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Multicore Reuse Distance (RD) analysis is a powerful tool that can potentially

provide a parallel program’s detailed memory behavior. Concurrent Reuse Dis-

tance (CRD) and Private-stack Reuse Distance (PRD) measure RD across thread-

interleaved memory reference streams, addressing shared and private caches. Sensi-

tivity to memory interleaving makes CRD and PRD profiles architecture dependent,

preventing them from analyzing different processor configurations. However such

instability is minimal when all threads exhibit similar data-locality patterns. For

loop-based parallel programs, interleaving threads are symmetric. CRD and PRD

profiles are stable across cache size scaling, and exhibit predictable coherent move-

ment across core count scaling. Hence, multicore RD analysis can provide accurate

analysis for different processor configurations. Due to the prevalence of parallel

loops, RD analysis will be valuable to multicore designers.

This dissertation uses RD analysis to analyze multicore cache performance for

loop-based parallel programs. First, we study the impacts of core count scaling and

problem size scaling on CRD and PRD profiles. Two application parameters with



architectural implications are identified: Ccore and Cshare. Core count scaling only

impacts cache performance significantly below Ccore in shared caches, and Cshare is

the capacity at which shared caches begin to outperform private caches in terms of

data locality. Then, we develop techniques, in particular employing reference groups,

to predict the coherent movement of CRD and PRD profiles due to scaling, and

achieve accuracy of 80%–96%. After comparing our prediction techniques against

profile sampling, we find that the prediction achieves higher speedup and accuracy,

especially when the design space is large. Moreover, we evaluate the accuracy of

using CRD and PRD profile predictions to estimate multicore cache performance,

especially MPKI. When combined with the existing problem scaling prediction, our

techniques can predict shared LLC (private L2 cache) MPKI to within 12% (14%) of

simulation across 1,728 (1,440) configurations using only 36 measured CRD (PRD)

profiles. Lastly, we propose a new framework based on RD analysis to optimize

multicore cache hierarchies. Our study not only reveals several new insights, but it

also demonstrates that RD analysis can help computer architects improve multicore

designs.
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Chapter 1

Introduction

1.1 Motivation

In recent years, chip multiprocessors (CMPs) dominate design trends as chip

manufacturers strive to achieve greater performance and power efficiency. CMPs

with one hundred cores are already in the market, and CMPs with more than one

hundred cores and more than one hundred MBs of on-chip cache will be available in

the near future. On multicore processors, parallel programs can use multiple cores

in parallel to solve problems more quickly. One key factor determining a multicore

processor’s performance and power consumption is how effectively programs can

utilize the on-chip cache hierarchy.

Memory performance depends on the physical characteristics of the cache sys-

tem and the parallel application’s intra-thread locality and inter-thread interactions

in the cache hierarchy. For example, data sharing may reduce the aggregate working

set size in shared caches, decreasing the cache capacity pressure. However, shared

caches have longer average access latency. In contrast, data sharing may cause repli-

cation and communication in private caches, reducing the effective cache capacity

and inducing coherence misses. However, private caches keep data locally and have

shorter average access latency.

To understand these complex effects, simulation is the de facto method for
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studying multicore cache hierarchies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These studies

simulate processors with varying core count and cache capacity to quantify how dif-

ferent designs impact memory performance. However, the number of configurations

in terms of core count, cache hierarchy, and problem size is very large. Worse yet,

detailed simulations will become more complex and time consuming as processors

and problem sizes scale to the large-scale chip multiprocessor (LCMP) level. Hence,

using detailed simulations to study this large design space becomes difficult due to

the multi-dimensional nature of the design space.

To study future CMPs, computer architects need new tools to gain deeper

insights into multicore memory performance. Reuse Distance (RD) analysis [12]

is a good potential candidate to tackle this multi-dimensional design space prob-

lem. Recently, researchers have developed multicore RD analysis to analyze mul-

ticore cache performance for shared caches and private caches. To address in-

terference and data sharing effects between threads in shared caches, Concurrent

Reuse Distance (CRD) [13, 14, 15, 16, 17] uses a global stack to measure RD

across thread-interleaved memory reference streams. On the other hand, to ad-

dress data replication and communication in private caches, Private-stack Reuse

Distance (PRD) [15, 16, 17] uses per-thread coherent stacks to measure RD sepa-

rately for individual threads. For multicore processors, we can use CRD and PRD

profiles together to evaluate an application’s memory performance for different cache

hierarchies quickly. But most importantly, it provides rich insights into how an ap-

plication’s inter-thread interactions impact its data locality.

A major problem with multicore RD analysis is that CRD and PRD profiles
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are sensitive to how inter-thread memory references interleave. For example, the

number of interleaved memory streams increases as core count scales. Hence, an

application’s CRD and PRD profiles are not valid at different core counts. Even at

the same core count, the relative execution speed between threads may change across

different cache sizes, and this may change the interleaving of memory references. As

a result, the CRD and PRD profiles measured on one cache size may not be valid

for another cache size. So, strictly speaking, CRD and PRD profiles are architecture

dependent. Such profile’s instability defeats the benefits of multicore RD analysis.

Previous multicore RD research has revolved around developing techniques for

acquiring profiles and verifying accuracy. Researchers have investigated construct-

ing multicore RD profiles by using trace-based analyses [13, 14] for shared caches.

Unfortunately, these techniques are complex because they need to take into account

all the possible ways that memory references can interleave. Moreover, these tech-

niques usually require at-scale profiling. Hence, they are impractical for large core

counts and problem sizes.

In this dissertation, we will show that the complexity of analyzing memory

interleaving depends on how programs are parallelized. Task-level parallelism and

loop-level parallelism are two of the major parallelization techniques. In task-level

parallel programs, threads are often doing different computations, and they have

different locality characteristics. When the cache size changes, the relative speed

between threads may change, causing irregular memory interleaving and complex

thread interference. In contrast, in a loop-based parallel program, threads from the

same parallel loop are doing very similar computations. These threads have almost

3



identical locality characteristics. When the cache size changes, these threads all

either speed up or slow down, but by the same amount. So roughly speaking, the

interleaving does not change. In this case, CRD and PRD profiles are highly stable

across different cache sizes and can provide accurate analysis. We also find that core

count scaling makes CRD and PRD profiles shift coherently in a shape-preserving

way. The coherent movement suggests predictability. When combined with the

existing problem scaling prediction [20], we can study the entire design space from a

small number of samples very quickly, and enable practical RD analysis for LCMP-

scale systems.

In this work, we focus on loop-based parallel programs. Although this is one

restriction of our work, loop-based parallel programs are pervasive in many domains,

for example, scientific, multimedia, data-mining, and bioinformatics applications. A

lot of data-parallel applications have symmetric threads. One of the most popular

programming models, OpenMP, also provides a pragma to parallelize loops. In

addition, loop-based parallel programs can provide large amounts of parallelism

simply by increasing the problem size, so they are highly scalable. For future CMPs,

loop-based parallel programs will be very important workloads. For these reasons,

multicore RD analysis for loop-based parallel programs will be very valuable to

multicore designers, compilers, and programmers.
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1.2 Contributions

This dissertation presents a thorough investigation of multicore RD analysis.

The challenges lie in developing an efficient multicore RD analysis framework to

analyze the CRD and PRD profiles for different scaling dimensions (core count

and problem size) and different cache hierarchies (multi-level private and shared

caches). This dissertation addresses these challenges and makes the following six

contributions.

(1) In-depth Analysis on CRD and PRD Profiles

We provide an in-depth analysis on inter-thread interactions in both shared

and private caches, and we show how CRD and PRD profiles capture them. We

isolate these different effects by creating several new locality profiles to analyze their

relative contributions.

First, memory reference streams are interleaved in shared caches, and the in-

terleaving degrades intra-thread’s data locality. When data sharing happens, it can

reduce the memory reference’s reuse distance and improve data locality in shared

caches. Because our benchmarks tend to share data across distant iterations, data

sharing usually impacts CRD profiles at large RD values in our benchmarks. De-

pending on where data sharing happens, inter-thread shared memory references also

tend to spread and distort the CRD profile. However, we find that this effect is not

significant in our benchmarks.

Second, read-shared data causes replication in private caches, reducing the

effective cache capacity. On the other hand, write-shared data causes invalidation
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in private caches. While invalidations cause coherence misses for the reuses of vic-

timized data blocks, they can also improve locality because the holes they leave

behind can absorb stack demotions. PRD profiles can capture these effects. In

CMPs, multiple private stacks contribute to increased cache capacity. To capture

this effect, we compute the scaled PRD, or sPRD, which equals T ×PRD, where T

is the number of threads. Because both CRD and sPRD reflect total cache capacity,

we can compare the cache performance between shared and private caches across

different sizes by comparing CRD and sPRD profiles directly.

Our analysis quantify these effects, and help researchers better understand

how inter-thread interactions impact an application’s memory behavior.

(2) The Impact of Core Count Scaling

We use RD analysis to study the impact of core count scaling on an appli-

cation’s memory behavior, showing how CRD and PRD profiles evolve at different

core counts. For core count scaling, we find CRD profiles shift coherently to larger

RD values in a shape-preserving way. Shifting slows down and eventually stops at a

certain RD value, and we define this point as Ccore. Core count scaling only impacts

cache performance significantly below this stopping point in shared caches.

Core count scaling also causes sPRD profiles to shift to larger RD values in

a shape-preserving way. However, replications and coherence misses also grow as

core count scales. As a result, there is no Ccore in sPRD profiles, and data locality

degradation happens across all RD values.

(3) Architectural Implications

We also explore the architectural implications of our data sharing insights.
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This dissertation defines Cshare to be the cache capacity at which the data sharing

of a given application becomes noticeable. Beyond this point, shared caches show

locality advantage (lower cache misses) over private caches. We also find that the

degree of data sharing is not a fixed characteristic of a given application, but rather

is a function of RD value. So the selection between private and shared caches also

depends on cache capacities.

When considering the scaling impact, we find that Ccore shifts to larger RD

values and Cshare shifts to smaller RD values with core count scaling. This suggests

that the cache capacity at which shared caches begin to outperform private caches

decreases as core count scales. But this benefit must be weighted against the higher

access latency of shared caches which also grows as core count scales.

Problem size scaling increases the working set size, and CRD and sPRD profiles

shift to larger RD values. We also find that both Ccore and Cshare shift to larger

RD values. As a result, problem size scaling may reduce the benefit of using shared

caches at a fixed cache capacity.

(4)Profile Prediction

The CRD and PRD profiles of loop-based parallel programs show coherent

shifting with core count scaling and problem size scaling, and we develop techniques

to predict the coherent movement of CRD and PRD profiles. Reference groups [20]

is previously used to predict a sequential program’s RD profiles across problem size

scaling. We employ this technique to predict CRD and PRD profiles across core

count scaling. Because data sharing also causes spreading, we propose uniformly

distributing the portion of CRD profiles, which is associated with shared references.
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We investigate the prediction accuracy of CRD and PRD profiles under three

scaling schemes, core count scaling, problem size scaling, and core-problem scaling.

To evaluate the prediction accuracy between measured and predicted profiles, we use

two metrics, RDAccuracy and RD CMCAccuracy. The former represents the normalized

absolute difference, and the latter reflects the difference in cache performance. The

average RDAccuracy and RD CMCAccuracy for CRD (PRD) profiles are between 82.4%

(80.7%) and 91.5% (96.3%). We also find that the prediction accuracy decreases as

the prediction horizon increases.

Lastly, we compare our prediction technique against the RD sampling tech-

nique, which can also accelerate the acquisition of profiles. The prediction technique

and the sampling technique have similar average accuracy. However, the sampling

technique needs to collect profiles at every configuration. In contrast, the prediction

technique can predict any configuration from a small number of measurements. The

benefit of prediction becomes more significant for core-problem scaling. As a result,

our prediction technique can outperform the RD sampling technique.

(5) Profile Stability and Cache Performance Validation via Simulation

We quantify the CRD and PRD profiles’ dependence on cache capacity, and we

also validate the cache performance provided by CRD and PRD profile predictions

against detailed simulations. We use the M5 simulator to model tiled CMPs and

simulate our benchmarks on processors with 2–256 cores. For shared last level

caches (LLCs), we simulate the cache capacity from 4MB to 128MB. For private L2

caches, we simulate the per-core L2 cache capacity from 16KB to 256KB. In total,

we simulate 3,168 configurations.
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Two stability metrics, RDStability and RD CMCStability, are used to evaluate

profile stability. The average RDStability and RD CMCStability for CRD (PRD) pro-

files are 97.2% (99.97%) and 99.6% (99.89%), respectively. The results confirm that

CRD and PRD profiles are minimally cache-capacity dependent in our loop-based

parallel programs.

Lastly, our core count prediction techniques can predict shared LLC (private

L2 cache) MPKI to within 10% (13%) of simulation across 1,728 (1,440) configu-

rations using 72 measured CRD (PRD) profiles. When combined with the existing

prediction technique for problem size scaling, we can predict shared LLC (private

L2 cache) MPKI to within 12% (14%) of simulation using 36 measured CRD (PRD)

profiles. The results show that our prediction technique can help explore a large

design space efficiently.

(6) Multicore Cache Hierarchy Optimization

Lastly, we propose a novel framework for identifying optimal multicore cache

hierarchies for loop-based parallel programs by using reuse distance analysis. Our

framework can analyze and quantify the performance difference for different cache

hierarchies easily, providing several new insights. In this work, we focus on tiled-

CMPs.

The key to optimizing multicore cache hierarchies lies in balancing the total

on-chip and off-chip memory stalls. To achieve good performance, the capacity

of the last private cache above the last level cache must exceed the region in the

PRD profile where significant data locality degradation happens. Shared LLCs can

outperform private LLCs when the total off-chip memory stall saved in shared LLCs
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is larger than the total on-chip memory stall saved in private LLCs. At the optimal

LLC size, the average performance (AMAT) difference between private and shared

LLCs can reach as high as 15%, but it is smaller than the performance difference

caused by L2/LLC capacity partition (76% in shared LLCs, and 33% in private

LLCs). This suggests that the physical data locality is very important for multicore

cache systems.

1.3 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 provides the

background for our study on multicore RD analysis, and explains the methodology

used to acquire CRD and PRD profiles. Chapter 3 discusses the impact of data

sharing on CRD and PRD profiles by breaking down CRD and PRD profiles into

several profiles to explain how different effects change the application’s data local-

ity. We also explore the architectural implications of CRD and PRD profiles across

core count scaling and problem size scaling. The coherent movement in CRD and

PRD profiles due to different scaling schemes suggests the predictability of profiles.

Chapter 4 develops techniques to predict CRD and PRD profiles, and it evaluates

the prediction accuracy. Then, Chapter 5 validates the profile stability, and it also

demonstrates our technique’s ability to accelerate cache performance evaluation.

To study the multicore cache system design, Chapter 6 proposes a novel framework

based on multicore RD analysis for studying cache hierarchy optimization. Chap-

ter 7 compares our prediction technique against the RD sampling technique. Finally,
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Chapters 8 lists the prior work related to this research, and Chapter 9 concludes

this dissertation and suggests future research directions.
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Chapter 2

Background and Methodology

This chapter describes the essential concept of multicore reuse distance (RD)

analysis and the methodology used to acquire profiles. Section 2.1 introduces mul-

ticore reuse distance. Section 2.2 presents our modified Intel Pin tool, which we use

to profile loop-based parallel programs. Then, we introduce the 9 benchmarks and

the architecture-application design space used to drive this work.

2.1 Multicore Reuse Distance

In 1970, Mattson et al. [12] introduced reuse distance (RD) to model different

storage configurations on virtual memory pages in one pass. Later, researchers

applied RD analysis to study uniprocessor cache performance.

Reuse distance measures the number of unique data blocks referenced between

two references to the same data block in the LRU stack. When a new data block

appears in the memory reference stream, this data block is pushed onto the stack.

When a previously-accessed data block appears, the stack is searched. The reuse

distance is the depth between the referenced data block and the top of the stack.

The histogram of RD values for all references in a program is the RD profile. For an

LRU cache with capacity C, the number of cache misses is the sum of all references

counts with reuse distance ≥ C in the RD profile. For sequential programs, RD
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Figure 2.1: Multicore cache hierarchy.

profiles are architecture independent. They can be acquired on one machine, and

then used to predict cache misses at different cache sizes without additional runs.

Multicore processors often contain both shared and private caches. For ex-

ample, Figure 2.1 illustrates a typical multicore processor consisting of 2 levels of

private cache backed by a shared last-level cache. Threads interact very differently

in each type of cache, requiring separate locality profiles. For example, data sharing

may reduce the aggregate working set size in shared caches, reducing cache capac-

ity pressure. In contrast, data sharing may cause replication and communication

across private caches, reducing the effective cache capacity and inducing coherence

misses. To model shared caches and private caches, we use Concurrent Reuse Dis-

tance (CRD) and Private-stack Reuse Distance (PRD) profiles, respectively.

2.1.1 Concurrent Reuse Distance

RD analysis can be extended for shared caches by computing reuse distance

across the interleaved memory streams from all cores on a single LRU stack–i.e., the

concurrent reuse distance (CRD) [13, 14, 15, 16, 17]. Data locality in shared caches

is affected by several different inter-thread interactions. Figure 2.2 illustrates CRD
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(a) Dilation. (b) Overlap. (c) Intercept.

Figure 2.2: Two interleaved memory reference streams, illustrating dilation, overlap,
and intercept among inter-thread memory references in the shared cache.

for a sequence of interleaved memory references from two cores, showing dilation,

overlap, and intercept among inter-thread memory references in the shared cache.

In Figure 2.2(a), Core 1 accesses data blocks A and B at time 1 and 3, while

Core 2 accesses data block C at time 2. When Core 1 accesses A at time 4, Core

1’s reuse of A has RD = 1, but its CRD = 2. In this case, CRD is larger than RD,

because Core 2 brings in one unique reference, C. Hence, the interleaving causes

CRD dilation.

In many multithreaded programs, threads share data. Data sharing can reduce

dilation in two ways. First, data sharing can introduce overlapping references, which

happens when data sharing occurs inside the reuse interval of referenced data. In

Figure 2.2(b), both Core 1 and Core 2 access block C at time 2 and time 4. So

there are only 4 unique references between the reuse of A, instead of 5, due to

the overlap. Second, data sharing can introduce intercepts, which occur when data

sharing happens on the reused data itself. For example, in Figure 2.2(c), Core 2

references A instead of D at time 5, which causes Core 1’s reuse of A to exhibit

14



CRD = 1, so CRD actually becomes less than RD.

In Chapter 3, we investigate dilation, overlap, and intercept in CRD profiles.

Then we study their effects as core count and problem size scale.

2.1.2 Private-stack Reuse Distance

Private-stack Reuse Distance (PRD) profiles are measured by applying each

thread’s memory reference stream onto its own LRU stack while maintaining co-

herence across per-thread stacks [15, 16, 17]. To maintain data coherence in pri-

vate caches, write invalidation is a common mechanism. In the absence of writes,

there are not any inter-thread interactions across private stacks. For example, Fig-

ure 2.3(a) shows the PRD stacks from two cores before and after the memory access

to A at time 10. Both Core 1 and Core 2 have read data block D by this time. Read-

sharing causes duplication of D in the private stacks. Hence, replications reduce the

effective cache capacity in private caches.

When a write happens, only one data block is kept in the private stacks, as

the cache coherence protocol invalidates all other copies. In Figure 2.3(b), Core 1

writes D at time 11, and Core 1’s reuse of D has PRD = RD = 1. Core 2’s block

D is invalidated. To prevent invalidations from promoting blocks further down the

LRU stack, invalidated blocks become holes [15, 16, 17].

The depth of the hole is unaffected when referencing blocks above the hole. In

Figure 2.3(c), Core 2 accesses block J at time 12. Block J moves to the top of the

stack, and it pushesK down. The hole remains at the same position. However, when
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(a) Replication.

(b) Invalidation.

(c) Access to a block above a hole.

(d) Access to a block below a hole.

(e) Re-reference to an invalidated data.

Figure 2.3: Two memory reference streams, illustrating replication, invalidation,
and hole in the private caches.
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Core 2 accesses H, which is below the hole, H is brought to the top of the stack.

Then the hole moves to the former depth of block H, as shown in Figure 2.3(d). So,

blocks which are deeper than H remain at the same depths in the stack.

When a new block or an invalidated block is accessed, all the data blocks above

the topmost hole are pushed down and fill the topmost hole. Figure 2.3(e) shows an

example. When Core 2 re-references invalidated block D, it causes a miss in Core

2’s private cache. Data block I −H are pushed down and fill the hole.

Invalidations always cause the reuse of a victimized data block to be a cache

miss, and these are known as coherence misses. However, invalidations may also

improve data locality because the holes they leave behind eventually absorb stack

demotions. For example, if Core 2 first accesses a new data block L instead of H in

Figure 2.3(d), the hole will be filled, and the depth of H is still 4. Next when Core

2 accesses block H, the reuse of block H has PRD = 4, instead of 5. We call this

effect demotion absorption. Hence, if victimized data blocks are not re-referenced

frequently, invalidations may actually relieve capacity pressure and improve data

locality.

In Chapter 3, we will investigate replication and invalidation in PRD profiles.

Then we will study their effects as core count and problem size scale.

2.2 Methodology

To provide an in-depth analysis on how data sharing and interleaving impact

CRD and PRD profiles for loop-based parallel programs, we develop a profiling tool
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based on the Intel Pin infrastructure to acquire CRD and PRD profiles across 9

benchmarks running 4 different problem sizes on 2–256 cores. In this section, we

first introduce our Pin-based tool. Then we present the benchmarks and the design

space that are used in this research.

2.2.1 Pin-based Profiling Tool

Intel’s Pin [21] is a dynamic binary instrumentation tool that can capture very

detailed program behavior. The instrumented binary runs natively on the hardware,

so it provides much higher performance and compatibility than simulators. Hence,

we develop our own Pin tool to acquire CRD and PRD profiles.

One challenge in acquiring multicore RD profiles by using Pin is to ensure

the accurate modeling of inter-thread interactions. We need to control the context

switch in the OS scheduler to simulate simultaneous thread execution, which is

faithful to how a CMP would execute the threads. Therefore, we adopt the fine-

grain context switch method proposed by McCurdy and Fischer [22], as illustrated in

Figure 2.4. In the McCurdy and Fischer’s method, a centralized scheduler controls

which thread is active. Only one thread can be active at a time. The other threads

are waiting for the active signal from the scheduler. The active signal is passed

in round-robin order, so the memory accesses are interleaved in a consistent order

across all threads. The scheduler also simulates the synchronization mechanism of

Pthreads.

When we acquire CRD and PRD profiles, we make several assumptions. First,
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Figure 2.4: Thread interleaving mechanism.

our Pin tool performs functional execution only, context switching between threads

every memory reference. Hence, the memory references from each thread are in-

terleaved uniformly in time. Second, in our memory interleaving model, we don’t

simulate a particular cache hierarchy or CMP architecture. So, there are no timing-

related interferences in CRD and PRD profiles. As we will show in our stability

study (Section 5.2), this assumption of uniform memory interleaving is accurate

enough to acquire profiles for loop-based parallel programs. Third, we also assume

the application is the only load on the system. The OS does not interrupt threads.

Finally, we assume 64-byte memory blocks.

