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ABSTRACT
Parameter estimation for generalized Maxwell models for viscoelas-
tic materials can become ill-posed when insufficient experimental
data is available. In this article, we introduce a rheological model
containing Maxwell elements, define the associated forward oper-
ator and the inverse problem in order to determine the number of
Maxwell elements and thematerial parameters of the underlying vis-
coelastic material. We simulate a relaxation experiment by applying
a strain to the material and measure the generated stress. Since the
mechanical response varies with the number of Maxwell elements,
the forward operator of the underlying inverse problem depends
on parts of the solution. Thereby, the forward problem consists in
computing stress responses for a given number of Maxwell ele-
ments, stiffness parameters and relaxation times. The inverse prob-
lemmeans to compute these parameters from given stressmeasure-
ments, where an additional difficulty lies in the fact that the forward
mapping changes with the number of Maxwell elements and, thus,
with a quantity to be computed as part of the solution. Under the
assumption that every relaxation time is located in one temporal
decade we propose a clustering algorithm to resolve this problem.
We provide the calculations that are necessary for the minimization
process and conclude by investigating unperturbed as well as noisy
data. Different reconstruction approaches for the stiffnesses and
relaxation times based on minimizing a least squares functional are
presented.We look at individual stress components to analyze differ-
ent strain rates and displacement rates, respectively, and study how
experimental duration affects the identified material parameters.
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1. Introduction

Simulations are used to predict the behaviour of a material without conducting expensive
experiments. In order to achieve accurate results from a simulation, the physical behaviour
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aswell as the properties of thematerial should be captured by the simulationmodel. A qual-
itative analysis of the stress–strain or stress–time curves can indicate whether the material
shows elastic (linear stress–strain curve), plastic (non-zero strain after unloading to zero
stress), viscoelastic (stress decrease in time with constant strain) or a combination of these
behaviours. However, the properties of the material need to be quantitatively determined
through a comparison of the simulation and experimental results. With variation and
adjustment of the simulation results, the parameters of the model are fitted to the exper-
imental data. Thus, parameter identification in materials science is an important field of
application for inverse problems with many different purposes. Among them are the iden-
tification of the stored energy function of hyperelastic materials [1–6], the surface enthalpy
dependent heat fluxes of steel plates [7,8], inverse scattering problems [9] or the refractive
index through terahertz tomography [10]. All these inverse problems are ill-posed (respec-
tively ill-conditioned for finite dimensional problems) in the sense that the corresponding
forward mapping is either not invertible and/or that even small perturbations in the mea-
sured data cause severe artefacts in the computed solution, since the solution does not
depend continuously on the data. This is why the application of regularization methods is
necessary. A standard approach is to use the residual between simulations and measure-
ments as a data fitting term, see [11,12]. Further authors conduct a sensitivity analysis to
determine the possible deviations in the parameters due to noise [13–16].

Viscoelastic material behaviour is exhibited by various polymeric materials such as
adhesives, elastomers and rubber. The modelling of these materials requires parameters
that define the relaxation time spectrum, to model the loading rate dependent behaviour
[17–20]. We also refer to textbooks such as [21,22] for comprehensive introductions to
phenomenological behaviour and modelling of viscoelasticity. The accuracy of the recon-
struction process to compute these material parameters out of stress responses does not
only depend on the precision but also on the duration of the experiments. The response
of a viscoelastic material is continuous in time, but its modelling with a fixed number of
discrete parameters poses a challenge. Therefore, the parameter identification of viscoelas-
tic materials is in great demand and is used in many fields. Results for the identification
of material parameters of viscoelastic structures with a linear model can also be found
in [23,24]. High-order discontinuous Galerkin methods for anisotropic viscoelastic wave
equations are found in [25]. There, the authors use a constitutive equation with memory
variables. In [26] the authors use a Prony series expansion for determiningmaterial param-
eters by solving a system of linear equations. Emri and Tschoegl [27] consider a linear
viscoelastic model and stabilize the inversion process by using specific window functions
adapted to the influence of the spectrum to the response. All these methods have in com-
mon that the number of Maxwell elements is fixed and not an unknown parameter to be
determined. Moreover they do not take into account specific relaxation tests. An overview
of different methods for solving inverse problems and deeper insights to regularization
theory can be found in the standard textbooks [28–31]. For nonlinear problems, such as
the one presented in this article, these methods have to be adapted correspondingly (see
[30,32–34]). An early implementation of Tikhonov regularization is documented in [35].

Outline. In Section 2 we describe the rheological model for viscoelastic materials on
which the investigations in this article are based. Assuming that the number of Maxwell
elements are given, the constitutive model can be solved analytically, which is done in
Section 3. Relying on this model the simulation of data are performed in Section 3. The



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 143

task of computing the model parameter from measured stresses at certain time instances
is an inverse problem. In contrast to standard settings for inverse problems, the forward
operator, i.e. the operator that maps the material parameters and the number of Maxwell
branches n to the measured stress, depends on n and, thus, on a parameter to be computed
as solution of the inverse problem. In that sense we face a solution-dependent forward
operator, which is a new concept in the field of inverse problems. In Section 4 we develop a
clustering algorithm to overcome this difficulty. In Section 5 we perform a series of numer-
ical experiments using exact as well as noisy data. Since the inverse problem is ill-posed
we introduce regularization methods by minimizing corresponding Tikhonov functionals
and prove that this stabilizes the solution process. Furthermore we demonstrate the effect
of shortening the duration of the simulations and its influence on the reconstruction result
and thus get assertions regarding accuracy and duration of future measurement set-ups. A
concluding section finishes the article.

2. Amathematical model for material behaviour

We consider relaxation experiments in which a strain is applied to a material. For a given
strain rate η and maximum strain value ε̄, the strain in a time interval t ∈ [0,T] is given as

ε(t) =

⎧⎪⎨
⎪⎩

η · t, 0 ≤ t ≤ ε̄

η
,

ε̄,
ε̄

η
< t ≤ T.

