cr(OH)3  + H2O 

 

 

The oxidative decomposition of the tartaric acid-Cr-isopropyl alcohol complex ultimately 

yields acetone, carbon dioxide, trivalent chromium, and glyoxylic acid from the 

decarboxylation of tartaric acid (Kabir-ud-Din et al., 2002).   

Although pH was not directly reported, reactions in the literature were carried out 

at concentrations of perchloric acid ranging from 0.1 to 0.9 M, corresponding to pH 

values < 2.0 (Kabir-ud-Din et al., 2002; Mahapatro et al., 1980).  The use of tartaric acid 

and isopropyl alcohol could be an effective reductant in the treatment of Cr -

contaminated soils and natural waters; however, there currently are no data for this 

reaction at conditions more relevant to environmental applications, i.e., in the pH range 

of 3 to 6.  The current work investigates the variation in the rate of the reaction with 

variations in the concentrations of tartaric acid, isopropyl alcohol, Cr(VI) concentrations, 

and acidity in aqueous solutions.  Thermodynamic inferences are drawn from oxidation-

Tartaric acid Isopropyl alcohol 

Glyoxylic acid Acetone 
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reduction potential (ORP) measurements, and the application of this reaction to the 

treatment of Cr(VI) in soils and aqueous solutions is discussed.   

  

Methods 

Hexavalent chromium stock solutions at 1000 mg Cr(VI)/L were prepared from 

DILUT-IT® Analytical Conc. Std, 1g Cr6+ (J.T. Baker, Inc.) or from reagent grade 

K2CrO4 (J.T. Baker, Inc.) and stored at room temperature (22 ± 2º C).  Concentrations of 

2 mM (104 mg/L) Cr(VI) were used to represent drainage water or groundwater 

concentrations subjacent to chromite ore processing residue (COPR) -enriched soils.  

Chromium(VI) concentrations in such soil-water systems have been reported up 58 mM 

(3,000 mg/L) (Yalcin and Unlu, 2006).  Thus, 2 mM would be a low-to-medium 

concentration representing Cr(VI) solutions leached from such soil-water systems.      

Isopropyl alcohol was reagent grade (99.9% purity) and stored at room 

temperature (22 ± 2º C).  Tartaric acid (J.T. Baker, Inc.) solutions were made fresh at the 

start of each experimental setup from reagent grade solids.  All sample solutions included 

0.01 M NaNO3 as a background electrolyte to control for ionic strength, and sample 

solution pH was adjusted with µL volumes of reagent grade NaOH (J.T. Baker) or HNO3 

(J.T. Baker) solutions.  The solution pH values 3.0 to 6.0 were chosen as representative of 

Mid-Atlantic soil and surface water pH values, and in part, from the reduction of Cr(VI) 

occurring most readily at pH 3.3 to 5.1 (Yang et al., 2008).  Solution pH was measured 

potentiometrically using a glass electrode, and oxidation-reduction potential (ORP) was 

measured using a combination platinum electrode with a Ag/AgCl reference electrode.  
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Eh values (mV) were reported relative to the standard hydrogen electrode (SHE), and 

used to calculate pe values (pe = Eh/0/059).   

The experiments were run under four conditions.  The first was with tartaric acid 

added to 50 mL Erlenmeyer flasks in concentrations of 0.29, 2.9, 5.8, 12, 23, 29, and 58 

mM, corresponding to stoichiometric amounts of 0.5 to 20 times the stoichiometric 

amount needed to fully reduce 2 mM (104 mg/L) Cr(VI) in a two-electron transfer 

(equation 1).  At each level of tartaric acid, isopropyl alcohol was added at 0.29 M and 

pH was adjusted to 4.0.  The second condition was with isopropyl alcohol added to 

separate flasks in concentrations of 0.03, 0.29, 0.58, 1.2, 1.7, 2.4 and 2.9 M, 

corresponding to stoichiometric amounts of 5 to 500 times the amount needed for full 

reduction of 2 mM Cr(VI) in an two-electron transfer to Cr (equation 1).  At each level of 

isopropyl alcohol, tartaric acid was added at 23 mM and pH adjusted to 4.0.  The third 

condition included 2 mM Cr(VI), 23 mM tartaric acid, and 0.29 M isopropyl alcohol at 

initial pH values of 3.0, 4.0, 5.0, and 6.0. The fourth condition included initial 

concentrations of 0.2, 0.5, 1.0, 1.5, and 2.0 mM Cr(VI) with 23 mM tartaric acid, 0.29 M 

isopropyl alcohol, and adjusted to pH 4.0.   

All samples had 0.01 M NaNO3 as a background electrolyte and were brought to 

initial pH values of 3.0, 4.0, 5.0 or 6.0 with HNO3 or NaOH.  After all reagents except Cr 

were added to the flask, 2.6 mL Cr(VI) stock solution was added to initiate the reaction, 

which also brought the total volume to 25 mL.  Flasks were capped with foam plugs, and 

shaken at 100 cycles min-1 on an orbital shaker. Samples were taken at 2, 4, 8, 24, and 48 

h, and then ongoing every 24 h until 240 h (10 d) for increasing isopropyl alcohol 

concentrations, 312 h (13 d) for increasing pH and initial Cr(VI) samples, and 336 h (14 
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d) for samples with increasing tartaric acid concentrations.  Sampling times up to 336 h 

(14 d) were allowed in order to allow at least one of the treatments in each setup to fully 

reduce Cr(VI).   

At each sampling time, a 0.25 mL aliquot was removed from the flask, diluted to 

10 mL with distilled water, and analyzed for Cr(VI) using a modified diphenylcarbazide 

(DPC) method that combines an acidification step (pH 1.5-2) with the reduction reaction 

between DPC and Cr(VI).  In this method, the rapid reduction of Cr(VI) by DPC under 

acidic conditions is coupled simultaneously with the immediate complexation of newly-

reduced, unhydrated Cr3+ cations by the oxidized form of DPC, diphenylcarbazone 

(Bartlett and James, 1979).  This reduces the likelihood that any organic C in the sample 

will reduce Cr(VI) during analysis.   

 

Results and Discussion 

The reduction of Cr(VI) was examined by conducting the reaction with one of the 

reagents (tartaric acid or isopropyl alcohol) in excess of the other at pH 4.0 (Figures 2-1A 

and 2-2A).  The reaction was also conducted with increasing pH from 3.0 to 6.0, while 

tartaric acid and isopropyl alcohol were held constant (Figure 2-3A), and lastly the 

reaction was conducted with increasing initial Cr(VI) concentrations at pH 4 with tartaric 

acid and isopropyl alcohol concentrations constant (Figure 2-4A).  The data from these 

varying conditions provide insight into whether tartaric acid or isopropyl alcohol is the 

limiting reagent, and into the sensitivity of the reaction to changes in pH and initial 

Cr(VI) concentration.  These data showed that reduction of 2.0 mM Cr(VI) was complete 

within 48 h in samples that had 1.7 M or higher isopropyl alcohol concentrations in 23  
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mM tartaric acid (Figure 2-1A), or with 58 mM tartaric acid in 0.29 M isopropyl alcohol 

(Figure 2-2A).   

Reduction was greatest at pH 3.0, having reduced 2.0 mM Cr(VI) within 48 h; 

however, at pH 6.0 only 0.3 mM Cr(VI) (15%) was reduced at 312 h (13 d)  (Figure 2-

3A).  For samples ranging in tartaric acid concentrations, 23 mM tartaric acid reduced 

1.87 mM (93%) Cr(VI) and 0.29 mM tartaric acid reduced 0.6 mM Cr(VI) (29%).  All 

but the two lowest levels of isopropyl alcohol fully reduced Cr(VI) within 192 h (8 d), 

although the sample at 0.03 M isopropyl reduced 1.85 mM (93%) Cr(VI) at 240 h (10 d).       

The rate constants of these reactions under each of the four conditions (increasing 

alcohol, tartaric acid, pH, or initial Cr concentration), were taken as the slopes of  linear 

regression best fit lines on first-order rate plots – natural log of Cr(VI) concentrations 

over initial concentrations (ln C/Co)  plotted as a function of time. Regression lines for 

zero-order and second-order rate plots were also determined, but statistically fit less well 

than regressions with first-order plots.      

 The negative first-order rate constants (-k) for each condition were plotted as a 

function of the change in constituent of that condition: increasing isopropyl alcohol 

(Figure 2-1B), tartaric acid (Figure 2-2B), pH (Figure 2-3B), and initial Cr concentration 

(Figure 2-4B).  The rate constants increased linearly with increasing isopropyl 

concentration, but the rate constant increased exponentially with increasing tartaric acid 

concentration and decreased exponentially with increasing pH.  There is a greater 

sensitivity of the reaction to tartaric acid concentrations and changes in pH then with 

isopropyl alcohol.  The slope of the line for the linear regression of the rate constant on  
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initial concentrations of Cr(VI) was not significantly different than zero (p=0.22), thus 

indicating that there is no change in the rate constant regardless of  initial Cr(VI) 

concentration.     

Because of the ability for tartaric acid to buffer pH due to the presence of two 

carboxylic acid groups (pKa1=2.9, pKa2=4.4), the pH of the samples remained close to 

4.0 over the approximately 12-14 d sampling period, with some drifting upwards by 0.1 

to 0.2 units.  Overall, there is a correspondence of decreasing pe values as Cr(VI) was 

reduced, with initial pe values at approximately 11 to 12 and dropping to 8 to 9 (Figures 

2-5A and B).  For samples with 1.2 M isopropyl alcohol or higher in 23 mM tartaric acid, 

pe values initially dropped to approximately 8; however, for lower alcohol 

concentrations, pe values increased and then drifted back to approximately 11 (Figure 2-

5).  Higher tartaric acid concentrations did not necessarily result in low pe values, as 0.29 

mM tartaric acid had the lowest pe value at 8.5 yet 5.8 mM had the highest pe value at 11 

with the remaining concentrations falling in between these two points (Figure 2-5).   

These data indicate that initially the presence of tartaric acid, more so than 

isopropyl alcohol, increased solution pe, but with time, the system became more reducing 

as indicated by the drop in pe values.  The time at which the curves of these pe values 

leveled off corresponded with the approximate time that full reduction of Cr(VI) was 

reached in those samples.  Thermodynamically, when these values are compared with a 

pe-pH diagram, it would be expected that the reduction of Cr(VI) would occur under 

these conditions since they fall below the Cr(VI)-Cr(III) line (Figure 2-6).  However, the 

extent of reduction would be expected to decrease or not occur when conditions are in the 

region of the box shown in Figure 2-6 that extends above the solid Cr(VI)-Cr(III) line.   
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This was demonstrated when the amount of Cr(VI) reduced decreased as pH 

increased (Figure 2-3A), with only 0.3 mM (15%) Cr(VI) reduced at pH 6.0 at 312 h.  

The solid line on the pe-pH diagram represents the initial 2.0 mM Cr(VI) concentration, 

but as reduction occurs with time and Cr(VI) concentrations decrease, the line would shift 

lower on the diagram.  The dashed line is calculated at concentrations of 10-7 mM Cr(VI), 

representing conditions after most of the Cr(VI) was reduced.  The cross-hatched area 

between the solid and dashed Cr(VI)-Cr(III) line would represent a transition zone during 

the experimental period when Cr(VI) concentrations are decreasing.  This transition zone 

is approximately from pe 11.8 to 12.4, and as pe values of the treatment solutions passed 

through this transitional zone, as most did as seen in Figures 2-5A and B, then depending 

on the Cr(VI) concentration of the sample, the reduction reaction may be less 

thermodynamically favorable until the pe  dropped to below 11.8. 

The highest rate constants in the present work were for the following three 

conditions 1) pH 3, 23 mM tartaric acid, and 0.29 M isopropyl alcohol; 2) pH 4, 23 mM 

tartaric acid, and 2.9 M isopropyl alcohol; and 3) pH 4, 58 mM tartaric acid, and 0.29 M 

isopropyl alcohol, which corresponded to rates of  0.128, 0.142, and 0.162 h-1, 

respectively.  Mahapatro et al. (1980) found rates ranging from 504 to 3.5x103 h-1 , 

corresponding to concentrations of 2-hydroxy-2-methylbutyric acid (HMBA) from 1 to 

500 mM in 0.045 M isopropyl alcohol.  The reduction of Cr(VI) by HMBA and isopropyl 

alcohol have the same stoichiometric relationship as tartaric acid and isopropyl alcohol; 

however, these experiments were conducted in 0.5 to 0.02 M perchloric acid, likely 

resulting in pH values < 2.0 (pH not reported).  



