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Abstract: Lifestyle habits and insufficient sunlight exposure lead to a high prevalence of vitamin
D hypovitaminosis, especially in the elderly. Recent studies suggest that in central Europe more
than 50% of people over 60 years are not sufficiently supplied with vitamin D. Since vitamin D
hypovitaminosis is associated with many diseases, such as Alzheimer’s disease (AD), vitamin D
supplementation seems to be particularly useful for this vulnerable age population. Importantly, in
addition to vitamin D, several analogues are known and used for different medical purposes. These
vitamin D analogues differ not only in their pharmacokinetics and binding affinity to the vitamin D
receptor, but also in their potential side effects. Here, we discuss these aspects, especially those of the
commonly used vitamin D analogues alfacalcidol, paricalcitol, doxercalciferol, tacalcitol, calcipotriol,
and eldecalcitol. In addition to their pleiotropic effects on mechanisms relevant to AD, potential
effects of vitamin D analogues on comorbidities common in the context of geriatric diseases are
summarized. AD is defined as a complex neurodegenerative disease of the central nervous system and
is commonly represented in the elderly population. It is usually caused by extracellular accumulation
of amyloidogenic plaques, consisting of amyloid (Aβ) peptides. Furthermore, the formation of
intracellular neurofibrillary tangles involving hyperphosphorylated tau proteins contributes to the
pathology of AD. In conclusion, this review emphasizes the importance of an adequate vitamin D
supply and discusses the specifics of administering various vitamin D analogues compared with
vitamin D in geriatric patients, especially those suffering from AD.

Keywords: vitamin D; vitamin D derivatives; vitamin D analogues; Alzheimer’s disease; vitamin D
receptor; vitamin D binding protein; 1,25-dihydroxyvitamin D3; 1,25(OH)2D3

1. Clinical Relevance of Vitamin D and Its Analogues

Vitamin D is a lipophilic secosteroid, which plays an important role in the regulation
of the processes of phosphorus–calcium metabolism, the immune system, cell proliferation
and differentiation, and other crucial functions within the body. Furthermore, an adequate
supply of vitamin D is important for bone health. Vitamin D status, which can be measured
by the serum concentration of 25-OH vitamin D3, should be above 50 nmol/L, according to
the International Institute of Medicine. 25-OH vitamin D3 serum concentrations between
30 and 50 nmol/L are considered to be suboptimal and at concentrations below 30 nmol/L
vitamin D deficiency is present [1]. Vitamin D deficiency has a high prevalence world-
wide, for example, 40.4% of the European population has inadequate vitamin D levels
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(<50 nmol/L). Levels below 30 nmol/L have been reported in 13% of the European and
5.9% of the American populations [2,3]. These deficits can be attributed to an inadequate
supply of vitamin D via the diet, sun exposure, or supplementation, which may result from
poor lifestyle habits. Physical inactivity, a home bound lifestyle, or an unbalanced diet,
particularly in old age, can contribute to inadequate vitamin D serum concentrations [4].
Vitamin D deficiency is associated with various chronic diseases, such as diabetes or arterial
hypertension, and leads to bone mineralization disorders, including rickets in children or
osteoporosis and osteomalacia in adults (reviewed in detail in [5]). Furthermore, associa-
tions with neurological diseases such as Alzheimer’s disease (AD), Parkinson’s disease,
and multiple sclerosis, renal insufficiency, autoimmune diseases, and even cancer have
been discussed [6,7]. Therefore, several studies investigated the preventive and therapeutic
benefits of vitamin D supplementation. In addition to cholecalciferol (vitamin D3), ergocal-
ciferol (vitamin D2), and calcidiol (25-OH vitamin D3), which are still the most prescribed
vitamin D preparations, several synthetic vitamin D analogues have also been developed.
These drugs aim to act in special cases more efficiently, more selectively and have fewer
side effects due to structural modifications of vitamin D [8,9]. In this process, the basic
structure of vitamin D, which consists of an A-ring, a seco-B-ring, a CD-ring, and a side
chain, is modified at different points. For example, 19-nor analogues, such as paricalcitol,
have two hydrogen atoms in the A-ring at the 19-carbon atom instead of the exocyclic
methyl group. Maxacalcitol has an additional oxygen atom in the side chain. Vitamin D2
differs from D3 by a double bond in the side chain and an additional methyl group. They
are both analogues derived from vitamin D3 and derivatives based on the basic structure
of vitamin D2 (see Figure 1).
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More than 3000 vitamin D analogues have been developed so far and some have
received regulatory approval and are currently used worldwide in various medical fields,
including dermatology, nephrology, and endocrinology. For example, the 1α-hydroxylated
vitamin D analogues alfacalcidol, paricalcitol, and doxercalciferol—also maxacalcitol and
falecalcitriol in Japan—are used in the therapy of secondary hyperparathyroidism. Cal-
citriol, tacalcitol, and calcipotriol—and maxacalcitol in Japan—are prescribed for the inflam-
matory skin disease psoriasis vulgaris. Additionally, calcitriol, alfacalcidol, and eldecalcitol
are utilized for the prevention and therapy of osteoporosis [10–12].

In diseases such as osteoporosis or secondary hyperparathyroidism, vitamin D is used
by intervening in bone metabolism by regulating calcium and phosphate homeostasis.
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Additionally, the antiproliferative, cell differentiation-promoting, and immunosuppres-
sive effects of individual vitamin D analogues are utilized in the treatment of psoriasis
vulgaris [10,13]. Table 1 gives an overview of the main indications of vitamin D analogues
and their mechanism of action.

