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The objective of this work is to examine the relationship between structure

(both molecular and morphological structure) and properties of high strength fiber.

The superior performance of the high strength fibers is predicated on the devel-

opment of a highly aligned molecular structure that allows the polymer to exhibit

a superior strength in the axial direction of the fiber. Armor manufacturers have

exploited the inherent strength of these materials to develop body armor that con-

tinues to defeat ever-increasing threats. However, even an ideal molecular structure

will be subjected to a potentially hydrolytic or oxidative environment during use,

which can reduce the high strength of these fibers, and impact their ability to protect

the wearer. The effect of the wear environment on the molecular structure, which is

responsible for the high strength of these fibers, has not been well understood by the

scientific community. In this work, the chemical mechanisms of degradation were

investigated at the molecular level to understand the effect of the environmental

conditions on crystallinity, orientation, and molecular weight. The chemical mech-



anism and kinetics elucidated from these measurements are used to understand the

reduction in strength of these materials after degradation. Hydrolysis was found to

be the predominant mechanism of degradation for polybenzobisoxazole and goes to

irreversible chain scission. Hydrolysis is also the primary mechanism of degrada-

tion for aramid fibers. Ultra-high molecular weight polyethylene (UHMWPE) fibers

undergo an oxidative mechanism of degradation, and the activation energy for this

mechanism was calculated. Additionally, the release of acids from aramid copolymer

fibers, and the performance of these fibers in hydrolytic and thermooxidative envi-

ronments were studied to determine that hydrolytic degradation is the predominant

degradation mechanism for these fibers.

Exploratory research was also performed in an effort to improve the stability of

UHMWPE fibers by using radiation to crosslink the UHMWPE fibers and increase

the temperature of their alpha relaxation. However, this radiation treatment was

still found to reduce the overall tensile strength of these fibers. In summary, the

wear environment and vulnerabilities of a material to degradation are essential when

selecting materials or developing new materials for use in body armor.
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Chapter 1

Aramid and Oxazole Fibers Used in Body Armor

1.1 Chapter Overview

In this chapter, aramid and oxazole fibers used in body armor are introduced.

A brief history of the use of these fibers in body armor and issues with their long term

performance is provided. A method of accelerated degradation for these materials

is described. The relationship between the molecular structure and the physical

properties of these fibers is investigated. A mechanism of hydrolysis for oxazole

fibers is proposed.

1.2 Aramids

1.2.0.1 History of Aramid Development

Aramid is defined by the US Federal Trade Commission [1] as a generic term

for a manufactured fiber in which the fiber-forming substance is a long chain syn-

thetic polyamide in which at least 85 % of the aramid linkages are attached directly

to two aromatic rings. This definitaion distingushies aramids from nylons (which

do not have this aromatic character). It encompasses several different fibers, in-

cluding Kevlar, Nomex, and Twaron. Para-oriented aromatic polyamides were first

synthesized in 1965 by Stephanie Kwolek, a DuPont research scientist, in an effort
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to develop a fiber with a super-rigid molecular chain and a high modulus. While

this new fiber showed promise, considerable challenges had to be overcome in order

to commercialize it. All of the monomers needed had to be synthesized, and the

polymer would not melt, causing processing problems [1].

Experimental fibers spun using a conventional wet-spinning process showed

commercial promise. Their tensile modulus was stiffer than glass on a specific

weight basis, and later experiments increased the fiber modulus to 2.5 times that of

fiberglass. This initial breakthrough lead to greater understanding of the polymer

solution behavior, and the discovery that solutions of this polymer exhibited the

anisotropic behavior of liquid crystalline solutions, which are discussed in the next

section. Another major breakthrough came in the early 1970s, when a modified dry

jet spinning process for polyaramid was developed. Fibers produced using this pro-

cess were almost twice as strong as those from the wet spinning experiments, and the

spinning speed was quadrupled. These developments led DuPont to commercialize

the fiber [1].

1.2.0.2 Liquid Crystals

A very brief introduction to liquid crystals is given here to better explain the

behavior of solutions of PPTA and other rigid rod molecules that exhibit liquid

crystalline behavior at certain concentrations. Typically one thinks of three well-

known states of matter–solid, liquid, and gas. These phases differ from each other

because the molecules in each state exhibit different amounts of order. Solids are
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rigid arrangements of molecules in which molecules are constrained to occupy cer-

tain positions- in a crystal these are very ordered, but the positions can be random

in an amorphous solid. In liquids, the molecules neither occupy a specific position,

on average, nor maintain a particular orientation. They are free to diffuse around,

interact with other molecules, and abruptly change their direction of motion. At-

tractive forces between the molecules keep the liquid together. The amount of order

in a liquid is less than that in a solid. In a gas, the motion of the molecules be-

comes more chaotic, and the attractive force between the molecules is insufficient

to hold the molecules together, as in the liquid state. Liquids and gases are similar

in that the molecules in both states exhibit random, disorganized motion, however

they differ in that in a liquid, molecules maintain a specific average intermolecular

distance, but in a gaseous state, the average intermolecular distance is dictated by

the size and shape of the container [2].

A fourth phase can also exist for certain materials. This phase lies between

the solid and liquid state. As discussed previously, a solid phase possesses positional

order. Additionally, the orientation of the molecules with respect to each other is

constrained, they can also be said to possess orientational order. When a solid melts

to an ordinary liquid, both types of order are lost completely, the molecules move

and tumble randomly. When a solid melts to a liquid crystal, the positional order

may be lost, but the orientational order remains. The molecules in a liquid crystal

phase are free to move about as in a liquid, but their orientation is preserved [2].

An order parameter, S may be defined to specify the amount of orientational order

in a liquid crystal phase. The order parameter may be represented by Equation 1.1,
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which is based on a solution to the Legendre equation [3]. The Legendre equation

is a second order ordinary differential equation that is frequently encountered in

physics.

S = 〈P2 (cos θ)〉 =

〈
3

2
cos2 θ − 1

2

〉
(1.1)

Where θ is the angle of the molecule with respect to a unit vector n̂, which is

known as the director. In a simple liquid crystal phase, one molecular axis tends to

point along a preferred direction, which is denoted by n̂.

All liquid crystals are anisotropic- either their shape is such that one molec-

ular axis is very different from the other two, or in some cases, different parts of

the molecule may have different solubility properties. Intermolecular interactions

promote orientational and sometimes positional organization in an otherwise fluid

phase. The most common shape for a liquid crystal is a rod-like shape in which one

axis of the molecule is much longer than the other two. This is called a calamitic

liquid crystal. Disc-like molecules can also form liquid crystals called discotic liquid

crystals [3].

The simplest liquid crystal phase of calamitic liquid crystals is the nematic

phase, in which molecules maintain a preferred orientation as they diffuse through

the sample. The vector describing this preferred orientation is the director. There

is no positional order in this phase. Two other phases common to calamitic liquid

crystals are the smectic A and smectic C phases. These phases have positional order-

the centers of mass are aligned in layers. If the director is aligned perpendicular
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to the layers, then it is a smectic A phase, if it is aligned in any other direction, it

is a smectic C phase. Discotic liquid crystals having perpendicular alignment, like

stacks of coins, are known as columnar discotic liquid crystal phases [3].

Both calamitic and discotic liquid crystals are also called thermotropic liq-

uid crystals, because their liquid crystalline phase is stable over a certain range of

temperatures. However, there is another type of liquid crystal called a lyotropic

liquid crystal, in which the liquid crystal phase only forms when the molecule is in

solution. In lyotropic liquid crystals, the concentration of the solution is equally

important or more important than the temperature of the solution in determining

the stability of the liquid crystalline phase. The elongated, or rigid rod shape of

PPTA molecules dissolved at high concentrations in the solvent sulfuric acid helps

this polymer molecule preferentially order and form a lyotropic liquid crystalline

phase [3].

1.2.0.3 Structure and Properties

Aramids used in body armor, such as Kevlar, are based on the polyconden-

sation of p-phenylene diamine and teraphthalic acid or terephthaloyl chloride in a

dialkyl amide solvent [1, 4], as shown in Figure 1.1.

The resultant polymer is then spun into fibers from a concentrated acid solu-

tion, as depicted in Figure 1.2.

As previously mentioned, solutions of this polymer exhibit rod-like behavior

due to the rigid covalent bonds in the aramid main chain, characterized by the

5



N N C C

O

HH

O

n

N N C C

O O
H H

Cl C
l

H H

+

amide solvent

Figure 1.1: A reaction demonstrating the polycondensation of p-phenylene diamine
and terephthaloyl chloride (could also use terephthalic acid) in a dialkyl amide
solvent [1, 4] to form PPTA fiber.

Figure 1.2: Schematic of dry-jet spinning technique used to make PPTA fiber [1]. A
spin dope is forced through a spinneret at high speed. Filaments exit the spinneret
into an air gap, then are drawn into a coagulating bath. The individual filaments
are then drawn over a series of rotating bobbins to orient and align the fibers. The
figure also shows recycling of the coagulation liquid.
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120 ◦ bond angle between carbons in the chain [1]. At low concentrations, these

solutions are randomly oriented, but as concentration is increased, the solutions be-

come anisotropic and the polymer molecules adopt an ordered arrangement in small

domains to increase their packing efficiency. Spinning from these liquid crystalline

solutions contributes to the high strength and orientation of these fibers [1].

PPTA fibers have a highly ordered, crystalline molecular structure, which has

been extensively studied by wide-angle X-ray diffraction. Based on these studies,

PPTA fibers are assumed to have a pseudo-orthorhombic unit cell. The proposed

crystal structure for PPTA fibers are shown in Figure 1.3.

Due to close proximity between NH and CO groups, intermolecular hydrogen

bonds can form, which link the adjacent chains into hydrogen bonded sheets, as

shown in Figure 1.3. These hydrogen bonded sheets fold within the fiber to form

a radially pleated structure, as shown in Figure 1.4. The exact reason for the

occurrence of this pleated structure is not completely understood. One prevailing

theory is that this structure is formed during the coagulation of the fiber. The

fiber skin forms first, and is subjected to most of the stress on the fiber during

spinning. The coagulating solution at the core of the filament can then relax and

form the uniform pleated periodicity during crystallization. This has also been seen

in micrographs of the fiber, as shown in Figure 1.5 [5].

The physical properties of PPTA fibers are closely related to its physical struc-

ture, especially its highly ordered crystalline structure. In the idealized case of a

fully extended PPTA molecule perfectly oriented with respect to the fiber axis, the

fiber strength would be equal to the C-C covalent bond force 4.41 x 10−7 g, divided
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Figure 1.3: The crystalline structure of PPTA fiber is pseudo-orthorhombic unit cell
crystal as shown in this schematic. [1].
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Figure 1.4: Hydrogen-bonding between NH and CO groups in PPTA fibers link
adjacent chains into hydrogen bonded sheets. These sheets fold within the fiber,
forming a radially pleated structure, as shown in this schematic [1].
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Figure 1.5: This SEM micrograph actually shows the pleated sheet structure of
PPTA fiber. It is evident in the vertical lines shown through the middle of the
fiber [5].

by the linear density of the chain, or 2.7 x 10−9. This gives a theoretic microscopic

tensile strength of 21.7 GPa. This is much larger than the actual measured strength

of a PPTA fiber, which is 4 GPa (at very short gage lengths). Some of the difference

in the theoretical and actual tensile strength can be ascribed to the simple assump-

tions used to make this estimate. Another attempt used a stochastic failure analysis

on a microscopic scale to calculate an ultimate fiber strength of approximately 7.5

GPa. Overall, the discrepancies between the theoretical and actual tensile proper-

ties of PPTA can be attributed to several factors, including a relatively low upper

limit on crystallinity due to processing conditions, crystal defects, and the skin-core

gradient in crystalline orientation [1].

It is well known that PPTA fibers have excellent tensile properties, but its

compressive and shear strength are relatively poor. There are three main modes

of tensile failure in PPTA fibers. These are a pointed break, a fractured break,

and a kink band break [1]. These can be identified using ordinary cross-polarized
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Figure 1.6: A micrograph showing the three different kinds of tensile failures in
PPTA fiber- pointed break (a), fractured break (b), and kink band break (c) [1].

light microscopy, as shown in Figure 1.6. An SEM of a kink band is shown in

Figure 1.7 [6].

These kink bands are formed when PPTA fibers are subjected to either severe

bending or compression. Kink bands are characterized by a morphological defor-

mation that appears as a series of successive bands at an angle of 50 to 60 ◦ to the

fiber axis. Kink band formation has been visualized as being initiated as a plastic

deformation that results in the appearance of several irregularly spaced single bands.

This banding comprises a narrow, triangular, or wedge-shaped, region in which the

orientation of the polymer chains is abruptly changed. As deformation increases, the

kink bands propagate through the fiber to the axis and wedges become increasingly

more kinked. Simultaneously, new kink bands form along the fiber. “Cross bands”

form and intersect the original bands (Figure 1.8). With further increased compres-

sion, the outer region opposite the cross bands fracture under tension, forming a

kink band break, as discussed previously [1].
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Figure 1.7: SEM image of single PPTA fiber showing the formation of kink bands
as vertical lines in the compression side of the fiber after being looped [6].
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Figure 1.8: A micrograph showing the the process by which a kink band is formed-
first a small region in which the chains are not oriented with respect to the fiber
axis is formed under a compressive load, (a). Next, under increasing load, the
deformation increases and begins to propagate through the fiber to the axis, (b),
and wedges become increasingly more kinked. Simultaneously, new kinks begin
to form along the fiber axis, and intersect the original bands, (c) and (d). With
further increased compression, the outer region opposite the cross band fracture
under tension as a kink band break (e) [1].
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Kink bands represent the major drawback of PPTA’s structural anisotropy.

Essentially, the extended chain structure of PPTA fibers cannot support any appre-

ciable amount of axial compression. This is further complicated by the fact that

the only lateral bonding in the fiber is relatively weak Van der Waals forces and the

hydrogen bonding between sheets of the chains. Thus, PPTA fibers require special

consideration for compressive applications but have excellent tensile properties [1].

1.2.1 Polyazoles

1.2.1.1 History of Polyazole Development

After the discovery of aramids in the late 1960s, there has been a consistent

search, especially at the Air Force Research Laboratory, for other chemistries to

elicit similar rigid-rod polymers, especially given the practical limits in ultimate

fiber tensile strength for aramids. Poly-[(benzo,2-d:4,5-d’bisthiazole-2,6-diyl)-1,4-

phenylene] (PBZT), which is not discussed here, and poly(p-phenylene-2,6-benzo-

bisoxazole), or PBO, are two polymers that were developed from this search [7].

PBO is produced by condensing 4,6-diamino-1,3-benzenediol dihydrochloride with

terephthalic acid, as shown in Figure 1.9.

Typically, polyphosphoric acid, or PPA, is used as the solvent in the prepa-

ration of PBO fiber. PPA serves three functions in this process: solvent, catalyst,

and dehydrating agent. This allows for the formation of polybenzobisoxazoles in

solution, without the need for a separation process. Therefore, the polymerization

solution is directly spinnable, eliminating the need for a separate dissolution step [7].
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Figure 1.9: The synthesis of PBO fiber from the polycondensation of 4,6-diamino-
1,3-benzenediol dihydrochloride with terephthalic acid [7].

Like PPTA, PBO forms liquid crystalline solutions at concentrations above a

critical point, due to the rigid rod conformation of the polymer chains. Like other

rigid rod polymers, PBO does not dissolve in aprotic organic solvents, but can be

made to dissolve in certain solvents, such as nitroalkanes and nitrobenzenes with

the addition of Lewis acids. Fiber spinning of nematic solutions of PBO is typically

accomplished using a dry-jet wet spinning technique similar to that used to make

PPTA fibers. Extrusion of the hot polymer solution occurs under pressure through

a single or multi-hole spinneret to a narrow air gap, then the spinning filament is

plunged into a non-solvent coagulating bath, where it transitions from a nematic

solution to the solid state due to deprotonation of the polymer by the coagulant.

The choice of the liquid in the non-solvent coagulating bath can affect the crystal
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structure of the final fiber. The fiber is then stretched, washed and dried. Some

fibers are also subsequently heat treated [7].

1.2.1.2 Structure and Properties

A common observation from most morphological studies on PBO fibers is that

the crystallites are very well oriented, as one might expect for an oriented fiber.

This observation is made from strong equatorial and multiple meridional reflections

in wide angle X-ray diffraction patterns generated from these fibers [7]. Scanning

electron microscopy (SEM) images of the failed surfaces heat-treated PBO fibers

(both those that have been fractured via tensile testing or compressively peeled)

show a fibrillar structure. A hierarchical structural model has been proposed for

PBO, in which the fibers are made up of macrofibrils, fibrils, and microfibrils, with

diameters of 5, 0.5, and 0.05 µm, respectively. Experimental studies have observed

even smaller (7-10 nm) microfibrils than those proposed by this theory. SAXS

patterns of PBO fibers show an equatorial streak which is attributed to the presence

of voids or crystals elongated with respect to the fiber axis. These voids are typically

attributed to the drastic volume reduction of the fiber due to removal of the solvent

during coagulation [7].

A model of PBO fiber was proposed by Kitagawa in 1998. In this model, the

fiber is formed from oriented microfibrils between 10-50 nm in diameter aligned with

the axis of the fiber. The microfibrils contain many capillary-like microvoids that

are generally considered to be areas of solvent that existed prior to coagulation. The
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surface, or skin, of the fiber consists of a void-free region. This structural model

is shown schematically in Figure 1.10, and has also been described as “a bundle of

broom-straws” [8].

Like PPTA, PBO fibers have a very high thermal degradation temperature of

over 600 ◦C, and are generally expected to decompose before melting or exhibiting

a glass transition temperature [7]. The mechanical properties of PBO fibers are

generally strong, tough, and very stiff. Their tensile strength is comparable to that

of PPTA, UHMWPE, and carbon fibers. A typical tensile strength for PBO has

been reported to be as high as 5.8 GPa, with a modulus of 180 GPa. However,

the axial compressive strength of PBO is about 10 to 15 % of its tensile strength.

The compression behavior of rigid rod polymers such as PBO has been extensively

studied. Unlike carbon or glass fibers, organic fibers do not exhibit a catastrophic

failure in compression, but rather undergo failure due to kinking, as discussed in the

previous section on PPTA [7].

1.3 Brief History of Body Armor

Since 1972, the National Institute of Justice has sponsored research to develop

lightweight, concealable body armor for use by police officers. This armor was

primarily designed to protect officers from handgun threats. In 1975, 129 officers

from federal, state, and local agencies were killed in the line of duty. Prior to this

time, body armor was primarily developed for and used by the military. It was

both heavy and conspicuous, typically made from steel, ceramics, or many layers of
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Figure 1.10: Structural model showing microfibrils, microvoids, and skin structure
for PBO fiber [8]. Note the microvoids in the fiber, and its bundle of broom straws
structure.
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nylon. This type of armor was typically not worn by police officers unless a specific,

immediate threat was perceived.

In 1973, a joint project between the Department of Justice and the Department

of Defense was undertaken to develop a lightweight protective armor to be worn by

key public officials. In the course of this testing, several new materials were tested

for ballistic resistance and compared to nylon, which was the most common material

used at that time for body armor. One new nylon-type material supplied by DuPont

showed significant promise in these early trials. This material later became known as

Kevlar-29, or poly(p-phenylene terephthalamide), or PPTA [1]. The development

of this new ballistic material offered exciting possibilities to engineers interested

in designing lightweight, concealable garments that could protect the wearer from

injury due to handguns. Originally developed during a search for new tire cord

materials, PPTA was first known as experimental fiber PRD-26 and then PRD-49-

IV. It can easily be woven into a variety of different fabric constructions, making it

ideal for ballistic-resistant garments [9].

Once PPTA’s usefulness in the construction of body armor had been rec-

ognized, several questions related to evaluating various designs had to be solved,

including what degree of threats should armor be expected to protect against, and

what degree of injury was acceptable. Since common handguns dominated the

available statistics for firearms that had been confiscated, used in assaults, and had

caused injury or death in assaults, efforts were focused on developing armor to stop

these threats. Velocities for the test rounds were established using test firings of

weapons through a chronograph to measure projectile velocities. The next issue for
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determining the degree of acceptable injury was more difficult. In the course of stop-

ping a projectile, body armor undergoes a rapid deformation resulting in blunt force

trauma injury to the wearer. The deflection of the armor while stopping a projec-

tile is typically called either backface deflection or backface signature of the armor.

The researchers involved convened a multidisciplinary panel to review all available

data for blunt trauma injury on either animals or humans. Several conclusions were

drawn from this work. First, the researchers acknowledged a general scarcity of

empirical data relevant to non-penetrating projectiles and the evaluation of the ef-

fectiveness of body armor. Of the available data sets, none completely examined

all of the parameters considered important for blunt trauma assessment. Further

complicating matters, inconsistencies in the test methodologies between individual

studies precluded broad data correlation between studies. Despite these challenges,

predictive and experimental models were modified and developed during this effort,

however the validation of these models were restricted. It was clear, however, that

blunt trauma injuries behind armor were life-threatening, and the researchers rec-

ommended that criteria be developed to measure the backface signature and reduce

it below a level that could cause “...serious injury or death” [9]. Eventually, correla-

tions were drawn between injury to goats and humans that culminated in a backface

signature criteria of less than 44 mm indentation in Roma Plastilina Type Number

1 clay, which is still used in modern body armor standards [10].
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1.3.1 First Save

By 1975, a pilot program using vests designed in the 1973 study was initiated.

Field testing involving 5000 police officers from 15 urban police departments began

in the summer of 1975. On December 23, 1975, Officer Raymond T. Johnson,

one of the officers in this pilot body armor program, was waiting to checkout at a

local market that had been the target of frequent burglaries. A robber entered the

store, brandished a weapon, and demanded money. Officer Johnson confronted the

suspect and was shot twice in the torso during a violent struggle, but survived due

to the protection of his experimental body armor. During the 1 year field test, an

additional 16 officers were saved by their experimental body armor [11]. By the late

1970s, body armor was widely available for police officers, with wear rates increasing

each year. To date, over 3000 officers have been saved by their body armor [12].

1.3.2 Attorney General’s Safety Initiative

Twenty-eight years after the first save was recorded, the first failure of body

armor against a threat it had been rated to stop occurred. On June 23, 2003, Forest

Hills, PA police officer Edward Limbacher was performing surveillance against a drug

suspect. Upon opening the door of his unmarked vehicle, the suspect fired, striking

Officer Limbacher with .40 caliber rounds (which are used in body armor testing,

and should have been stopped by his armor). A shot to the abdomen perforated the

vest. Officer Limbacher survived but sustained serious injuries [11]. As previously

mentioned, this was the first instance of an armor being perforated by a threat it
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had been rated to stop. Focus within the law enforcement community immediately

turned to the material the armor was made from- a new material called Zylon, or

poly(p-phenylene-2,6-benzobisoxazole). Significant concern within the law enforce-

ment and research communities about the safety of this material led then Attorney

General John Ashcroft to announce a Body Armor Safety Initiative “...to address

the reliability of body armor used by law enforcement personnel and to examine the

future of bullet-resistant technology and testing.” in November 2003 [13].

1.4 PBO Field Failure

In response to the Attorney General’s initiative to examine failures of soft body

armor containing the material poly(p-phenylene-2,6-benzobisoxazole), or PBO, the

National Institute of Justice (NIJ) determined that a significant revision of the

performance standard for ballistic body armor was required. One area that had

not previously been examined was the long term, or field performance of body

armor. Much research was conducted to investigate the issues with PBO in the

field and several papers [14, 15, 16] and reports documenting the degradation of

PBO fiber with exposure to elevated conditions of moisture and temperature were

published. Once the issues with PBO fibers became clear, NIJ issued “NIJ Body

Armor Standard Advisory Notice # 01-2005” to inform the community of body

armor end users about the degradation issues with PBO. Concurrently, NIJ issued

the “NIJ 2005 Interim Requirements for Bullet-Resistant Body Armor,” requiring

manufacturers to state that their armor did not contain any material listed on an NIJ
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Standard Advisory Notice (e.g., PBO), and requiring that the armor “will maintain

ballistic performance (consistent with its originally declared threat level) over its

declared warranty period.” Long-term performance of body armor was considered

during the development of a revised performance standard for body armor. This

new standard addresses a number of concerns, one of which was the ability of the

armor to withstand environmental and wear conditions that an armor might see

over its lifetime. This section describes my development of a soft armor conditioning

protocol to help understand how armor may perform in the field.

Previous work has documented a detailed examination of Officer Limbacher’s

PBO armor in the field [17]. Two key observations from this study were that yarns

extracted from the officer’s armor showed a 32 % reduction in tensile strength when

compared with yarns extracted from new armor, and that infrared spectroscopy anal-

ysis of yarns from the officer’s vest showed evidence of degradation in the molecular

structure of PBO. Further studies at NIST examined degradation of PBO armors

under controlled laboratory conditions. A crucial finding from these studies was

that PBO fibers degrade when exposed to elevated moisture and temperature, but

are stable when exposed to elevated temperature in a dry environment [18]. Stud-

ies [19, 20] also showed that PBO yarns were vulnerable to degradation by mechan-

ical wear, showing classical fatigue behavior. Findings from all of this fundamental

research formed the basis of the theory behind the soft armor conditioning protocol.

The primary goals of the work are to develop a test protocol that, had it been

in place prior to 2003, would catch the problems with PBO-based soft body armor

before they appeared in the field. This protocol should neither under- nor over-
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expose armor with respect to the environment that armor is expected to encounter

during its lifetime. It quickly became clear that relating this protocol to an exact

period of time in the field would be impossible. Body armor is made up of many

different materials, all of which show different rates of degradation with exposure to

a given set of conditions. To date, very little work has been published on artificial

or accelerated aging of fibers used in body armor.

Work is currently underway to develop the relationship between exposure at

conditions of low temperature to conditions at high temperature. However, mechan-

ical wear still remains a challenge. The conditioning protocol does not predict the

field service life for armor.

1.5 Previous Armor Service Life Prediction Efforts

Historically, there have been several efforts to assign an expected service life to

body armor. Two studies are typically cited, one undertaken by DuPont in the mid-

1980s [21] and one undertaken by NIST (then the National Bureau of Standards,

NBS) published in 1986 [22]. The DuPont study indicated that a reduction in bal-

listic performance as measured by ballistic limit, or V50 testing, was seen after 3 to 5

years of use, but that a reduction in performance was better correlated to heavy use

than to the age of the poly(p-phenylene terephthalamide), or PPTA, armor. As a re-

sult of this study, DuPont recommended that armor be replaced after 5 years, which

caused some controversy in the law enforcement community [21, 23, 24, 25, 26, 27].

The NBS study examined 24 sets of 10 year old armor of the same 100 % woven
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PPTA design, manufactured at the same time and distributed to various law enforce-

ment agencies. The sample set of armors was distributed across various climates and

saw various levels of wear, encompassing a range from never issued to heavily worn.

The author concluded that armor stored under warehouse conditions maintained its

full ballistic performance for at least 10 years, and perhaps indefinitely. The au-

thor also concluded that light to moderate wear may improve ballistic performance,

and that heavy wear might slightly reduce ballistic performance. It is important to

note that the limited sample size of this study makes it difficult to draw meaningful

conclusions about the long term performance of armor in the field [22].

In more recent years, several body armor manufacturers have undertaken pro-

grams to examine the performance of fielded PBO armor by retrieving vests from

the field, assigning a wear rating to the vests, and then conducting ballistic limit

testing on the vests. Two reports, one from Armor Holdings Product Division [28]

and one from DHB Armor Group [29] were both published in 2004. Both reports

concluded that there was some loss in ballistic performance with both age and wear

of the armor, although the methods used to report these data make it difficult to

draw meaningful conclusions about the results. Both armor manufacturers indicated

that they felt that used armor still had an adequate margin of safety. A study was

also undertaken between 2001 and 2005 by the Technical Support Working Group

(TSWG) to examine the effect of environmental conditions on armor performance

by exposing shoot packs1of various ballistic materials to elevated conditions of mois-

ture and temperature. TSWG operates as a program element under the Department

of Defense Combating Terrorism Technical Support Office (CTTSO) and they serve
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as “the national inter-agency research and development program for combating ter-

rorism requirements at home and abroad.” Due to problems with controlling the

exposure conditions used in this study, the results were inconclusive. All materials

in this study were severely degraded by the conditions chosen for the exposure. Af-

ter reviewing the limited body of work that had been conducted on armor service

life prediction, it was determined that there was little available to draw on for the

development of the soft armor conditioning protocol.

1.6 Selection of Conditions for Accelerated Degradation Testing

1.6.1 Definition of Wear Environment

In an effort to better tailor a revision of NIJ Standard–0101.04 to the needs

of the end user community, NIJ issued a Request for Information (RFI) to the ar-

mor community, including manufacturers and end users, in the fall of 2005. The

RFI stated that . . . NIJ is interested, though not exclusively, in operational re-

quirements and testing methodologies that address: Validation of used armor per-

formance; Non-destructive testing/monitoring methods for used armor to ensure

ongoing performance; Improved requirements and testing protocols for new armor

(e.g., blunt trauma, multi-shot impacts, contact shots); Numbers and sizes of sam-

1Shoot packs are a simplified armor analog made by stacking and stitching layers of ballistic-

resistant fabric in a construction similar to that that would be found in an armor. Shoot packs

are typically square or rectangular, and do not have the protective coverings that would be found

in body armor.
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ples to be tested; Long-term performance of armor; Artificial armor aging protocols

to replicate field use; Quality control and conformity assessments. . . In reviewing

the responses to this request, several respondents were contacted. One of these,

Mine Safety Appliance (MSA), had a long history in the production and service life

prediction of other types of safety equipment. In January 2006, a meeting between

was held with MSA to discuss armor aging, in which several approaches were dis-

cussed. In this discussion, it was suggested that armor should be robust enough

to withstand conditions typically seen during wear and those seen during transit.

Based on the previously published guidelines for armor replacement, a typical ser-

vice life was defined as 5 years, and a typical wear environment was defined as near

body temperature and humidities near 100 % humidity (due to perspiration of the

wearer). If one defines a typical work schedule as 8 h per day, 5 d per week, 50

weeks per year, this works out to 2000 h of wear per year. If one then expects the

typical lifetime of a vest to be 5 years, then that corresponds to 10,000 h of service

at the wear conditions. These simple assumptions provided a starting point for the

development of the protocol. To maintain the independence of federal government

research, no further input was sought from MSA after these initial meetings in the

protocol development [30].

A “rule of thumb” in chemical kinetics [31] often applied to accelerated aging

of materials is for every 10 ◦C increase in temperature, one can expect a doubling of

the rate of reaction. Application of this guideline to the defined wear temperature

of 35 ◦C, results in 10,000 h of aging in approximately 8 weeks at 65 ◦C. It is

important to note that this “rule of thumb” applies to certain reactions that occur
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in solution and does not directly translate to reactions of degradation in the solid

state. Additionally, body armor is made up of many different types of materials, all

of which can be assumed to degrade at different rates. So, while the temperature

65 ◦C was chosen to accelerate degradation in the armor based on assumptions of a

5 year service life, it definitely cannot be said to predict armor service life because

we do not yet know the exact relationship between temperature and degradation

rate for ballistic materials.

When attempting to apply the “Rule of Thumb” to accelerated aging kinet-

ics of materials, it is important to keep in mind that elevated temperatures may

induce new mechanisms of degradation, rather than accelerating mechanisms of

lower-temperature degradation. This is potentially what occurred in the study by

TSWG that was discussed previously. For example, if temperature is increased to

the point that a material will melt or burn, different chemical reactions will occur,

and the results of the accelerated study will not be meaningful. To avoid this po-

tential problem, dynamic mechanical thermal analysis (DMTA), a thermal analysis

technique used to study the viscoelastic properties of polymers, was performed on

representative fiber samples from the major material classes of body armor prior to

temperature selection. DMTA is a technique to examine the A dynamic tempera-

ture ramp at a constant frequency of 1 Hz was performed on fiber samples of PPTA,

PBO, and ultrahigh molecular weight polyethylene (UHMWPE). These results are

presented in Figure 1.11.

This analysis revealed that temperatures exceeding 80 ◦C might be too high

due to changes in the molecular structure of the UHMWPE fibers above this tem-
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Figure 1.11: Dynamic Temperature Ramp Results for Common Ballistic Fibers.
Note that PBO and PPTA are stable through the entire temperature range, but
UHMWPE seems to be changing gradually, especially at the higher temperatures.
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perature, however the PPTA and PBO fibers remain essentially unchanged in the

temperature range studied. In the UHMWPE system, 80 ◦C is in the range of

the α′-relaxation temperature, which is the temperature at which molecular motion

within the polymer begins to increase, resulting in a decrease in the modulus of

the polymer [32]. DSM Dyneema, a manufacturer of UHMWPE fiber for ballistic

applications, published results of an artificial aging study in 2007 indicating that

an Arrhenius relationship existed for UHMWPE fibers between 35 ◦C (the same

as our reference base temperature) and 65 ◦C [33]. Therefore, it was determined

that limiting our experiments to temperatures below 70 ◦C would allow us to avoid

introducing new mechanisms of degradation in the fibers during our studies.

1.6.2 Selection of Temperature

Questions also arose regarding the exposure of armor to a temperature of

65 ◦C—(e.g., is this condition unreasonable in the environment in which body ar-

mor will be used?). Anecdotal evidence that officers commonly store armor in

the trunks of their cars was frequently brought up during discussions of the armor

wear environment. Additionally, armor is typically delivered across the country in

trucks. However, the temperature and relative humidity inside a vehicle can vary

widely depending on season, geographical region of the country, and location inside

the vehicle. In order to answer this question, cooperation was sought from NIJ’s

Body Armor Technology Working Group (TWG), which is made up of law enforce-

ment and corrections officers who have interest or expertise in ballistics and body
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armor. Small, inexpensive universal serial bus (USB)-readable temperature and rel-

ative humidity data loggers were purchased and distributed to volunteers from the

TWG from across the United States. These were placed inside actual police vehicles

throughout different seasons and these data were examined periodically. The same

data recorders were also placed inside OLES staff members’ personal vehicles during

the summer of 2006 in Maryland. A high temperature of 67 ◦C was obtained in July

2006 from the study of OLES staff member vehicles. Readings around 63 ◦C were

also obtained in California and Illinois during the summer of 2007. An example of

representative vehicle data collected during the summer of 2006 in Maryland are

shown in Figure 1.12.

1.6.3 Selection of Relative Humidity

Another parameter that must be selected is the relative humidity used in the

exposure conditions. One of the participants in the TWG vehicle conditions study,

independent of this study, obtained permission to have officers wear an environ-

mental sensor on the outside of their armor. Relative humidities and temperatures

outside of the armor are probably close to, but possibly slightly lower than, those

seen within the armor. The maximum temperature seen during this study was

41 ◦C and the maximum relative humidity seen was 76 %. Initially, the protocol

was envisoned as a cyclical temperature and relative humidity exposure, with a low

temperature condition of 35 ◦C, 90 % relative humidity. In an effort to maintain

consistent conditions at an elevated temperature of 65 ◦C, high temperature relative
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Figure 1.12: Representative Vehicle Temperature and Relative Humidity Data col-
lected during the summer of 2006 in Maryland. Note the maximum temperature
observed was approximately 67 ◦C.
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humidities were envisoned as 21 %, which corresponds to the same quantity of water

per gram of dry air (0.032 gram water per gram dry air). However, prior to beginning

testing, a moisture sorption study was undertaken to examine the moisture uptake

by the fiber at the two conditions of temperature and relative humidity. In changing

conditions from 35 ◦C, 90 % relative humidity to 65 ◦C, 21 % relative humidity, a

large desorption was observed in both PPTA (Fig. 1.13) and PBO (Fig. 1.14) fibers.