(1)

The function is illustrated in Figure 1 and describes the following procedure. The mate-
rial is stretched until we reach a maximum strain value ε̄ at a strain rate η, which can be
calculated from the displacement rate ηu and the specimen length l0 as

η = ηu · l0. (2)

The strain rate is known in the experiment by dividing the displacement rate given by the
testing machine by the specimen length. The maximum strain is reached accordingly at
time t = ε̄

η
. Afterwards the applied strain is kept constant.

We describe the stress in the material by a rheological multi-parameter model combin-
ing a spring and several Maxwell elements to a generalized Maxwell model. Two opposing
properties are essentially determining the time evolution of a material under strain, elas-
ticity and viscosity. Elasticity is modelled by a spring, whereas viscosity is modelled by a
damper. The series composition of a spring and a damper yields a Maxwell element. We
use one of the most common combinations to represent the material, a parallel combina-
tion of a spring with differentMaxwell elements [17,36,37]. A parallel combination of these
elements ensures that the entire relaxation spectrum of the material can be represented by
the model.

The number of Maxwell elements can extend to any number n with a relaxation time
τj in each of the dampers and a stiffness of the spring μj in each of the Maxwell elements.
In Figure 2 we see an illustration with three Maxwell elements. The deformation across
the damper and across the spring in a Maxwell element changes according to the relax-
ation time of the damper. The Maxwell springs reach the original undeformed position
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Figure 1. Strain–time curve ε with strain rate η and maximum strain value ε̄.

and do not produce any stress after fully relaxing. Therefore, with a single Maxwell ele-
ment the model can only simulate one stiffness for the entire duration of relaxation of the
material. However, viscoelastic materials show different stiffnesses at different relaxation
times [20,36] and, thus, a single element is not sufficient to describe viscoelastic behaviour
appropriately. The entire relaxation spectrum can be divided into different regions such
as the flow region, the entanglement region, the transition region and the glassy region
[38]. The arrangement, the length and the entanglement of the polymeric chains on the
molecular level explains the varying stiffness during the relaxation spectrum. A shorter
chain relaxes faster than a longer chain and hence, after its relaxation, it does not con-
tribute to the stiffness of the material [39]. Moreover, if all the Maxwell elements relax
to zero stresses, then the equilibrium position is attained and the single spring with stiff-
ness μ represents the basic stiffness of the material, which ensures that the material has a
stiffness in its unperturbed position and does not behave like a fluid. The deformation of
the material represented by the strain value ε is divided into an elastic component ε e

j and
an inelastic component ε i

j in each of the Maxwell elements. The elastic component corre-
sponds to the spring and the non-elastic component to the damper. As the stretching of
the damper is dependent on its relaxation time, an evolution equation based on the energy
conservation is used tomodel the change in the inelastic strain with time [40,41]. For small
deformations the evolution equation is given by

ε̇ i
j (t) =

ε(t) − ε i
j (t)

τj/2
, (3)

where ε̇ i
j represents the time derivative. The total stress produced in the system is then

given by the sum of stresses induced in each of the springs. By assuming a linear elastic
behaviour of the springs, the stress is given by

σ(t) = με(t) +
n∑
j=1

μj(ε(t) − ε i
j (t)). (4)
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Figure 2. Rheological model with three Maxwell elements.

With this information we have now all ingredients available to construct the forward
operator as

Fn : R2n+1
≥0 × N → L2([0,T]), (5)

(μ,μ1, . . . ,μn, τ1, . . . τn, n) �→ σ , (6)

where n is the number of Maxwell elements and σ is the stress defined by Equation (4).
We note that the forward operator depends on parts of the solution at this point, since we
require the unknown number of Maxwell elements n to calculate the stress. The number n
is not defined and held fixed beforehand, but rather computedwith thematerial parameters
simultaneously. This is a novel setting in the field of inverse problems and different from
the theory in classical textbooks such as [28]. We will address this problem in Section 4.

At this point, the inelastic stresses are included as a constraint in the formulation of the
inverse problem. In the following section, we will see that these constraints can be directly
included to obtain an explicit formulation of the forward operator.

3. Analytical solution of the forward problem and data simulation

For the solution of the forward problem, we first want to focus on the calculation of the
inelastic component of the strain value εij , which is not explicitly given as a so-called inter-
nal variable of the system. An evolution equation such as (3) is often solved by numerical
methods like the Crank–Nicolsonmethod. However, thesemethods have the disadvantage
of approximation errors. Since we are dealing with an ill-posed inverse problem, it is desir-
able to avoid such errors in the calculation of the forward problem. To this end, we discuss
the analytical solution of the evolution equation and, using this, the forward problem in
the next section.

Apart from the mechanical application [41], the evolution equation (3) is also used in
other applications likeMagnetic Particle Imaging [42] to model relaxation. Its solution can
be formulated analytically as

εij(t) =
∫ t

0
ε(t̃)

2
τj
exp

(
−2

t − t̃
τj

)
dt̃.

By inserting the piecewise piecewise linear strain (1) we obtain the following result:
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Proposition 3.1: The inelastic strain εij of the jth Maxwell element with the corresponding
relaxation time τj at time t ∈ [0,T] is given by

εij(t) =

⎧⎪⎪⎨
⎪⎪⎩

τj

2
η exp

(
− 2

τj
t
)

+ ηt − τj

2
η, 0 ≤ t ≤ ε̄

η
,

τjη

2
exp

(
− 2

τj
t
) [

1 − exp
(
2ε̄
τjη

)]
+ ε̄,

ε̄

η
< t ≤ T.

