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An array of powerful mathematical tools can be used to identify the key un-

derlying components and interactions that determine the mechanics of biological

systems such as the immune system and its interaction with cancer. In this disser-

tation, we develop mathematical models to study the dynamics of immune regulation

in the context of the primary immune response and tumor growth.

Regulatory T cells play a key role in the contraction of the immune response,

a phase that follows the peak response to bring cell levels back to normal. To

understand how the immune response is regulated, it is imperative to study the

dynamics of regulatory cells, and in particular, the conditions under which they are

functionally stable.

There is conflicting biological evidence regarding the ability of regulatory cells

to lose their regulatory capabilities and possibly turn into immune promoting cells.

We develop dynamical models to investigate the effects of an unstable regulatory T



cell population on the immune response. These models display the usual character-

istics of an immune response with the added capabilities of being able to correct for

initial imbalances in T cell populations. We also observe an increased robustness

of the immune response with respect to key parameters. Similar conclusions are

demonstrated with regards to the effects of regulatory T cell switching on immun-

odominance.

TGF-beta is an immunoregulatory protein that contributes to inadequate anti-

tumor immune responses in cancer patients. Recent experimental data suggests that

TGF-beta inhibition alone, provides few clinical benefits, yet it can significantly

amplify the anti-tumor immune response when combined with a tumor vaccine.

We develop a mathematical model to gain insight into the cooperative interaction

between anti-TGF-beta and vaccine treatments. Using numerical simulations and

stability analysis we study the following scenarios: a control case of no treatment,

anti-TGF-beta treatment, vaccine treatment, and combined anti-TGF-beta vaccine

treatments. Consistent with experimental data, we show that monotherapy alone

cannot successfully eradicate a tumor. Tumor eradication requires the combination

of these therapeutic approaches. We also demonstrate that our model captures the

observed experimental results, and hence can be potentially used in designing future

experiments involving this approach to immunotherapy.
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Chapter 1

Introduction

In this dissertation we consider the dynamics of immune regulation in two

contexts:

1. Determining the contribution of regulatory mechanisms to the contraction of

a normal cell-mediated immune response (Chapters 2 and 3).

2. Determining the effectiveness of techniques for overcoming immunoregulatory

mechanisms that are exploited by cancer (Chapter 4).

In this chapter we introduce and briefly discuss highlights from the biological

background that is relevant to the present work. We also discuss general techniques

that are used in addressing such biological questions with mathematical models.

1.1 An Overview of the Cellular Immune System

Adaptive immunity (in contrast to innate immunity) refers to antigen-specific

defense mechanisms employed by the immune system to remove a foreign anti-

gen. There are two major branches of the adaptive immune system; humoral and

cell-mediated immunity. Humoral immunity involves the production of antibody

molecules and is mediated by B-lymphocytes. Cell-mediated immunity involves the

use of cytotoxic T-lymphocytes to induce apoptosis (cell death) in infected cells [79].
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While much modeling and experimental work has been done on humoral immunity

(e.g [3, 30, 99] or Chapter 2.1 of [73]), this dissertation focuses on mathematical

models of the cell-mediated immune system.

The primary cell-mediated immune response is a process by which the human

immune system responds to a foreign antigen. Upon pathogen invasion, antigen pre-

senting cells (APCs) must migrate to the lymph nodes and present the pathogen. A

näıve T cell with the corresponding specificity will then proliferate and differentiate

into cells with a range of functionality. The two main classes of these T cells are

helper T lymphocytes (also known as Th cells or CD4+ T cells) and cytotoxic effec-

tor T lymphocytes (also known as CTLs or CD8+ T cells). The main functionality

of helper T cells is to aid in activating and directing other immune cells, while cyto-

toxic T cells primarily induce apoptosis in infected cells. Upon clearing the antigen,

the expansion phase is followed by a contraction phase in which the immune system

must retract to a resting, stable state. This process in mediated by a number of

regulatory mechanisms (regulatory T cells, myeloid derived suppressor cells, IL-10,

CTLA4, TGF-β, etc.). The artifacts of the preceding antigen exposure are memory

T cells. These are antigen specific T cells that persist after pathogen clearance and

aid in generating a more effective response to subsequent presentations of the same

antigen (See Figure 1.1) [79]. What follows is a description of the key lymphocytes

of the cellular immune system.
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(a) A diagram showing the process by which the cellular immune system responds to a pathogen.
Upon recognition of an infected cell, antigen presenting cells (APCs) will present the pathogen to
helper T cells. Helper T cells will aid in activating and directing cytotoxic effector T cells to the
infected cells. Cytotoxic T cells then induce apoptosis in infected cells.

I. Activation

I. Activation II. Expansion III. Contraction IV. Memory

(b) A diagram showing how antigen specific T cells with a certain specificity (blue) will expand and
contract into memory cells upon activation by their corresponding antigen. Cells that are blue with
yellow centers stand for cells that are becoming inactive through the immune contraction process.
Cells remaining in phase IV are the memory cells that persist after pathogen clearance.

Figure 1.1: Cellular immune response schematic.

Helper T Cells (CD4+ T Lymphocytes)

Helper T cells are immune cells that do not have the ability to induce apoptosis

in infected cells. Instead, these cells provide essential co-stimulatory signals that are

involved in the activation, proliferation and maturing processes of other components

of the immune system. Upon activation by the presence of a pathogen, helper T cells

proliferate by releasing a cytokine called Interleukin-2 (IL-2) which acts on helper
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cells in an autocrine fashion. These activated näıve T cells will then differentiate

into Th1, Th2, or Th17 cells depending on the cytokine environment. The selection

of the type of helper T cell dictates the type of immune response that is elicited:

IFN-γ drives Th1 cell production while IL-10 and IL-4 inhibit Th1 cell production.

Conversely, IL-4 drives Th2 cell production and IFN-γ inhibits Th2 cells. Th17

cells produce IL-17 and were initially implicated in autoimmune diseases but are

now thought to have their own (yet not well-characterized) effector and regulatory

functions. Helper T cells are not only the driving force in the initial stages of

immune expansion, but are also crucial to the contraction phase of an immune

response through their relation to regulatory T cells (addressed in further detail

below) [79, 96].

Regulatory T Cells (CD4+CD25+FoxP3+ T Cells)

Until recently, the discussion about the existence of regulatory T cells, has been

highly contentious. Lately, concrete evidence has arisen showing that the normal

immune system produces a population of T cells that are specialized for immune

suppression [94]. These cells are recruited and activated during an adaptive immune

response and are critical in preventing excessive immune reactions. They play a

key role in the contraction phase of the immune response after invading pathogens

have been successfully tackled. Along with the role they play in contracting a

normal immune response, an additional function of regulatory T cells (Tregs) is

to regulate immune responses that may lead to autoimmunity. Regulatory cells
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comprise approximately 5-10% of the mature CD4+ T cell subpopulation in mice

and humans. They differentiate from varying sources and are affected by a number

of immunosuppressive cytokines (TGF-β and IL-10) as well as immunostimulatory

cytokines (IL-2) [94, 79].

There are two types of CD4+CD25+FoxP3+ regulatory T cells. The first

type, Thymus Derived Tregs, originate in the thymus and represent a distinct T

cell lineage, while Antigen Induced Tregs are regulatory T cells that, depending on

environmental signaling, differentiate from näıve T cells and acquire their regulatory

function in the periphery. The molecular mechanism by which regulatory T cells

exert their regulatory activity has not been definitively characterized and is the

subject of intense research [96].

Cytotoxic T Cells (CD8+ T Lymphocytes)

Cytotoxic T cells are a sub-group of T lymphocytes that are capable of induc-

ing death in a number of “target” cells. Targets may include:

• virus-infected cells,

• cells infected with intracellular bacterial or protozoal parasites,

• allografts such as transplanted organs,

• cancer cells.

Cytotoxic T cells express T-cell receptors (TCRs) that can recognize a specific anti-

genic peptide. In general, the role of CD8+ T cells is to monitor all the cells of

5



the body, ready to destroy any cells that express the antigen peptides that they

recognize.

1.2 A Brief Overview of Cancer Biology

Cancer is the leading cause of death in the western world and is the subject of

intense research, yet a widely-accepted, formal definition of the disease eludes the

scientific community. In [93], Ruddon defines cancer as “an abnormal growth of cells

caused by multiple changes in gene expression leading to dysregulated balance of cell

proliferation and cell death and ultimately evolving into a population of cells that

can invade tissues and metastasize to distant sites, causing significant morbidity

and, if untreated, death of the host.”

In [48], cancer biologists Hanahan and Weinberg identify six underlying capa-

bilities that are acquired by cancer cells during tumor development. These hallmarks

include the ability of cancer cells to:

1. Sustain proliferative signaling.

2. Evade growth suppressors.

3. Resist cell death.

4. Have limitless replicative potential.

5. Induce angiogenesis.

6. Invade tissue and metastasize.
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Revisiting [48], in 2001, Hanahan and Weinberg extended the hallmarks of

cancer to include [49]:

7. Deregulating cellular energetics.

8. Avoiding immune destruction.

9. Tumor-promoting inflammation.

10. Genome instability and mutation.

Over the past 125 years, there have been a number of important milestones in

cancer research. Examples include the discovery of tumor angiogenesis, the link be-

tween environmental agents and cancer, and more recently, the genetic basis for cer-

tain cancers (for a full discussion of milestones, see [40]). In the past 10 years, there

has been an increased effort towards targeted cancer therapies. These guided thera-

pies hope to treat cancer while avoiding the toxic effects of traditional chemotherapy

treatments. Molecular-targeted treatments such as trastuzumab for breast cancer

and imatinib for chronic myelogenous leukemia have proved effective at targeting

and killing cancer cells while causing less damage to healthy, normal cells. Other

types of targeted treatments currently under investigation include cytokine therapy,

anti-angiogenic therapy, and vaccination [40].

1.2.1 Tumor Immunology

The relationship between cancer and the immune system is quite complex.

Burnet called the ability of the immune system to detect tumor cells and destroy
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them “immune surveillance” [19]. In general, the process of immune surveillance is

as follows. In the initial phases of tumor formation, the immune system is able to

recognize and destroy potential tumor cells. This is followed by an “immunoedit-

ing” phase in which immune elimination is not completely successful and the tumor

acquires the necessary mutations to avoid destructive immune processes. The fi-

nal phase, the tumor escape phase, begins once some tumor cells have acquired

the necessary mutations to avoid all immune processes and the tumor is able to

grow unimpeded. It is in the tumor escape phase that a tumor becomes clinically

detectable [79].

A summary of many of the mechanisms by which immune evasion occurs is

provided in Table 1.1. We present a mathematical model of treatments designed to

overcome some of these mechanisms in Chapter 4.

1.3 Overview of Mathematical Modeling of Biological Processes

Recent advances in scientific methods have led to a plethora of data in many

biological disciplines. But, contrary to conventional thought, more data does not

necessarily imply a better understanding of the topic. In mathematical biology, our

general goal is to synthesize biological information by identifying the key underlying

components and interactions that determine the qualitative mechanics of a biological

system. To approach this goal, we make simplifying assumptions about a biological

system and analyze the simplified system to glean information that may be inferred

about the original biological system. This analysis involves an array of powerful
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Mechanism Description

Low immunogenicity Some tumors do not express adhesion
or co-stimulatory molecules that can be
presented by APCs.

Tumor treated as self antigen Tumors express self antigens that are not
easily recognized by the immune system.

Antigenic modulation A tumor might initially express recog-
nizable antigens but lose them or change
them as the disease progresses.

Tumor induced immune suppression TGF-β secreted by tumor cells directly
inhibits immune cells and induces acti-
vation of regulatory T cells.

Tumor induced privileged site Tumors can create a physical barrier
shielding themselves from the immune
system.

Table 1.1: Mechanisms by which tumors avoid immunosurveillance.

mathematical and statistical tools.

1.3.1 Biological Scale and Mathematical Technique

Two key decisions that must be made when modeling a biological system

are the physical scale at which the biological components are addressed and the

mathematical modeling techniques to be used. Figure 1.2 summarizes these aspects.

In mathematical models of biological phenomena, one of the smallest scales

that is typically considered is the genetic scale. There are models of gene expression,

gene assembly, and gene regulation [6, 46, 72]. At the intracellular scale, mathemat-

ical models are used to study questions pertaining to signaling networks, the cell

cycle, or cell decision making [39, 51, 80]. Intercellular models seek to characterize

interactions between different types of cells and extracellular components. On this
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Figure 1.2: Different mathematical techniques and biological scales that are com-
monly used in mathematical models of biological processes. Work in this dissertation
is based on differential equations as a mathematical technique and intercellular as
the biological scale.

scale, a cell is considered as a single unit and models belonging to this category can

be used to characterize interactions between cells of different functionality. Model-

ing at the tissue or epidemiological level involves large scale models of entire systems

where those systems could be within organism (see [101]) or across organisms (see

[35]). Recently, increases in computational capabilities have led to the development

of multi scale models that seek to combine studies conducted at different scales.

These mulitscale models may describe a system at many different spatial and time

scales and strive to connect these scales to create a more comprehensive system (for

example see [12]).

Many mathematical techniques are used to answer questions at each of these

biological scales. Statistical analysis of data can give information about data and
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clustering, but time dependent information is lost for many such methods. Time

dependent approaches such as ordinary differential equations (ODEs), delay differ-

ential equations (DDEs), and partial differential equations (PDEs) may be used to

discover dynamical information about a process. Techniques for analysis of differen-

tial equations are well developed and provide a basis for theoretical understanding.

ODEs can be used in a system with homogeneous spacing where events occur on

similar time scales. If spatial constraints or differing time scale constraints are a

factor, PDEs are a commonly used device. DDE models are useful in cases where

current conditions are dependent on conditions at a previous time. Agent based

models can capture stochastic properties and emergent behavior, however due to

computational complexity, these techniques are typically restricted to being used to

model a small number of components.

