Auewuar) 1sap

aynispey 0052-d

08€9 yoesod

| ¥iewojul anj Insuyj

euojouey JB})ISIAIUS
njms

Auewan) 1sap

ulane|siasiey 05/9-a

6¥0€ Yoeusod

yilewloju| yolaiaqyoe

YIeINeIUBNUIBIIg L, 0ISOd
Yew o8 n

| || B

OWaWw
X3S

Hans Jiirgen Ohlbach
MEMO SEKI -85 -1 - KL

175
=
— a

<C
=
e BN L §
—
= w
< wv
L5 I
— <
(e]
—_— O
=
=

[<5)
> <
o o
S =
w
== oo
— <C

1304 -1435

Theory Unification in Abstract Clause
Graphs

Interner Bericht

Hans Jorgen Ohlbach
FB Informatik
University of Kaiserslautern
675 Kaiserslautern
West Germany

Abstract

Clause Graphs, as they were defined in the 1970s, are graphs representing first order
formulas in conjunctive normal form together with the resolution possibilities. The nodes
are labelled with literals and the edges (links) connect complementary unifiable literals.
This report describes a generalization of this concept, called abstract clause graphs. The
nodes of abstract clause graphs are still labelled with literals, the links however connect
literals that are “unifiable” relative to a given relation between literals. This relation is
not explicitely defined; only certain “abstract” properties are required, for instance the
existence of a special purpose unification algorithm is assumed which computes
substitutions, the application of which makes the relation hold for two literals.

When instances of already existing literals are added to the graph (e.g. due to resolution
or factoring), the links to the new literals are derived from the links of their ancestors. An
inheritance mechanism for such links is presented which operates only on the attached
substitutions and does not have to unify the literals. This solves a fong standing open
problem of connection graph calculi: how to inherit links (with several unifiers attached)
such that no unifier has to be computed more than once.

Contents

1. Introduction and Motivation S. Abstract Clause Graphs

2. Basic Notions 6. Special Inheritance Mechanisms

3. Congruence Relations and Unification 7. The General Inheritance Algorithm
4. The Basic Inheritance Theorem 8. Summary

1. Introduction and Motivation

A connection graph in the sense of Robert Kowalski [Ko75] consists of nodes labelled with
literals (as constituents of clauses) and links, which connect complementary unifiable
literals in different clauses.

Since the literals have to be Robinson unifiable, there is (up to the renaming of variables)
only one most general unifier (mgu) and it is assumed that this single unifier is attached
to the link.

A typical operation upon such a graph is resolution: A link is selected, the resolvent is
generated, and the new links are created by inheritance from the links connected to the
parent clauses. Finally the link resolved upon with its mgu is removed from the graph.
The inheritance mechanism avoids searching the whole graph for potentially
complementary literals; the new unifiers still have to be calculated by literal unification,
however. In 1975 Bruynooghe presented a mechanism for inheriting Robinson unifiers
directly without literal unification [Br75]. But in the last few years different extensions
of the connection graph calculus have been proposed that make it necessary to
reformulate the inheritance mechanism.

The main extensions are:

1. Other link types were introduced, connecting not only complementary unifiable literals
(i.e. the atoms are unifiable and the signs are different) in different clauses, but also
directly unifiable literals (ie. the atoms are unifiable and the signs are equal) in
different clauses as well as in the same clause etc. [Ei8 1], [Wa82]. For every new link
type an inheritance mechanism of its own had to be defined.

2. The unification concept was augmented. New unification algorithms are able to exploit
certain properties of functions and predicates [Si84]). For instance, terms like f(af(b,c))
and f(f(b,c),a) are unifiable, provided f is associative and commutative. But also literals
like a<b and a>b are complementary unifiable under the usual interpretation of the <
and > predicates [St83].

3. The underlying logical calculus has been augmented by sorts [Wa82a] and polymorphic
functions [SS85).

A very unpleasant consequence of these extensions is the fact that there is not onty one
most general unifier, but possibly an infinite number of independent ones. Links in the
extended clause graph calculus are therefore labelled with a set of mgus. After resolving
with one of these mgus, it is no longer possible to remave the whole link from the graph,
but only this single mgu. This leads to the undesired effect that & uni/fier once
removed may suddenly reappear in an inherited /ink, as the following example
demonstrates:

1.1 Example (Reappearance of a removed unifier in an inherited link)

Let R be a symmetric predicate.

€ - =
E E@ 62' {xq—b,ud-a} ~Rab
\ -
Sy= (X' ca,y ¢ b}
G5= {x' b,y «a}

Unification of Rx'y’ and -~Rab after resolution upon the predicate P generates 6, and 6,
regardless whether &, or 6, has been previously removed or not. ®

In order to prevent this effect, which introduces the kind of redundancy again the
connection graph procedure was trying to eliminate in the first place, it is necessary to
inherit the unifiers individually such that a direct relation between the parent unifier and
its descendants can be established. If this is possible we can not only prevent the
reappearance of removed mgus, but further deletion rules will become possible.

1.2 Example (for a new deletion rule)

R is again a symmetric predicate.

{y €x,2 ¢x} 51={xe-a,g<-v}

|-‘Pzz,l —@@} 5, {X(-v,ui-a}/ +Rav

6'l= {x’(—a,v « 8}
S 5= {X ¢g,v ¢a}

Let us assume that for some reason 6, was removed. If it is not physically destroyed, but
only marked in some way and we are able to inherit S, and 6, separately, it is possible to
detect that the descedant 8, of s, is an instance of the removed mgu 6, Now we can
remove &, too and with 6, we can remove the whole link. (The completeness proof for
this deletion rule is not part of this report and has to be given elsewhere.) m

In this report a method is presented to inherit individual unifiers for an extensive class of
theory unification algorithms and arbitrary literal-link types (links connecting literals,
not terms).

Throughout the paper we use the following standard mathematical notation:

€ set membership \ set difference

v set union n set intersection

S subset relation IMI cardinality of set M

g empty set

3 existential quantifier v universal quantifier

A logical and v logical or

~ negation » implication

m end of an example, definition or proof (n] end of case in a proof by cases

flyy, function f restricted to a subset of its domain. DOM(f) Domain of the function f
3

2. Basic Notions

We use the standard notions of first order logic: Given pairwise disjoint alphabets, let V
be the set of var/ab/e symbols; !n be the set of n-ary fuaction symbols, F = C the

setof constantsymbols and F = UP . Let P, be the set of n-ary predicate symbols
and P = UP, . Furthermore let T be the set of terms, ie T is the smallest set with V€ T
and f(t,,.. 1)eTforalifeP andt,eT. IfPeP andtyeT wecallP(t, ..t)an stom.

Literalsare signed atoms (+A resp. -A) and L is the set of all literals. (/suses are sets
of literals.

For any object t containing variables we define V(i) as the set of all variabl/es
occurring in tand V(1,, .. 1) as an abbreviation for Vit)v . v V(tn).

Substitutions

A substitution 6 is an endomorphism on the term algebra associated with T which is
identical almost everywhere.

Each substitution & is completely determined by its restriction &}y, [He83, 1.2]. We will
make frequent use of this property, writing (x,«t,, .. ,x «t) for instance to represent a
substitution 6 with 6(1,) =1, 1 <i<n For such a substitution 6 we define:

VARS(®) := (x,, .. x,) and TERMS(s):=(t,...t)

€ is the identity substitution and & is the set of all substitutions.

The codomainof a substitution & is CoD(s) := s(DOM(s))
The set of variables introduced by6 is defined by VCOD(s) := V(COD(s))
and the set of variables of6 is V(s) := DOM(s) v VCOD(s)

For two substitutions 6,u € £ we write 6p for the usual functional composition and Sly for

the restriction of 6 to the set of variables V. Substitutions may also be applied to atoms
(and consequently to literals and clauses too): SP(t,, .. t)= P(st,, .. st).

E"=(6cElcs =6)isthe set of /dempotent substitutions

We mention two useful properties of idempotent substitutions which can be found in
[He83!:

2.1 Lemms

Let 6 be a substitution and t be a term. Then ‘
a) 6 isidempotent iff DOM(8) n VCOD(®) = o. (Lemma L5 in [He83))
b) If & is idempotent then DOM(8) n V(st) = 2. (Lemma 1.4 in [He83]) =

Sortsid Logic

In order to cover many variants of sorted logics, we define the notion of a stable sort
calculus.