Although vitamin D analogues are commonly used for the treatment of various
diseases, including osteoporosis and chronic kidney disease (CKD), the use of vitamin D
analogues is associated with potential risks, such as hypercalcemia, hyperphosphatemia,
and hypercalciuria. Several studies have reported an increased risk of these complications
with the use of vitamin D analogues compared to cholecalciferol and ergocalciferol. For
instance, a randomized controlled trial by Sprague et al. reported a significantly higher risk
of hypercalcemia and hypercalciuria in patients receiving vitamin D analogues compared
to those receiving cholecalciferol or placebo [14]. Similarly, a systematic review and meta-
analysis by Bolland et al. reported a higher risk of hypercalcemia and hyperphosphatemia
with vitamin D analogue use in patients with CKD [15]. These findings suggest that the
use of vitamin D analogues should be carefully considered and monitored, especially in
patients at high risk of these complications. The limitations and risks of vitamin D analogue
use in clinical practice should be taken into account when making treatment decisions, and
alternative strategies, such as dose titration and close monitoring, should be considered to
minimize the risk of these complications.

Table 1. Summary of the various vitamin D analogues approved as drugs, their indication in relation
to different illnesses, and the mechanism of action within the body.

Indication Approved Drug Mechanism of Action

rickets/osteomalacia cholecalciferol, ergo-calciferol, calcidiol
(25-hydroxycholecalciferol), calcitriol increased reabsorption of calcium and

phosphate in the intestine and kidney
increase in bone mineral density [16]osteoporosis, renal osteopathy cholecalciferol, ergo-calciferol, calcitriol,

alfacalcidol, eldecalcitol (Japan)

psoriasis calcitriol, calcipotriol, tacalcitol,
maxacalcitol (Japan)

inhibition of proliferation of epidermal
keratinocytes and T-lymphocytes

inhibition of chemokines that trigger
psoriasis [12,13]

hypoparathyroidism calcitriol, alfacalcidol
compensation of the vitamin D deficit, which
resulted from the lack of vitamin D synthesis

due to parathyroid hormone deficiency [17,18]

chronic renal insufficiency,
hyperparathyroidism

calcitriol, doxercalciferol, alfacalcidol,
paricalcitol, maxacalcitol (Japan),

fale-calcitriol (Japan)

reduction of parathyroid hormone
release [8,19,20]

The fact that vitamin D and its analogues are becoming increasingly clinically and envi-
ronmentally relevant is reflected in rising prescription rates and an increase in publications
on the subject, as shown in Figure 2.

The increasing prescription rates can additionally be attributed to the concurrent SARS-
CoV-2 pandemic, as the benefits of vitamin D supplementation with regard to prophylaxis
and therapy of SARS-CoV-2 infection were discussed [21,22] and parts of the population
took vitamin D supplements on their own initiative. In addition, the incidence of various
diseases for which vitamin D analogues are approved is constantly rising [23]. For example,
the number of patients with advanced renal insufficiency is increasing: by 2040, an increase
of 20–23% in patients requiring dialysis is expected in Germany. Furthermore, vitamin D,
as well as vitamin D analogues, are an important pillar in the therapy of postoperative
hypoparathyroidism, the incidence of which is rising due to the increasing number of
thyroid operations [24,25].
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This review aims to address the necessity for an adequate vitamin D supply, especially
in vulnerable populations such as patients with AD and other comorbidities. It emphasizes
the probable beneficial application possibilities for some of the approved vitamin D ana-
logues. Furthermore, the individual benefits, the mechanisms of action, side effects and
their implication for AD are discussed extensively in the following sections.

2. Metabolic Steps of Synthesis of Vitamin D and Its Analogues

Physiologically, vitamin D requirements are met in the form of ergocalciferol or
cholecalciferol via the diet or, with sufficient sunlight, 80–90% is achieved by the body’s
own synthesis. De novo synthesis begins in the liver by dehydration of cholesterol to
7-dehydrocholesterol (7-DHC). Bound to the vitamin D binding protein (DBP), 7-DHC
enters the skin via the bloodstream, where cholecalciferol is formed by ultraviolet B radia-
tion with a wavelength of 290–315 nm [26]. Subsequently, both exogenously ingested and
cutaneous formed cholecalciferol are transported to the liver bound to DBP and hydroxy-
lated by 25-hydroxylases, which belong to the superfamily of cytochrome P450 enzymes
(CYP, mainly CYP2R1/CYP27A1) to calcidiol. Calcidiol is converted to calcitriol (1,25(OH)
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vitamin D3), the most active metabolite of vitamin D, by 1α-hydroxylase (CYP27B1), par-
ticularly in the kidney, but also in other target tissues [27]. The vitamin D analogues
already carry different hydroxylation modifications, so they can bypass some of these steps.
Figure 3 provides an overview, and the individual steps are described in more detail below.
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Figure 3. Graphical summary of the activation of vitamin D and vitamin D analogues by the 1- and
25-hydroxylases and potential triggers that may lead to enzyme dysfunction. In hepatic insufficiency
or due to the influence of certain drugs, the function of 25-hydroxylases can be impaired [28–30].
Renal insufficiency, elevated FGF23 levels, and decreased estrogen levels may affect the function-
ality of 1-hydroxylase [31–34]. While cholecalciferol and ergocalciferol are activated by the 1- and
25-hydroxylases, the activation of some synthetic vitamin D analogues occurs independently of
renal and extrarenal 1-hydroxylase, because they are already hydroxylated at the first carbon atom.
Calcitriol, doxercalciferol, and alfacalcidol need only be activated by 25-hydroxylase. Maxacalcitol
and paricalcitol bypass both 1 and 25-hydroxylation since they are already hydroxylated at the 1st
and 25th carbon atom [35].