(7)

Proof: We first consider 0 ≤ t ≤ ε̄
η
and can thus use ε(t) = ηt,

εij(t) = 2
τj

η exp
(

− 2
τj
t
) ∫ t

0
t̃ exp

(
2
τj
t̃
)

dt̃

= 2
τj

η exp
(

− 2
τj
t
)

τ 2j

4

[
exp

(
2
τj
t
) (

2
τj
t − 1

)
+ 1

]
,

where we used
∫ t
0 t̃ exp(at̃) dt̃ = 1

a2 (exp(at)(at − 1) + 1) for a ∈ R in the last step. The
remainder is only a matter of transformation,

εij(t) = τj

2
η exp

(
− 2

τj
t
)

2
τj
t exp

(
2
τj
t
)

− τj

2
η exp

(
− 2

τj
t
)
exp

(
2
τj
t
)

+ τj

2
η exp

(
− 2

τj
t
)

= τj

2
η exp

(
− 2

τj
t
)

+ ηt − τj

2
η.

Next we examine the case ε̄
η

< t ≤ T, where we have to split the integral into two parts to
be able to use the corresponding value for ε(t),

εij(t) = 2
τj
exp

(
− 2

τj
t
) [

η

∫ ε̄
η

0
t̃ exp

(
2
τj
t̃
)

dt̃ + ε̄

∫ t

ε̄
η

exp
(
2
τj
t̃
)

dt̃

]
.

For each integral we then get

∫ ε̄
η

0
t̃ exp

(
2
τj
t̃
)

dt̃ =
τ 2j

4

[
exp

(
2ε̄
τjη

) (
2ε̄
τjη

− 1
)

+ 1
]
,

∫ t

ε̄
η

exp
(
2
τj
t̃
)

dt̃ = τj

2

[
exp

(
2
τj
t
)

− exp
(
2ε̄
τjη

)]
.
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Inserting these results yields

εij(t) = 2
τj
exp

(
− 2

τj
t
) [

η
τ 2j

4

[
exp

(
2ε̄
τjη

) (
2ε̄
τjη

− 1
)

+ 1
]

+ ε̄
τj

2

[
exp

(
2
τj
t
)

− exp
(
2ε̄
τjη

)]]

= 2
τj
exp

(
− 2

τj
t
)

×
[
η
τ 2j

4
2ε̄
τjη

exp
(
2ε̄
τjη

)
− η

τ 2j

4
exp

(
2ε̄
τjη

)
+ η

τ 2j

4

+ ε̄
τj

2
exp

(
2
τj
t
)

− ε̄
τj

2
exp

(
2ε̄
τjη

)]

= exp
(

− 2
τjt

) [
exp

(
2ε̄
τjη

) (
ε̄ − τjη

2
− ε̄

)
+ τjη

2
+ exp

(
2
τjt

)
ε̄

]

= −τjη

2
exp

(
− 2

τj
t + 2ε̄

τjη

)
+ τjη

2
exp

(
− 2

τj
t
)

+ ε̄

= τjη

2
exp

(
− 2

τj
t
) [

1 − exp
(
2ε̄
τjη

)]
+ ε̄. �

Weuse this result to obtain the stress responses of the individualMaxwell elements. This
is also useful for an analysis of different strain rates η and displacement rate ηu, respectively
in Section 5.3.

Proposition 3.2: The stress σj of the jth Maxwell element with j>1 and the corresponding
stiffness μj and relaxation time τj at time t ∈ [0,T] are given as

σj(t) =

⎧⎪⎪⎨
⎪⎪⎩

μjτjη

2

(
1 − exp

(
− 2

τj
t
))

, 0 ≤ t ≤ ε̄

η
,

−μjτjη

2

(
1 − exp

(
2ε̄
τjη

))
exp

(
− 2

τj
t
)
,

ε̄

η
< t ≤ T.

(8)

The stress of the single spring, denoted by σ0, can be specified with the corresponding stiffness
μ as

σ0(t) =

⎧⎪⎨
⎪⎩

μηt, 0 ≤ t ≤ ε̄

η
,

με̄,
ε̄

η
< t ≤ T.

(9)
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According to these calculations, the total stress can be written as the sum of the stresses of the
single spring and the Maxwell elements, i.e.

σ(t) =
n∑
j=0

σj(t) =

⎧⎪⎪⎨
⎪⎪⎩

μηt + ∑n
j=1

μjτjη

2

(
1 − exp

(
− 2

τj
t
))

, 0 ≤ t ≤ ε̄

η
,

με̄ − ∑n
j=1

μjτjη

2

(
1 − exp

(
2ε̄
τjη

))
exp

(
− 2

τj
t
)
,

ε̄

η
< t ≤ T.

(10)

Proof: We start with the stress of the single spring. This is calculated by σ0(t) = με(t).
Inserting (1) for the different time intervals yields (9). The stress of theMaxwell elements is
calculated by σj(t) = μj(ε(t) − εij(t)) as given in Equation (4). By considering the different
time intervals we can insert both the strain ε(t) and the inelastic strain εij(t) of theMaxwell
element. Hence, for 0 ≤ t ≤ ε̄

η
we obtain

σj(t) = μj

(
ηt − τj

2
η exp

(
− 2

τj
t
)

− ηt + τj

2
η

)
= μjτjη

2

(
1 − exp

(
− 2

τj
t
))

.

Similarly, for ε̄
η

< t ≤ T, we obtain

σj(t) = μj

(
ε̄ − τjη

2
exp

(
− 2

τj
t
) [

1 − exp
(
2ε̄
τjη

)]
− ε̄

)

= −μjτjη

2

(
1 − exp

(
2ε̄
τjη

))
exp

(
− 2

τj
t
)
.

The representation of the total stress (10) follows directly by inserting (8) in (4). �

Since the stress can be expressed in terms of the material parameters, we are able to for-
mulate the forward operator (5), which is still depending on parts of the solution, because
the number of Maxwell elements is unknown. Before we address this topic, we will briefly
discuss the simulation of data, where the above results prove to be helpful.