2.2 Definition (stable sort calculus)
We call a given many-sorted calculus a sfabl/e sort cslculfus if it defines the

notions of sort symbols 8, a sort function [..] and a predicate WS satisfying the
following properties:
a) 8 is a finite non-empty set of sort symbols with a partial order <, the subsort order,
imposed on it.
b) [..]:T -+ 8 is a sort function satisfying the properties:
i) Y vCs DOM([..])
ii)t=1f(t,.. .t)eDOM(.]) » t,e DOM([.]) 1<isn and
VeeE, (VxeVlsxls(x))» [stls|t] '
(The sort of an instantiated term is smaller or equal to the sort of the term).
¢) WS is a meta-predicate for terms and literals with the properties:
i) If A is aterm then WS(A) & A € DOM(]...]).
i) If A= +P(t), ..t) is a literal then WS(A) implies W8(t) 1 si<n and

Vs €T [s]<ly] » WS(tP(s,,.. 8)). _ [}

WS selects terms and literals with a property usually called “well sorted”. Therefore let
WST = (t € TI WS(1)) and WSL := (L € LI WS(L)) be the sets of well sorted terms resp.
literals, WSE = (6 € £1 V 1 € V [8(x)] < [x]) be the set of well sorted substitutions and
WSE* - WSE ~nE*. (We write W8(s) if 6 ¢ WSE.)

The notion of a stable sort calculus covers all the many-sorted calculi where instances of
well sorted terms are again well sorted terms. (see for example the ERP calculus of Ch.
Walther [Wa82a] or the ZRP* calculus of M. Schmidt-Schauss [SS85]). A calculus where for
example x°! is regarded as well sorted, but 07! not, is not of this type.

Throughout the rest of this paper we consider only stable sort calculi.

2.3 Lemma

Let 6 be a well sorted substitution. Then
a) If t is a well sorted term or literal, then &t is well sorted, too.
b) If t is a well sorted term then [st] < [t).
¢) The composition of two well sorted substitutions is again a well sorted substitution.

The proofs follow immediately from the definition of a well sorted substitution and
Def. 2.2,b,ii and c,ii.]

Renaming Substitutions

Renaming substitutions are substitutions mapping variables into variables of the same
sort. They are defined as follows:

2.4 Definition (Renaming substitutions)

An idempotent substitution ¢ € WSE* is called a rensming substitutionfor the
variables W = g iff

a) DOM(g) = W

b) gWeV

c) [x] = [ox] for every variable x.

d) ¢ isinjectiveon W,ie Y=y=»ox =gy. =

For a set of variables W € V we write:
REN_(W) for the set of all renaming substitutions ¢ with DOM(g) = W and

RENC(W) for the set of all renaming substitutions 9 with DOM(g) & W.
Furthermore we use REN_(0O) as an abbreviation for REN_ (V(0)) for any object O
containing variables and ~ € (=,).

25 Lemma
If ¢ is a renaming substitution then VCOD(g) = COD(p).

The lemma follows immediately from VCOD(g) € V and the injectivity condition for
renaming substitutions. ®

2.6 Definition (Converse of a renaming substitution)
Let ¢ € REN_(V), V & V be a renaming substitution. We define the coaverseo® of ¢

by: e°x=y iff gy =x foreachxeV. m

An example: 0=Xe y,zeu) » 9f=(ye X, ue 2)

That the converse of a renaming substitution is (unfortunately) not the inverse, but
something similar is shown in lemma 2.8. First we need some trivial properties of the
converse:

2.7 Lemma

Let ¢ be a renaming substitution. Then
a) VCOD(g€) = DOM(¢) and
b) DOM(g€) = VCOD(9) and
c) ¢°¢is idempotent.

Proof

a) VCOD(p®) = V(g DOM(p®))
= (p%xlpx =y, y=1)
=(ylogy=x1,y=1) (Def. 2.6)
- DOM(p)]

b) DOM(p€) = (x|g°x =y, y=1)
«=(xlgy=1,y=1) (Def. 2.6)
- COD(g) o

c) from a) and b) together with 2.4 we know that ¢° is a substitution g€ E.
g€EE = VCOD(g) n V=g

» VCOD(p) n DOM(9) =o (because ¢ € REN_(V))

» COD(gp) nDOM(p) =g (Lemma 2.5)
=» DOM(p®) » VCOD(g®) = (a,b)
=» ¢ is idempotent. (Lemma2.1) =

Corollary 9 € REN_(V) e ¢°¢e REN_(COD(p))

2.8 Lemma
If ¢ is a renaming substitution, then @9 € =9 and ¢ =9°
The proofs are given in [He83], Lemma 1.12.

Parmutations

A substitution { is a permutation if there exists al™ such that{{™ =¢.

C=(xe y,ye 2,z 1) for example is a permuation withl™ = (X1 ¢ 2z, 2¢ y,y ¢ X)).

In the inheritance mechanisms, defined in chapter 6, we need permutations consisting of
one cycle of length 2. They look like § = (X« Y,y ¢ X, ue Vv,V e u) and are constructed
from ordinary renaming substitutions ¢ as follows: ,

ox if x € DOM(g)
ox -

9°x otherwise.

2.9 Lemma (some properties of §)
Let ¢ be a renaming substitution.

2) Bpom(g) = ¢
b) 0d = ¢
©) dolpom(g) ~ ¢

(=> 0 is a permutation)

Proof

a) Follows immediately from the definition.

b) DOM($) - DOM(g) v DOM(p€)
= DOM(g) v COD(p)
= DOM(g) v VCOD(g)

(by the definition)
(Lemma 2.7,b)
(Lemma 2.5)

As ¢ is idempotent we know that DOM(9) n VCOD(g) = @. Therefore we can split
DOM(§) into the two disjoint sets DOM(g) and VCOD(g). Now let y € DOM({).

Case 1. yeDOM(g) with gy =x
o0y - boy
={x

-9’1

4
Cage 2: y € VCOD(9) - DOM(g®) with 9(y) =

0y =09%
-ox
-9x
b 4
Case 1 +Case2 » §f =€

¢) see proof b), case 1.

(Def. and y € DOM(g))

(x € COD(¢) = DOM(9€))
(Def. 2.6) o

(Def. and y € DOM(g©))

(x € COD(p€) = DOM(p))
(Def. 2.6) o

o

"

For the inheritance mechanisms of chapter 6 we define a renaming operation on
substitutions. If for example 6 = (x« [y, Z¢« gav) is a substitution and ¢ = (ye W, z¢ u) is
a renaming substitution, then the spplication of9 106. ge6 = (X« fw, Ue gav)is a
new substitution which is different from the functional composition

9 6 = (x¢ W, Z¢ gav, yew)

2.10 Definition (Renaming of a substitution)
For a substitution & € £ and a renaming substitution ¢ we define 2 renaming
operation e: 006 = §s]

Some useful properties of the renaming operation are listed in the next four lemmas.

2.11 Lemma
If ¢ is a renaming substitution then DOM(ges) = {DOM(s).

Proof
QoY =06 0X X @ & 0x » X @ §x € DOM(S) & §0x = x €)DOM(S). m

The following lemma shows that the definition of ® in fact reflects our intuition of a
renaming of a substitution:

212 Lemma
Ife=(1,¢t,.,1,«1)eE and g € REN(8) with COD(g) n V(s) = o, then
Qo8 = (ox, « ot \, .., 01 « ot)
=(ox,« 08X, .., 0x « 08X)
Proof
With lemma 2.11 and COD(p) n V(s) = @ we have DOM(ges) = pDOM(s). Therefore let
X be a variable and x € pDOM(s) (nontrivial case), then by the injectivity of ¢ and
COD(9) n V(s) = o there exists ak, 1 sk < n with x, € DOM(8) and ¢x, = x. With 2.6

we have now: X, = 9°x and therefore it is ge6x = §s0x = 080 x = 08X, =0t,. W

2.13 Lemma
The renaming operation preserves the idempotency and well-sortedness of a
substitution.

Proof
68 =6 » (go6) (ges) = (0s)) (0sh) =Y 68§ =08) =0e8 =» ges cE*
The well-sortedness is preserved because ¢ renames variables by other variables of
the game sort (Def. 2.4,c). []

The next lemma shows that the renaming of an instantiated term is equivalent to the
instantiation of the renamed term with the renamed substitution. This result will
frequently be used in the proofs of chapter 6.

2.14 Lemma

Lettbe aterm, 8 €E and ¢ be a renaming substitution, then we have
a) (gec)) = o and
b) ¢ € REN(V(t5)) and VCOD(p) n V(t8) =g =» (ges)ot = oot

Prool
a) (pes)y = 0spd = bs (Lemma 2.9,b)
b) Follows form the definition of § and a). (]

Corollary The statement of lemma 2.14 remains valid if t is a literal. =

8

A unification problem in its most abstract form can be stated as follows [Sz82]:

Let S be a formal language containing variables, & the set of substitutions in S, and
~GSxS a relation. For any p,q€S a substitution 8€E with 6(p)eS, 6(q) € S and &(p) » 6(q)
is called a »-unifying substitution (~-unifier).

