
THEORY UNIFICATION IN

ABSTRACT CLAUSE GRAPHS

Hans Jürgen 0h1bach

HEHOSEKl-BS-t-KL

Theory tificution in. Abstract Clause
fimphs

Interner Bericht

Enns Jurgen Ohlbach
FB Infor-ntik

University of Kaiserslautern
675 Kaiserslautern

West Germany

am

Clause Graphs, as they were defined in the 1970s, are graphs representing first order
formulas in conjunctive normal form together with the resolution possibilities. The nodes
are labelled with literals and the edges (links) connect complementary unifiable literals.
This report describes a generalization of this concept, called abstract clause graphs. The
nodes of abstract clause graphs are still labelled with literals, the links however connect
literals that are "unifiable" relative to a given relation between literals. This relation is
not explicitely defined; only certain “abstract" properties are required. for instance the
existence of a special purpose unification algorithm is assumed which computes
substitutions. the application of which makes the relation hold for two literals.
When instances of already existing literals are added to the graph (es . due to resolution
or factoring). the links to the new literals are derived from the links of their ancestors. An
inheritance mechanism for such links is presented which operates only on the attached
substitutions and does not have to unify the literals. This solves a long standing open
problem of connection graph calculi: how to inherit links (with several unifiers attached)
such that no unifier has to be computed more than once.

I. Introduction and Motivation 5. Abstract Clause Graphs
2. Basic Nations 6 . Special Inheritance Mechanisms
3.’ Congruence Relations and Unification 7 . The General Inheritance Algorithm
4. The Basic Inheritance Theorem 8. Summary

LW

A connection graph in the sense of Robert Kowalski [K075] consists of nodes labelled with
literals (as constituents of clauses) and links. which connect complementary unifiable
literals in different clauses.

Since the literals have to be Robinson unifiable. there is (up to the renaming of variables)
only one most general unifier (mgu) and it is assumed that this single unifier is attached
to the link.

A typical operation upon such a graph is resolution: A link i s selected, the resolvent is
generated. and the new links are created by inheritance from the links connected to the
parent clauses. Finally the link resolved upon with its mgu i s removed from the graph.
The inheritance mechanism avoids searching the whole graph for potentially
complementary literals; the new unifiers still have to be calculated by literal unification.
however. In I975 Bruynooghe presented a mechanism for inheriting Robinson unifiers
directly without literal unification [Br75]. But in the last few years different extensions
of the connection graph calculus have been proposed that make it necessary to
reformulate the inheritance mechanism.

The main extensions are:

1. Other link types were introduced. connecting not only complementary unifiable literals
(i.e. the atoms are unifiable and the signs are different) in different clauses, but also
directly unifiable literals (ie. the atoms are unifiable and the signs are equal) in
different clauses as well as in the same clause etc. [Ei81]. [Wa82]. For every new link
type an inheritance mechanism of its own had to be defined.

2. The unification concept was augmented. New unification algorithms are able to exploit
certain properties of functions and predicates [Si84l. For instance, terms like f(a.f(b,c))
and f(f(b.c).a) are unifiable. provided f is associative and commutative. But also literals
like ad: and a>b are complementary unifiable under the usual interpretation of the <
and > predicates [5183].

3. The underlying logical calculus has been augmented by sorts lWa82a] and polymorphic
functions [5585].

A Very unpleasant consequence of these extensions is the fact that there is not only one
most general unifier. but possibly an infinite number of independent ones. Links in the
extended clause graph calculus are therefore labelled with a set of maus. After resolving
with one of these mgus, it i s no longer possible to remove the whole link from the graph,
but only this single mgu. This leads to the undesired effect that a uni/in once
removed any suddenly reappear in an inherited [int. as the following example
demonstrates:

.LLlnnm (Reappearance of a removed unifier in an inherited link)

Let R be a symmetric predicate.

g 6 |={x+a‚u+b} nEE 6%q „„

6'1' {X'+e‚u'+b}
6'2‘ {X’rmu'eal

Unification of my and dish after resolution upon the predicate P generates al" and 62'
regardless whether 6 ' or a , has been previously removed or not. ‘ I

In order to prevent this effect, which introduces the kind of redundancy again the
connection graph procedure was trying to eliminate in the first place. it is necessary to
inherit the unifiers individually such that a direct relation between the parent unifier and
its descendants can he established. If this is possible we can not only prevent the '
reappearance of removed mgus. but further deletion rules will become possible.

Mumie (for a new deletion rule)

R is again a symmetric predicate.

{Manx} „ 6‚={X+n‚u+v} „
[EP—El . Xum 62 ' {Xi-v , 'J“ a} mov

ÜF {X"'° ‚v ")
6'2= {x's-q‚v (-e}

Let us assume that for some reason 62 was re moved. If it is not physically destroyed. but

only marked in some way and we are able to inherit e l and 62 separately, it is possible to

detect that the descedant 6" of 6 ‘ is an instance of the removed mgu 62'. Now we can
remove e l ' too and with 6" we can remove the whole link. (The completeness proof for

this deletion rule is not part of this report and has to be given elsewhere.) I

In this report a method is presented to inherit individual unifiers for an extensive class of
theory unification algorithms and arbitrary literal-link types (links connecting literals.
not terms).

Throughout the paper we use the following standard mathematical notation:

6 set membership \ set difference
u set union n set intersection
is subset relation IMI cardinality of set M
e empty set
3 existential quantifier V universal quantifier
A logical and v logical or
a negation — » implication
I end of an example, definition or proof ' D end of case in a proof by cases
l1M function f restricted to a subset of its domain. DOM(f) Domain of the function f

3

M

We use the standard notions of first order logic Given pairwise disjoint alphabets. let V
be the set of variable symbols; In be the set of n-ary function symbols. r„- c the

set of constant symbols and ! - UP... Let P.. be the set of n-ary predieete symbols
and P - UP“. Furthermore let T be the set of terms. i.e T is the smallest set with V = T
and mi. „ .tn) e T for all f € In and t. e T. if Pe PII and ti e T we call P(t‚. „. to) an no..
Literature signed atoms (+A resp. -A) and L is the set of all literals. Clauses are sets
of literals.

For any object t containing variables we define Wt) as the set of all variables
occurring in t and Wt]. „ .tn) as an abbreviation for Wil) u „ u Vita).

W

A substitution 6 is an endomorphism on the term algebra associated with T which is
identical almost everywhere.

Each substitution 6 is completely determined by its restriction 6|' llle83, 1.2]. We will

make frequent use of this property. writing [ale-t | , ‚xnc—t “) for instance to represent a
substitution 6 with 6(xl) - ti. 1 s i s n. For such a substitution 6 we define:
VARsle) :- (x,. „ ‚x„) and TBRMSle) :- (t,. _ ,t“)

: is the identity substitution and I is the set of all substitutions.

The eodonaiuof a substitution 6 is COD(6) :- 6(DOM(6))
The set of variable: introduced byes is defined by VCOD(6) :- V(COD(6))
and the set of variable: 0/6 is We) :- DOM(6) u VCOD(6)

For two substitutions 641 e 2 we write on for the usual functional composition and 6|v for
the restriction of 6 to the set of variables V. Substitutions may also be applied to atoms
(and consequently to literals and clauses too): 6P(t,. ... ,tn) :- P(6t„ „. ,etn).

l: ' := (6 E I I 66 - 6) is the set of idempotent substitution:

We mention two useful properties of idempotent substitutions which can be found in
[Heß]:

2.1m '
Let 6 be a substitution and t be a term. Then

a) 6 is idempotent iff DOMio) n VCOD(6) - a. (Lemma LS in [He83l)
b) If 6 is idempotent then DOM(6) n Wot) - 1:. (Lemma 1.4 in [He83l) I

W

ln order to cover many variants of sorted topics. we define the notion of a stable sort
calculus.

W (stable sort calculus)
We call a given many-sorted calculus a suble- sort calculus if it defines the
notions of sort symbols s . a sort function [ml and a predicate vs satisfying the
following properties:

a) S is a finite non-empty set of sort symbols with a partial order 5. the subsort order.
imposed on it.

b) [„I : 1' -o 8 is a sort function satisfying the properties:
i) V u c s DOM(l_l)
ii) t - f(t„ .„ ,t“) e DOM(L.l) o tI e BOWL!) l s i s n and

V662 . (Ve lox l s lx lh l e l t l s l t l '
(The sort of an instantiated term is smaller or equal to the sort of the term).

c) vs is a meta~predicate for terms and literals with the properties:
i) If A is a term then “ (A) 0-. A e DOM(l...]).
ii) If A - sP(tl. „ .tn) is a literal then VNA) implies '80,) l s i s n and

v sle'l' [sllsltll » 'S(tP(s‚..„ ‚s„n. _ l

'8 selects terms and literals with a property usually called "well sorted". Therefore let
'8'! :- [t e Ti '80)) and '31. :- (L e l.! van.» be the sets of well sorted terms resp.
literals. '88 - [6 e 8 | V 1 e V [6(1)] s [1]] be the set of well sorted substitutions and
“ ' as: 08 ' . (We write “(e) i foe'SS.)