This indicated that the moisture content in the air around the fiber was actually the

wrong variable to control—it was more important to attempt to maintain a constant

moisture content in the fiber, where the degradation reactions would occur. Fibers

absorb and desorb water rapidly to remain in equilibrium with their environment.

After examining several conditions, it was determined that 75 % relative humidity

at both 35 ◦C and 65 ◦C would result in an approximately equal moisture content, as

observed for PBO (Fig. 1.15) and PPTA (Fig. 1.16) fibers, so this relative humidity

was selected for the initial trials.

1.6.4 Simulation of Mechanical Wear

Determination of the temperature and relative humidity conditions for the

soft armor conditioning protocol was relatively straightforward. Defining the wear

environment to simulate involved an analysis of possible conditions. However, envi-

ronmental exposure only provides part of the solution. In the course of normal wear,

armor is exposed to flexing, bending, and abrasion. All of these conditions could

potentially cause degradation in the ballistic performance of armor. The combina-
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tion of mechanical conditions with environmental exposure is the overall goal of the

soft armor conditioning protocol. However, the definition of the mechanical wear

environment is extremely challenging—tests which provide only abrasion ignore the

potential fatigue aspects of folding and bending of the armor. A conservative analy-

sis that a body armor user might bend over (e.g., when entering or exiting a vehicle)

4 times per hour, 40 h per week, 50 weeks per year could result in 8000 folding cycles

per year, or 40,000 folding cycles over 5 years. Realistically, almost any movement

a wearer makes results in some type of bend or fold in the armor, which could add

up to many thousands of cycles per year [19]. Significant work has been devoted to

this area by Holmes and co-workers [20]. Tests which create a single fold or bend in

the armor create challenges in assessing the ballistic performance of armor, because

very little area is available over which to conduct ballistic testing. This would re-

quire additional samples and drive up the cost of testing, and ignores the problem

of abrasion, which is more difficult to quantify. The best solution to this challenge

is to find a method of creating mechanical wear that roughly simulates the same

types of wear seen in the field and provides a relatively uniform level of mechanical

wear to the entire armor. Tumbling was selected as the solution that best combined

simulating the desired damage with cost efficiency, both in terms of capital cost

of equipment and quantities of samples. The goal of combining the tumbling with

the environmental exposure was initially challenging, so early trials were done by

removing armor panels from an environmental chamber, and tumbling periodically

during the exposure period.
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1.7 Experimental Techniques

A combination of analytical and ballistic characterization techniques were

used throughout the development of the soft armor conditioning protocol in an

effort to learn as much as possible from each trial. The two analytical techniques

that were most commonly used were tensile testing and Fourier transform infrared

analysis (FTIR) of yarns extracted from test armor panels. Other analytical tech-

niques that were used include dynamic mechanical thermal analysis (DMTA) and

moisture sorption analysis (MSA). Ballistic testing was limited to two techniques—

perforation/backface signature (P-BFS) testing and ballistic limit (V50) analysis.

1.7.1 Extracted Yarn Tensile Testing

To obtain yarn mechanical properties, tensile testing of yarns was carried out

in accordance with ASTM D2256-02,“Standard Test Method for Tensile Properties

of Yarn by the Single-Strand Method,” using an Instron Model 4482 test frame

equipped with a 91 kg (200 lb) load cell, and pneumatic yarn and cord grips (Instron

model 2714-006). The jaw separation was 7.9 cm (3.1 in) and the cross-head speed

was 2.3 cm/min (0.9 in/min). In this study, yarns were nominally 40.6 cm (16 in)

long, and given 64 twists2 on a custom-designed yarn twisting device. This level of

twist was maintained on the yarns as they were inserted into the pneumatic yarn and

chord grips. Strain measurements were made with an Instron non-contacting Type

2This twist level is within the range recommended by ASTM D2256-02, and was experimentally

verified prior to beginning experiments.
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3 video extensometer in conjunction with black foam markers placed approximately

2.5 cm apart in the gage section of the yarn. Ten to twelve replicates from each vest

were tested to failure. The standard uncertainty of these measurements is typically

3 %, however the error bars generated for plots presented herein are based on the

relative standard deviation of the yarn breaking strength, which is in some cases

higher than 3 %.

1.7.2 Fourier Transform Infrared Analysis

Infrared analysis was carried out using a Nicolet Nexus Fourier Transform

Infrared (FTIR) Spectrometer equipped with a mercury-cadmium-telluride (MCT)

detector and a SensIR Durascope attenuated total reflectance (ATR) accessory or

a Bruker Vertex 80 FTIR, also equipped with a Smiths Detection Durascope ATR

accessory. Air dried by passage through a standard FTIR purge gas generator was

used as the purge gas. Consistent tension on the yarns was applied using the force

monitor on the Durascope. FTIR spectra were recorded at a resolution of 4 cm−1

between 4000 cm−1 and 700 cm−1 and averaged over 128 scans. Three different loca-

tions on each yarn were analyzed. Spectral analysis, including spectral subtraction,

was carried out using a custom software program developed in the Building and

Fire Research Laboratory’s Polymeric Materials Group at NIST. All spectra were

baseline corrected and normalized using the aromatic C-H deformation peak at 848

cm−1 for PBO and 820 cm−1 for PPTA. Standard uncertainties associated with this

measurement are typically 4 cm−1 in wavenumber and 1 % in peak intensity.
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1.7.3 Moisture Sorption Analysis

Moisture absorbed by the yarn specimens during the temperature/humidity

exposure period was measured using a Hiden IGAsorp Moisture Sorption Analyzer.

The IGAsorp software monitors the temporal changes in the mass of a specimen

subjected to prescribed temperature and relative humidity conditions, and calcu-

lates equilibrium parameters via curve fitting. Specimens for sorption analysis were

prepared by disassembling between 5 mg and 7 mg of yarn into individual filaments

to prevent capillarity effects from dominating the sorption process. Specimens were

dried in the moisture sorption analyzer at≈ 0 % relative humidity and the prescribed

temperature at which the sorption experiment would be carried out. Moisture up-

take was measured at 50 ◦C and 60 % relative humidity as well as at 60 ◦C and 37 %

relative humidity. The water sorption isotherm was generated using the isothermal

mapper mode at 40 ◦C within a range of 0 % relative humidity to 95 % relative

humidity. Results are the average of two specimens. The standard uncertainty of

these measurements is typically 0.02 % mass fraction.

1.7.4 Dynamic Mechanical Thermal Analysis

Dynamic Mechanical Thermal Analysis (DMTA) was performed using a TA

Instruments RSA III DMTA. Dynamic temperature ramp measurements were gener-

ated by loading a single fiber into film/fiber tension clamps, and applying a preload

of approximately 1 g force to the sample. The measurement was performed in a

strain controlled mode with a strain of 0.1 % at a frequency of 1 Hz. The tem-
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perature was increased from 30 ◦C to 110 ◦C at a ramp rate of 3 ◦C/min. For

the RSA III, the manufacturer-stated relative standard uncertainty [34] in the force

measurement is typically ± 0.0002 g (0.2 mg), and the standard uncertainty in the

temperature scale is typically ± 0.5 ◦C.

1.8 Conditioning Protocol Development

Multiple phases of development were conducted, all utilizing slightly different

methods and equipment configurations. Each phase of development will be pre-

sented separately to better describe the development of the soft armor conditioning

protocol.

1.8.1 Phase I

Initial experiments were performed using separate tumbling and environmental

exposure steps. This allowed for “proof of concept” of tumbling as a mechanism to

provide mechanical wear, and also allowed for exploration of potential environmental

conditions.

1.8.1.1 Sample Description

Two types of test armors were used in the first phase of protocol development.

One sample armor was constructed of 20 layers of plain woven 500 denier PBO, with

26 yarns per inch in the horizontal direction and 26 yarns per inch in the vertical

direction. The layers of fabric were stitched together in two packs of 10 layers each
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with a 2.54 cm (1 in) diagonal quilt stitch to form the ballistic package. This ballistic

package was then encased in a stitched moisture-permeable fabric cover and inserted

into a lightweight poly-cotton carrier to form an armor panel. The other sample

armor was constructed of 25 layers of plain woven 500 denier PPTA, with 24 yarns

in the horizontal direction and 24 yarns in the vertical direction. The layers of fabric

were stitched together in one package with a 3.18 cm (1.25 in) diagonal quilt stitch

to form the ballistic package. This ballistic package was then encased in a standard

water-repellent treated nylon fabric cover and inserted into a medium-weight poly-

cotton carrier to form an armor panel3. All armors were manufactured specifically

for this study. The PBO armor samples were designed to be NIJ Standard–0101.04

Level IIA compliant. The PPTA armor samples were designed to be NIJ Standard–

0101.04 Level II compliant [35]. Both armor samples were constructed to be the

size required for NIJ Standard–0101.04 2005 Interim Requirements [36] compliance

testing.

Both sample sets consisted of 13 armor panels. Of these 13 panels, 7 panels

were exposed to all conditions and were designated for ballistic testing, 1 sample

was exposed to all conditions and was used only for analytical testing, 2 panels

were controls for heat and moisture and received no tumbling (one of these samples

was designated for ballistic testing and one for analytical testing), 2 panels were

tumbling controls and received no heat and moisture exposure (1 of these samples

was designated for ballistic testing and 1 for analytical testing), and finally 1 con-

3The definitions of panel and armor panel used in this document are intended to be consistent

with the definitions of these terms as described in Section 3 of NIJ Standard–0101.06 [10].
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Figure 1.17: Phase I Protocol Cycle. Note that in this phase the relative humidity
was held constant, and the temperature was increased from 35 to 65 ◦C once per 24
hour period.

trol sample received no heat, moisture, or tumbling exposure (was stored at room

temperature and humidity of nominally 21 ◦C and 50 % relative humidity) and was

used for analytical testing.

1.8.1.2 Exposure Conditions

As previously discussed, the temperature and relative humidity protocol orig-

inally consisted of a cyclical temperature profile between 35 ◦C and 65 ◦C, with a

constant relative humidity of 75 %, as depicted in Figure 1.17.

Environmental exposures of the PPTA and PBO samples were conducted in
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two separate chambers. Vests were hung vertically in the humidity chamber for

the environmental portion of the exposures and removed at designated times for

tumbling in a standard home clothes dryer (with the heating element disabled).

The chamber was returned to room temperature and humidity before removing

the armor for tumbling to avoid the formation of a condensing atmosphere in the

chamber. Samples were extracted from armor designated for analytical testing after

it was removed from the chamber for tumbling. Extractions were performed after

the tumbling was completed. An estimate of the total number of revolutions of the

armor for the first phase is 194,400 total revolutions, based on 3 h of tumbling, 3

d per week, for 9 weeks. The rotation speed of the standard home clothes dryer

was measured at nominally 4.19 rad/s (40 revolutions per minute) using a laser

tachometer.

1.8.1.3 Analytical Results

Relative tensile strengths of yarns extracted from the PBO armor panels are

depicted in Figure 1.18. This figure shows the reduction of ultimate tensile strength,

plotted as percent strength retention, of the PBO armor as a function of exposure

time. After 9 weeks, armor exposed to heat, moisture, and tumbling had a tensile

strength retention of approximately 62 %. This is comparable to the value that

was observed in the back panel of a PBO armor that was defeated in the field,

and the value that was ultimately reached after 6 months of aging in a previous

study [17]. An interesting observation is that the armor panel that was exposed
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the relative standard deviation of the mean yarn breaking strength for 10 to 15
replicates. Points are offset horizontally for clarity.

to only heat and moisture had essentially the same tensile strength retention. The

armor panel that was only exposed to tumbling had only a reduction in tensile

strength of approximately 8 %. The tumbling used in this experiment did not

produce enough mechanical damage to accelerate the effects of the heat and moisture

exposure.

Relative tensile strengths of yarns extracted from the PPTA armor panels are

depicted in Figure 1.19. This figure shows the reduction of ultimate tensile strength,
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plotted as percent strength retention, of the PPTA armor as a function of exposure

time. After 9 weeks, the armor exhibits essentially no change in tensile strength and

was apparently unaffected by the exposure protocol.

In previous studies [17, 18], it has been shown that oxazole ring opening is

a major indicator of hydrolysis in PBO. Figure 1.21 (full scale) and Figure 1.22

(expanded scale) show the infrared spectrum of new PBO fibers.

Infrared spectroscopy is a technique by which a sample is exposed to infrared

radiation. This radiation is absorbed and converted by an organic molecule into
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Figure 1.21: Infrared spectrum of new PBO fibers, full scale.
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Figure 1.22: Infrared spectrum of new PBO fibers, scale expanded to show finger-
print region. Labeled peaks are attributed to the benzoxazole ring.
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energy of molecular rotation or vibration. Certain groups of atoms give rise to

absorption bands at or near the same frequency, regardless of the structure of the

rest of the molecule. These characteristic absorption bands provide structural in-

formation about the molecule. The strength of this absorption is proportional to

the amount of molecules present in the sample [51]. Through the use of difference

spectra, where the infrared spectrum taken from the unconditioned sample (in this

case, from a new vest) is subtracted from the spectra of yarns removed from the

vest at different stages of environmental conditioning, the evolution of changes in the

chemical structure can be studied [17, 18, 52, 53, 54]. Negative peaks in difference

spectra are attributed to the loss of existing chemical structure, and positive peaks

are indicative of the formation of new chemical structure [52, 53, 54]. Benzoxazole

ring opening is identified by the loss of peaks attributed to the vibrations associated

with the benzoxazole ring at 1496 cm−1, 1362 cm−1, 1056 cm−1, and 914 cm−1, and

by the formation of a peak at 1650 cm−1 attributed to a carbonyl from amide or

carboxylic acid, which are potential products of oxazole ring opening [18]. Hydrol-

ysis due to opening of the benzoxazole ring results in losses in these peaks and the

formation of a peak at 1650 cm−1 attributed to an amide carbonyl or carboxylic

acid, which are potential products of oxazole ring opening. This data supports the

degradation mechanism given in Figure 1.20. Infrared difference spectra of PBO

taken over the course of the exposure study are shown in Figure 1.23.

The difference spectra show marked reductions in the peaks at 1492 cm−1,

1361 cm−1, 1056 cm−1, and 914 cm−1, all of which are attributed to oxazole ring

opening. As previously mentioned, standard uncertainties associated with this mea-
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surement are typically ± 4 cm−1 in wavenumber and ± 1 % in peak intensity, so the

slight shift in wavenumbers for the difference spectra may be due to variations in

the individual spectra used to create the difference spectrum. However, a large peak

at 1650 cm−1 to indicate the formation of an amide carbonyl or carboxylic acid as

expected by the proposed mechanism is not observed. Detection of this peak using

surface-sensitive ATR-FTIR may be reduced because of the abrasion of the yarn

due to tumbling causing increased surface roughness.
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The difference infrared spectra of PPTA yarns extracted from body armor

panels following environmental exposure are shown in Figure 1.24 and Figure 1.25.

The body armor panels were divided into four groups–one group was subjected

to tumbling alone, one to temperature/moisture exposure alone, one to tempera-

ture/moisture combined with tumbling (designated as “all”), and one group was

sealed in plastic bags at room temperature of nominally 22 ◦C to serve as controls.

Infrared analysis and spectral subtraction revealed that all of the conditions,

even the control conditions, resulted in some degree of PPTA hydrolysis. A proposed
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mechanism for PPTA hydrolysis is shown in Figure 1.26. The difference spectra in

Figure 1.24 and Figure 1.25 shows negative peaks with positions corresponding to

the original amide I peak at 1640 cm−1 and amide II peak at 1513 cm−1 . A new

(positive) broad peak is observed at 3400 cm−1, which is attributed to a combina-

tion of amine N-H stretching and carboxylic acid OH stretching. New peaks are

also observed at 1570 cm−1 and 1420 cm−1 that are attributed to carboxylate ion

stretching. This evidence points to the hydrolysis of the main chain amide group to

amine and carboxylic acid.

The control panels that were not subjected to any environmental stresses also

underwent hydrolysis. It is likely that as long as moisture is present, hydrolytic

reactions in the PPTAs can occur.

To determine the treatment that caused the most hydrolytic damage, intensi-
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Infrared Band T&RH Tumble
(cm−1) All Only Only Control

3320 3 1 2 4

1627 2 1 4 3

1513 3 1 2 4

1560 2 2 1 3

1420 2 3 1 3

Table 1.1: Rank ordering of PPTA infrared bands; 1=greatest change; 3/4=least
change. In some instances the change was the same- in that case both peaks were
given the same ranking.

ties of the difference bands were examined and rank-ordered. A tabulation of the

major difference bands (except for the bands at 3400 cm−1 which were too close to

distinguish) and their intensity rankings is given in Table 1.1 below.

No clear or consistent pattern can be found in the above table; the intensity

rank order differs for each infrared band. Since the tensile strengths of the yarns

extracted from the environmentally conditioned panels did not exhibit any changes

over the course of the conditioning treatments, it is possible that these chemical

changes are beneath the threshold necessary to influence mechanical properties and

may fall within the uncertainties of the infrared measurements.

1.8.1.4 Phase I Summary

This phase of development showed that it was possible to develop a protocol

of elevated temperature and relative humidity that would cause damage to PBO

armor after 9 weeks of exposure, but would not cause similar damage in PPTA
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armor in this time period. However, the 8 week exposure time was deemed too

long for practical implementation in the new NIJ Standard–0101.06. After this first

phase, reduction of the time required to complete the protocol was the primary goal

for Phase II.

1.8.2 Phase II

As was the case in Phase I, in order to meet the timetable for development of

the conditioning protocol, initial exposures were performed using separate tumbling

and environmental exposure for Phase II. This allowed for “proof of concept” of

tumbling as a mechanism to provide mechanical wear, and also allowed for further

exploration of potential environmental conditions.

1.8.2.1 Sample Description

Three sets of armors were used in the second phase of protocol development.

Two woven armors were the same as those discussed in the Phase I testing. The

additional armor was a nonwoven armor, constructed of 30 sheets of unidirectional

(UD) laminated UHMWPE fibers. In a UD layer, all fibers are laid parallel, in the

same plane. In this study, the sheets of UHMWPE armors were made of 4 layers of

fibers, with the orientation of fibers in each layer at 90 ◦ to the direction of the fibers

in the adjacent layers (0 ◦, 90 ◦, 0 ◦, 90 ◦). The sheets of UHMWPE were stitched

together in three places at the top of the vest and one place at the bottom of the

vest. Phase II also used two chambers and two sample sets. Chamber 1 contained
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15 panels of PBO armor and 6 panels of UHMWPE armor. The PBO panels were

tested as follows—in chamber 1, one of the PBO samples was a control and was not

exposed to any heat, humidity, or tumbling exposure. Three panels were exposed

to only tumbling (two of these were for ballistic testing and one was for analytical

testing), two panels were exposed to only temperature and relative humidity (one

of these was used for ballistic testing and one for analytical testing), 8 panels were

exposed to all conditions and were designated for ballistic testing, and 1 sample was

exposed to all conditions and was only tested analytically.

Chamber 2 consisted of 15 panels of PPTA armor and 5 panels of UHMWPE

armor. The PPTA panels were used as follows—in chamber 2, one of the PPTA

samples was a control and was not exposed to any heat, humidity, or tumbling ex-

posure. Three panels were exposed to only tumbling (two of these were for ballistic

testing and one was for analytical testing), two panels were exposed to only tem-

perature and relative humidity (one of these was for ballistic testing and one was

for analytical testing), 8 panels were exposed to all conditions and were designated

for ballistic testing, and 1 sample was exposed to all conditions and was used only

for analytical testing. All five of the UHMWPE panels were for ballistic testing.

1.8.2.2 Exposure Conditions

To shorten the time required to achieve the target degradation from Phase I,

the temperature and relative humidity protocol was adjusted to allow for two cycles

within a 24 h time period with a temperature profile between 35 ◦C and 65 ◦C,
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at constant relative humidity of 75 % except on the cooling parts of the cycle to

avoid condensation, where the relative humidity was dropped to 65 % as depicted

in Figure 1.27.

Environmental exposures of the PPTA and PBO samples were conducted in

two separate chambers. Vests were hung vertically in the humidity chamber for the

environmental portion of the exposures and removed periodically for tumbling in a

standard home clothes dryer (with the heating element disabled). The chamber was

returned to room temperature and humidity before removing armor for tumbling

to avoid the formation of a condensing atmosphere in the chamber. Samples were

extracted from armor designated for analytical testing when it was removed from

the chamber for tumbling. An estimate of the total number of revolutions of the

armor for the first phase is 115,200 total revolutions, based on 2 h of tumbling, 2 d

per week, for 6 weeks. The rotation speed of the standard home clothes dryer was

measured at nominally 4.19 rad/s (40 rpm) using a laser tachometer. The load in

each individual tumbler was increased in an effort to increase mechanical damage

caused by tumbling.

1.8.2.3 Analytical Results

Tensile strength testing of yarns extracted from the armor panels are shown

in Figures 1.28 through 1.30. Figure 1.28 shows the reduction of tensile strength,

plotted as a percent strength retention, of the PBO armor and PPTA armor as a

function of exposure time. After 6 weeks, the PBO sample which was exposed to

59



Hour

0 5 10 15 20 25

T
e
m

p
e
ra

tu
re

 (
°C

)

0

20

40

60

80

100

R
e
la

ti
v
e
 H

u
m

id
it

y
 (

%
)

0

20

40

60

80

100

Temperature

Relative Humidity

Figure 1.27: Phase II Protocol Cycle. In this protocol, the temperature is ramped
twice over a 24 hour period from 35 to 65 ◦C.
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the conditions of heat, moisture, and tumbling had a tensile strength retention of

approximately 58 %. This is slightly lower than the target value established by

previous studies. By comparison, the PPTA armor showed no reduction in tensile

strength in this time. Figure 1.29 shows the results of testing on yarns that had

been extracted from vests that were only exposed to temperature and relative hu-

midity. The PBO yarns had an approximate tensile strength retention of 80 %, as

compared to no strength reduction in the PPTA armor panels. Figure 1.30 shows

tensile strength reduction data for armors that were tumbled at room temperature

and humidity. Once again, the PBO armor had an approximate tensile strength re-

duction of 80 %, but the PPTA armor was essentially unaffected. It is important to

note that for the PBO armors, the panels exposed to only temperature and relative

humidity and the panels that were exposed to only tumbling had approximately

equal strength retentions. This indicates that the contribution of each mechanism

(environmental vs. mechanical) to overall degradation in this study was approxi-

mately equal, and that the combination of the two mechanisms had a synergistic

effect. Infrared results indicated similar trends to those observed in the previous

study and are not included here for brevity.

1.8.2.4 Phase II Summary

In this phase of development, the time per cycle was compressed so that two

temperature and humidity cycles were completed in a 24 h period, and the armor was

taken out and tumbled 3 times per week instead of 2. However, the protocol was only
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Figure 1.28: Phase II Breaking Strength Retention for PPTA and PBO (all condi-
tions). The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 samples. Note the difference in behavior between the
two materials- PBO degrades much faster than PPTA. This degradation is due to
hydrolysis, as shown in Figure1.20. PPTA points are offset horizontally for clarity.
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Figure 1.29: Phase II Breaking Strength Retention for PPTA and PBO (T & RH
only). The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 replicates. Note the difference in behavior between
the two materials- PBO is degrading faster than PPTA. This degradation is due to
hydrolysis, as shown in Figure1.20. PPTA points are offset horizontally for clarity.
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Figure 1.30: Phase II Breaking Strength Retention for PPTA and PBO (tumbling
only). The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 replicates. Note the difference in behavior between
the two materials PBO is degrading faster than PPTA. This degradation is due to
hydrolysis, as shown in Figure1.20. PPTA points are offset horizontally for clarity.
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shortened from 9 weeks to 6 weeks with these changes. The 6 week exposure time

was still deemed too long for practical implementation in the new NIJ Standard–

0101.06. Therefore, major changes were planned for Phase III in order to further

reduce the duration of the test.

1.8.3 Phase III

Phase III is a very significant phase in the development of Soft Armor Con-

ditioning Protocols because it represents the first phase in which mechanical con-

ditioning was combined with environmental conditioning in one test. Details and

specifications of the device are availabe in reference [56].

1.8.3.1 Exposure Conditions

In an effort to accelerate the degradation achieved in Phases I and II, the

temperature and relative humidity protocol were adjusted to a constant condition

of 70 ◦C and 90 % relative humidity. The rationale behind this change was to

shorten the test protocol by performing all of the testing at the high heat, high

relative humidity condition instead of cycling between two conditions. Based on

the necessary sample sizes for ballistic testing, 16 armor panels were tumbled at a

time. Tumbling was performed at 0.523 rad/s (5 rpm) continuously throughout the

exposure. A specific time interval for exposure was not set at the beginning of the

study, the intention was to track the chemical and physical degradation of the armor

to determine when the target reduction in tensile strength had been obtained.
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1.8.3.2 Sample Description

Three types of armors were used in the third phase of protocol development.

The two woven sample armors were the same as those discussed in the Phase I and

Phase II testing. A new set of armor was obtained for Phase III, also constructed of

30 sheets of UD laminated UHMWPE fibers, as described previously. There was no

stitching of the sheets of UHMWPE. After ballistic testing was completed, it was

discovered that these samples had been fabricated incorrectly. Instead of cutting

each sheet of the material separately in order to achieve the correct 0◦, 90◦, 0◦, 90◦

orientation, the material was rolled out in a back and forth direction and all layers

were cut out at once. Additionally, the layers were not aligned properly and portions

of layers were missing from all of the armor panels that were manufactured in this

way. This construction problem was determined to affect the ballistic properties of

the material that were measured after conditioning.

One environmental chamber in which a tumbler had been installed was used in

Phase III with two sets of samples. The first sample set consisted of 6 PBO armor

panels, 7 UHMWPE armor panels, and 6 PPTA armor panels. One of each type of

armor panel was exposed to only temperature and relative humidity and used for

analytical testing. One of the PBO armor panels and one of the PPTA armor panels

that were exposed to all conditions were used for analytical testing. The remaining

armor panels (4 PBO, 4 PPTA, and 6 UHMWPE) were designated for ballistic

testing. The chamber was programmed at constant conditions of 70 ◦C and 90 %

relative humidity, with a constant tumbling speed of 0.52 rad/s (5 rpm). A separate
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second set of testing was performed to obtain armors that had only been exposed

to mechanical conditioning. In this test, 5 PBO panels, 6 UHMWPE panels, and

5 PPTA panels were tumbled at room temperature and humidity at 0.52 rad/s (5

rpm).

1.8.3.3 Analytical Results

Tensile breaking strength testing of yarns extracted from the PBO and PPTA

armor panels are depicted in Figure 1.31 through Figure 1.33. Figure 1.31 shows the

reduction of ultimate tensile strength, plotted as a percent strength retention, of the

PBO and PPTA armors exposed to all conditions as a function of exposure time.

After 10 d, the PBO sample that was exposed to the conditions of heat, moisture,

and tumbling had a tensile strength retention of approximately 62 %, though we

continued the test until day 13. In this phase, for the first time, there was an

indication of strength loss in the PPTA armor. Samples that were exposed to all

conditions had a tensile strength retention of approximately 88 % after 13 days of

exposure. Figure 1.32 compares the PBO and PPTA armor panels that were exposed

to only temperature and relative humidity. The PBO armor panels had a tensile

strength retention of approximately 77 % and the PPTA armor panels had a tensile

strength retention of 90 %. Figure 1.33 shows panels that were exposed to only

tumbling. The PBO armor panels had a tensile strength retention of approximately

78 % and the PPTA armor panels showed no reduction in tensile strength. There are

a few conclusions that can be drawn from these results. The first is that for PBO,
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the test combining environmental exposure and tumbling still had approximately

equal contributions of each mechanisms (environmental vs. mechanical) to overall

degradation of the material. In the case of the PPTA armor, it is puzzling that there

was a slight reduction in tensile strength in the samples that were only exposed to

temperature and relative humidity. A possible explanation is that the armor could

have been more sensitive to the slightly higher temperature and relative humidity

in this study, which could have also been responsible for the slight reduction in

strength observed in the armor exposed to all conditions.

Results from infrared analysis of yarns extracted from the PBO armor panels

are depicted in Figure 1.34. This figure shows the change in absorbance as a function

of aging time for specific infrared bands in PBO. Similar to the infrared analysis

presented in Phases I and II of the study, these results show an overall reduction

in the peak absorbance at 1606 cm−1, 1302 cm−1, 1257 cm−1, 1136 cm−1, 1036

cm−1, and 909 cm−1, which are typically associated with the benzoxazole and an

increase in the peak absorbance at 1635 cm−1, which is associated with carbonyl

formation after opening of the benzoxazole ring. These two trends, taken together,

indicate that hydrolysis was achieved in the PBO samples. This issue will be further

explored later on in this chapter. One may note in Figure 1.34 that there is not a

trend indicating a steady decline in absorbance for the benzoxazole ring. There is a

sharp decline between day 0 and day 3, then at day 8, there was an apparent increase

in the absorbance of the benzoxazole peak. This may be attributed to differences

in the samples removed from the armor for testing on the different days, or may be

due to the continual mechanical damage occurring in the system due to tumbling.
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Figure 1.31: Phase III Breaking Strength Retention for PPTA and PBO (all con-
ditions). The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 samples. PPTA points are offset horizontally for clar-
ity. Note that PPTA appears to be degrading more quickly than in previous studies,
and that PBO slightly exceeded the benchmark degradation by the end of the test.
The mechanism for PPTA hydrolysis is given by Figure 1.26, and the mechanism
for PBO hydrolysis is given by Figure 1.20.
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Figure 1.32: Phase III Breaking Strength Retention for PPTA and PBO (T &
RH only). The error bars represent the relative standard deviation of the mean
yarn breaking strength for 10 to 15 replicates. Note that PPTA appears to be
degrading more quickly than in previous studies. PPTA points are offset horizontally
for clarity. The mechanism for PPTA hydrolysis is given by Figure 1.26, and the
mechanism for PBO hydrolysis is given by Figure 1.20.
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Figure 1.33: Phase III Breaking Strength Retention for PPTA and PBO (tumbling
only). Note that PPTA appears to be degrading more quickly than in previous
studies. The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 replicates. The mechanism for PPTA hydrolysis is
given by Figure 1.26, and the mechanism for PBO hydrolysis is given by Figure 1.20.
PPTA points are offset horizontally for clarity.
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This tumbling may abrade the degraded layer of material and expose fresh material

underneath, which would lead to an apparent increase in the absorbance of the

benzoxazole peak as referenced to data obtained on day 3. Analysis of the PPTA

samples indicated similar trends to those seen in previous phases of the study.

1.8.3.4 Phase III Summary

Major changes to the protocol occurred in Phase III. The concept of cyclical

conditions of temperature and relative humidity exposure were abandoned in favor

of a constant high heat, high relative humidity condition. The tumbling and environ-

mental exposure were combined into one test with the development of a custom-built

tumbler inside of the humidity chamber. This tumbler is specified in NIJ Standard–

0101.06, and described in Appendix A for reference. While the test presented in

Phase III ran for 13 days, the target degradation was achieved before the end of the

test. Therefore, it was determined that the changes made in Phase III allowed the

exposure time to be reduced to a much more practical 10 days. The 10 d test was

deemed acceptable for practical implementation into NIJ Standard–0101.06.

1.8.4 Phase IV

The Phase IV study was designed to verify the conditions selected in Phase

III, and verify that 10 d was the appropriate period of time for the test. Conditions

of exposure remained the same in this phase as in Phase III.
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Figure 1.34: Changes in key infrared bands that indicate hydrolysis for PBO fibers as
a function of aging time. Hydrolysis occurs via ring opening of the benzoxazole ring
at 1606 cm−1, 1302 cm−1, 1257 cm−1, 1136 cm−1, 1036 cm−1, and 909 cm−1. The
slight increase in absorbance at 1635 cm−1, is associated with carbonyl formation
after opening of the benzoxazole ring. Fibers were exposed to constant tumbling at
5 rpm in a chamber controlled at 70 ◦C and 90 % RH for 10 days. The standard
error in the absorbance of these FTIR measurements is ± 4 %.
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1.8.4.1 Sample Description

Three sets of armor samples were used in the fourth phase of protocol de-

velopment. Two of the armors were the same woven armors as those discussed in

the Phase I, Phase II, and Phase III testing. A new set of armor was obtained for

Phase IV. This armor model consisted of 18 layers of four plies each of UD PPTA

fiber, cross-plied at 0◦, 90◦, 0◦, 90◦ sandwiched between thermoplastic film inside of

a nylon armor panel cover. The panel cover seams were heat-sealed and the interior

surface of the panel covers were coated for water repellency. There was no stitching

of the sheets of UD PPTA. Phase IV used one environmental chamber in which a

tumbler had been installed, and one sample set. This sample set consisted of 5 PBO

armor panels, 6 UD PPTA armor panels, and 5 woven PPTA armor panels. One

of the PBO armor panels and one of the PPTA armor panels which were exposed

to all conditions were used for analytical testing. The remaining armor panels (4

PBO, 4 woven PPTA, and 6 UD PPTA) were used for ballistic testing. The chamber

was maintained at constant conditions of 70 ◦C and 90 % relative humidity, with a

constant tumbling speed of 0.52 rad/s (5 rpm).

1.8.4.2 Analytical Results

Tensile breaking strengths of yarns extracted from PPTA and PBO armor

panels are depicted in Figure 1.35. As discussed in previous trials, this figure shows

the reduction of ultimate tensile strength, plotted as a percent strength retention

of both types of armor as a function of exposure time. After 10 d, the PBO sample
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Figure 1.35: Phase IV Breaking Strength Retention for PPTA and PBO (all con-
ditions). The error bars represent the relative standard deviation of the mean yarn
breaking strength for 10 to 15 replicates. As in previous studies, PBO degrades
much faster than PPTA. PPTA points are offset horizontally for clarity.

that was exposed to all of the conditions of heat, moisture, and tumbling had a

tensile strength retention of approximately 68 %. The PPTA sample exposed to all

of these conditions had a tensile strength retention of approximately 85 %. This

strength loss in the PPTA armor was greater than that observed in previous studies.

Infrared analysis of yarns extracted from both the PBO and PPTA armors

was performed, but analysis of this data did not provide any additional information

beyond what has already been discussed herein.

75



1.8.4.3 Phase IV Summary

Minor adjustments to the protocol occurred in Phase IV. The environmental

conditions were adjusted to prevent problems with condensation during minor, al-

lowable excursions in conditions of temperature and relative humidity. The protocol

used during this phase was adopted as Section 5, the Flexible Armor Conditioning

Protocol in NIJ Standard–0101.06.

1.9 Hydrolysis of PBO and PPTA

The work to develop the conditioning protocol, combined with all the previ-

ous studies on PBO and Officer Limbacher’s vest made it very clear that PBO was

susceptible to hydrolysis [17]. Key observations from these study were that yarns

extracted from the officer’s armor showed a 32 % reduction in tensile strength when

compared with yarns extracted from a new armor, and that infrared analysis of

yarns from the officer’s vest showed evidence of degradation in the molecular struc-

ture of PBO (Fig. 1.36). Further studies examined the degradation of PBO armors

under controlled laboratory conditions [18]. A crucial finding from these studies

was that PBO fibers degrade when exposed to elevated conditions of moisture and

temperature (50 ◦C, 60% RH), but are stable when exposed to elevated tempera-

ture (55 ◦C) in a dry environment. This work resulted in a proposed mechanism of

PBO hydrolysis, supported by previous work on hydrolysis of benzoxazoles and oxa-

zoles [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], which could lead to chain scission,

and a subsequent molar mass reduction, as depicted in Figure 1.38 [18]. To further
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investigate this mechanism, a study was designed to examine hydrolytic changes

in the tensile strength and molar mass of PBO and poly(p-phenylene terephthala-

mide), or PPTA (Fig. 1.37). A proposed mechanism for the hydrolysis leading to

chain scission of PPTA is given in Figure 1.39 [55, 57]. The main purpose of this

study is to ascertain whether or not the degradation of PBO due to environmental

conditioning results in complete (leading to chain scission, 3) or partial hydroly-

sis (ceasing at the ring opening step, 2). This study involved controlled exposures

of both PPTA and PBO fibers to hydrolytic conditions as described in Phase III

and Phase IV of the conditioning protocol development above. Samples were taken

periodically and analyzed using tensile testing to determine their residual tensile

strength, molecular spectroscopy for evidence of hydrolysis, and viscometry for a

qualitative analysis of changes in molar mass. Confocal microscopy was performed

on unexposed and exposed fibers to look for obvious changes in the fiber surface.

