
CLASSIFICATION AND HOMOLOGICAL INVARIANTS
OF COMPACT QUANTUM GROUPS OF

COMBINATORIAL TYPE

Dissertation zur Erlangung des Grades des
Doktors der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Mathematik und Informatik der

Universität des Saarlandes

vorgelegt von

ALEXANDER MANG

Saarbrücken,
2022



Datum der Verteidigung: 9. März 2023
Dekan: Prof. Dr. Jürgen Steimle
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Abstract

Compact quantum groups can be found by solving certain combinatorics prob-
lems, as first shown by Banica and Speicher. Any system of partitions of finite
sets which is closed under reflection and two kinds of concatenation gives rise to
a quantum subgroup of the free orthogonal quantum group. Later Freslon, Tar-
rago and Weber extended this construction to colored partitions. Only recently,
Mančinska and Roberson generalized this from finite sets to finite graphs. The
present thesis contributes to the classification programs for quantum groups induced
by two-colored partitions in Chapter 1 and those induced by uncolored graphs in
Chapter 2. While these constructions produce numerous quantum groups, little is
known about which of those are actually new and not isomorphic to others. In an
effort to elucidate this, Chapter 3 shows that any such quantum group interpolating
the unitary group and the free unitary quantum group can be written as a quotient
of a wreath graph product of one of the two. Another way of making distinctions
between such quantum groups of combinatorial type is to study quantum group
invariants, such as cohomology. Chapter 4 computes the first order with trivial co-
efficients for the discrete duals of all of Tarrago and Weber’s quantum groups. For a
handful of those Chapter 5 computes the L2-Betti numbers following Bichon, Kyed
and Raum’s method. Chapter 6 proposes a common categorial framework covering
all the aforementioned constructions for the first time.

i





Zusammenfassung

Durch das Lösen gewisser Kombinatorikrätsel lassen sich kompakte Quanten-
gruppen finden, wie von Banica und Speicher gezeigt. Jede Sammlung von Par-
titionen endlicher Mengen, die unter Spiegelung und zwei Arten Konkatenierung
abgeschlossen ist, ergibt eine Unterquantengruppe der freien orthogonalen Quanten-
gruppe. Freslon, Tarrago und Weber erweiterten dies auf “gefärbte Partionen”. Erst
kürzlich ersetzten Mancinska und Roberson die endlichen Mengen durch endliche
Graphen. Die Dissertation trägt zu zwei entsprechenden Klassifikationsvorhaben
bei: zweifarbige Partitionen in Kapitel 1, ungefärbte Graphen in Kapitel 2. Zwar
ergeben sich viele Quantengruppen. Doch ist nur wenig darüber bekannt, welche
davon tatsächlich neu sind. Um dieser Frage nachzugehen, wird in Kapitel 3 be-
wiesen, dass jede solche Quantengruppe zwischen der unitären Gruppe und der freien
unitären Quantengruppe Quotient eines Kranzgraphprodukts einer dieser beiden ist.
Eine andere Möglichkeit, solche Quantengruppen kombinatorischen Typs von einan-
der zu unterscheiden bieten Invarianten wie Kohomologie. Von letzterer, mit triv-
ialen Koeffizienten, wird in Kapitel 4 die erste Ordnung berechnet, und zwar für die
diskreten Dualen aller von Tarrago und Webers Quantengruppen. Für eine handvoll
davon werden in Kapitel 5 noch nach der Methode von Bichon, Kyed und Raum
die L2-Betti-Zahlen bestimmt. Kapitel 6 enthält den Vorschlag eines gemeinsamen
Rahmens für erstmals alle zuvor genannten Konstruktionen von Quantengruppen.
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Introduction

At the latest with Banica and Speicher’s seminal work in [BS09] it became clear
that large numbers of compact quantum groups in the sense of [Wor87; Wor91;
Wor98] can be constructed by combinatorial means. Namely, any set of “partitions”
of finite sets which is closed under horizontal and vertical concatenation and under
reflection gives rise to an entire family of compact quantum groups via the Tannaka-
Krein theorem proved in [Wor88]. More precisely, each quantum group of this kind,
called “easy” by Banica and Speicher, can be understood as a quantum subgroup
of Wang’s free orthogonal quantum group defined in [Wan95a].

Not long after their discovery, all easy quantum groups were classified in [BCS10;
Web13; RW14; RW16a; RW16b]. However, in [TW18], Tarrago and Weber found a
way of modifying Banica and Speicher’s approach to construct even more quantum
groups. By considering “two-colored partitions” rather than uncolored ones they
provided a framework for finding new quantum subgroups of Wang’s free unitary
quantum group, also defined in [Wan95a]. While many of these so-called “unitary
easy”, in distinction from Banica and Speicher’s “orthogonal easy”, quantum groups
have been classified, an unknown number remain undiscovered at the time of writing.

Tarrago and Weber’s work is not the end of the story, though. In [Fre17], Freslon
expanded their definitions once more to “partitions” with an arbitrary number of
colors. The resulting, one might call them “general easy”, quantum groups can
be interpreted as quantum subgroups of free products of free orthogonal and free
unitary quantum groups.

However, only recently, Mančinska and Roberson demonstrated impressively, that
there is actually no need to confine oneself to “partitions” of finite sets. In [MR19],
they generalized the known constructions yet again by replacing the finite sets by
finite graphs. By finding sets of what they call “bi-labeled graphs” (in a reference to
Lovász’s language in [Lov12]) which are again invariant under certain concatenation
and reflection operations, they construct “graph-theoretic” quantum groups. These
include notably the quantum automorphism groups of finite simple graphs in the
sense of [Ban05]. But, as Mančinska and Roberson explain in [MR19], that is really
only the tip of the iceberg. They note that their construction also works for multi-
graphs, directed graphs, graphs with colored vertices, graphs with colored edges and
more. Thus, in truth, it seems there are few bounds on which combinatorial entities
cannot be turned in quantum groups.
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2 INTRODUCTION

It is this wealth of quantum groups, constructed from un-, two- or multi-colored
partitions or all kinds of graphs, that forms the subject matter of the present thesis,
gathered under the provisional umbrella term “compact quantum groups of com-
binatorial type”. Those quantum groups are studied from three different angles,
corresponding to the three parts of the thesis.
Part 1 The first part is a contribution to the programs initiated by Tarrago and We-

ber in [TW18] respectively Mančinska and Roberson in [MR19] to classify
all unitary easy compact quantum groups and all graph-theoretic compact
quantum groups.

Part 2 In the second part, some small results are offered to address the difficult
question of deciding which of all the compact quantum groups of combi-
natorial type are isomorphic to each other and to already known quantum
groups.

Part 3 Finally, building on work by Deligne in [Del07b] and Knop in [Kno07], the
third part investigates a general construction, formulated in the language
of enriched category theory, that unifies all the aforementioned approaches
by Banica, Speicher, Tarrago, Weber, Freslon, Mančinska and Roberson at
the same time.

The three parts are thematically related but logically independent. In order to
make the contents of this thesis as widely and conveniently accessible as possible,
great care has been taken to keep not only each part but also each chapter self-
contained. In particular, every chapter is endowed with tailor-made preliminaries
which address exactly the priors of the chapter in question and nothing more.



Part 1

Classification results





CHAPTER 1

Hyperoctahedral categories of two-colored partitions

Via Woronowicz’s Tannaka-Krein theorem monoidal involutive categories with
finite sets of two-colored points as objects and partitions of two such sets as mor-
phisms correspond to certain quantum subgroups of Wang’s free unitary quantum
group, the non-commutative generalization of the unitary group. An infinite sublat-
tice of the lattice of all such categories is classified, both in terms of partitions and
generators. The categories in question, all very close to the free case, generalize the
classical hyperoctahedral group. While quantum-algebraic in its implication, the
chapter is purely combinatorial in its concepts, techniques and results.

1. Introduction

1.1. Background and Context. In [TW18], Tarrago and Weber initiated a
classification program to determine all categories of two-colored partitions. Finite
totally ordered sets of two sorts of points form the objects. The morphisms be-
tween two such sets are given by partitions of their disjoint union. Composition
of morphisms is defined via vertical concatenation. Horizontal concatenation yields
a tensor product. Swapping the two sets produces adjoint morphisms. Thus, cat-
egories of two-colored partitions are small concrete involutive monoidal categories
with natural combinatorial operations.

Via a Tannaka-Krein type result of Woronowicz’s (see [Wor88]) each such cate-
gory induces for every dimension N ∈ N a C∗-algebraic compact (matrix) quantum
group (see [Wor87], [Wor98]), namely a quantum subgroup of Wang’s (see [Wan95a])
free unitary quantum group U∗

N , a non-commutative analogue of the unitary group
UN . This was shown by Freslon and Weber in [FW16], generalizing a seminal result
of Banica and Speicher’s from [BS09]. The second objective of the classification
program from [TW18] is to find all the quantum groups arising in this way, the
so-called unitary easy quantum groups.

Multiple partial classification results for categories of two-colored partitions have
been obtained already. In [TW18], Tarrago and Weber started the program by de-
termining all non-crossing categories and all categories belonging to the group case,
i.e., all categories C ⊆ P○● with C ⊆ ⟨ , , ⟩ or ∈ C. Gromada then classified
all globally colorized categories in [Gro18], which is to say all categories C ⊆ P○●
with ⊗ ∈ C. All unitary half-liberations, categories C ⊆ P○● with C ⊆ ⟨ ⟩, were
foundin [MW20] and [MW21a] and all non-hyperoctahedral categories, i.e., cate-
gories C ⊆ P○● with ⊗ ∈ C or ∉ C, in [MW21b], [MW21c], [MW22a], [MW22b]
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6 1. HYPEROCTAHEDRAL CATEGORIES

and [MW22c]. Hence, the remaining unknown categories are at this point in time
the hyperoctahedral locally colorized non-group-case categories with crossings, cat-
egories C ⊆ P○● with { , ⊗ , , ⊗ } ∩ C = { } and C /⊆ ⟨ , , ⟩.

In the following a first partial classification result is provided for such categories
(see the next subsection). We define explicitly an infinite combinatorial index set R
(of certain sets of binary words) and a mapping R ↦WR assigning to every R ∈ R
a set WR of partitions. Then, we prove that this mapping is an isomorphism of
complete lattices from (R,⊆) onto the set of all hyperoctahedral subcategories of a
certain category W. All categories in this lattice except for the minimal one, ⟨ ⟩,
are new. Moreover, we determine a natural generator {πc ∣ c ∈ R} of WR for every
R ∈R, consisting of explicitly known partitions.

The results obtained below in a sense generalize those obtained by Raum and We-
ber in [RW16b] for categories of uncolored partitions in the original sense of Banica
and Speicher’s. More precisely, the categories WR for R ∈R bear close resemblance
to the non-group-theoretical hyperoctahedral categories of partitions ⟨πk ∣k ≤ ℓ⟩ for
ℓ ∈ N ∪ {∞} classified there. For a discussion of this relationship see Section 10.1.

1.2. Main Result. To obtain the normalized color, invert the colors of upper
(i.e., domain) points (and leave the colors of lower (co-domain) points unchanged).
The cyclic order is the one where the lower row is traversed left-to-right and the
upper row right-to-left and where the leftmost lower point succeeds the leftmost
upper one and the rightmost upper point the rightmost lower one.

Theorem. If R is the set of all non-empty sets R of words over the alphabet
{○, ●} which are closed under the three operations of

◻ reflection and simultaneous color inversion,
◻ forgetting the first letter and
◻ forgetting any two neighboring letters which are different,

then the following are true:
(a) A hyperoctahedral category W of two-colored partitions is given by the set of

all two-colored partitions satisfying the following conditions (Theorem 4.7):
(i) There are equally many points of each normalized color ○ and ● overall.
(ii) Any block has equal numbers of legs bearing normalized colors ○ and ●.
(iii) Any two cyclically subsequent legs of the same block have opposite nor-

malized colors.
(iv) Between any two cyclically subsequent points of the same block there

are as many points of normalized color ○ as of normalized color ●.
(v) For any two distinct blocks B and B′ evenly many legs of B′ lie between

any two distinct legs of B, in the cyclical sense.
(b) For every R ∈ R a hyperoctahedral category WR of two-colored partitions

is given by the set of all elements of W with the following property (Theo-
rem 4.42):

Whenever two distinct blocks A and C cross each other, the following
holds for all legs α of A and γ of C:
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If k is the number of blocks B with A ≠ B ≠ C and with the property that
oddly many legs of B lie between α and γ, viewed cyclically, and if these
k blocks are enumerated B1,B2, . . .Bk in the order their respective first legs
appear in the space between α and γ, then an element of R is given by the
following word of length k + 2:
◻ The leftmost letter is given by the normalized color of α if there are

evenly many legs of A located properly in between α and γ, in the
cyclical sense, and the opposite of that color, otherwise .

◻ For i = 1,2, . . . , k the i-th following letter is given by the normalized
color of the first leg of Bi in between α and γ, in the cyclical sense.

◻ The last letter is given by the normalized color of γ if there are evenly
many legs of C located properly in between α and γ, in the cyclical
sense, and the opposite of that color, otherwise.

(c) Distinct elements R of R yield distinct categories WR (Theorem 7.1).
(d) If for any word c = (c1, c2, . . . , cℓ) of length ℓ over {○, ●} the partition

c1 c2 cℓ−1 cℓ cℓ cℓ−1 c2 c1

c1 c2 cℓ−1 cℓ cℓ cℓ−1 c2 c1

. . . . . .

is denoted by πc, where ○ = ● and ● = ○, then for any R ∈R the category WR

is generated by the set of all πc with c ∈ R (Theorem 6.24). The category
W is generated by the set of all conceivable πc (Theorem 6.19).

(e) The mapping R ↦ WR is an isomorphism of complete lattices with respect
to ⊆ from R to the set of all hyperoctahedral subcategories of two-colored
partitions of W (Theorem 9.4).

In fact, the condition (iii) in (a) that subsequent legs of the same block alter-
nate in normalized color is redundant. Moreover, there is a more easily digestible
formulation of (b) which makes use of, in particular, a kind of “∗-betweenness” rela-
tion on the set of blocks and induced order relations (see Section 3). However, this
formulation requires preparation.

1.3. Structure of the chapter. The prerequisites from the theory of two-
colored partitions and their categories are briefly recapitulated in Section 2. Follow-
ing that, Section 3 defines the index set R and the sets WR for R ∈R, which include
W as a special (maximal) case. The proof of the main theorem then proceeds as
follows:

Step 1: WR is category for every R ∈R (Section 4).
Step 2: WR is generated by {πc ∣ c ∈ R} for every R ∈R (Section 6).
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Step 3: (WR)R∈R are pairwise distinct (Section 7).
Step 4: For any hyperoctahedral C ⊆W there is R ∈R with C =WR (Section 8).
Step 5: R ↦WR is an isomorphism of complete lattices (Section 9).

The proof of the second step is assisted by an auxiliary section which introduces a
set R ⊆ P○● and gives a way to reconstruct any category C ⊆ P○● from its set C ∩ R
(Section 5). Finally, Section 10 discusses the results.

1.4. Notation. Throughout, 0 ∉ N. Instead, N0 = {0} ⊍ N. Moreover, ⟦k⟧ ∶=
{1,2, . . . , k} for any k ∈ N and ⟦0⟧ ∶= ∅. Finally, x ≡m y stands for x− y ∈mZ, where
m,x, y ∈ Z.

2. Preliminaries: Two-Colored Partitions and Their Categories

A detailed exposition of the basic definitions of and results about two-colored
partitions can be found in [TW18, Section 1]. Moreover, certain concepts and the-
orems from [MW21b, Sections 3 and 4], from [MW21c, Sections 3 and 4] and from
[MW22b, Sections 3–5] will be used. For the convenience of the reader those are
repeated here, however without proofs.

2.1. Two-Colored Partitions. By a two-colored partition, in symbols: an ele-
ment of P○●, we mean an exhaustive division of the disjoint union of two distinguish-
able totally ordered (not necessarily non-empty) sets, the upper row (consisting of
upper points) and the lower row (of lower points), into pairwise disjoint subsets, the
blocks (whose elements are called legs), together with a binary-valued (○ or ●, which
are called inverse or opposite to each other, in symbols: ○ ∶= ● and ● ∶= ○) mapping
on the points, the (native) coloring.

Lower and upper points are addressed as ◾x and ◾x, respectively, where x is their
rank in the total order of the respective row. We say that lower ranks are to the left
and higher ranks to the right of any point. We write p ∈ P○●(k, ℓ) if p has k upper
and ℓ lower points and then define ∥p∥ ∶= k + ℓ. To say that B is a block of p, we
write B ∈ p. Unions of blocks are called subpartitions. Blocks are said to be through
blocks if they have both lower and upper legs and lower/upper non-through blocks if
they are confined to the lower/upper row. Given partitions p and q, we say that p
refines q, in symbols: p ≤ q, if for any B ∈ p there exists C ∈ q with B ⊆ C.

The normalized color is given by the native color for lower points but the opposite
of the native color for upper points. Assigning densities σ(○) ∶= 1 and σ(●) ∶= −1
with respect to normalized color defines a signed measure σp on the points of any
p ∈ P○●. The total color sum Σ(p) is the color sum of the set of all points of p. Point
sets with color sum 0 are called neutral.

On the points a cyclic order is imposed by extending the total order of the lower
and the exact opposite total order of the upper row and by defining the least/greatest
lower point the successor/predecessor of the least/greatest upper point. Intervals
[α,β]p, ]α,β[p, etc., between points α and β of p ∈ P○● with, importantly, always
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α ≠ β refer to this cyclic order. Consecutive sets are empty, singleton or interval
sets of points. A turn is a neutral consecutive set of size 2.

The color distance δp(α,β) from a point α of p ∈ P○● to a point β of p is defined
as Σ(p) if α = β and otherwise as δp(α,β) = σp(]α,β]p) + 1

2(σp({α}) − σp({β})). It
has properties of a “signed distance”.

Lemma 2.1. [MW20, Lemma 3.1] For any p ∈ P○● and any points α, β, γ of p,
(a) δp(α,α) ≡ 0 mod Σ(p),
(b) δp(α,β) ≡ −δp(β,α) mod Σ(p),
(c) δp(α, γ) ≡ δp(α,β) + δp(β, γ) mod Σ(p).

2.2. Operations for Two-Colored Partitions. We call a pairing (p, p′) of
p, p′ ∈ P○● composable if the upper row of p and the lower row of p′ are of equal
size and if points of equal rank concur in native color. If for every q ∈ {p, p′} the
lower row of q is denoted by Rq,L and the upper row by Rq,U , then the composition
pp′ inherits Rp,L as lower and Rp′,U as upper row, colors included, and, if s is
the join (∨) of {B ∩ Rp,U ∣B ∈ p}/{∅} and {B′ ∩ Rp′,L ∣B′ ∈ p′}/{∅}, where we
identity Rp,U ≅ Rp′,L, then the blocks of pp′ are precisely the lower non-through
blocks of p, the upper non-through blocks of p′ and the non-empty ones of the sets
⋃{B ∩Rp,L ∣B ∈ p, B ∩D ≠ ∅} ⊍⋃{B′ ∩Rp′,U ∣B′ ∈ p′, B′ ∩D ≠ ∅} for blocks D ∈ s.

If for every i ∈ {1,2} the lower and upper rows of pi ∈ P○● are given by Rpi,L and
Rpi,U , respectively, then the tensor product p1 ⊗ p2 of p1, p2 ∈ P○● has as lower and
upper rows the disjoint unions Rp1,L ⊔Rp2,L and Rp1,U ⊔Rp2,U , respectively, (points
and colors) and the new total orders are the unique extensions of the ones of p1 and
p2 with γ1 ≤ γ2 for all γ1 ∈ Rp1,X , γ2 ∈ Rp2,X and X ∈ {L,U}.

The involution or adjoint p∗ of p ∈ P○● is obtained from p by declaring the lower
row the new upper row and the upper row the new lower row.

To produce the color inversion p of p ∈ P○● all native colors are turned into their
opposites. The reflection p̂ results from reversing the total orders of the rows in p.
And the verticolor reflection p̃ is the reflection of the color inversion of p.

If p ∈ P○●(k, ℓ) with 1 ≤ k, then the rotation p⤹ ∈ P○●(k − 1, ℓ + 1) is obtained
by transferring ◾1 from the upper to the lower row, declaring it the new ◾1 and
inverting its native color, blocks unaffected. Similarly, p⤸ ∈ P○●(k − 1, ℓ + 1) results
from considering ◾k to be ◾(ℓ+1) and inverting its color. Moreover, let p¹ ∶= ((p∗)⤹)∗
and pÁ ∶= ((p∗)⤸)∗ as well as p↻ ∶= (p¹)⤸ and p↺ ∶= (p⤹)Á. In the latter case we speak
of (clockwise and counter-clockwise) cyclic rotations.

Disconnecting a set S in p ∈ P○● replaces all B ∈ p with B ∩S ≠ ∅ by the two sets
B ∩S and B/S provided they are non-empty. Somewhat conversely, if {B1,B2} ⊆ p,
then combining B1 and B2 switches them out for the new block B1 ∪B2.

Finally, if T is a turn in p, then the erasing E(p, T ) of T from p is obtained by
removing T from the set of points of p and by combining all the blocks of p which
have a non-empty intersection with T into one.
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2.3. Categories of Two-Colored Partitions. A category of two-colored par-
titions is any set which includes {∅, , , , } and which is closed under composi-
tion, tensor products and involution. There is an equivalent set of conditions which
is often easier to verify.

Lemma 2.2. [MW21b, Lemma 4.3] Any set of partitions is a category if and only
if it contains and is closed under rotation, tensor products, verticolor reflection
and erasing turns.

We say that a category C ⊆ P○● is hyperoctahedral if ⊗ ∉ C and ∈ C. Oth-
erwise, it is called non-hyperoctahedral. These conditions have implications for the
allowed block sizes:

Lemma 2.3. [TW18, Lemmata 1.3 (b), 2.1 (a)] Let C ⊆ P○● be any category.
(a) ⟨ ⊗ ⟩ = ⟨ ⊗ ⟩ = ⟨ ⟩ = ⟨ ⟩.
(b) ⊗ ∈ C if and only if there exist p ∈ C and B ∈ p with ∣B∣ < 2.
(c) If ⊗ ∈ C, then C is closed under disconnecting points from their blocks.

Lemma 2.4. [TW18, Lemmata 1.3 (d), 2.1 (b)] Let C ⊆ P○● be any category.
(a) ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩.
(b) ∈ C if and only if there exist p ∈ C and B ∈ p with ∣B∣ > 2.
(c) If ∈ C, then C is closed under combining all blocks intersecting a turn.

2.4. Special Kinds of Partitions. A partition p ∈ P○● is called verticolor-
reflexive if p̃ = p. If so, then p has an even number of points in each of its rows.
We say that a partition p ∈ P○● is projective if p = p∗ = pp. If so and if p has ℓ ∈ N
with 2 ≤ ℓ lower points, then p is called a bracket if there exists B ∈ p with {◾1, ◾ℓ} ⊆
B ⊆ {◾1, ◾2, . . . , ◾ℓ}, and a co-bracket if there exists B ∈ p with {◾1, ◾2, . . . , ◾ℓ} ∩B =
{◾1, ◾ℓ} ≠ B.

2.5. Equivalence and Projection. For all i ∈ {1,2}, let Ppi denote the set of
all points of pi ∈ P○● and let Si ⊆ Ppi be consecutive. We call (p1, S1) and (p2, S2)
equivalent if S1 = S2 = ∅ or if the following is true: There exist n ∈ N and for each
i ∈ ⟦2⟧ pairwise distinct points γi,1, . . . , γi,n in pi such that (γi,1, . . . , γi,n) is ordered
in pi and Si = {γi,1, . . . , γi,n} and such that for all {j, j′} ⊆∈ ⟦n⟧ (possibly j = j′) the
following are true:

(i) σp({γ1,j}) = σp({γ2,j}).
(ii) ∃B1 ∈ p1 ∶ {γ1,j, γ1,j′} ⊆ B1 ⊆ S1 if and only if ∃B2 ∈ p2 ∶ {γ2,j, γ2,j′} ⊆ B2 ⊆ S2.

(iii) ∃B1 ∈ p1 ∶ {γ1,j, γ1,j′} ⊆ B1 /⊆ S1 if and only if ∃B2 ∈ p2 ∶ {γ2,j, γ2,j′} ⊆ B2 /⊆ S2.
For any consecutive set S in any p ∈ P○● we call the unique projective partition q

with lower row M such that (q,M) and (p,S) are equivalent the projection P (p,S)
of (p,S). Categories are closed under arbitrary projections.

Lemma 2.5. [MW21c, Lemma 3.3] P (p,S) ∈ ⟨p⟩ for any consecutive set S of
points in any partition p ∈ P○●.
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3. Definition of WR

We define an index set R (Definition 3.1) and for every R ∈R a set WR ⊆ P○● of
two-colored partitions (Definition 3.8), which we ultimately claim to be a category.

Definition 3.1. (a) We call R aW-parameter set if R ⊆ ⋃n∈N(⟦n⟧→ {○, ●})
and if for all n ∈ N and all (c1, . . . , cn) ∈ R the following are true:

(i) ○ ∈ R.
(ii) (cn, cn−1, . . . , c1) ∈ R.

(iii) (c2, c3, . . . , cn) ∈ R if 2 ≤ n.
(iv) (c1, c2 . . . , ci−1, ci+2, ci+3, . . . , cn) ∈ R if 4 ≤ n, if 1 < i < n − 1 and if

ci ≠ ci+1.
(b) Denote the set of all W-parameter sets by R.

Note that, trivially, {○, ●} and ⋃R = ⋃n∈N(⟦n⟧ → {○, ●}) are, respectively, the
smallest and largest W-parameter sets possible.

The next six auxiliary definitions enable that of the sets (WR)R∈R. Lemma 2.5
shows that the following is well-defined.

Definition 3.2. Let m ∈ N0, let p ∈ P○● satisfy Σ(p) ≡m 0 and let Pp be the set
of all points of p. Define the equivalence relation ∼p,m on Pp by

α ∼p,m β ∶⇐⇒ δp(α,β) ≡m 0

for any {α,β} ⊆ Pp, and let ∆mp be the partition of Pp given by the set of equivalence
classes of ∼p,m. A block of ∆mp is called an m-part of p.

Definition 3.3. Let Pp be the set of all points of p ∈ P○●, let Σ(p) = 0, let
p ≤ ∆0p, let ∅ ⊊ A ⊆ Pp and ∅ ⊊ B ⊆ Pp, let A ≠ B and let σp(A) = σp(B) = 0. We
call B non-interferent with A in p if σp([α, γ]p ∩ B) = 0 for any {α, γ} ⊆ A with
α ≠ γ.

Definition 3.4. Let W be the set of all p ∈ P○● such that
(i) σp(A) = 0 for all A ∈ p,

(ii) p ≤∆0p,
(iii) B is non-interferent with A for all {A,B} ⊆ p with A ≠ B.

Definition 3.5. For each p ∈W define on the blocks of p the ternary relation

χp ∶= {(A,B,C) ∣ {A,B,C} ⊆ p ∶ ¬(A = B = C) and ∃(α, γ) ∈ A ×C ∶
α ≠ γ and σp([α, γ]p ∩B) ≠ 0}.

Definition 3.6. For each p ∈W between χp and Z define the binary relation

λp ∶= {((A,B,C), σp([α, γ]p ∩B)) ∣ (A,B,C) ∈ χp, (α, γ) ∈ A ×C ∶
α ≠ γ and σp([α, γ]p ∩B) ≠ 0}.

Definition 3.7. Let p ∈W, let {A,C} ⊆ p and let A ≠ C. On the set

jA,Cop ∶= {B ∣B ∈ p ∶ (A,B,C) ∈ χp}
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define the binary relation

≤p,A,C ∶= {(B1,B2) ∣ {B1,B2} ⊆ jA,Cop ∶ B1 = B2 or (A,B1,B2) ∈ χp}.

Definition 3.8. For each R ∈R let WR be the set of all p ∈W with

c ∈ R

for all n ∈ N, all {B1,B2, . . . ,Bn} ⊆ p and all c ∶ ⟦n⟧→ {○, ●} such that
(i) 2 ≤ n,

(ii) B1,B2, . . . ,Bn are pairwise distinct,
(iii) B1 and Bn cross in p,
(iv) jB1,Bnop = {B1,B2, . . . ,Bn},
(v) B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤p,B1,Bn , and

(vi) ((B1,Bi,Bn), σ(ci)) ∈ λp for every i ∈ ⟦n⟧.

Because {{○, ●},⋃R} ⊆ R the sets W{○,●} and W⋃R are well-defined. And, of
course, W⋃R =W. The definition also immediately impliesW{○,●} ⊆WR1 ⊆WR2 ⊆W
for all {R1,R2} ⊆R with R1 ⊆ R2.

4. Invariance

In this longest and most difficult section of the chapter we show that WR is a
hyperoctahedral category of two-colored partitions for every R ∈R (Theorem 4.42).
It will be convenient to prove this for the special caseW =W⋃R first (Theorem 4.7).

4.1. Invariance ofW. Instead of checking the definition, we will use Lemma 2.2.
Even with that, some preparatory remarks, definitions and results are in order.

Notation 4.1. If Pp is the set of all points of p ∈ P○● and if B ⊆ Pp, let

δBp ∶ (Pp/B) × (Pp/B)→ Z, (α, γ)↦ {σp(B) if α = γ,
σp([α, γ]p ∩B) otherwise.

Lemma 4.2. Let m ∈ N0, let p ∈ P○●, let S be a set of points of p and let σp(S) ≡m
0. Then, for all points α, β and γ of p with {α,β, γ} ∩ S = ∅,

(a) δSp (α,α) ≡m 0,
(b) δSp (α,β) ≡m −δSp (β,α),
(c) δSp (α, γ) ≡m δSp (α,β) + δSp (β, γ).

Proof. (a) By definition, δSp (α,α) = σp(S) ≡m 0.
(b) If α = β, then (b) holds by (a). If α ≠ β, then, as S/{α,β} = S and σp(S) ≡m 0,

δSp (α,β) = σp([α,β]p ∩ S) = σp(S/]β,α[p) = σp(S) − σp(]β,α[p ∩ S)
≡m −σp([β,α]p ∩ S),

which proves the claim.
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(c) If α, β and γ are not pairwise distinct, then (c) is true by (a) and (b) together.
For pairwise distinct α, β and γ, if (α,β, γ) is ordered in p, then, because β ∉ S,

δSp (α, γ) = σp([α,β]p ∩ S) + σp(]β, γ]p ∩ S)
= σp([α,β]p ∩ S) + σp([β, γ]p ∩ S)
= δSp (α,β) + δSp (β, γ)

and, if (α, γ, β) is ordered in p instead, then, because γ ∉ S,

δSp (α, γ) = σp([α,β]p ∩ S) − σp(]γ, β]p ∩ S)
= σp([α,β]p ∩ S) − σp([γ, β]p ∩ S)
= δSp (α,β) − δSp (γ, β)
≡m δSp (η, ϵ) + δSp (ϵ, θ),

where we have used (b) in the last step. □

The invariance proof demands being aware of how the concepts featuring in the
definition of W transform under category operations.

Remark 4.3. The definitions of the operations of rotation, verticolor reflection
and tensor product have the following implications.

(a) Let r ∈ {⤹, Á, ¹, ⤸} and let ρ be the map rotating the points of pr to their
original positions in p ∈ P○●.

(i) In terms of blocks, pr = {ρ−1(B) ∣B ∈ p}.
(ii) σpr(S) = σp(ρ(S)) for every set S of points of pr.

(iii) ρ([γ1, γ2]pr) = [ρ(γ1), ρ(γ2)]p for all points γ1 and γ2 of pr with γ1 ≠ γ2.
(b) Let ϱ be the map reflecting the points of p̃ back to their positions in p ∈ P○●.

(i) In terms of blocks, p̃ = {ϱ−1(B) ∣B ∈ p}.
(ii) σp̃(S) = −σp(ϱ(S)) for every set S of points of p̃.

(iii) ρ([γ1, γ2]p̃) = [ϱ(γ2), ϱ(γ1)]p for all points γ1 and γ2 of p̃ with γ1 ≠ γ2.
(c) Let p1, p2 ∈ P○● and for every i ∈ ⟦2⟧ let Si be the set of points of p1 ⊗ p2

coming from pi and let τi be the map sending the points of Si to their
original positions in pi.

(i) In terms of blocks, p1 ⊗ p2 = {τ−1i (B) ∣ i ∈ ⟦2⟧, B ∈ pi}.
(ii) σp1⊗p2(S) = ∑2

i=1 σpi(τi(S ∩ Si)) for every set S of points of p1 ⊗ p2.
(iii) For any {¬i, i} ⊆ ⟦2⟧ with ¬i ≠ i and any {γ1, γ2} ⊆ Si with γ1 ≠ γ2 the

set [γ1, γ2]p1⊗p2 is either τ−1i ([τi(γ1), τi(γ2)]pi) or τ−1i ([τi(γ1), τi(γ2)]pi)⊍
S¬i.

That leaves the transformation rules of the erasing operation to address.

Notation 4.4. Let p ∈ P○● be arbitrary, let T be a turn in p, let π be the map
which sends the blocks (not the points) of p not contained in T to the blocks they
become in E(p, T ), let ϵ be the map sending the points of E(p, T ) to their former
positions in p and let B ∈ E(p, T ).
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(a) Parents of B with respect to (p, T ) are any two (not necessarily distinct)
blocks {B1,B2} ⊆ p with π(B1) = π(B2) = B and ϵ(B) = (B1 ∪B2)/T .

(b) With respect to (p, T ) we say that B is
(i) . . . case EI if B1 = B2 and (B1 ∪B2) ∩ T = ∅ for any parents {B1,B2},

(ii) . . . case EII if B1 = B2 and T ⊊ B1 ∪B2 for any parents {B1,B2},
(iii) . . . case EIII if B1 ≠ B2 and T ⊊ B1 ⊍B2 and ∅ ≠ B1 ∩T and ∅ ≠ B2 ∩T

for any parents {B1,B2}.

It is important to note that in any partition p ∈ P○● per erased turn T there can
be at most one block of E(p, T ) which is not case EI.

Lemma 4.5. Let p ∈ P○●, let T be a turn in p, let ϵ be the map which sends the
points of E(p, T ) to their original positions in p, let {A,B,C} ⊆ p and let {B1,B2}
be parents of B with respect to (p, T ). Then, for all α ∈ A and all γ ∈ C,

σE(p,T )([α, γ]E(p,T ) ∩B) = {
∑2
j=1 σp([ϵ(α), ϵ(γ)]p ∩Bj) if B is case EIII,

σp([ϵ(α), ϵ(γ)]p ∩B1) otherwise.

Proof. The definition of E(p, T ) implies σE(p,T )(S) = σp(ϵ(S)) for all sets S of
points of E(p, T ) and ϵ([γ1, γ2]E(p,T )) = [ϵ(γ1), ϵ(γ2)]p/T for all points γ1 and γ2 of
E(p, T ) with γ1 ≠ γ2. Thus, we infer, because ϵ is injective,

σE(p,T )([α, γ]E(p,T ) ∩B) = σp(ϵ([α, γ]E(p,T ) ∩B))
= σp(ϵ([α, γ]E(p,T )) ∩ ϵ(B))
= σp(([ϵ(α), ϵ(γ)]p/T ) ∩ ((B1 ∪B2)/T ))
= σp(([ϵ(α), ϵ(γ)]p ∩ (B1 ∪B2))/T ).

Moreover, as {ϵ(α), ϵ(γ)} ∩ T ⊆ ran(π) ∩ T = ∅ and because T is consecutive, either
[ϵ(α), ϵ(γ)]p ∩T = ∅ or T ⊆]ϵ(α), ϵ(γ)[p. On the other hand, always T ⊆ B1 ∪B2. In
consequence,

σp(([ϵ(α), ϵ(γ)]p ∩ (B1 ∪B2))/T )

= {σp([ϵ(α), ϵ(γ)]p ∩ (B1 ∪B2)) if [ϵ(α), ϵ(γ)]p ∩ T = ∅,
σp([ϵ(α), ϵ(γ)]p ∩ (B1 ∪B2)) − σp(T ) if T ⊆]ϵ(α), ϵ(γ)[p

= σp([ϵ(α), ϵ(γ)]p ∩ (B1 ∪B2)),
where in the last step we have used that T is a turn and thus σp(T ) = 0. In regard
of the definitions of cases EI–EIII, that proves the claim. □

We can employ two results from [MW21b] to reduce the set of conditions whose
stability under category operations we have to prove.

Proposition 4.6. [MW21b, Lemmata 6.13 (a) and 7.1] A category of two-colored
partitions is given by the set {p ∣p ∈ P○● ∶ p ≤∆0p, ∀A ∈ p ∶ σp(A) = 0}.

Theorem 4.7. W is a hyperoctahedral category of partitions.
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Proof. Because ⊗ has non-neutral blocks, ⊗ ∉W. And ∈W is also clear
by definition. Thus, once we show that W is indeed a category, we can be certain
that it is hyperoctahedral.

In order to prove that W is a category we use Lemma 2.2. Clearly, ∈ W . By
Proposition 4.6 it suffices to verify that the property of all blocks being mutually
non-interferent is preserved by rotations, tensor product, verticolor reflection and
erasing turns. Let p, p1, p2 ∈ W , let r ∈ {⤹, Á, ¹, ⤸}, let T be a turn in p, let p′ ∈
{pr, p̃, p1 ⊗ p2,E(p, T )}, let {A,B} ⊆ p′, let A ≠ B, let {α, γ} ⊆ A and let α ≠ γ. We
show σp′([α, γ]p′ ∩B) = 0.

Case 1: Rotations. First, let p′ = pr and let ρ be the map rotating the points of
pr to their original positions in p. By Remark 4.3 (a), both {ρ(A), ρ(B)} ⊆ p and
ρ(A) ≠ ρ(B). Hence, B is non-interferent with A by p ∈W . As {ρ(α), ρ(γ)} ⊆ ρ(A)
and ρ(α) ≠ ρ(γ) we can therefore infer

0 = σp([ρ(α), ρ(γ)]p ∩ ρ(B)) = σp(ρ([α, γ]pr ∩B)) = σpr([α, γ]pr ∩B),
where we have used Remark 4.3 (a). That proves pr ∈W.

Case 2: Verticolor reflection. Next, let p′ = p̃, let ϱ be the map reflecting the
points of p̃ back to their places in p. Again, {ϱ(A), ϱ(B)} ⊆ p and ϱ(A) ≠ ϱ(B),
this time by Remark 4.3 (b). Because ϱ(B) is thus non-interferent with ϱ(A) and
because {ϱ(γ), ϱ(α)} ⊆ ϱ(A) and ϱ(γ) ≠ ϱ(α), we conclude, using the same remark,

0 = σp([ϱ(γ), ϱ(α)]p ∩ ϱ(B)) = σp(ϱ([α, γ]p̃ ∩B)) = −σp̃([α, γ]p̃ ∩B),
which confirms p̃ ∈W.

Case 3: Tensor products. Now, let p′ = p1 ⊗ p2 and for every i ∈ ⟦2⟧ let Si be the
set of points of p1 ⊗ p2 stemming from pi and let τi be the map sending the points
of Si to their former positions in pi. By Remark 4.3 (c) there exist {i, j} ⊆ ⟦2⟧ such
that A ⊆ Si and B ⊆ Sj. In particular, {α, γ} ⊆ Si. We distinguish two cases.

Case 3.1: A and B came from the same partition. If i = j, then {τi(A), τi(B)} ⊆
pi and τi(A) ≠ τi(B) by Remark 4.3 (c). Thus, τi(B) is non-interferent with τi(A)
by pi ∈W . As {τi(α), τi(γ)} ⊆ τi(A) and τi(α) ≠ τi(γ) it hence follows by the same
remark

0 = σpi([τi(α), τi(γ)]pi ∩ τi(B)) = σpi(τi(([α, γ]p1⊗p2 ∩B) ∩ Si))
= ∑2

ℓ=1σpℓ(τℓ(([α, γ]p1⊗p2 ∩B) ∩ Sℓ)) = σp1⊗p2([α, γ]p1⊗p2 ∩B)
because S1 ∩ S2 = ∅ and [α, γ]p1⊗p2 ∩B ⊆ Si per the assumptions B ⊆ Sj and i = j.

Case 3.2: A and B came from different partitions. Alternatively, let i ≠ j.
By Remark 4.3 (c), either [α, γ]p1⊗p2 = τ−1i ([τi(α), τi(γ)]pi) ⊆ Si or [α, γ]p1⊗p2 =
τ−1i ([τi(α), τi(γ)]pi)∪Sj. The assumptions B ⊆ Sj and i ≠ j then imply [α, γ]p1⊗p2 ∩
B ∈ {∅,B}. In the first case,

σp1⊗p2([α, γ]p1⊗p2 ∩B) = σp1⊗p2(∅) = 0.

In the second, the same remark and the inclusion B ⊆ Sj yield

σp1⊗p2([α, γ]p1⊗p2 ∩B) = σp1⊗p2(B) = ∑2
ℓ=1σpℓ(τℓ(B ∩ Sℓ)) = σpj(τj(B)) = 0
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by pj ∈W since τj(B) ∈ pj. Thus, p1 ⊗ p2 ∈W has been proven.
Case 4: Erasing turns. Finally, let p′ = E(p, T ), let ϵ be the map sending the

points of E(p, T ) to their former positions in p, let {A1,A2} be parents of A with
respect to (p, T ), let ϵ(α) ∈ A1 and let {B1,B2} be parents of B. Since A ≠ B, also
{A1,A2} ∩ {B1,B2} = ∅. Lemma 4.5 therefore yields

σE(p,T )([α, γ]E(p,T ) ∩B) = {
∑2
j=1 σp([ϵ(α), ϵ(γ)]p ∩Bj) if B is case EIII,

σp([ϵ(α), ϵ(γ)]p ∩B1) otherwise.
(1)

Two cases must be distinguished.
Case 4.1: α and γ came from the same block of p. First, suppose ϵ(γ) ∈ A1. As

A1 ∉ {B1,B2}, the assumption p ∈W then guarantees

σp([ϵ(α), ϵ(γ)]p ∩Bj) = 0

for every j ∈ ⟦2⟧. That proves the claim by (1), regardless of which case B is.
Case 4.2: α and γ came from two different blocks of p. Now, let ϵ(γ) ∉ A1 instead,

implying ϵ(γ) ∈ A2 and A1 ≠ A2. Then, B is case EI and thus B1 = B2. Because A is
case EIII, for every i ∈ ⟦2⟧ there exists τi ∈ Ai ∩ T . Then, {ϵ(α), ϵ(γ)} ∩ {τ1, τ2} = ∅.
Therefore and because p ∈W and B1 ∉ {A1,A2} we can infer

σp([ϵ(α), τ1]p ∩B1) = 0 = σp([τ2, ϵ(γ)]p ∩B1).
Furthermore, T being a turn and the identity B1 ∩ T = ∅ ensure

σp([τ1, τ2]p ∩B1) = {
σp(B1 ∩ T ) if τ2 succeeds τ1,

σp(B1) if τ2 precedes τ1
} = 0

because σp(B1) = 0 by p ∈W . In consequence, by Lemma 4.2 (c),

σp([ϵ(α), ϵ(γ)]p ∩B1)
= σp([ϵ(α), τ1]p ∩B1) + σp([τ1, τ2]p ∩B1) + σp([τ2, ϵ(γ)]p ∩B1) = 0.

Again, this proves the claim by (1). That concludes the proof overall. □

4.2. Properties of Partitions in W. The proof that WR is a category for
arbitrary R ∈ R requires numerous auxiliary result about the relationship between
the block structure and the coloring in partitions of W which go beyond what is
already asked for in the definition.

4.2.1. Colors of Subsequent Legs. We begin by proving that in any partition of
W the legs of any block alternate in normalized color (Proposition 4.13). That
actually holds true in a larger set thanW and the proofs are the same, which is why
we show it in the more general version.

In the next crucial Lemma 4.9 we will use twice the following discrete analogue
of the intermediate value theorem for functions resembling Dyck paths.

Lemma 4.8 (Discrete Intermediate Value Theorem). Let a, b ∈ Z, let a < b and
let f ∶ {i ∈ Z ∣a ≤ i ≤ b}→ Z. If ∂f ∶ {i ∈ Z ∣a < i ≤ b}→ Z, j ↦ f(j)−f(j −1) satisfies
ran(∂f) ⊆ {−1,0,1} and if f(a) ⋅ f(b) < 0, then there exists x ∈ Z with a < x < b such
that f(x) = 0.



4. INVARIANCE 17

Proof. The induction proof is elementary and omitted. □

We prove that the points of any 0-part alternate in normalized color, and any
two subsequent points of distinct parts have identical normalized colors.

Lemma 4.9. Let p ∈ P○●, let Σ(p) = 0, let {A,C} ⊆ ∆0p, let {α, γ} ⊆ A ∪ C, let
α ≠ γ and let ]α, γ[p∩(A ∪C) = ∅.

(a) If A = C, then σp({α, γ}) = 0.
(b) If A ≠ C, then σp({α, γ}) ≠ 0.

Proof. We prove both claims simultaneously and distinguish two cases.
Case 1: α and γ are neighbors. If ]α, γ[p= ∅, then, per definition, δp(α, γ) =

σp(∅) = 0 if and only if σp({α, γ}) = 0 and δp(α, γ) = σp({γ}) ≠ 0 if and only if
σp({α, γ}) ≠ 0. The assumption A = C demands δp(α, γ) = 0, while the premise
A ≠ C requires δp(α, γ) ≠ 0. Hence, the assertion holds if ]α, γ[p= ∅.

Case 2: α and γ are not neighbors. Now, let ]α, γ[p≠ ∅ instead. Then, there exist
ℓ ∈ N with 1 < ℓ and pairwise distinct points θ0, θ1, . . . , θℓ such that (θ0, θ1, . . . , θℓ) is
ordered in p and such that {θ0, θ1, . . . , θℓ} = [α, γ]p, in particular, θ0 = α and θℓ = γ.
For every j ∈ {0}∪⟦ℓ⟧ let cj be the normalized color of θj. Then, we must show c0 ≠ cℓ
if A = C and c0 = cℓ if A ≠ C. Define the function f ∶ {0} ∪ ⟦ℓ⟧→ Z, j ↦ δp(θj, θℓ).

Step 2.1: f−1({0}) is {0, ℓ} if A = C and {ℓ} if A ≠ C. Per definition, for any
j ∈ {0} ∪ ⟦ℓ⟧, the statement f(j) = 0 is equivalent to δp(θj, θℓ) = 0, which in turn is
the same as saying θj ∈ C because γ = θℓ ∈ C. Because ]θ0, θℓ[p∩C =]α, γ[p∩C = ∅
per assumption, f−1({0}) ⊆ {0, ℓ} has thus been shown. Moreover, we can conclude
that ℓ ∈ f−1({0}) is always true and that 0 ∈ f−1({0}) holds if and only if A = C
because α = θ0 ∈ A.

Step 2.2: f−1({f(0)}) is {0, ℓ} if A = C and {0} if A ≠ C. For all j ∈ {0}∪⟦ℓ⟧ the
statement f(j) = f(0) is equivalent to δp(θj, θℓ) = δp(θ0, θℓ); and this in turn is true if
and only if 0 = δp(θ0, θℓ)− δp(θj, θℓ) = δp(θ0, θℓ)+ δp(θℓ, θj) = δp(θ0, θj) by Lemma 2.1.
As α = θ0 ∈ A we have thus checked for any j ∈ ⟦ℓ⟧ that f(j) = f(0) if and only if θj ∈
A. It follows, on the one hand, f−1({0}) ⊆ {0, ℓ} because ]θ0, θℓ[p∩A =]α, γ[p∩A = ∅,
and, on the other hand, ℓ ∈ f−1({f(0)}) if and only if A = C because γ = θℓ ∈ C.

Step 2.3: Proving ran(∂f) ⊆ {−1,0,1} and a formula for ∂f . We show that
∂f ∶ ⟦ℓ⟧→ Z, j ↦ f(j) − f(j − 1) satisfies ran(∂f) ⊆ {−1,0,1} and find a formula for



18 1. HYPEROCTAHEDRAL CATEGORIES

∂f . Per definition, for all j ∈ ⟦ℓ⟧,

f(j) − f(j − 1) = δp(θj, θℓ) − δp(θj−1, θℓ)
= σp(]θj, θℓ]p) + 1

2(σp({θj}) − σp({θℓ}))
− (σp(]θj−1, θℓ]p) + 1

2(σp({θj−1}) − σp({θℓ})))
= −σp(]θj−1, θℓ]p/]θj, θℓ]p) − 1

2σp({θj−1}) + 1
2σp({θj})

= −1
2σp({θj−1, θj})

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if cj−1 = cj = ○,
1 if cj−1 = cj = ●,
0 if cj−1 = cj,

which in particular proves ran(∂f) ⊆ {−1,0,1}.
Step 2.4: Proving ∂f(1) ≠ 0 ≠ ∂f(ℓ). From {ℓ} ⊆ f−1({0}) ⊆ {0, ℓ} by Step 2.1

it follows ∂f(ℓ) = f(ℓ) − f(ℓ − 1) = −f(ℓ − 1) ≠ 0 because 1 < ℓ. Likewise, {0} ⊆
f−1({f(0)}) ⊆ {0, ℓ} by Step 2.2 proves ∂f(1) = f(1) − f(0) ≠ 0, also since 1 < ℓ.

Step 2.5: Sign of f and definition of ε. We show by contradiction that there
exists ε ∈ {−1,1} such that εf(j) > 0 for all j ∈ ⟦ℓ−1⟧.

Suppose that there exist {j, j′} ⊆ ⟦ℓ−1⟧ with j < j′ such that f(j) ⋅ f(j′) < 0.
Because ran(∂f) ⊆ {−1,0,1}, Lemma 4.8 (discrete intermediate value theorem) then
ensures the existence of i ∈ ⟦ℓ⟧ with 0 < j < i < j′ < ℓ and f(i) = 0. That contradicts
the result f−1({0}) ⊆ {0, ℓ} of Step 2.1. Hence, an ε ∈ {−1,1} such that εf(j) > 0
for all j ∈ ⟦ℓ−1⟧ exists.

Step 2.6 Sign of f(0)−f . Now, we prove that, if f(0) ≠ 0, then ε(f(0)−f(j)) > 0
for all j ∈ ⟦ℓ−1⟧.

Again, assume that f(0) ≠ 0 and that there exist {j, j′} ⊆ ⟦ℓ−1⟧ with j < j′
such that (f(0) − f(j)) ⋅ (f(0) − f(j′)) < 0. Because ran(∂(f(0) − f)) = −ran(∂f) =
−{−1,0,1} = {−1,0,1}, by Lemma 4.8 there is i ∈ ⟦ℓ⟧ such that 0 < j < i < j′ < ℓ and
f(0)− f(i) = 0. This is the contradiction we sought because f−1({f(0)}) ⊆ {0, ℓ} by
Step 2.2.

Step 2.7: ∂f(1) ≠ ∂f(ℓ) if and only if A = C. According to Step 2.1 the assump-
tion A = C is equivalent to f(0) = 0. Because ∂f(1) ≠ 0 ≠ ∂f(ℓ) by Step 2.4 and
because ran(∂f) ⊆ {−1,0,1} by Step 2.3, it suffices to prove that ∂f(1) and ∂f(ℓ)
have different signs if and only if f(0) = 0 in order to see that ∂f(1) ≠ ∂f(ℓ) if and
only if A = C.

First, suppose f(0) = 0. Then, ∂f(1) = f(1) − f(0) = f(1) and ∂f(ℓ) = f(ℓ) −
f(ℓ − 1) = −f(ℓ − 1) by Step 2.1 and thus ε∂f(1) = εf(1) and ε∂f(ℓ) = −εf(ℓ − 1).
Because εf(1) > 0 and εf(ℓ−1) > 0 by Step 2.5, it follows ε∂f(1) > 0 and ε∂f(ℓ) < 0.
In conclusion, ∂f(1) ≠ ∂f(ℓ).

Alternatively, let f(0) ≠ 0. Then, ε∂f(1) = −ε(f(0) − f(1)) and, still, ε∂f(ℓ) =
−εf(ℓ − 1) because f(ℓ) = 0 by Step 2.1. Now, εf(ℓ − 1) > 0 by Step 2.5 and
ε(f(0) − f(1)) > 0 by Step 2.6 imply ε∂f(1) < 0 and ε∂f(ℓ) < 0. Thus, in this case,
∂f(1) = ∂f(ℓ).
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Step 2.8: c0 ≠ cℓ if and only if A = C. From the statement 0 ≠ ∂f(1) ≠ ∂f(ℓ) ≠ 0
which holds in case A = C by Steps 2.4 and 2.7 and from our formula for ∂f
found in Step 2.3 it follows 0 ≠ −1

2σp({θ0, θ1}) ≠ −1
2σp({θℓ−1, θℓ}) ≠ 0 and thus 0 ≠

σp({θ0, θ1}) ≠ σp({θℓ−1, θℓ}) ≠ 0. That is only possible if c0 = c1 ≠ cℓ−1 = cℓ.
Likewise, if A ≠ C, then ∂f(1) = ∂f(ℓ) ≠ 0, as shown in Steps 2.4 and 2.7, then

σp({θ0, θ1}) = σp({θℓ−1, θℓ}) ≠ 0 by Step 2.3 requires c0 = c1 = cℓ−1 = cℓ. That is what
we needed to see. □

Lemma 4.9 can be immediately extended to points of the same 0-part separated
by an even number of points of that part.

Lemma 4.10. Let p ∈ P○● satisfy Σ(p) = 0. Then, σp({α, γ}) = 0 for all A ∈ ∆0p
and all {α, γ} ⊆ A with α ≠ γ and ∣[α, γ]p ∩A∣ ≡2 0.

Proof. For the case ]α, γ[p∩A = ∅ the assertion was shown in Lemma 4.9 (a).
Hence, we can assume ]α, γ[p∩A ≠ ∅. We find pairwise distinct points θ0, θ1, . . . , θℓ
such that (θ0, θ1, . . . , θℓ) is ordered in p and {θ0, θ1, . . . , θℓ} = [α, γ]p∩A, in particular
θ0 = α and θℓ = γ. For every i ∈ {0} ∪ ⟦ℓ⟧ let ci be the normalized color of θi in p.
Since ]θi−1, θi[p∩A = ∅ we find ci = ci−1 by Lemma 4.9 (a) for every i ∈ ⟦ℓ⟧. For every
such i we infer by induction, ci = c0 if i is odd and ci = c0 if i is even. Our assumption
∣]α, γ[p∩A∣ ≡2 0 makes ℓ an odd number. It follows c0 = cℓ, which is what we needed
to see. □

Although not required for the proof of the main result, it provides a good moti-
vation for the notion of non-interference to see that all 0-parts have this property.

Remark 4.11. Let p ∈ P○● satisfy Σ(p) = 0. Then, σp(A) = 0 for all A ∈∆0p.

Proof. Let k ∈ N and let the pairwise distinct points θ1, θ2, . . . , θk be such that
(θ1, θ2, . . . , θk) is ordered in p and that {θ1, θ2, . . . , θk} = C. Let ν ∶ ⟦k⟧ → ⟦k⟧ be the
permutation with i ↦ i + 1 for all i ∈ ⟦k − 1⟧ and with k ↦ 1. Let Pp denote the set
of all points of p. Then, the decomposition Pp = {θ1, . . . , θk} ⊍ ⊍i∈⟦k⟧]θi, θν(i)[p and
the assumption Σ(p) = 0 together imply

0 = Σ(p) = σp(Pp) = σp({θ1, . . . , θk}) +∑i∈⟦k⟧σp(]θi, θν(i)[p)
and thus the formula σp(C) = −∑i∈⟦k⟧ σp(]θi, θν(i)[p).

Since ]θi, θν(i)[p∩A = ∅ for all i ∈ ⟦k⟧, Lemma 4.9 (a) guarantees σp({θi, θν(i)}) = 0
for all i ∈ ⟦k⟧. The definition of δp consequently implies δp(θi, θν(i)) = σp(]θi, θν(i)[p)
for all i ∈ ⟦k⟧. As {θ1, . . . , θk} ⊆ A means δp(θi, θν(i)) = 0 for every i ∈ ⟦k⟧, we conclude
σp(]θi, θν(i)[p) = 0 for every i ∈ ⟦k⟧. Thus, σp(C) = 0 by the above formula. □

Remark 4.12. If p ∈ P○● satisfies Σ(p) = 0, then any two 0-parts of p are mutually
non-interferent.

Proof. Let {A,B} ⊆∆0p, let A ≠ B, let {α, γ} ⊆ A and let α ≠ γ.
Case 1: Subsequent points of A. For simplicity let us first suppose in addition

that ]α, γ[p∩A = ∅. If [α, γ]p ∩B = ∅, the claim is obviously true. Hence, we can
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assume [α, γ]p ∩ B ≠ ∅. Now, there exist k ∈ N and pairwise distinct θ0, θ1, . . . , θk
such that (θ0, θ1, . . . , θk) is ordered in p and {θ0, θ1, . . . , θk} = [α, γ]p ∩B. Then, we
have to prove σp({θ0, θ1, . . . , θk}) = 0.

Applying Lemma 4.9 (a) to B on its own shows that σp({θi−1}) = −σp({θi}) for all
i ∈ ⟦k⟧. In conclusion, σp({θ0, θ1, . . . , θk}) = 0 holds if and only if k is odd. Moreover,
k being even is equivalent to σp({θ0, θ1, . . . , θk}) = σp({θ0}) = σp({θℓ}) holding.

Lemma 4.9 (b) shows σp({α}) = σp({θ0}) and σp({θk}) = σp({γ}). If we apply
Lemma 4.9 (a) to A, we can infer σp({α}) = −σp({γ}). Combining both results
yields σp({θ0}) = −σp({θℓ}). That excludes σp({θ0}) = σp({θℓ}). Hence, k must be
odd. That concludes the proof in this case.

Case 2: Not necessarily subsequent α and γ. If ]α, γ[p∩A ≠ ∅, then there exists
ℓ ∈ N with 1 < ℓ and pairwise distinct points η0, η1, . . . , ηℓ such that (η0, η1, . . . , ηℓ)
is ordered in p and such that {η0, η1, . . . , ηℓ} = [α, γ]p ∩A, in particular η0 = α and
ηℓ = γ. For all j ∈ ⟦ℓ⟧, because ]ηj−1, ηj[p∩A = ∅, we can infer σp([ηj−1, ηj]p∩B) = 0 by
Case 1. Consequently, {η0, η1, . . . , ηℓ}∩B = ∅ allows us to conclude σp([α, γ]p∩B) =
∑ℓi=1 σp([ηj−1, ηj]p ∩B) = 0, which is what we wanted to see. □

The ensuing lemma is the general version of the claim that in any partition of W
any two subsequent legs of the same block alternate in normalized color.

Proposition 4.13. Let p ∈ P○●, let Σ(p) = 0, let p ≤ ∆0p and let B be non-
interferent with A for all P ∈∆0p and all {A,B} ⊆ p with A ≠ B and A ∪B ⊆ P .

Then, σp({α, γ}) = 0 for all A ∈ p and {α, γ} ⊆ A with α ≠ γ and ∣[α, γ]p∩A∣ ≡2 0.

Proof. Let P ∈ ∆0p be such that A ⊆ P and let P be the set of all B ∈ p with
A ≠ B and B ⊆ P . Then,

[α, γ]p ∩ P = [α, γ]p ∩ (A ∪⋃B∈PB) = ([α, γ]p ∩A) ⊍⊍B∈P ([α, γ]p ∩B)

For every B ∈ P the premise that B is non-interferent with A guarantees σp([α, γ]p∩
B) = 0 and thus, in particular, ∣[α, γ]p∩B∣ ≡2 0. Thus, the assumption ∣[α, γ]p∩A∣ ≡2
0 implies ∣[α, γ]p ∩ P ∣ ≡2 0 by the above decomposition. Now, Lemma 4.10 proves
σp({α, γ}) = 0 because {α, γ} ⊆ P . □

4.2.2. Revisiting the Definition of WR. The next step is to better understand
the relations χp and λp for p ∈ W appearing in the definition of the sets (WR)R∈R.
We show that the ∃-quantor in Definition 3.5 can be replaced with a ∀-quantor in
the case of pairwise distinct blocks (Lemma 4.15). Moreover, we prove that the
binary relation from Definition 3.6 is a actually a mapping to {−1,1} (Lemma 4.17).
Finally, we characterize both relations in terms of parity conditions with the help
of the result of the preceding subsection (Lemma 4.18).

Lemma 4.14. Let p ∈W, let {A,B,C} ⊆ p and let A ≠ B ≠ C. If {α,α′} ⊆ A and
{γ, γ′} ⊆ C and if α ≠ γ and α′ ≠ γ′, then

σp([α, γ]p ∩B) = σp([α′, γ′]p ∩B).



4. INVARIANCE 21

Proof. It is crucial that (A ∪ C) ∩B = ∅ and that σp(B) = 0 by assumption.
The definition of W further implies δBp (α,α′) = 0 and δBp (γ′, γ) = 0, where we have
used Lemma 4.2 (a). Applying Lemma 4.2 (c) twice hence yields

σp([α, γ]p ∩B) = δBp (α, γ)
= δBp (α,α′) + δBp (α′, γ′) + δBp (γ′, γ) = δBp (α′, γ′) = σp([α′, γ′]p ∩B),

which proves the claim. □

Lemma 4.15. Let p ∈ W, let {A,B,C} ⊆ p and let A, B and C be pairwise
distinct. Then, the following are equivalent:

(a) (A,B,C) ∈ χp.
(b) There exist α ∈ A and γ ∈ C such that α ≠ γ and σp([α, γ]p ∩B) ≠ 0.
(c) σp([α, γ]p ∩B) ≠ 0 for all α ∈ A and γ ∈ C with α ≠ γ.

Proof. Follows immediately by Lemma 4.14. □

The corresponding statement is false if some of the three blocks are identical.
Rather, if so, the extra assumptions in the following lemma are essential.

Lemma 4.16. Let p ∈W, let {A,C} ⊆ p and let A ≠ C. Then, for all {α,α′} ⊆ A
and {γ, γ′} ⊆ C such that σp([α, γ]p ∩A) ≠ 0 and σp([α′, γ′]p ∩A) ≠ 0,

σp([α, γ]p ∩A) = σp([α′, γ′]p ∩A),
σp([α, γ]p ∩C) = σp([α′, γ′]p ∩C).

Proof. We only prove the first identity. The second can be shown analogously.
Step 1: Moving γ → γ′. First, we verify that σp([α, γ]p ∩A) = σp([α, γ′]p ∩A).

If γ = γ′, this is vacuously true. Otherwise, p ∈ W and {γ, γ′} ⊆ C ≠ A imply
σp([γ, γ′]p∩A) = σp([γ′, γ]p∩A) = 0. As {γ, γ′}∩A = ∅, in particular σp(]γ, γ′]p∩A) =
σp(]γ′, γ]p ∩A) = 0. It thus follows, if (α, γ, γ′) is ordered,

σp([α, γ′]p ∩A) = σp([α, γ]p ∩A) + σp(]γ, γ′]p ∩A) = σp([α, γ]p ∩A),
and, if (α, γ′, γ) is ordered

σp([α, γ′]p ∩A) = σp([α, γ]p ∩A) − σp(]γ′, γ]p ∩A) = σp([α, γ]p ∩A).
Step 2: Moving α → α′. It remains to show σp([α, γ′]p ∩A) = σp([α′, γ′]p ∩A).

For α = α′ this is trivial. Hence, suppose α ≠ α′. Because p ∈ W, the legs of A
alternate in color by Proposition 4.13. This fact can be equivalently expressed by
saying that for all consecutive sets S in p, if ∣A∩S∣ ≡2 0, then σp(A∩S) = 0. Actually,
the converse is true as well.

The assumptions σp([α, γ′]p ∩ A) = σp([α, γ]p ∩ A) ≠ 0 and σp([α′, γ′]p ∩ A) ≠ 0
therefore mean that ∣[α, γ′]p ∩A∣ ≡2 ∣[α′, γ′]p ∩A∣ ≡2 1. We distinguish two cases

Case 2.1: Let (α′, α, γ′) be ordered in p. Then,

∣[α′, α[p∩A∣ = ∣[α′, γ′]p ∩A∣ − ∣[α, γ′]p ∩A∣ ≡2 1 − 1 ≡2 0
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and consequently, σp([α′, α[p∩A) = 0. It thus follows

σp([α′, γ′]p ∩A) = σp([α′, α[p∩A) + σp([α, γ′]p ∩A) = σp([α, γ′]p ∩A)
as claimed.

Case 2.2: If (α,α′, γ′) is ordered instead, then we deduce

∣[α,α′[p∩A∣ = ∣[α, γ′]p ∩A∣ − ∣[α′, γ′]p ∩A∣ ≡2 1 − 1 ≡2 0

and thus σp([α,α′[p∩A) = 0, implying

σp([α′, γ′]p ∩A) = σp([α, γ′]p ∩A) − σp([α,α′[p∩A) = σp([α, γ′]p ∩A)
as well. That concludes the proof. □

Lemma 4.17. λp is a mapping χp → {−1,1} for every p ∈W.

Proof. That λp is a mapping is the combined result of Lemmata 4.14 and 4.16.
Because the legs of p alternative in normalized color by Proposition 4.13 any color
sum σp([α, γ]p ∩B) for B ∈ p and points α and γ of p with α ≠ γ can only have the
values {−1,0,1}. The definition of λp hence ensures ran(λp) ⊆ {−1,1}. □

Lemma 4.18. Let p ∈W, let {A,B,C} ⊆ p and let A ≠ C.
(a) The following are equivalent:

(i) (A,B,C) ∈ χp.
(ii) There exist α ∈ A and γ ∈ C such that α ≠ γ and ∣[α, γ]p ∩B∣ ≡2 1.

(b) If A ≠ B ≠ C, then the following are equivalent:
(i) (A,B,C) ∈ χp.
(ii) There exist α ∈ A and γ ∈ C such that α ≠ γ and ∣[α, γ]p ∩B∣ ≡2 1.
(iii) ∣[α, γ]p ∩B∣ ≡2 1 for all α ∈ A and γ ∈ C with α ≠ γ.

(c) If (A,B,C) ∈ χp, then λp(A,B,C) = σp([α, γ]p ∩B) for all α ∈ A and γ ∈ C
with α ≠ γ and ∣[α, γ]p ∩B∣ ≡2 1.

Proof. Because p ∈W the legs of B alternate in color by Proposition 4.13. As
a consequence, σp([α, γ]p ∩B) ≠ 0 if and only if ∣[α, γ]p ∩B∣ ≡2 1. Now, the claims
are clear by Lemmata 4.14 and 4.16. □

4.2.3. Crossing Proliferation. With Definitions 3.5 and 3.6 suitably understood,
it is time to note a special link between the ternary relation and the binary crossing
relation.

Lemma 4.19. Let p ∈W, let {A,B,C} ⊆ p and A ≠ C. If A and C cross in p and
if (A,B,C) ∈ χp, then X crosses Y in p for any {X,Y } ⊆ {A,B,C} with X ≠ Y .

Proof. If A = B or B = C, there is nothing to show. Hence, we can assume
that A, B and C are pairwise distinct and have to prove that B crosses both A and
C.

Because A and C cross we find {α1, α2} ⊆ A and {γ1, γ2} ⊆ C such that α1 ≠ α2

and γ1 ≠ γ2 and such that (α1, γ1, α2, γ2) is ordered in p. Since A, B and C are
pairwise disjoint the assumption (A,B,C) ∈ χp ensures σp([αi, γi]p∩B) ≠ 0 for every
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i ∈ ⟦2⟧ by Lemma 4.15. In particular [αi, γi]p ∩B ≠ ∅ for each i ∈ ⟦2⟧. Hence, also
]αi, γi[p∩B ≠ ∅ since A ≠ B ≠ C. For every i ∈ ⟦2⟧ let βi ∈]αi, γi[p∩B be arbitrary. It
follows that (αi, βi, γi) is ordered for every i ∈ ⟦2⟧. Because (α1, γ1, α2, γ2) is ordered
in p, so is then (α1, β1, γ1, α2, β2, γ2). Now, the ordered tuple (α1, β1, α2, β2) gives a
crossing between A and B and, likewise, (β1, γ1, β2, γ2) one between B and C. □

The converse of Lemma 4.19 is false: There do exist p ∈W and therein pairwise
distinct blocks A, B and C which pairwise cross each other and still (A,B,C) ∉ χp.
Otherwise, χp and λp would be of little interest.

4.2.4. ∗-Betweenness. One ingredient of the definition of the sets (WR)R∈R has
yet been ignored. The next step is to prove that the binary relation ≤p,A,C from
Definition 3.7 for p ∈ W and {A,C} ⊆ p with A ≠ C is indeed a total order on
jA,Cop (Lemma 4.28). Proving this requires us to learn many properties of the
ternary relation χp for p ∈ W (Lemmata 4.20–4.27), which are also relevant to the
invariance proof in themselves. These results will reveal that χp for p ∈ W fits an
intuitive notion of “betweenness”. We also see that λp for p ∈ W attaches colors
these relations in an involutive way (Lemma 4.23).

The first axiom our ternary relation satisfies is a kind of reflexivity.

Lemma 4.20. Let p ∈ W and let {A,C} ⊆ p. If A ≠ C, then both (A,C,C) ∈ χp
and (A,A,C) ∈ χp.

Proof. Let Pp denote the set of all points of p and let α ∈ A be arbitrary.
The cyclic order of p induces a total order ⪯ on Pp/{α}. Since A ≠ C the point
γ ∶= min⪯((Pp/{α}) ∩ C) = min⪯(C) is well-defined. Then, [α, γ]p ∩ C = {γ} by
definition of γ. In particular, σp([α, γ]p ∩C ∣) ≠ 0 ≡2 1, implying (A,C,C) ∈ χp.

Now, let γ ∈ C and let ⪯ be the total order on Pp/{γ} induced by the cyclic order
of p. If we let α ∶= max⪯((Pp/{γ}) ∩A) = max⪯(A), then [α, γ]p ∩A = {α} implies
σp([α, γ]p ∩C) ≠ 0 and thus (A,A,C) ∈ χp. □

The next result shows that actually only two out of three entries of the ternary
relation determine the associated colors. However, it is beneficial to index the in-
formation in this way.

Lemma 4.21. Let p ∈ W, let {A,B,C} ⊆ p and let A, B and C be pairwise
distinct. If (A,B,C) ∈ χp, then λp(A,B,C) = λp(B,B,C) = λp(A,B,B).

Proof. By definition of λp there exist (α, γ) ∈ A×C with α ≠ γ and λp(A,B,C) =
σp([α, γ]p∩B) ≠ 0. That requires in particular [α, γ]p∩B ≠ ∅. Because {α, γ} ⊆ A∪C
and (A ∪ C) ∩B = ∅ we can refine this to ]α, γ[p∩B = ∅. Let ⪯ be the total order
induced on ]α, γ[p. Then, the legs β− ∶=min⪯(]α, γ[p∩B) and β+ ∶=max⪯(]α, γ[p∩B)
are well-defined.

The definitions of β− and β+ ensure that [α, γ]p ∩B = [β−, γ]p ∩B = [α,β+]p ∩B.
We conclude 0 ≠ λp(A,B,C) = σp([β−, γ]p ∩ B) = σp([α,β+]p ∩ B). That proves
λp(A,B,C) = λp(B,B,C) = λp(A,B,B) by Lemma 4.16. □

The property in the following lemma is a kind of minimality.
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Lemma 4.22. If p ∈W, if {A,B,C} ⊆ p and if (A,B,C) ∈ χp, then A ≠ C.

Proof. We show the contraposition by proving (A,B,A) ∉ χp. If A = B, then
this is trivially true by definition. If A ≠ B, then B is non-interferent with A by
p ∈W. Hence, σp([α,α′]p ∩B) = 0 for all {α,α′} ⊆ A with α ≠ α′. By definition this
statement is equivalent to the claim (A,B,A) ∉ χp. □

Our colored ternary relation is what could be called ∗-symmetric.

Lemma 4.23. Let p ∈W and let {A,B,C} ⊆ p.
(a) (A,B,C) ∈ χp if and only if (C,B,A) ∈ χp.
(b) If so, then λp(C,B,A) = −λp(A,B,C).

Proof. It suffices to prove one implication of (a). Hence, let (A,B,C) ∈ χp.
Then, A ≠ C according to Lemma 4.22. We distinguish three cases.

Case 1: First, let A ≠ B ≠ C. Because (A,B,C) ∈ χp we find (α, γ) ∈ A×C such
that α ≠ γ and λp(A,B,C) = σp([α, γ]p∩B) ≠ 0. The assumption A ≠ B ≠ C implies
{α, γ} ∩B = ∅. And p ∈W guarantees σp(B) = 0. Hence, we infer σp([γ,α]p ∩B) =
σp(]γ,α[p∩B) = σp(B) − σp([α, γ]p ∩ B) = −σp([α, γ]p ∩ B) = −λp(A,B,C) ≠ 0. It
thus follows (C,B,A) ∈ χp and λp(C,B,A) = −λp(A,B,C) by Lemma 4.17.

Case 2: Next, suppose A = B ≠ C. Then (C,B,A) = (C,A,A) ∈ χp is already
clear by Lemma 4.20. We only have to prove λp(C,A,A) = −λp(A,A,C). Let
γ ∈ C, let Pp denote the set of all points of p and let ⪯ be the total order induced
on Pp/{γ} by the cyclic order of p. Then α− ∶= min⪯((Pp/{α}) ∩ A) = min⪯(A)
and α+ ∶= max⪯((Pp/{α}) ∩ A) = max⪯(A) both exist because A ≠ C. Moreover,
p ∈ W requires σp(A) = 0 and thus in particular ∣A∣ > 1. In conclusion, α− ≠ α+.
Since [α+, α−]p ∩A = {α+, α−} we can deduce σp({α−}) = −σp({α+}) by p ∈ W and
Proposition 4.13.

By construction, [γ,α−]p ∩ A = {α−} and [α+, γ]p ∩ A = {α+} and thus in par-
ticular, σp([α+, γ]p ∩ A) = σp({α+}) ≠ 0 and σp([γ,α−]p ∩ A) = σp({α−}) ≠ 0.
Hence, Lemma 4.17 guarantees λp(C,A,A) = σp([γ,α−]p ∩ A) and λp(A,A,C) =
σp([α+, γ]p ∩A). We have thus shown λp(C,A,A) = σp([γ,α−]p ∩A) = σp({α−}) =
−σp({α+}) = −σp([α+, γ]p ∩A) = −λp(A,A,C), which is what we claimed.

Case 3: Finally, ifA ≠ B = C, then (C,B,A) = (C,C,A) ∈ χp also by Lemma 4.20,
proving (a) fully. Part (b) is then also true by Case 2. □

The ternary relation satisfies a kind of anti-symmetry axiom.

Lemma 4.24. Let p ∈W and let A, B and C be blocks of p.
(a) If (A,B,C) ∈ χp and (B,A,C) ∈ χp, then A = B.
(b) If (A,B,C) ∈ χp and (A,C,B) ∈ χp, then B = C.

Proof. (a) We suppose A ≠ B and derive a contradiction. By Lemma 4.22,
the assumptions (A,B,C) ∈ χp and (B,A,C) ∈ χp demand in particular A ≠ C ≠ B.
Hence, A, B and C are pairwise distinct. Let Pp denote the set of all points of p
and let γ ∈ C be arbitrary. The cyclic order of p induces a total order ⪯ on the
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set Pp/{γ}. Because A ≠ C ≠ B both α ∶= max⪯((Pp/{γ}) ∩ A) = max⪯(A) and
β ∶= max⪯((Pp/{γ}) ∩ B) = max⪯(B) exist. Then, either α ≺ β or β ≺ α because
A ≠ B. In the former case, the definition of α ensures [β, γ]p ∩A = ∅. Likewise, in
the latter case, [α, γ]p∩B = ∅ by the definition of β. In particular, σp([β, γ]p∩A) = 0
or σp([α, γ]p ∩B) = 0. Because {(B,A,C), (A,B,C)} ⊆ χp and because A, B and C
are pairwise distinct, Lemma 4.15 tells us that σp([β, γ]p ∩A) ≠ 0 ≠ σp([α, γ]p ∩B),
which is the contradiction we sought.

(b) If (A,B,C) ∈ χp and (A,C,B) ∈ χp, then (C,B,A) ∈ χp and (B,C,A) ∈ χp
by Lemma 4.23 (a). Now, Part (a) implies B = C. □

The next two results show two transitivity properties of our relation.

Lemma 4.25. Let p ∈ W, let {A,B,C,D} ⊆ p and let ¬(B = C = D). Whenever
(A,B,C) ∈ χp and (A,C,D) ∈ χp, then (B,C,D) ∈ χp.

Proof. We prove the claim in four steps.
Step 1: We can assume A ∉ {B,C,D}. The assumptions (A,B,C) ∈ χp and

(A,C,D) ∈ χp ensure C ≠ A ≠ D by Lemma 4.22. If A = B, then the assumption
(A,C,D) ∈ χp trivially proves the claim (B,C,D) ∈ χp. Hence, no generality is lost
in assuming A ∉ {B,C,D}.

Step 2: We have B ≠ D. If B = D were true, then our assumptions (A,D,C) =
(A,B,C) ∈ χp and (A,C,D) ∈ χp would imply C = D by Lemma 4.24 (b). But the
consequence B = C =D contradicts our assumption ∣{B,C,D}∣ ≥ 2.

Step 3: We can assume B ≠ C ≠ D. If we suppose B = C, then ∣{B,C,D}∣ ≥ 2
demands C ≠D and we have to show (C,C,D) ∈ χp. And this is then indeed true by
Lemma 4.20. The claim is also true if C = D: If so, then B ≠ C by ∣{B,C,D}∣ ≥ 2.
It follows (B,C,D) = (B,C,C) ∈ χp by Lemma 4.20. Therefore, we can assume
B ≠ C ≠D in the following.

Step 4: Proving (B,C,D) ∈ χp. We construct (β, δ) ∈ B ×D such that β ≠ δ and
σp([β, δ]p ∩B) ≠ 0. By Steps 1–3 the blocks A, B, C and D are pairwise distinct.

Step 4.1: Leg δ and auxiliary leg α. Let δ ∈ D and let ⪯ be the total order
induced on Pp/{δ} by the cyclic order of p, where Pp denotes the set of all points of
p. Because A ≠D, the point α ∶=min⪯((Pp/{δ}) ∩A) =min⪯(A) exists.

Step 4.2: Auxiliary leg γ. Because A, C and D are pairwise distinct and be-
cause (A,C,D) ∈ χp per assumption Lemma 4.15 ensures σp([α, δ]p ∩ C) ≠ 0. In
particular, [α, δ]p ∩ C ≠ ∅. Because A ≠ C ≠ D it follows ]α, δ[p∩C ≠ ∅. Thus
γ ∶=min⪯((Pp/{δ}) ∩ (]α, δ[p∩C)) =min⪯(]α, δ[p∩C) is well-defined.

Step 4.3: Leg β. Since (A,B,C) ∈ χp and since A, B and C are pairwise
distinct, Lemma 4.15 guarantees σp([α, γ]p∩B) ≠ 0, which implies [α, γ]p∩B ≠ ∅ in
particular. We infer ]α, γ[p∩B ≠ ∅ because A ≠ B ≠ C. Hence and because D ≠ B,
we can define β ∶=min⪯((Pp/{δ}) ∩ (]α, γ[p∩B)) =min⪯(]α, γ[p∩B).

Step 4.4: Proving σp([β, δ]p∩C) ≠ 0. By construction then, the tuple (α,β, γ, δ)
is ordered in p. The definition of γ therefore ensures [α,β[p∩C = ∅ and thus in
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particular σp([α,β[p∩C) = 0. Consequently,

σp([β, δ]p ∩C) = σp([α, δ]p ∩C) − σp([α,β[p∩C) = σp([α, δ]p ∩C) ≠ 0.

That concludes the proof. □

Lemma 4.26. Let p ∈W and {A,B,C,D} ⊆ p. If (A,B,C) ∈ χp and (A,C,D) ∈
χp, then (A,B,D) ∈ χp.

Proof. We prove the claim in three steps.
Step 1: We can assume C ∉ {A,B,D}. From (A,B,C) ∈ χp it follows A ≠ C

by Lemma 4.22. If B = C, then (A,B,D) ∈ χp is trivially true since we assume
(A,C,D) ∈ χp. Likewise, C =D lets us infer (A,B,D) ∈ χp immediately because we
have supposed (A,B,C) ∈ χp. In conclusion, we can let C ∉ {A,B,D}.

Step 2: We can assume ∣{A,B,D}∣ = 3. Our premise (A,C,D) ∈ χp implies
A ≠D by Lemma 4.22. Therefore, if B =D, then (A,B,D) = (A,D,D) ∈ χp follows
by Lemma 4.20. Likewise, if A = B, then (A,B,D) ∈ (A,A,D) ∈ χp by Lemma 4.20.
Thus, we can suppose that A, B and D are pairwise distinct from now on.

Step 3: Proving (A,B,D) ∈ χp. We construct (α, δ) ∈ A×D with σp([α, δ]p∩B) ≠
0. This is enough to verify our claim (A,B,D) ∈ χp since A ≠ D. By Steps 1 and 2
all the blocks A, B, C and D are pairwise distinct.

Step 3.1: Defining α, δ, γ−, γ+, β− and β+. By our assumption (A,C,D) ∈ χp
there exist (α, δ) ∈ A × D such that α ≠ δ and σp([α, δ]p ∩ C) ≠ 0, in particular
such that [α, δ]p ∩ C ≠ ∅. Because A ≠ C ≠ D this actually means ]α, δ[p∩C ≠ ∅.
Let ⪯ be the total order on ]α, δ[p induced by the total order of p. Then, the
legs γ− ∶= min⪯(]α, δ[p∩C) and γ+ ∶= max⪯(]α, δ[p∩C) are well-defined (and not
necessarily distinct). Since we also assume (A,B,C) ∈ χp and since A, B and C
are pairwise distinct, σp([α, γ−]p ∩B) ≠ 0 by Lemma 4.15. Because A ≠ B ≠ C that
ensures ]α, γ−[p∩B ≠ ∅, guaranteeing the existence of β− ∶= min⪯(]α, γ−[p∩B). On
the other hand, because ]α, γ−[p∩B ⊆]α, δ[p∩B we also know that ]α, δ[p∩B ≠ ∅,
which allows us to define β+ ∶=max⪯(]α, δ[p∩B).

Step 3.2: Proving β+ ≺ γ+. As B ≠ C, we know γ+ ≠ β+. Suppose γ+ ≺ β+. We
derive a contradiction. Since β− ≺ γ− ⪯ γ+ by definition, our assumption γ+ ≺ β+
ensures β− ≠ β+ and turns (α,β−, γ−, γ+, β+, δ) into an ordered tuple in p. Hence,
the definitions of γ− and γ+ imply [α, δ]p ∩C = [β−, β+]p ∩C. Because β− ≠ β+ and
{β−, β+} ⊆ B ≠ C, the premise p ∈W forces σp([β−, β+]p ∩C) = 0. That contradicts
the assumption σp([α, δ]p ∩C) ≠ 0. Hence, β+ ≺ γ+ must have been true instead.

Step 3.3: Verifying σp([α, δ]p∩B) ≠ 0. If β+ ≺ γ−, then the tuple (α,β−, β+, γ−, δ)
is ordered and the definitions of β− and β+ therefore guarantee [α, δ]p∩B = [α, γ−]p∩
B, which ensures σp([α, δ]p ∩B) ≠ 0 since σp([α, γ−]p ∩B) ≠ 0 per assumption. As
B ≠ C, we can then assume γ− ≺ β+. Since we already know β+ ≺ γ+ from Step 3.2,
it follows that γ− ≠ γ+ and that the tuple (α,β−, γ−, β+, γ+, δ) is ordered in p. The
definitions of β− and β+ let us infer [α, δ]p ∩ B = [α, γ+]p ∩ B = ([α, γ−]p ∩ B) ⊍
([γ−, γ+]p∩B) since B ≠ C. Because we assume p ∈W , the facts that {γ−, γ+} ⊆ C ≠
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B and γ− ≠ γ+ necessitate σp([γ−, γ+]p ∩B) = 0. We conclude

σp([α, δ]p ∩B) = σp([α, γ−]p ∩B) + σp([γ−, γ+]p ∩B) = σp([α, γ−]p ∩B) ≠ 0

by Step 3.1. That completes the proof. □

The next very strong property could be considered a kind of local totality.

Lemma 4.27. Let p ∈W, let {A,B,C,D} ⊆ p and ¬(A = B = C). If (A,B,D) ∈ χp
and (A,C,D) ∈ χp, then (A,B,C) ∈ χp or (A,C,B) ∈ χp.

Proof. We show the claim in six steps.
Step 1: We can assume D ∉ {A,B,C}. Since we suppose (A,B,D) ∈ χp, the

inequality A ≠ D is clear by Lemma 4.22. If B = D, then (A,C,B) ∈ χp, and thus
our claim, is trivially true by our assumption (A,C,D) ∈ χp. Likewise, if C = D,
then the assertion holds because the premise (A,B,D) ∈ χp implies (A,B,C) ∈ χp.

Step 2: We can assume ∣{A,B,C}∣ = 3. If A = B, then ¬(A = B = C) requires
A ≠ C, which implies (A,B,C) = (A,A,C) ∈ χp by Lemma 4.20, and thus our claim.
Likewise, B = C necessitates A ≠ B because ¬(A = B = C), implying (A,B,C) =
(A,B,B) ∈ χp, and thus the assertion, by Lemma 4.20. Finally, supposing A = C
lets us conclude A ≠ B by ¬(A = B = C), from which the claim follows as (A,C,B) =
(A,A,B) ∈ χp by Lemma 4.20. Thus, A, B and C are pairwise distinct henceforth.