2.1. 25-Hydroxylases and Vitamin D Analogues

The 25-hydroxylation that converts cholecalciferol and ergocalciferol to calcidiol, can
be catalyzed by various enzymes and occurs mainly in the liver. Patients with liver fail-
ure can show decreased expression of 25-hydroxylases. However, this synthesis step
can also take place in extrahepatic tissues, including the bone marrow, brain, or adi-
pose tissue. Under physiological conditions, CYP2R1 appears to be the most relevant
25-hydroxylase [16,36]. Particularly in the 25-hydroxylation of vitamin D analogues such
as doxercalciferol or alfacalcidol, the 25-hydroxylase CYP27A1 also has an important
pharmacological role. CYP27A1 are known to be inhibited by concurrent treatment with
antihypertensive drugs or drugs against Human Immunodeficiency Virus (HIV) or cancer,
as shown in Table 2. In addition to CYP2R1 and CYP27A1, CYP3A4 has also been shown
to potentially act as a 25-hydroxylase. Here, CYP3A4 hydroxylates vitamin D2 substrates
more efficiently than vitamin D3 substrates. In addition to the ability to 25-hydroxylate,
24-hydroxylation and thus catabolism of vitamin D analogues appears to be the major
role of CYP3A4. CYP3A4 metabolizes up to 50% of drugs and is therefore liable to nu-
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merous interactions [37]. However, the extent to which concomitant use of these drugs
affects the levels and clinical effects of vitamin D analogues remains to be demonstrated in
clinical trials.

Table 2. Summary of different inhibitors and inducers that affect the enzymes of the cytochrome P450
superfamily.

Enzyme and Effect Drugs

partial CYP27A1 inhibitors
[36]

• anti-hypertensive drugs

# calcium channel blockers (clevidipine, felodipine,
nicardipine, nilvadipine, nimodipine)

# angiotensin II receptor antagonist candesartan (but
not losartan, irbesartan, eprosartan, telmisartan)

• anti-HIV medication

# non-nucleoside reverse transcriptase inhibitors
(delavirdine and etravirine)

• anti-cancer drugs

# abiraterone, dasatinib, nilotinib, and regorafenib

CYP3A4 inhibitors
[38]

• macrolide antibiotics

# erythromycin, clarithromycin

• anti-cancer drug

# tamoxifen

• anti-depressants

# fluoxetine, midazolam

• anti-hypertensives

# verapamil, dihydralazine

• anti-HIV medication

# indinavir, nelfinavir, ritonavir

CYP3A4 inducers
[39]

• anti-epileptic drugs

# phenobarbital, phenytoin, valproic acid

• anti-microbial drug

# rifampin

If 25-hydroxylase capacity is inhibited by concomitant use of inhibitory drugs or
impaired liver function, the use of 25-hydroxylated supplements may be beneficial. Calcid-
iol, calcitriol, or 25-hydroxylated vitamin D analogues such as the vitamin D3 derivative
maxacalcitol or the vitamin D2 derivative paricalcitol could be used for this purpose.

2.2. 1α-Hydroxylase and Vitamin D Analogues

Furthermore, the use of 1α-hydroxylated vitamin D analogues can bypass renal or
extrarenal 1α-hydroxylase (CYP27B1), which converts calcidiol to its active form calcitriol.
1α-hydroxylase belongs also to the superfamily of cytochrome P450 enzymes and is con-
trolled mainly by calcium, parathyroid hormone, and calcitriol in renal and extrarenal
tissues mainly by cytokines. However, different pathomechanisms and drug interactions
may also affect the expression and activity of 1α-hydroxylase, thereby inhibiting calcitriol
synthesis [31–34].

Renal 1α-hydroxylase decreases in renal insufficiency. Approximately 2 million people
in Germany suffer from renal insufficiency. According to the German Health Interview
and Examination Survey for Adults (DEGS), which is part of The Robert Koch Institute’s
German health-monitoring program, limitations in kidney function occur in one out of
eight people aged from 70 to 79 [40]. If untreated, this can lead to disturbances in mineral
and bone balance and contribute to the development of secondary hyperparathyroidism.
To prevent this, 1α-hydroxylated vitamin D analogues, such as alfacalcidol, paricalcitol, or
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doxercalciferol, are approved for the substitution of vitamin D deficiency in advanced renal
failure and can increase calcitriol levels independently of renal function [16,41]. In addition,
vitamin D analogues may contribute to the preservation of renal function in renal failure.
For example, in a study of patients with diabetic nephropathy, daily administration of
2 µg paricalcitol resulted in a significant improvement in albuminuria [42]. A randomized,
blinded trial in vitamin D deficient patients with advanced renal failure showed that
three months of supplementation with 1 µg doxercalciferol daily reduced initially elevated
parathyroid hormone levels by 27% [43].