O
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Figure 1.36: Chemical structure of PBO, for reference [17, 4].
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Figure 1.37: Chemical structure of PPTA, for reference [55, 4, 1].
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Figure 1.39: Proposed mechanism of hydrolysis for PPTA [55, 49, 50].

1.9.1 Dilute Solution Viscometry

PBO is only soluble in strong anhydrous acids such as sulfuric acid (SA),

chlorosulfonic acid (CSA), and methanesulfonic acid (MSA) [7]. Previous viscometry

work has been published using MSA as a solvent for PBO, so this solvent was selected

for the purposes of this study to compare with literature values [7, 58, 59, 60, 61,

62]. All acid solvents were purchased in their anhydrous form and were used as

received. All glassware and fibers were dried using a flow of dry nitrogen, placed

in an oven at 35 ◦C for several hours, and stored in a dessicator filled with dry

silica gel prior to use to minimize contamination of the samples with water. For

the PBO, a stock solution was prepared at a concentration of 1 mg/mL, from which

dilutions were made to obtain samples at concentrations of 0.01 g/dL, 0.03 g/dL,

0.05 g/dL, 0.07 g/dL, and 0.1 g/dL. For PPTA, a stock solution was prepared at
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a concentration of 2 mg/mL, from which dilutions were made to obtain samples at

concentrations of 0.02 g/dL, 0.10 g/dL, and 0.20 g/dL. All sample solutions were

purged with dry nitrogen during dissolution. PBO solutions were prepared at 150 ◦C

on a stirring hot plate and the PPTA solutions were prepared at room temperature

on a stirring hotplate. All solutions were prepared and used in the same day to

reduce the potential for contamination with water. Prepared solutions were purged

with dry nitrogen and stored in a dessicator when not in use. Kinematic viscosities

were measured using Cannon capillary viscometers in a thermostatic bath (Koehler

K23376) at 25 ◦C ± 0.05 ◦C. The viscometer elution times were in the range of 241 s

to 471 s. The standard deviation of the viscometer elution times is approximately

3 %. Standard error for this measurements is generally reported as 1.5 %.

1.9.2 Laser Scanning Confocal Microscopy

A Zeiss Model LSM510 reflection laser scanning confocal microscope (LSCM)

was employed to characterize the surface morphology. The incident laser wavelength

was 543 nm. By moving the focal plane in the z-direction, a series of single images

(optical slices) can be stacked and digitally summed over the z-direction to obtain

a 3-D image. All images were collected using the 150x objective and a z-direction

step size of 0.1 µm to form a collection of images of different objective planes. These

were digitally summed using the software package provided with the microscope. All

images shown here are 2D projections created with the microscope software package.
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1.10 Evaluation of Extent of Hydrolysis in PBO and PPTA

The molecular spectroscopy shown previously indicated that losses in bands

associated with the benzoxazole ring. Previous studies [17, 18] have shown that

oxazole ring opening is a major indicator of hydrolysis in PBO. However, based on

the molecular spectroscopy results, it is not possible to tell if PBO is undergoing

complete hydrolysis which leads to chain scission. A measurement of changes in

the molar mass of degraded PBO would indicate whether or not chain scission was

occurring.

Previous work has provided a detailed analysis of the application of the Mark-

Houwink equation to polymers such as PBO and PPTA [1, 7, 58, 59, 60, 61, 62,

63]. Several papers have focused on the effect of ionic strength (varied by the

addition of water and salts such as CH3SO3Na, LiF3CSO3, or Li2SO4) on the solution

properties of these polymers [58, 60, 62]. Roitman has shown for low polymer

solution concentrations (less than 0.01 g/dL), small amounts of ionizable solutes

(such as water) in concentrations of less than 0.1 M can cause anomalous viscosity

behavior [58]. In an effort to avoid this problem in this study, the minimum polymer

concentration used was 0.01 g/dL.

A discussion of the necessary calculations to perform intrinsic viscosity analysis

of polymer solutions to estimate molar mass can be found in many basic polymer

science textbooks [64, 65, 66]. Best practices dictate that a researcher interested

in molar mass of a polymer also be concerned with molar mass distribution. The

presence of low and high molar mass components can affect the viscosity of the
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polymer, however in this case such analysis is not performed. PBO and PPTA are

only soluble in strong acids, and cannot be readily measured using size exclusion

chromatography, as these solvents would cause damage to the equipment necessary

to make this measurement. Two other options, light scattering and shear rheology,

were also considered, but once again, the use of strong acid solvents in the instru-

ments was not possible. For completeness of this work, a brief discussion of the

equations used in this analysis is given here.

The efflux time of each polymer solution in the viscometer, t, was compared

to the efflux time of the pure solvent, t0, to obtain the relative viscosity, ηrel, Equa-

tion 1.2 and the specific viscosity, ηsp, Equation 1.3 [64, 65].

ηrel =
t

t0
(1.2)

ηsp =
t− t0
t0

(1.3)

The reduced viscosity, ηred, is the ratio of the specific viscosity, ηsp, to concen-

tration of the polymer solution, c, Equation 1.4 [64, 65].

ηred =
ηsp
c

(1.4)

The inherent viscosity, ηinh, is the ratio of the natural log of the relative

viscosity, ηrel, to the concentration of the polymer solution, c, given by Equa-

tion 1.5 [64, 65].
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Environmental PBO PBO PPTA PPTA
Conditioning [η] [η] [η] [η]

(d) est. by ηred est. by ηinh est. by ηred est. by ηinh

0 18.78 ± 0.21 20.31 ± 0.31 8.62 ± 0.09 9.01 ± 0.11
4 15.73 ± 0.23 15.84 ± 0.32 7.47 ± 0.06 7.60 ± 0.07
7 11.41 ± 0.08 11.79 ± 0.10 5.95 ± 0.07 6.01 ± 0.08
10 7.60 ± 0.45 7.64 ± 0.49 4.96 ± 0.08 4.96 ± 0.09

Table 1.2: Estimation of intrinsic viscosity with ηred and ηinh for PBO and PPTA.

ηinh =
ln ηrel
c

(1.5)

The reduced viscosity, ηred, was plotted as a function of concentration and

the y-intercept of this plot is taken as the intrinsic viscosity, [η], which can be used

to estimate molar mass. This process was repeated with the inherent viscosity,

ηinh, to obtain two different estimates for intrinsic viscosity, [η]. The values of the

y-intercepts were taken as the intrinsic viscosities as shown by Equation 1.6 and

Equation 1.7 [64, 65].

[ηred] = k
′
[η]2c+ [η] (1.6)

[ηinh] = k
′′
[η]2c+ [η]2c+ [η] (1.7)

Estimates of the intrinsic viscosity via these two methods agreed to within 0.4

dL/g, except for the undegraded PBO sample, which only had agreement to within

1.5 dL/g. Values of the intrinsic viscosity estimated by each equation are presented

in Table 1.2 for PBO and PPTA.

Figure 1.40 show representative viscosity data obtained for PBO which had
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been environmentally conditioned for 4 d and Figure 1.41 shows representative data

for PPTA which had been environmentally conditioned for 10 d.

Figure 1.40: Representative viscosity data for PBO which had been environmentally
conditioned for 4 d.

For PBO, the highly conjugated structure of the polymer chain from the ex-

tended delocalization of π electrons over the benzobisoxazole and phenyl rings results

in a very rigid molecular structure [7]. The only possible conformational flexibil-

ity is attributed to rotation of bonds between the phenyl ring and oxazole ring [7].

The high degree of orientation of PPTA and PBO fibers is typically ascribed to the

formation of a nematic phase at sufficient concentration, that allows the rod-like
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Figure 1.41: Representative viscosity data for PPTA which had been environmen-
tally conditioned for 10 d. Standard error for this measurements is 1.5 %.
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molecules to orient themselves with respect to the fiber axis during fiber forma-

tion [58, 67, 2, 3]. The average of the two intrinsic viscosities calculated was used

to estimate the weight average molar mass using the Mark-Houwink equation for

PBO, Equation 1.8 [7, 62], and PPTA, Equation 1.9 [62, 63].

[η] = 2.27 × 10−7 M
1.8

w (1.8)

The Mark-Houwink exponent of 1.8 is an indication of the high molecular

rigidity of PBO. For comparison, this exponent is 1.0 for semi-rigid polymers, and

for an ideal random coil polymer under θ conditions it is 0.5. The value of 1.09 for

Kevlar reflects its slightly more flexible molecular structure [7].

[η] = 8.0 × 10−5 M
1.09

w (1.9)

Equations 1.8 and 1.9 were used to calculate an estimated weight average

molar mass for samples extracted from both armors during the environmental con-

ditioning experiment. The baseline (undegraded) PBO sample has a molar mass of

approximately 26,000 g/mol, which is comparable to the 28,650 g/mol previously

reported by Gupta [61]. The goal of this study was to examine the relative changes

in molar mass during environmental conditioning instead of attempting to make an

absolute measurement of molar mass, so it was determined that this estimate was

acceptable for this qualitative technique. Over the course of the environmental con-

ditioning, the PBO sample degraded to an approximate molar mass of 15,000 g/mol.

The baseline (undegraded) PPTA sample molar mass was calculated to be approx-
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Environmental PBO Standard PPTA Standard
Conditioning Deviation Deviation

(d) (g/mol) (%) (g/mol) (%)

0 26,157 1.37 42,241 1.02
4 22,746 0.95 36,579 1.03
7 19,161 0.42 29,595 1.22
10 15,169 3.39 24,926 1.48

Table 1.3: Estimation of the reduction of weight average molar mass for PBO and
PPTA with environmental conditioning.

imately 42,000 g/mol. This value was verified by a PPTA manufacturer [68] to

be reasonable, but is considerably higher than that reported in the literature [1].

After 10 d of environmental conditioning, the molar mass of the PPTA sample was

reduced to approximately 25,000 g/mol. Full details of these results are presented

in Table 1.3.

1.10.1 Comparison of Changes in Molar Mass Reduction with Changes

in Tensile Strength

After 10 d of environmental conditioning, the PBO sample had a tensile

strength retention of approximately 68 %. The PPTA sample tumbled in the en-

vironmental conditioning environment had a tensile strength retention of approxi-

mately 85 %. This strength loss in the PPTA armor was greater than that observed

in previous studies [69]. Error bars represent the relative standard deviations.

In an effort to more readily compare the estimated reduction in molar mass

with the extracted yarn tensile testing results for PBO and PPTA the molar masses

were also converted to a percentage of the original value. This conversion of these
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data allowed for the determination of the the percent residual tensile strength and

the percent residual molar mass, which are plotted as a function of environmental

conditioning time in Figure 1.42 and Figure 1.43. This approach revealed a correla-

tion between the reduction in molar mass and the reduction in tensile strength with

increased environmental conditioning time. To further examine this phenomenon,

for PBO, residual tensile strength was plotted against residual molar mass, and a

least squared linear fit yielded an R2 value of 0.97 and a slope of a=0.75, suggesting

a correspondence between residual tensile strength and residual molar mass. The

reduction in molar mass, which would be indicative of chain scission, may support

the hypothesis that PBO fully undergoes chain scission during exposure to elevated

conditions of temperature, moisture, and mechanical damage, as opposed to simply

undergoing the benzoxazole ring opening step of the hydrolysis reaction as shown

in structure (2) of Figure 1.20, which would give a fiber with a structure similar to

PPTA. While the overall downward trend is supported with this same analysis for

PPTA, when a linear fit was applied to these data, the R2 value was 0.94 and the

slope was a=0.35, again indicating a correlation between the reduction in molar mass

and the reduction in tensile strength. However, the sensitivity of this relationship

is different for PPTA. Future work will separate the mechanical and environmental

degradation conditions in an effort to better understand their individual roles in

the environmental conditioning of PBO and PPTA fibers and to fully answer the

question of how hydrolysis progresses in PBO.
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Figure 1.42: Comparison of residual tensile strength with residual molar mass for
PBO. The error bars represent the relative standard deviation of the mean yarn
breaking strength or mean molar mass. Note the correspondence between reduction
in tensile strength and reduction in molar mass. Residual molar mass points are
offset horizontally for clarity of presentation.
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Figure 1.43: Comparison of residual tensile strength with residual molar mass for
PPTA. The error bars represent the relative standard deviation of the mean yarn
breaking strength or mean molar mass. Note that while there is still a correspon-
dence between a reduction in tensile strength and a reduction in molar mass, the
sensitivity of this correspondence is different than for PBO. Residual molar mass
points are offset horizontally for clarity of presentation.
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1.10.2 Microscopic Examination of Fiber Surface

It is possible that the observed reduction in molar mass and tensile strength

can be attributed to the polymer being abraded away from the body armor fab-

ric during tumbling. To minimize this possibility, the yarns used in testing were

removed from the inner layers of the body armors. This practice, combined with

the fact that the armor was tumbled inside of two protective layers (the carrier and

the armor panel cover), and stitched together to minimize layer-to-layer friction,

should reduce the effect of abrasion on the results. In order to further examine

the effect of abrasion, confocal microscopy was used to examine fibers before and

after degradation (Fig. 1.44 and Fig. 1.45). There is some evidence of additional

formation of pits and kink-bands on the surface of the degraded samples. Similar

confocal images were obtained in a previous study and these changes were attributed

to hydrolysis and chemical exposure [70]. Confocal images of PPTA before and after

degradation (Fig. 1.46 and Fig. 1.47) show an increase in surface smoothness (possi-

bly due to abrasion) after environmental conditioning, similar to that seen in other

studies where fibers were intentionally abraded [19]. Images observed in previous

microscopy studies on PPTA fibers after exposure to artificial sweat and cleaning

chemicals are also similar [70].
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Figure 1.44: Confocal 2D projection of undegraded PBO fiber. Note the overall
smooth surface of the fiber. The long horizontal groove in the fiber is likely at-
tributed to processing.

Figure 1.45: Confocal 2D projection of PBO fiber environmentally conditioned for
10 d. Note the kink bands in the lower fiber and the pitting in the upper fiber.
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Figure 1.46: Confocal 2D projection of undegraded PPTA fiber. Note the the shiny,
reflective surface of the smooth undegraded fiber. Darker spots on the image are
likely due to lubricants from processing.

Figure 1.47: Confocal 2D projection of PPTA fiber environmentally conditioned for
10 d. Note the dull surface of the degraded fiber. Darker spots are indicative of
pitting in the surface.
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Chapter 2

Copolymer Aramid Fibers Used in Body Armor

2.1 Chapter Overview

In this chapter, copolymer aramid fibers used in body armor are introduced.

The release of acid from these materials when exposed to water is evaluated. The

stability of the physical properties of these materials after exposure to an accelerated

degradation environment is investigated and related to changes in the molecular

structure of these fibers.

2.2 Copolymer Aramid Fiber Introduction

As discussed in Chapter 1, modern body armor utilizes a wide range of poly-

mers to provide the level of performance required for these applications. The ma-

terials most commonly used in body armor are poly(p-phenylene terephthalamide)

(PPTA) and ultra-high molecular weight polyethylene (UHMWPE); however, in

an effort to expand consumer choices, several additional fibers have been recently

introduced into the United States body armor marketplace. These fibers were de-

veloped in the former USSR in the late 1970s, and are based on several starting

monomers [71]. Several of these fibers were investigated in this study, including

Artec1, Rusar, SVM, and Armos. PPTA and poly-(p-phenylenebenzobisoxazole)
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(PBO) fibers were used as comparison fibers. Artec, Rusar, and Armos all have

the same basic chemical composition, as depicted in Figure 2.1, and are formed by

polycondensation reaction of two diamines, p-phenylene diamine and 5-amino-2-(p-

aminophenyl)-benzimidazole with terephthalic acid or terephthaloyl chloride.

PPTA fibers are manufactured by polycondensation of p-phenylenediamine

with terephthalic acid. The structure of PPTA fibers is shown in Figure 2.2. For

the purposes of this work, linkages between terephthalic acid and 5-amino-2-(p-

aminophenyl)-benzimidazole will be referred to as benzimidazole linkages and link-

ages between p-phenylene diamine and terephthalic acid will be referred to as PPTA

linkages.

PBO is a member of the benzazole polymer family and is characterized by

the heterocyclic benzobisoxazole group in its main chain structure, as shown in

Figure 2.3. The conjugated benzobisoxazole and phenyl rings in the PBO repeat

unit contribute to extended π electron delocalization and molecular rigidity, which

provides high thermal stability and outstanding mechanical properties to this class

of polymers.

The main difference between the aramid copolymer fibers is the ratio of benz-

imidazole linkages to PPTA linkages [72]. While specific information on these ratios

is difficult to obtain, one weaver of these fibers supplied information indicating that

in the case of Artec, the ratio of PPTA to benzimidazole linkages was 2:1, and in the

case of Rusar, the ratio of diamine to benzimidazole linkages was 1:1. Additionally,

Rusar is made with raw materials sourced from Eastern Europe, and Artec is made

with raw materials sourced from the United States [73]. Late in the course of the
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completion of the study, it was discovered that Rusar and Artec fibers may actually

be the same [74]. Since no official data were published to confirm that these two

fibers were similar, it was then decided to keep considering them as two different

materials.

Another fiber that was investigated in this study is sold under the trade name

SVM. This homopolymer fiber is manufactured by direct polycondensation of 5--

amino-2-(p-aminophenyl)-benzimidazole with terephthalic acid [75]. The structure

of SVM fiber is shown in Figure 2.4.

In a communication to the body armor community released in January 2006,

there was an allegation by a competing fiber manufacturer that copolymer fibers

based on 5-amino-2-(p-aminophenyl)-benzimidazole can release hydrochloric acid (a

byproduct of manufacturing which may remain on the fibers), which could poten-

tially be detrimental to other fibers that might come in contact with these materi-

als [76]. Despite the fact that these allegations came from a competing manufacturer,

due to the well-publicized issues with PBO hydrolysis in field use, it was decided

that this allegation should be investigated to determine whether it presented a officer

safety issue.

1Certain commercial equipment, instruments, or materials are identified in this paper in order

to specify the experimental procedure adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it

intended to imply that the materials or equipment identified are necessarily the best available for

this purpose.
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Figure 2.2: For reference, the basic chemical structure of PPTA fibers.

2.3 Fiber Manufacture

While details of the specific processes by which these fibers are made is difficult

to find in the literature, a general idea of the fabrication of Armos fiber can be

determined from a paper published by Machalaba et al., in 2000 [77]. One can readily

assume that the general processing steps would apply to the other fibers as well.

The homopolymer (SVM) or copolymer (Armos, Rusar, Artec) is manufactured by

polycondensation of terephthaloyl chloride and some combination of para-aromatic

diamines (p-phenylene diamine or 5-amino-2-(p-aminophenyl)-benzimidazole) in an

amide-salt solvent system (specified as dimethylacetamide and lithium chloride in

the Machalaba paper) [77]. The polymer formed from this reaction is then filtered

and degassed prior to being spun into a filament yarn. This yarn is then drawn and

heat treated to form the final finished product.

O

N

O

N

n

Figure 2.3: For reference, the basic chemical structure of PBO fibers.
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Figure 2.4: Basic chemical structure of SVM fibers.

2.4 Structure, Moisture Sorption, and Other Properties

Slugin et al. published two papers in 2006 related to the use of Rusar fibers

for composites and ballistic protection applications. Additional information is given

regarding the rationale for use of the co-monomer 5-amino-2-(p-aminophenyl)--

benzimidazole. A paper published by Perepelkin in 2001 compares the properties

of Armos and SVM with commercial polyamide yarns. The primary difference be-

tween these fibers is in their structural properties. Polyamide fibers have a fibrillar

structure with stretched chains and three-dimensional order. SVM fibers also have a

fibrillar structure with stretched chains, but only one-dimensional crystalline order.

The Armos fiber has a fibrillar structure with stretched chains, but no crystalline

order. The strength at break of the Armos fiber is reported at 4.5 GPa to 5.5 GPa

as compared to 2.7 GPa to 3.5 GPa for the polyamide fibers, leading the authors to

conclude that crystallinity is not a prerequisite for preparing fibers with good me-

chanical properties [78]. It appears that the Armos fiber has been investigated for

use in composite applications due to its unique transverse mechanical properties. A

paper by Leal et al., from 2007 attributes the lack of three-dimensional organization

in the Armos fibers to the ability to achieve greater draw ratios, better molecular

orientation, and improved mechanical properties. Additionally, Armos develops in-

termolecular hydrogen bonds that allow for stress transfer between adjacent chains.
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This improves the compressive properties of the fiber and makes it attractive for use

in composite applications [72, 79]. Studies on the moisture sorption properties of

several fibers as compared to PPTA have shown that Rusar has very similar sorp-

tion isotherms to PPTA. Differences in the sorption properties of these materials are

attributed to the lower crystallinity of SVM and Rusar as compared with PPTA. As

previously discussed, the benzimidazole linkages in these polymers do not crystallize

as readily as the more linear polyamide linkages do [80, 81].

Much work [82, 83, 84, 85] has been performed to investigate the thermal stability of

these fibers for use in high-temperature environments and fire applications. These

materials are chemically similar to other fibers used in fire-resistant applications,

such as para-aramid and meta-aramid fibers, so interest in their thermal properties

is not surprising. The decomposition temperatures in air for Armos showed that it

was stable to oxidation and onset of degradation to approximately 400 ◦C [15]. A

separate study on the thermal stability of PPTA, SVM, Rusar, and Armos fibers in

which the fibers were exposed to 250 ◦C for up to 100 h showed that the mechanical

properties of the SVM fibers decreased the most rapidly, and that there was little

difference in the thermal stability of the other fibers examined [82].

2.4.1 Suitability for Ballistic Applications

Slugin et al. [86] present V50 data on ballistic packages manufactured from two

different linear densities of Rusar yarn to demonstrate the appropriateness of this

material for ballistic applications. The authors report a V50 of 640 m/s and 550 m/s
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for packages made from microfilament yarn fibers with linear densities of 29.4 tex

(264.6 denier) and 58.8 tex (529.2 denier), respectively [86]. However, important

details regarding the construction of the ballistic packages were omitted, making it

difficult to draw conclusions from these results. Much work [87] has been focused on

the establishment of a theoretical link between mechanical properties and ballistic

performance for high strength yarns. While this work has not yet been successfully

extended to deformable projectiles, other empirical data, such as that generated

in many studies of PBO degradation, indicate that there is a correlation between

changes in mechanical properties and reductions in ballistic performance [16].

2.4.2 Acid Release

A paper published by Shchetinin et al. in 2006 attempted to address the

allegations raised by the competitive fiber manufacturer about the evolution of acid

from these fibers. In this paper, it is revealed that hydrochloric acid is a by-product

in the synthesis of the polymer, as shown in Figure 2.5 but most of the acid is

removed when the fiber is washed after spinning and heat treatment [88]. The

acidity of the finished fiber is also discussed in a paper from 1995 by Kotomin et al.,

which indicated that the pH of the fibers varied between pH 3.5 and pH 6.6 with

heat treatment conditions, as determined by titration of an aqueous extract of the

fiber [79]. There is a residual amount of acid (0.1 % to 2.5 % of the fiber’s mass)

chemically bound to the amide and imidazole groups in the fibers. This amount

of bound acid is greatest for the SVM fibers, indicating that it is a by-product of
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synthesis with the 5-amino-2-(p-aminophenyl)-benzimidazole and the terephthalic

acid or anhydrate. The authors used SVM yarns for their study, and in the paper

indicate that the amounts of bound HCl in the Armos and Rusar copolymer fibers

are less than 0.2 %. SVM fiber samples with an initial hydrochloric acid content

of 1.5 % were stored in sealed flasks with deionized water at a ratio of 1 part

fiber to 10 parts water, and the pH of the water was periodically evaluated after

storage at 15 ◦C to 25 ◦C. The pH of the water decreased from 6.4 initially to 4.8

after 360 d of storage under these conditions. The authors conclude that this is an

insignificant change in the pH of the water over this period of time. This paper

also indicates that since the acid content of the Rusar/Artek (in this paper they use

Rusar and Artec/Artek interchangeably, leading to the deduction that these fibers

are chemically very similar) and Armos are so low, that this is not an issue for these

fibers; however, no data are offered to support this conclusion [88].

2.5 Experimental

2.5.1 Description of the Study

In an effort to evaluate many of the environmental conditions that fibers used

as ballistic material might encounter during their lifetime, this study has been per-

formed in three different phases. During the first phase of the study, fiber samples

of Armos, Artec2, Rusar, SVM, PBO and PPTA were immersed in deionized water

for 10 days, and the pH and chloride ion content of the water were measured over

time using ion-selective electrodes. Infrared analysis was performed on both exposed
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Figure 2.5: General schematic for the synthesis of aramid copolymer fibers, showing
the release of HCl during the process [88].

and unexposed fibers to evaluate the effect of exposure to water on their chemical

structure. In a second phase, fiber samples of Armos, Artec, Rusar, SVM and PBO

were wound on perforated bobbins and exposed in an environmental chamber to

high temperature (65 ◦C) and relative humidity (80 %) for 50 days. Test samples

were taken from the conditioned materials after 10 d, 15 d, 20 d and 50 d of ex-

posure. As in the first phase, pH and chloride ion content were monitored using

ion-selective electrodes. Additionally, single fiber tensile testing was performed on

extracted fibers to assess the effect of the environmental exposure on the yarn’s

mechanical properties. Infrared analysis was also performed on both exposed and

unexposed fibers to track changes in some characteristic chemical bindings. In a

third phase, fiber samples of Armos, Artec, Rusar, SVM and PBO were wound on
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perforated bobbins and exposed in an environmental chamber to high temperature

only (65 ◦C), and, as in the previous phases, pH and chloride ion content were

measured. Infrared analysis and tensile testing were also performed on each of the

extracted samples.

2.5.2 Analytical Methods

2.5.2.1 pH and Chloride Ion Content Analysis

As previously mentioned, during the first phase of this study chloride ion elu-

tion and pH were monitored by ion-selective electrodes as a function of time under

controlled conditions on fibers submerged in deionized water. Fiber samples weigh-

ing 5 g, were immersed in 500 mL of deionized water for 10 days, and measurements

were performed periodically in situ. Previous studies in our laboratory had shown

that, after 10 d, no further changes in pH or chloride emission were observed. The

beakers were kept tightly sealed with paraffin wax film except when measurements

were being made. The total volume of water was kept constant in the beakers by

addition of deionized water, if necessary, over the course of the experiment. The

release of chloride ions into solution and solution pH were monitored using a Fisher

Scientific Accumet Excel XL50 multichannel meter with a chloride combination ion-

selective electrode (ISE) and a pH electrode. The standard uncertainty for the pH

2Due to limited sample availability, all Artec samples in the study were removed from a fabric

swatch. This swatch appeared to have been treated with a water-repellent finish, which may have

affected the results presented herein.
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electrode is ± 0.1 pH units, and the relative standard uncertainty is ± 2 % for the

ion-selective electrode [89]. During the second and third phase of the study, 5 g of

each fiber sample were immersed into 500 mL of deionized water. Once stabilization

was reached, the pH and chloride ion concentration were recorded using the same

equipment as the one described above.

2.5.2.2 Fourier Transform Infrared Analysis

Infrared analysis was carried out using a Bruker Vertex 80 Fourier Transform

Infrared Spectrascope (FTIR), equipped with a Smiths Detection Durascope Atten-

uated Total Reflectance (ATR) accessory. Air, dried by passage through a standard

FTIR purge gas generator, was used as the purge gas. Consistent tension on the

yarns was applied using the force monitor on the Durascope. FTIR spectra were

recorded at a resolution of 4 cm−1 between 4000 cm−1 and 600 cm−1 and averaged

over 128 scans. Three different locations on each yarn were analyzed. Spectral

analysis, including baseline correction, was carried out using OPUS 6.5 software

from Bruker. Standard uncertainties associated with this measurement are typi-

cally ± 4 cm−1 in wavenumber and 1 % in peak intensity [90].

2.5.2.3 Yarn Tensile Testing

To obtain yarn mechanical properties, tensile testing was performed in accor-

dance with ASTM D2256-02: “Standard Test Method for Tensile Properties of Yarn

by the Single-Strand Method” using an Instron Model 4482 test frame equipped with

104



a 1 kN load cell, and pneumatic yarn and cord grips. The jaw separation was 7.9 cm

and the cross-head speed was 2.3 cm/min. Each yarn was nominally 40.64 cm long,

and was twisted to 60 turns on a custom designed yarn twisting device. The twist

was maintained on each yarn during insertion into pneumatic grips. Strain mea-

surements were made with an Instron non-contacting Type 3 video extensometer,

in conjunction with black foam markers placed approximately 2.5 cm apart in the

gage section of the yarn. Fifteen replicates from each extracted samples were tested

to failure. The standard uncertainty of these measurements is typically ± 3 %;

however, the error bars generated for plots presented herein represent the relative

standard deviation of the yarn breaking strength, which is in some cases higher than

3 %.

2.5.2.4 Elemental Analysis

Samples of Armos, Artec, Rusar, SVM, PBO, and PPTA were analyzed for

elemental content using Fundamental Parameters X-ray Fluorescence Spectrometry,

or FP-XRF, for the purpose of detecting elements present and determining the

approximate mass fractions of those elements other than H, C, O, and N. FP-

XRF methods are designed to be interactive and are implemented as sophisticated

computer programs. The investigator can specify to the computer program all a

priori knowledge of the chemical and physical properties of each specimen.

The FP-XRF program used in this work was the IQ+ method from PANalyt-

ical, Inc (Almelo, The Netherlands), which was running in the SuperQ operating
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system, version 4.0d, of a model PW2404 wavelength-dispersive spectrometer, also

from PANalytical, Inc. The IQ+ method was calibrated using a set of glass and

briquette standards provided by the vendor, which was bolstered by a number of Na-

tional Institute of Standards and Technology Standard Reference Materials. This

calibration scales the calculations to the actual performance of the spectrometer.

The program was originally calibrated in 2001 and has been maintained by imple-

menting drift correction updates since that time. All measurements were made in

scanning mode, in vacuum for solids, with the Rh anode X-ray tube operated at

3 kW. All specimens were weighed into sample cells, and an estimate of the viewed

area was made. These values were entered into the program to help scale the ex-

pected X-ray count rates calculated from the FP equations. The cells were 37 mm

polyethylene (TechRef, Anaheim, CA) with 6 µm polypropylene window material

(Somar, Las Vegas, NV).

Armos, Rusar, Zylon, SVM, PBO and PPTA fibers were cut to lengths of

10 mm to 40 mm. The loose fibers were packed into the sample cups so that the

fibers were closely packed and covered the film as uniformly as possible. During the

measurements, the plastic films burst under pressure from the fibers and heating

in the spectrometer. All fibers remained in place, but were exposed directly to

the X-ray beam as the support films curled back from the center. All specimens (a

specimen in this case is considered a collection of chopped fibers) were weighed to the

nearest 0.01 g and their diameters were measured to the nearest 1 mm. An empty

sample cell was measured to identify elements present in the cell. Calculations were

based on the known molecular formula of the polymers.
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The potential bias of the IQ+ method was tested by measuring specimens of

SRM 1632c Trace Elements in Coal (Bituminous). One sample of SRM 1632c was

prepared by pressing 3 g in a 31 mm steel die at 20 tons for 20 s. This specimen was

measured using the same IQ+ program as used for the fiber samples. For this coal,

the certified value for C was expressed as CH2 and set as a fixed, known quantity in

the FP calculations. The certified value for N was also set as a fixed value, and the

Sum = 100 constraint was set. Then, the measured elements were calculated. The

found and certified values for SRM 1632c are shown with the results for the other

fibers.

2.6 Results and Discussion

2.6.1 Fibers Exposed to Liquid Water

2.6.1.1 Chloride Ion Concentration and pH Measurements

Representative pH and chloride ion concentration measurements as a function

of time are shown in Figure 2.6 and Figure 2.7. The most rapid changes in both pH

and chloride ion concentration occur in the first three days of liquid water exposure.

Assuming that HCl is present, when the fibers are immersed in water, H+ Cl− ions

will disassociate and be released through the surface of the fiber.

The change in pH was greatest for the SVM yarn, which is expected due to

the high content of HCl this yarn due to processing, as previously reported [88].

The change in pH as a function of immersion time is shown in Figure 2.6. SVM
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fibers showed a pH decrease from approximately pH 6.0 to approximately pH 3.0.

Rusar fibers showed a decrease from approximately pH 5.5 to pH 4.0. The pH of

PPTA fibers remained steady over the course of the study. Armos fibers showed a

small decrease in pH from approximately pH 6.0 to pH 5.0. PBO fibers showed a

slight increase from approximately pH 6.5 to approximately pH 7.5. Artec showed

the smallest change in pH as a function of time, with a reduction to approximately

pH 5.5 in 10 d, however these results may have been affected by a treatment on the

fabric. Later in the course of the study, a manufacturer provided us with samples

of woven fabric of Rusar treated for water repellency and woven fabric of untreated

Rusar. The study was repeated with these two materials, and Rusar fibers that

were treated for water repellency showed similar pH changes to the Artec fibers. It

was later verified by a manufacturer of this material that these two materials are

the same.

As could be expected from the pH results, SVM showed the greatest increase

in overall chloride ion concentration, as shown in Figure 2.7. The overall increase

was from almost 0 mg/L chloride in solution up to 112 mg/L chloride in solution

for the SVM yarn. The chloride ion concentration increased from almost 0 mg/L

to approximately 6 mg/L for Rusar fibers, indicating that another species may be

responsible for its drop in pH. None of the other fibers investigated exhibited a

significant change in the chloride ion concentration.

Usually DI water is slightly acidic due to the absorption of carbon dioxide

in pure water, producing very low concentrations of carbonic acid [91], as depicted

in Figure 2.8. The water deionizer source used for these experiments stores the
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deionized water in a large reservoir as it is made, so the water is exposed to air

and carbon dioxide prior to use. One can surmise that the source of the chloride

ion may be attributed to residual ammonium chloride formed from the reaction of

terephthaloyl chloride and the primary or secondary amines to form the polymers

studied herein via a Schotten Baumann reaction [92], as shown in the previous

chapter. The polycondensation reaction of the amine and the acid chloride to form

the amide bond will result in the small molecule by-product HCl. This product

may remain in the polymer after washing, or become polymerized into the chain

at the end groups. The nitrogen in the amide bond has a lone pair of electrons

that could react with the HCl to form the ammonium chloride ion pair. Traces of

this salt may remain after thorough washing of the fibers, and when the polymer

is immersed in water for these studies, small amounts of chloride ion may migrate

to the surface of the fiber, where they will encounter ample concentrations of H+

counter-ions. The chloride ion concentration measurements were made over 10 days

to ensure that all available chloride ions diffused out of the fiber and into solution.

Figure 2.7 shows that SVM only reaches an equilibrium chloride ion concentration

after approximately 8 days, indicating that chloride ions are likely migrating from

within the fiber to the surface.