The notion of a stable sort calculus covers all the many-sorted calculi where instances of
well sorted terms are again well sorted terms. (see for example the ERP calculus of Ch.
Walther lWaBZal or the ZRP' calculus of M. Schmidt-Schauss [5885]). A calculus where for
example x" is regarded as well sorted. but 0 ' l not. is not of this type.

Throughout the rest of this paper we consider only stable sort calculi.

2.11am
bet 6 be a well sorted substitution. Then

a) if t is a well sorted term or literal. then et is well sorted. too.
b) if t is a well sorted term then [et] 5 [t].
c) The composition of two well sorted substitutions is again a well sorted substitution.

The proofs follow immediately from the definition of a well sorted substitution and
Del. 2.2,i and c,ii. I

WW

Renaming substitutions are substitutions mapping variables into variables of the same
sort. They are defined as follows: '

man (Renaming substitutions)
An idempotent substitution 9 e '8!‘ is called a rental): substitution for the
variables W - a if!

a) DOM(9) - W
b) 9W = V
c) [x] - [9:] for every variable x.
d) 9 is injective on W, ie x ' y-o 9x .- 9y. I

For a set of variables W = V we write:
RBN_(W) for the set or all renaming substitutions 9 with DOM(9)- W and
REN;(W) for the set of all renaming substitutions 9 with DOM(9) = W.
Furthermore we use mm, (0) as an abbreviation l‘or REN„(V(O)) for any object O
containing variables and »- e (- ‚=).

Lilli-ll
if 9 is a renaming substitution then VtDD(9) - COD(9).

The lemma follows immediately from VCOD(9) = V and the iniectivity condition for!
renaming substitutions. I

W (Converse or a renaming substitution)
Let 9 e REN_(V). V = V be a renaming substitution We define the converse-9‘ or 9 _
by: 9°x -y ill 9y -x loreachseV. I

Ann-ale: w in -y .“ - u) o 9'-lyc- Luc-z) .

That the converse of a renaming substitution is (unfortunately) not the inverse. but
something similar is shown in lemma 2.8. First we need some trivial properties of the
converse:

Illa-la
Let 9 be a renaming substitution. Then

a) VCOD(9°)-DOM(9) and
b) www - vcoo) and
c) 9° is idempotent.

End
a) VCOD(9°) - V(9° DOM(9°))

- (9”!!9‘1 -y ‚y -x l
- (y |9y -x ,y -x) (Del.2.6)
- DOM(9) u

b) DOM(9‘) - (1)9“: - . y .y -x)
- (xl 9y -x .yex) (Del. 2.6)
- 600(9) a

c) from a) and b) together with 2.4 we know that 9° is a substitution 9" e l .
9 et" . VCOD(9) nV-a

us VCOD(9) o homo) - e (because 9 @ RBN_(V))
no COD(9) n DOM(9) - | (Lemma 2.5)
no DOM(9°) n VCOD(9°) - l (a. b) '
no 9° is idempotent. (Lemma 2.1) I

mum 9 e RBNJV) „ 9 'e RBN_(C00(9))

2.5.1111:
H9 ia a renaming substitution. then 99 ° - 9 and 9°9-- 9°
The proofs are given in [ließ]. Lemma 1.12.

W

A substitution ; is a permutation ii there exists a i," such that l; c‘ - c.
(t - (x c- y, y s- z. zc- x) for example is a permuation with r - (x c- z. u- y, y a- x)).
In the inheritance mechanisms. defined in chapter 6. we need permutations consisting of
onecycle ol‘length 2. They look l ike9--(x«- y,ys- x. uc- v, v . - u) and are constructed
from ordinary renaming substitutions 9 as follows:

9x ine DOM(9)ox -{
9°! otherwise.

2.2.Lemma (some properties or 9)
Let 9 be a renaming substitution.

‘) "DOM(9) ' 9
b) 99 - E (-99is apermutation)
°) Wlnomo) "

M
a) Follows immediately from the definition. :|

b) DOM(9) - DOM(9) u DOM(9°) (by the definition)
- DOM(9) u (200(9) (Lemma 2.7,b)
- DOM(9) u VCOD(9) (Lemma 2.5)

As 9 is idempotent we know that DOM(9) o VCOD(9) - e. Therefore we can split
DOM(9) into the two disjoint sets DOM(9) and VCOD(9). Now let y e DOM(9).

mu; yeDOM(9) with 9y -x
”Y ' 99V (M. and y e DOM(9))

. °!

- 9° : (x e OOD(9) - DOM(9°))
-y (Der. 2.6) u

m y e VCOD(9)--DOM(9 °) with 9°(y)--a
w- o 9°v (net. and y 5 www»

. ° x

- 9x (x e 600(9‘) - DOM(9))
. y (Der. 2.6) a

Case 1 + Case 2 » 99 - e u

c) seeprootb).case l . I

For the Inheritance mechanisms of chapter 6 we define a renaming operation on
substitutions. lf for example 6 - [ac- fy, zc— gav) is a substitution and 9 - lye- w. ze— u) is
a renaming substitution, then the application 019 to 6: 9-6 - ix c— fw. uc- gav) is a
new substitution which is different from the functional composition
9 6 - (ac- fw. ze- nav. yew)

W (Renaming of a substitution)
For a substitution 6 e : and a renaming substitution 9 we define a renaming
operation I: 906 :- 969 I

Some useful properties of the renaming operation are listed in the next four lemmas.

2.11.1431!“
if 9 is a renaming substitution then DOM(906) - 9DOM(6).

m .
906! - 9691ux 0691-191' «oxeDOM(6)~99x-xe9DOM(6). I

The following lemma shows that the definition of e in fact reflects our intuition of a
renaming of a substitution:

m
if 6 --{x‚c- t„„.‚1 c- t leland9eRliN:(6)withCOD(9) nV(6) -a . then

9-6491..- 9t‚._.91‚‘- 9t.)
49!, °- vex‚.„.91„o- 962,}

Emi
With lemma 2.l l and COD(9) n W6) - e we have DOM(9-6) - 9DOM(6). “therefore let
x be a variable and x e 9DOM(6) (nontrivial case). then by the iniectivity of 9 and
(200(9) n W6) - a there exists a k. l s k s n with x. e DOM(6) and 91k - I. With 2.6
we have now: ‘a - 9‘1 and therefore it is 9061 - 9691 - 969 ‘x - 96x.I - 9tt. I

mm.-a
The renaming operation preserves the idempotency and well-sortedness of a
substitution. .

m
66- 6 » (906) (906) -(969) (969) 9 -669 - 969- 906 » 9e6e l ' >
The well—sortedness is preserved because 9 renames variables by other variables d
the me sort (Def. 2.4.c). I

The next lemma shows that the renaming of an instantiated term is equivalent to the
instantiation of the renamed term with the renamed substitution. This result will
frequently be used in the proofs of chapter 6.

Lula-Ia
Let t be a term. 6 e 2 and 9 be a renaming substitution. then we have

I) (M» -96 and
b) 9 e RBN‚_-(V(t‚e)) and V00Di9) n Vite) - a n (9-e)9t - get

m
a) (906)9 - 9699 - 96 (Lemma 2.9.b)
b) Follows form the definition of 9 and I). I

m The statement of lemma 2.14 remains valid if t is a literal. I

8

A unification problem in its most abstract form can be stated as follows [5282]:
Let S be a formal language containing variables. I the set of substitutions in S. and
. =s a relation For any p,q a substitution ee l with eiples, eiq) e S and 6(p) . 6(a)
is called a u-unifying substitution (u-unifier).
Unification theory investigates the computability and representability of such ~-unifiers.

This paper is concerned with two such languages and relations, first the language of well
sorted terms '8'! with a relation .. satisfying special properties and then the language of
literals with an extension of u. The relation between terms . is usually [Sis-i] defined by
an equational theory and most of the known unification algorithms work for special
equational theories. For the solution of the inheritance problem to be addressed in this
paper, it is not necessary however for . to be an equationally defined relation. . may
remain an abstract relation and the unification algorithm need not be defined explicitly

. but has to fulfill certain requirements.