It has also been shown that elevated uric acid levels, as seen in gouty disease, de-
crease protein levels and the expression of 1α-hydroxylase [41,44]. Hyperglycemia, which
occurs in diabetes mellitus, decreased 1α-hydroxylase expression in cell models and
low parathyroid hormone levels in the context of hypoparathyroidism also reduced 1α-
hydroxylase [16,45]. Mutations in the 1α-hydroxylase gene lead to autosomal recessive
inherited pseudo vitamin D deficiency rickets type 1 [46]. Furthermore, renal and extrarenal
1α-hydroxylase is also regulated by fibroblast growth factor 23 (FGF23). Mice injected
with FGF23 exhibited a dose-dependent reduction in renal 1α-hydroxylase mRNA lev-
els, and 1α-hydroxylase expression in monocytes from human serum samples was also
decreased after incubation with FGF23 [47–51]. Diseases leading to increased FGF23 con-
centrations might therefore be associated with decreased 1α-hydroxylase levels. Different
tumor diseases, such as breast carcinoma, prostate carcinoma, bronchial carcinoma, or
urothelial carcinoma are able to produce FGF23 [52]. Therefore, in these diseases, the use
of 1α-hydroxylated vitamin D analogues, to circumvent the 1α-hydroxylase deficiency,
may be beneficial; however, further clinical studies are needed to prove the advantages of
these analogues.

1α-hydroxylase also appears to function more inefficiently with age. In one study,
calcitriol levels decreased with age, whereas calcidiol levels remained constant [53]. In ad-
dition, another study showed that young rats metabolized 20.8% of an orally administered
calcidiol preparation to calcitriol within 24 h, whereas older rats converted only 2.1% in
the same time [54]. Moreover, 1α-hydroxylase is affected by estrogen levels and therefore
might contribute to decreased postmenopausal renal synthesis of calcitriol [55–57].

2.3. Vitamin D Binding Protein and Vitamin D Analogues

In addition to bypassing anabolic enzymes of vitamin D synthesis, the vitamin D
analogues have further important pharmacological features. For example, modification of
the side chain of the backbone of vitamin D alters its binding properties. This leads to a
reduced affinity for DBP, which has several consequences. For example, the rate of cellular
uptake is affected because the lower affinity for DBP results in a larger gradient into the
cell with the same affinity for the intracellular VDR. This results in faster uptake of the
vitamin D analogues into the target cell and a faster increase in intracellular drug levels.
Moreover, the degradation of vitamin D analogues is also affected, as unbound metabolites
are degraded more rapidly [58]. Some vitamin D analogues use alternative transport
mechanisms in the blood due to their reduced affinity to DBP. Maxacalcitol, for example,
is mainly transported by chylomicrons, which is due to the fact that the binding affinity
of maxacalcitol to DBP in rat plasma is 600 times lower compared to calcitriol [59]. This
alternative transport of maxacalcitol might be useful in diseases associated with decreased
DBP concentrations, such as malnutrition, hepatic insufficiency, or increased DBP excretion
in the context of proteinuria.

3. Side Effects of Vitamin D Analogues

The altered pharmacokinetics and pharmacodynamics of vitamin D analogues not
only change their efficacy, but also their side effect profile. Some vitamin D analogues act
more selectively and in a more tissue-specific manner [9]. For example, some vitamin D
analogues act less effectively in the intestine, which means that calcium absorption is less
affected, and these vitamin D analogues are less likely to cause hypercalcemia. A random-
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ized, multicenter, double-blind study comparing the safety and efficacy of intravenous
paricalcitol and calcitriol in hemodialysis patients showed that treatment with paricalcitol
resulted in a more rapid reduction in parathyroid hormone concentrations while being
associated with fewer sustained episodes of hypercalcemia than calcitriol therapy [14].

Because of the above-mentioned reasons, the use of selective vitamin D analogues
could be beneficial in patients who are at particularly high risk of hypercalcemia due to
other comorbidities or medications. For instance, hypercalcemia is common in granulo-
matous diseases such as sarcoidosis: 10% of patients with sarcoidosis have mild to severe
hypercalcemia and up to 50% have hypercalciuria [60]. The intake of lithium, which is used
in the therapy of manic-depressive psychoses, or thiazides, an important drug in heart
failure therapy, can also lead to hypercalcemia. Hypercalcemia can cause abdominal pain,
nausea, and vomiting, as well as cardiac arrhythmias or psychiatric symptoms such as
delirium, psychosis, and stupor [61–63].

4. Potential Use of Vitamin D Analogues in Geriatrics

Approximately 90% of the elderly population have impaired vitamin D levels [64].
On the one hand, the decreasing 7-DHC content of the aging skin as well as malnutrition
and decreasing gastrointestinal absorption leads to a deficiency of the substrates necessary
for vitamin D synthesis. On the other hand, the elderly and chronically ill are constantly
housebound due to immobility, so their skin is inadequately exposed to sunlight, which
interferes with vitamin D synthesis. In addition, drug interactions or chronic diseases, such
as renal or hepatic insufficiency, may inhibit the enzymes required for vitamin D synthesis
or the synthesis of DBP, as described before. Therefore, supplementation with vitamin D
analogues could have a special place in geriatrics. Some vitamin D analogues do not require
the presence of the highly regulated mitochondrial cytochrome P450-like hydroxylases,
which may be reduced in old age because of chronic diseases and polypharmacy. However,
due to the lack of studies comparing the use of vitamin D analogues with the use of
cholecalciferol in geriatric patients, it is explicitly not possible to recommend therapy at the
current time.

5. Alzheimer’s Disease and Vitamin D Analogues

A common geriatric disease whose prevalence increases with age is dementia. While
the average European prevalence rate in the over-65 age group is 8.46%, it is as high as
36.32% in the over-90 age group, meaning that one in three 90-year-olds has dementia. AD
is the most common form of dementia, accounting for 50–70% [65]. The World Alzheimer’s
Report estimates that there are currently more than 55 million dementia sufferers world-
wide, of whom around 1.7 million live in Germany. On a national level, the prevalence
is expected to double by 2050, and globally more than three times as many people could
suffer from the disease by then [66,67]. AD is thus gaining increasing social and economic
importance.