Step 3: Parity condition. It suffices to find (α,β−, γ−) ∈ A × B × C such that
σp([α, γ−]p ∩ B) ≠ 0 or σp([α,β−]p ∩ C) ≠ 0. Actually, since A, B, C and D are
pairwise distinct by Steps 1 and 2 and since the claim is invariant under exchanging
B ↔ C, we will be able to restrict to the former of these goals at a convenient time.

Step 3.1: Definition of α, δ, β−, β+, γ− and γ+. By the assumption (A,B,D) ∈
χp there exist (α, δ) ∈ A × D with α ≠ δ and σp([α, δ]p ∩ B) ≠ 0. Because A, C
and D are pairwise distinct and because (A,C,D) ∈ χp Lemma 4.15 then guarantees
σp([α, δ]p∩C) ≠ 0. It follows [α, δ]p∩B ≠ ∅ and [α, δ]p∩C ≠ ∅ in particular. Because
A ≠ B ≠ D and A ≠ C ≠ D we can conclude ]α, δ[p∩C ≠ ∅ and ]α, δ[p∩B ≠ ∅ from
that. Because ]α, δ[p is consecutive and not the entire set of points of p, the cyclic
order of p induces a total order ⪯ on ]α, δ[p. Hence, β− ∶= min⪯(]α, δ[p∩B) and
β+ ∶= max⪯(]α, δ[p∩B) as well as γ− ∶= min⪯(]α, δ[p∩C) and γ+ ∶= max⪯(]α, δ[p∩C)
are well-defined.

Step 3.2: We can assume β− ≺ γ− and only need to prove σp([α, γ−]p ∩B) ≠ 0.
Because B ≠ C we find β− ≠ γ− by definition. Since ⪯ is total, either β− ≺ γ− or
γ− ≺ β−. Because, as mentioned initially, the claim is symmetric under exchanging
the roles of B ↔ C, we can ensure β− ≺ γ− by renaming B ↔ C if necessary. It then
suffices to show σp([α, γ−]p ∩B) ≠ 0.

Step 3.3: Auxiliary claim β+ ≺ γ+. We show that assuming β+ ⪰ γ+ produces a
contradiction. Indeed, since B ≠ C, this is the same as supposing β+ ≻ γ+ and thus
β− ≺ γ− ⪯ γ+ ≺ β+ by Step 3.2. It follows, on the one hand, β− ≠ β+ and, on the
other hand, [β−, β+]p ∩C = [α, δ]p ∩C per definition of γ− and γ+. In consequence,
σp([β−, β+]p∩C) ≠ 0 since σp([α, δ]p∩C) ≠ 0. However, p ∈W and {β−, β+} ⊆ B ≠ C
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and β− ≠ β+ require σp([β−, β+]p ∩ C) = 0. Since this is a contradiction, we must
have β+ ≺ γ+ instead.

Step 6.4: Auxiliary claim σp(]γ−, δ]p ∩ B) = 0. Since (α,β+, γ+, δ) is ordered
in p by Steps 3.1 and 3.3, the definition of β+ and the assumption B ≠ C ensure
]γ−, δ]p ∩B = ∅ if γ− = γ+ and ]γ−, δ]p ∩B = [γ−, γ+]p ∩B if γ− ≠ γ+. In the former
case σp(]γ−, δ]p ∩ B) = 0 is thus clear. And in the latter case this is true as well
since p ∈W and {γ−, γ+} ⊆ C ≠ B and γ− ≠ γ+ demand σp([γ−, γ+]p ∩B) = 0. Hence,
σp(]γ−, δ]p ∩B) = 0 always.

Step 6.5: Proving σp([α, γ−]p∩B) ≠ 0. Since A ≠ B ≠D, since σp(]α, δ[p∩B) ≠ 0
by Step 3.1 and since σp(]γ−, δ]p ∩B) = 0 by Step 3.4, we can decompose

σp([α, γ−]p ∩B) = σp(]α, δ[p∩B) − σp(]γ−, δ]p ∩B) = σp(]α, δ[p∩B) ≠ 0.

That concludes the proof, according to Step 3.2. □

With these properties of our colored ternary relation gathered we are able to
show the main result of this subsection.

Lemma 4.28. Let p ∈ W, let {A,C} ⊆ p and let A ≠ C. Then, ≤A,Cp is a total
order on jA,Cop.

Proof. In this proof, abbreviate ≤p,A,C by ≤. It is clear that ≤ is reflexive. We
check that ≤ is anti-symmetric, transitive and total.

Step 1: Anti-Symmetry. Let {B1,B2} ⊆ p with (A,B1,C) ∈ χp and (A,B2,C) ∈ χ
and let B1 ≤ B2 and B2 ≤ B1 simultaneously. We suppose B1 ≠ B2 and derive a
contradiction. If so, then, by definition, (A,B1,B2) ∈ χp and (A,B2,B1) ∈ χp. It
follows B1 = B2 by Lemma 4.24 (b), in contradiction to our assumption.

Step 2: Transitivity. Let {B1,B2,B3} ⊆ p, let (A,Bi,C) ∈ χp for every i ∈ ⟦3⟧
and suppose B1 ≤ B2 and B2 ≤ B3. If B1 = B2 or B2 = B3, there is nothing to show.
Hence, assume the opposite. Per definition then, (A,Bi,Bi+1) ∈ χp for all i ∈ ⟦2⟧. In
consequence, (A,B1,B3) ∈ χp per Lemma 4.26.

Step 3: Totality. Let {B1,B2} ⊆ p and let (A,B1,C) ∈ χp and (A,B2,C) ∈ χp.
We prove that B1 ≤ B2 or B2 ≤ B1. We can assume B1 ≠ B2.

As then ¬(A = B1 = B2) is ensured, Lemma 4.27 implies that (A,B1,B2) ∈ χp or
(A,B2,B1) ∈ χp, i.e., that B1 ≤ B2 or B2 ≤ B1. That concludes the proof. □

Very helpful for the invariance proof is the following result showing that we could
have just as well have used the right boundary instead of the left one in the definition
of the order.

Lemma 4.29. Let p ∈ W, let {A,C} ⊆ p and let A ≠ C. Then, jC,Aop = jA,Cop
and ≤p,C,A is the opposite total order of ≤p,A,C.

Proof. The first part of the claim was shown in Lemma 4.23 (a). Let {B1,B2} ⊆
p, let (C,B1,A) ∈ χp and (C,B2,A) ∈ χp and let B1 ≤p,C,A B2. If B1 = B2, then
B2 ≤p,A,C B1 is clear. Hence, let B1 ≠ B2. Then, by definition, (C,B1,B2) ∈ χp.
From ¬(B1 = B2 = A), from (C,B1,B2) ∈ χp and from (C,B2,A) ∈ χp it follows
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(B1,B2,A) ∈ χp by Lemma 4.25. According to Lemma 4.23 (a) this is equivalent
to (A,B2,B1) ∈ χp, which is to say B2 ≤p,A,C B1. Exchanging the roles of A and C
proves the other implication. □

4.3. Invariance of WR. Equipped with the results of the preceding subsection
we can show that WR is a category of two-colored partitions for general R ∈ R.
Again, we will employ Lemma 2.2 instead of checking the definition. This time, we
treat each of the operations individually.

4.3.1. Rotation. SinceW is closed under rotations by Theorem 4.7, the following
is a well-defined assertion.

Lemma 4.30. Let p ∈W, let r ∈ {¹, ⤸, ⤹, Á} and let ρ be the map rotating the points
of pr to their former positions in p. Then,

χpr = {(ρ−1(A), ρ−1(B), ρ−1(C)) ∣ (A,B,C) ∈ χp},
and

λpr = {((ρ−1(A), ρ−1(B), ρ−1(C)), λp(A,B,C)) ∣ (A,B,C) ∈ χp}.
Proof. By Remark 4.3 (a), for all {A,B,C} ⊆ p and all (α, γ) ∈ A × C with

α ≠ γ,

σpr([ρ−1(α), ρ−1(γ)]pr ∩ ρ−1(B)) = σpr(ρ−1([α, γ]p ∩B)) = σp([α, γ]p ∩B).
Now, the claim follows by Remark 4.3 (a). □

Lemma 4.31. pr ∈WR for all r ∈ {¹, ⤸, ⤹, Á}, all p ∈WR and all R ∈R.
Proof. Follows immediately from Lemma 4.30. □

4.3.2. Verticolor Reflection. Because W is closed under verticolor reflection by
Theorem 4.7, the following claim makes sense.

Lemma 4.32. Let p ∈ W and let ϱ be the map sending the points of p̃ to their
former positions in p. Then,

χp̃ = {(ϱ−1(A), ϱ−1(B), ϱ−1(C)) ∣ (A,B,C) ∈ χp},
and

λp̃ = {((ϱ−1(A), ϱ−1(B), ϱ−1(C)), λp(A,B,C)) ∣ (A,B,C) ∈ χp}.
Proof. By definition, the statement (A,B,C) ∈ χp is equivalent to the existence

of (α, γ) ∈ A ×C with α ≠ γ and σp([α, γ]p ∩B) ≠ 0. Since

σp̃([ϱ−1(γ), ϱ−1(α)]p̃ ∩ ϱ−1(B)) = σp̃(ϱ−1([α, γ]p ∩B)) = −σp([α, γ]p ∩B)
by Remark 4.3 (b), this is true precisely if (ϱ−1(C), ϱ−1(B), ϱ−1(A)) ∈ χp. Moreover,
this identity proves that, if so, then λp̃(ϱ−1(C), ϱ−1(B), ϱ−1(A)) = −λp(A,B,C) by
Lemma 4.17. Now, the claim follows by Parts (a) and (b) of Lemma 4.23. □

Lemma 4.33. p̃ ∈WR for all p ∈WR and all R ∈R.
Proof. Follows immediately from Lemma 4.32. □
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4.3.3. Tensor Products. As W is closed under tensor products by Theorem 4.7,
we can formulate the next result.

Lemma 4.34. Let p1, p2 ∈W and for every i ∈ ⟦2⟧ let Si be the set of all points of
p1⊗p2 coming from pi and let τi be the map sending the points of Si to their original
positions in pi. Then, for all i ∈ ⟦2⟧,
{(D,E,F ) ∈ χp1⊗p2 ∣D,E,F ⊆ Si} = {(τ−1i (A), τ−1i (B), τ−1i (C)) ∣ (A,B,C) ∈ χpi}

and

λp1⊗p2 ⊇ {((τ−1i (A), τ−1i (B), τ−1i (C)), λpi(A,B,C)) ∣ (A,B,C) ∈ χpi}.

Proof. Let i ∈ ⟦2⟧ and let {A,B,C} ⊆ pi. By Remark 4.3 (c) the sets τ−1i (A),
τ−1i (B) and τ−1i (C) are blocks of p1 ⊗ p2 contained in Si. Moreover, all blocks of
p1⊗p2 contained in Si arise in this way. Hence, if we show that (A,B,C) ∈ χpi holds
if and only if (τ−1i (A), τ−1i (A), τ−1i (A)) ∈ χp1⊗p2 is true, the identity in the first claim
will have been proven.

According to Remark 4.3 (c) we can infer for all α ∈ A and γ ∈ C with α ≠ γ,
because S1 ∩ S2 = ∅ and because τi is injective,

σp1⊗p2([τ−1i (α), τ−1i (γ)]p1⊗p2 ∩ τ−1i (B))
= ∑2

ℓ=1σpℓ(τℓ(([τ−1i (α), τ−1i (γ)]p1⊗p2 ∩ τ−1i (B)) ∩ Sℓ))
= σpi(τi([τ−1i (α), τ−1i (γ)]p1⊗p2 ∩ τ−1i (B) ∩ Si))
= σpi([α, γ]pi ∩Bi).

This identity not only shows that the statements (A,B,C) ∈ χpi and (τ−1i (A), τ−1i (B),
τ−1i (C)) ∈ χp1⊗p2 are equivalent but also that, if one of them, and thus also the other,
is true, then λp1⊗p2(τ−1i (A), τ−1i (B), τ−1i (C)) = λpi(A,B,C). That is what we needed
to see. □

Lemma 4.35. p1 ⊗ p2 ∈WR for all {p1, p2} ⊆WR and all R ∈R.

Proof. For every i ∈ ⟦2⟧ let Si be the set of all points of p1⊗ p2 coming from pi
and let τi be the map sending the points of Si to their original places in pi. Moreover,
let n ∈ N, let 2 ≤ n, let {B1,B2, . . . ,Bn} ⊆ p1 ⊗ p2, let B1,B2, . . . ,Bn be pairwise
distinct, let B1 and Bn cross in p1 ⊗ p2, let jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn}, let
B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤p1⊗p2,B1,Bn and for every i ∈ ⟦n⟧ let ci ∈ {○, ●} be
such that λp1⊗p2(B1,Bi,Bn) = σ(ci). We prove (c1, c2, . . . , cn) ∈ R by finding k ∈ ⟦2⟧
and {B′

1,B
′
2, . . . ,B

′
n} ⊆ pk such that B′

1,B
′
2, . . . ,B

′
n are pairwise distinct, such that

B′
1 and B′

n cross in pk, such that jB′
1,B

′
nopk = {B′

1,B
′
2, . . . ,B

′
n}, such that B′

1 ≤ B′
2 ≤

. . . ≤ B′
n with respect to ≤pk,B′

1,B
′
n

and such that λpk(B′
1,B

′
i,B

′
n) = λp1⊗p2(B1,Bi,Bn)

for every i ∈ ⟦n⟧.
Step 1: Defining k and B′

1,B
′
2, . . . ,B

′
n. By Remark 4.3 (c) there exists for every

j ∈ ⟦n⟧ an ij ∈ ⟦2⟧ such that Bj ⊆ Sij . The same remark shows that the assumption
of B1 and Bn crossing in p1 ⊗ p2 requires i1 = in.
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By Lemma 4.19, the crossing between B1 and Bn in p1 ⊗ p2 also lets us conclude
that Bj crosses B1 and Bn in p1⊗p2 for every j ∈ ⟦n⟧ with 1 < j < n. Hence, applying
Remark 4.3 (c) a second time shows that i1 = i2 = . . . = in and that, consequently, if
k ∶= i1, then B′

j ∶= τk(Bj) is a block of pk for every j ∈ ⟦n⟧.
Step 2: Crossing. Because the blocks B1 and Bn cross in p1⊗p2 so do the blocks

B′
1 = τk(B1) and B′

n ∶= τk(Bn) in pk by Remark 4.3 (c).
Step 3: Determining jB′

1,B
′
nopk . By Lemma 4.34 for every j ∈ ⟦n⟧, because

B1∪Bj∪Bn ⊆ Sk, the assumption (τ−1k (B′
1), τ−1k (B′

j), τ−1k (B′
n)) = (B1,Bj,Bn) ∈ χp1⊗p2

implies (B′
1,B

′
j,B

′
n) ∈ χpk . Hence, jB′

1,B
′
nopk ⊇ {B′

1,B
′
2, . . . ,B

′
n}.

To see the converse inclusion we let F ′ ∈ pk and F ′ ∉ {B′
1,B

′
2, . . . ,B

′
n} and prove

(B′
1, F

′,B′
n) ∉ χpk . Then, F ∶= τ−1pk (F ′) ∈ p1⊗p2 and F ⊆ Sk and F ∉ {B1,B2, . . . ,Bn}.

From jB1,Bnop1⊗p2 ⊆ {B1,B2, . . . ,Bn} it hence follows (τ−1k (B′
1), τ−1k (F ′), τ−1k (B′

n)) =
(B1, F,Bn) ∉ χp1⊗p2 . Therefore and because B1 ∪F ∪Bn ⊆ Sk Lemma 4.34 allows us
to conclude (B′

1, F
′,B′

n) ∉ χpk . Thus, jB′
1,B

′
nopk ⊆ {B′

1,B
′
2, . . . ,B

′
n}.

Step 4: The ordering of B′
1,B

′
2, . . . ,B

′
n. For every j ∈ ⟦n⟧ with j < n the premise

that Bj ≤ Bj+1 with respect to ≤p1⊗p2,B1,Bn , i.e., that (τ−1k (B′
1), τ−1k (B′

j), τ−1k (B′
j+1)) =

(B1,Bj,Bj+1) ∈ χp1⊗p2 , by Lemma 4.34 ensures that (B′
1,B

′
j,B

′
j+1) ∈ χpk because

B1 ∪Bj ∪Bj+1 ⊆ Sk. Hence, indeed, B′
1 ≤ B′

2 ≤ . . . ≤ B′
n with respect to ≤pk,B′

1,B
′
n
.

Step 5: The colors. Finally, λpk(B′
1,B

′
j,B

′
n) = λp1⊗p2(τ−1k (B′

1), τ−1k (B′
j), τ−1k (B′

k)) =
λp1⊗p2(B1,Bj,Bn) = cj for every j ∈ ⟦n⟧ by Lemma 4.34, concluding the proof. □

4.3.4. Erasing Turns. The proof that WR for arbitrary R ∈ R is closed under
erasing turns is the most complicated part. Several preparatory results are required.

The first of these proves that there is nothing “between” two blocks which inter-
sect the same turn.

Lemma 4.36. Let p ∈W, let {B1,B2} ⊆ p, let B1 ≠ B2 and let there exist a turn T
in p with ∅ ≠ B1 ∩ T and ∅ ≠ B2 ∩ T . Then, there exist no B′ ∈ p with B ∉ {B1,B2}
and (B1,B′,B2) ∈ χp.

Proof. Let T be as in the premise, let T = [τ1, τ2]p, let B′ ∈ p and let B′ ∉
{B1,B2}. Since T ⊆ B1 ∪ B2 it follows T ∩ B′ = ∅ and thus σp([τ1, τ2]p ∩ B′) =
σp(T ∩B′) = σp(∅) = 0. Because B1, B′ and B2 are pairwise distinct this is all we
needed to show according to Lemma 4.15. □

The next lemma shows that blocks intersecting the same turn have identical
colored relations to any other block.

Lemma 4.37. Let p ∈W be arbitrary.
(a) If {A1,A2,B,C} ⊆ p, if A1 ≠ A2, if {A1,A2}∩{B,C} = ∅ and if there exists

a turn T in p with ∅ ≠ A1 ∩ T and ∅ ≠ A2 ∩ T , then the following hold:
(i) (A1,B,C) ∈ χp if and only if (A2,B,C) ∈ χp.
(ii) If so, then λp(A1,B,C) = λp(A2,B,C).

(b) If {A,B,C1,C2} ⊆ p, if C1 ≠ C2, if {A,B}∩ {C1,C2} = ∅ and if there exists
a turn T in p with ∅ ≠ C1 ∩ T and ∅ ≠ C2 ∩ T , then the following hold:
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(i) (A,B,C1) ∈ χp if and only if (A,B,C2) ∈ χp.
(ii) If so, then λp(A,B,C1) = λp(A,B,C2).

Proof. (a) Thanks to Lemmata 4.14 and 4.16 we can prove both claims
simultaneously by showing δBp (α1, γ) = δBp (α2, γ) for all (α1, α2, γ) ∈ A1×A2×C. Let
T be a turn in p with ∅ ≠ A1 ∩T and ∅ ≠ A2 ∩T and for every i ∈ ⟦2⟧ let τi ∈ Ai ∩T .

If {¬i, i} = ⟦2⟧ are such that τi is the predecessor of τ¬i in the cyclic order of p,
then, since B ∉ {A1,A2} and T ⊆ A1 ∪A2 ensure T ∩B = ∅,

δBp (τi, τ¬i) = σp([τi, τ¬i]p ∩B) = σp(T ∩B) = σp(∅) = 0.

Moreover, p ∈ W and B ∉ {A1,A2} imply δBp (αi, τi) = δBp (τ¬i, α¬i) = 0 because
{αi, τi} ⊆ Ai and {τ¬i, α¬i} ⊆ A¬i. It follows by Lemma 4.2 (c),

δBp (αi, γ) = δBp (αi, τi) + δBp (τi, τ¬i) + δBp (τ¬i, α¬i) + δBp (α¬i, γ) = δBp (α¬i, γ),
which is what we needed to see.

(b) Follows by Part (a) and Lemmata 4.23. □

But intersecting the same turn also has implications for the colored relations
between the two blocks themselves.

Lemma 4.38. Let p ∈W be arbitrary.
(a) If {A1,A2,C} ⊆ p, if A1, A2 and C are pairwise distinct and if there exists

a turn T in p with A1 ∩ T ≠ ∅ and A2 ∩ T ≠ ∅, then the following hold:
(i) If {(A1,A2,C), (A2,A1,C)}∩χp = ∅, then λp(A2,A2,C) = λp(A1,A1,C).
(ii) Otherwise, λp(A2,A2,C) = −λp(A1,A1,C).

(b) If {A,C1,C2} ⊆ p, if A, C1 and C2 are pairwise distinct and if there exists
a turn T in p with C1 ∩ T ≠ ∅ and C2 ∩ T ≠ ∅, then the following hold:
(i) If {(A,C2,C1), (A,C1,C2)}∩χp = ∅, then λp(A,C1,C1) = λp(A,C2,C2).
(ii) Otherwise, λp(A,C1,C1) = −λp(A,C2,C2).

Proof. (a) We show claims (i) and (ii) simultaneously in three steps.
Step 1: Rewording the claim. Because λp can only take two values {−1,1} by

Lemma 4.17, the claim is equivalently expressed as

λp(A2,A2,C) = λp(A1,A1,C)
!⇐⇒ (A1,A2,C) ∉ χp and (A2,A1,C) ∉ χp.

By Lemma 4.24 (a) the premise A1 ≠ A2 excludes the possibility that (A1,A2,C) ∈ χp
and (A2,A1,C) ∈ χp at the same time. Hence, our assertion is equivalent to claiming

λp(A2,A2,C) = λp(A1,A1,C)
!⇐⇒ [(A1,A2,C) ∈ χp⇔ (A2,A1,C) ∈ χp].

That is the version we prove.
Step 2: Defining τ1, τ2 and γ. Let γ ∈ C be arbitrary, let Pp denote the set of all

points of p and let ⪯ be the total order induced on Pp/{γ} by the cyclic order of p.
Since C ∉ {A1,A2} the point α+i ∶=max⪯((Pp/{γ})∩Ai) =max⪯(Ai) is well-defined for
each i ∈ ⟦2⟧. Per construction, [α+i , γ]p∩Ai = {α+i } and therefore σp([α+i , γ]p∩Ai) ≠ 0
for every i ∈ ⟦2⟧. Lemma 4.17 hence assures us that λp(Ai,Ai,C) = σp([α+i , γ]p∩Ai) =
σp({α+i }) for every i ∈ ⟦2⟧.
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Step 3: Relating λp(A1,A2,C) and λp(A2,A1,C). By Proposition 4.13 the legs
of A1 and A2 alternate in normalized color. One way of expressing this fact is to
say that for all i ∈ ⟦2⟧ and all αi ∈ Ai with αi ≠ α+i ,

σp({α+i }) = (−1)∣[αi,α
+
i [p∩Ai∣σp({αi}).

Per assumption there exist τ1 ∈ A1 ∩ T and τ2 ∈ A2 ∩ T such that T = {τ1, τ2}. In
conclusion, for every i ∈ ⟦2⟧,

λp(Ai,Ai,C) = {
σp({τi}) if τi = α+i ,

(−1)∣[τi,α+i [p∩Ai∣ σp({τi}) otherwise.

For each i ∈ ⟦2⟧, if τi ≠ α+i , then (τi, α+i , γ) is ordered in p by the definition of α+i ,
implying ∣[τi, α+i [p∩Ai∣ = ∣([τi, γ]p ∩Ai)/{α+i }∣ ≡2 1+ ∣[τi, γ]p ∩Ai∣. And, of course, for
any i ∈ ⟦2⟧, if τi = α+i , then also 1 + ∣[τi, γ]p ∩Ai∣ ≡2 0. Hence, for any i ∈ ⟦2⟧,

λp(Ai,Ai,C) = (−1)1+∣[τi,γ]p∩Ai∣ σp({τi}).
Because T is a turn, we find {¬i, i} = ⟦2⟧ such that T = [τi, τ¬i]p. It follows that

1 + ∣[τi, γ]p ∩Ai∣ = 1 + ∣{τi} ∩Ai∣ + ∣[τ¬i, γ]p ∩Ai∣ ≡2 ∣[τ¬i, γ]p ∩Ai∣ and thus

λp(Ai,Ai,C) = (−1)∣[τ¬i,γ]∩Ai∣ σp({τi}).
On the other hand, 1+∣[τ¬i, γ]p∩A¬i∣ = 1+∣{τi}∩A¬i∣+∣[τi, γ]p∩A¬i∣ = 1+∣[τi, γ]p∩A¬i∣.
If we also take into account that T being a turn implies σp({τ¬i}) = −σp({τi}), we
can thus conclude

λp(A¬i,A¬i,C) = (−1)∣[τi,γ]∩A¬i∣ σp({τi}).
In summary, we have shown

λp(A2,A2,C) = λp(A1,A1,C) ⇐⇒ ∣[τ2, γ] ∩A1∣ ≡2 ∣[τ1, γ] ∩A2∣.
Since A1, A2 and C are pairwise distinct, Lemma 4.18 (b) tells us that the right
hand side of this equivalence is nothing but the statement that (A1,A2,C) ∈ χp if
and only if (A2,A1,C) ∈ χp, which is what we needed to see.

(b) Follows by Part (a) and Lemma 4.23. □

The following auxiliary result recapitulates the essence of the proof of the well-
known fact that the set of all non-crossing two-colored partitions is a category.

Lemma 4.39. Let p ∈ P○●, let T be a turn in p, let {A,C} ⊆ E(p, T ), let A ≠ C
and for each X ∈ {A,C} let {X1,X2} be parents of X with respect to (p, T ). If A
and C cross in E(p, T ), then there exist {i, k} ⊆ ⟦2⟧ such that Ai and Ck cross in p.

Proof. Because the claim is symmetric under renaming A↔ C and because at
most one of A and C can be anything other than case EI, we can assume that C is
not case EIII.

Let ϵ be map sending the points of E(p, T ) to their former positions in p. The
crossing between A and C in E(p, T ) implies the existence of {α1, α2} ⊆ A and
{γ1, γ2} ⊆ C such that (α1, γ1, α2, γ2) is an ordered tuple of pairwise distinct points
in E(p, T ). Per definition of E(p, T ) the injection ϵ preserves the cyclic order.
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Hence, if α′i ∶= ϵ(αi) and γ′k ∶= ϵ(γk) for all {i, k} ⊆ ⟦2⟧, then (α′1, γ′1, α′2, γ′2) is ordered
in p. Now we distinguish two cases.

Case 1: First, suppose that there exist {i, k} ⊆ ⟦2⟧ such that {α′1, α′2} ⊆ Ai and
{γ′1, γ′2} ⊆ Ck. The tuple (α′1, γ′1, α′2, γ′2) then provides a crossing between Ai and Ck
in p, proving our claim.

Case 2: Assuming the opposite requires in particular A1 ≠ A2 or C1 ≠ C2. Since
we have excluded that C is case EIII, this only leaves the conclusion that A is
case EIII. By renaming A1↔ A2 we can suppose that α′1 ∈ A1 and α′2 ∈ A2.

If we let τ1 ∈ A1∩T and τ2 ∈ A2∩T , then T = {τ1, τ2} and {τ1, τ2}∩{α′1, γ′1, α′2, γ′2} =
∅. Moreover, T being consecutive in p ensures that exactly one of the four tuples
(T,α′1, γ′1, α′2, γ′2), (α′1, T, γ′1, α′2, γ′2), (α′1, γ′1, T,α′2, γ′2) and (α′1, γ′1, α′2, T, γ′2) is ordered
in p. In particular, we can distinguish two alternative subcases:

Case 2.1: If (T,α′1, γ′1, α′2, γ′2) or (α′1, T, γ′1, α′2, γ′2) is ordered in p, then the or-
dered tuple (τ2, γ′1, α′2, γ′2) in p gives a crossing in p between A2 and C1 = C2.

Case 2.2: If, instead, (α′1, γ′1, T,α′2, γ′2) or (α′1, γ′1, α′2, T, γ′2) is ordered in p, then
A1 and C1 = C2 cross in p because (α′1, γ′1, τ1, γ′2) is ordered in p. □

The last auxiliary result shows how the ∗-betweenness relation transforms under
erasing turns.

Lemma 4.40. Let p ∈W, let T be a turn in p, let {A,B,C} ⊆ E(p, T ), let A ≠ C
and for all X ∈ {A,B,C} let {X1,X2} be parents of X with respect to (p, T ).

(a) Whenever B is not case EIII, then for all {i, j, k} ⊆ ⟦2⟧:
(i) (A,B,C) ∈ χE(p,T ) if and only if (Ai,Bj,Ck) ∈ χp.
(ii) If so, then λp(Ai,Bj,Ck) = λE(p,T )(A,B,C).

(b) If A is case EIII, then for all k ∈ ⟦2⟧:
(i) If both (A2,A1,Ck) ∉ χp and (A1,A2,Ck) ∉ χp, then λp(A1,A1,Ck) =

λp(A2,A2,Ck) = λE(p,T )(A,A,C).
(ii) If (A¬i,Ai,Ck) ∈ χp for some ¬i, i ∈ ⟦2⟧ with ¬i ≠ i, then λp(Ai,Ai,Ck) =

−λp(A¬i,A¬i,Ck) = λE(p,T )(A,A,C).
(iii) λp(A1,Ck,Ck) = λp(A2,Ck,Ck) = λE(p,T )(A,C,C).

(c) If B ∉ {A,C} and if B is case EIII, then for all {i, k} ⊆ ⟦2⟧:
(i) (A,B,C) ∈ χE(p,T ) if and only if there exists exactly one j ∈ ⟦2⟧ such

that (Ai,Bj,Ck) ∈ χp.
(ii) If so, then λp(Ai,Bj,Ck) = λE(p,T )(A,B,C) for this j.

(d) If C is case EIII, then for all i ∈ ⟦2⟧:
(i) If both (Ai,C2,C1) ∉ χp and (Ai,C1,C2) ∉ χp, then λp(Ai,C1,C1) =

λp(Ai,C2,C2) = λE(p,T )(A,C,C).
(ii) If (Ai,Ck,C¬k) ∈ χp for some ¬k, k ∈ ⟦2⟧ with ¬k ≠ k, then λp(Ai,Ck,Ck) =

−λp(Ai,C¬k,C¬k) = λE(p,T )(A,C,C).
(iii) λp(Ai,Ai,C1) = λp(Ai,Ai,C2) = λE(p,T )(A,A,C).

Proof. Let ϵ be the map sending the points of E(p, T ) to their original positions
in p. We address the individual assertions (a)–(d) and prove them using Lemma 4.5.
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Step 1 Proof of (a). We show the two claims of (a) (i) separately and simulta-
neously prove the identity (a) (ii). Hence, suppose that B is not case EIII.

Step 1.1: If χE(p,T ), then also χp. First, assume (A,B,C) ∈ χE(p,T ). For all
{i, j, k} ⊆ ⟦2⟧ we show (Ai,Bj,Ck) ∈ χE(p,T ) and λp(Ai,Bj,Ck) = λE(p,T )(A,B,C).

By (A,B,C) ∈ χE(p,T ) there are (α, γ) ∈ A×C with α ≠ γ and 0 ≠ λE(p,T )(A,B,C) =
σE(p,T )([α, γ]E(p,T ) ∩B). Let {i, k} ⊆ ⟦2⟧ be such that α′ ∶= ϵ(α) ∈ Ai and γ′ ∶= ϵ(γ) ∈
Ck and let j ∈ ⟦2⟧ be arbitrary. Lemma 4.5 and the assumption B1 = B2 tell us that

0 ≠ λE(p,T )(A,B,C) = σE(p,T )([α, γ]E(p,T ) ∩B) = σp([α′, γ′]p ∩Bj).
By the definition of χp and by Lemma 4.17 this conclusion proves (Ai,Bj,Ck) ∈ χp
and λp(Ai,Bj,Ck) = λE(p,T )(A,B,C). We now distinguish three cases.

Case 1.1.1: If neither A nor C is case EIII, and consequently A1 = A2 and
C1 = C2, we have thus already shown our claim.

Case 1.1.2: Suppose that A is case EIII, let ¬i ∈ ⟦2⟧ and let ¬i ≠ i. Then, because
C1 = C2, what is left to show is that (A¬i,Bj,Ck) ∈ χp and that λp(A¬i,Bj,Ck) =
λp(Ai,Bj,Ck). However, this is precisely the implication of Lemma 4.37 (a) since A
being case EIII requires A1 ≠ A2 and ∅ ≠ A1 ∩ T and ∅ ≠ A2 ∩ T .

Case 1.1.3: Likewise, if C is case EIII and if ¬k ∈ ⟦2⟧ is such that ¬k ≠ k,
then Lemma 4.37 (b) proves (Ai,Bj,C¬k) ∈ χp and λp(Ai,Bj,C¬k) = λp(Ai,Bj,Ck),
which, since A1 = A2, is what we needed to show.

Step 1.2: If χp, then also χE(p,T ). Conversely, let {i, j, k} ⊆ ⟦2⟧ be arbitrary
and suppose (Ai,Bj,Ck) ∈ χp. We show (A,B,C) ∈ χE(p,T ) and λE(p,T )(A,B,C) =
λp(Ai,Bj,Ck). Two alternatives must be considered.

Case 1.2.1: First, assume B ∉ {A,C}. Since {A1,A2} are parents of A and
{C1,C2} parents of C, we find α′ ∈ Ai/T and γ′ ∈ Ck/T . Our premises A ≠ C
and B ∉ {A,C} imply that the sets {A1,A2}, {B1,B2} and {C1,C2} are pairwise
disjoint. In particular, Ai, Bj and Ck are pairwise distinct. Consequently, the
assumption (Ai,Bj,Ck) ensures σp([α′, γ′]p ∩Bj) = λp(Ai,Bj,Ck) ≠ 0 according to
Lemmata 4.15 and 4.17. Because ϵ is injective and because {α′, γ′} ⊆ ran(ϵ), we can
define α ∶= ϵ−1(α′) and γ ∶= ϵ−1(γ′). Then, Lemma 4.5 and B1 = B2 imply

σE(p,T )([α, γ]E(p,T ) ∩B) = σp([α′, γ′]p ∩Bj) = λp(Ai,Bj,Ck) ≠ 0.

It follows (A,B,C) ∈ χE(p,T ) by definition and λE(p,T )(A,B,C) = λp(Ai,Bj,Ck) by
Lemma 4.17. That proves the claim in this case.

Case 1.2.2: Now, let B ∈ {A,C} instead. Then, Lemma 4.20 assures us that
(A,B,C) ∈ {(A,C,C), (A,A,C)} ⊆ χp. For that reason, we find (α, γ) ∈ A ×C such
that σE(p,T )([α, γ]E(p,T ) ∩ B) = λE(p,T )(A,B,C) ≠ 0. If we define α′ ∶= ϵ(α) and
γ′ ∶= ϵ(γ), we can apply Lemma 4.5 and the identity B1 = B2 to deduce

0 ≠ λE(p,T )(A,B,C) = σE(p,T )([α, γ]E(p,T ) ∩B) = σp([α′, γ′]p ∩Bj). (2)

Now, we must further distinguish four cases.
Case 1.2.2.1: First, assume that A = B and that C is not case EIII. Because

B is not case EIII and A = B, block A is not case EIII either. Then, A1 = A2
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and C1 = C2 imply (α′, γ′) ∈ Ai × Cj. Consequently, (2) already proves our claim
λp(Ai,Bj,Ck) = λE(p,T )(A,B,C) according to Lemma 4.17.

Case 1.2.2.2: If, analogously, B = C and A is not case EIII, then as C is not
case EIII, we infer α′ ∈ A1 = A2 = Ai and γ′ ∈ C1 = C2 = Cj. Hence, (2) and
Lemma 4.17 verify λp(Ai,Bj,Ck) = λE(p,T )(A,B,C).

Case 1.2.2.3: Next, let A = B, let C be case EIII and let ¬k ∈ ⟦2⟧ be such that
¬k ≠ k. Then, α′ ∈ A1 = A2 and either γ′ ∈ Ck or γ′ ∈ C¬k. By Lemma 4.17, if γ′ ∈ Ck,
then (2) yields λp(Ai,Bj,Ck) = λE(p,T )(A,B,C), proving our claim for this case.

Hence, let γ′ ∈ C¬k instead. Then, (2) and Lemma 4.17 only give (Ai,Bj,C¬k) ∈ χp
and λp(Ai,Bj,C¬k) = λE(p,T )(A,B,C). However, this conclusion is equivalent to our
assertion λp(Ai,Bj,Ck) = λE(p,T )(A,B,C) by Lemma 4.37 (b) because C1 ≠ C2 and
∅ ≠ C1 ∩ T and ∅ ≠ C2 ∩ T .

Case 1.2.2.4: Likewise, if B = C, if A is case EIII and if ¬i ∈ ⟦2⟧ and ¬i ≠ i,
then γ′ ∈ Ck and either α′ ∈ Ai or α′ ∈ A¬i. In the former case, (2) proves the claim
λp(Ai,Bj,Ck) = λE(p,T )(A,B,C). In the latter, it only shows λp(A¬i,Bj,Ck) =
λE(p,T )(A,B,C), which, however, in turn implies the assertion by Lemma 4.37 (a).

Step 2: Proof of (c). Due to similarity, it is best to treat (c) right after (a).
Again, separate proofs are given for each implication. Let B ∉ {A,C} and let B be
case EIII.

Step 2.1: If χE(p,T ), then also χp. First, let {i, k} ⊆ ⟦2⟧ be arbitrary and sup-
pose (A,B,C) ∈ χp. We must show that there is exactly one j ∈ ⟦2⟧ such that
(Ai,Bj,Ck) ∈ χp and that λp(Ai,Bj,Ck) = λE(p,T )(A,B,C) for this j.

Let (α, γ) ∈ A × C be such that 0 ≠ λE(p,T )(A,B,C) = σE(p,T )([α, γ]E(p,T ) ∩ B)
and define α′ ∶= ϵ(α) and γ′ ∶= ϵ(γ). Lemma 4.5 lets us infer

0 ≠ λE(p,T )(A,B,C) = σE(p,T )([α, γ]E(p,T ) ∩B) = ∑2
j=1σp([α′, γ′]p ∩Bj). (3)

Because for any j ∈ ⟦2⟧ the color sum σp([α′, γ′]p ∩Bj) can only take the values
−1, 0 or 1, we can deduce from (3) the following: There exist {¬j, j} = ⟦2⟧ such that

σp([α′, γ′]p ∩Bj) = λE(p,T )(A,B,C) ≠ 0 and σp([α′, γ′]p ∩B¬j) = 0. (4)

Because B ∉ {A,C} and because B is case EIII we know that both A and C are
case EI. In particular, α′ ∈ Ai = A1 = A2 and γ′ ∈ Ck = C1 = C2. Hence, the first
statement in (4) implies (Ai,Bj,Ck) ∈ λE(p,T ) and λp(Ai,Bj,Ck) = λE(p,T )(A,B,C)
by Lemma 4.17.

Moreover, since A ≠ C and B ∉ {A,C}, the blocks A, B and C are actually
pairwise distinct, which makes Lemma 4.15 applicable: Since α′ ∈ Ai and γ′ ∈ Ck,
we can infer (Ai,B¬j,Ck) ∉ χp from the second statement in (4). That completes
the proof of the first implication.

Step 2.2: If χp, then also χE(p,T ). To see the converse, let {i,¬j, j, k} ⊆ ⟦2⟧, let
(Ai,Bj,Ck) ∈ χp and let (Ai,B¬j,Ck) ∉ χp. We prove that (A,B,C) ∈ χE(p,T ) and
that λE(p,T )(A,B,C) = λp(Ai,Bj,Ck).

Recall that the assumption that B ∉ {A,C} and that B is case EIII ensures
that {A1,A2}, {B1,B2} and {C1,C2} are pairwise disjoint and that A1 = A2 and
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C1 = C2. Because Ai and Ck are parents of A and C, respectively, there exist
α′ ∈ Ai/T ⊆ ran(ϵ) and γ′ ∈ Ck/T ⊆ ran(ϵ). Let α ∶= ϵ−1(α′) and γ ∶= ϵ−1(γ′).

Per definition of χp, from (Ai,B¬j,Ck) ∉ χp we can infer σp([α′, γ′]p∩B¬j) = 0. On
the other hand, the premise (Ai,Bj,Ck) ∈ χp and Lemmata 4.15 and 4.17 guarantee
σp([α′, γ′]p ∩Bj) = λp(Ai,Bj,Ck) ≠ 0 because Ai, Bj and Ck are pairwise distinct.
Hence, with Lemma 4.5,

σE(p,T )([α, γ]E(p,T ) ∩B)
= σp([α′, γ′]p ∩Bj) + σp([α′, γ′]p ∩B¬j) = σp([α′, γ′]p ∩Bj) = λE(p,T )(A,B,C) ≠ 0.

The definition of χE(p,T ) then implies (A,B,C) ∈ χE(p,T ) and Lemma 4.17 gives
λE(p,T )(A,B,C) = λE(p,T )(A,B,C). That was our claim.

Step 3: Proof of (b). Lemma 4.24 (a) shows that claims (i) and (ii) of (b) are
mutually exclusive. We treat them simultaneously. The proof of (iii) is given first,
though. Let A be case EIII and let k ∈ ⟦2⟧ be arbitrary.

Step 3.1: Proof of (iii). By our assumption A ≠ C and by Lemma 4.20 it is
clear that (A1,Ck,Ck) ∈ χp as well as (A2,Ck,Ck) ∈ χp and that (A,C,C) ∈ χE(p,T ).
Hence, the assertion λp(A1,Ck,Ck) = λp(A2,Ck,Ck) = λE(p,T )(A,C,C) makes sense.

We find (α, γ) ∈ A × C with σE(p,T )([α, γ]E(p,T ) ∩ C) = λE(p,T )(A,C,C) ≠ 0. Let
α′ ∶= ϵ(α) and γ′ ∶= ϵ(γ). Because A ≠ C, the premise that A is case EIII means that
C is case EI. In particular, applying Lemma 4.5 to the special case B = C, yields,

0 ≠ λE(p,T )(A,C,C) = σE(p,T )([α, γ]E(p,T ) ∩C) = σp([α′, γ′]p ∩Ck) (5)

as Ck = C1. Let {¬i, i} = ⟦2⟧ and α′ ∈ Ai. Lemma 4.17 lets us infer λp(Ai,Ck,Ck) =
λE(p,T )(A,C,C) from (5). Since A1 ≠ A2 and ∅ ≠ A1∩T and ∅ ≠ A2∩T , we can con-
clude λp(A¬i,Ck,Ck) = λp(Ai,Ck,Ck) by Lemma 4.37 (a). Hence, λp(A1,Ck,Ck) =
λp(A2,Ck,Ck) = λE(p,T )(A,C,C) as claimed.

Step 3.2: Proof of (i) and (ii). We prove that, if there exist {¬i, i} ⊆ ⟦2⟧
with ¬i ≠ i such that (A¬i,Ai,Ck) ∈ χp, then λp(Ai,Ai,Ck) = −λp(A¬i,A¬i,Ck) =
λE(p,T )(A,A,C) and, otherwise, λp(A1,A1,Ck) = λp(A2,A2,Ck) = λE(p,T )(A,A,C).

Again, the definitions of χE(p,T ) and λE(p,T ) allow us to find (α, γ) ∈ A ×C such
that σE(p,T )([α, γ]E(p,T ) ∩ A) = λE(p,T )(A,A,C) ≠ 0. Let α′ ∶= ϵ(α) and γ′ ∶= ϵ(γ).
Lemma 4.5 applied to the special case A = B then gives

0 ≠ λE(p,T )(A,A,C) = σE(p,T )([α, γ]E(p,T ) ∩A) = ∑2
i=1σp([α′, γ′]p ∩Ai).

since A is case EIII. Let {i1, i2} = ⟦2⟧ and α′ ∈ Ai1 . Since σp([α′, γ′]p∩Ai) ∈ {−1,0,1}
for every i ∈ ⟦2⟧, we conclude that

either σp([α′, γ′]p ∩Ai1) = 0 ≠ λE(p,T )(A,A,C) = σp([α′, γ′]p ∩Ai2)
or σp([α′, γ′]p ∩Ai2) = 0 ≠ λE(p,T )(A,A,C) = σp([α′, γ′]p ∩Ai1).

(6)

Three cases must be considered. Recall that Lemma 4.24 (a) guarantees that
(A1,A2,Ck) ∉ χp or (A2,A1,Ck) ∉ χp.

Case 3.2.1: First, suppose that (A1,A2,Ck) ∉ χp and (A2,A1,Ck) ∉ χp. Then, in
particular, (Ai1 ,Ai2 ,Ck) ∉ χp. The definition of χp hence implies σp([α′, γ′]p∩Ai2) =
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0 because α′ ∈ Ai1 . It follows σp([α′, γ′]p ∩Ai1) = λE(p,T )(A,A,C) ≠ 0 by (6). Thus,
λp(Ai1 ,Ai1 ,Ck) = λE(p,T )(A,A,C) by Lemma 4.17. Finally, Lemma 4.38 (a) (i)
proves λp(Ai2 ,Ai2 ,Ck) = λp(Ai1 ,Ai1 ,Ck). In conclusion, we have shown our claim
for this case, namely that λp(A1,A1,Ck) = λp(A2,A2,Ck) = λE(p,T )(A,A,C).

Case 3.2.2: Next, let (Ai1 ,Ai2 ,Ck) ∈ χp and (Ai2 ,Ai1 ,Ck) ∉ χp. Because Ai1 ,
Ai2 and Ck are pairwise distinct, (Ai1 ,Ai2 ,Ck) ∈ χp implies σp([α′, γ′]p ∩ Ai2) ≠ 0
by Lemma 4.15. Accordingly, σp([α′, γ′]p ∩ Ai2) = λE(p,T )(A,A,C) ≠ 0 by (6). It
follows λp(Ai1 ,Ai2 ,Ck) = λE(p,T )(A,A,C) by Lemma 4.17. By Lemma 4.21 we can
thus conclude λp(Ai2 ,Ai2 ,Ck) = λE(p,T )(A,A,C). And Lemma 4.38 (a) (ii) lets us
know that λp(Ai2 ,Ai2 ,Ck) = −λp(Ai1 ,Ai1 ,Ck). Thus, we have verified our assertion
λp(Ai2 ,Ai2 ,Ck) = −λp(Ai1 ,Ai1 ,Ck) = λE(p,T )(A,A,C) for this case as well.

Case 3.2.3: Finally, assume (Ai2 ,Ai1 ,Ck) ∈ χp and (Ai1 ,Ai2 ,Ck) ∉ χp. From
α′ ∈ Ai1 and (Ai1 ,Ai2 ,Ck) ∉ χp it follows σp([α′, γ′]p ∩Ai2) = 0 by definition of χp.
Hence, (6) lets us conclude σp([α′, γ′]p∩Ai1) = λE(p,T )(A,A,C) ≠ 0. Lemma 4.17 thus
proves λp(Ai1 ,Ai1 ,Ck) = λE(p,T )(A,A,C). And, λp(Ai2 ,Ai2 ,Ck) = −λp(Ai1 ,Ai1 ,Ck)
by Lemma 4.38 (a) (ii). Altogether, that proves our claim.

Step 4: Proof of (d). Follows by (b) and Lemma 4.23. □

Lemma 4.41. E(p, T ) ∈WR for all turns T in p, all p ∈WR and all R ∈R.
Proof. Let n ∈ N, let 2 ≤ n, let {B1,B2, . . . ,Bn} ⊆ E(p, T ), let B1,B2, . . . ,Bn be

pairwise distinct, letB1 andBn cross inE(p, T ), let jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn},
let B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤E(p,T ),B1,Bn and for every i ∈ ⟦n⟧ let ci ∈ {○, ●}
be such that λE(p,T )(B1,Bi,Bn) = σ(ci). We have to prove (c1, c2, . . . , cn) ∈ R.

For every i ∈ ⟦n⟧ let {Bi,1,Bi,2} be parents of Bi with respect to (p, T ). Note that
{Bi1,1,Bi1,2}∩{Bi2,1,Bi2,2} = ∅ for all {i1, i2} ⊆ ⟦n⟧ with i1 ≠ i2 becauseB1,B2, . . . ,Bn

are pairwise distinct. We distinguish which cases EI–EIII which of B1,B2, . . . ,Bn are.
Case 1: None of the blocks resulted from merging. First, let Bi be case EI or EII

for every i ∈ ⟦n⟧. By definition of E(p, T ) then, either T is a subpartition of E(p, T )
or that there exists D ∈ E(p, T ) with D ∉ {B1,B2, . . . ,Bn} which is case EII or EIII

with respect to (p, T ). If such D exists let {D1,D2} be parents of D with respect
to (p, T ). Note that B1,1 = B1,2 and Bn,1 = Bn,2 cross in p by Lemma 4.39 because
B1 and Bn cross in E(p, T ). A further case distinction is required

Case 1.1: T was a block of p, was contained in one or intersected two irrelevant
ones. Suppose that T is a subpartition of p or that D exists and is such that, if D
is case EIII, then (B1,1,Dj,B1,n) ∉ χp for both j ∈ ⟦2⟧. We show that jB1,1,Bn,1op =
{B1,1,B2,1, . . . ,Bn,1}, that B1,1 ≤ B2,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 and
that λp(B1,1,Bi,1,Bn,1) = σ(ci) for every i ∈ ⟦n⟧. Since we assume p ∈ WR, this is
sufficient to prove (c1, c2, . . . , cn) ∈ R.

Step 1.1.1: The blocks. We begin by showing jB1,1,Bn,1op = {B1,1,B2,1, . . . ,
Bn,1}. Each inclusion is treated separately.

Step 1.1.1.1: Inclusion ⊇. We let i ∈ ⟦n⟧ be arbitrary and proveBi,1 ∈ jB1,1,Bn,1op,
i.e., (B1,1,Bi,1,Bn,1) ∈ χp. And, indeed, because Bi is not case EIII, the assumption
(B1,Bi,Bn) ∈ χE(p,T ) lets us infer (B1,1,Bi,1,Bn,1) ∈ χp by Lemma 4.40 (a) (i).
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Step 1.1.1.2: Inclusion ⊆. To see the converse inclusion we let F1 ∈ p and
F1 ∉ {B1,1,B2,1, . . . ,Bn,1} = {B1,2,B2,2, . . . ,Bn,2} and prove that F1 ∉ jB1,1,Bn,1op,
which is to say (B1,1, F1,B1,n) ∉ χp.

If F1 = T , then F1, as a pair block, must be a connected component of p ∈ W
by Lemma 6.3. According to Lemma 4.19 this excludes (B1,1, F1,B1,n) ∈ χp because
B1,1 and B1,n cross in p. Hence, we can assume F1 ≠ T .

Then, there exist F ∈ E(p, T ) and F2 ∈ p such that {F1, F2} are parents of F
with respect to (p, T ). The assumption F1 ∉ {B1,1,B2,1, . . . ,Bn,1} assures us that
F ∉ {B1,B2, . . . ,Bn}. Since jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn} it follows (B1, F,Bn) ∉
χE(p,T ).

If F is not case EIII, then Lemma 4.40 (a) (i) allows us to conclude (B1,1, F1,B1,n) ∉
χp from (B1, F,Bn) ∉ χE(p,T ) immediately.

Should F be case EIII, then we must have F = D because there can be at most
one block of E(p, T ) which belongs to a case other than EI. If so, then F1 ∈ {D1,D2}
since those are parents of D. Hence, our assumption that (B1,1,Dj,B1,n) ∉ χp for
both j ∈ ⟦2⟧ proves (B1,1, F,B1,n) ∉ χp, as claimed.

Step 1.1.2: Their ordering. Next, we verify that B1,1 ≤ B1,2 ≤ . . . ≤ B1,n with
respect to ≤p,B1,1,B1,n . Equivalently, we have to prove (B1,1,Bi,1,Bi+1,1) ∈ χp for all
i ∈ ⟦n−1⟧. Because B1,1 ≠ Bi+1,1 and because Bi,1 is not case EIII, the statement
(B1,1,Bi,1,Bi+1,1) ∈ χp is equivalent to (B1,Bi,Bi+1) ∈ χE(p,T ) by Lemma 4.40 (a) (i).
And this latter relation is of course true by the assumption that B1 ≤ B2 ≤ . . . ≤ Bn

with respect to ≤E(p,T ),B1,Bn . Hence, as asserted, B1,1 ≤ B1,2 ≤ . . . ≤ B1,n with respect
to ≤p,B1,1,B1,n .

Step 1.1.3: The colors. The last part of the above claim to be confirmed is
that λp(B1,1,Bi,1,Bn,1) = λE(p,T )(B1,Bi,Bn) for every i ∈ ⟦n⟧. But this is clear by
Lemma 4.40 (a) (ii) because Bi is assumed to not be case EIII for any i ∈ ⟦n⟧.

Case 1.2: T intersected two blocks of p, at least one of them relevant. Alterna-
tively, assume that D exists, that D is case EIII and that (B1,1,Dj,B1,n) ∈ χp for
at least one j ∈ ⟦2⟧. We prove that then there exist i0 ∈ ⟦n−1⟧ and {j1, j2} ⊆ ⟦2⟧
with j1 ≠ j2 such that jB1,1,Bn,1op = {B1,1,B2,1, . . . ,Bn,1} ⊍ {D1,D2}, such that
B1,1 ≤ B2,1 ≤ . . . ≤ Bi0,1 ≤ Dj1 ≤ Dj2 ≤ Bi0+1,1 ≤ Bi0+2,1 ≤ . . . ≤ Bn,1 with respect to
≤p,B1,1,Bn,1 , such that λp(B1,1,Bi,1,Bn,1) = σ(ci) for every i ∈ ⟦n⟧ and such that, if
c ∈ {○, ●} is such that λp(B1,1,Dj1 ,Bn,1) = σ(c), then λp(B1,1,Dj2 ,Bn,1) = σ(c). Our
assumption p ∈ WR then implies (c1, c2, . . . , ci0 , c, c, ci0+1, ci0+2, . . . , cn) ∈ R and thus
our claim (c1, c2 . . . , cn) ∈ R because R is a W-parameter set.

Step 1.2.1: The blocks. Again, we begin by proving jB1,1,Bn,1op = {B1,1,B2,1, . . . ,
Bn,1} ⊍ {D1,D2} and treat each inclusion individually.

Step 1.2.1.1: Inclusion ⊇. For any i ∈ ⟦n⟧ the assumptions that Bi is case EI

and that Bi ∈ jB1,BnoE(p,T ) ensure Bi,1 ∈ jB1,1,Bn,1op by Lemma 4.40 (a) (i). We
have explicitly assumed that there exists j ∈ ⟦2⟧ such that (B1,1,Dj,B1,n) ∈ χp,
which is to say Dj ∈ jB1,1,Bn,1op. Let ¬j ∈ ⟦2⟧ be such that ¬j ≠ j. It re-
mains to prove (B1,1,D¬j,B1,n) ∈ χp. Per the assumption D ∉ {B1,B2, . . .Bn} =
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jB1,BnoE(p,T ) we know (B1,D,Bn) ∉ χE(p,T ). Because D is case EIII the two state-
ments (B1,D,Bn) ∉ χE(p,T ) and (B1,1,Dj,B1,n) ∈ χp then require (B1,1,D¬j,B1,n) ∈
χp by Lemma 4.40 (c) (i). Hence, jB1,1,Bn,1op ⊇ {B1,1,B2,1, . . . ,Bn,1} ⊍ {D1,D2}.

Step 1.2.1.2: Inclusion ⊆. Let F1 ∈ p and let F1 ≠ Bi,1 and F1 ≠Dj for all i ∈ ⟦n⟧
and j ∈ ⟦2⟧. We prove (B1,1, F1,Bn,1) ∉ χp.

Since D is case EIII we are guaranteed T ⊆ D1 ∪ D2 and thus F1 ∩ T = ∅ by
F1 ∉ {D1,D2}. Hence, by definition of E(p, T ) there exist F ∈ E(p, T ) and F2 ∈ p
such that {F1, F2} are parents of F with respect to (p, T ). Then, D ≠ F because
F1 ∉ {D1,D2}. In consequence, F is not case EIII, as D already is.

And the assumption F1 ∉ {B1,1,B2,1, . . . ,Bn,1} further ensures F ∉ {B1,B2, . . . ,Bn}.
As jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn}, consequently, (B1, F,Bn) ∉ χE(p,T ).

From (B1, F,Bn) ∉ χE(p,T ) it follows by Lemma 4.40 (a) (i) that (B1,1, F1,Bn,1) ∉
χp because F is not case EIII. Thus, jB1,1,Bn,1op ⊆ {B1,1,B2,1, . . . ,Bn,1} ⊍ {D1,D2}
has been proven.

Step 1.2.2: Their ordering. The next step is to prove the existence of i0 ∈ ⟦n−1⟧
and {j1, j2} ⊆ ⟦n⟧ such that B1,1 ≤ B2,1 ≤ . . . ≤ Bi0,1 ≤ Dj1 ≤ Dj2 ≤ Bi0+1,1 ≤ Bi0+2,1 ≤
. . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 .

By Lemma 4.40 (a) (i) for all i ∈ ⟦n−1⟧, because Bi is not case EIII, the assumption
that (B1,Bi,Bi+1) ∈ χE(p,T ) ensures that (B1,1,Bi,1,Bi+1,1) ∈ χp. Hence, B1,1 ≤ B2,1 ≤
. . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 .

Because ≤p,B1,1,Bn,1 is a total order on jB1,1,Bn,1op by Lemma 4.28 and because
{D1,D2} ⊆ jB1,1,Bn,1op by Step 1.2.1 there must indeed exist {j1, j2} ⊆ ⟦2⟧ such that
j1 ≠ j2 and Dj1 ≤Dj2 with respect to ≤p,B1,1,Bn,1 .

Moreover, because B1,1 ≤ Dj1 with respect to ≤p,B1,1,Bn,1 by B1,1 ≠ Dj1 and
Lemma 4.20, there exists i ∈ ⟦n−1⟧ such that Bi,1 ≤ Dj1 with respect to ≤p,B1,1,Bn,1 .
Hence, and by Lemma 4.28, we can let i0 be ≤p,B1,1,Bn,1-maximal with this property.

We prove by contradiction that Dj1 and Dj2 are neighbors with respect to the
order ≤p,B1,1,Bn,1 on jB1,1,Bn,1op. Let i1 ∈ ⟦n−1⟧ be such that Dj1 ≤ Bi1,1 ≤ Dj2 , i.e.,
such that (B1,1,Dj1 ,Bi1,1) and (B1,1,Bi1,1,Dj2). Lemma 4.25 then allows us to con-
clude (Dj1 ,Bi1,1,Dj2) ∈ χp. However, because {D1,D2} are parents of D with respect
to (p, T ) and because Bi1,1 ∉ {D1,D2}, Lemma 4.36 assures us (Dj1 ,Bi1,1,Dj2) ∉ χp.
That is the contradiction we sought.

Now, the definitions of j1, j2 and i0 and the fact that B1,1 ≤ B2,1 ≤ . . . ≤ Bn,1 with
respect to ≤p,B1,1,Bn,1 together imply B1,1 ≤ B2,1 ≤ . . . ≤ Bi0,1 ≤ Dj1 ≤ Dj2 ≤ Bi0+1,1 ≤
Bi0+2,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 , which is what we needed to see.

Step 1.2.3: The colors. For every i ∈ ⟦n⟧ Lemma 4.40 (a) (ii) lets us infer
λp(B1,1,Bi,1,Bn,1) = λE(p,T )(B1,Bi,Bn) because Bi is not case EIII. We only need
to prove λp(B1,1,D1,Bn,1) = −λp(B1,1,D2,Bn,1).

In Step 1.2.2 we showed that there exist {j1, j2} ⊆ ⟦2⟧ with j1 ≠ j2 and Dj1 ≤Dj2

with respect to ≤p,B1,1,Bn,1 , which is to say (B1,1,Dj1 ,Dj2) ∈ χp. Because B1,1, Dj1 and
Dj2 are pairwise distinct, because D is case EIII and because {D1,D2} are parents
blocks of D with respect to (p, T ) Lemma 4.38 (b) (ii) then proves our claim.
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Case 2: A middle block resulted from merging. Next, let there exist i0 ∈ ⟦n⟧ with
1 < i0 < n such that Bi0 is case EIII. Lemma 4.39 assures us that B1,1 = B1,2 and Bn,1 =
Bn,2 cross in p since B1 and Bn cross in E(p, T ). We prove that there exists j0 ∈ ⟦2⟧
such that jB1,1,Bn,1op = {B1,1,B2,1, . . . ,Bi0−1,1,Bi0,j0 ,Bi0+1,1,Bi0+2,1, . . . ,Bn,1}, such
that B1,1 ≤ B2,1 ≤ . . . ≤ Bi0−1,1 ≤ Bi0,j0 ≤ Bi0+1,1 ≤ Bi0+2,1 ≤ . . . ≤ Bn,1 with respect
to ≤p,B1,1,Bn,1 , such that λp(B1,1,Bi,1,Bn,1) = σ(ci) for every i ∈ ⟦n⟧/{i0} and such
that λp(B1,1,Bi0,j0 ,Bn,1) = σ(ci0). Again, because p ∈ WR, this will then prove
(c1, c2, . . . , cn) ∈ R, as claimed.

Step 2.1: The blocks. We prove that jB1,1,Bn,1op = {B1,1,B2,1, . . . ,Bi0−1,1,Bi0,j0 ,
Bi0+1,1,Bi0+2,1, . . . ,Bn,1} for an appropriate j0 ∈ ⟦2⟧.

Step 2.1.1: Inclusion ⊇. Because Bi0 ∉ {B1,Bn}, because Bi0 is case EIII and
because (B1,Bi0 ,Bn) ∈ χE(p,T ) Lemma 4.40 (c) (i) tells us that there exists exactly
one j0 ∈ ⟦2⟧ such that (B1,1,Bi0,j0 ,Bn,1) ∈ χp, i.e., such that Bi0,j0 ∈ jB1,1,B1,nop.

On the other hand, for every i ∈ ⟦n⟧/{i0} the assumption that Bi0 is case EIII

implies that Bi is not. Hence, (B1,1,Bi,1,Bn,1) ∈ χp by Lemma 4.40 (a) (i) because
we have assumed (B1,Bi,Bn) ∈ χE(p,T ). That proves the first inclusion.

Step 2.1.2: Inclusion ⊆. Conversely, let F1 ∈ p, let F1 ≠ Bi,1 = Bi,2 for all
i ∈ ⟦n⟧/{i0} and let F1 ≠ Bi0,j0 . We prove (B1,1, F1,Bn,1) ∉ χp.

If F1 = Bi0,¬j0 for ¬j0 ∈ ⟦2⟧ with ¬j0 ≠ j0, then (B1,1, F1,Bn,1) ∉ χp is guaranteed
since j0 is unique with the property (B1,1,Bi0,j0 ,Bn,1) ∈ χp. Hence, we can assume
F1 ∉ {Bi0,1,Bi0,2}, and thus F1 ∉ {B1,1,B2,1, . . . ,Bn,1}, in the following.

Then, there exist F ∈ E(p, T ) and F2 ∈ p such that {F1, F2} are parents of
F with respect to (p, T ). Moreover, F is case EI and F ∉ {B1,B2, . . . ,Bn} by
F1 ∉ {B1,1,B2,1, . . . ,Bn,1}. Because jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn}, therefore,
(B1, F,Bn) ∉ χE(p,T ). It follows (B1,1, F1,Bn,1) ∉ χp by Lemma 4.40 (a) (i) since
F is not case EIII. In other words, F1 ∉ jB1,1,Bn,1op, proving the other inclusion.

Step 2.2: Their ordering. Next, we prove that B1,1 ≤ B2,1 ≤ . . . ≤ Bi0−1,1 ≤ Bi0,j0 ≤
Bi0+1,1 ≤ Bi0+2,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 .

For every i ∈ ⟦n⟧ with i ∉ {i0 − 1, i0, n} the block Bi is case EI. Hence, the
assumption that Bi ≤ Bi+1 with respect to ≤E(p,T ), i.e., that (B1,Bi,Bi+1) ∈ χE(p,T ),
implies (B1,1,Bi,1,Bi+1,i) ∈ χp by Lemma 4.40 (a) (i), which is to say Bi,1 ≤ Bi+1,1
with respect to ≤p,B1,1,Bn,1 .

The block Bi0−1 is case EI as well. That is why our premise (B1,Bi0−1,Bi0) ∈
χE(p,T ) ensures (B1,1,Bi0−1,1,Bi0,j0) ∈ χp by Lemma 4.40 (a) (i). Hence, Bi0−1,1 ≤
Bi0,j0 with respect to ≤p,B1,1,Bn,1 .

According to Lemma 4.29 the assumption that Bi0 ≤ Bi0+1 with respect to
≤E(p,T ),B1,Bn is equivalent to the relation Bi0+1 ≤ Bi0 with respect to ≤E(p,T ),Bn,B1

,
i.e., to the statement (Bn,Bi0+1,Bi0) ∈ χE(p,T ). Because Bi0+1 is not case EIII we
can apply Lemma 4.40 (a) (i) to infer (Bn,1,Bi0+1,1,Bi0,j0) ∈ χp or, equivalently,
Bi0+1,1 ≤ Bi0,j0 with respect to ≤p,Bn,1,B1,1 . Now, Lemma 4.29 employed a second
time implies Bi0,j0 ≤ Bi0+1,1 with respect to ≤p,B1,1,Bn,1 .
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That is all which was left to show in order to prove that B1,1 ≤ B2,1 ≤ . . . ≤
Bi0−1,1 ≤ Bi0,j0 ≤ Bi0+1,1 ≤ Bi0+2,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,1,Bn,1 .

Step 2.3: The colors. Finally, we verify that λp(B1,1,Bi,1,Bn,1) = σ(ci) for
every i ∈ ⟦n⟧/{i0} and that λp(B1,1,Bi0,j0 ,Bn,1) = σ(ci0). Indeed, for every i ∈
⟦n⟧/{i0} the fact that Bi is not case EIII allows us to infer λp(B1,1,Bi,1,Bn,1) =
λE(p,T )(B1,Bi,Bn) by Lemma 4.40 (a) (ii). And the definition of j0 as the unique
index with (B1,1,Bi0,j0 ,Bn,1) ∈ χp implies λp(B1,1,Bi0,j0 ,Bn,1) = λE(p,T )(B1,Bi0 ,Bn)
by Lemma 4.40 (c) (ii) since Bi0 is case EIII. That completes the proof for this case.

Case 3: The first block resulted from merging. Next, let B1 be case EIII. Since
B1 and Bn cross in p, there exists j1 ∈ ⟦2⟧ such that B1,j1 and Bn,1 = Bn,2 cross in p
by Lemma 4.39. Let j2 ∈ ⟦2⟧ be such that j1 ≠ j2. Now, there are two possibilities.

Case 3.1: Crossing with the inner one. First, suppose (B1,j1 ,B1,j2 ,Bn,1) ∉ χp.
We prove that then jB1,j1 ,Bn,1op = {B1,j1 ,B2,1,B3,1, . . . ,Bn,1}, that B1,j1 ≤ B2,1 ≤
B3,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,j1

,Bn,1 , that λp(B1,j1 ,B1,j1 ,Bn,1) = σ(c1) and
that λp(B1,j1 ,Bi,1,Bn,1) = σ(ci) for every i ∈ ⟦n⟧ with 2 ≤ i. The assumption p ∈WR

will then prove our assertion (c1, c2, . . . , cn) ∈ R.
Step 3.1.1: The blocks. As usual we begin by proving jB1,j1 ,Bn,1op = {B1,j1 ,B2,1,

B3,1, . . . ,Bn,1} and give separate proofs for each inclusion.
Step 3.1.1.1: Inclusion ⊇. By Lemma 4.20 it is clear that (B1,j1 ,B1,j1 ,Bn,1) ∈ χp,

i.e., that B1,j1 ∈ jB1,j1 ,Bn,1op. We only need to prove (B1,j1 ,Bi,1,Bn,1) ∈ χp for
every i ∈ ⟦n⟧ with 2 ≤ i. And by Lemma 4.40 (a) (i) for such i this follows from
our assumption (B1,Bi,Bn) ∈ χE(p,T ) because Bi is not case EIII. Hence, indeed,
jB1,j1 ,Bn,1op ⊇ {B1,j1 ,B2,1,B3,1, . . . ,Bn,1}.

Step 3.1.1.2: Inclusion ⊆. In order to see the converse inclusion, we let F1 ∈ p
and F1 ∉ {B1,j1 ,B2,1,B3,1, . . . ,Bn,1} and show (B1,j1 , F1,Bn,1) ∉ χp.

By our assumption (B1,j1 ,B1,j2 ,Bn,1) ∉ χp we can assume that F1 ≠ B1,j2 . Then,
F1 ∉ {Bi,j ∣ i ∈ ⟦n⟧, j ∈ ⟦2⟧}. In particular, since F /⊆ T , there must exist F ∈ E(p, T )
and F2 ∈ p such that {F1, F2} are parents of F with respect to (p, T ). And F must
be case EI. Moreover, F ∉ {B1,B2, . . . ,Bn}.

The premise jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn} then requires (B1, F,Bn) ∉ χE(p,T ).
By Lemma 4.40 (a) (i) we can conclude from this (B1,j1 , F1,Bn,1) ∉ χp because F is
not case EIII. And that is what we needed to see.

Step 3.1.2: Their ordering. Let us prove next that B1,j1 ≤ B2,1 ≤ B3,1 ≤ . . . ≤ Bn,1

with respect to ≤p,B1,j1
,Bn,1 .

Lemma 4.20 assures us that (B1,j1 ,B1,j1 ,B2,1) ∈ χp, which is equivalent to the
relation B1,j1 ≤ B2,1 with respect to ≤p,B1,j1

,Bn,1 .
Since for every i ∈ ⟦n⟧ with 2 ≤ i < n the block Bi is not case EIII and since we

assume Bi ≤ Bi+1 with respect to ≤E(p,T ),B1,Bn , i.e., (B1,Bi,Bi+1) ∈ χE(p,T ), we can
apply Lemma 4.40 (a) (i) and infer (B1,j1 ,Bi,1,Bi+1,1) ∈ χp. That proves B2,1 ≤ B3,1 ≤
. . . ≤ Bn,1 with respect to ≤p,B1,j1

,Bn,1 , which is what was left to prove.
Step 3.1.3: The colors. The last step consists in showing λp(B1,j1 ,B1,j1 ,Bn,1) =

σ(c1) and λp(B1,j1 ,Bi,1,Bn,1) = σ(ci) for every i ∈ ⟦n⟧ with 2 ≤ i.
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There are two possibilities: The first is that (B1,j2 ,B1,j1 ,Bn,1) ∉ χp, which,
because we have assumed (B1,j1 ,B1,j2 ,Bn,1) ∉ χp, is to say (B1,2,B1,1,Bn,1) ∉ χp
and (B1,1,B1,2,Bn,1) ∉ χp. In this case we can conclude λp(B1,j1 ,B1,j1 ,Bn,1) =
λp(B1,j2 ,B1,j2 ,Bn,1) = λE(p,T )(B1,B1,Bn) by Lemma 4.40 (b) (i). The alterna-
tive is that (B1,j2 ,B1,j1 ,Bn,1) ∈ χp. If so, Lemma 4.40 (b) (ii) guarantees λp(B1,j1 ,
B1,j1 ,Bn,1) = −λp(B1,j2 ,B1,j2 ,Bn,1) = λE(p,T )(B1,B1,Bn) as well. Hence, λp(B1,j1 ,
B1,j1 ,Bn,1) = σ(c1) always holds.

On the other hand, for any i ∈ ⟦n⟧ with i ≤ 2 the block Bi not being case EIII

allows us to conclude λp(B1,j1 ,Bi,1,Bn,1) = λE(p,T )(B1,Bi,Bn) = σ(ci) by Lem-
ma 4.40 (a) (ii), just as claimed.

Case 3.2: Crossing with the outer one. Alternatively, let (B1,j1 ,B1,j2 ,Bn,1) ∈ χp.
We show that jB1,j1 ,Bn,1op = {B1,j1 ,B1,j2 ,B2,1,B3,1, . . . ,Bn,1}, that B1,j1 ≤ B1,j2 ≤
B2,1 ≤ B3,1 ≤ . . . ≤ Bn,1 with respect to ≤p,B1,j1

,Bn,1 , that λp(B1,j1 ,B1,j1 ,Bn,1) = σ(c1),
that λp(B1,j1 ,B1,j2 ,Bn,1) = σ(c1) and that λp(B1,j1 ,Bi,1,Bn,1) = σ(ci) for every i ∈
⟦n⟧ with 2 ≤ i. From p ∈WR it will then follow that (c1, c1, c2, . . . , cn) ∈ R. As R is
a W-parameter set, this is enough to prove (c1, c2, . . . , cn) ∈ R.

Step 3.2.1: The blocks. We show jB1,j1 ,Bn,1op = {B1,j1 ,B1,j2 ,B2,1,B3,1, . . . ,Bn,1},
as always one inclusion at a time.

Step 3.2.1.1: Inclusion ⊇. By Lemma 4.20, the part B1,j1 ∈ jB1,j1 ,Bn,1op is clear.
And we have explicitly assumed (B1,j1 ,B1,j2 ,Bn,1) ∈ χp, i.e., B1,j2 ∈ jB1,j1 ,Bn,1op.

For every i ∈ ⟦n⟧ with 2 ≤ i Lemma 4.40 (a) (i) assures us that (B1,j1 ,Bi,1,Bn,1) ∈
χp because Bi is not case EIII and because Bi ∈ jB1,BnoE(p,T ) per assumption. Hence,
also {B2,1,B3,1, . . . ,Bn,1} ⊆ jB1,j1 ,Bn,1op.

Step 3.2.1.2: Inclusion ⊆. Conversely, let F1 ∈ p and F1 ∉ {B1,j1 ,B1,j2 ,B2,1,B3,1,
. . . ,Bn,1}. We must prove (B1,j1 , F1,Bn,1) ∉ χp. Because F1 /⊆ T ⊆ B1,1 ∪B1,2 there
exist F ∈ E(p, T ) and F2 ∈ p such that {F1, F2} are parents of F with respect to
(p, T ), such that F ∉ {B1,B2, . . . ,Bn} and such that F is case EI. As jB1,BnoE(p,T ) =
{B1,B2, . . . ,Bn} it thus follows (B1, F,Bn) ∉ χE(p,T ). Block F not being case EIII

therefore implies (B1,j1 , F1,Bn,1) ∉ χp by Lemma 4.40 (a) (i). And that is what we
needed to see.

Step 3.2.2: Their ordering. Next, we prove B1,j1 ≤ B1,j2 ≤ B2,1 ≤ B3,1 ≤ . . . ≤ Bn,1

with respect to ≤p,B1,j1
,Bn,1 .

As B1,1 ≠ B1,2 it is clear by Lemma 4.20 that (B1,j1 ,B1,j1 ,B1,j2) ∈ χp, proving
B1,j1 ≤ B1,j2 with respect to ≤p,B1,j1

,Bn,1 .
Because B1 is case EIII Lemma 4.36 guarantees (B1,j1 ,B2,1,B1,j2) ∉ χp. In other

words, B2,1 /≤ B1,j2 with respect to ≤p,B1,j1
,Bn,1 since B2,1 ≠ B1,j2 . As ≤p,B1,j1

,Bn,1 is a
total order by Lemma 4.28, that necessitates B1,j2 ≤ B2,1 with respect to ≤p,B1,j1

,Bn,1 .
Finally, for every i ∈ ⟦n⟧ with 2 ≤ i the assumptions that Bi ≤ Bi+1 with respect

to ≤E(p,T ),B1,Bn and that Bi is not case EIII ensure Bi,1 ≤ Bi+1,1 with respect to
≤p,B1,j1

,Bn,1 by Lemma 4.40 (a) (i).
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Step 3.2.3: The colors. Lastly, it must be verified that λp(B1,j1 ,B1,j1 ,Bn,1) =
σ(c1), that λp(B1,j1 ,B1,j2 ,Bn,1) = σ(c1) and that λp(B1,j1 ,Bi,1,Bn,1) = σ(ci) for
every i ∈ ⟦n⟧ with 2 ≤ i.

Because B1 is case EIII and because (B1,j1 ,B1,j2 ,Bn,1) ∈ χp per assumption,
Lemma 4.40 (b) (ii) proves λp(B1,j2 ,B1,j2 ,Bn,1) = −λp(B1,j1 ,B1,j1 ,Bn,1) = λE(p,T )(B1,
B1,Bn), which proves λp(B1,j1 ,B1,j1 ,Bn,1) = σ(c1). But since λp(B1,j1 ,B1,j2 ,Bn,1) =
λp(B1,j2 ,B1,j2 ,Bn,1) by Lemma 4.21 it also shows λp(B1,j1 ,B1,j2 ,Bn,1) = σ(c1).

And, for every i ∈ ⟦n⟧ with 2 ≤ i, we deduce by Lemma 4.40 (a) (ii) that λp(B1,j1 ,
Bi,1,Bn,1) = λE(p,T )(B1,Bi,Bn) = ci because Bi is not case EIII. Now the proof is
complete for this case.

Case 4: The last block resulted from merging. Finally, assume that Bn is case EIII.
Define B′

i ∶= Bn−i+1 and B′
i,j ∶= Bn−i+1,j for all i ∈ ⟦n⟧ and j ∈ ⟦2⟧. Then, for each

i ∈ ⟦n⟧ the blocks {B′
i,1,B

′
i,2} of p are parents of the block B′

i of E(p, T ) ∈WR with
respect to (p, T ). Lemma 4.23 (a) proves that jB′

1,B
′
noE(p,T ) = jB′

n,B
′
1oE(p,T ) =

jB1,BnoE(p,T ) = {B1,B2, . . . ,Bn} = {B′
1,B

′
2, . . . ,B

′
n}. And Lemma 4.29 ensures

B′
1 ≤ B′

2 ≤ . . . ≤ B′
n with respect to ≤E(p,T ),B′

1,B
′
n
. Finally, λE(p,T )(B′

1,B
′
i,B

′
n) =

λE(p,T )(Bn,Bn−i+1,B1) = −λE(p,T )(B1,Bn−i+1,Bn) = σ(cn−i+1) for every i ∈ ⟦n⟧ by
Lemma 4.23 (b). As B′

1 is case EIII per assumption, B′
1,B

′
2, . . . ,B

′
n meet the re-

quirements of Case 3. It follows (cn, cn−1, . . . , c1) ∈ R by what we have already seen.
Because R is a W-parameter set, that concludes the proof overall. □

Theorem 4.42. WR is a hyperoctahedral category of partitions for every R ∈R.
Proof. That WR is a category is the combined implication of Lemmata 4.31,

4.33, 4.35, 4.41 and 2.2. That ⊗ ∉ WR holds by WR ⊆ W because ⊗ ∉ W. And
∈WR is clear by definition. Hence, WR is hyperoctahedral. □

5. Tool: Erasing-Minimality

In this auxiliary section we define a set R ⊆ P○● (see Definition 5.12) and prove
C = ⟨C ∩ R⟩ for every hyperoctahedral category C ⊆ P○● (see Proposition 5.14). The
crucial ingredient in the definition of R is being erasing-minimal.

5.1. The Definition of Erasing-Minimality. Suppose we are trying to un-
derstand which category ⟨p⟩ a given arbitrary partition p ∈ P○● generates. A lot of the
features of p might be irrelevant to that question. E.g., if p = ⊗ , then ⟨p⟩ = ⟨ ⟩.
So, what are the crucial parts of p? What of the structure of p is redundant and
can be ignored? More formally, we are looking for smaller versions of p which still
generate the same category, i.e., numbers k ∈ N and partitions {p1, . . . , pk} ⊆ P○●,
each of which has fewer points than p, with ⟨p⟩ = ⟨p1, . . . , pk⟩. An ultimately equiv-
alent question is to ask: Which are the p ∈ P○● which cannot be reduced to smaller
versions {p1, . . . , pk} ⊆ ⟨p⟩ without losing p ∈ ⟨p1, . . . , pk⟩. In Section 5 we will see
among other things that being erasing-minimal is a necessary condition for such p.

In this section we define the concept of erasing-minimal partitions (Definition 5.6),
which requires a certain amount of preparations.
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Remark 5.1. There are exactly the following mutually exclusive possibilities for
how the blocks of a partition p ∈ P○● intersecting a turn T in p might be structured:

(a) The turn T itself might be a block of p, necessarily a pair block.

c c

pT

(b) It might be that both of the points of T each form singleton blocks of p.

c c

pT

(c) Neither is T a block itself, nor is it a union of blocks of p, and exactly one
of the following is true:

(i) There exist two distinct blocks of p which each supply precisely one
point to T and which are not singleton blocks. In this case we can
certainly find at least one block B of p and legs α,β ∈ B such that
α ≠ β and ∅ ≠ T ∩ {α,β} ≠ {α,β}, i.e., such that either α or β belongs
to T , but not both.

c c

α

β

pT
B

(ii) One of the points of T might form a singleton block of p while the other
belongs to a non-singleton block. Another way of saying this is that
there exists a block B of p (the non-singleton one) and legs α,β ∈ B
with α ≠ β and ∅ ≠ T ∩ {α,β} ≠ {α,β} such that the (necessarily
singleton) set T /{α,β} is a block of p.

c c

βα

pT
B

(iii) Lastly, it might be that both points of T belong to the same block
which is not confined to T , though. Equivalently, we find a block B of
p and legs α,β ∈ B with α ≠ β and ∅ ≠ T ∩ {α,β} ≠ {α,β} such that
T ⊆ B.



46 1. HYPEROCTAHEDRAL CATEGORIES

c c

α β

p

T

B

In these last three cases, by choosing the legs α and β appropriately, we
can in particular achieve that ]β,α[p∩B = ∅. Likewise, we can achieve
]α,β[p∩B = ∅ if we want to.

The following definition allows for a compact definition of erasing-minimality and
is a shorthand for the conditions to the later Lemma 5.7.

Definition 5.2. Given p ∈ P○●, an action in p is any tuple (T,B,α, β) such
that T is a turn in p, such that B ∈ p, such that α,β ∈ B satisfy α ≠ β and
∅ ≠ T ∩ {α,β} ≠ {α,β} and such that one of the following is true:

(a) ]β,α[p∩B = ∅.
(b) T /{α,β} ∈ p.
(c) T ⊆ B.

Then, we also say that (T,B,α, β) is an action for T in p.

Lemma 5.3. Given any p ∈ P○● and any turn T in p, either T is a subpartition
of p or there exists an action for T in p.

Proof. The claim summarizes Remark 5.1 and hence follows from the case
distinction made there. □

Definition 5.4. An action (T,B,α, β) in p ∈ P○● is said to be
(a) . . . size-increasing in p if ∣[α,β]p∣ > 1

2∥p∥.
(b) . . . size-preserving in p if ∣[α,β]p∣ = 1

2∥p∥.
(c) . . . size-decreasing in p if ∣[α,β]p∣ < 1

2∥p∥.

Definition 5.5. A turn T in a p ∈ P○● is called
(a) . . . essential in p if T is not a subpartition of p and if every action for T in

p is size-increasing.
(b) . . . redundant in p if T is a subpartition of p or if there exists a size-decreasing

action for T in p.
(c) . . . indefinite in p if T is neither essential nor redundant in p.

In other words, a turn is indefinite if it is not a subpartition and there exists at
least one size-preserving action but no size-reducing actions for it.

Definition 5.6. (a) Partitions without redundant turns are erasing-minimal.
(b) The set of all erasing-minimal partitions is denoted by M.

5.2. De-Erasing. The following technical lemma is the key that unlocks all
other results of this section and shows why erasing-minimality is a useful concept.
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Lemma 5.7 (De-Erasing). Let T be a turn in p ∈ P○●, let p1 ∶= E(p, T ) and
p3 ∶= ⊗ .

(a) If T is a pair block of p, then ⟨p⟩ = ⟨p1⟩.
(b) If T is the union of two singleton blocks of p, then ⟨p⟩ = ⟨p1, p3⟩.
(c) Let B ∈ p and α,β ∈ B be such that α ≠ β and ∅ ≠ T ∩ {α,β} ≠ {α,β}, and

let p2 ∶= P (p, [α,β]p).
(i) If T /{α,β} is not a block of p and if ]β,α[p∩B = ∅, then ⟨p⟩ = ⟨p1, p2⟩.
(ii) If T /{α,β} is a block of p, then ⟨p⟩ = ⟨p1, p2, p3⟩.
(iii) If T ⊆ B, then ⟨p⟩ = ⟨p1, p2⟩.

Especially: If T is a subpartition of p, then ⟨p⟩ = ⟨E(p, T ), ⟨p⟩ ∩ { ⊗ }⟩; and,
if (T,B,α, β) is an action in p, then ⟨p⟩ = ⟨E(p, T ), P (p, [α,β]p), ⟨p⟩ ∩ { ⊗ }⟩.

Proof. By Lemma 2.3 (b) the addendum follows from Parts (a)–(c).
(a) By Lemma 2.2 it suffices to show p ∈ ⟨E(p, T )⟩ and we can assume T = {◾1, ◾2}.

The assumption T ∈ p then means p = q ⊗ E(p, T ) for some q ∈ { , }. Because
{ , } ⊆ ⟨E(p, T )⟩ by definition, this identity proves p ∈ ⟨E(p, T )⟩.