W (Congruencerelations)
A stable congruence relation - on well sorted terms is a relation satisfying
the following properties:

a) . is an equivalence relation
b) congruence: Let t„ s i with t l . % l 5 i s n be pairs of terms.

if f(tl. ... ‚t)and f(sl. „ .s)are well sorted. then fill. .. .t) . f(sl. „ ‚s.).
c) stability. If s,t e '8! are two terms and 6 e was: and s .. t then es - et.

mm:
Assume <8.l-.l.'8> is the ERP calculus of Ch. Walther (Wa82al with 8-(A.B] and MB.
if we have a constant a of sort A and two functions n-ut and RBXB-vß and . is the
relation expressing the idempotence of f: (fax-x). Then we have a - fan. but not
aan g(faa). because sifaa) is not a well sorted term. if. however. we consider the
ZRP' calculus of M. Schmidt—Schau” [5885] and declare f being polymorphic
f e '[(B.B.B)(A.B.B)(I.A.B)(A.A.A)] then [real-A and alias) is a well sorted term.
Now 3(a) . gilaa) holds. I

Throughout this chapter let . denote such a stable congruence.

The symbol . is also used for the canonical extension of the urn-relation. to lists of terms:
(tl. „. .tn) - (s,. ‚„ ,sn) il‘f tI - sl for l s i s n.

There are two possible ways to extend the «tu-relation to substitutions:

W (strong extension of the ~-relation to substitutions)
For two substitutions 6. p 6 vs: and a set of variables W we write
an JIIW] ill for eachvariablexew: ex— pa. I

Luciana
a [W] is an equivalence relation on well sorted substitutions.
The proof follows immediately from the equivalence condition 3.1 a). I

m (Correspondence between the ~ relations on '8'! and vs: .)
if t is a well sorted term and 6. p are well sorted substitutions with 6 - p [V(t)].
then et . pt. '

m by induction
The induction basis follows trivially from the definition of the n-relation.

MMI!
Let t - fitl. _ ,tn) e 'S'i'
» et 6 'S'l' and ut e 781' ‘ (Lemma 2.3) 4
» 6tI . ntl (Induction hypotheses)
us Not.. .. .etn) . fun„ ‚„ .llt.) (Consruence property 3.1.b)
» e m„ .- .tn) . p m,. „ .tn). I ‘

The following definition gives the second extension of .. to substitutions.

W (Subsumption relation on substitutions)
at) LeteJte 'St . WGVthen e suIW] iii 3 I t em „um
b) LetGJJE'SI. WGVlhen e -uIW] ur e sp lWIandpse lvV]

m
a) s [W] is a partial ordering on well sorted substitutions.
b) I [W] is an equivalence relation on well sorted substitutions.

m ' *
a) Since the reflexivity follows trivially. the transitivity of s [W] remains to be shown:

Let 61,62 and 63 & vs: with e , s e, [W] and 62 s 63 [W] for some variables W.
» 3 11 .126 '3 ! witte Wein Ale?! andezxa- 12631
» Vx e W e lx :- 1 ,1265! (Def. 3.l.a.c and Lemma 2.3.c)
e 6'565[W] n

b) The reflexivity and symmetry are trivial and the transitivity follows from the
transitivity of s [W]. l

3.5.1.9111 (Correspondence between the s and I-retations and the ~-relation on IST)
Let s‚t be well sorted terms and e a substitution with es .. et.
if 1: e vs: with 1: s 6 [V(s.t)] then ts . rt.

Emil
t s e [V(a.t)] » 3 A e '! 1: s 16 [vom
us ts . Aes (Lemma 3.5)

» Act (stability of ..)
~ tt (Lemma 3.5)

I

Since the same lemma holds for the I-relation as well. the I-relation just classifies the
substitutions which can be used alternatively as unifiers for two given terms.

)0

The next lemma is very instructive. i t shows that the definition of the u-relation on
substitutions allows to construct equivalent idempotent substitutions for each 6 e '32.

m '
For every well sorted substitution 6 there exists an idempotent substitution 6 with
e u 6’ [Dowel].

Emi
Let 9 € RBNJDOMß) n vß” auch that VCOD(9) fl WO) - |!
Is DOM(9‘) fl V(6) - 9. (Lemma 2.5, 2.7.b)
Lei 9' ' 9° Ivonne)-

. DOM(6') - DOM(6) and vcome’) = (vcoo(e) \ DOM(6)) u VCOD(9).
Both sets are disjoint and hence by lemma 2.1 6' is idempotent.
Furthermore we have e’ s 6 [DOM(6)] because 6' .- 9 6 [DOM(6)] and
e s e’ moms)! because e . 9° e mama]

~ 9°96 [DOM(6)l (Lemma 2.8)
. 9°e' [DOM(6)l

o 6 . 6’ [Domell ~ I

The proof shows how to make a substitution idempotent by a renaming of the critical
variables in the codomain. Whenever we postulate the existence of a substitution which
needs to be determined only up to the s-relation. we can therefore assume that this
substitution is idempotent (see for instance the definition of unifiers below).

Every symmetric and transitive relation ~ : M x M for a certain set M can easily be
extended to sets of elements of M if we demand the existence of a biiection between
these sets. We define this extension for arbitrary sets M and ~-relations. but we use it
especially for sets of substitutions and the a [W] relation.

“Maintal
Let ~ G M x M be a symmetric and transitive relation for a set M and E . . Z , = M. We
sen,». £2 iffthereexistsabiiectionu: 2 , - zizeuchtint'v'eezl 6~ 11(6).-

.‘LLLLIIII (criterion for the equivalence of such sets.)
Let ~ 9 M x M be a symmetric and transitive relation for a set M and E„ 82 G M be
minimalwith~respectto~.i.e.6lu626 S i » 61v-62 for i - l , 2 .

then: El.—‚£, iff _
a) Vom, 3 te226~r and b)Vte£ ,36ez , t~6

Baal
"." meet:, select t-tf(6)682 and tones, select 6-u"(t)e£l.

"«" Leunzzlxz:2 and (6.1:)eu ill eur .
We have to show that tl is a biiection.
l] is surjective by the definition. Now let (6.1: l) e t] and (6.12) e V-
» se t , and6~t2
.. t l .. 5 (symmetry of ~)
n t . ~ t, (transitivity of ~)

-s u is a function.
The injectivity is shown analogously.
. l! is a biiection
o 2 , ~ 2:2 I

l l

M (Independence of the a [W] relation under renaming)
LetWiV. 21.}225'32. Then 81 IZZIWI to 9081 IQOZZIMWEI

Brant
The main idea of the proof is to show that for two well sorted substitutions e, 1::
6 I t [W] as 906 a ge t [9(W)]:
e a t l » 3 A,. 7(2 Vxe W 6(x)~ Aldx) and f(x) - Xzeü).
Now let y e MW).
» axew y-0(x)andx-O(y)
o OMV) - ein) . A It'lx) - A I1:0(y)

* MM ~ 9 A ‚rom (stability of .)
" MW) ~ 0 www (» - £)
.. 906 . (poA‚)(90 1:) [O(W)l
no 906 s 901: [§(W)].
The other case works in a similar way.
at 906 a 90 t (MW)!
The theorem now follows immediately. I

The definition of a congruence relation for terms is now extended in two steps to a
relation on literals. ‘

Winn (extension of the - relation to literals)
a) (canonical extension of .)

Let L and K be terms or literals
We define: L = K ilT the two signs and predicates are equal and the u-relation

' holds for the two termlists
b) ("natural" extension of u)

A given sym metric and stable relation ~ between literals can be combined with the
u-relation to a new relation u - a o ~ on literals. We call it a (compatible) extension
of the u relation (on well sorted terms). Its properties are:
i) VLKe'l' l . L - K «3 Rem L:: R andR~ K (. . . . „ "compatibility")
ii) V LK 6 m. 6. e m L u K as 6(L) . 6(K) (stability)

Remarks
- - Definition a) is the canonical extension of n to literals which observes the properties

of terms represented by . . The ~-reiation described in b) may take properties of
predicates (symmetry etc.) and the sign of the literal into account. This relation needs
neither be reflexive nor transitive. Finally the u-relation on literals combines the
properties of predicates and terms. It may for instance describe "complementarity of
literals" (For example +P(a. f(b.c)) .. -P(f(e.b). a) if P is symmetric and f commutative).