Unification theory investigates the computability and representability of such ~-unifiers.

This paper is concerned with two such languages and relations, first the language of well
sorted terms WST with a relation ~ satisfying special properties and then the language of
literals with an extension of ». The relation between terms ~ is usually [Si84] defined by
an equational theory and most of the known unification algorithms work for special
equational theories. For the solution of the inheritance problem to be addressed in this
paper, it is not necessary however for ~ t0 be an equationally defined relation. » may
remain an abstract relation and the unification algorithm need not be defmed explicitly
- but has to fulfill certain requirements.

3.1 Definition (Congruence relations)

A stable congruence relation ~ on well sorted terms is a relation satisfying
the following properties:
a) ~ is an equivalence relation.
b) congruence: Let 1,8, Witht,~ 8, 1 <isnbe pairs of terms. _
If8(t,, .. 1) and f(s,, .. ;s) are well sorted, then (¢, .. t) w f(s, .. 3,).

c) stability: Ifste WST aretwotermsands ¢ WSE and s~ t then s« &t

3.2 An Example
Assume 8 [..] WS> is the ERP calculus of Ch. Walther [Wa82a] with $=(A,B) and A<B.
If we have a constant a of sort A and two functions g:A+»A and [:BxB+B and ~ is the
relation expressing the idempotence of f: (fxx=x). Then we have aw~faa, but not
ga~ g(faa), because g(faa) is not a well sorted term. If, however, we consider the
ZRP* calculus of M. Schmidt-Schauss [SS85] and declare f being polymorphic:
fe l’umm(ABB)BAB)A.AA) then [faal=A and g(faa) is a well sorted term.

Now g(a) » g(faa) holds. m

Throughout this chapter let » denote such a stable congruence.

The symbol » is also used for the canonical extension of the »-relation to lists of terms:
(t, . t)w (s, ..8) iff t;»s forlsisn

There are two possible ways to extend the ~-relation to substitutions:

3.3 Definition (strong extension of the ~-relation to substitutions)
For two substitutions &, y € WSE and a set of variables W we write
6~ pIW] iff for each variablexe€W: Sxw~nux. =

34lemma

~ [W] is an equivalence relation on well sorted substitutions.
The proof follows immediately from the equivalence condition 3.1 a). m

35 Lemma (Correspondence between the » relations on WST and WSE.)
If t is a well sorted term and 6, p are well sorted substitutions with 6 » p [V(t)],
then &t » jt.

Proof by induction
The induction basis follows trivially from the definition of the »-relation.

Induction step
Lett=f(t, ..t)e WST
» ote WST and put ¢ WST (Lemma 2.3)
» Ot~ J, (Induction hypotheses)
» f(st, .. ot)w~ fut, . pt) (Congruence property 3.1,b)
» 6f(t,...t) »pft, . t) L

The following definition gives the second extension of ~ to substitutions.

3.6 Definition (Subsumption relation on substitutions)
a) LetopeWSE, WeVthen sspulWliff 3 Ac¢WSE o~ Aplwl
b) Letepec WSE, WeVthen ss W] iff sspIWland pssIW]

37 Lemma
a) s [W]is a partial ordering on well sorted substitutions.

b) = [W] is an equivalence relation on well sorted substitutions.

Proof
a) Since the reflexivity follows trivially, the transitivity of < [W] remains to be shown:

Lets,s, and 6, e WSE with s, <6, [W] and &, < 6, [W] for some variables W.
» 3A,2,6WSE With Ve W& xw A 6,1and 6,X~ A,5,X

» VIEW &3xwA A6, (Def. 3.1,a,c and Lemma 2.3,c)

» 6,s6,[W]]

b) The reflexivity and symmetry are trivial and the transitivity follows from the
transitivity of s [W]. m

3.8 Lemma (Correspondence between the < and s-relations and the ~-relation on WST)
Let s,t be well sorted terms and & a substitution with 68 » &t.
If te WSE with tse [V(st)] then tsw Tt

Proof
tse [V(st)l » IAe¢WSE t=2As [V(st)]
» TIw AGS (Lemma 3.5)
~ ASL (stability of)
~ Tt (Lemma 3.5)
]

Since the same lemma holds for the =-relation as well, the s-relation just classifies the
substitutions which can be used alternatively as unifiers for two given terms.

10

The next lemma is very instructive. It shows that the definition of the =-relation on
substitutions allows to construct equivalent idempotent substitutions for each ¢ ¢ WSE.

39 Lemma

For every well sorted substitution & there exists an idempotent substitution 6" with
6z [DOM(s)).

Proof
Let ¢ € REN_(DOM(s) n VCOD(6)) such that VCOD(g) n V(8) = o
» DOM(p®) n V(5) = o. (Lemma 2.5, 2.7,b)

Let & - 98 Ipop(e)
= DOM(s") - DOM(s) and VCOD(s") & (VCOD(s) \ DOM(s)) v VCOD(g).
Both sets are disjoint and hence by lemma 2.1 &’ is idempotent.
Purthermore we have & s & [DOM(6)] because &’ » 9 & [DOM(s)] and
o s [DOM(s)] because &~ 9¢s [DOM(s)]

» 0%es [DOM(s)] (Lemma 2.8)

~ 966’ [DOM(s)]
» sz [DOM(S)]. .

The proof shows how to make a substitution idempotent by a renaming of the critical
variables in the codomain. Whenever we postulate the existence of a substitution which
needs to be determined only up to the =-relation, we can therefore assume that this
substitution is idempotent (see for instance the definition of unifiers below).

Bvery symmetric and transitive relation ~ € M x M for a certain set M can easily be
extended to sets of elements of M if we demand the existence of a bijection between
these sets. We define this extension for arbitrary sets M and ~-relations, but we use it
especially for sets of substitutions and the = [W] relation.

3.10 Definition

Let~ € Mx M be a symmetric and transitive relation for asetM and £, Z,< M. We
say £, ~ £, iff there exists a bijectiony: £,+ £,suchthat V6¢E, 6~ y(s).m

3.11 Lemma (criterion for the equivalence of such sets.)
Let~ & M x M be a symmetric and transitive relation for aset M and £, Z,& M be

minimal with respectto~, ie.6, »6,€ &£, » 6,#6, for i-12,
then: EZ,~Z, iff
2) VeeE, 3TeE, 6~ T and b) VteE, 36€eE, T~ 6

Proof
"#" for6€E, select T=y (6) €X, and forTeE, select s=y!(T) €E .

‘@ Lety 6E,xE, and (6T)ey iff 6~ T.

We have to show that ¥ is a bijection.
Y is surjective by the definition. Now let (8,T,)ey and (s, ey.

» 6~T7, and6~ T,

» T, ~6 (symmetry of ~)
» T~ T, (transitivity of ~)

=» Yy is a function.

The injectivity is shown analogously.

=» Y is a bijection

» Z,~E,]

B

3.12 Lemma (Independence of the = [W] relation under renaming)
Let WV, £{,Z,GWSE. Then £;8Z,[W] = geZ ngeE, [0(W)]

Proof
The main idea of the proof is to show that for two well sorted substitutions &, T:

SaTIW] » ges nget [H(W)

6atT[Wl» 32,1, VIeW o(x)~ A, T(x) and T(x)~ A,8(x).
Now let y € {(W).

» 3xeW y=0(x)and x = §(y)

» 6p(y) = 6(x)~ A, T(x) = A,TH(y)

» fsb(y)~ § A, Th(y) (stability of ~)
» pe0(y)~ § A ,00TO(Y) (00 -¢)

» ge6 ~ (ge 1,)pe) [§(W)]

» 006 < 9o T [H(W))

The other case works in a similar way.

= go6 m 00T [H(W)]

The theorem now follows im mediately. []

The definition of a congruence relation for terms is now extended in two steps to a
relation on literals.

3.13 Definition (extension of the ~ relation to literals)

a) (canonical extension of »)
Let L and K be terms or literals
We define: L« K iff the two signs and predicates are equal and the ~-relation

- holds for the two termlists

b) ("natural” extension of »)
A given symmetric and stable relation ~ between literals can be combined with the
x-relation to a new relation ~ = « o ~ 0n literals. We call it a (compatible) exzeasion
of the » relation (on well sorted terms). Its properties are:

i) VLKeWPFLL~K e3ReWFLL=R andR~ K (» = = o ~ "compatibility")
ii) VLK€ WFL,6,¢ WFE L~ K= 6(L)~ 6(K) (stability)
Remarks

-- Definition a) is the canonical extension of ~ to literals which observes the properties
of terms represented by ~. The ~-relation described in b) may take properties of
predicates (symmetry etc.) and the sign of the literal into account. This relation needs
neither be reflexive nor transitive. Finally the ~-relation on literals combines the
properties of predicates and terms. It may for instance describe "complementarity of
literals” (For example +P(a, f(b,c)) » -P(f(c,b), a) if P is symmetric and f commutative).