 44 

Based on the results presented by these authors, and in the present work, the 

reduction of Cr(VI) by a tartaric acid and isopropyl alcohol complex at conditions 

relevant to Cr-contaminated soils and natural waters will be most dependent on tartaric 

acid concentrations, but more importantly, the pH of the system.  Although the rates 

presented here are much lower than what can be accomplished at a very low pH, these 

rates, and the environmentally-relevant pH values at which they were determined, 

suggest an application of the tartaric acid and isopropyl alcohol complex in a Cr(VI) 

treatment scheme would still result in successful reduction of Cr(VI) to Cr(III).   
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CHAPTER 3 
 

THE ROLE OF TARTARIC ACID, ISOPROPYL ALCOHOL, AND 
MANGANESE IN THE REDUCTION OF HEXAVALENT CHROMIUM  

IN Cr(VI)-CONTAMINATED SOILS 
 

Introduction 
 

Remediation-by-reduction is a soil clean-up strategy that can be used in an 

attempt to mitigate the toxic effects of Cr(VI) and to clean up Cr-contaminated sites to 

meet regulatory standards and protect human health (James, 1996).  Chromium is a 

naturally occurring, transition metal, but the potential adverse health effects of Cr(VI) has 

led to concern over contaminated soils, groundwater, and drinking water supplies.   

Soils naturally contain chemical species capable of carrying out reduction and 

oxidation reactions (redox active species), and many capable of reducing Cr(VI) to 

Cr(III).  For, example quinone and phenol functional groups and humic and fulvic acids 

within soil organic matter (James and Bartlett 1983a, Wittbrodt and Palmer 1997, 

Nakayasu et al. 1999, Rendina et al. 2011), α-hydroxy carboxylic acids (Deng and Stone 

1996, Brose and James 2010, Tian et al. 2010), Fe2+ (Ludwig et al. 2008, Jagupilla et al. 

2009, Qafoku et al. 2010), and H2S and HS- (Pettine et al. 1998, Chrysochoou and Ting 

2011) have demonstrated the reduction of Cr(VI) to Cr(III).  In this sense, soils, as natural 

bodies on the landscape, have a tendency towards reducing or detoxifying Cr(VI) to 

Cr(III). 

Of particular interest is the reduction of Cr(VI) by α-hydroxy carboxylic acids, 

such as lactic, tartaric, or citric acid.  Although not strong reducing agents on their own, 

in the presence of isopropyl alcohol, the ability of these organic acids to reduce Cr(VI) is 

enhanced (Hasan and Rocek, 1972, Mahapatro e t al. 1980).  The mechanism involved is 

A B 
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the esterification of Cr with the α-hydroxy carboxylic acid and with isopropyl alcohol, 

forming a termolecular complex that allows for a three-electron transfer to Cr(VI), 

reducing it to Cr(III).  The oxidation of the alpha-hydroxy carboxylic acid is a 

decarboxylation step that releases two electrons with CO2.  Tartaric acid has two 

carboxylic acid groups and two hydroxyl groups, allowing for two decarboxylation steps 

that results in glyoxylic acid (Kabir-ud-Din et al., 2002). The stoichiometry of the 

reaction is two moles Cr(VI) reduced for every one mole tartaric acid and isopropyl 

alcohol, as shown in equation 1: 

 

COOH(CHOH) 2COOH  +  CH3CHOHCH3  +  2HCrO4
-   →        (1) 

        (Tartaric Acid)          (Isopropyl Alcohol) 
 
HCOCOOH  +  CH3COCH3  +  2CO2  +  2Cr(OH)3  +  H2O 

          (Glyoxylic Acid)   (Acetone) 
 

In the presence of isopropyl alcohol and low pH values, tartaric acid has been 

demonstrated to be an effective reducing agent for Cr(VI); however, there has not been 

any application of this chemistry to Cr(VI)-contaminated soils and natural waters at 

environmentally relevant pH values, i.e., pH 4.0-6.0.  The present work investigates the 

application of the tartaric acid-Cr-isopropyl alcohol complex to the reduction of Cr(VI) in 

five Mid-Atlantic soils sampled from Maryland, USA.   

 

Materials and Methods 

Soils  Soils samples from Maryland, USA were taken from profiles located in 

delineations of five different mapping units as part of a larger sampling scheme to collect 

soil profiles for research purposes.  The horizons sampled from the profile in the 
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Askecksy soil mapping unit were similar to the Atsion series (sandy, siliceous, mesic, 

Aeric Alaquod), the profile from the Russett- Christiana Complex unit was similar to the 

Russett series (fine-loamy, mixed, semiactive, mesic Typic Hapludult), the profile from 

the Annapolis unit was similar to the Collington series (fine-loamy, mixed, active, mesic 

Typic Hapludult), the profile from the Ingleside unit was similar to the Downer series 

(coarse-loamy, siliceous, semiactive, mesic Typic Hapludult), and the profile from the 

Jackland unit was similar to the Jackland series (fine, smectic, mesic Aquic Hapludalf).  

At each location a hole was dug to at least the first B horizon, although many of the pits 

extended down to the second B and C horizons, which ranged from 80 to 140 cm in 

depth.  From each horizon exposed in the profile, approximately 20 L of soil was taken.   

The sampling was conducted when soil matric water potentials were 

approximately -5 to -10 kPa (field capacity moisture).  The soil was brought into the 

laboratory, passed through a 4-mm polyethylene sieve, mixed thoroughly by hand, and 

stored in the dark at 22 ± 2º C in a plastic bucket lined with 1-mm thick plastic garbage 

bags to minimize soil drying while maintaining the aerobic status of the soil.   

The Ap or A horizon (surface horizon) of each soil was used, except for the 

Atsion soil, a Spodosol, where the E horizon (eluviated horizon) was used instead.  This 

E horizon was overlain by an O/A horizon, which consisted of partially degraded and 

fresh forest litter.  Soil characterization data are summarized in Table 3-1 and full 

sampling information and characterization data are available in Appendix B.   

  

 

 



 48 

Table 3-1 Characterization data for soils. CBD refers to a citrate-dithionite extraction.   

 

Reagents Hexavalent chromium stock solution at 1000 mg Cr(VI)/L was 

prepared from reagent grade K2CrO4 (J.T. Baker, Inc.) and stored at room temperature 

(22 ± 2º C).  Isopropyl alcohol was reagent grade (99.9% purity) and stored at room 

temperature (22 ± 2º C).  Tartaric acid (J.T. Baker, Inc.) solution was made fresh at the 

start of each experimental setup from reagent grade solids.  All sample solutions in all 

experiments included a final concentration of 0.01 M NaNO3 as a background electrolyte 

to control for ionic strength, and sample solution pH was adjusted with µL volumes of 

reagent grade NaOH or HNO3 (J.T. Baker).   

Cr(VI) Reduction Treatments The field-moist equivalent of 5.0 g oven-dried 

soil (105oC) of each soil was weighed into 50-mL polycarbonate Oak Ridge-type 

centrifuge tubes.  Tartaric acid salt was dissolved in 5 mM NaOH to approximately pH 

4.0.  Then to each centrifuge tube with soil, 12 mM tartaric acid, 0.29 M  isopropyl 

alcohol, and 0.01 M NaNO3 were added.  Samples were adjusted to pH 4.0, if necessary, 

with µL volumes of NaOH.  After all solutions were added, 2.6 mL of the 1,000 mg/L 

Cr(VI) stock solution and nanopure water (18 MΩ) was added for a final concentration of 

Soil Texture  
(% sand, silt, clay) 

Field 
pH 

Eh 
(mV) 

Organic 
Carbon 
(g/kg) 

CBD 
Fe 

(g/kg) 

CBD 
Mn 

(g/kg) 

Russett Sandy loam 
(58, 37, 5.8) 5.0 577 25 ± 0.1 4.1 ± 

0.3 0.3 ± 0.0 

Atsion Sandy 
(94, 5.9, 0.1) 3.5-4.0 524 20 ± 0.4 0.1 ± 

0.0 0.0 ± 0.0 

Collington Loamy sand 
(83, 14, 3) 4.0 606 37 ± 0.0 3.0 ± 

0.4 0.0 ± 0.0 

Jackland Silt loam 
(35, 57, 8) 6.0 470 9.0 ± 0.1 6.3 ± 

0.3 1.0 ± 0.0 

Downer Loamy sand 
(75, 21, 4) 5.5 490 3.1 ± 0.1 1.5 ± 

0.4 0.1 ± 0.0 
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2 mM Cr(VI), which  initiated the reaction and brought the final volume to 25 mL. 

Another set was repeated with all five soils, but with no tartaric acid or isopropyl alcohol 

added.    

The centrifuge tubes were capped and shaken at 50 cycles min-1 on an orbital 

shaker.  Destructive sampling was conducted in that at each sampling time, one set of 

centrifuge tubes was removed from the shaker and processed.  Sampling was done at 2, 

24, 51, 75, and 99 h (approx. 4 d).  At each time, sample solution pH was measured with 

one hour left, at which point 0.25 mL of a 1 M KH2PO4/K2HPO4 buffer solution (pH 7.2) 

was added and the centrifuge tubes were re-capped and shaken for the remainder of the 

hour.  The P buffer displaces exchangeable Cr(VI) from the soil to ensure that any loss of 

Cr(VI) can be attributable to reduction processes, and not to sorption to colloidal 

surfaces.   

Samples were centrifuged (10 minutes, 10,000 x g, 24o C), and 0.25 mL aliquots 

of centrifugate were diluted to 10 mL with distilled water and analyzed for Cr(VI) using a 

modified diphenylcarbazide (DPC) method that combines an acidification step (pH 1.5-2) 

with the reduction reaction between DPC and Cr(VI).  In this method, the rapid reduction 

of Cr(VI) by DPC under acidic conditions is coupled simultaneously with the immediate 

complexation of newly-reduced, unhydrated Cr3+ cations by the oxidized form of DPC, 

diphenylcarbazone (Bartlett and James, 1979).  Total soluble Cr, Mn, and Fe remaining 

in solution were determined by flame atomic absorption spectroscopy.  Data were 

analyzed and statistical differences reported with analysis of variance or analysis of 

covariance using Statistical Analysis Software (SAS) v9.2. 
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Three trials were conducted based on results from the tartaric acid and soil 

treatments.  The first trial examined was the reduction of Cr(VI) in the five soils with 

added Fe3+ and Mn2+ to assess the effect of these metals on the reduction of Cr(VI) by 

tartaric acid.  Solutions of Fe(NO3)3 and MnCl2 were made from reagent grade solids 

(J.T. Baker, Inc.) and added to 50-mL polycarbonate Oak Ridge-type centrifuge tubes 

with the field-moist equivalent of 5.0 g oven-dried soil (105oC) of each soil so that final 

concentrations of Fe3+ and Mn2+ were 0.2 mM.  Then, 2.6 mL of 1,000 mg/L Cr(VI) 

stock solution and nanopure water was added for a total volume of 25 mL.  The soils 

were shaken for 23 h, the P-buffer added and shaken for 1 h, and then 0.25 mL aliquots 

of centrifugate were diluted to 10 mL with distilled water and analyzed for Cr(VI) using 

the modified DPC method. Total soluble Cr, Fe, and Mn were determined by flame 

atomic absorption. 

The second trial examined was with a synthetic Mn oxide-coated sand to evaluate 

possible reductive dissolution of Mn(III,IV)(hydr)oxides by tartaric acid.  The synthetic 

Mn-oxide coated sand was prepared by using a wet oxidation procedure modified to 

precipitate the colloidal oxide onto a sand surface (Golden et al., 1986). The oxide was 

precipitated by adding 78 mL of 0.5 M MnCl2 and 97 mL of 5.5 M NaOH to 500 g of 

acid-washed quartz sand in a crystallization dish. The mixture was placed in a drying 

oven at 44 °C for 120 h. Sand/salt solution mixtures were stirred periodically to prevent 

wicking of salts to the surface of the sand mixture. Prior to oxide synthesis, the quartz 

sand was acid washed in 1.0 M HNO3 for 24 h. Tartaric acid, at pH 4.0, was added to 

centrifuge tubes containing 0, 10, 50 and 100 mg of the Mn-oxide coated sand.  Then, 2.6 

mL of 1,000 mg/L Cr(VI) stock solution and nanopure water was added for a total 
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volume of 25 mL, and shaken for 48 h.  Samples were centrifuged (10 minutes, 10,000 x 

g, 24o C), and 0.25 mL aliquots of centrifugate was diluted to 10 mL with distilled water 

and analyzed for Cr(VI) using the modified DPC method. Total soluble Cr and Mn were 

determined by flame atomic absorption. 