—— We also use the symbol ». which has originally been used for the relation between
terms. for the relation between literals. because this relation is in some sense a
"natural" extension. i t allows to handle properties of literals in the same way as
properties of terms. (The symmetry of a predicate symbol. for instance. and the
commutativity of a symbol are not really very different properties). Furthermore it
specifies the unification problem <a . t> for two terms resp. <L . K) for two literals
and many lemmas can be proved once for both relations.

mm.. (another formulation for the compatibility property)
if L.K e '31.. ex e WS! with e(L) - e(K) and 1: . e “(LK)! then
t(L) .. out) and { (L) . tut)

Enact
t . e [V(L.K)l » out) . 1:00 and am - r(L) -

(trivial extension of lemma 3.5 to literals)
en.) . 6(K) » El R60.)- RAR— 600

12

» R - t(L) (transitivity or o)
» 3 Rt(L)- RAR» 6(K)
» {(L) - 6(K) (symmetry)
» 3 R6(K)- RAR-v { (L)

» t(K) - R
» ((K) - f(L) » { (L) » 1:(K) I

W (extension of l emma 3 .8 to literals)
Let s and t be well sorted terms or literals and 6 e '32 with 6(s) . 6(t).
ll t' e }: with 1: s e [V(s,t)]. then tis) . 1:(t).

Brno!
t s 6 [V(s.t)] » 3)(e '82 1: = 7(6 [V(s,t)l
The first case. s,t e 'S‘l' is proved by lemma 3.8. therefore let s,t € '81..
am» 6(1) » Ach) . Aelt) (stability)

» f (s) » f(t) . (Lemma 3.14)
I

mum
Now we can come back to the main subject of this chapter: unification.

W (complete set or unifiers)
For arbitrary terms s.t e 'S'l' or literals s.t e ISL. U£(s.t) = '82' is called a correct
and complete set of unifiers (a-unifiers) for s and t iii“

a) V6 e U£(s.t) 6(s) ~ 6(t) (correctness)
b) Ves t 6(a) » e(t) » 3 t e U£(s‚t) e s t(s‚t)l - (completeness)

In addition we need a purly technical condition which makes the definition
insensible against variable're’namings and prevents such undesired things as
u:(x._y)-(x«- y) butU£(x ‚y)- (y «- x)

c) V96 mm uzltlsmt» - 9- um.»
An actual implementation of a unification algorithm usually fulfills this condition. To
violate them would mean to put extra code into the algorithm which for instance sorts the
variables according to some obscure ordering.

A complete set of unifiers UZ(s.t) is nininal it in addition
d) V6,. 62 e UZ(s.t) ‘n‘ e2 [V(s.t)l » 6‚- ct2 and
e) vos U£(s.t) Dome); V(s.t) hold. I

This set is unique up to the I [V(s.t)] relation and is called a most general set of unifiers.
(lt is usually written liU8(s.t)).

In order to calculate most general sets of unifiers form complete sets of unifiers. we
define an instance re moving function MAX:

Wan (Maximizer)
Let w be a set or variables. A function MAxw: 25 » 22 with the following properties
is called a Maximizer with respect to W:

a) V ic ! ! ! ‚Get MAxwmcz and 316 MAXwUE) 651 [W]
b) VZG'SE .ve,,o2eMAx,,(z) elseZIW] » e , -cl2
c) v : 6'82 ‚vo e rencW) MAXWQOZ) - 9 . MAXWGI)
d) Ve e MAXWG) DOM(6) l: W.

The function MAXw'lwhich needs not be unique) lust removes all substitutions in £
which are instances of other elements of £ . It is insensible against variable renaming in
the same sense as UE.

.‘Ltna
For two well sorted terms or literals s and t: uUZ(s.t) :- Mixflmwzmn is a set of
most general unifiers for s and t.
The proof is obvious.

At this point it is necessary to put a further restriction onto the - relation:
We consider only relations n for which uUl.t) exists and W for every s
and t. but uUZ(s.t) may he infinite.

The definitions for UZ and 1102 can be easily extended to termiists:
Let t,. .. .tll and s'. „. .s'I e 187 and W - UVltrsl)
Then U£((t‚. „ ,t“). (s‚. _ .s„)) :- (\ UE(t„s‚) and

„usw,. .- .tn). (s,. ‚„ so)) :- MAXwUltl. „ .tn). (s, . .s„))

Lilli-ll (lnsensibility of "UZ against variable renaming)
Let s.t be well sorted terms or literals. Then
v ge RENGW) uU£(§(s).9(t)) - 9° uU£(s.t)

The proof follows immediately from the appropriate conditions for US and MAX. I

3.211.111! (“more general than most general is impossible")
Let s.t be well sorted terms or literals and tr e pU£(s‚t):
let o e l: with tp(s) . 9(t) and n s u [V(s,t)l.
Then we have if a q) [Vls.t)]-

am
(Mi) . @(t) '. “'(._u(8) . “'(fl .t)(t)
. * 3 W 63 ' v' I @ [V(s‚t)l (Lemma 3.9)
» 3 A e um”) qt' 5 A [V(s.t)] (Der. 3.17.a)
» it s A [V(s.t)] . (transitivity of s)
.. 1r . A (Def. 3.l7‚b)
» p' s ir [V(s.t)l
-» cp s n "(s.tll
., q: a 1r [V(s.t)l (Def. 3.6.b)

, l

um“:
Let s and t be well sorted terms or literals and 1: e uUZ(s.t) u e:
let 6 e I: with 6(VARS(1:)) . 6(TBRMS(t)) then we have 6(a) . Git)

m
e(VARS(r)) . 6(TBRMS(‘L')) » V: e v em— «(xi
» 6 s 1: [V] o 6(s) . 6(t) (Lemma 3.15) I

I4

Using the technical preparations of the last three chapters we are now able to prove a
correspondence between unifiers of terms (or literals) and unifiers of their instances. This
correspondence is the key for all inheritance algorithms in the following chapters.

For ease of notation we abbreviate:

„men„ :- mx“ U twnemtetvnstr».etmustrtm
re:

“_Ihunhetnnosil‘hmn
Let s and t be well sorted terms or literals and e - uU£(s.t) - a;
let e e vs: with We) n Vie) c vo.» and let w :- Wes. et);
then uuz(os. et) . „um. an„ [W]

M
According to lemma 3.11 it is sufficient to prove

i) VnepU£(os.et) newsman" within-qt [W] and
invue uU£(o.e)l„ 31repU:(es.et) without [W]

mu
Let ll’ e humus. et). Our goal is to find a qt e 3102(6. en„ with ir :- qt [W].

The idea is to extend tr to a substitution 0 ‘ which unifies 6(VARS(1:)) and
6(TBRMS(1:)) for a t e @. Then we take a (9' e llUE(6(VARS(t)).6(TBRMS(t)))
which is more general than u ' and show that u - mw unifies es and et. But since tr is'
most general we can show that ‘n’ is equivalent to 1).

With ‘ll’ e uUZ(6s. et)
IO 1'68 ' 'll'Gt
. 3 t e "IMs. t) ' sro s 1: "(sm
. 37L e vs: 1w u At [V(s.t)l l-l

im) x e VCODit) \ Wat)
Now let «(x) - {

1r(x) otherwise

From the disiointness condition We) n “9) l: V(s.t) we can immediately deduce
“Wat.” ' n ["

Sk“.
First we prove that M: . tp'o [VO0D(t)].
Let x e voolxr)

CIILL x e V(s.t)
. wok) - „(x) (see in)

. Aflx) . „(x) - wm (see -)
m x (V(s.t) ‘

at 1 c DOM(6) (x e VCODir) and V(6) n WB) '; V(s.t))
» tp'elx) - o'u) - Ati!) (Definition of u ') n

W

mu
Now we prove that (p'6(VARS('c)) .. tp'6(TBRMS(1')).
Let x e DOM(1:) with f(x) - q 6 COD(t')
» x e V(s.t) (1: e uU£(s. t) and 3.18)
» m'oü) - troll) (see u)

u l t “) ‚5: (see a)
-Att(x) ‘ (t ez ')
. cp'sflx) (step l und lemma 3.5)
- o‘etq)

. o‘eWARSh'D- ¢'5(TERMS(1:)) a

man

With this step it is shown that m‘ unifies 6(VARS(1:)) and 6(TERMS(t')). Next we have
to prove that ql'lw is equivalent to a most general element of uU£(6. mw.