The techniques and scale chosen in this work are highlighted in white in Figure

1.2. The questions we address in this work concern the overall time dynamics of

populations of cells. Since the interactions of interest occur between cells and each

cell of a specified type is assumed to have similar characteristics, we have chosen

to model at the spatial level of intercellular activity. Our interest in the dynamics

of these populations over time with little concern for spatial aspects, leads us to

consider ODE and DDE models.
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1.3.1.1 Modeling Cell Interactions

Mass action

A guiding principle of mathematical modeling that is frequently used in this

work is the principle of mass action. The law of mass action is commonly used in

modeling bio-chemical interactions using ODEs. This law originates from principles

of enzyme-substrate reactions and states that when two or more reactants are in-

volved in a reaction, their reaction rates are proportional to the product of their

concentrations. The law of mass action relies on two assumptions:

1. The medium in which the interaction occurs must be well mixed. Under this

assumption, the concentrations may depend on time but not on space.

2. The size of each species must be on the same order of magnitude. Under

this assumption, the individual random probability of interactions does not

need to be accounted for. Calculations using mean interaction probabilities

are sufficient.

In the context of intracellular modeling, this law states that the interactions between

two populations of cells occur proportionally to the number of collisions between cells

from those two populations. Mathematically, if population [ES] is formed through

interactions between populations [E] and [S], then the law of mass action states

that

d[ES]

dt
= k[E][S],

where k is the kinetic coefficient of the interaction [15].
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Feedback Mechanisms

A key component in determining the dynamics in intercellular systems is feed-

back between cell populations. The goal in modeling feedback mechanisms is to

account for how the process of activation and inhibition affects dynamics within a

network of cell interactions. There are three types of feedback loops that can exist

between two populations of cells. These are mutual activation, activation/inhibition,

and mutual inhibition, schematically shown in Figure 1.3 [50].

X YX

(a) Mutual Activation

X YX Y

(b) Activation-Inhibition

X YYX

(c) Mutual Inhibition

Figure 1.3: Feedback interactions between populations X and Y. (a) Positive feed-
back: Both populations contribute to the production of the other. (b) Negative
feedback: Population X activates the production of Y which inhibits the production
of X. (c) Double negative feedback: X and Y mutually inhibit each other.

In a positive feedback loop, small disturbances are amplified, increasing sensi-

tivity to positive stimulation. Negative feedback loops can contribute to the stabil-

ity and robustness of a system because this type of loop is resistant to fluctuations

within the system. This type of feedback is one way to model a system designed to

remain in homeostasis (equilibrium). Double negative feedback loops can be crucial

in modeling cell switches and cell decision making [42, 50]. Under proper conditions,

the coupling of feedback networks in differential equations determines the dynamics

and stability of the system.
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1.3.2 Model Parameterization

Model parameterization is an important aspect of qualifying the validity of a

mathematical model. The parameters of mathematical models must be biologically

relevant and physically meaningful. Parameters may be obtained from experimental

data, however many model parameters are not available either because they cannot

be measured using current technology, because the experiments are too expensive

to conduct, or because they were never measured. Consequently, mathematical and

statistical methods are commonly used to estimate unknown parameters and to

determine the sensitivity of the model to those parameters. Unknown parameters

can be estimated using techniques such as least squares, latin hypercube sampling

or a Lineweaver-Burke plot [15, 52, 74] to name a few. Sensitivity analysis can be

performed using a number of methods such as one-at-a-time sensitivity, differential

sensitivity analysis, or partial rank correlation coefficients [47]. Sensitivity analysis

helps to identify the key parameters that control the dynamics of the system. This

can assist in validating the model with respect to current experiments/theory. It

can also be used to guide experimentalists in future experimental design.

1.3.3 Computation

All computations in this work were done using Matlab Student Version 7.10.0.

The Matlab function ODE23 was used for solving systems of ordinary differential

equations. This algorithm uses a variable step Runge-Kutta 23 method [98]. For

simulations involving delay differential equations, the Matlab function DDE23 was
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used. This algorithm extends the methods of ODE23 to obtain numerical solutions

of systems of delay differential equations with constant delays [98].

1.4 Overview of Dissertation

In this dissertation, we develop mathematical models to study the dynamics

of immune regulation. We focus on immune regulation in the context of the primary

immune response and tumor growth.

In chapters 2 and 3 we develop mathematical models of the primary immune

response. We focus on two immunoregulatory mechanisms: immune contraction

through adaptive regulation and functional switching of regulatory T cells. In Chap-

ter 2, we study these immunoregulatory mechanisms in a simple ODE model. This

model displays the expected expansion/contraction dynamics. A further exploration

of these immunoregulatory mechanisms is done in the context of a more detailed

model of the immune response in Chapter 3. We show that when compared to pre-

vious mathematical models, our model shows increased robustness with respect to

key parameters. This model is also used to study the effects of regulatory T cell

switching on immunodominance.

In Chapter 4, we highlight how immunotherapy might be used to overcome

the effects of two regulatory agents exploited by cancer: regulatory T cells and

the Transforming Growth Factor (TGF)-β protein. The goal of this study is to

understand part of the complex interplay between cancer, the immune system, and

the immunoregulatory mechanisms that lead to ineffective immune responses. We
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develop an ODE model to gain an insight into the cooperative interaction between

anti-TGF-β and vaccine treatments. This model is based on the experiments of [106].

Our model is shown to be capable of capturing the observed experimental results,

and hence it can be potentially used in designing future experiments involving such

an approach to immunotherapy.

Closing remarks about the work are given in Chapter 5.
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Chapter 2

Functional Switching and Stability of Regulatory T Cells

2.1 Introduction

The magnitude and effectiveness of an immune response depends largely on

the balance of positive and negative signals communicated by various components of

the immune system. In a recent Nature article, Sakaguchi outlines recent biological

evidence regarding the stability of regulatory T cells (Tregs) [94]. In the past, the

T cell lineage has been assumed to progress downstream towards more differenti-

ated cells. Contrary to this dogma, Tregs were recently discovered to be able to

differentiate “sideways”, halting their regulatory function and becoming effector T

cells that secrete pro-inflammatory cytokines. Immunologists are currently working

towards characterizing the conditions under which this conversion may happen. In

order to understand how regulatory T cells regulate immune responses, it is imper-

ative to investigate how they are produced and the conditions under which they are

functionally stable.

While many mathematical models examine T cell lineage and differentiation

[21, 43, 53, 119], here we develop a mathematical model that includes the novel

consideration that regulatory T cells may lose their regulatory capabilities. Previ-

ous work has used a number of mathematical techniques in the areas of nonlinear

dynamical systems and agent based modeling to investigate questions such as the
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Th1 versus Th2 immune responses [43, 119] and immune cross-regulation [21, 53].

In this work, we are investigating how immune regulation arising from regulatory

T cells is affected by a feedback mechanism in which helper T cells may become

regulatory T cells and vice versa.

The remainder of this chapter is organized as follows: In Section 2.2.1, we

review the various hypotheses concerning immune contraction and argue in favor

of active suppression of immune responses by regulatory T cells. Section 2.2.2 de-

scribes the biological system highlighted by Sakaguchi and presents the experimental

evidence used as a basis for our mathematical model. In Section 2.3, we present

an ODE model of helper and regulatory T cell dynamics. Results characterizing

the effects of Treg switching are included in Section 2.4. Closing remarks are given

in Section 2.5. A further exploration of this mechanism in the context of a more

detailed model of immune response will be carried out in Chapter 3.

2.2 Biological Background

2.2.1 Immune Regulation via Adaptive Regulation

The mechanisms by which the immune system contracts after an infection are

debated. Razvi et al. demonstrated that apoptosis is the principal mediator of

T cell contraction. Their experiments showed that the highest rate of apoptosis

occurred at the peak of the T cell response. This led them to conclude that cells

are programmed to proliferate for a fixed amount of time, after which they die

[84]. An alternative point of view focuses on a division-based cell program. In this
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case, cells would be programmed to divide a given number of times before dying.

Renno et al. came to this conclusion when they studied programmed cell death in

mice [87]. Yet another supported theory is that of adaptive regulation. Under this

theory, during the course of an immune response, negative feedback from regulatory

T cells suppress the activation of conventional T cells thereby retracting the immune

response [104].

Various mathematical models have been developed in order to study the impli-

cations of the different hypotheses regarding immune contraction (see [4, 58, 116]).

We review these models and make the mathematical argument for active suppression

in Section 3.1.1. Here, we present the biological argument for immune contraction

through Tregs.

The theory of adaptive regulation is supported by the work of Taams et al.

who concluded that active suppression of conventional T cells by regulatory T cells

is a viable possibility due to evidence that passive competition of resources (access

to APCs) cannot account for the decay of the immune response [104]. It has been

known for many years that regulatory T cells exist in the lymph nodes. But in

2004, Baecher-Allan demonstrated that Tregs are also present in the periphery of

humans [8]. These peripheral Tregs can come from näıve T cells that have acquired

a Foxp3 expression [5, 25, 68] or by trafficking from the lymph nodes to the site of

inflammation using homing receptors similar to those used by other effector T cells

[11, 54, 97]. It has also been shown that natural Tregs can expand clonally following

antigenic stimulation and retain their suppressive function after expansion [41, 65,

117, 118]. Regulatory T cells have also been shown to suppress the proliferation
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and differentiation of näıve T cells. They can also suppress the activities of mature

helper T cells, mature cytotoxic T cells, natural killer cells, B cells, macrophages,

and dendritic cells [78, 100, 105, 110].

The experimental evidence supports the notion that regulatory T cells exist

at the site of an infection either through the homing of naturally occurring Tregs

or through the induction of näıve T cells in the periphery. Similar to other T cells,

Tregs activate and proliferate upon antigen specific stimulation. After expansion,

they retain the ability to suppress many of the immune cells involved in the im-

mune response. This makes a strong argument for regulatory T cells being a key

mechanism of contraction of the immune response.

2.2.2 Concerning Treg Stability

A number of cytokines are essential to regulatory T cell function. These include

the immunosuppressive cytokines TGF-β, Interleukin-10 (IL-10), and the immunos-

timulatory cytokine Interleukin-2 (IL-2). IL-2, the majority of which is derived

from Th1 effector T cells, is indispensable for the maintenance of Foxp3+ Treg cells

and is functionally essential for Treg development. IL-2 maintains Foxp3+ natu-

ral Tregs, triggers cell expansion at high doses, and facilitates TGF-β dependent

differentiation of näıve T cells to Foxp3+ Tregs. Collectively, these factors ensure

a remarkably constant number of Foxp3+ Treg cells in the immune system (about

10% of all T cells expressing the surface marker CD4), with a general increase only

at sites of inflammation [96, 94].
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In [94], Sakaguchi outlines experimental findings concerning the interactions

between cytokine signaling, helper cell differentiation and the conditions under which

regulatory T cells might convert into pro-inflammatory cells. A diagram of CD4+

T cell differentiation along with the cytokines that mediate that of differentiation

are shown in Figure 2.1. Interleukins 2 and 12 drive Th1 cell production. Th1 cells

are specialized at confronting intracellular pathogens. Interleukins 4 and 10 inhibit

Th1 cell production while promoting the Th2 phenotype which works towards the

elimination of extracellular pathogens. Th17 arise from a combination of Interleukin-

6 and TGF-β signaling. These cells produce IL-17 and contribute to microbial

immunity.

CD4+

Naïve
T

Th1

Th2
Th17

Treg

Treg

Thymus

Periphery

IL-6, 
TGF-!

IL-12

IL-2, 
TGF-!

IL-4

Lack of 
IL-2

Figure 2.1: CD4+ T-cell differentiation. The thymus produces näıve T cells, which
can differentiate into effector T cells, including Th1, Th2, Th17 cells, and Tregs
following stimulation with antigens. In the periphery, the balances of TGF-β and
IL-2 determine whether a helper T cell becomes a regulatory T cell and whether a
regulatory T cell becomes a helper T cell.

Treg conversion, the process of regulatory cells halting expression of Foxp3 and
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secreting pro-inflammatory cytokines, may happen only under certain conditions.

The experimental evidence highlighted in [94] is as follows:

1. Regulatory T cells vary in Foxp3 expression and therefore in their susceptibility

to conversion. While it is possible that all regulatory T cells are subject to

conversion, it is also plausible that only a certain fraction of Foxp3+ Tregs

may be plastic [120]. This could be due to variations in Foxp3 expression due

to T cell lineage, maturity, genetic and environmental factors [55, 120].

2. Rubtsov et al. show that Treg cells are highly stable under certain conditions

in terms of both Foxp3 expression and their suppressive function, with few

cells converting into effector T cells [92]. Sakaguchi points out that this is not

necessarily contradictory to previous known data and outlines ways in which

this data can be consistent with other experiments.

3. When Foxp3+ Treg cells are transferred to T-cell-deficient mice, the co-transfer

of T cells that do not express Foxp3 or the infusion of IL-2 prevents conversion

of the Foxp3+ Treg cells to effector T cells. If Treg cells are transferred on their

own to T cell deficient mice, Foxp3- T cells that have formed from Foxp3+

Treg cells will produce IL-2, which inhibits further conversion of Foxp3+ Treg

cells in a negative-feedback loop [37].

2.3 Mathematical Model

We consider a simplified version of the biological system and develop a dy-

namical system to investigate the effects of T cell functionality switching on T cell
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immunity. A schematic of the biological system is shown in Figure 2.2. We con-

sider two cell populations: helper T cells and regulatory T cells. The helper T

cell compartment combines the three types of helper T cells: Th1, Th2, and Th17

while the regulatory T cells compartment encompasses both naturally occurring and

antigen induced regulatory T cells. We consider two cytokines that are primarily

responsible for the facilitation of the transition between these cells. These are the

pro-inflammatory cytokine, IL-2 and the pro-regulatory cytokine TGF-β.

Th1
Th2

Th17

Lack of S1

nTregiTreg

Regulatory 
T Cells

Helper 
T Cells

S2

S1

S2S1

S1 ~ IL-2
S2 ~ TGF-!

Signals

Figure 2.2: A simplified version of the biological system represented in Figure 2.1.
This is the basis for our mathematical model. There are two cell populations: helper
T cells and regulatory T cells. The helper T cell compartment combines the three
types of helper T cells: Th1, Th2, and Th17 while the regulatory T cells compart-
ment encompasses both naturally occurring and antigen induced regulatory T cells.
Two main signaling proteins mediate this transition. They are IL-2, represented by
S1 and TGF-β, represented by S2.
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Our mathematical model is written as the following system of ODEs:

dH

dt
= a(t) + γ

S1H(1−H)

1 + cS2

+ µ
R

1 + dS1

− δ0H − δ1RH, (2.1)

dR

dt
= a(t) + νS1S2R(1−R)− µ R

1 + dS1

− δ0R, (2.2)

where,

S1 = ξH and S2 = βR.