2.2.2 Benchmarks

Table 2.1 lists our benchmarks used in this research: FFT, LU, Radix, Barnes,

FMM,Water, and Ocean from the SPLASH2 suite [23], KMeans fromMineBench [24],

and BlackScholes from PARSEC [25]. For each benchmark, we employ 4 problem

sizes, S1–S4 (2nd column of Table 2.1). We run initialization code on a single core,

optionally simulate the beginning of the parallel region, and then turn on CRD and
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Table 2.1: Parallel benchmarks used in our study.

Benchmark Problem Sizes(S1/S2/S3/S4) Insts Profiled (M)(S1/S2/S3/S4) Profiled Region

FFT 216/218/220/222 elements 29/129/560/2,420 whole program

LU 2562/5122/10242/20482 elements 43/344/2,752/22,007 whole program

RADIX 218/220/222/224 keys 53/211/843/3,372 whole program

Barnes 213/215/217/219 particles 214/1,015/4,438/19,145 1 timestep

FMM 213/215/217/219 particles 235/1,006/4,109/16,570 1 timestep

Ocean 1302/2582/5142/10262 grid 30/107/420/1,636 1 timestep

Water 103/163/253/403 molecules 43/143/553/2,099 1 timestep

KMeans 216/218/220/222 objects, 18 features 186/742/2,967/11,874 1 timestep

BlackScholes 216/218/220/222 options 60/242/967/3,867 1 timestep

PRD profiling and continue parallel region simulation for some number of instruc-

tions (3rd column of Table 2.1). In FFT, LU, and Radix, profiles are acquired for the

entire program. For the other benchmarks, profiles are acquired for only 1 timestep

of the algorithm, so we skip the 1st timestep and profile the 2nd timestep.

2.2.3 Architecture-Application Design Space

Processor scaling defines a design space consisting of multicore processors with

varied core counts and cache organizations with different capacities. These are

architecture design parameters. As processors scale to large core counts and cache

capacities, problem size scales, too. Hence, our work also considers the problem size

as an independent parameter that can be varied as well. The number of threads

and problem sizes are application parameters. Together, these scaling dimensions of

architecture and application form a multi-dimensional designed space, as illustrated

in Figure 2.5. We call this architecture-application design space (AADS).

In this research, each benchmark has 4 problem sizes running on 8 core counts
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Figure 2.5: Multi-dimensional architecture-application design space (AADS).

from 2 to 256 cores. We also study private and shared caches with varying cache

capacities. By comparing CRD (PRD) profiles along any axis, we can characterize

profile sensitivity to the corresponding type of scaling.

In our profile prediction study, each benchmark has 32 configurations, and we

have a total of 288 configurations across our 9 benchmarks. When we evaluate the

accuracy of using CRD and PRD profile predictions to estimate the multicore cache

performance (MPKI), we simulate 6 different shared LLC sizes and 5 different private

L2 cache sizes. In this case, the design space has a total of 3,168 configurations.
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Chapter 3

Multicore Reuse Distance Analysis

The memory behavior on multicore cache systems is the result of intra-thread

data locality and inter-thread interferences. In Section 2.1, we review different

thread interactions in private and shared caches, and we show how CRD and PRD

capture them. In Section 3.1, we further separately quantify these effects by creating

several new locality profiles that isolate these thread interactions. This analysis pro-

vides rich information about how inter-thread interactions impact an application’s

memory behavior in private and shared caches.

In Section 3.2–Section 3.4, we study three sources of inter-thread interaction

perturbation. The first one is cache capacity scaling; for this, we present our inter-

action insights at a fixed core count and problem size. The second one is core count

scaling, which increases the number of interleaving memory reference streams. The

third one is problem size scaling, which increases the memory footprint.

The impact of core count scaling and problem size scaling on CRD and PRD

profiles has implications for multicore cache performance. In Section 3.5, we identify

two important cache capacities, Ccore and Cshare. Then we study their architectural

implications.
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3.1 Quantifying Thread Interactions

For shared caches, inter-thread interactions cause dilation, overlap, and inter-

cept in CRD profiles. On the other hand, for private caches, inter-thread interactions

cause replication and invalidation in PRD profiles. To study inter-thread interac-

tions, we isolate these different effects by creating several new locality profiles. To

further separate the different locality characteristics of each parallel region in a pro-

gram, our Pin tool records profiles in between every pair of barrier calls–i.e., per

parallel region. Although there might be several parallel loops in the same parallel

region, per-parallel region profiling is sufficient for our study.

3.1.1 CRD profiles

Within each parallel region, we acquire CRD profiles for mostly private data

and mostly shared data separately. We call the former profiles “private-date CRD

(CRDP ) profiles”, and we call the latter profiles “shared-data CRD (CRDS) pro-

files”. We employ a single global LRU stack for computing CRDP and CRDS, as

illustrated in Figure 3.1(a).

To separate private and shared data blocks, we record each memory block’s

CRD values separately and the number of times the block is referenced by each

core. In our benchmarks, because individual memory blocks tend to exhibit a small

number of distinct CRD values, this bookkeeping does not increase storage appre-

ciably. After a parallel region completes, we use a fixed threshold to determine each

memory block’s sharing status. If a single core is responsible for 90% or more of
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(a) CRDP and CRDS profiles. (b) CRDPC and CRDSC profiles.

Figure 3.1: Acquiring CRDP , CRDS, CRDPC , and CRDSC profiles.

a memory block’s references, the block is private; otherwise, it is shared. Then we

accumulate all memory blocks’ CRD counts into either the CRDP profile or CRDS

profile based on each block’s sharing status.

As mentioned in section 2.1.1, data sharing introduces overlapping references

and reduces the dilation. Although the CRDP profile only has the mostly private

data, data sharing still occurs in between data reuses. This is because we measure

CRD values from the same stack. Hence, the CRDP profile represents the combined

effect of dilation and overlap, and the amount of intercepts is small. The CRDS

profile also captures data sharing that happens on the reuse data itself. As a result,

the CRDS profile not only contains the dilation and overlap effects, but it also has

the intercept effect.

Next, we isolate the sharing-based interactions. We maintain a second global

LRU stack, and we prepend every memory block’s address with the ID of the core

(CID) that performs this memory access, as illustrated in Figure 3.1(b). We call
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the profiles acquired on this CID-extended stack CRDPC and CRDSC profiles. In

these two profiles, inter-thread references are always unique. Comparing CRDPC

and CRDP profiles shows the impact of overlap. Similarly, the effect of intercepts

due to shared data is also removed. Comparing CRDSC and CRDS profiles shows

the combined impact of overlap and intercept.

3.1.2 PRD profiles

For PRD profiles, each core has its own private LRU stack, and the coherent

mechanism mentioned in Section 2.1.2 is implemented. We acquire PRD profiles for

mostly private data and mostly shared data separately within each parallel region.

We call the former profiles “private-data PRD (PRDP ) profiles”, and we call the

latter profiles “shared-data PRD (PRDS) profiles”. After a parallel region com-

pletes, we sum up these per-thread PRDP profiles to create a single PRDP profile,

and we sum up these per-thread PRDS profiles to create a single PRDS profile, as

illustrated in Figure 3.2(a). These two profiles represent overall per-thread memory

behavior for mostly private data and mostly shared data.

As mentioned in section 2.1.2, read-shared data causes replications, and write-

shared data causes invalidations in private stacks. Both PRDP and PRDS profiles

contain the combined effect of replication and invalidation because we measure PRD

values on the same per-core stack. The re-reference of invalidated data causes cache

misses. These “coherence misses” appear at the infinite PRD value.

Next, we remove write-sharing to isolate hole-related interactions. This is done
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(a) PRDP and PRDS profiles. (b) PRDPR and PRDSR profiles.

Figure 3.2: Acquiring PRDP , PRDS, PRDPR, and PRDSR profiles.

by converting writes to reads, as illustrated in Figure 3.2(b). The only effect left in

profiles is replication. Profiles acquired on read-conversion stacks are called PRDPR

and PRDSR profiles. Comparing PRDP with PRDPR profiles shows the absorption

impact due to holes. Comparing PRDS and PRDSR profiles shows the impact of

holes and coherence misses.

3.2 Thread Interactions Analysis at a Fixed Core Count and Problem

Size

This section applies the isolation techniques introduced in Section 3.1 to the

study of inter-thread interactions. We analyze two specific benchmarks, FFT and

Barnes. Although each benchmark has different interactions, all parallel regions

exhibit very similar behavior. The insights gathered from FFT and Barnes can

generally represent inter-thread interactions for our benchmarks.

Although PRD profiles are based on per-core stacks, the multiple private stacks
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still contribute to increased cache capacity on multicore processors. To capture this

effect, we compute the scaled PRD, or sPRD, which equals T × PRD, where T is

the number of threads. Because both CRD and sPRD reflect total cache capacity,

we can compare the cache performance between shared and private caches across

different cache sizes by comparing CRD and sPRD profiles directly.

Figure 3.3 and Figure 3.4 shows different CRD and PRD profiles for the most

important parallel region in Barnes and FFT running on 16 cores at the S2 problem

size. In each graph, the Y-axis is the reference count in log10 scale, and the X-axis

is the RD value in terms of cache capacity. This is done by multiplying RD values

by the cache block size, 64 bytes. In this study, for each profile, reference counts

from multiple adjacent RD values are summed into a single RD bin, and plotted as

a single Y value. For capacities 0–128KB, bin size grows logarithmically; beyond

128KB, all bins are 128KB each.

3.2.1 Private-data Profiles

Figure 3.3(a) and Figure 3.4(a) plot CRDPC and sPRDPR profiles along with

PRDPR profile. As described in Section 3.1, there are no sharing-induced inter-

actions in CRDPC and sPRDPR profiles. Comparing CRDPC and PRDPR profiles

shows the dilation effect, and comparing sPRDPR and PRDPR profiles shows the

scaling effect.

In Figure 3.3(a) and Figure 3.4(a), the sPRDPR profile is a 16x scaling of

the PRDPR profile. This is because sPRD profiles are the scaled versions of PRD
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(a) Private-data profiles showing dilation and scaling.

(b) Private-data profiles showing overlap and demotion absorption.

(c) Shared-data profiles showing dilation and scaling.

(d) Shared-data profiles showing overlap+intercept and demotion absorption.

Figure 3.3: Barnes’ locality profiles for the most important parallel region running
on 16 cores at the S2 problem size.
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(a) Private-data profiles showing dilation and scaling.

(b) Private-data profiles showing overlap and demotion absorption.

(c) Shared-data profiles showing dilation and scaling.

(d) Shared-data profiles showing overlap+intercept and demotion absorption.

Figure 3.4: FFT’s locality profiles for the most important parallel region running
on 16 cores at the S2 problem size.
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profiles. An interesting observation is that the CRDPC profile is almost identical

to the sPRDPR profile, and the CRDPC profile is also a 16x scaling of the PRDPR

profile. This is because symmetric threads are interleaved systematically in the same

parallel region. In the shared cache, the intra-thread data reuse at a particular RD is

interleaved by the same amount of RD from each of the other simultaneous threads.

This effect is called dilation. In this example, the dilation is by exactly a factor

of 16x. As a result, scaling and dilation both shift the PRDPR profile in a shape-

preserving way and degrade data locality at the same rate, i.e., linear with the

number of threads.

When there is no data sharing, shared and private caches show the same

data locality behavior. However, when data sharing happens, shared and private

caches have different sharing-related interactions. Figure 3.3(b) and Figure 3.4(b)

illustrates the CRDP , sPRDP , and PRDP profiles of Barnes and FFT, respectively.

As described in Section3.1, comparing CRDPC and CRDP profiles shows the impact

of overlapping references, and comparing sPRDPR (PRDPR) and sPRDP (PRDP )

profiles shows the impact of invalidated references.

CRDP profiles terminate before CRDPC profiles. As discussed in Section 3.1,

data sharing introduces overlap that reduces dilation in CRD profiles, and the

amount of reduction depends on the degree of data sharing. CRDP and CRDPC

profiles are almost identical at small RD values. As RD value increases, the CRDP

profile exhibits less shift. In our benchmarks, programmers tend to share data across

distant loop iterations, so data sharing tends to happen at large reuse windows only.

As a result, overlapping references rarely happen in small reuse distance windows
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for CRD profiles.

Data sharing introduces demotion absorption in sPRD profiles. At small RD

values, sPRDP and sPRDPR profiles are almost identical. This is because invalidated

references rarely happen in small reuse windows for sPRD profiles. As RD value

increases, sPRDP profiles exhibit less shift and terminate before sPRDPR profiles.

When there are few invalidations as in FFT, sPRDPR and sPRDP are practically

identical, even at large RD values. However, when there are more invalidations, as

in Barnes, the holes reduce the shift significantly.

Lastly, the amount of contraction in CRDP and sPRDP profiles varies with

reuse distance. Because the contraction comes from the inter-thread interactions

of sharing data, its presence or absence along CRDP and sPRDP profiles permits

assessing the degree of data sharing as a function of reuse distance. As illustrated in

Figure 3.3(b) and Figure 3.4(b), CRDP and sPRDP profiles are almost identical at

small RD values. Then data sharing begins to affect CRDP and sPRDP profiles. The

contraction increases as RD value grows, and finally causes the different termination

of CRDP and sPRDP profiles. CRDP profiles end earlier than sPRDP profiles.

Although invalidations create holes and reduce the reuse distance, this absorption

effect is smaller than the overlap effect. The is because write-shared data makes

up only a portion of the total shared data, and replications caused by read-shared

data also degrades data locality in private caches. Figure 3.5(a) illustrates the

relationship between profiles for private data.
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(a) Private data. (b) Shared data.

Figure 3.5: Quantifying individual thread interaction effects.

3.2.2 Shared-data Profiles

Figure 3.3(c)-(d) and Figure 3.4(c)-(d) plot the shared-data profiles of Barnes

and FFT. The shared-data profiles exhibit behavior very similar to the corresponding

private-data profiles. First, the dilation and scaling are equivalent for parallel loops

in the absence of data sharing. As a result, CRDSC and sPRDSR profiles are almost

identical, and both show the coherent shift by a factor of 16x in a shape preserving

way with respect to the PRDSR profile. The CRDS profile has the effect of overlap,

and the sPRDS profile has the effect of demotion absorption. Both profiles show

contraction, but the CRDS profile shrinks more than the sPRDS profile. The reasons

are described in Section 3.2.1.

Figure 3.3(d) and Figure 3.4(d) also show the effect of intercepts in CRDS pro-

files, and the effect of invalidations in sPRDS profiles. As described in Section 2.1.1,

the intercept splits intra-thread reuse windows, with the resulting CRD value de-

pending on the intercepted location. Because intercepts can happen randomly at

any location, the CRD values of intercepted data blocks can be any value between 0

and the max CRD value. In our benchmarks, because data sharing usually happens
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at large reuse windows, intercept tends to spread the reference counts at large RD

values in CRDS profiles. This effect is visible clearly in FFT.

Invalidations create holes in private stacks, and the consequent references to

the already-invalidated blocks have infinite reuse distance. So the increasing cache

misses at infinite reuse distance show the cache performance degradation due to

coherence misses. Another important observation is that the holes have the same

impact on sPRDS and sPRDP profiles, because holes reduce the depth for both

shared and private data in stacks. Figure 3.5(b) summarizes the relationship be-

tween profiles for shared data.

Lastly, in our benchmarks, we find private-data profiles dominate shared-data

profiles. For example, the amount of private references is 6x and 259x more than the

amount of shared references in Barnes and FFT, respectively. As a result, dilation

and overlap in CRD profiles along with scaling and demotion absorption in sPRD

profiles determine overall shared/private cache performance.

3.3 Thread Interactions Analysis for Core Count Scaling

When core count increases but problem size stays fixed (i.e., strong scaling),

core count scaling reduces each thread’s working set size. More threads also increase

inter-thread interactions. Figure 3.6 depicts a simple example which parallelizes a

vector operation for P cores. In the sequential program, each cache block contains

four data elements, so there are a total of M/4 cache blocks. Each cache block is

referenced four times (re-referenced three times) before the inner for-loop advances
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Figure 3.6: A simple example showing how CRD and PRD shift with core count
scaling. Each cache block contains 4 elements.

to the next cache block. The outer for-loop re-accesses each cache block with reuse

distance (M/4)− 1, and there are N − 1 re-references for each block.

In the parallel program, the inner loop is partitioned into P chunks, and each

core hasM/P elements. For the CRD profile, the uniform interleaving causes the RD

value of re-references at the inner-loop to move to P −1. However, the re-references

at the outer-loop stay at the same RD value, (M/4)− 1. This is because core count

scaling does not increase the total amount of global data, so the theoretical max

RD value doesn’t change. As a result, when core count increases, the references at

small RD values move to larger RD values. However, the CRD profiles of different

core counts eventually end at the same RD value.

In contrast, PRD profiles truncate as core count increases. The references

at small RD values do not move due to the absence of interleaving. However, the

re-references at the outer-loop move to smaller RD values due to the reduction of per-

thread working set size. In this example, the max RD value of the PRD profile moves

from (M/4)− 1 to (M/4/P )/− 1. As a result, when core count increases, the PRD
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profile truncates. This simple example shows the major inter-thread interactions

as core count scales. In the following sections, we conduct a detailed study to

understand how core count scaling impacts CRD and PRD profiles.

3.3.1 Private-data Profiles

Figure 3.7 and Figure 3.8 illustrate the private-data profiles for the most im-

portant parallel region in Barnes and FFT running on 4 cores and 16 cores at the

S2 problem size. First, we compare PRDP4 and PRDP16 profiles to study the per-

thread locality impact due to core count scaling. In Figure 3.7(a) and Figure 3.8(a),

PRDP4 and PRDP16 profiles exhibit very similar shapes because threads on 4 and

16 cores execute the same code. At small RD values, PRDP4 and PRDP16 profiles

are almost identical. This is because this region reflects memory references exe-

cuted within contemporaneous computation. So core count scaling doesn’t affect

the locality. Then PRDP4 and PRDP16 profiles split at a certain RD value, and

finally the PRDP16 profile ends earlier than the PRDP4 profile due to the reduction

of per-thread working set size.

This truncation, along with overlapping references at large RD values, almost

perfectly cancel the dilation due to core count scaling in CRD profiles, as illustrated

in Figure 3.7(b) and Figure 3.8(b). Because symmetric threads are interleaved

systematically, the CRDP16 profile is not only a coherent shift of the PRDP16 profile,

but it is also a coherent shift of the PRDP4 profile and the CRDP4 profile. At small

RD values, the CRDP16 profile coherently scales the CRDP4 profile by a factor of
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(a) PRDP on 4 and 16 cores.

(b) CRDP on 4 and 16 cores.

(c) sPRDP on 4 and 16 cores.

Figure 3.7: Barnes’ private-data locality profiles running on 4 cores and 16 cores at
the S2 problem size.
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(a) PRDP on 4 and 16 cores.

(b) CRDP on 4 and 16 cores.

(c) sPRDP on 4 and 16 cores.

Figure 3.8: FFT’s private-data locality profiles running on 4 cores and 16 cores at
the S2 problem size.
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4x. At large RD values, shifting slows down and eventually stops due to the effects

of truncation and overlap. So CRDP16 and CRDP4 profiles merge, and end at about

the same RD value. This makes sense: because core count scaling does not change

the amount of global data, the theoretical maximum RD value is roughly the same.

This analysis shows core count scaling degrades data locality for shared caches, but

its impact is limited to small capacities. We will discuss this further in Section 3.5.1.

Lastly, Figure 3.7(c) and Figure 3.8(c) show the 4- and 16-core sPRDP profiles.

Because the sPRDP profile is a scaled version of PRDP profile, the sPRDP profile

shifts to larger RD values with respect to the PRDP profile. Again, because the

PRDP4 and PRDP16 profiles are almost identical at small RD values, the sPRDP16

profile exhibits the coherent shift by a factor of 4x compared to the sPRDP4 pro-

file. At large RD values, the truncation and demotion absorption reduce the effect of

scaling, but the sPRDP16 profile still maintains some shifting relative to the sPRDP4

profile due to the smaller degree of contraction caused by demotion absorption com-

pared to overlap. So, like CRDP profiles, sPRDP profiles also shift non-uniformly.

However, our analysis shows that core count scaling degrades data locality in private

caches more than in shared caches, since core count scaling affects sPRDP profile

across a larger range of cache capacities.

3.3.2 Shared-data Profiles

Core count scaling also impacts shared-data profiles. Figure 3.9 and Fig-

ure 3.10 plot Barnes’ and FFT’s shared-data profiles at 4 cores and 16 cores. In
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Figure 3.9(a) and Figure 3.10(a), PRDS4 and PRDS16 profiles exhibit very similar

shapes. At small RD values, PRDS4 and PRDS16 profiles are almost identical. Then

PRDS4 and PRDS16 profiles split at a certain RD value, and finally the PRDS16 pro-

file ends earlier than the PRDS4 profile due to the truncation of per-thread working

set size. As a result, when we scale the PRDS profile across core counts, the sPRDS16

profile exhibits the coherent shift by a factor of 4x compared to the sPRDS4 profile

at small RD values. At large RD values, the truncation reduces the sPRDS16 pro-

file’s scaling, but the sPRDS16 profile still maintains some shifting relative to the

sPRDS4 profile, as illustrated in Figure 3.9(c) and Figure 3.10(c). In addition, core

count scaling also leads to a higher number of replications and invalidations. In

Barnes, the total reference counts of sPRDP and sPRDS profiles at the infinite RD

value increase from 137,873 to 224,410 as core count scales from 4 to 16.

The intercept effect in CRDS profiles is more complicated. Figure 3.9(b) and

Figure 3.10(b) plot Barnes’ and FFT’s CRDS profiles at 4 and 16 cores, and show

how the effect of intercept changes with core count scaling and applications. First,

at small RD values, the CRDS16 profile exhibits the coherent shift by a factor of

4x compared to the CRDS4 profile. This is because that data sharing tends to

occur across distant loop interactions. So the effect of intercepts, like overlap, rarely

appears within small reuse windows. As a result, when there are few intercepts,

CRDS profiles scale like CRDP profiles.

And second, at large RD values, intercepts happen more often. As described in

Section 2.1.1, intercepts induce spreading and change CRDS profiles. However, the

spreading depends on where intercepts appear within intra-thread reuse windows
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(a) PRDS running on 4 and 16 cores.

(b) CRDS running on 4 and 16 cores.

(c) sPRDS running on 4 and 16 cores.

Figure 3.9: Barnes’ shared-data locality profiles running on 4 cores and 16 cores at
the S2 problem size.
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(a) PRDS running on 4 and 16 cores.

(b) CRDS running on 4 and 16 cores.

(c) sPRDS running on 4 and 16 cores.

Figure 3.10: FFT’s shared-data locality profiles running on 4 cores and 16 cores at
the S2 problem size.
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and on the frequency of intercepts. In Figure 3.9(b), intercepts in Barnes don’t

cause significant spreading. The major effects of core count scaling are dilation and

overlap. In contrast, as illustrated in Figure 3.10(b), intercepts in FFT cause a

significant spreading. This spreading stretches CRDS4 profiles toward both smaller

and larger RD values. Although intercepts in shared caches may cause more com-

plicated shifting on CRDS profiles, CRDS profiles contain fewer memory references

than CRDP profiles in our benchmarks. As a result, while the exact percentage is

application dependent, we find CRDP profiles always dominate in our benchmarks.