We simulate a relaxation experiment where a strain is applied to a material. This strain
is completely determined by the parameters ηu (displacement rate), l0 (specimen length)
and ε̄ (maximum strain). Since all specimens are of equal length, the displacement rate
ηu instead of the strain rate η is used in the following. So, if we define the above three
parameters and a time period [0,T], we have completely determined the strain using the
representation (1). This function can then be supposed to be known for all t ∈ [0,T]. In
Figure 3, we see strains for three different displacement rates ηu and the maximum strain
ε̄ = 20%. The fastest displacement rate is 10 mm/s with a maximum strain being attained
after 2 s. For the slowest displacement rate of 1 mm/s, the 20% strain is only achieved after
20 s. We chose T = 100 s.

For the simulation of the stress function we then choose the number of Maxwell ele-
ments n and the material parameters (μ,μ1, . . . ,μn, τ1, . . . τn). Thus, we can solve the
forward problem with Equation (10) obtaining the stress function σ . In Figure 4 we see
the stress functions corresponding to the strains with different displacement rates ηu of
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Figure 3. Strain–time curves for different displacement rates ηu.

Figure 3. Here, we have selected one spring and three Maxwell elements with the mate-
rial parameters μ = 10, (μ1, τ1) = (4, 0.2), (μ2, τ2) = (7, 3.7) and (μ3, τ3) = (1, 25). The
stiffnesses μ and μj have the unit MPa and the unit of the relaxation times of the differ-
ent dampers are seconds. The relaxation times were selected in three different decades to
simulate a relaxation time spectrum, whereas the stiffness for each of the elements were
selected randomly to ensure no correlation between the relaxation time and the stiffness.
Since the Maxwell elements are connected in parallel in the rheological model as shown in
Figure 2, the order of theMaxwell elements is not important. This is also evident in the for-
ward model (10), since we simply have a sum of the stress contributions of the individual
Maxwell elements and the single spring. So we stick to the convention to always number
them according to the order of the relaxation times.

For the calculation of σ we have to discretize with respect to time. We choose m+ 1
as the number of time steps ti = i · T

m for i = 0, . . . ,m in the interval [0,T] and thus also
have a discretized representation of the stress function with (σ (t0), . . . , σ(tm)) ∈ Rm+1.
When inverting synthetic data one has to avoid the same discretization for simulating the
data and the inversion process, since otherwise the numerical results can be highly accurate
and pretend a quality of the algorithm that is not apparent for noisy data. This phenomenon
was first characterized by Colton and Kress [43] and is meanwhile known as inverse crime.
Hence, to avoid an inverse crime, one has to choose a different discretization for the direct
and inverse problems. But since we can analytically compute the forward problem depend-
ing on the number of Maxwell elements n, this problem is avoided in our situation. In
Section 5 we discuss results of experiments and show various scenarios that lead to the
reconstructions of different accuracy concerning the material parameters.

For any ill-posed inverse problem, reconstruction is considerably more difficult in
case of noisy data σ δ . In this regard, we will also see different results in Section 5. We
simulate noise by adding scaled standard normally distributed randomnumbers to the dis-
cretized stress vector such that ‖σ − σ δ‖ < δ with noise level δ > 0. A noise level δ = 0
corresponds to unperturbed (exact) data.
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Figure 4. Synthetic stress–time data produced by a model consisting of a spring combined with three
Maxwell elements for three different displacement rates.

4. Solving the inverse problem

In this section we develop a novel clustering algorithm, by which we overcome the men-
tioned fact that the forward operator depends on the unknown number of Maxwell
elements. Currently, we cannot compute the forward operator without a fixed number of
Maxwell elements. Together with the ambiguity of our forward operator, this contributes
to the ill-posedness of the problem. To illustrate the mentioned ambiguity, we consider the
following example.

Example 4.1: For a material described by two Maxwell elements with relaxation times
τ1 = τ2 and stiffnessesμ1,μ2 we have εi1 = εi2. We furthermore consider another material
described by the same basic stiffness but only one Maxwell element with relaxation time
τ̃1 = τ1 = τ2 and stiffness μ̃1. If additionally μ̃1 = μ1 + μ2 applies, there is no possibility
to distinguish these two materials by means of the stress created by our forward opera-
tor. The two stress–time curves are exactly the same with no possibility to reconstruct the
parameters unambiguously.

This shows how to construct different tuples (μ,μ1, . . . ,μn, τ1, . . . , τn, n), such that

Fn (μ,μ1, . . . ,μn, τ1, . . . τn, n) = σ

for a specific σ ∈ L2([0,T]), what means that the forward operator is not injective. For this
reason we make further requirements. A common assumption is that the occurring relax-
ation times lie in different decades [44]. For instance, if τl ∈ [10, 100] for l ∈ {1, . . . ,N},
then τj /∈ [10, 100] for all j ∈ {1, . . . , l − 1, l + 1, . . .N}. This information will help us to
solve the ill-posed problem.

We set a maximum number of Maxwell elements N, such that the unknown actual
number of Maxwell elements n is smaller or equal to N. Then, we reconstruct the desired
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parameters (μ,μ1, . . . ,μN , τ1, . . . τN) with a minimization algorithm, obtaining the stiff-
ness parameter for the single spring aswell as stiffnesses and relaxation times forNMaxwell
elements. Of course, at this point there could be toomany parameters, because the number
of Maxwell elements could be too large. Nevertheless these values are helpful. They do not
fulfill the requirement of having the relaxation times in different decades yet. Therefore,
we apply a clustering algorithm to these parameters, which clusters them according to this
requirement. That means our reconstruction consists of two parts:

• minimization algorithm with N Maxwell elements,
• clustering algorithm which reduces N to nMaxwell elements.

We describe this in more detail.
The first step consists of minimizing the residual

R = ‖FN (μ,μ1, . . . ,μN , τ1, . . . τN ,N) − σ‖22 (11)

with respect to (μ,μ1, . . . ,μN , τ1, . . . τN) under the assumption to have N Maxwell ele-
ments. Since the problem is nonlinear with respect to the relaxation times, there exist, in
general, several local minima. This is why we use an iterative solution method with several
starting values for the stiffnesses and relaxation times (μ(0),μ(0)

1 , . . . ,μ(0)
N , τ (0)

1 , . . . τ (0)
N ).