In this model, we follow the dynamics of helper T cells, denoted H(t); and regulatory

T cells, denoted R(t). We model the signals between these cells in a way similar

to [119]. We assume that the signals S1 and S2 are being produced by helper and

regulatory T cells, respectively. T cell recruitment and activation depend on these

cytokines. S1 represents those cytokines predominately produced by helper T cells.

Therefore although S1 should be thought of as primarily representing IL-2 levels,

it could also represent a myriad of proteins including IL-4, and IFN-γ. Similarly,

S2 represents the proteins that are predominantly produced by regulatory T cells.

These include TGF-β and IL-10. We consider the magnitude of these signals to be

proportional to the number of cells that produce them, and hence, S1 = ξH and

S2 = βR. The function a(t) is used to simulate recruitment of cells as a result

of antigen presentation. This function is a Gaussian-like function, starting from 0,

stays positive for some time, and returns to 0. A precise definition of a(t) is given

in Section 2.4.

The dynamics of helper T cells is described by Eq. (2.1). The second term
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on the RHS of (2.1), γ S1H(1−H)
1+cS2

, describes the immune recruitment and prolifera-

tion of helper T cells. These cells are modeled as proliferating following a logistic

growth rate. This growth is then modified by the present signals. S1 signals are

autostimulatory for helper T cells, while S2 signals are regulatory. The factor γS1

1+cS2

multiplying the logistic growth of helper T cells reflects the effects these signals have

on helper T cell recruitment and proliferation. The multiplicative factor S1 accounts

for the autostimulatory effects of this population and (1 + cS2)
−1 accounts for the

negative effects of the regulatory signals. The second term describes the creation of

helper T cells that have originated from regulatory T cells that have lost their reg-

ulatory capabilities. Pro-inflammatory S1 signals are required for the maintenance

of regulatory T cell function. Hence, this switch from a regulatory T cell to a helper

T cell occurs when there is a lack of pro-inflammatory signals produced by helper

T cells. The final two terms of this equation model the removal of helper T cells

from the system. These cells have both a natural death rate; assumed to be the

natural death rate for all effector cells, δ0; and an adaptive death/removal rate that

is proportional to the mass action interaction with regulatory T cells, δ1.

Equation (2.2) describes the concentration of Tregs in the regulatory T cell

compartment. Regulatory proliferation and recruitment depends both on autostim-

ulatory signals from other regulatory T cells and on signals coming from immune

promoting cells. These interactions are described by the second term of Equation

(2.2). Regulatory T cells are modeled as proliferating at a logistic growth rate with

multiplicative factors, S1 and S2 indicating the presence of the co-stimulatory signals

needed to facilitate this proliferation. The term − µR
1+dS1

is the negative of the corre-
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sponding Treg switching term in Equation (2.1). Lower levels of S1 signals creates

higher rates of transition from regulatory to helper T cells while higher prevalence of

S1 helps to sustain regulatory cells and decreases the rate of transition. Regulatory

T cells have a natural death rate δ0.

2.4 Results

We begin by demonstrating that the model (2.1) – (2.2) can capture some

of the key characteristics of the immune response. After validating the model, we

proceed by considering the implications of Treg functional switching within the

model.

We begin our study by defining the term for antigen presentation, a(t). We

follow [58] and define

φ(x) =


e−1/x2 : x ≥ 0,

0 : x < 0.

We then set

a(t) =
cφ(t)φ(b− t)

φ(b)2
, (2.3)

where b, c > 0. Graphs of a(t) for b = 5, c = 4 and b = 10, c = 3 are shown in Figure

2.3.

Figure 2.4 shows a simulation of (2.1)–(2.2) with b = 5, c = 4. The parameters

used in this simulation are shown in Table 2.1. These parameters are chosen to
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Figure 2.3: Antigen stimulation function, a(t), for b = 5, c = 4 and b = 10, c = 3.

demonstrate the characteristics of the model. They are not biologically motivated.

A choice of parameters that is directly tied with the biology is conducted for the

more comprehensive model described in Chapter 3. The dynamics of the simulated

system seem to be similar over across many values of b and c. In accordance with the

antigen stimulation, we identify a growth of the helper T cells peaking soon after

the peak of antigen presentation. After antigen clearance, there is a contraction

of immune cells leading to a positive steady state. These lingering helper T cells

correspond to the emergence of memory T cells. As a model of the cellular immune

process, these results agree with the expansion, contraction, and memory dynamics

seen in other mathematical models of the primary immune response [4, 58, 81].

We conclude that model, with the consideration of the new regulatory switching

mechanism, displays the expected expansion/contraction dynamics.

We now study the effects of the regulatory T cell switching. What is the con-

tribution of the µ
R

1 + kS1

term to the system? Figure 2.5 shows how the magnitude

of the Treg switching term changes over the course of simulation. The death rate
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Parameter Description Estimate

γ immune recruitment rate of helper T cells 1

c inhibitory rate of TGF-β on helper T cell
recruitment

1

µ magnitude of regulatory T cell switching
rate

9

d magnitude of dependence of Treg switching
on helper T cell signals

1

δ0 natural death rate of effector T cells 0.01

δ1 death rate of helper T cells as a result of
interaction with Tregs

0.01

ν immune recruitment rate of regulatory T
cells

1

ξ multiplicative factor of helper T cell signals 1

β multiplicative factor of regulatory T cell
signals

0.5

Table 2.1: Parameter values used in simulations of (2.1) – (2.2). Concentrations are
measured in k/mm3. Time is measured in days.
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Figure 2.4: Simulation of (2.1)–(2.2) with parameters from Table 2.1. The dynamics
of the helper T cells is shown in the solid line. Antigen presentation, a(t), with b = 4,
c = 5 is shown with a dashed line.
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Figure 2.5: A graph of the magnitude of the transition rate of regulatory T cells
due to helper T cell signals for the simulation shown in Figure 2.4.
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of Tregs due to lack of signaling gradually increases as the immune response pro-

gresses. While the antigen is present, and helper T cell levels are high, the number

of regulatory T cells is allowed to flourish in order to maintain control of the growing

helper T cell population. Once the antigen is removed from the system (day 5 in

Figure 2.5), this death rate levels out at its maximum. This new constant death

rate combined with the removal of antigen stimulus serves to gradually bring the

system into homeostasis. This variable death rate contributes to the dynamics in

two ways. First, it allows the growth rate of the Tregs to be high enough to control

the helper cells during the reaction. It allows the death rate to be high enough

after the reaction to return back to normal levels of between 5 and 10 percent of the

helper T cell population. Second, this mechanism allows for the presence of memory

helper T cells after the reaction is over.

The velocity field of the system (with a(t) ≡ 0) is shown in Figure 2.6. The

trajectories for different initial conditions are shown overlaid on the velocity field.

The general tendencies towards the steady states can be seen. Of importance here

is the ability of the system to cope with imbalances in the helper to regulatory ratio.

In cases where regulatory T cells are too numerous (upper right portion of Figure

2.6, green path), there is a markedly sharp drop in the number of regulatory T cells

due to the lack of pro-inflammatory signaling. When the ratio is extended too much

in favor of helper T cells (right portion of Figure 2.6 and black path), we see the

gradual decrease in both the regulatory T cells and helper T cell path bringing the

system to an equilibrium. If imbalances occur within a normal range (e.g. if created

through antigen stimulation), we see not only a decrease in regulatory T cells, but
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Figure 2.6: Velocity field of Equations (2.1)–(2.2) shown in blue. Trajectories over
the velocity field are graphed for different initial conditions: H = 0.5, R = 2 (red);
H = 2.5, R = 3 (green); H = 3, R = 1.25 (black).

also the transition of Tregs leads to an increase in the helper T cell population before

decreasing back to equilibrium (black curve). This shows that even in biologically

unbalanced situations, the switching mechanism allows excess regulatory T cells to

contribute to the growth of helper T cells, rather than restrict it. This feedback is

crucial in the stability of the system both. Biologically, this type of imbalance can

occur in a number of diseases such as HIV, autoimmune diseases, cancer [18, 32, 45].

These diseases alter the constituency of immune cells and therefore mechanisms such

as regulatory T cell stability may a crucial component of accurately modeling these

systems.

Functional Treg switching can contribute to both the stability and the mag-

31



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Helper T Cell Concentration

R
eg

ul
at

or
y 

T 
C

el
l C

on
ce

nt
ra

tio
n

 

 

0
0.5
5
10
50

µ

Student Version of MATLAB

Figure 2.7: Phase portrait of helper T cells versus regulatory T cells for various
values of µ.

nitude of an immune response. Because there is little to no data on the rates at

which this switching occurs, we now try to qualitatively determine how the value

of µ should be chosen. A phase portrait of the simulations for various values of µ

is shown in Figure 2.7. The model with no regulatory switching (µ = 0), is plotted

in the dotted red line. For this model, as in the case with switching, the helper T

cell population is able to expand and contract with respect to the regulatory T cell

population. But, the final steady state of the system shows that the regulatory and

helper T cell concentrations are on the same order of magnitude. While regulatory

T cells have been shown to increase during an infection, it has also been shown

that these cells return to their normal levels post pathogen exposure [94]. Hence we
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consider the model with µ > 0 to be more biologically accurate. Figure 2.7 shows

that the main effect of µ is to affect the number of tregs produced in the course

of an immune response. For the values of µ shown, the maximum ratio of Treg to

helpers varies from 0.09 to 0.83. Biologically, we know that the concentrations of

Tregs and helper T cells should not be equal, as this would contribute to disease

development. This leads us to reject the smaller µ values that lead to such ratios.

We also know that in the course of an immune response, the number of tregs should

increase relative to their resting concentration [118]. Because these cases do not

show an increase in Tregs at the infection sight, we also reject µ = 50 and other

high values of µ which lead to a Treg to helper T cell ratio in the range of 5-10%.

To aid in choosing an appropriate value of µ, we consider the peak helper T cell

concentration produced for certain values of µ. Figure 2.8 shows a graph displaying

the peak helper T cell concentration as a function of µ for µ in the range [0 20].

For these parameter values, the maximal immune response is obtained when µ = 9.

Consistent with what was seen in Figure 2.7, Treg switching can either contribute to

the strength of an immune response or diminish it. Assuming that the natural goal

of the body is to maximize the strength of the immune response, this model shows

that the order of magnitude of the µ parameter should be 9. But does this imply a

reasonable Treg to helper T cell ratio? For the value µ = 9, the maximal ratio of

Tregs to helpers is 44.9%. Though we do not have biological experiments to know

what this ratio should be in the periphery, as previously discussed, it should be

greater than 10% and less than 100%. This value falls in the middle of the plausible

range and hence we consider µ = 9 to be an acceptable choice.
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Figure 2.8: Maximum helper T cell concentration as a function of µ.

Finally, we simulate conditions that reflect the experimental setup of [37].

Here we simulate the addition regulatory T cells into an otherwise T cell deficient

environment. These characteristics arise when the model is considered with initial

conditions H = 0 and R 6= 0. Figure 2.9 shows the results of this simulation. As in

the experiments of [37], simulations show the regulatory T cell population decreasing

due to conversion to helper T cells. In finite time, a balance of signals is achieved

and the populations achieve a non-zero equilibrium. This property of the model has

not been seen in past models of the cellular immune system. It shows that even in

the case of extreme imbalances of initial conditions, this Treg switching mechanism

serves as a stabilizing mechanism and the system is able to recover to a biologically

favorable state.
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(a) Helper T cell deficient simulation: helper T
cells.
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(b) Helper T cell deficient simulation: regula-
tory T cells.

Figure 2.9: Simulation of the initially helper T cell deficient system with initial
conditions H = 0, R = 3.

2.5 Discussion

In this chapter, we developed a model of immune regulation and differentia-

tion that is based on the biological study of [94]. The model considers helper T

cells and regulatory T cells and highlights two recently accepted biological mecha-

nisms: active suppression of helper T cells by regulatory T cells and the transition

of regulatory T cells into helper T cells. Active suppression by regulatory T cells

was shown to be a plausible mechanism of immune contraction as negative feedback

provided by these cells was able to control immune expansion and return the system

to homeostasis. Inclusion of the switching mechanism was shown to not disturb

the expansion/contraction dynamics commonly displayed in immune models. This

mechanism was shown to increase the robustness of the system, allowing for recovery

from an imbalanced or even helper T cell deficient system.

We characterized the affects of Treg switching on the peak magnitude of the
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immune response and identified the order of magnitude of the switching parameter,

µ, that appears to be consistent with both the magnitude of the concentrations

involved in an immune response and the ratio of Tregs to helper T cells.

The model can be extended in many directions. First, one can separate the

dynamics between the lymph nodes and the site of infection. Under these conditions,

one can investigate hypotheses such as those stating that only antigen induced Tregs

in the periphery have the ability to become immuno stimulatory. Another extension

will be to consider the case where only a certain percentage of Tregs may differentiate

sideways. In Chapter 3, we use the knowledge gathered here to extend our study

on the primary immune response by including both active T cell suppression and

Treg switching in a more biologically detailed model of the regulation of the primary

immune response.
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Chapter 3

Modeling Adaptive Regulation with Regulatory T Cell Switching

3.1 Introduction

While the initial phases of T cell expansion are well understood (see [79]), the

final contraction phase of the immune response is not. This contraction phase is

crucial in bringing the immune system back to a stable state. Such a contraction

must happen quickly to prevent damage to healthy cells and to prepare the sys-

tem for future challenges. Hence, cell-mediated immune responses must be closely

regulated following any antigenic stimulation.