3.4 Thread Interactions Analysis for Problem Size Scaling

Problem size scaling at a particular core count increases each thread’s working

set size. Hence, the total number of references increases, and the reuse distance

profile shifts to larger RD values. Figure 3.11 uses the same example as in Figure 3.6

to explain these two effects. When vector length increases from M to M ′, the total

references increase by a factor of M ′/M . For CRD profiles, the uniform interleaving

causes the RD value of re-references at the inner-loop to remain at P − 1, but the

RD values of re-references at the outer-loop moves to (M ′/4)−1. For PRD profiles,

the RD value of re-references at the inner-loop remains at 0, but the RD value of

the re-references at the outer-loop moves to (M ′/4/P )− 1. Hence, the problem size

scaling at a particular core count does not move the references at small RD values

because these references’ locality are insensitive to the input data. However, the

problem size scaling increases the reuse window at large RD values.
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Figure 3.11: A simple example showing how CRD and PRD shift with problem size
scaling. Each cache block contains 4 elements.

Figure 3.12 and Figure 3.13 show the private-data and shared-data profiles of

FFT’s most important parallel region running on 16 cores at the S1 and S2 problem

sizes. Figure 3.12(a) plots PRDP profiles at the S1 and S2 problem sizes. PRDP,S1

and PRDP,S2 profiles show two major effects due to problem size scaling. First,

PRDP,S1 and PRDP,S2 profiles have similar shapes, but the PRDP,S2 profile has

higher reference counts. Second, problem size scaling causes the PRDP,S2 profile

to end at a large RD value. This is because the memory footprint increases, and

the max RD value increases by about a factor of 4x. As a result, in problem size

scaling, the profile shift along the X-axis occurs at large RD values. The reason

shifting stops below a certain RD is because these references are often associated

with computations that do not scale with problem size. Problem size scaling causes

the same impact on CRDP and sPRDP profiles, as illustrated in Figure 3.12(b) and

Figure 3.12(c).

Figure 3.13 plots the PRDS, sPRDS, and CRDS profiles at the S1 and S2

problem sizes. For shared data, problem size scaling induces the same stretching
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(a) PRDP running on 16 cores at the S1 and S2 problem sizes.

(b) CRDP running on 16 cores at the S1 and S2 problem sizes.

(c) sPRDP running on 16 cores at the S1 and S2 problem sizes.

Figure 3.12: FFT’s private-data locality profiles running on 16 cores at the S1 and
S2 problem sizes.
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(a) PRDS running on 16 cores at the S1 and S2 problem sizes.

(b) CRDS running on 16 cores at the S1 and S2 problem sizes.

(c) sPRDS running on 16 cores at the S1 and S2 problem sizes.

Figure 3.13: FFT’s shared-data locality profiles running on 16 cores at the S1 and
S2 problem sizes.
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behavior. As a result, problem size scaling causes less complicated movement com-

pared to core count scaling.

3.5 Architectural Implications

The impact of core count scaling and problem size scaling on CRD and PRD

profiles has implications for multicore cache performance. To illustrate this, we

compare cache miss count (CMC) profiles derived from CRD and sPRD profiles.

The number of cache misses incurred at capacity i in a CRD and sPRD profile are

defined in Equation 3.1, where N is the number of bins.

CRD CMC[i] =
N−1∑
j=i

CRD[j] + CRD[Inf ]

sPRD CMC[i] =
N−1∑
j=i

sPRD[j] + sPRD[Inf ]

(3.1)

In this section, we first characterize how core count scaling (i.e., strong scaling)

impacts performance of shared caches and private caches. Then we extend the study

to problem size scaling, and core-problem scaling (i.e., weak scaling).

3.5.1 Core Count Scaling

As described in Section 3.3, the data locality degradation within a shared cache

is limited to smaller cache capacities. This implies core count scaling has very little

impact on cache performance when the shared cache is beyond a certain capacity. To

illustrate, Figure 3.14(a) shows the whole-program CRD CMC profiles for the FFT

benchmark running the S2 problem size on 1 and 16 cores. Because CRD profiles
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(a) CRD CMC and SPRD CMC profiles running on 1 core and 16 cores.

(b) CRD CMC and SPRD CMC profiles running on 1 core and 64 cores.

Figure 3.14: FFT’s CMC profiles running on 1, 16, and 64 cores at the S2 problem
size.

eventually stop shifting, their associated CMC profiles merge at a certain point.

In this study, we call this point “Ccore.” As Figure 3.14(a) shows, Ccore delineates

cache-miss impact. At RD < Ccore, cache misses increase significantly with core

count scaling, but cache misses do not increase much when RD > Ccore. In other

words, core count scaling degrades locality, but its impact is confined to smaller RD

values. This implies caches smaller than Ccore will incur large cache-miss increases

with core count scaling, but caches bigger than Ccore will not. Because the shifting

region grows as core count scales, Ccore grows as core count scales, too. Figure

3.14(b) shows that the Ccore grows from 210KB to 688KB when scaling from 16 to

64 cores.
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In contrast, core count scaling degrades the data locality of private caches

across all cache capacities. As a result, there exists a gap between the CRD CMC

and sPRD CMC profiles that represents the difference between shared and private

cache performance which is a function of cache capacity. To illustrate, Figure 3.14(a)

plots sPRD CMC profiles on top of CRD CMC profiles. Figure 3.14(a) shows that

private and shared caches incur very similar cache misses at small cache capacities.

As described in Section 3.2, this is because there is little data sharing in this region.

The effects of dilation and scaling are very similar, so CRD and sPRD profiles are

almost identical. At larger capacities, the overlap effect in CRD profiles cause more

contraction than the demotion absorption effect in sPRD profiles. Private caches

also have cache misses due to replications and invalidations. As a result, CRD CMC

and sPRD CMC profiles begin to diverge at a certain cache capacity. Beyond this

capacity, shared caches begin to show an advantage over private caches in terms of

cache misses. We call this point “Cshare.”

Because core count scaling increases the amount of replication and invalidation,

the gap between SPRD CMC and CRD CMC profiles indeed increases when scaling

from 16 to 64 cores. In addition, core count scaling also moves the sharing point,

Cshare, to smaller RD values. Comparing Figure 3.14(a) and Figure 3.14(b), we see

that as SPRD CMC increases relative to CRD CMC, Cshare moves to the smaller RD

value. This makes sense. Because core count scaling distributes the same amount

of work across more cores, the data sharing frequency is likely to increase, too.

We measured Ccore and Cshare across the entire architecture-application design

space (AADS),which is illustrated in Figure 2.5. This was done as follows. For
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every core count and problem size in the AADS, we derive the CMC profiles for

1–256 cores. At a given cache capacity, we define ∆M to be the ratio of cache-

miss counts between the P- and 1-core CMC profiles. We first compute ∆M at

CRD = maxbin
2

, well beyond Ccore where the CMC profiles have almost merged. We

call this ∆Mmerged. Then, we identify the cache capacity closest to maxbin
2

where

∆M =1.5 ×∆Mmerged–i.e., the tail-end of shifting where very large ∆M transition

to ∆Mmerged. This capacity is Ccore. Then, we compute ∆M at every cache capacity

between 1MB and Ccore, recording the average and maximum values. These are

the average and maximum cache-miss increases between 1MB and Ccore, ∆Ma and

∆Mm, respectively. Lastly, we also quantify Cshare. We begin from the end of

CRD CMC and sPRD CMC profiles, and we trace these two profiles backward until

we reach the point where CRD CMC and sPRD CMC are within 10%. This capacity

is Cshare.

Figure 3.15 reports Ccore and Cshare across all of our benchmarks. Each graph

in Figure 3.15(a) reports Ccore when scaling from 2 cores to 256 cores for a particular

benchmark at 4 different problem sizes. One result from Figure 3.15(a) is that Ccore

indeed increases with core count scaling at each problem size. Table 3.1 reports

Ccore for 256 cores. As this data shows, Ccore varies between 131.0KB and 13.2MB.

On average, Ccore is between 529.7KB and 6.1MB for different problem sizes. These

results show that the impact of core count scaling is confined to smaller shared cache

sizes, usually < 16MB. The larger shared cache sizes beyond Ccore will not experience

significant cache-miss increases due to core count scaling. Ccore is particularly small

for LU, KMeans, and BlackScholes, never exceeding 746.8KB. The working sets for
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these benchmarks are extremely small and fit inside a 1 MB cache size. For programs

with such good locality, the profile shift due to core count scaling is minimal. So,

core count scaling never significantly impacts the cache misses of reasonable shared-

cache sizes in these programs.

Table 3.1 reports ∆Ma and ∆Mm. Results are only presented for cases where

Ccore > 1MB. As Table 3.1 shows, ∆Ma varies between 1.2 and 5.1, while ∆Mm

varies between 1.7 and 8.8. On average, ∆Ma (∆Mm) is between 2.5 (3.2) and

3.4 (4.5) across different problem sizes. These results show core count scaling can

increase cache misses significantly for cache sizes below Ccore.

Figure 3.15(b) reports Cshare for 2 to 256 cores on the S1 to S4 problem sizes.

The result confirms that core count scaling reduces Cshare in general. Although

in some benchmarks, we see that core count scaling increases Cshare, these cases

happen when Cshare is very small, below 128KB. Table 3.1 reports Cshare for 256

cores. As this data shows, Cshare varies between 0.4KB and 122.9MB. On average,

Cshare is between 133.0KB and 17.3MB for different problem sizes. This result

shows, for different benchmarks, that the impact of data sharing begins at different

cache capacities. As a result, each benchmark has different sharing characteristics

which impacts the multicore cache hierarchy optimization. A detailed discussion of

this is in Chapter 6.

Lastly, Figure 3.16 reports CRDmax and sPRDmax across our AADS. CRDmax

is roughly constant across 2-256 cores. On the other hand, sPRDmax grows as

core count scales. Most importantly, sPRDmax is always larger than CRDmax.

This confirms that the overlap effect in CRD profiles causes more contraction than
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(a) Ccore

(b) Cshare

Figure 3.15: Ccore and Cshare across core counts and problem sizes.
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Table 3.1: Ccore, Cshare, CRDmax, sPRDmax, ∆Ma, and ∆Mm for our benchmarks.

Benchmark S1 S2 S3 S4 S1 S2 S3 S4

Ccore Cshare

FFT 1.0MB 2.2MB 5.0MB 10.5MB 108.2KB 168.1KB 4.1MB 32.1MB
LU 131.0KB 207.8KB 374.1KB 746.8KB 0.4KB 53.1KB 51.0KB 22.8KB

RADIX - 4.2MB 10.5MB 13.2MB 881.3KB 2.4MB 17.9MB 122.9MB
Barnes 573.5KB 1.8MB 3.6MB 5.9MB 32.7KB 33.9KB 34.9KB 35.2KB
FMM 715.9KB 1.3MB 7.1MB 8.7MB 18.2KB 22.2KB 22.6KB 22.7KB
Ocean 715.6KB 1.5MB 4.8MB 13.0MB 15.9KB 72.6KB 86.7KB 128.0KB
Water 283.0KB 592.3KB 1.5MB 2.5MB 8.3KB 8.9KB 19.3KB 36.3KB

KMeans 495.9KB 495.8KB 494.9KB 489.2KB 115.6KB 112.6KB 104.5KB 102.9KB
BlackS. 266.2KB 266.6KB 266.8KB 266.8KB 16.0KB 16.0KB 16.0KB 16.0KB

Average 529.7KB 1.4MB 3.7MB 6.1MB 133.0KB 326.5KB 2.5MB 17.3MB

Benchmark S1 S2 S3 S4 S1 S2 S3 S4

CRDmax sPRDmax

FFT 4.3MB 14.3MB 52.3MB 200.3MB 11.2MB 33.9MB 90.1MB 305.9MB
LU 785.8KB 2.3MB 8.3MB 32.4MB 82.8MB 335.0MB 1.3GB 5.4GB

RADIX 18.3MB 30.3MB 78.3MB 270.3MB 77.8MB 102.2MB 198.2MB 580.9MB
Barnes 2.1MB 6.9MB 26.5MB 105.3MB 21.3MB 40.3MB 98.7MB 309.2MB
FMM 3.9MB 12.2MB 42.7MB 163.0MB 121.4MB 408.3MB 1.5GB 5.8GB
Ocean 6.4MB 18.7MB 63.9MB 237.2MB 11.9MB 26.9MB 75.6MB 249.6MB
Water 1.2MB 3.4MB 11.5MB 45.5MB 9.9MB 18.7MB 34.2MB 119.2MB

KMeans 5.3MB 19.5MB 76.5MB 304.5MB 99.6MB 113.9MB 170.9MB 398.9MB
BlackS. 1.7MB 6.2MB 24.2MB 96.2MB 5.8MB 10.8MB 28.7MB 100.7MB

Average 4.9MB 12.6MB 42.7MB 161.6MB 49.1MB 121.1MB 397.4MB 1.5GB

∆Ma ∆Mm

FFT 3.0 3.4 3.3 3.5 3.2 3.7 4.0 4.4
LU - - - - - - - -

RADIX - 5.1 3.0 2.6 - 7.2 6.0 5.6
Barnes - 3.3 3.6 3.7 - 5.2 7.3 8.8
FMM - 2.3 2.0 2.1 - 2.6 2.8 3.0
Ocean - 2.8 1.5 1.2 - 3.6 1.9 1.7
Water - - 1.7 1.8 - - 2.0 2.1

KMeans - - - - - - - -
BlackS. - - - - - - - -

Average 3.0 3.4 2.5 2.5 3.2 4.5 4.0 4.3
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(a) CRDmax

(b) sPRDmax

Figure 3.16: CRDmax and sPRDmax across core counts and problem sizes.
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the demotion absorption effect in sPRD profiles. Table 3.1 reports CRDmax and

sPRDmax for 256 cores. In LU and FMM, sPRDmax can reach as high as 5.4GB

and 5.8GB.

3.5.2 Problem Size Scaling

As described in Section 3.4, CRD and sPRD profiles shift to larger RD values

with problem size scaling due to the increased memory footprint. Figure 3.16 reports

CRDmax and sPRDmax at different problem sizes. The results show CRDmax indeed

increases by roughly 4x with each problem size increment–i.e., linearly with problem

size. sPRDmax increases at a sub-linear rate at large core counts. Most importantly,

sPRDmax is always larger than CRDmax. Table 3.1 reports CRDmax and sPRDmax

for each benchmark and problem size on 256 cores. CRDmax varies between 785.8KB

and 304.5MB. On average, CRDmax is between 4.9MB and 161.6MB for different

problem sizes. sPRDmax varies between 5.8MB and 5.8GB. On average, sPRDmax

is between 49.1MB and 1.5GB for different problem sizes. This result confirms

that data locality degradation affects private caches across a large range of cache

capacities.

As Figure 3.15 shows, Ccore and Cshare generally increase with problem size

scaling. For benchmarks which have very good locality (i.e., KMeans and BlackSc-

holes), problem size scaling has little impact on Ccore and Cshare. Table 3.1 reports

Ccore and Cshare for each benchmark and problem size on 256 cores. On average, Ccore

increases from 529.7KB to 6.1MB and Cshare increases from 133.0KB to 17.3MB as
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problem size scales from S1 to S4. Table 3.1 shows Ccore increases at a sub-linear

rate, roughly as the square root of problem size for our benchmarks. In contrast,

Cshare may increase at a super-linear rate. Hence, for a fixed cache capacity, problem

size scaling may reduce the benefit of using shared caches.

3.5.3 Core-Problem Scaling

When core count and problem size scale together, the shifting region associ-

ated with core count scaling will itself shift to larger RD values due to problem

size scaling. Hence, continued problem size scaling beyond S4 would increase Ccore

beyond the 746.8KB–13.2MB in Table 3.1. Assuming the same rate of increase at

larger problems, we see that another 64x increase in problem size would cause Ccore

in many of our benchmarks to grow to 64–128MB. With modest increases in prob-

lem size, core count scaling will impact much larger cache capacities, not just those

below 16MB.

Although core count scaling reduces Cshare, problem size scaling increases

Cshare. In general, the combined effect causes Cshare to increase when we scale

core count and problem size together, as illustrated in Figure 3.15(b). As a result,

weak scaling may reduce the benefit of using shared caches in multicore processors,

and we confirm this in Chapter 6.
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Chapter 4

Multicore Reuse Distance Profile Prediction

In Chapter 3, the coherent movement in CRD and PRD profiles suggests

the predictability of profiles. This chapter studies techniques for predicting CRD

and PRD profiles across core count scaling, problem size scaling, and core-problem

scaling. First, we describe our techniques and introduce the evaluation methodology.

Then, we present results.

4.1 Prediction Techniques

Section 3.3 shows that CRDP and CRDS profiles change differently across

core count scaling, so we predict them separately. Based on our insights, we employ

two techniques. We use reference groups [20] for CRDP profile prediction, and we

employ a uniform spread model for CRDS profiles prediction. Section 3.3 shows

demotion absorption causes the same effect on PRDP and PRDS profiles, so we use

reference groups to predict the coherent shift in both PRDP and PRDS profiles.

In Section3.4, we find that problem size scaling also causes CRD and PRD

profiles to shift coherently. We employ the same technique (reference groups) to

predict CRD and PRD profiles at different problem sizes.
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Figure 4.1: Detecting alignment and shifting using reference groups.

4.1.1 Coherent Shift

For sequential programs, Zhong et al [20] found that RD profiles exhibit co-

herent shift due to problem size scaling. They proposed reference groups to predict

the coherent shift at different problem sizes. We extend their technique to predict

CRD and PRD profiles across core count scaling.

Figure 4.1 illustrates Zhong’s technique. Zhong divides RD profiles into groups

along the RD axis, with each group containing an equal fraction of the program’s

total references. Reference groups are aligned via association: the ith group in

the first profile is aligned with the ith group in the second profile. Aligned reference

groups are assumed to shift together with their own shifting rates. Zhong’s technique

employs the pattern function, p(x) = xk, and allows 5 shift rates: constant (k = 0),

cube root (k = 1
3
), square root (k = 1

2
), cube-root squared (k = 2

3
), and linear

(k = 1). The group shift rate cannot be greater than linear because reuse distance

cannot increase by more than the number of unique memory references, which is

proportional to problem size.

For each pair of reference groups, i, the shift is measured and compared against
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each allowed shift rate. Let S1 and S2 be the problem sizes of first and second RD

profiles. d1i and d2i are the average RD values at reference group i of first and second

RD profiles. The shift rate with the closest match (i.e., there exists a p(x) such that

p(S1)
p(S2)

is closest to d1i
d2i

) is assigned to the reference group. After solving Equation 4.1

for each reference group, we can predict RD profiles for different problem sizes. Each

reference group is shifted by its shift rate and desired problem scaling factor.

d1i = ci + ei × pi(S1)

d2i = ci + ei × pi(S2)

(4.1)

We apply Zhong’s technique to predict core count scaling as follows. To predict

CRD profiles (either CRDP or CRDS), we use the 2- and 4-core CRD profiles as

samples to predict the CRD profiles at the remaining core counts. These measured

profiles are divided into 200,000 groups, each containing an equal fraction (0.0005%)

of the profile’s references. While Zhong originally divided each profile into 1,000

reference groups, we find the increased resolution provides better accuracy for core

count scaling. We detect the inter-group shift as discussed above, but instead of

multiplying this shift rate by the problem scaling factor, we multiply it by the

core count scaling factor. We also increase the granularity of the pattern function

(Equation 4.2). We use reference groups to predict CRDP profiles at larger core

count from measured CRDP profiles. We also use reference groups to predict CRDS

profiles. We call the predicted profiles CRDSshift. Then we combine the CRDSshift

profile with spread prediction in the next section to derive CRDS profiles.
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p(x) = xk, k = 0, 0.01, 0.02, ..., 0.99, 1.00 (4.2)

For PRD profiles, we use the same technique to predict profiles at larger core

counts from the 2- and 4-core PRD profiles. However, because PRD profiles shift

to smaller RD value as core count scales, we need to change the pattern function to

support this truncation behavior. We use Equation 4.3 as the new pattern function

to predict the coherent shift in PRD profiles.

p(x) =
1

xk
, k = 0, 0.01, 0.02, ..., 0.99, 1.00 (4.3)

For problem size scaling, we employ the same technique and use the patter

function in Equation 4.2 to predict both CRD and PRD profiles. We also divide

each profile into 200,000 reference groups.

4.1.2 Spread

Section 3.3.2 shows that intercepts spread CRDS profiles, with individual

reuses moving to CRD values between 0 and P×RD, where P is the core count. Al-

though the actual distribution within this range is application dependent, we make

the simplifying assumption that references are spread uniformly across the range. To

predict spread, we sample the CRDS profile at 4 cores (the same sample used in shift

prediction), and uniformly distribute the reference counts (CRDS 4core[k] × Pd[k])
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at each CRD between 0 and min(k × core count
4

, Cmax), where k is a particular CRD

value, and Pd[k] = k
Cmax

(Cmax is the CRD profile’s maximum CRD value). We call

this prediction CRDSspread. Then, we predict the CRDS profile as follows:

CRDS[k] = (1− Pd[k])× CRDSshift[k] + CRDSspread[k]

This predicts CRDS by averaging CRDSshift and CRDSspread, weighting the

former more heavily at small CRD values (where intercepts happen rarely) and the

latter more heavily at large CRD values (where intercepts happen often).

4.2 Prediction Methodology

Machine scaling defines a design space consisting of multicore processors with

varying core counts and cache capacities. When processors scale to the LCMP

level, they will also execute larger problems. So, it is very important to under-

stand the impact of problem size scaling. Our work also considers problem size as

an independent parameter that can be varied as well. Figure 2.5 illustrates our

architecture-application design space (AADS). In our study, we acquire CRD and

PRD profiles at every core count and problem size as illustrated in Figure 4.2. For

each benchmark, we have 32 configurations, and we acquire CRD and PRD profiles

for each configuration. By comparing measured and predicted profiles along any

axis, we can compute the prediction accuracy to the corresponding type of scaling.

In this study, we employ two metrics, RDAccuracy and RD CMCAccuracy to quantify

the prediction accuracy.
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Figure 4.2: Design space across 8 core counts and 4 problem sizes.

4.2.1 Acquiring Profiles

We use the in-house built Pin tool to acquire CRD and PRD profiles for our

study. Figure 4.3(a) shows how we acquire and predict CRD profiles. First, we ac-

quire the per-parallel region CRDP and CRDS profiles, as described in Section 3.1.1,

for 2- and 4-core executions. Then, at each parallel region, we use the techniques

from Section 4.1 to predict the CRDP and CRDS profiles for 8–256 cores from the

2- and 4-core samples. For CRDP , we use reference groups to predict the coherent

movement. For CRDS, we further include the spread model to predict intercept

effects. After the program finishes, we sum up all the per-loop predicted profiles to

get program-wide CRDP and CRDS profiles at different core counts. Then we sum

CRDP and CRDS profiles together to get the whole-program CRD profile. We call

this CRDP+S.

In our benchmarks, CRDP profiles dominate CRDS profiles. This implies

that predicting coherent shift alone may be sufficient in many cases. In addition

to predicting CRDP and CRDS profiles separately, we also employ whole-program

CRD profile prediction. We use Pin to acquire the whole program CRD profiles
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(a) Acquiring and predicting CRDP , CRDS , CRDP+S , and CRDdirect profiles.

(b) Acquiring and predicting PRDP , PRDS , PRDP+S , and PRDdirect profiles.

Figure 4.3: Acquiring and predicting profiles.
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at 2- and 4- cores. Then, we use reference groups to predict the whole-program

profiles for 8–256 cores directly from the measured whole-program profiles. We call

these profiles CRDdirect. The advantage of this approach is that it does not require

profiling individual parallel regions.