-- We also use the symbol ~, which has originally been used for the relation between
terms, for the relation between literals, because this relation is in some sense a
“natural” extension. It allows to handle properties of literals in the same way as
properties of terms. (The symmetry of a predicate symbol, for instance, and the
commutativity of a symbol are not really very different properties). Furthermore it
specifies the unification problem < ~ t> for two terms resp. <L ~» K> for two literals
and many lemmas can be proved once for both relations.

3.14 Lemma (another formulation for the compatibility property)
ITLK € WSL,s,t € WSE with (L) » 6(K) and T » 6 [V(LK)] then
T(L) » 6(K) and T(L) » T(K)

Proof
T S[V(LK)] =» &(K)e«t(K) and o(L) = T(L)
(trivial extension of lemma 3.5 to literals)
S(L)» (k) » IR6S(L)a RAR~ 6(K)

12

» Rxt(L) (transitivity of «)
»3RT(L)=RAR~ 6(K)

» T(L) » 6(K) (symmetry)
» 3Re(K)asRAR~ T(L)

» t(K)= R

» T(K)w T(L) =» t(L)w~ T(K) (]

3.15 Lemma (extension of lemma 3.8 to literals)
Let s and t be well sorted terms or literals and ¢ € WSE with 6(s) » &(t).
IfteE withtss[V(st)], then T(s)w T(t).
Proof
TsS[V(st)l » 32 e WSE t=2As[V(st)]
The first case, s,t € WST is proved by lemma 3.8, therefore let s,t € WSL.

S(s)» 6(t) » As(s)w As(t) (stability)
» T(s)w~ T(t) . (Lemma 3.14)
| |
Unifiers

Now we can come back to the main subject of this chapter: unification.

3.16 Definition (complete set of unifiers)
For arbitrary terms s,;t € WST or literals s,t € WSL, UE(s,t) ¢ WSE* is called a correct

and complete set of unifiers (~-unifiers) for s and t iff

a) VeeUZ(st) o(s)~ s(t) (correctness)
b) VeeE a(s)ne(t) » 3 TteUZ(st) sstIVist)] (completeness)

In addition we need a purly technical condition which makes the definition
insensible against variable renamings and prevents such undesired things as
UE(xy) = (xe y)but UE(X y) = (y « 1)

¢) Voe REN(V) UZ(H(s),9(1)) = g UE(s,t)

An actual implementation of a unification algorithm usually fulfills this condition. To
violate them would mean to put extra code into the algorithm which for instance sorts the
variables according to some obscure ordering.

A complete set of unifiers UE(st) is m/n/ma/ if in addition
d) Ve, 6,eUE(st) 6,;s6,[V(st)] » &=6, and

e) Ve e Uz(st) DOM(s) & V(s.t) hold.]

This set is unique up to the = [V(s,t)] relation and is called a most general set of unifiers.
(It is usually written pUE(s,t)).

In order to calculate most general sets of unifiers form complete sets of unifiers, we
define an instance removing function MAX:

3.17 Definition (Maximizer)
Let W be a set of variables. A function MAXy,: 2Z 5 2% with the following properties

is called a Maximizer with respect to W:
a) VECWSE ,6¢Z MAXW(Z) ¢Z and axeMAXw(Z) s<A W]

b) VECWSE , Ve, 6,e MAXy(E) ©,<6,[W] » 6, -0,
c) VECWSE Vo erenc(V) MAXy (o) =9 o MAX,(E)
d) V&€ MAX(Z) DOM(s)E W.

The function MAX,, (which needs not be unique) just removes all substitutions in E

which are instances of other elements of . It is insensible against variable renaming in
the same sense as UZ.

318 Lemma
For two well sorted terms or literals s and t: pUE(s;t) := MAXy (UE(s)) is a set of

most general unifiers for s and t.
The proof is obvious.

At this point it is necessary to put a further restriction onto the ~ relation:
We consider only relations » for which pUZ(s,t) exists and can be enumerated for every s
and t, but pUE(s,t) may be infinite.

The definitions for UZ and yUE can be easily extended to termlists:
Lett, ...t and s, .. .5, € WST and W - N(1,s))
Then UE((t,, .. .t.) (s, .. .8.) =N UE(t,s) and

RUE((,, .. t.), (s, .. 8.)) := MAXQUE(t,, .. 8), (s, .. 8.}

3.19 Lemma (Insensibility of pUE against variable renaming)
Let s,t be well sorted terms or literals. Then
Ve RENC(V) HUE((s),0(t)) = go PUE(s,t)

The proof follows immediately from the appropriate conditions for UZ and MAX. =

3.20 Lemma ("more general than most general is impossible.")
Let s,t be well sorted terms or literals and 7 € pUE(st);

letp eE with @(s)» @(t) and w<s @ [V(s,t)).
Then we have e [V(st)}

Proof
0(3) ~ Q(t) =» q'(..t)(S) ~ Cﬂ'(m)(t)
» 19 eE* ¢ roIV(st] (Lemma 3.9)
» A epUx(st) 9 <A [V(st)] (Def. 3.17,a)
» wsA[V(st)] (transitivity of <)
» T=A (Def. 3.17,b)

= ¢ swIV(st)]

=» @swIV(st)]

= @pam[V(st)] (Def. 3.6,b)
. (]

321 Lemma
Let s and t be well sorted terms or literals and T € pUE(s,t) » o;

lets € E with 6(VARS(T)) » S(TERMS(T)) then we have &(s)» &(t)

Proof
6(VARS(t)) » 6(TERMS(T)) » VIeV 6(x)~ 6t(x)
» 8sTIV] » &(s)w~ s(1) (Lemma 3.15) (]

14

Using the technical preparations of the last three chapters we are now able to prove a
correspondence between unifiers of terms (or literals) and unifiers of their instances. This
correspondence is the key for all inheritance algorithms in the following chapters.

For ease of notation we abbreviate:

HUE(S, £}y = MAXy, (U () 7 € US(S(VARS(T)) , S(TERMS(T))))
teE

4.1 The Inherjtance Theorem
Let s and t be well sorted terms or literals and © = pUE(s;t) = o;
let s € WSE with V(8) n V(©) ¢ V(st) and let W := V(Ss, 6t);
then pUE(es, 6t) = pUE(s,), [W]

Proof

According to lemma 3.11 it is sufficient to prove

i) V1 epUE(ss,6t) 3¢ epUE(s,0), withrag [W] and
ii) Vo € pUE(e, @), 3 1epU=(ss,6t) withgsw [W]

Proof i)
Let 7 € pUE(es, 6t). Our goal istofind a ¢ € PUE(S, O}, withmug [W1.

The idea is to extend T to a substitution ¢* which unifies &(VARS(t)) and

S(TERMS(T)) for a T € ©. Then we take a @' € PUE(s(VARS(T))s(TERMS(T)))
which is more general than ¢* and show that ¢ = ¢}, unifies &s and &t. But since T is

most general we can show that 1 is equivalent to ¢.

With 1 € pUE(ss, 6t)

» TGS» MGt
» ItepUE(s,t) mest [V(st)]
» IAeWSE s~ AT [V(st)] [«

At(Y) x€ VCOD(T) \ V(st)

Now let o*(x) -
m(x) otherwise

From the disjointness condition V(s) n V(©) ¢ V(st) we can immediately deduce

Qﬂv(s,t.d) =1 [==]
Step |
First we prove that At ~ ¢*6 [VCOD(T)].
Let x € VCOD(T)
Casel xeVi(st)
» ¢*6(x) = me(x) (see ==)
» AT(x)~ mo(x) = @*6(x) (see =)
Case2 x¢V(st)
=» Y ¢ DOM(s) (x € VCOD(T) and V(s) n V(©) ¢ V(s;t))
= @*s(x) = @*(x) = At(1) (Definition of @*) O
Endofstep 1

Step 2
Now we prove that @*6(VARS(T)) » ¢*s(TERMS(T)).