(b) By Lemma 2.3 (b) the presence of singleton blocks in p guarantees ⊗ ∈ ⟨p⟩.
Hence, we only need to show p ∈ ⟨E(p, T ), ⊗ ⟩. Once more assume T = {◾1, ◾2}.
Supposing T is the union of two singleton blocks then translates to p = q ⊗E(p, T ),
where, this time, q ∈ { ⊗ , ⊗ }. It follows p ∈ ⟨E(p, T ), ⊗ ⟩ by Lemma 2.3 (a).

(c) The proof of (c) is very similar to that of [MW22b, Lemma 3.1]. In fact, this
latter result is implied (a)–(c). We treat cases (i)–(iii) simultaneously. If T /{α,β} ∉
p, let C ∶= ⟨E(p, T ), P (p, [α,β]p)⟩, and let C ∶= ⟨E(p, T ), P (p, [α,β]p), ⊗ ⟩ otherwise.
We suppose (i) or (ii) or (iii) and then have to show ⟨p⟩ = C. Again, thanks to
Lemma 2.3 (b) and this time also Lemma 2.5, it suffices to show p ∈ C.

Step 1: Reducing to the case α ∈ T . The assumption ∅ ≠ T ∩ {α,β} ≠ {α,β}
means that either α or β lies in T , but not both. Suppose we have already shown (c)
for the case α ∈ T and assume now β ∈ T instead. If ϱ is the bijection which reflects
the points of p, then, T ′ ∶= ϱ(T ) is a turn in the verticolor reflection p′ ∶= p̃, the points
α′ ∶= ϱ(β) and β′ ∶= ϱ(α) in p′ with α′ ≠ β′ belong to the same block B′ ∶= ϱ(B) of
p′ and satisfy ϱ(∅) = ∅ ≠ ϱ(T ∩ {α,β}) = T ′ ∩ {α′, β′} ≠ ϱ({α,β}) = {α′, β′}. So the
common requirements of (c) are satisfied for p′, T ′, B′, α′ and β′.

Now, ϱ(]β,α[p∩B) =]ϱ(α), ϱ(β)[p̃∩ϱ(B) =]β′, α′[p′∩B′ proves that ]β,α[p∩B = ∅
if and only if ]β′, α′[p′∩B′ = ∅. The identity ϱ(T /{α,β}) = T ′/{α′, β′} shows that
T /{α,β} ∈ p if and only if T ′/{α′, β′} ∈ p′. And, lastly, T ⊆ B holds if and only if T ′ =
ϱ(T ) ⊆ ϱ(B) = B′. Because our assumption β ∈ T means α′ = ϱ(β) ∈ ϱ(T ) = T ′, the
half of (c) which we assume verified thus shows that ⟨p′⟩ = ⟨E(p′, T ′), P (p′, [α′, β′]p′)⟩
if ]β,α[p∩B = ∅ and T /{α,β} ∉ p, that ⟨p′⟩ = ⟨E(p′, T ′), P (p′, [α′, β′]p′), ⊗ ⟩ if
T /{α,β} ∈ p, and that ⟨p′⟩ = ⟨E(p′, T ′), P (p′, [α′, β′]p′)⟩ if T ⊆ B.

Because E(p′, T ′) = E(p̃, ϱ(T )) coincides with the verticolor reflection of E(p, T )
and P (p′, [α′, β′]p′) = P (p̃, ϱ([α,β]p)) with that of P (p, [α,β]p) this then proves
(i)–(iii) also for the case β ∈ T . Hence, we can always assume α ∈ T in the following.
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Step 2: Defining sets B1 and B2 and partitions q, p′ and p′′. By Lemma 2.2 we
can assume that p has no upper points and that T = {◾1, ◾2}. Now, α = ◾1 or α = ◾2
and β = ◾j for some j ∈ N with j ≥ 3. Let B1 and B2 be the blocks of ◾1 and ◾2,
respectively, in p. Then, B = B1 or B = B2. (Note that possibly B1 = B2.)

Define p′ ∶= ⊗ E(p, T ) if ◾1 is ○-colored and p′ ∶= ⊗ E(p, T ) otherwise. By
construction, the lower rows of p and p′ agree in length and coloring. Because α ∈
{◾1, ◾2} /∋ β there exist unique partitions u1 ∈ {∅, , , , } and u2, either ∅ or a tensor
product of suitable partitions from { , }, such that, writing q ∶= u1⊗P (p, [α,β]p)⊗u2,
the pairing (q, p′) is composable and such that u1 ∈ { , } if and only if B1 = {◾1}.
Finally, let p′′ ∶= qp′.

Step 3: Recognizing p′′ ∈ C. Because p′′ = qp′ it suffices to prove q ∈ C and p′ ∈ C
in order to show p′′ ∈ C. Since E(p, T ) ∈ C by definition of C and since, naturally,
{ , } ⊆ C, the partition p′ is an element of C. To see q ∈ C we show that each of
the three factors u1, P (p, [α,β]p) and u2 in q is element of C. Already by definition,
P (p, [α,β]p) ∈ C. The partition u2 is included in C simply because C is a category. It
remains to treat u1. If B1 ≠ {◾1}, then u1 is ∅ or an identity and thus u1 ∈ C is once
again clear. If indeed B1 = {◾1}, then {α,β} ⊆ B and α ≠ β force B ≠ {◾1} and thus
α ≠ ◾1, which is to say α = ◾2. Hence, under this assumption {◾1} = T /{α,β} ∈ p,
implying ⊗ ∈ C by definition of C. As u1 ∈ ⟨ ⊗ ⟩ by Lemma 2.3 (a), we have thus
shown u1 ∈ C in any case. In conclusion, q ∈ C and thus p′′ ∈ C.

Step 4: Defining q′ and proving p′′ = p. In regard of p′′ ∈ C, we only need to
verify p′′ = p in order to prove Part (c). Let Pp be the set of all points of p, i.e., the
shared lower row of p, p′, q and p′′. Let q′ ∶= {B ∩ Pp ∣B ∈ q}/{∅} be the partition q
induces on Pp. Because q is projective, q′ is also the partition q induces on its upper
row if the latter is identified with Pp. Finally, let N ∶= ⋃{B ∣B ∈ q, B ⊆ Pp} be the
set of all points of Pp which belong to non-through blocks in q. By definition of the
composition operation, because p′ has no upper points and because q is projective,
N and Pp/N are subpartitions of p′′ = qp′ and, in terms of blocks,

p′′ = {B′ ∣B′ ∈ q′, B′ ⊆ N} ⊍ {B′/N ∣ B′ ∈ p′ ∨ q′}. (7)

We show that every block of p is also one of p′′. That requires a case distinction
and is most efficiently addressed by first proving two auxiliary statement.

Step 4.1: Determining the blocks of p′ ∨ q′. It is convenient to see at this point
in two steps that, in terms of blocks,

p′ ∨ q′ != {B1 ∪B2} ⊍ p/{B1,B2}. (8)

Step 4.1.1: B1 ∪B2 is a block of p′ ∨ q′. By definition of the erasing operation
and by construction of p′, in terms of blocks,

p′ = {T, (B1 ∪B2)/T} ⊍ p/{B1,B2}.
Since both T ∈ p′ and (B1∪B2)/T ∈ p′, in order to see that B1∪B2 = T ⊍((B1∪B2)/T )
is a block of p′ ∨ q′ it suffices to show that B1 ∪B2 is a subpartition of q′ and that
q′ contains a block intersecting both T and (B1 ∪B2)/T .
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By definition of the projection operation and of u1 and u2, in terms of blocks,

q′ = {[α,β]p ∩B0 ∣ B0 ∈ p, [α,β]p ∩B0 ≠ ∅}

⊍ {{γ} ∣ γ ∈ Pp/[◾1, β]p} ⊍ {
∅ if α = ◾1,
{{◾1}} if α = ◾2

(9)

Because α ∈ T = {◾1, ◾2} we can write

B1 ∪B2 = ((B1 ∩B2) ∩ {◾1}) ∪ ((B1 ∩B2) ∩ [α,β]p) ∪ ⋃
γ∈(B1∪B2)/[◾1,β]p

{γ}.

While the sets on the right hand side need not be non-empty nor pairwise distinct,
the non-empty ones are all blocks of q′. Thus, B1∪B2 is indeed a subpartition of q′.

And from our assumptions T ∩ {α,β} ≠ {α,β} and α ∈ T it follows β ∈ B/T ⊆
(B1 ∪B2)/T . Thus the block B ∩ [α,β]p of q′ intersects both T (namely in α) and
(B1 ∪B2)/T (namely in β). In conclusion, B1 ∪B2 ∈ p′ ∨ q′.

Step 4.1.2: Blocks of p other than B1 and B2 are blocks of p′ ∨ q′. Given B0 ∈ p
with B0 ∉ {B1,B2} we already know B0 ∈ p′, which is why, in order to see B0 ∈ p′∨q′,
we only need to see that B0 is a subpartition of q′. But that is clear, since α ∈ T =
{◾1, ◾2} once more allows for the decomposition

B0 = (B0 ∩ {◾1}) ∪ (B0 ∩ [α,β]p) ∪ ⋃
γ∈B0/[◾1,β]p

{γ}.

With no guarantees whatsoever that all the appearing sets in the decomposition are
non-empty or pairwise distinct, they are still all blocks of q′, though. And that is
all we needed to see.

Step 4.2: Recognizing the non-through blocks of q. Let us also recognize that the
definition of the projection operation, the definitions of u1 and u2 and the fact that
p has no upper points imply that the set of non-through blocks of q is given by

{B ∣B ∈ q, B ⊆ Pp} = {B0 ∣B0 ∈ p, B0 ⊆ [α,β]p} ⊍ {
{◾1} if B1 = {◾1}
∅ otherwise.

(10)

Note in particular that N ⊆ [◾1, β]p because α ∈ T = {◾1, ◾2}.
Step 4.3: p′′ and p have the same blocks. Let B0 ∈ p be arbitrary. We must now

make the announced case distinctions and prove B0 ∈ p′′.
Case 4.3.1: If B0 ⊆ [α,β]p, then B0 ∈ q′ by (9) and B0 ⊆ N by (10), implying

B0 ∈ p′′ by (7).
Case 4.3.2: Next, assume B0 /⊆ [α,β]p and B0 ∉ {B1,B2}. Then, B0 ∈ p′ ∨ q′ by

(8). Moreover, B0 ∩ T = ∅ since T = {◾1, ◾2} ⊆ B1 ∪B2. Thus, in particular ◾1 ∉ B0.
Consequently, B0/N = B0 by (10), no matter whether B1 = {◾1} or not. It follows
B0 ∈ p′′ by (7).

Case 4.3.3: Let B0 ∈ {B1,B2} and B0 ∩ [α,β]p = ∅. That only leaves the option
that B1 ≠ B2 = B and α = ◾2 and B0 = B1: Assuming B1 = B2 would require α ∈ B0;
if α = ◾1 were true, this would necessitate (B1 ∪ B2) ∩ [α,β]p ≠ ∅; and supposing
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α = ◾2 and B0 = B2 would imply α ∈ B0. In particular, B1 ≠ B2 excludes condition
(iii). Hence, (i) or (ii) must be true. There are now two subcases.

Case 4.3.3.1: First, suppose T /{α,β} ∈ p. Then, α = ◾2 implies B0 = B1 = {◾1} =
T /{α,β} ∈ q′ by (9). Moreover, B1 = {◾1} yields B0 = {◾1} ⊆ N by (10). Hence, in
this case B0 ∈ p′′ by (7).

Case 4.3.3.2: Alternatively, let T /{α,β} ∉ p. It follows B0 = B1 ≠ {◾1} =
T /{α,β}. Since we have assumed B0 ∩ [α,β]p = ∅, this means B0 ⊆ Pp/N by (10).
Moreover, the assumption T /{α,β} ∈ p denies (ii). As we have already excluded
(iii), this forces condition (i) to be true. It follows ]β,α[p∩B2 =]β,α[p∩B = ∅ and
thus in particular B2 ⊆ [α,β]p. By (10) this last statement ensures B2 ⊆ N . Since
B1 ∪ B2 ∈ p′ ∨ q′ by (8) and since B0 ⊆ Pp/N and B2 ⊆ N , it follows B0 = B1 =
(B1 ∪B2)/B2 = (B1 ∪B2)/N ∈ p′′ by (7).

Case 4.3.4: Lastly, let B0 ∈ {B1,B2} and ∅ ≠ B0 ∩ [α,β]p ≠ B0. This excludes
the possibility that B0 is a singleton block because B0 = {◾1} would force α = ◾2
and thus B0 ∩ [α,β]p = ∅, and because B0 = {◾2} would require α = ◾1 and thus
B0 ∩ [α,β]p = B0. Hence, (10) shows B0 ⊆ Pp/N because B0 ≠ {◾1} and B0 /⊆ [α,β]p.
We have to distinguish three subcases.

Case 4.3.4.1: If B1 = B2, then, B0 = B1 ∪ B2 ∈ p′ ∨ q′ by (8), implying B0 =
B0/N ∈ p′′ by (7).

Case 4.3.4.2: Next, let B1 ≠ B2 and T /{α,β} ∈ p. Because B0 is not a singleton
block, that implies B0 = B ≠ T /{α,β}. Moreover, (10) shows T /{α,β} ⊆ N , either
because α = ◾1 and thus B2 = T /{α,β} = {◾2} ⊆ [α,β]p or because α = ◾2 and thus
B1 = T /{α,β} = {◾1}. As B1 ∪B2 ∈ p′ ∨ q′ by (8) and because B0 = B0/N , it follows
B0 = B = (B1 ∪B2)/(T /{α,β}) = (B1 ∪B2)/N ∈ p′′ by (7).

Case 4.3.4.3: Finally, let B1 ≠ B2 and T /{α,β} ∉ p. Because this excludes (ii)
and because B1 ≠ B2 keeps (iii) from holding, (i) must be satisfied. This means
]β,α[p∩B = ∅ and thus in particular B ⊆ [α,β]p. Hence, B ⊆ N by (10). Fur-
thermore, because we have assumed B0 ∩ [α,β]p ≠ B0, we can infer B0 ≠ B. As
B1 ∪B2 ∈ p′ ∨ q′ by (8), it follows B0 = (B1 ∪B2)/B = (B1 ∪B2)/N ∈ p′′, concluding
the proof. □

One derives immediately from Lemma 5.7 that any partition which cannot be re-
duced to smaller versions of itself is necessarily erasing-minimal. While the converse
is not true, every category is generated by its erasing-minimal partitions as the next
result shows.

Proposition 5.8. Let C ⊆ P○● be an arbitrary category. For every n ∈ N0,

{p ∣p ∈ C/M, ∥p∥ ≤ n + 1} ⊆ ⟨{p ∣p ∈ C ∩M, ∥p∥ ≤ n} ⊍ (C ∩ { ⊗ })⟩.
In particular, C = ⟨C ∩ (M⊍ { ⊗ })⟩.

Proof. Let C′n ∶= ⟨{p ∣p ∈ C ∩ M, ∥p∥ ≤ n} ⊍ (C ∩ { ⊗ })⟩ for every n ∈ N0.
All partitions of sizes 0 or 1 are trivially erasing-minimal. Hence, C′0 contains all
partitions of C with those sizes. Let n ∈ N be such that all partitions of C/M of size
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n or less are elements of C′n−1 and let p ∈ C/M have n + 1 many points. We prove
p ∈ C′n.

Note that C′n−1 ⊆ C′n by definition. Hence, the induction hypothesis means that
C′n in fact contains all partitions of C with at most n many points.

By assumption, we find a turn T in p which is either a subpartition of p or for
which there exists an action (T,B,α, β) in p with ∣[α,β]p∣ < n+1

2 . By Lemma 5.7 we
infer p ∈ ⟨E(p, T ), ⟨p⟩∩{ ⊗ }⟩ in the former and p ∈ ⟨E(p, T ), P (p, [α,β]p), ⟨p⟩∩{ ⊗ }⟩
in the latter case.

Naturally, p ∈ C implies ⟨p⟩ ∩ { ⊗ } ⊆ C ∩ { ⊗ } ⊆ C′n. Moreover, the partition
E(p, T ) ∈ C has ∥E(p, T )∥ = ∥p∥ − ∣T ∣ = (n + 1) − 2 = n − 1 points and is thus an
element of C′n. Lastly, by definition of the projection operation, P (p, [α,β]p) has
size 2 ⋅ ∣[α,β]p∣. Per assumption, it thus has fewer than 2 ⋅ n+12 = n + 1 many points,
i.e., at most n many. The induction hypothesis therefore ensures P (p, [α,β]p) ∈ C′n.
In conclusion, p ∈ C′n. That completes the induction and thus the proof. □

The next result reveals helpful general properties of erasing-minimal partitions.

Lemma 5.9. Let (T,B,α, β) be an action in p ∈M.
(a) If T /{α,β} ∈ p, then the following are true:

(i) If ∥p∥ is odd, then 2 ≤ ∣B∣ ≤ 3.
(ii) If ∥p∥ is even, then 2 ≤ ∣B∣ ≤ 4.
(iii) If ∥p∥ is odd or if (∥p∥ is even and ∣B∣ ≠ 3), then B/T is consecutive.

(b) If T ⊆ B, then the following are true:
(i) If ∣B∣ = 3, then ⊗ ∈ ⟨p⟩.
(ii) If ∥p∥ is odd, then ∣B∣ = 3.
(iii) If ∥p∥ is even, then 3 ≤ ∣B∣ ≤ 4.
(iv) B/T is consecutive.

Proof. Let Pp denote the set of all points of p, let n ∶= ∣Pp∣ and let γ0 ∈ T∩{α,β}.
(a) If T /{α,β} ∈ p, then for every γ ∈ B/{γ0} both (T,B, γ0, γ) and (T,B, γ, γ0)

are actions for T . Since p ∈M they are both either size-preserving or size-increasing
for every such γ, meaning ∣[γ, γ0]p∣ ≥ n

2 and ∣[γ0, γ]p∣ ≥ n
2 . It follows

n
2 ≤ ∣[γ0, γ]p∣ ≤ n

2 + 2 (11)

because ∣[γ0, γ]p∣ = ∣Pp/]γ, γ0[p∣ = ∣Pp∣ − ∣]γ, γ0[p∣ = ∣Pp∣ − ∣[γ, γ0]p∣ + ∣{γ, γ0}∣ = n +
2 − ∣[γ, γ0]p∣ ≤ n + 2 − n

2 = n
2 + 2. Moreover, recognize that each point θ ∈ Pp/{γ0}

is uniquely determined by ∣[γ0, θ]p∣ because Pp/{γ0} is totally ordered and because
∣[γ0, θ]p∣ gives the rank of θ in this total order.

Case 1: ∥p∥ is odd. First, let there be m ∈ N such that n = 2m + 1. From (11)
it then follows m + 1 = ⌈n2 ⌉ ≤ ∣[γ0, γ]p∣ ≤ ⌊n2 ⌋ + 2 = m + 2 for all γ ∈ B/{γ0}. Hence,
∣[γ0, γ]p∣ ∈ {m + 1,m + 2} for any γ ∈ B/{γ0}. We infer ∣B∣ ≤ 3. Moreover, if ∣B∣ = 3,
then all B/T is consecutive. Of course, B/T is trivially consecutive if ∣B∣ = 2.

Case 2: ∥p∥ is even. Now, assume instead that we find m ∈ N such that n = 2m.
Then, m = n

2 ≤ ∣[γ0, γ]p∣ ≤ n
2 + 2 = m + 2 for any γ ∈ B0/{γ0} by (11). Hence,
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∣[γ0, γ]p∣ ∈ {m,m + 1,m + 2} for such γ. It follows that ∣B∣ ≤ 4 and that, if ∣B∣ = 4,
then B/T is consecutive. The same is trivially true if ∣B∣ = 2.

(b) Now suppose T ⊆ B. If ∣B∣ = 3, then, as T is a turn, E(p, T ) ∈ ⟨p⟩ has a
singleton block, implying ⊗ ∈ ⟨p⟩ by Lemma 2.3 (b).

If we let γ1 ∈ (T ∩ B)/{γ0}, then γ0 and γ1 are neighbors. Moreover, for every
γ ∈ B/T and every i ∈ {0,1} both (T,B, γ, γi) and (T,B, γi, γ) are actions for T in
p. Because p ∈M we can thus infer ∣[γ, γi]p∣ ≥ n

2 and ∣[γi, γ]p∣ ≥ n
2 for all such i and

γ. In the same way as in the proof of (a) it hence follows n
2 ≤ ∣[γi, γ]p∣ ≤ n

2 + 2 for all
i ∈ {0,1} and γ ∈ B/T .

Again, every θ ∈ Pp/T is uniquely determined by ∣[γi, θ]p∣ for already any one
i ∈ {0,1}. Here, of course, we have for γ ∈ B/T bounds for ∣[γi, θ]p∣ for both i ∈ {0,1}.
Let i1, i2 ∈ {0,1} be such that {i1, i2} = {0,1} and such that γi2 is the successor of
γi1 in p. Then, for all γ ∈ B/T , because (γi1 , γi2 , γ) is ordered in p,

∣[γi1 , γ]p∣ = ∣[γi2 , γ]p∣ + 1 (12)

because ∣[γi1 , γ]p∣ = ∣[γi1 , γi2[p⊍[γi2 , γ]p∣ = ∣[γi1 , γi2[p∣ + ∣[γi2 , γ]p∣ = ∣{γi1}∣ + ∣[γi2 , γ]p∣ =
∣[γi2 , γ]p∣ + 1.

Case 1: ∥p∥ is odd. First, let n = 2m + 1 for m ∈ N. Then, we know ∣[γij , γ]p∣ ∈
{m + 1,m + 2} for all j ∈ {1,2} and γ ∈ B/T from the proof of (a). By (12) the only
way to satisfy these conditions is that ∣[γi1 , γ]p∣ =m + 2 and ∣[γi2 , γ]p∣ =m + 1. That
means B/T is a singleton set and thus in particular consecutive.

Case 2: ∥p∥ is even. If n = 2m for some m ∈ N instead, then ∣[γij , γ]p∣ ∈ {m,m +
1,m+ 2} for all j ∈ {1,2} and γ ∈ B/T as seen in the proof of (a). Considering (12),
we can conclude from this that (∣[γi1 , γ]p∣, ∣[γi2 , γ]p∣) ∈ {(m + 2,m + 1), (m + 1,m)}.
Hence, ∣B/T ∣ ≤ 2 and B/T is consecutive (trivially so if ∣B∣ = 1). □

5.3. Improving Erasing-Minimality with Symmetry. By definition, p ∈
P○● is erasing-minimal if it has no redundant turns. But, if p is erasing-minimal,
p is still allowed to have essential and indefinite ones. The essential turns cannot
be helped. But many indefinite turns are actually “unimportant” to the generated
category ⟨p⟩ in the following sense: While we are not able to reduce p to a smaller
version by performing an action on an indefinite turn – we can find an equally-
sized version of p which has special symmetry properties and thus contains “less
information”. That is the idea behind Proposition 5.14.

Being projective or bi-projective, which we now define, are such nice symmetry
conditions. If p ∈ P○● is projective, then ∥p∥ ∈ 2N0. Consequently, if p is additionally
verticolor-reflexive, then even ∥p∥ ∈ 4N0.

Definition 5.10. (a) We call p ∈ P○● bi-projective if p is projective and
verticolor-reflexive and if every block crossing the vertical middle axis of p
is symmetric with respect to this axis.

(b) If so, then p† ∶= p↺ 1
4
∥p∥ = p↻ 1

4
∥p∥ is called the dual of p.

The next lemma motivates the upcoming definition of the improved erasing-
minimal partitions. If p ∈ P○● with n ∶= ∥p∥ is projective, then {◾1, ◾1} and {◾

n
2 ,

◾ n
2}
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are turns in p. If p is even bi-projective, then the same is true of {◾
n
4 , ◾(

n
4 +1)} and

{◾(n4 +1), ◾ n4}.

Lemma 5.11. If p ∈ M/{∅} is projective, then, 4 ≤ ∥p∥ and both {◾1, ◾1} and
{◾

1
2∥p∥,

◾ 1
2∥p∥} are indefinite turns in p. Moreover, p is a bracket or a co-bracket.

Proof. Step 1: Size bound. If n ∶= ∥p∥, then 0 < n since p ≠ ∅. Because p is
projective, n ∈ 2N0. If n = 2 were true, then p ∈ { , , , } would contain a turn
which is a subpartition, contradicting p ∈M. Hence, 4 ≤ n.

Step 2: {◾1, ◾1} is indefinite. Since p is projective, T ∶= {◾1, ◾1} is a turn in p.
We prove that T is indefinite and that p is a bracket or co-bracket. Let B ∈ p satisfy
α ∶= ◾1 ∈ B.

Step 2.1: B is not confined to T . We show B /⊆ T by contradiction. Assuming
the opposite would imply B ∈ {T,{◾1}}. If B = T were true, then T would be both
a subpartition and a turn in p, contradicting p ∈M. Similarly, if B = {◾1} were the
case, then, as p is projective, {◾1} would be a block of p as well, again making T a
subpartition. Hence, B /⊆ T .

Step 2.2: Definition of i and β. In conclusion, as p is projective, there is i ∈ ⟦n2 ⟧
with 1 < i and β ∶= ◾i ∈ B. We thus have a turn T in p, a block B ∈ p and legs
{α,β} ⊆ B with α ≠ β and ∅ ≠ {◾1} ⊆ T ∩ {α,β} ≠ {α,β}.

Step 2.3: Case distinctions. We now distinguish whether B is a through block
or a (lower) non-through block.

Case 2.3.1: B is non-through. If, first, B ⊆ [◾1, ◾
n
2 ]p, then we can choose i to be

maximal in ⟦n2 ⟧ with 1 < i and ◾i ∈ B. This choice of i (and thus β) then ensures
B ⊆ [◾1, ◾i]p = [α,β]p, which is to say ]β,α[p∩B = ∅. In other words, (T,B,α, β)
is an action in p. As p ∈M, that requires ∣[◾1, ◾i]p∣ = ∣[α,β]p∣ ≥ n

2 . Naturally, this
is only possible if i = n

2 . But then, actually, ∣[◾1, ◾i]p∣ = n
2 , making (T,B,α, β) a

size-preserving action and thus {◾1, ◾1} an indefinite turn of p. And B ⊆ [◾1, ◾
n
2 ]p

and {◾1, ◾
n
2} ⊆ B means that p is a bracket.

Case 2.3.2: B is through. Now, let B /⊆ [◾1, ◾
n
2 ]p instead. We do not need to make

any particular choice for i (and β) in this case. Rather, i can be arbitrary in ⟦n2 ⟧ with
1 < i and ◾i ∈ B. Because p is projective the assumption of B being a through block
entails T ⊆ B. Thus, (T,B,α, β) is an action in p. It follows ∣[◾1, ◾i]p∣ = ∣[α,β]p∣ ≥ n

2

from p ∈ M. That implies i = n
2 and, in particular, ∣[α,β]p∣ = n

2 , which makes
(T,B,α, β) a size-preserving action and thus T an indefinite turn in p. Moreover,
as i was arbitrary, we can actually deduce B ∩ [◾1, ◾

n
2 ]p = {◾1, ◾

n
2}. That is precisely

what it means for p to be a co-bracket.
Step 3: {◾

n
2 , ◾

n
2} is indefinite. We have shown the claim about T = {◾1, ◾1}. To

see that also {◾
n
2 ,

◾ n
2} is an indefinite turn, apply the already shown result to p̃ and

note that {◾
n
2 ,

◾ n
2} is an indefinite turn in p if and only if {◾1, ◾1} is one in p̃. □

We now define four classes of turn-minimal partitions with special symmetry
properties. In one case we make the non-existence of indefinite turns other than the
ones shown to exist in Lemma 5.11 a criterion.
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Definition 5.12. Let p ∈M be arbitrary.
(a) We say p ∈ R1 if p has no turns and no upper points.
(b) We say p ∈ R2 if p has turns but none which are indefinite and if p has no

upper points.
(c) We say p ∈ R3 if p is projective and if T ∩{◾1, ◾1, ◾

1
2∥p∥,

◾ n
2 ∥p∥} ≠ ∅ for every

indefinite turn T of p.
(d) We say p ∈ R4 if p is bi-projective.
(e) Write R ∶= ⋃4

i=1 Ri.

The following result is crucial to reducing partitions C ⊆ P○● to their sets C ∩ R
in the ensuing Proposition 5.14.

Lemma 5.13. If p ∈M/{∅} is projective and p ∉ R3, then ∥p∥ ∈ 4N and there is an
action (T,B,α, β) in p such that (α,β) is (◾ 14∥p∥, ◾

1
4∥p∥) or (◾(

1
4∥p∥+1), ◾(14∥p∥+1)).

Proof. Since p is projective, n ∶= ∥p∥ ∈ 2N and p has at least two indefinite turns
by Lemma 5.11. Per assumption p ∉ R3 we hence find an indefinite turn T with
T ∩{◾1, ◾1, ◾

n
2 ,

◾ n
2} = ∅. By definition there exists a size-preserving action (T,B,α, β).

In particular, ∣[α,β]p∣ = n
2 . We show in four steps that (α,β) is as claimed.

Step 1: [α,β]p is not contained in one row. Suppose there existed i, j ∈ ⟦n2 ⟧ with
i < j such that (α,β) = (◾i, ◾j) or (α,β) = (◾j, ◾i). If so, then j − i + 1 = ∣[α,β]p∣ = n

2

would require j = i+ n
2 −1 ≥ 1+ n

2 −1 = n
2 , which is to say j = n

2 , and thus i = j− n
2 +1 =

n
2 − n

2 + 1 = 1. We would conclude (α,β) = (◾1, ◾
n
2 ) or (α,β) = (◾ n2 , ◾1). That would

contradict T ∩ {◾1, ◾1, ◾
n
2 ,

◾ n
2} = ∅ because T ∩ {α,β} ≠ ∅.

Step 2: α and β lie on different rows. Next, assume that we could find i, j ∈ ⟦n2 ⟧
with i < j such that (α,β) = (◾j, ◾i) or (α,β) = (◾i, ◾j). It would follow n

2 + (n2 − i +
1) + j = ∣[α,β]p∣ = n

2 , which is to say n + j − i + 1 = n
2 , i.e., j = i − n

2 − 1. As i ≤ n
2 and

1 ≤ j, we would infer 1 ≤ j ≤ n
2 − n

2 − 1 = −1, a contradiction.
Step 3: α and β are counterparts. We hence find i, j ∈ ⟦n2 ⟧ such that (α,β) is

(◾i, ◾j) or (◾i, ◾j). If (α,β) = (◾i, ◾j), then n
2 = ∣[α,β]p∣ = (n2 − i+1)+(n2 −j+1), which

is to say i+ j = n
2 + 2. On the other hand, if (α,β) = (◾i, ◾j), then n

2 = ∣[α,β]p∣ = i+ j.
In particular, i+ j ∈ {n2 , n2 +2} always. We prove i = j by assuming i ≠ j and deriving
a contradiction in seven steps.

Step 3.1: B would have evenly many legs. Because α and β are legs of B located
on different rows, B is a through block. In projective partitions, through blocks
are symmetrical with respect to the horizontal axis. In particular, they have even
numbers of legs. It follows that ∣B∣ is even.

Step 3.2: The counterparts of α and β would also be legs of B. The symmetry
of B with respect to the horizontal axis and our assumption {α,β} ⊆ B moreover
imply that also the counterparts of α and β are legs of B, i.e., that {◾i, ◾i, ◾j ◾j} ⊆ B.
In particular, ∣B∣ ≥ 4 because i ≠ j.

Step 3.3: α would not be the subsequent leg of B after β. If ]β,α[p∩B = ∅ were
true, then because {α,β} ⊆ B and ]β,α[p∩B = ∅ and because {◾i, ◾i, ◾j ◾j} ⊆ B by
Step 3.2, (α,β) would be given by (◾min{i, j}, ◾min{i, j}) or (◾max{i, j}, ◾max{i, j}).
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However, that would imply i = j, contradicting our assumption i ≠ j. Thus, we must
have ]β,α[∩B ≠ ∅ instead.

Step 3.4: B would consist only of α and β and their counterparts and B/T
would be consecutive. Our assumption that (T,B,α, β) is an action in p requires
that ]β,α[p∩B = ∅ or T /{α,β} ∈ p or T ⊆ B. As we have already excluded the first
of the three, one of the latter two must be true. Since n is even by Step 3.1 and
since 4 ≤ ∣B∣ by Step 3.2, we can conclude that ∣B∣ = 4 and that B/T is consecutive
by Lemma 5.9. As {◾i, ◾i, ◾j, ◾j} ⊆ B by Step 3.2 and as i ≠ j, the conclusion ∣B∣ = 4
in fact ensures B = {◾i, ◾i, ◾j, ◾j}.

Step 3.5: T would be contained in B. We show T ⊆ B by contradiction. Because
we assume T ∩ {◾1, ◾1, ◾

n
2 ,

◾ n
2} = ∅, in particular, T ⊆] ◾1, ◾

n
2 [p or T ⊆] ◾ n2 , ◾1[p. There-

fore, supposing T /⊆ B requires, because T ∩ B ≠ ∅ and because B = {◾i, ◾i, ◾j, ◾j}
by Step 3.4, that the set B/T is one of the four {◾i, ◾j, ◾j}, {◾j, ◾j, ◾i}, {◾i, ◾i, ◾j}
and {◾j, ◾i, ◾i}. If so, then B/T by Step 3.4 being consecutive demands that {i, j}
is {1,2} or {n2 , n2 −1}. However, then i + j ∈ {n2 , n2 +2} implies n ∈ {2,6}. As n = 2
contradicts p ∈ M because p is projective, we must have n = 6. Though, then,
T ∩ {◾1, ◾1, ◾

n
2 ,

◾ n
2} = ∅ implies T ⊆ {◾2, ◾2}, contradicting that T is a turn.

Step 3.6: α and the counterpart of β would be neighbors. From T ⊆] ◾1, ◾
n
2 [p or

T ⊆] ◾ n2 , ◾1[p and from T ⊆ B = {◾i, ◾i, ◾j, ◾j} by Steps 3.4 and 3.5 it follows that
{T,B/T} = {{◾i, ◾j},{◾i, ◾j}}. Our knowledge from Step 3.4 that B/T is consecutive
thus allows us to infer that j = i + 1 or i = j + 1.

Step 3.7: p would not be erasing-minimal. Because i + j ∈ {n2 , n2 + 2} we can
conclude 2i+1 ∈ {n2 , n2 +2} or 2j +1 ∈ {n2 , n2 +2} from j = i+1 or i = j +1. This shows
that n ∈ 4{i, j}+{2,6} and that {i, j} is given by {n4 − 1

2 ,
n
4 + 1

2} or {n4 + 1
2 ,

n
4 + 3

2}.
Since p is projective and since T ∈ {{◾i, ◾j},{◾i, ◾j}} by Step 3.6, T1 ∶= {◾i, ◾j} is

a turn in p. Hence, (T1,B,α1, β1) is an action in p for (α1, β1) = (◾(n4 − 1
2), ◾(

n
4 − 1

2))
or (α1, β1) = (◾(

n
4 + 3

2),
◾(n4 + 3

2)). The assumption p ∈ M demands n
2 ≤ ∣[α1, β1]p∣,

meaning n
2 ≤ 2(n2 − (n4 + 3

2)+ 1) = 2(n4 − 1
2) = n

2 − 1 or n
2 ≤ 2(n4 − 1

2) = n
2 − 1, which is the

contradiction we sought.
Step 4: α and β have the right position. As i = j by Step 3, we infer 2i ∈ {n2 , n2+2},

implying n ∈ {4i,4i + 4}. That proves n ∈ 4N and i = j ∈ {n4 , n4 + 1}, as claimed. □

The following proposition is the central result of this section, allowing us to
reconstruct any category from its set of special erasing-minimal partitions.

Proposition 5.14. C = ⟨C ∩ (R⊍ { ⊗ })⟩ for every category C ⊆ P○●.

Proof. Denote by C′ the right-hand side of the claimed identity. By Proposi-
tion 5.8 it suffices to show C ∩M ⊆ C′, which we prove by induction over partition
size. The empty partition ∅ is the only element of C ∩M with size 0 and naturally
included in C′. All elements of C ∩M of size 1 have no turns and are thus elements
of ⟨C ∩ R1⟩ ⊆ C′ by Lemma 2.2. Let n ∈ N, let 2 ≤ n, let C′ include all elements of
C ∩M with sizes up to n − 1, let p0 ∈ C ∩M and let ∥p0∥ = n. We show p0 ∈ C′.
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Note that, by Proposition 5.8, the induction hypothesis means that C′ actually
contains all elements of C/M with up to n many points. It follows that, in particular,
C′ includes all partitions of C of size n − 1 or less.

Step 1: Devolving the problem p0 ∈ C′ to the problem p1 ∈ C′. If p0 has no turns,
then p0 is once again a rotation of an element of C ∩ R1 and thus included in C′ by
Lemma 2.2. Hence, let p0 have at least one turn.

If none of the turns of p0 are indefinite, then p0 ∈ ⟨C ∩ R2⟩ ⊆ C′ by Lemma 2.2.
Hence, let p0 have at least one indifferent turn.

By assumption, we find an action (T0,B0, α0, β0) for T0 in p with ∣[α0, β0]p∣ = n
2 .

Lemma 5.7 tells us p0 ∈ ⟨E(p0, T0), P (p0, [α0, β0]p0), ⟨p0⟩ ∩ { ⊗ }⟩. Hence, in order
to prove p0 ∈ C′ it suffices to show {E(p0, T0), P (p0, [α0, β0]p0)} ⊆ C′. The partition
E(p0, T0) ∈ C has ∥p0∥−∣T0∣ = n−2 points and is thus an element of C′ by the induction
hypothesis. Hence, if we can show p1 ∶= P (p0, [α0, β0]p0) ∈ C′, then also p0 ∈ C′.

Step 2: Devolving the problem p1 ∈ C′ to the problem p2 ∈ C′. We have p1 ∈ C by
Lemma 2.5. Moreover, by definition of the projection operation, ∥p1∥ = 2⋅∣[α0, β0]p∣ =
2 ⋅ n2 = n. For that reason, if p1 ∉M, then p1 ∈ C′ by the induction hypothesis. Hence,
we can assume p1 ∈M. Because p1 is projective, it has turns and some of its turns
are indefinite by Lemma 5.11.

If every indefinite turn of p1 intersects {◾1, ◾1, ◾
n
2 ,

◾ n
2}, then p1 ∈ C ∩ R3 ⊆ C′.

Therefore, we can assume the opposite.
By Lemma 5.13 then, n ∈ 4N and there exists an action (T1,B1, α1, β1) in p1

such that (α1, β1) is given by (◾ n4 , ◾
n
4 ) or (◾(

n
4 +1), ◾(n4 +1)). Lemma 5.7 hence shows

p1 ∈ ⟨E(p1, T1), P (p1, [α1, β1]p1), ⟨p1⟩ ∩ { ⊗ }⟩. Once again, E(p1, T1) ∈ C has ∥p1∥ −
∣T1∣ = n − 2 points and is thus an element of C′ by the induction hypothesis. Hence,
in order to prove p1 ∈ C′, it remains to prove that p2 ∶= P (p1, [α1, β1]p1) ∈ C′.

Step 3: Proving p2 ∈ C′. Of course, p2 ∈ C by Lemma 2.5. And, once more,
∥p2∥ = 2 ⋅ ∣[α1, β1]p1 ∣ points. If (α1, β1) = (◾ n4 , ◾

n
4 ), then ∣[α1, β1]p1 ∣ = 2 ⋅ n4 = n

2 .
Likewise, if (α1, β1) = (◾(

n
4 +1), ◾(n4 +1)), then ∣[α1, β1]p1 ∣ = 2(n2 − (n4 + 1) + 1) = n

2 .
Thus, ∥p2∥ = n in any case. Consequently, if p2 ∉M, then p2 ∈ C′ by the induction
hypothesis. Hence, we can assume p2 ∈M.

Because p1 = P (p0, [α0, β0]p0) is projective and because α1 and β1 are counterparts
of each other, p2 = P (p1, [α1, β1]p1) is bi-projective. Being thus both erasing-minimal
and bi-projective, p2 is an element of C∩R4 ⊆ C′. That is what we needed to see. □

In the ensuing final lemma of this section we draw some particular conclusions
about the sets C∩R for hyperoctahedral categories C ⊆ P○● which we will need later.

Lemma 5.15. Let C ⊆ P○● be a hyperoctahedral category and let p ∈ C ∩M have no
indefinite turns. Then, there are no turns T in p such that T ⊆ B for some B ∈ p.

Proof. We prove the claim by contradiction. Let B ∈ p and {η, θ} ⊆ B be such
that T ∶= [η, θ]p is a turn in p. We show ∣B∣ = 3. As E(p, T ) then has a singleton
block, contradicting the assumption of C being hyperoctahedral by Lemma 2.3 (b),
that is sufficient to prove the claim.
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Because p ∈M the turn T is not a subpartition of p, i.e., B/T ≠ ∅. Let γ ∈ B/T
be arbitrary. Both (T,B, θ, γ) and (T,B, γ, η) are actions in p. Since p ∈ M has
no indefinite turns, T must be essential. It follows that (T,B, θ, γ) and (T,B, γ, η)
are size-increasing. Let Pp be the set of all points of p and let n ∶= ∣Pp∣. Then,
∣[θ, γ]p∣ > n

2 and ∣[γ, η]p∣ > n
2 . That θ is the successor of η hence implies

∣[θ, γ]p∣ = ∣Pp/]γ, θ[p∣ = ∣Pp∣ − ∣]γ, θ[p∣ = n − ∣]γ, η]p∣ = n + 1 − ∣[γ, η]p∣ < n
2 + 1.

By n
2 < ∣[θ, γ]p∣ < n

2 + 1 we infer that n is odd and that ∣[θ, γ]p∣ = ⌈n2 ⌉. In particular,
as Pp/T is totally ordered the condition ∣[θ, γ]p∣ = ⌈n2 ⌉ determines γ ∈ Pp/T uniquely.
Because γ was arbitrary, B has three legs. □

6. Generators

Employing the auxiliary results from Section 5, we will next showWR = ⟨πc ∣ c ∈ R⟩
for every R ∈ R (Theorem 6.24), where πc are defined in Definition 6.9. As in Sec-
tion 4 it is best to first prove this claim for the special caseW =W⋃R (Theorem 6.19).

6.1. Generators of W. We determine the set W ∩ R (see Proposition 6.18).
By Proposition 5.14 this yields a generator of W (see Theorem 6.19).

6.1.1. Existence of Turns. As a first preparatory step the next two results are
concerned with the existence of certain actions of the third kind in the sense of
Definition 5.2 (c) in partitions of W .

Lemma 6.1. For all p ∈W, all A ∈ p and all {α, γ} ⊆ A with α ≠ γ, with ]α, γ[p≠ ∅
and with ]α, γ[p∩A = ∅ there exist B ∈ p and a turn T in p such that T ⊆]α, γ[p∩B.

Proof. By assumption ]α, γ[p≠ ∅ there exists a block B1 of p with ]α, γ[p∩B1 ≠
∅. Because ]α, γ[p∩A = ∅, we are assured that A ≠ B1. As p ∈W the block B1 is non-
interferent with A in p. Hence, σp([α, γ]p ∩B1) = 0 and, consequently, in particular,
∣[α, γ]p ∩B1∣ ≡2 0. Therefore, ]α, γ[p∩B1 ≠ ∅ actually means ∣[α, γ]p ∩B1∣ ≥ 2 or, in
fact, ∣]α, γ[p∩B1∣ ≥ 2 since A ≠ B1. We hence find {α1, γ1} ⊆]α, γ[p∩B1 with α1 ≠ γ1
and, necessarily, ∣[α1, γ1]p∣ < ∣[α, γ]p∣. If ∣[α1, γ1]p∣ = 2, then Proposition 4.13 proves
σp({α1, γ1}) = 0 as ]α1, γ1[p∩B1 = ∅, meaning we have already discovered our turn
T ∶= [α1, γ1]p and block B ∶= B1.

Should ]α1, γ1[p≠ ∅ instead, we find ourselves in the initial situation with B1

playing the role of A. By repeating the same argument we find B2 ∈ p and {α2, γ2} ⊆
]α1, γ1[p∩B1 with α2 ≠ γ2 and ∣[α2, γ2]p∣ < ∣[α1, γ1]p∣ < ∣[α, γ]p∣. After a finite number
n ∈ N of steps we necessarily arrive at a block B ∶= Bn and legs {αn, γn} ⊆]α, γ[p∩Bn

where T ∶= [αn, γn]p has exactly two elements. Once more Proposition 4.13 ensures
σp({αn, γn}) = 0, making T ⊆]α, γ[p∩B the turn we sought. □

Lemma 6.2. If p ∈W/{∅}, then there exist B ∈ p and a turn T in p with T ⊆ B.

Proof. The assumption p ≠ ∅ ensures that p has at least one block A. Moreover,
σp(A) = 0 because p ∈W . In particular, ∣A∣ ≥ 2. Consequently, there exist {α, γ} ⊆ A
with α ≠ γ and, especially, ]α, γ[p∩A = ∅. Two situations are conceivable.
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Case 1: If ]α, γ[p= ∅ for all such α and γ, then A is the only block of p and,
according to Proposition 4.13, its legs alternate in color. Hence, B ∶= A and T ∶=
{α, γ} for any such α and γ fit the bill.

Case 2: If instead there do exist {α, γ} ⊆ A with α ≠ γ, with ]α, γ[p≠ ∅ and
with ]α, γ[p∩A = ∅, then we can find B ∈ p and a turn T in p with T ⊆]α,β[p∩B by
Lemma 6.1. That concludes the proof. □

6.1.2. Projective Erasing-Minimal Partitions of W. As an intermediate step we
need to see which restrictions being a member of W imposes on an erasing-minimal
and projective partition.

Lemma 6.3. If p ∈W, if B ∈ p and ∣B∣ = 2, then B is a connected component of
p.

Proof. Let A ∈ p, let A ≠ B and let A and B cross in p. We derive a con-
tradiction. We find {α1, α2} ⊆ A and {β1, β2} ⊆ B such that (α1, β1, α2, β2) is an
ordered tuple of pairwise distinct points of p. Since ∣B∣ = 2, actually, B = {β1, β2}.
Hence, [α1, α2]p ∩ B = {β1} and thus, in particular, σp([α1, α2]p ∩ B) ≠ 0. Be-
cause {α1, α2} ⊆ A ≠ B and α1 ≠ α2 the assumption p ∈ W however requires
σp([α1, α2]p ∩B) = 0. That is the contradiction we sought. □

Lemma 6.4. If p ∈ (W ∩M)/{∅} is projective and B ∈ p has two neighboring legs,
∥p∥ ∈ 4N and B = {◾1, ◾1, ◾

1
2∥p∥,

◾ 1
2∥p∥} or B = {

◾ 1
4∥p∥, ◾

1
4∥p∥, ◾(

1
4∥p∥+1), ◾(14∥p∥+1)}.

Proof. Let n ∶= ∥p∥. We suppose B ≠ {◾1, ◾1, ◾
n
2 ,

◾ n
2} and show in three steps

that n ∈ 4N and that B = {◾ n4 , ◾
n
4 , ◾(

n
4 +1), ◾(n4 +1)}.

Step 1: B consists of two disjoint turns. Let β2 be the successor of β1 in p and
let T ∶= {β1, β2} ⊆ B. Because p ∈W and {β1, β2} ⊆ B and ]β1, β2[p∩B = ∅, Proposi-
tion 4.13 assures us that σp(T ) = σp({β1, β2}) = 0. In other words, T is a turn in p.
Since p ∈W there are no singleton blocks in p. Lemma 2.3 (b) therefore guarantees
⊗ ∉ ⟨p⟩. For that reason, by Lemma 5.9 (b) the fact T ⊆ B allows us to conclude

that ∣B∣ = 4 and that B/T is consecutive. A second application of Proposition 4.13
lets us infer σp(B/T ) = 0. Hence, B consists of two disjoint turns T and B/T .

Step 2: B is a through block. We assume that there is a row R of p with B ⊆ R
and obtain a contradiction. Let ≤ be the total order of R, let T1, T2 ∈ {T,B/T} be
such that T1 < T2, let γ1 ∶= max≤(T1) and let γ2 ∈ T2 be arbitrary. This definition
ensures [γ1, γ2]p ⊊ R because min≤(T1) ∈ R/[γ1, γ2]p. Consequently, ∣[γ1, γ2]p∣ <
∣[◾1, ◾

n
2 ]p∣ = ∣[

◾ n
2 ,

◾1]p∣ = n
2 . However, per construction, (T1,B, γ1, γ2) is an action in

p. The assumption p ∈M therefore implies ∣[γ1, γ2]p∣ ≥ n
2 , a contradiction. Hence, B

is indeed a through block.
Step 3: B is of the claimed form. Because p is projective and because B is a

through block by Step 2, the block B is symmetric with respect to the horizontal
axis. Since B consists of two disjoint turns by Step 1 and since we assume B ≠
{◾1, ◾1, ◾

n
2 ,

◾ n
2} this allows us to conclude B = TL ⊍ TU , where TL ∶= {◾i, ◾(i+1)} and

TU ∶= {◾(i+1), ◾i} for some i ∈ ⟦n2 −1⟧. It remains to proven that n ∈ 4N and i = n
4 .
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Because T and B/T are consecutive, {T,B/T} = {TL, TU}. It follows in par-
ticular that TL is a turn with TL ⊆ B. Consequently, both (TL,B, ◾i, ◾i) and
(TL,B, ◾(i+1), ◾(i+1)) are actions in p. The assumption p ∈ M hence implies
2i = ∣[◾i, ◾i]p∣ ≥ n

2 and n − 2i = 2(n2 − (i + 1) + 1) = ∣[◾(i+1), ◾(i+1)]p∣ ≥ n
2 . We in-

fer i ≥ n
4 from the first and i ≤ n

4 from the second inequality. Thus, we have shown
n ∈ 4N and i = n

4 , which is what we needed to see. □

Lemma 6.5. If p ∈W ∩M is projective, then all blocks of p are through blocks.

Proof. We can assume p ≠ ∅. Because p is projective, the claim that all blocks
of p are through blocks is equivalent to p having no lower non-through blocks. We
assume that there exists a lower non-through block B1 of p and derive a contra-
diction. Let n ∶= ∥p∥, let i1 ∈ ⟦n2 ⟧ be such that ◾i1 is the leftmost leg of B1. The
assumption p ∈W guarantees σp(B1) = 0 and thus ∣B1∣ ≡2 0, ensuring B1/{◾i1} ≠ ∅.
Let i2 ∈ ⟦n2 ⟧ be minimal with the properties i1 < i2 and ◾i2 ∈ B1.

Step 1: ◾i1 and ◾i2 would not be neighbors. If i2 = i1 + 1 were true, then B1

would contain two neighboring legs. It would follow by Lemma 6.4 that n ∈ 4N and
B1 = {◾1, ◾1, ◾

n
2 ,

◾ n
2} or B1 = {◾ n4 , ◾

n
4 , ◾(

n
4 +1), ◾(n4 +1)}. In particular, B1 would be

a through block, in contradiction to the assumption that B1 is lower non-through.
Hence, i1 + 1 < i2.

Step 2: ] ◾i1, ◾i2[p would include a turn T properly contained in a block B. Be-
cause {◾i1, ◾i2} ⊆ B1 and ] ◾i1, ◾i2[p∩B1 = ∅ and because ] ◾i1, ◾i2[p≠ ∅ by Step 1,
Lemma 6.1 ensures that there exist B ∈ p and a turn T in p with T = T∩B ⊆] ◾i1, ◾i2[p.
Moreover, B ≠ T because the premise p ∈M forbids T ∈ p.

Step 3: B would be a through block consisting of the central turns on both rows.
By Step 2, the block B has two neighboring legs (in T ). Hence, n ∈ 4N and B =
{◾1, ◾1, ◾

n
2 ,

◾ n
2} or B = {◾ n4 , ◾

n
4 , ◾(

n
4 +1), ◾(n4 +1)} by Lemma 6.4. Since T ⊆] ◾i1, ◾i2[p⊆ B

excludes the first possibility, B = {◾ n4 , ◾
n
4 , ◾(

n
4 +1), ◾(n4 +1)} must be true.

Step 4: p would not be an element of W. As B1 is assumed lower non-through,
as B = {◾ n4 , ◾

n
4 , ◾(

n
4 +1), ◾(n4 +1)} by Step 3, as T = {◾(

n
4 +1), ◾(n4 +1)} ⊆] ◾i1, ◾i2[p by

Step 2 and as ] ◾i1, ◾i2[p∩B1 = ∅ by definition we can infer [◾ n4 , ◾
n
4 ]p ∩B1 = {◾i1}. In

particular, σp([◾ n4 , ◾
n
4 ]p∩B1) ≠ 0. However, p ∈W and {◾ n4 , ◾

n
4} ⊆ B ≠ B1 and ◾ n

4 ≠ ◾
n
4

demand σp([◾ n4 , ◾
n
4 ]p ∩B1) = 0. That is the contradiction we sought. □

Lemma 6.6. If p ∈W ∩M is projective, then ∥p∥ ∈ 4N0 and, provided p ≠ ∅, both
{◾1, ◾1, ◾

1
2∥p∥,

◾ 1
2∥p∥} ∈ p and {◾ 14∥p∥, ◾

1
4∥p∥, ◾(

1
4∥p∥+1), ◾(14∥p∥+1)} ∈ p.

Proof. Since p is erasing-minimal and projective, p is a co-bracket or a bracket
by Lemma 5.11. In other words, if n ∶= ∥p∥ > 0 and B1 ∈ p and ◾1 ∈ B1, then ◾

n
2 ∈ B1,

plus ] ◾1, ◾
n
2 [p∩B1 = ∅ or B1 ⊆ [◾1, ◾

n
2 ]p. As p only has through blocks by Lemma 6.5,

the latter cannot be true. Hence, ] ◾1, ◾
n
2 [p∩B1 = ∅ must hold. As p is projective,

only the two options B1 = {◾1, ◾
n
2} and B1 = {◾1, ◾1, ◾

n
2 ,

◾ n
2} remain. Of these, the

first is excluded by B1 being a through block by Lemma 6.5. We have thus shown
the first half of the claim.
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If n = 4, then the two blocks in the assertion coincide and there is nothing left to
show. Hence, let n > 4 from now on. It follows ] ◾1, ◾

n
2 [p≠ ∅. Since also {◾1, ◾

n
2} ⊆ B1

and ] ◾1, ◾
n
2 [p∩B1 ≠ ∅, Lemma 6.1 guarantees the existence of B ∈ p and turn T

in p such that B ≠ B1 and T ⊆] ◾1, ◾
n
2 [p∩B. In particular, B has two neighboring

legs. Lemma 6.4 thus allows us to conclude B = {◾ n4 , ◾
n
4 , ◾(

n
4 +1), ◾(n4 +1)} because

B ≠ B1 = {◾1, ◾1, ◾
n
2 ,

◾ n
2}. That concludes the proof. □

Lemma 6.7. If p ∈W ∩M is projective, then p has no pair blocks.

Proof. We let B ∈ p and prove ∣B∣ > 2 by contradiction. Because p ∈ W is
erasing-minimal and projective, B is a through block by Lemma 6.5. Because p is
projective and because we assume ∣B∣ = 2, there exists i ∈ ⟦n2 ⟧ such that B = {◾i, ◾i}.

Because p ∈W is erasing-minimal and projective, 1 ≠ n
2 and B1 ∶= {◾1, ◾1, ◾

n
2 ,

◾ n
2} ∈

p by Lemmata 5.11 and 6.5. We infer B ≠ B1 because ∣B1∣ = 4 ≠ 2 = ∣B∣. In
consequence, 1 < i < n

2 because B ∩B1 = ∅. Thus, B and B1 cross in p. However, B
is a connected component of p ∈W by Lemma 6.3 because ∣B∣ = 2. □

Lemma 6.8. If p ∈W ∩M is projective, any B ∈ p other than {◾1, ◾1, ◾
1
2∥p∥,

◾ 1
2∥p∥}

and {◾ 14∥p∥, ◾
1
4∥p∥, ◾(

1
4∥p∥+1), ◾(14∥p∥+1)} crosses these two and has four legs.

Proof. We can assume n ∶= ∥p∥ > 0. As p ∈ W ∩M is projective, n ∈ 4N and
B1 ∶= {◾1, ◾1, ◾

n
2 ,

◾ n
2} and B2 ∶= {◾ n4 , ◾

n
4 , ◾(

n
4 +1), ◾(n4 +1)} are blocks of p by Lemma 6.6.

For the same reason, B is through by Lemma 6.5. As such, B crosses B1.
Moreover, p ∈W ∩M being projective ensures ∣B∣ > 2 by Lemma 6.7. Since p is

projective, it follows that there exist i1, i2 ∈ ⟦n2 ⟧ such that i1 ≠ i2 and {◾i1, ◾i1, ◾i2, ◾i2} ⊆
B. Let i1 and i2 be arbitrary with these properties and with ] ◾i1, ◾i2[p∩B = ∅. Be-
cause we assume B ≠ B1 and B ≠ B2, Lemma 6.4 guarantees ] ◾i1, ◾i2[p≠ ∅.

By Lemma 6.1 we find B′ ∈ p and a turn T in p such that B ≠ B′ and T ⊆
] ◾i1, ◾i2[p∩B′. Because B′ has two neighboring legs, Lemma 6.4 assures us that
B′ ∈ {B1,B2}. And T ⊆] ◾i1, ◾i2[p∩B′ narrows this down to B′ = B2. It follows in
particular i1 < n

4 < n
4 + 1 < i2. Thus, we have shown that any two subsequent lower

legs of B must lie on opposite sides of T = {◾
n
4 , ◾(

n
4 +1)}. But this can be true for

at most one pair of subsequent legs. Thus, B = {◾i1, ◾i1, ◾i2, ◾i2} since i1 and i2 were
arbitrary. In particular, B crosses B2. □

6.1.3. The Partitions πc. We introduce a family of partitions πc and study some
of their properties in preparation for determining W ∩R.

Definition 6.9. For all k ∈ N and c ∶ ⟦k⟧→ {○, ●} define πc to be the element of
P○● which has 2k lower and 2k upper points, each of whose rows is colored left-to-
right c1, c2, . . . , ck−1, ck, ck, ck−1, . . . , c2, c1, and whose blocks are {{◾j, ◾j, ◾ϱ(j),

◾
ϱ(j)} ∣

j ∈ ⟦k⟧}, where ϱ ∶ ⟦2k⟧→ ⟦2k⟧, i↦ 2k − i + 1.
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c1 c2 ck−1 ck ck ck−1 c2 c1

c1 c2 ck−1 ck ck ck−1 c2 c1

. . . . . .

Lemma 6.10. {πc ∣ c ∈ ⋃R} ⊆M.

Proof. Let k ∈ N and c ∶ ⟦k⟧ → {○, ●}, let ϱ ∶ ⟦2k⟧ → ⟦2k⟧, i ↦ 2k − i + 1 and for
every j ∈ ⟦k⟧ let Bj ∶= {◾j, ◾j, ◾ϱ(j),

◾
ϱ(j)}. Let (T,B,α, β) be an action in πc. We

prove ∣[α,β]πc ∣ ≥ 2k. Because πc is projective we can assume T ∩ [◾1, ◾2k]πc ≠ ∅. In
fact, since πc is even bi-projective, no generality is lost in assuming T ∩[◾1, ◾k]πc ≠ ∅.
Let j ∈ ⟦k⟧ be such that B = Bj. We distinguish three cases.

Case 1: Suppose T = {◾1, ◾1}. Since T ⊆ B1 and T ∩B ≠ ∅ this requires j = 1.
Consequently, ∣[α,β]πc ∣ is one of the numbers ∣[◾1, ◾2k]πc ∣ = ∣[◾2k, ◾1]πc ∣ = 2k + 2
or ∣[◾1, ◾2k]πc ∣ = ∣[◾1, ◾2k]πc ∣ = ∣[◾2k, ◾1]πc ∣ = ∣[◾2k, ◾1]πc ∣ = 2k + 1 or ∣[◾1, ◾2k]πc ∣ =
∣[◾2k, ◾1]πc ∣ = 2k. Thus we have shown ∣[α,β]πc ∣ ≥ 2k in this case.

Case 2: If T = {◾k, ◾(k+1)}, then T ⊆ Bk requires j = k and a computation
analogous to the one in Case 1 yields ∣[α,β]πc ∣ ≥ 2k.

Case 3: Now, let T ⊆ [◾1, ◾k]πc . Because ∣Bj ∩ [◾1, ◾k]πc ∣ = 1 we know T /⊆ B.
And since πc has no singleton blocks, we must then have ]β,α[p∩Bj = ∅. Moreover,
{α,β} ∩ T ≠ ∅ ensures ◾j ∈ {α,β}. In consequence, ∣[α,β]πc ∣ is one of the numbers
∣[◾j, ◾j]πc ∣ = 2⋅(2k−j+1) ≥ 2⋅(2k−k+1) = 2k+2 or ∣[◾ϱ(j), ◾j]πc ∣ = (2k−ϱ(j)+1)+2k+j =
2k + 2j ≥ 2k + 2. Thus, ∣[α,β]πc ∣ ≥ 2k always. That concludes the proof. □

Lemma 6.11. {π○●, π●○} ⊆ R3.

Proof. For every c ∈ {○●, ●○} the partition πc is projective. Because the total set
of points of πc is given by {◾1, ◾1, ◾2, ◾2} any indefinite turn T of p trivially satisfies
T ∩ {◾1, ◾1, ◾2, ◾2} ≠ ∅. Hence, πc ∈ R3. □

Lemma 6.12. {πc ∣ c ∈ ⋃R} ⊆ R4.

Proof. Per definition, π is biprojective. Thus, Lemma 6.10 proves the claim.
□

Lemma 6.13. {πc ∣ c ∈ ⋃R} ⊆W.

Proof. Let k ∈ N and c ∶ ⟦k⟧ → {○, ●} be arbitrary. For every j ∈ ⟦k⟧ let
Bj ∶= {◾j, ◾j, ◾ϱ(j),

◾
ϱ(j)}, where ϱ ∶ ⟦2k⟧→ ⟦2k⟧, i↦ 2k − i + 1.

Step 1: Total color sum. Because πc is projective, Σ(πc) = 0.
Step 2: Blocks respect 0-parts. By [MW21b, Lemma 3.1], in order to prove

πc ≤∆0πc it suffices to prove for every j ∈ ⟦k⟧ that δπc(α,β) = 0 for all α,β ∈ Bj with
α ≠ β and ]α,β[πc∩Bj = ∅. Since πc is projective, counterparts always have color
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distance 0 from each other. For the same reason, δπc(◾j, ◾ϱ(j)) = −δπc(
◾
ϱ(j), ◾j) for

every j ∈ ⟦k⟧. Hence, we can confine ourselves to proving δπc(◾j, ◾ϱ(j)) = 0 for every
j ∈ ⟦k⟧. Since σπc({◾k, ◾(k+1)}) = 0 per definition of πc, trivially, δπc(◾k, ◾(k+1)) =
σπc(∅) = 0. And for all j ∈ ⟦k−1⟧, because πc being verticolor-reflexive ensures
σπc([◾ϱ(k), ◾ϱ(j)[πc) = −σπc(] ◾j, ◾k]p), we find

δπc(◾j, ◾ϱ(j)) = σπc(] ◾j, ◾ϱ(j)[πc) = σπc(] ◾j, ◾k]p) + σπc([◾ϱ(k), ◾ϱ(j)[πc) = 0.

Hence, πc ≤∆0πc.
Step 3:Maximal non-interference. Again, it is enough to show σπc([α, γ]πc∩B) =

0 for all {A,B} ⊆ p with A ≠ B and all {α, γ} ⊆ A with α ≠ β and ]α, γ[p∩A = ∅. For
every i ∈ ⟦k⟧ let Bi be the block of ◾i. Let {i, j} ⊆ ⟦k⟧ be arbitrary with i ≠ j. Then,
[◾i, ◾ϱ(i)]πc ∩ Bj = ∅ if j < i and [◾i, ◾ϱ(i)]πc ∩ Bj = {◾j, ◾ϱ(j)} if i < j. Similarly,
[◾i, ◾i]πc ∩Bj = {◾j, ◾j} if j < i and [◾i, ◾i]πc ∩Bj = ∅ if i < j. Hence, σπc([◾i, ◾ϱ(i)]πc ∩
Bj) = σπc([◾i, ◾i]πc ∩ Bj) = 0. Because p is biprojective, σπc([◾i, ◾ϱ(i)]πc ∩ Bj) =
σπc([

◾
ϱ(i), ◾i]πc ∩ Bj) and σπc([◾i, ◾i]πc ∩ Bj) = σπc([◾ϱ(i),

◾
ϱ(i)]πc ∩ Bj). Thus, Bi

and Bj are mutually non-interferent. That concludes the proof. □

6.1.4. Determining W ∩R. With our preparatory results at hand we are now in
a position to find a generator of W .

Lemma 6.14. W ∩R1 = ∅.

Proof. Per definition, ∅ ∉ R1. By Lemma 6.2 any p ∈ W/{∅} has turns.
However, p ∈ R1 would demand that p had none. Hence, W ∩R1 = ∅. □

Lemma 6.15. W ∩R2 = ∅.

Proof. We assume that there exists p ∈ W ∩ R2 and deduce a contradiction.
Per definition, p ∈ R2 requires that p ∈M/{∅} and that p has no indefinite turns.
Since p ≠ ∅, the assumption p ∈W implies by Lemma 6.2 that there exist B ∈ p and
a turn T in p with T ⊆ B. However, because W is a hyperoctahedral category by
Theorem 4.7 and because p ∈M, Lemma 5.15 guarantees exactly that such B and
T may not exist – a contradiction. In conclusion, p ∉ R2 as claimed. □

Lemma 6.16. W ∩R3 ⊆ {π○●, π●○}.

Proof. Recall ∅ ∉ R3. Let p ∈ W ∩ R3 and n ∶= ∥p∥. Since p ∈ (W ∩
M)/∅ is then projective, n ∈ 4N and both B1 ∶= {◾1, ◾1, ◾

n
2 ,

◾ n
2} ∈ p and B2 ∶=

{◾ n4 , ◾
n
4 , ◾(

n
4 +1), ◾(n4 +1)} ∈ p by Lemma 6.6.

Step 1: If n = 4, then p = π○● or p = π●○. If n = 4, then B1 = {◾1, ◾1, ◾2, ◾2} is the
only block of p. Proposition 4.13 ensures that ◾1 and ◾2 have opposite normalized
colors because p ∈W and ] ◾1, ◾2[p∩B1 = ∅. That is the same as saying p ∈ {π○●, π●○}
since p is projective.

Step 2: Proving n = 4. We show B1 = B2, which is the same as n = 4. By p ∈W,
by ] ◾

n
4 , ◾(

n
4 +1)[p∩B2 = ∅ and by Proposition 4.13 the set T ∶= {◾

n
4 , ◾(

n
4 +1)} is a turn

in p. Because T ⊆ B2 an action in p is given by (T,B2,
◾ n
4 , ◾

n
4 ). The assumption
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p ∈M therefore implies n
2 = 2 ⋅ n4 = ∣[

◾ n
4 , ◾

n
4 ]p∣ ≥ n

2 and thus ∣[◾ n4 , ◾
n
4 ]p∣ = n

2 . It follows
that (T,B, ◾ n4 , ◾

n
4 ) is a size-preserving action and thus T an indefinite turn. Per

assumption p ∈ R3, this forces T ∩ B1 ≠ ∅. Because T ⊆ B2 this only leaves the
conclusion B1 = B2. That is what we needed to see. □

Lemma 6.17. W ∩R4 ⊆ {πc ∣ c ∈ ⋃R}.
Proof. Again, ∅ ∉ R4. Let p ∈W ∩ R4 be arbitrary and n ∶= ∥p∥. Because p ∈

(W ∩M)/{∅} is in particular projective, n ∈ 4N by Lemma 6.6. Let c ∶ ⟦n4 ⟧→ {○, ●}
be such that for every i ∈ ⟦n4 ⟧ the point ◾i has color ci in p. We prove p = πc.

Step 1: Coloring of p. Since p is projective, the colorings of the lower and of the
upper row agree. And because p ∈ R4 is per assumption bi-projective, the lower row
of p is colored c1, c2, . . . , cn

4
, cn

4
, cn

4
−1, . . . , c1 left to right. Thus we have shown that p

and πc have identical colorings.
Step 2: Blocks of p. Let ϱ ∶ ⟦n2 ⟧ → ⟦n2 ⟧, i ↦ n

2 − i + 1 and for every j ∈ ⟦n4 ⟧ let
Bj ∈ p and ◾j ∈ Bj. We let j ∈ ⟦n4 ⟧ be arbitrary and prove Bj = {◾j, ◾j, ◾ϱ(j),

◾
ϱ(j)}.

Case 2.1: According to Lemma 6.6 both the sets {◾1, ◾1, ◾
n
2 ,

◾ n
2} and {◾ n4 , ◾

n
4 ,

◾(
n
4 +1), ◾(n4 +1)} are blocks of p. That proves the claim about Bj for j ∈ {1, n4}.
Case 2.2: Now let 1 < j < n

4 . Because p ∈W ∩M is projective, Bj is a through
block by Lemma 6.5. Hence, in particular, {◾j, ◾j} ⊆ Bj. Because 1 < j < n

4 ensures
B1 ≠ Bj ≠ Bn

4
by the preceding case, Lemma 6.8 tells us that ∣Bj ∣ = 4. In combination

with p being projective, this implies that there exists i ∈ ⟦n2 ⟧ such that i ≠ j and
B = {◾j, ◾j, ◾i, ◾i}. Lemma 6.8 also guarantees that Bj crosses B1 and Bn

4
. In

particular, Bj crosses the vertical middle axis. Since p is bi-projective this latter
fact forces Bj to be symmetric with respect to the vertical axis. Especially, from

◾j ∈ Bj we are allowed to conclude ◾ϱ(j) ∈ Bj. Because j ≠ ϱ(j) and i ≠ j this
requires i = ϱ(j). And that is what we needed to show. □

Proposition 6.18. W ∩R = {πc ∣ c ∈ ⋃R}.
Proof. That is the combined result of Lemmata 6.10–6.17. □

Theorem 6.19. W = ⟨πc ∣ c ∈ ⋃R⟩.
Proof. Follows by Proposition 5.14. □

6.2. Generators of WR. Knowing W = ⟨πc ∣ c ∈ ⋃R⟩, we determine which
subsets of {πc ∣ c ∈ ⋃R} generate WR ⊆W for each R ∈R.

Definition 6.20. For all p ∈W let w(p) be the set of all c such that there exist
n ∈ N and {B1,B2, . . . ,Bn} ⊆ p such that c ∶ ⟦n⟧ → {○, ●}, such that 2 ≤ n, such
that B1,B2, . . . ,Bn are pairwise distinct, such that B1 and Bn cross in p, such that
jB1,Bnop = {B1,B2, . . . ,Bn}, such that B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤p,B1,Bn

and such that λp(B1,Bi,Bn) = σ(ci) for all i ∈ ⟦n⟧.
Lemma 6.21. Let R ∈ R, let k ∈ N, let 2 ≤ k and let c ∶ ⟦k⟧ → {○, ●}. Then,

w(πc) = {(ci, ci+1, . . . , cj), (cj, cj−1, . . . , ci) ∣ {i, j} ⊆ ⟦n⟧, i < j}.
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Proof. Let ϱ ∶ ⟦2k⟧→ ⟦2k⟧, i↦ 2k − i+ 1 be the reflection and for every i ∈ ⟦k⟧
let Fk = {◾i, ◾i, ◾ϱ(i),

◾
ϱ(i)} be the block of ◾i in πc. Abbreviate Sc ∶= {(ci, ci+1, . . . , cj),

(cj, cj−1, . . . , ci) ∣ i, j ∈ ⟦n⟧, i < j}. We prove w(πc) = Sc.
Step 1: Showing Sc ⊆ w(πc). Let i, j ∈ ⟦n⟧ satisfy i < j. We show (ci, ci+1, . . . , cj) ∈

w(πc) and (cj, cj−1, . . . , ci) ∈ w(πc).
Step 1.1: Shortenings. We begin with the claim (ci, ci+1, . . . , cj) ∈ w(πc). The

blocks Fi and Fj cross each other in πc since (◾i, ◾j,
◾
ϱ(i), ◾ϱ(j)) is ordered there.

For every ℓ ∈ ⟦k⟧ the intersection [◾i, ◾j]p ∩ Fℓ is empty if ℓ < i or j < ℓ and it
is {◾ℓ} otherwise. By Lemma 4.15 we have thus shown for every ℓ ∈ ⟦k⟧/{i, j} that
(Fi, Fℓ, Fj) ∈ χπc if and only if i < ℓ < j. Lemma 4.20 then allows us to conclude
jFi, Fjop = {Fi, Fi+1, . . . , Fj}.

Moreover, for all ℓ ∈ ⟦k⟧ with i ≤ ℓ < j we can infer Fℓ < Fℓ+1 with respect to
≤πc,Fi,Fj

from [◾i, ◾(ℓ+1)]πc ∩ Fℓ = {◾ℓ}. Hence, Fi ≤ Fi+1 ≤ . . . ≤ Fj in the order
≤πc,Fi,Fj

.
Finally, λπc(Fi, Fℓ, Fj) = σπc([◾i, ◾j]πc ∩ Fℓ) = σπc({◾ℓ}) = σ(cℓ) for every i ∈ ⟦n⟧

with i ≤ ℓ ≤ j. Thus, we have established (ci, ci+1, . . . , cj) ∈ w(πc).
Step 1.2: Verticolor reflections. Lemmata 4.29 and 4.23 (b) allow us to draw

the following conclusions from Step 1.1: The crossing blocks Fj and Fi of πc satisfy
jFj, Fioπc = {Fj, Fj−1, . . . , Fi} and Fj ≤ Fj−1 ≤ . . . ≤ Fi with respect to ≤p,Fj ,Fi

and
λπc(Fj, Fℓ, Fi) = −σ(cℓ) = σ(cℓ) for every ℓ ∈ ⟦k⟧ with i ≤ k ≤ j. That proves
(cj, cj−1, . . . , ci) ∈ w(πc), which is what was left to be proven.

Step 2: Proving w(πc) ⊆ Sc. To see the converse inclusion let n ∈ N, let 2 ≤ n, let
{B1,B2, . . . ,Bn} ⊆ πc, let B1,B2, . . . ,Bn be pairwise distinct, let B1 and Bn cross in
πc, let jB1,Bnoπc = {B1,B2, . . . ,Bn}, let B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤πc,B1,Bn

and for every j ∈ ⟦n⟧ let dj ∈ {○, ●} be such that λπc(B1,Bj,Bn) = σ(dj). We prove
(d1, d2, . . . , dn) ∈ Sc.

Step 2.1: Defining i1, i2, . . . , in. Because πc only has k many blocks, n ≤ k.
For every j ∈ ⟦n⟧ there exists a unique ij ∈ ⟦k⟧ such that Bj = Fij . In particular,
i1, i2, . . . , in are pairwise distinct and j ↦ ij is bijective.

Step 2.2: We can assume i1 < in. If in < i1, we rename Bj ↔ Bn−j+1 for every j ∈
⟦n⟧; which, by Lemmata 4.29 and 4.23 (b), corresponds to replacing (d1, d2, . . . , dn)
by (dn, dn−1, . . . , d1). Because, by definition of Sc, we have (d1, d2, . . . , dn) ∈ Sc if and
only if (dn, dn−1, . . . , d1) ∈ Sc, no generality is lost. Hence, let i1 < in henceforth.

Step 2.3: Proving i1 < i2, . . . , in−1 < in. Let j ∈ ⟦n⟧ with 1 < j < n be arbitrary.
We prove i1 < ij < in. Because the blocks Fi1 , Fij and Fin are pairwise distinct,
Lemma 4.15 allows us to conclude from (Fi1 , Fij , Fin) ∈ χπc that σπc([◾i1, ◾in]πc ∩
Fij) ≠ 0, implying in particular [◾i1, ◾in]πc ∩ Fij ≠ ∅. By definition of πc this latter
condition can only be satisfied if i1 < ij < in.

Step 2.4: Proving i1 < i2 < . . . < in. We let {j, j′} ⊆ ⟦n⟧ with j < j′ be arbitrary
and show ij < ij′ . By Steps 2.2 and 2.3 we can assume 1 < j and j′ < n. Then, in
particular, Fi1 , Fij and Fij′ are pairwise distinct. Once more we can therefore apply

Lemma 4.15 to deduce σπc([◾i1, ◾ij′]πc ∩Fij) ≠ 0 from the assumption (Fi1 , Fij , Fij′) ∈
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χπc . Again, [◾i1, ◾ij′]πc ∩Fij ≠ ∅ then demands i1 < ij < ij′ , which is what we needed
to see.

Step 2.5: i1, i2, . . . , in are consecutive. Next, we prove ij = i1 + j − 1 for every
j ∈ ⟦n⟧. Let j ∈ ⟦n−1⟧ be arbitrary. Then, ij < ij+1 by Step 2.4. We prove by
contradiction that there exists no i ∈ ⟦k⟧ such that ij < i < ij+1. For such an i it would
hold that [◾i1, ◾in]πc∩Fi = {◾i}, that [◾i1, ◾i]πc∩Fij = {◾ij} and that [◾i1, ◾ij+1]πc = {◾i}.
That would imply (Fi1 , Fi, Fin) ∈ χπc and (Fi1 , Fij , Fi) ∈ χπc and (Fi1 , Fi, Fij+1) ∈ χπc .
In other words, Fi ∈ jB1,Bnoπc and Bj ≤ Fi ≤ Bj+1 with respect to ≤πc,B1,Bn . And
this would contradict the assumptions that jB1,Bnop = {B1,B2, . . . ,Bn} and that
B1 ≤ B2 ≤ . . . ≤ Bn in ≤πc,B1,Bn . Thus, indeed, i1, . . . , in are consecutive.

Step 2.6: Determining d1, . . . , dn. Finally, we conclude this Step 2 by showing
(d1, d2, . . . , dn) = (ci1 , ci1+1, . . . , ci1+n−1). Because [◾i1, ◾in]πc∩Fi1 = {◾i1} and, likewise,
[◾i1, ◾in]πc ∩ Fin = {◾in}, we can conclude d1 = ci1 and dn = cin . And for every j ∈
⟦n⟧/{1, n}, since i1 < ij < in by Step 2.3, we can infer σ(dj) = σπc([◾i1, ◾in]πc ∩Fij) =
σπc({◾ij}) = σ(cij). It follows (d1, d2, . . . , dn) = (ci1 , ci2 , . . . , cin). Now, Step 2.5
ensures the claim (d1, d2, . . . , dn) = (ci1 , ci1+1, . . . , ci1+n−1), implying (d1, d2, . . . , dn) ∈
Sc. That concludes the proof. □

Lemma 6.22. Let R ∈R and c ∈ ⋃R. Then, πc ∈WR if and only if c ∈ R.
Proof. Let k ∈ N be such that c ∶ ⟦k⟧→ {○, ●}. If k = 1, and thus c ∈ {○, ●}, then

c ∈ R and πc ∈WR are both true by definition. Hence, we can assume k > 1.
If we define Sc ∶= {(ci, ci+1, . . . , cj), (cj, cj−1, . . . , ci) ∣ i, j ∈ ⟦n⟧, i < j}, then w(πc) =

Sc by Lemma 6.21 because 2 ≤ k.
By definition of w(πc) and WR the statements πc ∈WR and w(πc) ⊆ R are equiv-

alent. Because R is a W-parameter, whenever c ∈ R, then also Sc ⊆ R. Conversely,
c ∈ R is implied by Sc ⊆ R since c ∈ Sc. Hence, the statements c ∈ R and Sc ⊆ R are
equivalent.

In conclusion, what we claim is that w(πc) ⊆ R if and only if Sc ⊆ R. Since
w(πc) = Sc that is all we needed to see. □

Proposition 6.23. WR ∩R = {πc ∣ c ∈ R} for every W-parameter set R.

Proof. Proposition 6.18 showed W ∩ R = {πc ∣ c ∈ ⋃R}. As, by definition,
WR ⊆W =W⋃R, it followsWR∩R = (W∩R)∩WR = {πc ∣ c ∈ ⋃R}∩WR = {πc ∣ c ∈ R},
where the last identity is due to Lemma 6.22. □

Theorem 6.24. WR = ⟨πc ∣ c ∈ R⟩ for any W-parameter set R.

Proof. Follows immediately from Propositions 5.14 and 6.23. □

7. Distinctness

We can immediately deduce from the results of the preceding Section 6 that the
categories (WR)R∈R are pairwise distinct.

Theorem 7.1. WR1 ≠WR2 for any two W-parameter sets R1 and R2 with R1 ≠
R2.
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Proof. The assumption R1 ≠ R2 implies {πc ∣ c ∈ R1} ≠ {πc ∣ c ∈ R2} since the
mapping c↦ πc is a bijection ⋃R→ {πc ∣ c ∈ ⋃R}. Proposition 6.23 therefore allows
us to infer WR1 ∩R ≠WR2 ∩R. And this requires WR1 ≠WR2 . □

8. Uniqueness

In this section we prove that every hyperoctahedral subcategory of W is of the
form WR for some R ∈R (Theorem 8.5).

Lemma 8.1. Let n ∈ N, let c ∶ ⟦n⟧→ {○, ●} and let p ∈W. If c ∈ w(p) and 4n < ∥p∥,
then there exists p′ ∈ ⟨p⟩ with c ∈ w(p′) and ∥p′∥ < ∥p∥.

Proof. Per assumption there exist {B1,B2, . . . ,Bn} ⊆ p such that B1,B2, . . . ,Bn

are pairwise disjoint, such thatB1 andBn cross in p, such that jB1,Bnop = {B1,B2, . . . ,
Bn}, such that B1 ≤ B2 ≤ . . . ≤ Bn with respect to ≤p,B1,Bn and such that σ(ci) =
λp(B1,Bi,Bn) for every i ∈ ⟦n⟧. We prove in three steps that there exists a turn T
in p such that c ∈ w(E(p, T )). As E(p, T ) ∈ ⟨p⟩ and ∥E(p, T )∥ = ∥p∥ − ∣T ∣, that is
enough to prove the claim.

Step 1: Sizes of the blocks. We prove for every i ∈ ⟦n⟧ that 4 ≤ ∣Bi∣ and that,
whenever 4 < ∣Bi∣, then 6 ≤ ∣Bi∣. Since B1 and Bn cross in p and since jB1,Bnop =
{B1,B2, . . . ,Bn}, Lemma 4.19 informs us that B1,B2, . . . ,Bn all pairwise cross each
other. In particular, none of them are connected components. For that reason, by
Lemma 6.3, none are pair blocks either. Moreover, each of B1,B2, . . . ,Bn, being a
neutral set by p ∈W, has an even number of legs.

Step 2: Auxiliary claim: Next, we show that, if T is a turn in p with T ⊆ B
for some block B of p and if the sets B1/T and Bn/T cross each other in p, then
c ∈ w(E(p, T )).

Since 4 ≤ ∣Bi∣ for every i ∈ ⟦4⟧ by Step 1, none of B1,B2, . . . ,Bn are contained in
T . Hence, for every i ∈ ⟦n⟧ there exists B′

i ∈ E(p, T ) which is not case EIII such that
Bi is a parent of B′

i with respect to (p, T ). The assumption that B1/T and Bn/T
cross each other in p ensures that B′

1 and B′
n cross in E(p, T ). Hence, if we show that

jB′
1,B

′
noE(p,T ) = {B′

1, . . . ,B
′
n}, that B′

1 ≤ B′
2 ≤ . . . ≤ B′

n with respect to ≤E(p,T ),B′
1,B

′
n

and that λE(p,T )(B′
1,B

′
i,B

′
n) = σ(ci) for every i ∈ ⟦n⟧, then c ∈ w(E(p, T )) will have

been proven.
Step 1.1: The blocks. We begin by showing jB′

1,B
′
noE(p,T ) = {B′

1,B
′
2, . . . ,B

′
n}.

Let F ∈ E(p, T ) and let {F1, F2} be parents of F with respect to E(p, T ). Per
assumption on T , the block F is not case EIII. In particular, F1 = F2. Hence,
F ∈ jB′

1,B
′
noE(p,T ) if and only if F1 ∈ jB1,Bnop by Lemma 4.40 (a) (i). Conse-

quently, the assumption jB1,Bnop = {B1,B2, . . . ,Bn} ensures that F ∈ jB′
1,B

′
noE(p,T )

if and only if F1 ∈ {B1,B2, . . . ,Bn}. And the latter statement is equivalent to
F ∈ {B′

1,B
′
2, . . . ,B

′
n}, which proves the claim.

Step 1.2: Their ordering. For every i ∈ ⟦n−1⟧ the assumption that Bi ≤ Bi+1
with respect to ≤p,B1,Bn , i.e., that (B1,Bi,Bi+1) ∈ χp by Lemma 4.40 (a) (i) ensures
(B′

1,B
′
i,B

′
i+1) ∈ χE(p,T ) because B′

i is not case EIII. Hence, B′
1 ≤ B′

2 ≤ . . . ≤ B′
n with

respect to ≤E(p,T ),B′
1,B

′
n
.
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Step 1.3: The colors. Finally, for every i ∈ ⟦n⟧, since B′
i is not case EIII, we can

conclude λE(p,T )(B′
1,B

′
i,B

′
n) = λp(B1,Bi,Bn) = σ(ci) by Lemma 4.40 (a) (ii). That

concludes the proof of the auxiliary claim.
Step 2: Existence of T . By Step 2 it suffices to find a turn T in p and a block

B of p with T ⊆ B such that B1/T and B2/T cross each other in p.
Per assumption, B1 and Bn cross in p. Hence, there exist legs {β1,1, β1,2} ⊆ B1

and {βn,1, βn,2} ⊆ Bn such that (β1,1, βn,1, β1,2, βn,2) is an ordered tuple of pairwise
distinct points of p. Let (α1, γ1) ∶= (β1,1, β1,n), let (α2, γ2) ∶= (β1,n, β1,2), let (α3, γ3) ∶=
(β1,2, βn,2), let (α4, γ4) ∶= (βn,2, β1,1) and for every j ∈ ⟦4⟧ let Sj ∶=]αj, γj[p.