Vitamin D deficiency is reported to double the risk of developing dementia, and the
risk of developing AD can increases by 20% [68–72]. In addition, meta-analyses and longi-
tudinal cohort studies show an association between low vitamin D levels and cognitive
decline, which is considered a typical clinical symptom of AD [71,73–77]. Patients with
AD also had significantly lower levels of vitamin D in serum and cerebrospinal fluid than
the general population in different studies [78–82]. Studies investigating whether compen-
sating for a vitamin D deficit protects against AD or whether the symptomatology and
pathology can be improved by vitamin D supplementation have produced controversial
results. Some studies reported slower progression of symptomatology in AD or altered
plasma Aβ1–40 levels after vitamin D supplementation, which would suggest a reduced
risk of AD [83–85] (see Table 3). The time to onset of psychotic symptoms in patients with
AD was also significantly prolonged by vitamin D supplementation. In the study this was
attributed to altered AD and psychosis-related genes after vitamin D supplementation,
among other factors [86]. Vitamin D could thus provide an interesting additional ther-
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apy for neuropsychiatric symptoms in patients with AD, which is particularly relevant
since antipsychotic drugs are suspected of increasing the risk of death in patients with
AD [87]. However, there are also studies reporting no significant association between
vitamin D levels, AD, and cognitive function, with vitamin D supplementation providing
no benefit [88,89]. The inhomogeneous study situation might be partly due to methodologi-
cal/logical reasons such as a high variability in dosage and dosage form of the administered
vitamin D preparations or a small number of participants and short observation periods. In
addition, it is remarkable that to our knowledge no larger study has so far tested vitamin D
analogues in patients with AD. Only one study in hemodialysis-dependent patients with
secondary hyperparathyroidism measured the effects of maxacalcitol on the Dementia
Assessment Sheet for Community-based Integrated Care System. After the study partici-
pants received the vitamin D analogue maxacalcitol intravenously three times a week for
12 months, there was no relevant change in the dementia test. However, the study specifi-
cally aimed to influence calcification with maxacalcitol, and study participants achieved
almost complete performance in cognition and activity at baseline, which may explain why
no relevant improvement was observed during the selected time [90]. Additionally, from a
mechanistic perspective, it can be assumed that vitamin D and its analogues might have
an impact on AD, since important characteristic neuropathological and neurochemical
features of AD are associated with vitamin D. In the following paragraph, the preventive
and therapeutic potential of a treatment of vitamin D analogues in relation to AD will be
discussed in more detail.

5.1. Vitamin Analogues, Extracellular Amyloid Plaques, and Intraneuronal Neurofibrillary Tangles

AD is characterized by intracellular and extracellular protein deposits in brain tissues
which, among other things, disrupts nutrient transport and neuronal communication. In
addition, the supply of oxygen and energy is impeded by protein deposits in vessels. In the
longer term, this leads to degeneration of neurons, cell death, and brain atrophy [91]. The
hippocampus and cortical brain regions are particularly affected, resulting macroscopically
in enlargement of the sulci and ventricles [92]. In parallel, inflammatory processes occur
in the context of chronic inflammation, as the microglia aim to remove the accumulated
proteins. In addition to its central role in bone formation, vitamin D also performs important
functions in the brain. It regulates the brain’s own inflammatory reactions, supports
neuronal proliferation, and thus contributes overall to neuroprotection. Neurotransmitter
levels, neurotrophic factors, and calcium balance in the brain are also regulated by vitamin
D [93–95]. In the hippocampus of rats treated with calcitriol, neuronal density increased and
brain atrophy decreased, and incubating cortical and hippocampal neurons with calcitriol
decreased glutamate-induced neurotoxicity. Overall, it can be assumed that most vitamin
D analogues can also have cerebral effects, since, for example, the expression of enzymes
necessary for their activation, such as CYP27A1, as well as the vitamin D receptor, are
expressed in the brain, and vitamin D metabolites have been shown to cross the blood–brain
barrier [73,74].

The extracellular protein deposits in AD are predominantly composed of aggre-
gated amyloid, which is formed by proteolytic cleavage from amyloid precursor pro-
tein (APP) [96]. Reduction of cerebral Aβ levels is being pursued as a potential disease-
modifying therapeutic approach. In 2021, antibody therapy for AD was approved in the
United States with the monoclonal antibody aducanumab, which targets soluble and aggre-
gated Aβ. However, the approval has been controversial and further confirmatory studies
through 2030 will assess the clinical benefit [97]. The European Medicines Agency rejected
a marketing authorization application for aducanumab in 2021 due to a lack of evidence of
efficacy and potential serious side effects, such as brain swelling and bleeding.