In Figure 2.6 and Figure 2.7, HCl is the anticipated source of the H+ ions

being measured in the pH portion of the experiment, however to verify that HCl is

correctly identified as this source, the counterion Cl− is also measured. Due to the

large difference in the concentration of chloride ions released, SVM is shown only

in the inset plot in this Figure. To further illustrate this observation, the change in
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Figure 2.6: Change in pH of the DI water in which all fibers were immersed over
time. All of these fibers are spun from acid solutions, and most fibers show a pH
lower than that of the DI water control, except PBO. This could be due to the
neutralization process used in the manufacture of this polymer.
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Figure 2.7: Chloride ion release following immersion in deionized (DI) water for
all fibers. HCl is the anticipated source of the H+ ions being measured in the pH
portion of the experiment, however to verify that HCl is correctly identified as this
source, the counterion Cl− is also measured. Due to the large difference in the
concentration of chloride ions released, SVM is shown in the inset plot. It is evident
from this graph that HCl is only the source of the reduction in pH for the SVM
fiber.

CO2 (g)                                   CO2 (aq)                             (a)

CO2 (aq)                                 H2CO3 (aq)                         (b)

H2CO3 (aq)                             H+ (aq) + HCO3
-(aq)          (c)

Figure 2.8: Scheme for formation of carbonic acid in deionized water [91].
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Figure 2.9: he change in pH over time is plotted with the change in chloride ion
concentration over time while immersed in water for SVM. It is evident from this
graph that HCl is only the source of the reduction in pH for the SVM fiber. As
more Cl− counter ions are liberated from the fiber (their concentration increases),
the pH of the solution decreases, indicating the presence of H+ ions in this system.

pH over time is plotted with the change in chloride ion concentration over time in

Figure 2.9. It is evident from this graph that HCl is only the source of the reduction

in pH for the SVM fiber.

2.6.1.2 Analysis of Chemical Structure

Due to the lack of available literature regarding the infrared analysis of the

chemical structures of the copolymer fibers utilized in this study, a separate ef-
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fort was undertaken to investigate their spectra. Peak assignments were generated

through the review of several references on PPTA fibers [93],[94], general infrared

spectroscopy [95, 51, 96], and benzimidazole spectroscopy [97, 98]. As expected,

the spectra of the copolymer fibers show characteristics found in the spectra of

the two homopolymers. A typical ATR FT-IR spectrum of SVM is shown in Fig-

ure 2.10. To further investigate the validity of the peak assignments shown in

Table 2.1, two benzimidazole-containing model compounds, 2-phenylbenzimidazole,

Figure 2.11, which will be referred to as MC1 in this paper, and 2-(2-aminophenyl)-

1H-benzmidazole, Figure 2.12, which will be referred to as MC2 in this paper, were

purchased and analyzed in their neat form using ATR-FTIR spectoscopy. The spec-

tra of MC1 and MC2 are shown in Figure 2.13 and Figure 2.14 respectively. MC1

has peaks attributed to benzimidazole at 1591 cm−1, 1462 cm−1, 1444 cm−1, and

1187 cm−1. MC2 has peaks attributed to benzimidazole at 1491 cm−1, 1460 cm−1,

1441 cm−1, 1106 cm−1, and 955 cm−1. These peaks correspond to peaks attributed

to benzimidazole in the spectra of the copolymer fibers and SVM fiber as shown in

Table 2.1, which reinforces the validity of these peak assignments.

2.6.2 Fibers Exposed to High Temperatures and Humidity Condi-

tions

Fibers in the study were exposed to conditions of high temperature and hu-

midity to better simulate the wear environment, then the pH and chloride ion con-

centration measurements were repeated.
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Figure 2.10: ATR FT-IR spectrum of virgin SVM fiber. Characteristic peaks are
labeled.
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Figure 2.11: 2-phenylbenzimidazole, adapted from published structure [100].

N
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N

H2N

Figure 2.12: 2-(2-aminophenyl)-1H-benzmidazole, adapted from published struc-
ture [100].
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Table 2.1: Infrared Peak Assignments for Artec, Armos, Rusar, SVM and PPTA
fibers [99].

Artec Armos Rusar SVM PPTA Note General Assignment
cm−1 cm−1 cm−1 cm−1 cm−1

3309 Broad NH Stretch [94]

3271 3271 3271 Broad
Imidazole N-H hydrogen
bonding to H2O or
imine [97]

1638 1639 1638 1632 1638 Strong Amide I band carbonyl [93]

1596 1596 1596 1593 Shoulder
Benzimidazole NH
in-plane bend [98]

1513 1512 1513 1525 1510
Sharp
Shoulder

Amide II band
carbonyl [93]

1487 1486 1488 1488 Shoulder
Benzimidazole ring
stretch [98]

1467 1464 Shoulder
Benzimidazole ring
stretch [98]

1443 1443 1443 1443 Shoulder Benzimidazole [98]

1417 Shoulder
Benzimidazole ring
stretch [98]

1406 1406 1406 1394 Shoulder Primary amine salts [51]

1305 1304 1304 1300 1303 Shoulder
CN stretch; Amide III
group motion [94]

1244 1245 1247 1244 Shoulder
Benzimidazole ring
stretch [98]

1187 1186 1186 1186 Medium
Benzimidazole in-plane
CH bend [98]

1108 1107 1108 1106 1107 Medium
Benzimidazole in-plane
CH bend [97]

1016 1016 1016 1015 1017 Medium CH out of plane bend [94]

957 957 955 957 Weak
Imidazole in-plane
bend [98]

890 889 890 889 893 Weak CH out of plane [93]

820 Strong CH out of plane [94]
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Figure 2.13: 2-phenylbenzimidazole ATR-FTIR spectra. Characteristic peaks are
labeled.
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2-(2-Aminophenyl)-1H-benzimidazole

Wavenumber (cm-1)

800120016002000240028003200

A
b
s
o
rb

a
n

c
e

0.0

0.1

0.2

0.3

Benzimidazole
ring stretch,

 1491 cm-1, 1460 cm-1 and 1441 cm-1

Benzimidazole
ring stretch,
1106 cm-1

Benzimidazole
ring stretch,

955 cm-1

Figure 2.14: 2-(2-aminophenyl)-1H-benzmidazole ATR-FTIR spectra. Characteris-
tic peaks are labeled.
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2.6.2.1 Chloride Ion Concentration and pH Measurements

Representative pH and chloride ion concentration measurements as a function

of time are shown in Figure 2.15 and Figure 2.16. Note that the pH decrease

observed in the liquid water exposure study is not reproduced with exposure to

high temperature and relative humidity. There is a decrease in pH for SVM and

Rusar samples, but this decrease is smaller than in the first part of the study. The

pH of these samples drops from pH 6.0 to around pH 5.0 within 10 d of exposure,

as compared to a decrease from pH 6.0 to almost pH 3.0 for SVM fibers when

immersed in liquid water. Armos and Artec show similar behavior as in the first

phase of the study. The chloride ion results observed for SVM in the first phase were

significantly lower in this phase, a puzzling result which will be the subject of future

investigation, and no noticeable increases in chloride ion content were observed for

any samples in the second phase of the study.

2.6.2.2 Chemical Properties

PPTA fibers are known to be susceptible to acid catalyzed amide hydrolysis

as depicted in Figure 2.17. Given the similarities in the chemical structure of the

fibers considered in this study to PPTA, one might anticipate that these fibers could

also be vulnerable to a similar hydrolysis mechanism.

Through the use of difference spectra, where the infrared spectra taken from

the unconditioned sample is subtracted from the spectra of fibers which have been

subjected to environmental conditioning in the humidity chamber, the evolution of
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Figure 2.15: Change in pH following exposure to 65 ◦C, 80 % RH. This experiment
was performed to better simulate the wear environment and determine whether
there was a risk to the end user of being exposed to acids from the body armor.
The standard uncertainty in these measurements is ± 0.1 pH units.
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Figure 2.16: Change in chloride ion release following exposure to 65 ◦C, 80 % RH.
This experiment was performed to better simulate the wear environment and de-
termine whether there was a risk to the end user of being exposed to acids from
the body armor, and if acids were released, if they were due to HCl. The standard
uncertainty in these measurements is ± 2 %.
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Figure 2.17: Scheme for amide hydrolysis for PPTA fibers.
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changes in the chemical structure can be studied [101, 102, 52, 53, 54]. Negative

peaks in difference spectra are attributed to the loss of existing chemical structure,

and positive peaks are indicative of the formation of new chemical structure [52, 53,

54].

Previous work examining the hydrolysis of PPTA fibers [103] via difference

spectra techniques showed losses in the Amide I and Amide II peaks, and increases

in both the NH/OH peaks and carboxylate ion peaks. Similar characteristics were

found in the difference spectra of the fibers studied in this work. Difference spectra

for Artec, Armos, Rusar, and SVM were generated by subtracting the spectrum of

the unexposed sample of each fiber from the spectra of the sample which had been

environmentally conditioned for 50 d. These data are presented in Figure 2.18 and

Figure 2.19.

Figure 2.18 shows the low wavenumber region of the IR spectrum. Note the

losses in Amide I peaks for all of the fibers between 1630 cm−1 and 1618 cm−1,

and Amide II peaks at 1532 cm−1 (Artec) and 1520 cm−1 (SVM). Carboxylate ion

formation is observed at 1452 cm−1 (Armos) and 1457 cm−1 (Artec), but losses in

this general region are observed for Rusar and SVM. Peaks in this region can also

be associated with benzimidazole [99], so losses in these regions could be attributed

to chain scission and loss of benzimidazole sections of the chain backbone.

Figure 2.19 shows changes in the IR spectrum at wavenumbers above 3000 cm−1.

A new peak at 3255 cm−1 for SVM fibers is attributed to the formation of NH and

OH typically seen in amide hydrolysis. The negative peak at approximately 3350

cm−1 for Artec is obviously due to a loss in NH or OH, possibly due to hydrolysis
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Figure 2.18: ATR FT-IR difference spectra of fibers from 65 ◦C, 80 % RH study,
fingerprint region. Note the losses in Amide I peaks for all of the fibers between
1630 cm−1 and 1618 cm−1, and Amide II peaks at 1532 cm−1 (Artec) and 1520 cm−1

(SVM). Carboxylate ion formation is observed at 1452 cm−1 (Armos) and 1457 cm−1

(Artec), but losses in this general region are observed for Rusar and SVM. Peaks in
this region can also be associated with benzimidazole [99], so losses in these regions
could be attributed to chain scission and loss of benzimidazole sections of the chain
backbone.
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Figure 2.19: ATR FT-IR difference spectra of fibers from 65 ◦C, 80 % RH study,
scaled above 3000 cm−1. The new peak at 3255−1 for SVM is attributed to the
formation of NH and OH typically seen in amide hydrolysis. The negative peak at
approximately 3350 cm−1 for Artec is obviously due to a loss in NH or OH, possibly
due to hydrolysis of this material. This is supported by losses for Artec in the Amide
I and II bands, as shown in the previous figure.

of this material. There are slight changes in the spectra of Armos, but the spec-

trum of Rusar is unchanged in this region. While the difference IR spectra of these

fibers do not exactly match previously observed results for amide hydrolysis, there

are general similarities in the IR results that indicate that these fibers are changing

with exposure to water.

123



2.6.2.3 Physical Properties

Figure 2.20 shows the tensile strength retention of fibers exposed to conditions

of high temperature and relative humidity. Both Rusar and SVM show measurable

decreases in their tensile properties. Extensive studies have already established

that PBO is sensitive to hydrolysis when in high humidity environments, which was

confirmed by this study. Armos and Artec, which have similar chemical structures,

seem to be the most stable under these conditions, with losses of approximately 3 %

and 7 %, respectively, of their tensile strengths over the course of a 50 d exposure to

the high heat and relative humidity conditions. As previously mentioned, PPTA is

sensitive to acid-catalyzed hydrolysis of amide linkages in the chain backbone [103].

Because all of the fibers studied herein contain amide linkages, it is possible that the

extractable acid (as evidenced by the reduction in pH in these two samples) may

catalyze amide hydrolysis in Rusar and SVM, leading to a greater reduction in their

respective tensile strengths.

2.6.3 Fibers Exposed to High Temperature Conditions

2.6.3.1 Chloride Ion Concentration and pH Measurements

Figure 2.21 and Figure 2.22 show representative pH and chloride ion concen-

tration measurements as a function of time for all fibers. All samples show similar

behaviors to those observed in the second phase of the study with an increase for

PBO, slight decreases for Armos and Artec, and more significant decreases for Rusar

and SVM with drops from pH 6 to pH 5 and pH 4.5 respectively. Note that there
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Figure 2.20: Tensile strength retention following exposure to 65 ◦C, 80 % RH. Note
that the tensile strength retention for all fibers is considerably greater than that
of PBO, which is known to undergo hydrolysis under these conditions. Rusar and
SVM showed the largest reduction in tensile strength in this study when PBO is
excluded.
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Figure 2.21: Change in pH following exposure to 65 ◦C oven. This experiment was
performed to better simulate the storage environment (e.g., the trunk of a car) and
determine if there was a risk to the end user of being exposed to acids from the
body armor.

are almost no changes in the pH between 10 d and 50 d, meaning that any changes

occur within the first 10 d of exposure. The chloride ion results observed for SVM

in the first phase were not repeated in this phase, and no noticeable increases in

chloride ion content were observed for any samples in the second phase of the study.

2.6.3.2 Chemical and Mechanical Properties Analysis

Figure 2.23 shows the tensile strength retention of the fibers exposed to high

temperature without humidity. The tensile strengths of the fibers studied were main-

tained over the course of high temperature exposure. ATR-FTIR analysis showed
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Figure 2.22: Change in chloride ion release following exposure to 65 ◦C oven. This
experiment was performed to better simulate the storage environment (e.g., the
trunk of a car) and determine if there was a risk to the end user of being exposed
to acids from the body armor, and if acids were released, if they were due to HCl.
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Figure 2.23: Tensile strength retention following exposure to a 65 ◦C oven for all
samples. Note that there is little change in tensile strength after this exposure, and
some samples even appear to become stronger.

no changes in the spectra of the fibers studied.

2.6.4 Elemental Analysis

Elemental analysis was performed using FP-XRF on the following fibers: Rusar,

Armos, Artec (removed from fabric sample), SVM, PBO and PPTA (removed from

fabric sample). Results of the analysis are shown in Table 2.2. The elements H,

C, O, and N were calculated from the polymer molecular formulas from the repeat

units rather than from measured data. For S in PPTA and P in PBO, there were

clear evidence that the S and P are bound to oxygen atoms. This is shown by the

presence of a satellite peak on the shoulder of the K-M peak in the collected spectra.
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All of the fibers except PBO and PPTA contain measurable amounts of chloride.

This indicates that these fibers may be manufactured using the diacyl chloride of

terephthalic acid in a Schotten-Baumann process [92]. Despite the higher concen-

tration chloride ions in the SVM sample that was immersed in water, the chloride

content of this fiber was similar to that of the other fibers studied at 2.6 % by mass.

The Artec sample had the highest percentage of chloride at 2.9 % by mass.

2.7 Conclusion and Future Work

All fibers studied herein, even PPTA, release some quantity of acid forming

constituents when immersed in liquid water. However, the pH change for the fibers

SVM and Rusar were greater than that observed for the other fibers. The theory

that hydrochloric acid is responsible for this reduction in pH may only be true for

the SVM fibers, as only these fibers exhibited a significant increase in chloride ion

concentration to correspond to the reduction in pH. This leads to the conclusion that

another type of acid must be responsible for the pH reduction in the Rusar sample.

This acid could be attributed to residual processing chemicals, such as sulfuric acid,

that remain in the fiber after washing. It could also be due to unreacted terephthalic

acid from polymerization. When exposed to water vapor and then immersed in liquid

water, a certain amount of acid was still released in the fibers based on 5-amino-2-(p-

aminophenyl)-benzimidazole; however, this amount was considerably smaller than

in the case of direct liquid water exposure, especially for SVM fibers. While the pH

change of the fibers exposed to vapor water was not so significant as in the direct
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Table 2.2: Elemental Analysis of Fibers Determined using Wavelength-Dispersive X-
Ray Fluorescence Spectrometry and the Semiquantitative Fundamental Parameters
Method IQ+

All Elements Expressed as Mass Fractions (%)

Fiber Type: Armos Artec PPTA Rusar
Molecular Formula: C35H24N6O4 C35H24N6O4 C14H10N2O2 C35H24N6O4

H 4.0 3.9 4.2 4.0
C 69.2 67.0 69.5 69.1
N 13.8 13.4 11.6 13.8
O 10.6 10.2 13.9 10.6
F nd 2.6 nd nd

Na nd 0.012 0.52 nd
Al 0.002 0.002 0.003 0.003
Si 0.005 0.007 0.005 0.005
P < 0.001 0.001 0.001 0.008
S 0.002 0.012 0.29 0.007
Cl 2.4 2.9 0.007 2.5
K nd nd 0.013 nd
Ca nd 0.001 nd nd

Fiber Type: SVM PBO SRM 1632c Coal
Molecular Formula: C21H14N4O2 C14H6N2O2 Found Certified

H 3.9 2.5 13.0 5.11
C 69.1 70.8 77.4 77.45
N 15.3 11.8 1.54 1.54
O 8.8 14.3 4.0 nd
F nd nd nd 0.007

Na nd 0.024 0.028 0.0299
Al 0.005 0.003 0.79 0.915
Si 0.005 0.005 1.25 1.654
P 0.015 0.34 0.013 nd
S 0.006 0.001 1.0 1.462
Cl 2.9 0.010 0.11 0.1139
K nd 0.053 0.11 0.1139
Ca nd nd 0.12 0.145

130



water immersion part of the study, a loss in the fiber mechanical properties was

observed, leading to the conclusion that exposing these fibers to humidity weakened

them. Additionally, high temperature exposure does not appear to cause acid release

or tensile strength loss.
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Chapter 3

Ultrahigh Molecular Weight Polyethylene Fibers Used in Body

Armor

3.1 Chapter Overview

In this chapter, ultrahigh molecular weight polyethylene fibers are introduced.

The relationship of the stability of the physical properties of this material to changes

in the morphology and molecular structure of the material due to exposure to ele-

vated temperatures is evaluated.

3.2 Polyethylene Background

Polyethylene is formed from chain polymerization of the monomer ethylene

depicted in Figure 3.1, and is a very simple polymer in that it consists of only

carbon and hydrogen atoms.

Polyethylene can be produced by free radical polymerization or by coordina-

tion catalysis. Free radical polymerization of ethylene results in branching of the

C C

H

H

H

H

Figure 3.1: Chemical structure of the ethylene molecule.
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polymer chain, by which monomeric units (in this case, ethylene molecules) can form

long side chains, or branches. This polymer is known as low-density polyethylene

(LDPE) and has crystallinity between 40 and 60 % and density between 0.91 and

0.93 g/cm3. LDPE has a very low glass transition temperature (Tg) (approximately

-120 ◦C), and moderately high crystallinity with a melting point of 105-115 ◦C [4].

Coordination catalysts, also known as Ziegler-Natta catalysts for the chemists cred-

ited with inventing them, prevent the branching that occurs in free radical poly-

merization of ethylene, and make the formation of linear polyethylene commercially

possible. Generally, a Ziegler-Natta catalyst is the combination of a transition metal

from groups IV to VIII and an organometallic compound of a metal from groups I to

III of the periodic table. This catalyst guides the addition of the ethylene monomer

in a stereospecific manner, and prevents the branching from occurring forming a lin-

ear chain [64]. Polyethylene formed in this manner is distinguished from branched

LDPE by the term high-density polyethylene or HDPE. This mechanism is shown

in Appendix B.

HDPE has crystallinity between 70 and 90 % and density between 0.94 and

0.96 g/cm3, and an average molecular weight between 20,000 and 100,000 grams

per mole [4]. It is generally accepted that an ethylene molecule is inserted between

the transition metal atom and the terminal carbon atom in the growing chain. This

leaves one unsaturation per chain in the final polymer (which has some significance in

the radical chemistry that occurs during irradiation of the polymer) [64]. Ultrahigh

molecular weight polyethylene (UHMWPE) is made in the same manner as HDPE

(utilizing the Ziegler catalyst system). UHMWPE also has crystallinity between 70
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and 90 % and density between 0.94 and 0.96 g/cm3, although the chains formed

are much longer than HDPE, having an average molecular weight between 3 and 5

million [71, 104, 105, 106].

3.3 Manufacture of UHMWPE Fibers

UHMWPE fibers are commercially manufactured by two companies DSM,

headquartered in Holland, who markets their fiber as Dyneema, and Honeywell,

headquartered in the United States, who markets their fiber as Spectra. UHMWPE

fibers are commercially produced by a technique known as gel spinning. A solution

of polyethylene with a molecular weight between 3 and 5 million is dissolved in a

solvent at low concentration (approximately 1-2 % by weight) and elevated temper-

ature, and this solution is extruded through a spinneret into a water bath. After

cooling in the water bath, a gelatinous filament is obtained, which still contains a

significant portion of solvent [107]. This gelled filament is comprised of a physical

network of polyethylene chains and is sufficiently strong to be transported to an

oven for drawing and solvent removal. The dilute solution is used to disentangle the

chains and prepare them for orientation through a “superdrawing” process. This

process involves extending the filaments 50 to 100 times their original length in order

to make a highly-oriented, approximately 85 % crystalline fiber [71, 108]. A unique

aspect of gel spinning is that filaments produced in this manner remain able to be

“superdrawn” even after all of the solvent has been removed from the filament. Fig-

ure 3.2 is a schematic of this drawing process. While the exact identity of processing
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Figure 3.2: Schematic of the gel spinning process [71]. Superdrawing occurs where
the formed fiber is stretched over a series of rollers as shown in the bottom right of
the figure.

agents used in UHMWPE fibers is not exactly known, literature on other types of

UHMWPE has indicated that we can expect the presence of antioxidants, such as

Irganox, and slip agents, such as erucamide, in the fiber. As will be discussed later in

this work, their presence is important to consider during irradiation of UHMWPE.

3.4 Structural Models of UHMWPE Fibers

Gel-spinning produces a rather unique molecular structure to the polymer

chains within each of the filaments. There are a few general theories as to the struc-

ture of these fibers. The first of these is the microfibrillar model. In this model,

each filament of UHMWPE is considered to consist of about 150 macrofibrils, that

are highly extended chains forming crystalline microfibrils, each having a diameter

between 15 and 20 nm. An alternative model is the continuous crystalline model,

in which macrofibrils are comprised of a mostly continuous crystalline phase with

rare, dispersed defects [109]. The primary difference between these two models is
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Figure 3.3: Schematic of the crystalline bridge model [110].

the way they treat the intensity of stress transfer between microfibrils. A third

model, known as the crystalline bridge model combines aspects of the previous two,

allowing for strong lateral interactions between crystalline regions across a microfib-

rillar interface, and much weaker interactions in the noncrystalline areas [110]. A

schematic of the crystalline bridge model is shown in Figure 3.3, where regions A

and B represent fully chain-extended crystalline regions, region C represents the

fraction of disordered chain segments, which are noncrystalline, and the regions

marked i are interfaces between the various areas. Region C is assumed to con-

tain intra-microfibrillar tie-molecules under varying degrees of stress, called taut-tie

molecules [110, 111]. These tie molecules are assumed to transmit axial stresses

between the crystalline regions, and appear in some form in almost every model of

the fiber structure [110].

A more detailed structural analysis and examination of structure-property re-
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Figure 3.4: Another depiction of the taut tie molecules [110].

lationships for gel-spun UHMWPE fibers was undertaken by Fu, et. al. in 1996.

This paper combined full-pattern, small angle, and powder X-ray diffraction with

13C nuclear magnetic resonance, differential scanning calorimetry (DSC), and opti-

cal microscopy. The authors identified an orthorhombic and a monoclinic crystalline

phase, as well as two noncrystalline phases, one being an amorphous phase and one

being an intermediate phase. The crystalline regions of the fibers are primarily or-

thorhombic, with both a folded and an extended-chain conformation. High modulus

fibers such as those studied are primarily comprised of crystals in the extended-chain

conformation [112]. Another depiction of the taut-tie molecules are shown in Fig-

ure 3.4.

External stress applied to the fiber during the drawing process leads to a less
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than perfect crystal [112]. One might assume that more perfect crystals would result

in better mechanical properties; however this was not the case. Higher draw ratios

appeared to produce better mechanical properties in the fibers [112]. Hu and Hsieh

measured the average unit cell of the orthorhombic crystallites and found a and b

to be equal to 7.40 0.03 Å and 4.94 0.03 Å, respectively. They also measured

the average crystallite size normal to the < 110 > planes to be in a range between

163 and 182 Å [112]. The fiber exhibited a much smaller fraction of monoclinic

than orthorhombic crystallites. Thermal experiments indicate that the monoclinic

crystal phase is not thermodynamically stable; as once it is destroyed by melting

or annealing above 148 ◦ C, it cannot be recovered upon recrystallization. It is

generally assumed that the monoclinic phase is transformed to the orthorhombic

phase by chain rotation upon melting [112, 113, 114].

According to Fu, et al., the intermediate phase of the UHMWPE fiber has

several key characteristic structural features [112]. The chains involved in this phase

are in the trans conformation and, due to the highly drawn nature of these filaments,

are ordered preferentially with respect to the fiber axis. X-ray and NMR experiments

indicate that these chains are collected together within domains, rather than as

free chains throughout the structure. Chain mobility in this intermediate phase

is between the low-mobility orthorhombic phase and the high-mobility amorphous

phase. Interpretation of measurements of this phase can be difficult because, while

it is not a crystalline phase, the separation between atoms on adjacent chains in this

phase is similar to that of the < 002 > diffraction of the crystalline phase, which can

cause erroneous interpretations of diffraction results, however, the lateral separation
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does not have crystalline periodicity. Fu’s measured lateral orthorhombic crystallite

sizes are smaller than those reported by other researchers due to the effect of this

phase on the < 002 > diffraction. Fu reports lateral sizes of 9.4 and 7.7 Å for two

commercial samples of UHMWPE fibers [112]. The lateral size of the orthorhombic

crystallite is important because it is generally believed to define the diameter of the

crystalline microfibrils that make up the filament. Many models of UHMWPE fibers

consider the role of taut-tie molecules (TTM) [111, 115], which are noncrystalline,

highly strained chains in the trans conformation that are thought to form a bridge

between crystallites along the fiber axis. These are also called trans-conformation

tie molecules. Fu’s concept of the intermediate phase is a more ordered version of

the TTM concept. Fu states that individual TTMs would not contribute to the

diffraction pattern observed for the fiber because they consist of individual chains

with no correlations in position, however the diffraction pattern observed from the

intermediate phase is attributed to lateral order. Fu attributes the tensile strength

of the UHMWPE fibers to the high degree of orientation and order of the crystalline

and intermediate, or ordered amorphous, phases [112]. A schematic of Fu’s model

is shown in Figure 3.5.

3.5 Theoretical Mechanical Properties of UHMWPE Fibers

The theoretical physical properties of UHMWPE fibers have long been a sub-

ject of much interest. The theoretical Young’s modulus was calculated using bond

energy information obtained from infrared spectroscopy to be 182 GPa by Treloar
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Figure 3.5: Schematic of Fu’s model of an UHMWPE fiber. A is the amorphous
area, B is an intermediate phase held in its metastable state by connections to the
crystalline phase, C [112].
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and others [116, 117]. The theoretical tensile strength of a single extended polyethy-

lene chain has been calculated to be on the order of 20-60 GPa based on carbon-

carbon bond energies, and is calculated by the product of the Young’s modulus

and the strain for which the energy of the bonds is maximized. Additionally, all

chains are assumed to fracture simultaneously and this assumes a defect free, chain

extended structure with infinite polymer chains [107, 118]. Obviously, these are not

conditions attainable in the real world, making actual tensile strengths lower, ap-

proximately 3.7 GPa. However, given that tensile strengths obtained are only about

20 % of the theoretical maximum tensile strength, much work has been undertaken

to find ways to improve the mechanical properties of UHMWPE fibers.

3.6 Limitations of UHMWPE fibers

Creep is defined as the time-dependent change in strain following a step change

in stress [119]. Polymeric materials exhibit creep under static loading conditions,

which is a problem for any polymer used in a load bearing design. One significant

limitation of the use of UHMWPE fibers are the poor creep properties of this mate-

rial. The creep is typically attributed to structural irregularities and poor cohesive

energy density of the fiber [110]. The cohesive energy density in this case refers to

the cohesive forces between molecules. A comparison of the cohesive energy den-

sity for various polymers is given in Figure 3.6 [120]. Representative creep data for

oriented PE fibers are shown in Figure 3.7 at different stresses [121].

Creep data are presented in the form of a Sherby-Dorn plot, which presents
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Figure 3.6: Cohesive energy density of polyethylene, as compared to other common
polymers Note that polyethylene has one of the lowest cohesive energy densities of
the polymers listed. This indicates that there is a low attractive force between the
polymer chains in this material [120].
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Figure 3.7: Representative Sherby Dorn plot demonstrating creep in oriented PE
fibers [121].
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creep as a function of strain rate versus stress. This allows for the combination

of data obtained during creep testing (quasi-instantaneous application of load) and

tensile testing (in which load is applied with varying rates). These data lie to-

gether on one master curve, underscoring the relationship between creep and yield

behaviors in these polymers [121]. An example of a Sherby Dorn plot is shown

in Figure 3.7. These plots depict two of the three regions of creep; initial creep,

which is the initial rapid deformation of the polymer as a function of applied load,

and plateau creep, which represents the increasing deformation or elongation of the

polymer to increasing stress by configuration rearrangements, first by chain segments

relatively close together and then by those further and further apart, requiring more

time [122]. While creep is often studied when trying to optimize UHMWPE fiber

behavior; the relationship between structure and creep in this material is not well

understood. Ward describes creep behavior as two thermally activated processes

acting in parallel: short time high stress process, which he attributes to a small ac-

tivation energy of localized slip in the crystalline regions, and a long time, low stress

process, which he attributes to the large activation energy of the network of chains

in the fiber [121]. In order to better understand the role of bond interactions in creep

deformation of polymers, much work has been undertaken to examine the stress-

induced deformation of infrared absorption bands [123, 124]. Von Schmeling used

this technique to assess stress at the molecular level in UHMWPE fibers. This work

found that some chains in a typical UHMWPE fiber are very highly stressed (up to

10 GPa), which approaches estimates of the chain strength (20-60 GPa) [107, 118].

The authors verified that fiber deformation (such as during a creep event) occurs
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by elastic stretching, alignment and straightening of the chain backbone, plasticity

in the crystalline regions, and microfibrillar slippage due to the numerous defects in

the highly oriented fiber structure. The authors recommend crosslinking or incor-

poration of side chains [125] as means to reduce the microfibrillar slippage in the

fiber and improve its creep properties [121, 126].

3.7 Long Term Stability of UHMWPE

3.7.1 Prior Art

UHMWPE [127, 128, 129, 33] is one of the two main types of fibers currently

used in ballistic-resistant body armor. Due to the previously discussed PBO hydrol-

ysis of body armor, attention has been focused on studies to ensure the long-term

stability of all fibers used in body armor. As previously mentioned, UHMWPE is a

long-chain polyolefin with a molar mass between 3 and 5 million. Its tensile strength

is reported to be approximately 40 % greater than PPTA fiber [130] due to its high

crystallinity and highly oriented zig-zag sp3 conformation. In addition, polyethylene

has no functional groups, resulting in superior chemical resistance as compared to

other materials [70]. Previous researchers have focused efforts on understanding the

artificial aging of UHMWPE on bulk polymers typically used in orthopedic joint

replacement applications [131]. A study published by Chabba, examined the artifi-

cial aging properties of UHMWPE fibers, focusing on oxygen uptake as a marker of

degradation and calculating the activation energy of this process as being approx-

imately 120 kJ/mol. The activation energy for oxidative chain scission in simple
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alkanes such as methane, ethane, propane, n-butane, and isobutane have been pre-

viously published, mostly in regards to the selection of the most appropriate metal

catalyst for this reaction. The activation energy for oxidative chain scission in simple

alkanes was found to be between 13 and 32 kJ/mol. Methane had the highest acti-

vation energy, and isobutane had the lowest activation energy. This study focused

on the effectiveness of different metals in the total oxidation of the small alkanes.

The authors state that activation (of the metal catalyst) increased with chain size

and to a lesser extent with branching [132]. Previous work on the thermal degra-

dation of polypropylene determined an average activation energy of 123 kJ/mol for

chain scission in polypropylene [133]. Iring and co-authors examined the thermo-

oxidative degradation of polyethylene in the temperature range of 130 to 160 ◦C

at 101 kPa oxygen pressure and calculated an activation energy for oxidative chain

scission of approximately 140 kJ/mol [134]. In this study, aging temperatures of 43

and 65 ◦C were chosen to simulate the wear condition of near body temperature

storage conditions, and 90 and 115 ◦C were used to accelerate degradation.

3.7.2 Experimental Determination of the Long-term Stability of UHMWPE

Fibers

3.7.2.1 Samples

The UHMWPE fibers used in this study were supplied by DSM Dyneema and

stored in dark ambient conditions. Fibers were wound onto perforated spools and

placed into dry ovens at 43, 65, 90, and 115 ◦C for a predetermined period of time. A
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series of relative temperature/relative humidity dataloggers (MicroDAQ) were used

to monitor temperature during the exposure period.

3.7.2.2 Mechanical Properties Testing

The mechanical properties of the yarns were measured using established meth-

ods for measuring the ultimate tensile strength. An Instron Model 5582 test frame

equipped with a 1 kN load cell and pneumatic yarn and cord grips (Instron model

2714-006) was used for these tests. The experiment was performed in accordance

with ISO 2062 [135]. A 58.42 cm (23 in) Dyneema yarn was given 23 twists (1 twist

per 2.54 cm) on a custom designed yarn-twisting device, and the level of twist was

maintained while transferring the yarn to the pneumatic grips. The gage length

was 25 cm and the crosshead speed was 250 mm/min. The strength at break was

recorded and each data point represents the mean of at least 7 trials.

3.7.2.3 Oxidation Measurement

Oxidation of the fiber samples was measured using Fourier Transform Infrared

Spectroscopy. A Nicolet Nexus 670 Fourier Transform Infrared Spectrometer (FTIR)

equipped with a liquid nitrogen-cooled mercury cadmium telluride (MCT) detector

and a SensIR Durascope (Smiths Detection) attenuated total reflectance (ATR) ac-

cessory was used in the oxidation measurement. Consistent pressure on the yarns

was applied using the force monitor on the Durascope. Final scans represent the av-

erage of 128 individual scans with a resolution of 4 cm−1 between 650 and 4000 cm−1,
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respectively. Spectra analysis, including spectral baseline correction and normaliza-

tion was carried out using a custom software package developed in the Polymeric

Materials Group at the National Institute of Standards and Technology to catalog

and analyze multiple spectra. The spectra were baseline corrected and normalized

using the peak at 1472 cm−1, which was attributed to the CH2 bending mode. Typ-

ical standard uncertainties for spectra measurement are 4 cm−1 in wavenumber and

1 % in peak intensity. For the purposes of evaluation the degree of oxidation, the

overlapping peaks were deconvoluted using the wizards available in the Microsoft

Origins software package between 1680 and 1740 cm−1. This peak ratio was intro-

duced as the oxidation index [136, 137, 138].

3.7.2.4 Crystallinity Determination

Differential scanning calorimetry was carried out using a TA Q2000 differential

scanning calorimeter (DSC) (TA Instruments). After exposure at the specified tem-

perature over a designated time interval, the UHMWPE fibers were cut into small

segments and sealed in a hermetic sample pan. The typical weight of the sample

was between 3 and 5 mg. Samples were held in at 25 ◦C for 5 min, then heated at

10 ◦C/min to 190 ◦C. Melting curves were resolved into three to four peaks, which

can be assigned to the melting of different crystal phases. The melting points were

characterized by the temperature of the peak maximum, and the heat of fusion was

determined by integrating the area under the curve. Three replicates were prepared

for each condition.
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3.7.3 Experimental Results and Discussion

3.7.3.1 Mechanical Properties of Artificially Aged Fibers

Figure 3.8 and Figure 3.9 show the change in tensile strength as a function

of aging at different temperatures. As anticipated, the reduction in tensile strength

was lowest at the aging temperature of 43 ◦C. Only a slight decrease in the tensile

(1.65 %) was observed after one week of aging, with a small additional decrease over

the first month to 1.96 %. A slow, steady deterioration in the tensile strength was

observed throughout the long term aging study. The study was ended at 102 weeks

of aging, with a final tensile strength loss of 9 %.