Step 2.1: Sufficient criterion for existence of T and B. We prove that it suffices
to show that there exist B0 ∈ p and j ∈ ⟦4⟧ such that 2 ≤ ∣B0 ∩ Sj ∣.

Indeed, if so, let ⪯ be the total order induced on Sj by the cyclic order of p. Then,
the premise 2 ≤ ∣B0∩Sj ∣ ensures that θ1 ∶=min⪯(B0∩Sj) and θ2 ∶=min⪯(B0∩]θ1, γj[p)
are well-defined legs of B0 with θ1 ≠ θ2.

If ]θ1, θ2[p= ∅, then T ∶= {θ1, θ2} is a turn in p with T ⊆ B ∶= B0 by Proposition 4.13
since p ∈ W. If, alternatively, ]θ1, θ2[p≠ ∅, then, since ]θ1, θ2[p∩B0 = ∅, Lemma 6.1
guarantees the existence of B ∈ p and a turn T in p with T ⊆]θ1, θ2[p∩B.

And because T ⊆ Sj we can rest assured that T∩{β1,1, β1,2, βn,1, βn,2} = ∅, implying
that B1/T and B2/T cross in p. That proves the sufficient criterion.

Step 2.2: Case distinctions. Now, we consider separately three situations we
might encounter. In most of them we can apply the criterion of Step 2.1 to show
the existence of T and B.

Case 2.2.1: Other blocks exist. First, suppose that there exists B0 ∈ p with
B0 ∉ {B1,B2, . . . ,Bn}. Then, there is at least one j ∈ ⟦4⟧ such that B0 ∩ Sj ≠ ∅.
Since jB1,Bnop = {B1, . . . ,Bn} and B0 ∉ {B1, . . . ,Bn} we know (B1,B0,Bn) ∉ χp.
Lemma 4.23 (a) further guarantees (Bn,B0,B1) ∉ χp. It follows ∣B0∩Sj ∣ = ∣[αj, γj]p∩
B0∣ ≡2 0 according to Lemma 4.18 (a) as (αj, γj) ∈ (B1 ×Bn) ∪ (Bn ×B1). Because
of our assumption B0 ∩ Sj ≠ ∅ we can conclude ∣B0 ∩ Sj ∣ ≥ 2, which, by Step 2.1, is
what we needed to see.

Case 2.2.2: One of the middle blocks has extra legs. Next, let there exist i0 ∈ ⟦n⟧
with 1 < i0 < n such that 4 < ∣Bi0 ∣. Per assumption, (B1,Bi0 ,Bn) ∈ χp. Hence, also
(Bn,Bi0 ,B1) ∈ χp by Lemma 4.23 (a). Therefore and because B1, Bi0 and Bn are
pairwise distinct, Lemma 4.18 (b) lets us conclude ∣Bi0 ∩ Sj ∣ = ∣[αj, γj]p ∩ B0∣ ≡2 1
for all j ∈ ⟦4⟧. In particular, Bi0 ∩ Sj ≠ ∅ for all j ∈ ⟦4⟧. Now, the decomposition
Bi0 = ⋃4

j=1(B0∩Sj) and the assumption 4 < ∣Bi0 ∣ demand the existence of at least one
j ∈ ⟦4⟧ with 2 ≤ ∣B0 ∩ Sj ∣. That proves the claim for this case according to Step 2.1.

Case 2.2.3: No other blocks and no extra legs of middle blocks. The third and
final case is that B1,B2, . . . ,Bn already constitute all blocks of p and that ∣Bi∣ ≤ 4
for all i ∈ ⟦n⟧ with 1 < i < n.

By Step 1 we infer that ∣Bi∣ = 4 for all i ∈ ⟦n⟧ with 1 < i < n and that 6 ≤ ∣B1∣ or
6 ≤ ∣Bn∣. Let B0 ∈ {B1,Bn} be arbitrary with 6 ≤ ∣B0∣. Then, 4 ≤ ∣⋃4

j=1(B0 ∩ Sj)∣.
If there is j ∈ ⟦4⟧ with 2 ≤ ∣B0 ∩ Sj ∣, then Step 2.1 proves the claim. Hence, we can
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assume ∣B0 ∩ Sj ∣ = 1 for all j ∈ ⟦4⟧. Let θ ∈ B0 ∩ S1 and define (α, γ) ∶= (β1,1, θ)
if B0 = B1 and (α, γ) ∶= (θ, βn,1) if B0 = Bn. Then, {α, γ} ⊆ B0 and α ≠ γ and
]α, γ[p∩B0 = ∅ per construction. Two eventualities must be considered.

Case 2.2.3.1: If ]α, γ[p≠ ∅, then, because ]α, γ[p∩B0 = ∅, there exists a turn T
in p with T ⊆]α, γ[p∩B by Lemma 6.1. And since then T ⊆ S1, the blocks B1/T and
B2/T still have the crossing (β1,1, βn,1, β1,2, β1,n), proving the claim.

Case 2.2.3.2: If ]α, γ[p= ∅, then T ∶= {α, γ} is a turn in p with T ⊆ B ∶= B0 by
Proposition 4.13. However T /⊆ S1. Nonetheless, B1/T and Bn/T cross in p: Because
∣B0 ∩ S4∣ = 1 there exists η ∈ B0 ∩ S4. Because η ∉ T it follows that (η, βn,1, β1,2, βn,2)
is a crossing between B1/T and Bn/T . That concludes the proof. □

Lemma 8.2. For any p ∈W and c ∈ ⋃R, whenever c ∈ w(p), then πc ∈ ⟨p⟩.
Proof. Let n ∈ N and c ∶ ⟦n⟧ → {○, ●}. By Lemma 8.2 we can assume ∥p∥ ≤ 4n.

Because c ∈ w(p) necessitates 4n ≤ ∥p∥ by Lemmata 4.19 and 6.3, that means ∥p∥ =
4n. We show that p is a rotation of πc. More precisely, we prove the existence of 4n
pairwise distinct points (βi,j)(i,j)∈⟦n⟧×⟦4⟧ such that (β1,1, β2,1, . . . , βn,1, βn,2, βn−1,2, . . . ,
β1,2, β1,3, β2,3, . . . , βn,3, βn,4, βn−1,4, . . . , β1,4) is ordered in p, such that for each i ∈ ⟦n⟧
the set {βi,j}4j=1 is a block of p and such that for every i ∈ ⟦n⟧ and every j ∈ ⟦4⟧ the
point βi,j has normalized color ci in p.

Step 1: Definitions of B1,B2, . . . ,Bn. By the assumption c ∈ w(p) there exist
{B1,B2, . . . ,Bn} ⊆ p such that B1,B2, . . . ,Bn are pairwise distinct, such that B1 and
Bn cross in p, such that jB1,Bnop = {B1,B2, . . . ,Bn}, such that B1 ≤ B2 ≤ . . . ≤ Bn

with respect to ≤p,B1,Bn and such that λp(B1,Bi,Bn) = σ(ci) for every i ∈ ⟦n⟧. Then,
the constraint ∥p∥ = 4n implies that B1,B2, . . . ,Bn are the only blocks of p and that
∣Bi∣ = 4 for every i ∈ ⟦n⟧.

Step 2: Definition of ϱ and βi,j. Since B1 and Bn cross in p, since each of them
only has four legs and since between any two distinct legs of one can only be an
even number (0 or 2) of legs of the other, there must exist for every i ∈ {1, n} legs
{βi,j}4j=1 ⊆ Bi such that (β1,4, β1,1, βn,1, βn,2, β1,2, β1,3, βn,3, βn,4) is ordered in p.

Let ϱ ∶ ⟦n⟧ → ⟦n⟧, i ↦ n − i + 1, let i ∈ ⟦n⟧, let 1 < i < n and let j ∈ ⟦4⟧ be
arbitrary. Then, since (B1,Bi,Bn) ∈ χp by assumption and thus (Bn,Bi,B1) ∈ χp by
Lemma 4.23 (a), we can rest assured that (Bϱj−1(1),Bi,Bϱj−1(n)) ∈ χp. Because B1, Bi

and Bn are pairwise distinct Lemma 4.15 then guarantees σp([βϱj−1(1),j, βϱj−1(n),j]p ∩
Bi) ≠ 0 and thus in particular ]βϱj−1(1),j, βϱj−1(n),j[p∩Bi = [βϱj−1(1),j, βϱj−1(n),j]p ∩Bi ≠
∅. Hence, βi,j ∶=min(]βϱj−1(1),j, βϱj−1(n),j[p∩Bi) is well-defined.

Step 3: Their ordering. For every i ∈ ⟦n⟧ the definitions ensure that the tuple
(β1,1, βi,1, βn,1, βn,2, βi,2, β1,2, β1,3, βi,3, βn,3, βn,4, βi,4, β1,4) is ordered in p. To verify
that the points (βi,j)(i,j)∈⟦n⟧×⟦4⟧ have the asserted ordering all that is left to prove is
that for all i ∈ ⟦n⟧ with 1 < i < n−1 and j ∈ ⟦4⟧ the tuple (βϱj−1(1),j, βϱj−1(i),j, βϱj−1(i+1),j)
is ordered in p.

For such i the assumptions that Bi ≤ Bi+1 and Bn−i ≤ Bn−i+1 with respect to
≤p,B1,Bn , i.e., that (B1,Bi,Bi+1) ∈ χp and (Bn−i,Bn−i+1,Bn) ∈ χp, by Lemma 4.23 (a)
imply (Bϱj−1(1),Bϱj−1(i),Bϱj−1(i+1)) ∈ χp for every j ∈ ⟦4⟧ . Because the blocks
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Bϱj−1(1),Bϱj−1(i),Bϱj−1(i+1) are pairwise distinct, we infer σp([βϱj−1(1),j, βϱj−1(i+1),j]p ∩
Bϱj−1(i)) ≠ 0 by Lemma 4.15. The consequence [βϱj−1(1),j, βϱj−1(i+1),j]p ∩Bϱj−1(i) ≠ ∅
demands βϱj−1(i),j ∈ [βϱj−1(1),j, βϱj−1(i+1),j]p because [βϱj−1(1),j, βϱj−1(i+1),j]p ∩Bϱj−1(i) ⊆
[βϱj−1(1),j, βϱj−1(n),j]p ∩Bϱj−1(i) = {βϱj−1(i+1),j} by ∣Bϱj−1(i)∣ = 4. That means (βϱj−1(1),j,
βϱj−1(i),j, βϱj−1(i+1),j) is ordered in p, as was claimed.

Step 4: Their colors. For every i ∈ ⟦n⟧ and every j ∈ ⟦4⟧ because ∣Bi∣ = 4 and
because (βϱj−1(1),j, βϱj−1(i),j, βϱj−1(n),j) is ordered in p, we know [βϱj−1(1),j, βϱj−1(n),j]p∩
Bϱj−1(i) = {βϱj−1(i),j}. The premises λp(B1,Bi,Bn) = σ(ci) and λp(Bn,Bn−i+1,B1) =
σ(cn−i+1) imply λp(Bϱj−1(1),Bϱj−1(i),Bϱj−1(n)) = cϱj−1(i). Lemma 4.17 hence allows us
to conclude σp({βϱj−1(i),j}) = σp([βϱj−1(1),j, βϱj−1(n),j]p∩Bϱj−1(i)) = λp(Bϱj−1(1),Bϱj−1(i),
Bϱj−1(n)) = σ(cϱj−1(i)), which concludes the proof. □

Lemma 8.3. For all n ∈ N and c ∶ ⟦n⟧→ {○, ●} the following are true:
(a) ⟨π○⟩ = ⟨π●⟩ = ⟨ ⟩.
(b) π(cn,cn−1,...,c1) ∈ ⟨πc⟩.
(c) π(c2,c3,...,cn) ∈ ⟨πc⟩ if 2 ≤ n.
(d) π(c1,c2,...,ci−1,ci+2,ci+3,...,cn) ∈ ⟨πc⟩ if 4 ≤ n, if 1 < i < n − 1 and if ci ≠ ci+1.
Proof. (a) The identities π○ = Á2 and π● = π○↻ prove the claim.
(b) The partition πc is biprojective and π(cn,cn−1,...,c1) = πc† ∈ ⟨πc⟩.
(c) Erase from πc first the turn {◾2n, ◾2n} and then from the resulting partition

the turn {◾1, ◾1} to obtain the partition π(c2,c3,...,cn).
(d) The partition π(c1,c2,...,ci−1,ci+2,ci+3,...,cn) results from πc by successively eras-

ing, in this order, the four turns {◾ϱ(i), ◾ϱ(i+1)}, {◾ϱ(i+1), ◾ϱ(i)}, {
◾(i+1), ◾i} and

{◾i, ◾(i+1)}, where ϱ ∶ ⟦2n⟧→ ⟦2n⟧, i↦ 2n − i + 1 is the reflection. □

Lemma 8.4. {○, ●} ∪⋃w(C) ∈R for every hyperoctahedral category C ⊆W.

Proof. Abbreviate RC ∶= {○, ●} ∪⋃w(C). The requirement ○ ∈ RC for RC being
a W-parameter set is satisfied by definition. Let c ∈ RC be arbitray. We need
to show that (cn, cn−1, . . . , c1) ∈ RC, that (c2, c3, . . . , cn) ∈ RC if 2 ≤ n and that
(c1, c2, . . . , ci−1, ci+2, ci+3, . . . , cn) ∈ RC if 4 ≤ n and i ∈ {2,3, . . . , n − 2} and ci ≠ ci+1.
The three claims can be proven simultaneously. Suppose the conditions on n and i
are satisfied for the second and third assertion and let d be the tuple for which we
need to show d ∈ RC.

If n = 1, then d = c ∈ RC is all that we claim. And this is guaranteed by {○, ●} ⊆ RC.
Hence, we can assume 2 ≤ n from now on. Then, by definition of RC there exists
p ∈ C with c ∈ w(p). Lemma 8.2 allows us to infer πc ∈ ⟨p⟩ ⊆ C. It follows that
πd ∈ ⟨πc⟩ ⊆ C by Parts (b)–(d) of Lemma 8.3. Because d ∈ w(πd) by Lemma 6.21, we
conclude d ∈ ⋃w(C) ⊆ RC, completing the proof. □

Theorem 8.5. For any hyperoctahedral category C ⊆ W there is R ∈ R with
C =WR.

Proof. Lemma 8.4 informs us that RC ∶= {○, ●} ∪⋃w(C) ∈ R. Hence, WRC is a
well-defined category. We show C ⊆WRC and C ⊇WRC separately.
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Step 1: Inclusion ⊆. By the definitions of the mappings R ↦WR and p↦ w(p),
for every p ∈ W the statements p ∈ WRC and w(p) ⊆ RC are equivalent. Because
C ⊆W by assumption and because for all p ∈ C the definition of RC ensures w(p) ⊆
⋃w(C) ⊆ RC, it follows C ⊆WRC .

Step 2: Inclusion ⊇. Since WRC = ⟨πc ∣ c ∈ RC⟩ by Theorem 6.24, if we want to
show WRC ⊆ C, it suffices to prove {πc ∣ c ∈ RC} ⊆ C. Because C is per assumption
a hyperoctahedral category, ∈ C. As {π○, π●} ⊆ ⟨ ⟩ by Lemma 8.3 (a), only
πc ∈ C for every c ∈ ⋃w(C) remains to be shown. For every c ∈ ⋃w(C) there exists
p ∈ C with c ∈ w(p). It follows πc ∈ ⟨p⟩ by Lemma 8.2. Hence, ⟨p⟩ ⊆ C concludes the
proof. □

9. Lattice Structure

The last step is to show that the mapping R ↦WR is an isomorphism of complete
lattices from R to the hyperoctahedral subcategories of W (Theorem 9.4).

Notation 9.1. Denote by PCat○●HO,⊆W the set of all hyperoctahedral categories C
of two-colored partitions with C ⊆W.

Note that W has at least one non-hyperoctahedral subcategory in the form of
the set ⟨∅⟩ of all non-crossing two-colored pair partitions with neutral blocks.

Lemma 9.2. The partially ordered set (R,⊆) is a complete lattice. For all R′ ⊆R
meet and join of R′ are given by {○, ●} ∪⋂R′ and {○, ●} ∪⋃R′, respectively.

Proof. Because W-parameter sets are defined as subsets of ⋃R = ⋃n∈N(⟦n⟧ →
{○, ●}) which contain ○ and are invariant under certain operations, it is clear that
R is closed under intersections. Because the operations in questions are unary, R is
also closed under unions. Since intersections and unions are meets and joins in the
power set of ⋃R, they must also be meets and joins in R. □

Lemma 9.3. The partially ordered set (PCat○●HO,⊆W ,⊆) is a complete lattice. For
all C ⊆ PCat○●HO,⊆W meet and join of C are given by W{○,●} ∪⋂C and W{○,●} ∪ ⟨⋃C⟩,
respectively.

Proof. We treat meets and joins separately. But first, we note the following:
Since W{○,●} = ⟨π○, π●⟩ by Theorem 6.24, since ⟨π○, π●⟩ = ⟨ ⟩ by Lemma 8.3 (a) and
since ∈ C for every C ∈ C by the definition of what it means for a category to be
hyperoctahedral, W{○,●} ⊆ C for every C ∈ C.

Step 1: Meets. We prove that W{○,●} ∪⋂C ∈ PCat○●HO,⊆W and that this category
is indeed the meet of C in PCat○●HO,⊆W .

Step 1.1: Element of PCat○●HO,⊆W . By the initial remark, W{○,●} ⊆ ⋂C whenever
C ≠ ∅. Consequently,W{○,●}∪⋂C = ⋂C if C ≠ ∅. And, of course,W{○,●}∪⋂C =W{○,●}
if C = ∅. According to Theorem 4.42 the set W{○,●} is a hyperoctahedral category.
And, if C ≠ ∅, then the category ⋂C is hyperoctahedral because ⊗ ∉ C and ∈ C
for every C ∈ C. Hence, W{○,●} ∪⋂C ∈ PCat○●HO,⊆W .
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Step 1.2: Greatest lower bound. The relation W{○,●} ∪⋂C ⊆ C is clear for every
C ∈ C by what was remarked initially. And of course for any C∧ ∈ PCat○●HO,⊆W with
C∧ ⊆ C for every C ∈ C we have C∧ ⊆ ⋂C ⊆W{○,●} ∪⋂C. Hence, W{○,●} ∪⋂C is indeed
the meet of C in PCat○●HO,⊆W .

Step 2: Joins. As before, we show that W{○,●} ∪ ⟨⋃C⟩ belongs to PCat○●HO,⊆W and
is the join of C there.

Step 2.1: Element of PCat○●HO,⊆W . As seen in Step 1.1, if C = ∅, then W{○,●} ∪
⟨⋃C⟩ = W{○,●} ∈ PCat○●HO,⊆W . If C ≠ ∅, then W{○,●} ∪ ⟨⋃C⟩ = ⟨⋃C⟩ ∈ PCat○●HO,⊆W as
well: Indeed, because C ⊆ W for every C ∈ C, first ⋃C ⊆ W and thus ⟨⋃C⟩ ⊆ W by
Theorem 4.7; and because ⊗ ∉ W also ⊗ ∉ ⟨⋃C⟩ ⊆ W , and ∈ W{○,●} ⊆ ⟨⋃C⟩,
making the category ⟨⋃C⟩ hyperoctahedral.

Step 2.2: Least upper bound. Again, C ⊆W{○,●} ∪ ⟨⋃C⟩ is clear for every C ⊆ P○●
because C ⊆ ⋃C ⊆ ⟨⋃C⟩. And if C∨ ∈ PCat○●HO,⊆W satisfies C ⊆ C∨ for every C ∈ C,
then ∈ C∨ demands W{○,●} = ⟨ ⟩ ⊆ C∨ as well as ⋃C ⊆ C∨ and thus ⟨⋃C⟩ ⊆ C∨,
proving W{○,●} ∪ ⟨⋃C⟩ ⊆ C∨. In other words, W{○,●} ∪ ⟨⋃C⟩ is indeed the join of C in
PCat○●HO,⊆W . That is all we needed to see. □

Theorem 9.4. The mapping Φ ∶ R → PCat○●HO,⊆W ,R ↦WR is an isomorphism of
complete lattices from (R,⊆) to (PCat○●HO,⊆W ,⊆).

Proof. The mapping Φ is well-defined by Theorem 4.42, injective by Theo-
rem 7.1 and surjective by Theorem 8.5. The partially ordered sets (R,⊆) and
(PCat○●HO,⊆W ,⊆) are complete lattices by Lemmata 9.2 and 9.3, respectively. All
we have to prove is that Φ preserves meets and joins, the concrete forms of which
are known by Lemmata 9.2 and 9.3. Let R′ ⊆R be arbitrary.

Step 1: Meets. First, we prove that Φ maps the meet of R′ to the meet of
{Φ(R) ∣R ∈R′}, which is to say that W{○,●}∪⋂R′ =W{○,●} ∪⋂{WR ∣R ∈R′}.

If R′ = ∅, this is certainly true because then W{○,●}∪⋂R′ = W{○,●} and W{○,●} ∪
⋂{WR ∣R ∈R′} =W{○,●}. Hence, we can assume R′ ≠ ∅.

Since {○, ●} ⊆ R for every R ∈R′ by definition, then {○, ●}∪⋂R′ = ⋂R′. Likewise,
becauseW{○,●} = ⟨ ⟩ ⊆WR, thenW{○,●}∪⋂{WR ∣R ∈R′} = ⋂{WR ∣R ∈R′}. Hence,
what we claim is that then W⋂R′ = ⋂{WR ∣R ∈ R′}. Equivalently, we need to show
for every p ∈W that w(p) ⊆ ⋂R′ if and only if w(p) ⊆ R for every R ∈R′. And this
is obviously true.

Step 2: Joins. In order to see that Φ preserves joins we need to proveW{○,●}∪⋃R′ =
W{○,●} ∪ ⟨⋃{WR ∣R ∈ R′}⟩. In the case R′ = ∅, this claim reduces to the identity
W{○,●} =W{○,●} ∪ ⟨∅⟩, which is certainly true because, naturally, ⟨∅⟩ ⊆W{○,●}.

If R′ ≠ ∅, then {○, ●} ⊆ ⋃R′ and W{○,●} ⊆ WR for every R ∈ R′ imply that what
we actually claim is the identity W⋃R′ = ⟨⋃{WR ∣R ∈ R′}⟩. That is what we now
show. Each inclusion is treated separately.

Step 2.1: Inclusion ⊇. For every R ∈ R′, because R ⊆ ⋃R′, by definition, WR ⊆
W⋃R′ . Hence, also ⋃{WR ∣R ∈R′} ⊆W⋃R′ . That proves W⋃R′ ⊇ ⟨⋃{WR ∣R ∈R′}⟩.

Step 2.2: Inclusion ⊆. To show the converse relation we employ Theorem 6.24
to see that what we claim is the inclusion ⟨πc ∣ c ∈ ⋃R′⟩ ⊆ ⟨⋃{⟨πc ∣ c ∈ R⟩ ∣R ∈ R′}⟩.
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For every c0 ∈ ⋃R′ there exists R0 ∈R′ such that c0 ∈ R0. It follows π0 ∈ {πc ∣ c ∈ R0}
and thus π0 ∈ ⟨πc ∣ c ∈ R0⟩, which implies π0 ∈ ⋃{⟨πc ∣ c ∈ R⟩ ∣R ∈ R′} and thus
π0 ∈ ⟨⋃{⟨πc ∣ c ∈ R⟩ ∣R ∈ R′}⟩. As c0 was arbitrary, we have shown {πc ∣ c ∈ ⋃R′} ⊆
⟨⋃{⟨πc ∣ c ∈ R⟩ ∣R ∈ R′}⟩, which then yields the claimed inclusion and concludes the
proof overall. □

10. Concluding Remarks

10.1. The Uncolored Case. In [RW16b] Raum and Weber determined all
non-group-theoretical hyperoctahedral categories of uncolored partitions, i.e., all cat-
egories C ⊆ P with C ∩ { ⊗ , , } = { }. These are given by the category
⟨πℓ ∣ ℓ ∈ N⟩ and the categories ⟨πk⟩ for k ∈ N, where πk is the partition obtained by
rotating all upper points down in the same (arbitrary) direction in the partition

. . . . . .

◾1 ◾k

Raum and Weber proved that there is an isomorphism of partially ordered sets
between the set of non-group-theoretical hyperoctahedral categories of uncolored
partitions equipped with ⊆ to (N ∪ {∞},≤). For any ℓ ∈ N ∪ {∞} the corresponding
category is given by the set of all uncolored partitions p ∈ P meeting the following
requirements if p is considered in its word representation:

(a) Any letter of p appears an even number of times.
(b) If p = X1aX2aX3 for a letter a and subwords X1,X2,X3, then every letter

appearing in X2 occurs there an even number of times.
(c) p satisfies wdepth(p) ≤ ℓ, which means that p contains noW of depth larger

than ℓ if ℓ ∈ N and which is a vacuous condition if ℓ =∞. For every k ∈ N the
partition p is said to contain a W of depth k if there exist letters a1, . . . , ak
and words Xα

1 , . . . ,X
α
k , Xβ

1 , . . . ,X
β
k−1, X

γ
1 , . . . ,X

γ
k , Xδ

1 , . . . ,X
δ
k−1 and Y1, Y2,

Y3 such that
(i) p = Y1SαXα

k SβY2SγX
γ
kSδY3,

(ii) where Sα = a1Xα
1 a2X

α
2 . . . ak−1X

α
k−1ak,

(iii) where Sβ = akXβ
k−1ak−1X

β
k−2 . . . a2X

β
1 a1,

(iv) where Sγ = a1Xγ
1 a2X

γ
2 . . . ak−1X

γ
k−1ak,

(v) where Sδ = akXδ
k−1ak−1X

δ
k−2 . . . a2X

δ
1a1 and

(vi) where for every i ∈ ⟦k⟧ the letter ai appears an odd number of times in
each word Sα, Sβ, Sγ and Sδ and

(vii) where Y1, Y2 and Y3 contain none of the letters a1, . . . , ak.
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In the language used here one could formulate:

Theorem 10.1. If for any uncolored partition p ∈ P
◻ B ∈ p is called non-interferent with A ∈ p if A ≠ B and ∣[α, γ]p ∩B∣ ≡2 0 for

any {α, γ} ⊆ A with α ≠ γ,
◻ χp is the set of all (A,B,C) such that {A,B,C} ⊆ p, such that ¬(A = B = C)

and such that ∣[α, γ]p ∩B∣ ≡2 1 for some (α, γ) ∈ A ×C with α ≠ γ,
then the following are true:

(a) A category of uncolored partitions is given by the set W of all p ∈ P such
that ∣A∣ ≡2 0 for any A ∈ p and such that B is non-interferent with A for
any {A,B} ⊆ p with A ≠ B.

(b) For any ℓ ∈ N ∪ {∞} a category of uncolored partitions is given by the set
Wℓ of all p ∈W with the property that for any {A,C} ⊆ p such that A and
C cross in p there exist at most ℓ many B ∈ p with (A,B,C) ∈ χp.

(c) Wℓ = ⟨πk ∣k ≤ ℓ⟩ for every ℓ ∈ N ∪ {∞}.
(d) The rule ℓ ↦Wℓ is an isomorphism of complete lattices from (N ∪ {∞},≤)

to the hyperoctahedral subcategories of W equipped with the partial order ⊆.
Proof. Replace the implicit assumption ○ ≠ ● underlying all definitions, the-

orems and proofs with its negation ○ = ●, for all p ∈ P○● consider the color sum
σp not a Z-valued but a Z2-valued measure (densities σ(○) ∶= 1 and σ(●) ∶= −1 = 1
unchanged) and replace the color distance δp with the constant map 0 (implying in
particular that p ≤∆0p is always true). □

10.2. The Quantum Groups. For anyW-parameter set R ∈R and any N ∈ N
the unitary easy quantum group associated with WR and N is the compact matrix
quantum group whose algebra is the universal unital C∗-algebra

C∗⟨{ui,j}Ni,j=1 ∣∀i, j ∈ ⟦N⟧ ∶ ∑Nk=1u∗k,iuk,l = ∑Nk=1ui,ku∗j,k = 1 and

∀ℓ ∈ N ∶ ∀c ∶ ⟦ℓ⟧→ {○, ●} ∶ c ∈ R⇒ ∀w,x, y, z ∶ ⟦ℓ⟧→ ⟦N⟧ ∶
δx,z u

c1
w1,x1u

c2
w2,x2 . . . u

cℓ
wℓ,xℓ

ucℓyℓ,zℓu
cℓ−1
yℓ−1,zℓ−1 . . . u

c1
y1,z1

= δw,y uc1w1,x1u
c2
w2,x2 . . . u

cℓ
wℓ,xℓ

ucℓyℓ,zℓu
cℓ−1
yℓ−1,zℓ−1 . . . u

c1
y1,z1⟩,

where 1 is the unit of the C∗-algebra and where u○i,j ∶= ui,j and u●i,j ∶= u∗i,j for all

{i, j} ⊆ ⟦N⟧, and whose fundamental co-representation matrix is u ∶= (ui,j)Ni,j=1.

10.3. Parity Violation. All non-hyperoctahedral categories of two-colored par-
titions are invariant under reflection or, equivalently, color inversion. This is not true
for all hyperoctahedral categories investigated here.

Proposition 10.2. There exist categories of two-colored partitions which have
chirality, i.e., are not closed under reflection.

Proof. Each of R○ ∶= {○●, ○, ●} and R● ∶= {●○, ○, ●} is aW-parameter set because
for any c ∈ {○, ●} the string cc is mapped to itself under reflection and simultaneous
color inversion. Because R○ ≠ R●, also WR○ ≠ WR● by Theorem 7.1. In particular,
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while the category R○ contains the partition π○●, the reflection π●○ of π○● is not an
element of R○, both by Lemma 6.21. Hence, WR○ is not closed under reflection. □

Of course, this does not yet exclude that the rule u ↦ ut defines an automor-
phism of an associated compact matrix quantum group (A,u). In fact, at least for
dimension 1 this would certainly be the case.

10.4. Further Questions. 1. There is no reason to think that (WR)R∈R,R≠{○,●}
already represent all conceivable locally colorized non-group-case hyperoctahedral
categories of two-colored partitions with crossings. A reasonable next step in the
classification of those would appear to be considering all possible categories C ⊆ V ,
where

V ∶= {p ∣p ∈ P○●, p ≤∆0p, ∀A ∈ p ∶ σp(A) = 0,

∀{A,B} ⊆ p ∶ ∃P ∈∆0p ∶ A ∪B ⊆ P ⇒ B non-interferent with A in p}.
In other words, one could relax the defining condition of W that any two blocks be
mutually non-interferent to that of only any two blocks belonging to the same part
being so. By Proposition 4.13 the legs of any block then still alternate in normalized
color. That might persuade one to hope that the conditions determining categories
C ⊆ V do not yet become too complicated. On the other hand, Lemmata 6.1 and 6.2
no longer hold in V . For that reason, while the diagonal subgroup

{aσ(c(◾ℓ))
f(p(◾ℓ))

⋅ . . . ⋅ aσ(c(◾1))
f(p(◾1))

⋅ aσ(c(
◾1))

f(p(◾1)) ⋅ . . . ⋅ a
σ(c(◾k))
f(p(◾k)) ∣ {k, ℓ} ⊆ N0, (p, c) ∈ C(k, ℓ), f ∶ p→ N}

for generators (ai)i∈N of (Z∗∞, ⋅ ) is trivial for C =W , this need not be true for other
subcategories C ⊆ V . Thus, when attempting to classify such categories one will have
to deal with two problems at the same time:

(1) recognizing relational conditions similar to those induced by ∗-betweeness
in the presence of (possibly asymmetrically) interferent blocks,

(2) integrating these relational conditions with the algebraic ones coming from
possibly non-trivial diagonal subgroups.

Determining the set V∩R might be a good starting point. The elements πc ofW∩R
give a strong clue to what the conditions of (WR)R∈R are. Maybe one can induct
from the knowledge of V ∩R those of the categories C ⊆ V as well.

2. Of course, nothing at all is known yet about the unitary quantum groups
associated with the categories (WR)R∈R. Maybe those can be constructed via known
procedures like semi-direct products from the orthogonal quantum groups associated
with the categories ⟨πk ∣k ≤ ℓ⟩ for ℓ ∈ N ∪ {∞}.



CHAPTER 2

Categories of bi-labeled graphs

1. Introduction

Several families of new categories of bi-labeled graphs and thus graph-theoretical
quantum groups in Mančinska and Roberson’s sense are discovered. In particular,
two ways are given of producing from any category of partitions in Banica and
Speicher’s sense a category of bi-labeled graphs. Also, the categories of bi-labeled
graphs generated by arbitrary powers of the adjacency bi-labeled graph are deter-
mined. Those results are then used to give two categories of bi-labeled graphs which
are distinct but yield isomorphic quantum groups under every one of Mančinska and
Roberson’s fiber functors.

1.1. Background and context. In their preprint [MR19], an excerpt of which
has since appeared as [MR20], Mančinska and Roberson use concepts and results
from the theory of operator-algebraic quantum groups to address a graph-theoretical
question. They show that, in analogy to a classical result by Lováscz [Lov67],
two graphs are quantum-isomorphic if and only if they admit the same number of
homomorphisms from any planar graph.

Beforehand, it was known that proving two graphs quantum-isomorphic is the
same as giving a quantum group isomorphism between their quantum automorphism
groups. Despite its name the quantum automorphism group is not a group but a
compact quantum group in Woronowicz’s sense [Wor87; Wor91; Wor98] defined by
Banica in [Ban05] as a liberation of the classical automorphism group. (A slightly
different notion of quantum automorphism group had before been proposed by Bi-
chon [Bic03].) According to a Tannaka-Krein type result by Woronowicz [Wor88]
compact quantum groups are dual to complete concrete monoidal W ∗-categories
with conjugates. Moreover, any concrete monoidal W ∗-category can be completed
in an essentially unique way.

What Mančinska and Roberson achieve in [MR19] is to construct for any graph a
concrete monoidal W ∗-category with conjugates whose completion is the Tannaka-
Krein dual of the quantum automorphism group of the graph. Crucially, the entries
of the coordinate matrices of the bounded operators making up the morphism spaces
of such a category are related to the counts of homorphisms from planar graphs to
the graph in question in such a way that two categories coincide if and only if the
two graphs admit the same number of homomorphisms from planar graphs.

75
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In passing, Mančinska and Roberson provide a way of obtaining concrete mo-
noidal W ∗-categories with conjugates which may represent other compact quantum
groups than the quantum automorphism groups. They call them graph categories
respectively graph-theoreticcal quantum groups. Their definitions closely resembles
the categories of partitions respectively easy quantum groups introduced by Banica
and Speicher in [BS09]. In both cases, finding new quantum groups is tantamount
to solving combinatorics problems.

Namely, one needs to find sets of combinatorial morphisms, bi-labeled graphs in
Mančinska and Roberson’s case, partitions in Banica and Speicher’s, which are closed
under certain operations. These operations, known as composition, tensor product,
forming adjoints and dualization also have combinatorial definitions, corresponding
in the partition case to vertical concatenation, horizontal concatenation, horizontal
reflection and vertical reflection, respectively. For bi-labeled graphs the operations
are defined in a similar manner.

While all such categories of partitions are known [BS09; BCS10; Web13; RW14;
RW16a; RW16a], this is not true for graph categories. Mančinska and Roberson
determine one category in order to prove their main result about quantum isomor-
phisms, namely the category of planar bi-labeled graphs, giving rise to the quan-
tum automorphism group via Tannaka-Krein duality. Moreover, they note that, of
course, the set of all bi-labeled graphs trivially forms a category of bi-labeled graphs,
corresponding to the clasical automorphism group. Since then, Gromada has found
further examples in [Gro22b], a whole family of so-called group-theoretical graph
categories. In [Gro22a], he moreover gives an example of a “graph category” in a
more general sense than the one defined by Mančinska and Roberson and uses it to
define a quantum group liberating the demihyperoctahedral group D4.

These efforts by Mančinska, Roberson and Gromada will now be continued here.
Several new examples of graph categories and thus graph-theoretical quantum groups
are provided. One family will moreover enable certain conclusions about how many
new compact quantum groups one may expect from Mančinska and Roberson’s con-
struction. Furthermore, a number of invariants of graph categories are introduced
which might help with classifying them in the future.

1.2. Main results. The main results of the present chapter can be summarized
as follows. This was joint work with Moritz Weber and Daniel Gromada.

Main result. (a) Out of any bi-labeled graph K a partition of its labels can
be obtained by declaring two labels to be in the same block if and only they
are attached to
(i) the same vertex, giving the vertex partition PK.
(ii) vertices belonging to the same connected component, giving the com-

ponent partition PK.
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For any F ∈ {P,P} and any category C of partitions the set of all bi-labeled
graphs K with FK ∈ C is a graph category (Proposition 3.6 resp. 4.6). Con-
versely, for any graph category F the set of all FK where K ∈ F forms a
category of partitions (Proposition 3.9 resp. 4.9).

(b) For any additive subsemigroup S of N a graph category is given by the set of
all bi-labeled graphs with the property that the distances of any two distinct
connected labeled vertices is an element of S (Proposition 5.6). Conversely,
for any graph category F the set of distances between any two distinct con-
nected labeled vertices of any bi-labeled graph of F is an additive subsemi-
group of N (Proposition 5.7).

(c) For any additive subsemigroup S of N and any generator E ⊆ N of S the
category of bi-labeled graphs generated by {A○k ∣k ∈ E}, where A is the
adjacency bi-labeled graph, is the set of all bi-labeled graphs K such that
(i) PK is a non-crossing pair partition,
(ii) each connected component of K is either

(1) a labeled or unlabeled single vertex without a loop,
(2) an unlabeled single vertex with loop – except if 1 ∉ S,
(3) an entirely unlabeled cycle graph or
(4) a path graph which is either entirely unlabeled or only whose

degree-one vertices are labeled
(iii) if 1 ∉ S, then K has no connected components which are single vertices

with a loop
(iv) for any m ∈ N, if m ∉ S, then K has no connected components which

are cycle graphs on m vertices or path graphs on m + 1 vertices
(Propositions 6.4, 6.6 and 6.7).

(d) There exist distinct graph categories such that for any graph G the compact
quantum supergroups of Aut(G) induced by them are identical (Proposi-
tion 7.10).

1.3. Structure of the chapter. Section 2 provides all the necessary definitions
as well as certain basic auxiliaries about both graph categories (Section 2.2) and
categories of partitions (Section 2.3) needed for stating and proving the main results,
in particular certain links between the two kinds of categories (Sections 2.1 and 2.4).
It is entirely self-contained. The presentation includes a complete list of all categories
of partitions in Section 2.3.3.

Sections 3, 4 and 5 all have the same substructure. Sections 3.1, 4.1 and 5.1 define
for any bi-labeled graph its vertex partition, component partition and label distances,
respectively. This is also where crucial properties of the respective construction
are recognized. Sections 3.2, 4.2 and 5.2 then show how placing constraints on
the allowed vertex partitions, component partitions or label distances gives rise to
new graph categories. Lastly, Sections 3.3, 4.3 and 5.3 show how the respective
construction can also become an invariant of any given graph category.
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Section 6 answers the question which graph categories are generated by (sets of)
powers of the adjacency bi-labeled graph.

Section 7 is the only place where quantum group aspects are considered. Sec-
tion 7.1 recalls the construction of graph-theoretical quantum groups. In Section 7.2
it is demonstrated that an unfortunate lack of injectivity is inherent to this proce-
dure.

Finally, Section 8 concludes with a few remarks about future research directions
concerning graph categories and graph-theoretical quantum groups.

2. Graph categories and categories of partitions

In this section the definitions of both graph categories and categories of partitions
are recalled. Morever, all the definitions and results are presented which are not
specific to bi-labeled graphs but will be used to show the main results in later
sections. The reminder about categories of partitions includes an overview of their
classification.

2.1. Common fundamentals. In the following the notation for mappings,
products and co-products and equivalence relations if fixed.

Notation 2.1. (a) In the following, let 0 ∉ N and N0 ∶= {0} ⊍ N as well as
⟦0⟧ ∶= ∅ and ⟦n⟧ ∶= {1, . . . , n} for all n ∈ N.

(b) For any set X let ℘X = {S ⊆X} be its power set.
(c) For any setsX and Y and any mapping f ∶X → Y let f→(A) ∶= {f(a) ∣a ∈ A}

and f←(B) ∶= {a ∈X ∣ f(a) ∈ B}.
(d) Moreover, let Y1⊠. . .⊠Yk ∶= {(y1, . . . , yk) ∣∀ki=1 ∶ yi ∈ Yi} for any sets Y1, . . . , Yk

and any k ∈ N. If fi∶ Yi → Zi is a mapping for each i ∈ ⟦k⟧, then f1 ⊠
. . . ⊠ fk is the mapping Y1 ⊠ . . . ⊠ Yk → Z1 ⊠ . . . ⊠ Zk with (y1, . . . , yk) ↦
(f1(y1), . . . , fk(yk)) for any (y1, . . . , yk) ∈ Y1 ⊠ . . . ⊠ Yk.

(e) For any pair (A1,A2) of sets we fix a set A1 � A2 and for each m ∈ ⟦2⟧
an injection ιmA1,A2

∶ Am → A1 � A2 such that ⋂2
m=1(ιmA1,A2

)→(Am) = ∅ and

⋃2
m=1(ιmA1,A2

)→(Am) = A1 �A2.
Given any set B and mappings f1∶ A1 → B and f2∶ A2 → B with common

co-domain, we write f1 ⊔ f2 for the unique mapping f ∶ A1 � A2 → B with
f ○ ιmA1,A2

= fm for any m ∈ ⟦2⟧.
(f) Given any equivalence relation r ⊆ X ⊠ X on any set X and any map

f ∶ X → Y with f(x) = f(x′) for any (x,x′) ∈ r, let X/r be the set of
equivalence classes of r, let πr∶ X →X/r be the mapping which sends each
element to its equivalence class and let f/r be the unique mapping X/r → Y
with f = (f/r) ○ πr (i.e., with graph {(πr(x), f(x)) ∣x ∈X}).

The ensuing results about equivalence relations are well-known. It will be helpful
to be able to refer to them easily later.
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Remark 2.2. (a) If V is any set, if s ⊆ V ⊠ V is any binary relation on V ,
if r is the equivalence relation on V generated by s and if {v, v′} ⊆ V , then
(v, v′) ∈ r if and only if there exist k ∈ N0 and {v1, . . . , vk+1} such that v1 = v
and vk+1 = v′ and (vi, vi+1) ∈ s or (vi+1, vi) ∈ s for each i ∈ ⟦k⟧.

(b) For any sets V and W , any bijection f from V to W and any equivalence
relation r on V , if r′ = (f ⊠ f)→(r), then r′ is an equivalence relation on W
and the mappings (πr′ ○ f)/r∶ V /r → W /r′ and (πr ○ f−1)/r′∶ W /r′ → V /r
are well-defined mutually inverse bijections.

(c) Given any two sets V and W , any mapping f from V to W and any binary
relation s ⊆ V ⊠ V on V , if r is the equivalence relation on V generated by
s, then the equivalence relations on W generated by (f ⊠ f)→(r) and by
(f ⊠ f)→(s) coincide.

Bi-labeled graphs and “partitions” have some common building blocks.

Definition 2.3. Let {k, ℓ} ⊆ N0 be arbitrary.
(a) Fix any two injections i ↦ ◾i and j ↦ ◾j defined on N with ◾i ≠ ◾j for any
{i, j} ⊆ N.

(b) We call Πk
ℓ ∶= {◾i, ◾j ∣ i ∈ ⟦k⟧ ∧ j ∈ ⟦ℓ⟧} the total set of k upper and ℓ lower

points.
(c) Given any set Y , any {k, ℓ} ⊆ N0 and any mappings f ∶ ⟦k⟧ → Y and

g ∶ ⟦ℓ⟧ → Y we write f ◾
◾ g for the mapping Πk

ℓ → Y defined by ◾i ↦ f(i)
and ◾j ↦ g(j) for any i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.

(d) The successor function for k upper and ℓ lower points is the permutation
νkℓ () of Πk

ℓ defined by ◾i ↦ ◾(i − 1) and ◾j ↦ ◾(j + 1) for all {i, j} ⊆ N with
1 < i ≤ k and 1 ≤ j < ℓ, by ◾ℓ ↦ ◾k if k ≠ 0 ≠ ℓ and ◾ℓ ↦ ◾1 if k = 0 < ℓ and by
◾1↦ ◾1 if k ≠ 0 ≠ ℓ and ◾1↦ ◾k if ℓ = 0 < k.

(e) By definition, the cyclic order Γkℓ ≡ (⋅ ∣ ⋅ ∣ ⋅)kℓ for k upper and ℓ lower points
is the ternary relation on Πk

ℓ which for any {a,b,c} ⊆ Πk
ℓ satisfies (a ∣ b ∣ c)kℓ

if and only if ∣{a,b,c}∣ = 3 and there exist {u, v} ⊆ N such that u + v < k + ℓ
and (νkℓ )○u(a) = b and (νkℓ )○v(b) = c .

(f) For any two sets S ⊆ Πk
ℓ and T ⊆ Πk

ℓ with S ∩ T = ∅ we say that S and T
cross with respect to Γkℓ , in symbols: S �k

ℓ T, if there exist {a,c} ⊆ S and
{b,d} ⊆ T with (a ∣ b ∣ c)kℓ and (b ∣ c ∣ d)kℓ and (c ∣ d ∣ a)kℓ . Otherwise we call
S and T non-crossing with respect to Γkℓ , written as S×k

ℓ T.
(g) Given any {a,b} ⊆ Πk

ℓ with, importantly, a ≠ b the (open) cyclic interval
with respect to Γkℓ from a to b is the set ]a,b[kℓ ∶= {(νkℓ )○i(a) ∣ i ∈ ⟦u − 1⟧},
where u =min{j ∈ N ∣ (νkℓ )○j(a) = b}.

Moreover, we let [a,b[kℓ ∶= {a}⊍]a,b[kℓ and ]a,b]kℓ ∶=]a,b[kℓ⊍{b} as well
as [a,b]kℓ ∶= {a}⊍]a,b[kℓ⊍{b}, speaking of right-open, left-open and closed
intervals, respectively.

All these sets are also referred to as convex with respect to Γkℓ .
(h) The strict linear order <kℓ for k upper and ℓ lower points is the binary

relation on Πk
ℓ which for any {a,b} ⊆ Πk

ℓ satisfies a <kℓ b if and only if
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(◾k ∣ a ∣ b)kℓ or a = ◾k ≠ b in case 0 < k and (a ∣ b ∣ ◾ℓ)kℓ or a ≠ ◾ℓ = b in case
0 < ℓ (which is equivalent if both 0 < k and 0 < ℓ).

Moreover, ≤kℓ ∶= <kℓ ∪{(a,a) ∣a ∈ Πk
ℓ} is called the linear order for k upper

and ℓ lower points.
(i) The horizontal reflection onto k upper and ℓ lower points is the bijection

κkℓ ∶ Πk
ℓ → Πℓ

k with ◾i↦ ◾i and ◾j ↦ ◾j for all i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.
(j) In contrast, the vertical reflection of k upper and ℓ lower points is the

bijection ρkℓ ∶ Πk
ℓ → Πk

ℓ defined by ◾i ↦ ◾(k − i + 1) and ◾j ↦ ◾(ℓ − j + 1) for
any i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.

(k) For any r ∈ {⤹, Á, ¹, ⤸} the r-rotation ωr,kℓ onto k upper and ℓ lower points
is defined,

(i) if 0 < k, as the bijection ω⤹,kℓ ∶ Πk−1
ℓ+1 → Πk

ℓ which satisfies ◾i↦ ◾(i + 1) for
any i ∈ ⟦k⟧/⟦1⟧ and ◾1↦ ◾1 and ◾j ↦ ◾(j − 1) for any j ∈ ⟦ℓ⟧.

(ii) if 0 < ℓ, as the bijection ωÁ,kℓ ∶ Πk+1
ℓ−1 → Πk

ℓ which satisfies ◾i ↦ ◾i for any
i ∈ ⟦k⟧ and ◾j ↦ ◾j for any j ∈ ⟦ℓ − 1⟧ and

◾(k + 1)↦ ◾ℓ.

(iii) if 0 < ℓ, as the bijection ω¹,kℓ ∶ Πk+1
ℓ−1 → Πk

ℓ which satisfies ◾i↦ ◾(i − 1) for
any i ∈ ⟦k⟧ and ◾1↦ ◾1 and ◾j ↦ ◾(j + 1) for any j ∈ ⟦ℓ⟧/⟦1⟧.

(iv) if 0 < k, as the bijection ω⤸,kℓ ∶ Πk−1
ℓ+1 → Πk

ℓ which satisfies ◾(ℓ + 1) ↦ ◾k
and ◾i↦ ◾i for any i ∈ ⟦k − 1⟧ and ◾j ↦ ◾j for any j ∈ ⟦ℓ⟧.

(l) For any set S ⊆ Πk
ℓ , firstly, let α(S) = ∣Πk

0 ∩ S∣ be the upper point count of
S and β(S) = ∣Π0

ℓ ∩ S∣ the lower point count of S, secondly, let the upper
enumeration of S be the injection η k

S,ℓ ∶ ⟦α(S)⟧→ Πk
ℓ with the graph

{(∣Πi
0 ∩ S∣, ◾i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ S}

and the lower enumeration of S the injection θ k
S,ℓ ∶ ⟦β(S)⟧ → Πk

ℓ with the
graph

{(∣Π0
j ∩ S∣, ◾j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ S},

and, thirdly, let the insertion onto S for k upper and ℓ lower points be the

injection Π
α(S)
β(S) → Πk

ℓ defined by γ k
S,ℓ ∶= η k

S,ℓ
◾
◾ θ

k
S,ℓ .

2.2. Bi-labeled graphs and graph categories. After fixing which notion of
graphs will be employed, this section gives the definition of bi-labeled graphs, their
operations and categories. Additionally, further operations for bi-labeled graphs are
introduced and an alternative criterion for a set to be a graph categoryd is derived.

2.2.1. Graphs. Throughout, all “graphs” will be finite, simple and undirected
and may or may not have loops (also known as self-edges).

Definition 2.4. (a) We call G a graph if and only if there exist sets V
and E with ∣V ∣ < ∞, with E ⊆ ℘V , with ∣e∣ ∈ ⟦2⟧ for any e ∈ E and with
G = (V,E).

(b) Given any graph H = (W,F ) we say that any graph (V,E) is a subgraph of
H if V ⊆W and E ⊆ F and a full subgraph of H if, additionally, E = F ∩℘V .
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(c) For any graphs G = (V,E) and G′ = (V ′,E′) any mapping f ∶ V → V ′ is
called a

(i) graph homomorphism from G to G′ if f→(e) ∈ E′ for any e ∈ E,
(ii) graph embedding of G into G′ if f is an injective graph homomorphism

from G to G′ such that f←(e′) ∈ E for any e′ ∈ E′ with e′ ⊆ ran(f),
(iii) graph isomorphism if f is a surjective graph embedding of G into G′.

(d) Given any graph G = (V,E) and any set U ⊆ V we let G∣U ∶= (U,E ∩ ℘U).
(e) For any graphsG1 andG2 withGm = (Vm,Em) for eachm ∈ ⟦2⟧ letG1�G2 ∶=
(V1 � V2,⊍2

m=1{(ιmV1,V2)→(e) ∣ e ∈ Em}).
(f) Given any graph G = (V,E) and any equivalence relation r on V , define

G/r ∶= (V /r,{(πr)→(e) ∣ e ∈ E}).
Of course, for any graphs G1 and G2 the pair G1 � G2 is a graph as well and

ιmG1,G2
is a graph embedding from Gm to G1 �G2 for any m ∈ ⟦2⟧. Moreover, for any

graph G = (V,E) and any equivalence relation r on V the pair G/r is graph and πr
a graph homomorphism from G to G/r.

Definition 2.5. Let G = (V,E) be any graph and let {v, v′} ⊆ V .
(a) We say that v and v′ are adjacent in G, in symbols v ∽G v′, if {v, v′} ∈ E.
(b) We call v and v′ connected in G if they belong to the same class with respect

to the equivalence relation ⋍G on V generated by ∽G
(c) The classes of ⋍G are called the connected components of G.

Graph homomorphisms preserve both adjacacency and connectedness.

Remark 2.6. (a) For any graphs G1 and G2 with vertex sets V1 and V2,
respectively, and for any {u,u′} ⊆ V1 � V2 the relation u ∽G1�G2 u

′ holds if
and only if there exist m ∈ ⟦2⟧ and {v, v′} ∈ Vm such that u = ιmV1,V2(v) and

u′ = ιmV1,V2(v′) and v ∽Gm v′. Likewise, u ⋍G1�G2 u
′ holds if and only if there

exist m ∈ ⟦2⟧ and {v, v′} ⊆ Vm such that u = ιmV1,V2(v) and u′ = ιmV1,V2(v′) and
v ⋍Gm v′.

(b) For any equivalence relation r on the vertex set V of any graph G and
for any {u,u′} ⊆ V /r the relation u ∽G/r u′ holds if and only if there exist
{v, v′} ⊆ V with u = πr(v) and u′ = πr(v′) and v ∽G v′.

Definition 2.7. Let G = (V,E) be any graph.
(a) We say that v is (the vertex sequence of) a walk in G if there exists k ∈ N

such that v∶ ⟦k + 1⟧ → V and {vi, vi+1} ∈ E for all i ∈ ⟦k⟧. If so, we call k
the length of v and we say that v is a walk from v1 to vk+1.

(b) Given any {x,x′} ⊆ V , the distance dG(x,x′) between x and x′ in G is
defined as 0 if x = x′, as ∞ if x ≠ x′ and there is no walk from x to x′ in G,
and otherwise as the minimal k ∈ N such that there exists a walk of length
k from x to x′.

(c) Let {k, k′} ⊆ N, let v and v′ be walks in G of lengths k and k′ respectively.
We say that v is a subwalk of v′ if there exists a strictly increasing function
f ∶ ⟦k + 1⟧→ ⟦k′ + 1⟧ such that v = v′ ○ f and v1 = v′1 and vk+1 = v′k′+1.
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(d) For any k ∈ N any walk v of length k in G is called a
(i) trail if the mapping ⟦k⟧→ E, i↦ {vi, vi+1} is injective.

(ii) circuit if v is a trail and if v1 = vk+1
(iii) path if v is a trail and if v is injective.
(iv) cycle if v is a circuit and if the restrictions of v to ⟦k + 1⟧/{k + 1} and

to ⟦k + 1⟧/{1} are both injective.
(e) For any walk v in G of any length k we call the map vx∶ ⟦k + 1⟧ → V, i ↦

vk−i+2 the reverse walk of v
(f) Given any x ∈ V and any walks v and w in G of length k respectively

ℓ to respectively from x the concatenated walk of (w, v) is the map w |
v∶ ⟦k + ℓ + 1⟧→ V with i↦ vi if i ≤ k + 1 and i↦ wi−k if k + 1 < i.

Remark 2.8. Let G = (V,E) be any graph.
(a) For any walk v in G from any vertex x ∈ V to any vertex x′ ∈ V the reverse

walk vx of v is a walk in G from x′ to x of the same length. In particular,
dG(x′, x) = dG(x,x′).

(b) Given any {x,x′, x′′} ⊆ V , any walk v in G from x to x′ and any walk w in
G of from x′ to x′′ the concatenated walk w|v of (w, v) is a walk in G from
x to x′′, whose length is the sum of the lengths of v and w. In particular,
dG(x,x′′) ≤ dG(x,x′) + dG(x′, x′′).

(c) For any walk v in G there exists a subwalk of v that is a path or cycle. In
fact, for any {x,x′} ⊆ V with x ≠ x′ such that there exists a walk in G from
x to x′ we can find a path in G from x to x′ of length dG(x,x′).

(d) If v is any path in G of length k = dG(v1, vk+1), then for any {j, j′} ⊆ ⟦k⟧
with j < j′ the mapping ⟦j′ − j + 1⟧ → V, i ↦ vj+i−1 is a path in G from vj
to vj′ of length j′ − j = dG(vj, vj′).

(e) For any graph H with vertex set W , for any subgraph G of H with vertex
set V and for any {x,x′} ⊆ V , always, dH(x,x′) ≤ dG(x,x′), with equality
not guaranteed, even if G is a full subgraph.

(f) Let H be any graph, f any graph homomorphism from G to H and {x,x′} ⊆
V arbitrary.

(i) For any walk v in G from x to x′ the map f ○ v is a walk in H from
f(x) to f(x′). In particular, dH(f(x), f(x′)) ≤ dG(x,x′).

(ii) If f is a graph embedding of G in H and w any walk in H from f(x)
to f(x′) with ran(w) ⊆ ran(f), then the well-defined map f−1 ○w is a
walk in G from x to x′.

(iii) If f is even a graph isomorphism from G to H, then dH(f(x), f(x′)) =
dG(x,x′).

(g) For any graphs G1 and G2 with vertex sets V1 and V2, respectively, and for
any {u,u′} ⊆ V1 � V2, whenever dG1�G2(u,u′) < ∞ there exist m ∈ ⟦2⟧ and
{v, v′} ⊂ Vm such that u = ιmV1,V2(v) and u′ = ιmV1,V2(v′) and dG1�G2(u,u′) =
dGm(v, v′).
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Definition 2.9. For any graph G = (V,E) and any v ∈ V the number degG(v) ∶=
∣{v′ ∈ V ∧ {v, v′} ∈ E}∣ ∈ N0 is called the degree of v in G.

2.2.2. Bi-labeled graphs. The definition of “bi-labeled graph” employed here di-
verges slightly from the the one given originally by Mančinska and Roberson in
[MR20]. However, the difference is purely formal.

Definition 2.10. (a) For any {k, ℓ} ⊆ N0 a (k, ℓ)-bi-labeled graph is any
equivalence class of the following equivalence relation: Of the class of all
pairs (G,g) such that G = (V,E) is a graph and g∶ Πk

ℓ → V a mapping it
calls any members (G,g) and (G′, g′) equivalent if and only if there exists
a graph isomorphism u from G to G′ with g′ = u ○ g.

(b) Let G(k, ℓ) be the class of all (k, ℓ)-bi-labeled graphs for any {k, ℓ} ⊆ N0.
(c) Moreover, let G ∶= ⋃∞k,ℓ=0 G(k, ℓ).
(d) Conversely, for any class C ⊆ G let C(k, ℓ) ∶= C ∩ G(k, ℓ) for any {k, ℓ} ⊆ N0.

The collection G(k, ℓ) is a set for each {k, ℓ} ⊆ N0 and, thus, so is G. The following
bi-labeled graphs will occur frequently.

Definition 2.11. (a) For any {k, ℓ} ⊆ N0 let Mk,ℓ ∈ G(k, ℓ) be such that
(M,m) ∈ Mk,ℓ, where M = (⟦1⟧,∅) and where m is the unique mapping
Πk
ℓ → ⟦1⟧.

(b) In particular, let I ∶=M1,1.
(c) Next, let S ∈ G(2,2) be such that (S, s) ∈ S, where S = (⟦2⟧,∅) and where

s∶ Π2
2 → ⟦2⟧ is determined by ◾1, ◾2↦ 1 and ◾2, ◾1↦ 2.

(d) Let A ∈ G(1,1) be such that (A,a) ∈ A, where A = (⟦2⟧,{⟦2⟧}) and where
a∶ Π1

1 → ⟦2⟧ satisfies ◾1↦ 1 and ◾1↦ 2.
(e) The unique element of G(0,0) is denoted by ∅.

2.2.3. Graph categories. One can introduce the following (partial) two binary
and one unary operations on the set G.

Definition 2.12. (a) For any {k, ℓ,m} ⊆ N0 and any G ∈ G(k, ℓ) and H ∈
G(ℓ,m) the composition H ○G ∈ G(k,m) is defined by the condition that
for any (or, equivalently, some) representatives (G,g) ∈ G and (H,h) ∈ H,
if G = (X,A) and H = (Y,B), then (P, p) ∈ H ○G, where P = (G�H)/r
for the equivalence relation r on X � Y generated by

{((ι1X,Y ○ g)(◾i), (ι2X,Y ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧}
and where

p = πr ○ ((ι1X,Y ○ g∣Πk
0
) ⊍ (ι2X,Y ○ h∣Π0

m
)).

(b) Given any {km, ℓm} ⊆ N0 and Gm ∈ G(km, ℓm) for any m ∈ ⟦2⟧, the tensor
product G1⊗G2 is the element of G(k1+k2, ℓ1+ℓ2) with the property that, if
(Gm, gm) ∈Gm and Gm = (Vm,Em) for each m ∈ ⟦2⟧, then (T, t) ∈G1 ⊗G2,
where T = G1 �G2 and where

t = (ι1V1,V2 ○ g1) ⊍ (ι
2
V1,V2

○ g2 ○ τ k1,k2ℓ1,ℓ2
),
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where τ k1,k2ℓ1,ℓ2
∶ Πk1+k2

ℓ1+ℓ2 /Π
k1
ℓ1
→ Πk2

ℓ2
is defined by ◾i↦ ◾(i − k1) and ◾j ↦ ◾(j − ℓ1)

for any i ∈ ⟦k2⟧ and j ∈ ⟦ℓ2⟧.
(c) For any {k, ℓ} ⊆ N0 and any G ∈ G(k, ℓ) the adjoint G∗ ∈ G(ℓ, k) is de-

termined by the demand that, if (G,g) ∈ G, then (G,g ○ κℓk) ∈ G∗, where
κℓk∶ Πℓ

k → Πk
ℓ is defined by ◾i↦ ◾i and ◾j ↦ ◾j for all i ∈ ⟦ℓ⟧ and j ∈ ⟦k⟧.

Both composition and tensor product are associative operations.

Definition 2.13. (a) A graph category is any C ⊆ G with {∅, I,M0,2} ⊆ C
which is closed under composition, tensor products and involution.

(b) Given any subset S of G, the graph category generated by S, i.e., the
intersection of all graph categories containing S, is denoted by ⟨S⟩.

Evidently, G is a graph category. It is often helpful to consider addtional (partial)
operations under which graph categories are invariant.

Definition 2.14. For any {k, ℓ} ⊆ N0, any r ∈ {⤹, Á, ¹, ⤸} such that ωr,kℓ is defined
and any G ∈ G(k, ℓ) the r-rotation of G is the element Gr ∈ G with the property

that, if (G,g) ∈G, then (G,g ○ ωr,kℓ ) ∈Gr.
We also define inductively Grm = (Gr (m−1))r for any m ∈ N wherever that makes

sense (meaning, e.g., G⤸2 = (G⤸)⤸ if r =⤸ and 2 ≤ k), and we let Gr 0 =G.

Lemma 2.15. Any graph category is closed under rotations.

Proof. For any {k, ℓ} ⊆ N0 and any G ∈ G(k, ℓ), if 0 < k, then {G⤹,G⤸} ⊆ ⟨G⟩
because G⤹ = (I⊗G) ○ (M0,2 ⊗ I⊗(k−1)) and G⤸ = (G⊗ I) ○ (I⊗(k−1) ⊗M0,2). If 0 < ℓ,
then the identities G¹ = ((G∗)⤹)∗ and GÁ = ((G∗)⤸)∗ hence prove the claim. □

Definition 2.16. For any {k, ℓ} ⊆ N0 and any G ∈ G(k, ℓ) the reflection of G is
the unique G∧ ∈ G(k, ℓ) such that, if (G,g) ∈G, then (G,g ○ ρkℓ ) ∈G∧.

Lemma 2.17. Any graph category is closed under reflection.

Proof. For any {k, ℓ} ⊆ N0 and G ∈ G(k, ℓ) the reflection G∧ = ((G∗)⤹ℓ)Ák is an
element of ⟨G⟩ by Lemma 2.15. That is true even in the cases where one or both of
k and ℓ is 0. □

Definition 2.18. For any {k, ℓ} ⊆ N0, any subset T ⊆ Πk
ℓ with ∣T∣ = 2 which

is convex with respect to Γkℓ , and any G ∈ G(k, ℓ) the erasing of T from G is the
element E(G,T) ∈ G(α(M), β(M)) such that, if (G,g) ∈ G and G = (V,E), then
(P, p) ∈ E(G,T), where P = (W,F ), where, if T = g→(T) and M = Πk

ℓ /T, then

W = {{v} ∣ v ∈ V /T} ⊍ {T}
and

F = {{{v} ∣ v ∈ e} ∣ e ∈ E ∧ e ∩ T = ∅}
⊍ {{{v}, T ∣ v ∈ e/T} ∣ e ∈ E ∧ ∅ ≠ e ∩ T ≠ e}
⊍ {{T} ∣∃e ∈ E ∶ e ⊆ T}
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and

p∶ Π
α(M)
β(M) →W, a↦ {{(g ○ γM)(a)} if (g ○ γM)(a) ∉ T

T otherwise.

Remark 2.19. With the same definitions as in the preceding Definition 2.18 and

π∶ V →W, v ↦ {{v} if v ∉ T,
T otherwise,

the following hold:
(a) p = π ○ g ○ γM.
(b) π is a graph homomorphism from G to P .
(c) π∣V /T is a graph embedding of G∣V /T into P .

Lemma 2.20. Any graph category is closed under erasing

Proof. For any {k, ℓ} ⊆ N0, any G ∈ G(k, ℓ) and any T ⊆ Πk
ℓ with ∣T∣ = 2

which is consecutive with respect to Γkℓ the erasing E(G,T) can be expressed as
(I⊗(j−1) ⊗M2,0 ⊗ I⊗(ℓ−j−1)) ○G if T = {◾j, ◾(j + 1)} for some j ∈ ⟦ℓ − 1⟧, as (I⊗(i−1) ⊗
M0,2⊗ I⊗(k−i−1)) ○G if T = {◾i, ◾(i + 1)} for some i ∈ ⟦k − 1⟧, as (M2,0⊗ I⊗(ℓ−1)) ○ (I⊗
G)○ (M0,2⊗ I⊗(k−1)) if T = {◾1, ◾1} and as (I⊗(ℓ−1)⊗M2,0)○ (G⊗ I)○ (I⊗(k−1)⊗M0,2)
if T = {◾k, ◾ℓ}. And that implies E(G,T) ∈ ⟨G⟩. □

Invariance under these new operations is usually simpler to check, which is why
the following is a useful criterion.

Proposition 2.21. Any subset C of G is a graph category if only if I ∈ C and C
is closed under rotation, tensor products, reflection and erasing.

Proof. That graph categories are closed under rotation, reflection and erasing
was shown in Lemmata 2.15, 2.17 and 2.20, respectively. Hence, let C ⊆ G with I ∈ C
be closed under rotation, tensor products, reflection and erasing. The identities
M0,2 = I⤸ and ∅ = E(I,{◾1, ◾1}) prove {∅, I,M0,2} ⊆ C. Thus, we only need to
show that C is closed under forming adjoints and under composition. The former
follows from the fact that for any {k, ℓ} ⊆ N0 and G ∈ C(k, ℓ) the adjoint G∗ can
be written as ((G∧)¹ℓ)⤸k ∈ C(ℓ, k). And C is invariant under composition because
for any {k, ℓ,m} ⊆ N0 and H ∈ C(k, ℓ) and K ∈ C(ℓ,m) the composition K ○ H
is identical to Sℓ, where, first, R0 = K ⊗ I⊗ℓ ⊗ H ∈ C(2ℓ + k,m + 2ℓ) and Ri =
E(Ri−1,{◾(m + ℓ − i + 1), ◾(m + ℓ − i + 2)}) ∈ C(2ℓ+k,m+2(ℓ− i)) for any i ∈ ⟦ℓ⟧ and,
then, S0 =Rℓ ∈ C(2ℓ + k,m) and Si = E({◾(ℓ − i + 1), ◾(ℓ − i + 2)},Si−1) ∈ C(2(ℓ − i) +
k,m) for any i ∈ ⟦ℓ⟧. □

2.3. Partitions and categories of partitions. The present section recalls
the definition of “partitions”, their operations and categories. Moreover, a list of all
categories of partitions is presented. The section closes with some abstract results
about links between graph categories and categories of partitions.
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2.3.1. Partitions. In [BS09] Banica and Speicher used the following notion of
“partitions” for their easy quantum groups.

Definition 2.22. For any {k, ℓ} ⊆ N0 a partition of k upper and ℓ outer points
is any partition of Πk

ℓ

And it is this notion and this notion only that will be used in the present work.

Remark 2.23. This definition is decidedly different from the one used in [MR19,
p. 11]. For Banica and Speicher the elements of any partition of k upper and ℓ
lower points, the so-called blocks, are always non-empty. In contrast, Mančinska
and Roberson allow “empty blocks” in the following sense: For them a partition
of k upper and ℓ lower points is effectively any equivalence class of the following
equivalence relation: Of the class of all pairs (V, g) such that V is a finite set and
g∶ Πk

ℓ → V a mapping it calls any members (V, g) and (V ′, g′) equivalent if and only
if there exists a bijection u∶ V → V ′ with g′ = u○g. If one added the condition that in
any pair (V, g) the mapping g be surjective, this definition would become equivalent
to Banica and Speicher’s.

In particular, the results in the literature following [BS09] do generally not apply
to partitions in Mančinska and Roberson’s sense.

Definition 2.24. (a) The trivial partition {Π1
1} of Π1

1 is denoted by .
(b) Similarly, the symbols and are used for the trivial partitions {Π0

2} of
Π0

2 and {Π2
0} of Π2

0, respectively.

The only partition of Π0
0 = ∅ is of course ∅.

2.3.2. Categories of partitions. There are three basic operations for partitions,
composition, tensor products and forming adjoints, just like for bi-labeld graphs.
Analogs of the other operations of Section 2.2.3 exist as well but are not needed
here.

Definition 2.25. For any {k, ℓ,m} ⊆ N0 and any partitions q of Πk
ℓ and p of Πℓ

m,
the composition of (p, q) is defined as the partition

pq ∶=
{A ∈ q ∧ A ⊆ Πk

0}
⊍ {⋃{A ∩Πk

0 ∣A ∈ q ∧ A ∩ (κℓ0)→(B) ≠ ∅} ⊍⋃{C ∩Π0
m ∣C ∈ p ∧ C ∩B ≠ ∅}}

B∈s /{∅}
⊍ {C ∈ p ∧ C ⊆ Π0

m}
of Πk

m, where s ≡ ((κℓ0)⇠(q∣Π0
ℓ
)) ∨ (p∣Πℓ

0
).

Definition 2.26. For any {k, ℓ} ⊆ N0 and any partition p of Πk
ℓ the adjoint of p

is the partition p∗ ∶= (κkℓ )⇢(p) of Πℓ
k.

Definition 2.27. For any {k1, k2, ℓ1, ℓ2} ⊆ N0 and any partitions p1 of Πk1
ℓ1

and

p2 of Πk2
ℓ2

let

p1 ⊗ p2 ∶= (γH1)⇢(p1) ⊍ (γH2)⇢(p2),
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where H1 ≡ Πk1
ℓ1

and H2 ≡ Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ2

, be the tensor product of (p1, p2).
Definition 2.28. A category of partitions is any set of partitions in the sense of

Definition 2.22 including {, } and closed under composition, tensor products and
involution.

For later results it is helpful to see that the operations for partitions can also be
expressed in a way that more closely resembles the respective definition for bi-labeled
graphs.

Lemma 2.29. For any {k, ℓ,m} ⊆ N0 and any partitions p of Πk
ℓ and q of Πℓ

m

the composition qp can be computed as ker(f) for any finite sets X and Y and any
mappings g∶ Πk

ℓ → X and h∶ Πℓ
m → Y with p = ker(g) and q = ker(h), where r is the

equivalence relation on X � Y generated by

{((ι1X,Y ○ g)(◾i), (ι2X,Y ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧}
and where

f = πr ○ ((ι1X,Y ○ g∣Πk
0
) ⊍ (ι2X,Y ○ h∣Π0

m
)).

Proof. If u = ((κℓ0)⇠(p)) ∨ (q∣Πℓ
0
), then we have to show that ker(f) equals

qp = {A ∈ p ∧ A ⊆ Πk
0}

⊍ {⋃{A ∩Πk
0 ∣A ∈ p ∧ A ∩ (κℓ0)→(B) ≠ ∅}

⊍⋃{C ∩Π0
m ∣C ∈ q ∧ C ∩B ≠ ∅} ∣B ∈ u} /{∅}

⊍ {C ∈ q ∧ C ⊆ Π0
m}.

We abbreviate

a ≡ ι1X,Y ○ g∣Πk
0
, b ≡ ι1X,Y ○ g ○ κℓ0, c ≡ ι2X,Y ○ h∣Πℓ

0
and d ≡ ι2X,Y ○ h∣Π0

m
.

The proof is divided into two steps, relating r and u and then using this intermediate
result to prove the claim.

Step 1: We first prove that

w ∶= {{z} ∣ z ∈ (X � Y )/(ran(b) ∪ ran(c))} ∪ {b→(B) ∪ c→(B) ∣B ∈ u}.
is the same as (X � Y )/r. Doing so requires five steps in itself. We have to 1)
rewrite u in terms of b and c and then use that to check that 2) the union of w is all
of X�Y , that 3) the elements of X�Y are pairwise disjoint (i.e., that w is actually
a partition of X �Y ), that 4) the generating set of r is contained in ∼w and that 5)
the partition w is the finest one with this property.

Step 1.1: First, we recognize that

u = ker(b) ∨ ker(c).
Indeed, as ι1X,Y is injective and as p = ker(g) the partitions ker(ι1X,Y ○ g ○ κℓ0) and

ker(g ○ κℓ0) = (κℓ0)⇠(ker(g)) = (κℓ0)⇠(p) coincide and, since ι2X,Y is injective and

q = ker(h), so do ker(ι2X,Y ○ h∣Πℓ
0
) and q∣Πℓ

0
.
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Step 1.2: Because u is a partition of Πℓ
0 the union ⋃u is all of Πℓ

0. For that
reason,

⋃w = (X � Y )/(ran(b) ∪ ran(c)) ∪ (ran(b) ∪ ran(c)) =X � Y.

Step 1.3: Next, we need to show that any two elements of w are either identical
or disjoint. Hence, let {Z,Z ′} ⊆ w be arbitrary with Z ≠ Z ′. We prove Z ∩ Z ′ = ∅.
Given that w is defined as the union of two sets, we need to distinguish cases.

Case 1.3.1: If there are {z, z′} ⊆ (X � Y )/(ran(b) ∪ ran(c)) with Z = {z} and
Z ′ = {z′}, then Z ≠ Z ′ requires z ≠ z′. It follows Z ∩Z ′ = {z} ∩ {z′} = ∅.

Case 1.3.2: If there exist {B,B′} ⊆ u with Z = b→(B) ∪ c→(B) and Z ′ = b→(B′) ∪
c→(B′), then the assumption Z ≠ Z ′ necessitates B ≠ B′. The fact that ran(b) ∩
ran(c) ⊆ ran(ι1X,Y ) ∩ ran(ι2X,Y ) = ∅ implies that the intersection

Z ∩Z ′ = (b→(B) ∪ c→(B)) ∩ (b→(B′) ∪ c→(B′))

collapses to

(b→(B) ∩ b→(B′)) ∪ (c→(B) ∩ c→(B′)).

We conclude from this that Z and Z ′ are disjoint if and only if both b→(B)∩ b→(B′)
and c→(B) ∩ c→(B′) are empty. And this is indeed true: If there existed points
c ∈ B and c′ ∈ B′ with b(c) = b(c′), that would imply c∼ker(b) c′ and thus c∼u c′ by
ker(b) ≤ u by Step 1.1, yielding the contradiction B = B′. An analogous argument
can be given for c→(B) ∩ c→(B′) = ∅ due to ker(c) ≤ u.

Case 1.3.3: If there exist B ∈ u and z ∈ (X�Y )/(ran(b)∪ran(c)) such that Z = {z}
and Z ′ = b→(B) ∪ c→(B), then Z ∩Z ′ = ∅ by z ∉ b→(B) ∪ c→(B) ⊆ ran(b) ∪ ran(c).

And these are all the cases we need to consider. In conclusion, w is indeed a
partition of X � Y .

Step 1.4: For any c ∈ Πℓ
0, if B ∈ u is such that c ∈ B, then b(c)∼w c(c) because

both b(c) ∈ Z and c(c) ∈ Z for Z = b→(B) ∪ c→(B) ∈ w. Hence,

s = {(b(c), c(c)) ∣c ∈ Πℓ
0} ⊆ ∼w .

Step 1.5: It remains to prove that ∼w is the finest equivalence relation on X �Y
extending s. To do so we let f be any partition of X�Y such that s ⊆ ∼f and prove
w ≤ f .

For any z ∈ (X � Y )/(ran(b) ∪ ran(c)) it is clear that there exists F ∈ f with
z ∈ F , i.e., {z} ⊆ F , because f is a partition. Hence, we let B ∈ u be arbitrary and
must now find a block F ∈ f with Z ∶= b→(B) ∪ c→(B) ⊆ F .

To that end we define

v ∶= {b←(F ) ∪ c←(F ) ∣F ∈ f}

and show that this is a partition of Πℓ
0 coarser than u. By the minimality of u this

requires proving that 1) the union of v is Πℓ
0, that 2) any two distinct elements of v

are disjoint, 3) that u is coarser than ker(h∣Πℓ
0
) and 4) than ker(h∣Πℓ

0
).
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Step 1.5.1: Because f is a partition of X � Y the union ⋃ f is all of Πℓ
0. That is

why

⋃ v = b←(X � Y ) ∪ c←(X � Y ) = Πℓ
0.

Step 1.5.2: For any {F,F ′} ⊆ f such that V = b←(F ) ∪ c←(F ) and V′ = b←(F ′) ∪
c←(F ′) are distinct it must hold that F ≠ F ′. Since f is a partition of X � Y we
infer that F ∩ F ′ = ∅ and thus that in the decomposition

V ∩V′ = b←(F ∩ F ′) ∪ c←(F ∩ F ′)
∪ (b←(F ) ∩ c←(F ′)) ∪ (b←(F ′) ∩ c←(F ))

the sets on the right-hand side of the first line are empty. The same is true about
the sets in the second line. Indeed, because s ⊆ ∼f , for any c ∈ Πℓ

0 the vertices
(b)(c) and (c)(c) must belong to the same block of f . Due to V ≠ V′ that forbids
c ∈ b←(F )∩ c←(F ′) and, likewise, c ∈ b←(F ′)∩ c←(F ). In conclusion, v is a partition
of Πℓ

0.
Step 1.5.3: For any S ∈ ker(b) the definition of the kernel implies that b→(S) is a

singleton set. Because f is a partition of X � Y there must then exist F ∈ f with
b→(S) ⊆ F . Since, trivially, the self-map b← ○ b→ of ℘(Πℓ

0) is increasing with respect
to ⊆ it follows

S ⊆ b←(b→(S)) ⊆ b←(F ) ⊆ b←(F ) ∪ c←(F ).

Because the set on the right-hand side of the last inclusion is a block of v and since
S was arbitrary that proves ker(b) ≤ f .

Step 1.5.4: The inequality ker(c) ≤ f can be inferred by an analogous deduction:
For any S′ ∈ ker(c) there exists F ′ ∈ f with c→(S′) ⊆ F ′ because c→(S′) is a singleton
set. Hence, S′ ⊆ ((c)← ○ c→)(S′) implies that S′ is contained in c←(c→(S′)), which is
included in c←(F ′) and thus in the block b←(F ′) ∪ c←(F ′) of f .

In conclusion we have shown u ≤ v. Therefore we can infer the existence of some
V ∈ v with B ⊆ V. If F ∈ f is such that V = b←(F ) ∪ c←(F ), then the inequalities
b→(B) ⊆ b→(V) and c→(B) ⊆ c→(F ) together imply that the set Z = b→(B)∪ c→(B) is
contained in

b→(b←(F ) ∪ c←(F )) ∪ c→(b←(F ) ∪ c←(F )),

which is the same as

(b→ ○ b←)(F ) ∪ (c→ ○ c←)(F ) ∪ c→(b←(F )) ∪ b→(c←(F )).

Because, trivially, the self-maps b→ ○ b← and c→ ○ c← of ℘(X � Y ) are increasing,

(b→ ○ b←)(F ) ∪ (c→ ○ c←)(F )

is a subset of F . But also

c→(b←(F )) ∪ b→(c←(F ))
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is contained in F as well because that is precisely what the assumption s ⊆ ∼f means:
For any c ∈ Πℓ

0, if b(c) ∈ F , then also c(c) ∈ F , and vice versa. Thus, the desired
inequality Z ⊆ F follows. That concludes the proof of the identity w = (X � Y )/r.

Step 2: We will now infer our main claim that qp is given by ker(f) = ker(πr ○
(a ⊍ d)) = (a ⊍ d)⇠(ker(πr)). Because ker(πr) = (X � Y )/r = w by Step 1 this is the
same as the partition

{(a ⊍ d)←({z}) ∣ z ∈ (X � Y )/(ran(b) ∪ ran(c))}/{∅}
∪ {(a ⊍ d)←(b→(B)) ⊍ (a ⊍ d)←(c→(B)) ∣B ∈ u} /{∅}

by definition of w. Because ranb∩ rand = ∅ and rana∩ ranc = ∅ we can rewrite that
as

{a←({z}) ∣ z ∈ ran(a)/ran(b)}
∪ {a←(b→(B)) ⊍ d←(c→(B)) ∣B ∈ u} /{∅}
∪ {d←({z}) ∣ z ∈ ran(d)/ran(c)}

Since ι1X,Y and ι2X,Y are injective ker(f) is thus the partition

{(g∣Πk
0
)←({x}) ∣x ∈ ran(g∣Πk

0
)/ran(g ○ κℓ0)}

∪ {(g∣Πk
0
)←((g ○ κℓ0)→(B)) ⊍ (h∣Π0

m
)←((h∣Πℓ

0
)→(B)) ∣B ∈ u}/{∅}

∪ {(h∣Π0
m
)←({y}) ∣ y ∈ ran(h∣Π0

m
)/ran(h∣Πℓ

0
)}

which is just another way of writing qp. □

Lemma 2.30. Given any {km, ℓm} ⊆ N0 and any partition pm of Πkm
ℓm

for each
m ∈ ⟦2⟧, the tensor product p1 ⊗ p2 can be computed as ker(t) for any finite set Vm
and any mapping gm∶ Πkm

ℓm
→ Vm with ker(gm) = pm for each m ∈ ⟦2⟧, where

t = (ι1V1,V2 ○ g1) ⊍ (ι
2
V1,V2

○ g2 ○ τ k1,k2ℓ1,ℓ2
).

Proof. If we abbreviate x ≡ ι1V1,V2 ○ g1 and y ≡ ι2V1,V2 ○ g2 ○ τ
k1,k2
ℓ1,ℓ2

, then, because
ι1V1,V2 and ι2V1,V2 and thus also x and y have disjoint ranges, for each z ∈ V1 � V2 at
most one of the two sets x←({z}) and y←({z}) is non-empty. Hence, the partition

ker(t) = {(x ∪ y)←({z}) ∣ z ∈ V1 � V2}/{∅}
= {x←({z}) ∪ y←({z}) ∣ z ∈ V1 � V2}/{∅}

can be rewritten as

{x←({z}) ∣ z ∈ V1 � V2}/{∅} ∪ {y←({z}) ∣ z ∈ V1 � V2}/{∅} = ker(x) ∪ ker(y).
Since ι1V1,V2 and ι2V1,V2 are injective, ker(x) = ker(g1) and ker(y) = ker(g2 ○ τ k1,k2ℓ1,ℓ2

) =
(τ k1,k2ℓ1,ℓ2

)⇠(ker(g2)). In conclusion,

ker(t) = ker(g1) ∪ (τ k1,k2ℓ1,ℓ2
)⇠(ker(g2)) = p1 ⊗ p2

by ker(g1) = p1 and ker(g2) = p2. □
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2.3.3. List of all categories of partitions. In combination, the articles [BS09],
[BCS10], [Web13], [RW14], [RW16a] and [RW16b] provide a full classification of all
categories of partitions. For the convenience of the reader, this section recalls those
results.

Notation 2.31. (a) Let Z∗∞
2 be a free product of ∣N∣ many copies of the

cyclic group Z2 of order 2, for each i ∈ N let ai be the element of Z∗∞
2

corresponding to the generator of the i-th copy of Z2 and let ∅ be the
neutral element of Z∗∞

2 .
(b) Denote by sS∞ the strong symmetric semigroup, i.e., the subsemigroup of

the semigroup End(Z∗∞
2 ) of group endomorphisms of Z∗∞

2 generated by the
endomorphisms defined by the rule ai ↦ af(i) for any i ∈ N for any mappings
f ∶ N→ N such that ∣N/ran(f)∣ <∞.

(c) For any set M ⊆ Z∗∞
2 we write ⟨M⟩sS∞ for the smallest normal subgroup of

Z∗∞
2 containing M and invariant under the action of sS∞.