51:21
We have proved that 3 1: e o with 9 ' € UZ(6(VARS(t))) .6(TERMS(1:))).

By the definition or „usw. ex“, there exists a r’ e pUZ(s. t) and a qt e trusts. enw
and a qr e U£(6(VARS(t')) .e(musu:’)) with o - m„ und o' s qt’ [W].

With o'elVARsun) .. «armor»
o are: . tp'et (Lemma 3.21)
no (068 « QS!
. u e UZles. et)

With (9‘ s '9' [W]
ousp lW] - (MW-1r)
u) 11' I to [W] (1r e „ums, et) und 3.20)

and thtt completes the proof of i). :!

mm
Let o e pUZle. exw . We look for ur e uU£(6s. et) with qt I u [W].

By the definition of uU£(6. en„ there exists a 1: e uUZ(s. t) and a
0 ' e U£(6(VARS(1:)) . 6(TERMS(t)) with u - o'lw e uU£(e. exw .
» (p‘es n‘ tp'est (Lemma 3.21)
. peg . ost
» 3 'ne uU£(es.et) withqt ste]
» 3 qr e pU2(e. en„ with (p' e 1r [W] (Proof i))
» (p stp' [W]
" (P "P. (Def. 3.17.b)
» Ip I “If [W]

B I l E E ..]

From proof i) and proof ii) and lemma 3.16 we can conclude the theorem:

puzles.et) . puz(e.e)|„[Wl

mailen!
For two terms or literals s.t and a substitution 6: uUZ(s. t) - o » pU£(es. 6t) - o.

LW

The original formulation of the connection graph calculus [K075] had only one type of
links: resolution links connecting Robinson unifiablelliterals with opposite signs in
different clauses. This "pure" connection graph calculus was later augmented by other
link types supporting different graph operations like subsumption recognition lEillll.
tautology and purity checking lWa82l. paramodulation [SW80] etc. Except for
paramodulation links which are links between terms. all these links are links between
literals and have to be treated very similar in an actual implementation. Therefore it is
advantageous to describe all these different literal link types within one single calculus.

mum (Abstract Clause Graph)
Let as = 'S'l' ! IST be a stable congruence relation (definition 3.1) and
[oil i - l . ‚„ .n] be a set of extensions of the uni-relation to literals (definition 3.13) with
an associated unification algorithm for each "r Let D be a set of variable disjoint

clauses.
A four tupel 6(1)) :- (LNODES, 11. ~. LINKS) is called an
abstract clause [rapt over 1) ill:

a) LNODES is an arbitrary set. (The set of literal nodes.)
b) tl is a mapping I]: LNODES » Literals(D) from the set LNODES to the literals occurring

in the clauses l). i.e. each node i s labelled with a literal.
_ (We write L.!lc etc. for literal nodes and ML) - L for literals)

c) ~ is an equivalence relation on LNODES:
VLJCeLNODES L~ If. ill 3 De D ML) - LeDandlfl lf .) - [(<-:D.
(The equivalence classes of ~ just represent the clauses of D.)

d) LINKS - “"i- X,. xxw„ XII) I i - l , „ . n] with
xl - (twee)) nice mom, i... r. o .- e c puz,(L. x))
xxwl - nenne) l Lace moms, L~ x.

9 e RBN_(V(L)) with VCOD(9) n V00) - a, a n e t: uUEfloL. K)]
xx, - (inne) | r.,xe mom. L~ x. a u e = auxin K)))

Xl- Links connect .. l-unifiable literals in different clauses;
Kiwi-Links connect weakly . l-unifiable (unifiable after renaming of one literal)

literals in the same clause and
XI.-Links connect . l—unifiable links in the same clause.

Amanda

Let . be the relation between terms as defined by the commutativity of the function f.
Let ") be the relation between literals with opposite sign whose corresponding terms are

in the . relation. In addition assume that the symbol P denotes a symmetric predicate.
Let ' 2 be the relation connecting literals with equal sign and predicate. whose
corresponding terms are in the nun-relation. For example:
8(f(a.b).c) .. s(f(b.a).c). P(f(a.b).c) --I ~P(c.f(b.a)) and P(f(a.b).c) . 2 P(¢.f(b.a)).
(in the clause graph terminology [KMR83I " l stands for the R—Link family and ' 2 for the
S-Llnk family. Km are the R and 5 Links. xxwm are the MW and SIW Links and l are
the RI and SI Links.)

17

A graphical representation for a clause graph may look like:

{{x’i—l (21.x), y’e—c} {th—c, y’4—l(a,x)}}

Km! {(m—c, y+—I(a‚c))}
’“1

P(x‚y) _. P(f(a,X),C)

1 X2 X1 T
e

‘i‘ a
:: F5?

1 {{x‘-f(u,v)‚ w—c) &
:? {x+—c‚Y—r(u‚v)}} m”

- P(a,a) P(f(u‚v)‚c)

mm
The x-Link and ill-Link partial graph is always undirected because of the symmetry
of the uni-relations. The XIW-links however are directed because it is the [numeral
which is renamed in uUZ,(9L, K).

W (total abstract clause graph)
For i e (l . ‚n) an abstract clause graph 6(1)) :- (LNODES. 11. ~. LINKS) is

a) XI-total in all possible ill-links exist and are attached with all possible mgus, i.e

w..“ LNODBS. Lu im - puzllL, K) .- e .» 3 e' - @ mr., 10] and (r.,xß') 6 xi.

b) Kiwi-total ifl‘ all possible KIWI-links exist and are attached with all possible mgus.

Le. VLJCG LNODES. L ~ to. e - uUE,(9L. K) .- c for some 9 e REN_(V(L‚ K))
» 3 e ' I e [V(9L. K)] and (L,16.9.9') e XIWl or (16,L.9.e’) e XIWl.

c) XIi-total ilT all possible “„I-links exist and are attached with all possible mgus. i.e.

VLJce LNODBS. L~ 16. 0 - uU2i(L. K) .- a » 3 e ' a e [V(L, K)] and (L‚16.6') e Xii.

G in ram nr for all M. „. ‚n G is it,-total. Kiwi-total and XIi-total.

Finally we have to define operations like resolution, factorization etc. upon abstract clause
graphs. Fortunately it is possible to combine a whole class of operations and describe
them with one mechanism. This class covers all the operations which take a number of
literals from the graph, instantiate them with one common substitution and put them as a
new clause into the graph.

is'

W m -Operatlons) ‘
Let G(D) :- (LNODBS.11.~. LINKS) be an abstract clause graph.
An Operation MG. c, 9, o) is called an n - Operation with substitutions
6 e “ ' and p e REN_(V(G)) with COD(9) n WG) - a if!

a) G' - “(G. c. 9, 6) -: (LNODES u c, \f, ~'. LINKS‘) is an abstract clause graph.
(c represents a new clause).

b) each new literal node has exactly one parent literal node:
VLe B 3 ,1“ LNODBS with lm.) - 96 INK.)
(we use It - L' resp. K - L' - \HL') as an abbreviation for this relation.

L' is the ”parent literal node" and L' the "parent literal" of L.)
"“ “wenn " "
and “"Ic - ~ and c is a new equivalence class of the ~‘ relation

c) If LINKS - ((n-‚. X,. KIWI. XII) l i - l it]
then LlNKS‘ - ((-i. Xl u XNI. XIW, \: XIWNl, illI u Jun,) | i - l n]

and each new link is connected to at least one element of- c .

m., lilWNl and xml are the links connecting the new clause with the old graph.
Optimized formulas for the computation of the new links from the old ones are given in
chapter 7 .

Typical n—Operations are resolution. factoring. and (JR-Resolution. Hyperresolution and
B-resolution are fl-Operations as long as only one copy of each clause involved i s used. If
more than one copy is necessary. these clauses have to be copied explicitely. Paramodu-
lation. too. does not fit completely into this definition because the paramodulated literal
itself is not an instance of an already existing literal. The other literals in a paramodulant
however can be treated with this mechanism.
Also "self resolution". (resolution with two copies of the same clause) is not an
fl-Operation because two new literals may have the same parent literal.
For example: (-q. Pl‘(x). 0!] IO (~Px’, Pf(flx')). 01'. Qfll'”

L_J

)9

This chapter establishes some special inheritance mechanisms for links in abstract clause
graphs. The formulas for calculating the new unifiers from the old ones in special
situations in the graph are derived from theorem 4.1.
The pictures at the beginning of each paragraph illustrates a situation typical for the
inheritance of links to a resolvent. Boxes represent literals and a string of boxes
represents a clause.