Several key characteristics of the immune response should be considered when

developing a model of these processes. Mercado et al. showed that T cell contrac-

tion and expansion were determined after 24 hours of exposure to a foreign antigen

[75]. Kaech supported this by demonstrating that even with very short duration of

exposure to antigen, cytotoxic T cells will divide 7 – 10 times even after the antigen

is removed [57]. Van Stipdonk observed that upon 20 hours of stimulation, näıve

CD8+ T cells were able to carry out extensive proliferation and cytotoxic activity,

characteristic of a fully developed immune response [108]. When combined together,

experimental evidence suggests that the T cell response is mostly dictated in the

first hours of antigen exposure and is therefore largely insensitive to the later charac-

teristics of antigen exposure. A conclusion of these observations is that upon initial
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activation by antigen exposure, T cells enter into an antigen-independent prolifera-

tion phase, known as a “T cell program”. Mathematically, this has led to approaches

rooted in a concept of T cell expansion wherein T cells enter a predetermined pro-

gram where they divide for either a specified period of time or specific number of

divisions [4, 58, 116]. The T cell response is also characterized in that it is robust to

the precursor frequencies of antigen-specific näıve T cells. This is demonstrated by

Badovinac et al. who showed that a 10,000-fold difference in antigen-specific T cell

concentrations led to a mere 13-fold difference in peak of the CD8+ T cell response

[7]. Mathematical models that address this data have been developed by Kim, Levy,

and Lee [58, 59, 61] and will be discussed in further detail in Sections 3.1.1 and 3.2.

In this chapter, we construct mathematical models of the primary immune

response taking into account the following biological observations:

• The T cell response is mostly determined in the first hours of antigen presen-

tation [57, 75, 108].

• The T cell response is insensitive to precursor T cell frequencies [7].

• Regulatory T cells are the mechanism of contraction following pathogen clear-

ance (see Section 2.2.1).

• Regulatory T cells have the ability to change their functionality and become

immune promoting helper T cells [94].

In Section 3.1.1, we examine the characteristics of both division-based and time-

based T cell programs and argue why neither hypotheses can account for the in-
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herent robustness of the T cell response with respect to variations in the precursor

frequency. In [58] and [59], Kim, Levy and Lee present a mathematical model of the

immune response including adaptive regulatory T cells and show these cells they

may play a crucial role in inducing a timely and robust contraction of the T cell

response. In Section 3.2, we extend the models developed in [59] in light of the

data presented in Chapter 2 to consider the affects of functional regulatory T cell

switching. In 3.2.1, we define the related concept of immunodominance and discuss

an extension of the immunodominance model of [59]. In Section 3.3, simulations of

this model are shown and its robustness is demonstrated. Concluding remarks are

given in Section 3.4.

3.1.1 T Cell Programs

Initial models of the dynamics of the immune response were based on predator-

prey type dynamics wherein immune cells acted as predators and pathogens served

the roll of the prey (see [2] for example). These models are able to generate some of

the general features of the immune response such as expansion/contraction dynam-

ics. However, they fail to exhibit some key experimentally-obtained features of the

immune response. For example, these models do not show robustness to precursor

frequencies or the ability to maintain an immune response after pathogen clearance.

The concept of a T cell program has been put forth to address the issue of anti-

gen independence. In general, models developed under this paradigm describe the

cell-mediated immune response as having a period of antigen-independent prolifera-
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tion and a period of antigen-dependent proliferation that is followed by contraction

that is determined by one of the theories mentioned in Section 2.2.1 (time-based,

division-based, active suppression). These models are more consistent with ex-

perimental data concerning the antigen independent characteristics of the immune

response shown in [57], [75] and [108].

In [4], Antia et al. develop models of the primary T cell response to acute infec-

tions. First, a model of antigen-independent T cell proliferation is considered. The

T cell response is modeled as follows: upon initial antigen stimulation, CD8+ T cells

progress through a fixed program of expansion, contraction and differentiation into

memory cells. Further exposure to antigen does not alter the response. An alterna-

tive paradigm developed in this paper is one in which stimulated T cells undergo a

short period of antigen-dependent expansion before entering an antigen-independent

program. This model exhibits the expected basic expansion/contraction dynamics.

This choice of technique for modeling antigen-independence has two noteworthy con-

sequences. First, the model shows the ability to continue an immune response after

removal of the antigen. This aligns with the experimental data of Kaech, Mercado

and van Stipdonk [57, 75, 108]. However, as noted in [58], the antigen-dependent and

antigen-independent parts of Antia’s 2003 model occur in the opposite order of the

more common notion that a developmental program precedes antigen-dependent

proliferation as suggested in [57]. Furthermore, this arrangement of proliferation

implies that the cell programming process takes approximately 2.5 days which con-

tradicts van Stipdonk who proposes a 20 hour programming period [109, 108] and

the 24 hour programming period proposed by Mercado [75]. Second, as observed
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by Kim et. al., a fixed program of expansion predicts that the magnitude of the

response is directly proportional to the initial number of antigen-specific precursor

T cells [58]. Hence, the Antia model contradicts the findings of Badovinac, which

show that the magnitude of the immune response is largely insensitive to T cell

precursor frequencies [7].

Wodarz and Thomsen developed a mathematical model in which antigen-

independent cell divisions occur prior to antigen-dependent proliferation. In this

model, activated T cells undergo a fixed number of divisions before differentiating

into effectors and then into memory cells [116]. If infection persists, memory cells

recycle back into the effector state and enter another round of divisions, repeating

the program as many times as necessary. Consistent with experimental studies, the

study of this model concluded that the optimal fixed division program entails 7 –

10 divisions. However, contrary to experimental studies, cells cannot return to the

effector state without committing to the entirety of the T cell program. This could

lead to a protracted response possibly leading to damage to healthy cells.

Models derived under either time or division-based proliferation programs typ-

ically generate robust responses to antigen availability but scale with respect to

precursor frequencies. As an alternative to these approaches, Kim et al. develop

a model under the hypothesis that the contraction of the immune response is gov-

erned by a preprogrammed initial activation phase that is augmented by adaptive

regulatory mechanisms [58]. The authors present a model where T cell contraction

is not uniquely determined by a predetermined program, but comes about as the

result of negative feedback loops through interactions with regulatory T cells. In

41



this model, CTLs enter a “minimal development program” in which they commit

to proliferation. This program initiates upon activation by antigen presenting cells

and represents the antigen-independent portion of the immune response. After the

minimal development program, if a cell receives further stimulation, it undergoes

singular cell division, representing the antigen-dependent portion of the process.

When compared with both the cell-division and time-based predetermined T

cell programs, the model of Kim et. al. displays a robustness to T cell precursor

frequencies that is more consistent with the experimental studies of [7]. A 4 order

of magnitude difference between näıve T cell frequencies reduces to a three order

of magnitude difference in effector T cell peaks. The reduction in scaling is much

closer to experiments than the direct scaling which is inherent to autonomous T cell

programs. Hence, the model of Kim et. al demonstrated that such an approach

produces a primary T cell response that is robust to both antigen stimulation and

precursor frequencies.

In [58], the regulation of cytotoxic T cells was considered. The T cell pop-

ulation was not divided into helper T cells and CTLs. The model was extended

in [59] and [61] to consider the regulation of helper and cytotoxic cells separately.

This added measure of biological accuracy is consistent with our current theory of

immune regulation and amenable to a consideration of regulatory T cell switching.

Hence, our starting point is the model of [59] which we extend to incorporate our

work on regulatory T cell stability developed in Chapter 2 into more comprehensive

models of regulation.
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3.2 A Mathematical Model of Adaptive Regulation with Treg Switch-

ing

The work presented here is based on the “Extended model of adaptive reg-

ulation: helper and killer T cells” presented in [59]. In this model, the immune

reaction is modeled as a system of delay differential equations. The delay is derived

from the notion that upon activation, a cell will spend a specified amount of time

solely devoted to mitosis (cell division) before it can properly execute its functions.

This model also considers the production and consumption of the pro-inflammatory

cytokine IL-2. Consistent with current knowledge of T cell lineage, regulatory T

cells differentiate from the helper T cell population and are able to suppress both

helper and cytotoxic T cells [94]. The model is consistent with the theory of ac-

tive suppression, displays many inherent immune characteristics (antigen and T cell

precursor-independence), and thus provides an excellent framework within which to

consider Treg switching. In our work, we use the work of [59] as the basic model to

which we add terms to allow for regulatory T cell switching. Our model is described

as follows (illustrated in Figure 3.1):

1. Upon encountering antigen, a(t), immature APCs, A0(t), become mature

APCs, A1(t), and migrate to the lymph node.

2. Näıve helper and cytotoxic T cells (H0(t) and K0(t), respectively) residing in

the lymph nodes encounter mature APCs and enter a minimal developmental

program in which they divide m1 or m2 times respectively.
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3. Mature helper and cytotoxic T cells (H(t) and K(t), respectively) both secrete

the positive growth signal IL-2, denoted P (t).

4. Mature helper and cytotoxic T cells that have completed the minimal devel-

opmental program become effector cells that continue dividing upon further

antigenic stimulation. This antigen dependent proliferation occurs in response

to interactions with APCs for helper T cells and in response to IL-2 consump-

tion for cytotoxic T cells.

5. In response to antigenic stimulation, some proportion of helper T cells further

differentiate into Tregs, R(t).

6. Regulatory T cells enact their feedback on the system by:

• suppressing mature helper and cytotoxic T cells,

• proliferating after consuming free positive growth signal,

• transitioning back into the helper T cells at a rate that depends on the

growth signals received from mature T cells.
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Our model of adaptive regulation with regulatory T cell switching is given by

the following equations:

Ȧ0(t) = sA − d0A0 − a(t)A0(t) (3.1)

Ȧ1(t) = a(t)A0(t) − d1A1(t) (3.2)

Ḣ0(t) = sH − δ0H
0(t) − kA1(t)H

0(t) (3.3)

Ḣ(t) = 2m1kA1(t − σ1)H
0(t − σ1) − kA1(t)H(t) + 2kA1(t − ρ1)H(t − ρ1)

+ µ2
R(t)

1 + dP (t)
− (δH + r)H(t) − kR(t)H(t) (3.4)

K̇0(t) = sK − δ0K
0(t) − kA1(t)K

0(t) (3.5)

K̇(t) = 2m2kA1(t − σ2)K
0(t − σ2) − kP (t)K(t) + 2kP (t − ρ2)K(t − ρ2)

− δKK(t) − kR(t)K(t) (3.6)

Ṗ (t) = r1H(t) + r2K(t) − δP P (t) − kP (t)K(t) − kP (t)R(t) (3.7)

Ṙ(t) = rH(t) + 2kP (t − ρ1)R(t − ρ1) − kP (t)R(t)

− R

1+dP
− δHR(t) (3.8)

A0 is the concentration of APCs at the site of infection and A1 is the concen-

tration of APCs that have matured, started to present target antigen, and migrated

to the lymph node. The variable H0 is the concentration of näıve helper T cells,

H is the concentration of mature helper T cells, K0 is the concentration of näıve

cytotoxic T cells, K is the concentration of mature cytotoxic cells, and R is the

concentration of Tregs. In addition, P is the concentration of the positive growth

cytokine IL-2.
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+ µ2
R(t)

1 + dP (t)
− (δH + r)H(t) − kR(t)H(t) (3.4)

K̇0(t) = sK − δ0K
0(t) − kA1(t)K

0(t) (3.5)

K̇(t) = 2m2kA1(t − σ2)K
0(t − σ2) − kP (t)K(t) + 2kP (t − ρ2)K(t − ρ2)

− δKK(t) − kR(t)K(t) (3.6)

Ṗ (t) = r1H(t) + r2K(t) − δP P (t) − kP (t)K(t) − kP (t)R(t) (3.7)

Ṙ(t) = rH(t) + 2kP (t − ρ1)R(t − ρ1) − kP (t)R(t)

− R

1+dP
− δHR(t) (3.8)

A0 is the concentration of APCs at the site of infection and A1 is the concen-

tration of APCs that have matured, started to present target antigen, and migrated

to the lymph node. The variable H0 is the concentration of näıve helper T cells,

H is the concentration of mature helper T cells, K0 is the concentration of näıve

cytotoxic T cells, K is the concentration of mature cytotoxic cells, and R is the

concentration of Tregs. In addition, P is the concentration of the positive growth

cytokine IL-2.
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µ

Tregs

and transition into helper T cells. 
 

Figure 3.1: Diagram of the adaptive regulation with T cell switching model. The
compartments are represented as follows: A0: immature APCs, A1: mature APCs,
H0: näıve helper T cells, H: mature helper T cells, K0: näıve effector T cells, K:
mature cytotoxic T cells, P : IL-2 cytokine, and R: regulatory T cells. Note that
each compartment has an associated death rate, which is not represented in the
diagram.
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compartments are represented as follows: A0: immature APCs, A1: mature APCs,
H0: näıve helper T cells, H: mature helper T cells, K0: näıve effector T cells, K:
mature cytotoxic T cells, P : IL-2 cytokine, and R: regulatory T cells. Note that
each compartment has an associated death rate, which is not represented in the
diagram.
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Our model of adaptive regulation with regulatory T cell switching is thus given

by the following equations:

Ȧ0(t) = sA − d0A0 − a(t)A0(t), (3.1)

Ȧ1(t) = a(t)A0(t)− d1A1(t), (3.2)

Ḣ0(t) = sH − δ0H0(t)− kA1(t)H
0(t), (3.3)

Ḣ(t) = 2m1kA1(t− σ1)H0(t− σ1)− kA1(t)H(t) + 2kA1(t− ρ1)H(t− ρ1)

+ µ
R(t)

1 + dP (t)
− (δH + r)H(t)− kR(t)H(t), (3.4)

K̇0(t) = sK − δ0K0(t)− kA1(t)K
0(t), (3.5)

K̇(t) = 2m2kA1(t− σ2)K0(t− σ2)− kEP (t)K(t) + 2kP (t− ρ2)K(t− ρ2)

− δKK(t)− kR(t)K(t), (3.6)

Ṗ (t) = r1H(t) + r2K(t)− δPP (t)− kP (t)K(t)− kP (t)R(t), (3.7)

Ṙ(t) = rH(t) + 2kP (t− ρ1)R(t− ρ1)− kP (t)R(t)

− µ R(t)

1 + dP (t)
− δHR(t). (3.8)

A0 is the concentration of APCs at the site of infection and A1 is the con-

centration of APCs that have matured and begun presenting antigen in the lymph

node. The variable H0 is the concentration of näıve helper T cells. H is the con-

centration of mature helper T cells. K0 is the concentration of näıve cytotoxic T

cells, K is the concentration of mature cytotoxic cells, and R is the concentration

of Tregs. The growth signal, P , is the concentration of interleukin-2.
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Equation (3.1) describes the immature APCs maintained throughout the body.