Figure 4.3(b) shows how we acquire and predict PRD profiles. As described

in Section 3.3, demotion absorption causes the same impact on PRDP and PRDS

profiles. At each parallel region, we use reference groups to predict the PRDP and

PRDS profiles for 8–256 cores from the 2- and 4-core samples. After the program

finishes, we sum up all the per-loop predicted profiles to get program-wide PRDP

and PRDS profiles at different core counts. Then we sum PRDP and PRDS together

to get the whole-program PRD profile, PRDP+S. We also acquire the whole program

PRD profiles at 2- and 4- cores, and we use reference groups to predict the whole-

program profiles for 8–256 cores directly from the measured whole-program profiles.

We call these profiles PRDdirect.

4.2.2 Accuracy Metrics

We use two metrics, RDAccuracy and RD CMCAccuracy, to assess prediction

accuracy. The first metric is similar to metrics used in previous work [26, 14].

RDAccuracy is defined in Equation 4.4, where N is the number of bins. RDAccuracy

is 1 − E
2
, where E is the sum of the normalized absolute differences between every

pair of reference counts from a predicted and measured RD profile. E can be at

most 200%, so RDAccuracy is between 0–100%. The RDAccuracy for predicted CRD
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and PRD profiles are CRDAccuracy and PRDAccuracy.

RDAccuracy = 1− 1

2

N−1∑
i=0

|RDmeasured[i]−RDpredicted[i]|
total references

(4.4)

The second metric is RD CMCAccuracy. CMC (cache-miss count) accuracy is

computed from CMC profiles, which present the number of cache misses predicted

by a RD profile at each of its cache capacities. We compute RD CMCAccuracy by av-

eraging the error between pairs of RD values from the entire predicted and measured

CMC profiles as specified in Equation 4.5.

RD CMCAccuracy = 1− 1

N

N−1∑
i=0

|RD CMCmeasured[i]−RD CMCpredicted[i]|
RD CMCmeasured[i]

(4.5)

RD CMCAccuracy reflects cache performance. Because RDAccuracy is an absolute

metric, it more heavily weights error at the first few RD values where reference

counts are enormous but which occur well below small cache capacities. In contrast,

RD CMCAccuracy equally weights error across CMC profiles. So RD CMCAccuracy

can reflect the cache performance more fairly. The RD CMCAccuracy for predicted

CRD and PRD profiles are CRD CMCAccuracy and PRD CMCAccuracy.

4.3 Prediction Accuracy Results for Core Count Scaling

To evaluate the prediction accuracy of core count scaling for each benchmark

and problem size, we use the measured profiles at 2 and 4 cores to predict the profiles

for 8–256 cores, yielding predicted profiles for 24 configurations per benchmark.
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Figure 4.4: Profile prediction for core count scaling.

Figure 4.4 illustrates the measured and predicted points.

4.3.1 CRD Profiles

Figure 4.5 compares Barnes’ measured CRDdirect profiles (dotted lines) with

predicted CRDdirect profiles (solid lines) running on 16 and 64 cores at the S3 problem

size. In Figure 4.5(a) and Figure 4.5(c), predicted CRD and measured CRD profiles

are very similar. However, the predicted CRD profiles show saw-tooth oscillation

at large RD values. This is because a reference group collects the reference counts

across several bins into one group when the reference counts are small. After we shift

the reference group to the new RD value, these references have the same RD value.

So we lose some detailed information. However, reference groups can still capture

the major shifting behavior for core count scaling. As a result, in Figure 4.5(a)

and Figure 4.5(c), the CRDAccuracy of 16 cores and 64 cores are 95.0% and 90.7%,

respectively.

For CMC profiles, we also predict the compulsory misses which have infinite

reuse distance. In our prediction, we assume that compulsory misses grow pro-
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(a) Measured and predicted CRD profiles on 16 cores at the S3 problem size.

(b) Measured and predicted CRD CMC profiles on 16 cores at the S3 problem size.

(c) Measured and predicted CRD profiles on 64 cores at the S3 problem size.

(d) Measured and predicted CRD CMC profiles on 64 cores at the S3 problem size.

Figure 4.5: Examples for measured and predicted CRDdirect profiles with core count
scaling.
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portionally with respect to core count. Figure 4.5(b) and Figure 4.5(d) show the

corresponding CRD CMC profiles running on 16 and 64 cores. Although reference

groups lose some detailed information at large RD values in the predicted CRD pro-

file, integration makes this impact insignificant. As a result, the CRD CMCAccuracy

of 16 cores and 64 cores are 97.8% and 96.5%, respectively.

Figure 4.6 presents our full CRD profile prediction results. In Figure 4.6(a),

the “CRDP” (“CRDS”) bars show results for predicting CRDP (CRDS) profiles

separately. For each benchmark, problem size, and core count, we sum all predicted

per-parallel region CRDP (CRDS) profiles into a single CRDP (CRDS) profile. Then,

we compare this against the measured aggregate CRDP (CRDS) profile. Each bar

in Figure 4.6(a) reports the average CRDAccuracy achieved over the 24 predictions

per benchmark. The rightmost bars report the average across all benchmarks.

As Figure 4.6(a) shows, CRDP profiles are predicted with high accuracy. For

all benchmarks except LU, CRDP accuracy is between 90.3% and 98.1%. For LU,

CRDP accuracy is 70.4%. Across all benchmarks, the average CRDP accuracy is

91.3%. CRDP profiles exhibit coherent shift across core count scaling which reference

groups can effectively predict.

LU is the only benchmark with lower CRDP accuracy. In LU, blocking is

performed to improve cache locality, but for S1 and S2 problem sizes, the default

blocking factor does not create enough parallelism to keep more than 32 cores busy.

This introduces error when predicting large core counts.

Compared to CRDP profiles, CRDS profiles are predicted with lower accuracy.

In Figure 4.6(a), CRDS accuracy is between 25.0% and 77.9%. Across all bench-
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(a) CRD accuracy of predicted CRDP and CRDS profiles, and indirectly and directly pre-
dicted whole-program CRD profiles.

(b) The breakdown of CRD prediction accuracy by core counts.

(c) CRD CMC accuracy of indirectly and directly predicted whole-program CRD profiles.

(d) The breakdown of CRD CMC prediction accuracy by core counts.

Figure 4.6: CRD profile prediction accuracy for core count scaling.
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marks, the average CRDS accuracy is only 66.4%. CRDS profiles suffer poor spread

prediction. While intercepts induce spreading in the range we expect, the actual

distribution across this range is highly application dependent. Unfortunately, our

simple uniform spread model does not capture general behavior, leading to lower

prediction accuracy.

Although CRDS profiles are predicted with lower accuracy, the impact on over-

all prediction accuracy is minimal. In Figure 4.6(a), the bars labeled “CRDP+S”

report the average CRDAccuracy for whole-program CRD profiles predicted by com-

bining CRDP and CRDS predictions. For all benchmarks except LU, CRDP+S

accuracy is between 89.0% and 98.1% (for LU, it is 70.8%). The average CRDP+S

accuracy for all benchmarks is 89.7%. These results confirm that CRDP dominates

CRDS. So, predicting CRDP profiles effectively leads to accurate whole-program

CRD profile prediction.

In our benchmarks, there is usually one parallel region that dominates the

whole program, so one would expect that predicting whole-program CRD profiles

directly to be the same as (and hence, achieve similar accuracy compared to) predict-

ing CRDP+S profiles. This is in fact the case. The last set of bars in Figure 4.6(a),

labeled “CRDdirect,” report the average CRDAccuracy for direct whole-program CRD

profiles prediction. Figure 4.6(a) shows CRDdirect is very similar to CRDP+S. On

average, CRDdirect accuracy is 89.4%, compared to 89.7% for CRDP+S. The re-

sults in Figure 4.6(a) demonstrate the pervasiveness of coherent shift across our

benchmarks, and confirm the accuracy of reference groups for this type of profile

movement. Figure 4.6(b) shows the accuracy breakdown by different core counts.
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Because we use 2 cores and 4 cores to predict the larger core counts, the predic-

tion accuracy degrades when the predicted point is farther away from the measured

points.

Finally, Figure 4.6(c) illustrates the whole-program prediction results using the

CRD CMCAccuracy metric. CRDP+S and CRDdirect have similar CRD CMCAccuracy.

They are between 81.5%–99.0% for 8 benchmarks, and are roughly 35.4% for LU.

On average, CRDP+S and CRDdirect achieve a 91.0% and 91.4% accuracy, respec-

tively, without LU, and 84.8% and 83.6% accuracy, respectively, for all benchmarks.

This result suggests that our predicted CRD profiles can provide good cache-miss

predictions. Figure 4.6(d) breaks down CRD CMCAccuracy at different core counts.

Again, the larger error happens at large core counts.

4.3.2 PRD Profiles

Figure 4.7 compares Barnes’ measured PRDdirect profile (dotted lines) with

predicted PRDdirect profile (solid lines) running on 16 and 64 cores at the S3 prob-

lem size. In Figure 4.7(a) and Figure 4.7(c), predicted PRD profiles capture the

major shifting behavior for core count scaling, but predicted PRD profiles also lose

some detailed information at large RD values due to insufficient resolution. Overall,

predicted PRD profiles and measured PRD profiles have very similar shapes. As a

result, in Figure 4.7(a) and Figure 4.7(c), the PRDAccuracy of 16 cores and 64 cores

are 95.6% and 95.0%, respectively.

For CMC profiles, we also predict the compulsory misses and coherence misses,
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(a) Measured and predicted PRD profiles on 16 cores at the S3 problem size.

(b) Measured and predicted PRD CMC profiles on 16 cores at the S3 problem size.

(c) Measured and predicted PRD profiles on 64 cores at the S3 problem size.

(d) Measured and predicted PRD CMC profiles on 64 cores at the S3 problem size.

Figure 4.7: Examples for measured and predicted PRDdirect profiles with core count
scaling.
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which have infinite reuse distance. We assume that these cache misses grow pro-

portionally with respect to core count. Figure 4.7(b) and Figure 4.7(d) show the

corresponding PRD CMC profiles at 16 and 64 cores. Although reference groups

lose some detailed information at some RD values in predicted PRD profiles, inte-

gration makes this impact insignificant. As a result, the PRD CMCAccuracy of 16

cores and 64 cores are 94.1% and 93.6%, respectively.

Figure 4.8 presents our PRD profile prediction results under core count scaling.

In Figure 4.8(a), each benchmark has four bars, “PRDP”, “PRDS”, “PRDP+S”,

and “PRDdirect”. Each bar reports the average PRDAccuracy achieved over the 24

predictions per benchmark. The rightmost bars report the average accuracy across

all benchmarks.

As Figure 4.8(a) shows, PRDP profiles are predicted with high accuracy, be-

tween 94.5% and 99.97%. Across all benchmarks, the average PRDP accuracy is

96.3%. PRDP profiles exhibit coherent shift across core count scaling, which refer-

ence groups can effectively predict. Compared to PRDP profiles, PRDS profiles are

predicted with lower accuracy. In Figure 4.8(a), PRDS accuracy is between 61.9%

and 99.9%. Across all benchmarks, the average PRDS accuracy is only 83.7%.

Although PRDS profiles are predicted with lower accuracy, the impact on

overall prediction accuracy is minimal. In Figure 4.8(a), the bars labeled “PRDP+S”

illustrate the average PRD accuracy for whole-program PRD profiles predicted by

combining PRDP and PRDS predictions. For all benchmarks, PRDP+S accuracy

is between 94.3% and 99.9%. The average PRDP+S accuracy for all benchmarks is

96.3%. These results confirm that PRDP profiles dominate PRDS profiles.
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(a) PRD accuracy of predicted PRDP and PRDS profiles, and indirectly and directly predicted
whole-program PRD profiles.

(b) The breakdown of PRD prediction accuracy by core counts.

(c) PRD CMC accuracy of indirectly and directly predicted whole-program PRD profiles.

(d) The breakdown of PRD CMC prediction accuracy by core counts.

Figure 4.8: PRD profile prediction accuracy for core count scaling.
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The last set of bars in Figure 4.8(a), labeled “PRDdirect,” report the average

PRDAccuracy for direct whole-program PRD profile prediction. Figure 4.8(a) shows

that PRDdirect is very similar to PRDP+S. On average, PRDdirect accuracy is 96.0%,

compared to 96.3% for PRDP+S. The results in Figure 4.8(a) demonstrate the

pervasiveness of coherent shift across our benchmarks, and confirm the accuracy of

reference groups for this type of profile movement. Figure 4.8(b) shows the accuracy

breakdown by different core counts. Because we use 2 cores and 4 cores to predict

the larger core counts, the prediction accuracy degrades as the predicted point is

farther away from the measured points.

Finally, Figure 4.8(c) illustrates the whole-program prediction results using the

PRD CMCAccuracy metric. PRDP+S and PRDdirect have similar PRD CMCAccuracy,

between 76.2%–98.1% for 8 benchmarks, and are roughly 61.1% for LU. On average,

PRDP+S and PRDdirect achieve a 85.2% and 86.5% accuracy, respectively, without

LU, and 82.5% and 83.6% accuracy, respectively, for all benchmarks. This result

suggests that our predicted PRD profiles can also provide good cache-miss predic-

tions. Figure 4.8(d) breaks down PRD CMCAccuracy by different core counts. Again,

the larger error happens at large core counts.

Comparing the prediction accuracy of CRD and PRD profiles, our prediction

techniques can predict CRD and PRD profiles with similar accuracy for core count

scaling. However, at large core counts, PRD CMCAccuracy is less accurate than

CRD CMCAccuracy. This is because we also need to predict compulsory misses and

coherence misses for PRD profiles, and this induces higher error.
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Figure 4.9: Profile prediction for problem size scaling.

4.4 Prediction Accuracy Results for Problem Size Scaling

To study the prediction accuracy of problem size scaling for each benchmark

and core count, we use the measured profiles at the S1 and S2 problem sizes to

predict the profiles for the S3 and S4 problem sizes, yielding predicted profiles for

16 configurations per benchmark. Figure 4.9 illustrates the measured and predicted

points.

4.4.1 CRD Profiles

Figure 4.10 compares Barnes’ measured CRDdirect profiles (dotted lines) with

predicted CRDdirect profiles (solid lines) running on 16 cores at the S3 and S4 prob-

lem sizes. In Figure 4.10(a) and Figure 4.10(c), predicted CRD profiles capture the

major shifting behavior for problem size scaling at small RD values. At large RD

values, the CRD profile usually has a long tail with small reference counts. Prob-

lem size scaling causes the profile shift to larger RD values, and the region which

contains small reference counts becomes longer. Because we use a fixed number of
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reference groups (200,000), the resolution in the long tail decreases as problem size

scales. In predicted profiles, some bins have 0 reference counts, and some bins have

higher reference counts than the measured reference counts. However, predicted

CRD profiles and measured CRD profiles still have very similar shapes. As a result,

in Figure 4.10(a) and Figure 4.10(c), the CRDAccuracy of 16 cores at the S3 and S4

problem size are 95.2% and 93.1%, respectively.

Figure 4.10(b) and Figure 4.10(d) show the corresponding CRD CMC profiles

at the S3 and S4 problem sizes. The resolution of reference groups causes some

distortion in CRD profiles, but integration reduces the impact of distortion. We

also assume that compulsory misses grow proportionally as problem size scales. As

a result, the CRD CMCAccuracy of the S3 and S4 problem sizes is 92.5% and 85.0%,

respectively. The predicted and measured profiles are also very similar for problem

size scaling.

Figure 4.11 presents our full CRD profile prediction results. Each bar illus-

trates the average CRDAccuracy achieved over the 16 predictions per benchmark. The

rightmost bars report the average accuracy across all benchmarks. As Figure 4.11(a)

shows, CRDP profiles are predicted with high accuracy, between 79.8% and 99.7%.

Across all benchmarks, average CRDP accuracy is 90.7%. CRDP profiles exhibit

the coherent shift across problem size scaling, which reference groups can effectively

predict.

Compared to CRDP profiles, CRDS profiles are predicted with lower accuracy.

In Figure 4.11(a), CRDS accuracy is between 72.7% and 94.1%. Across all bench-

marks, the average CRDS accuracy is 85.4%. CRDS profiles for problem size scaling
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(a) Measured and predicted CRD profiles on 16 cores at the S3 problem size.

(b) Measured and predicted CRD CMC profiles on 16 cores at the S3 problem size.

(c) Measured and predicted CRD profiles on 16 cores at the S4 problem size.

(d) Measured and predicted CRD CMC profiles on 16 cores at the S4 problem size.

Figure 4.10: Examples for measured and predicted CRDdirect profiles with problem
size scaling.
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(a) CRD accuracy of predicted CRDP and CRDS profiles, and indirectly and directly pre-
dicted whole-program CRD profiles.

(b) The breakdown of CRD prediction accuracy by problem sizes.

(c) CRD CMC accuracy of indirectly and directly predicted whole-program CRD profiles.

(d) The breakdown of CRD CMC prediction accuracy by problem sizes.

Figure 4.11: CRD profile prediction accuracy for problem size scaling.
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has better prediction accuracy than core count scaling. This is because shared-data

profiles show the coherent shift for problem size scaling, as described in Section 3.4.

In Figure 4.11(a), the bars labeled “CRDP+S” show the average CRDAccuracy

for whole-program CRD profiles predicted by combining CRDP and CRDS predic-

tions. For all benchmarks, CRDP+S accuracy is between 82.6% and 99.3%. The

average CRDP+S accuracy for all benchmarks is 91.5%. The last set of bars in

Figure 4.11(a), labeled “CRDdirect,” show the average CRDAccuracy for direct whole-

program CRD profile prediction. Figure 4.11(a) shows that CRDdirect is very sim-

ilar to CRDP+S. On average, CRDdirect accuracy is 89.3%, compared to 91.5% for

CRDP+S.

Finally, Figure 4.11(c) illustrates the whole-program prediction results using

the CRD CMCAccuracy metric. Qualitatively, the CRDAccuracy and CRD CMCAccuracy

results are the same. CRDP+S and CRDdirect have similar CRD CMCAccuracy, be-

tween 82.0%–97.5% for 8 benchmarks, and are roughly 70% for RADIX. In RADIX,

the per-thread private data is large. For large core counts, reference groups detect

small shift at the S1 and S2 problem sizes. However, the global data at the S3 and

S4 problem sizes is large compared to per-thread private data, and the profiles do

have large shift. So RADIX has low prediction accuracy. On average, CRDP+S

and CRDdirect achieve an 88.0% and 86.1% accuracy, respectively. Figure 4.11(b)

and Figure 4.11(d) breaks down CRDAccuracy and CRD CMCAccuracy by different

problem sizes. Again, the error increases as problem size scales.
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4.4.2 PRD Profiles

Figure 4.12 compares Barnes’ measured PRDdirect profiles (dotted lines) with

predicted PRDdirect profiles (solid lines) running on 16 cores at the S3 and S4 prob-

lem sizes. In Figure 4.12(a) and Figure 4.12(c), predicted PRD profiles capture the

major shifting behavior for problem size scaling. At large RD values, predicted PRD

profiles show distortion due to insufficient resolution. However, the region where dis-

tortion happens has very small reference counts compared to total reference counts.

It is less important to predict this region with high accuracy. In Figure 4.12(a) and

Figure 4.12(c), the PRDAccuracy of 16 cores at the S3 and S4 problem sizes is 99.9%

and 68.9%, respectively.

For CMC profiles, we also predict compulsory misses and coherence misses,

which have infinite reuse distance. In our prediction, we assume the cache misses

at infinite reuse distance grow proportionally as problem size scales. Figure 4.12(b)

and Figure 4.12(d) show the corresponding PRD CMC profiles on 16 cores at the

S3 and S4 problem sizes. Although reference groups lose some detailed information

at some RD values in predicted PRD profiles, integration reduces the impact. As a

result, the PRD CMCAccuracy of the S3 and S4 problem sizes is 89.8% and 79.7%,

respectively. Although the error is 20% at S4, the predicted PRD CMC profile still

captures the trend of the application’s cache performance.

As Figure 4.13(a) shows, PRDP profiles are predicted with high accuracy,

between 81.7% and 99.9%. Across all benchmarks, the average PRDP accuracy is

94.0%. Compared to PRDP profiles, PRDS profiles are predicted with slightly lower
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(a) Measured and predicted PRD profiles on 16 cores at the S3 problem size.

(b) Measured and predicted PRD CMC profiles on 16 cores at the S3 problem size.

(c) Measured and predicted PRD profiles on 16 cores at the S4 problem size.

(d) Measured and predicted PRD CMC profiles on 16 cores at the S4 problem size.

Figure 4.12: Examples for measured and predicted PRDdirect profiles with problem
size scaling.
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(a) PRD accuracy of predicted PRDP and PRDS profiles, and indirectly and directly predicted
whole-program PRD profiles.

(b) The breakdown of PRD prediction accuracy by problem sizes.

(c) PRD CMC accuracy of indirectly and directly predicted whole-program PRD profiles.

(d) The breakdown of PRD CMC prediction accuracy by problem sizes.

Figure 4.13: PRD profile prediction accuracy for problem size scaling.
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accuracy. PRDS accuracy is between 83.0% and 99.7%. Across all benchmarks, the

average PRDS accuracy is 92.3%. PRDP+S accuracy is between 84.0% and 99.9%.

The average PRDP+S accuracy for all benchmarks is 94.1%. The last set of bars,

PRDdirect, shows PRDdirect is less accurate than PRDP+S. On average, PRDdirect

accuracy is 91.8%.

Finally, Figure 4.13(c) illustrates the whole-program prediction results using

the PRD CMCAccuracy metric. PRDP+S and PRDdirect have similar CMC accuracy.

They are between 70.0%–95.3%. On average, PRDP+S and PRDdirect achieve an

82.6% and 80.7% accuracy, respectively. Figure 4.13(b) and Figure 4.13(d) breaks

down the PRDAccuracy and PRD CMCAccuracy by different problem sizes. Again, the

error increases as problem size scales.

Comparing the prediction accuracy of CRD and PRD profiles, the reference

groups technique can predict CRD and PRD profiles with similar accuracy for prob-

lem size scaling. However, at large problem sizes, PRD CMCAccuracy is less accurate

than CRD CMCAccuracy. This is because we need to predict compulsory misses

and coherence misses for PRD profiles. The growing rate of these misses varies

at different configurations, and it is not very regular. The reference groups tech-

nique also under-predicts the shift of PRD profiles at the S4 problem size. Hence,

PRD CMCAccuracy has a higher error.
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Figure 4.14: Profile prediction for core-problem scaling.

4.5 Prediction Accuracy Results for Core-Problem Scaling

Lastly, we combine core count prediction and problem scaling prediction to-

gether. At the S1 and S2 problem sizes, we used the measured profiles at 2 and

4 cores to predict the profiles at the S3 and S4 problem sizes. Then from these 8

profiles, we use core count prediction techniques to predict the other 24 profiles.

This technique predicts 28 profiles from only 4 profiles. Figure 4.14 illustrates the

measured and predicted points.

4.5.1 CRD Profiles

Figure 4.15 presents our full CRD profile prediction results for scaling core

count and problem size together. Each bar reports the average CRD accuracy

achieved over the 28 predictions per benchmark. The rightmost bars report the

average accuracy across all benchmarks.

As Figure 4.15(a) shows, CRDP profiles are predicted with high accuracy. For

all benchmarks, CRDP accuracy is between 74.9% and 98.4%. Across all bench-
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(a) CRD accuracy of predicted CRDP and CRDS profiles, and indirectly and directly pre-
dicted whole-program CRD profiles.