The following situations are possible and are described in detail in the next paragraphs:

An X-Linlt connecting a new and an old literal can be inherited from:
an X-Link connecting
- one parent literal and an unconcerned literal (Paragraph 6.1.0 or
- two parent literals (Paragraph 6.111) or
an XlW-Link connecting two parent literals (Paragraph 6.4).

An XIV-Link can be inherited from '
- an x-Link connecting two parent literals (Paragraph 6.3) or
- an XIV—Link connecting two parent literals (Paragraph 6.6).

An Xl-Link can be inherited from
- an X-Llnk connecting two parent literals - (Paragraph 6.2) or
- an XIV-Link connecting two parent literals (Paragraph 6.5).

- _, _

i) Wat; (Connection of the new clause with the unconcerned clauses.)
___—"“ 6 9

pUZ(9 6(L),l()
95(L)

6.11m- ,
Let.
a) 6 - l-lUZ(L. K)
b) aus? vithoK - K
c) p e mia) with ot - K and c0D(p) n VlL. 1.6.6) - a and Wei.) : DOM(p)
d) w :- V(96L. K) and W' :- V(eL.K) -V(eL,eK) '

then uUZ(96L. K) a oe ‚außen„ [W]

Emi
IIUEQGL. K)

- „mim, 96K) (b and c)
- ge pUZ(6L.6K) (Lemma 3.19)
a 90 pulse)“, [W1 (Theorem 4.1.3.12)

20

ii) W (Connection of the new clause with the parent clauses)

pU£(96(L), K)

96(L) 96(K)

5.21m
Let
a) “L) n WK) - a
b) e - yum. K)
c) 6 e 'S!‘
d) 9 e RENEW with and COD(9) n V(L. K. e. 6) - o and “GL. 6K) 1: DOM(9)
e) W :- WOOL. K)

Em!
uUZ(96L. K)

- uU£((9-6)9L. K) (Lemma 2.14)
- “DEM-6):) l'mL . OI'MK) (a)
- pUZ((9-e)9 lm)“ . (906) 9|'(„K) (DOM(906) n V(K) - a)
. nUZ((9-6)9 lm) ‚en„ [W] (Theorem 4.1)

mum:)IUZ(96(L). K) II B ID 111120... K) " a I

2 |

.. _, _

A new Xl-link can be inherited from an old X-link connecting the parent clauses.

9

L ° K

96(L) 96(K)

L____.l
pUZ(96(L), 9500)

5.2m:
Let
a) WL) 6 WK) - a
b) 6 - uU£(L‚ K)
c) 6 e '82'
d) 9 e REN;(G) with and COD(9) n WL. K, e, 6) - a and V(6L‚ eK) t: DOM(9)
e) W :- V(96L. 96K) and W' :- V(6L,6K)

then uUZioeL. 96K) - convince)“, [W]

21:09!
pUZ(96L. 96K)

. 9o pU£(6L‚ 6K) (Lemme 3.19)
I 90 pUE(G‚ ex" [W] (Theorem 4.1. 3.12)

I

comm

pU2(9_6L. 96K) .- a no uUEU... K) n: a I

Millim- 4

The preconditions are the same as for theorem 6.3. Then
pumpen 95K) .- a . a) pUZioeL. K) .- a and
‘ b) uUElL. 96K) n a.

21:99! by contradiction
a) Let uU£(96L‚ K) - a

.. 1102196 96L. 96K) - puztoeL. gel) - a
(VCOD(9) n DOM(6) - a » 96 eZ ')

» Contredictionl

b) analogen: I

The consequence of this theorem is:
lnheritsnce of X-linke to ill-links is only possible if both X-linke between 96L and
K as well es between L and 96K can be inherited too.

22

_ . 4 _ .

A new XiW-iink can be inherited from an old X-link connecting the parent clauses.

‘ gen.) gem)
L____.l -

)1UZ(<,>1 9 oiL). 9600)

W
Let
n) W1.) A WK) - a
b) 6 - uU2(L. K)
c) 6 e ‘82'
d) 9 & REN.;(G) with and COD(9) n WL. K. e . 6) —- a and WoL. GK) 5 DOM(9)
e) 9 ' e REN_(96L .9610 with COD(9 l) n WL. K. e . e. 9) - a

then
uUZ(91961;. 95‘) I HU’JQGW [OÖHNU . OXW [W]

M
[. (9,96)l"‚_)(l() - K 4 (a)
2. (96) (9 19°"vm‘u - (9 mamma.)

(because DOM(9 ‚) if WWI.) and COD(9 ,) 0 W6) - o)

- uUE((96)(9 i96)l'(L)(L) . (WKO ‚oenmmn (l ‚2)
I pUZ((96)(919°)INL) .exw [W] (Theorem 4.1)

I

Camilla

HUS“) '96L. 96K) r a » pU£(L. K) r a and ‘
uUZ(96L. olgöK) .- a «» pUZ(L. K) u n I

23

Lineman

The preconditions are the same as in theorem 6.5

uU£(o‚ooL‚ 96K) - a » a) uU£(96L. K) - a and
b) pUZ(L. 96K) - a

M by Contradiction

a) Let uU£(96L. K) - a
» pU£(9 ‚96L. 9'10 - 9 (Corollary 4.!)
» pUE(9 ‚WL. K) - a (DOM(9 l) n V(K)) - a)
» uU£(96 9 i96L. 96K) » 9 (Corollary 4.1)
» uUZ(9,96L, WK) -a

(96 9,961, - 91961. because DOM(9 ‚) : V(96L) and
DOM(96) n VCOD(9 I) - a)

» Contradiction! n

b) Lot uUE(L, 96K) - a
» uUE(96L. 9,9610 - a (see a))
" 9 . ‘ IIUÜOGL. 9 .9“) "”

-0 uUSloML. 0.9.9610 - a , (Definition 3.16 d)
» 110219 l96L. 96K) - 91 (Lemma 2.9)
» Contradiction! I

The consequence of this theorem is:
Inheritance of X- Links to XIW-Links is only possible if both Klinke
between 96L and K as well as between L and 96K can be inherited
too (see also Theorem 6.4).

_ _, _

New x-liaks connecting a new clause with one of its own parent clauses can be inherited
from old XIW-links.

e
91

L K

pUE(96(L), K)

pUE (L , 9600)

96(L) 96(K)

24

Lum-
Let.

b) e - uU£(9 lL . K)
c) 6e '32 '

a) 9l eREN„(L. K) with VCOD(9,)nV(L.K.6)-n

d) 9 e REN;(G) with VCOD(9) n V(L. K. e . 6. 9 l) - e and V(6L. GK) € DOM(9)
e) 9,6RBN_(VCOD(9‚)) with 9-9‚9‚[D0M(9‚)l
r) v:- "961.. K) „mw:- V(9L,6K)
then

uUZ(96L. K) a uuzflo-e) 9: ‚e)lv [V]

Front.
l. 92K-K (becauseDOM(9‚)-VCOD(9‚) and a)-vDOM(9,)hV(K)-a)

2. u,U$.‘.(961.. K)
- 1102((906) 9L. K)
- uUi:((906) 929,!" K)
- pUZ((906) 9,9‚L. (9-6) 9,!)
I 1102((906) 92 .9“ M

Lum-
The preoonditions are the same as in theorem 6.7. Then

nUZ(L.96K) I9 onUZ(6 9 , .exw "(L . 9“)!

m
uUZ(L. 96K)

‘ - pU£(L. 96 92K)
- 1102(99L. 96 92K)
- [1020 9L. o 6 92K)
- 9. |1Uf.(91.. (; 92K)
- pouuzw 9L. 6 92K)
- 90 „um; 929 ‚L; 6 92!)
I 90 MEN 9: . e lw '“(L , 96K)!

mm
uUZ(96L. K)- a o uUZ(9‚L.‘ [) . - a und
uU£(L.96K) u a . uU£(9‚L. K) - a

25

(Lemma 2.14) '
(e) ‘
(I. d, e.!)
(Theorem 4.1)
I

wg—n
(Lemma 2.9)
(Lemma 2.9)
(Lemma 3.19)
(Doms) « V(9L) - a)
(e)
(Theorem 4.1)
I

_ _, _

New Xl-linkl can be inherited from old XIV-links.