Let x € DOM(T) with ©(x) = q € COD(t)

» 1€ Vi(st) (tepUZ(s, t) and 3.18)
» @*6(x) - me(x) (see ==)
w AT(X) (see =)
= ATT(x) (TeE®)
~ @*st(x) (step 1 and lemma 3.5)
= @p*s(q)
» @*6(VARS(T)) » @*6(TERMS(T)) o
End of Step 2

With this step it is shown that @* unifies 8(VARS(t)) and (TERMS(t)). Next we have
to prove that @™, is equivalent to a most general element of pUE(s, exw.

Step 3
We have proved that 3 T € © with @* € UZ(s(VARS(t))) , s(TERMS(T))).

By the definition of pUE(s, ©)y, there exists a v e pUE(s, t) and a ¢ € pUE(s, (o)
and a @’ € UE(S(VARS(t)) , S(TERMS(T)) with @ = @, and 9* < ¢’ [W].

With @'8(VARS(T)) » @ 6(TERMS(T))
» PGS~ PSL (Lemma 3.21)
» PGS~ Q6L
» ¢ € UZ(os, 61)

With ¢*s¢’ [W]

»7selWl (9%l =m
> e [W] (T € pUE(ss, st) and 3.20)
and thdt completes the proof of i). o
Proof il

Let @ € pUE(s,©),, . We look for a 7 € pUE(6s, 6t) with @ = w [W].

By the definition of pUE(s, @), there exists a T € pUE(s, t) and a
@* € UE(s(VARS(T)) , S(TERMS(T)) with @ = 9%, € HUE(S,O), .

» @GS~ @St (Lemma 3.21)
» PSS~ @6t

» 317epUs(ss, st) withg s w[Wl

» 19’ € pUE(s, O), witho s w[W] (Proof i))

» pso [W]
» Q=9 (Def. 3.17.b)
» gun[W]

End of Proof ii

From proof i) and proof ii) and lemma 3.16 we can conclude the theorem:

HUE(ss, 6t) s pUE(s, ©), [W]

Corollary

For two terms or literals st and a substitution &: pUE(s,t) =g » pPUE(Ss,6t) = 0.

3. Abstract Clause Graphs

The original formulation of the connection graph calculus [Ko75S] had only one type of
links: resolution links connecting Robinson unifiable literals with opposite signs in
different clauses. This “pure” connection graph calculus was later augmented by other
link types supporting different graph operations like subsumption recognition [Ei81],
tautology and purity checking [Wa82], paramodulation [SW80] etc. Except for
paramodulation links which are links between terms, all these links are links between
literals and have to be treated very similar in an actual implementation. Therefore it is
advantageous to describe all these different literal link types within one single calculus.

5.1 Definition (Abstract Clause Graph)
Let » ¢ WST x WST be a stable congruence relation (definition 3.1) and
{.II i=1,..,n)be a set of extensions of the ~-relation to literals (definition 3.13) with

an associated unification algorithm for each »,. Let D be a set of variable disjoint

clauses.
A four tupel G(D) := (LNODES, y, ~, LINKS) is called an
abstract c/ause graph over D iff:

a) LNODES is an arbitrary set. (The set of literal nodes.)
b) y is a mapping y: LNODES » Literals(D) from the set LNODES to the literals occurring
in the clauses D, i.e. each node is labelled with a literal.
(We write L,X etc. for literal nodes and y(L) = L for literals)
¢) ~ is an equivalence relation on LNODES:
VLXeLNODES L~% iff 3DeD y(L)-LeDandy(X)=-KeD.
(The equivalence classes of ~ just represent the clauses of D.)
d) LINKS = ((w, X, XIW, XI) li=1,..,n) with

X, =((LX©)ILXeLNODES,L~ X, 60 & jUE,(L,K))
XIW, = ((,X,0,0) | L, € LNODES, L~ X,

9 € REN_(V(L)) with VCOD(g) n V(K)) - o, & = © & pUE (oL, K))
XI, = ((LXO)ILX€LNODES, L~ ¥, &~ 0 & uUE,(L,K)))

X;- Links connect » -unifiable literals in different clauses;
XIW,-Links connect weakly ,-unifiable (unifiable after renaming of one literal)

literals in the same clause and
XI,-Links connect » ,-unifiable links in the same clause.

An Example

Let » be the relation between terms as defined by the commutativity of the function f.
Let ~, be the relation between literals with opposite sign whose corresponding terms are

in the ~ relation. In addition assume that the symbol P denotes a symmetric predicate.
Let », be the relation connecting literals with equal sign and predicate, whose

corresponding terms are in the ~-relation. For example:
g(f(ab).c) » g(f(b,a)c), P(f(ab)c)w~, ~P(cf(b,a)) and P(f(ab)c)~, Plcf(b,a)).

(In the clause graph terminology [KMR83) » , stands for the R-Link family and », for the
S-Link family. X, , are the R and S Links,)(IWL2 are the RIW and SIW Links and XII.Z are
the RI and SI Links.)

17

A graphical representation for a clause graph may look like:

{{xfax), yec} {xec, yetax)}}

iy {{xe=c, ye1a,0)}}
X1,

P(xy) -~ P(f(a,x),c)
X =
1 . X2 X1 ‘f
5
= o
7 3
B ¥ e
1| lretluw), yec} ™, R
= {rec, ytuW}} . o
~P(aa) P(f(u,v)c)

Remark
The X-Link and XI-Link partial graph is always undirected because of the symmetry

of the »;-relations. The XIW-links however are directed because it is the first literal
which is renamed in pUE, (gL, K).

5.2 Definition (total abstract clause graph)
For i€ (1, .. ,n) an abstract clause graph G(D) := (LNODES, y, ~, LINKS) is

a) X,-total iff all possible X;-links exist and are attached with all possible mgus, i.e
VL,X € LNODES,L» ¥,0 = pUZI(L. Klve » 30 =s0[V(L,K)]and (L,XO)e X

b) XIW,-total iff all possible XIW,-links exist and are attached with all possible mgus,
ie.VLX € LNODES, L~ X, © - pUE (gL, K) = o for some ¢ € REN_(V(L,K))
» 30" =0 [V(gL, K]l and (L,X0,0°) € XIW, or (¥,L,0,0') € XIW,.

c) XI;-total iff all possible XI,;links exist and are attached with all possible mgus, i.e.
VL% € LNODES, L~ X,0 - uUEi(L, K)ro » 30 sO[V(L,K)land (L,XO')€ XI;.

Gis rotaf Hf for all i=1, .. n Gis X,—total. XIWl-total and Xli-total.

Finally we have to define operations like resolution, factorization etc. upon abstract clause
graphs. Fortunately it is possible to combine a whole class of operations and describe
them with one mechanism. This class covers all the operations which take a number of
literals from the graph, instantiate them with one common substitution and put them as a
new clause into the graph.

3.3 Definition (N-Operations) ‘
Let G(D) :« (LNODES, y, ~, LINKS) be an abstract clause graph.

An Operation Q(G, C, 9, ©) is called an N- Operation with substitutions
6 € WPE" and ¢ € REN_(V(G)) with COD(9) n V(G) =& iff

a) G = Q(G,C, 9, 6) = (LNODES v €, y’,~', LINKS') is an abstract clause graph.
(C represents a new clause).

b) each new literal node has exactly one parent literal node:
VLeC 3,X € LNODES withy'(L) = 96 y(X)

(we use ¥ = L'resp. K = L' = y'(L') as an abbreviation for this refation.
L' is the "parent literal node" and L' the “parent literal” of L.)

and 'l yopes = ¥
and ~'|; -~ and C is a new equivalence class of the ~* relation

c If LINKS = ((-,. X,. Xiw,, XI,) li=1,..,n)
then LINKS' - (("l' x, v XN,. XIWi v XIWN,.)(Il v XIN,) li=1,..,n)
and each new link is connected to at least one element of C.

XNl. XIWN, and XINl are the links connecting the new clause with the old graph.
Optimized formulas for the computation of the new links from the old ones are given in

chapter 7.

Typical 2-Operations are resolution, factoring, and UR-Resolution. Hyperresolution and
E-resolution are f2-Operations as long as only one copy of each clause involved is used. If
more than one copy is necessary, these clauses have to be copied explicitely. Paramodu-
lation, too, does not fit completely into this definition because the paramodulated literal
itself is not an instance of an already existing literal. The other literals in a paramodulant

however can be treated with this mechanism.

Also “self resolution”, (resolution with two copies of the same clause) is not an

Q-Operation because two new literals may have the same parent literal.
For example: (~Px, Pf(x), Qx) » (~Px’, Pf(f(x’)), Qx’, Qf(x'))
L

19

This chapter establishes some special inheritance mechanisms for links in abstract clause
graphs. The formulas for calculating the new unifiers from the old ones in special
situations in the graph are derived from theorem 4.1.