The reduction in residual tensile strength was more evident at the aging tem-

perature of 65 ◦C. The decrease in tensile strength after the first week was approx-

imately 3 %, and in the first month it was 7.73 %. After 94 weeks of aging, the

study was ended, with a final tensile strength loss of over 30 %.

As expected, the reduction in tensile strength was even more apparent at the

higher temperatures. The UHMWPE fibers lost 28 % of their initial tensile strength

at the aging temperature of 90 ◦C in the first week, and continuously decreased to

56 % after 17 weeks. Fibers exposed to the aging condition of 115 ◦C lost 42 % of

their original tensile strength after 1 week. The study continued for 17 weeks, after

which the fibers had lost 52 % of their original tensile strength. However, given

the rapid and catastrophic loss of tensile strength in the fibers aged at 90 ◦C and

115 ◦C, it is likely that these fibers are undergoing shrinking and losing orientation

during heating. Shrinkage of highly drawn and oriented polyethylene has been

149



Figure 3.8: The decrease in tensile strength of artificially aged UHMWPE fibers at
various temperatures over time. The 43 ◦C exposure was repeated to verify original
data. Data for the second trial at 43 ◦C are designated as 43 ◦C new.
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Figure 3.9: The decrease in residual tensile strength of artificially aged UHMWPE
fibers at various temperatures over time (log scale).

151



widely reported [139, 140, 141]. The loss of orientation in the fiber is probably

largely responsible for the rapid loss in tensile strength (especially at 1 week) in the

fibers aged at 90 ◦C and 115 ◦C, rather than oxidative chain scission. It is likely

that this loss in tensile strength occurred very quickly after exposure to the 90 ◦C

and 115 ◦C ovens. Data collected at these temperatures will still be used in the

activation energy calculation discussed below, but probably represents a different

mechanism of tensile strength loss.

In order to assess the long term service life of UHMWPE fibers, the master

curve at 43 ◦C, as shown in Figure 3.10. The lowest aging temperature represents the

base use condition for the fibers (body temperature). A master curve was created

by using 43 ◦C as the reference temperature, and then horizontally shifting the

higher temperature aging data until they superimpose smoothly to form a single

curve [33, 142, 143]. The amount that each curve must be shifted is called the shift

factor, at, and is used in Equation 3.1 to determine the activation energy of the

aging mechanism.

ln at = ln
tt
t0

= −Ea
R

(
1

T ref
− 1

T

)
(3.1)

Where at is the shift factor, t0 is the aging time of reference temperature,

tt is aging time after shifting, Ea is the activation energy, R is the universal gas

constant, and Tref is the reference temperature. The value of the activation energy as

calculated by Equation 3.1 is found to be 140 kJ/mol, in agreement with previously

published results [33].
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Figure 3.10: The decrease in residual tensile strength of artificially aged fibers at
various temperatures over time (log scale).
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Figure 3.11: FTIR spectra of baseline, or unaged, UHMWPE fiber. The units
of absorbance are arbitrary. The characteristic peaks at 2916 and 2848 cm−1 are
identified as sp3 C-H stretching, 1471 and 1461 cm−1 are assigned to C-H bending,
731 and 717 cm−1 are in-phase and out-of-phase C-H rocking, respectively. A small
peak around 1125 cm−1 is unassigned.

3.7.3.2 Oxidation Analysis

A representative FTIR spectra of baseline, or unaged UHMWPE fibers is

shown in Figures 3.11. The characteristic peaks at 2916 and 2848 cm−1 are identified

as sp3 C-H stretching, 1471 and 1461 cm−1 are assigned to C-H bending, 731 and

717 cm−1 are in-phase and out-of-phase C-H rocking, respectively. The FTIR spectra

for all fibers are included for reference in Appendix B.
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Oxidation increases with aging temperature and time, and is identified by the

formation of a new peak at 1737 cm−1 which is assigned to an ester; and another

shoulder peak is expected at 1713 cm−1, which is identified as a ketone. At least two

peaks are superimposed to form a complex FTIR spectrum. Both peaks were treated

as Gaussian functions and fitted by OriginPro software as shown in Figure 3.12

through 3.14. The intensity of the ketone group intensified with increasing aging

time at 43 ◦C. Thus, the degree of oxidation of UHMWPE fibers could potentially

be quantified by introducing the oxidation index (OI), as used in other artificial

aging applications for bulk UHMWPE [129, 138, 144]. For the purposes of this

study, the peak at 1472 cm−1 was used as the reference peak, and the OI is the peak

area at 1713 cm−1 divided by the peak area at 1472 cm−1. Equation 3.2 gives the

relationship between OI and aging time. Figures 3.15 and 3.16 show the increase in

OI over time for all aging temperatures.

OI =
A1713cm−1

A1472cm−1

(3.2)

The OI increased moderately at the lower aging temperatures. For the aging

temperatures 43 ◦C and 65 ◦C, the OI increased from 0.0002 to 0.0243 and 0.0249,

respectively, with a curve shape of concave-up. For the higher aging temperatures,

the OI increased more rapidly. After 17 weeks of aging at 90 ◦C, the OI increased

from 0.0002 to 0.0385, and for 17 weeks of aging at 115 ◦C, the OI increased from

0.0002 to 0.0471. Figure 3.17 shows the relationship between tensile strength and OI,

the higher the aging temperature, the faster the drop in tensile strength, regardless
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Figure 3.12: Resolved FTIR spectra of UHMWPE fiber aged at 43 ◦C for 1 week,
scale enlarged to show 1680 to 1780 cm−1 region, where oxidation appears, more
clearly. The units of absorbance are arbitrary. The shoulder of this peak is re-
solved using deconvolution software to elucidate the formation of a new peak around
1713 cm−1.
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Figure 3.13: Resolved FTIR spectra of UHMWPE fiber aged at 43 ◦C for 4 weeks,
scale enlarged to show 1680 to 1780 cm−1 region, where oxidation appears, more
clearly. The units of absorbance are arbitrary. The shoulder of this peak is re-
solved using deconvolution software to elucidate the formation of a new peak around
1713 cm−1.
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Figure 3.14: Resolved FTIR spectra of UHMWPE fiber aged at 43 ◦C for 102
weeks, scale enlarged to show 1680 to 1780 cm−1 region, where oxidation appears,
more clearly. The units of absorbance are arbitrary. The shoulder of this peak
is resolved using deconvolution software to elucidate the formation of a new peak
around 1713 cm−1.
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Figure 3.15: Changes in oxidation index (OI) for different aging temperatures as a
function of time for UHMWPE fibers (log axis).

of the OI value.

3.7.3.3 Thermal Analysis and Crystallinity Determination

Representative DSC thermograms of UHMWPE fibers aged at various tem-

peratures for 4 weeks are presented in Figure 3.18. Thermograms of UHMWPE

fibers aged at all available combinations of temperature and time showed multiple

broad melting peaks with overlapping regions between 139 and 158 ◦C. These melt-

ing peaks were assumed to be Gaussian, and OriginPro 8.0 was used to predefine

four different melting peaks and adjust the ratio of these melting peaks. Typically,

the calculation of percent crystallinity using a literature value from DSC data (243.4

J/g [129]) is an excellent way to assess relative changes between samples with aging.
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Figure 3.16: Changes in oxidation index (OI) for different aging temperatures as a
function of time for UHMWPE fibers (linear axis).

However, for these UHMWPE fibers, the overall percent crystallinity of the fibers

as calculated by this method was nearly unchanged, as shown by the Table 3.1. It

was evident, however, that there were 4 different melting points superimposed on

each other, and that the relative fraction of the sample melting at these different

temperatures was changing. Therefore a different approach to this analysis was

taken.

The effect of aging temperature on melting temperature and heat of fusion are

shown in Figures 3.19 and 3.20. At least four endothermal peaks were deconvoluted

for the aging temperatures below 90 ◦C, and three peaks for 115 ◦C. The lowest melt-

ing peak in the region of 139 ◦C is assigned as Tm1, which is relatively broad. This

peak increased slightly with increasing aging temperature and is typically referred
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Figure 3.17: The relationship between tensile strength and oxidation index at dif-
ferent aging temperatures for UHMWPE fibers. In all cases, as the OI increases,
tensile strength decreases.

Sample Tm1 Tm2 Tm3 Tm4 ∆Hf Xc

Condition ◦C ◦C ◦C ◦C J/g %

Unaged 136.4 147.9 155.7 159.0 264.8 91
43 ◦C, 13 wks 137.9 148.4 155.0 - 263.9 90
65 ◦C, 16 wks 137.9 148.4 154.7 - 271.2 93
90 ◦C, 17 wks 138.4 148.7 154.9 - 259.2 89
115 ◦C, 17 wks - 148.9 154.4 - 276.0 94

Table 3.1: Summary of melting points, heat of fusion, and crystallinity for
UHMWPE aged at various temperatures for between 13 and 17 weeks. Note that
the percent crystallinity is not greatly changed with aging, while the resolution of
melting points is changed with aging. Standard uncertanties associated with the
use of DSC in the measurement of these thermal properties is 5 %.
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Figure 3.18: DSC thermograms of UHMWPE fibers, after 4 weeks of aging at various
temperatures. Note the formation of a shoulder on the endothermic melting peak
around 149 ◦C.
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to as the melting of the folded lamellar crystal [129, 145, 146]. This increase in the

melting temperature can be associated with increasing thickness of the lamella and

alignment of the chains [129, 145, 146]. The heat of fusion (∆Hm) of Tm1 increases

by about 7 % with the increase in aging temperature from 43 to 115 ◦C. The melting

peak around the region of 149 ◦C is assigned as Tm2, which is the strongest signal

in the melting thermogram. Tm2 was attributed to melting of orthorhombic crys-

tals to form pseudo-hexagonal crystals [129, 145, 146]. It did not show significant

changes in melting temperature with increased aging time. However, the percentage

of peak area for the heat of melting increased from 47.6 to 55.7 % with the increase

in aging temperature from 43 to 90 ◦C, and then dropped to 46 % at 115 ◦C. Tm3

is located at 154 ◦C which was attributed to the melting of the mesophase crystal,

pseudo-hexagonal [129, 145, 146]. The (∆Hm) of Tm1 increases from 24.7 to 39.8 %

when the aging temperature is increased from 43 to 115 ◦C. The fourth peak, Tm4,

only appeared in the melting curves for fibers aged at lower temperatures, and may

attributed to the melting of the monoclinic crystal phase [129, 145, 146].

To further investigate the effect of aging on crystallinty, the melting temper-

ature and (∆Hm) were plotted as a function of aging time. The melting points

are plotted in Figures 3.21 to 3.24, and the percentage of peak area for the heat of

melting were plotted in Figures 3.25 to 3.28. To calculate these areas,the melting

endotherm was deconvoluted into four peaks to correspond with the four different

melting points. These peaks were integrated to give four different areas, and then

the percentage of the area of the total melting endotherm attributed to each indi-

vidual peak was calculated. A representative example of the peak deconvolution is
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Figure 3.19: Change in melting points for four different peaks as a function of aging
temperature for UHMWPE.

Figure 3.20: Change in heat of fusion as a function of aging temperature for
UHMWPE.
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given in Appendix B. For Tm1, Tm2 and Tm4, there were only slight changes and no

visible changes in melting temperature among the four different aging temperatures

over the course of the aging experiment. However, Tm3 increased slowly for aging at

43 and 65 ◦C after aging 102 and 94 weeks, respectively but showed no significant

change after aging at 90 ◦C for 18 weeks. There was a faster increase for aging at

115 ◦C. Generally, the overall trend of (∆Hm) for Tm1, Tm2 and Tm3 was an increase

with increasing aging time, excluding minor fluctuations, except for Tm1 aging at

115 ◦C. The percentage of peak area for Tm4 decreased with increasing aging time,

especially at higher aging temperature. However, Tm4 can only be resolved under

four weeks aging at 90 ◦C and cannot be observed at the aging temperature of

115 ◦C.

It is reasonable to expect that the tensile strength of UHMWPE fibers is

associated with its thermal properties. The loss of tensile strength in the aged

UHMWPE fibers may result from the growth of smaller crystallites during aging

process or the vanishing of some crystals. In order to further investigate this theory,

wide-angle X-ray scattering was performed on the fibers.

3.7.3.4 Characterization of Morphological Changes in Fiber Due to

Aging

Wide angle X-ray scattering (WAXS) measurements were conducted using

a laboratory-scale small-angle X-ray scattering instrument1(Rigaku) with Mo Kα1

radiation of wavelength 0.70926 Å in conventional pinhole geometry. The incident
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Figure 3.21: Melting points for four different peaks as a function of aging time for
UHMWPE aged at 43 ◦C.
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Figure 3.22: Melting points for four different peaks as a function of aging time for
UHMWPE aged at 65 ◦C.
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Figure 3.23: Melting points for four different peaks as a function of aging time for
UHMWPE aged at 90 ◦C.
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Figure 3.24: Melting points for four different peaks as a function of aging time for

UHMWPE aged at 115 ◦C.
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Figure 3.25: Percentage of peak area for the heat of melting as a function of aging
time for UHMWPE aged at 43 ◦C. To calculate these areas,the melting endotherm
was deconvoluted into four peaks to correspond with the four melting points as
discussed previously. These peaks were integrated to give four different areas, and
then the percentage of the area of the total melting endotherm attributed to each
individual peak was calculated and plotted here. A representative example of the
peak deconvolution is given in Appendix B.
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Figure 3.26: Percentage of peak area for the heat of melting as a function of aging
time for UHMWPE aged at 65 ◦C. To calculate these areas,the melting endotherm
was deconvoluted into four peaks to correspond with the four melting points as
discussed previously. These peaks were integrated to give four different areas, and
then the percentage of the area of the total melting endotherm attributed to each
individual peak was calculated and plotted here. A representative example of the
peak deconvolution is given in Appendix B.
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Figure 3.27: Percentage of peak area for the heat of melting as a function of aging
time for UHMWPE aged at 90 ◦C. To calculate these areas,the melting endotherm
was deconvoluted into four peaks to correspond with the four melting points as
discussed previously. These peaks were integrated to give four different areas, and
then the percentage of the area of the total melting endotherm attributed to each
individual peak was calculated and plotted here. A representative example of the
peak deconvolution is given in Appendix B.
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Figure 3.28: Percentage of peak area for the heat of melting as a function of aging
time for UHMWPE aged at 115 ◦C. To calculate these areas,the melting endotherm
was deconvoluted into four peaks to correspond with the four melting points as
discussed previously. These peaks were integrated to give four different areas, and
then the percentage of the area of the total melting endotherm attributed to each
individual peak was calculated and plotted here. A representative example of the
peak deconvolution is given in Appendix B.
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beam, diffracted beam and sample chamber were under vacuum. An image plate was

used to collect the two-dimensional scattering patterns. The fibers were mounted

perpendicular to the direction of the beam [147].

X-rays are electromagnetic radiation occupying the spectrum from approxi-

mately 10−2 to 102 Å. WAXS studies on polymers are typically either performed

using the Kα characteristic radiation from a copper target tube with a wavelength

of 1.5418 Å, or the wavelength 0.7107 Å from a molybdenum target tube. The X-ray

wavelength of approximately 1 Å is approximately the same order of magnitude as

the interatomic distances of interest in condensed matter, making X-rays a powerful

tool for probing the arrangement of atoms in matter [147].

X-rays exhibit a particle-wave duality, therefore certain properties of X-rays

are best considered when a beam of X-rays is considered as a stream of photons.

Photons can be characterized by an energy E and a momentum p, while a wave is

characterized by a wavelength λ and a frequency ν. These are related by the de

Broglie relationship. There is no mass or charge associated with a photon, thus the

shorter the wavelength, the higher the photon’s energy. for CuKα and MoKα, the

photon energies are 8.04 and 17.44 keV, respectively [147].

The strength of a beam of radiation is characterized by its flux. If the beam is

a plane wave, then the flux J is measured as the amount of energy transmitted per

unit area per second. When the radiation is considered as a stream of particles, J

is represented by the particle flux, or the number of photons passing through a unit

4The small-angle X-ray scattering instrument was reconfigured for WAXS by moving the de-

tector to perform these measurements.
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area per second. When the radiation is regarded as a wave J, is proportional to the

square of the amplitude of the oscillating wave field. When a plane wave of flux J0

irradiates a sample, a scattered spherical wave emanates in all directions. To obtain

information about the structure of the sample, the flux of the scattered radiation,

J must be interpreted as a function of the scattering direction, and will change in

proportion to J0. Therefore, the ratio J/J0 as a function of the scattering direction

is the information of interest. Given that J0 is a plane wave and J is a spherical

wave, the ratio J/J0, which is also called the differential scattering cross section,

has a dimension of area per solid angle. The differential scattering cross section can

be integrated to give the total scattering cross section, which is the total number

of particles scattered in all directions per second divided by the flux of the incident

beam. The total scattering cross section has the dimension of area [147].

Diffraction of X-rays by matter results from scattering of X-rays by individ-

ual electrons in the sample and interference of the scattered waves. In a WAXS

experiment, the flux is measured as a function of the scattering direction. These

data are analyzed to obtain information about the relative location of atoms in the

sample [147].

Figure 3.29 shows the geometry of the path length difference of a scattering

experiment. S0 is the unit vector describing the direction of an incident plane wave,

as shown in Figure 3.29. The incident wave, S0 is scattered by particles located at

points O and P in the schematic. A detector is placed in the direction specified by

unit vector S at a distance far from the scattering centers. As long as the scattering

is coherent and does not result in a phase change, the phase difference ∆φ between
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Figure 3.29: A schematic of a neutron or X-ray scattering experimental setup show-
ing the path length difference between the radiation source, the scattering centers,
O and D, being analyzed, and the detector [147].

the waves scattered at O and P arriving at the detector depends on the path length

difference δφ between the two rays [147].

3.7.3.5 Results and Discussion of WAXS Analysis

Gel spun UHMWPE fibers are between 80 and 90 % crystalline, and consid-

ering their means of manufacture, the crystallites within the fiber are expected to

be very highly oriented. An examination of the scattering intensity plots in Fig-

ure 3.30 shows that for the unaged UHMWPE sample in the upper left corner, the

circumferential diffraction spots are grouped in narrow arcs. These broaden with

increased aging time and temperature, as shown in the scattering intensity plots for

the aged specimens. Thus, these samples lose orientation when exposed to elevated

temperatures for long periods of time, likely due to shrinkage and relaxation of the

fiber, as previously discussed. Some of the loss of orientation may also be due to the

formation of a transient hexagonal “mobile” or “rotator” crystal phase [148, 149].
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Figure 3.30: WAXS scattering intensity plots for aged and unaged UHMWPE fibers.
The orientation of the fibers is decreased with exposure to elevated temperatures.

This phase has been observed to form with the stable orthorhombic phase at tem-

peratures below the melting point of the orthorhombic phase [149].

Figure 3.31 shows equitorial wide angle X-ray scattering (WAXS) from UHMWPE

fibers in various aging conditions, taken from 2D data in Figure 3.30. These con-

ditions are unaged samples, samples aged at 43 ◦C for 21 weeks, samples aged at

65 ◦C for 102 weeks, samples aged at 65 ◦C for 73 weeks, samples aged at 90 ◦C for

17 weeks, and samples aged at 115 ◦C for 8 weeks.

The WAXS scattering was performed with the direction of the X-ray beam

aligned perpendicular to the axis of the fiber (perpendicular to the direction of

the fiber’s orientation). The arrangement of chains in an orthorhombic unit cell of

polyethylene is shown in Figure 3.32 for reference. The polyethylene orthorhombic
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Figure 3.31: WAXS from UHMWPE fibers aged at various conditions for various
times. These conditions are new, unaged samples, samples aged at 43 ◦C for 21
weeks, samples aged at 65 ◦C for 102 weeks, samples aged at 65 ◦C for 73 weeks,
samples aged at 90 ◦C for 17 weeks, and samples aged at 115 ◦C for 8 weeks.
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unit cell dimensions for orthorhombic are a = 0.741 nm, b = 0.494 nm, and c = 0.255

nm [150] and the polyethylene hexagonal unit cell dimensions are a = 0.842 nm, b =

0.456 nm, and c < 0.255 nm [148]. The two peaks in the WAXS data at q = 1.53 Å−1

and q = 1.70 Å−1 are indexed to the orthorhombic crystal structure of UHMWPE,

while the peak at q = 1.39 Å−1 is indexed to the [1 0 0] reflection of the hexagonal

phase [151]. Previous work was used to assign all peaks [152, 153, 154, 149, 148, 151].

Increases are seen in the scattering of the [1 0 0] hexagonal peak for fibers

aged at 65 ◦C for 73 and 102 weeks, indicated by the blue and green curves in

Figure 3.31. There are also corresponding decreases in the scattering intensity for the

orthorhombic planes at [1 1 0] and [2 0 0], most likely due to the loss of orientation

smearing the intensity out azimuthally. Previous work [149] has also shown the

formation of a metastable hexagonal phase upon heating of solution-crystallized

polyethylene samples, although it is unclear why this result is most pronounced for

the fibers heated to 65 ◦C and not to higher temperatures.

Further examination of WAXS data show the formation of shoulders to the

left and right of the [2 0 0] peak. These shoulders may be due to the formation of

a second hexagonal peak. The peaks at [1 0 0]h, [1 1 0], and [2 0 0] are very close

together, so it is difficult to discern peak overlap from amorphous (which is typically

seen as a broad, ill-defined peak in WAXS). There is likely a contribution from both

the amorphous region and the overlap of these peaks that result in broad peaks

that do not reach the baseline. The shoulder may also be due to the formation of

small crystallites due to recrystallization of the sample after aging at the elevated

temperatures, which is akin to annealing of these samples. Overall, the shapes of
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Figure 3.32: The arrangement of molecular chains for an orthorhombic unit cell for
polyethylene [150].
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the peaks appear to broaden and become less intense with increased aging time

or temperature. Overall, the WAXS results verify that the UHMWPE fibers lose

orientation due to aging, and that there is the possible formation of a hexagonal

phase. Further experimental work is necessary to fully understand the changes in

morphology in UHMWPE fibers due to elevated temperature aging.

3.8 Summary

In summary, when exposed to elevated temperatures for long periods of time,

UHMWPE fibers lose tensile strength. Fibers exposed to 90 ◦C and 115 ◦C undergo

shrinkage and loss of orientation, which causes a loss in tensile strength. Molecular

spectroscopy verified that all samples were oxidized by the elevated temperature

exposure. There are also changes in the morphology of the fibers. These factors

should all be considered when using these fibers in conditions in which they might

be exposed to elevated temperatures for long periods of time.
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Chapter 4

Irradiation of UHMWPE Fibers

4.1 Chapter Overview

In this chapter, previous efforts to use ionizing radiation to crosslink UHMWPE

fibers are described. Exploratory work performed to crosslink UHMWPE fibers us-

ing low overall dose, high dose rate, electron beam irradiation is discussed.

4.2 Irradiation of Bulk Polyethylene

Ionizing radiation has long been used to crosslink bulk polyethylene. When

polyethylene is irradiated, ions and excited states are formed [155]. When polyethy-

lene is subjected to ionizing radiation, alkyl free radicals, trans-vinylene unsatura-

tions, diene unsaturations, and hydrogen gas are formed [156, 157, 158]. A schematic

drawing of the (a) alkyl, (b) allyl, (c) dienyl, (d) trienyl, and (e) tetraenyl free radi-

cals are depicted in Figure 4.1. Alkyl free radicals are unstable and quickly migrate

via a hydrogen hopping mechanism, which will be discussed in a subsequent section.

Alkyl free radicals can decay via one of three different mechanisms. In the first,

intramolecular recombination, two alkyl radicals on the same polyethylene chain

can combine, forming a trans-vinylene unsaturation. The next, intermolecular re-

combination, two alkyl radicals on adjacent chains combine, forming a crosslink.
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The third possibility is that the alkyl radical migrates to an allylic position of an

unsaturation, forming either an allyl free radical if it is a vinylene, or forming a

polyenyl free radical if it is a polyene unsaturation [159].

While some alkyl free radicals form allyl free radicals in the crystalline re-

gion [160], most alkyl free radicals are expected to migrate to the crystal surface,

where crosslinks, (bonds between two adjacent polymer chains) can be formed.

Crosslinking in the crystalline region of the polymer is not favored because the

spacing between the chains (4.1 Å) is longer than the carbon-carbon bond length

(1.5 Å) [161].

Another process that can occur during the irradiation of polyethylene is chain

scission. Chain scission results in a reduction of the average molar mass of a macro-

molecule [162]. Typically polyethylene will preferentially form crosslinks during

radiation treatment, with the ratio between the number of main chain scissions

and crosslinks not exceeding 0.1, assuming that irradiation is performed in an en-

vironment that excludes oxygen, so chain scission is not an issue [162, 163, 164].

Oxidation does occur in the irradiation of polyethylene when oxygen diffuses into

the polymer during or after irradiation. Peroxyl radicals, hydroperoxides, and per-

oxides are all species that play an important role in the radiation induced oxidation

of polyethylene. The primary product is a hydroperoxide, which decomposes to

free-radicals that initiate the oxidation of the polymer to form ketone groups, which

undergo chain scission, reducing the overall strength of the polymer [165].

One important mechanism for solid state radical migration, which was pro-

posed by Dole, is a set of successive inter or intra-molecular hydrogen abstraction
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Figure 4.1: Free radicals expected from the irradiation of polyethylene. Schematic
drawing of the (a) alkyl, (b) allyl, (c) dienyl, (d) trienyl, and (e) tetraenyl free
radicals.
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Figure 4.2: Hydrogen abstraction from one chain to another, and the simultaneous
hop of the radical site [166].

reactions, which can also be called hydrogen hopping. In this reaction, a radical site

on a macromolecule abstracts a hydrogen atom from an adjacent carbon atom (ei-

ther on the same chain or a nearby chain), meaning that the radical site effectively

moves to a new location. This process can repeat itself, another hydrogen can be

abstracted, and the radical can move once again to a new location, and so on. Via

this process, the radical undergoes a random walk throughout the solid polymer.

Figure 4.2 shows the first step in this hydrogen hopping mechanism [166].

4.3 Irradiation of UHMWPE Fibers

In an effort to improve properties such as thermal conductivity [167], low

temperature thermal strain [168], and creep resistance of UHMWPE fibers, many

researchers have undertaken efforts to crosslink these fibers using high energy radi-

ation [107, 115, 121, 125, 164, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176], or

some form of chemical or ultraviolet crosslinking [177, 178, 179, 180, 181, 182].
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4.3.1 Low Dose Rate Irradiation

Several papers were published on the use of gamma irradiation in various

doses to crosslink UHMWPE fibers [164, 169, 174, 175, 176]. In one such paper

from 1981, deBoer and Pennings irradiated UHMWPE fibers with tensile strengths

ranging from 1.6 to 3.5 GPa using 60Co gamma radiation, with doses varying from

7 to 91 kGy. The authors were successful at crosslinking the fibers, as demon-

strated by gel contents following irradiation of up to 85 %, however, they observed

a marked decrease in tensile strength (up to 40 %) with increasing dose. The au-

thors attributed this decrease in tensile strength to preferential chain scissioning

of stressed chains (later called TTMs) in the fiber structure. In an effort to test

this hypothesis, the authors annealed fibers with an initial tensile strength of 3.5

GPa prior to irradiation in an effort to relax these stressed chains and reduce the

potential for their preferential scission during crosslinking. The annealing produced

a slight decrease in tensile strength, to about 3.4 GPa. After 8 kGy of irradiation,

the tensile strength was found to decrease only another 3 %, to 3.3 GPa. In addi-

tion, the authors note that the very presence of crosslinks may reduce the tensile

strength of the fiber by causing a local increase in density and creating an area of

stress concentration [176]. A further publication from the same authors was able

to determine a crosslinking efficiency of 0.33 crosslink per 100 eV of absorbed en-

ergy for this experiment [169]. In 1996, Deng and coworkers revisited the topic of

gamma irradiation of UHMWPE fibers. Samples were exposed to a nominal dose of

2.5 Mrad (25 kGy) in three environments: air, nitrogen, and acetylene using a 60Co
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source and a 0.25 Mrad/h (2.5 kGy/h) dose rate. Differential scanning calorimetry

analysis was performed to study crystalline melting and thermal oxidation. Melting

peak analysis indicated a dual melting peak, possibly due to a core-skin structure

for the fibers. Changes were observed in the melting peaks of samples irradiated

in air and in acetylene that were attributed to changes in the molecular structure

due to chain scission and oxidation for the air irradiated samples, and crosslinking

for the acetylene irradiated sample. Tensile testing was performed to assess the

tensile strength of the fibers after irradiation, and was shown to vary according to

irradiation environment. Results of Deng’s study are puzzling because they show

an increase in tensile strength immediately after irradiation for all samples except

for those irradiated in air, but 160 days after irradiation, a major reduction in ten-

sile strength was observed. This is probably due to the lack of annealing in this

experiment, which would have eliminated long-lived radical species and prevented

the detrimental oxidation of the polymer observed by this study.

The tensile strength (tenacity) of the fibers was decreased after irradiation

slightly for samples in the acetylene environment, and significantly for samples in

the air environment. The authors attribute this to crosslinking and oxidation, re-

spectively. The tenacity of the samples irradiated in nitrogen and under vacuum

was slightly improved. After 160 days of post-irradiation aging, all of the samples

showed a decrease in tenacity, leading the authors to conclude that the tensile prop-

erties of UHMWPE fibers are reduced upon exposure to gamma irradiation [175].

Conversely, work on the irradiation of highly oriented HDPE polyethylene fibers

indicates that the tensile properties of these fibers are enhanced by radiation treat-
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ment [164, 174]. This indicates that a different mechanism exists for interaction

of radiation with the UHMWPE fibers than for fibers of lower molecular weight,

probably due to their unique structure.

4.3.2 Differences between High and Low Dose Rate Irradiation

The two main technologies commercially available for the irradiation of mate-

rials are gamma sources, typically 60C sources, and electron beams, which generate

beams of mono-energetic electrons and have a very high dose rate [162]. Gamma

sources generate photons which are scattered during their interaction with matter

by several processes to form electrons. These include the photoelectric effect, the

Compton scattering, and pair production. The photoelectric effect, in which a pho-

ton ejects a single electron from an atom of the stopping material, and is described

by Equation 4.1 is the principal interaction process at low photon energies [162].

Ee = E0 − Es (4.1)

Where Ee is the energy of the ejected electron, E0 is the energy of the incident

photon, and Es is the binding energy of the electron in the atom. Compton scattering

occurs when a photon interacts with either a free or a bound electron, so that the

electron is accelerated and the photon deflected with reduced energy, and is described

by Equation 4.2 [162].

Ee = E0 − Eγ (4.2)
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In which Ee is the energy of the recoil electron, E0 is the energy of the incident

photon, and Eγ is the energy of the scattered photon. Pair production involves the

complete absorption of a photon in the vicinity of an atomic nucleus, or less fre-

quently, an electron with the formation of two particles, an electron and a positron,

and is described by Equation 4.3 [162].

E0 = Ee + Ep + 2mec
2 (4.3)

Where E0 is the energy of the incident photon, Ee is the energy of the electron,

Ep is the energy of the positron, and me is the rest mass of the electron, and c is

the speed of light in a vacuum. The value for this term is the rest energy of the

electron, or 0.511 MeV. The decay of the 60Co isotope produces two gamma rays,

one having an energy of 1.173 MeV and one having an energy of 1.333 MeV, as

shown in Figure 4.3 [162].

Electron beam radiation interacts with matter through elastic and inelastic

scattering, and the emission of electromagnetic radiation. Elastic scattering occurs

when electrons are deflected by the electrostatic field of an atomic nucleus. Inelas-

tic scattering occurs when electrons interact with the electrostatic field of atomic

electrons so that the atomic electrons are either excited to a higher energy level or

ionized. These processes are inelastic because they involve the transfer of energy

from the incident electron to the atomic electron, which causes the incident electron

to slow down. The energy loss per unit path length −(dE/dl)col due to inelastic colli-

sions is known as the specific energy loss or stopping power. Mass collision stopping
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Figure 4.3: Decay of the 60Co isotope.
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Figure 4.4: Number-distance curve for 60Co gamma radiation absorbed in wa-
ter [162].

power (S/ρ)col is more commonly calculated and is given by Equation 4.4 [162].

(
S

ρ

)
col

= −
(
dE

dl

)
col

(
1

ρ

)
(4.4)

Where ρ is the density of the material. High speed charged particles passing

close to the nucleus of an atom may be decelerated, and the energy loss emitted

as electromagnetic radiation. This emitted radiation is known as bremsstralung

radiation, or X-rays [162].

Linear energy transfer (LET) is defined as the linear rate loss of energy by an

ionizing particle traversing in a material medium. In gamma irradiation, photons are

generated first, and these interact with matter to form electrons. In electron beam

irradiation, mono-energetic electrons are generated directly. For gamma irradiation,

the number of photons transmitted per given thickness of water for a 60Co source is

shown in Figure 4.4 [162].
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Figure 4.5: Depth-dose curve for 5 MeV electrons in water [162].

The penetration of the accelerated electron depends upon the kinetic energy

of the electron. A depth-dose curve for 5 MeV electrons in water is shown in Fig-

ure 4.5 [162].

Another major distinction between the two sources is the dose rate. Typically,

gamma irradiation is known as a low dose rate type of irradiation. Typical dose rates

from a gamma irradiator are between 5 and 25 kGy/h, while electron accelerators

can deliver dose rates thousands of times higher. This means that the same dose that

takes hours in the gamma irradiation source will take only seconds or minutes in the

electron accelerator. The high dose rate environment in the electron accelerator can

also lead to significant thermal effects. Another issue to consider is the difference

in the availability of oxygen diffusion and oxygen degradation during the exposure
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time- materials irradiated for longer periods of time are more likely to undergo

oxidation [183].

4.3.3 High Dose Rate Irradiation

Many researchers have examined high dose rate electron beam irradiation as a

potential means of crosslinking UHMWPE fibers. Klein, et al. published a paper in

1987 examining the effectiveness of irradiation of UHMWPE fibers for crosslinking.

They note that most crosslinking occurs in the amorphous regions of the polymer,

meaning that samples of low crystallinity are more efficiently crosslinked than those

of high crystallinity. Additionally, the authors note that the formation of crosslinks

that link crystal layers are most important in forming a material with a high gel

content (high crosslinking). Klein also notes that for the case of irradiation of

UHMWPE gel spun fibers, chain scission is an important reaction [37], whereas

in the case of bulk polyethylene, crosslinking is the dominant reaction and chain

scission is relatively unimportant [162, 184, 185, 186, 187]. Samples of UHMWPE

fibers were irradiated using either a 6 MeV, 1 kW pulsed electron beam unit, or a 2.9

MeV, continuous electron beam from a Van de Graaf generator. Samples were either

irradiated in vacuum or in an acetylene environment. Experiments to measure the

tensile creep, recovery and yield behavior of the irradiated fibers were conducted

and found that the irradiated fibers had a lower creep rate at all stresses tested for

both environments (air and acetylene) and also that the gel spun fiber was more

sensitive to chain scission by irradiation than a lower molecular weight melt spun
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fiber. Evidence of crystal chain scission was observed during tensile creep testing,

which the authors attribute to the high molecular weight and morphology of the

fiber.