(b) The breakdown of CRD prediction accuracy by core counts and problem sizes.

(c) CRD CMC accuracy of indirectly and directly predicted whole-program CRD profiles.

(d) The breakdown of CRD CMC prediction accuracy by core counts and problem sizes.

Figure 4.15: CRD profile prediction accuracy for scaling core count and problem
size together.
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marks, average CRDP accuracy is 90.3%. CRDP profiles exhibit coherent shift

across problem size and core count scaling which reference groups can effectively

predict. Compared to CRDP profiles, CRDS profiles are predicted with lower ac-

curacy. In Figure 4.15(a), CRDS accuracy is between 36.0% and 79.6%. Across all

benchmarks, the average CRDS accuracy is only 70.3%.

In Figure 4.15(a), the bars labeled “CRDP+S” show the average CRDAccuracy

for whole-program CRD profiles predicted by combining CRDP and CRDS predic-

tions. For all benchmarks, CRDP+S accuracy is between 75.6% and 98.3%. The

average CRDP+S accuracy for all benchmarks is 89.4%. The last set of bars in

Figure 4.15(a), labeled “CRDdirect,” report the average CRD accuracy for direct

whole-program CRD profile prediction. Figure 4.15(a) shows CRDdirect is very sim-

ilar to CRDP+S. On average, CRDdirect accuracy is 89.1%, compared to 89.4% for

CRDP+S.

Finally, Figure 4.15(c) illustrates the whole-program prediction results using

the CRD CMCAccuracy metric. CRDP+S and CRDdirect have similar accuracy, be-

tween 67.5%–98.9% for 8 benchmarks, and roughly 30% for LU. LU has low predic-

tion accuracy due to core count scaling. On average, CRDP+S and CRDdirect achieve

a 87.5% and 90.3% accuracy, respectively, without LU, and 82.4% and 83.5% ac-

curacy, respectively, for all benchmarks. Figure 4.15(b) and Figure 4.15(d) break

down the CRDAccuracy and CRD CMCAccuracy by different core counts and problem

sizes. The prediction accuracy degrades as the prediction horizon increases.
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4.5.2 PRD Profiles

Figure 4.16 presents our PRD profile prediction results under core-problem

scaling. As Figure 4.16(a) shows, PRDP profiles are predicted with high accuracy,

between 86.9% and 99.9%. Across all benchmarks, the average PRDP accuracy is

95.1%. Compared to PRDP profiles, PRDS profiles are predicted with lower ac-

curacy. PRDS accuracy is between 65.9% and 99.8%. Across all benchmarks, the

average PRDS accuracy is only 84.8%. PRDS profiles have lower prediction accuracy

due to core count scaling. PRDP+S accuracy is between 88.2% and 99.9%. The av-

erage PRDP+S accuracy for all benchmarks is 95.0%. The last set of bars, PRDdirect,

shows that PRDdirect is slightly worse than PRDP+S. On average, PRDdirect accu-

racy is 94.2%.

Finally, Figure 4.16(c) illustrates the whole-program prediction results using

the PRD CMCAccuracy metric. PRDP+S and PRDdirect have similar CMC accu-

racy, between 65.7%–97.0%. On average, PRDP+S and PRDdirect achieve 80.9% and

80.8% accuracy, respectively. Figure 4.16(b) and Figure 4.16(d) break down the

PRDAccuracy and PRD CMCAccuracy by different core counts and problem sizes. The

prediction accuracy degrades as the prediction horizon increases.

In general, the prediction accuracy results of core count scaling, problem size

scaling, and core-problem scaling are qualitatively similar. However, the CMC pre-

diction accuracy of PRD profiles at large core counts and problem sizes is lower than

the prediction accuracy of CRD profiles. This is because we need to predict com-

pulsory misses and coherence misses for PRD profiles. The growing rate varies at
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(a) PRD accuracy of predicted PRDP and PRDS profiles, and indirectly and directly predicted
whole-program PRD profiles.

(b) The breakdown of PRD prediction accuracy by core counts and problem sizes.

(c) PRD CMC accuracy of indirectly and directly predicted whole-program PRD profiles.

(d) The breakdown of PRD CMC prediction accuracy by core counts and problem sizes.

Figure 4.16: PRD profile prediction accuracy for scaling core count and problem
size together.
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different configurations, and it is harder to predict accurately. The reference groups

also under-predict the shift of PRD profiles at the S4 problem size. In contrast,

the compulsory misses in CRD profiles can be predicted with higher accuracy. As a

result, CRD profiles have higher CMC prediction accuracy.
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Chapter 5

Multicore Cache Performance Prediction

In Chapter 2, we assume that CRD and PRD profiles are minimally cache

capacity dependent for loop-based parallel programs, so our Pin tool interleaves

inter-thread memory references uniformly. To prove our assumption is valid, we use

our M5 simulator to investigate the profile stability across cache capacity scaling.

Then we evaluate the accuracy of using CRD and PRD profile predictions to estimate

the multicore cache performance, in particular MPKI (misses per kilo-instructions).

5.1 Architecture Assumptions

In Intel’s tera-scale project[27], Mani et al. point out that one of the basic

requirements for the on-chip interconnection is scalability. The average commu-

nication distance should be sub-linear with respect to the number of cores. One

possible solution is to distribute the communication across the chip on different

paths. The tiled CMP with a 2D-mesh network provides this capability. Recently,

Tilera Corporation has shipped tiled CMPs[28] with 16 to 100 cores.

A tiled CMP, illustrated in Figure 5.1, consists of several identical replicated

tiles. Each tile contains a processor core, a multi-level cache hierarchy, and a switch

for a 2D mesh network. The switch connects four directions with its neighbors.

When the requesting node is not the neighbor of the requested node, multiple hops
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Figure 5.1: Tiled CMP.

are required. Different configurations can be achieved easily by replicating tiles. As

a result, tiled CMPs are regarded as a scalable CMP organization [29, 30], and we

can use tiled CMPs to study a large design space.

We use the M5 simulator[31] to model tiled CMPs. Our simulator’s core

is in-order, with each core executing one instruction per cycle in the absence of

memory stalls. Each core has its own dedicated private caches, and the last level

cache (LLC) is shared. We permit replication of data in each tile’s private caches,

and cache coherence is maintained by the MESI directory-based cache coherence

protocol. For the shared LLC, LLC slices are managed as a simple shared cache,

with no migration or replication across LLC slices. Each cache block resides in a

fixed LLC slice which is known as the cache block’s home tile. Each cache block’s

directory entry is also co-located with its associated data. We assume cache block

homes are page-interleaved (with 8KB page size) across LLC slices according to

their physical address.

We assume full-map directories, though this approach can lead to large direc-

tories. Several scalable directory schemes can be applied to reduce the directory size,

for example, limited directories or sparse directories [32, 33, 34, 35]. Although the

91



directory size plays an important role in architecture designs, this issue is beyond

the scope of our research.

The M5 simulator is also modified to support 4 DRAM channels, each con-

nected to a memory controller on a special memory tile. Four memory tiles are

evenly spaced on the north and south edges of the chip. We accurately model cache

access, hops through the network, and DRAM access. We also model queuing at

the on-chip network and memory controllers.

All of our experiments simulate application code only without any operating

system code (i.e., the OS is emulated) due to the difficulty of performing full-

system simulations at 256 cores. During simulation, our simulator records the direct-

measured whole-program CRD and PRD profiles (CRDdirect and PRDdirect) for the

pre-L1 memory reference stream across all cores. CRD and PRD are computed at

the granularity of 64 bytes, the block size for the caches.

To drive our simulations, we use the same benchmarks and problem sizes from

Table 2.1. For benchmarks that run one time-step, we warm-up caches in the first

time-step, then we begin recording performance and profiles at the second time-step.

For benchmarks running the entire parallel phase, we do not perform any explicit

cache warm-up.

Table 5.1 lists the parameters used in our simulations for the shared cache

performance study. As Table 5.1 shows, we use a two-level cache hierarchy. Each

core has its own private 32KB instruction cache and 32KB data cache. The L2 slices

form a logically distributed shared last level cache. We simulate processors with 2–

256 cores and 4–128MB of total L2 cache (LLC). There are 192 configurations per
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Table 5.1: Simulator parameters used in the shared cache performance experiments.

Number of Tiles 2, 4, 8, 16, 32, 64, 128, 256
Core Type Alpha ISA, Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 32KB/32KB, 64B block, 8-way, 1 CPU cycle

Total L2 Cache Size 4MB, 8MB, 16MB, 32MB, 64MB, 128MB
L2 Slice 64B blocks, 32-way, 10 CPU cycles
2-D Mesh 3 CPU cycles per-hop, bi-directional channels, 256-bit wide links

Memory channels latency: 200 CPU cycles, bandwidth: 32GB(1-16cores) and 64GB(32-256cores)

Table 5.2: Simulator parameters used in the private cache performance experiments.

Number of Tiles 2, 4, 8, 16, 32, 64, 128, 256
Core Type Alpha ISA, Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 8KB/8KB, 64B block, 4-way, 1 CPU cycle

Per-core L2 Cache Size 16KB, 32KB, 64KB, 128KB, 256KB
Per-core L2 64B blocks, 8-way, Latency = 4 CPU cycles

Total L3 Cache Size 32MB(1-16cores) and 128MB(32-256cores)
L3 Slice 64B blocks, 32-way, 10 CPU cycles
2-D Mesh 3 CPU cycles per-hop, bi-directional channels, 256-bit wide links

Memory channels latency: 200 CPU cycles, bandwidth: 32GB(1-16cores) and 64GB(32-256cores)

benchmark, and 1,728 configurations across our 9 benchmarks.

Table 5.2 lists the parameters used in our simulations for the private cache

performance study. To study the private cache performance, we use a three-level

cache hierarchy. Each core has its own private 8KB instruction cache, 8KB data

cache, and a unified L2 cache. The L2 cache capacity varies from 16KB to 256KB.

The L3 slices form a logically distributed shared last level cache. There are 160

configurations per benchmark, and 1,440 configurations across our 9 benchmarks.

5.2 Profile Stability

Before presenting our prediction results, we first revisit the issue of architec-

ture dependence. The multicore cache performance not only depends on intra-thread

data locality, but also depends on inter-thread interactions. At different cache ca-

pacities, the relative execution speed between threads may change, and this may

change the memory reference interleaving. As a result, the CRD and PRD profiles
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measured on one cache size may not be valid for other cache sizes. So, strictly speak-

ing, CRD and PRD profiles are not even valid across different cache sizes at the same

core count. This instability defeats the benefits of multicore RD analysis. However,

when threads exhibit similar locality behavior, this instability becomes minimal.

For example, loop-based parallel programs often employ symmetric threads. When

the cache size changes, these threads tend to either speed up or slow down, but by

the same amount . For such programs, CRD and PRD profiles are practically stable

and can provide accurate analysis for different cache capacities. In this section, we

study the stability of CRD and PRD profiles across cache capacity scaling.

5.2.1 CRD Profiles

To study the stability of CRD profiles across LLC capacity scaling, we use a

two-level cache hierarchy (Table 5.1). Figure 5.2 plots CRD profiles from the FFT

benchmark, all running on 64 cores with the S2 problem size, but varies the LLC

size at 8MB, 32MB, and 128MB. As Figure 5.2 shows, CRD profiles change with

LLC capacity, so they are indeed architecture dependent. However, these profiles

are almost identical, and they exhibit low sensitivity to LLC scaling. This is because

LLC scaling speeds up or slows down symmetric threads by similar amounts. So,

profiles tend to remain the same.

To quantify this stability, we compare CRD profiles measured at different LLC

capacities. For each benchmark, core count, and problem size, we compare the CRD

profiles at capacities C = 4, 8, 16, 64, and 128MB against the baseline CRD profile
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Figure 5.2: CRD profiles from the FFT benchmark running on 64 cores at the S2
problem size across 8M, 32M, and 128M LLC capacity.

at capacity C = 32MB. For each pairwise profile comparison, we use two metrics.

RDStability is defined in Equation 5.1, and N is the number of bins. RDStability is

1− E
2
, where E is the sum of the normalized absolute differences between every pair

of reference counts from a measured and baseline RD profile. The second metric is

RD CMCStability. We compute RD CMCStability by averaging the error between pairs

of RD values from the entire measured and baseline CMC profiles, as illustrated in

Equation 5.2. The RDStability and RD CMCStability for CRD profiles are CRDStability

and CRD CMCStability.

RDStability = 1− 1

2

N−1∑
i=0

|RDC [i]−RDbaseline[i]|
total references

(5.1)

RD CMCStability = 1− 1

N

N−1∑
i=0

|RD CMCC [i]−RD CMCbaseline[i]|
RD CMCbaseline[i]

(5.2)

Figure 5.3 reports the stability measurement across our 9 benchmarks. In Fig-

ure 5.3(a), the CRDStability is between 92.7% and 99.5%. Across all benchmarks, the

average CRDStability is 97.2%. Figure 5.3(c) shows the breakdown of CRDStability by
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(a) CRD profiles. (b) CRD CMC profiles.

(c) CRD profile stability by core count. (d) CRD CMC profile stability by core count.

Figure 5.3: Stability measurement of CRD profiles and CRD CMC profiles.

core count. The stability decreases as core count increases, from 98.5% to 94.8%.

This is because larger core counts have a higher probability to have idle cores due to

the timing effect, and this might cause more irregular memory reference interleav-

ing. In Figure 5.3(b), the CRD CMCStability is between 99.1% and 99.9%. Across

all benchmarks, the average CRD CMCStability is 99.6%. The results suggest that

CRD CMC profiles are more stable than CRD profiles. The reason is that the

variation is minimized when integrating cache-miss counts. Figure 5.3(d) shows the

breakdown of CRD CMCStability by core count. The stability decreases as core count

increases, from 99.7% to 99.4%. These results demonstrate that the vast majority

of CRD profiles exhibit low sensitivity to LLC capacity scaling.
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Figure 5.4: PRD profiles from the FFT benchmark running on 64 cores at the S2
problem size across 32K, 64K, and 128K per-core L2 capacity.

5.2.2 PRD Profiles

To study the stability of PRD profiles across L2 capacity scaling, we use a

three-level cache hierarchy (Table 5.2). Figure 5.4 plots PRD profiles from the

FFT benchmark, all running on 64 cores with the S2 problem size, but varies the

L2 size at 32KB, 64KB, and 128KB. As Figure 5.4 shows, these PRD profiles are

almost identical, and they exhibit very low sensitivity to L2 size scaling. This is

because PRD profiles are not sensitive to inter-thread memory reference interleaving.

Although inter-thread interactions cause invalidations at large RD values in PRD

profiles, the number of invalidations is usually small compared to the total number

of memory references. As a result, PRD profiles are more stable than CRD profiles.

To quantify this stability, we compare PRD profiles measured at different L2

capacities. For each benchmark, core count, and problem size, we compare the PRD

profiles at capacities C = 16, 32, 128, and 256KB against the baseline PRD profile

at capacity C = 64KB. Figure 5.5 illustrates the stability measurement across our 9

benchmarks. In Figure 5.5(a), the PRDStability is between 99.8416% and 99.9997%.

Across all benchmarks, the average PRDStability is 99.97%. Figure 5.5(c) shows the
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(a) PRD profiles. (b) PRD CMC profiles.

(c) PRD profile stability by core count. (d) PRD CMC profile stability by core count.

Figure 5.5: Stability measurement of PRD profiles and PRD CMC profiles.

breakdown of PRDStability by core counts. The stability is very high across core

count, from 99.93% to 99.99%. This is because the number of invalidations is rela-

tively small compared to total reference counts, and the timing effect is insignificant.

In Figure 5.5(b), the PRD CMCStability is between 99.7365% and 99.9987%. Across

all benchmarks, the average PRD CMCStability is 99.89%. The results suggest PRD

and PRD CMC profiles are very stable. Figure 5.5(d) shows the breakdown of

PRD CMCStability by core count. The stability decreases as core count increases,

from 99.92% to 99.77%, but still higher than 99%. These results demonstrate that

PRD profiles are indeed more stable than CRD profiles.
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Figure 5.6: Architecture-application design space.

5.3 MPKI Prediction Accuracy

Chapter 4 evaluates the profile prediction accuracy for different scaling schemes.

In this section, we evaluate the accuracy of using CRD and PRD profile predictions

to estimate the cache performance, in particular MPKI.

5.3.1 Prediction Approach

Performance prediction is a three-step process. First, we acquire the CRD

and PRD profiles at some configurations. Second, we use the prediction techniques

described in Section 4.1 to predict the CRD and PRD profiles at different configu-

rations. Finally, we use CRD profiles to predict shared cache performance, and use

PRD profiles to predict private cache performance. In this study, we consider three

prediction strategies: “No-Pred,” “C-Pred,” and “CP-Pred.”

No-Pred does not perform any profile prediction. For each benchmark, it

acquires the CRD or PRD profiles on the 32 configurations across core count and

problem size in the “A” plane of Figure 5.6. The “A” plane is at 32MB LLC size
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when acquiring the CRD profiles, and it is at 64KB L2 size when acquiring the PRD

profiles. At each measured point, No-Pred uses the profile to predict the MPKIs at

different cache sizes.

C-Pred extends No-Pred with core count prediction to reduce the profiles

needed along the X-axis in Figure 5.6. At each problem size within the “A” plane, C-

Pred predicts the 8- to 256-core profiles using the 2- and 4-core profiles, as illustrated

in Figure 4.4. So C-Pred uses 8 measured profiles to predict the other 24 profiles

for each benchmark. Then just like No-Pred, C-Pred uses the profiles in the “A”

plane to predict the MPKIs at different cache sizes.

Lastly, CP-Pred extends C-Pred with problem scaling prediction to reduce

the profiles needed along the Y-axis in Figure 5.6. CP-Pred acquires 2- and 4-core

profiles at the S1 and S2 problem sizes, and it predicts the S3 and S4 profiles from

the S1 and S2 profiles. Then just like C-Pred, CP-Pred predicts across core count

to acquire all profiles in the “A” plane. Then, CP-Pred uses the profiles in the “A”

plane to predict the MPKIs at different cache sizes. For each benchmark, CP-Pred

only needs 4 measured points.

Once all 36 profiles within the “A” plane have been acquired (under No-Pred,

C-Pred, or CP-Pred), we use Qasem and Kennedy’s model [36] to predict capacity

and conflict misses together at the desired capacity, C. This model takes the RD

profile as input, and uses a binomial distribution to predict the number of capacity

and conflict misses for a given capacity and associativity. Finally, we divide the

predicted cache misses by instruction count to derive MPKI. For No-Pred, we use

the measured instruction count at the same configuration that contributed the RD

100



profile for MPKI prediction. For C-Pred and CP-Pred, we make the assumption

that instruction count grows proportionally with core count and problem size.

There are 1,728 configurations in the shared LLC design space, and there are

1,440 configurations in the private L2 design space. We simulate all of them using

our M5 simulator and obtain their MPKIs and profiles. When computing MPKIs,

we exclude compulsory misses, since there is no cache warm-up in reuse distance

profiles. Then, we use Equation 5.3 to compute the MPKI prediction accuracy.

When the measured MPKI is small, the prediction error often blows up. However,

the small MPKI doest not really affect CPU performance. To address this, we add

a small offset to the predicted and measured values. This offset is selected to be the

MPKI value which can cause 1% CPI difference by assuming the memory latencies

from Table 5.2.

Error =
|(MPKImeasured + offset)− (MPKIpredicted + offset)|

(MPKImeasured + offset)
(5.3)

5.3.2 Shared LLC MPKI Prediction Accuracy

Figure 5.7 shows MPKI prediction error with a small offset, 0.05. Each bar in

Figure 5.7 reports the average percent error across all predictions for a particular

prediction strategy and benchmark. The rightmost group of bars reports averages

across all 9 benchmarks.

As Figure 5.7 shows, No-Pred is able to predict shared LLC MPKI within

10.4% of simulation for 8 out of 9 benchmarks, and within 26.7% for RADIX. Across

all benchmarks, prediction error is 9.4%. These results reflect baseline prediction
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Figure 5.7: Percent shared LLC MPKI prediction error with 0.05 offset.

errors (i.e., without profile prediction), and include three error sources. First, we

find one of the main sources of error is the cache conflict model, especially for

machines with large core count and small LLC. These machines incur pathologic

conflicts that the conflict model cannot predict. Second, our error metric does not

always address numeric instability. In some cases, LLC MPKI is near 0.05. These

are not eliminated by our 0.05 offset, but are small enough to make percent error

very sensitive to minute prediction errors. This is responsible for the high errors in

RADIX. If we change the offset to be 0.5, No-Pred achieves 9.3% error for RADIX.

And third, M5 profiles include timing effects. However, this error is very small.

Section 5.2.1 demonstrates that CRD profiles are vary stable across cache capacity

scaling. Overall, Figures 5.7 shows that No-Pred error is very low, so we can use

CRD profiles to predict MPKI for loop-based parallel programs accurately.

Figure 5.7 also shows that C-Pred and CP-Pred are both less accurate than

No-Pred. They are able to predict MPKI within 17.3% of simulation for 8 out of 9

benchmarks, and within 25.3% for RADIX. On average, prediction error is within

11.2%. Like No-Pred, C-Pred and CP-Pred incur cache conflict model errors. But

they also incur errors due to CRD profile prediction. Sometimes the profile pre-
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diction errors are additive, so total error increases. However, in some cases, errors

cancel each other out. This is because the cache conflict model usually under-

predicts cache misses, whereas CRD profile prediction sometimes over-predicts ca-

pacity misses. This explains why C-Pred and CP-Pred have errors similar to those

of C-Pred (and in some cases even lower).

Figure 5.8 illustrates MPKI prediction error, just like Figure 5.7, but only

for the S4 problem and caches with 4–16MB capacity. The results are still using

2–256 cores. Most of these configurations have cache size < Ccore. Hence, Figure 5.8

examines prediction accuracy in the region of CRD profile shift. However, because

LU, KMeans, and BlackScholes have small Ccore, which are always smaller than

4MB, we omit these three benchmarks. As Figure 5.8 shows, prediction error in the

shifting region is comparable to prediction error in the entire design space.

Figure 5.8 does not contain RADIX’s poorly predicted cases. As a result,

No-Pred is able to predict shared LLC MPKI within 11.7% of simulation for 6

benchmarks, and prediction error is 5.5% on average. C-Pred is able to predict

shared LLC MPKI within 8.4% of simulation for 6 benchmarks, and prediction error

is 6.4% on average. The results show that our core count prediction techniques are

effective in the shifting region. However, CP-Pred is less effective, with 12.5% error

due to more significant miss-prediction.

Figure 5.9 reports the prediction error for the same problem and cache sizes

in Figure 5.8 broken down by prediction strategy and core count. Like Figure 5.8,

Figure 5.9 shows that C-Pred is very similar to No-Pred, while CP-Pred is worse.

More importantly, Figure 5.9 also shows that prediction error increases with core
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Figure 5.8: MPKI prediction error for S4 and 4–16MB shared LLCs.

Figure 5.9: Prediction error for S4 and 4–16MB shared LLCs by core count.

count, reaching 13.9% for No-Pred, 18.7% for C-Pred, and 25.7% for CP-Pred at

256 cores. This illustrates that the cache conflict model errors mentioned earlier

tend to increase with core count. Nevertheless, Figure 5.9 shows that prediction

error at large core counts is still reasonable.