6
91

L K

1L
96(L) 96(K)
|___I

„um 96(L) . 9600)

um.
Let
a) 9 l € RBNJL. K) with VCOD(9 ‚) " V0... K. 6) « n

c) 6 e ' I ‘
d) 9 e RENAG) with VCOI)(9) " V(l.. um. 9 I) - I and “GL, 5K): [)0M(9)
e) 9,eRBN„(VCOD(9‚)) with 9 . 9,9,[DOM(9,)l
l‘) W :- V(96L. 9610
then V ‘

nU£(96L. 96K) - pump-e) 992.0!" N]

am:
uUZl96L. 96K) _
- 1102((9-6) 9L. (onen!) (Lemma 2.14)
.. uUE((9oe) 99L. (906)9K) (9 e t ‘)
- uUE((9-6) 9 929|L. (906)910 (c)
- “mug-e) 9 92 9,1.‚(906)9 92 K) (DOM(9 2) n WK) - a)
I uUZ((906) 99 2 ‚en„ [W] ' (Theorem 4.1)

I

uUZ(96L, 96K) u a » uU£(9‚L‚K) r a I

6.10 „Themen

pU£(96L. 96K) .- l o I) uUZ(96L. K) I l and
b) uUZ(L.9eK) .- a

m by Oontrndiction

a) Let uUZ(96L. [0 -9
» pUE(96 96 L.96 K) - a (Corollary 4.1)
» uUZ(96 L. 96 K) - a - (ldempotenue of 96)
o Contradiction!

b) analogous. I

26

.— _’ _

New XlW-links can be inherited from old XIV-links.

9
91

I. K

96(L) ‘ 96(K)
L_|

pUZ(_93 96 (L) 96(K))

Lulhmn
Let
a) 9' e RBN_(L. K) with VCOD(9 ') h V(L. K. 6) - a
b) e - uUZ(9,L. K)
c) öem'
d) 9 e REN;(G) with vc0D(9) n V(L. K. e . 6. 9 l) - n and

V(6L, eK) = DOM(9)
e) 92 e REN_(VC0D(9 l)) with 9 u 92 9 . [DOM(9 ‚)l
r) 9 , e REN_(96L. 95K) with vcom9,) n V(L. K, o, e, 9 „ 9)

.- n
g) w :- V(9,96L, 96K) and W' .. V(96L. eK)
then

uU£(9396L‚ 96K) | (9 93). pU£(6(9oe) 92.91“, [W]

M
"U2(9396L- 95K)
- 11U£(93696L. 9631) (d)
- 9132(99 36961.. 96K) (DOM(9) n V(9 396D - a
- pUZ(99 36(90e5) 9L. 96!) (Lemma 2.14)
- 1102(99 36(906) 92 9 11.. 96K) (e)
- uU£(99 3«(906) 92 911“ 99 36K) (DOM(9 3) fl Walt) - a
- uU:(99 5(5(906) 92 911.. 99 ‚o 92 K) (9 2(K) - K)
- (99 ,)ouU£(e(9-6) 92 9 ‚LJ 9,10

- (99 3)qflfiflewoo) 92 9.1..6 (906) 92K) (DOM(906) « V(9 2It) - a
I (99 ,)ouUZ (6(9oe) 92 .0“ . [W] I

mm

uU£(9396L‚ 96K) n a a uUZ(9‚L‚I() .. a and
uU£(96L, 9596K) - a » pUE(9‚L‚ K) . a I

27

Lulhmn

uU£(9390L. oe!) .- u » a) uUZ(96L. K) - a and
b) uUZ(L.96K) u a

M by Contradiction
a) Let uU£(96L, K) - o

» uUE(9 s96L. 93K) - 1 (Corollary 4.1)
» pUZ(9396L. K) - a (93K - K)
» puma 93961.. galt) - I (Corollary 4.1)
» pUZ(9396L. 96K) - |!

(96 93961. - 9396!. because D0M(93) : Noel.) and
DOM(96) n VOOD(9 ,) - a)

» Contradiction) n

b) Let 11020.. 96K) .. o
» „mm.. 9396K) .. a (see a))
» paouUfloöL. 9,9610 - l
» 1111203 pol.. 9!) 9396K) , | (Lemma 3.19)
» pUE(9396L. 96K) - 5 (Lemma 2.9)
» trldictionl I

(seo alao Theorem 6.6)

_ _. _

New ill-links can be inherited from old iii-links.

6

96(L) 96(K)
|__J

pUE(96(L)96(K))

Milkmen
Let
a) a walk!)
b) “N'
c) 9 @ RBN;(G) with VCOD(9) n “1.1.6.6. 9.) - o and “NL. 96K) = DOM(9)
d) W :- VWL. 96K) and W' :- Weka!)

then
pUE(96L. galt) I 90 puma ‚ex., [W]

The proof is obvious.

28

im
Let L and K be literals and 9 e RBN_(L). then nUZ(L. K) n a » uU£(9L‚ K) - a

m by Contradiction
Let uUZ(9L. K) - a
» uU2(99L‚ 9K) - e (Corollary 4.1)
» pUZ(9L‚9K) - a (968 ‘)
.. 9e | |UZ(L‚K) - e (Lemma3.l9)
» pU£(L‚K)- a -o Contradiction! I

This theorem states the fact that whenever an XI-Link is possible. there is also an
XIV-Link possible. Therefore it is not necessary to inherit XI-Links, because all the new
links can be inherited from the parallel XIW—Links using the theorems of the last
paragraph. Sometimes. however. it is useful to inherit XI-Links directly from XI-Links in -
order to inherit also certain properties attached to the unifiers. Inheritance of Xl-Links to
X-Links and XIV-Links. however. is incomplete.

The n-Operations. as defined in chapter 5 , map clause graphs onto clause graphs taking a
set of literals of the graph. applying a substitution 6 and a renaming substitution 9 to the
literals and inserting them as a new clause into the graph. The remaining problem is: how
to get the new links connecting the new clause with the rest of the graph without to much
search. How to optimize this search in standard connection graphs is already known since
1975 lKo7Sl. [5175] and there is not much difference to the inheritance algorithm in
abstract clause graphs. The idea i s to scour the links connected to the parent clauses and
to unily the substitutions attached to these links with 6 as it is described in the last
chapter in order to get the unifiers for the new links. We will describe the method in this
chapter and prove that it transforms total graphs into total graphs.

unm-
Let
a) G - (LNODBS. in". ((m,. xl, XIWP XII) Ii - l . „. .n) be a maLabstract clause graph and.
b) Let n be an n-Operation and G' - mc, c, 9. 6) be an abstract clause graph generated

by n. G' - (mount u e nr.—'. «u,. xi u XN„x1w‚ u XIWN‘. Xliu xmi) | i - |. „. . nl
if we calculate the new links according to the following formulas:

c)XN‚- ((L.ß‚uU£i(L‚K))ILeBAX.QB‚uUEImKhe and
[(L'. x, . uU£‚(L'. K)) e X, or (see 6.1)
(L'. if. , 9 ‚. ‚10259 ‚L'. K)) e XIW. or (see 6.4)
(tr. ‚L', „11112411 . plane xlw| I] (see 6.4)

d) XlWNi - ((ex , 93. “(12,(931. . K))I Let: mes . uUZi(9,L . K) .- a and '
((U. X.‘ . uUE‚(L'‚ K')) e)(i or (see 6.3)
(L'. X}. 9 ‚. pU£‚(9 lL ' , K')) e XIW‚ or (see 6.6)
(x}. L'. 9 ‚. pU£‚(L'. 9 'K ')) e xml) (see 6.6)

e) KINi - ((L . x. . „(Elm K))I Le c A lee c . uU£‚(L‚ K) u a and
[(v. to. uuzlul. K')) e x, or (see 6.2)
(L'. w, 9 ‚. uUZ‚(9 lL ' , K')) e XIWi or (see 6.5)
(It). L'. 9 ‚. pU£‚(L'‚ 9 'K')) e XIV, 1)

then G‘ is again a total graph

29

M
Letie(1._ ‚n)

i) Let LJLGLNODESUB. LuK,0-uUZ(L.K)-Ie
We have to prove that (L . 16.6) e x! u XNI.

Cue; Leeand luc
» (I..I!..6)e)li becauseGis total.

' cm; w.L.o.G ucandßecwimL-qev
mm L'" It

» uU£‚(L'‚K)u-a (Coroner-y 6.2)
» (L'.z.uuz‚(v‚x))ex‚
no (L.!„ONXN‘

Emil U— K
» uUZl(9‚L'‚K)-la (Corollary 6.8)
. (L‘.1t..nUE.‘,(L'.[mexl or (It..L'.uU£:,(L'.9,10)“i
* (t..lt..(a)exrll

o (L.u.6)exiuXNi.

ii) Let L.! te LNODBS uc . L~ 16.6 -11U>.‘.,(95L.l{)vI e
We have to prove that (L ‚x, . 93 ‚ e) e)(!W' u){IWN| or

(15.1 .9 , ,pIE,(L.93K))e 1 i u XlWNi.