There is a constant supply rate, sA and proportional death rate, d0. The invasion

by an immunogen is represented by the rate, a(t) defined by (2.3), with which the

immunogen stimulates immature APCs to become mature APCs. The equation

governing mature APCs in the lymph node is given by (3.2). The source of these

cells is immature APCs that have been stimulated by antigen contact. These cells

have a natural death rate of d1.

Näıve T cell populations are described by Equations (3.3) and (3.5). Helper

and cytotoxic T cells have a supply rate of sH and sK , respectively, and die at a

proportional rate δ0. Each of these populations mature at a rate proportional to

their mass action interactions with mature APCs.

Equation (3.4) characterizes the mature helper T cell population. The first

term gives the rate at which activated näıve helper T cells become mature upon

completion of the minimal developmental program of m1 cell divisions. The duration

of this minimal developmental program is signified by the time delay σ1. The second

and third terms correspond to antigen dependent proliferation and represents the

rate at which these cells are stimulated by mature APCs for further division. The

time delay of ρ1 is the duration of one CD4+ cell division. The fourth term describes

the influx of helper T cells that have originated from regulatory T cells that have

lost their suppressive capabilities. This term is one of the additions to the model

of [59] due to the assumed Treg switching. Mature helper cells are removed from

the system by three methods: natural death at rate δH , differentiation into Tregs at

rate r, or by suppression due to interactions with Tregs.
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Equation (3.6) governs mature CTLs. The first term of this equation gives

the rate at which activated näıve CD8+ T cells enter the mature population after

finishing the minimal developmental program of m2 cell divisions. The duration

of the minimal developmental program is given by the time delay σ2. The second

term is the rate at which these cells are stimulated by IL-2 for further division,

and the third term is the rate at which cells reenter the mature CTL population

after dividing once in the time period ρ2. CTLs die naturally at a rate δK and are

suppressed by Tregs.

The dynamics of IL-2 concentration are given by Equation (3.7). This cytokine

is produced by mature helper and cytotoxic T cells at rates r1 and r2 respectively.

The cytokine has a proportional decay rate, δP . The final terms of this equation

describe the rates at which IL-2 is consumed by mature CTLs and Tregs.

The final equation, (3.8), describes the regulatory T cell compartment. The

first term is the rate at which mature helper T cells differentiate into Tregs. The

second and third terms describe the rate at which Tregs are stimulated by IL-2 for

further division. Upon stimulation, Tregs are removed from the system at time,

t, divide and return with a delay of ρ1. The fourth term describes the rate of

loss of regulatory function. As described in Section 2.3, this rate is dependent

on the availability of IL-2. Lower values of P (t) create higher rates of transition

from regulatory to helper T cells while higher prevalence of P (t) helps to sustain

regulatory cells and decreases the rate of transition. Tregs also have a natural death

rate δH .
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3.2.1 A Model of Immunodominance with Treg Switching

In response to multiple epitopes (antigen molecules that the immune system

recognizes), the immune response organizes into hierarchies in which the most dom-

inant epitope elicits the most prominent T cell response. This phenomenon is

known as immunodominance. If the most dominant epitope is removed, the sec-

ond most dominant response may expand to compensate. Immunodominance hi-

erarchies might change during subsequent presentations of the same antigen. The

precise mechanisms of immunodominance are not well understood and there are two

general schools of thought. Either T cells passively compete for resources (such as

growth factors, access to APCs, etc.), or T cells actively suppress each other, leading

to a structured response against the dominant epitopes [61].

There have been a number of mathematical models of immunodominance. For

instance, the model developed in [81] shows that for an antigenically homogeneous

virus population, there will be complete immunodominance, in which the immune

system responds to only one epitope. This model also predicts that multiple immune

responses against different epitopes can coexist. Kim et al. demonstrate how their

model can be adapted to describe the phenomenon of immunodominance in [59]. A

number of different scenarios are tested including, but not limited to, chronic antigen

stimulation, knocking out dominant epitopes, and secondary immune responses.

These simulations led to the conclusion that the determination of which epitope

will result in the dominant T cell response depends on both precursor frequency

and T cell reactivity to each epitope. Following [59], we extend our model (3.1) –
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(3.8) to account for n distinct immune epitopes. This leads to the following model:

Ȧ0(t) = sA − d0A0 − a(t)A0(t), (3.9)

Ȧ1(t) = a(t)A0(t)− d1A1(t), (3.10)

Ḣ0
i (t) = sH,i − δ0H0

i (t)− kiA1(t)H
0
i (t), (3.11)

Ḣi(t) = 2m1kiA1(t− σ1)H0
i (t− σ1)− kiA1(t)Hi(t) + 2kiA1(t− ρ1)Hi(t− ρ1)

+ µ
Ri

1 + dP
− (δH + r)Hi(t)− kRtotal(t)Hi(t), (3.12)

K̇0
i (t) = sK,i − δ0K0

i (t)− kiA1(t)K
0
i (t), (3.13)

K̇i(t) = 2m2kiA1(t− σ2)K0
i (t− σ2)− kEP (t)Ki(t) + 2kiP (t− ρ2)Ki(t− ρ2)

− δKKi(t)− kRtotal(t)Ki(t), (3.14)

Ṗ (t) = r1Htotal(t) + r2Ktotal(t)− δPP (t)− kP (t)Ktotal(t)− kP (t)Rtotal(t), (3.15)

Ṙi(t) = rHi(t) + 2kP (t− ρ1)Ri(t− ρ1)− kP (t)Ri(t)

− µ Ri(t)

1 + dP (t)
− δHRi(t). (3.16)

Here, we consider T cell clones i = 1...n. For näıve T cells, mature T cells,

and regulatory T cells, there is a separate equation for each epitope, denoted by

the subscript i. Each clone has an individual kinetic rate, ki. Although regulatory

T cells are recruited with respect to a specific epitope, their suppressive activity is

assumed not to be antigen specific. Thus, the suppressive terms are proportional

to the mass action interactions with all regulatory cells, Rtotal =
n∑
i=1

Ri, regardless

of the epitope of origin. Similarly, IL-2 is not epitope specific in its actions and the

production of this cytokine is proportional to the total number of IL-2 producing
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cells in the system and grows with respect to Htotal =
n∑
i=1

Hi and Ktotal =
n∑
i=1

Ki.

3.3 Results and Simulations

We solve equations (3.1) – (3.8) numerically using Matlab’s DDE solver, dde23.

Parameter values for the model are given in Table 3.1. Most parameters were ob-

tained from [59] to which we refer for full justification. The parameters for µ and d

are approximated based on their contribution to the dynamics of the system. Figure

3.2 shows the evolution of the APC and CTL populations. Figure 3.2(a) demon-

strates that immature APCs are able to mature within approximately 2.5 days of

the initiation of the immune response. Consistent with the biological findings of [75]

and [108], the entire näıve CTL population is recruited to participate in the immune

response within 1 day of the start of simulation. Also, coinciding with experimental

measurements showing that the T cell response peaks at 8 days after initiation [31],

the simulation also demonstrates a peak CTL response at day 8.

We consider the consequences of positive and negative signals received by

CTLs in Figure 3.3. Here we study how cytotoxic T cells behave relative to IL-2

and regulatory T cells. Initially, IL-2 levels rise due to the increase in the number of

mature helper T cells (not shown). Further divisions past the minimal developmen-

tal program require the consumption of IL-2. Hence, as CTLs complete the minimal

development program, they begin to consume IL-2, leading to a decrease in IL-2 con-

centration. Corresponding to the peak CTL response is the initiation of regulatory

T cell proliferation. This rise in Tregs contributes to ending the CTL response in
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Description Estimate

A0(0) Initial concentration of immature APCs 10

H0(0) Initial concentration of näıve CD4+ T cells 0.06

K0(0) Initial concentration of näıve CD8+ T cells 0.04

sA Supply rate of immature APCs 0.3

d0 Death rate of immature APCs 0.03

b Duration of antigen availability 10

c Level of APC stimulation 2

d1 Death rate of mature APCs 0.8

sH Supply rate of näıve CD4+ T cells 0.0018

sE Supply rate of näıve CD8+ T cells 0.0012

k Kinetic coefficient 5

δ0 Death rate of näıve T cells 0.03

δH Death rate of mature helper T cells 0.23

δK Death rate of mature cytotoxic T cells 0.4

m1, m2

Number of divisions in minimal
development program for helper T cells 2, 7
and CTLs, respectively

σH , σK
Duration of minimal developmental program 1.46, 4
for helper T cells and CTLs, respectively

ρH , ρK
Duration of one T cell division 11/24, 1/3
for helper T cells and Tregs, respectively

kE kinetic coefficient for CTL-Treg interactions 20

r1 Rate of IL-2 secretion by mature helper T cells 10

r2 Rate of IL-2 secretion by mature CTLs 1

δP Decay rate of free IL-2 5.5

r
Rate of differentiation of helper T cells
into regulatory T cells 0.02

d magnitude of dependence of Treg switching on IL-2 10

µ Rate of regulatory T cell switching 5

Table 3.1: Estimates of parameters for model (3.1) – (3.8). Concentrations are
measured in k/mm3. Time is measured in days. Initial conditions not explicitly
given in the table are zero.
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(a) Immature and mature APCs.
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(b) Näıve and mature CTLs

Figure 3.2: Simulation of (3.1) – (3.8) with parameters given in Table 3.1. The
time evolution of antigen presenting cells and cytotoxic T cells are shown in Figures
3.2(a) and 3.2(b), respectively.
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Figure 3.3: Time evolution of cytotoxic T cells, regulatory T cells and IL-2 in a
simulation of (3.1) – (3.8) with parameters given in Table 3.1.
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two ways. First, direct contact between Tregs and CTLs removes CTLs from the

system. Second, because both Tregs and CTLs consume IL-2 as part of their divi-

sion processes, competition for this cytokine reduces its availability, hindering the

ability of CTLs to continue dividing.

We simulate the experiments of Badovinac in Figure 3.4. Here, we vary the
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Figure 3.4: Numerical experiment reflecting the biological experiments performed
by Badovinac in [7]. The maximal mature CTL concentration is considered as a
function of the initial näıve CTL concentration.

concentration of initial näıve CTLs, K0(0), and note the maximum mature CTL

concentration during the simulation. Similar to Badovinac, we perform this simula-

tion over a group of initial concentrations ranging over 4 orders of magnitude. Our

results show that over this range of initial concentrations, there is a change in peak

response that varies by 1 order of magnitude. This is on par with the experimental

results showing that a 10,000-fold change initial conditions led to a 13-fold change in

peak response [7]. This is an improvement over the results of [59] in which a range
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of 4 magnitudes in initial conditions led to a change of 3 orders of magnitude in

peak response. We conclude that in comparison to the models presented in [59], the

inclusion of Treg switching increases the system’s robustness to initial conditions.

To study the impact of the regulatory T cell switching parameter, µ, on the

dynamics of the system, we follow the techniques used to study equations (2.1) –

(2.2) in Section 2.4. These results are shown in Figure 3.5. In Figure 3.5(a), we

show the maximal number of CTLs as a function of µ. Unlike the results shown in

Figure 2.8, this function of µ appears to be monotonic. However, it is clear that

there is a more significant change in peak CTLs per change in µ for values of µ less

than 5. We also consider the maximal ratio of Tregs to CTLs when choosing a value

for µ. In Figure 3.5(b), we show the maximal Treg to CTL ratio as a function of

µ. As discussed in Chapter 2, we expect this ratio to be in the range 0.1 – 1. We

concentrate on ratios that lie in the center of this range and hence consider µ values

between 4 and 10 (corresponding to ratios between .6 and .41).
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(a) Maximum cytotoxic T cell concentration as
a function of µ.
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(b) Maximum ratio of Treg to CTL concentra-
tion as a function of µ.

Figure 3.5: Graph depicting how the Treg switching rate, µ, affects the maximum
CTL concentration (Figure 3.5(a)) and Maximum Treg to CTL ratio (Figure 3.5(b)).
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3.3.1 Simulations of Immunodominace

We simulate equations (3.9) – (3.16) to consider multiple T cell clones (epi-

topes) responding to the same target at once. Each epitope is characterized by its

reactivity to the target antigen, ki, and its initial näıve CTL concentration, K0
i (0).

The theory of immunodominance states that when faced with multiple epitopes, the

immune system will primarily respond in accordance with a dominant epitope. If

the most dominant epitope is removed (the so-called knock out experiment), then

it is possible to have greater expansion of the less dominant epitopes to compensate

for the missing epitope.

We simulate knock out experiments in Figures 3.6 and 3.7. The immune

response to multiple clones is simulated by varying the initial CTL concentrations

of the clones (Figure 3.6) or the reactivities (Figure 3.7). Epitopes are then “knocked

out” one by one following the order of their dominance.

In Figure 3.6, we simulate four T cell clones, each with equal reactivities, ki =

20 and initial concentrations: K0
1(0) = 0.04, K0

2(0) = 0.01, K0
3(0) = 2.5× 10−3, and

K0
4(0) = 6.25× 10−4. Figure 3.6(a) shows a simulated immune response to all four

clones. The response falls into a hierarchy based on the initial T cell concentration

with Clone 1 remaining most dominant and Clone 4 remaining the least dominant.

Figure 3.6(b) shows the result of a single knock out, in which Clone 1 is no longer a

part of the simulation. Again, the immune response falls into a hierarchy dependent

on initial concentration. Of interest is the fact that the response to Clone 2 almost

quadruples when compared to the response elicited by Clone 2 in Figure 3.6(a).
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(a) All four clones: Clones 1,2,3 and 4.
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(b) Single knock out: Clones 2,3 and 4.
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(c) Double knock out: Clones 3 and 4.
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(d) Triple knock out: Clone 4, alone.

Figure 3.6: Simulated knockout experiment for four T cell clones. Each clone has
equal reactivity, ki = 20. Initial concentrations are: K0

1(0) = 0.04, K0
2(0) = 0.01,

K0
3(0) = 2.5× 10−3, and K0

4(0) = 6.25× 10−4.
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(a) All four clones: Clones 1,2,3 and 4.
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(b) Single knock out: Clones 2,3 and 4.
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(c) Double knock out: Clones 3 and 4.
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(d) Triple knock out: Clone 4, alone.

Figure 3.7: Simulated knockout experiment for four T cell clones. Each clone has
equal initial concentration, K0

i (0) = 0.01. Reactivities for clones are: k1 = 40,
k2 = 20, k3 = 10, k4 = 5.