Figure 5.10 uses the FFT benchmark running at the S4 problem size as an

example to present the predicted MPKI curves by using No-Pred, C-Pred, and CP-

Pred. In Figure 5.10(a), the predicted MPKIs and simulated MPKIs are almost

identical at 16 cores. When core count increases, the cache conflict model cannot

predict cache misses accurately. Hence, the predicted MPKIs at 256 cores have

higher errors. However, the predicted MPKI curves still capture the cache perfor-

mance trends for core count scaling. C-Pred has the similar results, as illustrated in

Figure 5.10(b). CP-Pred is the least accurate. In Figure 5.10(c), errors also happen
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(a) No-Pred (b) C-Pred (c) CP-Pred

Figure 5.10: FFT’s predicted LLC MPKI curves for No-Pred, C-Pred, and CP-Pred
at the S4 problem size.

at 16 cores. However, the relative cache performance is correct, and the prediction

results are still useful to study the impact of core count and problem size scaling.

Finally, we report the average MPKI difference (MPKIdiff ) across all predic-

tions for a particular prediction strategy and benchmark in Figure 5.11. MPKIdiff

is calculated as 1
N
ΣN

i=1|MPKImeasured −MPKIpredicted|, where N is the number of

configurations. The rightmost group of bars shows averages across all 9 benchmarks.

The MPKIdiff shows how close the predicted MPKI is to the simulated MPKI. No-

Pred is able to predict within 0.1 MPKI for 8 out of 9 benchmarks, and within 0.28

MPKI for RADIX. On average, the MPKIdiff is 0.06 MPKI. Figure 5.11 also shows

that C-Pred and CP-Pred are both less accurate than No-Pred. C-Pred can predict

within 0.14 MPKI for 8 out of 9 benchmarks, and within 0.28 MPKI for RADIX.

CP-Pred can predict within 0.19 MPKI for 7 out of 9 benchmarks, and within 0.26

MPKI for RADIX and 0.37 MPKI for Ocean. On average, prediction is within 0.10

MPKI. These results show that most of the predicted MPKIs via CRD profiles are
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Figure 5.11: MPKI difference for shared LLC MPKI prediction.

very close to simulated MPKIs.

5.3.3 Private L2 Cache MPKI Prediction Accuracy

Figure 5.12 reports percent error with 1.0 offset for private L2 MPKI predic-

tion. Each bar in Figure 5.12 reports the average percent error across all predictions

for a particular prediction strategy and benchmark. The rightmost group of bars

reports averages across all 9 benchmarks. We also predict coherence misses, which

have infinite reuse distance. In our experiments, we assume that coherence misses

increase proportionally with respect to core count and problem size.

As Figure 5.12 shows, No-Pred predicts private L2’s MPKI within 15.4% of

simulation for 9 benchmarks. Across all benchmarks, prediction error is 8.5%. These

results reflect baseline prediction errors (i.e., without profile prediction). Except the

3 error sources which are mentioned in Section 5.3.2, we also find that the instruction

working set is replicated in private L2 caches, reducing the effective cache capacity

for data working set. Hence, the error is usually large at small L2 capacities.

Figure 5.12 also shows that C-Pred and CP-Pred are less accurate than No-

Pred. C-Pred and CP-Pred predict MPKI within 24.4% and 25.5% of simulation,
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Figure 5.12: Percent private L2 MPKI prediction error with 1.0 offset.

Figure 5.13: Prediction error by core count.

respectively. On average, C-Pred has 12.5% error and CP-Pred has 13.9% error.

Like No-Pred, C-Pred and CP-Pred incur cache conflict model errors. But they

also incur errors due to PRD profile prediction and coherence-miss prediction. In

general, C-Pred and CP-Pred usually under-predict the amount of cache misses.

Figure 5.13 reports the prediction error broken down by prediction strategy

and core count. For No-Pred, prediction error increases as core count scales, reaching

16.2% at 256 cores. C-Pred and CP-Pred have higher prediction error than No-Pred.

Prediction error increases with core count, reaching 21.4% for C-Pred and 23.5% for

CP-Pred at 256 cores. Nevertheless, Figure 5.13 shows that prediction error at large

core counts is still reasonable.

Figure 5.14 uses the FFT benchmark running at the S4 problem size as an
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(a) No-Pred (b) C-Pred (c) CP-Pred

Figure 5.14: FFT’s predicted L2 MPKI curves for No-Pred, C-Pred, and CP-Pred
at the S4 problem size.

example to present the predicted MPKI curves by using No-Pred, C-Pred, and

CP-Pred. In Figure 5.14(a), the predicted MPKIs and simulated MPKIs are very

similar, and No-Pred’s predicted MPKI curves can capture the cache performance

trend. C-Pred is less accurate, as illustrated in Figure 5.14(b). Prediction error

increases with core count, but the cache performance trend is still valid. CP-Pred

is the least accurate. However, the relative cache performance is correct, and the

prediction is still useful to study the impact of core count and problem size scaling.

Figure 5.15 reports the MPKIdiff across all predictions for a particular pre-

diction strategy and benchmark. No-Pred is able to predict within 0.54 MPKI

difference for 8 out of 9 benchmarks, and within 2.01 MPKI for Ocean. Ocean has

a large degree of error at 256 cores with 16KB L2 size. On average, the MPKIdiff

is 0.49 MPKI. Figure 5.15 shows that C-Pred and CP-Pred are both less accurate

than No-Pred. C-Pred can predict within 0.62 MPKI for 7 out of 9 benchmarks,

and within 2.03 MPKI for RADIX and 1.77 MPKI for Ocean. CP-Pred can predict
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Figure 5.15: MPKI difference for private L2 MPKI prediction.

within 0.80 MPKI for 7 out of 9 benchmarks, and within 2.12 MPKI for RADIX

and 2.53 MPKI for Ocean. On average, prediction is within 0.81 MPKI. These

results show that private L2 MPKI prediction is less accurate then shared LLC

MPKI prediction. However, the trend can still provide useful information to help

us understand scaling impacts.

Overall, we find our prediction techniques for core count scaling can accelerate

cache analysis without sacrificing accuracy. When combined with problem scaling

prediction, analysis effort is further reduced, though error increases when predicting

large core counts.

5.3.4 Sensitivity to Cache Associativity

In Section 5.3.2, the shared LLC is a 32-way set associative cache. In this sec-

tion, we use the S2 problem size to study the impact of different cache associativities.

Figure 5.16 reports percent shared LLC MPKI difference ( |MPKI32−way−MPKI16−way |
MPKI32−way

)

between 32-way and 16-way set associative caches. We add a small offset, 0.05, to

the measured values, so the metric does not blow up. In Figure 5.16, the X-axis

is broken down by core count and shared LLC size. The value of each bar is the
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Figure 5.16: Shared LLC MPKI difference between 32-way and 16-way set associa-
tive LLCs by core count and cache capacity.

average percent difference across our 9 benchmarks.

Figure 5.16 shows that the MPKI difference between 32-way and 16-way set

associative caches is large at large core counts and small cache sizes. For example,

the MPKI difference for 256 cores and 4MB cache achieves 14.6%. As a result,

when the cache capacity is small or the number of cores is large, lower associativity

usually has a significant impact on cache performance.

Figure 5.17 illustrates MPKI prediction error for the S2 problem size with a

small offset, 0.05. Each bar in Figure 5.17 reports the average percent error across

all predictions for a particular prediction strategy, benchmark, and associativity.

The rightmost group of bars reports averages across all 9 benchmarks.

As Figure 5.17(a) shows, for 16-way set associative LLCs, No-Pred is able to

predict shared LLC’s MPKI within 23.6% of simulation for 8 out of 9 benchmarks,

and within 56.1% for RADIX. On average, prediction error is 15.8%. On the other

hand, for 32-way set associative LLCs, No-Pred is able to predict shared LLC’s

MPKI within 13.6% of simulation for 8 out of 9 benchmarks, and within 30.8% for

RADIX. On average, prediction error is 9.8%.

No-Pred has lower prediction accuracy for 16-way set associative LLCs. Upon
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(a) No-Pred

(b) C-Pred

Figure 5.17: MPKI prediction error for S2 and 4–128MB 16-way/32-way set asso-
ciative LLCs.

closer examination, there are two main sources of error. First, we find one of the

main sources of error is the cache conflict model. In our results, 16-way set asso-

ciative LLCs have more cache misses than those of 32-way set associative LLCs.

Although the cache conflict model also predicts more cache misses for 16-way set

associative LLCs, the cache conflict model has higher prediction error for 16-way set

associative LLCs at small cache sizes and large core counts. And Second, our error

metric does not always address numeric instability. If we change the offset to be

0.5, No-Pred achieves 16.9% and 11.3% error for RADIX with 16-way and 32-way

set associative LLCs, respectively.

In Figure 5.17(b), for 16-way set associative LLCs, C-Pred is able to predict

shared LLC’s MPKI within 27.1% of simulation for 8 out of 9 benchmarks, and
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within 37.3% for RADIX. On average, prediction error is 13.6%. On the other hand,

for 32-way set associative LLCs, C-Pred is able to predict MPKI within 12.4% of

simulation for 8 out of 9 benchmarks, and within 25.1% for RADIX. On average,

prediction error is 9.1%. These results show that C-Pred has errors similar to those

of No-Pred. The reasons are discussed in Section 5.3.2.

As Figure 5.17 shows, the prediction accuracy of 16-way set associative LLCs

is about 5% worse than the prediction accuracy of 32-way set associative LLCs. The

major reason is that the cache conflict model has higher prediction error for 16-way

set associative LLCs at small cache sizes and large core counts, especially at 4MB

and 256 cores. However, these results show that CRD profiles can also be used to

study the cache performance of set associative caches without sacrificing prediction

accuracy too much. As a result, our prediction techniques can be used to study

many different architecture designs quickly.
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Chapter 6

Optimizing Multicore Cache Hierarchies Using Reuse Distance

Analysis

CRD profiles and PRD profiles present an application’s memory behavior for

shared caches and private caches. This suggests we can use these profiles to study

and identify the optimal cache hierarchy. In this chapter, we develop a novel frame-

work that employs whole-program CRD and PRD profiles to study the trade-offs of

multicore cache system design. We also study how core count scaling and problem

size scaling impact the optimal cache hierarchy.

6.1 Performance Models

To study different cache hierarchies, we select the tiled architecture due to its

scalability. Figure 5.1 depicts an example tiled CMP. Each tile contains a core, a

private L1 cache, a private L2 cache, and an LLC module. The LLC module can

either be a private cache, or a slice of a shared cache. Tiles are connected by a 2D

mesh network.

In our study, we assume caches are inclusive and allow data blocks to be

replicated in private caches. Hence, when a cache miss happens in the L1 and L2

caches, the cache sends a request to the next-level cache directly. However, when

a cache miss happens in the private LLC, the coherence protocol first checks the
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Figure 6.1: CRD CMC, sPRD CMC, and sPRDf CMC profiles for FFT running on
16 cores at the S3 problem size.

on-chip directory. If the cache block resides in the private LLC of the other tiles, the

cache block will be forwarded to the requesting tile. Otherwise, the request will be

sent to the off-chip DRAM. To model the data-forwarding in the private LLC, we

need another profile (PRDf ) to indicate whether the cache block resides in the other

tiles or not. To compute PRDf profiles, we find the minimum reuse distance among

per-thread stacks for a given memory access. The intuition is that this minimum

RD is the smallest cache size that contains the replication of a cache block. The

collected RD values form the PRD data-forwarding profile, PRDf .

Figure 6.1 uses FFT running on 16 cores at the S3 problem size to summarize

how we compute the cache misses at each cache level. For private L1 and L2 caches,

the total cache misses are sPRD CMC[T × L1size] and sPRD CMC[T × L2size].

L1size and L2size are the private L1 and L2 cache sizes per core, and T is the number

of tiles. For the private LLC with total LLCsize capacity, the directory-access traffic

is sPRD CMC[LLCsize], and the access latency is (DIRlat +HOPlat). We assume

data blocks are distributed uniformly on the LLC slices, so network messages incur

√
T + 1 hops on average [37]. Hence, HOPlat is per-hop latency × average hops.
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After checking the directory, the data-forwarding traffic is (sPRD CMC [LLCsize]−

sPRDf CMC[LLCsize]), and the access latency is (LLClat + 2 × HOPlat) which

contains two-way data forwarding communication and one cache access to acquire

the data. The off-chip traffic is sPRDf CMC[LLCsize]. We also model the two-way

communication when accessing the memory controller. Hence, the average memory

access time (AMAT) for the tiled processors with private LLCs can be modeled using

Equation 6.1, where sPRD CMC[0] is the number of total memory references.

AMATp = L1lat + L2lat ×
sPRD CMC[T × L1size]

sPRD CMC[0]

+ LLClat ×
sPRD CMC[T × L2size]

sPRD CMC[0]

+ (DIRlat +HOPlat)×
sPRD CMC[LLCsize]

sPRD CMC[0]

+ (LLClat + 2×HOPlat)×
sPRD CMC[LLCsize]− sPRDf CMC[LLCsize]

sPRD CMC[0]

+ (DRAMlat + 2×HOPlat)×
sPRDf CMC[LLCsize]

sPRD CMC[0]

(6.1)

For shared LLCs, the LLC accesses are sPRD CMC[T × L2size] with ac-

cess latency (LLClat + 2 × HOPlat). In shared LLCs, the data always resides on

the home tile, so there is two-way communication. The off-chip cache misses are

CRD CMC[LLCsize]. The average memory access time (AMAT) for the tiled pro-

cessors with shared LLCs can be modeled using Equation 6.2.
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AMATs =L1lat + L2lat ×
sPRD CMC[T × L1size]

sPRD CMC[0]

+(LLClat + 2×HOPlat)×
sPRD CMC[T × L2size]

sPRD CMC[0]

+(DRAMlat + 2×HOPlat)×
CRD CMC[LLCsize]

sPRD CMC[0]

(6.2)

These two simple performance models do not consider queuing in the on-

chip and off-chip networks, but they provide insights about an application’s cache

performance on different cache hierarchies.

6.2 Performance Analysis

At the same cache capacity, the shared cache has the best on-chip miss-rate,

but it has longer access latency. In contrast, the private cache has the worst miss-

rate, but it keeps data locally. In this section, we first study when shared LLCs

perform better than private LLCs. Then we study the trade-off between L2 and

LLC capacities. We also study how core count scaling and problem size scaling

impact the cache system design.

6.2.1 Private vs. Shared LLCs

Shared LLCs are better than private LLCs when AMATp > AMATs. Given

Equation 6.1 and Equation 6.2, this occurs when:
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(DRAMlat + 2×HOPlat)× (sPRDf CMC[LLCsize]− CRD CMC[LLCsize])

> (2×HOPlat)× sPRD CMC[T × L2size]−

((DIRlat +HOPlat)× sPRD CMC[LLCsize]+

(LLClat + 2×HOPlat)× (sPRD CMC[LLCsize]− sPRDf CMC[LLCsize]))

(6.3)

Equation 6.3 shows that shared LLCs are better when the total off-chip mem-

ory stall saved via sPRDf CMC/CRD CMC gap in shared LLCs (the LHS of

Equation 6.3) exceeds the total on-chip memory stall saved in private LLCs (the

RHS of Equation 6.3). The shared LLC’s on-chip access latency is weighted by the

LLC access frequency–i.e., the L2’s misses. Hence, the choice between private and

shared LLCs not only depends on the program behavior, but it also depends on L2

and LLC capacities.

To illustrate, Figure 6.2 plots AMATp and AMATs as a function of total LLC

size for the FFT benchmark running on 16 cores at the S3 problem size. Different

pairs of curves show results for different L2 sizes. When computing AMAT, we

assume an 8KB L1 cache with 1-cycle latency, 4-cycle L2 latency, 10-cycle LLC

latency, 10-cycle directory latency, 200-cycle DRAM latency, and 3-cycle per-hop

network latency. Figure 6.2 shows that the choice between private and shared LLCs

depends on two major effects. The first effect is L2 cache capacity. At small L2

capacities, the first term in the RHS of Equation 6.3 always dominates due to the
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Figure 6.2: FFT’s AMATp and AMATs for different L2 and LLC capacities.

high shared LLC accesses. So private LLCs are always better. This occurs in

Figure 6.2 when the L2 is 16KB. For larger L2 caches, the first term in the RHS

of Equation 6.3 reduces, and it allows the LHS of Equation 6.3 to dominate when

the sPRDf CMC/CRD CMC gap is sufficiently large. This occurs in Figure 6.2 for

the 64KB L2 with a private-to-shared LLC cross-over at 20.4MB. Finally, at large

private LLC capacities that can contain replications, CRD CMC[LLCsize], and

sPRDf CMC[LLCsize] are almost identical. As a result, the LHS of Equation 6.3

is close to 0 again. This diminishes the advantage of shared LLCs. In fact, private

LLCs may regain a performance advantage when the total on-chip memory stall in

shared LLCs is higher than the total on-chip memory stall in private LLCs. This

occurs in Figure 6.2 for the 64KB L2 with a shared-to-private LLC cross-over at

62.0MB.

6.2.2 Scaling Private-vs-Shared LLCs

In this section, we extend the architecture insights from Section 6.2.1 by in-

corporating the core count scaling and problem size scaling effects discussed in Sec-
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tion 3.5. Figure 6.3 and Figure 6.4 present the results for our 9 benchmarks. In

Figure 6.3 and Figure 6.4, we plot three problem sizes, S2–S4, per benchmark. Each

problem size has two graphs: the top graph shows tiled CMPs with 8KB L1 caches

and 16KB L2 caches, while the bottom graph shows tiled CMPs with 8KB L1 caches

and 64KB L2 caches. Within each graph, the LLC capacity is varied from 0–128MB

along the X-axis. The core count scaling is studied along the Y-axis for 2–256 cores.

For each CMP configuration, the ratio AMATp

AMATs
is plotted at different colors. We do

not consider CMPs with less total LLC capacity than total L2 capacity. These cases

are shaded black in Figure 6.3 and Figure 6.4.

All basic insights from Figure 6.2 are also visible in Figure 6.3 and Figure 6.4.

Shared LLCs are best only when conditions make the LHS of Equation 6.3 dominate.

Hence, the L2 capacity must be sufficiently large to reduce LLC access frequency.

The total off-chip memory stall saved in shared LLCs must also be greater than the

total on-chip memory stall saved in private LLCs.

For our benchmarks and the tiled CMP configurations, 16KB L2 is usually not

large enough for FFT, RADIX, Barnes, FMM, Ocean, and BlackScholes to reduce

LLC access frequency; so private LLCs are usually best in these cases. Increasing

the L2 cache size can benefit shared LLCs. We also see that most configurations

for which shared LLCs are best occur around or beyond their corresponding Cshare

value in Figure 3.15(b).

Because the CRD CMC/PRDf CMC gap varies across the LLC capacity,

preference may change from private LLC to shared LLC and back to private LLC

again. FFT, LU, RADIX, Barnes, FMM, and Water show this behavior. Kmeans
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(a) FFT

(b) LU

(c) RADIX

(d) Barnes

(e) FMM

Figure 6.3: Private vs. shared LLC performance across L2 capacity, LLC capacity,
core count, and problem size for FFT, LU, RADIX, Barnes, and FMM.
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(a) Ocean

(b) Water

(c) KMeans

(d) BlackScholes

Figure 6.4: Private vs. shared LLC performance across L2 capacity, LLC capacity,
core count, and problem size for Ocean, Water, KMeans, and BlackScholes.
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and BlackScholes have very good data locality. Hence, LLC capacity doesn’t affect

the preference of private LLCs or shared LLCs.

Figure 6.3 and Figure 6.4 also show the impact of core count scaling on the

private vs. shared LLCs selection. As described in Section 3.3, both CRD CMC and

sPRD CMC profiles shift coherently with core count scaling at small RD, which can

increase cache capacity pressure on L1 and L2 caches. As we add cores to our tiled

CMP, we also increase total L1 and L2 cache capacity linearly, and this cancels the

effect of the shift. However, core count scaling also increases the average commu-

nication hops, making shared LLC accesses more costly than private LLC accesses.

These scaling trends tend to make private caches more desirable for larger core

counts. For example, FFT, RADIX, FMM, Ocean, KMeans, and BlackScholes show

this effect at the S4 problem size. On the other hand, core count scaling also shifts

Cshare to smaller RD and increases the gap between sPRD CMC and CRD CMC

profiles, as illustrated in Figure 3.14. These scaling trends tend to make shared

caches more desirable for larger core counts when the gap is large. For example, LU

and Barnes show this effect at the S2-S4 problem sizes. Hence, the choice between

private LLCs and shared LLCs is highly application- and architecture-dependent.

Lastly, Figure 6.3 and Figure 6.4 show the impact of problem size scaling on

the private vs. shared LLCs selection. As described in Section 3.5, both Ccore and

Cshare move to larger RD values as problem size scales. So the region where shared

caches are best tends to move to larger cache capacity. For example, FFT, LU,

Radix, Barnes, FMM, and Water show this effect. In addition, large problem size

also causes higher pressure on the cache, and 64KB L2 might not be large enough
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to reduce the cost of shared LLC access. As the problem size increases, private LLC

usually prevails. We see this effect in FFT, Radix, FMM, and Ocean.

6.2.3 Trade-off Between L2 and LLC Capacities

In the previous section, we find that the L2 capacity has significant impact

on cache performance. In this section, we study the trade-off between L2 and LLC

capacities when the on-chip cache capacity (C) is fixed (i.e., T ×L2size+LLCsize =

C) and T × L2size ≤ LLCsize. We assume L1 is closely coupled with the core, so

its size is fixed. The trade-off between L2 and LLC capacities impacts the balance

between on-chip and off-chip traffic. For a fixed capacity, there exists an optimal

[L2size,LLCsize] point. In this section, we examine how different scaling schemes

impact this optimal point.

For a tiled CMP with the constraints, T×L2size+LLCsize = C and LLCsize ≥

T×L2size, the LLCsize,opt exists when the change in the LLC size causes △ AMATp ≥

0 and △ AMATs ≥ 0. After replacing T×L2size by C−LLCsize in Equation 6.1 and

Equation 6.2, Equation 6.4 and Equation 6.5 show the inequalities for△ AMATp ≥ 0

and △ AMATs ≥ 0.
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△ AMATp ≥ 0

⇒ (LLClat)× (sPRD CMC[C − LLCsize]− sPRD CMC[C − LLCsize,opt])

+ (DIRlat +HOPlat)× (sPRD CMC[LLCsize]− sPRD CMC[LLCsize,opt])

+ (LLClat + 2×HOPlat)×

((sPRD CMC[LLCsize]− sPRDf CMC[LLCsize])

− (sPRD CMC[LLCsize,opt]− sPRDf CMC[LLCsize,opt]))

≥ (DRAMlat + 2×HOPlat)×

(sPRDf CMC[LLCsize,opt]− sPRDf CMC[LLCsize])

(6.4)

△ AMATs ≥ 0

⇒ (LLClat + 2×HOPlat)×

(sPRD CMC[C − LLCsize]− sPRD CMC[C − LLCsize,opt])

≥ (DRAMlat + 2×HOPlat)× (CRD CMC[LLCsize,opt]− CRD CMC[LLCsize])

(6.5)

Equation 6.4 and Equation 6.5 show that there exists an optimal LLC cache

capacity–i.e., LLCsize,opt. For all LLCsize > LLCsize,opt, the increase of on-chip

memory stall is greater than the decrease of off-chip memory stall. For all LLCsize <

LLCsize,opt, the increase of off-chip memory stall is greater than the decrease of on-

chip memory stall. As a result, LLCsize,opt exists when the change of the total on-chip
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memory stall is equal to the change of the total off-chip memory stall.