Chain scission is more catastrophic in a high molecular weight system, and

available crosslink sites are saturated at low dose due to the low amorphous content

of these fibers. After the crosslink sites are saturated, chain scission becomes domi-

nant in the fiber. This is further underscored by gel fraction data obtained by Klein

showing gel fractions increasing in the UHMWPE fibers (indicating crosslinking)

up to a dose of 0.13 Mrad (1.3 kGy), and after that point dropping significantly

[172]. This is in direct contrast to polyethylene fibers of normal molecular weight,

irradiated in an acetylene environment at doses up to 4.8 Mrad (48 kGy), also

measured by Klein in a different publication, in which gel content was shown to in-

crease almost linearly with dose and also resulted in an improvement in mechanical

properties [173].

4.3.3.1 Role of Taut Tie Molecules

A conclusion that can be drawn from the work reviewed in the previous sections

is that the irradiation of UHMWPE fibers to improve resistance to creep requires

very carefully controlled experiments due to the tendency of these fibers to undergo

chain scission as opposed to crosslinking. The fibers are extremely sensitive to chain

scission by irradiation, which was explored further in a work by Dijkstra in 1988.

This paper discusses the role of the taut tie molecules (TTMs) that were discussed
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Figure 4.6: Schematic model of the gel-spun hot-drawn UHMPWE fiber, consisting
of crystal blocks with length lc and disordered domains with length la [115].

previously in the irradiation of UHMWPE fibers [115]. The tensile strength of the

UHMWPE fiber depends on the TTM chains that connect crystal blocks in the fiber

structure. Stresses in the microfibrils are transferred between crystals by the TTMs

and the disordered region between crystals, making these two regions the weakest

points in the microfibrils. The C-C bond strength is theoretically calculated to be

about 25-30 GPa based on Morse potential calculations and infrared spectroscopy

data. As discussed previously, actual strengths and elongations are much less than

these theoretical values. The elongation at break ( b) is determined by the sum of

the length of the crystal block, the length of the disordered domain, and the tensile

stress at break, as depicted in Figure 4.6 and shown by Equation 4.5.

εb =
∆l

l
=

( σb
Ec
lc + 0.35la

lc + la

)
(4.5)

Where la is the length of the disordered domains, lc is the length of the crys-

talline domains, σb is the tensile stress at break, Ec is the crystalline modulus, and

0.35 represents the elongation at break of the disordered domain, estimated at about

35 %. The tensile modulus of the fiber is given by Equation 4.6.
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E =
σ

ε
=

1 + la
lb

1 +
(

1
β
. la
lc

) (4.6)

Where β is the fraction of load carrying TTMs in the disordered domain.

Upon irradiation of the fiber and subsequent scission of the TTM, both ends of

the TTM will immediately recoil due to the sudden release of stress in the chain.

The two radicals will be separated over such a distance that the probability of their

recombination, as would occur in the irradiation of most types of polyethylene, is

not a likely event. This means that in the case of tensile testing, the stress must

be transferred by the remaining TTMs, therefore the stress in these molecules is

increased and the overall tensile strength of the fiber is lowered. This theory offers

a reasonable explanation of the difficulty encountered in crosslinking UHMWPE

fibers, though notably absent from discussions of this topic is the role of dose rate

in chain scission or crosslinking of UHMWPE fibers [115].

4.3.3.2 Role of Acetylene in Crosslinking

Another important observation is that the experiments that have successfully

crosslinked UHMWPE fibers using irradiation have all taken place in an acetylene

environment. In 1993, Jones, Salmon, and Ward undertook an effort to better

understand this phenomenon using high modulus (but not ultra-high molecular

weight) polyethylene fibers and linear low density polyethylene films. These two

forms of polyethylene were selected to aid in measuring the samples via electron

spin resonance and ultraviolet-visible spectroscopy, respectively. Results from these
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spectroscopic methods showed that samples irradiated in acetylene had a greater

presence of polyenyl radicals than samples irradiated under vacuum. The authors

postulate that radical pairs are crosslinked by polyene bridges, which simultaneously

prevent disproportionation reactions that lead to chain scission in the polymer. The

authors propose a mechanism for this reaction (Figure 4.7), in which dienyl, trienyl,

and tetraenyl crosslinks can all be formed. One might ask why the reaction would

preferentially form polyenyl crosslinks. This can be explained by a bond length

argument. Two radicals must meet and form R1 −R2 crosslinks in an environment

that excludes acetylene, with a bond length of c. 0.154 nm. In an acetylene contain-

ing environment, the radicals may form a crosslink with one molecule of acetylene

per link, with a bond length of c. 0.288 nm. Both of these cases require a significant

amount of conformational activation energy, but less energy is required to form a

R1−C = C −C −R2 crosslink with two molecules of acetylene per linkage, or even

three or four acetylenes per linkage , so the acetylene basically acts as a very short

polyethylene chain that can be used to bridge to adjacent chains within the fiber,

forming a crosslink [188]. Thus, the use of acetylene in crosslinking polyethylene

may mitigate some of the problems associated with chain scission in this reaction.

4.4 Motivation

Crosslinking has been used to improve the properties of bulk UHMWPE for

many years, however, attempts to use radiation to treat UHMWPE fibers have
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Figure 4.7: Mechanism for crosslinking polyethylene in the presence of acety-
lene [188]. This schematic shows how acetylene can enhance the formation of
crosslinks between molecules by adding on to radical sites and bringing two rad-
ical sites closer together. Reducing the distance between molecules increasing the
probability that they will combine.
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been largely unsuccessful. However, the use of low dose (8-15 kGy), high dose rate

radiation may allow for the formation of crosslinks without severing the essential

taut-tie molecules. This section will focus on the use of radiation to improve the

thermal properties of UHMWPE fibers without reducing their tensile strength.

4.5 Instrumentation and Analysis

A suite of instrumentation techniques have been established for use in char-

acterizing various aspects of UHMWPE and UHMWPE fibers. The following is

intended as a brief description of each technique and a demonstration of its appli-

cation to UHMWPE.

The degree of crosslinking in the polymer is typically determined by a mea-

surement of the residual gel content. This is done by dissolving the sample in a

solvent in an inert environment to prevent oxidation, and measuring the residual

solids after a set amount of time has passed. The solids represent the gelled por-

tion of the material [189, 190, 191, 192].The addition of chains to the system is

random [193]. This is valid for the polyethylene systems because polyethylene does

not have any substituent groups, so the addition of chains is always random in this

system. Crosslinking is classically determined from gel point using the Charlesby-

Pinner equation, as shown in Equation 4.7.

s+ s
1
2 =

λ

2
+

(
2− 1

2
λ
)
rg

r
(4.7)

Where s is the soluble fraction of the polymer, λ is the ratio G(S)/G(X), which
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refers to the number of broken and formed bonds per 100 eV, respectively, r is the

dose, and rg is the dose at the gel point [194]. Solubility obviously decreases with

increased crosslinking.

Analysis of oxidation is typically performed by Fourier Transform Infrared

Spectroscopy, or FTIR, as discussed in previous chapters. In this technique, a

sample is placed in a beam of infrared radiation, which the sample absorbs at fre-

quencies corresponding to molecular vibrations in the chemical structure of the

sample. Identification of the chemical structure is possible because each material

gives rise to unique vibrations and the resulting spectrum can serve as a “fin-

gerprint” for that material [195]. Oxidation has been measured by several re-

searchers [196, 131, 197, 198, 199] using this technique with great success by ex-

amining peaks in the range between 1689 and 1756 cm−1, and typically focusing on

the peak at 1740−1, which has been shown to correspond to carbonyls, carboxylic

acids, and alcohols generated during oxidation of polyethylene [198, 199]

Differential scanning calorimetry can be used to detect physical or chemical

changes in a material that are accompanied by the absorption or liberation of heat

by measuring the differential heat flow between the sample and a reference [195].

Measurement of crystallinity and melting point is traditionally performed for poly-

mers using differential scanning calorimetry [200] and has been used extensively in

the study of UHMWPE fibers [175, 184, 185, 186, 187].

Electron paramagnetic resonance spectroscopy (EPR) provides information

about materials with unpaired electrons, such as organic free radicals. Most molecules

have closed shells of valence electrons and no signal is observed from these samples
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in the ESR. However, samples with unpaired electrons, or molecules containing an

odd number of electrons in their normal oxidation state (NO, for example) are EPR-

active. The unpaired electrons possess spin angular momentum and in the presence

of an external electric field have a magnetic moment, which interacts with an exter-

nal magnetic field. The basic principle behind EPR is that in an external magnetic

field, B0, unpaired spins will align parallel to the magnetic field. Simultaneously, mi-

crowave radiation is applied to the sample to drive the unpaired electron to change

its alignment from parallel to antiparallel or vice versa, while sweeping the strength

of the magnetic field. The unpaired electron will absorb energy to make this tran-

sition at the field for resonance, and this energy absorption is detected as the EPR

signal. The energy is supplied by a photon which is generated by a microwave, and

is given by Equation 4.8.

∆E = ~ν = gµ0B (4.8)

Where ∆E is the energy required to flip the spin, ~ is Plank’s constant,

1.055x10−34 J s, ν is the microwave frequency, g is the g-factor, approximately

2, µ0 is the Bohr magneton, 9.264x10−24 J/T, and B is the total external magnetic

field [201].

One can obtain information about the environment of surrounding the un-

paired electron by examining the hyperfine structure of the unpaired electron, which

arises from the nuclei of atoms surrounding the electron. These nuclei act as small

bar magnets on the unpaired electron, splitting its absorption peak and providing
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information about the radical’s environment. The number of peaks and their rela-

tive intensities when n nuclei of spin 1/2 are equidistant from the unpaired electron

are given by the number of terms in the Taylor expansion of (1 + x)n.

The area of the EPR signal may be integrated to give an approximation of

the amount of free radicals present in a sample. The total number of spins (or

unpaired electrons) in a given sample can be calculated by measuring relative spin

concentrations and comparing them against a standard with a known number of

unpaired electrons. This technique is very useful for studying the free radicals

formed during irradiation of any material, including UHMWPE [202, 203].

Breaking strength has long been used as a good method for characterizing

the physical properties of yarns and fibers. In this type of test, the force required

to break the material at a given rate of extension is determined and recorded as

a material property [204]. This method has been used extensively for testing the

physical properties of UHMWPE fibers and benchmarking the success of various

crosslinking techniques [164, 172, 173, 175, 179, 174].

4.5.1 Determination of the Presence of Free Radicals in Unirradiated

Fibers

A spool of gel-spun Dyneema SK-76 UHMWPE fiber filament yarn was sup-

plied by DSM for use in all experiments. The first measurements made on this

yarn were made using electron spin resonance (ESR) spectroscopy to determine

if any radicals were present in the signal of the yarn prior to irradiation. Four
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Figure 4.8: ESR spectra of unirradiated UHMWPE fibers, chopped fibers, an empty
tube, and the Bruker weak pitch standard for reference.

samples were measured, UHMPWE fibers in a randomly oriented position, fibers

which had been chopped with ceramic shears to find evidence of mechano-oxidative

degradation [144], an empty tube, and a standard supplied with the instrument for

comparison to a weak signal (Bruker weak pitch standard). The spectra of all of the

samples measured (collected in Figure 4.8) indicates that no radicals were present in

the samples measured (no radical signals observed), however this does not indicate

that other batches of fiber from this producer or other producers would not contain

any free radicals.
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4.5.2 60Co Gamma Irradiation-Low Dose Exposure Experiments

In an experiment to assess the effect of radiation on this particular fiber (since

previous experiments had been performed on other grades of UHMWPE fiber),

fiber was wound onto glass cylinders and packaged in aluminized polyethylene. The

packages were purged with argon for 30 minutes before heat sealing. The packaged

samples were then placed in the 60Co gamma source for irradiation. The dose

rate obtained for the sample’s position from MCMP simulation was 29 kGy/h.

Radiochromic thin film dosimeters with a range from 0.5 to 200 kGy were placed on

the samples and measured via ultraviolet visible spectroscopy. These films indicated

that the dose rate was actually slightly lower than calculated. Based on the time the

samples were irradiated, and the measured doses of the samples, the actual nominal

dose rate is approximately 25.2 kGy/h. Doses ranged from 8.0 kGy to 86.8 kGy for

samples in this experiment,and the intended range was 10 kGy to 100 kGy.

4.5.3 Measurement of Melting Points and Crystallinity of the Fibers

UHMWPE fiber samples were characterized by differential scanning calorime-

try (DSC), Fourier transform infrared analysis (FTIR), and tensile testing. A

Q2000 DSC (TA Instruments) with a refrigerated cooling system (RCS) was used

to measure the crystalline melting temperatures and the percent crystallinity for all

UHMWPE fiber samples. Samples ranging from 3 to 5 mg were cut and coiled in

the bottom of a non-hermetically sealed aluminum sample pan. Experiments were

performed in standard mode with a nitrogen purge. All samples were heated from 0
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to 170 ◦C, then cooled to 0 ◦C, then heated back to 170 ◦C in a standard heat-cool-

heat experiment. The heating and cooling rates were 5 ◦C/min. Percent crystallinity

was calculated using the standard enthalpy of pure crystalline polyethylene as 291

J/g [202].

DSC thermograms are presented in Appendix B for all samples. All samples

exhibited a reduction in crystallinity upon remelting, although crystallinity was dif-

ficult to calculate due to the broad nature of the melting peak in these samples. This

broad peak may be due to a wide range of crystal sizes due to chain scission followed

by melting and recrystallization, however this same phenomenon was observed in

unirradiated UHMWPE, so it potentially is a feature of this polymer. All samples

exhibited, to some varying degree, a dual melting peak on the first melt, which

has previously been attributed to the core-sheath structure for gel-spun UHMWPE

fibers. Previous work has shown that in systems in which oxidation did occur, a

minor melting peak will then be followed by a major melting peak [175]. All irra-

diated samples studied showed a major, followed by a minor melting peak, which is

another good indication that no oxidation occurred in the system.

4.5.4 Oxidation Measurements

4.5.4.1 Effect of Antioxidants

Commercial polyethylenes typically contain an antioxidant, commonly a type

of hindered phenol marketed under the brand name Irganox [205]. Fourier transfer

infrared spectroscopy can be a good method to look for the presences of antioxi-
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dants in polyethylene [206]. Peaks of medium intensity associated with the aromatic

phenol rings in Irganox would typically appear in the region between 1200 and 1000

cm−1, and stronger peaks would appear between 950 and 750 cm−1 [51]. The pres-

ence of an Irganox-type hindered phenol antioxidant is strongly suspected due to

peaks in these regions in the infrared spectra of all samples studied (Figure 4.9), and

was also observed in the artificial aging work from Chapter 4. Antioxidants work

by trapping and deactivating free radicals in the polymer, thus preventing oxidation

reactions from occurring. This is a desirable effect in most applications, however, it

can present problems during crosslinking with irradiation. In this case, free radicals

are desirable in that they case the crosslinking to occur. If these radicals are trapped

and deactivated by the antioxidant, there are fewer radicals available to participate

in crosslinking, and the overall gelation content may be less than expected for a

given dose. This is a factor that will be kept in mind as crosslinking experiments

are undertaken.

4.6 Experimental Results

Infrared analysis was carried out using a Bruker Vertex 80 FTIR, equipped

with a Smiths Detection Durascope ATR accessory. Nitrogen was used as the purge

gas. Consistent pressure on the yarns was applied using the force monitor on the

Durascope. FTIR spectra were recorded at a resolution of 4 cm−1 between 4000

cm−1 and 700 cm−1 and averaged over 128 scans. Three different locations on each

yarn were analyzed. Spectral analysis and subtraction was carried out using a cus-
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Figure 4.9: FTIR spectra for all irradiated UHMWPE fibers. Note that there is
little discernible difference between the IR spectra of these fibers.

tom software program developed in the Building and Fire Research Laboratory’s

Polymeric Materials Group at NIST and used with that group’s permission. There

are four characteristic peaks for UHMWPE, identified as C-H stretching at 2914

cm−1 and 2846 cm−1, and C-H bending at 1471 cm−1 and 1462 cm−1. A broad peak

of medium intensity at approximately 1131 cm−1 and two sharper peaks at 718 cm−1

may be attributed to the presence of hindered phenolic antioxidant, as discussed in

the previous subsection. All spectra were baseline corrected and normalized to an

absorbance of 1.00 using the C-H bending peak at 1462 cm−1. Standard uncer-

tainties associated with this measurement are typically 4 cm−1 in wavenumber and

1 % in peak intensity. Figure 4.9 shows FTIR spectra for all samples irradiated.

Intended doses are used for clarity. A subtraction, or difference spectrum, is formed

by normalizing all spectra to a given, unchanging peak, and then subtracting one
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sample’s spectrum from the spectra of all of the other samples. In this case, the

unirradiated sample’s spectrum was subtracted from the spectra of all of the irra-

diated samples. Negative peaks indicate loss of existing peaks, while positive peaks

indicate formation of new peaks, or shifting of existing peaks. Only slight changes

were seen in the spectra of the fiber after irradiation, as shown by the subtraction

spectra presented in Figure 66, and no systematic trend in these changes can be

discerned with increasing dose, although the sample with the highest dose shows

the greatest changes. The reduction in the C-H stretching peaks at 2914 cm−1 and

2846 cm−1 may be due to chain scission in the polymer during irradiation, which

migh also change the C-H bending observed at 1471 cm−1 and 1462 cm−1, which

showed both formation of new peaks and loss of existing ones. Oxidation is tyically

measured for these systems from peaks in a range between 1689 and 1756 cm−1,

and typically focuses on a peak at 1740 cm−1 [198, 199]. To examine the samples

for evidence of oxidation, the spectra of all samples in the region between 2000 and

1500 cm−1 was enlarged, see Figure 4.10. Other than noise in the spectra, no peaks

can be seen in this region, indicating that if oxidation is present it is so minor as to

be nearly undetectable, and also indicating that packaging in argon was a sufficient

method to exclude oxygen from the system during irradiation.

4.6.1 Mechanical Properties Measurement

As in previous studies tensile testing of yarns was carried out in accordance

with ASTM D2256-02, “Standard Test Method for Tensile Properties of Yarn by
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Figure 4.10: FTIR spectra for all irradiated UHMWPE fibers, enlarged to show the
region in which oxidation would be expected.
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the Single-Strand Method” [207], using an Instron Model 4482 test frame equipped

with a 91 kg (200 lb) load cell, and pneumatic yarn and cord grips (Instron model

2714-006). The jaw separation was 25 cm (9.8 in) and the cross-head speed was 25

cm/min (9.8 in/min). In this study, yarns were nominally 58.4 cm (23 in) long, and

given 23 twists on a custom designed yarn twisting device. This level of twist was

maintained on the yarns as they were inserted into the pneumatic yarn and cord

grips. Strain measurements were made with an Instron non-contacting Type 3 video

extensometer in conjunction with black foam markers placed approximately 2.5 cm

apart in the gage section of the yarn. Ten to twelve replicates from each sample set

were tested to failure. The standard uncertainty of these measurements is typically

3 %. Figure 4.11 and 4.12 show the breaking load and breaking elongation for the

fibers as a function of dose, respectively. (Intended dose is plotted for clarity). It

is obvious that both breaking load and elongation are rapidly reduced as a result

of the irradiation. This is due to the scission of taut-tie molecules as previously

described in the fiber during irradation. At doses exceeding 50 kGy, the reduction

is diminished, indicating that most of the available sites for scission have been

exhausted. These preliminary experiments have shown that SK-76 fiber exhibits

similar behavior when exposed to radiation as other types of gel-spun UHMWPE

fibers- namely chain scission and a reduction in mechanical properties.
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Figure 4.11: Breaking strength of irradiated UHMWPE fibers as a function of dose.
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Figure 4.12: Breaking elongation of irradiated UHMWPE fibers as a function of
dose.
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Figure 4.13: Continuous irradiation apparatus used to expose the fibers to the elec-
tron beam. Fibers are wound on the red and black roll in the back of the schematic,
and fed over a series of rollers through the electron beam, which is centered between
the two small gray spools in the center of the device. The fiber is then taken up by
the other black and red roller in the back of the device.

4.7 High Dose Rate Irradiation Experiments

4.7.1 Irradiation Device Description

In order to irradiate the long, continuous samples necessary for yarn mechan-

ical property measurements with the electron beam, a “fiber winder” had to be

constructed to reliably feed a long continuous piece of UHMWPE yarn through the

irradiation area, as shown in the schematic in Figure 4.13.

This apparatus has a variable speed controlled by a stepper motor, and used

several guides and pinch rollers to smoothly and continuously feed the yarn through

the irradiation window. The apparatus is controlled by a program in LabView to

input a desired speed setting. This variable speed setting was used to control the

dose received by the sample by controlling the time it remained in the electron beam,
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while holding the electron beam energy (relatively) constant. The entire apparatus

is enclosed in a large cover, which has a gas inlet for purging with argon. Argon was

selected as the purge medium because it is heavier than air, and therefore should

replace air more efficiently than nitrogen. Oxygen must be eliminated from the

irradiation environment to prevent oxidation of the sample, which is a competing

free radical reaction to the intended crosslinking, as discussed previously.

4.7.2 Medical and Industrial Radiation Facility

The Medical and Industrial Radiaton Facility (MIRF) is a pulsed electron

beam with an energy range is continuously variable from 7 to 32 MeV. All experi-

ments presented herein were performed with MIRF set to 10 MeV. The pulse width

was 6 µs. The pulse repetition frequency is 120 pulses per second. The beam is as-

sumed to be uniform and has a width of approximately 2 cm. Using the scan speed,

and the measured dose values from the radiochromic film, the dose per second can

be estimated. For example, for the 3 cm/s film the measured dose was 6 kGy. Using

the beam size of 2 cm, and the pulse rate of 120 pps, this gives us the dose per pulse

of 33 Gy/pulse.

Continuous irradiation experiments were performed using the medical and

industrial radiation facility (MIRF) at NIST, depicted schematically in Figure 4.14.
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Figure 4.14: Schematic of the Medical and Industrial Radiation Facility (MIRF) at
NIST. Continuous irradiation device was placed at the high flux port in the picture.

4.7.2.1 Dose Calibrations

In order to better understand the dose delivered by the electron beam at the

various speeds, it was necessary to perform a calibration of the apparatus using a

radiochromic dosimeter film. Since the film needed to be supplied in a continuous

form, rolls of B3 WINdose radiochromic dosimeter film were purchased from GEX.

This film undergoes a color change when exposed to ionizing radiation. The maxi-

mum color absorption peak is at approximately 554 nm, and it is not expected to be

dose-rate dependent. The film is affected by both moisture and temperature, and it

is recommended to be left sealed as long as possible prior to irradiation. It must be

protected from UV radiation, and is recommended to be heat treated at 60-65 ◦C

immediately after irradiation to prevent changes in color after irradiation [208].
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Intended Irradiation
Dose Time
(kGy) (min)

2 2.55
4 5.10
6 7.64
8 10.20
10 12.73
12 15.29
14 17.83
16 20.38
18 22.93
20 25.48

Table 4.1: Irradiation times and doses for radiochromic film calibration in the cali-
brated 60Co Gamma Irradiation source with a dose rate of 47.1 kGy/h at 6 in from
the centerline.

Prior to use in the fiber winder, these radiochromic films must be calibrated

using a known source. Following the procedure outlined in ISO/ASTM Standard

51261:2002(E), 1 cm squares of the film were cut and irradiated using a calibrated

60Co Gamma Irradiation source with a dose rate of 47.1 kGy/h at 6 in from the

centerline. Three films were used at each dose, and the films were heat treated at

55 C after irradiation for one hour to fully develop the color. Table 4.1 shows each

sample irradiated and the irradiation time necessary to achieve the intended dose.

Figure 4.15 shows the calibration curve (normalized by measured film thick-

ness) generated by measuring the calibrated films. These data are best fitted using

a quadratic polynomial function, which gives a correlation of 0.9961. It can also be

fitted using a linear function, but the correlation is slightly worse at 0.9954. Tra-

ditionally, radiochromic film calibrations are fitted using a quadratic polynomial,

so that function was used for the dose calculations. The equation for the fitting
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function is given in Equation 4.9

y = −0.0018x2 + 0.4021x+ 2.409 (4.9)

This equation is rearranged and solved using the quadratic equation to find

the dose of unknown films, given their thickness and absorbance at 554 nm.

4.7.3 Presence of Free Radicals in Irradiated Fibers

Samples of UHMWPE fiber irradiated at 1 cm/s using the fiber irradiation

apparatus were examined using ESR, as described previously for unirradiated sam-

ples. There are three common radicals in irradiated polyethylene: the alkyl, the

allyl, and the polyenyl free radicals. The alkyl free radical is commonly studied,

and is depicted in Figure 4.16. This radical consists of a symmetrical sextet, and

can be simulated using the hyperfine separation constants given in Figure 4.16. The

alkyl radical is easy to detect because it has a very wide spectrum. Samples irra-

diated in the electron beam, shown in Figure 4.17, exhibits the characteristic alkyl

sextet of peaks commonly observed in irradiated polyethylene [209].

4.7.4 Alpha-Relaxations in Polyethylene

The mechanical properties of polymers in the solid state are influenced strongly

by molecular motions under the given thermodynamic condition and applied me-

chanical stress. The temperature at which a molecular motion stops or starts is

known as a relaxation or transition temperature. Understanding these transitions
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Figure 4.15: Calibration curve for B3 dosimeter film generated by exposing films

to known doses on a calibrated 60Co Gamma Irradiation source with a dose rate of

47.1 kGy/h at 6 in from the centerline. These data are best fitted with a quadratic

polynomial fit. The correlation value is 0.9961. The (A− A0)/t term on the y-axis

is used to denote the absorbance of the calibrated film minus the absorbance of

unirradiated film normalized by the film thickness.
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Figure 4.16: The structure, EPR spectra, and hyperfine splitting of the alkyl free
radical [209]. Note the environment of hydrogens around the radical center giving
rise to six characteristic peaks.
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Figure 4.17: ESR spectra of UHMWPE fibers irradiated at 1 cm/s, for a dose greater
than 20 kGy. Note the characteristic sextet peak of irradiated polyethylene.

is important for understanding the mechanical properties of a given polymer. The

alpha transition is observed in all semi-crystalline polymers. This relaxation in-

tensifies, meaning that the relative increase in tan delta is greater, with increasing

crystallinity, so it usually assigned to the motion of chain units within the crystalline

region [210]. Tan delta is the ratio of the loss modulus to the storage modulus of

a material. In polyethylenes, this transition is split into two overlapping processes,

both of which are related to the crystalline phase [211]. These two processes are

described as the α and α
′

relaxations in order of increasing temperature. The α

relaxation is attributed to either an intralamellar slip process (or grain boundary

phenomenon), combined with motion in the intercrystalline region, and the α′ re-

laxation is attributed to intracrystalline chain motion involving motion of chain
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segments within the crystal lattice [210]. In polyethylene, the α transition is well

known, and expected to occur in the region around 70 ◦C. The α
′

transition is less

well-known and more difficult to detect. It occurs at a higher temperature, around

110 ◦C. Figure 4.18 shows typical examples of α relaxations in polyethylene. In

this figure, α
′

is evident as a shoulder in the peak of the high density polyethylene

(HDPE) sample, but is not apparent in data for the other samples. This is due to

the greater crystallinity of the HDPE sample, and the fact that the α
′

transition

partially coincides with the melting peak around 120 ◦C (above α
′
) and with the α

relaxation (below α
′
) [211]. This relaxation is important for body armor because

it is apparent as a loss in strength of the UHMWPE fiber, as shown in Chapter

1, and this relaxation falls within the potential use temperature for body armor,

especially if the armor is stored in a car on a hot summer day. Previous work has

shown that radiation crosslinking of polyethylene can reduce the magnitude of the

alpha relaxation [212].

4.7.5 Effect of Radiation on Mechanical Properties of Fibers

Several experiments were conducted at different doses using the fiber irradi-

ation apparatus in order to evaluate the effect of different doses on the fiber. In

each experiment, the radiochromic film was irradiated first at the intended speed to

determine the dose, and then the fibers were irradiated. Initial experiments were

conducted at 0.5 cm/s, 0.75 cm/s, and 1.0 cm/s. Later analysis of the radiochromic

films irradiated at these speeds indicated that the dose was out of the range of
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Figure 4.18: α relaxations in polyethylene, note the high temperature α
′

relaxation
followed by the lower temperature α relaxation. In this figure, α

′
is evident as a

shoulder in the peak of the high density polyethylene (HDPE) sample, but is not
apparent in data for the other samples [211].

the film calibration- all of these samples received doses greater than 20 kGy. The

electron beam power was reduced after these initial experiments, and films were

calibrated at 2, 3, and 4 cm/s. The calibration curve generated previously was used

to estimate the dose at these scan speeds, as shown in Table 4.2, and Figure 4.19,

and were found to be approximately 12, 6, and 3 kGy, respectively. All film cali-

brations were performed in argon for the best approximation of the fiber irradiation

environment.

The mechanical properties of these fibers were measured using the same tech-

niques described previously. In all cases, the tensile strength was greatly reduced by

the irradiation. The tensile strength results are presented in Table 4.3. The sample

with a speed and dose of zero is the unirradiated control fiber. Experiments at the
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Figure 4.19: The estimation of the dose of films irradiated at different speeds using
the calibration curve for B3 dosimeter film generated by exposing films to known
doses on a calibrated 60Co Gamma Irradiation source with a dose rate of 47.1 kGy/h
at 6 in from the centerline. These data are best fitted by a quadratic polynomial
fit. The absorbance of films calibrated at 2, 3, and 4 cm/s were used to estimate
the dose according to this curve, as shown by the colored dots.

223



Programmed Estimated
Speed Dose
(cm/s) (kGy)

0.5 >20
0.75 >20

1 >20
2 12
3 6
4 3

Table 4.2: Estimated doses for films irradiated using fiber irradiation apparatus at
various programmed scan speeds in argon.

Programmed Estimated Tensile Standard Percent
Speed Dose Strength Deviation Reduction
(cm/s) (kGy) (GPa) (kGy) (%)

0 0 3.81 0.18 0
0.5 >20 2.81 0.29 27
0.5 >20 2.31 0.17 40
0.75 >20 2.37 0.26 38
1.0 >20 2.75 0.31 28
3.0 6 2.59 0.52 32

Table 4.3: Irradiation times and doses for radiochromic film calibration in the cali-
brated 60Co Gamma Irradiation source with a dose rate of 47.1 kGy/h at 6 in from
the centerline.

lower speeds were conducted using MIRF at its full power in order to maximize the

dose per pulse. However, using the beam this way makes it difficult to control beam

fluctuations over the course of the experiment. The later experiments conducted at

speeds of 2, 3, and 4 cm/s were conducted at a lower power so that the counts could

be tuned to the same value over the course of the experiment. This fluctuation may

account for the differences in tensile strength of fibers irradiated at 0.5 cm/s.

There are several potential explanations for the reduced tensile strength of

these irradiated samples. The localized heating of the electron beam may be enough
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to melt the fibers or disrupt their highly ordered crystal structure and orientation.

The experiment relies on the flow of purge gas to cool the fibers, but this may not

be sufficient. The purge itself may also be insufficient, causing oxidation in the

fibers instead of crosslinking. The fibers may also still be preferentially scissioning,

as was observed previously in the gamma irradiation experiments, possibly due to

an insufficient pulse rate for MIRF- radicals may not be generated fast enough to

crosslink the taut tie molecules before they scission. Since even the very low dose

sample exposed to 6 kGy showed a significant reduction in tensile strength (32 %),

and tensile strength is so important to ballistic performance (as described in Chapter

3) it was determined that the use of the fiber irradiation apparatus and MIRF is

not the best way to crosslink these fibers. Additional options will be discussed in

the future work section.

4.7.5.1 Effect of Irradiation on Alpha-Relaxations

The samples irradiated at 3 cm/s were also analyzed using dynamic mechan-

ical thermal analysis (DMTA) to repeat the experiment performed in Chapter 1

that illustrated the susceptibility of UHMWPE fibers to changes in their properties

over their potential range of use temperatures for body armor due to their alpha

relaxation. Single fiber samples were mounted using film and fiber grips, and mea-

sured using a temperature-frequency sweep from 30 ◦C to 110 ◦C, at a frequency

of 1 Hz. All four replicates of the irradiated sample broke during the experiment.

A representative plot for an unirradiated sample is shown overlaid with best avail-
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Figure 4.20: DMTA temperature-frequency sweep of irradiated and unirradiated
UHMWPE fiber. While the storage modulus of the material is obviously deterio-
rated by the treatment, the irradiated material seems less sensitive to temperature
than the unirradiated sample.

able data for the irradiated sample, which broke around 80 ◦C in Figure 4.20. The

weakening of the irradiated fiber by the treatment is apparent from this analysis,

however the thermal response of the sample appears to be much less sensitive than

the unirradiated sample, so perhaps the irradiation treatment did improve the ther-

mal properties of this sample.
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Chapter 5

Conclusions and Future Work

5.1 Contributions to Science

In this course of this work, several important contributions to science were

uncovered. The first, and possibly most important of these, is the elucidation of the

mechanism of hydrolysis in PBO by which the benzoxazole ring opens between the

double bond and the oxygen and that water adds across this bond when this material

is exposed to a warm, humid environment. An extension of this contribution was

the discovery that this reaction likely goes to complete, irreversible chain scission

by breaking the bond between the carbonyl group and the adjacent phenyl ring of

the next repeat unit of the polymer. The broader impact of this contribution will

be discussed in the next section.

The next contribution is that aramid copolymer fibers release acids used during

synthesis (these polymers are synthesized using an acid chloride polycondensation

reaction) and processing (these fibers are spun from acid solutions) from within the

fiber when exposed to water. This acid release does not reach equilibrium for several

days, indicating that the acid continues to migrate to the surface from within the

yarn over a period of time.

Another contribution to science is that binary (either the armor was or was not

perforated by the shot) ballistic limit data for different materials in different aging
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states can be described equally well by logistic, probit, and c-log-log generalized

linear models. This issue has been debated within the ballistic testing community

for the last decade, and this debate will continue as new models are examined.

Finally, the primary aging mechanisms in UHMWPE yarns were examined via

studies relating oxidation index, tensile strength, and crystal structure to elevated

temperature exposures. The activation energy for the oxidation of UHMWPE fibers

was calculated and found to be 140 kJ/mol. It was also shown that the primary

mechanism to which this material is susceptible is oxidation under aging and use

conditions.

5.2 Broader Impacts

In addition to the scientific contributions of this work, these contributions were

extended to several broader impacts for the body armor manufacturing community

and law enforcement. The first, and possibly most important of these is the removal

of PBO from use in NIJ-certified body armor due to concerns with the long-term

stability and ballistic performance of this material due to its susceptibility to hy-

drolysis in wear conditions. This work has also led to a major lawsuit by the US

Civil Division against manufacturers of PBO materials and body armor. To date,

this effort has recovered $61M for the US Treasury through settlements, with at

least 3 major cases still pending.

In an effort to find other armors with similar vulnerabilities during the initial

certification testing program, the NIJ Ballistic Resistant Body Armor Standard was
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revised to include an armor conditioning protocol as described in Chapter 1. This

conditioning protocol has proven to be a useful tool, catching problematic armors

and driving armor manufacturers to consider the wear environment when designing

armor. The conditioning protocol has also recently been adopted by the US Army

for use in major armor procurements. The US Army has also been interested in

the work performed on aramid copolymer fibers, and is considering using these in

some advanced armor designs, as they do not appear to have major vulnerabilities

to environmental degradation.

The work to examine various generalized linear models for use in analysis of

ballistic limit data has been employed by the NIJ Body Armor Compliance Testing

Program to evaluate at least one armor model using the three different analysis

methods. The US Army and several armor manufacturers have also expressed an

interest in the analysis of ballistic limit data using these different models.