Despite the an initial concentration four times less that Clone 1, if Clone 1 is absent,

the response to Clone 2 is able to compensate and produce a robust response similar

in both timing and magnitude to the response garnered by Clone 1 in Figure 3.6(a).

Similarly, if Clones 1 and 2 are removed, Clone 3 is able to compensate with a

10-fold increase in response in Figure 3.6(c) when compared to Figure 3.6(a). For

Clone 4, when Clones 1,2 and 3 are removed, the response is approximately 25 times

stronger in Figure 3.6(d) when compared to 3.6(a).
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Figure 3.7 shows simulations for a knockout experiment in which each epitope

has the same initial concentration, K0
i (0) = 0.01 and varying reactivities of k1 = 40,

k2 = 20, k3 = 10, and k4 = 5. We want to consider how this variation in reactivities

effects knock out experiments. Figure 3.7(a) shows a simulated immune response to

all four clones. As expected, the response falls into a hierarchy based on the initial

T cell concentration with Clone 1 being the most dominant and Clone 4 being the

least. A single knock out of Clone 1 is simulated in Figure 3.7(b). Different than

the knock out simulation in Figure 3.6(a), there is no clear compensation from any

of the remaining clones. Reactions to Clones 2, 3, and 4 are minimally increased

in Figure 3.7(b) than in Figure 3.7(a). Similar results are seen in Clones 3 and 4

when Clones 1 and 2 are removed (Figure 3.7(c)). Interestingly, the triple knock out

simulation does lead to Clone 4 expanding to compensate for the missing epitopes.

In fact, the response to Clone 4 alone (Figure 3.7(d)) is stronger than the response to

all four clones (Figure 3.7(a)). This suggests that, in the case of varying reactivities,

the relations that define immunodominant hierarchies may be more complex than

the linear scaling suggested in [59].

We continue our study of the effects of Treg switching on immunodominance

in Figure 3.8. As in Figure 3.6, we consider again the knock out experiment with

equal reactivities and varying initial T cell concentrations. To characterize the effects

of Treg switching, we consider the same knock out experiments for different Treg

switching magnitudes (µ = 2, µ = 4, and µ = 6). As expected from our previous

study, increasing the value of µ increases the magnitude of the peak response of

CTLs. Also, for each value of µ considered, there is significant expansion of less

59



0 5 10 15
0

10

20

30

40

Time (days)

C
TL

 C
on

ce
nt

ra
tio

n 
(k

/m
m

3 )

 

 

Clone 1
Clone 2
Clone 3
Clone 4

Student Version of MATLAB

(a) All four clones. µ = 2.
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(b) All four clones. µ = 4
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(c) All four clones. µ = 6
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(d) Single knock out. µ = 2.
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(e) Single knock out. µ = 4
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(f) Single knock out. µ = 6
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(g) Double knock out. µ = 2.
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(h) Double knock out. µ = 4
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(i) Double knock out. µ = 6
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(j) Triple knock out. µ = 2.

0 5 10 15
0

10

20

30

40

Time (days)

C
TL

 C
on

ce
nt

ra
tio

n 
(k

/m
m

3 )

 

 

Clone 4

Student Version of MATLAB

(k) Triple knock out. µ = 4
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(l) Triple knock out. µ = 6

Figure 3.8: Simulated knockout experiment for four T cell clones. Each clone has
equal reactivity, ki = 20. Initial concentrations are: K0

1(0) = 0.04, K0
2(0) = 0.01,

K0
3(0) = 2.5 × 10−3, and K0

4(0) = 6.25 × 10−4. Simulations are shown for µ = 2
(left), µ = 4 (center), and µ = 6 (right).
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dominant epitopes to compensate for the removal of more dominant epitopes. We

take a closer look at the effects of µ on the ability of T cell clones to expand in such

an experiment in Table 3.2. Here, for each clone and value of µ, we consider the peak

CTL concentration when that clone is the most dominant epitope. We then divide

by the peak response of the same clone when it is the least dominant epitope. We

term this the “multiplicative expansion factor”. This factor characterizes the ability

of a clone to expand and compensate upon becoming the most dominant epitope.

As expected, comparing values across the columns of Table 3.2 shows that less

dominant epitopes have a greater capacity to compensate for knocked out epitopes.

Comparing values down each column characterizes how µ affects the ability of a

particular clone to expand. It is interesting to note that for the same clone, µ

appear to increase the ability of the T cell clone to expand. For example, Clone 4

is capable of a larger expansion when µ = 6 when compared to its expansion when

µ = 2.

Multiplicative Expansion Factor

µ Clone 2 Clone 3 Clone 4

2 3.19 10.27 33.05

4 3.25 10.69 34.68

6 3.31 11.08 36.24

Table 3.2: Multiplicative expansion factors for the simulations shown in Figure 3.8.

We now study the effects of Treg switching in the case of varying cell reactiv-

ities. The results are shown in Figure 3.9. We consider knock out experiments for
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different Treg switching magnitudes (µ = 2, µ = 4, and µ = 6) and Clones 1 – 4

with reactivities k1 = 40, k2 = 20, k3 = 10, and k4 = 5, respectively. As expected

from our previous study, the effects of removing a clone are minimal for all but the

triple knock out simulation. The multiplicative expansion factor for these simula-

tions is given in Table 3.3. The multiplicative factors for Clones 2 and 3 indicate

that little immune compensation takes place during these simulations. In particular,

for µ = 2 and µ = 4, the expansion factor of less than 1 implies that the response

to Clone 2 decreases in response to removing Clone 1. However, consistent with

the results shown in Table 3.2, increasing µ also increases the expansion factor of a

clone, although not as significantly as in the cases shown in Table 3.2.

Multiplicative Expansion Factor

µ Clone 2 Clone 3 Clone 4

2 0.98 1.07 1.53

4 0.99 1.10 1.65

6 1.00 1.14 1.80

Table 3.3: Multiplicative expansion factors for the simulations shown in Figure 3.9.
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(a) All four clones. µ = 2.
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(b) All four clones. µ = 4
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(c) All four clones. µ = 6
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(d) Single knock out. µ = 2.
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(e) Single knock out. µ = 4
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(f) Single knock out. µ = 6
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(g) Double knock out. µ = 2.
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(h) Double knock out. µ = 4
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(i) Double knock out. µ = 6
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(j) Triple knock out. µ = 2.
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(k) Triple knock out. µ = 4
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(l) Triple knock out. µ = 6

Figure 3.9: Simulated knockout experiment for four T cell clones. Each clone has
equal initial concentration, K0

i (0) = 0.01. Reactivities for clones are: k1 = 40,
k2 = 20, k3 = 10, k4 = 5. Simulations are shown for µ = 2 (left), µ = 4 (center),
and µ = 6 (right).
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3.4 Discussion

In this chapter, we extended the work presented in Chapter 2 concerning im-

mune regulation and regulatory T cell switching. In this work, we added a mecha-

nism of Treg switching to the DDE model of [59]. The basic principles of regulatory

T cell switching described in Chapter 2 were shown to hold within the context of

this more complex model and the addition of this mechanism was shown to improve

certain aspects of the immune response studied in [59]. An improvement of this

model over past models of the immune response was seen when considering how

the immune response scales with respect to initial T cell concentrations. Consistent

with biological experiments, varying initial T cell concentrations over 4 orders of

magnitude led to a change in the peak immune response that varied by 1 order of

magnitude. Also, consistent with results found in Chapter 2, we were also able to

identify a plausible range for the rate of Treg switching, µ. Further experiments on

the rates of Treg switching could contribute to obtaining a more accurate approxi-

mation of this value.

This model was also used to study the phenomena of immunodominance. Im-

mune responses to multiple epitopes were shown to be able to coexist. Although the

response to the most dominant epitope was shown to suppress the response to other

epitopes, this model does not exhibit the winner-take-all dynamic that is seen in

some mathematical models of immunodominance (see [81]). Knock out experiments

were numerically simulated in two scenarios; one in which T cell clones vary in their

initial concentrations and another in which they vary in cell reactivities. Immune
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compensation of one epitope in response to the removal of a more dominant epitope

was seen in the case of T cell clones with varied initial concentrations. In the case of

varied cell reactivities, immune compensation was only seen in the triple knock out

simulation. This suggests that further study is required in order to determine the

relationship between cell reactivity and immunodominance hierarchies. An investi-

gation of the effects of µ on immunodominance hierarchies showed that increasing

µ not only increases the magnitude of immune response, it also increases the ability

of T cell clones to expand within the immunodominance hierarchy.
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Chapter 4

The Enhancement of Tumor Vaccine Efficacy by Immunotherapy

4.1 Introduction

Current cancer therapies predominantly focus on surgery, chemotherapy and

radiotherapy; each of which carries major side-effects. The immune system is not

always efficient in providing an adequate response to cancer, since cancer cells may

not be easy to identify, and they use various immuno-suppression techniques to avoid

the immune response (see Table 1.1). Recently, there has been an increased interest

in improving the ability of the autologous immune response to target tumors, an

approach that is generally being referred to as “immunotherapy.”

Although animal models have demonstrated that humoral mechanisms may be

relevant to immunotherapy, much of the promising work in tumor immunotherapy

has been focused on T-cell-mediated, antigen-specific vaccines. Previous research

has shown that through cellular immunotherapy, T cells can destroy large, estab-

lished tumors [91]. Over the years, researchers have taken various approaches to

tumor immunotherapy. Among these approaches are tumor cell-based vaccines,

peptide-based vaccines, virus-based vaccines, DNA-based vaccines, and dendritic

cells vaccines; each of which have met varying degrees of success at reducing or

eliminating tumors (see the review papers [33, 91] and the references therein).

This work highlights how immunotherapy might be used to overcome the
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effects of two regulatory agents exploited by cancer: regulatory T cells and the

Transforming Growth Factor (TGF)-β protein. TGF-β is a protein that controls

proliferation, cellular differentiation, and other functions in most cells. It acts as

an anti-proliferation factor in normal epithelial cells [24]. Experimental evidence

has shown that TGF-β can act as both a tumor suppressor and stimulator [86]. In

early stages, it acts directly on cancer cells to suppress their growth. As the tu-

mor progresses, TGF-β stimulates tumor progression by suppressing immune cells

and promoting factors that contribute to tumor metastasis. High levels of TGF-β

dampen the function and frequency of antigen presenting cells, cytotoxic T cells,

and helper T cells. Also, TGF-β (in combination with IL-2) has been implicated

in inducing an increased number of CD4+CD25+Fox3p+ regulatory T cells seen

in tumors [44]. These regulatory T cells (Tregs) modulate the function of effector

cells rendering them unable to continue their cytotoxic activity, leading to a weak

or non-existent immune response to cancerous cells [14, 94].

The immunosuppressive effects of TGF-β on immune cells strongly support

the development of TGF-β inhibitors to treat cancer. Several inhibitors of TGF-β

are in various stages of development (see [44] and the references therein). Several

clinical trials have evaluated TGF-β inhibition in cancer patients with some promis-

ing results. Unfortunately, while a few studies have shown the beneficial effects of

anti-TGF-β in tumor treatment (see [9, 10]), Terabe et al. demonstrate that deple-

tion of TGF-β is not always sufficient to elicit an effective immune response against

cancerous cells [44, 106]. Using a mouse model, Terabe et al. showed that treat-

ment with anti-TGF-β alone does not enhance the immune response. However, an
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anti-TGF-β treatment did appear to facilitate an enhanced immune response when

combined with an immune-boosting vaccine.

The goal of our present study is to understand part of the complex interplay

between cancer, the immune system, and the immunoregulatory mechanisms that

lead to ineffective immune responses. More specifically, we are interested in quanti-

fying the effects that anti-TGF-β and vaccine treatments might have on the stability

of the tumor-immune dynamic and how the combined treatment might contribute

to tumor clearance as opposed to tumor escape. In order to understand how the

suppression of regulatory mechanisms might affect a cancer vaccine, we develop a

mathematical model to analyze the effects of anti-TGF-β treatment when used in

conjunction with a vaccine as treatments for tumor growth. This is viewed as a step

in developing a framework within which experimentalists may test treatment proto-

cols prior to conducting their experiments. Our work is based on the experiments

of [106].

A number of mathematical models have been developed to describe tumor-

immune dynamics. A review of non-spatial tumor-immune models can be found in

[38]. ODE models provide a framework within which one can explore the interactions

among tumor cells and the alternate agents (such as immune cells, healthy tissue

cells, cytokines, etc.). A general, non-spatial tumor-immune model considers an

effector cell population (CTLs, NK Cells, etc.) interacting with tumor cells. In

the earliest models, these interactions are described by two equations, where the

immune cells play the role of the predator, while the tumor cells are the prey [69].

A framework for all such models is developed and analyzed in [36]. Many models
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incorporate different immuno-therapeutic strategies such as injection of cytokines

[22, 63], transfer of effector cells [63], or immunization with dendritic cells [23].

There are several mathematical models that specifically incorporate the effects

of TGF-β on tumor development [20, 26, 67, 76, 89, 112]. One such model that

considers the effects of TGF-β on tumor growth while also including a treatment

that consists of constant infusion of exogenous CTLs is developed in [66]. The model

developed in [62] specifically considers disrupting TGF-β production as a method

of tumor treatment. Their mathematical model describes tumor growth, immune

escape, and anti-TGF-β treatment. In contrast, this work mathematically studies

a combined therapy through TGF-β inhibition and CTL vaccine.

The structure of this chapter is as follows: In Section 4.2.1, we describe the

experimental background that was used as a basis for this work. In Section 4.2.2, we

present an ODE model of tumor growth that is then used to investigate the effects

of vaccinations and TGF-β inhibition. Model simulations and a stability analysis

are included in Section 4.3. The main results for the four treatment regimes are

shown in Figure 4.2. Closing remarks and directions for future work are given in

Section 4.4. The results of this chapter were accepted for publication in the Bulletin

of Mathematical Biology.
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4.2 A Model of Tumor Vaccine Enhancement by TGF-β Inhibition

4.2.1 Biological Background

Our mathematical model is based on the experimental data presented in [106].