The third trial was the reduction of Cr(VI) by tartaric acid at pH 4.0 in aqueous 

solutions in the presence of Al3+, Cr3+, Ca2+, Zn2+, and Cu2+.  These metals represent 

trivalent and divalent metals found in soils, and were tested to see if they had an effect on 

the reduction of Cr(VI) by tartaric acid.  Solutions for all metals were made from reagent 

grade solids to a concentration of 0.5 mM in 50 mL Erlenmeyer flasks.  The samples 

were adjusted to pH 4.0, and 2.6 mL Cr(VI) stock solution and nanopure water was added 

to 50 mL Erlenmeyer flasks for a total volume of 25 mL.  The samples were shaken for 

144 h, and 0.25 mL aliquots of sample were diluted to 10 mL with distilled water and 

analyzed for Cr(VI) using the modified DPC method.   

 

Results and Discussion 

The control treatment (no soil) reduced 0.37 mM (19%) of the Cr(VI) in 99 h.  

This amount of Cr(VI) reduction was enhanced by addition of the soil samples, which 

ranged from 0.87 mM (44%) in the Atsion soil to 1.97 mM (99%) with the Russett soil 

(Figure 3-1A).  The Atsion and Downer soils were significantly different from the no soil 

treatment (p < 0.05), but not from each other.  Russett significantly reduced more Cr(VI) 

than Jackland, which reduced more than Collington.  With no tartaric acid added, the 

Russett soil reduced 0.47 mM (25%) of the Cr(VI) at 99 h.  The Collington reduced 
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the most Cr(VI) in the absence of tartaric acid and isopropyl alcohol at 0.77 mM (39%).  

The addition of tartaric acid and isopropyl alcohol enhanced the reduction of Cr(VI) over 

that which would occur with just the soil sample.   

 First-order rate constants were determined by fitting a linear regression through 

the natural log of the Cr(VI) concentrations over initial concentrations (C/Co) against 

time for each soil with tartaric acid and isopropyl alcohol added.  To determine if the 

differences between the slopes of these regression lines were statistically significant, 

analysis of covariance was conducted using SAS v9.2 with estimate statements to 

determine differences between each slope (Figure 3-1B).   

Correspondingly, the differences in slopes corroborated the analysis of variance 

for differences between the soil effects at 99h, and so half-lives for Cr(VI) reduction from 

each of these soil treatments were calculated from the first-order rate constant (t1/2 = 

0.693/k).  The following ranking of the soils from most reducing to least with their half-

lives resulted: Russett (18.7 h) > Jackland (34.1 h) >  Collington (46.8 h) > Atsion (126 

h) = Downer (140 h) > No Soil (371 h).  As seen by the half-lives, the rate of reduction of 

Cr(VI) in the Russett soil sample was 20 times the rate of the sample with no soil.  

If the pH of an aqueous solution containing tartaric acid, isopropyl alcohol, and 

Cr(VI) but with no soil is raised from 4.0 to 5.0, reduction is inhibited and the amount of 

Cr(VI) reduced would be negligible.  In the present soil systems, however, reduction was 

not inhibited when pH reached as high as 5.3 in the Jackland soil sample (Figure 3-2).  

The pH of the Russett soil sample rose to 5.0, and yet 99% of the Cr(VI) was reduced by 

99 h. Although the rate of reduction of Cr(VI) by the tartaric acid-Cr-isopropyl alcohol  
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complex is fastest at low pH values, the reaction continued to proceed in the presence of 

the Russett and Jackland soils, even while pH values approached or exceeded 5.0.    

This high pH inhibitory effect may have been overcome by Fe2+ or Mn2+ 

solubilized from Fe(III)- and Mn(III)(IV)hydroxides in the soil samples by addition of the 

tartaric acid and isopropyl alcohol (Figure 3-3A and B).  The Russett and Jackland 

samples had the greatest amount of Mn solubilized with 98 and 90 µM, respectively, at   

99 h.  The Downer sample had considerably lower soluble Mn at the end of the trial 

period with only 14 µM.  Soluble Mn from the Atsion and Collington samples were 

negligible, each having less than 10 µM.  Samples that did not have tartaric acid and 

isopropyl alcohol added had lower amounts of soluble Mn from the samples, with the 

Russett having the most at 5.7 µM and the Atsion soil having no soluble Mn after 99 h 

shaking. 

 Fe(III)(hydr)oxides were solubilized to an even greater extent, with the Collington 

and Russett samples having the most solubilized with 550 and 427 µM, respectively. 

Downer had lower soluble Fe with 207 µM.  Samples that did not have tartaric acid and 

isopropyl alcohol added had lower amounts of soluble Fe from the samples, with 

Jackland having the most at 87 µM and the Atsion soil having the least at 7.7 µM.  The 

solubilization of these metal(hydr)oxides may play a role in the enhanced soil effect and 

increase in pH seen in these samples.  Equations 2-7 and corresponding log K values 

illustrate the thermodynamic potential for the reductive dissolution of soil Fe(III)- and 

Mn(III/IV)(hydr)oxides (James and Brose, 2012).  The reduction of Cr(VI), for reference, 

falls between the Fe and Mn values:  
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Reduction Half Reaction 

Fe3+ + e-          Fe2+ 13.0  (2) 

Log K 

FeOOH + e- + 3H+          Fe2+ + 2H2O 13.0  (3) 

1/2Fe2O3 + e- + 3H+         Fe2+ + 3/2H2O 13.4  (4) 

1/2MnO2 + e- + 2H+        1/2Mn2+ + H2O 20.8  (5) 

ϒ-MnOOH + e- + 3H+         Mn2+ + 2H2O 25.4  (6) 

1/3HCrO4
- + e- + 4/3H+         1/3Cr(OH)3 + 1/3H2O 18.9  (7) 

 

These equations show that protons are consumed in the reduction reactions and that the 

reduction of Mn(III/IV)(hydr)oxides would be more thermodynamically favorable than 

the reduction of Fe(III)(hydr)oxides.  Taking equation 6 as an example, if tartaric acid 

and isopropyl alcohol reduce ϒ-MnOOH by the same complex as Cr(VI), then the overall 

reaction would consume 1.7 mol H+ for every mol Mn(III) reduced (equation 8): 

 

COOH(CHOH) 2COOH  +  CH3CHOHCH3  +  6ϒ-MnOOH   +  10H+  →   (8) 
       (Tartaric Acid)           (Isopropyl Alcohol) 
  
 HCOCOOH  +  CH3COCH3  +  6Mn2+  +  2CO2  + 11 H2O 
        (Glyoxylic Acid)     (Acetone) 

 

The Russett soil resulted in 97.6 µM soluble Mn at 99 h, and attributing this reduction to 

the reaction in equation 8, as an example, would result in 1.6 x 10-1 mM H+ consumed 

from solution. Unbuffered, this level of proton consumption would result in a pH close to 

10; however, both tartaric acid and soil organic matter can contribute protons and buffer 

against increased alkalinity.  This suggests, however, that the increase in pH may be  
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Figure 3-3 (B
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attributed to the dissolution of Fe(III)- and Mn(III/IV)(hydr)oxides, and that the resulting 

Mn(II) and to some extent, Fe(II), continued to enhance the reduction of Cr(VI).     

 When 200 µM Fe(III) was added to the five soil samples with 12 mM tartaric 

acid, 0.29 M isopropyl alcohol, and at pH 4.0, there was enhanced reduction seen in all 

soils, with Russett and Collington soils having the greatest enhanced effect over the soil 

effect, reducing an additional 0.57 mM and 0.58 mM Cr(VI), respectively  

 
(Table 3-2).  When 200 µM Mn(II) was added to the soils under the same conditions (12 

mM tartaric acid, 0.29 M isopropyl alcohol, and at pH 4.0), there was more of an 

enhanced reduction for all soils from the Mn treatment than the Fe treatment, with 

Russett and Downer reducing an additional 1.03 mM and 1.46 mM Cr(VI), respectively, 

more than the soil effect (Table 3-2).  The Jackland and Russett soils have naturally 

higher levels of Mn(III,IV)(hydr)oxides than the other soils, which is illustrated when 2 

mM Cr(III) is added to the soils and Cr(VI) is measured after 24 h shaking (Table 3-2).  

The Jackland Ap horizon soil samples oxidized 0.52 mM (27%) Cr(III) to Cr(VI).  It does 

not appear that the Jackland soil oxidized the added Mn(II), as there was 200 µM soluble 

Mn still left in solution (data not shown); however, the Atsion sample had only 26 µM 

soluble Mn remaining in solution, suggesting that most of the added Mn oxidized as 

Cr(VI) was reduced and precipitated out of solution or else was removed from solution 

by sorption processes with the soil.    
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Table 3-2 Soluble Cr(VI) concentrations (mM) after 24 h shaking with no Mn2+ or Fe3+ 
added, with 0.20 mM Fe3+, 0.20 mM Mn2+, or 2.0 mM Cr3+ (conducted in separate 
experiment).  Asterisks indicate significant treatment effects between the no added Fe3+ 
or Mn2+, Fe3+, and Mn2+ treatments within each soil (comparisons not made across soils) 
Errors are SEM (n=3).   

 
 Further evidence is seen for the role of Mn(III/IV)(hydr)oxides enhancing the 

reduction of Cr(VI) by tartaric acid with the addition of 12 mM tartaric acid to Mn-oxide 

coated quartz sand (Figure 3-4).   The total amount of Mn on the coated sand, assuming 

all added Mn2+ in solution oxidized and precipitated, was 1.8 x 10-1 µmol Mn/mg sand.  

The concentration of Cr(VI) decreased as soluble Mn increased linearly as the amount of 

sand increased from 10 to 100 mg.  With 100 mg sand, 1.24 mM (62%) of the Cr(VI) was 

reduced and 41 µM soluble Mn remained in solution at the end of 48 h.  If all 

Mn(III/IV)(hydr)oxides on 100 mg sand were to be solubilized, 720 µM soluble Mn 

would be present; thus, only 5.7% of the total amount of Mn came into solution.  Total Cr 

remained relatively constant at 2 mM; however, at 100 mg sand there is a slight tapering  

  

Soil No added  
Mn or Fe 

0.20 mM 
Fe3+ 

0.20 mM 
Mn2+ 

From 2.0  
mM Cr3+ 

None 2.04 ± 0.01* 1.96 ± 0.03* 0.89 ± 0.00** 0.0 ± 0.0 

Russett  1.40 ± 0.02* 0.83 ± 0.02** 0.37 ± 0.02*** 0.04 ± 0.01 

Atsion 1.84 ± 0.02* 1.68 ± 0.02** 0.97 ± 0.11*** 0.0 ± 0.0 

Collington 1.47 ± 0.03* 0.89 ± 0.05** 0.57 ± 0.02*** 0.0 ± 0.0 

Jackland 1.46 ± 0.02* 1.34 ± 0.02** 1.19 ± 0.02*** 0.52 ± 0.18 

Downer 1.96 ± 0.02* 1.67 ± 0.06** 0.50 ± 0.02*** 0.0 ± 0.0 
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in total Cr, likely due to the sorption of Cr(VI) or Cr(III)-organic complexes to the Mn-

oxide coated sand.   

 The enhanced reduction of Cr(VI) by tartaric acid with the addition of Mn(II) was 

shown by Kabir-ud-Din et al. (2002) to be due to a complex formed by the esterification 

of tartaric acid with Cr(VI) and Mn(II) being bound to the tartaric acid.  The bound 

Mn(II) donates one electron in an overall three-electron transfer process (equation 9): 

 
COOH(CHOH) 2COOH  +  2MnII  +  2HCrO4

-  +  2H+  →   (9) 
       (Tartaric Acid) 
  
 HCOCOOH  +  2MnIII  +  2CO2 + 2Cr(OH)3  + H2O 
        (Glyoxylic Acid) 

Tartaric acid donates four electrons and goes through two decarboxylation reactions, as it 

does when complexed with Cr and isopropyl alcohol, but in this case, two moles of Mn 

are required in the reduction of two moles Cr(VI).  Manganese(II) was also demonstrated 

to be a catalyst in the reduction of Cr(VI) by citric acid (Li et al., 2007).   