The starting values are distributed over the entire possible range of parameter values
and re-defined in each iteration step. As solver we use the function lsqnonlin and Mul-
tiStart provided in the MATLAB Optimization Toolbox [45]. Here, the iteration number
in lsqnonlin acts as a regularization number.

The next step consists of clustering parameters with relaxation times contained in the
same decade. For a decade [10k, 10k+1], k ∈ N, we consider the index set

Jk := {j ∈ {1, . . . ,N} : τj ∈ [10k, 10k+1]}.

Of course, depending on the application, other intervals instead of decades can also be
of interest. All pairs (μj, τj), j ∈ Jk, are assigned to the same Maxwell element leading to
a number of n ≤ N Maxwell elements. After the clustering we calculate new parameters
(μ̃k, τ̃k) with τ̃k ∈ [10k, 10k+1] from the already reconstructed parameters by

μ̃k :=
∑
j∈Jk

μj, τ̃k :=
∑
j∈Jk

μj

μ̃k
τj (12)

and in this way avoid to start again an elaborate minimization process.
The cluster algorithm finally can be summarized as follows.

Algorithm 4.1 (Cluster Algorithm): Input: stress responses σ(t0), . . . , σ(tm), initial
guess N ∈ N for the number of Maxwell elementsOutput: approximations to the number
of Maxwell elements n, stiffness parameters μ,μ1, . . . μn and relaxation times τ1, . . . , τn
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Minimize (11) for (μ,μ1, . . . ,μN , τ1, . . . , τN) Compute

Jk := {j ∈ {1, . . . ,N} : τj ∈ [10k, 10k+1]}, k = 0, 1, . . . , kmax

Calculate (μ̃k, τ̃k) with τ̃k ∈ [10k, 10k+1] by

μ̃k :=
∑
j∈Jk

μj, τ̃k :=
∑
j∈Jk

μj

μ̃k
τj

to obtain n ≤ N Maxwell elements after clustering. Set:

μk := μ̃k, τk := τ̃k, k = 1, . . . , n

Example 4.2: We look at different cases and how they are treated by the clustering
algorithm.

(1) Let, for some k ∈ N, Jk = {1, 3, 5}with τ1 = τ3 = τ5 andN = 6. It is obvious that this
should actually be a single Maxwell element. Consider the forward operator with

σ(t) = με(t) +
N∑
j=1

μj
(
ε(t) − ε i

j (t)
)
.

Since εij varies only in τj for different Maxwell elements, it follows that εi1 = εi3 = εi5
leading to

σ(t) = με(t) + (μ1 + μ3 + μ5)(ε(t) − εi1(t)) +
∑

j=2,4,6
μj(ε(t) − ε i

j (t)). (13)

Therefore, it is reasonable to choose the new values as

(μ̃k, τ̃k) = (μ1 + μ3 + μ5, τ1).

This is in fact the result of the clustering step, since

μ̃k =
∑
j∈Jk

μj = μ1 + μ3 + μ5,

τ̃k =
∑
j∈Jk

μj

μ̃k
τj = μ1 + μ3 + μ5

μ1 + μ3 + μ5
τ1 = τ1.

(2) In the next case we want to illustrate the calculation of the relaxation times in the
clustering algorithm. Let Jk = {1, 3, 5} with (μ1, τ1) = (7, 4), (μ3, τ3) = (1, 4.5) and
(μ5, τ5) = (2, 3.75), i.e. τ1 ≈ τ3 ≈ τ5. Then the stiffness values serve as a weight-
ing of how important the corresponding relaxation value is. Regarding the forward
operator (13) we observe that, under these assumptions, the values of ε(t) − ε i

j (t),
t ∈ [0,T], for j = 1, 3, 5 are quite similar, especially considering that other relaxation
times lie in different decades. Thus, if one assumes that εi1 ≈ εi3 ≈ εi5 applies, we see
that the largest contribution among these three to the total stress is provided by the
Maxwell element (μ1, τ1), since μ1 	 μ5 > μ3. In order to include this weighting in
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Table 1. Selected material parameters to
simulate data.

j 0 1 2 3

μj [MPa] 10 4 7 1
τj [s] – 0.2 3.7 25

more complicated examples, the clustering algorithm calculates τ̃k as follows, instead
of just calculating the mean value of all relaxation times,

μ̃k =
∑
j∈Jk

μj = μ1 + μ2 + μ3 = 10,

τ̃k =
∑
j∈Jk

μj

μ̃k
τj = 7

10
· 4 + 1

10
· 4.5 + 2

10
· 3.75 = 4.

Remark 4.1: We mention that it is not possible to compute the exact number of Maxwell
elements n, if we choose an initial guess N<n. This is inherent by the construction of the
algorithm. So, it is always favourable to overestimate the number of elements. Then the
algorithm shows a good performance as is demonstrated in Section 5.

5. Numerical results

In this section we show numerical results of our derived minimization and clustering
algorithm. For the evaluation of our method we generate simulated data for known mate-
rial parameters that serve as ground truth. We choose a material described by one spring
for basic elasticity and n = 3 Maxwell elements and the following material parameters:

By solving the forward operator analytically (see Proposition 3.2) we obtain the
stress–time curve of the material, which we observe in the range [0, 100] seconds. The
parameters from Table 1 are to be reconstructed in all the experiments. We discuss the
difference between reconstructions fromperturbed as well as exact data, different displace-
ment rates and their effects. Finally, we consider regularization, which is indispensable for
perturbed data.

5.1. Exact data

Wewill see that in case of exact datawe can determine thematerial parameters very reliably.
Table 2 shows the effects of the clustering algorithm. While the minimization algorithm
determines stiffnesses and relaxation times for the given maximum number of Maxwell
elements (here N = 5), the clustering algorithm can combine them accordingly and thus
obtain the actual number n = 3. Here, we used the complete data set for t ∈ [0, 100]
seconds and a displacement rate of 1 mm/s, see Figure 3.