Vitamin D and vitamin D analogues have been reported to lower Aβ levels in preclini-
cal studies and vitamin D tolerability has been confirmed in several clinical studies. These
preclinical studies include cell culture studies as well as animal studies. In a previous study,
it was shown that the therapeutically used analogues maxacalcitol, calcipotriol, alfacalcidol,
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paricalcitol, and doxercalciferol reduced Aβ levels in the human neuroblastoma SH-SY5Y
cells stably transfected with human APP695, the major isoform in neurons (see Table 3).
There were no significant differences in effect size between the individual analogues or
between the analogues and calcifediol [98]. Follow-up studies confirmed these results for
some analogues in vivo. APP transgenic mice injected intraperitoneally with 200 ng/kg
paricalcitol every other day for 15 weeks had significantly fewer Aβ oligomers. Moreover,
the vitamin D analogue maxacalcitol was tested in rats in which pathology of AD had
previously been simulated by injection of lipopolysaccharides. The rats were injected in-
traperitoneally with 1 µg maxacalcitol per kilogram body weight twice daily. Subsequently,
enzyme-linked-immunosorbent-assay (ELISA) was used to determine the Aβ concentration
in brain tissue. The Aβ concentration of the lipopolysaccharide-treated rats was signif-
icantly higher than that of the control group and could be halved again by an addition
4-week injection of maxacalcitol. The cognitive performance of maxacalcitol-treated rats
was also significantly improved [99,100].

Table 3. Summary of the main results observed in cell-based studies, animal models, or clinical trials
regarding vitamin D and its analogues and AD.

Author Year Type of Study/Duration/n Main Findings

Shen, L. et al.
[68] 2015

Meta-Analysis/until February 2015/2
prospective cohort studies and 3
cross-sectional studies (10,019 participants)

Vitamin D deficiency (25(OH)D level < 50 nmol/L)
was associated with a 21%increased risk of developing
AD compared to adequate vitamin D levels (25(OH)D
level > 50 nmol/L).

Jayedi, A. et al.
[69] 2019

Meta-Analysis/until September 2017/7
prospective cohort studies and 1
retrospective cohort study
(28,354 participants)

The risk of developing AD decreased with increasing
vitamin D levels up to ∼35 ng/mL. Vitamin D
insufficiency (10–20 ng/mL) resulted in HR of 1.19
(95% CI: 0.96, 1.41) and vitamin D deficiency
(<10 ng/mL) resulted in HR of 1.31 (95% CI: 0.98,
1.65).

Chai, B. et al.
[70] 2019

Meta-Analysis/until 1 January 2019/12
prospective cohort studies and
4 cross-sectional studies
(21,784 participants)

Vitamin D deficiency (<20 ng/mL) was significantly
positively associated with the risk of dementia and
AD. In the case of vitamin D deficiency (<20 ng/mL)
the pooled HR was 1.34 (95% CI: 1.13, 1.60) in
comparison to sufficient vitamin D supply.

Jia, J. et al.
[84] 2019 RCT/12 months/210 participants with AD

Intervention with 800 IU/day of vitamin D in patients
with AD may ameliorate the cognitive function and
reduce Aβ-associated biomarkers. The results of the
intervention group showed significant amelioration of
plasma Aβ42, APP, BACE1, APP mRNA, BACE1
mRNA (p < 0.001) levels and information, arithmetic,
digit span, vocabulary, block design and picture
arrange scores (p < 0.05) unlike the control group.

Miller, B. et al.
[83] 2016 RCT/8 weeks/24 participants

Intervention with vitamin D (50,000 IU/week)
resulted in greater plasma Aβ40 change than in the
control group (+14.9 ± 12.0 and +12.8 ± 12.8 pg/mL;
p = 0.045; effect size, 0.228) especially in older
participants (≥60 y), where the change in Aβ40 was +
18.3 ± 33.6 and −3.2 ± 44.5 pg/mL for vitamin (n = 4)
and placebo (n = 4) groups (effect size, 0.295), which
insinuates reduced brain Aβ.



Nutrients 2023, 15, 1684 11 of 20

Table 3. Cont.

Author Year Type of Study/Duration/n Main Findings

Cellular and Animal Studies

Saad El-Din, S.
et al.
[100]

2020

In vivo study/lipopolysaccharide-induced
rat model of AD/maxacalcitol by
intraperitoneal injection in a dose of
1 µg/kg/day, twice a day for 4 weeks

Improvement of cognitive dysfunction; increased
expression of Nrf2; decreased
neuro-inflammation/amyloid-β
load/hyperphosphorylation of MAPK-38, ERK1/2,
tau proteins.

Fan, Y. et al.
[99] 2019

In vivo study/APP/PS1 transgenic
mice/paricalcitol by intraperitoneal
injection in a dose of 200 ng/kg every two
days for 15 weeks

Reduction of Aβ formation by acceleration of
lysosomal BACE1 degradation, inhibition of
neuronal loss.

Grimm, M.
et al. [98] 2017

In vitro and ex vivo study/neuroblastoma
cells or vitamin D-deficient mouse
brains/incubation of 100 nm calcifediol or
maxacalcitol/calcipotriol/alfacalcidol/
paricalcitol/doxercalciferol

Significantly decreased Aβ production and increased
Aβ degradation, mediated by affecting the activity,
protein level, and expression of β- and γ-secretases.

Aβ is generated from the cleavage of APP by β-secretase and the subsequent process-
ing by γ-secretase and can then be degraded or transported by different mechanisms. APP
can also be processed by α-secretase in a non-amyloidogenic processing pathway prevent-
ing Aβ release. In patients with AD, an imbalance occurs due to increased amyloidogenic
APP processing and/or a simultaneously reduced Aβ elimination, resulting in increased
Aβ levels [101]. It has been shown that vitamin D analogues reduce amyloidogenic APP
processing on the one hand by inhibiting β- and γ-secretases via direct and indirect mecha-
nisms. On the other hand, vitamin D analogues can enhance Aβ degradation by increasing
expression and activity of the major Aβ degrading enzyme, the zinc metalloendopepti-
dase neprilysin [98]. In addition, vitamin D analogues enhance α-secretase activity, which
initiates non-amyloidogenic processing of APP.