The pictures at the beginning of each paragraph illustrates a situation typical for the
inheritance of links to a resolvent. Boxes represent literals and a string of boxes
represents a clause.

The following situations are possible and are described in detail in the next paragraphs:

An X-Link connecting a new and an old literal can be inherited from:
an X-Link connecting

- one parent literal and an unconcerned literal (Paragraph 6.1,i) or
- two parent literals (Paragraph 6.1,ii) or
an XIW-Link connecting two parent literals (Paragraph 6.4).
An XIW-Link can be inherited from
- an X-Link connecting two parent literals (Paragraph 6.3) or
- an XIW-Link connecting two parent literals (Paragraph 6.6).
An X1-Link can be inherited from
- an X-Link connecting two parent literals (Paragraph 6.2) or
- an XIW-Link connecting two parent literals (Paragraph 6.5).

- + X~

i) Non-Parallel Case: (Connection of the new clause with the unconcerned clauses.)

s)
L K
HUE(Q&(L)K)
9s(L)
6.1 Theorem
Let.

a) © = yUE(L,K)
b) ¢ WSE* withek =K
¢) ¢ € REN(G) with oK = K and COD(p) n V(L.K,©,8) -¢ and V(L)< DOMI(p)

d) W:=V(psL, K) and W' := V(sL,K) = V(sL, K)

then PUE(psL, K) = ge pUE(s, O)y,. IW]

Proof
HUE(gsL, K)
= NUZ(gsL, peK) (b and c)
= ge nUZ(sL, oK) (Lemma 3.19)
s go UUZ(s, O}, [W] (Theorem 4.1, 3.12)

20

ii) General Case (Connection of the new clause with the parent clauses)

(2]

o

I

9o6(L) 9a(K)

HUE(Qs(L),K)

6.2 Theorem
Let

a) VL) nV(K) -0

b) © = pUE(L, K)

c) 6eWSE*

d) ¢ € REN(G) with and COD(g) n V(L,K,8,6) =8 and V(sL, sK) < DOM(p)

e) W:=V(psL, K)

then UE(gsL, K) = pUZ((ges)g ly(,) . Oy, [W]

Proof
MUE(gsL, K)
= HUE((ges)L, K) (Lemma 2.14)
= HUE((9e8)9 by L . Oy)K) (a)
= HUE((ge6)Q by L . (996) oly()K) (DOM(ges) ~ V(K) = o)
» PUZ((ge6)p hy(r) . Oy [W] (Theorem 4.1)

Corollary MUZ(ps(L), K)» o » pUE(L.K)»0 m

21

- + XI-
A new XI-link can be inherited from an old X-link connecting the parent clauses.

8

s

I

os(L) 96(K)
| I

pUE(os(L), 9s(K)

6.2 Theorem
Let

a) V(L) A V(K) -2

b) © = pUE(L, K)

c) s WSE*®

d) ¢ € REN(G) with and COD(g) n V(L,K,6,6) =2 and V(sL, K) ¢ DOM(g)

e) W:=V(goL, p8K) and W’ := V(sL, K)

then PUE(geL, oK) = ge pUE(s, OY,,. [W]

Proof
HUE(geL, geK)
= go pUE(6L, 6K) (Lemma 3.19)
= oo pUE(s, O)y,- [W] (Theorem 4.1, 3.12)
[|
Corollary
PUE(gsL, 08K) » @ » pUE(L,K) v o []
6.4 Theorem

The preconditions are the same as for theorem 6.3. Then
BUE(gsL, 98K) =g =» a) pUE(gsL, K) » ¢ and
b) pUE(L, g&K) = o.

Proof by contradiction
a) Let pUE(gSL, K) = o

» PUE(gs g6L, g8K) = pUE(gsL, geK) = o
(VCOD(g) nDOM(8) =0 =» 06 €E*)

=» Contradiction|
b) analogous a
The consequence of this theorem is:

Inheritance of X-links to XI-links is only possible if both X-links between ¢sL and
K as well as between L and ¢g8K can be inherited too.

22

r . r
A new XIW-link can be inherited from an old X-link connecting the parent clauses.

=i

os(l) | os(k)

L1

HUE(Q, ¢ s(L), 95(K))

6.5 Theorem
Let

a) VL)AV(K) =90

b) © = pUE(L,K)

c) s WSE*

d) ¢ €REN(G) with and COD(g) ~ V(L,K,®,6) ~ o and V(sL, cK) < DOM(g)
e) 9,€REN_(gsL , geK) with COD(g) n V(L,K,©,8,9) - o

N W:=Vp,osl, ¢6K)

then
HUE(g 9oL, goK) = pUE(g6(p 06)ly) . Oy [W]

Proof
1. (9,98)lyu)K) =K (a)
2. (98) (9 98)lyq)(L) = (9 ,08)ly(,(1)
(becuuse DOM(g ,) # V(psL) and COD(g) n V(&) = #)

HUE(9 , goL, oK)

= HUE((9o)(9 ,08)hy(y)(L) . (06)(9 06)ky,(K)) (1,2)
| pUZ((QG)(9196"7(1.) uoxw [W] (Thecrem 41)
]
Corollary
HUE(9 0L, 9&K) » o » PUE(L,K) » o and
BUZ (gL, 9 ,06K) # 8 » pUZ(L,K) » 0]

23

6.6 Theorem

The preconditions are the same as in theorem 6.5

HUZ(p ,06L, 06K) = & » a) pUZ(psL, K) = ¢ and
b) pUE(L, gsK) = o

Proof by Contradiction

a) Let pUE(gsL, K) = o

» PUE(g,08L, ¢ K) =9 (Corollary 4.1)
» WUE(ps 9 ,08L, 98K) - @ (Corollary 4.1)

» pUZ(g ,o6L, gK) =2
(98 9 ,08L = ¢ ,06L because DOM(p) € V(gsL) and
DOM(gs) n VCOD(g ,) = 8)
= Contradiction| a}

b) Lot pUE(L, g&K) = o

» WUE(gsL, 9 96K) -0 (sce a))

» 0,0 HUE(gSL, 0 ,06K) = o

» WUZ(9,00L, 9,0 ,06K) -2 (Definition 3.16 d)
» PUE(g 6L, 96K) - o (Lemma 2.9)

=» Contradiction!]

The conscquence of this theorem is:
Inhcritance of X-Links to XIW-Links is only possible if both X Links
between ¢o8L and K as well as betwcen L and ¢8K can be inherited
100 (sce also Theorem 6.4).

= + X-
New X-links connecting a new clause with one of its own parent clauses can be inherited

from old X1W-links.
0

9

L K

pUE(9s(L), K)

WUE (L, 9s(K)

os(L) 96(K)

24

6.7 Theorem
Let

a) 9, € REN_(L,K) with VCOD(p,) n V(L,K,8) =0
b) © - yUE(p L, K)

c) 6e WSE*
d) 9 € RENC(G) with VCOD(g) n V(L,K,©,s,9,) = & and V(eL, sK) ¢ DOM(g)

e) 9,€REN_(VCOD(g,)) with 9«9,0,[DOM(p,)]

f) V:-V(poL, K) and W :« V(oL.6K)
then
HUE(gsL, K) a pUE((pes) 9, ,0)y [V]

Proof
1. 9, K=K (because DOM(g,) - VCOD(g,) and a) » DOM(g,) » V(K) - #)

2. pur(gsl, K)

= JIU%((gess) oL, K) (Lemma 2.14)
= NUE((ges) 9,0 1. K) (e)
« WUE((ges) 9,0 L, (9e5) 9 ,K) v (a,d,el)
= JUE((gess) 9, .0y [V] (I'heorem 4.1)
[
6.8 Theorem

The preconditions are the same as in theorem 6.7. Then
MUE(L, g&K) =9 epUE(S 0, ,Ofyy [V(L, geK)]

Proof
WUE(L, geK)
- WUE(L, g8 ¢ ,K) (9 K-K)
= MUE() oL, g6 9 K) (Lemma 2.9)
- WUE(oL, § 6 ¢ ,K) (Lemma 2.9)
= go pUX (gL, &9 ,K) . (l.emma 3.19)
= ge yUE(s gL, &9 K) (DOM(s) n V(gL) = 2)
= Qe uUE(s 9,0 L, 89 ,K) (e)
= gouUE(S 9, ,O0y IVI(L,oeK)] (Theorem 4.1)
[
Corollary
BUE(SL, K) = o = pUE(p,L, K) = o and
WUE(L,g8K) » 0 =» pUZ(p,L, K)» o [|

- > -

New Xl-links can be inherited from old XIW-links.

8

9

L K

!