While after the calculation of the minimization algorithm there is only one Maxwell
element with τ ∈ [0, 1) and τ ∈ [10, 100), we have threeMaxwell elements with associated
relaxation times in [1, 10). The clustering algorithmmerges these elements and we can see
that our reconstruction is accurate. The values in the table are rounded to three decimal
places. After this we no longer see any difference to the exact parameters after applying
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Table 2. Reconstructed material parameters before and after clustering where the μj are given in MPa
and the τj in seconds.

j = 0 1 2 3 4 5

Reconstructed values
μj 10.000 4.000 3.685 1.621 1.694 1.000
τj – 0.200 3.695 3.706 3.706 25.000
After clustering
μj 10.000 4.000 7.000 1.000
τj – 0.200 3.700 25.000

Table 3. Approximated material parameters with similar noisy data, where theμj are given in MPa and
the τj in seconds.

j = 0 1 2 3

Exact values μj 10 4 7 1
τj – 0.2 3.7 25

Experiment 1 μj 9.9951 38.558 7.2098 0.88371
τj – 0.019903 3.7734 27.795

Experiment 2 μj 10.005 2.475 6.9957 1.0157
τj – 0.29222 3.6908 24.2965

Experiment 3 μj 9.99348 44.351 7.2084 0.96407
τj – 0.01344 3.6444 26.633

Experiment 4 μj 10.003 7.3458 7.0398 0.99887
τj – 0.0993 3.6626 24.0342

the clustering algorithm, see Table 1. We illustrate what we have already mentioned in the
second part of Example 4.2. The relaxation time τ2 = 3.695 is closest to the current value
of 3.7 before clustering and we haveμ2 	 μ4 > μ3, which allows the clustering algorithm
to use the weighting (12) leading to better results.

5.2. Perturbed data

We continue by investigating noisy data σ δ . These are generated by adding scaled standard
normally distributed numbers to our discretized stress vector σ , such that ‖σ − σ δ‖ < δ

with noise level δ > 0. We specify the relative noise level δrel by

‖σ − σ δ‖
‖σ δ‖ < δrel.

In our calculationsweuse the Euclideannormand δrel ≈ 1%.Table 3 shows different results
of a reconstruction at a displacement rate of 10mm/s using the clustering algorithm with
N = 5. To better assess the effect of the disturbance, we used several data sets for this pur-
pose. That is, we have the same relative noise level δrel, but different random numbers,
which leads to slightly different data sets. We perform our reconstruction for each of these
different data sets to identify possible weaknesses.

We see that the reconstruction results differ, as expected, significantly from the exact
values. However, it is obvious that the reconstructions of (μ1, τ1) show a tremendous error,
while the other parameters are computed rather stably. This confirms considerations of the
authors in [23] where it has been proven that the reconstruction of small relaxation times
always is severely ill-conditioned and the condition deteriorates as τ → 0. Since stiffness
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Figure 5. Spread of the material parameters (μ1, τ1) for 100 runs with different noise seeds, but same
noise level δrel for ηu = 10 mm/s.

and relaxation time are always to be considered in pairs, we see deviations in τ1 also in
the corresponding stiffness μ1. As each Maxwell element has to provide a certain part to
the total stress, too small values in one parameter are compensated by higher values in the
other parameter to approach the total stress.

We repeat this experiment with 100 different perturbed data sets with the same noise
level and plot the values of (μ1, τ1) in Figure 5. We see that there is a very large variance in
values spread over 100 different experiments. The values are distributed up to results such
as (μ1, τ1) = (66.75, 0.0127) or (μ1, τ1) = (1.934, 0.7992). Of course, there are also results
that come close to the exact values. Themedian of all values is (0.1897, 4.0135), which is not
far from the exact values. Figure 5 also shows that stiffness and relaxation time are inversely
proportional to each other. If the relaxation time is estimated too small, we obtain much
too large values for the stiffness. Similarly, if the relaxation time is too large, the stiffness is
reconstructed too small.

We summarize that the reconstruction from noisy data is, as expected, much worse
in comparison to the results obtained for exact data. In particular, the Maxwell element
with the smallest relaxation time (here: (μ1, τ1)) is most affected. This confirms stability
investigations obtained in [23].

5.3. Analysis of different displacement rates

So far we focused on experiments with the fastest displacement rate of 10mm/s. In this
subsection we discuss slower displacement rates.

We compare Table 3 with Table 4, in which we used a displacement rate of 10 and
1mm/s, respectively. Again, we use N = 5 for the minimization and a relative noise level
of about 1%, but four different noise seeds. It is obvious that the results are much worse,
specifically the smallest relaxation time and the corresponding stiffness are approximated
poorly. Again, this has to be expected since the reconstruction of small relaxation times is
severely ill-conditioned. In a second run, the algorithm was not even able to find Maxwell
elements with relaxation times in three different decades.
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Table 4. Clustered material parameters with noisy data (η = 1 mm/s) where the μj are given in MPa
and the τj in seconds.

j = 0 1 2 3

Exact values μj 10 4 7 1
τj – 0.2 3.7 25

Experiment 1 μj 9.9945 27.367 5.945 0.91663
τj – 0.088687 4.2318 27.263

Experiment 2 μj 10.007 – 7.5694 1.0434
τj – – 3.4762 23.689

Experiment 3 μj 9.0111 2.6942 7.2928 1.0402
τj – 0.82841 6.3049 3000.5

Experiment 4 μj 10.006 2.094 6.0643 1.0303
τj – 0.885029 3.9963 23.423

Figure 6. Individual stress components for a displacement rate of 1mm/s.