Maxacalcitol has also been studied for its ability to reduce hyperphosphorylated tau
proteins. These proteins form the major component of intracellular protein deposits. Maxa-
calcitol was able to significantly decrease hyperphosphorylation of tau in rat brain tissue.
This supports the hypothesis that vitamin D analogues may affect the pathology of AD via
pleiotropic mechanisms, thus providing a potential causal therapeutic approach [100].

5.2. Vitamin D, Its Analogues, and Parallels to Antidementia Drugs

At present, there are no drugs approved in Europe for the treatment of AD that are able
to causally treat the pathology of AD. To date, only a symptomatic therapy is recommended,
with drugs that affect the neurotransmitter levels that have become imbalanced. Decreased
acetylcholine levels have been described in patients with AD, which is associated with
learning and memory disorders. Accordingly, anticholinergics, which inhibit the action
of acetylcholine, are suspected of increasing the risk of dementia [102]. Dopamine levels
are also decreased in patients with AD and dysfunction of the dopaminergic system
correlates with apathy, a common behavioral symptom in patients with AD [103–105].
Furthermore, patients with AD exhibit increased glutamate release, which stimulates the
N-methyl-D-aspartic-acid (NMDA) receptor, resulting in increased intracellular calcium
levels that can lead to cell apoptosis. Thus, the use of acetylcholinesterase inhibitors
such as donepezil, galantamine, or rivastigmine raises the decreased acetylcholine level,
while NMDA antagonists such as memantine affect the increased glutamate release. This
provides short-term symptomatic improvement in the dementia stage but is not able
to permanently stop the progression of the disease. In addition, the therapy often has
numerous side effects resulting in discontinuation of acetylcholinesterase inhibitor therapy
after an average of 14 months [106–108]. Moreover, according to a meta-analysis, only 9%
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of patients responded to treatment with acetylcholinesterase inhibitors and showed an
effect beyond the placebo effect [109].

Vitamin D and its analogues have been shown to regulate these important neurotrans-
mitter levels as well. They could act in a similar way to the antidementia drugs, but in
contrast to the antidementia drugs, they have few side effects. However, the observed effect
strength suggests that vitamin D should be used in combination with other drugs. Rats
treated with vitamin D showed significantly increased activity of choline acetyl transferase
in some brain regions; this enzyme catalyzes the synthesis of acetylcholine and a decrease
in its activity correlates with the severity of dementia [110,111]. Furthermore, in an AD
model in rats, in which dementia was simulated by streptozotocin injection, vitamin D
supplementation normalized pathologically elevated acetylcholinesterase, which degrades
acetylcholine [112]. Vitamin D promoted differentiation of dopaminergic neurons and cal-
citriol supplementation in mice and rats significantly increased dopamine levels [113–115].
Conversely, a vitamin D deficit is associated with a dopaminergic deficit because, for exam-
ple, the expression of catechol-O-methyltransferase, which is necessary for the synthesis
of dopamine, is decreased [116]. Furthermore, vitamin D may reduce glutamate-induced
neurotoxicity in a manner similar to the NMDA receptor antagonist memantine [117,118].
A study in patients with AD examined the combination of vitamin D and memantine in
terms of cognitive improvement. For this purpose, the mini mental state examination
(MMSE) was collected before and after 6 months of taking vitamin D, memantine, or both.
While taking vitamin D or memantine alone did not significantly affect the MMSE scores,
the combination of both preparations showed an improvement in MMSE scores by an
average of four points [119,120] further emphasizing the beneficial effects of vitamin D in
combination with other drugs. In cell culture, the effect of both vitamin D and memantine
on Aβ- or glutamate-induced axon toxicity was tested. The combination of vitamin D and
memantine was shown to be protective, whereas pure memantine or vitamin D showed
little or no effects [121]. Thus, there is evidence for a synergistic and potentiating mode of
action for vitamin D and memantine. High glutamate levels and activated NMDA receptors
decrease the expression of renal 1α-hydroxylase [122]. If this is transferable to extrarenal
cerebral 1α-hydroxylase, the 1α-hydroxylated vitamin D analogues may act more potently
than vitamin D, because they act without the potentially downregulated 1α-hydroxylase.
For patients with advanced liver failure, the use of memantine is contraindicated, and
insufficient data are available on some hepatically eliminated cholinesterase inhibitors,
such as donepezil. Here, 25-hydroxylated vitamin D analogues, which act independently
of 25-hydroxylases, may gain relevance. Figure 4 summarizes the multiple ways in which
vitamin D analogues interact with the pathology of AD.

5.3. Vitamin D Analogues and Non-Pharmacological Approaches for Alzheimer’s Disease

As a non-drug treatment modality, exercise therapy in particular shows benefit for
cognitive function in patients with AD. Regular physical activity slows memory loss in
patients with AD [123,124] and increases cerebral blood flow [125,126]. In a cohort study
conducted on patients at risk for AD, physical activity significantly correlated with Aβ

load, glucose metabolism, and hippocampal volume [127]. Vitamin D supplementation
could maintain mobility and thereby access to exercise therapies for a longer period. It
is known that vitamin D supplementation significantly reduces fracture and fall risk and
maintains musculoskeletal functionality [61,128–131]. Reducing fracture risk can prevent
hospitalization and surgery. This is also of high relevance, because some types of anesthe-
sia led to an increase of Aβ load in neurons in vitro, suggesting that certain anesthetics
accelerate the appearance of symptoms in AD [132]. The vitamin D analogues, especially
alfacalcidol, might be particularly interesting in this context, as one study showed that
alfacalcidol was more effective in protecting against spinal fractures than calcitriol [133].
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logues. Vitamin D and its analogues have an inhibiting influence on Aβ plaques by reducing
the amyloidogenic processing and promoting non-amyloidogenic processing and Aβ degradation.
Moreover, neurofibrillary tangles, oxidative stress, and neuroinflammation are diminished. The
neurotransmitters acetylcholine and dopamine are enhanced, and glutamate is degraded.