 To assess the effect that other metals, other than Mn(III/IV)(hydr)oxides and 

Fe(III)(hydr)oxides, have on the reduction of Cr(VI) by tartaric acid and isopropyl 

alcohol, 0.5 mM  Al3+, Cr3+, Ca2+, Zn2+, and Cu2+  was added to the tartaric acid and 

isopropyl alcohol system.  These results showed that Cu2+ was the only other of these 

metals to also enhance the reduction of Cr(VI) (Figure 3-5).  The addition of Cu2+ 

reduced 1.1 mM (55%) Cr(VI) in 144 h, which was less effective than Mn2+, which 

reduced all 2 mM soluble Cr(VI) in 48 h.   

 The role of Cu2+ in the enhanced reduction of Cr(VI) is likely a different 

mechanism than through an organic-Cu complex.  Pettine et al. (1998) showed the 

enhanced effects of different metals on Cr(VI) reduction by H2S, including Cu2+.  It was  
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shown that Cu2+ and CrO4
2- complexed to form CuCrO4 and that this metal complex 

increased the availability of Cr(VI) to receive electrons from H2S.  In this same study, 

Mn2+ had no effect on enhancing reduction of Cr(VI) by H2S, due to the weak formation 

of a Mn-Cr(VI) complex.  This sheds light on the reaction in this study, due to the 

necessity for Mn2+ and tartaric acid to form a metal-ligand complex in order to be a 

reducing agent for Cr(VI).  Furthermore, although some Cu2+ would be complexed by 

tartaric acid, the oxidation of Cu(II) to Cu(III) does not readily occur under ambient 

temperatures and pressure (Cotton and Wilkinson, 1980).  Neither Al3+ nor Fe3+, which 

are readily complexed by organic ligands, enhanced reduction of Cr(VI).  The lack of 

enhanced reduction in the presence of these trivalent cations suggest that it is not just the 

complexation of tartaric acid with Mn2+ that is important, as it is also the donation of one 

electron from Mn2+.    

  The addition of isopropyl alcohol to tartaric acid enhances the ability of this α-

hydroxy carboxylic acid to reduce Cr(VI), but when applied to soils, this reduction  is 

further enhanced.  Tian et al. (2010) treated soils with hydrogen peroxide to destroy soil 

organic matter to demonstrate that the enhanced reduction from soils is related to a 

mineral phase in soils and not to reducing functional groups or organic acids in the soil 

organic matter, and postulated this enhanced reduction is attributable to the presence of 

Mn(III,IV)(hydr)oxides.   

 The favorable thermodynamic predictions and demonstration of catalytic behavior 

of Mn(II) suggests a mechanism where Mn(II) is solubilized by tartaric acid from easily 

reducible Mn(III,IV)(hydr)oxides in the soil and the resulting Mn(II) is able to complex 

with tartaric acid and Cr(VI) to enhance reduction.  Additionally, the effectiveness of 
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Mn(II) in this system appears to be unique to Mn(II); although Cu(II) also enhances 

reduction, the effectives of Cu(II) is much less, and by a different mechanism, than that 

demonstrated by Mn(II).  Complexation of metals to organic reducing agents will result 

in stronger acting reducing agents; for example, the reduction half reaction for Fe3+ to 

Fe2+ has a pe at pH 7 of 13.0, but when complexed to EDTA, this same reaction has a pe 

of 2.0 (James and Brose, 2012).  This same reaction when complexed with ferritin, a 

ubiquitous, intracellular protein, has a pe of -3.2.   

 The complexation of Mn2+ with tartaric acid acts similarly in making tartaric acid 

a more effective reductant of Cr(VI).  In remediation by reduction strategies in soils, 

there is concern that the reduction of Cr(VI) may be compromised by the presence of 

Mn(III/IV)(hydr)oxides, due to their ability to re-oxidize Cr(III) to Cr(VI).  By this 

Mn(II)-tartaric acid complex and mechanism, the inherent ability of Mn(II) to enhance 

the effectiveness of reduction of Cr(VI) by tartaric acid would be beneficial to the 

treatment of Cr(VI)-contaminated soils.  As a solution of tartaric acid and isopropyl 

alcohol is applied to Cr(VI) contaminated soil, either in-situ or removed for treatment, the 

tartaric acid and isopropyl alcohol would reduce Cr(VI) to Cr(III), while at the same time 

reduce Mn(III/IV)(hydr)oxides to Mn(II), which will further enhance reduction of Cr(VI).   

 As seen in this work, the total amount of Cr remained soluble at pH values close 

to 5.0, indicating that newly reduced Cr3+ was not precipitating out of solution.  The 

continued solubility of Cr in solution suggests that tartaric acid is complexing with the 

Cr3+ upon reduction, and remaining soluble as an organic-metal complex.  Kantar et al. 

(2008) showed that new reduced Cr3+ was bound by galacturonic and glucuronic acids 

added to soil columns as reducing agents, and that sorption processes delayed 
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breakthrough of the Cr from the columns.  This suggests that as tartaric acid reduces 

Cr(VI), it is complexing Cr3+ and in the presence of soil, will immobilize the movement 

of Cr in the environment, further making the use of tartaric acid and isopropyl alcohol a 

potential soil remediation strategy.   
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CHAPTER 4 
 

REDUCTION OF HEXAVALENT CHROMIUM FROM CHROMITE ORE 
PROCESSING RESIDUE (COPR) WITH TARTARIC ACID,  

ISOPROPYL ALCOHOL AND DIVALENT MANGANESE 
 

Introduction 

Chromite ore processing residue (COPR), the remaining solid waste product from 

the processing of ferrochromite (FeO•Cr2O3), contains variable amounts of unreacted ore 

and soluble and insoluble forms of Cr(VI), and is a persistent source of Cr(VI) 

contamination in notable locations such as Baltimore, Maryland; Hudson County, New 

Jersey; and Glasgow, Scotland (Burke et al., 1991; Darrie, 2001; Deakin et al., 2001).  

COPR has also been used as fill material for construction purposes because of its 

resemblance to a sandy soil; however, residual Cr(VI) can persist as a potential pollutant 

of soils, air, and groundwater from this soil-like material.  For example, in Hudson 

County, New Jersey it was used to fill wetlands and poorly-drained landscapes for use in 

industrial activity and development during the twentieth century (James, 1996).   

Although COPR will vary in mineralogical and chemical properties from location 

to location, there are some commonalities of mineralogical properties important to 

understanding the chemical behavior of COPR during reduction processes.  For example, 

the most abundant metals other than Cr found in COPR samples are Ca, Mg, Fe, and Al 

(Chrysochoou et al., 2010).  Additionally, Hillier et al. (2003) described three main 

categories of mineral compositions in COPR samples.  The first is chromite, a relic of the 

chromite ore.  The second category consists of minerals formed at the high temperatures 

during the roasting process, such as brownmillerite and periclase, and the third category 

of minerals includes ones that are presumed to have formed after COPR has been 
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deposited and exposed to more natural conditions, such as the leaching of elements with 

the influx of water.  Although there are many different minerals that can be assigned to 

these three categories, there are four common minerals in COPR that have been found to 

substitute Cr(VI) for Fe or Al in their structures: brownmillerite (Ca2(Fe,Al)2O5), 

ettringite (Ca6Al2(SO4)3(OH)12•26H2O), hydrocalumite (Ca2(Al,Fe)(OH)6(OH) •3H2O), 

and hydrogarnet (Ca3(Al,Fe)2(H4O4)3) (Chrysochoou et al., 2010; Hillier et al., 2003).  

Additionally, up to 30% of the mineralogical makeup of COPR can be paracrystalline in 

structure (Hillier et al., 2003).     

Current remediation practices for COPR use either an Fe- or S-based reducing 

agent, with the former resulting in concretions or clogging of pores with oxidized Fe 

minerals formed as Cr(VI) is reduced to Cr(III), and the latter resulting in delayed 

ettringite (Ca6Al2(SO4)3•32H2O) formation, which results in extensive swelling and 

buckling of paved surfaces when used as fill material for roads (Dermatas et al., 2006; 

Ludwig et al., 2008).  In contrast to these reducing agents, this research will investigate 

for the first time the potential use of tartaric acid in combination with Mn(II) and 

isopropyl alcohol as an effective alternative to Fe- or S-based reducing agents in the 

reduction of COPR derived Cr(VI).   

The reduction of Cr(VI) by tartaric acid at pH 5.0 or greater is negligible over the 

course of several days to weeks; however, in the presence of Mn(II) or isopropyl alcohol, 

reduction is enhanced to hours.  The enhanced reduction of tartaric acid by the addition of 

Mn(II) was shown by Kabir-ud-Din et al. (2002) to be due to a complex formed by an 

esterification reaction with tartaric acid and Cr(VI) while Mn(II) is bound to tartaric acid.  
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The bound Mn(II) donates one electron to the single step three-electron transfer to 

Cr(VI).  The full reaction is shown in equation 1: 

 

COOH(CHOH) 2COOH  +  2MnII + 2HCrO4
-  +  2H+  →   (1) 

       (Tartaric Acid) 
  
 HCOCOOH  +  2MnIII  +  2CO2 + 2Cr(OH)3  + H2O 
         (Glyoxylic Acid) 

 

Tartaric acid in isopropyl alcohol will also enhance the reduction of Cr(VI) due to the 

formation of a single termolecular complex that forms from the esterification of the 

alcohol and organic acid with Cr(VI) (Westheimer and Novick, 1943; Hasan and Rocek, 

1973; Mahapatro et al., 1980).  An instantaneous three-electron transfer results in the 

oxidation of both the alcohol and organic acid, yielding acetone and glyoxylic acid, 

respectively from the decarboxylation of tartaric acid (Kabir-ud-Din et al., 2002).  The 

stoichiometry of the reaction results in two moles Cr(VI) reduced for every one mole 

tartaric acid and isopropyl alcohol, as shown in equation 2: 

 

COOH(CHOH) 2COOH    +    CH3CHOHCH3    +   2HCrO4
-    →        (2) 

        (Tartaric Acid)              (Isopropyl Alcohol) 
 

 
HCOCOOH    +    CH3COCH3   +   2CO2   +  2Cr(OH)3   +  H2O 

         (Glyoxylic Acid)       (Acetone) 
 

The application of a treatment consisting of isopropyl alcohol and Mn(II) added to 

tartaric acid could be an effective remediation-by-reduction strategy, which is a soil 

clean-up strategy that can be used in an attempt to mitigate the toxic effects of Cr(VI) and 
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clean up Cr contaminated sites to meet regulatory standards and protect human health 

(James, 1996).  Neither the tartaric acid-Mn nor the tartaric acid-isopropyl alcohol 

complex has been applied as a reduction treatment to COPR or COPR-contaminated 

soils, so the current work will investigate the reduction of COPR-derived Cr(VI) by each 

of these complexes as well as in combination in order to assess the potential synergistic 

effect between the two complexes.  These complexes will be assessed in solution as well 

as with COPR and in a soil-COPR mixture using five Maryland soils.   

 

Materials and Methods 

COPR  Chromite ore processing residue (COPR) has been stored in the dark in a 

plastic bucket at room temperature (22 ± 2º C).  This COPR material comes from Kearny, 

NJ at a site called Diamond Shamrock on the Belleville Turnpike, and has approximately 

1,200 mg total Cr(VI)/kg COPR, 800 mg soluble Cr(VI)/kg COPR, and is alkaline with a 

pH of approximately 8.0.   

Soils Soil horizons from Maryland, USA were sampled from profiles located in 

delineations of five different mapping units as part of a larger sampling scheme to collect 

soil profiles for research purposes.  The horizons sampled from the soil profile in the 

Askecksy unit was similar to the Atsion series (sandy, siliceous, mesic, Aeric Alaquod), 

the profile from the Russett- Christiana Complex unit was similar to the Russett series 

(fine-loamy, mixed, semiactive, mesic Typic Hapludult), the profile from the Annapolis 

unit was similar to the Collington series (fine-loamy, mixed, active, mesic Typic 

Hapludult), the profile from the Ingleside unit was similar to the Downer series (coarse-

loamy, siliceous, semiactive, mesic Typic Hapludult), and the profile sampled from the 
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Jackland mapping unit was similar to the Jackland series (fine, smectic, mesic Aquic 

Hapludalf).   