Qu.). “BANG
9(L .x .95 . e) eXIWi or (It..L.93.nUS:I(L.93K))eXlWl

(because G in total.)
£1112. Leaner :

Cm“ L" K'

» pU£i(L', K') u e (Corollary 6.5)
. (L'. 10. utE‚(L'. K‘) e XI
n (L.Z.9,.e)ex1\VN,

M L'” "
» puz, (9 lL ' . K') .- 9 ' (Corollary 6.11)
.. (L'x'.9,,11U.‘..'l(9,l.'.l('))e)l1WI or (w.1.'.o„puz‚(1.'.p‚x'e xrw|
. (L.z‚93.6)eXIWN‚or (%.L‚9_„‚uU£‚(L.93K))EXIWNI.

We have V Late e L~ It, therefore Le c and I“ e is not possible.
» (L.!(„93 ‚e)GXIWNlor (X..L‚93.plE‚(L.93K))€XIWNi.

iii) Let L , ! e LNODES uc , L~ 16,9 -}IUZ.(L,K) u e
» pU£|(9 3L , K) n e for an appropriate 93. (Theorem 6.14)

‘ The proof for (wma) e x1i u xm, is similar toil)

i). ii), iii) and Definition 5.2 It 6' is total. I

30

uw

The algorithm can be optimized in the following way: Bach X-Link and XlW-Link can be
inherited under certain conditions to two X-Links. one XIW—Link and one XI-Link.
Exploiting theorems 6.4. 6.6 and 6.12 one can organize the algorithm in a way that
whenever two X-Links can potentially be inherited. but the unifiers for at least one of
them are empty. no attempt to inherit an XIV-Link and an XI-Link need be made
because their unifiers are empty too. Furthermore. if the two X-Links can be inherited.
but the unifiers for the XIV-Link are empty then the unifiers for the XI-Link will be
empty too and need not be computed.

LM

Two goals have been achieved with this work:

i . The variety of different types of links which have been used so far in the clause graph
calculus has been described within a unique framework:
Three link types are combined into one link family. the com mon characteristic of which
is a relation between literals. This relation has to be defined for each link family such
that a unifier can be calculated. the application of which makes the relation hold
between two literals. The unification algorithms on the literal level are supported by a
common theory-unification algorithm for the unification of two terms according to a
given congruence relation for terms. The three link types in a link familiy only dilfer in
that one type connects unifiable literals in different clauses ()(-Links). whereas the
other two types connect unifiable literals in the same clause (XI-Links) resp. weakly
unifiable (unifiable after renaming of one literal) literals in the same clause
(XIV-Links).

2. It is possible to define the link inheritance mechanism for a relatively large class of
operations on the clause graph (resolution. factoring. hyperresolution. E-resolution etc.)
completely independently of the respective literal relation. The only necessary rules
are those for inheriting the three link types inside a link family. The literal relations
themselves need only be used during the construction of the graph and may be ignored
afterwards. In order to achieve this independence, our analysis has shown how to
calculate the mgu-set for instances of two literals directly from the mgu-set of the two
literals without unifying these instances again. This method was demonstrated for a
very general class of many sorted calculi and congruence relations on terms. The
extensions of the term relation to literals have also been kept very general, since only
certain compatibility conditions are required.

The advantage of the new inheritance mechanism is not only that it is usually (but not
always!) cheaper to calculate the new unifiers from the old ones, but that an ancestor
relation between the new and old unifiers can be established which allows the
inheritance of properties attached to the unifiers to their descendants and to use these
properties for new deletion rules in the clause graph calculus.

Aakamlsslasments
I would like to thank my colleagues N. Eisinger. A. Herold. M. Schmidt-Schauss. H.].
Bt‘trckert and Ch. Lingenfelder for their support during the preparation of this work. J.
Siekmann read two drafts of this paper. His helpful critisism and support contributed
very much to its present form.

31

W

[Br75]

[3181)

[He83l

[KMR83I

|Ko751

(5184)

(5585)

|St831

(SW80)

(5:82)

(Wasll

(Wa82)

Bruynooghe. M. 'The Inheritance of Links in a Connection Graph".
Report CW2 (1975). Applied Mathematics and Programming
Division. Katholieke Universiteit Leuven.

Bisinger. N. 'Subsumption and Connection Graphs'.
Proc. of ”CAI-81. Vancouver (1981)

Herold. A. 'Some Basic Notions of First-Order Unification Theory‘.
Interner Bericht 15/83.
inst. für Informatik l. Univ. of Karlsruhe. (1983).

Karl Mark G. Raph. ’The Markgraf Karl Refutation Procedure'.
Interner Bericht. Memo-Seki-MK-M—Ol.
FB Informatik. Univ. of Kaiserslautern (1984).

Kowalski. R. 'A Proof Prooedure Using Connection Graphs'.
J.ACM 22.4. (1975).

Siekmann.]. ’Universal Unification'
Proc. of CAM-84. apa USA. Springer (1984).

Schmidt-Schau”. M. 'A Many-Sorted Calculus with Polymorphic Functions
Based on Resolution and Psramodulation‘.
Proc. of lJCAi-BS. Los Angeles (1985).

Stickel. MB "Theory Resolution: Building in Non-Bquational
Theories'. SR1 Report, (1983).

Slekmann. J.. Wrightson. G. 'Paramodulated Connection Graphs'.
Acta lnlormatica (1978).

Szabo. P. 'Uniflkationstheorie erster Ordnung'
Dissertation. Inst. für Informatik I. Univ. of Karlsruhe (1982) .

‚Walther, cn. 'Blimination of Redundant Links in Extended Connection
graphs'. Proc. of GWAl-ßl. Springer Fachberichte (1981) and
Interner Bericht 10/81. University of Karlsruhe.

Walther. Ch. 'A Many-Sorted Calculus Based on Resolution and
Paramodulation'. Interner Bericht 34/82
inst. für Informatik I. Univ. of Karlsruhe (1982).
see also Proc. of, IjCAl-83. Karlsruhe (1983).

32

Mamas-1mm

Slim (Chapter 2)
V set of all variable symbols ! set of all function symbols
P set of all predicate symbols T set of all terms
l. set of all literals WO) set of all variables occurring in O

W (cn-mer 2)

Dome) domain of 6
COD(6) codomain of 6 - 6(DOM(6))
VARS(6) domain of 6 regarded as a list.
TBRMS(6) 6(VARS(6)) - conic)
VCOD(6) variables in the eodomain of 6
E set of all substitutions
I ' set of idempotent substitutions
RENJV) renaming substitutions pwith DOMlo) - V
REN:(V) renaming substitutions with DOMlp) = V

C9 converse of the renaming substitution g
a permutation of order 2, generated by p
e renaming of a substitution: 906 - M

W (Def. 2.2)
[...l sort of a term
vs a predicate selecting well sorted terms and literals
'S'l'. “L. '88. '88‘ well sorted terms. literals.

substitutions and idempotent substitutions

Relations
5 partial ordering on sorts

1. basic congruence relation on terms (Def. 3.1)
2. "natural" extension to literals (Def. 3.13)

. [W] strong extension of . to substitutions (Def. 3.3)
= [W] canonical extension of the nun-relation to literals (Def 3.13)
s [W] a subsumption relation on substitutions (Def. 3.6)
a [W] an equivalence relation on substitutions (Def. 3.6)
I! ‚[.

UZ(s,t) complete set of unifiers for s and t (terms or literals). (Def. 3.16)
uUZ(s.t) set of most general unifiers for s and t
uUZßßlwset of most general "unifiers" for the substitution 6 and the set of

substitutions a . restricted to the variables W. (Chapter 4)
MAXMG) An instances removing function for sets of substitutions. (Def. 3.17)

mm (Chapter 5)
LNODES set of literal nodes in the graph.

(Multiple occurrences of literals are possible in a clause graph. Therefore the
literal nodes in a clause graph are different from the corresponding literals.
The literal nodes are written with letters like L or x. and the corresponding
literal is then L resp. K).

~ A relation on literal nodes grouping them into "clauses".
n-Operation

An operation on clause graphs. taking a set of literals. instantiating them,
grouping them into a new clause. and inserting them into the graph.

33