Maintaining mobility and promoting exercise also helps reduce the cardiovascular
risk profile. Most cardiovascular risk factors, including diabetes mellitus, arterial hyper-
tension, hypercholesterolemia, smoking, obesity, and physical inactivity, are associated
with increased risk of AD and vitamin D deficit may lead to an increased incidence of
cardiovascular disease [6,134–138]. Minimizing the risk profile is of great importance in
the prevention of AD, and vitamin D analogues may contribute to this too. The vitamin
D analogue paricalcitol was shown in a meta-analysis to significantly reduce the risk of
cardiovascular events in renal failure patients and to maintain reduced arterial flexibility in
the setting of progressive atherosclerosis [139,140]. A preclinical study in mice compared
the effect of vitamin D3 and different vitamin D analogues, including calcifediol, alfacalci-
dol, and doxercalciferol, on cholesterol levels in mice fed a high-cholesterol Western diet.
Except for doxercalciferol, all vitamin D analogues studied lowered cholesterol levels. Alfa-
calcidol showed stronger effects than calcifediol and calcitriol [141]. Cholesterol-lowering
interventions, such as the regular use of statins, have been shown to significantly reduce
the risk of developing dementia in some studies. Vitamin D analogues could therefore also
represent a potential preventive therapeutic by influencing lipid homeostasis [142].

Furthermore, vitamin D analogues also influence blood pressure via interactions with
the blood pressure regulating renin–angiotensin–aldosterone system, among others [143].
For example, eight weeks of paricalcitol treatment significantly reduced myocardial ex-
pression of renin and angiotensinogen in rats, and doxercalciferol reduced expression
of renin and the angiotensin II receptor in mice [144,145]. Treatment with alfacalcidol
reduced systolic blood pressure by 6 mmHg and diastolic blood pressure by 5.8 mmHg
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in a clinical trial [146,147]. However, other vitamin D analogues, e.g., paricalcitol, did not
show significant antihypertensive effects [148]. Improved brain perfusion, for example,
could positively affect the permeability of the blood–brain barrier, leading to better Aβ

clearance. Antihypertensive therapies, such as angiotensin-converting enzyme inhibitors
or angiotensin receptor antagonists, have already been associated with decreased Aβ

concentrations in the brain, but according to a meta-analysis, cognitive abilities did not
improve significantly [141,144,145,149]. Since, as shown in Table 2, some antihypertensives
interact with the enzymes necessary for vitamin D synthesis, the parallel use of vitamin D
analogues that act independently of 25-hydroxylase could be of particular relevance.

5.4. Vitamin D Analogues and Benefits in Comorbidities of Alzheimer’s Disease

Overall, it can be noted that most patients with AD are over 65 years of age and are of-
ten multimorbid, meaning that they have at least two diseases and that their polypharmacy
can lead to confusing drug interactions [150]. Diseases such as renal insufficiency, in which
1α-hydroxylase is decreased, are a common comorbidity of AD because they have the same
risk factors as arterial hypertension and diabetes mellitus, and the increased uremic toxins
may promote dementia. The use of hydroxylated vitamin D analogues could hypothetically
be beneficial here because of the altered pharmacological properties.

Because patients with AD are at increased risk for developing depression or epilepsy,
antidepressants or antiepileptic drugs are also often used in these patients [151]. However,
these can interact with the enzymes needed to synthesize vitamin D. A study of patients
with depressive symptoms showed that six weeks of ergocalciferol supplementation signif-
icantly improved mental health status and significantly decreased depression and anxiety.
Participants not taking an antidepressant in parallel responded better to supplementation,
which may have been due to the limited metabolism of ergocalciferol by parallel antide-
pressant use [152]. Vitamin D analogues, which work independently of CYP enzymes,
might be more suitable for combination therapy in this case. The same applies to parallel
treatment with antiepileptics that affect vitamin D synthesis. Epilepsy and AD favor each
other, making epilepsy a common comorbidity in patients with AD. Aβ and tau protein on
the one hand increase neuronal excitability, leading to increased seizures, and on the other
hand, Aβ deposits increase after an epileptic seizure. Paricalcitol has been shown to have
anticonvulsant properties in animal studies, making it particularly useful for patients with
AD and epilepsy [153].

In conclusion, vitamin D derivatives, including calcitriol, alfacalcidol, and paricalcitol,
have shown potential advantages in the treatment of various metabolic and degenerative
diseases under special conditions. These advantages include improved efficacy and reduced
dosing requirements compared to cholecalciferol. However, the administration of analogues
warrants prudent consideration due to their potential risk for adverse effects such as
hypercalcemia, hyperphosphatemia, and hypercalciuria. It is also important to note that
vitamin D supplementation should not be used as a standard and carelessly given substitute
for established treatments and should be tailored to the individual patient’s needs. More
studies are needed to fully understand the advantages and limitations of these derivatives,
and to establish safe and effective dosing recommendations.
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