96(L) Q6&(K)

L |

HUE(os(L), 9s(K))

6.9 Theorem
Let

a) 9, € REN_(L,K) with VCOD(p,) n V(L,K,6) - &

b) © = pUE(p L, K)

c) sc WSE*

d) ¢ € RENC(G) with VCOIXg) n V(L,K,©,6,9)~ e and V(sL, 8K) & NOM(g)
e) 9,€REN,_(VCOD(g,)) with 9 » 9, 0, [DOM(g)]

f) W:~ V(psL, geK)

then
HUE(gsL, gsK) s pUE((ges) g9 , , O)y, [W]
Proof
HUE(gsL, gsK) _
= pUE((ges) gL, (9o8)oK) (Lemma 2.14)
~ HUE((ges) goL, (ges)oK) (peE*)
= UUE((ges) ¢ 9, 0L, (pes)oK) (e)
= HUE((9e8) 90 0, 0 ,L, (9e8)9 ¢, K) (DOM(g ,) ~ Y(K) = 9)
= pUE((ges) 99 , . O}y, IW] (Theorem 4.1)
(]
Corollary
WUE(psL, geK) » o » pUE(,L,K) » o [|
6.10 Theorem
NUE(psL, p¥K) = 8 =» a) pUZ(psL, K) » & und
b) pUE(L, gsK) = o
Proof by Contradiction
a) Let pUE(psL, K) = o
» PUE(p6 96 L, 08 K) = 2 (Corollary 4.1)
» UUZ(ps Lo K) =@ (Idempotence of ¢&)
=» Contradiction!
b) analogous. ™

26

- > -

New XIW-links can be inherited from old XIW-links.

2]

3

L K

o6(L) 96(K)
1

HUE(Q;96(L)9s(R))

6.11 Theorem
Let

a) 9, € REN_(L,K) with VCOD(p,) n V(L,K,6) - ¢
b) © = pUE(g,L,K)

c) s WSE*
d) ¢ € REN.(G) with VCOD(g) n V(L,K,©,6,0,) =9 and

V(sL, oK) s DOM(9)
e) 9,€REN_(VCOD(g,)) with ¢~ 9,0, [DOM(p)]

f) 9,€REN_(goL, goK) with VCOD(g,) A V(L,K,©,6,9,,9) -0
g8) W:~Vi(g,06L, 98K) and W’ ~ V(gsL, k)

then
RUE (9 4,06L, goK) = (9 94) @ pUE(® (ges) ¢, ,)y, [W]
Proof
HUE(g z06L, goK)
= HUE(g ;806L, 9&K) (d)
= WUZ(gg ,606L, goK) (DOM(g) ~ V(p,o6L) = o
-~ HUE(go ;8(ges) oL, gskK) (Lemma 2.14)
= UUE(gg 48(pes) 9, 0L, goK) (e)
- WUE(gg ;8(ges) 9, 9L, 99 48K) (DOM(g ;) ~ V(eK) - 2
= HUE(gp ,8(ge6) 0, 0 ,L. 09 36 9,K) (9,(K) =K)
= (gp 4)opUE(s(ges) 9, ¢ L. & ¢ K)
= (99 5)opUE(S(ge8) 9, 0 ,L,6 (9o6) ¢ ,K) (VOM(gess) n V(g K) = o
s (g9 ;)opUE (s(ges) 9, , 0Ny, [W] .
Corollary
HUE(g ,08L, g6K) = & » pUE(g L,K) = ¢ and
HUE(gSL, 0,00K) = 0 » pUE(p LK) = o |

27

6.12 Theorem

HUE(g406L, poK) = ¢ » a) nWUE(geL, K) = ¢ and
b) PUE(L, ¢8K) = o

Proof by Contradiction

a) Let pUZ(gsL, K) = o
» HUE(g,00L, 9,K) = o (Coroliary 4.1)
» HUE(p, 6L, K) = # (94K =K)
» HUE(gs ¢ ,08L, g&K) = o (Corollary 4.1)
» WUE(g,90L, oK) = o

(98 9,08L = ¢,08L because DOM(p,) € V(psL) and
DOM(ge) ~ VCOD(g ,) = #)
=» Contradiction| a

b) Let pUZ(L, 9&K) ~ o

» WUE(SL, 9 ,06K) -~ o (see a))

» 9, SUUE(SL, 9,00K) = o

» WUE(D; 9oL, §50,06K) - o (Lemma 3.19)
» WUE(9, gSL, oK) = o (Lemma 2.9)
= Contradiction| n

(see also Theorem 6.6)

7 X\~ » X1~
New XI-links can be inherited from old XI-links.

9

o8(L) | ¢s(K)

L 1
pUE(Qs (L) Qs(K))
6.13 Theorem
Let
a) © =~ pUx(L,K)
b) s WSE®

¢) ¢ € REN(G) with VCOD(g) ~ V(L,K,©,6,0,) - & and V(gsL, geK) & DOM(p)
d) W:= V(gsL, gsK) and W' := V(sL, €K)
then
BUE(geL, goK) = ge yUE(s , OFy, [W]
The proof is obvious.

28

6.14 Theorem
Let L and K be literals and ¢ € REN_(L), then pUE(L,K) » & » pUE(oL, K) » ¢

Proof by Contradiction
Let YUE(QL,K) = o

» UUE(poL, oK) = o (Corollary 4.1)
» JPUE(QL, ¢K) = o (pe B

» oo pUE(LK)- o (Lemma 3.19)
» HWUE(L,K)= ¢ = Contradiction!]

This theorem states the fact that whenever an XI[-Link is possible, there is also an
XIW-Link possible. Therefore it is not necessary to inherit XI-Links, because all the new
links can be inherited from the parallel XIW-Links using the theorems of the last
paragraph. Sometimes, however, it is useful to inherit XI-Links directly from XI-Links in
order to inherit also certain properties attached to the unifiers. Inheritance of XI-Links to
X-Links and XIW-Links, however, is incomplete.

The Q-Operations, as defined in chapter 5, map clause graphs onto clause graphs taking a
set of literals of the graph, applying a substitution & and a renaming substitution ¢ to the
literals and inserting them as a new clause into the graph. The remaining problem is: how
1o get the new links connecting the new clause with the rest of the graph without to much
search. How to optimize this search in standard connection graphs is already known since
1975 [Ko75), [Br75) and there is not much difference to the inheritance algorithm in
abstract clause graphs. The idea is to scour the links connected to the parent clauses and
10 unify the substitutions attached to these links with 6 as it is described in the last
chapter in order to get the unifiers for the new links. We will describe the method in this
chapter and prove that it transforms total graphs into total graphs.

L1 Theorem
Let
a) G = (LNODES, y ~, ((v,, X;, XIW,XI,)li=1, .., n) be a tota] abstract clause graph and.

b) Let Q be an Q-Operation and G’ = Q(G, C, ¢,) be an abstract clause graph generated
by 2. G = (LNODES v € y' ~', ((w,, X, v XN;, XIW, v XIWN, XLu XIN)) li= 1, .., n)
If we calculate the new links according to the following formulas:

¢) XN, = (L, %, pUE (L K)ILeCak dC, uUE(L,K) » o and

(L%, pUE (L' K)) € X, or (see 6.1)

(L' %, 9, HUE (9 L' K)) € XIW, or (see 6.4)

(X.L, 9, uUE (L', 9 K) €XIW,]} (see 6.4)
d) XIWN; = ((L,X, 0, HUE(g,L ,K)ILeCAX €L, pUE (9,L K) » o and

(L', x', pUE (LK) € X, or (see 6.3)

(L', X' ¢, HUE (o ,L',K") € XIW, or (see 6.6)

(x', L', 9, nUZ (L', 9 K") € XIW,}) (see 6.6)
e) XIN, - (L, X, pUE (L, K))ILeCrK eC, pUE(L,K) » ¢ and

(L', ', pUE (L K" eX, or (see 6.2)

(L', %' 9, HUE (o,L' ,K") € XIW, or (see 6.5)

', L', 9, NUE(L', 9 K") eXIW,])

then G’ is again a total graph.

29

Proof
Letie (1, .. ,n)

i) Let L ,X€e€LNODESv¢C, L» X,0 = pUZ(L,K) » 0
We have to prove that (L.)(..E))e)(i v XN,

Casel L¢Cand¥ ¢C
» (L,X,0)eX; because G is total.