The Ap or A horizon (surface horizon) of each soil was used, except for the 

Atsion soil, a Spodosol, where the E horizon (eluviated horizon) was used instead.  This 

E horizon was overlain by an O/A horizon, which consisted of partially degraded and 

fresh forest litter.  Soil characterization data are summarized in Table 4-1 and full 

sampling information and characterization data are available in Appendix B.   

 
 Table 4-1 Characterization data for soils.  CBD refers to a citrate-dithionite extraction.    
 

 
 Solution Analysis Four sets of treatments at two acidity levels, pH 4.0 and 5.5, 

were established: Tartaric acid (12 mM), made fresh from reagent grade salts, with no 

other amendments; tartaric acid and isopropyl alcohol at 2% v/v (0.29 M) from 99% pure, 

reagent grade alcohol stored at room temperature; tartaric acid and 1 mM Mn2+ solution 

from reagent grade MnCl2; and the fourth had tartaric acid, isopropyl alcohol, and Mn 

added.  All samples were brought to a total volume of 25 mL with nanopure water (18 

MΩ) in 50 mL Erlenmeyer flasks, and adjusted to pH 4.0 or 5.5 with 0.1M NaOH.  To 

initiate the reaction, Cr(VI) solution was added, made up from reagent grade K2CrO4 for  

Soil Texture  
(% sand, silt, clay) 

Field 
pH 

Eh 
(mV) 

Organic 
Carbon 
(g/kg) 

CBD Fe 
(g/kg) 

CBD Mn 
(g/kg) 

Russett Sandy loam 
(58, 37, 5.8) 5.0 577 25 ± 0.1 4.1 ± 0.3 0.3 ± 0.0 

Atsion Sandy 
(94, 5.9, 0.1) 

3.5-
4.0 524 20 ± 0.4 0.1 ± 0.0 0.0 ± 0.0 

Collington Loamy sand 
(83, 14, 3) 4.0 606 37 ± 0.0 3.0 ± 0.4 0.0 ± 0.0 

Jackland Silt loam 
(35, 57, 8) 6.0 470 9.0 ± 0.1 6.3 ± 0.3 1.0 ± 0.0 

Downer Loamy sand 
(75, 21, 4) 5.5 490 3.1 ± 0.1 1.5 ± 0.4 0.1 ± 0.0 
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a final concentration of 1 mM Cr(VI).  All sample solutions included 0.01 M NaNO3 as a 

background electrolyte to control for ionic strength.  Samples were shaken at 50 rpm on 

an orbital shaker, and aliquots were taken at 2, 24, 48, 72, and 96 h for Cr(VI) analysis 

spectrophotometrically by the DPC method (Bartlett and James, 1979) and total soluble 

Cr and Mn analysis on flame atomic adsorption. Solution pH was measured 

potentiometrically at each sampling time.   

Solution and COPR Analysis Tartaric acid (12 mM) made up in 0.2 M (low 

acidity) or 0.5 M (high acidity) HNO3 was added to 50 mL Oak Ridge-type centrifuge 

tubes containing 1.63 g COPR material (equivalent to 1 mM soluble Cr(VI)).  Three sets 

of treatments at each level of acidity (low/high) were established; one set had isopropyl 

alcohol at 2% v/v (0.29 M), another had 1 mM Mn(II) solution added, and the third set 

had both isopropyl alcohol and Mn added to the samples.  All samples were brought to a 

total volume of 25 mL with nanopure water.  All sample solutions included 0.01 M 

NaNO3 as a background electrolyte to control for ionic strength.  Sample pH was taken 

potentiometrically at 2, 24, 48, 72, and 96 h, and at each sampling time an additional 10 

µL concentrated HNO3 was added to the low acidity sample set and 50 µL was added to 

the high acidity set in attempt to maintain the different pH levels. Samples were 

centrifuged (10 minutes, 10,000 x g, 24o C) and 0.25 mL aliquots of centrifugate was 

diluted to 10 mL for Cr(VI) and total soluble Cr and Mn analysis as previously described.    

Soil and COPR Analysis The field-moist equivalent of 5.0 g oven-dried soil 

(105oC) of each soil was weighed into 50-mL polycarbonate Oak Ridge-type centrifuge 

tubes.  To simulate Cr-contaminated soils, each sample had 1.63 g COPR added 

(equivalent to 1 mM soluble Cr(VI) in the equilibrium solution).  The tartaric acid 
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solution was made up in 0.5 M HNO3 and added to three sets of the soil/COPR mixtures. 

One set had isopropyl alcohol at 2% v/v (0.29 M), another had 1 mM Mn2+ solution 

added, and the third set had both isopropyl alcohol and Mn added to the samples.  All 

samples were brought to a total volume of 25 mL with nanopure water.  All sample 

solutions included 0.01 M NaNO3 as a background electrolyte to control for ionic 

strength. Samples were shaken for 48 h.  Solution pH was measured at one hour 

remaining in the sampling time, at which point 0.25 mL of a 1 M KH2PO4/K2HPO4 

buffer solution (pH 7.2) was added.  The centrifuge tubes were re-capped and shaken for 

the remainder of time.  The purpose of the P buffer was to displace exchangeable Cr(VI) 

from the soil and ensure that any loss of Cr(VI) can be attributable to reduction and 

precipitation processes, and not to sorption of Cr(VI) to colloidal surfaces.  Samples were 

centrifuged (10 minutes, 10,000 x g, 24o C), and 0.25 mL aliquots of centrifugate was 

diluted to 10 mL and analyzed for Cr(VI) and total soluble Cr and Mn as described 

above.  Data were analyzed and statistical differences reported using analysis of variance 

or analysis of covariance with Statistical Analysis Software (SAS) v9.2. 

USEPA SW-846 Method 3060A Following 48 h shaking for COPR/soils and 96 

h for COPR, USEPA SW-846 Method 3060A was performed on all samples.  This 

method is an alkaline digestion procedure for extracting Cr(VI) from soluble, adsorbed, 

and precipitated forms of chromium compounds in soils, sludges, sediments, and similar 

waste materials (EPA, 1982).  The sample is digested using a 0.28M Na2CO3 /0.5M 

NaOH solution and heating at 90-95 °C for 60 minutes to dissolve Cr(VI) and stabilize it 

against reduction to Cr(III).  Following the extraction, the digestate is diluted to 100 mL 

and mixed uniformly.  A 25 mL aliquot is taken, centrifuged and diluted, as previously 
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described, and analyzed for Cr(VI) using the DPC method and total Cr using flame 

atomic absorption. 

 

Results and Discussion 

Solution systems The two samples with 1 mM Cr(VI)-salt solution and tartaric 

acid/Mn and tartaric acid/Mn/isopropyl alcohol at pH 4 were most effective, reducing all 

Cr(VI) in 48 h (Figure 4-1A, Table 4-2).  The corresponding treatments at pH 5.5 only 

reduced 0.6 mM Cr(VI) (60%) at 96 h, demonstrating that pH is a major determinant of 

the extent of Cr(VI) reduction.  The tartaric acid/Mn and tartaric-acid/Mn/isopropyl 

alcohol treatments at both pH levels were not significantly different (p-value < 0.05) in 

analysis of variance, demonstrating that Mn contributes more to the reduction than the 

isopropyl alcohol, and furthermore, that having both Mn and alcohol in solution does not 

result in any synergistic effects.  The tartaric acid/isopropyl alcohol treatments at pH 4.0 

and 5.5 were significantly different from each other, with the samples at pH 4.0 reducing 

0.44 mM (44%) of the Cr(VI) and at pH 5.5 reducing only 0.1 mM (10%) (Figure 4-1A, 

Table 4-2).  The pH for the samples stayed within 0.1 unit of initial pH values, except for 

the treatments at pH 5.5 with isopropyl alcohol, which increased to pH 5.8 and 6.0 (Table 

4-2).   

The first-order rate constants were determined by fitting a linear regression 

through the natural log of the Cr(VI) concentrations over initial concentration (C/Co) as a 

function of time for each treatment (Figure 4-1B, Table 4-2).  Analysis of covariance was  
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Table 4-2 Values from Cr-solution and COPR samples (non-soil) for final pH, final 
concentration soluble Cr(VI), first-order rate constant where applicable, half-life from 
rate constant, r2 for first-order regression line, significant differences between first-order 
slopes at p<0.05, and final concentration soluble Mn. Isopropyl alcohol = IPOH, low 
acidity = 0.2 M HNO3 and high acidity = 0.5 M HNO3.     
  

Treatment pH at 
96 h 

Cr(VI) 
at 96 h 
(mM) 

First- 
order 
rate 

constant 
(h-1) 

Half-
life 
(h) 

r2 

Sig. 
Difference 
between  

Half-lives 

Mn at  
96 h 

(mM) 

pH 4 4.1 ± 
0.0 

0.8 ± 
0.08 k=0 N/A 0.26 * 0.0 ± 

0.0 

pH 5.5 5.5 ± 
0.0 

1.1 ± 
0.05 k=0 N/A 0.02 * 0.0 ± 

0.0 

pH 5.5/IPOH 5.8 ± 
0.0 

0.9 ± 
0.01 k=0 N/A 0.23 * 0.0 ± 

0.0 

pH 4/IPOH 4.0 ± 
0.1 

0.5 ± 
0.04 -0.008 88.6 0.79 ** 0.0 ± 

0.0 

pH 5.5/Mn 5.4 ± 
0.1 

0.4 ± 
0.01 -0.010 69.3 0.92 *** 0.9 ± 

0.01 

pH 5.5/Mn/IPOH 6.0 ± 
0.1 

0.4 ± 
0.01 -0.010 69.3 0.94 *** 0.9 ± 

0.03 

pH 4/Mn 4.1 ± 
0.0 

0.0 ± 
0.0 -0.067 10.2 0.97 **** 0.9 ± 

0.01 

pH 4/Mn/IPOH 4.1 ± 
0.0 

0.0 ± 
0.0 -0.068 10.3 0.95 **** 0.9 ± 

0.01 
 

Low acidity/Mn 6.3 ± 
0.1 

0.9 ± 
0.01 k=0 N/A 0.22 † 0.3 ± 

0.01 

Low acidity/IPOH 6.2 ± 
0.1 

0.9 ± 
0.02 k=0 N/A 0.22 † 0.0 ± 

0.0 

Low acidity/Mn/IPOH 6.3 ± 
0.1 

0.9 ± 
0.02 -0.001 693 0.46 †† 0.3 ± 

0.0 

High acidity/IPOH 5.7 ± 
0.1 

0.7 ± 
0.07 -0.005 139 0.86 ††† 0.0 ± 

0.0 

High acidity/Mn 5.9 ± 
0.2 

0.7 ± 
0.02 N/A N/A 0.61 N/A 0.4 ± 

0.03 

High acidity/Mn/IPOH 5.8 ± 
0.1 

0.5 ± 
0.02 N/A N/A 0.79 N/A 0.5 ± 

0.0 
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used to test significant differences between slopes for each treatment. Half-lives for 

Cr(VI) reduction from each of the treatments were calculated from the first-order rate 

constants (t1/2 = 0.693/k) (Table 4-2).  The Mn and Mn/isopropyl alcohol treatments at 

pH 4 had a half-life of 10.4 h, which was the lowest half-life.  In comparison, the sample 

with isopropyl alcohol at pH 4 had the highest half-life at 89 h.  The samples at pH 4 and 

5.5 without any amendments and the isopropyl alcohol treatment at pH 5.5 all had slopes 

that were not significantly different than zero, and so no rate constants or half-lives were 

determined for these samples (Table 4-2).   