For a better understanding of why the results are worse compared to the results for the
faster displacement rate of 10mm/s, we look at the different stress-time curves that a dis-
placement rate of 1mm/s Figure 6 and 10mm/s Figure 7 generate. For each of the curves,
we show the contribution of each element separately. That means σ0 is the stress generated
by the single spring while σ1,2,3 is the stress of the three Maxwell elements. The sum of
these individual stresses yields the total stress, cf. (10). Themaximum strain is 20 %, which
is attained at 20 and 2 s for a displacement rate of 1 and 10mm/s, respectively. This makes
a big difference for the individual stresses of the Maxwell elements. In both cases the max-
imum stress of the single spring is achieved at 200MPa, but at different time instances.
However, the maximum stress of the Maxwell elements at a slower displacement rate of
1mm/s is much lower than for a faster displacement rate. In both cases, the maximum is
attained at t = ε̄/η. In Table 5, we see the different values listed. At a slower displacement
rate, the stress values of the Maxwell elements are non-zero over a longer time period,
which can be seen particularly well for the first Maxwell element. But since the values are
somuch smaller than at a higher displacement rate, these small values are covered by noise
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Figure 7. Individual stress components for a displacement rate of 10mm/s.

Table 5. Maximumvalues of individual stress components (MPa)
with slow and fast deformation rates attained at t = ε̄/η.

j = 1 j = 2 j = 3

η = 1 σj(ε̄/η) 0.4 12.94 9.9
η = 10 σj(ε̄/η) 4 85.57 18.48

muchmore easily. Therefore, it is advisable to use higher displacement rates. Based on this,
we confine to a displacement rate of 10mm/s in upcoming examples.

5.4. Regularization approaches

As a result of our investigations in Section 5.2 we realized that small errors in the data can
lead to large errors in the solution. This is a typical behaviour of ill-posed inverse problems,
which must be compensated by means of regularization techniques. Therefore, instead of
continuing to use as cost function the residual (11) only, we will add a regularization term
and minimize

‖F (μ,μ1, . . . ,μN , τ1, . . . τN) − σ δ‖22 + λ‖(μ,μ1, . . . ,μN , τ1, . . . τN)‖22, (14)

where λ > 0 acts as a regularization parameter and balances the influence of the data fitting
term and the penalty term to the minimizer. This is the Tikhonov-Phillips regularization,
a standard approach in the field of inverse problems (see [32,46–48]). In Table 6, we see
the comparison of two reconstructions with and without the regularization term. Again we
used N = 5 and the clustering algorithm for these results. We see a significant improve-
ment on the first Maxwell element, which was previously most affected by the disturbed
data. As expected, too large values are suppressed in the stiffness, but at the same time
τ1 attains larger values. However, we also see a deterioration in the values of the third
Maxwell element. Since large values are penalized by the regularization term, this mainly
affects the relaxation time τ3 = 25 s. The values are lower and we get a higher stiffness
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Table 6. Clustered material parameters with and without regularization where theμj are given in MPa
and the τj in seconds.

j = 0 1 2 3

Exact values μj 10 4 7 1
τj – 0.2 3.7 25

Without μj 10.0003 6.9146 6.9963 0.9909
regularization τj – 0.1096 3.7056 25.3752
With μj 10.0065 4.214 6.9556 1.1312
regularization τj – 0.1607 3.5549 22.2532

Figure 8. Smallest relaxation time determined from 100 runs with (a) no regularization, (b) classical
Tikhonov–Phillips regularization and (c) adjusted regularization term.

μ3 = 1.1312MPa and a smaller relaxation time τ3 = 22.2532 s. In all tests we set λ = 0.17
in (14) which was determined by trial-and-error.

To avoid this, we test another penalty term. We minimize

‖F (μ,μ1, . . . ,μN , τ1, . . . τN) − σ δ‖22 + λμ2
1. (15)

The idea is to have the same positive effects as the classical Tikhonov–Phillips regular-
ization, but without the negative influence on the largest relaxation time and thus the
associated stiffness. The penalty μ2

1 is chosen to take into account the phenomenon that
the computation of the smallest relaxation time τ1 is most sensible with respect to noise
in the data (cf. [23]). In Figures 8 and 9 we compare all three methods. As in Section 5.2
we evaluate the different approaches in 100 experiments with the same noise level but dif-
ferent noise seeds. The clustered results are displayed in Figures 8 and 9. In each box the
central marker indicates themedian, the lower and upper end of the boxmark the 25th and
75th percentile, respectively. The outer boundaries mark the highest and smallest values.
Outliers are marked by the ’+’ symbols.

We see thatwe stillmanage to achieve a reasonable reconstruction of τ1 with the adjusted
regularization term (see Figure 8 (c)).While τ3 was permanently reconstructed too small in
the classical Tikhonov–Phillips regularization, we cannot observe such attenuation in (c),
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Figure 9. Largest relaxation time for 100 runs with (a) no regularization, (b) classical Tikhonov–Phillips
regularization and (c) adjusted regularization term.

since we no longer penalize large values exceptμ1 (see Figure 9). In (15) we used λ = 0.135
as regularization parameter, again determined by trial-and-error.

5.5. Shortened data sets

The last set of numerical experiments examines the effects of using a smaller number of
data. This is interesting in view of shortening the duration of the experiment or sampling
the data at a lower frequency. It is particularly relevant for the reconstruction of Maxwell
elements with high relaxation times. Since we do not know these, we cannot estimate how
long it takes for the stress contribution of this element to decay to zero. In other words:
it is unclear at which time a material finds its equilibrium or reaches a point where the
difference between the current stress and the asymptotic stress is less than the experimental
noise. This is why in the following we will test reconstructions from shortened data sets in
order to be able to make an assertion about the accuracy of these reconstructions.

We again work with noisy data (δrel ≈ 1%), N = 5, for the minimization and use the
adapted penalty term (15). Up to now, we have used a time interval of [0, 100] seconds
with 1000 data points in our experiments, i.e. one data point any 0.1 seconds. We will now
repeatedly shorten this data set by 5 s until we get a total time of 25 s. The results of the
corresponding reconstructions are shown in Figure 10. We focus on the basic elasticity μ

and stiffness μ3 of the Maxwell element with slowest relaxation time and furthermore on
the smallest and largest relaxation times τ1 and τ3. The behaviour of the central Maxwell
element is comparable to the third one, which is why we omit a detailed discussion.