Definition 2.32. For any {k, ℓ} ⊆ N0 and any partition p of Πk
ℓ the word repre-

sentation of p is the element

F∞(p) ∶= (
←Ð
∏ℓ
j=1a(r○π∼p)(◾j)) (

Ð→
∏k
i=1a(r○π∼p)(◾i))

of Z∗∞
2 , where the operation is that of Z∗∞

2 and where the mapping r∶ p → N is
defined by the rule B↦ ∣{A ∈ p ∧ min≤k

ℓ
(A) ≤kℓ min≤k

ℓ
(B)}∣ for any B ∈ p.

Definition 2.33. For any {k, ℓ} ⊆ N0 any partition p of Πk
ℓ is said to . . .

(a) . . . be even if k + ℓ ∈ 2N0.
(b) . . . have small blocks if ∣B∣ ≤ 2 for any B ∈ p.
(c) . . . have even blocks if ∣B∣ ∈ 2N for any B ∈ p.
(d) . . . have even distances if ∣[a,b]kℓ ∣ ∈ 2N for any B ∈ p and any {a,b} ⊆ B with

a ≠ b.
(e) . . . be non-crossing if A×k

ℓ B for any {A,B} ⊆ p with A ≠ B.
(f) . . . have parity-balanced legs if p has even blocks and ∣{b ∈ B ∧ ∣]a,b]kℓ ∣ ∈

2N0}∣ = ∣{b ∈ B ∧ ∣]a,b]kℓ ∣ ∈ 2N0 + 1}∣ for any a ∈ Πk
ℓ /B and any B ∈ p.

(g) . . . contain a W of depth m ∈ N if there exist {b1, . . . , bm} ⊆ {ai ∣ i ∈ N} and

words Xα
1 , . . . ,X

α
m, Xβ

1 , . . . ,X
β
m−1, X

γ
1 , . . . ,X

γ
m, Xδ

1 , . . . ,X
δ
m−1 and Y1, Y2, Y3

over the alphabet {ai ∣ i ∈ N} such that

F∞(p) = Y1SαXα
mSβY2SγX

γ
mSδY3

(i) where Sα = b1Xα
1 b2X

α
2 . . . bm−1X

α
m−1bm,

(ii) where Sβ = bmXβ
m−1bk−1X

β
k−2 . . . b2X

β
1 b1,

(iii) where Sγ = b1Xγ
1 b2X

γ
2 . . . bm−1X

γ
m−1bm,

(iv) where Sδ = bmXδ
k−1bm−1X

δ
m−2 . . . b2X

δ
1b1 and

(v) where for every i ∈ ⟦m⟧ the letter bi appears an odd number of times
in each word Sα, Sβ, Sγ and Sδ and

(vi) where Y1, Y2 and Y3 contain none of the letters b1, . . . , bm.
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The classification can now be stated as follows.

Theorem 2.34. If C is a category of partitions, there exist ℓ ∈ N ∪ {∞} and an
sS∞-invariant normal subgroup A of Z∗∞

2 other than ⟨a1a2⟩sS∞ and ⟨a1⟩sS∞ as well
as a row in the below table such that C is given by the set of all partitions p meeting
the following conditions:

(i) p has all the properties listed as “×” in that row (and may or may not have
any of the others)

(ii) any W contained in p must have a depth less than or equal to the value
given in the next-to-last cell of that row

(iii) F∞(p) is an element of the set given in the last cell of the row.
Moreover, any two categories belonging to different rows in the table are distinct.
And so are any two belonging to the row labeled H<A> but for different values of A
or to the row labeled H{ℓ} but for different values of ℓ.

small even even non- par.-bal. max. word repre-
even blocks blocks dist. cross. legs wdepth sentations

O × × × 0 ⟨a1a2a1a2⟩sS∞
O∗ × × × × 0 ⟨a1a2a3a1a2a3⟩sS∞
O+ × × × × × × 0 {∅}
B × 0 ⟨a1⟩sS∞
B′ × × 0 ⟨a1a2⟩sS∞
B#∗ × × × 0 ⟨a1a2⟩sS∞
B+ × × × 0 ⟨a1⟩sS∞
B′+ × × × × 0 ⟨a1a2a1a3⟩sS∞
B#+ × × × × × 0 ⟨a1a2⟩sS∞
H × × ∞ ⟨a1a2a1a2⟩sS∞
H∗ × × × ∞ ⟨a1a2a3a1a2a3⟩sS∞
H<A> ∞ A
H{ℓ} × × × × ℓ {∅}
H+ × × × × × 0 {∅}
S ∞ ⟨a1⟩sS∞
S′ × ∞ ⟨a1a2⟩sS∞
S+ × 0 ⟨a1⟩sS∞
S′+ × × 0 ⟨a1a2⟩sS∞

The first column gives the common name of the corresponding category. Redun-
dant constraints usually omitted from the definitions are printed in gray.

2.4. Links between graph categories and categories of partitions. Fi-
nally, we will also use twice the following simple fact relating graph categories and
categories of partitions.
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Lemma 2.35. Let P be any mapping from G to the set of all (uncolored) partitions
with the following properties.

(i) For any {G,H} ⊆ G the composition H ○G is defined if and only if the
composition P (H)P (G) is.

(ii) P (H ○G) = P (H)P (G) for any {G,H} ⊆ G such that H ○G is defined.
(iii) P (G1 ⊗G2) = P (G1)⊗ P (G2) for any {G1,G2} ⊆ G.
(iv) P (G∗) = P (G)∗ for any G ∈ G.
(v) P (I) = .
(vi) P (M0,2) = .

Then, the following are true.
(a) P←(C) is a graph category for each category C of (uncolored) partitions.
(b) P→(F) is a category of (uncolored) partitions for each graph category F .
Proof. Follows immediately from the definitions of graph categories and cate-

gories of partitions. □

3. Vertex partitions

3.1. Definition and properties of the vertex partition. In [MR19, Defini-
tion 6.2] Mančinska and Roberson associate with each bi-labeled graph a partition.
The following definition modifies their construction.

Definition 3.1. For any {k, ℓ} ⊆ N0 and any G ∈ G(k, ℓ) the vertex partition of
G is the partition PG ∶= ker(g) of Πk

ℓ , where (G,g) ∈G can be any representative.

Remark 3.2. The difference between the mappings P from [MR19, Definition 6.2]
and from Definition 3.1 is of course that the latter forgets the “empty blocks” pre-
served by the former (see Remark 2.23).

The map P assigning the vertex partition to a bi-labeled graph is functorial.

Lemma 3.3. (a) For any {G,H} ⊆ G the composition H○G is defined if and
only if the composition PHPG is.

(b) PH○G = PHPG for any {G,H} ⊆ G such that H ○G is defined.
(c) PG1⊗G2 = PG1 ⊗ PG2 for any {G1,G2} ⊆ G.
(d) PG∗ = (PG)∗ for any G ∈ G.
(e) PI = .
(f) PM0,2 = .

Proof. (a) is clear because for any {k, ℓ} ⊆ N0 the operation P sends (k, ℓ)-
bilabeled graphs to partitions of Πk

ℓ .
(b) If {k, ℓ,m} ⊆ N0 are such that G ∈ G(k, ℓ) and H ∈ G(ℓ,m), and if (G,g) ∈G

and (H,h) ∈ H and if G and H have the vertex sets X and Y , respectively, then,
by definition, (P, p) ∈ H ○G, where P = (G � H)/r, where r is the equivalence
relation on X � Y generated by {((ι1X,Y ○ g)(◾i), (ι2X,Y ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧} and where

p = πr ○ ((ι1X,Y ○ g∣Πk
0
)⊍ (ι2X,Y ○ h∣Π0

m
)). Thus, then PH○G = ker(p). At the same time,

since PH = ker(h) and PG = ker(g), also PHPG = ker(p) by Lemma 2.29.
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(c) If {km, ℓm} ⊆ N0 are such that Gm ∈ G(km, ℓm) and if (Gm, gm) ∈ Gm and if
Gm has vertex set Vm for any m ∈ ⟦2⟧, then (T, t) ∈G1⊗G2, where T = G1 �G2 and

where t = (ι1V1,V2 ○g1)⊍ (ι
2
V1,V2

○g2 ○ τ k1,k2ℓ1,ℓ2
). Thus, then PG1⊗G2 = ker(t). On the other

hand, PG1 ⊗ PG2 = ker(t) by PG1 = ker(g1) and PG2 = ker(g2) and Lemma 2.30.
(d) If {k, ℓ} ⊆ N0 are such that G ∈ G(k, ℓ) and if (G,g) ∈G, then (G,g○κℓk) ∈G∗

and thus

PG∗ = ker(g ○ κℓk) = (κℓk)⇠(ker(g)) = (κkℓ )⇢(ker(g)) = (PG)∗

since κkℓ and κℓk are inverse to each other.
(e) and (f) are clear because the graph underlying both I and M0,2 only has a

single vertex. □

Remark 3.4. If the definition of “partition” from [MR19, p. 11] is employed
instead, Lemma 3.3 remains true.

3.2. Graph categories arising from vertex partition constraints. The
preceding lemma allows us to recognize a wealth of new graph categories.

Definition 3.5. Given any category C of (uncolored) partitions, the set P←(C)
is called the bi-labeled graphs with C-partitioned vertices.

Proposition 3.6. For each category C of partitions the bi-labeled graphs with
C-partitioned vertices form a graph category.

Proof. Follows from Lemma 2.35 (a). □

Remark 3.7. (a) In [MR19, p. 47 and Theorem 8.3], Mančinska and Rober-
son show that their mapping P restricts to a bijection between edgeless
bi-labeled graphs, i.e., bi-labeled graphs whose underlying graphs have no
edges, and “partitions”. In fact, they can prove a one-to-one correspondence
between graph categories of edgeless bi-labeled graphs and categories of par-
titions. However, as explained in Remark 2.23, Mančinska and Roberson
there employ a different notion of “partition” than the one used by Banica
and Speicher and used here. The analog of [MR19, Theorem 8.3] is false
for the latter sense of “partition”. Rather the following is true.

(b) Still, for any {k, ℓ} ⊆ N0 any partition p of Πk
ℓ defines an edgless bi-labeled

graph Ep ∈ G(k, ℓ) with ((p,∅), π∼p) ∈ Ep.
(c) However, this construction E is not inverse to the mapping P from Defini-

tion 3.1. E.g., (E ○ P)(M0,0) = E∅ = ∅ ≠M0,0.
(d) Neither does E map categories of partitions to graph categories of edgeless

bi-labeled graphs. For example, if p = and q = , then Eq ○ Ep =M2,0 ○
M0,2 =M0,0 ∉ ran(E) since M0,0 has unlabeled vertices.

(e) In particular, given a category C of partitions, if E ⊆ C is a generating set of
C, the graph categories ⟨Ep ∣p ∈ E⟩ and P←(C) are generally not the same.
There is no easy way of translating the results about generating partitions
into ones about generating edgeless bi-labeled graphs.
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3.3. Vertex partition invariant. We can also use the classification of all cat-
egories of partitions to tell graph categories apart under certain circumstances.

Definition 3.8. Given any graph category F , we call the set P→(F) the vertex
partitions of F .

Proposition 3.9. For any graph category F the vertex partitions of F form a
category of partitions.

Proof. Immediate consequence of Lemma 2.35 (b). □

Remark 3.10. Proposition 3.9 also holds if the definition of “partition” from
[BS09, p. 11] is used instead. If categories of partitions in that sense were classified,
it would yield a useful invariant.

4. Component partitions

4.1. Definition and properties of the component partition. Definition 3.1
is not the only way of associating with any bi-labeled graph a partition functorially.

Definition 4.1. For any {k, ℓ} ⊆ N0 and any G ∈ G(k, ℓ) the component parti-
tion of G is the partition PG ∶= ker(π⋍G ○ g) of Πk

ℓ , where (G,g) ∈ G can be any
representative.

Remark 4.2. If one adopts the notion of “partition” from [MR19, p. 11] instead,
one can define an analogous mapping P with even better properties than the one
from Definition 4.1.

In order to see why th assignment P respects the category operations the following
bijections are useful.

Lemma 4.3. (a) For any graphs G1 and G2 with vertex sets V1 and V2, re-
spectively, the sets

(V1 � V2)/⋍G1�G2 and (V1/⋍G1)� (V2/⋍G2)
are equinumerous. More precisely, the mappings

((ι1V1/⋍G1
,V2/⋍G2

○ π⋍G1
) ⊔ (ι2V1/⋍G1

,V2/⋍G2
○ π⋍G2

))/⋍G1�G2

and

((π⋍G1�G2
○ ι1V1,V2)/⋍G1) ⊔ ((π⋍G1�G2

○ ι2V1,V2)/⋍G2)
are mutually inverse bijections.

(b) For any graph G and any equivalence relation r on the vertex set V of G,
if s is the equivalence relation on V /⋍G generated by

{(π⋍G(v), π⋍G(v′)) ∣ (v, v′) ∈ r},
then the sets

(V /r)/⋍G/r and (V /⋍G)/s



96 2. CATEGORIES OF BI-LABELED GRAPHS

are equinumerous. More precisely, the mappings

((πs ○ π⋍G)/r)/⋍G/r and ((π⋍G/r ○ πr)/⋍G)/s
are well-defined mutually inverse bijections.

Proof. (a) Proving the claim is the same as showing for any {i, i′} ⊆ ⟦2⟧ and
any v ∈ Vi and v′ ∈ Vi′ that

(ιiV1/⋍G1
,V2/⋍G2

○ π⋍Gi
)(v) = (ιi′V1/⋍G1

,V2/⋍G2
○ π⋍Gi′

)(v′)
if and only if

(π⋍G1�G2
○ ιiV1,V2)(v) = (π⋍G1�G2

○ ιi′V1,V2)(v
′).

If (ιi
V1/⋍G1

,V2/⋍G2
○ π⋍Gi

)(v) = (ιi′
V1/⋍G1

,V2/⋍G2
○ π⋍Gi′

)(v′), then the disjoint ranges of

ι1
V1/⋍G1

,V2/⋍G2
and ι2

V1/⋍G1
,V2/⋍G2

necessitate i = i′. Since ιi
V1/⋍G1

,V2/⋍G2
is injective we

can thus conclude π⋍Gi
(v) = π⋍Gi

(v′) or, equivalently, v ⋍Gi
v′. Because ιiV1,V2 is a

graph homomorphism from Gi to G1�G2 it follows ιiV1,V2(v) ⋍G1�G2 ι
i
V1,V2
(v′), which

is to say (π⋍G1�G2
○ ιiV1,V2)(v) = (π⋍G1�G2

○ ιi′V1,V2)(v′).
To see the converse, assume (π⋍G1�G2

○ ιiV1,V2)(v) = (π⋍G1�G2
○ ιi′V1,V2)(v′) or, equiv-

alently, ιiV1,V2(v) ⋍G1�G2 ι
i′
V1,V2
(v′). By Remark 2.6 (a) and the injectivity of ι1V1,V2

and ι2V1,V2 that requires i = i′ and v ⋍Gi
v′, i.e., π⋍Gi

(v) = π⋍Gi
(v′). Thus also,

(ιi
V1/⋍G1

,V2/⋍G2
○ π⋍Gi

)(v) = (ιi′
V1/⋍G1

,V2/⋍G2
○ π⋍Gi′

)(v′).
(b) By definition of the quotient maps the claim is equivalent to the statement

that for any {v, v′} ⊆ V ,

(πs ○ π⋍G)(v) = (πs ○ π⋍G)(v′) ⇐⇒ (π⋍G/r ○ πr)(v) = (π⋍G/r ○ πr)(v′).
Abbreviate t ≡ {(π⋍G(v), π⋍G(v′)) ∣ (v, v′) ∈ r}.

First, let (πs ○ π⋍G)(v) = (πs ○ π⋍G)(v′) or, equivalently, (π⋍G(v), π⋍G(v′)) ∈ s.
Then, by definition of s and Remark 2.2 (a) there exist k ∈ N0 and {u1, . . . , uk+1} ⊆
V /⋍G such that π⋍G(v) = u1 and uk+1 = π⋍G(v′) and (ui, ui+1) ∈ t or (ui+1, ui) ∈ t for
any i ∈ ⟦k⟧. Because r is an equivalence relation, and thus in particular symmetric,
t is symmetric as well. Hence, actually, (ui, ui+1) ∈ t for any i ∈ ⟦k⟧. By definition of
t we thus find for any i ∈ ⟦k⟧ some (xi, yi) ∈ r with π⋍G(xi) = ui and π⋍G(yi) = ui+1.
In summary, v ⋍G x1 and yk ⋍G v′ and yi ⋍G xi+1 for each i ∈ ⟦k − 1⟧ and (xi, yi) ∈ r
for each i ∈ ⟦k⟧. Since πr is a graph homomorphism from G to G/r it follows
that also πr(v) ⋍G/r πr(x1) and πr(yk) ⋍G/r πr(v′) and πr(yi) ⋍G/r πr(xi+1) for each
i ∈ ⟦k − 1⟧, which is to say (π⋍G/r ○ πr)(v) = (π⋍G/r ○ πr)(x1) and (π⋍G/r ○ πr)(yk) =
(π⋍G/r ○ πr)(v′) and (π⋍G/r ○ πr)(yi) = (π⋍G/r ○ πr)(xi+1) for each i ∈ ⟦k − 1⟧. And,

of course, πr(xi) = πr(yi) implies (π⋍G/r ○ πr)(xi) = (π⋍G/r ○ πr)(yi) for each i ∈ ⟦k⟧.
Hence, (π⋍G/r ○ πr)(v) = (π⋍G/r ○ πr)(v′) by induction.

For the converse, suppose (π⋍G/r ○ πr)(v) = (π⋍G/r ○ πr)(v′), which is to say

πr(v) ⋍G/r πr(v′). Then, by Remark 2.2 (a) there exist k ∈ N and {u1, . . . , uk+1} ⊆ V /r
such that πr(v) = u1 and uk+1 = πr(v′) and ui ∽G/r ui+1 or ui+1 ∽G/r ui for any i ∈ ⟦k⟧.
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Since ∽G/r is symmetric, actually, ui ∽G/r ui+1 for any i ∈ ⟦k⟧. By Remark 2.6 (b)
for each i ∈ ⟦k⟧ we then find {xi, yi} ⊆ V such that ui = πr(xi) and ui+1 = πr(yi)
and xi ∽G yi. In other words, (v, x1) ∈ r and (yk, v′) ∈ r and (yi, xi+1) ∈ r for each
i ∈ ⟦k − 1⟧ and xi ∽G yi for each i ∈ ⟦k⟧. The definitions of t and s thus imply in par-
ticular (π⋍G(v), π⋍G(x1)) ∈ s and (π⋍G(yk), π⋍G(v′)) ∈ s and (π⋍G(yi), π⋍G(xi+1)) ∈ s
for each i ∈ ⟦k − 1⟧, which is to say (πs ○π⋍G)(v) = (πs ○π⋍G)(x1) and (πs ○π⋍G)(yk) =
(πs ○ π⋍G)(v′) and (πs ○ π⋍G)(yi) = (πs ○ π⋍G)(xi+1) for any i ∈ ⟦k − 1⟧. And because
∽G ⊆ ⋍G the relation xi ∽G yi also implies xi ⋍G yi, i.e., π⋍G(xi) = π⋍G(yi), and thus
(πs ○ π⋍G)(xi) = (πs ○ π⋍G)(yi) for each i ∈ ⟦k⟧. Hence, (πs ○ π⋍G)(v) = (πs ○ π⋍G)(v′)
by induction. □

Lemma 4.4. (a) For any {G,H} ⊆ G the composition H○G is defined if and
only if the composition PHPG is.

(b) PH○G = PHPG for any {G,H} ⊆ G such that H ○G is defined.
(c) PG1⊗G2 = PG1 ⊗PG2 for any {G1,G2} ⊆ G.
(d) PG∗ = (PG)∗ for any G ∈ G.
(e) PI = .
(f) PM0,2 = .

Proof. (a) is clear because for any {k, ℓ} ⊆ N0 the operation P sends (k, ℓ)-
bilabeled graphs to partitions of Πk

ℓ .
(b) If {k, ℓ,m} ⊆ N0 are such that G ∈ G(k, ℓ) and H ∈ G(ℓ,m), and if (G,g) ∈G

and (H,h) ∈H and if G and H have the vertex sets X and Y , respectively, then, by
definition, (P, p) ∈H○G and thus PH○G = ker(π⋍P ○p), where P = (G�H)/r, where
r is the equivalence relation on X�Y generated by {((ι1X,Y ○g)(◾i), (ι2X,Y ○h)(◾i)) ∣ i ∈
⟦ℓ⟧} and where p = πr ○ ((ι1X,Y ○ g∣Πk

0
)⊍ (ι2X,Y ○ h∣Π0

m
)). At the same time, since PH =

ker(π⋍H ○h) and PG = ker(π⋍G○g), if t is the equivalence relation on (X/⋍G)�(Y /⋍H)
generated by {((ι1

X/⋍G,Y /⋍H ○ π⋍G ○ g)(◾i), (ι2X/⋍G,Y /⋍H ○ π⋍H ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧} and if

q = πt ○ ((ι1X/⋍G,Y /⋍H ○ π⋍G ○ g∣Πk
0
) ⊍ (ι2

X/⋍G,Y /⋍H ○ π⋍H ○ h∣Π0
m
)), then PHPG = ker(q)

by Lemma 2.29. Hence, in order to show PH○G = PHPG we have to prove ker(q) =
ker(π⋍P ○p). We exhibit a bijection f from ((X/⋍G)�(Y /⋍H))/t to ((X�Y )/r)/⋍P
with f ○ q = π⋍P ○ p, which then proves the claim. We construct f from auxiliary
bijections u and w and v and an auxiliary equivalence s.

Step 1: Construction of s and u. If s denotes the equivalence relation on (X �
Y )/⋍G�H generated by (π⋍G�H

⊠ π⋍G�H
)→(r), then by Lemma 4.3 (b) the mapping

u ∶= ((π⋍P ○πr)/⋍G�H)/s is a well-defined bijection from ((X�Y )/⋍G�H)/s to ((X�
Y )/r)/⋍P .

Step 2: Construction of w. Moreover, by Lemma 4.3 (a) the map w ∶= ((π⋍G�H
○

ι1X,Y )/⋍G) ⊔ ((π⋍G�H
○ ι2X,Y )/⋍H) is a well-defined bijection from (X/⋍G)� (Y /⋍H)

to (X � Y )/⋍G�H with w−1 = ((ι1
X/⋍G,Y /⋍H ○ π⋍G) ⊔ (ι2X/⋍G,Y /⋍H ○ π⋍H))/⋍G�H .

Step 3: Construction of v. In order to define v we first need to relate t to s and
w. More precisely, we prove t = (w−1 ⊠w−1)→(s).
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According to Remark 2.2 (b) the relation (w−1⊠w−1)→(s) on (X/⋍G)�(Y /⋍H) is
an equivalence because w−1 is invertible. Since s is generated by (π⋍G�H

⊠π⋍G�H
)→(r)

the equivalence (w−1 ⊠w−1)→(s) is generated by the relation (w−1 ⊠w−1)→((π⋍G�H
⊠

π⋍G�H
)→(r)) = ((w−1 ○ π⋍G�H

) ⊠ (w−1 ○ π⋍G�H
))→(r) by Remark 2.2 (c). Since r is

in turn generated by {((ι1X,Y ○ g)(◾i), (ι2X,Y ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧} a second application of
Remark 2.2 (c) tells us that (w−1 ⊠w−1)→(s) is generated by {((w−1 ○ π⋍G�H

○ ι1X,Y ○
g)(◾i), (w−1 ○ π⋍G�H

○ ι2X,Y ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧}. Because, first,

w−1 ○ π⋍G�H
○ ι1X,Y ○ g ○ κℓ0

= (((ι1X/⋍G,Y /⋍H ○ π⋍G) ⊔ (ι2X/⋍G,Y /⋍H ○ π⋍H)) /⋍G�H) ○ π⋍G�H
○ ι1X,Y ○ g ○ κℓ0

= ((ι1X/⋍G,Y /⋍H ○ π⋍G) ⊔ (ι2X/⋍G,Y /⋍H ○ π⋍H)) ○ ι1X,Y ○ g ○ κℓ0
= (ι1X/⋍G,Y /⋍H ○ π⋍G) ○ g ○ κℓ0

and, second, analogously,

w−1 ○ π⋍G�H
○ ι2X,Y ○ h∣Πℓ

0
= (ι2X/⋍G,Y /⋍H ○ π⋍H) ○ h∣Πℓ

0

and because, by definition, t is generated by {((ι1
X/⋍G,Y /⋍H ○π⋍G ○g)(◾i), (ι

2
X/⋍G,Y /⋍H ○

π⋍H ○ h)(◾i)) ∣ i ∈ ⟦ℓ⟧} we thus see that (w−1 ⊠w−1)→(s) coincides with t.
Because t = (w−1 ⊠ w−1)→(s), Remark 2.2 (b) allows us to infer that the map-

ping v ∶= (πs ○w)/t is a well-defined bijection from ((X/⋍G)� (Y /⋍H))/t to ((X �
Y )/⋍G�H)/s.

Step 4: Construction of f . Finally, we can let f ∶= u○v and know that is invertible
because both u and v are. It remains to show f ○ q = π⋍P ○ p.

Since ((πs ○w)/t) ○ πt = πs ○w,

v ○ q = πs ○w ○ ((ι1X/⋍G,Y /⋍H ○ π⋍G ○ g∣Πk
0
) ⊍ (ι2X/⋍G,Y /⋍H ○ π⋍H ○ h∣Π0

m
))

and thus, since ((π⋍P ○ πr)/⋍G�H)/s ○ πs = (π⋍P ○ πr)/⋍G�H ,

f ○ q
= ((π⋍P ○ πr)/⋍G�H) ○w ○ ((ι1X/⋍G,Y /⋍H ○ π⋍G ○ g∣Πk

0
) ⊍ (ι2X/⋍G,Y /⋍H ○ π⋍H ○ h∣Π0

m
)).

Given that (((π⋍G�H
○ι1X,Y )/⋍G)⊔((π⋍G�H

○ι2X,Y )/⋍H))○ι1X/⋍G,Y /⋍H = (π⋍G�H
○ι1X,Y )/⋍G,

w ○ ι1X/⋍G,Y /⋍H ○ π⋍G ○ g∣Πk
0
= ((π⋍G�H

○ ι1X,Y )/⋍G) ○ π⋍G ○ g∣Πk
0

= π⋍G�H
○ ι1X,Y ○ g∣Πk

0
.

Likewise, (((π⋍G�H
○ι1X,Y )/⋍G)⊔((π⋍G�H

○ι2X,Y )/⋍H))○ι2X/⋍G,Y /⋍H = (π⋍G�H
○ι2X,Y )/⋍H

implies

w ○ ι2X/⋍G,Y /⋍H ○ π⋍H ○ h∣Π0
m
= π⋍G�H

○ ι2X,Y ○ h∣Π0
m
.

It follows

w ○ ((ι1X/⋍G,Y /⋍H ○ π⋍G ○ g∣Πk
0
) ⊍ (ι2X/⋍G,Y /⋍H ○ π⋍H ○ h∣Π0

m
))

= π⋍G�H
○ ((ι1X,Y ○ g∣Πk

0
) ⊍ (ι2X,Y ○ h∣Π0

m
))
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and thus, by ((π⋍P ○ πr)/⋍G�H) ○ π⋍G�H
= π⋍P ○ πr,

f ○ q = π⋍P ○ πr ○ ((ι1X,Y ○ g∣Πk
0
) ⊍ (ι2X,Y ○ h∣Π0

m
)) = π⋍P ○ p.

That completes the proof of (b).
(c) If {km, ℓm} ⊆ N0 are such that Gm ∈ G(km, ℓm) and if (Gm, gm) ∈Gm and if Gm

has vertex set Vm for any m ∈ ⟦2⟧, then (T, t) ∈G1⊗G2, where T = G1�G2 and where
t = (ι1V1,V2 ○ g1)⊍ (ι

2
V1,V2

○ g2 ○ τ k1,k2ℓ1,ℓ2
). Thus, then PG1⊗G2 = ker(π⋍T ○ t). On the other

hand, if q = (ι1
V1/⋍G1

,V2/⋍G2
○π⋍G1

○g1)⊍(ι2V1/⋍G1
,V2/⋍G2

○π⋍G2
○g2○τ k1,k2ℓ1,ℓ2

), then PG1⊗PG2 =
ker(q) by PG1 = ker(π⋍G1

○ g1) and PG2 = ker(π⋍G2
○ g2) and Lemma 2.30. According

to Lemma 4.3 (a) the mapping w ∶= ((π⋍G1�G2
○ ι1V1,V2)/⋍G1)⊔ ((π⋍G1�G2

○ ι2V1,V2)/⋍G2)
is a well-defined bijection from (V1/⋍G1)� (V2/⋍G2) to (V1 �V2)/⋍G1�G2 . Moreover,

w ○ ι1V1/⋍G1
,V2/⋍G2

○ π⋍G1
○ g1 = ((π⋍G1�G2

○ ι1V1,V2)/⋍G1) ○ π⋍G1
○ g1

= π⋍G1�G2
○ ι1V1,V2 ○ g1

and, likewise,

w ○ ι2V1/⋍G1
,V2/⋍G2

○ π⋍G2
○ g2 ○ τ k1,k2ℓ1,ℓ2

= π⋍G1�G2
○ ι2V1,V2 ○ g2 ○ τ

k1,k2
ℓ1,ℓ2

and thus

w ○ q = π⋍G1�G2
○ ((ι1V1,V2 ○ g1) ⊍ (ι

2
V1,V2

○ g2 ○ τ k1,k2ℓ1,ℓ2
)) = π⋍T ○ t.

It follows ker(q) = ker(π⋍T ○ t), which is what we needed to show.
(d) If {k, ℓ} ⊆ N0 are such that G ∈ G(k, ℓ) and if (G,g) ∈G, then (G,g○κℓk) ∈G∗

and thus

PG∗ = ker(π⋍G ○ g ○ κℓk) = (κℓk)⇠(ker(π⋍G ○ g)) = (κkℓ )⇢(ker(π⋍G ○ g)) = (PG)∗.

(e) and (f) are again clear because the graph underlying both I and M0,2 only
has a single vertex and no edges. □

4.2. Graph categories arising from component partition constraints.
Again, the classification of all categories of partitions gives a large number of new
examples of graph categories.

Definition 4.5. Given any category C of (uncolored) partitions, the set P←(C)
is called the bi-labeled graphs with C-partitioned components.

Proposition 4.6. For each category C of partitions the bi-labeled graphs with
C-partitioned components form a graph category.

Proof. Follows from Lemma 2.35 (a). □

Remark 4.7. Proposition 4.6 also holds if one uses the definition of “partition”
from [MR19, p. 11] and the corresponding version of P from Remark 4.2.
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4.3. Component partition invariant. And, like before, the classification can
also be used to give an invariant for arbitrary graph categories.

Definition 4.8. Given any graph category F , we call the set P→(F) the com-
ponent partitions of F .

Proposition 4.9. For any graph category F the component partitions of F form
a category of partitions.

Proof. Immediate consequence of Lemma 2.35 (b). □

Remark 4.10. What was said about Proposition 4.6 in Remark 4.7 is true about
Proposition 4.9 as well.

5. Distances of labeled vertices

5.1. Definition and properties of label distances. The object of the results
of the present section is the set of distances between any two distinct connected
labeled vertices of a bi-labeled graph.

Definition 5.1. For any G ∈ G define the label distances of G as

D(G) ∶= {dG(v, v′) ∣ {v, v′} ⊆ ran(g) ∧ v ≠ v′ ∧ v ⋍G v′},
where (G,g) ∈G can be any representative.

Notation 5.2. For any M ⊆ N let ⟨M⟩+ denote the additive subsemigroup of N
generated by M .

It is important to understand how the label distances of a bi-labeled graph are
affected by the varous operations.

Lemma 5.3. (a) D(I) = ∅.
(b) D(Gr) = D(G) for any G ∈ G and any r ∈ {⤹, Á, ¹, ⤸} such that Gr is

defined.
(c) D(G∧) =D(G) for any G ∈ G.
(d) D(G1 ⊗G2) ⊆ ⋃2

m=1D(Gm)
(e) D(E(G,T)) ⊆ ⟨D(G)⟩+ for any G ∈ G and any consecutive set T of two

points such that E(G,T) is defined.
Proof. (a) D(I) = ∅ because G only has single vertex for any (G,g) ∈ I.
(b) If {k, ℓ} ⊆ N0 are such that G ∈ G(k, ℓ) and if (G,g) ∈ G, then (G,g ○ ωr,kℓ ) ∈

Gr. As ωr,kℓ is surjective, ran(g ○ ωr,kℓ ) = ran(g). Hence, D(Gr) =D(G).
(c) Similarly, if {k, ℓ} ⊆ N0 and G ∈ G(k, ℓ) and (G,g) ∈ G, then (G,g ○ ρkℓ ) ∈G∧,

where ρkℓ is surjective as well. Hence, ran(g ○ρkℓ ) = ran(g) and thus D(G∧) =D(G).
(d) If {km, ℓm} ⊆ N0 are such that Gm ∈ G(km, ℓm) and (Gm, gm) ∈ Gm and

if Gm has vertex set Vm for each m ∈ ⟦2⟧, then (G1 � G2, t) ∈ G1 ⊗ G2, where

t = (ι1V1,V2 ○ g1) ⊍ (ι
2
V1,V2

○ g2 ○ τ k1,k2ℓ1,ℓ2
). Let {u,u′} ⊆ ran(t) and u ≠ u′ and u ⋍G1�G2 u

′.

By Remark 2.8 (g) that warrants the existence of j ∈ ⟦2⟧ and {v, v′} ⊆ Vj such
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that u = ιjV1,V2(v) and u′ = ιjV1,V2(v′) and dG1�G2(u,u′) = dGj
(v, v′). Because ι1V1,V2

and ι2V1,V2 have disjoint ranges, ran(t) = ran(ι1V1,V2 ○ g1) ⊍ ran(ι2V1,V2 ○ g2 ○ τ
k1,k2
ℓ1,ℓ2
) =

⊍2
m=1(ιmV1,V2)→(ran(gm)), where we have also used that τ k1,k2ℓ1,ℓ2

is surjective. Hence,

the assumption {u,u′} ⊆ ran(t) and the injectivity of ιjV1,V2 demand {v, v′} ⊆ ran(gj).
It follows dG1�G2(u,u′) = dGj

(v, v′) ∈ D(Gj). Because u and u′ were arbitrary we

have thus shown D(G1 ⊗G2) ⊆ ⋃2
m=1D(Gm).

(e) Let {k, ℓ} ⊆ N0 be such that G ∈ G(k, ℓ), let (G,g) ∈ G and let G = (V,E).
Then (P, p) ∈ E(G,T), where P = (W,F ), where, if T = g→(T) and M = Πk

ℓ /T, then
W = {{v} ∣ v ∈ V /T} ⊍ {T} and

F = {{{v} ∣ v ∈ e} ∣ e ∈ E ∧ e ∩ T = ∅}
⊍ {{{v}, T ∣ v ∈ e/T} ∣ e ∈ E ∧ ∅ ≠ e ∩ T ≠ e}
⊍ {{T} ∣∃e ∈ E ∶ e ⊆ T}

and where p = π ○ g ○ γM for

π∶ V →W, v ↦ {{v} if v ∉ T
T otherwise.

Let {y, y′} ⊆ ran(p) be arbitrary with y ≠ y′ and y ⋍P y′. Because ran(p) ⊆
π→(ran(g)) we find {x,x′} ⊆ ran(g) such that y = π(x) and y′ = π(x′) and, nec-
essarily, x ≠ x′. By Remark 2.8 (c) there exists a path u of length k ∶= dP (y, y′) from
y to y′ in P . We prove k ∈ ⟨D(G)⟩+ by distinguishing two cases.

Case 1: u does not involve identified vertices. First, suppose T ∉ ran(u). On
the one hand, since π is a graph homomorphism from G to P by Remark 2.19 (b)
we can infer k = dP (y, y′) = dP (π(x), π(x′)) ≤ dG(x,x′) by Remark 2.8 (f) (i). On
the other hand, the asssumption ran(u) ⊆ W /{T} = ran(π∣V /T ) and the fact that

π∣V /T is a graph embedding of G∣V /T into P by Remark 2.19 (c) imply that the map

(π∣V /T )−1 ○ u is a well-defined walk of length k in G∣V /T by Remark 2.8 (f) (ii), and

thus dG∣V /T (x,x′) ≤ k by definition. Since also dG(x,x′) ≤ dG∣V /T (x,x′) according

to Remark 2.8 (e) we have thus shown dG(x,x′) ≤ k. In conclusion, k = dG(x,x′) ∈
D(G) by {x,x′} ⊆ ran(g).

Case 2: u involves identified vertices. Now, suppose instead that there exists
j ∈ ⟦k + 1⟧ such that uj = T . In order to prove k ∈ ⟨D(G)⟩+ it suffices to show
that j − 1 ∈ D(G) if 1 < j and that k − j + 1 ∈ D(G) if j < k + 1. Indeed, if so
and if 1 = j, then k = k − 1 + 1 = k − j + 1 ∈ D(G); likewise, if j = k + 1, then
k = (k + 1) − 1 = j − 1 ∈ D(G); and, lastly, if 1 < j < k + 1, then both j − 1 ∈ D(G)
and k − j + 1 ∈D(G) and thus k = (j − 1) + (k − j + 1) ∈ ⟨D(G)⟩+.

Step 2.1: Definition of b and d. By Remark 2.8 (d), if 1 < j, then b∶ ⟦j⟧→W, i↦
ui is a path in P from u1 = y to uj = T of length j−1 = dP (y, T ). Likewise, if j < k+1,
then d∶ ⟦k − j + 2⟧→W, i↦ uj+i−1 is a path in P from uj = T to uk+1 = y′ = dP (T, y′).

Step 2.2: Definition of a1, . . . , aj−1 and c2, . . . , ck−j+2. Because u is a path and
uj = T we know ui ≠ T for any i ∈ ⟦k + 1⟧/{j}. Hence, by definition of W , if 1 < j,
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then for each i ∈ ⟦j⟧ with i < j we find ai ∈ V /T with bi = π(ai) = {ai} by bi = ui.
Likewise, if j < k + 1, then for each i ∈ ⟦k − k + 2⟧ with 1 < i there exists ci ∈ V /T
with di = π(ci) = {ci} by di = uj+i−1.

Step 2.3: Definition of aj and c1 and properties of a and c. For any i ∈ ⟦j − 1⟧,
because b is a walk in P , we know {bi, bi+1} ∈ F . Moreover, if i < j − 1, then
{ai, ai+1} ∩ T = ∅ and the definition of F thus imply {ai, ai+1} ∈ E. In contrast,
if i = j − 1, then {bi, bi+1} = {{aj−1}, T} and the definition of F thus requires the
existence of some aj ∈ T such that {aj−1, aj} ∈ E. Altogether we have constructed
a∶ ⟦j⟧→ V, i↦ ai with b = π ○ a and shown it to be a walk in G from a1 = x to aj of
length j − 1. Because the restriction of π to (V /T ) ∪ {aj} is injective and because b
is a path in P we even know that a is a path in G.

By an analogous argument, if j < k+1, we find c1 ∈ V /T such that c∶ ⟦k − j + 2⟧→
V, i↦ ci is a path in G from c1 to ck+1 = x′ of length k− j +1 and such that d = π ○ c.

Step 2.4: Lengths of a and c. Since π(a1) = y and π(aj) = T Remark 2.8 (f)
shows dP (y, T ) ≤ dG(a1, aj) if 1 < j. Likewise, π(c1) = T and π(ck−j+2) = y′ yield
dP (T, y′) ≤ dG(c1, ck−j+2) if j < k + 1.

Because we already know dP (y, T ) = j − 1 if 1 < j and k − j + 1 = dP (T, y′) if
j < k + 1 it follows j − 1 ≤ dG(a1, aj) and k − j + 1 ≤ dG(c1, ck−j+2) if j < k + 1.

On the other hand, dG(a1, aj) ≤ j − 1 if 1 < j because a is a walk in G from a1 to
aj of length j − 1 then. In the same way, dG(c1, ck−j+2) ≤ k − j + 1 if j < k + 1 because
c is a walk in G from c1 to ck−j+2 of length k − j + 1 in that case.

Hence, dG(a1, aj) = j − 1 if 1 < j and dG(c1, ck−j+2) = k − j + 1 if j < k + 1.
Step 2.5: Synthesis. If 1 < j, then a1 = x ∈ ran(g) and aj ∈ T ⊆ ran(g) imply

j − 1 = dG(a1, aj) ∈ D(G). Likewise, provided j < k + 1, we can conclude k − j + 1 =
dG(c1, ck−j+2) ∈ D(G) from c1 = T ⊆ ran(g) and ck−j+2 = x′ ∈ ran(g). That is what
we needed to prove. □

5.2. Graph categories arising from label distance constraints. By plac-
ing constraints on label distances a set of graph categories can be ontained.

Definition 5.4. For any subsemigroup S of (N,+) let DS be the set of all G ∈ G
such that D(G) ⊆ S.

Remark 5.5. (a) DN = G is the graph category of all bi-labeled graphs.
(b) D∅ = G is given by all bi-labeled graphs whose underlying graphs have at

most one labeled vertex per connected component.
(c) For any subsemigroups S and S′ of (N,+), whenever S ⊆ S′, then DS ⊆ DS′ .

Proposition 5.6. DS is a graph category for any subsemigroup S of (N,+).
Proof. Follows immediately from Proposition 2.21 and Lemma 5.3. □

5.3. Label distance invariant. The distances of labeled vertices form an in-
variant of graph categories.

Proposition 5.7. ⋃G∈F D(G) is an additive subsemigroup of N for any graph
category F .
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Proof. Given any {j1, j2} ⊆ ⋃G∈F D(G), we exhibit H ∈ F with j1 + j2 ∈D(H).
More precisely, we give a representative (H,h) ∈ H and {w,w′} ⊆ ran(h) with
j ∶= dH(w,w′) = j1 + j2.

Step 1: Definition of H, H, h, w and w′. By assumption, for each m ∈ ⟦2⟧ there
exist Gm ∈ F and (Gm, gm) ∈ Gm with Gm = (Vm,Em) and {xm, x′m} ⊆ ran(gm)
with xm ≠ x′m and xm ⋍Gm x′m such that dGm(xm, x′m) = jm. By Lemma 5.3 (b)
we can assume for each m ∈ ⟦2⟧ that Gm ∈ G(1, ℓm) for some ℓm ∈ N and that
x′m = gm(◾1). By Remark 2.8 (c), for each m ∈ ⟦2⟧ we find a path am in Gm from xm
to x′m of length jm. Because F is a graph category, G1⊗G2 ∈ F(2, ℓ1 + ℓ2) and thus
H ∶= E(G1 ⊗G2,T) ∈ F(0, ℓ1 + ℓ2) for T = {◾2, ◾1}.

If we abbreviate ιm ≡ ιmV1,V2 for each m ∈ ⟦2⟧ and T = {ι1(x′1), ι2(x′2)} and M =
Π0
ℓ1+ℓ2 , then by definition (H,h) ∈H, where H = (W,F ), where

W = ⊍2
m=1{{ιm(v)} ∣ v ∈ Vm/{x′m}} ∪ {T}

and

F = ⊍2
m=1{{{ιm(v)} ∣ v ∈ e} ∣ e ∈ Em ∧ x′m ∉ e}
⊍⊍2

m=1{{{ιm(v)}, T ∣ v ∈ e/{x′m}} ∣ e ∈ Em ∧ ∅ ≠ e ∩ {x′m} ≠ e}
⊍ {{T} ∣∃2m=1 ∶ {x′m} ∈ Em}

and where h = π ○ ((ι1 ○ g1) ⊍ (ι2 ○ g2 ○ τ 1,1ℓ1,ℓ2
)) ○ γM, where

π∶ V1 � V2 →W, ιm(v)↦ {
{ιm(v)} if v ≠ x′m,
T otherwise.

Finally, if we let w ∶= (π ○ ι1)(x1) and w′ ∶= (π ○ ι2)(x2), then {w,w′} ⊆ ran(h)
because xm ∈ (gm)→(Π0

ℓm
) and xm ≠ x′m for each m ∈ ⟦2⟧.

Step 2: Proving j ≤ j1 + j2. Since ιm is a graph homomorphism from Gm to
G1 �G2 for each m ∈ ⟦2⟧ and since π is a graph homomorphism from G1 �G2 to
H by Remark 2.19 (b) the map π ○ ι1 ○ a1 is a walk in H of length j1 from w to
(π ○ ι1)(x′1) = T and π ○ ι2 ○ a2 is a walk in H of length j2 from w′ to (π ○ ι2)(x′2) =
T by Remark 2.8 (f) (i). Hence, by Remark 2.8 (a) and (b) the concatenation
(π ○ ι2 ○ a2)x| (π ○ ι1 ○ a1) of π ○ ι1 ○ a1 and the reverse of π ○ ι2 ○ a2 is a walk in H
of length j1 + j2 from w to w′. Thus, j = dH(w,w′) ≤ j1 + j2 by definition.

Step 3: Proving j1 + j2 ≤ j. In order to show j1 + j2 ≤ j it suffices to give a
number k ∈ N, a walk in G1 of length k − 1 from x1 to x′1 and a walk in G2 of length
j−k+1 from x′2 to x2. Indeed, adding the two inequalities j1 = dG1(x1, x′1) ≤ k−1 and
j2 = dG2(x2, x′2) = dG2(x′2, x2) ≤ j−k+1 valid then implies j1+j2 ≤ (k−1)+(j−k+1) = j.

Since w ⋍H w′ by the previous step, Remark 2.8 (c) guarantees the existence of
a path z in H from w to w′ of length j = dH(w,w′).

Step 3.1: z passes through T and stays in the images of G1 before and G2 after.
First, we prove that there exists k ∈ N with 1 < k < j + 1 such that zk = T , such that
{z1, . . . , zk−1} ⊆ ran(π ○ ι1)/{T} and such that {zk+1, . . . , zj+1} ⊆ ran(π ○ ι2)/{T}.
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Step 3.1.1: Reduction to auxiliary claim. This we show by proving that for any
{s, s′} ⊆ ⟦2⟧ with s ≠ s′ and any {p, r} ⊆ ⟦j + 1⟧ with p < r such that zp ∈ ran(π ○
ιs)/{T} and zr ∈ ran(π ○ ιs′)/{T} there exists q ∈ ⟦j + 1⟧ with p < q < r such that
zq = T . Once that is known to be true, the facts z1 = w = (π○ι1)(x1) ∈ ran(π○ι1)/{T}
and zj+1 = w′ = (π ○ ι2)(x2) ∈ ran(π ○ ι2)/{T} will first of all require the existence of
k ∈ N with 1 < k < j + 1 such that zk = T . We justify that, in addition though, it will
also prove {z1, . . . , zk−1} ⊆ ran(π ○ ι1)/{T} and {zk+1, . . . , zj+1} ⊆ ran(π ○ ι2)/{T}.

Indeed, if zk = T , then zi ≠ T for any i ∈ ⟦j + 1⟧/{k} because z is a path. Thus,
by definition of W , for each i ∈ ⟦j + 1⟧ with i ≠ k there must exist t ∈ ⟦2⟧ such
that zi ∈ ran(π ○ ιt)/{T}. If there were {s, s′} ⊆ ⟦2⟧ with s ≠ s′ and {p, r} ⊆ ⟦j + 1⟧
such that 1 ≤ p < r < k or k < p < r ≤ j + 1 and such that zp ∈ ran(π ○ ιs)/{T} and
zr ∈ ran(π ○ ιs′)/{T}, we would be able to infer the existence of q ∈ ⟦j + 1⟧ with
p < q < r < k or k < p < q < r and zq = T , contradicting the uniquness of k. Hence,
we must have {z1, . . . , zk−1} ⊆ ran(π ○ ι1)/{T} and {zk+1, . . . , zj+1} ⊆ ran(π ○ ι2)/{T}
because z1 = w ∈ ran(π ○ ι1)/{T} and zj+1 = w′ ∈ ran(π ○ ι2)/{T}.

Step 3.1.2: Proof of auxiliary claim. Thus, let {s, s′} ⊆ ⟦2⟧ and s ≠ s′ and let
{p, r} ⊆ ⟦j + 1⟧ be such that zp ∈ ran(π ○ ιs)/{T} and zr ∈ ran(π ○ ιs′)/{T}. We
prove by contradiction the existence of q ∈ ⟦j + 1⟧ with p < q < r and zq = T . Thus
suppose, T ∉ {zp, zp+1 . . . , zr}. We show by induction that zi ∈ ran(π ○ ιs) for each
i ∈ ⟦j + 1⟧ with p ≤ i ≤ r. That then contradicts zr ∈ ran(π ○ ιs′)/{T} because s ≠ s′
and ⋂2

t=1 ran(π ○ ιt) = {T}.
As the base case, zp ∈ ran(π ○ ιs) is true by assumption. Now, let i ∈ ⟦j + 1⟧ with

p ≤ i < r be such that zi ∈ ran(π○ιs). Because z is a path in H and thus {zi, zi+1} ∈ F
and zi ≠ zi+1 and because zi ≠ T ≠ zi+1 by assumption the definition of F implies
the existence of m ∈ ⟦2⟧ and e ∈ Em with x′m ∉ e such that {zi, zi+1} = {ιm(v) ∣ v ∈ e},
which is to say {zi, zi+1} = (π ○ ιm)→(e). Hence, zi ∈ ran(π ○ ιs) demands m = s. Thus
also zi+1 ∈ ran(π ○ ιs), as we needed to see.

Step 3.2: z stems from a path in G1 and a path in G2 fused together. The two
mappings y1∶ ⟦k − 1⟧ → W, i ↦ zi and y2∶ ⟦j − k + 1⟧ → W, i ↦ zk+i are subwalks of
z and thus walks in H with ran(y1) ⊆ ran(π ○ ι1)/{T} = ran(π∣(V1�V2)/T ○ ι1∣V1/{x′1})
and ran(y2) ⊆ ran(π ○ ι2)/{T} = ran(π∣(V1�V2)/T ○ ι2∣V2/{x′2}) by Step 3.1. Since ιm
is a graph embeddding of Gm into G1 � G2 and thus ιm∣Vm/{x′m} a graph embed-

ding of Gm∣Vm/{x′m} into G1 �G2∣(V1�V2)/T and since π∣(V1�V2)/T is a graph embed-

ding of (G1 �G2)∣(V1�V2)/T into H by Remark 2.19 (c) the map um ∶= (π∣(V1�V2)/T ○
ιm∣Vm/{x′m})

−1 ○ ym = (π ○ ιm)−1 ○ ym is a well-defined walk in Gm∣Vm/{x′m} by Re-

mark 2.8 (f) (ii) for each m ∈ ⟦2⟧. More precisely, u1 is a walk of length k − 2 from
(π ○ ι1)−1(z1) = (π ○ ι1)−1(w) = x1 to (π ○ ι1)−1(zk−1) and, similarly, u2 one of length
j − k from (π ○ ι1)−1(zk+1) to (π ○ ι2)−1(zj+1) = (π ○ ι2)−1(w′) = x2.

Since z is a walk in H and since zk−1 ≠ T = zk by Step 3.1 we know {zk−1, T} =
{zk−1, zk} ∈ F . Hence, by definition of F we can infer that there exists e ∈ E1

with ∅ ≠ e ∩ {x′1} ≠ e and {zk−1, T} = {{ι1(v)}, T ∣ v ∈ e/{x′1}}, which is to say
{(π ○ ι1)−1(zk−1), x′1} = e ∈ E1. In other words, the map h1∶ ⟦2⟧ → V1 with 1 ↦ zk−1
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and 2↦ x′1 is a walk of length 1 in G1. Analogously, zk = T ≠ zk+1 and {zk, zk+1} ∈ F
demand {x′2, (π ○ ι2)(zk+1)} ∈ E2, thus making h2∶ ⟦2⟧→ V2 with 1↦ x′2 and 2↦ zk+1
is a walk of length 1 in G2.

In conclusion, the concatenation h1 | u1 is a well-defined walk in G1 of length
(k − 2) + 1 = k − 1 from x1 to x′1 and, likewise, u2 | h2 a walk in G2 of length
1 + (j − k) = j − k + 1 from x′2 to x2. That concludes the proof. □

6. Further graph categories

There exist graph categories which cannot be described solely in terms of re-
strictions on the vertex or component partitions or the distances of labeled vertices.
Mančinska and Roberson exhibited two examples: the category P of all planar bi-
labeled graphs [MR20, Section II A] and, implicitly, the category of all bi-labeled
graphs whose underlying graphs have no edges in Theorem 8.3 of the arXiv version
of [MR20]. We add further examples.

Definition 6.1. For any m ∈ N0 we call any graph G a
(a) free graph on m vertices if G ≅ (⟦m⟧,∅),
(b) co-free graph on m vertices if 1 ≤m and G ≅ (⟦m⟧,{{i, j}}mi,j=1),
(c) path graph on m vertices if 2 ≤m and G ≅ (⟦m⟧,{{i, i + 1}}m−1i=1 ),
(d) cycle graph on m vertices if 3 ≤m and G ≅ (⟦m⟧,{{i, i+1}}m−1i=1 ∪{{m,1}}).

In particular, the empty graph (∅,∅) is a free graph.

Definition 6.2. Let A denote the set of all G ∈ G such that for any (G,g) ∈G,
if V is the vertex set of G, then

(a) PG ∈ O+

(b) and for any C ∈ V /⋍G
(i) the graph G∣C is a

(1) free graph on a single vertex,
(2) co-free graph on a single vertex,
(3) path graph on two or more vertices or
(4) cycle graph on three or more vertices

(ii) and the set C ∩ ran(g) is
(1) empty if G∣C is a co-free or cycle graph,
(2) either empty or equal to C if G∣C is a path graph on two vertices,
(3) equal to {v ∈ C ∧ degG(v) = 1} if G∣C is a path graph on three

or more vertices.

Remark 6.3. (a) For any G ∈ G, any (G,g) ∈ G and any connected com-
ponent C of G, when considering whether G satisfies (b) of Definition 6.2
with respect to C, it is useful to recognize that the set {v ∈ C ∧ degG(v) =
1} = degG∣C

←({1}) only depends on G∣C and not on all of G.

In consequence, if H ∈ G and (H,h) ∈ H and if D is any connected
component of H, provided H ∈ A is known, it is sufficient to give a graph
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isomorphism f from H ∣D to G∣C with f→(D∩ ran(h)) = C ∩ ran(g) in order
to verify that G satisfies (b) of Definition 6.2 with respect to C.

(b) For any graphs G and P with vertex sets V and W , respectively, for any
C ∈ W /⋍P and any graph embedding f of G into P , if C ⊆ ran(f), then
f←(C) ∈ V /⋍G.

Proposition 6.4. A is a graph category.

Proof. By Proposition 2.21 it is sufficient to show that A contains I and is
closed under rotation, reflection, tensor products and erasing.

Necessary element: Since a free graph on a single vertex underlies I and since
PI = ∈ O+ by Lemmata 3.3 (e) and 4.4 (e) we can infer I ∈ A.

Rotation: Given any {k, ℓ} ⊆ N0, any G ∈ A(k, ℓ) and any r ∈ {⤹, Á, ¹, ⤸} such
that Gr is defined, we already know PGr ∈ O+ by Lemma 2.20 and Proposition 4.6.
Moreover, for any (G,g) ∈ G, if H ∶= G and h ∶= g ○ ωr,kℓ , then (H,h) ∈ Gr by
definition. For any connected component C of H, of course, C is also a connected
component of G and idC is a graph isomorphism from G∣C to H ∣C with idC→(C ∩
ran(g)) = ran(g ○ ωr,kℓ ) = ran(g) by the surjectivity of ωr,kℓ . Hence, Gr satisfies (b)
of Definition 6.2 with respect to C by Remark 6.3 (a).

Reflection: Similarly, for any {k, ℓ} ⊆ N0 and any G ∈ A(k, ℓ) it is clear that
PG∧ ∈ O+ by Lemma 2.17 and Proposition 4.6. And, if again (G,g) ∈ G, then
(G,g ○ ρkℓ ) ∈ G∧, where once more ran(g ○ ρkℓ ) = ran(g) because ρkℓ is surjective.
Hence, in the same way as before, Remark 6.3 (a) tells us that G ∈ A implies
G∧ ∈ A.

Tensor product: If {km, ℓm} ⊆ N0 and Gm ∈ A(km, ℓm) and (Gm, gm) ∈ Gm and
if Gm has vertex set Vm for any m ∈ ⟦2⟧, then (G1 � G2, t) ∈ G1 ⊗ G2, where

t = (ι1V1,V2○g1)⊍(ι
2
V1,V2

○g2○τ k1,k2ℓ1,ℓ2
). Of course, Proposition 4.6 guarantees PG1⊗G2 ∈ O+.

Let C ∈ (V1�V2)/⋍G1�G2 be arbitrary. By Lemma 4.3 (a) the mapping ((π⋍G1�G2
○

ι1V1,V2)/⋍G1) ⊔ ((π⋍G1�G2
○ ι2V1,V2)/⋍G2) is a well-defined bijection from (V1/⋍G1) �

(V2/⋍G2) to (V1 � V2)/⋍G1�G2 . Hence, there exists j ∈ ⟦2⟧ and Cj ∈ Vj/⋍Gj
such

that (ιjV1,V2)→(Cj) = C. Because ιjV1,V2 is a graph embedding of Gj into G1 � G2

it thus follows that ιjV1,V2 ∣Cj
is a graph isomorphism from Gj ∣Cj

to (G1 �G2)∣C .

Moreover, the surjectivity of τ k1,k2ℓ1,ℓ2
ensures ran(t) = ran(ι1V1,V2 ○ g1) ⊍ ran(ι2V1,V2 ○ g2 ○

τ k1,k2ℓ1,ℓ2
) = ⊍2

m=1(ιmV1,V2)→(ran(gm)). For that reason and because ιjV1,V2 is injective and

⋂2
m=1 ran(ιmV1,V2) = ∅ it follows C ∩ ran(t) = (ιjV1,V2)→(Cj ∩ ran(gj)). Hence, G1 ⊗G2

satisfies (b) of Definition 6.2 with respect to C by Remark 6.3 (a).
Erasing: Let {k, ℓ} ⊆ N0, let G ∈ A(k, ℓ), let (G,g) ∈ G and let G = (V,E).

Then (P, p) ∈ E(G,T), where P = (W,F ), where, if T = g→(T) and M = Πk
ℓ /T, then
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W = {{v} ∣ v ∈ V /T} ⊍ {T} and

F = {{{v} ∣ v ∈ e} ∣ e ∈ E ∧ e ∩ T = ∅}
⊍ {{{v}, T ∣ v ∈ e/T} ∣ e ∈ E ∧ ∅ ≠ e ∩ T ≠ e}
⊍ {{T} ∣∃e ∈ E ∶ e ⊆ T}

and where p = π ○ g ○ γM according to Remark 2.19 (a) for

π∶ V →W, v ↦ {{v} if v ∉ T
T otherwise.

Immediately, PE(G,T) ∈ O+ by Lemma 2.20, Proposition 4.6 and G ∈ A. Let
C ∈W /⋍P be arbitrary. By distinguishing cases, we check that E(G,T) satisfies (b)
of Definition 6.2 with respect to C.

Case 1: T is not a vertex of C. If T ∉ C, then C ⊆W /{T} implies B ∶= π←(C) ⊆
π←(W /{T}) = π←(W )/π←({T}) = V /T . By Remark 2.19 (c) the restriction π∣V /T is

a graph embedding of G∣V /T into P . Hence, in particular, π∣B is a graph isomorphism

from G∣B to P ∣C .
Also, then, B ∈ (V /T )/⋍G∣V /T by Remark 6.3 (b) because C ∈W /⋍P and because

π∣V /T is a graph embedding of G∣V /T into P . In fact, B ∈ V /⋍G because if there
were v ∈ T and v′ ∈ B such that v ⋍G v′ then, since π is a graph homomorphism
from G to P by Remark 2.19 (b), that would imply π(v) = T ⋍P π(v′), contradicting
C ∈W /⋍P and T ∉ C.

Furthermore, since T ⊆ g←(g→(T)) = g←(T ) and thus Πk
ℓ /g←(T ) ⊆ Πk

ℓ /T = M
it follows from B ⊆ V /T that g←(B) ⊆ g←(V /T ) = g←(V )/g←(T ) = Πk

ℓ /g←(T ) ⊆
M. Because the injectivity of γM ensures γM→ ○ γM← = id℘(M) we have thus shown
g←(B) = (γM→○γM←○g←)(B). Hence, π→(B∩ran(g)) = (π→○g→○g←)(B) = (π→○g→○
γM→ ○γM← ○ g←)(B) = ((π ○ g ○γM)→ ○ (π ○ g ○γM)←)(C) = (p→ ○ p←)(C) = C ∩ ran(p).

Hence, E(G,T) satisfies (b) of Definition 6.2 with respect to C by Remark 6.3 (a).
Case 2: T is a vertex of C. If T ∈ C, then by ∣T ∣ ≤ 2 there exist {B1,B2} ⊆ V /⋍G

such that B1 ∩T ≠ ∅ ≠ B2 ∩T , such that T ⊆ B1 ∪B2 and such that C = π→(B1 ∪B2)
and B1 ∪B2 = π←(C). By G ∈ A for any i ∈ ⟦2⟧ the graph G∣Bi

is a free or co-free
graph on a single vertex or a path or cycle graph. Moreover, since Bi ∩ T ≠ ∅ and
T = g→(T) require Bi∩ran(g) ≠ ∅ we can exclude by the same assumption that G∣Bi

is a co-free or cycle graph for any i ∈ ⟦2⟧. In addition, G∣Bi
is not the empty graph

for any i ∈ ⟦2⟧ because Bi ≠ ∅. In summary, for each i ∈ ⟦2⟧ the graph G∣Bi
must be

either a free graph on a single vertex or a path graph.
Moreover, since (γM→ ○γM←)(S) = S/T for any S ⊆ Πk

ℓ by definition of γM we infer
C ∩ ran(p) = (p→ ○p←)(C) = ((π ○g ○γM)→ ○(π ○g ○γM)←)(C) = (π ○g)→((γM→ ○γM← ○
g←)(B1 ∪B2)) = (π ○ g)→(g←(B1 ∪B2)/T) = ⋃2

i=1(π ○ g)→(g←(Bi)/T).
In particular, T ⊆ g←(g→(T)) = g←(T ) implies g←(Bi/T ) = g←(Bi)/g←(T ) ⊆

g←(Bi)/T, thus (Bi ∩ ran(g))/T = (Bi/T )∩ ran(g) = g→(g←(Bi/T )) ⊆ g→(g←(Bi)/T)
and thus, ultimately, π→((Bi ∩ ran(g))/T ) ⊆ (π ○ g)→(g←(Bi)/T) for each i ∈ ⟦2⟧.
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Case 2.1: T is comprised of only one vertex. If ∣T ∣ = 1, then B1 ∩ T ≠ ∅ ≠ B2 ∩ T
demands B1 = B2 because V /⋍G is a partition of V . Were G∣B1

= G∣B2
a path graph,

then ∣T ∣ = 1 < 2 ≤ ∣B1∣ would require T ⊊ B1 and thus 2 = ∣T∣ ≤ ∣g←(T)∣ < ∣g←(B1)∣ by
T ⊆ g←(T ) ⊊ g←(B1), contradicting g←(B1) ∈ PG ∈ O+.

In conclusion, G∣B1
= G∣B2

must be a free graph on a single vertex. Because our
assumption ∣T ∣ = 1 makes π an isomorphism from G to P and because C = π→(B1) =
π→(B2) it then follows that P ∣C ≅ G∣B1

is a free graph on a single vertex as well.
Since thus no requirement on C ∩ ran(p) is imposed by the definition of A that is
all we needed to show in this case.

Case 2.2: T is comprised of two vertices but B1 and B2 still coincide. Next, let
∣T ∣ = 2 and B1 = B2. Because g←(B1) ∈ PG ∈ O+ demands ∣g←(B1)∣ = 2, because
∣T∣ = 2 and because T ⊆ g←(T ) ⊆ g←(B1 ∪ B2) = g←(B1) we can conclude T =
g←(B1). Moreover, we infer C ∩ ran(p) = (π ○ g)→(g←(B1)/T) = ∅ from T = g←(B1).
Consequently, it suffices to show that P ∣C is a co-free graph on a single vertex, a cycle
graph or a path graph on two vertices. We distinguish three subcases depending on
∣B1∣.

First, though, note that because ∣T ∣ = 2 and T ⊆ B1 = B2 the graph G∣B1
= G∣B2

cannot be a free graph on a single vertex because T ⊆ B1∪B2 = B1 demands 2 ≤ ∣B1∣.
Thus, G∣B1

must be a path graph instead. By G ∈ A we infer B1 ∩ ran(g) = {v ∈
B1 ∧ degG(v) = 1}, regardless of the value of ∣B1∣ since degG(v) = 1 for any v ∈ B1 if
∣B1∣ = 2. Thus, T = g→(T) = g→(g←(B1)) = B1 ∩ ran(g) = {v ∈ B1 ∧ degG(v) = 1}.

Case 2.2.1: One path graph on two vertices. If ∣B1∣ = 2, then B1 = T by T ⊆ B1

and ∣T ∣ = 2. Thus, C = π→(B1) = {T} consists of only a single vertex. Moreover,
G∣B1

= G∣T being a path graph on 2 vertices ensures T ∈ E and thus {T} ∈ F by
definition of F . In other words, P ∣C is a co-free graph on a single vertex. Thus,
by C ∩ ran(g) = ∅ the bilabeled graph E(G,T) satisfies (b) of Definition 6.2 with
respect to C.

Case 2.2.2: One path graph on exactly three vertices. Now, let ∣B1∣ = 3. Then,
G∣B1

is a path graph on three vertices. We thus find a graph isomorphism u from
(⟦3⟧,{{1,2},{2,3}}) to G∣B1

. In particular, T = degG∣B1

←({1}) = {u1, u3} and

C = π→(B1) = {T,{u2}}, where {u2} ∩ T = ∅. As a consequence, the mapping
f ∶ ⟦2⟧→ C with 1↦ T and 2↦ {u2} is bijective. It is a graph homomorphism from
(⟦2⟧,{{1,2}}) to P ∣C because {u1, u2} ∈ E implies {T,{u2}} ∈ F by definition of
F . We justify that f is a graph embedding, i.e., {T} ∉ F and {{u2}} ∉ F . Because
u is a graph isomorphism, {ui} ∉ E for each i ∈ ⟦3⟧. That has two consequences.
First, since π∣V /T is a graph embedding of G∣V /T into P and since u2 ∈ V /T that

requires {{u2}} ∉ F . Second, by definition of F the only way {T} ∈ F could arise
was if {u1, u3} = T ∈ E, which is not the case since u is a graph embedding of
(⟦3⟧,{{1,2},{2,3}}) into G. Thus, we have shown that P ∣C is a path graph on two
vertices. Hence, E(G,T) satisfies (b) of Definition 6.2 with respect to C in this case
as well.
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Case 2.2.3: One path graph on more than three vertices. Next, consider the
case where m ∶= ∣B1∣ > 3, i.e., where G∣B1

is a path graph on more than three
vertices. Then, there exists a graph isomorphism u from (⟦m⟧,{{i, i + 1}}mi=1) to
G∣B1

. It follows T = degG∣B1

←({1}) = {u1, um} and C = π→(B1) = {T} ⊍ {{ui}}m−1i=2 .

Hence and since u is injective, the rule 1 ↦ T and i ↦ {ui} for each i ∈ N with
2 ≤ i ≤m−1 defines a bijection f ∶ ⟦m − 1⟧→ C. Moreover, f is graph homomorphism
from (⟦m − 1⟧,{{i, i+1}}m−2i=1 ∪{{m−1,1}}) to P ∣C because, by definition of F , from
{u1, u2} ∈ E it follows that {T,{u2}} ∈ F , from {ui, ui+1} ∈ E that {{ui},{ui+1}} ∈ E
for any i ∈ N with 2 ≤ i ≤m − 2 and from {um−1, um} ∈ E that {{um−1}, T} ∈ F .

We show that f is actually a graph embedding. Since u is an embedding into
G, since π∣V /T embeds G∣V /T into P and since {ui}m−1i=2 ⊆ V /T we can conclude for

all {i, j} ⊆ {2, . . . ,m − 1} that {{ui},{uj}} ∈ E if and only if i = j + 1 or j = i + 1.
Furthermore, u being a graph embedding ensures {u1, um} ∉ E and {u1} ∉ E and
{um} ∉ E and thus {T} ∉ F by definition of F . Finally, if there was i ∈ N with
3 ≤ i ≤m−2 and {T,{ui}} ∈ F by the definition of F that would demand {u1, ui} ∈ E
or {um, ui} ∈ E, which is not true because u is an embedding of (⟦m⟧,{{i, i+1}}mi=1)
into G. Thus, f is indeed a graph embedding.

In conclusion, P ∣C is a cycle graph on m− 1 vertices, which means that E(G,T)
satisfies (b) of Definition 6.2 with respect to C.

Case 2.3: T is comprised of two vertices and B1 and B2 are distinct. Finally,
let ∣T ∣ = 2 and B1 ≠ B2. If there was i ∈ ⟦2⟧ with T ⊆ g←(Bi), it would follow T =
g→(T) ⊆ g→(g←(Bi)) ⊆ Bi, which would contradict B1 ∩T ≠ ∅ ≠ B2 ∩T and B1 ≠ B2.
Hence, instead, T /⊆ g←(Bi) for each i ∈ ⟦2⟧. Since, on the other hand, T ⊆ B1 ⊍B2

implies T ⊆ g←(g→(T)) = g←(T ) ⊆ g←(B1) ⊍ g←(B1) it must hold T ∩ g←(Bi) ≠ ∅
for each i ∈ ⟦2⟧. Because ∣T∣ = 2 and B1 ≠ B2 that means ∣T ∩ g←(Bi)∣ = 1 for each
i ∈ ⟦2⟧. Correspondingly, ∣g←(Bi)/T∣ = 1 for each i ∈ ⟦2⟧ since ∣g←(Bi)∣ = 2 by virtue
of g←(Bi) ∈ PG ∈ O+. Again we need to consider three subcases separately.

Case 2.3.1: Two free graphs. First, let each of G∣B1
and G∣B2

be a free graph
on a single vertex. That requires T = B1 ⊍ B2 by B1 ∩ T ≠ ∅ ≠ B2 ∩ T , implying
C = π→(B1 ⊍B2) = π→(T ) = {T}. Moreover, G∣B1

and G∣B2
both being free ensures

B1 ∉ E and B2 ∉ E. Also, T = B1 ⊍B2 ∉ E because B1 and B2 are distinct connected
components of G. Hence, {T} ∉ F by definition of F . We have thus proved that
P ∣C is a free graph on a single vertex as well. Consequently, in this case, E(G,T)
satisfies (b) of Definition 6.2 with respect to C.

Case 2.3.2: One free and one path graph. Next, let one of G∣B1
and G∣B2

be a free
graph on a single vertex and the other any path graph. Without loss of generality
we can assume that G∣B1

is the free graph and that G∣B2
is a path graph on m ∶= ∣B2∣

many vertices. Then, we find a graph isomorphism u from (⟦m⟧,{{i, i + 1}}m−1i=1 ) to
G∣B2

. Because G ∈ A and B2∩ran(g) ≠ ∅ we know B2∩ran(g) = {v ∈ B2 ∧ degG(v) =
1} = {u1, um}, irrespective of the value of m because degG(v) = 1 for any v ∈ B2 if
m = 2. Hence and because ∅ ≠ T ∩ B2 ⊆ B2 ∩ ran(g), by replacing the walk u
in G with its reverse ux if necessary we can ensure that u1 ∈ T , which is to say
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T = B1 ⊍ {u1} and C = {T} ⊍ {{ui}}mi=2. For that reason and since u is bijective,
the mapping f ∶ ⟦m⟧ → C with 1 ↦ T and i ↦ {ui} for any i ∈ N with 2 ≤ i ≤ m is
bijective. Because u is a graph homomorphism from (⟦m⟧,{{i, i+ 1}}m−1i=1 ) to G and
because π is one from G to P the mapping f = π ○u is a graph homomorphism from
(⟦m⟧,{{i, i + 1}}m−1i=1 ) to P .

We prove that f is in fact a graph embedding. Since u is a graph embedding into
G, since π∣V /T embeds G∣V /T into G and since {ui}mi=2 ⊆ V /T by the injectivity of

u, we know for any {i, j} ⊆ {2, . . . ,m} that {{ui},{uj}} ∈ F if and only if ∣i − j∣ = 1.
For the same reasons, {{ui}} ∉ E for any i ∈ N with 2 ≤ i ≤ m. Furthermore, as
{u1} ∉ E because u is a graph embedding, as B1 ∉ E since G∣B1

is free and since
T ∉ E since B1 and B2 are distinct connected components of G, the definition of
F implies {T} ∉ F . Lastly, {T,{ui}} ∉ E for any i ∈ N with 3 ≤ i ≤ m because by
definition of F that would require {u1, ui} ∈ E or B1⊍{ui} ∈ E, which is not the case
since u is a graph embedding of (⟦m⟧,{{i, i + 1}}m−1i=1 ) into G respectively because
ui ∈ B2 and because B1 and B2 are distinct connected components of G. Overall, f
is indeed a graph isomorphism from (⟦m⟧,{{i, i + 1}}m−1i=1 ) to P ∣C , which makes the
latter a path graph on m vertices.

Hence, {x ∈ C ∧ degP (x) = 1} = {f1, fm} = {T,{um}} and we have to show
C ∩ ran(p) = {T,{um}}. Since C ∩ ran(p) = ⊍2

i=1(π ○ g)→(g←(Bi)/T) it suffices
to prove (π ○ g)→(g←(B1)/T) = {T} and (π ○ g)→(g←(B2)/T) = {{um}}. We con-
clude from ∣g←(B1)/T∣ = 1 in particular ∅ ≠ (π ○ g)→(g←(B1)/T) and thus (π ○
g)→(g←(B1)/T) = {T} since (π ○ g)→(g←(B1)/T) ⊆ π→((g→ ○ g←)(B1)) = π→(B1) =
{T} by (g→ ○ g←)(B1) = B1. Moreover, um ∈ (B2 ∩ ran(g))/T implies {{um}} ⊆
π→((Bi ∩ ran(g))/T ) ⊆ (π ○ g)→(g←(Bi)/T) and thus (π ○ g)→(g←(Bi)/T) = {{um}}
since ∣g←(B2)/T∣ = 1 demands ∣(π ○ g)→(g←(B2)/T)∣ = 1. In conclusion, E(G,T)
satisfies (b) of Definition 6.2 with respect to C.

Case 2.3.3: Two path graphs. Finally, suppose that G∣B1
and G∣B2

are both path
graphs on any numbers m1 ∶= ∣B1∣ respectively m2 ∶= ∣B2∣ of vertices. For each i ∈ ⟦2⟧
we then find a graph isomorphism ui from (⟦mi⟧,{{r, r + 1}}mi−1

r=1 ) to G∣Bi
. Once

more, no matter the value of mi, we can deduce Bi ∩ ran(g) = {v ∈ Bi ∧ degG(v) =
1} = {ui1, uimi

} for each i ∈ ⟦2⟧. Hence, by replacing one or both of u1 and u2 with
their respective reverse walks u1x and u2x we can achieve that T = {u1m1

, u21}. Then,
because (π ○ u1)(m1) = T = (π ○ u2)(1) the mapping f ∶= (π ○ u1) | (π ○ u2) is a
well-defined walk in P , i.e., a graph homomorphism from (⟦m⟧,{{r, r + 1}}m−1r=1 ) to
P , where m ∶=m1 +m2 − 1.

We show that f is actually a graph embedding. For any {i, j} ⊆ ⟦m⟧/{m1} it
holds {fi, fj} ∈ F if and only if ∣i − j∣ = 1. Indeed, if i < m1 and j < m1, then
{fi, fj} = π→({u1i , u1j}) ∈ F if and only if ∣i − j∣ = 1 because u1 is a graph embedding

of (⟦m1⟧,{{r, r+1}}m1−1
r=1 ) into G, because {u1i , u1j} ⊆ V /T and because π∣V /T embeds

G∣V /T into P . Likewise, u2 being a graph embedding of (⟦m2⟧,{{r, r+1}}m2−1
r=1 ) into

G and π∣V /T one of G∣V /T into P ensure {fi, fj} = π→({u2i−m1+1, u
2
j−m1+1}) ∈ F if and

only if ∣i− j∣ = 1 whenever m1 < i and m1 < j because {u2i−m1+1, u
2
j−m1+1} ⊆ V /T . And
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in the case where i < m1 < j the fact that u1i ∈ B1 and u2j−m1+1 ∈ B2 lie in distinct

connected components of G implies {fi, fj} = π→({u1i , u2j−m1+1}) ∉ F in accordance
with ∣r − t∣ ≠ 1. If j < m1 + 1 < i, an analogous argument can be given to the
same effect. Moreover, u1 and u2 being graph embeddings require {u1m1

} ∉ E and
{u21} ∉ E. Since also {u1m1

, u21} ∉ E because u1m1
∈ B1 and u21 ∈ B2 that proves {T} ∉ F

by definition of F . Finally, if there was i ∈ N with i < m1 − 1 or m1 + 1 < i such
that {T,{fi}} ∈ F , then by definition of F that would require {u1m1

, u1i } ∈ E or
{u21, u1i } ∈ E if i < m1 − 1 and {u1m1

, u2i−m1+1} ∈ E or {u21, u2i−m1+1} ∈ E if m1 + 1 < i.
However, if i < m1 − 1, then {u1m1

, u1i } ∉ E because u1 is a graph embedding and
1 < ∣i −m1∣, and {u21, u1i } ∉ E because u1i ∈ B1 and u21 ∈ B2. Likewise, if m1 + 1 < i,
then {u1m1

, u2i−m1+1} ∉ E because u1m1
∈ B1 and u2i−m1+1 ∈ B2, and {u21, u2i−m1+1} ∉ E

because u2 is a graph embedding and 1 < ∣(i−m1+1)−1∣. In conclusion, f is a graph
isomorphism from (⟦m⟧,{{r, r + 1}}m−1r=1 ) to P ∣C .

It thus remains to show C ∩ ran(p) = {f1, fm}. This is clear once we prove
(π ○ g)→(g←(B1)/T) = {{u11}} and (π ○ g)→(g←(B2)/T) = {{u2m2+1}}. First, u11 ∈
(B1∩ran(g))/T implies {{u11}} ⊆ π→((B1∩ran(g))/T ) ⊆ (π○g)→(g←(B1)/T) and thus
(π○g)→(g←(B1)/T) = {{u11}} since ∣g←(B1)/T∣ = 1 demands ∣(π○g)→(g←(B1)/T)∣ = 1.
Likewise, from u2m2+1 ∈ (B1∩ran(g))/T it follows {{u2m2+1}} ⊆ π→((B2∩ran(g))/T ) ⊆
(π○g)→(g←(B2)/T) and thus (π○g)→(g←(B2)/T) = {{u2m2+1}} because ∣g←(B2)/T∣ =
1 requires ∣(π ○ g)→(g←(B2)/T)∣ = 1. In conclusion, E(G,T) satisfies (b) of Defini-
tion 6.2 with respect to C. And that completes the proof. □

Definition 6.5. For any additive subsemigroup S of N denote by AS the set of
all G ∈ A such that for any (G,g) ∈ G, if V is the vertex set of G, then for any
C ∈ V /⋍G and any m ∈ N,

(a) if 1 ∉ S, then G∣C is not co-free,
(b) if m ∉ S, then G∣C is neither a cycle graph on m vertices nor a path graph

on m + 1 vertices.

Proposition 6.6. AS is a graph category for any additive subsemigroup S of N.

Proof. Again we use Proposition 2.21. Since I ∈ A and since a free graph on
a single vertex underlies I the bi-labeled graph S is an element of AS, irrespective
of S. As far as invariance of AS under rotations, reflection, tensor products and
erasing is concerned, we extend the proof of Proposition 6.4. For each operation we
make the same assumptions as were made there.

Rotation: If, in adddition, G ∈ AS, then H ∣C obeys the restrictions of Defini-
tion 6.5 because G∣C does and because G∣C and H ∣C are isomorphic. Thus, also
Gr ∈ AS.

Reflection: The same argument as for rotation proves G∧ ∈ AS whenever G ∈ AS.
Tensor product: If {G1,G2} ⊆ AS, then Gj ∣Cj

complies with the exclusion rules

of Definition 6.5. Consequently, so does (G1 �G2)∣C since it is isomorphic to Gj ∣Cj
.

Hence, indeed G1 ⊗G2 ∈ AS.
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Erasing: We extend the arguments in the individual cases distinguished in the
proof of Proposition 6.4.

Case 1: T is not a vertex of C. If T ∉ C, then G∣B and P ∣C are isomorphic.
Hence, if , G ∈ AS then not only does G∣B respect the rules of Definition 6.5 but so
does P ∣C .

Case 2: T is a vertex of C. If T ∈ C, then we further distinguish based on ∣T ∣
and on whether B1 and B2 coincide or not.

Case 2.1: T is comprised of only one vertex. In the case that ∣T ∣ = 1, and thus
B1 = B2, the graph P ∣C is a free graph on a single vertex and thus trivially satisfies
the conditions of Definition 6.5 in any case.

Case 2.2: T is comprised of two vertices but B1 and B2 still coincide. If ∣T ∣ = 2
and B1 = B2, then G∣B1

is necesarily a path graph.
Case 2.2.1: One path graph on two vertices. If G∣B1

is path graph on two vertices,
then P ∣C is a co-free graph on a single vertex. Thus we need to show that, if G ∈ AS,
then 1 ∈ S. And, indeed, by the contraposition of Definition 6.5 (b), the fact that
G∣B1

is path graph on two vertices then requires 1 ∈ S.
Case 2.2.2: One path graph on exactly three vertices. In the instance that G∣B1

is path graph on three vertices, P ∣C is a path graph on two vertices. If we assume
G ∈ AS, we hence have to prove 2 ∈ S. Fortunately, G∣B1

being a path graph on
three vertices implies just that by the contraposition of Definition 6.5 (b).

Case 2.2.3: One path graph on more than three vertices. In case G∣B1
is a path

graph on m = ∣B1∣ > 3 vertices, P ∣C is a cycle graph on m − 1 vertices. Hence, if
G ∈ AS, in order to show E(G,T) ∈ AS we need to check that m − 1 ∈ S. However,
otherwise G∣B1

would not be able to be a path graph on m vertices by Defini-
tion 6.5 (b). Thus, m − 1 ∈ S.

Case 2.3: T is comprised of two vertices and B1 and B2 are distinct. If B1 ≠ B2,
then each of G∣B1

and G∣B2
is a free graph on single vertex or a path graph.

Case 2.3.1: Two free graphs. If G∣Bi
is a free graph on a single vertex for each

i ∈ ⟦2⟧, then so is P ∣C . Hence, in this case, P ∣C complies with the demands of
Definition 6.5, no matter what S is.

Case 2.3.2: One free and one path graph. In the case where, without loss of
generality, G∣B1

is a free graph on a single vertex and G∣B2
a path graph on m

vertices, P ∣C is a path graph on m vertices as well. If now G ∈ AS, then we can infer
m − 1 ∈ S from the fact that G∣B2

a path graph on m vertices. And, of course, this
is exactly what guarantees that also P ∣C meets the conditions of Definition 6.5.

Case 2.3.3: Two path graphs. The final case is that G∣Bi
is a path graph on

mi = ∣Bi∣ vertices for each i ∈ ⟦2⟧, which implies that P ∣C is a path graph on
m =m1 +m2 − 1 vertices. If we suppose G ∈ AS, then Definition 6.5 (b) lets us infer
mi − 1 ∈ S for each i ∈ ⟦2⟧ because G∣Bi

is a path graph on mi vertices. Since S
is a subsemigroup of (N,+) it follows m − 1 = (m1 − 1) + (m2 − 1) ∈ S. And this is
exactly what is required in order for the path graph P ∣C on m vertices to comply
with Definition 6.5.
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In summary, we have shown in all cases that G ∈ AS also ensures E(G,T) ∈ AS,
which concludes the proof. □

Proposition 6.7. AS = ⟨A○k ∣k ∈M⟩ for any M ⊆ N with S = ⟨M⟩+.

Proof. It suffices to consider the case M = S. Because PA = ∈ O+ and because
a path graph on k + 1 vertices, of which only the ones of degree one are labeled,
underlies A○i for any i ∈ N, it is clear that A ⊇ ⟨A○i ∣ i ∈ S⟩. By Lemma 2.15, in order
to show A ⊆ ⟨A○i ∣ i ∈ S⟩, it suffices to verify AS(0, k+ℓ) ⊆ ⟨A○i ∣ i ∈ S⟩ for any {k, ℓ} ⊆
N0. This we prove by induction over the number of connected components of the
underlying graph of the bi-labeled graph. The empty bi-labeled graph ∅ ∈ A(0,0),
the only one whose underlying graph has zero connected components, is an element
of ⟨A○i ∣ i ∈ S⟩ by definition. Suppose that ⟨A○i ∣ i ∈ S⟩ contains any bi-labeled graph
of ⋃k,ℓ∈N0

AS(0, k + ℓ) whose underlying graph has at most n ∈ N0 many connected
components, and let {k, ℓ} ⊆ N0, let G ∈ AS(k, ℓ), let (G,g) ∈ G, let V be the
vertex set of G and let ∣V /⋍G∣ = n + 1. We prove G ∈ ⟨A○i ∣ i ∈ S⟩ by constructing
H ∈ ⟨A○i ∣ i ∈ S⟩ and T ∈ ⟨A○i ∣ i ∈ S⟩ with G =H⊗T.