COPR Systems Sample pH also played a strong role in determining the extent of 

Cr(VI) reduced in the samples with COPR-derived Cr(VI) .  The pH increased for all 

sample treatments in the initial 24 h, but from 24 to 96 h, the pH decreased to 

approximately 5.7 for the high acidity sets and 6.2 for the low acidity sets (Figure 4-2, 

Table 4-2).  These higher pH values resulted in less Cr(VI) being reduced than in the Cr-

salt solution systems.  The most Cr(VI) reduced was by the Mn/isopropyl alcohol 

treatment at high acidity, which reduced 0.5 mM (50%) of the soluble Cr(VI) at 96 h 

(Figure 4-3A, Table 4-2).  This same treatment had 0.9 mM Cr(VI) at 24 h, and at 96 h 

had 0.9 mM total Cr in solution, indicating that nearly all the soluble fraction of Cr(VI) 

comes into solution within the first 24 h.  COPR samples with no tartaric acid or 

isopropyl alcohol also solubilized 1.1 mM Cr(VI) at 96 h.  The three treatment sets at low 

acidity were not statistically significant from each other (p-value < 0.05), and reduced 

approximately 0.1 mM (10%) of the solubilized Cr(VI) (Figure 4-3A, Table 4-2).   
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From 2 to 24 h, Cr(VI) increased for all treatments as Cr(VI) was continually 

solubilized. The natural log of the Cr(VI) concentrations over initial concentrations 

(C/Co) as a function of time was plotted for all treatments from 24 to 96 h.  Only the low 

acidity treatments and the high acidity treatment with isopropyl alcohol fit the first-order 

rate equation (Figure 4-3B).  The data for the high acidity treatments with Mn and 

Mn/isopropyl alcohol did not fit first-order or second-order rate equations.  For the 

samples fitted with first-order rate equations, the low acidity Mn and isopropyl alcohol 

treatments did not have a slope that was significantly greater than zero (p<0.05).  Only 

half-lives for the low acidity treatment with Mn/isopropyl alcohol and the high acidity 

treatment with isopropyl alcohol were calculated, resulting in 693 and 139 h, respectively 

(Table 4-2).  These half-lives demonstrate that although some reduction occurs in the pH 

range 5.0 – 6.0, the alkalinity of the system strongly contributes to the rate of Cr(VI) 

reduction.   

Another contributing factor to the decrease in reduction in the COPR samples 

with added Mn2+ was the loss of soluble Mn (Table 4-2).  There is a clear distinction 

between the samples in the Cr(VI)-salt solution system, which all had between 0.9 and 1 

mM soluble Mn after 96 h, and the COPR samples, which were all less than 0.5 mM after 

96 h shaking.  The oxidation of Mn2+ to MnOOH or MnO2 may have been possible with 

the initial, rapid increase in pH in the COPR samples, although also likely is the sorption 

to the remaining solid fraction of COPR in suspension.   

The alkaline digestion (USEPA SW-846 Method 3060A) of the remaining COPR 

demonstrated that there was still Cr(VI) entrained in the solid fraction at 96 h (Figure 4-

4).  The remaining solid fraction in the samples ranged from 50-60% of the total amount 
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of Cr(VI), with only the high acidity treatments having reduced Cr(VI) (Table 4-2).  This 

demonstrates that the treatments solubilized only 44 to 52% of the total amount of Cr(VI) 

in the COPR samples (approximately 1200 mg/kg) and that the high acidity samples were 

able to reduce 9.8 to 21% of the total Cr(VI) in the COPR.     

COPR and Soils The solubilization of Cr(VI) from COPR and subsequent 

reduction was enhanced across all treatments in the presence of the five Maryland soils 

(Figure 4-5).  The pH range across all soils and all treatments was 3.6 - 4.2, much lower 

than the COPR system samples that did not have soil.  In the presence of the five 

Maryland soils, the pH was maintained, as opposed to the pH increase seen in the COPR 

system samples.  The buffering of pH in the soils allowed for more Cr(VI) to be 

solubilized out of the COPR and subsequently reduced.   

Also evident from Figure 4-5 is the precipitation or sorption of Cr(III) from the 

system.  The addition of P-buffer to displace any sorbed Cr(VI) to soils is effective due to 

the charge and structural similarities of H2PO4
- to HCrO4

-.  The difference between total 

soluble Cr from the COPR sample and Cr(VI) recovered from the treatments is attributed 

to Cr(III), which would be present as Cr(OH)2
+ or CrOH2+ and available for sorption to 

negative sites in the soil organic matter or on surfaces of clay and mineral surfaces.  Also 

possible is the precipitation of Cr(OH)3 from solution, although precipitation is favored at 

pH values greater than 5.5.  The loss of Mn was also observed, and was greatest for the 

Russett and Atison soils (Figure 4-6).  All samples had some Mn solubilized from the 

soil, as evident by Mn in the isopropyl alcohol treatments without added Mn.  For the 

Jackland, Collington, and Downer soils, the amount of Mn recovered was approximately 

the same as the amount added.   
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There were no significant treatment differences between the isopropyl alcohol, 

Mn, and Mn/isopropyl alcohol treatments in the reduction of COPR-derived Cr(VI) in the 

presence of the Atsion and Christiana soils (p<0.05); however, for the Collington soil the 

Mn treatment was significantly different from the other two treatments.  For the Jackland 

and Downer soils, the isopropyl alcohol treatment was different than the Mn and 

Mn/isopropyl alcohol (significant differences indicated as asterisks in Figure 4-5) 

Additionally, that the Mn and Mn/isopropyl alcohol treatments were not significantly 

different in the Russett, Atsion, Downer, and Jackland soils, indicating there were no 

synergistic effects observed when both Mn and isopropyl alcohol were combined.   

The present work showed that the amount of Cr(VI) solubilized out of COPR by 

tartaric acid was greatly enhanced in the presence of the five Maryland soils.  Tinjum et 

al. (2008) used a combination of FeSO4 and H2SO4 solution to leach and reduce Cr(VI) 

from COPR and were able to solubilize up to 34% of the initial Cr(VI) due to the acid 

dissolution of Cr-minerals and replacement of CrO4
2- with SO4

2-.  The acidification of 

COPR for reduction of Cr(VI) is necessary, whether the reductant is S, Fe, or an organic-

based reductant (Jagupilla et al., 2009; Su and Ludwig, 2005).  This work demonstrated 

that at pH values below 5.0, the addition of Mn2+ to tartaric acid is an effective reductant 

of Cr(VI) and that COPR-derived Cr(VI) would need to be acidified in order for this 

treatment to be used in a viable remediation strategy.  This work also is the first to 

demonstrate that when COPR is acidified and tartaric acid and Mn2+ applied in the 

presence of soil, this treatment is effective in reducing 84% of the Cr(VI) from a COPR 

sample having approximately 1,200 mg total Cr(VI)/kg COPR.  
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CHPATER 5 
 

Concluding Remarks 
 
 

Although Cr is a naturally occurring metal, in the oxidation state +(VI) it is a 

health concern when present in soils and natural waters due to its demonstrated toxicity 

and carcinogenicity.  Once Cr(VI) is reduced, organic-Cr(III) complexes can stay in 

solution at pH values up to 8.0, but these complexes can be rendered immobile in soils 

due to the presence of organic matter, which sorbs the organic component of the 

complex.  Different reducing agents have been employed in treating COPR-contaminated 

soils, but the two most commonly used ones are reduced S and Fe, and although each of 

these reducing agents is effective in reducing Cr(VI) to Cr(III), they can be problematic 

in the application to a COPR-contaminated soil.  When reduced S oxidizes in the 

presence of COPR and soils, it forms the mineral ettringite, which entraps water 

molecules and swells in volume, a recognized problem when COPR has been used as a 

fill material for asphalt paving.  The oxidation of Fe2+ to Fe(OH)3 results in the 

precipitation of Fe and formation of concretions that inhibit the mixing process, thus 

resulting in incomplete treatment of the COPR material.   

This PhD dissertation presents an alternative to Fe or S for reduction of Cr(VI) in 

aqueous solutions and soils: the use of tartaric acid with isopropyl alcohol in the 

remediation of COPR-derived Cr(VI).  Tartaric acid, a naturally occurring organic acid 

found in grapes, is oxidized to glyoxylic acid, which would be readily decomposable 

after treatment of COPR in a soil environment.  Likewise, the oxidation of isopropyl 

alcohol to acetone at the concentrations used (2.2% v/v) would not pose any health or 

environmental risks following treatment.  Concentrated isopropyl alcohol is a recognized 
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health and flammability hazard, and the current work has taken care to use concentrations 

of 4% alcohol (v/v) or less.   

Tartaric acid and isopropyl alcohol each form an ester with Cr(VI), resulting in a 

termolecular complex that greatly enhances the reduction over that which would occur 

with only tartaric acid.  The work in Chapter 2 shows that this reaction is sensitive to 

changes in pH, illustrating the nature of pH as a master variable in many redox reactions 

that occur in soils and natural waters.  The reduction of Cr(VI) was complete in less than 

48 h at pH 4.0, but at pH 6.0 less than 10% of the Cr(VI) was reduced.  The reaction also 

showed sensitivity to the concentration of tartaric acid, in that as the concentration 

increased, the rate of the reaction increased exponentially.  The drivers of the reaction 

then are the concentration of tartaric acid and pH; however, application of this chemistry 

to artificially made Cr-contaminated soils demonstrated that the reaction was not as 

sensitive to pH in the presence of soils samples taken from five Maryland soil mapping 

units: Russett-Christiana Complex, Askecksy, Annapolis, Jackland, and Ingleside. 

In Chapter 3, when tartaric acid and isopropyl alcohol were applied in the 

reduction of Cr(VI) in the presence of these five soils, there was a significant soil 

treatment effect, but also unexpected results regarding pH effects.  The greatest amount 

of Cr(VI) reduced occurred in the presence of the Russett soil, which also had the second 

greatest increase in pH.  The initial pH for all samples was 4.0, but by the end of 99 h 

(approx. 4 d), the pH increased to 5.0 for Russett and 5.3 for the Jackland soil.  Both of 

these soils demonstrated that when applied to a soil environment, the pH effect seen in 

Chapter 2 is less applicable and that the reduction of Cr(VI) continues at these higher pH 

values.   
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One possible mechanism responsible for the pH and enhanced soil effects seen is 

attributed to Mn(III/IV)(hydr)oxides and Fe(III)(hydr)oxides  in the soil.  It is evident that 

these metal (hydr)oxides are solubilized from the soil samples, and the reactions for the 

reductive dissolution for both Mn(III/IV) and Fe(III) show a consumption of protons.  

Thus, the increase in pH seen in the Jackland and Russett soils may be attributed to the 

reductive dissolution of these minerals, allowing the reduced forms, Fe2+ and Mn2+, to 

contribute to the reduction of Cr(VI), despite this increase in pH.    

The addition of Fe(III) to samples containing tartaric acid, isopropyl alcohol, and 

the five soils only enhanced reduction to a great extent in the Russett and Collington 

soils; however, the addition of Mn(II) significantly enhanced reduction in all the soils, 

except the Jackland soil.  Furthermore, the addition of tartaric acid and isopropyl alcohol 

to Mn-oxide coated sand indicated dissolution of Mn from the sand and the enhanced 

reduction of Cr(VI) as the amount of Mn-oxide coated sand increased.  This dissertation 

contributes to the larger body of literature on Mn and tartaric acid interactions by 

showing that the tartaric acid and isopropyl alcohol solution is capable of solubilizing 

Mn(III/IV)(hydr)oxides and that the resulting Mn(II) is then available to further enhance 

the reduction of Cr(VI).     

When applying this chemistry to COPR-derived Cr(VI) in Chapter 4, both the 

isopropyl alcohol and Mn complexes were used as reducing agents for Cr(VI).  At pH 

values less than 5.0, the addition of Mn(II) to tartaric acid was a much more effective 

reducing agent than the addition of isopropyl alcohol.  At higher pH values, though, this 

difference is not as stark.  When applied to COPR-soil mixtures, both are effective at 

reducing Cr(VI), with the Mn treatments reducing slightly more Cr(VI) for the Downer, 
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Collington, and Jackland soils.  Often, there are synergistic effects seen when two 

chemicals that share a similar chemical mechanism are present together in a given 

reaction.  There were no synergistic effects observed, however, when both Mn and 

isopropyl alcohol were added to the same sample; however, there were no inhibitory 

effects observed either.  When Cr(VI) was added to the soils in Chapter 3, there were 

significant differences observed in Cr(VI) reduction among the five soils; however, this 

soil effect was not as apparent in the COPR-soil mixtures.  The increase in pH observed 

with COPR samples was buffered in the presence of the five soils, and thus, the pH 

remained low enough for the added Mn and isopropyl alcohol treatments to effectively 

act on Cr(VI).   

This dissertation presents the use of tartaric acid and isopropyl alcohol in the 

reduction of Cr(VI) in Cr(VI)-contaminated soils and COPR, and found that in addition 

to tartaric acid and isopropyl alcohol being effective at low enough pH, the addition of 

Mn(II) to tartaric acid was also effective as a reducing agent.  Tartaric acid-isopropyl 

alcohol and tartaric acid-Mn complexes are effective reducing agents individually, and 

although there is no synergism when used in combination, this work has shown that in the 

presence of soil, Cr(VI) reduction is enhanced - even with the Downer soil, which is a 

sandy soil, low in organic C, clay, Mn(III/IV)(hydr)oxides, and Fe(III)(hydr)oxides.  