In this study, Terabe et al. examined whether TGF-β neutralization can potentiate

immune responses caused by a CTL-inducing vaccine. Their goal was to determine

the conditions under which this enhanced immune response inhibits and/or elim-

inates tumor growth in a TC1 mouse tumor model. This particular tumor line

expresses the human papilloma virus (HPV) E6 and E7 genes (i.e. the tumor is

slightly immunogenic) and manifests in lung epithelial cells. Twenty thousand can-

cer cells were injected into the right flank of the mouse and four days after tumor

challenge, mice were immunized with HPV peptide. The TGF-β inhibitor used for

experiments was 1D11; a murine anti-TGF-β monoclonal antibody that neutralizes

all three isoforms of TGF-β. This antibody was shown to have minimal side effects

in normal, tumor-free animals. The main results of [106] can be summarized as

follows:

1. Blocking TGF-β enhances the effects of an anti-tumor peptide vaccine. In the

case where both treatments were given, the tumor burden was significantly

lower than any other treatment option tested; and 40% of mice remained

tumor free for at least 55 days after tumor challenge.

2. Anti-TGF-β enhances the quantity and the quality of the vaccine-induced

CD8+ CTL responses.
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3. The enhancement of the immune response was shown to not be due to:

• suppression of CD4+CD25+ Tregs.

• suppression of IL-17 producing T cells.

• Natural Killer T cell-induced TGF-β production by Myeloid-derived Sup-

pressor Cells.

The conclusion of the experimental study in [106] was that monotherapy with

anti-TGF-β did not have a significant impact on tumor growth. The anti-TGF-β

did, however, significantly enhance the efficacy of the peptide vaccine by inducing an

increased number of tumor antigen-specific CTLs, which is critical for the effective

elimination of tumors.

4.2.2 Mathematical Model

In order to quantitatively study the experimental setup of [106], we developed

a mathematical model. In this model, we follow the dynamics of the tumor size,

denoted T (t); TGF-β concentration, denoted B(t); activated cytotoxic effector cells,

denoted E(t); regulatory T cells, denoted R(t); and vaccine-induced cytotoxic ef-

fector cells, denoted V (t). A diagram of the different interactions between these

elements is shown in Figure 4.1.
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Figure 4.1: A diagram of the interactions between the different populations in the
mathematical model of tumor vaccine and TGF-β inhibition.

Our mathematical model is written as the following system of ODEs:

dT

dt
= a0T (1− c0T )− δ0

ET

1 + c1B
− δ0TV, (4.1)

dB

dt
= a1

T 2

c2 + T 2
− dB, (4.2)

dE

dt
=

fET

1 + c3TB
− rE − δ0RE − δ1E, (4.3)

dR

dt
= rE − δ1R, (4.4)

dV

dt
= g(t)− δ1V. (4.5)

Equation (4.1) describes the tumor size measured in mm2. The tumor follows

logistic growth dynamics with growth rate, a0, and carrying capacity, 1/c0. The
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second term on the RHS of (4.1) describes the ability of immune cells to induce

apoptosis of tumor cells. This clearance rate is inversely related to the amount

of TGF-β present in the system (i.e. TGF-β diminishes CTL ability to induce

apoptosis in tumor cells). The last term defines the action of vaccine cells on tumor

cells. Since vaccine cells are considered to be fully differentiated, they are assumed

to be unaffected by the inhibitory effects of TGF-β. Vaccine cells induce the death

of tumor cells at a rate δ0.

The dynamics of the concentration of TGF-β cytokine, measured in ng/ml,

are described in equation (4.2). Experimental evidence has shown that TGF-β

production by tumor cells is low for small tumors but “switches” on as the tumor

grows; promoting immune evasion [83]. The use of equation (4.2) as a model for

TGF-β production is described in [62]. As in [62], the maximum rate of TGF-β

production is represented by the parameter a1; c2 is the critical tumor size at which

the switch occurs; and the decay rate of the protein is d.

Equation (4.3) describes the dynamics of the number of effector T cells in the

system. The first term represents immune recruitment. Effector cells are activated

proportionally to the number of interactions with tumor cells. This term is multi-

plied by (1 + c3TB)−1 to account for the combined negative effect of tumor growth

and TGF-β production on immune recruitment and proliferation. The parameter c3

represents the magnitude of the inhibition associated with tumor growth and TGF-

β. A proportion, r, of effector cells differentiate into regulatory T cells (a process

that is further discussed in the next paragraph). The final term of this equation

models the removal of effector T cells from the system. These cells have both a
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natural death rate; assumed to be the natural death rate for all effector cells, δ1;

and a death/removal rate that is proportional to the mass action interaction with

regulatory T cells, δ0. These magnitudes are assumed to be the same.

Equation (4.4) describes the number of Tregs in the regulatory T cell com-

partment. Though regulatory T cells originate from both CD4+ and CD8+ T cells

[96], this model follows the principles of minimal design by considering only CD8+

effector T cells as precursors to Tregs. The feedback mechanism in this model ap-

plies as long as CTLs induce the production and/or recruitment of Tregs. A similar

approach to simplifying the modeling adaptive regulation was taken in [58, 114].

In the model, Tregs differentiate from (or are recruited by) effector T cells at a

rate r. The second term is the rate at which Tregs die. These cells provide negative

feedback to the effector T cell population. Regulatory T cells should be considered

as removing effector T cells from the system rather than killing them. While it is

possible that effector T cells die upon interaction with regulatory T cells, that is not

necessarily the only explanation. As suggested in [60], it is also possible that some

effector cells might turn into memory cells, some might lose their effector function,

and others might migrate away from the lymph node and carry out effector functions

in the periphery. For the purposes of the model, suppressed cells, cells that have

migrated, and dead cells are irrelevant to the dynamics, so we consider them all to

be removed from the system.

Equation (4.5) describes the vaccine. The vaccine is modeled as an influx of

activated tumor-specific cytotoxic T cells. These cells are impulsively introduced

into the system at day 3 and are considered to be fully differentiated (i.e. no longer
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dividing). If the vaccine is given,

g(t) = g0δ(t− 3),

where g0 = 5, 000 and δ(t) is the Dirac delta function. If the vaccine is withheld,

g(t) ≡ 0.

Vaccine cells have a natural death rate of δ1. This aspect of the model deviates from

the experimental setup. In the experiment, a peptide vaccine is given to induce the

production and proliferation of CTLs, while here, we model the vaccine as a direct

injection of CTLs. The model vaccine is more in line with vaccination through

adoptive T cell transfer, and therefore, might make the model more adaptable to

experiments involving less antigenic tumors. Some of the consequences of this design

decision will be discussed in the Sections 4.3 and 4.4.

4.3 Results

In our simulations we consider the following four scenarios:

a. no treatment

b. vaccine treatment

c. anti-TGF-β treatment

d. combined anti-TGF-β and vaccine treatment.
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The list of the parameters used in our simulations is given in Table 4.1. The

parameters a0 and c0 were approximated using a nonlinear least squares fit to the

control data presented in [106]. Baseline values for a1, c2 and d were obtained from

[62]. The value for the immuno-suppressive effects of TGF-β, c1, was estimated

based on data presented in [106]. The rate of effector cells that differentiate into

regulatory cells, r, was given in [58] and falls in accordance with the range presented

in [96]. A parameter sensitivity analysis was performed on the model parameters.

The results of this analysis are presented later.

4.3.1 Simulations

Numerical solutions of (4.1)–(4.5) were obtained using Matlab’s ODE23 solver.

Starting with the initial measurements presented in [106], we begin our simulations

at Day 3 after tumor presentation and conclude all simulations on day 30. At the

initial time point, we assume that tumor antigenicity has led approximately 100

activated effector T cells to be present at the site of the tumor. This is consistent

with the number of mouse precursor CTLs presented in [16] in which they estimated

the number of Db GP33-specific CD8 T cells to be 2× 102.

Figure 4.2 shows results of our simulations in the four treatment regimes along

with the corresponding experimental data. The simulation and the control data to

which it was fit are shown in Figure 4.2(a). As previously mentioned, the control

data set was used to approximate some of the model parameters. We calibrated the

no-treatment model to follow the growth trend of the experimental data. While the
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Figure 4.2: The dynamics of the tumor size in four treatment regimes. Shown are
the results of the numerical simulations along with the experimental data from [106]
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precise timing of the observed phenomena is not captured by the present model,

it is the qualitative aspects of the increase and decrease in the tumor size that we

are seeking. The goal of this model is to capture the phenomena of tumor escape

with monotherapy, and the peak tumor size and tumor eradication in the case of

a combined therapy. These biological aspects are clearly captured by the current

model.

In Figure 4.2(b), the vaccine treatment is modeled as an addition of 5, 000

effector T cells to the vaccine equation at day 3 of simulation. These cells are

assumed to be resistant to TGF-β. In this case, there is a steady growth of the

tumor throughout the simulation. The vaccine facilitates conditions that lead to

a smaller tumor at the final time step. These cells do not multiply once added to

the system, and hence the benefit of the vaccine slowly diminishes at the natural

death rate for vaccine cells. This means that if the initial size of the vaccine is not

large enough to overpower the tumor growth, then the tumor will always escape

immunosurveillance.

We model TGF-β inhibition as an increase of c2 from 300 to 7, 000. This

effectively delays the “switch” of TGF-β production by approximately 8 days. The

results of this simulation are shown in Figure 4.2(c). In this case, we see that the

tumor remains small for the duration of TGF-β inhibition. However, soon after the

TGF-β levels begin to recover, tumor growth quickly becomes uncontrolled. Similar

results were seen for other values of c2. In simulation, we see that singular TGF-β

inhibition leads to a reduction in final tumor load at 30 days of simulation. This

initial delay of tumor growth differs from the original data in [106], however the
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final result of uncontrolled tumor growth remains similar.

The final case, Figure 4.2(d), shows the predictions of the model when both

TGF-β and vaccine treatments are administered. Similar to the experimental results

in [106], we see that a combined treatment is sufficient to induce tumor eradication.

Model simulations lead to agreement with experiments concerning the peak tumor

size. The timing of this maximum tumor size will be the addressed in the discussion.

Simulations show an initial phase of tumor growth, but at approximately day 21,

the immune system is able to clear the tumor. This suggests that such an outcome

is the result of long-term presence of CTLs provided by the vaccine, in combination

with the TGF-β inhibitor that provides an initial boost to the host’s native immune

system.

Figure 4.3 compares the tumor growth in all four treatment regimes. It is clear

that while monotherapy results in a slowing down of the tumor growth, the tumor

is still able to escape immunosurveillance and grow uncontrolled. Only in the case

of dual therapy is the immune system able to eradicate the tumor.

We show the dynamics of the individual populations in the control case and

the combined treatment case in Figure 4.4 and Figure 4.5. Figures 4.4(a) and

4.5(a) show how the tumor population changes over time. Figures 4.4(b) and 4.5(b)

demonstrate the dynamics of the TGF-β concentration. In the no-treatment scenario

4.4(b), we see that the TGF-β levels are increasing with the tumor size. These high

levels of TGF-β, particularly at later time points, contributes to the suppression of

the effector T cell concentration as seen in Figure 4.4(c). In the combined treatment

scenario, TGF-β levels are kept very low (see Figure 4.5(b)). This contributes to a
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Figure 4.4: Simulated population dynamics of the individual populations in the
control case: (a) Tumor size (mm2), (b) TGF-β concentration (ng/ml), (c) CTL
population (number of), (d) Treg population (number of).
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Figure 4.5: Simulated population dynamics of the individual populations with com-
bined treatment: (a) Tumor size (mm2), (b) TGF-β concentration (ng/ml), (c) CTL
population (number of), (d) Treg population (number of).
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robust immune response peaking on Day 16 with just under 140, 000 CTLs present

in the system (Figure 4.5(c)). The regulatory T cell populations are shown in

Figures 4.4(d) and 4.5(d). Though these regulatory cells are effective at ending the

immune response in both cases, the maximum ratio of regulatory cells to T cells

is 0.075 in the no-treatment case and 0.062 in the case of a combined treatment.

This aligns with the results of [106] which indicated that TGF-β inhibition does not

suppress Treg production, but it does increase the ratio of effectors to Tregs in each

of the treatment scenarios.

4.3.2 Equilibrium Analysis

We solve for the steady states of the control system by the usual manner of

setting the left hand sides of (4.1) – (4.4) equal to 0 and solving for T , B, R, and

E. The calculation for this is shown below.

We begin with the following system:

0 = a0T (1− c0T )− δ0
ET

1 + c1B
, (4.6)

0 = a1
T 2

c2 + T 2
− dB, (4.7)

0 =
fET

1 + c3TB
− rE − δ0RE − δ1E, (4.8)

0 = rE − δ1R. (4.9)

Case 1 T = 0 or B = 0:

A simple consideration of (4.7) shows T = 0⇔ B = 0.
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From (4.9), we get

0 = rE − δ1R,

i.e., E =
δ1
r
R. (4.10)

Combining T = B = 0 with equations (4.8) and (4.10), we obtain

0 =
−δ1
r
R(r + δ0R + δ1).

Hence, in Case 1, steady states will arise from two possible sub-cases: R = 0

or r + δ0R + δ1 = 0.

Case 1.1 R = 0.

From (4.10) it follows that R = 0⇔ E = 0. Hence, we have the all zero solution of

T = B = E = R = 0.

Case 1.2 r + δ0R + δ1 = 0:

0 = r + δ0R + δ1,

⇒ R =
−(r + δ1)

δ0
.

Since δ0, δ1, r > 0, we have R = −(r+δ1)
δ0

< 0. But we are only interested in

non-negative solutions. Hence this is not a biologically feasible solution.

Case 2 T 6= 0 and B 6= 0.
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Solving for B in equation (4.7) we obtain

B =
a1T

2

d(c2 + T 2)
. (4.11)

Case 2.1 E = 0 and R = 0.

Under these assumptions, (4.6) reduces to

0 = a0T (1− c0T ).

Hence, T = 1
c0

. Substituting into (4.11),

B =
a1(

1
c0

)2

d(c2 + ( 1
c0

)2)
=

a1
d(1 + c2c20)

.

Hence, we have obtained the tumor escape solution: T = 1/c0, B = a1
d(1+c2c20)

,

E = R = 0.

Case 2.2 E 6= 0 and R 6= 0.

We will first obtain two equations describing E in terms of T. We then proceed by

numerically obtaining solutions to this 2 equation system.
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We begin by substituting (4.11) into (4.6) and solving for E.