Case 2 wLoG ¥ ¢CandLeC with L = gL'
Case 2] L'» X
» WUE (L' K) =0 (Corollary 6.2)
» (L%, pUE (LK) €X,
» (L ,%,0)eXN,

Case22 L'~ ¥
» pUE (o, L', K)m o (Corollary 6.8)
» (L. X, HUE(L"K)eX;, or (X,L' pUE(L" ¢ K)e€X,
» (L,X,0©)eXN,

» (L,%,0)eX; v XN,

ii) Let L,% € LNODES uC, L~ X, 0 = HUE,(9,L.K) » 8
We have to prove that (L , %, 03 @) € XIW, v XIWN, or
®,L,9,,HUE (L, ¢,K)) € XIW, v XIWN,.

Casel L¢C X¢C
»(L.%.0;.0)€XIW; or (X,L,9,. JUE,(L,oK)eXIW,

(because G is total.)
Case 2 LeC Xel
Case2.1 L'»K'
» UE(L'K") » o (Corollary 6.5)
» (L, X', pUE (L' K") € X;
»(L,X,0,,0)€eXIWN,
Case22 L'~K'
» WUE (9 ,L"K") » o) (Corollary 6.11)
» (L X' 9, HUE (9 L' K")) € XIW, or (X'.L' g, HUZ (L', 9 K'eXIW,
»(L,%X,0;,0)eXIWN or (X,L,9,, pUE(L, ¢,K)) € XIWN;.

We have VLX €C L~ ¥, therefore L€C and X ¢ C is not possible.
» (L.X,05,0)eXIWN;or (X ,L,9,,UUE (L, 9,K)) € XIWN,.
iii) Let L ,% € LNODESuve, L~ ¥,0 = pUZ (LK) = o
» HUE (9 sl K) » o for an appropriate 03 (Theorem 6.14)

The proof for (L, % ,©) € XI, v XIN, is similar to ii)

i), ii), iii) and Definition 5.2 » G’ is total.]

30

Further Remarks

The algorithm can be optimized in the following way: Each X-Link and XIW-Link can be
inherited under certain conditions to two X-Links, one XIW-Link and one XI-Link.
Exploiting theorems 6.4, 6.6 and 6.12 one can organize the algorithm in a way that
whenever two X-Links can potentially be inherited, but the unifiers for at least one of
them are empty, no attempt to inherit an XIW-Link and an XI-Link need be made
because their unifiers are empty too. Furthermore, if the two X-Links can be inherited,
but the unifiers for the XIW-Link are empty then the unifiers for the XI-Link will be
empty too and need not be computed.

8. Summary

Two goals have been achieved with this work:

1. The variety of different types of links which have been used so far in the clause graph
calculus has been described within a unique framework:
Three link types are combined into one link family, the common characteristic of which
is a relation between literals. This relation has to be defined for each link family such
that a unifier can be calculated, the application of which makes the relation hold
between two literals. The unification algorithms on the literal level are supported by a
common theory-unification algorithm for the unification of two terms according to a
given congruence relation for terms. The three link types in a link familiy only differ in
that one type connects unifiable literals in different clauses (X-Links), whereas the
other two types connect unifiable literals in the same clause (XI-Links) resp. weakly
unifiable (unifiable after renaming of one literal) literals in the same clause
(XIW-Links).

2. It is possible to define the link inheritance mechanism for a relatively large class of
operations on the clause graph (resolution, factoring, hyperresolution, E-resolution etc.)
completely independently of the respective literal relation. The only necessary rules
are those for inheriting the three link types inside a link family. The literal relations
themselves need only be used during the construction of the graph and may be ignored
afterwards. In order to achieve this independence, our analysis has shown how to
calculate the mgu-set for instances of two literals directly from the mgu-set of the two
literals without unifying these instances again. This method was demonstrated for a
very general class of many sorted calculi and congruence relations on terms. The
extensions of the term relation to literals have also been kept very general, since only
certain compatibility conditions are required.

The advantage of the new inheritance mechanism is not only that it is usually (but not
always!) cheaper to calculate the new unifiers from the old ones, but that an ancestor
relation between the new and old unifiers can be established which allows the
inheritance of properties attached to the unifiers to their descendants and to use these
properties for new deletion rules in the clause graph calculus.

Acknowledgements
I would like to thank my colleagues N. Eisinger, A. Herold, M. Schmidt-Schauss, H.).

Burckert and Ch. Lingenfelder for their support during the preparation of this work. J.
Siekmann read two drafts of this paper. His helpful critisism and support contributed
very much to its present form.

31

Kﬂ.ﬂ_ﬁm}.

[Br75]

[Ei81]

[He83)
[KMR83)

K075}
[Si84]

[SS85]

[St83]
[Sw80]
[Sz82]

[Wa81]

[Wa82)

Bruynooghe, M. ‘The Inheritance of Links in a Connection Graph'.
Report CW2 (1975). Applied Mathematics and Programming
Division. Katholieke Universiteit Leuven.

Eisinger, N. ‘Subsumption and Coﬂnection Graphs'.
Proc. of 1JCAI-81, Vancouver (1981)

Herold, A. ‘Some Basic Notions of First-Order Unification Theory".
Interner Bericht 15/83,
Inst. for Informatik I, Univ. of Karlsruhe, (1983).

Kar! Mark G. Raph, ‘'The Markgraf Kar! Refutation Procedure’.
Interner Bericht, Memo-Seki-MK-84-01,
FB Infor matik, Univ. of Kaiserslautern (1984).

Kowalski, R. “A Proof Procedure Using Connection Graphs'.
J.ACM 224, (1975).

Siekmann, J. ‘Universal Unification’
Proc. of CADE-84, Nappa USA. Springer (1984).

Schmidt-Schauss, M. ‘A Many-Sorted Calculus with Polymorphic Functions
Based on Resolution and Paramodulation’.
Proc. of 1JCAI-85, Los Angeles (1985).

Stickel, M.E. ‘Theory Resolution: Building in Non-Equational
Theories’. SRI Report, (1983).

Siekmann, J., Wrightson, G. ‘Paramodulated Connection Graphs'.
Acta Informatica (1978).

Szabo, P. ‘Unifikationstheorie erster Ordnung’
Dissertation, Inst. for Informatik I, Univ. of Karlsruhe (1982).

‘Walther, Ch. ‘Elimination of Redundant Links in Extended Connection

graphs’. Proc. of GWAI-81, Springer Fachberichte (1981) and
Interner Bericht 10/81, University of Karlsruhe.

Walther, Ch. ‘A Many-Sorted Calculus Based on Resolution and
Paramodulation’. Interner Bericht 34/82

Inst. for Informatik I, Univ. of Karlsruhe (1982).

see also Proc. of IJCAI-83, Karlsruhe (1983).

32

Index of the Symbols Used
Signature (Chapter 2)

v set of all variable symbols P set of all function symbols
P set of all predicate symbols T set of all terms
L set of all literals V(0) setof all variables occurring in O

Substitutions (Chapter 2)

DOM(s) domain of &

COD(s) codomain of 6 = 6(DOM(s))

VARS(8) domain of & regarded as a list.

TERMS(8) &(VARS(s)) » COD(s)

VCOD(s) variables in the codomain of

set of all substitutions

E i set of idempotent substitutions

REN_(V) renaming substitutions pwith DOM(g) = V

REN(V) renaming substitutions gwith DOM(g) € V
c

0 converse of the renaming substitution ¢
b permutation of order 2, generated by ¢
. renaming of a substitution: ge® = §&d

Sorted Logic (Def. 2.2)

[.] sort of a term
ws a predicate selecting well sorted terms and literals

WST, WSL, WSE, WSE* well sorted terms, literals,
substitutions and idempotent substitutions

Relations
< partial ordering on sorts
1. basic congruence relation on terms (Def. 3.1)
2. "natural” extension to literals (Def. 3.13)
~[W] strong extension of » to substitutions (Def. 3.3)
« [W] canonical extension of the »-relation to literals (Def 3.13)
<s[W1l a subsumption refation on substitutions (Def. 3.6)
= [W] an equivalence relation on substitutions (Def. 3.6)
Unifi
UE(s,t) complete set of unifiers for s and t (terms or literals). (Def. 3.16)

HUE(s,t) set of most general unifiers for s and t
HUE(8.0),, set of most general “unifiers” for the substitution & and the set of

substitutions O, restricted to the variables W. (Chapter 4)
MAX},,(©) An instances removing function for sets of substitutions. (Def. 3.17)

Clause Graphs (Chapter 5)

LNODES set of literal nodes in the graph.
(Multiple occurrences of literals are possible in a clause graph. Therefore the
literal nodes in a clause graph are different from the corresponding literals.
The literal nodes are written with letters like L or ¥ and the corresponding
literal is then L resp. K).

~ A relation on literal nodes grouping them into “clauses".

N -Operation
An operation on clause graphs, taking a set of literals, instantiating them,
grouping them into a new clause, and inserting them into the graph.

33