The analysis of the primary aging mechanism in UHMWPE yarn and the calcu-

lation of the activation energy of this reaction was presented to several UHMWPE

fiber manufacturers at a recent international meeting. These manufacturers dis-

cussed the possibility of changing either the type or concentration of antioxidant in

the fibers in an effort to make them more robust to this type of degradation.

5.3 Future Work

While the work described herein is quite broad, there remain many additional

areas for future work. First, given the interest in the body armor community in bet-
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ter understanding the expected lifetime of body armor, coupled with the increased

use of aramid copolymers in both law enforcement and military armor designs, more

work needs to be performed to understand the long-term stability of high strength

fibers. This can be accomplished through additional temperature and humidity

aging studies and a calculation of the activation energies of hydrolytic and thermo-

oxidative degradation mechanisms in these materials. This information can be used

along with measurements on fielded armor samples to develop models to predict

the service life of body armor. Next, the scientific community would also benefit

from fundamental studies on the structure of the aramid copolymer fibers. It is

not known whether they have a structure more similar to the ”broom straw bundle”

structure of PBO or the ”pleated sheet” structure of PPTA. One way to discern this

might be to longitudinally section an fiber and perform atomic force microscopy and

electron microscopy to examine the microstructure of these fibers. The role of acid

release in the aramid copolymers is also not fully understood, as the chloride ion

was not the appropriate counterion to explain the pH changes in these materials.

Additional work should be performed to correctly identify the source of the acid

release in these fibers.

Next, much work still remains to examine other types of ballistic limit test

methodologies and models to understand how best to fit this binary response data

and accurately estimate the probability of perforation for new and aged armors. It

is also especially important to evaluate methods for predicting changes in ballis-

tic performance for aged armors, in an effort to answer the question- How much

degradation can an armor withstand before it loses its ability to protect the wearer?
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Two remaining issues in the aging of UHMWPE fibers are to further the

understanding of the change from orthorhombic to monoclinic crystal structure for

the samples heated to 65 ◦C, and to repeat the WAXS measurements on fibers

aged at all the different temperature in the study for the same amount of time, to

determine if there is an effect due to aging temperature and not just aging time.

Finally, much work remains to examine the potential of using irradiation to

crosslink UHMWPE fibers to improve their thermal resistance without destroying

their strength. The use of an electron beam with a faster pulse rate, coupled with

a cooling system to remove the heat building up in the fiber during the irradiation

is a promising next step to achieving this goal.

In addition, processes for which many time scales exist are considered disper-

sive. The rate coefficient for a dispersive process depends on time. For example,

in the case of chemical reactions, the most reactive species are the first to disap-

pear from the system. This will disturb the reactivity distributions of reactants in

a condensed medium, and the extent of this disturbance depends on the ratio of

the rates of reactions to the rate of mixing in the system, which restores the initial

distribution of reactants in the system. If rate of the chemical reaction exceeds that

of the internal rearrangement, then these initial distributions of reactivity cannot

be maintained and the specific reaction rate will depend on time. If the rate of

internal rearrangement is faster than the rate of reaction, then the extent of this

disturbance is negligible, and classical kinetics may adequately describe the system.

EPR studies to look at radical decay should be performed to understand whether

the decay processes of free radicals generated during the irradiation of UHMWPE
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fibers undergo classical or dispersive kinetic decay.
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Appendix A

Developing Links Between Fiber Properties and Ballistic

Performance

A.1 Motivation

While it makes sense that changes in fiber strength affect ballistic performance,

very limited work has been performed in this area to establish direct correlations

between these parameters for the purposes of improving armor performance. This

chapter will introduce different methods of estimating armor performance, the state

of the art of using material properties to predict ballistic performance, and discuss

strategies for developing improved armors in the future based on specific material

properties.

A.2 Ballistic Testing of New and Conditioned Body Armor

NIJ Standard–0101.06 recommends estimating the performance of body armor

by performing a statistical analysis on V50 ballistic limit testing data. During a V50

ballistic limit test, bullet velocity is varied to obtain mixed outcomes. Some shots

are stopped by the armor, but other shots yield perforations. From these results,

the ballistic performance of the armor can be estimated using a statistical regression

model. The logistic regression model is commonly used in many binary response
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systems, such as biomedical applications and was therefore targeted for use in the

NIJ Standard. However, depending on the armor system and the amount of data

collected, other regression models may be more appropriate.

The experimental conditions of ballistic limit testing are strictly controlled in

the laboratory. All projectiles used in testing are prepared in the laboratory, rather

than being purchased. The amount of propellant is selected by using previously

established curves relating the mass of propellent (the charge weight) to a specific

velocity of interest. The propellant is weighed on a microbalance and poured into

a cartridge case using a funnel. Bullets from a single lot of a single manufacturer

are mated with a press to the cartridge case and then used for testing. Projectiles

are fired using a universal receiver, which is a fixed mount, single shot device rather

than a typical handgun. Reinforced stainless steel barrels machined Sporting Arms

and Ammunition Manufacturers’ Institute, Inc. (SAAMI) specifications were used

in the universal receiver to replicate the action of the handgun of interest (in this

case 9 mm). The same shot locations, which had been selected so that no projectile

should strike the same stitch line and all locations would be a minimum of 7.62

cm apart, were used for each test, however the order of the shots was randomly

selected for each armor panel. All testing was performed using Roma Plastilina #1

clay for the behing-armor backing material. All clay was calibrated according to the

procedures in NIJ Standard–0101.06.
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A.2.1 The Logistic, Probit and Complementary Log-Log Regression

Models

Once the ballistic limit testing has been completed, the test results are ana-

lyzed for each threat by performing a regression to estimate the performance of the

armor over a range of velocities. During ballistic limit testing only a limited number

of shots are taken. From those data the full performance of the body armor can

be estimated. In particular, the analysis attempts to estimate the velocity where

the probability of perforation becomes reasonably small. As previously mentioned,

the shot outcome of the ballistic limit tests is a perforation or a stop, codified as 1

and 0, respectively. This type of outcome data is commonly called binary response

data. A vast literature in statistics, biometrics, and econometrics is concerned with

the analysis of binary response data and the classical approach fits a binomial re-

gression model using maximum likelihood [213]. The binomial regression model is

a special case of an important family of statistical models, namely Generalized Lin-

ear Models [214, 215, 216, 217] (originally due to Nelder and Wedderburn [218]).

The acronym GLM is a shorthand for generalized linear model [219]. The bino-

mial family is associated with several links; among the common binomial links there

are the probit, the logit and the complementary log-log link functions. The probit

model [220] was the first model of binary regression used. It was originally de-

veloped for analyzing dose-response data from bioassays [220, 221]. This model is

still used by researchers for biological assay analysis, and often used to model other

data situations. Logistic regression was developed later and not used much until
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the 1970s, but it is now more popular than the probit model [219, 222]. Indeed,

in recent decades, the logistic regression model has become the standard method

of analysis for binary response data to model the relationship between the binary

outcomes (shot outcome in this case) and the independent variable (the velocity of

the bullet) in many fields, such as biomedical [223, 219, 224, 225, 226] and econom-

ical research [222, 227]. Alternatives to the traditional logistic approach using the

probit and complementary log-log link functions were studied [228, 229, 230].

Current opinion regarding the selection of link function in binary response

models is that the probit and logistic links give essentially similar results [223, 216,

219, 231, 232]. Long [233] wrote that the choice between the logistic and probit

models is largely one of convenience and convention, since the substantive results are

generally indistinguishable. Moreover, Gill [215] discussed link functions including

the complementary log-log and indicated that any of these three link functions can

be used and will provide identical substantive conclusions.

Conversely, other studies have shown that in many cases this most commonly

used logistic regression model may be not always the most appropriate, and that

alternative models can also provide good results in this context of binary response

data [228, 97]. Many authors have examined the best way to discriminate the logit

and probit models [233, 97, 234]. Logistic regression is usually preferred because

of the wide variety of fit statistic associated to the model. However if normality

is involved in the linear relationship, as it often is in bioassay, then probit may be

the appropriate model. It may also be used when the researcher is not interested

in odds but rather in prediction or classification [216]. Hahn and Soyer [235] found
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clear evidence that model fit can be improved by the selection of the appropriate

link even in small data sets, and that the probit and logit links do not always give

similar results in binary data analysis. They showed that in certain cases, the probit

model provides a better fit, while in others the logit model is more appropriate.

Moreover, empirical support for the recommendations regarding both the similarities

and differences between the probit and logit models can be traced back to results

obtained by Chambers and Cox [234]. These researchers found that it was only

possible to discriminate between the two models when sample sizes were large and

certain extreme patterns were observed in the data [234]. Despite the similarities

of these models, even minimal differences can lead to different estimations in some

particular cases [234]. Thus, it is always recommended to attempt to apply more

than one regression model to the data to better understand the abilities of other

models to fit those data.

The use of regression models to analyze ballistic tests of armor systems have

been suggested in different studies [236, 237]. NIJ Standard–0101.06 recommends

the use of the logistic regression model for the analysis of ballistic limit data. How-

ever, other probability distributions and regression methods may be used when one

can be shown to better estimate the performance of a particular armor model. In

the field of analysis of perforation statistics of body armor, Van Es [238] studied the

probit method versus the Kneubuhl method and showed that probit analysis was a

robust tool to analyze ballistic limit data. Maldague [239] also studied the analysis

of V50 using different methods and used successfully the probit method with ballistic

results. For this reason, other alternative distributions able to fit these data will be
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studied and compared in terms of quality of estimation of the armor performance.

A.2.2 Presentation of the Three GLMs

As previously mentioned, three different distribution models are considered in

this study: the logistic, the probit and the complementary log-log (extreme value

type I) response models. For the purposes of this paper, the logistic regression model

will be called logit or logistic, and the complementary log-log regression model will

be called c-log-log. The logit link function is a fairly simple transformation of the

prediction curve so it is popular among researchers [231]. Logit models use the lo-

gistic probability distribution [231]. The probit models assume the standard normal

distribution [220]; it has a mean of 0 and standard deviation of 1. The standard

logistic distribution has a mean of 0 and standard deviation of 1.8. When both mod-

els fit well, parameter estimates in logistic regression models are approximately 1.8

times those in probit models [233]. The normal and logistic distributions are both

symmetric [220, 231]. The logit and probit links are very similar; in particular, both

approach 0 and 1 symmetrically and asymptotically. Because of this similarity, they

usually lead to analogous results [220, 231]. The c-log-log analysis is an alternative

to logit and probit analysis. The c-log-log model is based on the extreme value

type I distribution, also referred to as the Gumbel distribution [240, 241], which is

asymmetric in contrast to the logistic or standard normal distribution of the logit

and probit models, respectively. All of the three model transforms produce a sig-

moidal (or S-shaped) response curve. However, since the extreme value distribution
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Figure A.1: Cumulative density functions for the three GLMs. The idealized models
are plotted to show the differences in their tails in the low probability region. This is
the region of interest in ballistic limit analysis because of the interest in the margin
of safety designed into armor for lower velocity threats.

is asymmetric, the results are slightly different from those of the two other sym-

metrical models. To illustrate this difference, idealized curves for all three models

are presented in Figures A.1 and A.2. The reason why Cumulative Distribution

Functions (CDF) are used as link functions for binary data is because the CDF is

always between 0 and 1.

The cumulative density function of the standard normal distribution is steeper

in the middle than that of the standard logistic distribution and quickly approaches 0

on the left and 1 on the right. From Figure A.2 it can be noted that the logit link has

heavier tails than the probit or c-log-log, i.e. this link assigns a greater probability to

observations that fall outside the mean. The implication of this is that in the event
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Figure A.2: Probability density functions for the three GLMs. The idealized models
are plotted for reference to illustrate both sides of the distribution for comparison
to the common standard normal distribution.

240



Probability Velocity where
Link Name of perforation probability of Estimated

(distribution) π(v) perforation is π, V̂π V50

Logit
(Logistic)

eβ̂0+β̂1v

1 + eβ̂0+β̂1v

ln

(
π

1− π

)
− β̂0

β̂1

−β̂0
β̂1

Probit
(Normal)

Φ
(
β̂0 + β̂1v

) Φ−1 (π)− β̂0
β̂1

−β̂0
β̂1

Complementary
log-log

(Extreme value)
1− e−e(β̂0+β̂1v) ln (− ln(1− π))− β̂0

β̂1

ln (− ln(0.5))− β̂0
β̂1

Table A.1: Comparison of distributions.

that there is variability in the measurements the parameter estimates using the logit

link will capture this as a result of the heavier tails whereas the other distributions

may not. From this observation one could assume that it is generally safer to use the

logit link as it is less susceptible to outliers or to data with a lot of variability than

the two other links. The three link functions and their corresponding distributions

are summarized in Table A.1.

Table A.1 contains the probability of a complete perforation occurring at ve-

locity v : π(v); and also the velocity at which the probability of perforation is π %:

V̂π. The calculation of V50 is determined from the estimated regression parameters

β̂0 and β̂1, which are the estimated constant and the estimated velocity coefficient,

respectively. The formula of this estimated V50 is also shown in Table A.1 for each

model. The explanation and the calculation of the confidence intervals of the esti-

mates can be found in Ref. [223, 242]. The different regressions are performed on

the data using the method of maximum likelihood [223, 243] to estimate the logistic,

the probit or the c-log-log parameters β̂0 and β̂1. The confidence intervals of the
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estimates are calculated using the Wald test [223, 242]. Fieller’s theorem [220] is

used to estimate the confidence intervals of V50.

A.3 Application of the Different Models to Fit V50

A.3.1 R Software

The three regression models are performed on the ballistic limit data using

the method of maximum likelihood to estimate the regression parameters. The R

statistical software package [244] was used to execute the different regressions and

estimate the regression coefficients. R is a free software environment for statistical

computing. It provides a wide variety of statistical techniques, such as data analysis

using regression models. The R statistical software allows computing and fitting

each of the three different regression models (logistic, probit and c-log-log) to the

data. The generalized linear model (GLM) procedure [245], with the parameters

family=binomial and link=logit, probit, or cloglog, as appropriate, to specify the

model is used to fit the different regression models to the binary response data

using maximum likelihood estimation. After the regression computation, R outputs

provide the regression coefficients estimates and their standard errors, as well as all

the information needed to calculate the confidence interval (variance matrix), and

also some useful statistics like deviance and Akaike’s Information Criterion. Both

statistics will be discussed further later in this work.
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Figure A.3: Estimated response curves for a new UD-PPTA body armor given by
the three GLMs. Experimental ballistic limit data are given by the black dots, with
a 0 corresponding to a stop and a 1 corresponding to a perforation. The solid lines
represent the best fit of the three different models to this data, and the dotted lines
represent the upper and lower 95 % confidence intervals for the fit of the model.

A.3.2 Comparison of the GLM Estimates

To illustrate the application of the different regression analysis and their results

in terms of estimations, a typical example is presented in Figure A.3: the analysis of

the ballistic performance of a new UD-PPTA body armor which shows the estimated

response curve of this body armor given by the three different models.

The estimated response curves of the logistic, probit and c-log-log regression

models and their 95 % confidence intervals as presented in Figure A.3 are very

similar. However, the confidence interval generated using the c-log-log model is

not comparable with those obtained from logistic and probit models because of
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the asymmetrical shape of the c-log-log distribution function. The three function

curves are all S-shaped. As previously discussed, the logit and probit curves are

very similar; in particular, both approach 0 and 1 symmetrically and asymptoti-

cally. However the c-log-log distribution is asymmetric, it approaches 1 much more

rapidly than it approaches 0, accordingly, the results obtained with this model are

different. The logistic and probit functions are almost linearly related over the in-

terval of probabilities of perforation between 0.1 and 0.9. These two models perform

similarly at the center (at V50). The primary difference between the logit and pro-

bit response curves is that probit has slightly flatter lower and upper asymptotes,

which means the probit curve approaches the axes more quickly than the logistic

curve. Therefore, the two GLMs give different estimations of armor perforation for

low and high bullet velocities, which are important in ballistic limit analysis. As

expected, the asymmetrical c-log-log response curve approaches much more quickly

the high probability of perforation (i.e., probability of 1) than either the logit or

probit function. For small values of probability of perforation, the c-log-log function

is close to the logistic. The preceding discussion of the differences and similarities

between the response curves given by the three regression models considered herein

are confirmed by further examining the V50 and V02 estimate values directly. This

information is presented in Table A.2.

While the estimates of parameters differ in size due to the different scaling of

the normal and logistic distributions, the substantive conclusions (and the predicted

probabilities of perforation for the armor) are very similar. The estimated V50

value is the same for the logit and probit models. Because of its asymmetry, the
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Logit Probit C-log-log

V50 (m/s) 505 505 508
Upper 95 % CL on V50 (m/s) 518 517 518
Lower 95 % CL on V50 (m/s) 496 497 498

CI width (m/s) 22 21 19

Predicted prob. at 350 m/s 0.0000044 5.63 E -14 0.0000653
Upper 95 % CL at 350 m/s 0.002392 0.000034 0.005925
Lower 95 % CL at 350 m/s 0 0 0

CI width 0.002392 0.000034 0.005924

V02 (m/s) 457 462 448
Upper 95 % CL on V02 (m/s) 473 477 469
Lower 95 % CL on V02 (m/s) 406 426 390

CI width (m/s) 67 50 78

CI is confidence interval.
CL is confidence level.
350 m/s is the NIJ reference velocity.
V02 is the velocity at which a bullet has a 2 % chance of perforating the armor.

Table A.2: Summary of estimates for a new UD-PPTA body armor.

estimations of the high and low velocities related to the logistic and probit models are

different from the ones obtained by the c-log-log model. Generally, the estimated V50

provided by the logit and probit regression models are similar but the V50 estimated

by c-log-log is slightly higher. In the case of the V02 estimate, the c-log-log model

provides the lowest value for V02, while the probit provides the highest value. In most

applications, results from the c-log-log model are not very different from logit and

probit, however, occasionally the estimate results can suggest qualitatively different

conclusions.

Even if differences and similarities between estimates given by the three re-

gression models can be discerned, it is difficult to discriminate between these three

models on the basis of the quality of the armor performance estimation. The three

regression models lead to very similar results, especially for the estimation of V50.
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Figure A.4: Estimated response curve for an UHMWPE body armor given by the
logistic model. Experimental ballistic limit data is given by the black dots, with a
0 corresponding to a stop and a 1 corresponding to a perforation. The solid line
represent the best fit of the logistic model this data, and the dotted lines represent
the upper and lower 95 % confidence intervals for the fit of the model.

For the estimation of V02 and the predicted probability of perforation at the NIJ

reference velocity (350 m/s), the difference between the estimates given by the di-

verse models is larger, but they are still similar. Moreover, the binary nature of

the analyzed data does not allow a visual comparison. From Figure A.3 it is not

possible to identify the best model.

This same approach is used to examine the response curve of a UD-UHMWPE

armor. Once again, the estimated response curves of the logistic, probit and c-log-

log regression models and their 95 % confidence intervals as presented in Figure A.4,

Figure A.5, and Figure A.6 are very similar.
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Figure A.5: Estimated response curve for a new UHMWPE body armor given by
the probit model. Experimental ballistic limit data is given by the black dots, with
a 0 corresponding to a stop and a 1 corresponding to a perforation. The solid line
represent the best fit of the probit model this data, and the dotted lines represent
the upper and lower 95 % confidence intervals for the fit of the model.

247



velocity (m/s)

300 350 400 450 500

p
ro

b
a
b
ili

ty
 o

f 
p
e
rf

o
ra

ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

logistic fit

95% CL

new PBO

logistic V50 

logistic fit

95% CL

conditioned PBO

logistic V50 

Figure A.6: Estimated response curve for a new UHMWPE body armor given by the
c-log-log model. Experimental ballistic limit data is given by the black dots, with
a 0 corresponding to a stop and a 1 corresponding to a perforation. The solid line
represent the best fit of the c-log-log model this data, and the dotted lines represent
the upper and lower 95 % confidence intervals for the fit of the model.
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Logit Probit C-log-log

V50 (m/s) 507 507 510
Upper 95 % CL on V50 (m/s) 522 522 523
Lower 95 % CL on V50 (m/s) 493 494 454

CI width (m/s) 29 28 69

Predicted prob. at 350 m/s 0.00049 2.22 E -6 0.00347
Upper 95 % CL at 350 m/s 0.0393 0.000000 0.0579
Lower 95 % CL at 350 m/s 0.00000589 0.0172 0.000203

V02 (m/s) 440 449 421
Upper 95 % CL on V02 (m/s) 466 471 453
Lower 95 % CL on V02 (m/s) 349 380 321

CI width (m/s) 67 50 78

CI is confidence interval.
CL is confidence level.
350 m/s is the NIJ reference velocity.
V02 is the velocity at which a bullet has a 2 % chance of perforating the armor.

Table A.3: Summary of estimates for a new UD-PPTA body armor.

The preceding discussion of the differences and similarities between the re-

sponse curves given by the three regression models considered herein are confirmed

by further examining the V50 and V02 estimate values directly. This information is

presented in Table A.3.

As for the UD-PPTA armor, the estimates of parameters differ in size due

to the different scaling of the normal and logistic distributions, the predictions are

all very similar and it is not possible to determine which model best describes the

armor.

Consequently, some criteria of goodness-of-fit are required to assist in the

determination of which model could better estimate the armor performance from

the available ballistic data. The next section will examine this issue.
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A.4 Generalized Linear Model Estimation Evaluation

Different criteria for assessing the goodness-of-fit of each model will be applied

to the ballistic limit data. The objective of this analysis is to identify criteria that can

distinguish which regression method produces the best estimate of the performance

of a particular armor model, since the estimations given by the three models were

shown to be analogous.

A.4.1 Assessment Criteria

Once a model has been fitted to the observed values of a binary response

variable, it is essential to check that the fitted model is actually valid. Goodness-of-

fit statistics given by the R software can be used to compare fits using different link

functions. The significance test of the regression coefficients is provided after every

regression and allows one to verify the significance of each coefficient. The R outputs

also indicate the estimates of the regression coefficients and are accompanied by the

standard errors.

A.4.2 Akaike’s Information Criterion

One way to choose between different specifications (e.g. between the probit,

logit and c-log-log models) is to use a model selection criterion. Akaike [243] de-

fined an information criterion commonly known as Akaike’s Information Criterion,

or AIC. This criterion is a measure of goodness-of-fit which takes into account the

number of fitted parameters. The formula for calculation of AIC is given in Equa-
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tion A.1.

AIC = −2 logL+ 2p (A.1)

where logL is the log-likelihood function evaluated of the model parameters

and p is the number of model parameters. The AIC is a convenient metric for this

analysis because it is given in R’s ANOVA (analysis of variance) output. Smaller

AIC values are associated with better fits. The AIC was calculated for all the GLMs

considered, and the model with the smallest AIC is considered to be the closest to

the unknown reality that generated the data.

A.4.3 Log-Likelihood

As a quick and simple way to compare the performance across the different

models, one can simply look at the maximized log-likelihood of each specification,

since the models contain an equal number of parameters. However, Akaike [243]

showed that the maximized log-likelihood is biased upward as an estimator of the

model selection criterion and then defined the AIC as a better criterion for measuring

goodness-of-fit.

A.4.4 Deviance of the Model

Huettmann and Linke [230] presented two methods of assessing which link

function performs best for inferences and for predictions. The first decision crite-

rion is centered on the model deviance, e.g. relevant for inferences. A measure of
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discrepancy between the observed and fitted values is the deviance statistic. In a

perfect fit the deviance is zero. Thus, the most preferable model can be found on

the basis of the minimum-deviance criterion for model selection. For example, if the

deviance of a probit model is significantly lower than the one of the corresponding

logit model, then the former is preferred. This postulate holds when comparing any

of the links within the binomial family [216]. Conversely, the model that provides

the least desirable fit to the data can also be found. The deviance criterion is also

given in the R output as an indicator of goodness-of-fit.

A.4.5 Prediction Error Rate

The second criterion presented by Huettmann and Linke [230] is based on

prediction errors. It uses the differences between expected and predicted values

as an indication of the fit. Once the regression model analysis is performed, the

resulting regression coefficients estimates are used to predict the data and provide

predictive probabilities of perforation. If the probabilities of perforation are greater

than 50 %, these probabilities are classified in the perforation group, if they are less

than 50 %, they are classified in the non-perforation group. Then the observed and

predicted responses can be cross-tabulated and the proportion of cases predicted

correctly can be calculated. The lower the misclassification rate, the better the

model fits the data. However, this misclassification rate is not independent of the

model (since it is based on the data used to build the model) and therefore could

underestimate the real error rate.
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A.4.6 Cross-Validation Method

The cross-validation method avoids this problem of dependence; therefore, it

gives a better calculated error rate than the usual prediction error rate. In k-fold

cross-validation, one divides the data into k subsets of (approximately) equal size.

One trains the net k times, each time leaving out one of the subsets from training,

but using only the omitted subset to compute the error criterion of interest, in this

case the prediction error rate. This way, it avoids the problem of dependence of the

model observed previously. Cross-validation can be used simply for model selection

by choosing the model that has the smallest estimated generalization error.

In this study, where the ballistic performance of an armor type is estimated

by testing several armor panels and combining their ballistic results, this train-

ing/testing set method uses the ballistic data of n-1 panels to estimate the model

and uses the data of the nth panel to test the prediction of the model. Then the

model is trained n times, each time leaving out one panel to calculate the error rate.

Finally the average error rate of re-substitution is calculated and used as a model

selection criterion.

Among all of the model selection criteria previously presented, the AIC and

the average error rate calculated by cross-validation, also called average error rate of

training/testing sets method, will be used as criteria to try to distinguish which re-

gression method produces the best estimate of the performance of a particular armor

model. However, in case of few differences between the model results, the optimal

model could be at the end chosen by the user, regarding mostly its specifications,
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Logit Probit C-log-log

V50 (m/s) 505 505 508
Upper 95 % CL on V50 (m/s) 518 517 518
Lower 95 % CL on V50 (m/s) 496 497 498

AIC 51.94 51.40 52.07
Misclassified Data (%) 23.3 23.3 21.7

Error Rate by Cross-Validation (%) 23.3 23.3 21.7

Table A.4: V50 estimates and selection criteria for new UD-PPTA armor.

its estimations and its applications in a practical way.

A.5 Model Diagnostics Results

Some general observations about the results of these model diagnostics can be

noted. First, the lack of fit tests given by the R software output do not indicate a

significant lack of fit for any of the three models, for all the datasets tested, and the

criteria values for all three models are similar. Furthermore, the prediction error

rate is, as expected, lower when it is calculated from the whole set of data used to

create the model, and the average error rate of cross-validation method is higher.

These misclassification rate criteria have the same values for logit and probit. The

comparison of the predicted values, previously made in Figure A.3 showing the

predicted values given by the three models and the observed data, did not indicate

strong evidence for distinguishing models on the basis of link. Therefore, the model

selection criteria given in Table A.4 will be the focus of the rest of this work.

In Table A.4, the best criteria are shown in bold. Thus the AIC statistic

for the probit model is lower than for the logistic and c-log-log models, suggesting
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a slight, but probably insignificant, preference for the probit model. The criteria

based on the two error rates show that the c-log-log model is better for prediction.

However the difference between the error rates for the different models is small.

A.6 Results of Theoretical Analysis

A regression model can be fitted to the ballistic limit data to estimate the

overall response of particular body armor. Different possible models were considered

and compared in terms of quality of estimation of the body armor’s performance.

Comparisons were made only between models that have been applied to the same

dataset, so with the same number of data points and the same number of parameters.

The comparison was made at the level of estimation of the V50. The estimation given

by each model was evaluated on its confidence interval (CI) width, the percentage of

misclassified data, the estimation of V50 and other parameters like AIC. The results

show that the logistic analysis generally gives a good overall estimation of the body

armor’s performance, but other regression models could be better. For a particular

armor, a model can be shown to better estimate its performance on the basis of a

selection criteria. However, the difference between the three models examined herein

is relatively small in terms of estimation. Additionally, the values of the different

criteria studied are too close to make a meaningful determination among the various

models. Even if some criteria indicate a slight preference for one model, the others

cannot be necessarily considered bad models to fit the ballistic data. Thus, the

commonly used logistic regression model specified in NIJ Standard–0101.06 can still
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be considered an appropriate choice for V50 ballistic limit analysis.

A.7 Application to New and Conditioned Armor Analysis

Within the body armor community, many questions still remain regarding

whether the initial distribution model deemed appropriate for new armor continues

to describe the armor as it ages. Therefore, the analysis of new and environmentally

conditioned armors is examined, with the objective of selecting an appropriate dis-

tribution model for both new and environmentally conditioned armor samples. Fur-

ther details about the environmental conditioning of the body armor are discussed

in Chapter 1. Using the three different regression models and their specificities in

terms of data fitting presented previously, and the criteria able to help identify the

best model for a particular armor, the focus is made on the aspect of body armor

conditioning and the fitting of ballistic data from new and environmentally condi-

tioned body armor. Data generated from the V50 ballistic limit testing of the new

and conditioned samples of the same model of armor are considered.

To facilitate an understanding of the effects of conditioning on the ballistic

performance of a particular armor, the estimates provided by the same regression

model on new and environmentally conditioned armor data are compared.

A.7.1 Comparison of New and Conditioned Armors

If the results from the new armors are compared to the environmentally condi-

tioned armors, the armor model’s performance appears to decrease after condition-
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ing. Whatever the regression model applied, the estimates for V50 and V02 decrease,

while the size of their associated confidence intervals increase. This indicates a

reduced confidence in the armor response curve and therefore an increase in the

probability of perforation for these velocities. The probability of perforation at the

NIJ reference velocity also increases, as well as its confidence interval. The ob-

served shifts in values for V50 and V02 are of the same range, regardless of which

regression model is used. To illustrate these observations, the observed data and the

predicted probability of perforation given by the logistic regression for new and en-

vironmentally conditioned PBO armors are presented in Figure A.7. The new armor

is represented in blue and the environmentally conditioned armor in red. The shape

of the ballistic response curves of new and environmentally conditioned armors look

similar, but as previously mentioned, it appears that the response curve has shifted

to the left when the armor is environmentally conditioned.

Obviously the PPTA armor is made from a different material than the PBO

armor, subsequently the ballistic performances of new and environmentally condi-

tioned PPTA armors are different. The point estimates for V50 of conditioned PPTA

armor are higher than those for new PPTA armor, though the size of the linked con-

fidence intervals increases as well. However, the V02 decreases and the probability of

perforation at NIJ reference velocity increases in the PPTA armor, as was seen in the

PBO armor, and the confidence intervals associated with the analysis also increase.

Figure A.7.1 illustrates these observations. Note the shape of estimated response

curve changes between the new and the environmentally conditioned armors. The

curve of environmentally conditioned armor is more elongated and its slope is less
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Figure A.7: Estimated response curve for new and conditioned PBO body armor
given by the logistic model. Experimental ballistic limit data for the new armor is
given by blue dots, and experimental ballistic limit data for the conditioned armor
is given by red dots. As in the previous analysis, a 0 corresponds to a stop and a 1
corresponding to a perforation. The solid line represent the best fit of the logistic
model this data, and the dotted lines represent the upper and lower 95 % confidence
intervals for the fit of the model.
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steep. The confidence interval of the environmentally conditioned armor response

curve is much wider, so the uncertainty in the ballistic performance increases as the

PPTA armor is conditioned.

Finally, the analysis was repeated for all three models for the UHMWPE

armor discussed previously. These are presented in Figure A.9, Figure A.10, and

Figure A.11.

A.8 Selection of an Appropriate Model for New and Environmentally

Conditioned Body Armors

This study seeks to answer the question of whether or not the initial distribu-

tion model deemed appropriate for new armor continues to describe the armor as it

ages, and the goal is to try to find an appropriate distribution model for both new

and environmentally conditioned armor samples. Typical results of the selection

model criteria for PBO new and environmentally conditioned armors are shown in

Table A.5. Using the prediction performance as a criterion, the three models behave

similarly. Using the model AIC as a decision criterion, the findings indicate that

for the V50 ballistic data studied, the probit model would best fit the data. On the

basis of the minimum AIC and the minimum average error rate criteria for model

selection, the probit model could be slightly preferable to the others and is deemed

appropriate for both new and environmentally conditioned armors. However, as

previously noted, the difference between the models is minimal, especially between

the probit and logistic models.
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Figure A.8: Estimated response curve for new and conditioned PPTA body armor
given by the probit model. Experimental ballistic limit data for the new armor is
given by blue dots, and experimental ballistic limit data for the conditioned armor
is given by red dots. As in the previous analysis, a 0 corresponds to a stop and a
1 corresponding to a perforation. The solid line represent the best fit of the probit
model this data, and the dotted lines represent the upper and lower 95 % confidence
intervals for the fit of the model.
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Figure A.9: Estimated response curve for new and conditioned UHMWPE body
armor given by the logistic model. Experimental ballistic limit data for the new
armor is given by black dots, and experimental ballistic limit data for the conditioned
armor is given by white dots. As in the previous analysis, a 0 corresponds to a stop
and a 1 corresponding to a perforation. The solid blue (new) and red (conditioned)
lines represent the best fit of the logistic model this data, and the dotted lines
represent the upper and lower 95 % confidence intervals for the fit of the model.

Armor Minimum Minimum Minimum average
Type AIC Misclassification Error Rate by

(%) Cross-Validation

New probit c-log-log tie
Conditioned probit logit/probit tie

Table A.5: The best models for new and conditioned PBO armors.
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Figure A.10: Estimated response curve for new and conditioned UHMWPE body
armor given by the probit model. Experimental ballistic limit data for the new armor
is given by black dots, and experimental ballistic limit data for the conditioned armor
is given by white dots. As in the previous analysis, a 0 corresponds to a stop and a
1 corresponding to a perforation. The solid blue (new) and red (conditioned) lines
represent the best fit of the probit model this data, and the dotted lines represent
the upper and lower 95 % confidence intervals for the fit of the model.
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Figure A.11: Estimated response curve for new and conditioned UHMWPE body
armor given by the c-log-log model. Experimental ballistic limit data for the new
armor is given by black dots, and experimental ballistic limit data for the conditioned
armor is given by white dots. As in the previous analysis, a 0 corresponds to a stop
and a 1 corresponding to a perforation. The solid blue (new) and red (conditioned)
lines represent the best fit of the c-log-log model this data, and the dotted lines
represent the upper and lower 95 % confidence intervals for the fit of the model.
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A.8.1 Summary

The results show that for a particular armor, one GLM can be shown to better

estimate the performance of that specific armor. However, the difference between

the GLMs is relatively small in terms of the quality of estimation, and the values

of the different criteria studied are similar. Thus, even if some criteria prefer one

GLM, the other GLMs could still be an appropriate choice to fit the ballistic data

set. None of the three models examined herein can be generally considered to be

the best model- that is, the model providing the best estimate of the performance

of body armor, regardless of its condition.

The contingency table (also called confusion matrix) is a table presenting ob-

served perforations and stops versus their predicted values (in this case predicted

perforations or stops). In this matrix, the number of correctly and incorrectly pre-

dicted data points is presented. As far as the ballistic limit analysis is concerned, the

amount of misclassified perforations is an important number because it represents

the amount of real perforations that are not estimated well by the model. Consider-

ing that body armor is life safety equipment, one could assume the viewpoint that

it is more serious to misclassify an observed perforation as a predicted stop than the

opposite.

By examining the contingency table for all the different models applied to the

ballistic limit data, it can be noted that the estimates of logit and probit models

have the same amount of misclassified perforations, and that the c-log-log model

estimates have the same or lightly more misclassified perforations. Consequently,
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either the logit or the probit models may be slightly preferred over the c-log-log

model, though the c-log-log model cannot be considered to be invalid based on this

observation.