Figure 6.5(a) plots AMATp and AMATs as a function of LLCsize for the FFT

benchmark running on 16 cores at the S3 problem size. Figure 6.5(b) plots the

corresponding CRD CMC, sPRD CMC, and sPRDf CMC profiles to explain the

insights. Figure 6.5(a) is divided into three regions to represent three total cache

capacities, marked as 1⃝T × L2size + LLCsize = 32MB, 2⃝T × L2size + LLCsize =

64MB, and 3⃝T × L2size + LLCsize = 128MB. For each region, the leftmost point

represents T × L2size = LLCsize = 1
2
C. As LLCsize increases along the X-axis,

L2size decreases as T × L2size = C − LLCsize. The rightmost point represents

L2size = 2 × L1size and LLCsize = C − T × L2size. In the graph, the dotted lines

represent AMATp and the solid lines represent AMATs.

Figure 6.5(a) provides three major insights that are valid for all of our bench-

marks. First, when L2size is close to L1size (8KB in our study and marked in Fig-

ure 6.5(b)), high LLC accesses cause high AMAT. AMATs is higher than AMATp at

small L2size. This is because shared LLCs have a higher on-chip communication cost

than private LLCs (the first term in the RHS of Equation 6.3 always dominates).

Second, as L2size increases, the AMAT drops rapidly. When L2size is large

enough to capture the major working set, further increasing L2size doesn’t reduce

LLC accesses significantly, as illustrated in Figure 6.5(b). Hence, off-chip traffic

grows as L2size keeps increasing, and the AMAT goes up again. There exists an

optimal LLCsize which has the lowest AMAT. In Figure 6.5(a), region 1⃝ and 2⃝ show

this behavior. For AMATs (AMATp), the optimal LLCsize are 30.9MB (30.9MB)

and 48.4MB (62.9MB) in region 1⃝ and 2⃝, respectively.
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(a) The trade-off between L2 and L3 cache capacities.

(b) CRD CMC, sPRD CMC, and sPRDf CMC profiles.

Figure 6.5: The trade-off between L2size and LLCsize for FFT running on 16 cores
at the S3 problem size.

In region 1⃝, when LLCsize is between 17.7MB and 31.7MB, shared LLCs al-

ways outperform private LLCs. This is because the gap between CRD CMC and

sPRDf CMC profiles causes the total off-chip memory stall saved in shared LLCs

to be higher than the total on-chip memory stall saved in private LLCs. Decreas-

ing the LLCsize reduces the gap, and AMATs approaches AMATp. Finally, private

LLCs outperform shared LLCs at 17.5MB. In region 2⃝, shared LLCs always out-

perform private LLCs between 32MB and 62.9MB LLC due to the gap between

CRD CMC and sPRDf CMC profiles. Because CRD CMC also decreases faster

than sPRD CMC inside this range, increasing L2size has more benefit for shared

126



LLCs. Hence, the shared LLCsize,opt is smaller than the private LLCsize,opt.

Lastly, when the LLC capacity is large enough (region 3⃝ in Figure 6.5(a)),

the LLC misses only change slightly with respect to LLCsize, as illustrated in Fig-

ure 6.5(b). The decrease of LLCsize doesn’t impact the off-chip traffic significantly,

but the increase of L2size reduces the number of LLC cache accesses. Hence, the

LLCsize,opt is close to LLCsize = T × L2size = 1
2
C. For AMATs (AMATp), the

LLCsize,opt is 64.0MB (64.7MB) in Figure 6.5(a). Shared LLCs also outperform pri-

vate LLCs between 64MB and 115.5MB, because the total on-chip memory stall in

private LLCs is high.

Figure 6.6, Figure 6.7, and Figure 6.8 show the LLCsize,opt for our 9 bench-

marks. In Figure 6.6, Figure 6.7, and Figure 6.8, we plot three T ×L2size+LLCsize ,

32MB, 64MB, and 128MB per benchmark. Each cache capacity has two graphs: the

top graph shows the shared LLCsize,opt, while the bottom graph shows the private

LLCsize,opt. For each graph, the X-axis is the number of cores, and the Y-axis is the

corresponding LLCsize,opt. We report the LLCsize,opt for three problem sizes, S2–S4.

All basic insights from Figure 6.5 can be applied to Figure 6.6–Figure 6.8.

First, for both shared and private LLCsize,opt, the L2size must be sufficiently large to

reduce LLC access frequency. Second, the optimal LLCsize depends on the balance

between on-chip memory stall and off-chip memory stall. Because the LLCsize,opt

shows different behaviors for shared and private LLCs, we discuss these two cases

separately.

Shared LLCs

As described in Section 3.3, core count scaling only impacts cache performance
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(a) FFT

(b) LU

(c) RADIX

Figure 6.6: Optimal LLCsize at different problem sizes (S2-S4), total cache sizes
(32M-128M), and the number of cores for FFT, LU, and RADIX.
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(a) Barnes

(b) FMM

(c) Ocean

Figure 6.7: Optimal LLCsize at different problem sizes (S2-S4), total cache sizes
(32M-128M), and the number of cores for Barnes, FMM, and Ocean.
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(a) Water

(b) KMeans

(c) BlackScholes

Figure 6.8: Optimal LLCsize at different problem sizes (S2-S4), total cache sizes
(32M-128M), and the number of cores for Water, KMeans, and BlackScholes.
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significantly below a particular cache capacity in shared caches, and this cache

capacity grows with core count. When core count scales, the routing distance also

increases in shared LLCs. To offset these effects, the optimal T × L2size (LLCsize)

must grow (decrease) with core count scaling. Figure 6.6–Figure 6.8 confirm this

effect across our 6 benchmarks, FFT, RADIX, Barnes, FMM, Ocean, and Water

at the S4 problem size with 32MB. LU, KMeans, and BlackScholes have good data

locality, so the optimal LLCsize is almost constant across core counts.

Problem size scaling affects the LLCsize,opt selection in two ways. First, when

the problem size is small compared to the total cache capacity, the optimal cache

configuration usually happens at T × L2size = LLCsize = 1
2
C across different core

counts. For example, the optimal LLCsize for the S2 problem size is around half of

the total cache size–i.e., 16MB, 32MB, and 64MB.

Second, because problem size scaling increases the memory footprint, the

LLCsize,opt grows as problem scales to reduce expensive off-chip accesses. For the S3

and S4 problem sizes, the 32MB total cache capacity is usually too small, and the

LLCsize,opt varies with core count. The LLCsize,opt of S3 and S4 are almost identical

at small core counts, but the LLCsize,opt of S3 is larger than that of S4 at larger core

counts. For example, FFT shows this behavior at 32MB. This is because the high

reference counts region is large enough to affect the LLC access frequency. So, we

need large L2size to keep memory access locally at the S4 problem size. In contrast,

for a large cache capacity that can contain the major working set of the S3 problem

size, the LLCsize,opt of S4 is larger than the LLCsize,opt of S3 across all core counts.

For example, we see this behavior in FFT, RADIX, Barnes, FMM, and Ocean when
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the total cache capacity is 128MB.

Private LLCs

For private LLCs, the total L2 size should also contain the major working set

which grows as core count scales. However, core count scaling also degrades data

locality at large RD values due to increased replications and invalidations, which

prefer a larger LLCsize. These combined effects complicate the LLCsize,opt behavior.

We use the FFT’s graph at 32MB as an example to explain this complicated

behavior. For the S2 problem size, the major working set size is small and can be

contained within a small L2size. So the LLCsize,opt usually increases as core count

scales to reduce the directory-access and off-chip traffic. However, at large problem

sizes (i.e., S4), the major working set shifts to larger RD values. Reducing private

LLC accesses has more benefit–i.e., the decreasing rate of the total on-chip memory

stall is faster than the increasing rate of the total off-chip memory stall. So the

LLCsize,opt usually decreases as core count scales. We see this in FFT, LU, RADIX,

Barnes, FMM, Ocean, and Water.

For benchmarks with good data locality in private caches, KMeans and BlackSc-

holes, the optimal LLCsize is almost constant across core counts, and the values are

vary similar to the shared LLCsize,opt . LU is an interesting benchmark. It has good

locality in shared caches, but it has very bad data locality in private caches due

to massive replications. Hence, the optimal LLCsize usually increases as core count

scales.

AMAT Variation for L2/LLC Partition

For a given core count, problem size, total cache size, and benchmark, we
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(a) Shared LLCs. (b) Private LLCs.

Figure 6.9: AMAT difference between the highest and the lowest AMAT.

use our models to compute the highest AMAT and the lowest AMAT. We report

the largest performance variation due to L2/LLC capacity partition, so we can

understand the impact of capacity partition.

Figure 6.9 shows the percentage difference between the highest and the lowest

AMATs (AMATp) across our 9 benchmarks. The percentage difference is defined

as highestAMAT−lowestAMAT
lowestAMAT

× 100%. Each benchmark reports the average difference

across 2–256 cores, S2–S4 problem sizes, and 32MB–128MB total cache sizes. The

last bar is the average across all benchmarks.

When applications have very good locality (i.e., KMeans and BlackScholes),

the percentage difference is close to 0. This is because 8KB L1size can capture the

main working set. For shared LLCs, the variation can reach 236% in Barnes, as

illustrated in Figure 6.9(a). On average, the difference is between 3.4% and 76.0%,

and the overall average difference across benchmarks is 33.4%.

Figure 6.9(b) illustrates the percentage difference for private LLCs. The largest

difference is 85.6% in RADIX. On average, the difference is between 1.0% and 33.3%,

and the overall average difference across benchmarks is 10.3%. The percentage
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difference of private LLCs is smaller than the difference of shared LLCs. This is

because the higher access latency in shared LLCs causes higher AMAT variations.

So the L2size has greater impact for shared LLCs than for private LLCs.

Private vs. Shared LLC at the Optimal LLC Capacity

Lastly, Figure 6.10 and Figure 6.11 illustrates the percentage difference be-

tween AMATs and AMATp ( AMATs−AMATp

AMATs
× 100%) at LLCsize,opt. We plot three

T × L2size + LLCsize , 32MB, 64MB, and 128MB, per benchmark. For each graph,

the X-axis is the core count, and the Y-axis is the corresponding percentage differ-

ence. We also report the difference for three problem sizes, S2–S4. Private LLCs

outperform shared LLCs when the Y-axis value > 0.

Although the preference of shared or private LLCs depends on core count and

problem size, there are two important trends. First, because problem size scaling

increases both Ccore and Cshare, continued problem size scaling usually prefers private

LLCs (i.e., curves move toward > 0) at the same on-chip cache capacity. Second,

when the problem size is small compared to the on-chip cache capacity, the total

on-chip memory stall (directory access + data forwarding) in private LLCs grows

as core count scales and can be worse than the total on-chip memory stall in shared

LLCs. Hence, core count scaling prefers shared LLCs in this case. For example, we

see this in FFT, LU, RADIX, Barnes, FMM, Ocean, and Water at the S2 problem

size with 64MB capacity. When problem size is large compared to cache capacity,

core count scaling prefers private LLCs due to a high access penalty in shared

LLCs. For example, we see this in FFT, RADIX, FMM, Ocean, Water, KMeans,

and BlackScholes at 32MB and 64MB capacity for the S4 problem size. LU always
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prefers shared LLCs due to the large number of replications in private LLCs.

Figure 6.12(a) summarizes the highest, the lowest, and the average percentage

difference between private and shared LLCs in Figure 6.10 and Figure 6.11. Shared

LLCs can outperform private LLCs by 39.5% in LU, and private LLCs can outper-

form shared LLCs by 29.0% in Ocean. On average, the difference is between -14.9%

and 9.1%.

We can also model the IPC as 1/(1 + memory accesses
instructions

× AMAT ) by assuming

CPI = 1 in the absence of memory stall. Figure 6.12(b) reports the percentage

difference ( IPCs−IPCp

IPCs
× 100%). Private LLCs outperform shared LLCs when the

Y-axis value < 0. The shared LLC’s IPC can outperform the private LLC’s IPC

by 25.7% in LU, and the private LLC’s IPC can outperform the shared LLC’s IPC

by 28.2% in Ocean. The average IPC difference is between -8.0% and 9.2%. From

Figure 6.9 and Figure 6.12, we find that the capacity-partition has a larger impact

than private-vs-shared-LLC selection on the cache performance. This suggests that

physical data locality is vary important for future CMPs.
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(a) FFT

(b) LU

(c) RADIX

(d) Barnes

(e) FMM

Figure 6.10: AMAT difference between private and shared LLCs at LLCsize,opt for
FFT, LU, RADIX, Barnes, and FMM.
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(a) Ocean

(b) Water

(c) KMeans

(d) BlackScholes

Figure 6.11: AMAT difference between private and shared LLCs at LLCsize,opt for
Ocean, Water, KMeans, and BlackScholes.

(a) AMAT difference. (b) IPC difference.

Figure 6.12: AMAT and IPC difference between private and shared LLCs at the
optimal LLCsize.

137



Chapter 7

Prediction versus Sampling

In Section 2.2.1, we introduce our in-house built Pin tool. There are two

major effects that slow down the reuse distance profiling. First, we use the fine-

grain context switch at every memory reference, and the context switch is slow.

Second, RD analysis maintains the depth information of every memory reference

in LRU stacks. The splay tree[38] is a common algorithm to implement the LRU

stack. However, the amortized complexity of the splay tree is O(log(n)). Reducing

the number of references to track in LRU stacks can reduce the profiling time.

Acquiring RD profiles with sampling is a technique for reducing the number of

tracked memory references. In this chapter, we first introduce the RD sampling

technique, then we compare the sampling technique with our prediction technique.

7.1 Multicore Reuse Distance Sampling

Instead of continuously tracking every memory reference, the sampling tech-

nique divides the entire profiling period into a sequence of interleaved fast-forward

periods and profiling periods [39, 17]. In the fast-forward period, the profiler only

does minimal maintenance to gather necessary information. In the profiling period,

the profiler selects memory references from the dynamic memory reference stream

and collects the reuse distances based on the selected references. The switching be-
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tween the fast-forward period and the profiling period is controlled by the sampling

rate. The sampling rate RSampling is defined as RSampling =
Tp

Tp+Tf
, where Tp and Tf

are the number of memory references in the profiling period and in the fast-forward

period, respectively. A high sampling rate tracks more memory references and often

gives higher accuracy. However, a high sampling rate also causes a longer profiling

time. The sampling rate is adjustable to balance accuracy and performance.

Completely turning off the profiling in fast-forward periods can affect the accu-

racy for the references which have reuse windows > Tp. Because memory references

that have long reuse distances can exist across a large number of fast-forward pe-

riods, one way to improve accuracy is to continue the profiling period until all of

the references that have appeared in a profiling period have been reused. However,

if a reference has been touched in the first profiling period and can only be reused

at the end of the program, this outstanding reference will force the profiler to stay

in the profiling period for the entire execution. Schuff et al[17] proposed a pruning

technique to prevent this problem. The pruning procedure checks the oldest refer-

ence. If this reference’s current reuse distance is sufficiently large, it is pruned and

recorded as if it were a cold miss. We adopt their technique and make some modi-

fications. We define the pruning rate, RPruning, as RPruning = reused unique references
total unique references

in the profiling period.

In our Pin tool, the profiler begins in a profiling period. In the profiling period,

the memory references from P threads are interleaved uniformly, and each thread

executes Tp

P
memory references. In our experiments, Tp is 100K memory references.

Once Tp reaches 100K references and the desired RPruning, the profiler switches to
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the fast-forward period. There are no fine-grain context switches and LRU stack

updates in this period. After each thread executes
Tf

P
memory references, the profiler

switches back to the profiling period.

In our experiments, we first acquire the whole-program CRDdirect and PRDdirect

profiles for 2–256 cores at the S1–S4 problem sizes directly for each benchmark.

Then, we use the sampling technique to acquire the whole-program CRDdirect and

PRDdirect profiles for each configuration. After we acquire the sampled profiles, we

normalize the sampled profiles by the total number of references counts. Finally,

to determine the accuracy of sampled profiles, we use two metrics, RDAccuracy and

RD CMCAccuracy, which are defined in Equation 4.4 and Equation 4.5.

7.2 Sampling Accuracy and Performance

In our experiments, Tp is 100K memory references, and Tf is 900K memory

references (RSampling = 0.1). We set RPruning to be 0.99.

Figure 7.1(a) compares FFT’s measured CRDdirect profile (dotted line) and

sampled CRDdirect profile (solid line) running on 16 cores at the S3 problem size.

In Figure 7.1(a), the measured CRD profile and the sampled CRD profile are very

similar at small RD values. However, the sampled CRD profile has fewer reference

counts at large RD values, and it ends earlier than the measured CRD profile. This

is because in FFT, more than 99% of the unique memory references are reused in the

same profiling period, and 0.99 RPruning discards the references which have large RD

values. The actual sampling rate is 9.5%. As a result, significant distortion happens
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at large RD values, and the corresponding CMC profile also shows significant errors,

as illustrated in Figure 7.1(b).

Figure 7.1(c) (Figure 7.1(d)) shows Barnes’ measured and sampled CRDdirect

(CRD CMCdirect) profiles running on 16 cores at the S3 problem size. In contrast to

FFT, Barnes’ measured and sampled CRDdirect profiles are almost identical across

all RD values. This is because in Barnes, less than 99% of unique memory references

are reused in the same profiling period, and the profiler spends most of the time in

the profiling period (almost never pruning). As a result, the actual sampling rate

is 98.5%. Hence, the same sampling parameters, RSampling and RPruning, cannot

sample Barnes’ profile efficiently.

The sampled PRDdirect profiles show the same behavior, as illustrated in Fig-

ure 7.2. FFT’s sampled PRD profile also ends earlier than the measured PRD profile

due to pruning. On the other hand, Barnes’ sampled PRD profile is almost iden-

tical to the measured PRD profile because of the low pruning trigger-rate. These

examples show the major challenge of sampling techniques. Sampling efficiency and

accuracy highly depend on sampling parameters, and the same parameter cannot

be used on different benchmarks.

Figure 7.3(a) presents the accuracy results of sampled CRD profiles by using

the CRDAccuracy metric. Each bar in Figure 7.3(a) reports the average CRD accuracy

achieved over the 32 sampled CRD profiles per benchmark. The rightmost bar

reports the average accuracy across all benchmarks. As Figure 7.3(a) shows, sampled

CRD profiles have high accuracy. For all benchmarks, the CRD profile accuracy is

between 83.2% and 98.7%. Across all benchmarks, the average accuracy is 94.2%.
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(a) FFT’s measured and sampled CRD profiles running on 16 cores at S3.

(b) FFT’s measured and sampled CRD CMC profiles running on 16 cores at S3.

(c) Barnes’ measured and sampled CRD profiles running on 16 cores at S3.

(d) Barnes’ measured and sampled CRD CMC profiles running on 16 cores at S3.

Figure 7.1: Measured and sampled CRDdirect profiles with Rsampling = 0.1 and
Rpruning = 0.99.
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(a) FFT’s measured and sampled PRD profiles on 16 cores at S3.

(b) FFT’s measured and sampled PRD CMC profiles on 16 cores at S3.

(c) Barnes’ measured and sampled PRD profiles on 16 cores at S3.

(d) Barnes’ measured and sampled PRD CMC profiles on 16 cores at S3.

Figure 7.2: Measured and sampled PRDdirect profiles with Rsampling = 0.1 and
Rpruning = 0.99.
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(a) CRDAccuracy. (b) CRD CMCAccuracy.

(c) Actual RSampling. (d) Speedup.

(e) CRDAccuracy by core counts. (f) CRD CMCAccuracy by core counts.

Figure 7.3: Accuracy and performance of the sampling technique with RSampling =
0.1 and RPruning = 0.99 for CRD profiles.
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The high CRDAccuracy is because the sampling technique has better accuracy at

small RD values and the metric, CRDAccuracy, weights the small RD values that have

high reference counts more heavily. At large RD values where the pruning happens,

sampled profiles have larger errors. CRD CMCAccuracy treats each RD value equally,

so it can reflect the error that happens at large RD values. Figure 7.3(b) reports

CRD CMCAccuracy, and the accuracy is much lower, between 39.9% and 99.2% for

all benchmarks. On average, the accuracy is 70.5%. This result shows that pruning

can cause significant errors.

Figure 7.3(c) reports the actual sampling rate. The actual RSampling varies

between 10.0% to 99.4%. Higher RSampling means that the profiler stays in the pro-

filing period longer. However, comparing Figure 7.3(c) and Figure 7.3(b) shows that

a high sampling rate doesn’t always guarantee high accuracy. For example, Barnes’

profiler spends 95.6% of its time in the profiling period, but the CRD CMCAccuracy is

69.0%. In contrast, KMeans’ profiler spends 10.4% of its time in the profiling period,

but the CRD CMCAccuracy is 99.2%. Hence it is difficult to use the actual sampling

rate to predict the accuracy. Figure 7.3(d) reports the actual speedup, which is re-

lated to the actual sampling rate. Lower sampling rate means higher speedup. On

average, the speedup is 3.4x. Figure 7.3(e) and Figure 7.3(f) shows the CRDAccuracy

and CRD CMCAccuracy breakdown by different core counts. In general, different core

counts do not affect the sampling accuracy.

Figure 7.4(a) illustrates our accuracy results for sampled PRD profiles by us-

ing the PRDAccuracy metric. Sampled PRD profiles also have high accuracy. For

all benchmarks, the PRD profile accuracy is between 81.8% and 98.8%. Across all
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(a) PRDAccuracy. (b) PRD CMCAccuracy.

(c) PRDAccuracy by core counts. (d) PRD CMCAccuracy by core counts.

Figure 7.4: Accuracy of the sampling technique with RSampling = 0.1 and RPruning =
0.99 for PRD profiles.

benchmarks, the average accuracy is 94.9%. Figure 7.4(b) illustrates the CMC pro-

files accuracy using the PRD CMCAccuracy metric. The accuracy is lower, between

71.0% and 97.0% for all benchmarks. On average, the accuracy is 85.0%. The re-

sults show that pruning can cause significant error. Figure 7.4(c) and Figure 7.4(d)

report the PRDAccuracy and PRD CMCAccuracy breakdown by different core counts.

In general, core counts do not affect accuracy.

We can increase the sampling speed by relaxing RSampling and RPruning. Fig-

ure 7.5 illustrates the sampling accuracy and speedup with RSampling = 0.01 and

RPruning = 0.90. The average CRDAccuracy, CRD CMCAccuracy, PRDAccuracy, and

PRD CMCAccuracy drops to 86.6%, 64.0%, 89.2%, and 77.7%, respectively, compared

to 94.2%, 70.5%, 94.9%, and 85.0% when using RSampling = 0.1 and RPruning = 0.99.
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(a) CRDAccuracy. (b) CRD CMCAccuracy.

(c) PRDAccuracy. (d) PRD CMCAccuracy.

(e) Actual Rsampling. (f) Speedup.

Figure 7.5: Accuracy and performance of the sampling technique with RSampling =
0.01 and RPruning = 0.90 for CRD and PRD profiles.
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However, the average speedup increases about 10x, achieving 34.2x. The results

show that the sampling technique usually need to sacrifice accuracy for better

speedup.