We can make one simplifying assumption: By the characteristic property of non-
crossing partitions, if 0 < k + ℓ, then we find a block B ∈ PG ∈ O+(0, k + ℓ) which is
convex with respect to Γ0

k+ℓ, and we can assume B = {◾(k + ℓ − 1), ◾(k + ℓ)} by ∣B∣ = 2
and Lemma 2.15.

Step 1: Defining H and T. Let M ∶= Π0
k+ℓ if k + ℓ = 0 and M ∶= Π0

k+ℓ/B = Π0
k+ℓ−2

otherwise. Because 0 < n + 1 = ∣V /⋍G∣, if k + ℓ = 0, we can find and fix an arbitrary
B ∈ V /⋍G. In case 0 < k+ℓ we pick B ∈ V /⋍G specifically to satisfy B = g←(B). Now,
let W ∶= V /B, let H ∶= G∣W and let T ∶= G∣B, let h be g∣M seen as a map into W and
let t be g ○γB seen as a map into B and finally let H ∈ G(0, k + ℓ−2) and T ∈ G(0,2)
be such that (H,h) ∈H and (T, t) ∈ T.

Step 2: Proving that H belongs to ⟨A○i ∣ i ∈ S⟩. Because B is a convex block of
PG, the partition PH = (PG)∣M of Π0

n−2 still belongs to O+. And the assumption
that B is a connected component of G implies W /⋍H = (V /⋍G)/{B}. Moreover,
ran(h) = g→(M) ⊆ W ensures C ∩ ran(h) = C ∩ ran(g) for any C ∈ W /⋍H . Hence,
H is an element of A. Since ∣W /⋍H ∣ = ∣(V /⋍G)/{B}∣ = (n + 1) − 1 = n the induction
hypothesis thus yields H ∈ ⟨A○i ∣ i ∈ S⟩.

Step 3: Proving that T belongs to ⟨A○i ∣ i ∈ S⟩. In order to show T ∈ ⟨A○i ∣ i ∈ S⟩
we need to distinguish cases based on the value of k + ℓ and the isomorphism class
of G∣B. Recall that the assumption G ∈ AS ⊆ A requires G∣B to be a free or co-free
graph on a single vertex or a path or cycle graph.

Case 3.1: No labeled components. If k + ℓ = 0, then g = ∅ and thus in particular
B ∩ ran(g) = ∅. By G ∈ AS ⊆ A that requires G∣B to be a free or co-free graph on a
single vertex, a cycle graph or a path graph on two vertices.

Case 3.1.1: Free graph. If G∣B is a free graph on a single vertex, then the identity
H = E(I,{◾1, ◾1}) proves H ∈ ⟨A○i ∣ i ∈ S⟩ by Lemma 2.20 since I ∈ ⟨A○i ∣ i ∈ S⟩ by the
definition of graph category.
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Case 3.1.1: Co-free graph. In the case that G∣B is a co-free graph on a single
vertex, the assumption G ∈ AS demands 1 ∈ S by Definition 6.5 (a). Because
H = E(A,{◾1, ◾1}), Lemma 2.20 thus shows H ∈ ⟨A⟩ ⊆ ⟨A○i ∣ i ∈ S⟩.

Case 3.1.2: Cycle graph. If G∣B is a cycle graph on m ∶= ∣B∣ ≥ 3 many ver-
tices, then, by Definition 6.5 (b), we can infer m ∈ S from G ∈ AS. Since H =
E(A○m,{◾1, ◾1}) it follows H ∈ ⟨A○m⟩ ⊆ ⟨A○i ∣ i ∈ S⟩ by Lemma 2.20.

Case 3.1.3: Path on two vertices. Finally, if G∣B is a path graph on two
vertices, then the assumption G ∈ AS forces 1 ∈ S by Definition 6.5 (a). As
H = E(A○2,{◾1, ◾1}), Lemma 2.20 thus proves H ∈ ⟨A⟩ ⊆ ⟨A○i ∣ i ∈ S⟩.

Case 3.2: At least one labeled component. In contrast, if 0 < k+ℓ, then B∩ran(g) ≠
∅ by B = g←(B). Hence, G ∈ AS ⊆ A demands that G∣B be a free graph on a single
vertex or a path graph.

Case 3.2.1: Free graph. If G∣B is a free graph on a single vertex, then ∣B∣ = 2
implies H =M0,2 and thus H ∈ ⟨A○i ∣ i ∈ S⟩ by the definition of graph category.

Case 3.2.2: Path graph. Lastly, in case G∣B is a path graph on m ∶= ∣B∣ ≥ 2 many
vertices, then the premise G ∈ AS allows us to deduce m−1 ∈ S by Definition 6.5 (b).
Hence H = A○(m−1) shows H ∈ ⟨A○i ∣ i ∈ S⟩, which concludes the induction step and
thus the proof. □

Remark 6.8. Though seemingly natural, it is generally not true that for an
additive subsemigroup S of N the category AS is simply A ∩ DS. In fact, the two
agree if and only if S = N. If 1 ∉ S, then the (0,0)-bilabeled graph on a co-free graph
on a single vertex, i.e., the C ∈ G(0,0) with (({1},{{1}}),∅) ∈ C, is an element of
A ∩DS but not of AS by Definition 6.5 (a).

7. Graph-theoretical quantum groups

7.1. From graph categories to compact quantum groups. In [MR19]
Mančinska and Roberson associate with any pair of a graph and a graph category a
compact matrix quantum group. Their construction works as follows.

Notation 7.1. Let B be any ∗-algebra.
(a) For each n ∈ N0 the algebra of n×n-matrices with entries from B is denoted

by Mn(B) ≅Mn(C)⊗B.
(b) Given any n ∈ N0 and u = (uj,i)(j,i)∈⟦n⟧⊠⟦n⟧ ∈Mn(B) let

(i) u = (u∗j,i)(j,i)∈⟦n⟧⊠⟦n⟧ be the conjugate and
(ii) ut = (ui,j)(j,i)∈⟦n⟧⊠⟦n⟧ the transpose of u and let

(iii) ujm = (uj1,i1 . . . ujm,im)(j,i)∈⟦n⟧⊠m⊠⟦n⟧⊠m for any m ∈ N.

Definition 7.2. For any n ∈ N, any graph G with vertex set ⟦n⟧ and any {k, ℓ} ⊆
N0 and any H ∈ G(k, ℓ) let TH→G

k,ℓ be the complex nℓ × nk-matrix which for any
i ∈ ⟦n⟧⊠k and j ∈ ⟦n⟧⊠ℓ has the (j, i)-entry

(TH→G
k,ℓ )

j,i
= ∣{f graph homomorphism H → G ∧ f ○ h = i ◾◾ j}∣,

where (H,h) ∈H can be any representative.
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Definition 7.3. For any n ∈ N, any graph G with vertex set ⟦n⟧ and any graph
category F let CGF ∶= (CGF (k, ℓ))k,ℓ∈N0 , where CGF (k, ℓ) is the vector subspace generated
by {TH→G

k,ℓ ∣H ∈ F(k, ℓ)} in the complex vector space of complex nℓ ×nk-matrices for

any {k, ℓ} ⊆ N0.

Definition 7.4. For any n ∈ N, any graph G with vertex set ⟦n⟧ and any graph
category F the graph-theoretical orthogonal compact matrix quantum group GG

F as-
sociated with G and F is the pair (B,u), where B is the universal C∗-algebra with
n2 generators {uj,i}ni,j=1 subject to the relations

u = u ∧ ∀{k, ℓ} ⊆ N0 ∶ ∀T ∈ CGF (k, ℓ) ∶ ujℓ (T ⊗ 1) = (T ⊗ 1)ujk

and where u = (uj,i)(j,i)∈⟦n⟧⊠⟦n⟧.
Proposition 7.5. [MR19, Theorem 8.2] For any n ∈ N, any graph G with vertex

set ⟦n⟧ and any graph category F the pair GG
F is a compact n × n-matrix quantum

group.

The main reason for that is contained in the following collection of results.

Proposition 7.6. [MR19, Example 3.9, Lemmata 3.21, 3.23 and 3.24] Let n ∈ N
and let G be any graph with vertex set ⟦n⟧.

(a) TK→G
ℓ,m ○TH→G

k,ℓ = TK○H→G
k,m for any {k, ℓ,m} ⊆ N0, H ∈ G(k, ℓ) and K ∈ G(ℓ,m).

(b) TH1→G
k1,ℓ1

⊗TH2→G
k2,ℓ2

= TH1⊗H2→G
k1+k2,ℓ1+ℓ2 for any {ki, ℓi}2i=1 ⊆ N0, (Hi)2i=1 ∈ ⊠2

i=1G(ki, ℓi).
(c) (TH→G

k,ℓ )∗ = TH∗→G
ℓ,k for any {k, ℓ} ⊆ N0 and H ∈ G(k, ℓ).

(d) T I→G
1,1 = In, where In is the identity n × n-matrix.

(e) T
M0,2→G
0,2 = (1↦ ∑ni=1 ei ⊗ ei), where (ei)ni=1 is any orthonormal basis of C⊠n.

The below auxiliary result is implicit in [MR19].

Lemma 7.7. For any n ∈ N, any graph G with vertex set ⟦n⟧ and any graph
category F , if GG

F = (B,u) and u = (uj,i)(j,i)∈⟦n⟧⊠⟦n⟧, then for any set E ⊆ F with
⟨E⟩ = F , the algebra B is also is the universal C∗-algebra with generators {uj,i}ni,j=1
subject to the relations

u = u ∧ utu = In ⊗ 1 = uut

and

∀{k, ℓ} ⊆ N0 ∶ ∀H ∈ E(k, ℓ) ∶ ujℓ (TH→G
k,ℓ ⊗ 1) = (TH→G

k,ℓ ⊗ 1)ujk.

Proof. Proven immediately by Proposition 7.6 and [Wor88, Theorem 1.3]. □

7.2. Fiber functor degeneracy. By using the results of Section 6 and basic
linear algebra it is possible to see that the construction of graph-theoretical quantum
groups regrettably has some unfavorable properties.

Remark 7.8. (a) For any n ∈ N and any graph G with vertex set ⟦n⟧ the
adjacency matrix AG of G is the n × n-matrix which for any i ∈ ⟦n⟧ and
j ∈ ⟦n⟧ has the (j, i)-entry 1 if i ∽G j and 0 otherwise.
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(b) TA→G
1,1 = AG for any n ∈ N and any graph G with vertex set ⟦n⟧.

Lemma 7.9. For any n ∈ N any self-adjoint A ∈ Mn(C) is an element of the
complex linear subspace of Mn(C) spanned by {Ak ∣k ∈ N0/{1}}.

Proof. Regular case: If A is invertible, then in the characteristic polynomial
χA = ∑nk=0 akXk of A the coefficient a0 = det(A) of the constant monomial is non-zero.
Hence, A = − 1

a0
∑nk=1 akAk+1 because χA(A) = 0 by the Cayley-Hamilton theorem.

Singluar case: Now, drop the invertibility assumption. Because A = A∗ and

because Cn is finite-dimensional, ker(A)⊥ = ran(A) = ran(A). In particular, ker(A)⊥
is an A-invariant subspace. Hence, if V is the linear map Cn ≅ ker(A)⊕ ker(A)⊥ →
ker(A)⊥ ≅ Cm, (u, v)↦ v, then B ∶= V AV ∗ ∈Mm(C) is injective and thus invertible.
If thus B = ∑k∈N0/{0} bkB

k for some {bk}k∈N0/{1} ⊆ C with only finitely many non-
zero, then A = V ∗BV = ∑k∈N0/{0} bkV

∗BkV = ∑k∈N0/{0} bk(V ∗BV )k = ∑k∈N0/{0} bkA
k

because A = AV ∗V = V ∗V A and V V ∗ = id. □

There are distinct graph categories giving rise to the same graph-theoretical quan-
tum groups, no matter the target graph.

Proposition 7.10. There exist graph categories F1 and F2 such that GG
F1
= GG

F2

for any graph G even though F1 ≠ F2.

Proof. If we let F1 ∶= A = AN and F2 ∶= AN/{1}, then F1 and F2 are both
graph categories by Proposition 6.6. Moreover, F1 ≠ F2 because A ∈ F1/F2. Let
n ∈ N and let G be any graph with vertex set ⟦n⟧. Then, {A○k ∣k ∈ N/{1}} ⊆ F2

implies {AGk ∣k ∈ N0/{1}} ⊆ CGF2
(1,1) because TA→G

1,1 = AG by Remark 7.8 (b) and

thus TA○k→G
1,1 = AGk for any k ∈ N0 by (a) and (d) of Proposition 7.6. Because AG

is self-adjoint Lemma 7.9 thus proves AG ∈ CGF2
(1,1). In conclusion, GG

F1
= GG

F2
by

Lemma 7.7 and F1 = ⟨A⟩. □

8. Concluding Remarks

The present work had four main results. It introduced the vertex and component
partitions as well as label distances of any given bi-labeled graph and showed (1)
how graph categories arise by placing constraints on these quantities and (2) that
each of these quantities in turn induces a combinatorial invariant of any given graph
category. (3) It described the categories generated by powers of the adjacency bi-
labeled graph. (4) It demonstrated an inherent lack of injectivity of the construction
of graph-theoretical quantum groups.

8.1. Graph categories from categories of partitions. Besides P and P of
Definitions 3.1 and 4.1, do there exist other mappings P as in Lemma 2.35, thus
giving rise to further families of graph categories and graph category invariants?

It can be shown that such a mapping P can be constructed from, in the language
of category theory, any right-exact functor from the category of graphs (with graphs
as objects and graph homomorphisms as morphisms) to the category of finite sets



8. CONCLUDING REMARKS 117

(with finite sets as objects and mappings as morphisms): Given such a functor
F the associated mapping P in the sense of Lemma 2.35 is obtained by sending
any bi-labeled graph K to the partition ker(F (g)), where (G,g) ∈ K can be any
representative.

A functor is right-exact if and only if it preserves initial objects, co-products
and co-equalizers. In particular, any left-adjoint functor is right-exact. The functor
which sends any graph to its set of vertices and (which operates as the identity
on morphisms) has a left adjoint. It is this left adjoint, namely the functor which
sends any finite set V to the free graph (V,∅) over it (and which leaves morphisms
unchanged), that induces the mapping P from Definition 3.1. But also the functor
which sends any graph G with vertex set V to its set V /⋍G of connected components
(and any graph homomorphism f from G to any H to the mapping (π⋍H ○ f)/⋍G)
is right-exact. It gives rise to the mapping P from Definition 4.1.

Perhaps it is even possible to classify all right-exact functors from the category
of graphs to the category of finite sets.

8.2. Categories of partitions with “empty blocks”. As explained in Re-
mark 2.23 the definition of “partition” used in the present work is different from
the one employed by Mančinska and Roberson in [MR20, p. 11], in that “empty
blocks” are not allowed. The motivation behind this choice was that results were
desired which allowed capitalizing on the classifcation of categories of partitions
(see Section 2.3.3). However, as mentioned in Remark 3.7 this comes at the cost
that theorems about generators of categories of partitions do not translate to such
about generators of graph categories consisting solely of edgeless bi-labeled graphs.
However, one can give analogous definitions of the mappings P and P which give
partitions which do have “empty blocks”. Moreover, Propositions 3.6, 3.9, 4.6 and
4.9 all remain true for those versions of P and P. Hence, a classification of all
categories of partitions with empty blocks would immediately yield a classification
of all graph categories consisting only of edgeless bi-labeled graphs and new graph
category invariants. Thus, such a theorem might be a good place to start in order
to continue with the classification of all graph categories.

8.3. Unitary graph categories. Banica and Speicher’s categories of parti-
tions from [BS09] and their so-called “easy” quantum groups obtained from those
categories always form compact (n × n-matrix) quantum subgroups of the free or-
thogonal quantum group O+

n defined by Wang in [Wan95a]. In [TW18], Tarrago and
Weber showed how to modify Banica and Speicher’s definitions in order to produce
quantum subgroups of Wang’s free unitary quantum group U+

n instead. Analogous
modifications can be made to Mančinska and Robersons graph-theoretical quantum
groups.

One fixes a set {○, ●} of two distinct colors. For any {k, ℓ} ⊆ N0 a two-colored
(k, ℓ)-bi-labeled graph is any triple (c,K, d) such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ →
{○, ●} and such that K is a (k, ℓ)-bi-labeled graph in the sense of Definition 2.10
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(for the same notion of “graph”). Note that it is not the underlying graph, nei-
ther vertices nor edges, that is endowed with a coloring but the labels themselves.
Namely, c is interpreted as the coloring of the k upper points (not vertices) and
d as that of the ℓ lower points. Given any such triples (b,K, c) and (a,H, b) their
composition (b,K, c) ○ (a,H, b) is simply defined as (a,K ○H, c). The adjoint of
(c,K, d), unsurprisingly, is given by (d,K∗, c). When forming the tensor product
(c1,K1, d1)⊗ (c2,K2, d2) = (c1 ⊗ c2,K1 ⊗K2, d1 ⊗ d2) of two triples (c1,K1, d1) and
(c2,K2, d2) one needs to form the concatenatations c1 ⊗ c2 and d1 ⊗ d2 of the color-
ings of the upper and lower points, respectively. A category of two-colored bi-labeled
graphs is then any set closed under composition, tensor products and forming ad-
joints and containing the four triples (○, I, ○), (●, I, ●), (∅,M0,2, ○●) and (∅,M0,2, ●○).

To obtain the graph-theoretical unitary compact matrix quantum group associated
with such a category F the definitions of Section 7.1 would have to be adapted in
the following way: No modifications whatsoever need to be made to Definition 7.2.
The only change to Definition 7.3 is that now, just like F itself, CGF is a family not
indexed by pairs (k, ℓ) of numbers k and ℓ but by pairs (c, d) of colorings c and
d (of any lengths). Finally, two changes are required in Definition 7.4. First, the
relation u = u is dropped. Second, given any {k, ℓ} ⊆ N0 as well as c∶ ⟦k⟧ → {○, ●}
and d∶ ⟦ℓ⟧ → {○, ●}, for any T ∈ CGF (c, d) rather than ujℓ (T ⊗ 1) = (T ⊗ 1)ujk the
associated relation imposed has to read

(uc1 j uc2 j . . . j uck) (T ⊗ 1) = (T ⊗ 1) (ud1 j ud2 j . . . j udℓ),
where u○ = u and u● = u and where for any {v,w} ⊆ Mn(C), if v = (vj,i)(j,i)∈⟦n⟧⊠⟦n⟧
and w = (wj,i)(j,i)∈⟦n⟧⊠⟦n⟧, then v j w = (vj1,i1wj2,i2)(j,i)∈⟦n⟧⊠2⊠⟦n⟧⊠2 .



CHAPTER 3

Half-liberated unitary easy quantum groups

1. Introduction

The unitary group is generalized by the free unitary quantum group, the algebra
of continuous functions on the unitary group – but liberated from the commutativity
constraint. Quantum groups interpolating the unitary group and the free unitary
quantum group are known as half-liberations of the unitary group. Three families
of such half-liberations arise as so-called easy quantum groups, via Tannaka-Krein
duality from categories of two-colored partitions. The present chapter shows that
these half-liberations can all be understood as quotients of wreath graph products
of either the unitary group or the free unitary quantum group. More precisely, it is
shown that their representation categories are full subcategories of those of the said
wreath graph products.

1.1. Background and context. Operator-algebraic compact quantum groups
as defined by Woronowicz in [Wor87; Wor91; Wor98] can be specified with the help
of Woronowicz’s Tannaka-Krein duality theorem in [Wor98] by providing their to-be
representation functors rather than the otherwise required C∗-algebras. A partic-
ularly prolific construction pioneered by Banica and Speicher in [BS09] and later
extended by Tarrago and Weber in [TW18] and by Freslon in [Fre17] applies Tanna-
ka-Krein duality to combinatorial functors living on categories of colored partitions.
The resulting so-called easy compact quantum groups are quantum subgroups of free
products of copies of Wang’s free orthogonal and free unitary quantum groups O+

n

and U+
n from [Wan95a], where each copy can live in any dimension n. In particular,

both U+
n and its classical counterpart the unitary group Un can be obtained in this

way. A full classification of all easy quantum groups interpolating Un and U+
n was

given in [MW20; MW21a]. The present chapter is dedicated to the closer study
of the three families of those quantum groups, the so-called unitary half-liberations
U∗
w,n, U×

D,n and U×+
D,n.

With the notation ⊗ for the cartesian product of sets, the convention that 0 ∉ N
and the abbreviations that ⟦0⟧ ∶= ∅ and that for any k ∈ N, on the one hand, ⟦k⟧ ∶=
{1,2, . . . , k} and, on the other hand, in any algebra for any elements a1, a2, . . . , ak,

Ð→
∏k
i=1ai = a1a2 . . . ak and

←Ð
∏k
i=1ai = akak−1 . . . a1,

the description of the unitary half-liberations coming out of Tannaka-Krein duality
reads as follows.

119
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Definition. For any n ∈ N, any w ∈ N, any additive subsemigroup of N and any
G ∈ {U∗

w,n, U
×
D,n, U

×+
D,n,} let the compact quantum group G be defined as the formal

dual of the universal C∗-algebra Cmax(G) generated by n2-generators {uj,i}ni,j=1 sub-
ject to the relations RU+

n
∪RG and equipped with the unique morphism ∆∶ Cmax(G)→

Cmax(G) ⊗min Cmax(G) such that uk,i ↦ ∑nj=1 uk,j ⊗ uj,i for any {i, k} ⊆ ⟦n⟧, where
RU+

n
corresponds to the equations that for any {i, k} ⊆ ⟦n⟧,

∑nj=1 uk,ju∗i,j = ∑nj=1 uj,ku∗j,i = ∑nj=1 u∗j,kuj,i = ∑
n
j=1 u

∗
k,jui,j = δk,i1

and where
(a) RU×+

D,n
corresponds to the equations that for any m ∈ N with m ∉D and any

elements (g◁a )m+1a=1 , (g▷a )m+1a=1 , (j◁b )m+1b=1 , and (j▷b )m+1b=1 of ⟦n⟧⊗m+1,

∑
i◁∈⟦n⟧⊗m+1

∑
i▷∈⟦n⟧⊗m+1

⎛
⎜⎜
⎝
∏
b∈⟦m⟧
∧ b∉D

δi◁
b+1,i

▷
b+1
δg◁

b+1,g
▷
b+1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
∏

b∈⟦m⟧∩D
∨ b=0

δi◁
b+1,g

◁
b+1
δi▷

b+1,g
▷
b+1

⎞
⎟⎟
⎠

⎛
⎝

m←Ð
∏
b=0
u∗
j◁
b+1,i

◁
b+1

⎞
⎠
⎛
⎝

mÐ→
∏
b=0
uj▷

b+1,i
▷
b+1

⎞
⎠

= ∑
h◁∈⟦n⟧⊗m+1

∑
h▷∈⟦n⟧⊗m+1

⎛
⎜⎜
⎝
∏
a∈⟦m⟧
∧a∉D

δh◁a+1,h
▷
a+1
δj◁a+1,j

▷
a+1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
∏

a∈⟦m⟧∩D
∨a=0

δj◁a+1,h
◁
a+1
δj▷a+1,h

▷
a+1

⎞
⎟⎟
⎠

⎛
⎝

m←Ð
∏
a=0
u∗
h◁a+1,g

◁
a+1

⎞
⎠
⎛
⎝

mÐ→
∏
a=0
uh▷a+1,g

▷
a+1

⎞
⎠
.

(b) RU×
D,n

corresponds to the union of RU×+
D,n

and the relations corresponding to

the equations that for any {i, j, k, ℓ, r, s} ⊆ ⟦n⟧,
us,ru

∗
ℓ,kuj,i = uj,iu∗ℓ,kus,r.

(c) RU∗
w,n

corresponds to the equations that for any {i, j, r, s} ⊆ ⟦n⟧ and any
elements (kc)w−1c=1 and (ℓc)w−1c=1 of ⟦n⟧⊗w−1,

us,r (
Ð→
∏w−1
c=1 uℓc,kc)uj,i = uj,i (

Ð→
∏w−1
c=1 uℓc,kc)us,r.

The definition implies that, in particular, U∗
1,n = Un and U×+

N,n = U+
n for any n ∈ N.

Of course, the definition given above is that of the universal C∗-versions of these
quantum groups. In order to obtain the underlying Hopf ∗-algebras one has to
consider not the universal C∗-algebra but merely the universal ∗-algebra with the
same relations.

For many quantum-algebraic questions it is helpful to present the quantum group
to be studied as a quotient of an already well-understood quantum group. For
example, by using certain quotient relationships between U+

n , O+
n, PO+

n and O+
n ∗̂ Ẑ

Kyed and Raum were able to compute the first L2-Betti number of the discrete dual
of U+

n in [KR17]. Exhibting the half-liberations as quotients of well-known quantum
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groups was the objective of the present work. In the case of U∗
w,n this had already

been achieved by Banica and Bichon in [BB17]. It is that article which guided all
the considerations in this chapter.

More precisely, the authors of [BB17] present U∗
w,n as a quotient quantum group

of the wreath product Un ≀̂ Ẑw of the unitary group Un and the compact dual of the
cyclic group Zw of order w, i.e., the crossed product (Un)×̂w⋊̂Ẑw of the direct product
(Un)×̂w of w many copies of Un with the dual of Zw, where the action of the latter
is by cyclically permuting the copies. Whereas it is relatively straightforward to
establish the existence of the C∗-algebra morphism from Cmax(U∗

w,n) to C(Un ≀̂ Ẑw),
proving that this morphism is injective is anything but. To do so, Banica and Bichon
provide an entire commutative diagram

C((Un)×̂w/⊗) C((Un)×̂w)

Cmax(U∗
w,n) C(Un ≀̂ Ẑw)

of C∗-algebra morphisms. (The three known corners, Un ≀̂ Ẑw, (Un)×̂w and a certain
quotient group (Un)×̂w/⊗ of the latter, are all co-amenable due to Un being a compact
group and Z being amenable. Hence, for them, differentiating between different C∗-
versions is unnecessary.) The right vertical arrow is the dual of the projection of

(Un)×̂w⋊̂Ẑw onto (Un)×̂w. The remaining two arrows can be found as the pull-back

of the C∗-morphisms into C(Un ≀̂ Ẑw). By a clever argument involving a Zw-grading
Banica and Bichon show that the lower horizontal arrow is injective if the upper
one is. That allows them to infer the sought injectivity by means of Gelfand duality
from the fact that the continous group homomorphism from (Un)×̂w to (Un)×̂w/⊗ is

surjective. By proving U∗
w,n a quotient of Un ≀̂ Ẑw, they can moreover conclude that

also U∗
w,n is co-amenable.

The intent behind the present chapter was to give a characterization of the two re-
maining families U×

D,n and U×+
D,n of half-liberations which is analogous to that [BB17]

gives of U∗
w,n. And, indeed, a bit of experimentation with the same rule for defining

the horizontal arrow in the diagram above quickly suggests a conjecture. Namely
that U×

D,n and U×+
D,n are quotient quantum groups of wreath graph products Un ≀̂rD Ẑ

respectively U+
n ≀̂rD Ẑ with respect to a certain partial commutation relation rD on

Z. Like ordinary wreath products these are crossed products (Un)∗̂(Z,rD)⋊̂Ẑ respec-

tively (U+
n )∗̂(Z,rD)⋊̂Ẑ, where the action of the compact dual Ẑ of Z is again to permute

copies. However, rather than the direct products used in the definition of the wreath
product in [Wan95b], here (Un)∗̂(Z,rD) and (U+

n )∗̂(Z,rD) are graph products, as defined
in [CF17] in the quantum group and in [M lo04] and [SW16] in the free probability
context.
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In fact, it is again relatively easy to confirm that the corresponding C∗-morphisms
from Cmax(U×

D,n) to Cmax(Un ≀̂rD Ẑ) respectively from Cmax(U×+
D,n) to Cmax(Un ≀̂rD Ẑ) ex-

ist. (Presumably, these wreath graph products are generally not co-amenable, which
is why distinctions must be made between different C∗-versions.) As in [BB17], the
real challenge is to show that these morphisms are injective. Here, though, Banica
and Bichon’s proof strategy is unfortunately not applicable: As before the projec-
tions of (Un)∗̂(Z,rD)⋊̂Ẑ onto (Un)∗̂(Z,rD) respectively of (U+

n )∗̂(Z,rD)⋊̂Ẑ onto (U+
n )∗̂(Z,rD)

yield right vertical arrows for a diagram analogous to the one above for U∗
w,n. How-

ever, in contrast to the situation [BB17], the compact quantum group (Un)∗̂(Z,rD) is
only a group if n = 1 or rD allows all copies to commute and (U+

n )∗̂(Z,rD) is even only
a group if both are the case. While it is still possible to find the pull-back and to
show that the lower horizontal arrow is injective if the upper one is, Gelfand duality
is thus generally not available for proving the injectivity of the upper arrow.

It must be emphasized that this chapter is not able to remedy this issue. Instead,
it has to confine itself to proving that the induced C∗-morphisms from Cred(U×

D,n)
to Cred(Un ≀̂rD Ẑ) respectively from Cred(U×+

D,n) to Cred(Un ≀̂rD Ẑ) between the reduced

C∗-versions are injective. More precisely, the combinatorics of partitions (with more
than two colors) are employed to prove that the representation theory Rep(U×

D,n) is

a full tensor C∗-subcategory of Rep(Un ≀̂rD Ẑ) respectively that Rep(U×+
D,n) is one of

Rep(Un ≀̂rD Ẑ), which then implies the claim about the reduced C∗-algebras. Whether
these results can be extended to the universal C∗-level remains an open question
(except in the case of U×

∅,n, where an affirmative answer can be given).

1.2. Main results. In the following theorem the statement about the compact
quantum groups U∗

w,n for w ∈ N and n ∈ N is implied by the even stronger one shown
by Banica and Bichon in [BB17]. Let Z0 = Z and Zw = {0,1, . . . ,w−1} for any w ∈ N
and mind 0 ∉ N.

Main result. For any n ∈ N, any w ∈ N and any additive subsemigroup D of
N, if

mU∗
w,n

∶= w ∧ mU×
D,n

∶=mU×+
D,n
= 0

and if

rU∗
w,n

∶= Zw⊗2 ∧ rU×
D,n

∶= rU×+
D,n

∶= {(s, t) ∈ Z⊗2 ∧ ∣t − s∣ ∉D ⊍ {0}},

then for any

(G,KG) ∈ {(U∗
w,n, Un), (U×

D,n, Un), (U×
D,n,O

∗
n), (U×+

D,n, U
+
n ), (U×+

D,n,O
+
n)},

if KG ≀̂rG ẐmG
denotes the wreath graph product of KG with ẐmG

with respect to rG on
ZmG

, i.e., the crossed product KG
∗̂(ZmG

,rG)⋊̂ẐmG
, where ẐmG

acts by permuting the
copies of KG in the ZmG

-fold graph product (also known as λ-free or ϵ-independent
product) KG

∗̂(ZmG
,rG) of KG with itself according to the partial commutation relation
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rG, then the rule

G KG ≀̂rG ẐmG
, u↦ v(0) ⋅ z,

which assigns to the fundamental representation u = (uj,i)(j,i)∈⟦n⟧⊗2 of the unitary

half-liberation G the product representation u ⋅z = (v(0)j,i z)(j,i)∈⟦n⟧⊗2 of the fundamental

representations v(0) = (v(0)j,i z)(j,i)∈⟦n⟧⊗2 of the 0-th copy of KG and z of the compact
dual of ZmG

, induces
(a) a fiber-functor-preserving full tensor C∗-subcategory inclusion of the repre-

sentation theory of G in the representation theory of KG ≀̂rG ẐmG
,

(b) an injective co-multiplication-preserving C∗-algebra morphism from the re-
duced C∗-version of the continuous functions on G to the reduced C∗-version
of the continuous functions on KG ≀̂rG ẐmG

(c) an injective Hopf ∗-algebra morphism from the regular functions of G to the

regular functions of KG ≀̂rG ẐmG
, and

(d) a C∗-algebra morphism from the universal C∗-version of the continuous
functions on G to the universal C∗-version of the continuous functions on
KG ≀̂rG ẐmG

.

No claim is made about the C∗-algebraic morphism on the universal level being
injective in general. The role of the 0-th copy can also be played by any other copy
if so desired. The main result implies that U×

∅,n is co-amenable.

1.3. Structure of the chapter. A reminder on compact quantum groups and
Tannaka-Krein duality is provided in Section 2.

The main tool for the proof of the main result is the theory of labeled partitions,
their categories, fiber functors and associated general easy quantum groups. These
are explained in detail in Section 3.

Section 4 introduces wreath graph co-products of categories of labeled partitions.
Actually, two such co-products are defined, which are generally distinct, but happen
to coincide for the categories relevant to the proof of the main result. As intermediate
steps to defining wreath graph co-products of categories, direct, free, graph and
crossed co-products are introduced as well.

In Section 5, it is shown that wreath graph co-products of categories of par-
titions are generated by a very small set of certain labeled “crossing” partitions.
That requires proving analogous results about graph products and crossed products
incidentally.

The results of the preceding section are then the key to proving in Section 6 that
the easy quantum group associated with a wreath graph co-product category is the
wreath graph product quantum group of the easy quantum groups associated with
the original categories.

Section 7 recalls the definitions of the particular quantum groups which appear
in the main result and the categories of partitions they result from.



124 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

In Section 8, the categories of the wreath graph product quantum groups from
the main result, which by Sections 6–8 are known to be categorical wreath graph
co-products of the categories from Section 7, are expressed in a form which is more
convenient for the proof of the main result.

Namely, this reformulation simplifies the construction in Section 9 of a strict
monoidal full ∗-subcategory inclusion functor from the categories of the unitary
half-liberations to the respective wreath graph co-product categories.

Section 10 then combines all the results gathered in the preceding sections to de-
duce the main result. General results about compact quantum groups and Tannaka-
Krein duality recalled and proved in Section 2 play a role here for the last few steps
of the proof.

Lastly, Section 11 offers a few observations about the main results, its implications
and potential extensions.

2. Compact quantum groups and Tannaka-Krein duality

The objectives of Section 2 are to
◻ recall the definitions of compact quantum groups, in the purely algebraic

sense and the analytic sense (however excluding von Neumann algebras)
(Section 2.1),

◻ recapitulate the relationship between the different definitions, in particu-
lar the universal and regular C∗-envelopes of algebraic compact quantum
groups (Section 2.2,

◻ recall the definitions of direct, free, graph and crossed products of compact
quantum groups (Section 2.3),

◻ provide a functorial account of Tannaka-Krein duality for not necessarily
complete categories (Section 2.5),

◻ explain why full subcategory inclusions induce injective ∗-algebra mor-
phisms for the algebraic and reduced C∗-algebraic duals (Section 2.6).

The reader who is already well-acquainted with quantum groups and familiar with
the properties of Tannka-Krein duals of full subcategory inclusions may safely skip
this section entirely.

In the following, largely the same notation and conventions as in [Wor88] and
[Wan97] are used. Those are recalled below, as are the few but important differences
here to be kept in mind.

Notation 2.1. (a) As in [Wor88], all vector spaces and linear maps con-
sidered (as well as all vector spaces with additional structures like Banach
spaces, algebras, ∗-algebras, C∗-algebras, etc.) are complex, i.e., over the
ground field C.

(b) All algebras, including ∗- and C∗-algebras, appearing are meant to be unital
and so are all their morphisms.

(c) We fix a set (i.e., not a proper class) containing “all” finite-dimensional
Hilbert spaces.
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(d) Furthermore, the monoidal category of vector spaces is strict, meaning that
C⊗V = V = V ⊗C and (V1 ⊗V2)⊗V3 = V1 ⊗ (V2 ⊗V3) for any vector spaces
V , V1, V2 and V3. This statement is then also true about the monoidal
category of finite-dimensional Hilbert spaces.

(e) For any vector spaces V and W the vector space formed by the linear maps
V → W with pointwise operations is denoted by [V,W ]. In addition to
the simplifications which the convention in the preceding remark provides,
for any two vector spaces V1 and V2, the natural isomorphism between
[V1, V1]⊗ [V2, V2] and [V1 ⊗ V2, V1 ⊗ V2] is notationally suppressed.

(f) The ∗-algebra formed by [V,V ] for any finite-dimensional Hilbert space H =
(V, ⟨⋅ ∣ ⋅⟩) when equipped with composition as multiplication and forming
adjoints as ∗-operation is denoted by B(H).

(g) Identically with the notation from [Wor88], for any algebra with underlying
vector space A and any vector spaces V , V1 and V2 the symbol k denotes
the linear map

[V,V ]⊗A⊗ [V,V ]⊗A → [V,V ]⊗A⊗A
t⊗ a⊗ t′ ⊗ a′ z→ tt′ ⊗ a⊗ a′,

while the symbol j stands for the linear map

[V1, V1]⊗A⊗ [V2, V2]⊗A → [V1, V1]⊗ [V2, V2]⊗A
t1 ⊗ a1 ⊗ t2 ⊗ a2 z→ t1 ⊗ t2 ⊗ a1a2.

(h) Slightly deviating from the notation in [Wor88] in the interest of clarity, we
will distinguish between any vector space and its conjugate, thus avoiding
the concept of an “anti-linear map”. More precisely, for any vector space
V let V cj ≡ cj(V ) be the same abelian group as V but with the “conjugate
action” (λ,x) ↦ λx for any scalar λ and vector x of V . Likewise, given
any vector spaces V and W and any linear map t from V to W write tcj as
well as cj(t) for the linear map from V cj to W cj with the same underlying
morphism of abelian groups as t.

Note that this (for us) strict monoidal involutive endofunctor of the cat-
egory of vector spaces extends to the category of Hilbert spaces by replacing
the scalar product ⟨⋅ ∣ ⋅⟩ ∶ V cj ⊗ V → C of any Hilbert space H = (V, ⟨⋅ ∣ ⋅⟩)
with the scalar product ⟨⋅ ∣ ⋅⟩cj ∶ V ⊗ V cj → C to obtain that of Hcj.

(i) For any finite-dimensional Hilbert spaces H and K with underlying vector
spaces V respectively W and any linear isomorphism j from V to W cj

abbreviate

tj ∶= ⟨⋅ ∣ ⋅⟩ ○ (cj(j−1)⊗ idV ) ∶W ⊗ V → C,

where ⟨⋅ ∣ ⋅⟩ is the scalar product of H, and abbreviate

tj ∶= (idH ⊗ cj(j)) ○ c ∶ C→ V ⊗W,
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where c ∶ C→ V ⊗ V cj is the unique linear map with

1↦∑
i∈I
ei ⊗ ei

for any orthnormal basis (ei)i∈I , which is independent of the particular
choice.

(j) Lastly, for any vector spaces J , H, K and L and for any linear maps f ∶ J →
H, g∶ H → K and h∶ K → L let [f, h](g) ∶= hgf . A particular consequence
of this definition is that, given any algebra A and any v ∈ [H,K] ⊗A, we
can also write ([f, h]⊗ id)(v) for (h⊗ 1)v(f ⊗ 1).

(k) Given any basis (ei)i∈I of any finite-dimensional vector space V , the matrix
units of (ei)i∈I are the family (Ej,i)(i,j)∈I⊗2 of vectors of [V,V ] with Ej,iek =
δk,iej for any {i, j, k} ⊆ I.

2.1. The definitions of compact quantum groups. Since von-Neumann-
algebraic considerations are omitted in this chapter, all remaining categories com-
monly referred to as “compact quantum groups” are equivalent to either the C∗-
algebraic compact quantum groups defined in the next section or the algebraic com-
pact quantum groups defined in the section thereafter. This includes rigid tensor
C∗-categories.

2.1.1. C∗-algebraic compact quantum groups. In the C∗-algebraic context com-
pact quantum groups were defined by Woronowicz in [Wor87; Wor91; Wor98].

Definition 2.2. (a) A compact quantum group C∗-algebra or CQG C∗-al-
gebra, for short, is any pair (A,∆) such that

(i) A is a C∗-algebra
(ii) ∆ is a morphism A → A ⊗min A of C∗-algebras, where ⊗min is the

minimal (also known as spatial) tensor product of C∗-algebras,
(iii) (∆⊗min idA)○∆ = (idA⊗min ∆)○∆, where the spaces (A⊗minA)⊗minA

and A⊗min (A⊗min A) have been identified,
(iv) each of {(a ⊗ 1) ⋅ ∆(b) ∣ {a, b} ⊆ A} and {(1 ⊗ a) ⋅ ∆(b) ∣ {a, b} ⊆ A}

generates A⊗min A as a Banach space, where ⋅ is the multiplication of
A⊗min A.

Equivalently, we say that the formal dual of (A,∆) is a compact quantum
group.

(b) A morphism of CQG C∗-algebras from any CQG C∗-algebra (A,∆) to any
CQG C∗-algebra (B,Φ) is any morphism ψ∶ A → B of C∗-algebras such
that Φ ○ ψ = (ψ ⊗min ψ) ○∆. Equivalently, if H and G are the formal duals
of (A,∆) and (B,Φ), respectively, we speak of the formal dual ω of ψ as a
morphism G→H of compact quantum group.

If so and if ψ is surjective, we say that ω exhibits G as a compact
quantum subgroup of H. And, if ψ is injective, ω is said to exhibit H as a
compact quantum quotient group of G.
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2.1.2. Algebraic quantum groups. Woronowicz’s original definition of compact
(matrix) quantum groups, then still called “pseudogroups”, from [Wor87] or Wang’s
generalization from [Wan97] feature a dense Hopf ∗-algebra. It is possible to char-
acterize all the algebras arising in this way (see [KS12, p. 417, Proposition 28]).

Definition 2.3. (a) A Hopf ∗-algebra is any (A,m,1,∆,∗, ϵ, S) such that
(i) (A,m,1,∗) is a ∗-algebra (with underlying vector space A, multiplica-

tion m∶ A⊗A→ A, unit 1∶ C→ A and star ∗∶ A→ Acj),
(ii) ∆, the comultiplication, is a linear map A→ A⊗A and a ∗-algebra mor-

phism from (A,m,1,∗) to the tensor product ∗-algebra of (A,m,1,∗)
with itself,

(iii) ϵ, the counit, is a linear functional on A and a ∗-algebra morphism
from (A,m,1,∗) to C,

(iv) S is a linear map A→ A, the antipode or coinverse,
(v) (idA ⊗∆) ○∆ = (∆⊗ idA) ○∆,

(vi) idA = (ϵ⊗ idA) ○∆,
(vii) idA = (idA ⊗ ϵ) ○∆,

(viii) m ○ (S ⊗ idA) ○∆ = 1 ○ ϵ,
(ix) m ○ (idA ⊗ S) ○∆ = 1 ○ ϵ,

(b) A morphism of Hopf-∗-algebras from any Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S)
to any Hopf ∗-algebra (A′,m′,1′,∗′,∆′, ϵ′, S′) is any f such that

(i) f ∶ A→ A′ is a ∗-algebra morphism from (A,m,1,∗) to (A′,m′,1′,∗′),
(ii) (f ⊗ f) ○∆ =∆′ ○ f ,

(iii) ϵ′ ○ f = ϵ,
(iv) f ○ S = S′ ○ f ,

(c) For any Hopf-∗-algebra with underlying vector space A, co-multiplication
∆ and unit 1 an integral of this Hopf ∗-algebra is any faithful positive unital
linear functional h such that

(i) 1 ○ h = (h⊗ idA) ○∆,
(ii) 1 ○ h = (idA ⊗ h) ○∆.

The antipode of any Hopf ∗-algebra is antimultiplicative and bijective. Its inverse
is given by the conjugation of the antipode by the star. The co-unit and antipode
of a Hopf ∗-algebra are uniquely determined by the rest of the structure. On any
Hopf ∗-algebra there can exist at most one integral.

Definition 2.4. (a) A CQG Hopf ∗-algebra is any Hopf ∗-algebra which
admits an integral. Equivalently, we speak of its formal dual as an algebraic
compact quantum group.

(b) A morphism of CQG Hopf ∗-algebras from any CQG Hopf ∗-algebra H to
any CQG Hopf ∗-algebra H ′ is any morphism u∶ H →H ′ of Hopf ∗-algebras.
Equivalently, if G and G′ are the formal duals of H and H ′, respectively,
then we say that the formal dual of u is a morphism G′ → G of algebraic
compact quantum groups.
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2.2. Relationship between the definitions. As mentioned, the categories of
compact quantum groups and of algebraic compact quantum groups are not equiv-
alent. Nonetheless, they are closely related. Section 2.2 explains how.

2.2.1. Auxiliary definitions. To state the relationship between the categories of
compact quantum groups and algebraic compact quantum groups the following def-
initions will be required. Note that a Hopf ∗-algebra structure is not assumed there.

Definition 2.5. (a) Let A be any vector space and ∆ any linear map A→
A⊗A with (idA ⊗∆)∆ = (∆⊗ idA)∆.

(i) A finite-dimensional corepresentation of (A,∆) is any (V,u) such that
(1) V is a finite-dimensional vector space, the carrier space of u,
(2) u is a vector of [V,V ]⊗A,
(3) (id⊗∆)(u) = u k u.

If clear from context or unimportant, we may also speak of just u as
the co-representation, suppressing V . Also, the term co-representation
will always mean a finite-dimensional one from now on.

(ii) For any two co-representations u and v of (A,∆) with carrier spaces V
respectively W a corepresentation intertwiner u→ v of (A,∆) is any t
such that

(1) t is a vector of [V,W ],
(2) ([idV , t]⊗ idA)(u) = ([t, idW ]⊗ idA)(v).

(iii) Any co-representation (V,u) of (A,∆) is called irreducible if any in-
tertwiner u→ u is a multiple of the identity on V .

(iv) Any two co-representations u and v of (A,∆) with carrier spaces V
respectively W are said to be equivalent if there exists an intertwiner
t∶ u→ v which is a linear isomorphism V →W .

(v) For any co-representation u on any vector space V and any basis (ei)i∈I
of V the matrix of u with respect to (ei)i∈I is the family (uj,i)(j,i)∈I⊗2

such that, if (Ej,i)(j,i)∈I⊗2 are the matrix units of (ei)i∈I , then u =
∑(j,i)∈I⊗2 Ej,i ⊗ uj,i. If so, we speak of {uj,i ∣ {i, j} ⊆ I} as the set of
matrix coefficients of u with respect to (ei)i∈I .

(vi) Given any co-representation ut of (A,∆) with any carrier space Vt for
each t ∈ ⟦2⟧, the direct sum co-represenation u1⊕u2 of (A,∆) of (u1, u2)
is given by ∑2

t=1([it, pt] ⊗ idA)(ut) on the carrier space V1 ⊕ V2, where
pt∶ V1 ⊕ V2 → Vt is the projection and it∶ Vt → V1 ⊕ V2 the co-projection
for the t-th summand in the direct sum V1⊕V2 and where the addition
is the one of [V1 ⊕ V2, V1 ⊕ V2].

(b) For any algebra (A,m,1), any algebra morphism ∆ from (A,m,1) to the
tensor product algebra (A,m,1) with itself which satisfies (idA ⊗ ∆)∆ =
(∆⊗ idA)∆ and any co-representation ut of (A,∆) on any carrier space Vt
for each t ∈ ⟦2⟧ the tensor product co-representation u1 ⋅ u2 of (A,m,1,∆),
also known as exterior product, of (u1, u2) is defined as u1 j u2 with carrier
space V1⊗V2, where we have identified [V1, V1]⊗[V2, V2] and [V1⊗V2, V1⊗V2].
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(c) Let (A,m,1,∗) be any ∗-algebra and ∆ any ∗-algebra morphism from
(A,m,1,∗) to the tensor product ∗-algebra of (A,m,1,∗) with itself which
satisfies (idA ⊗∆)∆ = (∆⊗ idA)∆.

(i) A finite-dimensional unitary co-representation of (A,m,1,∗,∆) is any
triple (V, ⟨⋅ ∣ ⋅⟩, u) such that (V, ⟨⋅ ∣ ⋅⟩) is a finite-dimensional Hilbert
space, (V,u) a co-representation of (A,∆) and u a unitary element of
the ∗-algebra tensor product of B(V, ⟨⋅ ∣ ⋅⟩) and (A,m,1,∗). In that
case we refer to (V, ⟨⋅ ∣ ⋅⟩) as the carrier Hilbert space of (V, ⟨⋅ ∣ ⋅⟩, u).
And, here too, we may suppress (V, ⟨⋅ ∣ ⋅⟩) if there is no risk of misun-
derstandings as well as drop the qualifier of being finite-dimensional.

(ii) Any co-representation u of (A,∆) on any carrier space V is called a
unitarizable co-representation of (A,m,1,∗,∆) if there exists an inner
product ⟨⋅ ∣ ⋅⟩ on V turning (V, ⟨⋅ ∣ ⋅⟩) into a finite-dimensional Hilbert
space in such a way that u becomes a unitary co-representation of
(A,m,1,∗,∆).

Lemma 2.6. Let (A,m,1,∗) be any ∗-algebra, let ∆ be any ∗-algebra morphism
from (A,m,1,∗) to the tensor product ∗-algebra of (A,m,1,∗) with itself and let
(idA ⊗∆)∆ = (∆⊗ idA)∆.

(a) For any set Rirr = {ur}r∈Rirr
of pairwise inequivalent irreducible unitary co-

representations of (A,m,1,∗,∆), if Mr is the set of matrix coefficients of
ur with respect to any basis of the carrier space of Mr for each r ∈ Rirr, then
⋃r∈Rirr

Mr is linearly independent in A.
(b) Any unitary co-representation of (A,m,1,∗) is equivalent to a direct sum of

pairwise inequivalent irreducible unitary co-representations of (A,m,1,∗).

Proof. (a) The proof of [KS12, p. 401, Corollary 10] applies, even though
no co-unit for ∆ is assumed to exist, since also the definitions of co-representations
and irreducibility have been adjusted appropriately.

(b) Let u be any unitary co-representation of (A,m,1,∗) and let any finite-di-
mensional Hilbert space H = (V, ⟨⋅ ∣ ⋅⟩) be its carrier. Then the set M of all co-
representation intertwiners u → u of (A,∆) forms a von Neumann subalgebra of
B(H). Indeed, it is a vector subspace and closed under composition as is eas-
ily seen from the definition. The assumption that u is unitary ensures that it is
also closed under forming adjoints for the following reasons. For any intertwiner
t∶ u→ u starring the identity ([t, idV ]⊗ idA)(u) = ([idV , t]⊗ idA)(u) in the ∗-algebra
B(H) ⊗ (A,m,1,∗) yields the identity ([idV , t∗] ⊗ idA)(u∗) = ([t∗, idV ] ⊗ idA)(u∗).
Since uu∗ = idV ⊗ 1 = u∗u per assumption, multiplying with u from the right trans-
forms this into t∗⊗1 = ([t∗, idV ]⊗ idA)(u∗)u and a second multiplication with u, this
time from the left, thus produces ([t∗, idV ]⊗ idA)(u) = ([idV , t∗]⊗ idA)(u), proving
t∗ ∈M . Because H is finite-dimensional that makes M a von Neumann subalgebra.

As such it permits a decomposition of idV into a sum ∑mi=1Pi of finitely many
pairwise inequivalent minimal projections (Pi)mi=1 of M . For any i ∈ ⟦m⟧ the image
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space Vi equipped with the restriction ⟨⋅ ∣ ⋅⟩i of ⟨⋅ ∣ ⋅⟩ to Vicj ⊗ Vi forms a finite-
dimensional Hilbert space Hi and we can consider Pi a linear map pi∶ V → Vi. Then,
ui ∶= ([p∗i , pi]⊗idA)(u) is a unitary co-representation of (A,m,1,∗,∆) on Hi because

(id⊗∆)(ui) = ([p∗i , pi]⊗∆)(u)
= ([p∗i , pi]⊗ idA⊗A)(u k u)
= ([p∗i , pi]⊗ idA)(u) k ([p∗i , pi]⊗ idA)(u)
= ui k ui,

because, by pip∗i = idVi and p∗i pi = Pi and by u(Pi ⊗ 1) = (Pi ⊗ 1)u,

ui(ui)∗ = (pi ⊗ 1)u(p∗i ⊗ 1)(pi ⊗ 1)u∗(p∗i ⊗ 1)
= (pi ⊗ 1)u(Pi ⊗ 1)u∗(pi ⊗ 1)
= (pi ⊗ 1)(Pi ⊗ 1)uu∗(pi ⊗ 1)
= piPip∗i ⊗ 1

= idVi ⊗ 1

and because also (ui)∗ui = idVi ⊗ 1 by a similar argument. It is also irreducible
for the following reason: Because ui is a unitary co-representation the set Mi of
intertwiners ui → ui forms a von Neumann subalgebra of B(Hi). As such Mi is
generated by its projections. Given any projection q of Mi the element Q ∶= p∗i qpi
is a projection of M . Moreover, Q ≤ Pi because QPi = p∗i qpip∗i pi = Q and, likewise,
PiQ = p∗i pip∗i qpi = Q. In particular, Q is subordinated by Pi in M . By the minimality
of Pi that forces Q = Pi and thus q = piQp∗i = piPip∗i = idVi . It follows that the von
Neumann algebra Mi is trivial, which means that ui is irreducible.

We show that for any {i, j} ⊆ ⟦m⟧ with i ≠ j the two representations ui and uj

are inequivalent. In fact, we let s be any intertwiner ui → uj and prove that s = 0.
First of all, s∗, the adjoint of s with respect to ⟨⋅ ∣ ⋅⟩i and ⟨⋅ ∣ ⋅⟩j, is an intertwiner
uj → ui because

(s∗ ⊗ 1)uj = ui(ui)∗(s∗ ⊗ 1)uj

= ui((s⊗ 1)ui)∗uj

= ui(uj(s⊗ 1))∗uj

= ui(s∗ ⊗ 1)(uj)∗uj

= ui(s∗ ⊗ 1).
Hence, s∗s is an intertwiner ui → ui and s∗s one uj → uj. Because ui and uj

are irreducible that requires the existence of scalars λ and µ with s∗s = λ idVi and
ss∗ = µ idVj . Because Mi and Mj are von Neumann algebras then in particular
0 ≤ λ and 0 ≤ µ. Moreover, we infer µs = ss∗s = λs, which is to say s = 0 or
λ = µ. We suppose s ≠ 0 and derive a contradiction. The assumption forces λ =
µ. If λ = µ = 0, then s∗s = 0 and ss∗ = 0 and thus s = 0, a contradiction. If
λ = µ ≠ 0, i.e., λ = µ > 0, then w ∶= 1√

λ
s is a unitary Hi → Hj. That makes
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W ∶= p∗jwpi a partial isometry in B(H) because WW ∗W = p∗jwpip∗iw∗pjp∗jwpi = W
and W ∗WW ∗ = p∗iw∗pjp∗jwpip

∗
iw

∗pj =W ∗. In fact, W ∶= p∗jwpi is a partial isometry
in M since composition of intertwiners produces intertwiners and because pi is an
intertwiner u→ ui by

(pi ⊗ 1)u = (pi ⊗ 1)(Pi ⊗ 1)u
= (pi ⊗ 1)u(Pi ⊗ 1)
= (pi ⊗ 1)u(p∗i ⊗ 1)(pi ⊗ 1)
= ui(pi ⊗ 1)

and because the same computation for j in place of i shows that pj is an intertwiner
u→ uj, which then implies that p∗j is one uj → u by the same argument as given for
s∗. Since W ∗W = p∗iw∗pjp∗jwpi = Pi and WW ∗ = p∗jwpip∗iw∗pj = Pj it follows that
Pi and Pj are equivalent projections of M , which is the contradiction we sought. In
conclusion, ui and uj are inequivalent co-representations.

Moreover, if t ∶= p1×. . .×pm is the linear map V → V1⊕. . .⊕Vm with i-th component
pi for each i ∈ ⟦m⟧, then t is invertible with t−1 given by the map p∗1 ⊔ . . . ⊔ p∗m, the
linear map V1 ⊕ . . . ⊕ Vm → V with i-th co-component p∗i for each i ∈ ⟦m⟧. And,
finally, via t the co-representation u is equivalent to v ∶= u1 ⊕ . . . ⊕ um because, if
πi and ιi are the i-th projection respectively co-projection of V1 ⊕ . . .⊕ Vm for each
i ∈ ⟦m⟧, then

v(t⊗ 1) = ∑mi=1(ιipi ⊗ 1)u(p∗i πit⊗ 1)
= ∑mi=1(ιipi ⊗ 1)u(p∗i pi ⊗ 1)
= ∑mi=1(ιipi ⊗ 1)u(Pi ⊗ 1)
= ∑mi=1(ιipi ⊗ 1)(Pi ⊗ 1)u
= ∑mi=1(ιipi ⊗ 1)u
= ∑mi=1(tPi ⊗ 1)u
= (t⊗ 1)u,

where we have used that πjtPi = pjPi = pjPjPi = δj,ipiPi = δj,ipi = πjιipi for any
j ∈ ⟦m⟧ and thus tPi = ιipi for any i ⊆ ⟦m⟧ by the orthogonality of (Pi)mi=1. Hence, u
is equivalent to a direct sum of irreducible unitary co-representations. □

2.2.2. Underlying algebraic compact quantum groups of compact quantum groups.
By considering appropriate representations of compact quantum groups it is possible
to assign to any compact quantum group an algebraic compact quantum group which
retains much of the information (compare also the original definition of [Wor87] and
[Wan97]).

Definition 2.7. For any CQG C∗-algebra (A,∆) the same definitions as in
Definition 2.5 can be given, with the sole difference that in condition (a) (i) (3) of
the definition of a co-representation the identity must read (id ⊗∆)(u) = ι(u k u)
instead, where ι is the inclusion of A⊗A in A⊗min A.
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Moreover, then the results of Lemma 2.6 remain true for co-representations of
CQG C∗-algebras. Those enlighten – in part – why the next definition makes sense
(see, e.g., [Tim08, Theorem 5.4.1]).

Definition 2.8. (a) For any CQG C∗-algebra (A,∆), if Rirr is any maxi-
mal family of pairwise inequivalent irreducible unitary co-representations
of (A,∆) and if (urj,i)(j,i)∈⟦nr⟧⊗2 is the matrix of ur with respect to any
orthonormal basis of the carrier space for each r ∈ Rirr, then we call the
tuple (R,m,1,Φ, ϵ, S,∗), where

(i) (R,m,1,∗) is the ∗-algebra given by the vector subspace of A generated
by ⋃r∈Rirr

{urj,i}nr
i,j=1 with the inherited operations of A (i.e., m, 1 and

∗ are the restrictions to R of, respectively, the multiplication, the unit
and the star of A),

(ii) Φ is the unique linear map R → R ⊗ R with urj,i ↦ ∑nr
s=1 u

r
j,s ⊗ urs,i for

any {i, j} ⊆ ⟦nr⟧ and any r ∈ Rirr,
(iii) ϵ is the unique linear functional on R such that urj,i ↦ δj,i for any
{i, j} ⊆ ⟦nr⟧ and any r ∈ Rirr,

(iv) S is the unique linear endomorphism of R with urj,i ↦ (uri,j)∗ for any
{i, j} ⊆ ⟦nr⟧ and any r ∈ Rirr,

the underlying CQG Hopf ∗-algebra A(A,∆) of (A,∆) and the identity map
from R to A the associated inclusion. Moreover, we speak of its formal dual
as the underlying algebraic compact quantum group of the formal dual of
(A,∆).

(b) Given any two CQG C∗-algebras (A,∆) and (B,Φ) with formal duals G
respectively H and any morphism ψ of CQG C∗-algbras from (A,∆) to
(B,Φ) the restriction of ψ to A(A,∆) is called the underlying CQG Hopf
∗-algebra morphism A(ψ) of ψ. Equivalently, we say that the formal dual
of A(ψ) is the underlying morphism of algebraic comapct quantum groups.

The underlying CQG Hopf ∗-algebra of any CQG C∗-algebra is the maximal
∗-subcoalgebra which can be turned into a Hopf ∗-algebra (by [BMT01]). In the
literature, sometimes, all compact quantum groups with the same underlying alge-
braic quantum group are identified. If so, the underlying CQG Hopf ∗-algebra of
a CQG C∗-algebra with formal dual G is often denoted by Pol(G) or O(G). A is
a functor from the category of CQG C∗-algebras to the category of CQG Hopf ∗-
algebras.

Proposition 2.9. (a) A(C) is a CQG Hopf ∗-algebra for any CQG C∗-
algebra C.

(b) A(φ) is a morphism A(C) → A(C ′) of CQG Hopf ∗-algebras for any CQG
C∗-algebra morphism φ∶ C → C ′ and any CQG C∗-algebras C and C ′.

(c) A(φ′φ) = A(φ′)A(φ) for any morphisms φ∶ C → C ′ and φ′∶ C ′ → C ′′ of
CQG C∗-algebras and any CQG C∗-algebras C, C ′ and C ′′.

(d) A(idC) = idA(C) for any CQG C∗-algebra C.
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However, A is not an equivalence. Correspondingly, there are at least two non-
isomorphic ways of, conversely, turning algebraic compact quantum groups into C∗-
algebraic ones.

2.2.3. Universal C∗-version of algebraic compact quantum groups. The first way
of producing a CQG C∗-algebra from a CQG Hopf ∗-algebra is the one employed in
[Wor88] for Tannaka reconstruction (see, e.g., [Tim08, Theorem 5.4.3]).

Definition 2.10. (a) For any CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S), we
call (A′,m′,1′,∗′, ∥ ⋅ ∥′,∆′), where

(i) A′ is the underlying vector space of the co-domain of the inclusion j of
the normed space (A, ∥ ⋅ ∥) into its Banach space completion (A′, ∥ ⋅ ∥′),
where ∥ ⋅ ∥ is the norm on A with for any vector a of A,

a↦ sup{p(a) ∣p C∗-seminorm on (A,m,1,∗)},
(ii) m′ is the unique linear map A′ ⊗A′ → A′ with m′(j ⊗ j) = jm,

(iii) 1′ is given by j(1),
(iv) ∗′ is the unique linear map A′ → A′cj with ∗′j = jcj∗,
(v) ∆′ is the unique linear from A′ to the vector space underlying the

minimal tensor product C∗-algebra of (A′,m′,1′,∗′, ∥ ⋅ ∥′) with itself
with ∆′j = ι(j⊗ j)∆, where ι is the inclusion of A′⊗A′ into the tensor
product C∗ algebra,

the universal CQG C∗-algebra U(A,m,1,∗,∆, ϵ, S) induced by (A,m,1,∗,∆,
ϵ, S) and j the associated inclusion. Furthermore, we say that the formal
dual of the CQG C∗-algebra U(A,m,1,∗,∆, ϵ, S) is the universal compact
quantum group induced by the formal dual of (A,m,1,∗,∆, ϵ, S).

(b) Given any two CQG Hopf ∗-algebras X and Y and any CQG Hopf ∗-
algebra morphism ψ∶ X → Y , if A and B are the underlying vector spaces
of X respectively Y , if i and j are the associated inclusions of X into U(X)
respectively Y into U(Y ) and if A′ and B′ are the underlying vector spaces
of U(X) respectively, U(Y ), then we call the unique linear map ψ′∶ A′ → B′

with ψ′i = jψ the universal CQG C∗-algebra morphism U(ψ)∶ U(X)→ U(Y )
induced by ψ. Equivalently, we say that the formal dual of ψ′ is the universal
compact quantum group morphism induced by the formal dual of ψ.

In the literature, if all CQG C∗-algebra completions of a CQG Hopf ∗-algebra
are identified, then the universal CQG C∗-algebra of such an equivalence class with
formal dual G is often denoted by Cmax(G) or Cu(G). U is a functor from the
category of CQG Hopf ∗-algebras to the category of CQG C∗-algebras.

Proposition 2.11. (a) U(H) is a CQG C∗-algebra for any CQG Hopf ∗-
algebra H.

(b) U(ψ) is a morphism U(H)→ U(H ′) of CQG C∗-algebras for any morphism
ψ∶ H →H ′ of CQG Hopf ∗-algebras and CQG Hopf ∗-algebras H and H ′.

(c) U(ψ′ψ) = U(ψ′)U(ψ) for any morphisms ψ∶ H → H ′ and ψ′∶ H ′ → H ′′ of
CQG Hopf ∗-algebras and any CQG Hopf ∗-algebras H, H ′ and H ′′.
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(d) U(idH) = idU(H) for any CQG Hopf ∗-algebra H.

2.2.4. Reduced C∗-version of algebraic compact quantum groups. The second way
of assigning a natural CQG C∗-algebra to a CQG Hopf ∗-algebra is often given in a
somewhat roundabout way. Namely, only its factorization through the functor U is
provided (see, e.g., [Tim08, Theorem 5.4.5] or [BMT01]). That is likely due to the
fact that the definition is usually given in terms of the GNS construction for C∗-
algebras. However, the GNS construction can also be performed on any (per our
convention unital) ∗-algebra with a state.

Definition 2.12. (a) For any CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S) we
call (A′,m′,1′,∗′, ∥ ⋅ ∥′,∆′), where

(i) A′ is the vector space underlying the co-domain of the inclusion j of
(A, ∥ ⋅ ∥) into its Banach space completion (A′, ∥ ⋅ ∥′), where ∥ ⋅ ∥ is the
norm on A with for any vector a of A,

a↦ sup{
√
h(b∗a∗ab) ∣ b ∈ A ∧ h(b∗b) = 1} ,

where h is the integral of (A,m,1,∗,∆, ϵ, S),
(ii) m′ is the unique linear map A′ ⊗A′ → A′ with m′(j ⊗ j) = jm,

(iii) 1′ is given by j(1),
(iv) ∗′ is the unique linear map A′ → A′cj with ∗′j = jcj∗,
(v) ∆′ is the unique linear from A′ to the vector space underlying the

minimal tensor product C∗-algebra of (A′,m′,1′,∗′, ∥ ⋅ ∥′) with itself
with ∆′j = ι(j⊗ j)∆, where ι is the inclusion of A′⊗A′ into the tensor
product C∗ algebra,

the reduced CQG C∗-algebra R(A,m,1,∗,∆, ϵ, S) induced by (A,m,1,∗,∆, ϵ,
S) and j the associated inclusion. Furthermore, we say that the formal dual
of the CQG C∗-algebra R(A,m,1,∗,∆, ϵ, S) is the reduced compact quantum
group induced by the formal dual of (A,m,1,∗,∆, ϵ, S).

(b) Given any two CQG Hopf ∗-algebras X and Y and any CQG Hopf ∗-
algebra morphism ψ∶ X → Y , if A and B are the underlying vector spaces
of X respectively Y , if i and j are the associated inclusions of X into R(X)
respectively Y into R(Y ) and if A′ and B′ are the underlying vector spaces
of R(X) respectively, R(Y ), then we call the unique linear map ψ′∶ A′ → B′

with ψ′i = jψ the reduced CQG C∗-algebra morphism R(ψ)∶ R(X) → R(Y )
induced by ψ. Equivalently, we say that the formal dual of ψ′ is the reduced
compact quantum group morphism induced by the formal dual of ψ.

Where all CQG C∗-algebra completions of any CQG Hopf ∗-algebra are seen as
equivalent, the symbols Cred(G) or Cr(G) are often used to refer to the reduced
CQG C∗-algebra of the formal dual of such an equivalence class G. R is a functor
from the category of CQG Hopf ∗-algebras to the category of CQG C∗-algebras.

Proposition 2.13. (a) R(H) is a CQG C∗-algebra for any CQG Hopf ∗-
algebra H.
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(b) R(ψ) is a morphism R(H)→ R(H ′) of CQG C∗-algebras for any CQG Hopf
∗-algebra morphism ψ∶ H →H ′ and any CQG Hopf ∗-algebras H and H ′.

(c) R(ψ′ψ) = R(ψ′)R(ψ) for any morphisms ψ∶ H → H ′ and ψ′∶ H ′ → H ′′ of
CQG Hopf ∗-algebras and any CQG Hopf ∗-algebras H, H ′ and H ′′.

(d) R(idH) = idR(H) for any CQG Hopf ∗-algebra H.

As alluded to, R factorizes through U. The relationships between R, U and A are
the topic of the next section.

2.2.5. Relationship between the three constructions. In the below definition the
existence of the morphism in (a) is guaranteed by the co-universal property of the
Banach completion involved in the definition of U. In order to see that the morphism
in (b) exists, more effort is needed (see [Tim08, Theorem 5.4.3]).

Definition 2.14. (a) For any CQG C∗-algebra C, if i is the associated
inclusion of A(C) in C, and if j is the associated inclusion of A(C) in
U(A(C)), we call the unique linear map φ from the underlying vector space
of U(A(C)) to the underlying vector space of C with φj = i the co-unit
morphism cuU⊣A

C of U ⊣ A at C.
(b) Given any CQG Hopf ∗-algebra H, if ℓ is the associated inclusion of H

in U(H), and if k is the associated of A(U(H)) in U(H), then we call the
unique linear map ψ from the underlying vector space ofH to the underlying
vector space of A(U(H)) with kψ = ℓ the unit morphism unU⊣A

H of U ⊣ A at
H.

cuU⊣A is the co-unit and unU⊣A the unit of an adjunction U ⊣ A. In particular,
the functor U is left-adjoint and the functor A right-adjoint.

Proposition 2.15. (a) cuU⊣A
C is a morphism U(A(C)) → C of CQG C∗-

algebras for any CQG C∗-algebra C.
(b) unU⊣A

H is a morphism H → A(U(H)) of CQG Hopf ∗-algebras for any CQG
Hopf ∗-algebra H.

(c) cuU⊣A
C′ ○ U(A(φ)) = φ ○ cuU⊣A

C for any morphism φ∶ C → C ′ of CQG C∗-
algebras and any CQG C∗-algebras C and C ′.

(d) unU⊣A
H′ ○ψ = A(U(ψ))○unU⊣A

H for any morphism ψ∶ H →H ′ of CQG Hopf ∗-
algebras and any CQG Hopf ∗-algebras H and H ′.

(e) idU(H) = cuU⊣A
U(H) ○U(unU⊣A

H ) for any CQG Hopf ∗-algebra H.

(f) idA(C) = A(cuU⊣A
C ) ○ unU⊣A

A(C) for any CQG C∗-algebra C.

The existence of either of the two morphisms in the next definition is beyond the
scope of this overview. See [Tim08, Theorem 5.4.5] for (a) and [Tim08, Proposi-
tion 5.4.8] for (b).

Definition 2.16. (a) For any CQG Hopf ∗-algebra H, if i is the associated
inclusion of A(R(H)) in R(H), and if j is the associated inclusion of H in
R(H), then we call the unique linear map ψ from the underlying vector
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space of A(R(H)) to the underlying vector space of H with jψ = i the co-
unit morphism cuA⊣R

H of A ⊣ R at H.
(b) Given any CQG C∗-algebra C we call the unique linear map φ, if k is the

associated inclusion of A(C) in C, and if ℓ is the associated inclusion of
A(C) in R(A(C)), then we call the unique linear map from the underlying
vector space of C to the underlying vector space of R(A(C)) with φk = ℓ
the unit morphism unA⊣R

C of A ⊣ R at C.

cuA⊣R is the co-unit and unA⊣R the unit of an adjunction A ⊣ R.

Proposition 2.17. (a) cuA⊣R
H is a morphism A(R(H)) → H of CQG Hopf

∗-algebras for any CQG Hopf ∗-algebra H.
(b) unA⊣R

C is a morphism C → R(A(C)) of CQG C∗-algebras for any CQG C∗-
algebra C.

(c) cuA⊣R
H′ ○A(R(ψ)) = ψ ○ cuA⊣R

H for any morphism ψ∶ H →H ′ of CQG Hopf ∗-
algebras and any CQG Hopf ∗-algebras H and H ′.

(d) unA⊣R
C′ ○ φ = R(A(φ)) ○ unA⊣R

C for any morphism φ∶ C → C ′ of CQG C∗-
algebras and any CQG C∗-algebras C and C ′.

(e) idA(C) = cuA⊣R
A(C) ○A(unA⊣R

C ) for any CQG C∗-algebra C.

(f) idR(H) = R(cuA⊣R
H ) ○ unA⊣R

R(H) for any CQG Hopf ∗-algebra H.

In combination, Propositions 2.15 and 2.17 show that A is both left- and right-
adjoint (although to different functors). It follows, especially, that A preserves co-
limits and limits. In contrast, of U and R we only know that U preserves co-limits
and that R preserves limits. That is the reason why it is so difficult to say anything
about compact quantum quotient groups on the universal and compact quantum
subgroups on the reduced level for algebraic compact quantum groups defined via
Tannaka-Krein duality.

2.3. Products of compact quantum groups. For the purposes of this chap-
ter it is enough to confine ourselves to products of algebraic compact quantum
groups. However, versions of these constructions can also be carried out in the C∗-
context.

There are multiple ways one can define the various products considered in this
section. The most convenient for our goals is to introduce them by means of the
following construction (see [KS12, Section 1.2.7]).

Definition 2.18. Let (A,m,1,∗,∆, ϵ, S) be any Hopf ∗-algebra.
(a) A Hopf ∗-ideal is any I vector subspace of A such that

(i) I is a ∗-ideal of (A,m,1,∗),
(ii) ∆ maps I to the vector subspace of A ⊗A generated by the union of

the sets {a⊗ i ∣a ∈ A ∧ i ∈ I} and {i⊗ a ∣ i ∈ I ∧ a ∈ A},
(iii) ϵ maps I to {0}.
(iv) S maps I to itself.
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(b) For any Hopf ∗-ideal I we call the Hopf ∗-algebra (A/I,m′,1′,∗′,∆′, ϵ′, S′),
where

(i) (A/I,m′,1′,∗′) is the quotient ∗-algebra of (A,m,1,∗) with repect to
the ∗-ideal I (with associated projection p∶ A→ A/I),

(ii) ∆′ is the unique linear map A/I → A/I ⊗A/I with ∆′p = (p⊗ p)∆′,
(iii) ϵ′ is the unique linear functional on A/I with ϵ′p = ϵ,
(iv) S′ is the unique linear endomorphism of A/I with S′p = pS,
the quotient Hopf ∗-algebra of (A,m,1,∗,∆, ϵ, S) with respect to I.

The following was recognized by Wang in [Wan95a, Theorem 2.11] for the anal-
ogous construction for CQG C∗-algebras.

Proposition 2.19. Quotient Hopf ∗-algebras of CQG Hopf ∗-algebras by Hopf
∗-ideals are CQG Hopf ∗-algebras.

2.3.1. Graph products. In the free probability context, the graph product was
defined independently by M lotkowski in [M lo04] under the name of λ-free product
and by Speicher and Wysoczański in [SW16] as ϵ-independence. For compact quan-
tum groups, graph products were introduced by Caspers and Fima in [CF17]. The
special cases of free and direct products had already been discussed by Wang in
[Wan95a] and [Wan95b], respectively.

Definition 2.20. For any countable set I and any family (Hi)i∈I of CQG Hopf
∗-algebras, if Hi = (Ai,mi,1i,∗i,∆i, ϵi, Si) for each i ∈ I, then we call the tuple
(A′,m′,1′,∗′,∆′, ϵ′, S′) together with (ιi)i∈I , where

(a) (A′,m′,1′,∗′) is the co-product ∗-algebra of (Ai,mi,1i,∗i)i∈I (with asssoci-
ated co-projections (ιi)i∈I),

(b) ∆′ is the unique morphism of ∗-algebras from (A′,m′,1′,∗′) to the tensor
product of (A′,m′,1′,∗′) with itself such that (ιi⊗ ιi)∆i =∆′ιi for any i ∈ I,

(c) ϵ′ is the unique morphism of ∗-algebras from (A′,m′,1′,∗′) to C with ϵ′ιi = ϵi
for any i ∈ I,

(d) S′ is the unique algebra morphism from (A′,m′,1′) to the opposite algebra
of (A′,m′,1′) with S′ιi = ιiSi for any i ∈ I,

the co-product CQG Hopf ∗-algebra ∗i∈IHi of (Hi)i∈I . We also speak of the formal
dual of ∗i∈IHi as the free product of the formal duals of (Hi)i∈I .

Definition 2.21. A partial commutation relation on any given set I is any anti-
reflexive symmetric binary relation on I.

Definition 2.22. For any countable set I, any partial commutation relation r
on I and any family (Hi)i∈I of CQG Hopf ∗-algebras, if H ′ is the quotient Hopf ∗-
algebra of the co-product CQG Hopf ∗-algebra P of (Hi)i∈I with respect to the Hopf
∗-ideal of P given by the ∗-ideal of the underlying ∗-algebra of P generated by the
set

{ιi1(a1)ιi2(a2) − ιi2(a2)ιi1(a1) ∣ (i1, i2) ∈ r ∧ a1 ∈Hi1 ∧ a2 ∈Hi2},
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where (ιi)i∈I are the co-projections associated with the co-product P , and where p is
the projection associated with H ′, then we call H ′ the graph co-product CQG Hopf
∗-algebra ∗ri∈IHi of (Hi)i∈I with respect to r and we call (pιi)i∈I the associated co-
projections. Analogously, we say that the formal dual of ∗ri∈IHi is the graph product
of the formal duals of (Hi)i∈I with respect to r.

2.3.2. Crossed products. Crossed products of compact quantum groups were also
introduced by Wang in [Wan95b] in the C∗-context.

Definition 2.23. For any discrete group Γ with underlying set M , law µ, neutral
element e and inversion mapping (⋅)−1 the group CQG Hopf ∗-algebra C[Γ] of Γ is
the CQG Hopf ∗-algebra given by the tuple (A,m,1,∆, ϵ, S,∗), where

(a) A is the free vector space over M ,
(b) m is the linear map A⊗A→ A with g ⊗ h↦ µ(g, h) for any {g, h} ⊆M ,
(c) 1 = e,
(d) ∗ is the linear map A→ Acj with g ↦ g−1,
(e) ∆ is the linear map A→ A⊗A with g ↦ g ⊗ g for any g ∈M ,
(f) ϵ is the linear functional on A with g ↦ 1 for any g ∈M ,
(g) S is the linear endomorphism of A with g ↦ g−1 for any g ∈M .

Definition 2.24. For any CQG Hopf ∗-algebra H, any discrete group Γ and any
group homomorphism α of from Γ to the group of Hopf ∗-automorphisms of H, if
H ′ is the quotient CQG Hopf ∗-algebra of the co-product CQG Hopf ∗-algebra P
of (H,C[Γ]) with respect to the Hopf ∗-ideal given by the ∗-ideal of the underlying
∗-algebra of P generated by the set

{ιΓ(g)ιH(a) − ιH(αg(a))ιΓ(g) ∣a ∈H ∧ g ∈ Γ},

where (ιH , ιΓ) are the co-projections associated with P , and if p is the projection
associated with H ′, then we call H ′ the crossed co-product CQG Hopf ∗-algebra
H ⋊α C[Γ] of H and C[Γ] with respect to α and we call (pιH , pιΓ) the associated
co-projections. Likewise, we say that the formal dual of H ⋊α C[Γ] is the crossed
product of the formal duals of H and C[Γ] with respect to α.

2.3.3. Wreath graph products. The special case of finite or infinite wreath graph
products with cyclic groups with respect to the empty partial commutation relation
was discussed in [Wan95b, Example 4.4 (2), (3)] by Wang for compact quantum
groups. The wreath graph product is a combination of graph product and crossed
product.

Definition 2.25. For any subgroup S of permutations of any set I any partial
commutation relation r on I is called S-invariant if (σ(i1), σ(i2)) ∈ r for any σ ∈ S
and any (i1, i2) ∈ r.

For the next definition we fix a set ℵ with the property that ℵ ∉ I for all the
index sets I we want to consider.
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Definition 2.26. For any countable set I, any discrete subgroup S of permu-
tations of I, any S-invariant partial commutation relation r, and any CQG Hopf
∗-algebra H, if H ′ is the quotient Hopf ∗-algebra of the co-product CQG Hopf ∗-
algebra P of (Hj)j∈I∪{ℵ}, where Hi = H for any i ∈ I and where Hℵ = C[S], with
respect to the Hopf ∗-ideal given by the ∗-ideal of the underlying ∗-algebra of P
generated by the set

{ιℵ(σ)ιi(a) − ισ(i)(a)ιℵ(σ) ∣σ ∈ S ∧ a ∈H}
∪ {ιi1(a1)ιi2(a2) − ιi2(a2)ιi1(a1) ∣ (i1, i2) ∈ r ∧ {a1, a2} ⊆H},

where (ιj)j∈I are the co-projections associated with P , and if p is the projection
associated with H ′, then we call H ′ the wreath graph co-product H ≀rC[S] of H and
C[S] with respect to r. We speak of the formal dual of H ≀rC[S] as the wreath graph

product of the formal duals of H and Ŝ.

2.4. Compact (multi-)matrix quantum groups. It follows a side remark
unrelated to the proof of the main result. The next definition is obviously inspired
by that of a compact matrix quantum group from [Wor87, Definition 1.1] if the
simplifications from [Wor91] are taken into account. It is however easier to work
with because it does not require a C∗-algebra. It is also easier to work with than
the definition of a CMQG algebra from [KS12, p. 415, Definition 9 and 10] or the
equivalent characterizations of [KS12, p. 417, Proposition 28] because it does not
call for a Hopf ∗-algebra.

Definition 2.27. (a) For any set N and family (nf)f∈N of non-negative
integers a CMMQG ∗-algebra of profile (nf)f∈N is any (A,m,1,∗, (uf)f∈N)
such that

(i) (A,m,1,∗) is a ∗-algebra,

(ii) uf = (ufj,i)(j,i)∈⟦nf ⟧⊗2 , the fundamental co-representation f , is a unitary
element of the ∗-algebra tensor product of Mnf

(C) and (A,m,1,∗) for
each f ∈ N ,

(iii) ([(tf)−1, tf ]⊗∗)(uf) is a unitary unitary element of the ∗-algebra tensor
product of Mnf

(C) and (A,m,1,∗) for some invertible element tf of
Mnf
(C) for each f ∈ N ,

(iv) {ufj,i ∣ f ∈ N ∧ {i, j} ⊆ ⟦nf⟧} generates A as a ∗-algebra,
(v) there exists a morphism ∆ of ∗-algebras from (A,m,1,∗) to the ten-

sor product ∗-algebra of (A,m,1,∗) with itself such that ∆(ufk,i) =
∑nf

j=1 u
f
k,j ⊗ u

f
j,i for any f ∈ N and {i, k} ⊆ ⟦nf⟧.

Equivalently, the formal dual of (A,m,1,∗, (uf)f∈N) is called an algebraic
compact multi-matrix quantum group of profile (nf)f∈N . If N is a single-
ton set, we also speak of CMQG ∗-algebras respectively algebraic compact
matrix quantum groups.

(b) Given any profile (N, (nf)f∈N) and any CMMQG ∗-algebras (A, (uf)f∈N)
and (B, (vf)f∈N) a morphism of CMMQG ∗-algebras from (A, (uf)f∈N) to
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(B, (vf)f∈N) is any ∗-algebras morphism φ from A to B with (id⊗φ)(uf) =
vf for each f ∈ N . Of course, the formal dual of φ is said to be a morphism
of compact multi-matrix quantum groups of profile (N, (nf)f∈N) from the
formal dual of (B, (vf)f∈N) to the formal dual of (A, (uf)f∈N). Again, if
N is a singleton, we speak of morphisms of CMQG ∗-algebras respectively
morphisms of algebraic compact matrix quantum groups.

The next proposition shows that this definition accomplishes what it is intended
to do. Arguably, though, the usefulness of morphisms of CMMQG ∗-algebras is
limited. It is mostly the objects themselves that are handy.

Proposition 2.28. (a) For any CMMQG ∗-algebra (A,m,1,∗, (uf)f∈N) of
any profile (N, (nf)f∈N) there exists a unique (∆, ϵ, S) such that,
(i) (A,m,1,∗,∆, ϵ, S) is a CQG Hopf ∗-algebra,
(ii) for each f ∈ N , if wf is the inverse of (id ⊗ ∗)(uf) in the ∗-algebra

tensor product of Mnf
(C) and (A,m,1,∗), then

(1) ∆(ufk,i) = ∑
nf

j=1 u
f
k,j ⊗ u

f
j,i for any {i, k} ⊆ ⟦nf⟧,

(2) ϵ(ufj,i) = δj,i for any {i, j} ⊆ ⟦nf⟧,
(3) S(ufj,i) = (u

f
i,j)∗ and S((ufj,i)∗) = w

f
j,i for any {i, j} ⊆ ⟦nf⟧.

(b) Any CMMQG ∗-algebra morphism φ of from any CMMQG ∗-algebra X to
any CMMQG ∗-algebra Y , all of any common profile, is also a Hopf ∗-
algebra morphism from the unique Hopf ∗-algebra of X in the sense of (a)
to that of Y .