0 = a0T (1− c0T )− δ0
ET

a+ c1(
a1T 2

d(c2+T 2)
)
,

δ0E
a1c1T 2+d(c2+T 2)

d(c2+T 2)

= a0(1− c0T ),

δ0dE(c2 + T 2)

dc2 + T 2(a1c1 + d)
= a0(1− c0T ),

E =
a0(1− c0T )[dc2 + T 2(a1c1 + d)]

δ0d(c2 + T 2)
. (4.12)

We continue by substituting (4.11) into (4.8) and solving for E.

0 =
fT

1 + c3T ( a1T 2

d(c2+T 2)
)
− r − δ0r

δ1
E − δ1,

δ0r

δ1
E =

fT

1 + c3T ( a1T 2

d(c2+T 2)
)
− r − δ1,

E =
δ1fT

rδ0 + c3δ0ra1T 3

d(c2+T 2)

− δ1
δ0
− δ21
δ0r

,

E =
δ1fTd(c2 + T 2)

rδ0d(c2 + T 2) + c3δ0ra1T 3
− δ1
δ0
− δ21
δ0r

. (4.13)

We are looking for E and T such that both (4.12) and (4.13) are satisfied. In

Figure 4.6, we graph the function g(T) for the parameter values given by Table 4.1.

This function is obtained by subtracting the RHS of (4.12) and (4.13) from each

other and is defined as :

g(T ) =
a0(1− c0T )[dc2 + T 2(a1c1 + d)]

δ0d(c2 + T 2)
− δ1fTd(c2 + T 2)

rδ0d(c2 + T 2) + c3δ0ra1T 3
− δ1
δ0
− δ21
δ0r

.

(4.14)
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Figure 4.6: A graph of g(T ) (from (4.14)) for the relevant values of T . Visual
inspection shows g(T ) has two regions containing possible zeros. These regions of
interest are circled and labeled (I) and (II).

There are two areas of interest that possibly contain zeros. They are labeled

(I) and (II) in Figure 4.6. Area (I) of Figure 4.6 is shown in Figure 4.7(a), and

for the given parameters, (4.14) has no zeros in this region. Area (II) of Figure 4.6

is shown in Figure 4.7(b). Using bisection method, we numerically locate a zero at

T0 = 368.87. Substituting T0 into (4.12) or (4.13), yields E = −1.00052. Again,

we are only interested in steady states with non-negative values for all components.

Hence, this is not a biologically feasible solution and does not need to be further

considered.
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Figure 4.7: g(T ) graphed in the regions of interest circled in Figure 4.6.

In order to analyze the stability of these equilibrium points, we consider the

Jacobi matrix of (4.1) – (4.4) with V ≡ 0. It is as follows:



a0(1− 2c0T )− δ0E
1+c1B

δ0c1ET
(1+c1B)2

−δ0T
1+c1B

0

2Ta1c2
(c2+T 2)2

−d 0 0

fE
(1+c3TB)2

−fc3ET 2

(1+c3TB)2
fT

1+c3TB
− r − δ0R− δ1 −δ0E

0 0 r −δ1


(4.15)

The steady state analysis of the system revealed two feasible (non-negative)

steady states. Considering the eigenvalues of (4.15) when evaluated at these equi-

libria, the solution including maximum tumor capacity, T = 1/c0, B = a1
d(1+c2c20)

,

E = R = 0, is stable while the all zero, T = B = E = R = 0, solution is un-

stable. This implies that even in the case of successful treatment, simulations will

eventually lead to a non-zero tumor equilibrium. Hence, we consider treatment to

be successful if the size of the tumor is reduced to less than the size of one cell

or if the tumor is reduced to a “manageable” size for the duration of simulation.
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As previously mentioned, all other steady states contain at least one negative com-

ponent, implying that they are not feasible for the given biological system. This

implies that there is no “small-tumor” equilibrium in which a tumor is maintained

at a non-zero, non-lethal size by immune cells. In Figure 4.8, we present a phase

portrait displaying the relation between tumor size and effector cells when combined

treatment is simulated. Here we see that for tumors with high antigenicity, the tu-

mor load is reduced to near zero for a period of time before the immune response

is no longer able to control the tumor. For mildly antigenetic tumors, effector cells

are only mildly stimulated by the presence of the tumor and cannot impose tumor

shrinkage to manageable levels.
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Figure 4.8: Effector T cell versus tumor size phase portrait when combined treat-
ment is simulated with different levels of tumor antigenicity. Depending on the
antigenicity, the tumor load is reduced to near zero for a period of time before the
immune response is no longer able to control the tumor.
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To determine the parameters to which the model is most sensitive, we per-

formed a sensitivity analysis. This was done in a one-at-a-time fashion by varying

each parameter over a range of values centered around a baseline value and observ-

ing the size of the tumor at the end of 30 simulated days. Figure 4.9 shows the

results of this parameter sensitivity analysis with Figure 4.9(a) and Figure 4.9(b)

displaying the results for the no treatment case and the combined treatment case,

respectively. In the no treatment case, variations of parameters leads to very little

changes in the final tumor size. This shows that, for a wide range of cases, a lack

of treatment will lead to uncontrolled tumor growth. In the case of combined treat-

ment, the system was found to be sensitive to a1, the parameter quantifying the

maximal production rate of TGF-β, c2, the quantity describing the size at which a

tumor begins to produce TGF-β, and f , the quantification of a tumor’s antigenic-

ity. The system is most sensitive to the parameter f which aligns with the results

concerning the corresponding parameters in [29] and [62].
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(b) Combined Treatment Sensitivity Analysis. Baseline values: c1 = 100, a1 = 0.3, c2 = 7×103,
d = 7× 10−4, f = 0.62, c3 = 300, r = 0.01

Figure 4.9: Model sensitivity analysis. Done by varying each parameter over a range
of values centered around a baseline value and observing the size of the tumor at the
end of 30 simulated days. (a) No treatment case: variations of parameters leads to
very little changes in the final tumor size. (b) Combined treatment: the system was
found to be sensitive to a1, the parameter quantifying the maximal production rate
of TGF-β, c2, the quantity describing the size at which a tumor begins to produce
TGF-β, and f , the quantification of a tumor’s antigenicity.
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Due to the expression of the HPV E6 and E7 genes, the type of tumor consid-

ered for the model is considered to be reasonably antigenic. What happens if a less

antigenic tumor is considered? This case is considered in Figure 4.10. Here, we re-

duce the value of the tumor antigenicity parameter, f . As previously mentioned, our

sensitivity analysis suggests that the final tumor size is sensitive to this parameter.

Figure 4.10 shows the results of reducing f from 0.62 by 10% to 0.56. In this case,

there is a mild immune reaction, peaking around day 20 after tumor presentation.

This immune response is capable of reducing the size of the tumor. However, the

reduction of antigenicity causes the immune response to be unsustainable, leading

to the eventual unbounded growth of the tumor.
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Figure 4.10: A simulated tumor growth for a mildly antigenic tumor (f = 0.56)
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4.4 Discussion

The qualitative aspects of the simulations align with the data described in

[106]. Obtaining precise quantitative matches with the data proved difficult as the

data was presented as averages without error estimates or statistical measurements.

However, the general characteristics of each of the four cases has been captured

by the present model. For instance, in the case where both vaccine and TGF-β

inhibitors were given, the model predicts that the tumor size will reach its peak

on day 5 and tumor eradication will occur on day 21. The data suggests that

these events occur respectively on days 15 and 27. Also, unlike the data presented

by Terabe et al., in which TGF-β inhibition lead to no significant delay in tumor

growth, the model displays a slowed down (yet uncontrollable) tumor growth in the

case of a TGF-β treatment. Modifying the model to better capture the timing of

these events will be considered in future work. The choice of modeling the vaccine

as an adoptive T cell transfer as opposed to a peptide vaccine could be one of the

causes for the discrepancy in timing. In the model, T cells are immediately available

to begin killing tumor cells, where as in the case of a peptide vaccine there would

be a delay between the time of the vaccine and the time that newly recruited CTLs

would be activated and available. This design choice contributes to the lack of

need of delay differential equations and makes the model amendable to the study of

questions regarding adoptive T cell transfer.

The means by which tumors evolve is nontrivial and all aspects of tumor treat-

ment cannot be included in a single model. Our mathematical model highlights
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just one possible way of combining tumor treatments to promote tumor eradication

through an immune response. A number of biological experiments and mathematical

models have highlighted the fact that immunotherapy alone is not always effective

in eradicating a tumor [1, 22, 27, 33, 44, 62, 106]. Here we show how combined

immunotherapy treatments might work through different mechanisms to promote

tumor clearance. Simulations of model (4.1)–(4.5) show qualitative agreement with

the data in [106]. In the case of administering either the vaccine or the TGF-β

inhibitor, we see a temporary delay in tumor growth; but, this delay is not sus-

tainable over time. The vaccine alone is not enough to eradicate the tumor, and

though TGF-β is inhibited in the initial days of tumor presentation, the protein level

recovers soon thereafter, regaining its immunosuppressive effects. Tumor eradica-

tion requires a combination of therapeutic approaches. Our results suggest that the

vaccine allows for the development of a significant and long-term immune response

that is minimally affected by the TGF-β that is present at later time points. The

TGF-β inhibitor provides conditions that help the populations of immune cells to

expand during the initial phases of tumor presentation. One very pertinent follow

up question is: does one treatment amplify the other or do they act independently of

each other? The data collected in [106] seems to support the notion that one treat-

ment amplifies the other, but further study is required in order to reach a conclusive

understanding.

The results of this work provide an initial analytical framework for studying

immunotherapy via TGF-β inhibition in combination with vaccine treatment. Opti-

mally, future studies should be conducted in combination with experiments. Control
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of nonlinear processes will play a vital role in determining the effectiveness of these

treatments and in obtaining a protocol for their administration.
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Chapter 5

General Conclusions

Immune regulation is an essential component of the cell mediated immune

response. Failure of regulatory control of the immune system can lead to a number

of complications including autoimmune diseases and immune deficiency. Despite

significant study of these topics, many immunoregulatory mechanisms are not well

understood. In an effort to increase understanding of this topic, we use mathematical

models to study the dynamics of immune regulation with a focus on the role of

immune regulation in the primary immune response, immunodominance and tumor

growth.

In chapters 2 and 3 we developed mathematical models of the primary immune

response. We followed the hypothesis that regulatory T cells are an essential compo-

nent in suppressing a normal immune response and included adaptive regulation as

a key component of each of our models. We also highlighted the biological evidence

regarding the ability of regulatory T cells to lose their regulatory capabilities and

become immune promoting cells. In Chapter 2, we included the adaptive regulation

and regulatory T cell switching mechanisms in an ODE model. We demonstrated

that the model displays the expected expansion/contraction dynamics and con-

ducted a study of the effects of Treg switching. Active suppression by regulatory

T cells was shown to be a plausible mechanism of immune contraction. Negative
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feedback provided by regulatory T cells was able to control the immune expansion

and return the system to homeostasis. The regulatory T cell switching mechanism

was shown to increase the robustness of the system, allowing for recovery from an

unbalanced or even helper T cell deficient system.

A further exploration of these mechanisms was done in the context of a more

detailed DDE model of the immune response in Chapter 3. Here, we demonstrated

that when compared to previous mathematical models, our model shows increased

robustness with respect to precursor T cell frequencies. Consistent with results

found in Chapter 2, we identified a plausible range for the rate of Treg switching.

This model is also used to study the effects of regulatory T cell switching on immun-

odominance. Treg switching was shown to affect immunodominance hierarchies in

two ways. First, increasing the switching rate was shown to increase the magnitude

of the immune response within a T cell clone hierarchy. Also, larger values of this

rate were shown to increase the ability of weaker T cell clones to compensate for

more dominant clones that were removed.

There are many avenues for further study within the topic of immune regula-

tion. A spatial component can be added to the system by separating the lymph node

from the infected tissue. Different cells have different functionalities depending on

their environment and adding a spatial component would allow to account for these

different functionalities. In such a compartmental model, one of the main questions

to investigate would be whether regulatory cells are required at the infection site or

if their presence in the lymph nodes is sufficient to robustly regulate the system.

All of the models presented here model the response to acute infections. These
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models can be extended to study other occurrences such as chronic diseases or auto-

immunity. It is unclear how memory cells influence the regulation of the immune

system. Adding a memory T cell component is a key step in extending the appli-

cability of our models from short-term, viral infections to chronic illnesses. Finally,

regulatory T cells may play a key role in Human Immunodeficiency Virus (HIV)

infections. HIV mainly affects activated helper T cells, leading to insufficient levels

of these immune cells. Regulatory cells play a dual role in these infections. They

reduce the number of activated helper T cells in the body, decreasing the number of

possible targets for the virus. Yet this reduction also suppresses other mechanisms

by which the immune system might fight the virus. Modeling the role that these

cells play in HIV infections could lead to a better understanding of the nature of

this disease.

In Chapter 4, we highlighted how immunotherapy might be used to overcome

the effects of two immuno-regulatory agents exploited by cancer: regulatory T cells

and the Transforming Growth Factor (TGF)-β protein. Our aim with this model

was to understand part of the complexity of tumor immunology. Using the data

presented in [106], we developed a mathematical model to gain insight into the co-

operative interaction between anti-TGF-beta and vaccine treatments. Consistent

with experiments of [106], our model demonstrated that monotherapy is not suffi-

cient to eradicate a tumor and that tumor eradication requires the combination of

these therapeutic approaches. Our results suggest that the vaccine provides a long-

term immune response that is unaffected by the TGF-β present at later time points.

The TGF-β inhibitor provides conditions that help the populations of immune cells
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to expand during the initial phases of tumor presentation.

The alignment of our model with biological data suggests that this model

can potentially be used in guiding future experiments that are aimed at studying

immunotherapy as a treatment for cancer. The model can be potentially used to

determine an optimal protocol for the administration of these immunotherapeutic

approaches. To that end, optimal/suboptimal control of nonlinear processes will

play a vital role in determining treatment protocols. A mathematical model of

optimal control of multiple modes of tumor treatment is presented in [70]. Similar

techniques can be used to consider combined anti-TGF-β and vaccine treatments.

These theoretical protocols can then be followed by biological studies to determine

their effectiveness.
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