7.3 Compare with Prediction

Table 7.1 compares the accuracy and speedup of the sampling technique and

the prediction technique. The three columns represent three different predictions,

core count scaling, problem size scaling, and core-problem scaling as illustrated

in Chapter 4. For each design space, we report CRDAccuracy, CRD CMCAccuracy,

PRDAccuracy, PRD CMCAccuracy, and the speedup of the sampling technique and

the prediction technique.

First, we compare the sampling technique (RSampling=0.1 and RPruning=0.99)

with the prediction technique. For each design space, the sampling technique and

the prediction technique have very similar CRDAccuracy and PRDAccuracy. This is be-

cause both techniques can provide very high accuracy at small RD values. However,

the sampling technique has lower CRD CMCAccuracy than the prediction technique.

This is because the CRD profile usually has a long tail, and pruning causes higher

error at large RD values. Hence, CMC accuracy is lower across a wide range of

cache capacities. In contrast, the sampling technique has better PRD CMCAccuracy

than the prediction technique. There are two reasons for this. First, the prediction

technique has to predict the compulsory misses and coherence misses, which have in-

finite reuse distance. But the sampling technique can measure these reference counts
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Table 7.1: Accuracy and speedup comparison between the sampling technique and
the prediction technique.

Scaling method Core count scaling Problem size scaling Core-Problem scaling

CRDAccuracy / CRD CMCAccuracy

Sampling(RSampling=0.1,RRruning=0.99) 93.9%/71.1% 94.6%/65.4% 94.1%/70.1%

Sampling(RSampling=0.01,RPruning=0.9) 85.9%/64.3% 90.8%/61.6% 86.9%/63.9%

Prediction 89.4%/83.6% 89.3%/86.1% 89.1%/83.5%

PRDAccuracy / PRD CMCAccuracy

Sampling(RSampling=0.1,RPruning=0.99) 94.9%/86.5% 95.4%/84.0% 95.0%/85.4%

Sampling(RSampling=0.01,RPruning=0.9) 88.9%/78.6% 92.4%/80.5% 89.6%/78.4%

Prediction 96.0%/83.6% 91.8%/80.7% 94.2%/80.8%

Speedup compared to full measurement

Sampling(RSampling=0.1,RPruning=0.99) 3.3 3.2 3.4

Sampling(RSampling=0.01,RPruning=0.9) 34.4 33.2 34.7

Prediction 4.6 25.2 140.0

more precisely. Second, PRD profiles are shorter than CRD profiles. Although prun-

ing also causes distortion at large RD values in RD profiles, the affected region is

shorter. As a result, the sampling technique has higher PRD CMCAccuracy.

For core count scaling, the prediction technique has 4.6x speedup, and the

sampling technique only has 3.3x speedup. This is because the prediction tech-

nique uses 8 profiles to predict the other 24 profiles for each benchmark. However,

the sampling technique has to measure all 24 profiles, and pruning doesn’t always

provide a stable speedup.

For problem size scaling, the prediction technique uses profiles at the S1 and S2

problem sizes to predict the profiles at the S3 and S4 problem sizes. The prediction

technique avoids the long profiling time at the S3 and S4 problem sizes. However,

the sampling technique still needs to profile every configuration. So the prediction

technique shows higher speedup (25.2x) than the sampling technique (3.2x). Lastly,
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for core-problem scaling, the prediction technique achieves 140.0x speedup, because

it only requires 4 profiles for each benchmark to predict the other 28 profiles. The

sampling technique has to profile these 28 profiles and only provides 3.4x speedup.

We can relax RSampling and RPruning (RSampling=0.01 and RPruning=0.90) to

increase the sampling performance. As Table 7.1 shows, accuracy decreases, but

performance increases about 10x. This shows that the sampling technique is 7.5x

and 1.3x faster than the prediction technique for core count scaling and problem

size scaling, but it is still 4x slower for core-problem scaling.

Although the sampling technique can improve the profiling performance, one

drawback is that the same parameters cannot be applied to all benchmarks. Fur-

thermore, we don’t know how good the parameters will be when we profile a new

application. Usually, we need to try several different parameters to achieve good

accuracy and performance at the same time. These drawbacks reduce the benefit

of using the sampling technique. Some adaptive sampling techniques may be devel-

oped to help solve these issues. However, this topic is beyond the scope of this work.

In contrast, the prediction technique is more stable than the sampling technique.

The main drawback of the prediction technique is that accuracy decreases as the

prediction horizon increases. We may need to measure more profiles to increase the

prediction accuracy. However, the strength of the prediction technique is that it

can predict any configuration without measuring them. As a result, we believe our

prediction technique is more efficient than the sampling technique.
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Chapter 8

Related Work

This chapter surveys background material and related work. First, it intro-

duces recent developments in multicore reuse distance analysis. It then focuses on

the design space exploration.

8.1 Reuse Distance Analysis

Multicore RD analysis is relatively new, but it is becoming a viable tool as the

result of recent research.

Multicore Reuse Distance

Jiang et al [14] propose a probabilistic model for deriving CRD profiles from

per-thread traces. They find that for the special case of parallel programs, the

relative execution speed of threads does not change across different multicore archi-

tectures. Hence, CRD profiles remain the same. We find that the CRD and PRD

profiles of loop-based parallel programs exhibit low sensitivity to cache capacity

scaling is a very similar observation. However, Jiang’s model requires knowing all

per-thread traces, and it cannot explore multicore configurations that have not yet

been profiled.

Suh et al [40] have developed the locality model to capture the effect that the

reuse distance of a memory reference is inflated by memory accesses from another
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program. Chandra et al [41] have also developed statistical models to predict the

impact of cache sharing on co-scheduled threads. They focus on a two-core system,

and don’t consider scaling up to more cores. They calculate the related execution

speed between threads and compute how many distinctive memory blocks from the

second thread should be inserted into the reuse distance profile of the co-running

thread. They focus on multi-programmed workloads, whereas our work focuses on

parallel programs.

Ding and Chilimbi [13] extend Chandra’s techniques and present techniques to

construct CRD profiles for multi-threaded programs. They analyze memory traces

to extract statistics on per-thread locality and data sharing to reconstruct CRD

profiles. Their approach is general, because it can handle non-symmetric threads.

However, it requires at-scale profiling to obtain the memory traces for analysis. Fur-

thermore, their algorithm needs to consider the possible ways that memory refer-

ences can be interleaved, incurring exponential time complexity. Ding and Chilimbi

can also predict CRD profiles for machine scaling, but the additional threads must

be identical to the already profiled threads. As a result, for parallel programs where

per-thread computation changes with core count scaling and problem size scaling,

their model does not work.

Ding and Chilimbi [42] also develop a method for measuring the footprint of

concurrent execution applications. Xiang et al [43, 18] follow Ding and Chilimbi’s

work [42], and they propose a more efficiently composable model that uses the

all-window footprint of each program to predict its cache interference with other

programs. However, their model only considers multi-program workloads, and they
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have to gather all the traces. We do not require traces, and our analysis is simple,

allowing our approach to handle loop-based parallel programs running on LCMP-

sized machines.

Shi et al [15] propose a stack simulation method to study the performance of

multiple cache organizations in a single-pass. Their method uses a shared stack and

per-core private stacks to collect the reuse distances. Instead of acquiring full reuse

distance profiles, they organize shared and private stacks as groups [44], and these

groups can represent various cache sizes. Another work by Schuff [16] investigates

the accuracy of RD analysis for multicore processors, and they predict the miss-

rate of shared and private caches. They also propose using multicore RD analysis

and communication analysis to model memory systems [45]. However, they don’t

provide detailed methods and analyses.

Both Shi and Schuff predict cache performance at different cache sizes, but

they cannot predict configurations for varied core counts and problem sizes. In

contrast, we focus on studying and predicting the cache performance impact under

different scaling schemes–i.e., core count scaling, problem size scaling, and core-

problem scaling.

Time Distance

Reuse distance analysis tracks every memory reference and maintains the

depth information of every memory reference in LRU stacks. The splay tree[38]

is a common algorithm for implementing the LRU stack, but the amortized com-

plexity of the splay tree is O(log(n)). Another approach is to use time distance to

estimate reuse distance. Time distance is defined as the number of intermediate
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memory references between data reuse, and the cost of counting is constant. Berg

and Hagersten [46, 47] propose a probabilistic model, StateCache, for computing

cache miss rate from time distance. Based on their work, Eklov and Hagersten [48]

propose a new model, StatStack, to estimate an application’s reuse distance and

cache miss rate. Shen et al [49, 50] also propose a statistical model to approximate

a reuse distance histogram from time distance. However, these works focus on the

sequential programs.

Sampling

Recently, researchers also propose using sampling techniques to improve the

performance of reuse distance profiling. Berg and Hagersten [46, 51, 52] propose

using sampling to gather the time distance information. Their method uses SPARC

hardware performance counters and watch-points to track the selected addresses.

Time distance is easier to collect than reuse distance, and can use the performance

counter to count the number of memory references passed.

Zhong and Chang [39] use sampling to reduce the time overhand in the reuse

distance collection. Their system utilizes the structure of bursty tracing [53], which

divides the memory reference stream into a sequence of interleaved sampling in-

tervals and hibernating intervals. The reuse distance is collected in the sampling

interval, and the hibernating interval only has minimum maintenance. They also

apply Ding and Zhong’s tree-based approximate reuse distance analysis to save pro-

filing time and space[26]. The average speedup is 7.5x compared with non-sampled

profiling.

Beyls and D‘Hollander [54] apply the sampling technique on their measurement
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and visualization tool to identify the causes of cache misses. The reuse distances are

measured for 20 million references, then the next 180 million accesses are skipped.

The slowdown is between 15x and 25x. Their later work uses reservoir sampling to

reduce the execution time and memory requirements of the reuse path analysis [55].

Their main goal is to find the most appropriate refactorings of single-threaded pro-

grams and to optimize the data locality [54, 56, 55, 57, 58].

Schuff et al [17] use the Intel Pin tool along with sampling and parallelization

to accelerate CRD and PRD profiles acquisition for a 4-threads application running

on a 4-cores machine. They use hash tables to track the unique memory references

between the reuse of selected samples. However, their parallelization cannot exceed

the machine’s core counts. To profile the application that has more threads, the

memory streams from threads must be serialized, hence reducing the benefit of

parallel profiling.

Our work is orthogonal to sampling techniques. We reduce the number of

needed profiles, whereas the sampling technique reduces the profiling time per pro-

file. Our experiments show that the sampling time indeed increases as core counts

and problem sizes increase. Hence, even with profiling acceleration, it is still very

difficult to exhaustively explore LCMP design spaces that can easily reach more

than 1000 configurations.

Reuse Distance Prediction

RD analysis has also been used to analyze uniprocessor caches across all data

input sets [26, 20, 59, 60]. As discussed earlier, our work uses reference groups from

Zhong et al [20] to predict the profile shift under core count scaling.

155



8.2 Design Space Exploration

Several researchers have conducted CMP design space explorations to under-

stand the performance, energy and temperature of different CMP architectures.

Detailed Simulation

Hu et al [1] consider the area and performance trade-offs for LCMPs in order to

determine the number of cores and core type for future server CMPs. They conclude

that out-of-order cores will maximize jobs throughput on future CMPs, because out-

of-order cores are more area efficient than in-order cores. Ekman and Stenstrom [2]

study the trade-off between the issue-width of the cores and the number of cores on

a chip. They find four-issue cores achieve a good balance between ILP and TLP.

Hsu et al [3] explore the cache hierarchy requirements of LCMP platforms. They

find on-chip and off-chip bandwidth demands play a significant role in optimizing

LCMP cache hierarchy.

Li and Martinez [4] show that parallel computation on a CMP can improve

energy efficiency, compared to the same performance achieved by a uniprocessor

setup. They also find that a limited power budget can cause significant performance

degradation beyond a certain core count. Li et al [5] explore the multi-dimensional

design space across a range of possible chip sizes and thermal constraints. They

conclude that thermal constraints dominate other physical constraints such as off-

chip bandwidth and power. It is important to consider thermal constraints while

optimizing other parameters. Monchiero et al [7] explore the design space related

to core count, cache size, and core complexity up to 8 cores, and they show how
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different configurations impact performance, energy, and thermal distribution. They

conclude that LLC is an important factor in determining performance and thermal

behavior. To achieve the best energy-delay, LCMPs should consist of a large number

of fairly narrow cores.

Zhao et al [8] study cache design space for 32 cores LCMP by considering

area constraints and on-chip/off-chip bandwidth limitations. They introduce a

constraints-aware analysis methodology to narrow down the design space and ex-

plore LCMP cache design options. They also recommend an LCMP architecture

which has a three-level cache hierarchy with 512KB to 1MB of L2 cache per node,

and each node has 4 cores. The LLC size should be a minimum of 16MB. The

platform should also support at least 64GB/s of memory bandwidth and 512GB/s

of interconnect bandwidth. Davis et al [6] consider CMTs with up to 34 cores

and 8MB LLCs, but studied large-scale parallelism–up to 240 threads–when factor-

ing in per-core multithreading. They explore the design space for core type, core

count, cache size, and the degree of multithreading. They find that the best CMT

performance happens when using simple cores with 4-8 threads per core.

Wu and Yeung [61] study tiled CMPs scaling from 1-256 cores and 4-128MB

of total L2 cache. They evaluate the impact of scaling on off-chip bandwidth and

on-chip communication. Their results show that there should be ample on-chip

bandwidth. However, for memory intensive programs, off-chip memory overheads

dominate.

Analytic Model

Rogers et al [9] develop an analytical model in order to study the bandwidth
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wall problem for CMP systems. They find that the bandwidth wall problem can

severely limit core scaling. Esmaeilzadeh et al [10] model multicore scaling and show

that regardless of chip organization and topology, multicore scaling is power limited.

21% of a fixed-size chip must be powered off at 22nm, and this number grows to

more than 50% at 8nm.

Hill and Marty [62] apply Amdahl’s law to build a cost model for a CMP. They

assume that a CMP can support at most n base core equivalents (BCEs) for a given

size and technology generation. They use their cost model to study the speedups

for symmetric, asymmetric, and dynamic CMPs. However, they do not consider the

impact of cache organizations. Sun et al [11] develop a model to optimize a cache

hierarchy under a power constraint. They apply the so-called-2-to-
√
2 rule [63]–i.e.,

if the cache size is doubled, the miss rate drops by a factor of
√
2. Ho et al [64]

study the trade-offs between core counts and cache capacities. They also employ the

square-root-rule cache-miss model to estimate the trade-offs between shared, private,

and hybrid cache organizations. They find that different cache organizations have

different optimal core counts and cache capacities. At its peak performance, shared

caches can contain more cores than private caches.

Wentzlaff et al [65] develop a system-level IPC model to evaluate a large range

of cache and core count configurations. To model cloud computing applications,

they assume a workload of running independent SPEC Int 2000 programs on each

core. Hence, they don’t consider about data sharing. They find the increased area

provided by technology advances is better used for cache due to the off-chip band-

width constraints. They also suggest using embedded DRAM as L2 caches, because
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the area density of embedded DRAM can outcome the latency overhead. Krishna

et al [66] extend Wentzlaff’s model [65] to take multi-threaded data sharing in to

account. They find that data sharing can significantly improve system throughput

when compared to a parallel application which has no data sharing. However, the

benefit from data sharing is diminished in an off-chip bandwidth constrained system.

These analytic models usually simplify an application’s memory behavior when

driving the models because it is difficult to gather the detailed cache performance at

many cache capacities. However, multicore RD profiles can provide detailed memory

behavior (locality and data sharing) at any cache capacity, and allow to build more

realistic models.

Machine Learning

These previous studies show that multicore design spaces are very large and

complex. Using detailed simulation to study many combinations of different archi-

tecture parameters is very time consuming. Some researchers propose using ma-

chine learning techniques to speed up design space exploration [67, 68, 69]. Ipek et

al [67] use artificial neural networks to train the approximation models. Lee and

Brooks [68] develop regression models to build approximation functions. Cook and

Skadron [69] propose using genetically programmed response surfaces (GPRS) to

address this challenge.

Our work is closely related to these previous studies. However, we apply mul-

ticore RD analysis to study how different scaling schemes impact multicore cache

performance. Our approach learns more per sample (CRD and PRD profiles), re-

ducing the number of needed simulations. Our prediction technique can also explore
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the complete cross product of design space (core count, cache size, and problem size)

very efficiently. Finally, our work investigates performance scaling only; we do not

consider how power scales, and other physical constraints. Understanding the limi-

tations on scaling LCMPs due to physical constraints is critical, and an important

direction for future work.
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Chapter 9

Conclusion and Future Work

In this chapter, we first summarize our work, then we propose possible direc-

tions for future research.

9.1 Summary

Recently, researchers have extended reuse distance analysis to parallel pro-

grams running on multicore processors. A major problem is memory reference in-

terleaving. Hence, CRD and PRD profiles are architecture dependent. However,

such architecture dependency is minimal when threads have similar access patterns.

For example, loop-based parallel programs contain symmetric threads. For these

programs, CRD and PRD profiles are minimally architecture dependent and can

provide accurate analysis. Our study confirms this characteristic, and it enables us

to develop an efficient multicore RD analysis.

In this work, we investigate different inter-thread interactions in CRD and

PRD profiles. We find that dilation and overlap are the major effects in CRD

profiles. Scaling and demotion absorption are the major effects in sPRD profiles. In

addition to the insights of inter-thread interactions, we notice that the gap between

CRD CMC and sPRD CMC profiles represents the cache performance difference

between shared and private caches. This dissertation defines an important split
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point between CRD CMC and sPRD CMC profiles, Cshare. Beyond this point,

shared caches show the locality advantage over private caches. Most importantly,

the degree of data sharing is not a fixed characteristic of a given application; it is a

function of RD value. So the choice between private and shared caches also depends

on the cache capacity.

Because machines and problem sizes will continue to scale in the future, it

is important to understand the scaling characteristics of parallel programs. When

core count increases, CRD profiles shift coherently to larger RD values in a shape-

preserving way. Shifting slows down and eventually stops at a certain RD value. We

call this point Ccore. Core count scaling only impacts cache performance significantly

below this stopping point in shared caches. When core count increases, sPRD

profiles also shift to larger RD values in a shape-preserving way. However, core

count scaling increases the amount of replications and coherence misses in private

caches. In contrast to CRD profiles, there is no Ccore in sPRD profiles, and data

locality degradation happens across all RD values. In this work, we find that Ccore

shifts to larger RD values and Cshare shifts to smaller RD values with core count

scaling. When considering problem size scaling, both Ccore and Cshare shift to larger

RD values. Hence, problem size scaling may reduce the benefit of using shared

caches at a fixed cache capacity.

Because the CRD and PRD profiles of loop-based parallel programs show the

coherent shifting with core count scaling and problem size scaling, we develop tech-

niques to predict the coherent movement of CRD and PRD profiles under different

scaling schemes. The average profile prediction accuracy is between 80.7% and
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96.3%. Then, we use M5 simulator to model tiled CMPs, and we simulate a total of

3,168 configurations to validate profile stability and MPKI prediction. We confirm

that CRD and PRD profiles are minimally architecture dependent for cache capac-

ity scaling. Hence, it is valid to assume uniform memory interleaving for loop-based

parallel programs. Our core count prediction techniques can predict shared LLC

(private L2 cache) MPKI to within 10% (13%) of simulation across 1,728 (1,440)

configurations using 72 measured CRD (PRD) profiles. When combined with the

existing prediction technique for problem size scaling, we can predict shared LLC

(private L2 cache) MPKI to within 12% (14%) of simulation using 36 measured

CRD (PRD) profiles. The results show that our prediction technique can help ex-

plore a large design space efficiently. Overall, we find our prediction techniques for

core count scaling can accelerate cache analysis without sacrificing accuracy. When

combined with problem scaling prediction, analysis effort is further reduced, though

error increases when predicting large core counts.

We also develop a novel framework to identify optimal multicore cache hier-

archies for loop-based parallel programs by using multicore reuse distance analysis.

Although CRD profiles show better data locality over sPRD profiles beyond Cshare,

this benefit must be weighted against the higher access latency of shared caches. The

optimal cache hierarchy exists when the total on-chip and off-chip memory stalls are

balanced. We find that the capacity of the last private cache above the last level

cache (LLC) must exceed the region in the PRD profile where significant data local-

ity degradation happens. Shared LLCs can outperform private LLCs when the total

off-chip memory stall saved in shared LLCs is larger than the total on-chip mem-

163



ory stall saved in private LLCs. At the optimal LLC size, the average performance

(AMAT) difference between private LLCs and shared LLCs can reach as high as

15%, but it is smaller than the performance difference caused by L2/LLC partition

(76% in shared LLC, and 33% in private LLC). This suggests that physical data

locality is very important for multicore cache designs.

Lastly, we compare our prediction technique against the RD sampling tech-

nique, which can also accelerate the acquisition of profiles. The prediction technique

and the sampling technique have similar average accuracy. However, the sampling

technique needs to collect profiles at every configuration in the design space. In con-

trast, the prediction technique can predict any configuration from a small number of

measurements. The benefit of prediction becomes more significant for core-problem

scaling. As a result, our prediction technique can outperform the RD sampling

technique.

9.2 Future Directions

In this research, we show that multicore RD analysis can provide extremely rich

information about the memory behavior of parallel programs. We also implement

prediction techniques to predict profiles under different scaling schemes. We believe

this work builds a solid foundation for several possible future avenues.

Dynamic Multicore Resource Management

Time distance can also be used to estimate an application’s memory behav-

ior [46, 47, 48, 49, 50]. The nature of time distance means that it can be measured
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by using hardware performance counters easily. Fedorova [70] uses Berg and Hager-

sten’s model [47] to estimate the cache-miss ratios of co-running programs and drive

the OS scheduler to improve processor throughput. Jiang et al [71] develop a local-

ity model based on concurrent reuse distance for shared-cache contention prediction.

Their contention-aware scheduling system for co-running programs can achieve per-

formance and fairness.

For parallel programs running on LCMPs, we can use performance counters

and Berg’s technique to estimate reuse distance profiles. After profiling a few sam-

ples, the OS scheduler can use our prediction technique to predict memory perfor-

mance across different machine configurations. Depending on the predicted memory

stress, the OS scheduler can decide how many cores and cache slices should be ac-

tive, and it can then shut down the other cores or cache slices to improve power

efficiency.

Multicore Performance Analysis and Optimization Tool

High performance processors have performance monitoring counters (PMCs)

to gather the runtime information of applications–e.g., instruction counts and cache

miss counts. Several performance tools have been developed to help programmers

profile their applications on the real hardware. For example, Intel’s VTune [72] is

a widely used tool. However, the profiling information only reflects the machine

performance where the tool is running on. There is no information as to how the

application will perform on different machines.

Multicore RD analysis provides a good visualization tool. Our multicore RD

analysis framework can easily help programmers understand the application’s mem-
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ory behavior on different processors. The locality information can also provide in-

depth information about how to optimize the data locality. Several works have been

done to provide visualization tools and to optimize the data locality for sequential

programs [54, 56, 55, 57]. The same techniques can be extended to multicore RD

analysis.

Irregular Memory Reference Interleaving

In this work, we focus on loop-based parallel programs on homogeneous CMPs.

The symmetric threads make the interleaving of memory reference streams system-

atically, and profiles are predictable for different scaling schemes. However, for

asymmetric-thread programs or heterogeneous CMPs, it is difficult to acquire CRD

and PRD profiles due to the irregular memory reference interleaving. Although

there exist several composable models [13, 14] to handle this issue, the analysis

usually requires exponential time and cannot scale up to large core counts. Hence,

multicore RD analysis needs to be further investigated to handle these challenges.
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