Proof. (a) Step 1: Construction of (∆, ϵ, S). Let ∆ be the ∗-algebra mor-
phism from (A,m,1,∗) to the tensor product ∗-algebra of (A,m,1,∗) with itself

satisfying ∆(ufk,i) = ∑
nf

j=1 u
f
k,j ⊗ u

f
j,i for any {i, k} ⊆ ⟦nf⟧ and any f ∈ N , which is

guaranteed to exist by condition (v) of Definition 2.27 (a) and which is already
known to be unique with that property because of condition (iv) of that defini-

tion. For any f ∈ N and any {i, ℓ} ⊆ ⟦nf⟧ the two vectors ((∆ ⊗ idA)∆)(ufℓ,i) =
∑nf

j=1(∆⊗ idA)(ufℓ,j ⊗u
f
j,i) = ∑

nf

k,j=1 u
f
ℓ,k⊗u

f
k,j ⊗u

f
j,i and ((idA⊗∆)∆)(ufℓ,i) = ∑

nf

k=1(∆⊗
idA)(ufℓ,k ⊗ u

f
k,i) = ∑

nf

k,j=1 u
f
ℓ,k ⊗ u

f
k,j ⊗ u

f
j,i coincide. Hence, (∆⊗ idA)∆ = (idA ⊗∆)∆

by condition (iv) of Definition 2.27 (a). Hence, Definition 2.5 is applicable.
For any f ∈ N condition (v) of Definition 2.27 (a) says that (id⊗∆)(uf) = uf k uf

and thus that uf is a co-reprsentation of (A,∆). Condition (ii) of that definition
ensures that, in fact, uf is a unitary co-representation of (A,m,1,∗,∆) for any
f ∈ N .

For each f ∈ N let tf be any invertible element of Mnf
(C) such that xf ∶=

([(tf)−1, tf ] ⊗ ∗)(uf) is a unitary element of the tensor product of Mnf
(C) and

(A,m,1,∗), whose existence we have assumed per condition (ii) of Definition 2.27 (a).
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Because ∆ is a ∗-algebra morphism we can conclude for any f ∈ N ,

(id⊗∆)(xf) = ([(tf)−1, tf ]⊗ (∆∗))(uf)
= ([(tf)−1, tf ]⊗ ((∗ ⊗ ∗)∆))(uf)
= ([(tf)−1, tf ]⊗ (∗ ⊗ ∗))(uf k uf)
= xf k xf ,

which is to say that xf is a co-representation of (A,∆), a unitary one of (A,m,1,∗,∆)
even.

By condition (v) of Definition 2.27 (a) the ∗-algebra (A,m,1,∗) is generated by

the set {ufj,i ∣ f ∈ N ∧ {i, j} ⊆ ⟦nf⟧}. In other words, A is the vector subspace of

A generated by the entries of the elements of the monoid generated by {uf , (id ⊗
∗)(uf)}f∈N with respect to the operation ⋅ of forming the product co-representation.
Since (id⊗∗)(uf) = ([tf , (tf)−1]⊗id)(xf), the entries of (id⊗∗)(uf) and xf generate
the same vector subspace of A for any f ∈ N . Thus, A is generated as a vector space
by the entries of the elements of the monoid M generated by {uf , xf}f∈N with respect
to the co-representation product.

Because the trivial co-representation 1 on the Hilbert space C is unitary and be-
cause products of unitary co-representations are unitary again, M actually consists
exclusively of unitary co-representations of (A,m,1,∗).

Now, let Rirr = (vr)r∈Rirr
be any maximal set of pairwise inequivalent unitary

co-representations of (A,m,1,∗) and for each r ∈ Rirr let (vrq,p)(q,p)∈⟦mr⟧⊗2 be the
matrix of vr with respect to any orthonormal basis of the carrier Hilbert space
of vr. By Lemma 2.6 (a) the set ⋃r∈Rirr

{vrq,p}mr
p,q=1 is linearly independent in A.

Moreover, by Lemma 2.6 (b) any element of M , being a unitary co-representation,
is equivalent to a direct sum of pairwise inequivalent irreducible co-representations
of (A,m,1,∗). By the transitivity of the notion of equivalence of co-representations
and the maximality of Rirr any element of M is thus equivalent to a direct sum of
elements of Rirr. It follows that ⋃r∈Rirr

{vrq,p}mr
p,q=1 is a linear basis of A.

Hence, we can define a linear functional ϵ on A and a linear endomorphism S of
A by requiring ϵ(vrq,p) ∶= δq,p and S(vrq,p) ∶= (vrp,q)∗ for any {p, q} ⊆ ⟦mr⟧ and r ∈ Rirr.

Step 2: The tuple (A,m,1,∗,∆, ϵ, S) is a CQG Hopf ∗-algebra. Then, obvi-
ously, ((ϵ ⊗ idA)∆)(vrq,p) = ∑mr

s=1(ϵ ⊗ idA)(vrq,s ⊗ vrs,p) = ∑mr
s=1 δq,s v

r
s,p = vrq,p and by

a similar argument, ((idA ⊗ ϵ)∆)(vrq,p) = vrq,p for any {p, q} ⊆ ⟦mr⟧ and r ∈ Rirr,
which is to say (ϵ⊗ idA)∆ = idA = (idA ⊗ ϵ)∆. Furthermore, (m(S ⊗ idA)∆)(vrq,p) =
∑mr
s=1(m(S⊗ idA))(vrq,s⊗vrs,p) = ∑mr

s=1(vrs,q)∗vrs,p = δq,p 1 = ϵ(vrq,p)1 because vr is unitary
and, similarly, (m(S⊗ idA)∆)(vrq,p) = ϵ(vrq,p)1 for any {p, q} ⊆ ⟦mr⟧ and r ∈ Rirr, i.e.,
m(S ⊗ idA)∆ = 1ϵ =m(idA ⊗ S)∆. Hence, (A,m,1,∗,∆, ϵ, S) is a Hopf ∗-algebra.

Even more precisely, (A,m,1,∗,∆, ϵ, S) is a Hopf ∗-algebra generated by the ma-
trix coefficients of the unitary co-representations {uf}f∈N for which {(idf⊗∗)(uf)}f∈N
are unitarizable. That makes it a CQG Hopf ∗-algebra by [Bic17, Theorem 1.11].

Step 3: The CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S) has the asserted properties.
Already by definition, condition (1) is satisfied. The remaining properties are also
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satisfied because the co-unit and antipode of a Hopf ∗-algebra are uniquely de-
termined by the co-multiplication and multiplication and must have the asserted
properties for any unitary co-representations.

(b) Follows quickly from the definitions. □

2.5. Tannaka-Krein duality. Section 2.5 gives an account of Woronowicz’s
Tannaka-Krein duality theorem from [Wor88]. Arguably, Woronowicz actually proved
two Tannaka-Krein theorems in [Wor88], one which is ideally suited to studying easy
quantum groups and one which is invaluable for theoretical purposes. Both will be
presented in a version that addresses functorial aspects omitted in [Wor88]. The
second theorem will be used to prove the claim about full subcategory inclusions
mentioned earlier.

2.5.1. Rigid concrete monoidal W ∗-categories. For the presentation of Tannaka-
Krein duality the same axiomatization as the one used by Woronowicz in [Wor88]
has been chosen since it is very to-the-point and accessible without any prior knowl-
edge of category theory. Consequently, rather than tensor C∗-categories with fiber
functors the following will be the central objects.

Definition 2.29. (a) A concrete W ∗-category is any tuple R ≡ (R, (Hr)r∈R,
(Mor(r, r′))(r,r′)∈R⊗R) such that

(i) R is a set, the collection of objects of R,
(ii) Hr is a finite-dimensional Hilbert space, the fiber space of r, for each

object r ∈ R,
(iii) Mor(r, r′), the morphism space r → r′, is a vector subspace of [Vr, Vr′],

where Vr and Vr′ are the underlying vector space of Hr respectively
Hr′ , for any {r, r′} ⊆ R,

(iv) idHr ∈Mor(r, r) for any r ∈ R.
(v) a′a ∈ Mor(r, r′′) for any a ∈ Mor(r, r′), any a′ ∈ Mor(r′, r′′) and any

objects {r, r′, r′′} ⊆ R.
(vi) a∗ ∈Mor(r′, r) for any a ∈Mor(r, r′) and {r, r′} ⊆ R,

(vii) for any {r, r′} ⊆ R, whenever Hr = Hr′ and idHr ∈ Mor(r, r′), then
r = r′.

(b) Given any concreteW ∗-categoriesR ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R)
and S ≡ (S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S), a strict concrete W ∗-functor
from R to S is any mapping F from the object set of R to that of S such
that

(i) HR,r =HS,F (r) for any r ∈ R,
(ii) MorR(r, r′) ⊆MorS(F (r), F (r′)) for any {r, r′} ⊆ R.

(c) A concrete monoidalW ∗-category is by definition any tupleR = (R, (Hr)r∈R,
(Mor(r, r′))(r,r′)∈R⊗R, ⋅ ) such that

(i) (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R) is a concrete W ∗-category, the un-
derlying concrete W ∗-category of R,

(ii) ⋅ is a binary operation on the object class of R, the monoidal product,
(iii) Hr1⋅r2 =Hr1 ⊗Hr2 for any {r, r′} ⊆ R,
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(iv) a1⊗a2 ∈Mor(r1 ⋅r2, r′1 ⋅r′2) for any a1 ∈Mor(r1, r′1), any a2 ∈Mor(r2, r′2)
and any {r1, r2, r′1, r′2} ⊆ R,

(v) (r1 ⋅ r2) ⋅ r3 = r1 ⋅ (r2 ⋅ r3) for any {r1, r2, r3} ⊆ R,
(vi) There exists a (then uniquely determined) object 1 of R such that

H1 = C and 1 ⋅ r = r ⋅ 1 = r for any r ∈ R, the monoidal unit of R.
(d) Whenever the tuples R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) and S ≡
(S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S, ⋅S) are any two concrete monoidal W ∗-
categories with monoidal units 1R and 1S, respectively, a strict concrete
strict monoidal W ∗-functor from R to S is any F such that

(i) F is a strict concrete W ∗-functor from the underlying concrete W ∗-
category of R to that of S,

(ii) F (r1 ⋅R r2) = F (r1) ⋅S F (r2) for any {r1, r2} ⊆ R,
(iii) F (1R) = 1S, where 1R and 1S are the monoidal units of R and S,

respectively.
(e) The composition of two strict concrete W ∗-functors or strict concrete strict

monoidalW ∗-functors is simply the composition of the underlying mappings
between the object sets. The identity on a concrete W ∗-category or concrete
monoidal W ∗-category is the identity mapping on the set of objects.

(f) In any concrete monoidal W ∗-category (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R, ⋅)
for any object r ∈ R any object r ∈ R is called a complex conjugate of r if
there exists an invertible linear map j from the underlying vector space of
Hr to that of cj(Hr) such that tj ∈ Mor(1, r ⋅ r) and tj ∈ Mor(r ⋅ r,1). A
concrete monoidal W ∗-category with a complex conjugate for each of its
objects is said to be rigid.

2.5.2. Representation theory of an algebraic compact quantum group. Already in
[Wor87], Woronowicz had presented a way of associating with any compact quantum
group a rigid concrete monoidal W ∗-algebra, a fact he acknowledges in [Wor88,
Theorem 1.3]. The construction is as follows.

Definition 2.30. (a) For any CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S) we
call the tuple (R, (Hr)r,Mor(r, r′)(r,r′)∈R⊗R, ⋅ ), where

(i) R is the set of all unitary co-representations of (A,m,1,∗) on any
finite-dimensional Hilbert space,

(ii) Hr is the carrier Hilbert space of r for each r ∈ R,
(iii) Mor(r, r′) is the vector subspace of [Vr, Vr′], where Vr and Vr′ are the

vector spaces underlying Hr respectively Hr′ , formed by the set of all
intertwiners r → r′ of (A,∆) for any (r, r′) ∈ R⊗R,

(iv) ⋅ is the binary operation on R of forming the product co-representation
r1 ⋅ r2 of (A,m,1,∆) for any (r1, r2) ∈ R⊗R,

the co-representation theory C(A,m,1,∗,∆, ϵ, S) of (A,m,1,∗,∆, ϵ, S) and
the representation theory of the formal dual of (A,m,1,∗,∆, ϵ, S).

(b) Given any morphism ψ from any CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S)
to any CQG Hopf ∗-algebra (A′,m′,1′,∗′,∆′, ϵ′, S′), if R and R′ are the sets
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of all unitary co-representations of (A,m,1,∗,∆) and (A′,m′,1′,∗′,∆′), re-
spectively, on any finite-dimensional Hilbert spaces, then we call the map-
ping R → R′ with ur ↦ (id⊗ψ)(ur) for any ur = r ∈ R the co-representation
theory C(ψ) of ψ. We also say that C(ψ) is the representation theory of the
formal dual of ψ.

C is a functor from the category of CQG Hopf ∗-algebras to the category of
concrete monoidal W ∗-categories and strict concrete monoidal W ∗-functors.

Proposition 2.31. (a) C(H) is a rigid concrete monoidal W ∗-category for
any CQG Hopf ∗-algebra.

(b) C(ψ) is a strict concrete monoidal W ∗-functor C(H)→ C(H ′) for any mor-
phism ψ∶ H → H ′ of CQG Hopf ∗-algebras and any CQG Hopf ∗-algebras
H and H ′.

(c) C(ψ′ψ) = C(ψ′)C(ψ) for any morphisms ψ∶ H → H ′ and ψ′∶ H ′ → H ′′ of
CQG Hopf ∗-algebras and any CQG Hopf ∗-algebras H, H ′ and H ′′.

(d) C(idH) = idC(H) for any CQG Hopf ∗-algebra H.

The functor C is the identical right side to both Tannaka-Krein theorems con-
tained in [Wor88]. It follows the two corresponding left sides.

2.5.3. Tannaka-Krein representee. The original article [Wor88] gives two equiva-
lent ways of recovering a compact matrix quantum group from certain rigid monoidal
W ∗-category. They generalize to arbitrary compact quantum groups. Both have dif-
ferent advantages and disadvantages. The one that is particularly well-suited to easy
quantum groups is the underlying CQG Hopf ∗-algebra of what Woronowicz might
have called the “universal model”.

In [Wor88], as in other discussions of Tannaka-Krein duality (see [NT13] and
[MRT04]), the Tannaka dual of a rigid monoidal W ∗-category is only essentially
unique. However, for the purposes of this chapter, proper uniqueness would be
more convenient. To achieve this, the following – admittedly strong – assumption
is made hereafter.

Assumption 2.32. In the following, for any finite-dimensional Hilbert space H
fix an orthonormal basis (eHi )

nH
i=1.

The first left side to C, the one that is used for easy quantum groups, can then be
introduced as explained below.

Definition 2.33. (a) For any given rigid concrete monoidal W ∗-category
R ≡ (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R, ⋅ ), if nr = dimC(Hr) for each r ∈ R,
then we call the tuple (A,m,1,∗,∆, ϵ, S), where

(i) (A,m,1,∗) is the universal ∗-algebra over {urj,i ∣ r ∈ R ∧ {i, j} ⊆ ⟦nr⟧},
where urj,i is short for (r, j, i) for any {i, j} ⊆ ⟦nr⟧ and r ∈ R, subject to
the relations

{∑nr
j=1 u

r
k,j(uri,j)∗ − δk,i1, ∑

nr
j=1(urk,j)∗uri,j − δk,i1

∣ r ∈ R ∧ {i, k} ⊆ ⟦nr⟧},
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and the relations

{∑nr1 ⋅r2
i=1 wr1,r2

i,(g1,g2) u
r1⋅r2
j,i −∑nr1

h1=1∑
nr2

h2=1w
r1,r2
j,(h1,h2) u

r1
h1,g1

ur2h2,g2
∣ {r1, r2} ⊆ R ∧ g1 ∈ ⟦nr1⟧ ∧ g2 ∈ ⟦nr2⟧ ∧ j ∈ ⟦nr1⋅r2⟧} ,

where for any {r1, r2} ⊆ R, any i1 ∈ ⟦nr1⟧, any i2 ∈ ⟦ni2⟧ and j ∈ ⟦nr1⋅r2⟧,
wr1,r2
j,(i1,i2) = ⟨e

Hr1 ⋅r2
j ∣ eHr1

i1
⊗ eHr2

i2
⟩Hr1 ⋅r2 ,

as well as the relations

{∑nr′
i=1 ti,g u

r′
j,i −∑nr

h=1 tj,h u
r
h,g ∣{r, r′} ⊆ R ∧ t ∈Mor(r, r′)

∧ g ∈ ⟦nr⟧ ∧ j ∈ ⟦nr′⟧} ,
where for any {r, r′} ⊆ R, any t ∈Mor(r, r′), any g ∈ ⟦nr⟧ and j ∈ ⟦nr′⟧,

tj,g = ⟨eHr′
j ∣ t(eHr

g )⟩Hr′ ,

(ii) ∆ is the unique ∗-algebra morphism from (A,m,1,∗) to the tensor
product ∗-algebra of (A,m,1,∗) with itself such that for any r ∈ R and
any {i, k} ⊆ ⟦nr⟧,

urk,i ↦ ∑nr
j=1 u

r
k,j ⊗ urj,i,

(iii) ϵ is the unique ∗-algebra morphism from (A,m,1,∗) to C with for any
r ∈ R and any {i, j} ⊆ ⟦nr⟧,

urj,i ↦ δj,i,

(iv) S is the unique algebra morphism from (A,m,1) to its own opposite
algebra such that for any r ∈ R, if r is any arbitrary complex conjugate
of r in R via any jr, then for any {i, j} ⊆ ⟦nr⟧,
urj,i ↦ (urj,i)∗ ∧ (urj,i)∗ ↦ ∑nr

k,ℓ,r,s=1 a
r
k,sa

r
k,ib

r
j,ℓb

r
r,ℓ u

r
s,r,

where for any {i, j} ⊆ ⟦nr⟧,
arj,i = ⟨eHr

j ∣ jr(eHr
i )⟩Hr

∧ brj,i = ⟨j−1r (eHr
i ) ∣ eHr

j ⟩Hr ,

the Tannaka-Krein co-representee T(R) of R. We also say that the formal
dual of T(R) is the Tannaka-Krein representee of T(R).

(b) Given any rigid concrete monoidal W ∗-categories R and S and any strict
concrete strict monoidal W ∗-functor F from R to S, we call the unique
morphism of ∗-algebras from the underlying ∗-algebra of T(R) to that of
T(S) with for any object r of R and any {i, j} ⊆ ⟦nr⟧,

urj,i ↦ v
F (r)
j,i

where urj,i is short for (r, j, i) and v
F (r)
j,i short for (F (r), j, i), and where

nr is the dimension of the fiber space of r in R, the Tannaka-Krein co-
representee T(F ) of F . Analogously, we say that the formal dual of T(F )
is the Tannaka-Krein representee of F .
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That is well-defined because the underlying ∗-algebra of the Tannaka-Krein co-
representee of a rigid concrete monoidal W ∗-algebra together with the matrices of
the ∗-algebra generators form a CMMQG ∗-algebra. Upon checking this we may
thus apply Proposition 2.28 to infer that we have indeed constructed a CQG Hopf
∗-algebra.

T is a functor from the category of rigid monoidal W ∗-categories and strict con-
crete strict monoidal W ∗-functors to the categoy of CQG Hopf ∗-algebras.

Proposition 2.34. (a) T(R) is a CQG Hopf ∗-algebra for any rigid mo-
noidal W ∗-category R.

(b) T(F ) is a morphism of CQG Hopf ∗-algebras T(R)→ T(R′) for any strict
concrete strict monoidal W ∗-functor F ∶ R → R′ and any rigid concrete mo-
noidal W ∗-categories R and R′.

(c) T(F ′○F ) = T(F ′)○T(F ) for any strict concrete strict monoidalW ∗-functors
F ∶ R → R′ and F ′∶ R′ → R′′ and any rigid concrete monoidal W ∗-categories
R, R′ and R′′.

(d) T(idR) = idT(R) for any rigid concrete monoidal W ∗-category R.

However, particularly for easy quantum groups, there is a way of obtaining the
Tannaka-Krein co-representee (or rather an isomorphic CQG Hopf ∗-algebra) by a
construction involving a universal ∗-algebra on far fewer generators. Again, this was
shown by Woronowicz in [Wor88] for the case of compact matrix quantum groups.
The next definition is, of course, independent of our fixing orthonormal bases above.

Definition 2.35. (a) LetR ≡ (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R) be any con-
crete W ∗-category.

(i) We call any two objects r and r′ of R equivalent in R if Mor(r, r′)
contains a linear map that is a unitary operator Hr →Hr′ .

(ii) Any object r of R is called a subobject of any object r′ in R if Mor(r, r′)
contains a linear map that is a partial isometry p∶ Hr →Hr′ with p∗p =
idHr .

(iii) We say that any object r of R is a direct sum of (r1, r2, . . . , rm) in R for
any m ∈ N and any objects {ri}mi=1 of R if there exist {pi}mi=1 such that
pi ∈Mor(ri, r) and pi is a partial isometry Hri →Hr and p∗i pi = idHi

for
each i ∈ ⟦m⟧ and such that ∑mi=1 pip∗i = idHr .

(b) Any (not necessarily finite) set Q of objects of any given concrete monoidal
W ∗-category R ≡ (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R, ⋅) is said to generate R
if any object of R is equivalent to a subobject of a finite direct sum of
objects contained in the submonoid of (R, ⋅) generated by Q.

The following construction depends not only on the fixed bases but also the choice
of generator set.

Proposition 2.36. (a) For any given rigid concrete monoidal W ∗-category
R ≡ (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈R⊗R, ⋅ ) and any set N of objects of R for
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which there exists (f, jf)f∈N such that f is a complex conjugate of f in R

via jf for each f ∈ N and such that {f, f}f∈N generates R, if nr = dimC(Hr)
for each r ∈ {f, f}f∈N , then the tuple (A,m,1,∗,∆, ϵ, S), where
(i) (A,m,1,∗) is the universal ∗-algebra over {ufj,i ∣ f ∈ N ∧ {i, j} ⊆ ⟦nf⟧},

where ufj,i is short for (f, j, i) for any f ∈ N and {i, j} ⊆ ⟦nf⟧, subject
to the relations

{∑nr
j=1 u

r
k,j(uri,j)∗ − δk,i1, ∑

nr
j=1(urk,j)∗uri,j − δk,i1

∣ r ∈ {f, f}f∈N ∧ {i, k} ⊆ ⟦nr⟧},
and the relations

{∑nr1 ⋅r2
i=1 wr1,r2

i,(g1,g2) u
r1⋅r2
j,i −∑nr1

h1=1∑
nr2

h2=1w
r1,r2
j,(h1,h2) u

r1
h1,g1

ur2h2,g2

∣ {r1, r2} ⊆ {f, f}f∈N ∧ r1 ⋅ r2 ∈ {f, f}f∈N
∧ g1 ∈ ⟦nr1⟧ ∧ g2 ∈ ⟦nr2⟧ ∧ j ∈ ⟦nr1⋅r2⟧} ,

as well as the relations

{
nq1

∑
i1=1

. . .
nqℓ

∑
iℓ=1

t(i1,...,iℓ),(g1,...,gk) u
q
θ1
1
j1,i1

. . . u
q
θℓ
ℓ
jℓ,iℓ

−
np1

∑
h1=1

. . .
npk

∑
hk=1

t(j1,...,jℓ),(h1,...,hk) u
p
η1
1

h1,g1
. . . u

p
ηk
k

hk,gk
∣

{k, ℓ} ⊆ N0 ∧ {pa}ka=1 ∪ {qb}ℓb=1 ⊆ N ∧ {ηa}ka=1 ∪ {θb}ℓb=1 ⊆ {○, ●}

∧ t ∈Mor(pη11 ⋅ . . . ⋅ pηkk , q
θ1
1 ⋅ . . . ⋅ qθℓℓ )

∧ (∀ka=1 ∶ ga ∈ ⟦npa⟧) ∧ (∀ℓb=1 ∶ jb ∈ ⟦nqb⟧)} ,

where for any f ∈ N first f ○ ≡ f and f ● ≡ f and for any {i, j} ⊆ ⟦nf⟧,
if

afj,i = ⟨e
H

f

j ∣ jf(e
Hf

i )⟩Hf
∧ bfj,i = ⟨j−1f (e

H
f

i ) ∣ e
Hf

j ⟩Hf
,

then

ufj,i ≡ ∑
nf

k,ℓ=1a
f
j,ℓb

f
k,i (u

f
ℓ,k)∗,

where for any {r1, r2} ⊆ {f, f}f∈N with r1 ⋅r2 ∈ {f, f}f∈N , any i1 ∈ ⟦nr1⟧,
any i2 ∈ ⟦ni2⟧ and j ∈ ⟦nr1⋅r2⟧,

wr1,r2
j,(i1,i2) = ⟨e

Hr1 ⋅r2
j ∣ eHr1

i1
⊗ eHr2

i2
⟩Hr1 ⋅r2 ,

where for any {k, ℓ} ⊆ N0 and {pa}ka=1 ⊆ N and {qb}ℓb=1 ⊆ N and
{ηa}ka=1 ⊆ {○, ●} and {θb}ℓb=1 ⊆ {○, ●} and t ∈Mor(pη11 ⋅ . . . ⋅pηkk , q

θ1
1 ⋅ . . . ⋅qθℓℓ )



148 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

and any {ia}ka=1 and {jb}ℓb=1 such that ia ∈ ⟦npa⟧ for any a ∈ ⟦k⟧ and
jb ∈ ⟦nqb⟧ for any b ∈ ⟦ℓ⟧,

t(j1,...,jℓ),(i1,...,ik) = ⟨t(e
Hp1
i1

⊗ . . .⊗ eHpk
ik
) ∣ eHq1

j1
⊗ . . .⊗ eHqℓ

jℓ
⟩H

q
θ1
1

⋅...⋅qθℓ
ℓ

,

(ii) ∆ is the unique ∗-algebra morphism from (A,m,1,∗) to the tensor
product ∗-algebra of (A,m,1,∗) with itself such that for any {i, k} ⊆
⟦nf⟧ and any f ∈ N ,

ufk,i ↦ ∑
nf

j=1 u
f
k,j ⊗ u

f
j,i,

(iii) ϵ is the unique ∗-algebra morphism from (A,m,1,∗) to C such that for
any {i, j} ⊆ ⟦nf⟧ and any f ∈ N ,

ufj,i ↦ δj,i,

(iv) S is the unique algebra morphism from (A,m,1) to its own opposite
algebra such that for any {i, j} ⊆ ⟦nf⟧ and any f ∈ N ,

ufj,i ↦ (u
f
j,i)∗ ∧ (ufj,i)∗ ↦ ∑

nf

k,ℓ,r,s=1 a
f
k,sa

f
k,ib

f
j,ℓb

f
r,ℓ u

f
s,r

is CQG Hopf ∗-algebra and the rule (f, j, i) ↦ (f, j, i) for any {i, j} ⊆
⟦nf⟧ and f ∈ N defines an isomorphism of CQG Hopf ∗-algebras from
(A,m,1,∗,∆, ϵ, S) to T(R).

(b) Given any two rigid concrete monoidal W ∗-categories R ≡ (R, (HR,r)r∈R,
(MorR(r, r′))(r,r′)∈R⊗R, ⋅R) and S ≡ (S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S, ⋅S),
any strict concrete strict monoidal W ∗-functor F from R to S, and any
sets N and P of objects of R respectively S such that there exist (f, jR,f)f∈N
and (g, jS,g)g∈P such that f is a complex conjugate of f in R via jR,f for
each f ∈ N and g one of g in S via jS,g for each g ∈ P , and such that
{f, f}f∈N generates R and {g, g}g∈P generates S, if nf = dimC(HR,f) for
each f ∈ N , if mg = dimC(HS,g) for each g ∈ P , if ufj,i is short for (f, j, i) for
any f ∈ N and {i, j} ⊆ ⟦nf⟧, and if vgy,x is short for (g, y, x) for any g ∈ P
and {x, y} ⊆ ⟦mg⟧, then the morphism of CQG Hopf ∗-algebras φ from the
CQG Hopf ∗-algebra of R constructed in (a) with respect to N to that of S
constructed with respect to P such that for any f ∈ N and any {i, j} ⊆ ⟦nf⟧,
if F (f) ≠ 1, then

ufj,i ↦
k

∑
a=1

mga,1

∑
xa1 ,y

a
1=1

. . .

mga,ℓa

∑
xa
ℓa
,ya

ℓa
=1
paj,(ya1 ,...,yaℓa)

pa
i,(xa1 ,...,xaℓa)

v
g
θa,1
a,1

ya1 ,x
a
1
. . . v

g
θa,ℓa
a,ℓa

ya
ℓa
,xa

ℓa
,

where, as before, g○ = g and g● = g for any g ∈ P , where (k, (sa)ka=1, (pa)ka=1)
and (ℓa, (ga,ba)ℓaba=1, (θa,ba)

ℓa
ba=1) for any a ∈ ⟦k⟧ are such that k ∈ N, such

that sa ∈ S and pa ∈MorS(sa, F (f)) for each a ∈ ⟦k⟧, such that ∑ka=1 pap∗a =
idHR,f

, and such that ℓa ∈ N and {ga,ba}ℓaba=1 ⊆ P and {θa,ba}ℓaba=1 ⊆ {○, ●} and
sa = g

θa,b1
a,b1

⋅S . . . ⋅S g
θa,bℓa
a,bℓa

for each a ∈ ⟦k⟧, where for any a ∈ ⟦k⟧ and any
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(zaba)
ℓa
a=1 such that zaba ∈ ⟦mga,ba

⟧ for each ba ∈ ⟦ℓa⟧,

pai,(za1 ,...,zaℓa)
= ⟨eHR,f

i ∣ pa(e
H

S,g
θa,1
a,1

za1
⊗ . . .⊗ e

H
S,g

θa,ℓa
a,ℓa

za
ℓa

)⟩HR,f
,

satisfies ωSφω−1R = T(F ), where ωR and ωS are the isomorphisms from (a)
for R respectively S.

Again, that the construction in Proposition 2.36 (a) yields a CQG Hopf ∗-algebra
can be verified using Proposition 2.28.

2.5.4. Relationship between representation theory and Tannaka-Krein represen-
tee. In a sense, forming the Tannaka-Krein representee of a rigid concrete monoidal
W ∗-category is a left inverse to the operation of taking the representation category
of an algebraic compact quantum group. However, it is not a two-sided inverse. In
detail, the relationship between the two assignments is as follows. Assumption 2.32
is still in effect.

Definition 2.37. (a) For any CQG Hopf ∗-algebra H = (A,m,1,∗,∆, ϵ, S),
if R is the object set of C(H), let cuT⊣C

H be the unique ∗-algebra morphism
from the underlying ∗-algebra of T(C(H)) to (A,m,1,∗) such that for any
r ∈ R and any {i, j} ⊆ ⟦nr⟧,

(r, j, i)↦ vrj,i,

where nr is the dimension of the fiber of r in C(H) and where (vrj,i)(j,i)∈⟦nr⟧⊗2

is the matrix of the co-representation r of (A,∆) with respect to (eHr
i )nr

i=1.
(b) Conversely, given any rigid concrete monoidalW ∗-categoryR ≡ (R, (Hr)r∈R,
(Mor(r, r′))(r,r′)∈R⊗R, ⋅ ), if (A,m,1,∗,∆, ϵ, S) is given by T(R), let unT⊣C

R

be the the mapping from R to the set of all unitary co-representations of
(A,m,1,∗,∆) such that for any r ∈ R,

r ↦ ur

where, if nr = dimC(Hr), if (EHr
j,i )(j,i)∈⟦nr⟧⊗2 are the matrix units of (eHr

i )i∈⟦nr⟧
and if urj,i is short for the element (r, j, i) of A for any {i, j} ⊆ ⟦r⟧, then

ur = ∑nf

i,j=1E
Hr
j,i ⊗ urj,i.

The following is a variation on [Wor88, Theorem 1.3]. cuT⊣C and unT⊣C are the
co-unit and unit, respectively, of an adjunction T ⊣ C. Moreover, cuT⊣C is a natural
isomorphism.

Proposition 2.38. (a) cuT⊣C
H is an isomorphism T(C(H)) → H of CQG

Hopf ∗-algebras for any CQG Hopf ∗-algebra H.
(b) unT⊣C

R is a strict concrete strict monoidal W ∗-functor R → C(T(R)) for any
rigid concrete strict monoidal W ∗-category R.

(c) cuT⊣C
H′ ○T(C(ψ)) = ψ ○ cuT⊣C

H for any morphism ψ∶ H →H ′ of CQG Hopf ∗-
algebras and any CQG Hopf ∗-algebras H and H ′.
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(d) unT⊣C
R′ ○ F = C(T(F )) ○ unT⊣C

R for any strict concrete strict monoidal W ∗-
functor F ∶ R → R′ and rigid concrete monoidal W ∗-categories R and R′.

(e) idT(R) = cuT⊣C
T(R) ○T(unT⊣C

R ) for rigid concrete monoidal W ∗-category.

(f) idC(H) = C(cuT⊣C
H ) ○ unT⊣C

C(H) for any CQG Hopf ∗-algebra H.

While the co-unit of the adjunction T ⊣ C is a natural isomorphism, the unit is
not. Answering the question for which rigid concrete monoidal W ∗-categories the
unit is invertible is tantamount to giving the second method of obtaining an algebraic
compact quantum group from a rigid concrete monoidal W ∗-category described in
[Wor88].

2.5.5. Completion of rigid concrete monoidal W ∗-categories. This second con-
struction factors through a third, namely the operation of forming the Cauchy com-
pletion, or completion, for short. As mentioned this crucial construction was already
used by Woronowicz in [Wor88]. Our fixing bases has no import on the following
definitions and results.

Definition 2.39. We say that any given concrete W ∗-category R ≡ (R, (Hr)r∈R,
(Mor(r, r′))(r,r′)∈R⊗R) is complete if the following conditions are satisfied:

(a) For any r ∈ R, any finite-dimensional Hilbert space H and any unitary
operator v∶ Hr → H there exists r′ ∈ R such that Hr′ = H and such that r
and r′ are equivalent in R.

(b) For any r′ ∈ R and any orthogonal projection p ∈ B(Hr′) with p ∈Mor(r′, r′)
there exists r ∈ R such that Hr is the image Hilbert space of p and such
that r is a subobject of r′ in R.

(c) For any m ∈ N and any objects {ri}mi=1 there exists r ∈ R such that r is a
direct sum of (r1, r2, . . . , rm) in R.

If R is even a concrete monoidal W ∗-category, we call R complete if the same is true
of the underlying concrete W ∗-category of R.

For LATEX reasons a different symbol is used in the next definition in place of the
double tilde accent employed in [Wor88, Proposition 2.7].

Definition 2.40. (a) The completion D(R) of any concrete monoidal W ∗-
category R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) is the tuple

ÌR = ( ÌR, (HÌR,Ìr)Ìr∈ÌR, (MorÌR(Ìr,Ìr′))(Ìr,Ìr′)∈ÌR⊗ÌR, ⋅ÌR)

such that, if

R̃ ≡ (R̃, (HR̃,r̃)r̃∈R̃, (MorR̃(r̃, r̃′))(r̃,r̃′)∈R̃⊗R̃, ⋅R̃)

is the tuple such that
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(i) R̃ denotes the class

{(H, (rk, ak)k∈∆) ∣H is a fin.-dim. Hilbert space

∧ ∆ is a finite set

∧ (∀k∈∆ ∶ rk ∈ R ∧ ak ∈ [HR,rk ,H])
∧ (∀(k,k′)∈∆⊗∆ ∶ a∗k′ak ∈MorR(rk, rk′))
∧ ∑k∈∆aka∗k = idH},

(ii) HR̃,r̃ =H for any element r̃ = (H, (rk, ak)k∈∆) of R̃,

(iii) for any elements r̃ = (H, (rk, ak)k∈∆) and r̃′ = (H ′, (r′k′ , a′k′)k′∈∆′) of R̃,

MorR̃(r̃, r̃′)
= {t ∈ [H,H ′] ∧ ∀(k,k′)∈∆⊗∆′ ∶ (a′k′)∗tak ∈MorR(rk, r′k′)},

(iv) ⋅R̃ is the binary operation on R̃ with, for any elements r̃1 = (H1, (r1,k1 ,
a1,k1)k1∈∆1) and r̃2 = (H2, (r2,k2 , a2,k2)k2∈∆2) of R̃,

r̃1 ⋅R̃ r̃2 = (H1 ⊗H2, (r1,k1 ⋅R r2,k2 , a1,k1 ⊗ a2,k2)(k1,k2)∈∆1⊗∆2
),

and if ≃R is the equivalence relation

{(r̃, r̃′) ∈ R̃⊗ R̃ ∧ HR̃,r̃ =HR̃,r̃′ ∧ idHR̃,r̃
∈MorR̃(r̃, r̃′)}

on R̃, then
(v) ÌR = R̃/ ≃R,

(vi) HÌR,Ìr =HR̃,r̃ for any Ìr ∈ ÌR, where r̃ ∈ Ìr can be arbitrary,

(vii) MorÌR(Ìr,Ìr′) = MorR̃(r̃, r̃′) for any {Ìr,Ìr′} ⊆ ÌR, where r̃ ∈ Ìr and r̃′ ∈ Ìr′
can be arbitrary,

(viii) ⋅ÌR is the binary operation on ÌR defined by

Ìr1 ⋅ÌR Ìr2 = {r̃′ ∈ R̃ ∧ r̃′ ≃R r̃1 ⋅R̃ r̃2}

for any {Ìr1,Ìr2} ⊆ R̃, where r̃1 ∈ Ìr1 and r̃2 ∈ Ìr2 can be arbitrary.
(b) For any strict concrete strict monoidal W ∗-functor F from any concrete

monoidal W ∗-cateogy R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) to any
concrete monoidal W ∗-category S ≡ (S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S, ⋅S),
if F̃ is the mapping from R̃ to S̃ with, for any r̃ = (H, (rk, ak)k∈∆) ∈ R̃,

F̃ (r̃) = (H, (F (rk), ak)k∈∆)

then the completion D(F ) of F is the mapping ÌF from the object set of ÌR
to that of ÌS with

ÌF (Ìr) = {s̃′ ∈ S̃ ∧ s̃′ ≃S F̃ (r̃)},

for any Ìr ∈ ÌR, where r̃ ∈ Ìr can be arbitrary.
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Note that the object set of a completion is a set while the intermediate class, the
one before the identification, is not. The completion operation constitutes a functor
D from the category of arbitrary, not necessarily complete concrete monoidal W ∗-
categories to the category of complete concrete monoidal W ∗-categories. Moreover,
it preserves rigidity. The following is implicit in [Wor88, Proposition 2.7].

Proposition 2.41. (a) D(R) is a complete rigid concrete monoidal W ∗-
category R for any (not necessarily complete) rigid monoidal W ∗-category
R.

(b) D(F ) is a strict concrete strict monoidal W ∗-functor D(R) → D(R′) for
any strict concrete strict monoidal W ∗-functor F ∶ R → R′ and any (not
necessarily complete) rigid concrete monoidal W ∗-categories R and R′.

(c) D(F ′ ○F ) = D(F ′) ○D(F ) for any strict concrete strict monoidal W ∗-func-
tors F ∶ R → R′′ and F ′∶ R′′ → R′ and any (not necessarily complete) rigid
concrete monoidal W ∗-categories R, R′′ and R′.

(d) D(idR) = idD(R) for any (not necessarily complete) rigid concrete monoidal
W ∗-category.

The following mappings are also left implicit in [Wor88, Proposition 2.7].

Definition 2.42. (a) For any complete concrete monoidalW ∗-categoryR =
(R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) let cuD⊣⊆

R be the mapping from the
object set of D(R) to that of R which assigns to any object Ìr of D(R) the
unique object r of R with HR,r = H and ak ∈ MorR(rk, r) for any k ∈ ∆,
where (H, (rk, ak)k∈∆) ∈ Ìr can be arbitrary.

(b) If R = (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) is any concrete monoidal
W ∗-category, let unD⊣⊆

R be the mapping from the object class of R to that
of D(R) with, for any object r of R,

r ↦ {r̃ ∈ R̃ ∧ r̃ ≃R (HR,r, (r, idHR,r
))}.

cuD⊣⊆ is the co-unit and unD⊣⊆ the unit of an adjunction between D as left adjoint
and the inclusion functor which forgets that a concrete monoidal W ∗-category is
complete. In other words, the category of complete rigid monoidal W ∗-categories is
a reflective subcategory of the category of not necessarily complete rigid monoidal
W ∗-categories. In particular, cuD⊣⊆ is a natural isomorphism. Implict in [Wor88,
Proposition 2.7] are the following statements.

Proposition 2.43. (a) cuD⊣⊆
S is a strict concrete strict monoidal W ∗-func-

tor D(S)→ S and a bijective mapping with inverse unD⊣⊆
S for any complete

rigid monoidal W ∗-category S.
(b) unD⊣⊆

R is a strict concrete strict monoidal W ∗-functor R → D(R) for any
(not necessarily complete) rigid monoidal W ∗-category R.

(c) cuD⊣⊆
S′ ○D(G) = G○cuD⊣⊆

S for any strict concrete strict monoidal W ∗-functor
G∶ S → S′ and any complete rigid concrete monoidal W ∗-categories S and
S′.
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(d) unD⊣⊆
R′ ○F = D(F )○unD⊣⊆

R for any strict concrete strict monoidal W ∗-functor
F ∶ R → R′ and any (not necessarily complete) rigid concrete monoidal W ∗-
categories R and R′.

(e) idD(R) = cuD⊣⊆
D(R) ○D(unD⊣⊆

R ) for any (not necessarily complete) rigid concrete

monoidal W ∗-category.
(f) idS = cuD⊣⊆

S ○ unD⊣⊆
S (and also idD(S) = unD⊣⊆

S ○ cuD⊣⊆
S ) for any complete rigid

concrete monoidal W ∗-category.

2.5.6. Representees of complete rigid monoidal W ∗-categories. The definition of
T yields a construction of the co-representee Hopf ∗-algebra in which the multipli-
cation is convenient to describe and the vector space structure is not. For complete
categories one can give a different construction which then has the opposite proper-
ties. However, this description is not constructive and purely relies on the axiom of
choice. It will only be used for theoretical purposes in this chapter.

Definition 2.44. Any object r of any concrete W ∗-category R ≡ (R, (Hr′)r′∈R,
(Mor(r′, r′′))(r′,r′′)∈R⊗R) is called irreducible in R if Mor(r, r) = CidHr . If R is even a
concrete monoidal W ∗-category, we call r irreducible in R if the same is true in the
underlying concrete W ∗-category of R. Moreover, any set Rirr of irreducible objects
of R is called complete if any irreducible object of R is equivalent to an element of
Rirr.

Equivalence preserves irreducibility. Conjugates of irreducible objects are irre-
ducibles. In any complete category, any object is a direct sum of irreducible objects.
(See [Wor88, Proposition 2.4].)

In order to make functorial statements, even stronger premises will be adopted
than in Assumption 2.32.

Assumptions 2.45. As before, fix an orthonormal basis (eHi )
nH
i=1 for any finite-

dimensional Hilbert space H. In addition, for any complete rigid concrete monoidal
W ∗-category R single out a complete set Rirr of pairwise inequivalent irreducible
objects of R.

Definition 2.46. (a) For any complete rigid monoidal W ∗-category R ≡
(R, (Hr)r∈R), (Mor(r, r′))(r,r′)∈r⊗r, ⋅), if nr = dimC(Hr) for each r ∈ R, then
we call the tuple (A,m,1,∗,∆, ϵ, S), where

(i) A is the free vector space over the set {([r], j, i) ∣ r ∈ Rirr ∧ {i, j} ⊆ ⟦nr⟧},
whose objects will from now on be addressed as u

[r]
j,i ≡ ([r], j, i) for any

r ∈ Rirr and {i, j} ⊆ ⟦nr⟧, where [r] denotes the set of all objects of R
equivalent to r in R for each r ∈ R,

(ii) m is the unique linear map A⊗A → A such that for any {r, r′} ⊆ Rirr,
if k ∈ N and if (rs, ps)ks=1 is such rs ∈ Rirr and ps ∈ Mor(rs, r ⋅ r′) for
each s ∈ ⟦k⟧ and ∑ks=1 psp∗s = idHr⋅r′ , then for any {i, j} ⊆ ⟦nr⟧ and
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{i′, j′} ⊆ ⟦nr′⟧,

u
[r]
j,i ⊗ u

[r′]
j′,i′ ↦

k

∑
s=1

nrs

∑
xs,ys=1

ps(j,j′),ysp
s
(i,i′),xs u

[rs]
ys,xs

where for any s ∈ ⟦k⟧, any xs ∈ ⟦nrs⟧, any j ∈ ⟦nr⟧ and any j′ ∈ ⟦nr′⟧,
ps(j,j′),xs = ⟨e

Hr
j ⊗ eHr′

j′ ∣ pse
Hrs
xs ⟩Hrs

,

(iii) 1 is given by u
[1]
1,1, where the 1 in brackets is the monoidal unit of R.

(iv) ∗ is the linear map A→ Acj with for any r ∈ Rirr and {i, ℓ} ⊆ ⟦nr⟧,

u
[r]
ℓ,i ↦

nr

∑
j,k

brℓ,ka
r
j,i u

[r]
k,j,

where for any {i, j} ⊆ ⟦nr⟧,
arj,i = ⟨eHr

j ∣ jr(eHr
i )⟩Hr

∧ brj,i = ⟨j−1r (eHr
i ) ∣ eHr

j ⟩Hr

(v) ∆ is the linear map A→ A⊗A with for any r ∈ Rirr and {i, k} ⊆ ⟦nr⟧,

u
[r]
k,i ↦

nr

∑
j=1
u
[r]
k,j ⊗ u

[r]
j,i

(vi) ϵ is the linear functional on A with for any r ∈ Rirr and {i, j} ⊆ ⟦nr⟧,
u
[r]
j,i ↦ δj,i,

(vii) S is the linear endomorphism of A with for any r ∈ Rirr and {i, ℓ} ⊆ ⟦nr⟧,

u
[r]
ℓ,i ↦

nr

∑
j,k=1

bri,ja
r
k,ℓ u

[r]
j,k,

the Tannaka-Krein co-dual E(R) of R. Moreover, we speak of the
formal dual of E(R) as the Tannaka-Krein dual of R.

(b) For any strict concrete strict monoidal W ∗-functor F ∶ R → S and any pair of
complete rigid concrete monoidal W ∗-categories R ≡ (R, (HR,r)r∈r, (MorR(r,
r′))(r,r′)∈R⊗R, ⋅R) and S ≡ (S, (HS,s)s∈s, (MorS(s, s′))(s,s′)∈S⊗S, ⋅S) we call the
unique linear ψ map from the underlying vector space of E(R) to that
of E(S) such that for any r ∈ Rirr, if k ∈ N and if (sg, qg)kg=1 is such that

qg ∈MorS(sg, F (r)) for each g ∈ ⟦k⟧ and∑kg=1 qgq∗g = idHS,F (r) , then ψ satisfies
for any {i, j} ⊆ ⟦nr⟧,

u
[r]
j,i ↦

k

∑
g=1

msg

∑
ag ,bg=1

qgj,bgq
g
i,ag

v
[sg]
bg ,ag

where u
[r]
j,i is short for ([r], j, i) for any {i, j} ⊆ ⟦nr⟧, where, similarly, v

[sg]
bg ,ag

is short for ([sg], bg, ag) for any {bg, ag} ⊆ ⟦msg⟧ and g ∈ ⟦k⟧, and where for
any g ∈ ⟦k⟧, any ag ∈ ⟦msg⟧ and any j ∈ ⟦nr⟧,

qgj,ag = ⟨e
S,F (r)
j ∣ qgeS,sgag ⟩HS,sg

,
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the Tannaka-Krein co-dual E(F ) of F . Likewise, the formal dual of E(F )
is called the Tannaka-Krein dual of F .

E is a functor from the category of complete rigid monoidal W ∗-categories and
strict concrete strict monoidal W ∗-functors to the category of CQG Hopf ∗-algebras.

Proposition 2.47. (a) E(R) is a CQG Hopf ∗-algebra for any complete
rigid concrete monodial W ∗-caetgory R.

(b) E(F ) is a morphism E(R) → E(R′) of CQG Hopf ∗-algebras for any strict
concrete strict monoidal W ∗-functor F ∶ R → R′.

(c) E(F ′○F ) = E(F ′)○E(F ) for any strict concrete strict monoidalW ∗-functors
F ∶ R → R′ and F ′∶ R′ → R′′ and any complete rigid concrete monoidal W ∗-
categories R, R′ and R′′.

(d) E(idR) = idE(R) for any complete rigid concrete monoidal W ∗-category R.

In fact, E is an equivalence, as explained below.

Definition 2.48. (a) For any CQG Hopf ∗-algebra H = (A,m,1,∗,∆, ϵ, S),
if R ≡ (R, (Hr)r∈R, (Mor(r, r′))(r,r′)∈r⊗r, ⋅) is given by C(H), let cu

E⊣∣C
H be the

unique linear map from the underlying vector space of E(C(H)) to A such
that for r ∈ Rirr and any {i, j} ⊆ ⟦nr⟧,

([r], j, i)↦ urj,i,

where nr = dimC(Hr) and where (urj,i)(j,i)∈⟦nr⟧⊗2 is the matrix of the co-

representation r of (A,∆) with respect to (eHr
i )nr

i=1.
(b) For any complete rigid concrete monoidal W ∗-category R ≡ (R, (Hr)r∈R,
(Mor(r, r′))(r,r′)∈R⊗R, ⋅ ), if (A,m,1,∗,∆, ϵ, S) is given by E(R), let un

E⊣∣C
R

be the the mapping from R to the set of all unitary co-representations of
(A,m,1,∗,∆) such that for any r ∈ R,

r ↦ ur,

where, if nr = dimC(Hr), and if (EHr
j,i )(j,i)∈⟦nr⟧⊗2 are the matrix units of

(eHr
i )i∈⟦nr⟧, then

ur = ∑nf

i,j=1E
Hr
j,i ⊗ urj,i,

where, if k ∈ N and if (rs, ps)ks=1 is such that rs ∈ Rirr and ps ∈Mor(rs, r) for
each s ∈ ⟦k⟧ and ∑ks=1 psp∗s = idHr , then for any {i, j} ⊆ ⟦nr⟧,

urj,i =
k

∑
s=1

nrs

∑
xs,ys=1

psj,ysp
s
i,xs

u
[rs]
ys,xs ,

where u
[rs]
ys,xs is short for ([rs], ys, xs) for any {xs, ys} ⊆ ⟦nrs⟧ and s ∈ ⟦k⟧,

and where for any s ∈ ⟦k⟧, any xs ∈ ⟦nrs⟧, and any j ∈ ⟦nr⟧,
psj,xs = ⟨e

Hr
j ∣ pse

Hrs
xs ⟩Hr .
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(c) For any (not necessarily complete) rigid monoidal W ∗-category R ≡ (R,
(HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R ), if the complete rigid concrete monoi-
dal W ∗-category S ≡ (S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S, ⋅S ) is given by
D(R), then let wR be the unique linear map from the vector space underly-
ing E(S) to that underlying T(R) with the property that for any s ∈ Sirr, if
(HS,s, (rk, ak)k∈∆) ∈ s is any representative of s, then for any {x, y} ⊆ ⟦ms⟧,

v
[s]
y,x ↦ ∑

k∈∆

nrk

∑
ik,jk=1

aky,jka
k
x,ik

urkjk,ik ,

where ms = dimC(HS,s), where nrk = dimC(HR,rk) for any k ∈ ∆, where

v
[s]
y,x is short for ([s], y, x), where urkjk,ik is short for (rk, jk, ik) for any k ∈ ∆

and any {ik, jk} ⊆ ⟦nrk⟧, and where for any k ∈ ∆, any y ∈ ⟦ms⟧ and any
ik ∈ ⟦nrk⟧,

aky,ik = ⟨e
HS,s
y ∣ ake

HR,rk
ik
⟩HS,s

.

cuE⊣∣C is the co-unit and unE⊣∣C the unit of an adjoint equivalence E ⊣ ∣C, where
∣C is given by C, but interpreted as taking values in the category of complete rigid
monoidal W ∗-categories. Moreover, w is a natural isomorphism from E ○ D to T.
The following is a more explicit version of [Wor88, Theorem 1.3] and the combined
implication of the statements in [Wor88, Section 3].

Proposition 2.49. (a) cu
E⊣∣C
H is an isomorphism of CQG Hopf ∗-algebras

from E(C(H)) to H for any CQG Hopf ∗-algebra H.

(b) un
E⊣∣C
S is a strict concrete strict monoidal W ∗-functor from S → C(E(S))

as well as a bijective mapping and its inverse mapping is a strict concrete
strict monoidal W ∗-functor C(E(S)) → S for any complete rigid concrete
monoidal W ∗-category S.

(c) cu
E⊣∣C
H′ ○E(C(ψ)) = ψ ○ cu

E⊣∣C
H for any morphism ψ∶ H →H ′ of CQG Hopf ∗-

algebras and any CQG Hopf ∗-algebras H and H ′.

(d) un
E⊣∣C
S′ ○G = C(E(G)) ○ un

E⊣∣C
S for any strict concrete strict monoidal W ∗-

functor G∶ S → S′ and any complete rigid concrete monoidal W ∗-categories
S and S′.

(e) idE(S) = cu
E⊣∣C
E(S) ○ E(un

E⊣∣C
S ) for any complete rigid concrete monoidal W ∗-

category S.

(f) idC(H) = C(cu
E⊣∣C
H ) ○ un

E⊣∣C
C(H) for any CQG Hopf ∗-algebra.

(g) wR is an isomorphism of CQG Hopf ∗-algebras from E(D(R)) to T(R) for
any (not necessarily complete) rigid concrete monoidal W ∗-category.

(h) wR′ ○E(D(F )) = T(F )○wR for any strict concrete strict monoidal W ∗-func-
tor F ∶ R → R′ and any (not necessarily complete) rigid concrete monoidal
W ∗-categories R and R′.

2.6. Tannaka-Krein representees of full subcategory inclusions. From
what has been said so far we only know that T is a left-adjoint functor and thus
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preserves co-limits. If we are interested in limits of CQG Hopf ∗-algebras this does
not help us. However, we can still utilize T in order to find at least certain limits
in the category CQG Hopf ∗-algebras. Namely, this section explains why Tannaka-
Krein representees of “full subcategory inclusions” are injective CQG Hopf ∗-algebra
morphisms.

Definition 2.50. For any (not necessarily complete) concrete W ∗-categories R ≡
(R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R) and S ≡ (S, (HS,s)s∈S, (MorS(s, s′))(s,s′)∈S⊗S)
any strict concrete W ∗-functor F ∶ R → S is called full if MorR(r, r′) = MorS(F (r),
F (r′)) for any {r, r′} ⊆ R.

If R and S are even concrete monoidal W ∗-categories and F a strict concrete
strict monoidal W ∗-functor from R to S, we call F full if F is full considered as a
concrete W ∗-functor between the underlying concrete W ∗-categories.

Lemma 2.51. For any full strict concrete strict monoidal W ∗-functor F ∶ R → S
between any (not necessarily complete) rigid conrete monoidal W ∗-cateogories the
following are true:

(a) F is an injective mapping between the object sets.
(b) Any object r of R is irreducible in R if and only if F (r) is irreducible in S.
(c) Any two objects r and r′ of R are equivalent in R if and only if F (r) and

F (r′) are equivalent in S.
(d) The completion D(F ) of F is full.

Proof. Let R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R) and S ≡ (S, (HS,s)s∈S,
(MorS(s, s′))(s,s′)∈S⊗S).

(a) Let {r, r′} ⊆ R be such that F (r) = F (r′). Then, because F is a strict concrete
W ∗-functor, HR,r =HS,F (r) =HS,F (r′) =HR,r′ . Therefore and because S is a concrete
W ∗-category, idHR,r

= idHS,F (r) ∈MorS(F (r), F (r)) =MorS(F (r), F (r′)). And as F

is full that implies idHR,r
∈ MorS(F (r), F (r′)) = MorR(r, r′). Thus we have shown

HR,r = HR,r′ and idHR,r
∈ MorR(r, r′), which requires r = r′ by the definition of R

being a concrete W ∗-category. In conclusion, F is injective.
(b) By definition, any object r of R is irreducible in R if and only if any element

of MorR(r, r) is a multiple of idHR,r
. Likewise, F (r) is irreducible in S if and

only if MorS(F (r), F (r)) consists of multiples of idHS,F (r) exclusively. Since F is a

full strict concrete W ∗-functor, HS,F (r) = HR,r and MorS(F (r), F (r)) =MorR(r, r).
Hence, the two conditions are actually equivalent.

(c) According to the definition, r and r′ are equivalent in R if MorR(r, r′) contains
a unitary. Likewise, F (r) and F (r′) are equivalent in S if the morphism space
MorS(F (r), F (r′)) contains a unitary. Since F is a full strict concrete W ∗-functor,
MorS(F (r), F (r′)) =MorR(r, r′). Thus, the two conditions are equivalent.

(d) Let ÌR ≡ ( ÌR, (HÌR,Ìr)Ìr∈ÌR, (MorÌR(Ìr,Ìr′))(Ìr,Ìr′)∈ÌR⊗ÌR) be D(R), let ÌS ≡ (ÌS, (HÌS,Ìs)Ìs∈ÌS,
(MorÌS(Ìs,Ìs′))(Ìs,Ìs′)∈ÌS⊗ÌS) be D(S), let ÌF be D(F ) and let {Ìr,Ìr′} ⊆ ÌR be arbitrary.

For any representatives (H, (rk, ak)k∈∆) ∈ Ìr and (H ′, (r′k′ , a′k′)k′∈∆′) ∈ Ìr′ and any t

the statement that t ∈ MorÌS( ÌF (Ìr), ÌF (Ìr′)) by definition means that t ∈ [H,H ′] and
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(a′k′)∗tak ∈ MorS(F (rk), F (r′k′)) for any (k, k′) ∈ ∆ ⊗ ∆′. Since F is full and thus
MorS(F (rk), F (r′k′)) =MorR(rk, r′k′) for any (k, k′) ∈∆⊗∆′ in this situation, we see
that t ∈ MorÌS(F (Ìr), F (Ìr′)) holds if and only t ∈ [H,H ′] and (a′k′)∗tak ∈ MorR(rk,
r′k′) for any (k, k′) ∈∆⊗∆′, which is to say t ∈MorÌR(Ìr,Ìr′). Thus, D(F ) is full. □

2.6.1. Injectivity on the Hopf ∗-algebraic level. Using Woronowicz’s two Tan-
naka-Krein theorems recalled in Section 2.5 and using Lemma 2.51 we prove in two
steps that the Tannaka co-representees of full strict concrete strict monoidal W ∗-
functors are injective (see Proposition 2.53).

Lemma 2.52. E(F ) is injective for any full strict concrete strict monoidal W ∗-
functor between any complete rigid monoidal W ∗-categories.

Proof. Let R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R) and S ≡ (S, (HS,s)s∈S,
(MorS(s, s′))(s,s′)∈S⊗S) be be the complete rigid concrete monoidal W ∗-categories
with F ∶ R → S, let AR and AS be the vector spaces underlying the CQG Hopf ∗-
algebras E(R) and E(S), respectively, and write ψ for T(F ). We let x ∈ AR be
arbitrary with ψ(x) = 0 and prove x = 0.

If nr = dimC(HR,r) for any r ∈ R, then by definition the vector space AR is free
over {([r], jr, ir) ∣ r ∈ Rirr ∧ {ir, jr} ⊆ ⟦nr⟧}. Hence, there exists a set {zrjr,ir ∣ r ∈
Rirr ∧ {ir, jr} ⊆ ⟦nr⟧} ⊆ C with only finitely many non-zero elements such that

x = ∑
r∈Rirr

nr

∑
ir,jr=1

zrjr,ir u
[r]
jr,ir

,

where u
[r]
jr,ir

is short for ([r], jr, ir) for any r ∈ Rirr and {ir, jr} ⊆ ⟦nr⟧. Since F is full
for any r ∈ Rirr the object F (r) is irreducible in S by Lemma 2.51 (b). Because Sirr is
a complete system of irreducible objects of S there must then exist for each r ∈ Rirr

an object sr ∈ Sirr and a unitary operator pr∶ HS,sr → HS,F (r) with pr ∈ MorS(sr,
F (r)). In particular, then, dimC(HS,sr) = nr for any r ∈ Rirr and the definition of ψ
implies that then for any r ∈ Rirr and any {ir, jr} ⊆ ⟦nr⟧,

ψ(u[r]jr,ir) =
nr

∑
xr,yr=1

prjr,yrz
r
jr,irp

r
ir,xr

v
[sr]
yr,xr ,

where v
[sr]
yr,xr is short for ([sr], yr, xr) for any {xr, yr} ⊆ ⟦nr⟧ and where for any

{jr, xr} ⊆ ⟦nr⟧,
prjr,xr = ⟨e

S,F (r)
jr

∣ preS,srxr ⟩HS,F (r) .

Thus, in total,

0 = ψ(x) = ∑
r∈Rirr

nr

∑
ir,jr=1

nr

∑
xr,yr=1

prjr,yrz
r
jr,irp

r
ir,xr

v
[sr]
yr,xr .

Moreover, not only is F itself, seen as a mapping between the objects sets, in-
jective by Lemma 2.51 (a), but by Lemma 2.51 (c) so is the induced mapping
Rirr → {[s] ∣ s ∈ Sirr} with r ↦ F (r) for any r ∈ Rirr. Because AS is free over
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{v[s]ys,xs ∣ s ∈ Sirr ∧ {xs, ys} ⊆ ⟦ms⟧}, where ms = dimC(HS,s) for any s ∈ S, the above
identity actually requires that for any r ∈ Rirr and any {xr, yr} ⊆ ⟦nr⟧,

0 =
nr

∑
ir,jr=1

prjr,yrz
r
jr,irp

r
ir,xr

.

In other words, for any r ∈ Rirr, if Pr = (prjr,ir)(jr,ir)∈⟦nr⟧⊗2 and Zr = (zrjr,ir)(jr,ir)∈⟦nr⟧⊗2 ,
then (Pr)∗(Zr)tPr = 0. Because Pr, being the coordinate matrix of the unitary
operator pr, is a unitary matrix, that demands Zr = 0 for any r ∈ Rirr. It follows
zrjr,ir = 0 for any r ∈ Rirr and {ir, jr} ⊆ ⟦nr⟧, which is to say x = 0. That is what we
needed to see. □

Proposition 2.53. T(F ) is injective for any full strict concrete strict monoidal
W ∗-functor between any (not necessarily complete) rigid concrete monoidal W ∗-
categories.

Proof. If R and S are such that F ∶ R → S, then wS ○ E(D(F )) = T(F ) ○wR by
Proposition 2.49 (h), where both wR∶ E(D(R)) → T(R) and wS ∶ E(D(S)) → T(S)
are invertible CQG Hopf ∗-algebra morphisms by Proposition 2.49 (g) and thus in
particular bijective. Consequently, T(F ) = wS ○ E(D(F )) ○ w−1

R is injective if and
only if E(D(F )) is injective. Because F being full implies that also D(F ) is full by
Lemma 2.51 (d) and because the domain D(R) and co-domain D(S) are complete
rigid monoidal W ∗-categories by Proposition 2.41 (a) the claim now follows from
Lemma 2.52. □

2.6.2. Injectivity on the reduced C∗-level. It remains to prove that also the re-
duced CQG C∗-algebra morphisms induced by the Tannaka-Krein co-representees of
full strict concrete strict monoidal W ∗-functors are injective (see Proposition 2.57).

In terms of the matrix coefficients of irreducible co-representations the integral
of any CQG Hopf ∗-algebra has very simple coordinates. The following characteri-
zation is implied by, for example, [Tim08, Corolary 3.2.7].

Proposition 2.54. The integral of any CQG Hopf ∗-algebra (A,m,1,∗,∆, ϵ, S)
is the unique linear functional h on A with the property that for any system I of
pairwise inequivalent irreducible unitary co-representations of (A,m,1,∗,∆) and any
ur ∈ I, if r is equivalent to the trivial co-representation 1, then h(ur) = 1 and
otherwise h(urj,i) = 0 for any {i, j} ⊆ ⟦nr⟧ and the matrix (urj,i)(j,i)∈⟦nr⟧⊗2 of ur with
respect to any basis of the carrier space.

Lemma 2.55. For any complete rigid concrete monoidal W ∗-categories R and S
and any full strict concrete strict monoidal W ∗-functor F ∶ R → S, if hE(R) and hE(S)
are the respective integrals of the CQG Hopf ∗-algebras E(R) and E(S), then

hE(S) ○ E(F ) = hE(R).

Proof. Proposition 2.49 (d) guarantees that un
E⊣∣C
S ○F = C(E(F ))○un

E⊣∣C
R , where

both un
E⊣∣C
R and un

E⊣∣C
S are invertible and have inverses that are also strict concrete
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monoidal W ∗-functors by Proposition 2.49 (b). That makes un
E⊣∣C
R and un

E⊣∣C
S full, in

particular. Because F is full by assumption and because compositions of full functors

are full, C(E(F )) = un
E⊣∣C
S ○ F ○ (un

E⊣∣C
R )−1 is thus full as well. According to Lem-

ma 2.51 (b) then, C(E(R)) is mapped by F to irreducible objects of C(E(F )). In fact,
by Lemma 2.51 (c) the images of C(E(R)) under F form a set of pairwise inequivalent
irreducible objects of S. By the axiom of choice we may thus complete this set to a
complete system I of pairwise inequivalent irreducible objects of C(E(F )). For any
y ∈ I Proposition 2.54 implies (id⊗ hE(S))(y) = δ1,y, where 1 is the monoidal unit of
C(E(S)). In particular, ((id⊗hE(S))○C(E(F )))(x) = δ1,x for any x ∈ C(E(R)), where,
now, 1 is the monoidal unit of C(E(S)). Since ((id ⊗ hE(S)) ○ C(E(F )))(x) = (id ⊗
(hE(S)○E(F )))(x) by definition of C we have thus shown (id⊗(hE(S)○E(F )))(x) = δ1,x
for any x ∈ C(E(R)). According to Proposition 2.54 that proves (id ⊗ (hE(S) ○
E(F )))(x) = (id⊗ hE(R))(x) for any x ∈ C(E(R)) and thus the claim. □

Lemma 2.56. For any (not necessarily complete) rigid monoidal W ∗-categories
R and S and any full strict concrete strict monoidal W ∗-functor F ∶ R → S, if hT(R)
and hT(S) are the respective integrals of the CQG Hopf ∗-algebras T(R) and T(S),
then

hT(S) ○T(F ) = hT(R).

Proof. D(R) and D(S) are complete rigid concrete monoidal W ∗-categories
and D(F ) is a strict concrete strict monoidal W ∗-functor D(R) → D(S) accord-
ing to Proposition 2.41. Moreover, D(F ) is full by Lemma 2.51 (d).Hence, if
hE(D(R)) and hE(D(S)) denote the integrals of E(D(R)) and E(D(S)), respectively,
then hE(D(S)) ○E(T(F )) = hE(D(R)) by Lemma 2.55. Since wS ○E(D(F )) = T(F ) ○wR
by Proposition 2.49 (h), where both wR∶ E(D(R))→ T(R) and wS ∶ E(D(S))→ T(S)
are invertible by Proposition 2.49 (g) it follows that E(D(F )) = w−1

S ○T(F )○wR. Thus
we have shown the identity hE(D(S)) ○w−1

S ○T(F ) ○wR = hE(D(R)), which is equivalent
to the statement that hE(D(S)) ○ w−1

S ○ T(F ) = hE(D(R)) ○ w−1
R . But, of course, since

w−1
S and w−1

R are CQG Hopf ∗-algebra isomorphisms, they preserve the integrals,
meaning that hE(D(S)) ○w−1

S = hT(S) and hE(D(R)) ○w−1
R = hT(R). And that proves the

claim. □

Proposition 2.57. R(T(F )) is injective for any full strict concrete strict mo-
noidal W ∗-functor F .

Proof. Let R ≡ (R, (HR,r)r∈R, (MorR(r, r′))(r,r′)∈R⊗R, ⋅R) and S ≡ (S, (HS,r)r∈S,
(MorS(r, r′))(r,r′)∈S⊗S, ⋅S) be the rigid concrete monoidal W ∗-categories such that
F ∶ R → S. Moreover, let HR ∶= (AR,mR,1R,∗R,∆R, ϵR, SR) be given by T(R) and
HS ∶= (AS,mS,1S,∗S,∆S, ϵS, SS) by T(S) and abbreviate ψ ∶= T(F ). Let hR and
hS be the integrals of HR respectively HS and let ⟨⋅ ∣ ⋅⟩R ∶= hRmR(∗Rcj ⊗ idAR

)
and ⟨⋅ ∣ ⋅⟩S ∶= hSmS(∗Scj ⊗ idAS

) be the respective associated scalar products and
∣ ⋅ ∣R and ∣ ⋅ ∣S the norms on AR induced by ⟨⋅ ∣ ⋅⟩R respectively on AS induced by
⟨⋅ ∣ ⋅⟩S. Let ∥ ⋅ ∥R be the left regular representation operator norm associated with
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∣ ⋅ ∣R, i.e., the norm on AR defined by a ↦ sup{∣ab∣R ∣ b ∈ AR ∧ ∣b∣R = 1} for any
a ∈ AR, and let, likewise, ∥ ⋅ ∥S be the left regular representation operator norm
associated with ∣ ⋅ ∣S. Let CR ∶= (A′

R,m
′
R,1

′
R,∗′R, ∥ ⋅ ∥′R,∆′

R) be given by R(T(R)) and
CS ∶= (A′

S,m
′
S,1

′
S,∗′S, ∥ ⋅ ∥′S,∆′

S) by R(T(S)), let φ ∶= R(T(F )) and let jR and jS be
the respective inclusions of the normed spaces (AR, ∥ ⋅ ∥R) and (AS, ∥ ⋅ ∥S) into their
respective Banach completions (A′

R, ∥ ⋅ ∥′R) and (A′
S, ∥ ⋅ ∥′S). We show in two steps

that φ is injective.
Step 1: We prove that ∥a∥R ≤ ∥ψ(a)∥S for any a ∈ AR. Indeed, because ψ is a ∗-

algebra morphism, first,

(∣ψ(a)∣S)2 = ⟨ψ(a) ∣ ψ(a)⟩S = hS(ψ(a)∗ψ(a)) = hS(ψ(a∗a)) = hR(a∗a) = ⟨a ∣ a⟩R
= (∣a∣R)2,

where we have used use the fact that hSψ = hR by Lemma 2.56 in the fourth step.
In other words, ψ is an isometry from (AR, ∣ ⋅ ∣R) to (AS, ∣ ⋅ ∣S). If I is the image

of ψ in AS, it thus follows for any a ∈ AR,

∥a∥R = sup{∣ab∣R ∣ b ∈ AR ∧ ∣b∣R = 1}
= sup{∣ψ(ab)∣S ∣ b ∈ AR ∧ ∣ψ(b)∣S = 1}
= sup{∣ψ(a)y∣S ∣ y ∈ I ∧ ∣y∣S = 1}
≤ sup{∣ψ(a)y∣S ∣ y ∈ AS ∧ ∣y∣S = 1}
= ∥ψ(a)∥S,

where we have used the fact that ψ is an algebra morphism in the third step.
Step 2: Using Step 1 we show that φ is injective. Given any x ∈ A′

R with φ(x) = 0
and any δ ∈ R with 0 < δ, by nature of (A′

R, ∥ ⋅ ∥′R) there exists aδ ∈ AR such that
∥x − jR(aδ)∥′R < δ. Because φ = R(ψ) is a morphism of C∗-algebras φ is a bounded
linear map from (A′

R, ∥ ⋅ ∥′R) to (A′
S, ∥ ⋅ ∥′S). Hence, there exists λ ∈ R with 0 ≤ λ

such that ∥φ(b′)∥′S ≤ λ∥b′∥′R for any b′ ∈ A′
R. Using what we have just shown and the

facts that jR is isometric from (AR, ∥ ⋅ ∥R) to (A′
R, ∥ ⋅ ∥′R), that jS is isometric from

(AS, ∥ ⋅ ∥S) to (A′
S, ∥ ⋅ ∥′S) and that jSψ = φjR, we conclude

∥jR(aδ)∥′R = ∥aδ∥R
≤ ∥ψ(aδ)∥S
= ∥jS(ψ(aδ))∥′S
= ∥0 − φ(jR(aδ))∥′S
= ∥φ(x) − φ(jR(aδ))∥′S
= ∥φ(x − jR(aδ))∥′S
≤ λ∥x − jR(aδ)∥′R
≤ λδ

and thus by the reverse triangle inequality,

∥x∥′R − λδ ≤ ∥x∥′R − ∥jR(aδ)∥′R ≤ ∣∥x∥′R − ∥jR(aδ)∥′R∣ ≤ ∥x − jR(aδ)∥′R < δ.
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In consequence, ∥x∥′R < (1+λ)δ for any δ ∈ R with 0 < δ. That requires ∥x∥′R = 0 and
thus x = 0. Hence, φ is injective. □

3. General categories of partitions and easy quantum groups

Section 3 introduces categories of “labeled partitions” as studied by Freslon in
[Fre17] and the so-called “easy” quantum groups they induce by Tannaka-Krein
duality.

3.1. Fundamentals. Throughout the remainder of the chapter the following
notation will be used for basic constructions around sets and mappings between
them.

Definition 3.1. Let X and Y be any sets and f ∶X → Y any mapping.
(a) For any subset A of X write f→(A) ∶= {f(a) ∣a ∈ A} for the image of A with

respect to f . Also, let ran(f) ∶= f→(X).
(b) Dually, for any subset B of Y denote by f←(B) ∶= {a ∈ X ∣ f(a) ∈ B} the

pre-image of B with respect to f .
(c) A (set-theoretical) partition of X is any non-empty subset p of the power

set ℘(X) of X such that A ∩ B = ∅ for any {A,B} ⊆ p with A ≠ B and such
that ⋃p =X. If so, the elements of p are referred to as its blocks.

(d) Given any partition p of X, the quotient map associated to p is defined as
the mapping πp∶ X → p with graph {(a,B) ∣B ∈ p ∧ a ∈ B}.

(e) For any partition p of X the binary relation ∼p ∶= {(a,b) ∣B ∈ p ∧ {a,b} ⊆ B}
on X is called the equivalence relation associated with p.

(f) For any partition p of X, if f(a) = f(b) for all {a,b} ⊆ X with a ∼p b, we
write f/p ∶= {(B, f(a)) ∣B ∈ p ∧ a ∈ B} for the quotient of f by p.

(g) For any set Y and any mapping f ∶ X → Y the kernel partition of f is by
definition ker(f) ∶= {f←({a}) ∣a ∈ Y }/{∅}.

(h) Given any two partitions p and q of X, we say that p is finer than q or,
equivalently, that p refines q if for any A ∈ p there exists B ∈ q with A ⊆ B.
The operation of forming the join of any two partitions, i.e., the finest
partition refined by both, is denoted by ∨.

(i) For any subset W of X and any partition p of X we call p∣W ∶= {B ∩W ∣B ∈
p}/{∅} the restriction of p to W.

(j) Given any partition q of Y , the partition f⇠(q) ∶= {f←(C) ∣C ∈ q}/{∅} of X
is called the pull-back of q by f .

The following elementary observations will be used countless times and, from now
on, without further comment.

Remark 3.2. For any mapping f ∶ X → Y between any sets X and Y with power
sets ℘(X) and ℘(Y ), respectively, the following are true.

(a) A ⊆ (f← ○ f→)(A) = ⋃{A′ ∈ ker(f) ∧ A′ ∩A ≠ ∅} for any A ∈ ℘(X).
(b) (f→ ○ f←)(B) = B ∩ ran(f) ⊆ B for any B ∈ ℘(Y ).
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(c) f← ○ f→ = id℘(X) if and only if f is injective.
(d) f→ ○ f← = id℘(Y ) if and only if f is surjective.
(e) f⇠(q) ≤ f⇠(q′) for any partitions q and q′ of Y with q ≤ q′.

Moreover, at times, we will encounter cyclic orders and related concepts.

Definition 3.3. (a) A partial cyclic order on any set X is any ternary
relation Γ ≡ (⋅ ∣ ⋅ ∣ ⋅) on X such that for any {a,b,c,d} ⊆X,

(i) if (a ∣ b ∣ c), then (b ∣ c ∣ a) (cyclicity)
(ii) if (a ∣ b ∣ c), then not (c ∣ b ∣ a) (asymmetry)

(iii) if (a ∣ b ∣ c) and (a ∣ c ∣ d), then (a ∣ b ∣ d) (transitivity).
We then also call (X,Γ) a (partially) cyclically ordered set.

(b) Any partial cyclic order Γ ≡ (⋅ ∣ ⋅ ∣ ⋅) on any set X is called a total cyclic
order on X if for any {a,b,c} ⊆ X with c ≠ a ≠ b ≠ c either (a ∣ b ∣ c) or
(a ∣ c ∣ b). Then we also say that (X,Γ) is a totally cyclically ordered set.

(c) Given any two cyclically ordered sets (X, (⋅ ∣ ⋅ ∣ ⋅)) and (Y, [⋅ ∣ ⋅ ∣ ⋅]), any
mapping f from X to Y is called cyclically monotonic with respect to
(⋅ ∣ ⋅ ∣ ⋅) and [⋅ ∣ ⋅ ∣ ⋅] if for any {a,b,c} ⊆ X, whenever [f(a) ∣ f(b) ∣ f(c)],
then also (a ∣ b ∣ c).

(d) Any mapping between cyclically ordered sets is said to be cyclically strictly
monotonic if it is both cyclically monotonic and injective.

(e) In any totally cyclically ordered set (X, (⋅ ∣ ⋅ ∣ ⋅)) any subset A ⊆X is called
convex if for any {a,c} ⊆ A with a ≠ c one of the sets {b ∈ X ∧ (a ∣ b ∣ c)}
or {b ∈X ∧ (c ∣ b ∣ a)} is contained in A.

(f) With respect to any total cyclic order (⋅ ∣ ⋅ ∣ ⋅) on any set X any two disjoint
subsets A ⊆X and B ⊆X are said to cross each other if there exist {a1,a2} ⊆
A and {b1,b2} ⊆ A such that, simultaneously, (a1 ∣ b1 ∣ a2) and (b1 ∣ a2 ∣ b2)
and (a2 ∣ b2 ∣ a1). Otherwise, A and B are said to be non-crossing with
respect to (⋅ ∣ ⋅ ∣ ⋅).

(g) For any totally cyclically ordered set (X, (⋅ ∣ ⋅ ∣ ⋅)) and any x ∈ X the two
total linear orders {(x,a) ∣a ∈X}∪ {(a,b) ∣ {a,b} ⊆X ∧ ((x ∣ a ∣ b)∨ a = b)}
and {(a,x) ∣a ∈ X} ∪ {(a,b) ∣ {a,b} ⊆ X ∧ ((a ∣ b ∣ x) ∨ a = b)} on X are
called the left and right cut of (⋅ ∣ ⋅ ∣ ⋅) at x, respectively .

(h) Conversely, on any totally linearly ordered set (X,≤) (with associated strict
oder <) we say that the total cyclic order {(a,b,c) ∣ {a,b,c} ⊆X ∧ (a < b <
c ∨ b < c < a ∨ c < a < b)} on X is induced by ≤.

(i) Finally, for any n ∈ N0 and any set X with ∣X ∣ = n and any permutation ν
such that X = {ν○k(x)}n−1k=0 for some (or, equivalently, any) x ∈X we say that
the total cyclic order {(a, ν○k(a), ν○ℓ(a)) ∣a ∈ X ∧ {k, ℓ} ⊆ ⟦n − 1⟧ ∧ k < ℓ}
of X is associated with ν.

For example, the following will be important in the proof of Proposition 4.12.

Remark 3.4. (a) For any totally cyclically ordered sets (X, (⋅ ∣ ⋅ ∣ ⋅)) and
(Y, [⋅ ∣ ⋅ ∣ ⋅]), any mapping f from X to Y is cyclically monotonic with
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respect to (⋅ ∣ ⋅ ∣ ⋅) and [⋅ ∣ ⋅ ∣ ⋅] if and only if for any {a,b,c} ⊆X with f(c) ≠
f(a) ≠ f(b) ≠ f(c), whenever (a ∣ b ∣ c), then also [f(a) ∣ f(b) ∣ f(c)].

(b) In any totally cyclically ordered set (X,Γ) any subset A ⊆ X is convex if
and only if the sets A and X/A are non-crossing with respect to Γ.

3.2. Points. The “labeled partitions” to be defined will each have four ingre-
dients. The first one will be their set of “points”. The following definitions and
symbols will be used to refer to those efficiently. (The other constituents of a labeled
partition will be its “blocks”, “tags” and “colors”, covered in the next sections.)

Definition 3.5. Let {k, ℓ} ⊆ N0 be arbitrary.
(a) Fix any two injections i ↦ ◾i and j ↦ ◾j defined on N with ◾i ≠ ◾j for any
{i, j} ⊆ N.

(b) We call Πk
ℓ ∶= {◾i, ◾j ∣ i ∈ ⟦k⟧ ∧ j ∈ ⟦ℓ⟧} the total set of k upper and ℓ lower

points.
(c) Given any set Y , any {k, ℓ} ⊆ N0 and any mappings f ∶ ⟦k⟧ → Y and

g ∶ ⟦ℓ⟧ → Y we write f ◾
◾ g for the mapping Πk

ℓ → Y defined by ◾i ↦ f(i)
and ◾j ↦ g(j) for any i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.

(d) The successor function for k upper and ℓ lower points is the permutation
νkℓ of Πk

ℓ defined by ◾i ↦ ◾(i − 1) and ◾j ↦ ◾(j + 1) for all {i, j} ⊆ N with
1 < i ≤ k and 1 ≤ j < ℓ, by ◾ℓ ↦ ◾k if k ≠ 0 ≠ ℓ and ◾ℓ ↦ ◾1 if k = 0 < ℓ and by
◾1↦ ◾1 if k ≠ 0 ≠ ℓ and ◾1↦ ◾k if ℓ = 0 < k.

(e) By definition, the cyclic order Γkℓ ≡ (⋅ ∣ ⋅ ∣ ⋅)kℓ for k upper and ℓ lower points
is the total cyclic order associated with the successor function νkℓ .

(f) For any two sets S ⊆ Πk
ℓ and T ⊆ Πk

ℓ with S∩T = ∅ we write S �k
ℓ T if S and

T cross with respesct to Γkℓ and S×k
ℓ T otherwise.

(g) Given any {a,c} ⊆ Πk
ℓ with, importantly, a ≠ c the (open) cyclic interval

with respect to Γkℓ from a to c is the set ]a,c[kℓ ∶= {b ∈ Πk
ℓ ∧ (a ∣ b ∣ c)kℓ}.

Moreover, we let [a,c[kℓ ∶= {a}⊍]a,c[kℓ and ]a,c]kℓ ∶=]a,c[kℓ⊍{c} as well as
[a,c]kℓ ∶= {a}⊍]a,c[kℓ⊍{c}, speaking of right-open, left-open and closed in-
tervals, respectively.

(h) The linear order ≤kℓ for k upper and ℓ lower points is defined as the left cut
at ◾k if 0 < k and the right cut at ◾ℓ if 0 < ℓ (which is the same if both 0 < k
and 0 < ℓ). We write <kℓ for the associated strict linear order.

(i) The horizontal reflection onto k upper and ℓ lower points is the bijection
κkℓ ∶ Πℓ

k → Πk
ℓ with ◾j ↦ ◾j and ◾i↦ ◾i for any j ∈ ⟦ℓ⟧ and i ∈ ⟦k⟧.

(j) In contrast, the vertical reflection of k upper and ℓ lower points is the
bijection ρkℓ ∶ Πk

ℓ → Πk
ℓ defined by ◾i ↦ ◾(k − i + 1) and ◾j ↦ ◾(ℓ − j + 1) for

any i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.
(k) For any r ∈ {⤹, Á, ¹, ⤸} the r-rotation ωr,kℓ onto k upper and ℓ lower points

is defined,
(i) if 0 < k, as the bijection ω⤹,kℓ ∶ Πk−1

ℓ+1 → Πk
ℓ which satisfies ◾i↦ ◾(i + 1) for

any i ∈ ⟦k⟧/⟦1⟧ and ◾1↦ ◾1 and ◾j ↦ ◾(j − 1) for any j ∈ ⟦ℓ⟧.
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(ii) if 0 < ℓ, as the bijection ωÁ,kℓ ∶ Πk+1
ℓ−1 → Πk

ℓ which satisfies ◾i ↦ ◾i for any
i ∈ ⟦k⟧ and ◾j ↦ ◾j for any j ∈ ⟦ℓ − 1⟧ and

◾(k + 1)↦ ◾ℓ.

(iii) if 0 < ℓ, as the bijection ω¹,kℓ ∶ Πk+1
ℓ−1 → Πk

ℓ which satisfies ◾i↦ ◾(i − 1) for
any i ∈ ⟦k⟧ and ◾1↦ ◾1 and ◾j ↦ ◾(j + 1) for any j ∈ ⟦ℓ⟧/⟦1⟧.

(iv) if 0 < k, as the bijection ω⤸,kℓ ∶ Πk−1
ℓ+1 → Πk

ℓ which satisfies ◾(ℓ + 1) ↦ ◾k
and ◾i↦ ◾i for any i ∈ ⟦k − 1⟧ and ◾j ↦ ◾j for any j ∈ ⟦ℓ⟧.

(l) For any set S ⊆ Πk
ℓ , firstly, let α(S) = ∣Πk

0 ∩ S∣ be the upper point count of
S and β(S) = ∣Π0

ℓ ∩ S∣ the lower point count of S, secondly, let the upper
enumeration of S be the injection η k

S,ℓ ∶ ⟦α(S)⟧→ Πk
ℓ with the graph

{(∣Πi
0 ∩ S∣, ◾i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ S}

and the lower enumeration of S the injection θ k
S,ℓ ∶ ⟦β(S)⟧ → Πk

ℓ with the
graph

{(∣Π0
j ∩ S∣, ◾j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ S},

and, thirdly, let the insertion onto S for k upper and ℓ lower points be the

injection Π
α(S)
β(S) → Πk

ℓ defined by γ k
S,ℓ ∶= η k

S,ℓ
◾
◾ θ

k
S,ℓ .