The basic elasticity μ of the single spring can perfectly be identified after only 25 s for
a displacement rate of 10mm/s. For the slower rate of 1mm/s, 55 s of the experiment are
necessary for a reliable identification. The minimal time to conclusively identify the stiff-
ness μ3 of the spring in the third Maxwell element takes 40 s for a rate of 10mm/s and 50 s
for a rate of 1mm/s, respectively.
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Figure 10. Effect of reducing the duration [0, T] of the experiment on thematerial parametersμ,μ3, τ1
and τ3 for a displacement rate of 10 mm/s (left) and 1 mm/s (right), respectively.
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The identification of the relaxation times is more difficult than of the stiffnesses. The
relaxation times τ3 of the third Maxwell element can be precisely determined after 45 s for
a rate of 10mm/s and after 70 s for the slower rate of 1mm/s, respectively. After that the
result gets worse with every second the data set is shortened. There are not sufficient data
points left to perform a reliable reconstruction. The variation in the values for the fastest
relaxation time τ1 is much larger than for τ3 and also very sensitive to noise. Experimental
observations show in general that, if the displacement rate is too high, the third Maxwell
element with the slowest relaxation time behaves like an equilibrium spring since there is
not enough time to relax during loading. The stiffness of the third element superimposes
with the equilibrium spring. However, during relaxation the equilibrium spring and the
third Maxwell element can be easily distinguished from each other. Hence, the faster load-
ing rate of 10mm/s can predictμ andμ3 even with 30 s of the data whereas, for the 1mm/s
loading rate, at least 50 s of data is required for accurate prediction. On the other hand the
prediction of τ1 is easier with the 10mm/s data because, if the displacement rate is too low,
the first Maxwell element with the fastest relaxation time starts to relax during the load-
ing itself. This is shown for a rate of 1mm/s in Figure 10. A satisfying identification is not
possible during the entire experimental duration of 100 s. However, for the faster rate of
10 mm/s τ1 it can already be determined after 50 s. We like to mention that the curves in
Figure 10 look much more similar if we only consider the phase where the strain is held
constant, i.e. by neglecting the first 20 s.

As a summary of the observations above and for a better understanding, Figure 11 again
shows the stress–time curves for the two different displacement rates, but now including
the time in the experiments to identify the individual material parameters. The parame-
ters are not of the same order for the different rates. For instance, for a displacement rate
of 1mm/s the relaxation time τ3 can be reconstructed first, while at 10mm/s the stiffnessμ

is most stable to data shortening. Thus, no general statement can be made about a corre-
lation of the material parameters and the duration of the experiment without considering
conditions such as the displacement rate.

6. Conclusion and future work

In this paper, we presented an algorithm for the reconstruction of material parameters
in a Maxwell-based rheological multi-parameter model for viscoelastic materials under
stress–time conditions that are realistic for tensile tests in a laboratory. After a short intro-
duction to thematerial model, we defined the forward operator and proposed an analytical
way to solve the evolution equation with respect to relaxation times. This allowed us to
determine an analytical solution of the forward operator with regard to the number of
Maxwell elements given specific stress–time curves.

A big challenge and novelty compared to classical settings in inverse problems is repre-
sented by the fact that the forward operator F depends on the number ofMaxwell elements
n and, thus, on parts of the searched solution itself. This uncertainty is overcome by using
an appropriate clustering algorithm, which is new in this field. For the parameter identifi-
cation, we considered different approaches based onminimizing a least squares functional.
In experiments we have seen that the simple approach to minimize the residual is not suf-
ficient for perturbed data and especially the material parameters of the Maxwell element
with shortest relaxation time is very susceptible to noise. By analysing the stress–time curve
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Figure 11. Synthetic stress–time data produced by a spring combined with a three Maxwell element
model including the duration of the experiment to conclusively identify the stiffnesses and relaxation
times for displacement rates of 1mm/s and 10mm/s.

decomposed into the single spring and Maxwell element stresses, we were able to give a
clear recommendation towards higher displacement rates. This analysis also contributed
to the understanding of why the small relaxation times with their corresponding stiffness
are that sensitive to noise. This proves the great relevance of our theoretical and numerical
investigations for the performance of future experiments such as tensile tests.

Subsequently, we considered various regularization methods such as the classical
Tikhonov–Phillips approach. We conclude that a specific regularization adapted to the
smallest relaxation time is preferable. This confirms former investigations regarding the
condition of the underlying problem in [23].

Investigations on shortened data sets demonstrate that our approach for material
parameter identification shows great advantages for performing real experiments since it
yields suggestions on the minimum duration of the experiments. This is very important
because typical relaxation experiments can last days or weeks until the basic elasticity can
be determined using conventional evaluation methods. In that sense our new approach
might be of significant interest for the identification of parameters in materials science.

Nearly all polymers show more or less a viscoelastic behaviour. Hence, the stress relax-
ation problem is a real problem and of utmost importance. Although the generalized
Maxwell model is well known in theory, from the experimental point of view it is not possi-
ble to simply fit the data by a decaying exponential function since it never reaches the basic
elasticity needed to simulate thematerials. Basic elasticity would only be reached at infinite
time leading to an infinite duration of the experiments. Therefore, the new approach is of
great importance for the reliable experimental determination of the material parameters
of viscoelastic materials and therefore also for the simulation of such materials.

Future research is focused on validating the presented algorithms on real data sets. How-
ever, at this point, real scattering date are not suitable, since we do not know the real
parameters. Therefore, we did first a parameter re-identification in this work to check
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the performance of our new approach. Furthermore, it might be interesting to apply
other numerical regularization methods, such as the Landweber iteration or Newton type
methods combined with Bayes inversion.
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