Soils, in the reduction of Cr(VI), contribute Mn(II) to the system from reductive 

dissolution processes, buffer against changes in pH, and provide surfaces for reactions to 

occur.  Soils, as a natural body on the landscape, will naturally detoxify Cr(VI) to a 

limited extent, and this tendency may allow for either of the tartaric acid-isopropyl 
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alcohol or tartaric acid-Mn complexes to complete the reduction process as a remediation 

strategy to clean up these polluted soils.   

The experimental designs in Chapters 3 and 4 allowed for a thorough mixing of 

the reductants with Cr(VI), soils, and COPR material.  Further work is needed to 

understand how these batch experiments would compare with leaching studies in order to 

fully evaluate the use of the solutions in an in-situ remediation strategy.  Although 

effective in reducing Cr(VI), leaching a solution of tartaric acid and isopropyl alcohol 

through COPR-contaminated soils to depths as far down as 10 or 15 ft may not fully 

access all the Cr(VI) for reduction to meet regulatory standards.  These batch studies do 

demonstrate that if the COPR and soil material were removed and treated in a batch 

reactor application, with thorough mixing and acidification, the treatment would be 

effective in reducing Cr(VI) to Cr(III) and immobilizing it either through sorption or 

precipitation processes.  This material could then be filled back into the original location 

without having to be moved off-site for treatment.   

There were clear differences in the reduction of Cr(VI) in the different soils in 

Chapter 3; however, the application of this to the COPR-soil mixtures in Chapter 4 

resulted in less clear soil differences.  More investigation is needed with these and 

additional Maryland soils to better relate Cr redox processes in soils back to inherent 

chemical or physical properties of these soils.  Soils are a complex media for 

experimentation, and other authors have attempted to link Cr redox to soil properties 

through various kinetic and statistical studies with mixed results.  This dissertation 

showed that Mn(III/IV)(hydr)oxides and Fe(III)(hydr)oxides are key contributors to the 
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reduction of Cr(VI), but that pH, a master variable for many redox processes in soils and 

natural waters, is also a key driver.   

Although this dissertation does not attribute the reduction of Cr(VI) to specific 

soil properties or minerals, the proposed reductive dissolution of Fe(III)- and 

Mn(III/IV)(hydr)oxides provides insight into natural processes involving naturally 

occurring α-hydroxy carboxylic acids and minerals in soils.  These interactions between 

organic acids and minerals in natural soil bodies could influence mineral formation, 

illuviation of reduced Fe and Mn to lower horizons, soil organic matter formation and 

decomposition, and accessibility of organic compounds to microbiological communities.  

Lastly, this dissertation provides a basis for further investigation of leaching studies with 

α-hydroxy carboxylic acids through soils and Cr(VI)-contaminated soils, and for a 

possible field-scale application to a COPR-contaminated site.   
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APPENDIX B 
 

OVERVIEW OF SOILS AND SAMPLING 
 

Five soil profiles from Maryland, USA were sampled as part of a larger sampling 

scheme by our Soil Chemistry Laboratory to collect soil horizon samples for research and 

teaching purposes.  The soils were sampled from delineations of five different map units: 

Askecksy, Russett- Christiana Complex, Annapolis, Ingleside, and Jackland..  At each 

location a hole was dug so that at least the upper B horizon was exposed, although many 

of the pits extended down to the lower B and C horizons, which ranged down from 24 to 

90 cm in depth.  From major horizons exposed in the profile, approximately 20 L of soil 

was taken by carefully excavating soil material out of the horizon with a knife and onto 

the head of a shovel.  The sampling was conducted when soil matric water potentials 

were approximately -5 to -10 kPa (field capacity moisture).  The soil was brought into the 

laboratory, passed through a 4-mm polyethylene sieve, mixed thoroughly by hand, and 

stored in the dark at 22 ± 2º C in a plastic bucket lined with 1-mm thick plastic garbage 

bags to minimize soil drying while maintaining the aerobic status of the soil.   

Soil properties were analyzed for each horizon of the five profiles sampled.  The 

soils were analyzed for water content by drying at 105º C for 24 h (Gardner, 1986), for 

pH by field colorimetric method, and for Eh (lab) potentiometrically with platinum 

electrode (relative to standard hydrogen electrode (SHE)).  Also performed was particle 

size analysis by pipette method to determine textural data for each horizon (Gee and 

Bauder, 1986), and LECO analysis for % C, N, and H (Nelson and Sommers, 1996).  

Dithionite extractable Fe and Mn were determined from the five soils using a modified 

Na-citrate and Na2S204 extraction method (Mehra and Jackson 1960).  To the field-moist 
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equivalent of 2.5 g oven-dried soil 20 mL of 0.3 M Na-citrate and 2.5 mL of 1 M 

NaHCO3 was added, shaken, and brought to 75-80° C in a water bath.  After soil 

suspensions reached 75° C for five minutes, 0.5 g Na2S204 was added and suspensions 

stirred intermittently for 5 minutes.  Then, an additional 0.5 g Na2S204 was added and 

stirred intermittently for another 10 minutes.  To each sample, 5 mL of a saturated NaCl 

solution was added to flocculate the soil.  Samples were centrifuged for 10 minutes at 

10,000 rpm (~ 10 K RCF) and the supernatant liquid was decanted into a 200 mL flask.  

Samples were washed twice with remaining Na-citrate solution and decanted into the 

same flask.  Solutions were brought to volume and Fe and Mn analyzed by flame AAS.    

In addition to soil characterization data, a Soil Quick Redox Assessment was also 

conducted.  For this, 10.0 mL of  0.2 mM Cr(NO3)3 was added to each soil in 50-mL 

centrifuge tubes and also separately, 10.0 mL of 0.2 mM K2CrO4 was added to each soil 

in 50-mL centrifuge tubes.  This is equivalent to a concentration of 0.1 mM Cr or 5.2 

mg/L. The tubes were capped and shaken on a reciprocating shaker at 110 cycles min-1 

for 20 ± 1 hours at which point they were opened  and 0.2 mL of 1.0 M phosphate buffer 

(K2HPO4/KH2PO4 mole ratio = 1; pH 7.2) was added.  The tubes were capped and shaken 

one additional hour.  They were then removed and centrifuged at 10,000 rpm (~ 10 K 

RCF) for 15 minutes.  Chromium(VI) in the centrifugate was then measured by adding 

1.0 mL of diphenylcarbazide (DPC) reagent to 10 mL of a 1-to-5 dilution of each 

centrifugate.  The values represent “net Cr(VI) reduction” and  “net Cr(III) oxidation” by 

each soil.   

The following descriptions summarize the soil characterization and redox 

assessment data for the five soils sampled and used in the current work.   
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Russett Soil 
  

A soil profile from a delineation of the Russett-Christiana Complex mapping unit 

was dug to 66 cm, allowing for sampling from the Ap, AB, and Bt1 horizons (Figure B-

1).  The profile was similar to the Russett soil series (fine-loamy, mixed, semiactive, 

mesic Typic Hapludult). 

  

Figure 3-1 Profile sampled from the Russett-
Christiana Complex to a depth of 26 cm revealing 
Ap, A1, and B horizons. Location at 39°00’44.70”N 
and 76°51’12.42”W. 

Bt1 

AB 

Ap Figure B-1 Profile sampled from the Russett soil to 
a depth of 66 cm revealing Ap, AB, and Bt1 
horizons. Location at 39°00’45.71”N, 
76°51’14.65”W. 
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The horizons sampled from the Russett soil profile were sandy with the Ap and 

AB horizons having 58 and 53% sand, respectively and having a sandy loam texture 

(Table B-1).  The Bt1 horizon had less sand and was a loam in texture.  The pH for the 

three horizons ranged from 5.0 - 6.0, and were aerobic with Eh values from 507 - 577 mV 

relative to standard hydrogen electrode (SHE).  The Ap horizon reduced 2.0 mg/L 

Cr(VI), which was the most reduced in the quick redox assessment for this profile, and 

the AB horizon oxidized 0.91 mg/L, which was the most for this profile.     

     
 Table B-1 Soil characterization data for Russett soil profile. CDB refers to the citrate-
dithionite extraction and N/A is not analyzed.  

Characteristics 
Soil Horizons 

Ap 
(0-36 cm) 

AB 
(36-66 cm) 

Bt1 
(>66 cm) 

Texture 
(% sand, silt, clay) 

Sandy loam 
(58, 37, 5) 

Sandy loam 
(53, 38, 9) 

Loam 
(40, 42, 18) 

Field pH 5.0 6.0 4.5 – 5.0 

Lab Eh (mV) 577 507 540 

Organic Carbon by 
LECO (g/kg soil) 25 ± 0.1 6.3 ± 0.03 1.4 ± 0.01 

Cr Oxidized (mg/L) 0.38 ± 0.03 0.91 ± 0.04 0.0 ± 0.02 

Cr Reduced (mg/L) 2.0 ± 0.12 0.64 ± 0.02 0.84 ± 0.03 

CDB Fe (g/kg) 4.1 ± 0.32 N/A N/A 

CDB Mn (g/kg) 0.25 ± 0.02  N/A N/A 
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Downer Soil 
 

A soil profile from a delineation of the Ingleside mapping unit was dug to 61cm, 

allowing for sampling from the A, Ap, and BA horizons (Figure B-2).  The profile was 

similar to the Downer soil series (coarse-loamy, siliceous, semiactive, mesic Typic 

Hapludult). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BA 

Ap 

A 

Figure B-2 Profile sampled from the 
Downer soil to a depth of 24 cm 
revealing A, Ap, and BA horizons. 
Location at 38°54’08.11”N, 
76°08’11.38”W. 
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The horizons sampled from the Downer soil profile were relatively sandy with the 

A and Ap horizons having 75 and 66% sand, respectively (Table B-2).  The BA horizon 

had slightly less sand at 30%.  The pH for the three horizons ranged from 5.5 - 6.0, and 

were aerobic with Eh values from 437 - 500 mV relative to standard hydrogen electrode 

(SHE).  The A horizon reduced 1.0 mg/L Cr(VI) and the Ap horizon reduced 1.1 mg/L 

Cr(VI), and although the A horizon didn’t oxidize any Cr(III), the Ap horizon oxidized 

2.4 mg/L which was similar to the BA horizon which oxidized 2.6 mg/L.     

 

 Table B-2 Soil characterization data for the Downer soil profile. CDB refers to the 
citrate-dithionite extraction and N/A is not analyzed.  

Characteristics 
Soil Horizons 

A 
(0-8 cm) 

Ap 
(8-18 cm) 

BA 
(18-61 cm) 

Texture 
(% sand, silt, clay) 

Loamy sand 
(75, 21, 4) 

Sandy loam 
(66, 28, 6) 

Silt loam 
(30, 52, 18) 

Field pH 5.5 6.0 5.5 

Lab Eh (mV) 490 437 500 

Organic Carbon by 
LECO (g/kg soil) 3.1 ± 0. 1 2.5 ± 0.1 1.0 ± 0.1 

Cr Oxidized (mg/L) 0.0 2.4 ± 0.03 2.6 ± 0.10 

Cr Reduced (mg/L) 1.0 ± 0.05 1.1 ± 0.07 0.85 ± 0.0 

CDB Fe (g/kg) 1.5 ± 0.4 N/A N/A 

CDB Mn (g/kg) 0.05 ± 0.0   N/A N/A 
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Jackland Soil 
 

A soil profile from a delineation of the Jackland mapping unit was dug to 78 cm, 

allowing for sampling from the Ap, Bt, and BC horizons (Figure B-3).  The profile was 

similar to the Jackland series (fine, smectic, mesic Aquic Hapludalf). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC 

Bt 

Ap 
Figure B-3 Profile sampled from the 
Jackland soil to a depth of 78 cm 
revealing Ap, Bt, and BC horizons. 
Location at 39°09’57.04”N, 
77°19’10.50”W. 
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The horizons sampled from the Jackland soil profile were higher in silt and clay 

than the other profiles with 8.9, 33, and 13% clay in the Ap, Bt, and BC horizons, 

respectively (Table B-3).  The pH for the three horizons ranged from 6.0 – 6.5, and were 

aerobic with Eh values from 449 - 470 mV relative to standard hydrogen electrode 

(SHE).  The Ap horizon reduced the most Cr(VI) at 1.0 mg/L; however, the Ap and Bt 

horizons oxidized 2.4 and 2.6 mg/L Cr(III), respectively, which is indicative of the higher 

concentrations of Mn(III,IV)(hdyr)oxides present relative to the other soils.   