A.9 Application of the GLMs to an Unusual Data Set

In the previous sections, the analysis with the different regression models did

not show much difference between the models. However, if an armor had an atypical

ballistic limit response, then perhaps one of the GLMs could be shown to better

describe that particular armor. To investigate this possibility, a dataset from an

armor in which one panel had a high number of stops or perforations was of interest

in determining if any of the three different models could be determined to be more

appropriate than the others for such a system.

A.9.1 Global Analysis of the Armor

Data from a new hybrid armor model with a large number of high velocity

stops on one panel were selected for this analysis. The estimated response curves

for all three regression models are presented in Figures A.12, A.13, and A.14. As in

the previous analysis, the estimated response curves of the logistic, probit and c-log-

log regression models and their 95 % confidence intervals presented in Figures A.12

through A.14 are very similar. However, the confidence interval generated using

the c-log-log model is not comparable with those obtained from logistic and probit

models because of the asymmetrical shape of the c-log-log distribution function.
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Figure A.12: Logit estimated response curves for a new hybrid armor. Experimental
ballistic limit data for the new armor is given by black dots. As in the previous
analysis, a 0 corresponds to a stop and a 1 corresponding to a perforation. The
solid blue line represents the best fit of the logistic model this data, and the dotted
lines represent the upper and lower 95 % confidence intervals for the fit of the model.
The estimated v50 is indicated by the vertical red line in the graph.

As previously discussed, the logit and probit curves are very similar; in particular,

both approach 0 and 1 symmetrically and asymptotically. However the c-log-log is

asymmetric, meaning that it approaches 1 much more rapidly than it approaches 0.

It is important to note that this particular armor model has a very large zone

of mixed results (ZMR) of 76.2 m/s (250 ft/s). This is due to a large number of

stops on one particular armor panel at high velocities. This large zone of mixed

results makes it difficult for any model to accurately predict the armor performance

at low velocities by reducing the slope of the curve. These results are presented in
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Figure A.13: Probit estimated response curves for a new hybrid armor. Experimen-
tal ballistic limit data for the new armor is given by black dots. As in the previous
analysis, a 0 corresponds to a stop and a 1 corresponding to a perforation. The solid
blue line represents the best fit of the probit model this data, and the dotted lines
represent the upper and lower 95 % confidence intervals for the fit of the model.
The estimated v50 is indicated by the vertical red line in the graph.

267



velocity (m/s)

350 400 450 500 550 600

p
ro

b
a
b
ili

ty
 o

f 
p
e
rf

o
ra

ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

c-log-log fit

95% CL

shot data

c-log-log V50 

Figure A.14: C-log-log estimated response curves for a new hybrid armor. Exper-
imental ballistic limit data for the new armor is given by black dots. As in the
previous analysis, a 0 corresponds to a stop and a 1 corresponding to a perforation.
The solid blue line represents the best fit of the c-log-log model this data, and the
dotted lines represent the upper and lower 95 % confidence intervals for the fit of
the model. The estimated v50 is indicated by the vertical red line in the graph.
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Logit Probit C-log-log

V50 (m/s) 509 509 513
Upper 95 % CL on V50 (m/s) 525 525 527
Lower 95 % CL on V50 (m/s) 497 498 500

CI width (m/s) 28 27 28

Predicted probability at 436 m/s 0.069745 0.055381 0.103460
Upper 95 % CL at 436 m/s 0.181378 0.163059 0.214941
Lower 95 % CL at 436 m/s 0.024743 0.013636 0.048092

CI width 0.156636 0.149423 0.166848

V05 (m/s) 426 434 405
Upper 95 % CL on V05 (m/s) 450 455 437
Lower 95 % CL on V05 (m/s) 365 386 326

CI width (m/s) 86 69 111

Table A.6: Summary of estimates for a new hybrid body armor.

Table A.6.

While the estimates of parameters differ in size due to different scaling of the

normal and logistic distributions, the estimated V50 values predicted by all three

models are very similar (Figure A.15). The calculation of the error bars of the V50

estimates are based on the Fieller’s theorem [220].

However, the probabilities of perforation at the NIJ reference velocity (436

m/s) predicted by the three different models are very different (Figure A.16). Note

that the estimates shown in Figure A.16 are different and that the error bars (in-

dicating the range of the estimate), calculated using the Wald test [223, 242], are

large. This means that, when the error of the estimate is taken into account, all

three estimates are probably within the same range. This phenomenon is attributed

to the large ZMR for this sample.

Analysis with the c-log-log asymmetric model indicated that the probability

of perforation at the NIJ reference velocity was approximately 10 % for this armor.
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Figure A.15: Estimates of V50 using the three different models. Note that the
estimates are similar. The large error bars are attributed to the inherent variability
of ballistic testing, which requires very large sample sizes for increased confidence.
This is impractical due to the time and expense of ballistic limit testing.
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Figure A.16: Estimates of probability of perforation at the NIJ reference velocity
(436 m/s). The large error bars are attributed to the inherent variability of ballistic
testing, which requires very large sample sizes for increased confidence. This is
impractical due to the time and expense of ballistic limit testing.
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Logit Probit C-log-log

AIC 139.61 139.15 141.06
Misclassified Data (%) 30.0 30.8 32.5

Error Rate by Cross-Validation (%) 31.7 31.7 31.7

Table A.7: Summary of selection criteria for a new hybrid body armor.

This is higher than the 7 % that was predicted by the logistical model used in the

NIJ Standard–0101.06 ballistic limit calculation, and much higher than the 5.5 %

that was predicted by the probit model.

Table A.7 shows the values of the different goodness-of-fit criteria for each

model. As in the previous analysis, an assessment of how well the different link

functions fit the data using the AIC does not indicate one GLM is a better fit than

the others. While there is a slight preference for the probit model, the difference is

not so large as to be significant. This same conclusion can be drawn from an analysis

of the misclassification percentage or the average error rate as statistical measures

for comparison. The values of these criteria are similar for all three GLMs, however,

the c-log-log model has the worst criteria values, so perhaps either the logit or the

probit models would be slightly preferred.

A.9.2 Examination of the Armor Data by Panel

A.9.2.1 Estimation of Individual Panel V50s

In an effort to better understand the wide ZMR of this armor model, especially

the large number of stops on one panel, the individual V50 of each armor panel was

computed. The estimates were determined using the logistic model. It is important
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Armor Panel V50 (ft/s) V50 (m/s)

A Front * 1583.56 482.7

A Back * 1584.04 482.8

B Front * 1577.24 480.7

B Back ** 1810.75 551.9

C Front ** 1689.61 515.0

C Back ** 1689.21 514.9

D Front ** 1614.10 492.0

D Back ** 1708.64 520.8

E Front ** 1646.14 501.7

E Back ** 1681.76 512.6

* indicates test was conducted on Day 1.
**indicates test was performed on Day 2.

Table A.8: Logistic V50 estimates for each armor panel.

to note that due to the small number of shots on each armor panel, these individual

V50 estimates are uncertain, but still useful for comparison purposes and for the

detection of any anomalies in the armor testing.

From Table A.8, one can note that Panel B Back had a much higher V50

than any of the other panels tested. Additional analysis will further examine this

observation.

A.9.2.2 Bullet Fragmentation Phenomenon

Another possible explanation for the high V50 for Panel B Back may be the

unique combination of bullet and target leading to unusual bullet behavior. When

this phenomenon occurs, the bullet behavior changes as a function of velocity. For

example, at lower velocities, the bullet may deform in a predictable manner as we

typically see in armor testing; while at higher velocities, the bullet may fragment
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upon impact before significant deformation, or perhaps components of the bullet

may not remain intact [246, 247]. Because the bullet behavior is different, its pene-

trative characteristics may be different. This behavior is more typically encountered

when testing hard plate armors, but may be possible to encounter when testing at

high bullet velocities. Due to the two different competing mechanisms that domi-

nate penetration mechanics, bullet fragmentation effectively leads to more than one

ballistic penetration curve for a particular armor-bullet system. In one case, bullet

properties dominate (when the bullet breaks up instead of deforming); in another,

armor properties dominate (typical armor testing). The armor community typically

focuses on finding the lowest V50 of the armor system, since that is the one of most

practical importance to the person wearing the armor, which is what the test meth-

ods in NIJ Standard–0101.06 are intended to do. Note that very high velocities

resulted in stops, leading one to suspect that the bullets may either fracturing or

losing their copper jackets at these very high velocities. To examine this possibility,

the armor panel was de-constructed, and bullets were recovered from the armor and

examined. These bullets (Figures A.17 and A.18) show evidence of bullet failure due

to bullet fragmentation. Therefore, additional analysis was performed to examine

the effect of this panel on the large ZMR and the outcome of this analysis is the

subject of the next section.
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Figure A.17: Photograph of de-constructed armor with shattered bullet inside.

Figure A.18: Photograph of shattered bullet removed from armor.
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Logit Probit C-log-log

V50 (m/s) 502 502 505
Upper 95 % CL on V50 (m/s) 514 514 516
Lower 95 % CL on V50 (m/s) 492 493 494

CI width (m/s) 22 21 22

Predicted probability at 436 m/s 0.042333 0.029177 0.073777
Upper 95 % CL at 436 m/s 0.143464 0.124872 0.182044
Lower 95 % CL at 436 m/s 0.011532 0.004206 0.028807

CI width 0.131932 0.120666 0.153237

V05 (m/s) 440 445 423
Upper 95 % CL on V05 (m/s) 458 461 448
Lower 95 % CL on V05 (m/s) 393 408 363

CI width (m/s) 65 54 85

Table A.9: Results of analysis with all three models, excluding Panel B Back.

A.10 Effect of Alternative Data Sampling

A.10.1 Effect of Panel B Back

Since it was confirmed that Panel B Back exhibited anomalous behavior dur-

ing the test series, the analysis was repeated, excluding the data from Panel B to

determine the effect of this panel on the outcome of the analysis. These data are

summarized in Table A.9.

Removing this panel does affect the outcome of this analysis. The logit predicts

a 4.23 % probability of perforation at the NIJ reference velocity and the probit

predicts a 2.92 % probability of perforation. Both of these results would meet

the criteria required by the NIJ standard. The c-log-log model predicts a 7.38 %

probability of perforation, but there is no information to indicate that this armor

model is best described by an asymmetric distribution.
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Logit Probit C-log-log

V50 (m/s) 502 502 504
Upper 95 % CL on V50 (m/s) 515 515 515
Lower 95 % CL on V50 (m/s) 493 493 495

CI width (m/s) 22 21 20

Predicted probability at 436 m/s 0.035811 0.022165 0.053903
Upper 95 % CL at 436 m/s 0.132794 0.111885 0.152016
Lower 95 % CL at 436 m/s 0.008928 0.002513 0.018448

CI width 0.123867 0.109372 0.133568

V05 (m/s) 443 448 434
Upper 95 % CL on V05 (m/s) 461 463 455
Lower 95 % CL on V05 (m/s) 397 412 381

CI width (m/s) 64 51 74

Table A.10: Results of analysis with all three models, excluding shots above 541
m/s.

A.10.2 Effect of Shots with Velocities above 541 m/s

All shots above 541 m/s (1775 ft/s) were arbitrarily excluded (resulting in the

exclusion of 13 data points) and the analysis was repeated (Table A.10).

The examination of the armor, which indicated that the bullet behavior may

have changed dramatically as a function of velocity (due to bullet fragmentation)

can be used to justify this approach. Again, the logistic regression analysis indicated

that the probability of perforation at the NIJ reference velocity is less than 5 %.

The logit predicts a 3.58 % probability of perforation at the NIJ reference velocity

and the probit predicts a 2.22 % probability of perforation. The c-log-log model

predicts a 5.39 % probability of perforation, but again, there is no information to

indicate that this armor model is best described by an asymmetric distribution.
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A.11 Summary

This work shows that the choice of link function, between the logit, the probit

and the complementary log-log link functions, is not the most important issue in

V50 ballistic limit performance estimation, since the different GLMs examined all

gave similar results. The three regression models have been applied to the ballistic

data and then evaluated, but none of them distinguished itself from the others in

terms of armor performance estimation. Findings indicate that for all the ballistic

data studied, all three link functions behave similarly, even if the model selection

criteria prefer a particular regression model. The diverse criteria calculated for all

three models were of the same magnitude; therefore, even if one model has a lower

value for a criterion, the two other models’ criterion values are close. Overall, it can

be concluded that for the ballistic data sets examined herein, the logit and probit

link functions performed well and seemed to give more accurate estimation of the

ballistic performances than the c-log-log function.

The primary objective of this study was to analyze the three regression models

to determine which model produces a good estimate of the performance of a body

armor model, and to understand how an armor model’s performance changes with

environmental conditioning. Slight preference can be assigned to the probit and

logistic models for new armor, because they gave consistently good results. The

comparison of V50 ballistic performance results of new and environmentally condi-

tioned armors shows that in general the armor’s model performance decreases as it

is conditioned. Moreover, all three regression models are appropriate distribution
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models for both new and aged armor samples. If an initial distribution model is

deemed appropriate for new armor, it will continue to describe well the armor as it

ages.

The second objective of this study was to examine the usefulness of applying

different models to ballistic limit data analysis of a new armor with ballistic limit test

results that may indicate that the logistic model is not the appropriate model for this

armor. The detailed analysis of V50 data from a new hybrid armor, to examine the

effect of symmetric and asymmetric regression models (logit, probit, c-log-log) on the

predicted performance of the armor at the NIJ reference velocity, showed no effect

on the test outcome. Furthermore, there is no evidence to indicate that this armor

model is better described by an asymmetric regression model than a symmetric one.

However, in the course of completing this analysis, one panel, Armor Panel B back,

appeared to have a high number of high velocity stops. Possible explanations of

this observation were discussed, including a bullet fragmentation phenomenon, or

test anomalies occurring during the test in the laboratory. The high velocity stops

observed on this panel contribute to a wide ZMR in the ballistic limit calculations,

causing the probability of perforation at the NIJ reference velocity to be higher

than the acceptable (5 %) criteria. In an effort to better understand the effect of

this panel on the test outcome, analysis was repeated with all three models in two

different ways: excluding Panel B back from the calculation, and excluding shots

above 541 m/s from the calculation. However, the exclusion of either data set is

justifiable only if it can be shown that the tests or test conditions were different

from what is specified in the NIJ standard.
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A.12 Link to Mechanical Properties

A.12.1 Overview

Mechanical and ballistic property data were collected from PBO and PPTA

armor panels of the same model during the conditioning protocol development de-

scribed in Chapter 1. These data are leveraged here to investigate the relationship

between mechanical properties, specifically load at break, and the ballistic property

of V50. The relationship will be investigated separately for each armor material:

PBO and PPTA.

A.12.2 Sample description

The laboratory aging study took place over several phases, as previously de-

scribed. The data included in this study are from Phases III and IV, plus a 3rd

study, phase V. In each phase a group of armor panels were exposed to various

accelerated aging conditions. As previously discussed, these conditions were not all

the same across all groups of armor panels. After a period of time the mechanical

properties of the group were tested by extracting yarns from several panels and

subjecting them to relevant test protocols, including tensile testing. If the observed

mechanical property values had dropped below a target value, then the study was

deemed to have reached its conclusion, and V50 testing was performed. To investi-

gate the relation between mechanical properties and V50 values, it is most simple to

examine data pairs of tensile strength and V50. To accomplish this, lots have been

defined as described in Table A.11 for which tensile strength and V50 values pairs
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will be developed.

A.12.3 Analytical Approach

A.12.3.1 Overview

A simulation approach will be taken in this analysis. A population of tensile

strength and V50 data pairs will be developed using the data from to each defined

lot. From each lot’s tensile strength and V50 data pair population, a data pair will

be randomly selected. A linear regression model will be developed for this data pair

relating the independent variable, tensile strength to the dependent variable, V50.

This process will be repeated numerous times. The resulting distribution of the

slope parameter, β1 from the numerous regression models will be explored. A β1

distribution that largely encompasses the value of zero will indicate that no relation

between the variables exists.

A.12.3.2 Data Pair Development

For any given vest panel in the study there only exists either material property

data or V50 data, since both tests are destructive. To study the relationship between

material properties and V50 values, data pairs of tensile strength and V50 are needed.

Therefore, an assumption must be made that each lot of panels as defined above form

a homogeneous population, even though they came from different actual physical

samples. Thus, a load value sampled from within a lot may be paired with a V50

value sampled from within the same lot. A method to developing populations of
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Lot Armor Source Aging Conditioning
Designation Material Condition Duration

(days)

A1 PPTA New Armor none 0
A2 PPTA Phase 3 tumble 13
A3 PPTA Phase 3 all 13
A4 PPTA Phase 4 all 10
A5 PPTA Phase 5 all 10
B1 PBO New Armor none 0
B2 PBO Phase 3 tumble 13
B3 PBO Phase 4 all 10
B4 PBO Phase 5 all 10

Table A.11: Lot designations for PBO and PPTA armors for the bootstrap simula-
tions to evaluate links between tensile strength and ballistic limit.

data pairs is described below.

A.12.3.3 Lot Bootstrap

Within a lot, the population of data pairs will be developed by considering a

complete exploration of the tensile strength data and the V50 data. For example,

the A1 lot which consists of 72 tensile strength values and 4 V50 values, will result in

a population of data pairs of all 72 x 4 = 288 possible combinations. A single point

from each lot population of data pairs will be randomly selected to be included in

the regression analysis.

A.12.4 Results and Discussion

The linear regression results for ten simulations for PPTA are shown in Fig-

ure A.19. Similar results for PBO are displayed in Figure A.20. This sampling and

linear regression modeling procedure was repeated 10,000 times. Summary statis-

282



Figure A.19: Linear regression results of 10 bootstrap simulations for PPTA armors.
Note that the lines have both positive and negative slopes.

tics for the resulting regression slope parameters are displayed in Table A.12. The

distribution of the resulting regression slope parameters are displayed by means of

a histogram in Figure A.21.

The reason for this effort was to examine the hypothesis that changes in the

material properties of yarn extracted from body armor can indicate changes in the

ballistic performance of that body armor. Thus, a body armor whose yarns become

weaker might be expected to display a lessened ballistic resistance. If one assumes

that the relationship between tensile strength and ballistic performance is positive

(increased tensile strength relates to increased ballistic resistance), then the slope

parameter from a linear regression model relating tensile strength to V50is to be

greater than zero.

Figure A.21 shows the distribution of 10,000 slope parameter resulting from

the re-sampling efforts for PPTA and PBO body armor. The distribution of slope
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Figure A.20: Linear regression results of 10 bootstrap simulations for PBO armors.
Note that the lines all have positive slopes.

Figure A.21: A histogram depicting the results of 10,000 simulations of the linear
regression slope parameters for PPTA and PBO body armors.
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PPTA 10,000 9.6 51.0 -87.9 115.8 4144 5856
PBO 10,000 152.2 69.2 75.2 286.7 99 9901

Table A.12: Simulation results for the linear regression slope parameter from boot-
strap simulations to evaluate links between tensile strength and ballistic limit.

parameters from PPTA contains zero, while the distribution of slope parameters

pertaining to PBO lies primarily to the right of zero. This observation indicates

that the regression slope parameter for PPTA armor does not likely differ from

zero, meaning there is neither a positive, nor a negative relationship between tensile

strength and ballistic resistance. However, the regression slope parameter for PBO

armor is likely greater than zero, indicating a positive relationship between tensile

strength and ballistic resistance.

An examination of the confidence intervals association with the previous anal-

ysis further supports this conclusion. The 95 % bootstrap percentile confidence

interval [ref] for the PPTA armor slope parameter is (-120.5, 96.3), and for the

PBO armor it is (74.7, 354.7) (see Table A.12), again indicating the slope parame-

ter for PPTA does not differ from zero, and therefore no relationship exists between

load and V50, whereas this relationship is indicated to be positive for the PBO ar-

mor. This is further underscored by an examination of the regression lines from

Figure A.20 and Figure A.21. The ten sample regression lines for PBO are rather

clustered and show a positive slope. The ten regression lines for PPTA are very

sporadic with both positive and negative slopes. It was also noted that the range
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of tensile strength values is much greater for the PBO samples as opposed to the

PPTA samples. This point was further investigated in the next section.

A.12.4.1 Material Properties of Used PPTA Body Armor

From previous work, it was known that the targeted reduction in tensile

strength for PBO was based upon the reduction in tensile strength that had been

observed in PBO armor that had failed in the field. However, it was not known if

the strengths for the PPTA body armor were realistic for field-worn armors. An

existing data set was used to answer this question. Measurements of extracted yarn

tensile strength that were collected in conjunction with the efforts of the Canadian

government to examine used body armor were utilized in this investigation of the

tensile strengths seen in PPTA-based body armor to determine if they were reason-

able. This Canadian effort examined surplus armor that had been worn in the field,

removed from service, and placed in storage.

Forty-one armor panels of interest from the Canadian work were subject to

material properties testing. These armor panels were all manufactured by the same

parent company and were comprised entirely of PPTA yarns. The manufacturing

date of the panels span the ten year time period: October 1992 - October 2002.

Approximately 14 yarns were extracted from each armor panel and subjected to

material properties testing. A summary of the tensile results obtained are displayed

in Table A.13. A histogram of the observed tensile strength of these 577 total

samples is displayed in Figure A.22.
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No. of Samples Minimum Average Maximum Standard Deviation
577 2.148 2.841 3.435 0.234

Table A.13: Tensile strength results for PPTA yarns extracted from field-worn ar-
mors.

Figure A.22: A histogram depicting the tensile strength results for field-worn Cana-
dian PPTA body armors.
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While this data is limited to PPTA armor from one manufacturer during the

time period: October 1992 - October 2002, it indicates that the tensile strength of

the extracted PPTA yarns found in such used vests is normally centered around

2.84 GPa. Furthermore, no sample was seen to display a tensile strength lower than

2.14 GPa. Thus, the analysis of the relationship between mechanical properties

and V50 values, which examined vests made of PPTA with tensile strengths ranging

from 1.706 GPa to 2.918 GPa adequately captures the lower tail of this distribution.

And hence, the results of the investigation between tensile strength and V50 may be

considered applicable to used armor found in service.

In a similar effort, data from field-worn PBO body armor was also examined to

ensure that the reduction in tensile strength targeted by the conditioning protocol

development was reasonable and had been observed in other fielded armors. This

data was collected in 2004 and 2005 and was not as readily processed as the newer

data examined for PPTA armors. Therefore, only the average tensile strength,

comprised of the breaking strengths of at least 10 different yarns extracted from

each armor was used to prepare the histogram in Figure A.23. The armor in this

population represented a wide variety of different models, ages, manufacturers, and

protection levels. The average tensile strength of extracted PBO yarns is normally

distributed around 2.64 GPa, with average extracted yarn tensile strengths from each

armor ranging from 1.41 to 3.93 GPa. The conditioned PBO armor samples used

in this analysis had average extracted yarn tensile strengths ranging from 2.33 GPa

to 2.94 GPa, which are reasonable when compared to field worn PBO-containing

armor.
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Figure A.23: A histogram depicting the average tensile strength results for field-worn
PBO body armors from a previous study conducted in 2004-2005. The body armor
from this study was gathered from different areas of the country, and represents
different models, different ages, and different wear conditions. Thus, it should be
fairly representative of the distribution of tensile strengths of PBO yarns in fielded
body armor from this time.
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A.13 The Dimensional Ratio for the Estimation of Ballistic Perfor-

mance, U*

In addition to the analysis presented here, there are other methodologies for

considering the influence of mechanical properties on ballistic performance. One

such approach was outlined in a landmark paper by Cuniff in 1999 [248]. In this

paper, Cuniff introduces the concept of the dimensionless parameter in the opti-

mization of textile-based body armor systems. The objective of his analysis is to

relate the system and projectile characteristics to the ballistic limit of a model ar-

mor system with a specific areal density. The physical quantities for this system are

shown in Equation A.2, adapted from [248],

Φ

(
σε

2ρ
,

√
E

ρ
,
Ap
mp

, v50, Ad

)
(A.2)

in which σ is the fiber ultimate tensile strength, ε is the fiber ultimate tensile

strain, ρ is the fiber density, E is the fiber modulus (all fibers are assumed to be

linearly elastic), Ap is the projectile presented area (relative to the fiber), mp is the

projectile mass, V50 is the ballistic limit, and Ad is the system areal density, or mass

per unit area [248].

The dimensional ratios for the system presented in Equation A.2 are presented

in Equation A.3 below, adapted from [248]:

Φ

(
v50

U∗
1
3

,
AdAp
mp

)
(A.3)

Where U* is given in Equation A.4 below as the product of fiber specific
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toughness and strain wave velocity, adapted from [248].

U∗ =
σε

2ρ

√
E

ρ
(A.4)

U∗ has been used since its inception to estimate the theoretical effect of im-

provements in fiber properties on ballistic performance, but it does have some lim-

itations that are not always well-appreciated, for example, it assumes that all pro-

jectiles are nondeforming fragment simulators, however most armor is designed to

be used against deforming projectiles with lead cores, adapted from [248]. Several

other researchers have extended this idea to develop complex, multilayer textile

armor computational models [249, 250, 251]. These models will not be discussed

further in this work.

A.13.1 Application of U* to environmentally conditioned armor anal-

ysis

One might surmise that the concept of U* might be a useful tool in predict-

ing the general effect of a change in quasi-static fiber properties on the ballistic

performance of an armor system. It could help determine when a change in the

material properties measured from an armor sample might translate into a loss in

performance in the case of field and artificial degradation studies, or an increase in

performance in the case of new fibers or improved fibers.

Sometimes, only very limited data or samples are available from a fielded

or laboratory-aged armor, and it is not practical to conduct extensive V50 testing.
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In order to develop a V50 with reasonable confidence, multiple panels should be

tested, but large sample sizes might not be available. Additionally, the idea of

incorporating coupon samples that could be routinely tested in an armor package

has been proposed.

The data sets presented herein are quite limited and are insufficient to make

confident statements about theoretical V50. However, one can make a relative com-

parison of V50 retention and how it relates to tensile strength. Data sets from two

phases of the conditioning protocol development were examined to compare mea-

sured and theoretical V50 retention with tensile strength retention for PBO and

PPTA body armor. Figure A.24 and Figure A.25 show tensile strength retention,

U* retention, and measured V50 retention for conditioned PPTA samples. The ar-

mor in Figure A.24 was conditioned at 70 ◦C and 90 % RH while being tumbled

for 10 days, and the armor in Figure A.25 was conditioned at 65 ◦C and 80 % RH

while being tumbled for 10 days.

Yarns extracted from the PPTA armor exposed at 70 ◦C and 90 % RH had an

average initial tensile strength of approximately 2.54 GPa, which dropped to 1.97

GPa after 10 days of exposure and tumbling, and the armor exposed to 65 ◦C and

80 % RH while being tumbled had an initial tensile strength of approximately 2.78

GPa which dropped to approximately 2.36 GPa after 10 days of exposure. In both

cases, the actual measured V50 of the PPTA armor was relatively unchanged by

the conditioning protocol. The predicted V50, U*, did show a theoretical decline of

approximately 16 % for 10 days of the 70 ◦C and 90 % RH while tumbling exposure,

and a thoeretical decline of approximately 9 % for 10 days of the 65 ◦C and 80
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Figure A.24: Tensile strength retention, U* retention, and actual V50 retention for
PPTA armor conditioned at 70 ◦C and 90 % RH while being tumbled for 10 days.
Note that the actual V50 retention was essentially unchanged, while U* retention
did predict a change in V50 to correspond with the change in tensile strength.
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Figure A.25: Tensile strength retention, U* retention, and actual V50 retention for
PPTA armor conditioned at 65 ◦C and 80 % RH while being tumbled for 10 days.
Note that the actual V50 retention was essentially unchanged, while U* retention
did predict a change in V50 to correspond with the change in tensile strength.
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% RH while tumbling exposure. It is interesting to note that the predicted V50,

U*, consistently provides a conservative estimate of the V50 for the degraded PPTA

system, and that it appears to be more sensitive to changes in tensile strength for

this system. With the analysis of additional data sets, perhaps the predicted V50,

U*, could serve as a warning to indicate when a particular armor should be removed

from service.

This same analysis was also applied to similar data sets for a PBO armor that

is expected to exhibit a decline in V50 after conditioning. Figure A.26 and Fig-

ure A.27 show tensile strength retention, U* retention, and measured V50 retention

for conditioned PBO samples. The armor in Figure A.26 was conditioned at 70 ◦C

and 90 % RH while being tumbled for 10 days, and the armor in Figure A.27 was

conditioned at 65 ◦C and 80 % RH while being tumbled for 10 days.

Yarns extracted from the PBO armor exposed at 70 ◦C and 90 % RH had

an average initial tensile strength of approximately 4.47 GPa, which dropped to

2.72 GPa after 10 days of exposure and tumbling, and the armor exposed to 65 ◦C

and 80 % RH while being tumbled had an initial tensile strength of approximately

3.72 GPa which dropped to approximately 2.94 GPa after 10 days of exposure.

(These experiments were conducted with samples originally purchased in 2006, and

the first study was performed in 2007, the second in 2011. It is possible that the

material properties of the PBO in these samples changed during the four year lapse

between the two experiments. The initial tensile strength was verified by additional

tensile strength measurements to ensure that it was not an erroneous result.) In

both cases, the actual measured V50 of the PBO armor was reduced by 15-18 % by
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Figure A.26: Tensile strength retention, U* retention, and actual V50 retention for
PBO armor conditioned at 70 ◦C and 90 % RH while being tumbled for 10 days.
The actual V50 retention was reduced by the protocol, and U* retention did predict
a change in V50 to correspond with the change in tensile strength, although U*
prediction of V50 retention was greater than that actually measured.
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Figure A.27: Tensile strength retention, U* retention, and actual V50 retention for
PBO armor conditioned at 65 ◦C and 80 % RH while being tumbled for 10 days.
The actual V50 retention was reduced by approximately 15 % by the protocol, and
U* predicted a thoeretical decline of approximately 10 % for 10 days of the 65 ◦C
and 80 % RH while tumbling exposure. It is interesting to note that the predicted
V50, U*, provides a conservative estimate of the V50 for the PBO system exposed
at 70 ◦C and 90 % RH while tumbling, and that it appears to underestimate the
change V50 for the system exposed at 65 ◦C and 80 % RH while tumbling.
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the conditioning protocol. The predicted V50, U*, did show a theoretical decline of

approximately 25 % for 10 days of the 70 ◦C and 90 % RH while tumbling exposure,

and a thoeretical decline of approximately 10 % for 10 days of the 65 ◦C and 80 %

RH while tumbling exposure. It is interesting to note that the predicted V50, U*,

provides a conservative estimate of the V50 for the PBO system exposed at 70 ◦C

and 90 % RH while tumbling, and that it appears to underestimate the change

V50 for the system exposed at 65 ◦C and 80 % RH while tumbling. The strain to

failure in the samples conditioned and tested in 2011 was higher than in the samples

conditioned and tested in 2007, which is responsible for the calculation of a higher

predicted U* for these samples. This observation will be the subject of a future

investigation.

A.14 Conclusions and Future Work

In conclusion, the first part of this study shows that there appears to be

a relationship between changes in mechanical properties and changes in ballistic

performance for PBO armor, but that there was not a relationship for PPTA armor.

Although the decrease in material properties of the PBO vests were seen to have

an impact on the ballistic performance, had the safety margin been larger (e.g.

additional layers of material) when the vest was new, might this impact had not

been observed? Similarly, while the relative decrease in material properties of PPTA

is seen to be much less dramatic, had the original safety margin been less (e.g. fewer

layers of material) perhaps an impact on ballistic performance would have been
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observed. However it is possible that the backface signature requirement mandated

by the NIJ Body Armor Standard does not allow for a PPTA vest to approach a

safety margin that would provide such results. A future study involving simplified

PPTA armors with a varying number of layers subjected to several aging conditions

may address some of these questions.

In the second part of this study, the well known parameter of U* was also

calculated to understand the theoretical change in ballistic performance of new and

conditioned armor as compared to its actual change in ballistic performance. A

puzzling result was found for one PBO sample, which had a lower actual than

expected change in V50 as calculated by U*. Yarns extracted from armor that

exhibited this result had a lower than expected initial tensile strength and a higher

than expected conditioned strain to failure. For all other samples investigated, U*

appeared to provide a conservative estimate of the change in ballistic performance,

and might be a useful tool for fielded armor performance surveillance programs

relying upon testing of armor coupon samples. Additional analysis of the armor

with a lower than expected change in U* may provide for a better understanding of

why this armor had a lower than expected initial tensile strength and a higher than

expected strain to failure.
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Appendix B

Supplementary Material

B.1 Specifications for the tumbler used in many aging experiments.

In the course of the development of the conditioning protocol for NIJ Standard–

0101.06, significant exploration of existing methods of performing accelerated wear

testing were examined, however, no commercial apparatus met all of the criteria

necessary for this test. Therefore, a tumbling apparatus was designed with some as-

sistance from DuPont at NIST. This device is now specified in NIJ Standard–0101.06

and has also been adopted by the US Army for some of their armor procurement

acceptance criteria.

The tumbler is depicted in the two engineering drawings immediately following

this section.
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Figure B.1: Schematic of NIJ Standard–0101.06 tumbling apparatus designed at

NIST.
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Figure B.2: Schematic of NIJ Standard–0101.06 tumbling apparatus designed at

NIST.
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B.2 Ziegler-catalyzed polymerization of polyethylene, for reference.
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Figure B.3: Ziegler catalyzed polymerization of polyethylene.
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B.3 FTIR spectra for aged polyethylene.

Figure B.4: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 1 week.
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Figure B.5: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 2 weeks.
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Figure B.6: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 4 weeks.
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Figure B.7: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 27 weeks.
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Figure B.8: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 81 weeks.
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Figure B.9: FTIR Spectrum of UHMWPE fiber aged at 43 ◦C for 102 weeks.
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Figure B.10: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 1 week.
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Figure B.11: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 2 weeks.
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Figure B.12: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 4 weeks.
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Figure B.13: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 24 weeks.
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Figure B.14: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 50 weeks.
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Figure B.15: FTIR Spectrum of UHMWPE fiber aged at 65 ◦C for 94 weeks.
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Figure B.16: FTIR Spectrum of UHMWPE fiber aged at 90 ◦C for 1 week.
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Figure B.17: FTIR Spectrum of UHMWPE fiber aged at 90 ◦C for 2 weeks.
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Figure B.18: FTIR Spectrum of UHMWPE fiber aged at 90 ◦C for 4 weeks.

319



Figure B.19: FTIR Spectrum of UHMWPE fiber aged at 90 ◦C for 8 weeks.

320



Figure B.20: FTIR Spectrum of UHMWPE fiber aged at 90 ◦C for 17 weeks.
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Figure B.21: FTIR Spectrum of UHMWPE fiber aged at 115 ◦C for 1 week.
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Figure B.22: FTIR Spectrum of UHMWPE fiber aged at 115 ◦C for 2 weeks.
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Figure B.23: FTIR Spectrum of UHMWPE fiber aged at 115 ◦C for 4 weeks.
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Figure B.24: FTIR Spectrum of UHMWPE fiber aged at 115 ◦C for 8 weeks.
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Figure B.25: FTIR Spectrum of UHMWPE fiber aged at 115 ◦C for 17 weeks.
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Figure B.26: Deconvolution of UHMWPE melting endotherm into 4 separate peaks.

327



B.4 DSC Thermograms for first and second melt for gamma-irradiated

polyethylene.

Figure B.27: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.28: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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Figure B.29: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.30: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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Figure B.31: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.32: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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Figure B.33: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.34: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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Figure B.35: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.36: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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Figure B.37: DSC Thermogram for Gamma Irradiated Polyethylene, 1st melt.
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Figure B.38: DSC Thermogram for Gamma Irradiated Polyethylene, 2nd melt.
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