  

 Table B-3 Soil characterization data for the Jackland soil profile. CDB refers to the 
citrate-dithionite extraction and N/A is not analyzed. 

Characteristics 
Soil Horizons 

Ap 
(0-20 cm) 

Bt 
(20-45 cm) 

BC 
(45-78 cm) 

Texture 
(% sand, silt, clay) 

Silt loam 
(35, 57, 8) 

Clay loam 
(30, 37, 33) 

Sandy loam 
(69, 19, 12) 

Field pH 6.0 6.0-6.5 5.5-6.5 

Lab Eh (mV) 470 460 449 

Organic Carbon by 
LECO (g/kg) 9.0 ± 0.1 4.0 ± 0.1 1.3 ± 0.0 

Cr Oxidized (mg/L) 2.4 ± 0.03 2.6 ± 0.10 0.79 ± 0.02 

Cr Reduced (mg/L) 1.1 ± 0.07 0.85 ± 0.05 0.49 ± 0.08 

CBD Fe (g/kg) 6.3 ± 0.26 N/A N/A 

CBD Mn (g/kg) 1.0 ± 0.03 N/A N/A 
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Collington Soil 

A soil profile from a delineation of the Annapolis mapping unit was dug to 90 cm, 

allowing for sampling from the A, Ap, and Bt horizons (Figure B-4).  The profile was 

similar to the Collington series  (fine-loamy, mixed, active, mesic Typic Hapludult). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The profile sampled from the Collington 

 

 

 

 

 

 
  

Bt 

Ap 

A 
Figure B-4 Profile sampled from the 
Collington soil to a depth of 90 cm 
revealing A, Ap, and Bt horizons. 
Location at 38°51’23.51”N, 
76°46’53.74”W. 
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The horizons sampled from the Collington soil were relatively high in sand with 

83, 76, and 71% sand in the A, Ap, and Bt horizons, respectively (Table B-4).  The pH 

for the three horizons ranged from 4.0 - 4.5.  These horizons had the highest Eh values 

ranging from 597 - 607 mV relative to standard hydrogen electrode (SHE).  The A 

horizon reduced the most Cr(VI) from this profile at 3.9 mg/L; and none of the horizons 

oxidized any Cr(III), which is indicative of very low concentrations of 

Mn(III,IV)(hdyr)oxides present relative to the other soils.   

   

 Table B-4 Soil characterization data for the Collington soil profile. CDB refers to the 
citrate-dithionite extraction and N/A is not analyzed. 
 

Characteristics 
Soil Horizons 

A 
(0-10 cm) 

Ap 
(10-24 cm) 

Bt 
(24-90 cm) 

Texture 
(% sand, silt, clay) 

Loamy sand 
(83, 14, 3) 

Loamy sand 
(76, 20, 4) 

Sandy clay loam 
(71, 5, 24) 

Field pH 4.0 4.0-4.5 4.0 

Lab Eh (mV) 606 597 607 

Organic Carbon by 
LECO (g/kg) 37 ± 0.02 2.5 ± 0.01 1.7 ± 0.01 

Cr Oxidized (mg/L) 0.0 0.0 0.0 

Cr Reduced (mg/L) 3.9 ± 0.12 0.88 ± 0.01 1.3 ± 0.04 

CBD Fe (g/kg) 3.0 ± 0.41 N/A N/A 

CBD Mn (g/kg) 0.01 ± 0.0 N/A N/A 
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Atsion Soil 
 

A soil profile from a delineation of the Askecksy mapping unit was dug to 114 

cm, allowing for sampling from the O/A, E, Bh, Bs, and C horizons (Figure B-5).  The 

profile was similar to the Atsion series (sandy, siliceous, mesic, Aeric Alaquod).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure B-5 Profile sampled from the 
Atsion soil to a depth of 84 cm 
revealing O/A, E, Bh, Bs, and C 
horizons. Location at 38°12’52.11”N, 
75° 31’20.05”W. 

O/A 

E 

Bh 

Bs 

C 
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The horizons sampled from the Atsion soil had the highest amount of sand of all 

the soils with 94, 88, 89, and 95% sand in the E, Bh, Bs, and C horizons, respectively 

(Table B-5).  The pH for the profile ranged from 3.5 - 5.0, and the Eh values ranged from 

477 - 530 mV relative to standard hydrogen electrode (SHE).  The O/A horizon reduced 

the most Cr(VI) than any of the other soil horizons sampled in the five soils at 5.2 mg/L; 

and none of the horizons oxidized any Cr(III), which is indicative of very low 

concentrations of Mn(III,IV)(hdyr)oxides present relative to the other soils.   

   
 Table B-5 Soil characterization data for the Atsion soil profile. CDB refers to the citrate-
dithionite extraction and N/A is not analyzed. 

 
 
 
 
  

Characteristics 
Soil Horizons 

O/A 
(0-30 cm) 

E 
(30-69 cm) 

Bh 
(69-89 cm) 

Bs 
(89 -114 cm) 

C 
(>114 cm) 

Texture 
(% sand, silt, clay) N/A Sand 

(94, 5.9, 0.1) 
Sand 

 (88, 10, 2) 
Sand 

 (89, 8, 3) 
Sand 

 (95, 3, 2) 

Field pH 4.0 3.5-4.0 4.5-5.0 4.5 5.0 

Lab Eh  
(mV) 530 524 477 484 488 

Organic Carbon 
by LECO (g/kg) 117 ± 8.0 20 ± 0.4 44 ± 2.1 29 ± 1.1 1.9 ± 0.02 

Cr Oxidized 
(mg/L) 0.0 0.0 0.0 0.0 0.0 

Cr Reduced 
(mg/L) 5.2 ± 0.0 2.3 ± 0.13 2.2 ± 0.16 1.4 ± 0.02 0.45 ± 0.02 

CBD Fe  
(g/kg) N/A 0.09 ± 0.0 N/A N/A N/A 

CBD Mn  
(g/kg) N/A 0.002 ± 0.0 N/A N/A N/A 
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APPENDIX C 
 
 

 
 
 
 

Table C
-1 D

ata Set for Figure 2-1A
. Tim

e in hours and data in m
M

 soluble C
r(V

I) for increasing 
concentration isopropyl alcohol. 

Table C
-2 D

ata Set for Figure 2-1B
.  Tim

e in hours and data are ln C
/C

o for soluble C
r(V

I) for increasing 
concentration isopropyl alcohol..  
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Table C
-3 D

ata Set for Figure 2-2A
. Tim

e in hours and data in m
M

 soluble C
r(V

I) for 
increasing concentration tartaric acid. 

Table C
-4 D

ata Set for Figure 2-2B
.  Tim

e in hours and data are ln C
/C

o for soluble C
r(V

I) 
for increasing concentration tartaric acid. 
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Table C
-5 D

ata Set for Figures 2-3A
 and 2-4A

. Tim
e in hours and data in m

M
 soluble C

r(V
I) for increasing 

pH
 and increasing initial concentration C

r(V
I). 

Table C
-6 D

ata Set for Figures 2-3B
 and 2-4B

.  Tim
e in hours and data are ln C

/C
o for soluble C

r(V
I) for 

increasing pH
 and increasing initial concentration C

r(V
I).  
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Table C
-7 D

ata Set for Figure 2-5A
. Tim

e in hours and data are pe of solution w
ith increasing concentration isopropyl 

alcohol. 

Table C
-8 D

ata Set for Figure 2-5B
.  Tim

e in hours and data are pe of solution w
ith increasing concentration 

tartaric acid.    
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Table C
-9 D

ata Set for Figure 3-1A
. Tim

e in hours and data are m
M

 of soluble C
r(V

I) w
ith 0.29 M

 isopropyl alcohol, 12 m
M

 
tartaric acid, and pH

 4 for five M
aryland soils. 

Table C
-10 D

ata Set for Figure 3-1B
. Tim

e in hours and data are ln concentration over initial concentration (C
/C

o)  for soluble 
C

r(V
I) w

ith 0.29 M
 isopropyl alcohol, 12 m

M
 tartaric acid, and pH

 4 for five M
aryland soils. 

Table C
-11 D

ata Set for Figure 3-2. Tim
e in hours and data are pH

 for suspensions w
ith 0.29 M

 isopropyl alcohol, 12 m
M

 
tartaric acid, and pH

 4 for five M
aryland soils. 
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Table C
-12 D

ata Set for Figure 3-3A
. Tim

e in hours and data are µM
 of soluble M

n w
ith 0.29 M

 isopropyl alcohol, 12 m
M

 
tartaric acid, and pH

 4 for five M
aryland soils. 

Table C
-13 D

ata Set for Figure 3-3B
. Tim

e in hours and data are µM
 of soluble Fe w

ith 0.29 M
 isopropyl alcohol, 12 m

M
 

tartaric acid, and pH
 4 for five M

aryland soils. 

Table C
-13 D

ata Set for Figure 3-3B
. Tim

e in hours and data are µM
 of soluble Fe w

ith 0.29 M
 isopropyl alcohol, 12 m

M
 

tartaric acid, and pH
 4 for five M

aryland soils. 
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Table C
-14 D

ata Set for Figure 3-4. Soluble C
r(V

I) after 24h shaking in presence of M
n-oxide coated sand w

ith 12 
m

M
 tartaric acid and pH

 4.  Initial C
r(III) concentration at 2 m

M
, and done in separate experim

ent.   

Table C
-15 D

ata Set for Figure 3-5. Soluble C
r(V

I) after 24h shaking in presence of trivalent and divalent m
etals w

ith 12 
m

M
 tartaric acid, 0.29 M

 isopropyl alcohol, and pH
 4.     
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Table C
-16 D

ata Set for Figure 4-1A
. Soluble C

r(V
I) in m

M
 after 96 h in presence of 1 m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, 
or both w

ith 12 m
M

 tartaric acid at pH
 4 or 5.5.     

Table C
-17 D

ata Set for Figure 4-1B
. N

atural log of soluble C
r(V

I) concentrations over initial  concentration (ln C
/C

o) for 
96 h in presence of 1 m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, or both w
ith 12 m

M
 tartaric acid at pH

 4 or 5.5.     
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Table C
-18 D

ata Set for Figure 4-2.  pH
 for 96 h in presence of 1 m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, or both w
ith 12 m

M
 

tartaric acid at low
 or high acidity. Low

 acidity is initial 0.2 M
 H

N
O

3  concentration and high acidity is 0.5 M
 H

N
O

3 .  Tim
e is 

in hours.    

Table C
-19 D

ata Set for Figure 4-3A
.  Soluble C

r(V
I) in m

M
 for 96 h in presence of 1 m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, 
or both w

ith 12 m
M

 tartaric acid at low
 or high acidity. Low

 acidity is initial 0.2 M
 H

N
O

3  concentration and high acidity is 
0.5 M

 H
N

O
3 .  Tim

e is in hours.    
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Table C
-20 D

ata Set for Figure 4-3B
. N

atural log of soluble C
r(V

I) concentrations over initial concentration (ln C
/C

o) 
starting at 24 h in presence of 1 m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, or both w
ith 12 m

M
 tartaric acid at low

 or high acidity. 
Low

 acidity is initial 0.2 M
 H

N
O

3  concentration and high acidity is 0.5 M
 H

N
O

3 .  Tim
e is in hours.    

Table C
-21 D

ata Set for Figure 4-4. Fractions of C
r recovered from

 C
O

PR
 sam

ples in presence of 1 
m

M
 M

n
2+, 0.29 M

 isopropyl alcohol, or both w
ith 12 m

M
 tartaric acid at low

 or high acidity. Low
 

acidity is initial 0.2 M
 H

N
O

3  concentration and high acidity is 0.5 M
 H

N
O

3 .  
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Table C

-22 D
ata Set for Figure 4-5. Fraction of C

r rem
aining after 48 h shaking  in presence of five 

M
aryland soils w

ith 1 m
M

 M
n

2+, 0.29 M
 isopropyl alcohol, or both w

ith 12 m
M

 tartaric acid .   

Table C
-23 D

ata Set for Figure 4-6. Soluble M
n concentrations in m

M
 after 48 h shaking in presence of 

five M
aryland soils w

ith 1 m
M

 M
n

2+, 0.29 M
 isopropyl alcohol, or both w

ith 12 m
M

 tartaric acid.    
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