3.3. Tags, colors and labels. While [MW20] and [MW21a] only dealt with
categories of two-colored partitions, now partitions with arbitrary labels, some two-
colored, some uncolored, are required. The setting here is equivalent to the one first
considered by Freslon in [Fre17].

Assumption 3.6. We fix any two sets ○ and ● with ○ ≠ ●. Moreover, we let ○ ∶= ●
and ● ∶= ○ and σ(○) ∶= 1 and σ(●) ∶= −1.

Definition 3.7. A choice of tags is any pair (U,O) of countable sets U and O
with U ∩O = ∅ and (U⊗ {○, ●}) ∩O = ∅.

Assumptions 3.8. In the following, let (U,O) be any choice of tags.

The role of the “color set” A in the sense of [Fre17, Definition 4] will be played
by (U ⊗ {○, ●}) ⊍O, where the involution is defined by (x, c) ↦ (x, c) for any x ∈ U
and c ∈ {○, ●} and by y ↦ y for any y ∈O.

Definition 3.9. Let {k, ℓ} ⊆ N0 as well as c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O and d∶ ⟦ℓ⟧→
(U⊗ {○, ●}) ⊍O be arbitrary.

(a) The elements of U ⊍O are called tags, those of U unitary tags and those of
O orthogonal tags.

(b) The tag function for k upper c-labeled and ℓ lower d-labeld points is the
mapping ξcd∶ Πk

ℓ → U⊍O which for any x ∈ U, any y ∈O, any i ∈ ⟦k⟧ and any
j ∈ ⟦ℓ⟧ satisfies ◾i ↦ x if ci ∈ {x} ⊗ {○, ●} and ◾i ↦ y if ci = y and ◾j ↦ x if
dj ∈ {x}⊗ {○, ●} and ◾j ↦ y if dj = y.

(c) For any z ∈ U ⊍O we call ξcd
←({z}) the z-area of k upper c-labeled and ℓ

lower d-labeled points. Moreover, we speak of ξcd
←(U) and ξcd

←(O) as the
unitary and orthogonal areas, respectively.
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(d) The normalized color function for k upper c-labeled and ℓ lower d-labeled
points is the mapping ζcd∶ ξkℓ ←(U) → {○, ●} which for any c ∈ {○, ●}, any
i ∈ ⟦k⟧ and any j ∈ ⟦ℓ⟧ satisfies ◾i ↦ c if and only if ci ∈ U⊗ {c} and ◾j ↦ c
if and only if dj ∈ U⊗ {c}.

(e) By definition, for any z ∈ U, the z-color sum for k upper c-labeled and ℓ
lower d-labeled points is the Z-valued measure zσc

d on Πk
ℓ which has density

σ ○ ζcd on ξcd
←({z}) and density 0 everywhere else.

(f) Moreover, for any z ∈ U we write zΣc
d ∶= zσc

d(Πk
ℓ ) for the total z-color sum of

k upper c-labeled and ℓ lower d-labeled points.
(g) For any z ∈ U we define the z-color distance for k upper c-labeled and ℓ

lower d-labeled points as the mapping zδcd∶ Πk
ℓ ⊗Πk

ℓ → Q with

(a,b)↦ {0 if a = b,
1
2 zσ

c
d({a}) + zσc

d(]a,b[kℓ ) + 1
2 zσ

c
d({b}) otherwise

for any {a,b} ⊆ Πk
ℓ .

The following is a generalization of [MW21a, Lemma 3.2].

Lemma 3.10. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ →
(U⊗ {○, ●}) ⊍O, any x ∈ U and any m ∈ Z, if xΣc

d ≡m 0, then
(a) xδcd(a,a) ≡m 0 for any a ∈ Πk

ℓ .
(b) xδcd(b,a) ≡m −xδcd(a,b) for any {a,b} ⊆ Πk

ℓ .
(c) xδcd(a,c) ≡m xδcd(a,b) + xδcd(b,c) for any {a,b,c} ⊆ Πk

ℓ .

Proof. (a) The even stronger xδcd(a,a) = 0 already holds by definition.
(b) The case a = b is covered by (a). If a ≠ b, then by the addivitiy of xσc

d,

xσ
c
d(]b,a[kℓ ) = xσc

d(Πk
ℓ /[a,b]kℓ )

= xσc
d(Πk

ℓ ) − xσ
c
d([a,b]kℓ )

= xΣc
d − xσ

c
d({a}) − xσ

c
d(]a,b[kℓ ) − xσ

c
d({b})

and thus

xδ
c
d(b,a) = 1

2xσ
c
d({b}) + xσ

c
d(]b,a[kℓ ) + 1

2xσ
c
d({a})

= xΣc
d − 1

2xσ
c
d({a}) − xσ

c
d(]a,b[kℓ ) − 1

2xσ
c
d({b})

= xΣc
d − xδ

c
d(a,b),

from which the assertion follows by xΣc
d ≡m 0.

(c) Whenever at least two of a, b and c coincide, the claim holds by (a) and (b).
In the case where a, b and c are pairwise distinct, either (a ∣ b ∣ c)kℓ or (a ∣ c ∣ b)kℓ .

If (a ∣ b ∣ c)kℓ , then

xσ
c
d(]a,c[kℓ ) = xσc

d(]a,b[kℓ⊍{b}⊍]b,c[kℓ ) = xσc
d(]a,b[kℓ ) + xσ

c
d({b}) + xσ

c
d(]b,c[kℓ )
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by the additivity of xσc
d, and thus

xδ
c
d(a,c)
= 1

2xσ
c
d({a}) + xσ

c
d(]a,c[kℓ ) + 1

2xσ
c
d({c})

= (12xσc
d({a}) + xσ

c
d(]a,b[kℓ ) + 1

2xσ
c
d({b})) + (12xσc

d({b}) + xσ
c
d(]b,c[kℓ ) + 1

2xσ
c
d({c}))

= xδcd(a,b) + xδ
c
d(b,c),

which proves the claim.
If, instead, (a ∣ c ∣ b)kℓ , then first,

xσ
c
d([c,b[kℓ )
= xσc

d(Πk
ℓ /[b,c[kℓ ) = xσc

d(Πk
ℓ ) − xσ

c
d([b,c[kℓ ) = xΣc

d − xσ
c
d({b}) − xσ

c
d(]b,c[kℓ )

and thus

xσ
c
d(]a,c[kℓ ) = xσc

d(]a,b[kℓ /[c,b[kℓ )
= xσc

d(]a,b[kℓ ) − xσ
c
d([c,b[kℓ )

= xσc
d(]a,b[kℓ ) − xΣ

c
d + xσ

c
d({b}) + xσ

c
d(]b,c[kℓ ),

which then implies

xδ
c
d(a,c) = 1

2xσ
c
d({a}) + xσ

c
d(]a,c[kℓ ) + 1

2xσ
c
d({c})

= −xΣc
d + (12xσc

d({a}) + xσ
c
d(]a,b[kℓ ) + 1

2xσ
c
d({b}))

+ (12xσc
d({b}) + xσ

c
d(]b,c[kℓ ) + 1

2xσ
c
d({c}))

= −xΣc
d + xδ

c
d(a,b) + xδ

c
d(b,c),

whence the claim follows by xΣc
d ≡m 0. □

3.4. Labeled partitions. With the definitions of points, blocks, tags and col-
ors at hand, we are ready for the definition of labeled partitions. Again, these are
called “colored partitions” in [Fre17].

Definition 3.11. (a) For any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O
and d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O a (U,O)-tagged partition of k upper c-labeled
and ℓ lower d-labeled points is any triple (c,d, p) where p is a set-theoretical
partition of Πk

ℓ . If the tags (U,O) are clear from context, we also speak of
a (c,d)-labeled partition for short.

(b) For any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ → (U ⊗
{○, ●}) ⊍O the set of all (c,d)-labeled partitions is denoted by U,OS(c,d).

(c) Moreover, let U,OS ∶= ⋃{U,OS(c,d) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O ∧
d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O}.

Remark 3.12. (a) If U = ∅ and ∣O∣ = 1, a (U,O)-tagged labeled partition is
the same as a partition in the sense of [BS09].

(b) In the case ∣U∣ = 1 and O = ∅, the (U,O)-tagged labeled partitions are the
same as two-colored partitions in the sense of [TW18].
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3.5. Categories of labeled partitions. Categories of labeled partitions can
be defined in several equivalent ways. For example, Proposition 3.26 shows that
there at least two. The results of this section are straightforward generalizations of
the corresponding statements for uncolored and two-colored partitions from [BS09],
[TW18] and [Fre17].

Definition 3.13. For any {k, ℓ,m} ⊆ N0, any a∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
b∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O and c∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍O and any partitions p of Πk

ℓ

and q of Πℓ
m, the composition of ((b, c, q), (a,b, p)) is defined as (a, c, qp), where

qp ∶=
{A ∈ p ∧ A ⊆ Πk

0}
⊍ {⋃{A ∩Πk

0 ∣A ∈ p ∧ A ∩ (κ0ℓ)→(B) ≠ ∅} ⊍⋃{C ∩Π0
m ∣C ∈ q ∧ C ∩B ≠ ∅}}

B∈s /{∅}
⊍ {C ∈ q ∧ C ⊆ Π0

m}
of Πk

m, where

s = ((κ0ℓ)⇠(p∣Π0
ℓ
)) ∨ (q∣Πℓ

0
).

Lastly, for the sake of uniformity, we can also write (b ◾
◾ c)(a ◾◾b) ∶= a ◾◾ c.

Definition 3.14. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O and d∶ ⟦ℓ⟧→
(U ⊗ {○, ●}) ⊍ O and any partition p of Πk

ℓ the adjoint of (c,d, p) is defined as
(c,d, p)∗ ∶= (d, c, p∗), where p∗ ∶= (κkℓ )⇠(p). Moreover, let (c ◾◾d)∗ ∶= d ◾◾ c.

Definition 3.15. For any k ∈ N0 and c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O let idc ∶= (c, c, idk)
be the identity of c, where idk ∶= ⊗k ≡ {{◾i, ◾i}}ki=1.

Notation 3.16. For any {m1,m2} ⊆ N0, any set X and any mappings f1∶ ⟦m1⟧→
X and f2∶ ⟦m2⟧ → X let f1 ▵ f2 denote the mapping ⟦m1 +m2⟧ → X with i ↦ f1(i)
if i ≤m1 and i↦ f2(i −m1) if m1 < i for any i ∈ ⟦m1 +m2⟧.

Definition 3.17. (a) For any {m1,m2} ⊆ N0 and a1∶ ⟦m1⟧→ (U⊗{○, ●})⊍O
and a2∶ ⟦m2⟧→ (U⊗ {○, ●}) ⊍O define the tensor product of (a1,a2) as the
mapping a1 ⊗ a2 ∶= a1 ▵ a2.

(b) For any {k1, k2, ℓ1, ℓ2} ⊆ N0, any c1∶ ⟦k1⟧ → (U ⊗ {○, ●}) ⊍O and c2∶ ⟦k2⟧ →
(U ⊗ {○, ●}) ⊍O as well as any d1∶ ⟦ℓ1⟧ → (U ⊗ {○, ●}) ⊍O and d2∶ ⟦ℓ2⟧ →
(U ⊗ {○, ●}) ⊍O and any partitions p1 of Πk1

ℓ1
and p2 of Πk2

ℓ2
let the tensor

product of ((c1,d1, p1), (c2,d2, p2)) be given by (c1,d1, p1) ⊗ (c2,d2, p2) ∶=
(c1 ⊗ c2,d1 ⊗ d2, p1 ⊗ p2), where

p1 ⊗ p2 ∶= ⋃2
t=1{γ k1+k2

Ht,ℓ1+ℓ2 →(B) ∣B ∈ pt},

where H1 = Πk1
ℓ1

and H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1

. Moreover, let (c1 ◾◾d1) ⊗ (c2 ◾◾d2) ∶=
(c1 ⊗ c2) ◾◾ (d1 ⊗ d2).

Note the notational change in the following definition of the duals compared to
[MW20] and [MW21a].
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Definition 3.18. (a) For any m ∈ N0 and a∶ ⟦m⟧ → (U⊗ {○, ●}) ⊍O define
the dual object a∨∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍O of a to be the mapping which
satisfies for any i ∈ ⟦m⟧ with a(i) ∈ U ⊗ {○, ●}, if a(m − i + 1) = (x, c), then
i↦ (x, c) and which satisfies i↦ a(m− i+1) for each i ∈ ⟦m⟧ with a(i) ∈O.

(b) Moreover, for any m ∈ N0 and a∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍ O let the (left)
evaluation of a be defined as eva ∶= (a∨ ⊗ a,∅, evm), where

evm ∶= {{◾i, ◾(2m − i + 1)}}mi=1.
(c) Likewise, for any m ∈ N0 and a∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍ O we call coeva ∶=
(∅,a⊗ a∨, coevm), where

coevm ∶= {{◾j, ◾(2m − j + 1)}}mj=1,
the (left) coevaluation of a.

(d) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O
and any partition p of Πk

ℓ the (left) dual of (c,d, p) is defined as (c,d, p)∨ ∶=
(d∨, c∨, p∨), where p∨ ∶= (κkℓ ○ ρkℓ )⇠(p). Moreover, let (c ◾◾d)∨ ∶= (d∨) ◾◾ (c∨).

Definition 3.19. A category of (U,O)-tagged labeled partitions is any subset
of U,OS which includes for any x ∈ U and y ∈O the labeled partitions

id(x,○), id(x,●), idy, coev(x,○), coev(x,●), coevy

and which is closed under composition, tensor products and forming adjoints.

Lemma 3.20. Any category of labeled partitions is closed under forming duals.

Proof. Analogous to the proof of [TW18, Lemma 1.1 (a)]. Note that the
verticolor reflection is the adjoint of the dual. □

Definition 3.21. Let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ →
(U⊗ {○, ●}) ⊍O be arbitrary and let p be any partition of Πk

ℓ .

(a) For any r ∈ {⤹, Á, ¹, ⤸} such that ωr,kℓ is defined, the r-rotation of (c,d, p) is
defined as (c,d, p)r ∶= (a,b, pr), where a and b are given by

(i) a = (c2, c3 . . . , ck) and b = (c1∨,d1,d2, . . . ,dℓ) if r = ⤹,
(ii) a = (c1, c2 . . . , ck,dℓ∨) and b = (d1,d2, . . . ,dℓ−1) if r = Á,

(iii) a = (d1∨, c1, c2 . . . , ck) and b = (d2,d3, . . . ,dℓ) if r = ¹, and
(iv) a = (c1, c2 . . . , ck−1) and b = (d1,d2, . . . ,dℓ, ck∨) if r = ⤸,
and where pr ∶= (ωr,kℓ )⇠(p). Moreover, let (c ◾◾d)r ∶= a ◾◾b.

(b) The counter-clockwise cyclic rotation (c,d, p)↺ of p is given by (c,d, p) =
(∅,∅,∅) if k = ℓ = 0, by ((c,d, p)⤹)Á if 0 < k and by ((c,d, p)Á)⤹ if 0 < ℓ.

(c) Analogously, the clockwise cyclic rotation (c,d, p)↻ of p is given by (c,d, p) =
(∅,∅,∅) if k = ℓ = 0, by ((c,d, p)⤸)¹ if 0 < k and by ((c,d, p)¹)⤸ if 0 < ℓ.

Lemma 3.22. Any category of labeled partitions is closed under any basic and
cyclic rotations.

Proof. Follows in the same ways as in [TW18, Lemma 1.1 (a)]. □
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Definition 3.23. Given any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍ O, any S ⊆ Πk

ℓ and any partition p of Πk
ℓ , the reindexed

restriction of (c,d, p) to S is R((c,d, p),S) ∶= ((c ◾◾d) ○ η k
S,ℓ , (c ◾◾d) ○ θ k

S,ℓ ,R(p,S)),
where R(p,S) ∶= (γ k

S,ℓ )⇠(p). Moreover, let R(c ◾◾d,S) ∶= (c ◾◾d) ○ γ k
S,ℓ .

Generally, categories are not closed under reindexed restrictions.

Definition 3.24. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O and d∶ ⟦ℓ⟧→
(U ⊗ {○, ●}) ⊍ O, any T ⊆ Πk

ℓ and any partition p of Πk
ℓ the erasing of T from

(c,d, p) is defined as E((c,d, p),T) ∶= R((c,d, q),M), where M = Πk
ℓ /T and where

q = {B ∈ p ∧ B∩T = ∅}⊍ {⊍{B ∈ p ∧ B∩T ≠ ∅}}. Also, let E(c ◾◾d,T) ∶= R(c ◾◾d,M).

Lemma 3.25. Any category of (U,O)-tagged labeled partitions is closed under
erasing any convex set T of size two for which there exists

(a) x ∈ U such that T is contained entirely in the x-area and has zero x-sum.
(b) y ∈O such that T is contained entirely in the y-area.

Proof. The proof of [TW18, Lemma 1.1 (b)] can be easily adapted to deduce
the claim. □

The following equivalent definition of a category of labeled partitions is the one
we will actually use to confirm categories because it is significantly easier to check.

Proposition 3.26. Any subset of U,OS is a category of (U,O)-tagged labeled
partitions if it includes {id(x,○), idy ∣x ∈ U ∧ y ∈ O} and is closed under the basic
rotations ⤹ and ⤸, forming adjoints, tensor products and erasing consecutive sets of
two lower points which are either contained entirely in the x-tag area and have zero
x-sum for some x ∈ U or are contained entirely in the y-tag area for some y ∈O.

Proof. Analogous to the proof of [MW21b, Lemmka 4.3]. □

3.6. Linear categories of labeled partitions. As evident from [BS09, Propo-
sition 1.9], when adding the usual fiber functors to categories of partitions the former
preserve composition only up to a scalar factor. In other words, a scalar correction
has been omitted in the definition of the composition operation for labeled partitions.
This is a very convenient simplification when one is interested in finding categories
of partitions (as was the case in [BS09] and [TW18]) because it completely avoids
the need to work with linear categories, i.e., categories enriched in vector spaces.
And in this chapter we will benefit from it as well in Section 4. In Section 9, how-
ever, it will be necessary to have the linear definitions and in particular the other
composition at hand.

At the same time, an important generalization of [BS09] and [TW18] and even
[Fre17] which enables to proof of the main result in the first place is the following
assumption.

Definition 3.27. A dimension profile for (U,O) is any mapping U ⊍O→ N.
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In other words, a dimension profile assigns a dimension to any tag. It will be the
size of the fundamental representation of the factor quantum group associated with
that tag.

Assumption 3.28. In the following, let N by any dimension profile for (U,O).

While [Fre17] only discusses the case where N is constant, we do not make that
assumption. And, in fact, it will be crucial to have a non-constant dimension profile
in Section 9.

Definition 3.29. For any {k, ℓ,m} ⊆ N0, any a∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
b∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O and c∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍O and any partitions p of Πk

ℓ

and q of Πℓ
m such that p ≤ ker(N ○ ξab) and q ≤ ker(N ○ ξbc ) if,

s = (κ0ℓ⇠(p∣Π0
ℓ
)) ∨ (q∣Πℓ

0
)

and if for any n ∈ N0,

un = ∣{B ∈ s ∧ B ⊆ (N ○ ξb∅)←({n})
∧ (∀A ∶ A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅ ⇒ A ∩Πk

0 = ∅)
∧ (∀C ∶ C ∈ q ∧ C ∩B ≠ ∅ ⇒ C ∩Π0

m = ∅)}∣,
then we call the natural number

N lf((b, c, q), (a,b, p)) ∶= ∏
n∈N0

nun

the linear (composition) factor of ((b, c, q), (a,b, p)) with respect to N .

Note that in Definition 3.29 the assumption cannot be dropped that the partitions
which are to be composed be labeled in such a way that any two points belonging to
the same block bear tags of identical dimension according to the dimension profile.
Of course, that the definition make sense could also have been ensured by only
allowing partitions where any block is contained in a single tag area. However, that
would be too restrictive for our purposes.

A useful reformulation of the above definition connects the linear factor to the
corresponding original notion from the theory of unlabeled partitions (see [BS09,
p. 1469] and [FW16, p. 159]).

Definition 3.30. For any {f, g, h} ⊆ N0 and any partitions v of Πf
g and w of Πg

h,
if

t = (κ0g⇠(v∣Π0
g
)) ∨ (w∣Πg

0
),

then we call the number

rl(w, v) ∶= ∣{G ∈ t ∧ (∀F ∶ F ∈ v ∧ F ∩ κ0g→(G) ≠ ∅ ⇒ F ∩Πf
0 = ∅)

∧ (∀H ∶ H ∈ w ∧ H ∩G ≠ ∅ ⇒ H ∩Π0
h = ∅)}∣

the (number of) removed loops of (w, v).
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Proposition 3.31. For any (a,b, p) ∈ U,OS and (b, c, q) ∈ U,OS with p ≤ ker(N○ξab)
and q ≤ ker(N ○ ξbc ), if for any n ∈ N0,

nX
a
b = (N ○ ξab)←({n}) ∧ nX

b
c = (N ○ ξbc )←({n})

and

un = rl(R(q, nXb
c),R(p, nXa

b)),
then

N lf((b, c, q), (a,b, p)) = ∏
n∈N0

nun .

Proof. Follows quickly from the definitions. □

The linear version of the categories of partitions can then be defined as follows.
Note that it now depends on the dimension profile.

Definition 3.32. For any category C of (U,O)-tagged labeled partitions such
that any (c,d, p) ∈ C satisfies p ≤ ker(N ○ ξcd) let

(a) objNCC be given by ⋃k∈N0
{c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O},

(b) morNCC(c,d) be the free vector space over the set of all (c,d, p) ∈ C for any
(c,d) ∈ objNCC

⊗2,
(c) ○NCC,a,b,c be the unique linear map morNCC(b, c)⊗morNCC(a,b)→morNCC(a, c)

which satisfies for any (a,b, p) ∈ C and any (b, c, q) ∈ C,
(b, c, q)⊗ (a,b, p)↦ N lf((b, c, q), (a,b, q)) (a, c, qp),

for any (a,b, c) ∈ objNCC
⊗3,

(d) idNCC,c be the unique linear map C → morNCC(c, c) with 1 ↦ idc for any
c ∈ objNCC,

(e) (∗NCC)1,c,d be the unique linear map morNCC(c,d) → morNCC(d, c)cj such

that (c,d, p)↦ (d, c, p∗) for any (c,d, p) ∈ C and any (c,d) ∈ objNCC
⊗2

(f) (⊗NCC)0 be the mapping objNCC
⊗2 → objNCC with (c1, c2) ↦ c1 ▵ c2 for any

(c1, c2) ∈ objNCC
⊗2,

(g) (⊗NCC)1,(c1,c2),(d1,d2) be the linear map from morNCC(c1,d1)⊗morNCC(c2,d2)
to morNCC(c1 ▵ c2,d1 ▵ d2) with (c1,d1, p1)⊗(c2,d2, p2)↦ (c1▵c2,d1▵d2, p1⊗
p2) for any (c1,d1, p1) ∈ C and (c2,d2, p2) ∈ C and any (c1, c2) ∈ objNCC

⊗2 and
(d1,d2) ∈ objNCC

⊗2,
(h) INCC be ∅.

Then NCC is a rigid strict monoidal C-linear ∗-category for any category C of
(U,O)-tagged labeled partition such that (c,d, p) ∈ C satisfies p ≤ ker(N ○ ξcd).

Notation 3.33. Given any set X and any two set-theoretical partitions p and q
of X, let

ζ(p, q) ∶= {1 if p ≤ q
0 otherwise.
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Notation 3.34. For any k ∈ N0 and any c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O let JNc be the
finite subset of [⟦k⟧,N] made up by all f ∶ ⟦k⟧ → N with the property that for any
i ∈ ⟦k⟧, if zi ∈ U ⊍O is such that c(i) ∈ ({zi}⊗ {○, ●}) ⊍ {zi}, then f(i) ∈ ⟦N(zi)⟧.

Notation 3.35. (a) For any finite set X let ℓ2(X) be the Hilbert space
given by the free vector space over X equipped with the scalar product
defined by x⊗ x′ ↦ δx,x′ for any {x,x′} ⊆X.

(b) Given any finite sets X and Y and any mapping f ∶ X → Y , denote by ℓ2(f)
the unique operator ℓ2(X)→ ℓ2(Y ) with x↦ f(x) for any x ∈X.

(c) For any finite sets X1 and X2 let ℓ2⊗,X1,X2 be the unique operator ℓ2(X1)⊗
ℓ2(X2)→ ℓ2(X1 ⊗X2) with x1 ⊗ x2 ↦ (x1, x2).

(d) Finally, write ℓ2I for the unique operator C→ ℓ2({∅}) with 1↦ ∅.

Definition 3.36. (a) For any k ∈ N0 and any c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O let
N

U,OT (c) ≡ N
U,OT 0

(c) ∶= ℓ2(JNc ).
(b) Given any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ → (U ⊗
{○, ●}) ⊍O and any (c,d, p) ∈ U,OS with p ≤ ker(N ○ ξcd) let

N
U,OT (c,d, p) ≡ N

U,OT 1,c,d
(c,d, p)

be the unique C-linear operator N
U,OT (c)→ N

U,OT (d) such that for any f ∈ JNc ,

f ↦ ∑
g∈JN

d

ζ(p,ker(f ◾
◾ g)) g.

(c) For any {k1, k2} ⊆ N0 and any c1∶ ⟦k1⟧ → (U ⊗ {○, ●}) ⊍O and c2∶ ⟦k2⟧ →
(U⊗ {○, ●}) ⊍O let

TN⊗,c1,c2 ∶= ℓ2(c) ○ ℓ2⊗,JN
c1
,JN

c2
,

where c is the mapping JNc1 ⊗ JNc2 → JNc1⊗c2 with

(f1, f2)↦ f1 ▵ f2
for any f1 ∈ JNc1 and f2 ∈ JNc2 .

(d) Finally, let N
U,OT I ∶= ℓ

2
I .

For any category C of (U,O)-tagged labeled partitions the rule N
U,OT defines a

strong monoidal C-linear ∗-functor from NCC to the category of finite-dimensional
Hilbert spaces.

3.7. General easy compact quantum groups. In the language of Section 2
one can now give the definition of Banica and Speicher’s easy quantum groups from
[BS09], or rather the generalization to labeled partitions, as follows.

Definition 3.37. For any category C of (U,O)-tagged labeled partitions such
that p ≤ ker(N ○ ξcd) for any (c,d, p) ∈ C we call the tuple

(R, (Hc)c∈R, (Bc,d)(c,d)∈R⊗2 ,⊗),
where the
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(a) object set R is ⋃k∈N0
((U⊗ {○, ●}) ⊍O)⊗k,

(b) fiber space Hc of c is given by ℓ2(JNc ) for any c ∈ R,
(c) space Bc,d of morphisms c → d is the vector subspace of [ℓ2(JNc ), ℓ2(JNd )]

generated by the set { N
U,OT (c,d, p) ∣ (c,d, p) ∈ C} for any (c,d) ∈ R⊗2,

(d) monoidal product ⊗ is the mapping R⊗2 → R with (c1, c2)↦ c1 ▵ c2 for any
(c1, c2) ∈ R⊗2,

the rigid concrete monoidal W ∗-category associated with (U,O,C,N).
These concrete W ∗-categories are generally not complete. For the next definition

to make sense we need to fix an orthonormal basis of any finite-dimensional Hilbert
space. We can make any such choice as long as we ensure that for any finite set X
we pick the orthonormal basis X for ℓ2(X).

Definition 3.38. For any category C of (U,O)-tagged labeled partitions such
that p ≤ ker(N ○ξcd) for any (c,d, p) ∈ C we say that the Tannaka-Krein co-representee
of the rigid concrete monoidal W ∗-category associated with (U,O,C,N) is the easy
CQG Hopf ∗-algebra associated with (U,O,C,N). Its formal dual is called the easy
algebraic compact quantum group associated with (U,O,C,N).

Notation 3.39. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O, any d∶ ⟦ℓ⟧ →
(U ⊗ {○, ●}) ⊍ O, any set-theoretical partition p of Πk

ℓ such that p ≤ ker(N ○ ξcd),
any g ∈ JNc and any j ∈ JNd write rcd(p)j,g for the element of the free ∗-algebra over
{(z, j, i) ∣ z ∈ U ⊍O ∧ {i, j} ⊆ ⟦N(z)⟧} given by

∑
i∈JN

d

ζ(p,ker(g ◾◾ i))
ℓÐ→
∏
b=1

⎧⎪⎪⎨⎪⎪⎩

(uξ
c
d(◾b)
jb,ib
)ζcd(◾b) ∣ ξcd(◾b) ∈ U

u
ξcd(◾b)
jb,ib

∣ ξcd(◾b) ∈O

⎫⎪⎪⎬⎪⎪⎭

− ∑
h∈JN

c

ζ(p,ker(h ◾
◾ j))

kÐ→
∏
a=1

⎧⎪⎪⎨⎪⎪⎩

(uξ
c
d(◾a)
ha,ga
)ζcd(◾a) ∣ ξcd(◾a) ∈ U

u
ξcd(◾a)
ha,ga

∣ ξcd(◾a) ∈O

⎫⎪⎪⎬⎪⎪⎭
,

where uzj,i is short for (z, j, i) and where (uzj,i)○ ∶= uzj,i and (uzj,i)● ∶= (uzj,i)∗ for any
z ∈ U ⊍O and {i, j} ⊆ N(z).

Proposition 3.40. For any category of (U,O)-tagged labeled partitions such
that p ≤ ker(N ○ ξcd) for any (c,d, p) ∈ C and any set R ⊆ C with U,O⟨R⟩ = C an
isomorphism of CQG Hopf ∗-algebras from the easy CQG Hopf ∗-algebra associated
with (U,O,C,N) to the CQG Hopf ∗-algebra given by (A,m,1,∗,∆, ϵ, S), where

(a) (A,m,1,∗) is the universal ∗-algebra over {(z, j, i) ∣ z ∈ U ⊍ O ∧ {i, j} ⊆
N(z)}, whose elements are written as uzj,i ≡ (z, j, i) below for any z ∈ U⊍O
and {i, j} ⊆ N(z), subject to the relations

{(uyj,i)∗ − u
y
j,i ∣ y ∈O ∧ {i, j} ⊆ N(y)}

and the relations

{rcd(p)j,g ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O ∧ d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O

∧ (c,d, p) ∈R ∪ {evz, coevz}z∈U⊍O ∧ g ∈ JNc ∧ j ∈ JNd }
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(b) ∆ is the unique morphism of ∗-algebras from (A,m,1,∗) to the tensor prod-
uct ∗-algebra of (A,m,1,∗) with itself such that for any z ∈ U ⊍O and any
{i, k} ⊆ ⟦N(z)⟧,

uzk,i ↦
N(z)
∑
j=1

uzk,j ⊗ uzj,i,

(c) ϵ is the unique ∗-algebra morphism from (A,m,1,∗) to C with for any
z ∈ U ⊍O and any {i, j} ⊆ ⟦N(z)⟧,

uzj,i ↦ δj,i,

(d) S is the unique algebra morphism from (A,m,1) to its opposite algebra such
that for any z ∈ U ⊍O and any {i, j} ⊆ ⟦N(z)⟧,

uzj,i ↦ (uzi,j)∗ ∧ (uzj,i)∗ ↦ uzi,j,

is given by the unique ∗-algebra morphism such that (z, j, i) ↦ (z, j, i) for any z ∈
U ⊍O and any {i, j} ⊆ ⟦N(z)⟧.

Proof. If in the definition of the second set of relations R ∪ {evz, coevz}z∈U⊍O
is replaced by C, then the statement follows immediately from Proposition 2.36 (a).
In order to prove the stronger version above, one needs to check that the relations
coming from a labeled partition which results from others by category operations
can be obtained by ∗-ideal operations from the relations coming from the other
partitions. □

4. Co-products of categories of labeled partitions

Section 4 introduces direct, free, graph, crossed and wreath graph co-products of
categories of labeled partitions. The ultimate goal is to show that these construc-
tions correspond to the products of the same name for the associated easy compact
quantum groups.

Assumption 4.1. In Section 4, let (U,O) be any choice of tags.

4.1. Direct Co-products. First, a category of labeled partitions is induced
by the condition that each block be contained entirely in the area of a single tag.
In fact, we show a bit more in Proposition 4.3. The below lemma will aid the proof
as well as the proofs of several subsequent propositions.

Lemma 4.2. Let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ → (U ⊗
{○, ●}) ⊍O and for each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0, and let ct∶ ⟦kt⟧ → (U ⊗ {○, ●}) ⊍O
and dt∶ ⟦ℓt⟧→ (U⊗ {○, ●}) ⊍O.

(a) For any r ∈ {⤹, Á, ¹, ⤸}, if a ◾◾b = (c ◾◾d)r is defined and if {x, y} ⊆ N0 are
such that a∶ ⟦x⟧ → (U ⊗ {○, ●}) ⊍O and b∶ ⟦y⟧ → (U ⊗ {○, ●}) ⊍O, then for
any z ∈ U ⊍O,
(i) ωr,kℓ is strictly monotonic Γxy → Γkℓ .

(ii) ξab = ξcd ○ ω
r,k
ℓ .
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(iii) ζab = ζcd ○ ω
r,k
ℓ .

(iv) zσc
d is the push-forward measure of zσa

b with respect to ωr,kℓ .
(b) For any z ∈ U ⊍O,

(i) κkℓ is strictly anti-monotonic Γℓk → Γkℓ
(ii) ξdc = ξcd ○ κkℓ .
(iii) (⋅) ○ ζdc = ζcd ○ κkℓ .
(iv) −zσc

d is the push-forward measure of zσd
c with respect to κkℓ .

(c) If H1 = Πk1
ℓ1

and H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1
, then for any z ∈ U ⊍O,

(i) γ k1+k2
Ht,ℓ1+ℓ2 is monotonic Γktℓt → Γk1+k2ℓ1+ℓ2 for any t ∈ ⟦2⟧.

(ii) ξc1⊗c2d1⊗d2 ○ γ
k1+k2

Ht,ℓ1+ℓ2 = ξ
ct
dt

for any t ∈ ⟦2⟧.
(iii) ζc1⊗c2d1⊗d2 ○ γ

k1+k2
Ht,ℓ1+ℓ2 = ζ

ct
dt

for any t ∈ ⟦2⟧.
(iv) zσ

c1⊗c2
d1⊗d2 is the sum of the push-forward measures of zσ

c1
d1

with respect to
γ k1
H1,ℓ1

and zσ
c2
d2

with respect to γ k2
H2,ℓ2

, i.e.,

zσ
c1⊗c2
d1⊗d2(Z) = ∑

2
t=1 zσ

ct
dt
(γ k1+k2

Ht,ℓ1+ℓ2
←(Z))

for any Z ⊆ Πk1+k2
ℓ1+ℓ2 .

(d) For any S ⊆ Πk
ℓ , if a

◾
◾b = R(c ◾◾d,S) and if {x, y} are such that a∶ ⟦x⟧ →

(U⊗ {○, ●}) ⊍O and b∶ ⟦y⟧→ (U⊗ {○, ●}) ⊍O, then for any z ∈ U ⊍O,
(i) γ k

S,ℓ is monotonic Γxy → Γkℓ .

(ii) ξab = ξcd ○ γ k
S,ℓ .

(iii) ζab = ζcd ○ γ k
S,ℓ .

(iv) zσc
d(Z) = zσa

b(γ k
S,ℓ
←(Z)) + zσc

d(Z/S) for any Z ⊆ Πk
ℓ .

Proof. The claims follow immediately from the definitions. □

Proposition 4.3. For any set-theoretical partition h of U ⊍ O a category of
(U,O)-tagged labeled partitions is given by the set of all (c,d, p) ∈ U,OS such that
p ≤ ξcd⇠(h).

Proof. Denote the alleged category by C. We check the easier-to-verify condi-
tions of Proposition 3.26.

Step 1: Identities. For any x ∈ U, any y ∈ O and any c ∈ {(x, ○), (x, ●), y}, since
ker(ξcc) = and thus ξcc

⇠(h) = by ker(ξcc) ≤ ξcc⇠(h) we infer idc = (c, c, ) ∈ C.
Step 2: Rotations. Next, let k ∈ N and ℓ ∈ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and

d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O and (c,d, p) ∈ C arbitrary and let r ∈ {⤹, ⤸} be such that

(a,b, q) = (c,d, p)r is defined. Then, Lemma 4.2 (a) implies ξab
⇠(h) = (ξcd○ωr,kℓ )⇠(h) =

ωr,kℓ
⇠(ξcd⇠(h)). Since q = ωr,kℓ⇠(p) by definition and since ωr,kℓ

⇠ preserves ≤ this
proves (a,b, q) ∈ C.

Step 3: Adjoints. If {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ →
(U ⊗ {○, ●}) ⊍O and (c,d, p) ∈ C and (a,b, q) = (c,d, p)∗, then, similarly, ξab

⇠(h) =
(ξcd ○ κkℓ )⇠(h) = κkℓ⇠(ξcd⇠(h)) by Lemma 4.2 (b). Hence, also (a,b, q) ∈ C because
q = κkℓ⇠(p) definitionally and because κkℓ

⇠ preserves ≤.
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Step 4: Tensor products. For each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0 and ct∶ ⟦kt⟧ → (U ⊗
{○, ●}) ⊍O and dt∶ ⟦ℓt⟧ → (U ⊗ {○, ●}) ⊍O as well as (ct,dt, pt) ∈ C be arbitrary. If
(a,b, q) = (c1,d1, p1) ⊗ (c2,d2, p2) and if H1 = Πk1

ℓ1
and H2 = Πk1+k2

ℓ1+ℓ2 /Π
k1
ℓ1

and γHt ≡
γ k1+k2
Ht,ℓ1+ℓ2 for any t ∈ ⟦2⟧, then ξab ○ γHt = ξctdt for any t ∈ ⟦2⟧ by Lemma 4.2 (c). Given

any B ∈ q, by definition of q, there exist t ∈ ⟦2⟧ and Bt ∈ pt with B = γHt→(Bt). Due
to (ct,dt, pt) ∈ C we find Z ∈ h such that Bt ⊆ ξctdt←(Z). It follows B = γHt→(Bt) ⊆
γHt→(ξctdt←(Z)) ⊆ γHt→((ξab ○ γHt)←(Z)) = (γHt→ ○ γHt

←)(ξab←(Z)) ⊆ ξab←(Z). Thus,
indeed, q ≤ ξab⇠(h).

Step 5: Erasing. Finally, let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧ → (U⊗ {○, ●}) ⊍O and (c,d, p) ∈ C be arbitrary and let T ⊆ Π0

ℓ and z ∈ U ⊍O
be such that ∣T∣ = 2 and T ⊆ ξcd←({z}) and such that, if z ∈ U, then zσc

d(T) = 0. If
M = Πk

ℓ /T and γM ≡ γ k
M,ℓ and (a,b,E(p,T)) = E((c,d, p),T), then ξab = ξcd ○ γM by

Lemma 4.2 (d). For each B ∈ E(p,T), according to the definition of E(p,T), there
are now two cases to distinguish.

Case 5.1: If there is A ∈ p such that A∩T = ∅ and B = γM←(A), then by p ≤ ξcd⇠(h)
we find Z ∈ h with A ⊆ ξcd←(Z). Hence, B = γM←(A) ⊆ γM←(ξcd←(Z)) = (ξcd○γM)←(Z) =
ξab
←(Z).
Case 5.2: The other possibility is that B = γM←(⋃{A ∈ p ∧ A ∩ T ≠ ∅}). Since

T ⊆ ξcd←({z}) ∈ ker(ξcd) and since ker(ξcd) is a set-theoretical partition of Πk
ℓ , for any

A ∈ p, whenever A ∩ T ≠ ∅, then A ⊆ ξcd←({z}). Consequently, ⋃{A ∈ p ∧ A ∩ T ≠
∅} ⊆ ξcd←({z}). It follows B ⊆ γM←(ξcd←({z})) = (ξcd ○ γM)←({z}) = ξab←({z}). Thus, if
Z ∈ h is such that z ∈ Z, then B ⊆ ξab←(Z).

In conclusion, B ⊆ ξab←(Z) for some Z ∈ h in any case, which means that we have
shown E(p,T) ≤ ξab⇠(h) as claimed. Overall then, C is indeed a category. □

Building on the preceding result, a category of labeled partition can be obtained
by demanding that the restriction to any tag area belong to a category of singly
tagged labeled partitions.

Definition 4.4. For any family (Xz)z∈U⊍O such that Xz is a category of ({z},∅)-
tagged labeled partitions if z ∈ U and of of (∅,{z})-tagged labeled partitions if
z ∈ O for any z ∈ U ⊍O the direct co-product ×z∈U⊍OXz of (Xz)z∈U⊍O is the set of all
(c,d, p) ∈ U,OS such that p ≤ ker(ξcd) and such that R((c,d, p), ξcd←({z})) ∈ Xz for any
z ∈ U ⊍O.

The next lemma helps with the upcoming proof that direct products are actually
categories and will be used later on as well.

Lemma 4.5. Let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍
O, and let p be any partition of Πk

ℓ . Moreover, for each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0, let
ct∶ ⟦kt⟧→ (U⊗ {○, ●})⊍O and dt∶ ⟦ℓt⟧→ (U⊗ {○, ●})⊍O, and let pt be any partition
of Πkt

ℓt
.

(a) For any r ∈ {⤹, Á, ¹, ⤸} and Z ⊆ Πk
ℓ , if (a,b, q) = (c,d, p)r is defined, if Y =

ωr,kℓ
←(Z), if {x, y} ⊆ N0 are such that a∶ ⟦x⟧→ (U⊗ {○, ●})⊍O and b∶ ⟦y⟧→
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(U ⊗ {○, ●}) ⊍O, if m = α(Z) and n = β(Z), if (u,v,w) = R((a,b, q),Y), if
(f,g, s) = R((c,d, p),Z), and if e is given by ◾1 if r =⤹, by ◾k if r =⤸, by ◾1
if r =¹ and by ◾ℓ if r =Á, then

(i) ωr,kℓ ○ γ x
Y,y = {

γ k
Z,ℓ if e ∉ Z
γ k
Z,ℓ ○ ω

r,m
n otherwise.

.

(ii) ξuv = {
ξfg if e ∉ Z
ξfg ○ ωr,mn otherwise.

(iii) ζuv = {
ζ fg if e ∉ Z
ζ fg ○ ωr,mn otherwise.

(iv) w = {s if e ∉ Z
sr otherwise.

In other words,

R((c,d, p)r,Y) = {R((c,d, p),Z) if e ∉ Z
R((c,d, p),Z)r otherwise.

.

(b) For any Z ⊆ Πk
ℓ , if Y = κkℓ←(Z), and if m = α(Z) and n = β(Z), then

(i) κkℓ ○ γ ℓ
Y,k = γ k

Z,ℓ ○ κmn .
(ii) ξuv = ξgf .
(iii) ζuv = ζgf .
(iv) w = s∗.
In other words,

R((c,d, p)∗,Y) = R((c,d, p),Z)∗.

(c) If H1 = Πk1
ℓ1

and H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1
, then for any Z1 ⊆ Πk1

ℓ1
and Z2 ⊆ Πk2

ℓ2
,

if Y ⊆ Πk1+k2
ℓ1+ℓ2 the unique set with Zt = γ k1+k2

Ht,ℓ1+ℓ2
←(Y) for each t ∈ ⟦2⟧, if

(u,v,w) = R((c1 ⊗ c2,d1 ⊗ d2, q),Y), if (ft,gt, st) = R((ct,dt, pt),Zt) and
mt = α(Zt) and nt = β(Zt) and for each t ∈ ⟦2⟧, and if R1 = Πm1

n1 and
R2 = Πm1+m2

n1+n2
/Πm1

n1 , then for each t ∈ ⟦2⟧,
(i) γ k1+k2

Y,ℓ1+ℓ2 ○ γ
m1+m2

Rt,n1+n2
= γ k1+k2

Ht,ℓ1+ℓ2 ○ γ
kt

Zt,ℓt
.

(ii) ξuv ○ γ m1+m2

Rt,n1+n2
= ξftgt.

(iii) ζuv ○ γ m1+m2

Rt,n1+n2
= ζ ftgt.

(iv) w = s1 ⊗ s2.
In other words,

R((c1,d1, p1)⊗ (c2,d2, p2),Y)
= R((c1,d1, p1),Z1)⊗R((c2,d2, p2),Z2).

(d) For any S ⊆ Πk
ℓ any Z ⊆ Πk

ℓ , if a
◾
◾b = R(c ◾◾d,S), if x = α(S) and y = β(S),

if Y = γ k
S,ℓ
←(Z), if u ◾

◾v = R(a ◾◾b,Y), if f ◾◾g = R(c ◾◾d,Z), and if m = α(Z)
and n = β(Z) and Q = γ k

Z,ℓ
←(S), then
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(i) γ k
S,ℓ ○ γ x

Y,y = γ k
Z,ℓ ○ γ m

Q,n .

(ii) ξuv = ξfg ○ γ m
Q,n .

(iii) ζuv = ζ fg ○ γ m
Q,n .

(iv) R(R(p,S),Y) = R(R(p,Z),Q).
(v) R(E(p,S),T) = E(R(p,Z),V) if T = Πk

ℓ /S and V = Πm
n /Q.

In other words,

R(R((c,d, p),S),Y) = R(R((c,d, p),Z),Q).

Moreover, if S = Πk
ℓ /T and V = γ k

Z,ℓ

←(T) for any T ⊆ Πk
ℓ , then

R(E((c,d, p),T),Y) = {R((c,d, p),Z) if Z ∩T = ∅
E(R((c,d, p),Z),V) otherwise.

Proof. The claims follow immediately from the definitions. □

Proposition 4.6. For any family (Xz)z∈U⊍O such that Xz is a category of ({z},∅)-
tagged labeled partitions for each z ∈ U and a category of (∅,{z})-tagged labeled par-
titions for each z ∈ O the direct co-product ×z∈U⊍OXz is a category of (U,O)-tagged
labeled partitions.

Proof. The set D of all (c,d, p) ∈ U,OS with p ≤ ker(ξcd) is a category by Pro-
position 4.3. We only have to show the condition about the reindexed restrictions
is stable under the operations of Proposition 3.26. Note that the claim would not
have been altered if we had confined ourselves to asking R((c,d, p), ξcd←({z})) ∈ Xz
only for z ∈ U ⊍O with ξcd

←({z}) ≠ ∅ because R((c,d, p),∅) = (∅,∅,∅) ∈ Xz for any
z ∈ U ⊍O.

Step 1: Identities. Given any x ∈ U, any y ∈ O and any c ∈ {(x, ○), (x, ●), y}, we
prove idc = (c, c, ) ∈ ×z∈U⊍OXz. Of course, ker(ξcc) = . Hence, trivially, ≤ ker(ξcc).
For the same reason, for any z ∈ U ⊍O with Y = ξcc←({z}) ≠ ∅ we immediately know
Y = Π1

1 and thus R(idc,Y) = idc ∈ Xz because Xz is a category. Thus, idc ∈ ×z∈U⊍OXz
Step 2: Rotations. Let k ∈ N and ℓ ∈ N0, let c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and

d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O, let (c,d, p) ∈ ×z∈U⊍OXz, let r ∈ {⤹, ⤸}, let e = ◾1 if r = ⤹
and e = ◾k if r = ⤸ and let (a,b) = (c,d)r. For any z ∈ U ⊍O, if Y = ξab←({z}) and

Z = ξcd←({z}), then, because ξab = ξcd○ω
r,k
ℓ by Lemma 4.2 (a), necessarily, Y = ωr,kℓ←(Z).

Hence, by Lemma 4.5 (a) the partition R((a,b, pr),Y) is given by R((c,d, p),Z) if
e ∉ Z and by R((c,d, p),Z)r otherwise. And, of course, both R((c,d, p),Z) and
R((c,d, p),Z)r are elements of Xz since (c,d, p) ∈ ×z∈U⊍OXz by assumption and since
categories are closed under rotations. Thus, indeed R((a,b, pr),Y) ∈ Xz, which
proves that, too, ×z∈U⊍OXz is stable under rotations.

Step 3: Adjoints. Given any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧ → (U⊗ {○, ●}) ⊍O, any (c,d, p) ∈ ×z∈U⊍OXz and any z ∈ U ⊍O, if Y = ξdc←({z})
and Z = ξcd←({z}), then Y = κkℓ←(Z) because ξdc = ξcd ○ κkℓ by Lemma 4.2 (b). Thus
R((d, c, p∗),Y) = R((c,d, p),Z)∗according to Lemma 4.5 (b). Since R((c,d, p),Z) ∈
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Xz by (c,d, p) ∈ ×z∈U⊍OXz and since Xz is closed under involution, this already proves
R((d, c, p∗),Y) ∈ Xz. Hence, ×z∈U⊍OXz is also invariant under involution.

Step 4: Tensor products. For each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0 an ct∶ ⟦kt⟧ → (U ⊗
{○, ●}) ⊍ O and dt∶ ⟦ℓt⟧ → (U ⊗ {○, ●}) ⊍ O as well as (ct,dt, pt) ∈ ×z∈U⊍OXz and
z ∈ U ⊍O be arbitrary. Moreover, let H1 = Πk1

ℓ1
and H2 = Πk1+k2

ℓ1+ℓ2 /Π
k1
ℓ1

and let Y =
ξc1⊗c2d1⊗d2

←({z}). For any t ∈ ⟦2⟧, if Zt = ξctdt←({z}), then Zt = γ k1+k2
Ht,ℓ1+ℓ2

←(Y) since

ξc1⊗c2d1⊗d2 ○ γ
k1+k2

Ht,ℓ1+ℓ2 = ξ
ct
dt

by Lemma 4.2 (c). Consequently, by Lemma 4.5 (b) the

partitions R((c1,d1, p1) ⊗ (c2,d2, p2),Y) and R((c1,d1, p1),Z1) ⊗ R((c2,d2, p2),Z2)
coincide. Because the assumption (ct,dt, pt) ∈ ×z∈U⊍OXz ensures R((ct,dt, pt),Zt) ∈ Xz
for each t ∈ ⟦2⟧ and because Xz is closed under tensor product, we have thus shown
R((c1,d1, p1) ⊗ (c2,d2, p2),Y) ∈ ×z∈U⊍OXz. In conclusion, ×z∈U⊍OXz is stable under
tensor products.

Step 5: Erasing. Last, let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ →
(U ⊗ {○, ●}) ⊍O and (c,d, p) ∈ ×z∈U⊍OXz, let T ⊆ Π0

ℓ and zT ∈ U ⊍O be such that
∣T∣ = 2 and T ⊆ ξcd←({zT}) and such that, if zT ∈ U, then zTσ

c
d(T) = 0. Moreover, let

(a,b,E(p,T)) = E((c,d, p),T) and S = Πk
ℓ /T. For any z ∈ U ⊍O,if and Y = ξab←({z})

and Z = ξcd←({z}), then Y = γ k
S,ℓ
←(Z) because ξab = ξ ○ γ k

S,ℓ by Lemma 4.2 (d).

With V = γ k
Z,ℓ
←(T), then by Lemma 4.5 (d) the partition R((a,b,E(p,T)),Y) is

given by R((c,d, p),Z) if Z ∩ T = ∅ and E(R((c,d, p),Z),V) otherwise. Of course,
once more, R((c,d, p),Z) ∈ Xz by (c,d, p) ∈ ×z∈U⊍OXz. Hence, if Z ∩ T = ∅, then
R((a,b,E(p,T)),Y) ∈ Xz.

But this is also true if Z ∩ T ≠ ∅ because then E(R((c,d, p),Z),V) ∈ Xz for the
following reasons. Because T ⊆ ξcd←({zT}) and Z ∈ ker(ξcd) and because ker(ξcd) is a
set-theoretical partition of Πk

ℓ , whenever Z ∩ T ≠ ∅, then already T ⊆ Z and zT = z.

Thus, in that case, ∣V∣ = ∣T∣ = 2 and, with f ◾◾g = R(c ◾◾d,Z), trivially, V ⊆ ξfg←({z})
by ξfg = ξcd ○ γ k

Z,ℓ , and, likewise, if z ∈ U, then zσ
f
g(V) = zσc

d(T) Lemma 4.2 (d).
Hence, erasing V is an operation under which Xz is closed according to Lemma 3.25.
Altogether we have thus shown that ×z∈U⊍OXz is indeed a category. □

In a special case of the preceding proposition, custom notation is helpful.

Definition 4.7. For any countable set Z and any category C of two-colored or
uncolored partitions, the direct co-power category C×Z is the category ×z∈ZXz, where
for each z ∈ Z the category Xz is given by C, seen as tagged with the single tag z.

4.2. Big graph co-products. As a refinement of the categories considered
above, the demand that the blocks refine the tag areas and that the restriction to
any tag area be a member of a particular singly-tagged category can be paired with
the condition that two blocks belonging to specified combinations of tags may not
cross.

Definition 4.8. A partial commutation relation on any given set X is any anti-
reflexive symmetric binary relation on X.
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Definition 4.9. For any partial commutation relation r on U⊍O and any family
(Xz)z∈U⊍O such that Xz is a category of ({z},∅)-tagged labeled partitions if z ∈ U and
of (∅,{z})-tagged labeled partitions if z ∈O for any z ∈ U⊍O the big graph co-product
☆r
z∈U⊍OXz of (Xz)z∈U⊍O with respect to r is the set of all (c,d, p) ∈ U,OS for which

there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O,
such that p ≤ ker(ξcd), such that R((c,d, p), ξcd←({z})) ∈ Xz for each z ∈ U ⊍O and
such that for any {z, z′} ⊆ U ⊍O with z ≠ z′, whenever (z, z′) ∉ r, then B×k

ℓ B
′ for

any {B,B′} ⊆ p with B ⊆ ξcd←({z}) and B′ ⊆ ξcd←({z′}).
Notation 4.10. If r = ∅ in Definition 4.9, we also write ☆z∈U⊍OXz instead of

☆r
z∈U⊍OXz and speak of the big free co-product of (Xz)z∈U⊍O.

Remark 4.11. In the setting of Definition 4.9, if r is the trivial partial commu-
tation relation {(z, z′) ∣ {z, z′} ⊆ U⊍O ∧ z ≠ z′}, then ☆r

z∈U⊍OXz is actually the direct
co-product ×z∈U⊍OXz.

Proposition 4.12. For any partial commutation relation r on U ⊍O and any
family (Xz)z∈U⊍O such that Xz is a category of ({z},∅)-tagged labeled partitions for
each z ∈ U and one of (∅,{z})-tagged labeled partitions for each z ∈O the big graph
co-product ☆r

z∈U⊍OXz of (Xz)z∈U⊍O with respect to r is a category of (U,O)-tagged
labeled partitions.

Proof. By Proposition 4.6 we only need to check that the non-crossing condi-
tion distinguishing ☆r

z∈U⊍OXz from ×z∈U⊍OXz has the required elements and is stable
under the operations of Proposition 3.26.

Step 1: Identities. Given any c ∈ (U⊗ {○, ●})⊍O we already know idc ∈ ×z∈U⊍OXz.
And because idc only has a single block, trivially, idc ∈☆r

z∈U⊍OXz.
Step 2: Rotation. Let k ∈ N and ℓ ∈ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and

d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O and (c,d, p) ∈ ☆r
z∈U⊍OXz as well as r ∈ {⤹, ⤸} be arbitrary,

and let a and b be such that a ◾◾b = (c ◾◾d)r. Given any {z, z′} ⊆ U ⊍ O with
z ≠ z′ and (z, z′) ∉ r and any {B,B′} ⊆ pr with B ⊆ ξab←({z}) and B′ ⊆ ξab←({z′}), if

A = ωr,kℓ→(B) and A′ = ωr,kℓ→(B′), which is to say B = ωr,kℓ←(A) and B′ = ωr,kℓ←(A′),
then the definition pr = ωr,kℓ⇠(p) and the fact that ωr,kℓ is bijective imply {A,A′} ⊆ p.
Moreover, the identity ξab = ξcd○ω

r,k
ℓ from Lemma 4.2 (a) lets us infer that A ⊆ ξcd←({z})

and A′ ⊆ ξcd←({z′}). Because (c,d, p) ∈ ☆r
z∈U⊍OXz we conclude A ×k

ℓ A′. And since

ωr,kℓ is monotonic with respect to Γk−1ℓ+1 and Γkℓ by the same lemma, we may deduce
B×k−1

ℓ+1 B′ from that, proving (c,d, p)r ∈☆r
z∈U⊍OXz.

Step 3: Adjoints. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ →
(U⊗{○, ●})⊍O and any (c,d, p) ∈☆r

z∈U⊍OXz, if {z, z′} ⊆ U⊍O and {B,B′} ⊆ p∗ are such
that z ≠ z′ and (z, z′) ∉ r as well as B ⊆ ξdc←({z}) and B′ ⊆ ξdc←({z′}), then putting
A = κℓk→(B) and A′ = κℓk→(B′) necessitates B = κℓk←(A) ∈ p and B′ = κℓk←(A′) ∈ p
because κℓk is bijective and p∗ = κℓk⇠(p). Since ξdc = ξcd○κℓk by Lemma 4.2 (b) it follows
that also A ⊆ ξcd←({z}) and A′ ⊆ ξcd←({z′}) and thus A×k

ℓ A
′ by (c,d, p) ∈☆r

z∈U⊍OXz.
That implies B ×ℓ

k B′ and thus (c,d, p)∗ ∈ ☆r
z∈U⊍OXz because κℓk is anti-monotonic

with respect to Γℓk and Γkℓ by the same lemma.
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Tensor products: Next, for each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0 and ct∶ ⟦kt⟧ → (U ⊗
{○, ●})⊍O and dt∶ ⟦ℓt⟧→ (U⊗{○, ●})⊍O as well as (ct,dt, pt) ∈☆r

z∈U⊍OXz be arbitrary.
Moreover, let {z, z′} ⊆ U ⊍O and {B,B′} ⊆ p1 ⊗ p2 be such that z ≠ z′ and (z, z′) ∉ r
as well as B ⊆ ξc1⊗c2d1⊗d2

←({z}) and B′ ⊆ ξc1⊗c2d1⊗d2
←({z′}). If we abbreviate H1 = Πk1

ℓ1
and

H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1

, then by definition there exist {s, s′} ⊆ ⟦2⟧ as well as A ∈ ps and

A′ ∈ ps′ such that B = γ k1+k2
Hs,ℓ1+ℓ2 →(A) and B′ = γ k1+k2

Hs′ ,ℓ1+ℓ2 →(A
′). Because γ k1+k2

H1,ℓ1+ℓ2
and γ k1+k2

H2,ℓ1+ℓ2 are injective that means A = γ k1+k2
Hs,ℓ1+ℓ2

←(B) and A′ = γ k1+k2
Hs′ ,ℓ1+ℓ2

←(B′).
Moreover, because ξc1⊗c2d1⊗d2 ○ γ

k1+k2
Ht,ℓ1+ℓ2 = ξ

ct
dt

for each t ∈ ⟦2⟧ Lemma 4.2 (c) we can infer

A ⊆ ξcsds←({z}) and A′ ⊆ ξcs′ds′
←({z′}). If s ≠ s′, then B×k1+k2

ℓ1+ℓ2 B′ because H1 and H2

are convex and disjoint. And in the case that s = s′ we find B×k1+k2
ℓ1+ℓ2 B′ as well since

ps ∈☆r
z∈U⊍OXz. Thus, (c1,d1, p1)⊗ (c2,d2, p2) ∈☆r

z∈U⊍OXz.
Step 5: Erasing. Finally, let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and

d∶ ⟦ℓ⟧ → (U⊗ {○, ●}) ⊍O and (c,d, p) ∈ ☆r
z∈U⊍OXz, let T ⊆ Π0

ℓ and zT ∈ U ⊍O be such
that ∣T∣ = 2 and T ⊆ ξcd←({zT}) and such that, if zT ∈ U, then zTσ

c
d(T) = 0 and let

{z, z′} ⊆ U ⊍O, and {B,B′} ⊆ E(p,T) be such that, if M = Πk
ℓ /T and if a and b are

such that a ◾◾b = c ◾◾d ○ γ k
M,ℓ , then B ⊆ ξab←({z}) and B ⊆ ξab←({z′}). We have to

show B×k
ℓ−2 B

′. According to the definition of E(p,T) there are now two cases to
distinguish.

Case 5.1: The first is that there exist {A,A′} ⊆ p with A ∩ T = ∅ = A′ ∩ T and
B = γ k

M,ℓ
←(A) and B′ = γ k

M,ℓ
←(A′). Because γ k

M,ℓ is surjective onto M, because A ⊆M
and A′ ⊆ M and because ξab = ξcd ○ γ k

M,ℓ by Lemma 4.2 (d), we can then conclude

A = γ k
M,ℓ →(B) ⊆ ξcd←({z}) and A′ = γ k

M,ℓ →(B′) ⊆ ξcd←({z′}). Since p ∈ ☆r
z∈U⊍OXz that

demands A ×k
ℓ A′, from which B ×k

ℓ−2 B′ follows because γ k
M,ℓ is monotonic with

respect to Γkℓ−2 and Γkℓ by the same lemma.
Case 5.2: The other possibility is that there exists A ∈ p with A ∩ T = ∅ such

that {B,B′} = {γ k
M,ℓ
←(A), γ k

M,ℓ
←(⋃{A′ ∈ p ∧ A′ ∩T ≠ ∅})}. Since being non-crossing

is a symmetric binary relation we can assume without loss of generality that B =
γ k
M,ℓ
←(A) and B′ = γ k

M,ℓ
←(⋃{A′ ∈ p ∧ A′ ∩T ≠ ∅}). Then, as before, A = γ k

M,ℓ
←(B) ⊆

ξcd
←({z}) since γ k

M,ℓ is surjective onto M and because ξab = ξcd○γ k
M,ℓ by Lemma 4.2 (d).

Furthermore, because ∣T∣ = 2 there can be either one or two A′ ∈ p with A′ ∩T ≠ ∅.
Case 5.2.1: In the first situation, where there exists A′ ∈ p with T ⊆ A′, and thus

B′ = γ k
M,ℓ
←(A′), we immediately conclude A′ = γ k

M,ℓ →(B′)⊍T ⊆ ξcd←({z′}) for the same

reasons as before. And, once again, p ∈ ☆r
z∈U⊍OXz then implies A ×k

ℓ A′ and thus
B×k

ℓ−2 B
′ by the monotonicity of γ k

M,ℓ guaranteed by Lemma 4.2 (d).

Case 5.2.2: The alternative is that there exist {A′1,A′2} ⊆ p with A′1 ≠ A′2 and
A′1 ∩T ≠ ∅ ≠ A′2 ∩T and T ⊆ A′1 ⊍A′2. In that case A′1 ⊆ ξcd←({zT}) and A′2 ⊆ ξcd←({zT})
because T ⊆ ξcd←({zT}) and because p ≤ ker(ξcd) by p ∈ ×z∈U⊍OXz. On the other hand,
the facts that γ k

M,ℓ has image M and that B′ = γ k
M,ℓ
←(A′1 ⊍ A′2) imply (A′1 ⊍ A′2)/T ⊆

ξcd
←({z′}) by ξab = ξcd ○ γ k

M,ℓ . Hence, zT = z′ ≠ z by (A′1 ⊍A′2)/T = γ k
M,ℓ →(B′) ≠ ∅. Thus
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we have shown altogether A ⊆ ξcd←({z}) and A′1 ⊆ ξcd←({z′}) and A′2 ⊆ ξcd←({z′}). By
p ∈☆r

z∈U⊍OXz that guarantees A×k
ℓ A

′
1 and A×k

ℓ A
′
2.

If we now let {b1,b2} ⊆ B and {b′1,b′2} ⊆ B′ be arbitrary with (b1 ∣ b′1 ∣ b2)kℓ−2
and (b′1 ∣ b2 ∣ b′2)kℓ−2, then, by definition, in order to show B×k

ℓ−2 B
′, what we must

prove is (b1 ∣ b′2 ∣ b2)kℓ−2. In fact, if we define aj = γ k
M,ℓ (bj) and a′j = γ k

M,ℓ (b′j) for each

j ∈ ⟦2⟧, then because γ k
M,ℓ is monotonic and injective, we know (a1 ∣ a′1 ∣ a2)kℓ and

(a′1 ∣ a2 ∣ a′2)kℓ and only have to prove (a1 ∣ a′2 ∣ a2)kℓ .
If there exists i ∈ ⟦2⟧ with {a′1,a′2} ∈ A′i, that is immediate by A ×k

ℓ A
′
i. Hence,

let us assume the opposite. By renaming A′1 ↔ A′2 if necessary, we can ensure then
that a′i ∈ A′i for each i ∈ ⟦2⟧ without affecting any of the assumptions. Furthermore,
for each i ∈ ⟦2⟧ since A′1 ∩ T ≠ ∅ ≠ A′2 ∩ T we find an additional ti ∈ A′i ∩ T and,
necessarily, ti ≠ a′i. Because T is convex with ∣T∣ = 2 there exists k ∈ ⟦2⟧ such that
t3−k = νkℓ (tk). This choice has the consequence that (tk ∣ t3−k ∣ x)kℓ for any x ∈M.

Step 5.2.2.1: We show (a1 ∣ t1 ∣ a2)kℓ . Because Γkℓ is cyclic, (a1 ∣ a′1 ∣ a2)kℓ implies
(a2 ∣ a1 ∣ a′1)kℓ . Hence, if (a2 ∣ t1 ∣ a1)kℓ held, then (a2 ∣ t1 ∣ a′1)kℓ would as well by the
transitivity of Γkℓ , and thus so would (a′1 ∣ a2 ∣ t1)kℓ by cyclicity. Because {a1,a2} ⊆ A
and {a′1,t1} ⊆ A′1 the relation A ×k

ℓ A′1 allows us to infer that at least one of the
three statements (a1 ∣ a′1 ∣ a2)kℓ and (a′1 ∣ a2 ∣ t1)kℓ and (a2 ∣ t1 ∣ a1)kℓ must be false.
Since (a1 ∣ a′1 ∣ a2)kℓ is true and since, as just seen, (a2 ∣ t1 ∣ a1)kℓ implies (a′1 ∣ a2 ∣ t1)kℓ
that means (a2 ∣ t1 ∣ a1)kℓ is invalid. As Γkℓ is asymmetric we have thus indeed proved
(a1 ∣ t1 ∣ a2)kℓ .

Step 5.2.2.2: The next step is to recognize that not only (a1 ∣ t1 ∣ a2)kℓ but also
(a1 ∣ t2 ∣ a2)kℓ . If k = 1, by the cyclicity of Γkℓ we can deduce from (a1 ∣ t1 ∣ a2)kℓ
and (t1 ∣ t2 ∣ a2)kℓ that (a2 ∣ a1 ∣ t1)kℓ and (a2 ∣ t1 ∣ t2)kℓ . From this it follows
(a2 ∣ a1 ∣ t2)kℓ by transitivity and thus (a1 ∣ t2 ∣ a2)kℓ because Γkℓ is cyclic. Similarly,
if k = 2 instead, then the relation (a1 ∣ t2 ∣ t1)kℓ , inferred from (t2 ∣ t1 ∣ a1)kℓ by
cyclicity, and the relation (a1 ∣ t1 ∣ a2)kℓ together imply (a1 ∣ t2 ∣ a2)kℓ immediately
since Γkℓ is transitive.

Step 5.2.2.3: Now, we prove that (t2 ∣ a1 ∣ a′2)kℓ or (a′2 ∣ a2 ∣ t2)kℓ . The facts that
{a1,a2} ⊆ A and {a′2,t2} ⊆ A′2 and A×k

ℓ A
′
2 allow us to conclude that at least one of

the three statements (a′2 ∣ a1 ∣ t2)kℓ and (a1 ∣ t2 ∣ a2)kℓ and (t2 ∣ a2 ∣ a′2)kℓ is false. Of
course, (a1 ∣ t2 ∣ a2)kℓ is true by Step 5.2.2.2. Because Γkℓ is asymmetric we can thus
infer that (t2 ∣ a1 ∣ a′2)kℓ or (a′2 ∣ a2 ∣ t2)kℓ .

Step 5.2.2.4: Finally we distinguish the two cases from the previous step.
Case 5.2.2.4.1: If (t2 ∣ a1 ∣ a′2)kℓ , then also (a1 ∣ a′2 ∣ t2)kℓ by cyclicity of Γkℓ , which

is why the result (a1 ∣ t2 ∣ a2)kℓ of Step 5.2.2.2 then lets us deduce (a1 ∣ a′2 ∣ a2)kℓ by
transitivity.

Case 5.2.2.4.2: And, if (a′2 ∣ a2 ∣ t2)kℓ , then because Γkℓ is cyclic and because
of Step 5.2.2.2 both (a2 ∣ t2 ∣ a′2)kℓ and (a2 ∣ a1 ∣ t2)kℓ . Transitivity lets us derive
(a2 ∣ a1 ∣ a′2)kℓ and thus (a1 ∣ a′2 ∣ a2)kℓ by cyclicity.

In conclusion, B×k
ℓ−2 B

′ holds in any case, proving E((c,d, p),T) ∈☆r
z∈U⊍OXz and

thus making ☆r
z∈U⊍OXz a category. □
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For a particular special case of the preceding proposition it is convenient to have
shorthand notation.

Definition 4.13. For any countable set Z, any category C of two-colored or
uncolored partitions and any partial commutation relation r on Z, the big graph
co-power category C☆(Z,r) with respect to Z and r is the category ☆r

z∈ZXz, where for
each z ∈ Z the category Xz is given by C, seen as tagged with the single tag z.

Notation 4.14. If r = ∅ in Definition 4.13, we also write C☆Z instead of C☆(Z,r)
and speak of the Z-fold big free co-power category of C.

Remark 4.15. In the setting of Definition 4.13, if r is the trivial commutation
relation {(z, z′) ∣ {z, z′} ⊆ Z ∧ z ≠ z′}, then C☆(Z,r) coincides with C×Z .

4.3. Little graph co-products. While the non-crossing conditions of the pre-
vious chapter constitute a notion of “graph co-product”, in order to obtain the
concept as it is defined in the algebraic setting, a smaller category than the big
graph co-product needs to be considered.

Assumption 4.16. In Section 4.3, let r be any partial commutation relation on
U⊍O and let (Xz)z∈U⊍O be any family such that Xz is a category of ({z},∅)-tagged
labeled partitions for any z ∈ U and of (∅,{z})-tagged labeled partitions for z ∈O.

Definition 4.17. The (little) graph co-product ∗rz∈U⊍OXz of (Xz)z∈U⊍O with re-
spect to r is the set of all (c,d, p) ∈ U,OS for which there exist {k, ℓ} ⊆ N0 and a
set-theoretical partition h of Πk

ℓ , the history of (c,d, p) with respect to (Xz)z∈U⊍O
and r, such that c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O, such that
h ≤ ker(ξcd), such that for any {z, z′} ⊆ U ⊍O, whenever (z, z′) ∉ r, then H ×k

ℓ H′

for any {H,H′} ⊆ h with H ⊆ ξcd←({z}) and H′ ⊆ ξcd←({z′}), such that p ≤ h, and such
that R((c,d, p),H) ∈ Xz for any z ∈ U ⊍O and H ∈ h with H ⊆ ξcd←({z}).

Note in particular the difference from Definition 4.9 that in the non-crossing
condition z ≠ z′ is not required here.

Notation 4.18. If r = ∅ in Definition 4.17, we also write ∗z∈U⊍OXz instead of
∗rz∈U⊍OXz and speak of the (little) free co-product of (Xz)z∈U⊍O.

Remark 4.19. In the setting of Definition 4.17, if r is the trivial partial commu-
tation relation {(z, z′) ∣ {z, z′} ⊆ U⊍O ∧ z ≠ z′}, then ∗rz∈U⊍OXz is actually the direct
co-product ×z∈U⊍OXz. In particular, the categories ☆r

z∈U⊍OXz and ∗rz∈U⊍OXz coincide
in that case. The difference between the big and the little graph co-product is a
purely quantum phenomenon.

The nomenclature is consistent in the sense that the little graph co-product is
actually a subset of the big one. The below lemma helps with proving that.

Lemma 4.20. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ →
(U⊗{○, ●})⊍O, any set-theoretical partition p of Πk

ℓ and any set-theoretical partition
h of Πk

ℓ which is non-crossing with respect to Γkℓ and satisfies p ≤ h,
(c,d, p) ∈ U,O⟨R((c,d, p),S) ∣S ∈ h⟩.
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Proof. The proof goes by induction over ∣h∣. For ∣h∣ = 1 there is nothing to
show. For general ∣h∣ the assumption that h is non-crossing with respect to Γkℓ
guarantees the existence of a block S0 ∈ h which is convex with respect to Γkℓ .
By Lemma 3.22 we can assume that ◾ℓ ∈ S0. Then, (c,d, p) can be written as
R((c,d, p),M) ⊗ R((c,d, p),S0), where M ∶= Πk

ℓ /S0. Moreover, if {m,n} ⊆ N0 are
such that, if (a,b, q) ∶= R((c,d, p),M), then a∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍O and b∶ ⟦n⟧ →
(U⊗ {○, ●})⊍O, then g ∶= R(h,M) is a set-theoretical partition of Πm

n which is non-
crossing with respect to Γmn and satisfies q ≤ g and ∣g∣ < ∣h∣. Hence, the induction
hypothesis lets us infer (a,b, q) ∈ U,O⟨R((a,b, q),T) ∣T ∈ g⟩. Since for any T ∈ g there
exists S ∈ h with T = γ k

M,ℓ
←(S) and thus R((a,b, q),T) = R((c,d, p),S) according to

Lemma 4.5 (d) since S ⊆M we have shown R((c,d, p),M) ∈ U,O⟨R((c,d, p),S) ∣S ∈ h⟩.
The decomposition (c,d, p) = R((c,d, p),M) ⊗ R((c,d, p),S0) therefore proves the
claim. □

Proposition 4.21. ∗rz∈U⊍OXz ⊆☆r
z∈U⊍OXz.

Proof. Let (c,d, p) ∈ ∗rz∈U⊍OXz be arbitrary, let {k, ℓ} ⊆ N0 be such that c∶ ⟦k⟧→
(U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍ O and let h be a history of (c,d, p)
with respect to (Xz)z∈U⊍O and r. We check that (c,d, p) meets the conditions for
membership in ☆r

z∈U⊍OXz required by Definition 4.9.
Tags condition. First of all, the transitivity of ≤ guarantees p ≤ ker(ξcd) because

p ≤ h and h ≤ ker(ξcd) by definition.
Restrictions condition. Let z ∈ U ⊍O be arbitrary and abbreviate Y ∶= ξcd←({z})

and m ∶= α(Y) and n ∶= β(Y). We have to show that (a,b, q) ∶= R((c,d, p),Y) ∈ Xz.
First, we prove that the set-theoretical partition g ∶= R(h,Y) of Πm

n is non-crossing
with respect to Γmn . For any {G,G′} ⊆ g with G ≠ G′ there exist, by definition,
{H,H′} ⊆ p with G = γ m

Y,n
←(H) and G′ = γ m

Y,n
←(H′). Because γ m

Y,n is injective it

follows from ∅ = G∩G′ that also H∩H′ = γ m
Y,n

←(G)∩γ m
Y,n

←(G′) = γ m
Y,n

←(G∩G′) = ∅,

i.e., H ≠ H′. Since H ⊆ Y and H′ ⊆ Y and since (z, z) ∉ r the assumption that h
is a history with respect to (Xz)z∈U⊍O and r lets us conclude that H ×k

ℓ H′. And
because γ k

Y,ℓ is monotonic with respect to Γmn and Γkℓ by Lemma 4.2 (d) that requires
G×m

n G′. Hence, g is indeed non-crossing with respect to Γmn .
Consequently, (a,b, q) ∈ U,O⟨R((a,b, q),G) ∣G ∈ g⟩ by Lemma 4.20. For any G ∈ g

there exists H ∈ h with G = γ k
Y,ℓ
←(H) and thus R((a,b, q),G) = R((c,d, p),H) ∈ Xz by

Lemma 4.5 (d) and by h being a history for (c,d, p) with respect to (Xz)z∈U⊍O and
r. It follows U,O⟨R((a,b, q),G) ∣G ∈ g⟩ ⊆ Xz and thus (a,b, q) ∈ Xz, as claimed.

Non-crossing condition. Moreover, for any {z, z′} ⊆ U ⊍O with (z, z′) ∉ r and
z ≠ z′ and any {B,B′} ⊆ p with B ⊆ ξcd←({z}) and B′ ⊆ ξcd←({z′}), by p ≤ h, there
exist {H,H′} ⊆ h with B ⊆ H and B′ ⊆ H′. Since h ≤ ker(ξcd) the facts that ∅ ≠ B ⊆
H ∩ ξcd←({z}) and ∅ ≠ B′ ⊆ H′ ∩ ξcd←({z′}) require that, actually, H ⊆ ξcd←({z}) and
H′ ⊆ ξcd←({z′}). Because h is a history with respect to (Xz)z∈U⊍O and r therefore
H ×c

d H
′. It follows B ×c

d B
′ by B ⊆ H and B′ ⊆ H′. Thus, (c,d, p) also meets the

non-crossing condition and is thus an element of ☆r
z∈U⊍OXz. □
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The following observation will be helpful in proving that (little) graph co-products
are categories of labeled partitions.

Notation 4.22. For any z ∈ U⊍O let {z},∅S+ if z ∈ U and ∅,{z}S+ if z ∈O denote
the set of all elements (c,d, p) of {z},∅S respectively ∅,{z}S such that, if {k, ℓ} ⊆ N0

are such that c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍ O, then p is
non-crossing with respect to Γkℓ .

Notation 4.23. In Section 4.3, let r
U,OS+ denote the big graph co-product ☆r

z∈U⊍ONz,
where for any z ∈ U ⊍O the category Nz is given by {z},∅S+ if z ∈ U and by ∅,{z}S+
if z ∈O.

Proposition 4.24. The (little) graph co-product ∗rz∈U⊍OXz of (Xz)z∈U⊍O with re-
spect to r can be expressed as the set of all (c,d, p) ∈ U,OS for which there exist
{k, ℓ} ⊆ N0 and a set-theoretical partition h of Πk

ℓ such that c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O
and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O, such that h ∈ r

U,OS+ such that p ≤ h, and such that

R((c,d, p),H) ∈ Xz for any z ∈ U ⊍O and H ∈ h with H ⊆ ξcd←({z}).
Proof. An inspection of the definition immediately proves the claim. □

Proposition 4.25. ∗rz∈U⊍OXz is a category of (U,O)-tagged labeled partitions.

Proof. We show that ∗rz∈U⊍OXz meets the conditions of Proposition 3.26. The
proof makes extensive use of Propositions 4.24 and 4.12.

Step 1: Identities. For any c ∈ (U⊗ {○, ●})⊍O we know by Proposition 4.12 that
idc ∈ r

U,OS+. Therefore the set-theoretical partition id1 of Π1
1 is a history for idc with

respect to (Xz)z∈U⊍O and r.
Step 2: Rotation. Given any k ∈ N and ℓ ∈ N0, any c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O and

d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O, any set-theoretical partition p of Πk
ℓ with (c,d, p) ∈ ∗rz∈U⊍OXz

and any r ∈ {⤹, ⤸}, if h is any history of (c,d, p) with respect to (Xz)z∈U⊍O and r,
we show that g ∶= hr is a history for (a,b, q) ∶= (c,d, p)r with respect to (Xz)z∈U⊍O
and r. Since r

U,OS+ is closed under rotations by Proposition 4.12 and Lemma 3.22

the assumption that (c,d, h) ∈ r
U,OS+ ensures that also (a,b, g) ∈ r

U,OS+. Since ωr,kℓ
⇠

preserves ≤ we can conclude q = ωr,kℓ⇠(p) ≤ ω
r,k
ℓ
⇠(h) = g from p ≤ h. For any z ∈ U⊍O

and any G ∈ g with G ⊆ ξab←({z}), if H ∈ h is the block with G = ωr,kℓ←(H), then the

fact that ξab = ξcd ○ω
r,k
ℓ by Lemma 4.2 (a) implies H = (ωr,kℓ→ ○ω

r,k
ℓ
←)(H) = ωr,kℓ→(G) ⊆

(ωr,kℓ→○ξab←)({z}) = (ω
r,k
ℓ→○ω

r,k
ℓ
←○ξcd←)({z}) ⊆ ξcd←({z}), where we have also used the

fact that ωr,kℓ is surjective. Because h is a history for (c,d, p) we may thus conclude
R((c,d, p),H) ∈ Xz. If e ∶= ◾1 in case r =⤹ and e ∶= ◾k in case r =⤸, then R((a,b, q),G)
is given by R((c,d, p),H) if e ∉ H and by R((c,d, p),H)r otherwise according to Lem-
ma 4.5 (a). By Lemma 3.22 that proves R((a,b, q),G) ∈ Xz, making g a history for
(a,b, q) and thus verifying that ∗rz∈U⊍OXz is closed under rotations.

Step 3: Adjoints. The proof that ∗rz∈U⊍OXz is also invariant under forming ad-
joints is quite similar. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O, any set-theoretical partition p of Πk

ℓ with (c,d, p) ∈ ∗rz∈U⊍OXz
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and any history h of (c,d, p) with respect to (Xz)z∈U⊍O and r, the set-theoretical par-
tition g ∶= h∗ is a history for (d, c, p∗) with respect to (Xz)z∈U⊍O and r. Indeed, the
invariance of r

U,OS+ under forming adjoints guaranteed by Proposition 4.12 lets us

infer (d, c, g) ∈ r
U,OS+. And p ≤ h implies p∗ = κkℓ⇠(p) ≤ κkℓ⇠(h) = g since κkℓ

⇠ pre-

serves ≤. Furthermore, given any z ∈ U ⊍O and any G ∈ g with G ⊆ ξdc←({z}) we
find H ∈ h such that G = κkℓ←(H). Because ξdc = ξcd ○ κkℓ by Lemma 4.2 (b) and be-
cause κkℓ is surjective it follows H = (κkℓ→ ○ κkℓ←)(H) = κkℓ→(G) ⊆ (κkℓ→ ○ ξdc←)({z}) =
(κkℓ→ ○ κkℓ← ○ ξcd←)({z}) ⊆ ξcd←({z}). The assumption that h is a history for (c,d, p)
allows us to infer R((c,d, p),H) ∈ Xz. Because R((d, c, p∗),G) = R((c,d, p),H)∗ by
Lemma 4.5 (b) that proves R((d, c, p∗),G) ∈ Xz, which is what we needed to see.

Step 4: Monoidal product. Next, for each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0, let ct∶ ⟦kt⟧ →
(U ⊗ {○, ●}) ⊍ O and dt∶ ⟦ℓt⟧ → (U ⊗ {○, ●}) ⊍ O, let (ct,dt, pt) ∈ ∗rz∈U⊍OXz and let
ht be any history for (ct,dt, pt) with respect to (Xz)z∈U⊍O and r. Wr prove that
g ∶= h1 ⊗ h2 is a history for (c1 ⊗ c2,d1 ⊗ d2, p1 ⊗ p2) with respect to (Xz)z∈U⊍O and r.
Since {h1, h2} ⊆ r

U,OS+ by assumption, Proposition 4.12 ensures g ∈ r
U,OS+.

Since ⊗ preserves ≤ and since pt ≤ ht for each t ∈ ⟦2⟧, moreover, p1⊗p2 ≤ h1⊗h2 = g.
Given any z ∈ U ⊍O and any G ∈ g with G ⊆ ξc1⊗c2d1⊗d2

←({z}) by definition there exist

t ∈ ⟦2⟧ and F ∈ ht such that G = γ k1+k2
Ht,ℓ1+ℓ2 →(F). Because ξc1⊗c2d1⊗d2 ○ γ

k1+k2
Ht,ℓ1+ℓ2 = ξ

ct
dt

by

Lemma 4.2 (c) then F ⊆ (γ k1+k2
Ht,ℓ1+ℓ2

← ○ γ k1+k2
Ht,ℓ1+ℓ2 →)(F) = γ

k1+k2
Ht,ℓ1+ℓ2

←(G) ⊆ (γ k1+k2
Ht,ℓ1+ℓ2

← ○
ξc1⊗c2d1⊗d2

←)({z}) = ξctdt←({z}). Moreover, since H1∩H2 = ∅ and since γ k1+k2
Ht,ℓ1+ℓ2 is injective,

G is the unique subset of Πk1+k2
ℓ1+ℓ2 with F = γ k1+k2

Ht,ℓ1+ℓ2
←(G) and ∅ = γ k1+k2

H3−t,ℓ1+ℓ2
←(G). Since

R((c3−t,d3−t, p3−t),∅) = (∅,∅,∅) Lemma 4.5 (b) thus tells us that R((c1 ⊗ c2,d1 ⊗
d2, p1⊗p2),G) = R((ct,dt, pt),F) and thus R((c1⊗c2,d1⊗d2, p1⊗p2),G) ∈ Xz because
ht is a history for (ct,dt, pt). Hence, ∗rz∈U⊍OXz is closed under monoidal products.

Step 5: Erasing. Finally, let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→
(U⊗{○, ●})⊍O, let (c,d, p) ∈ ∗rz∈U⊍OXz, let h be a history for (c,d, p) with respect to
(Xz)z∈U⊍O and r, let T ⊆ Π0

ℓ be convex with respect to Γkℓ , let ∣T∣ = 2, let zT ∈ U ⊍O,
let T ⊆ ξcd←({zT}) and, if zT ∈ U, let zTσ

c
d(T) = 0. We prove that g ∶= E(h,T), where

M ∶= Πk
ℓ /T, is a history for (a,b, q) ∶= E((c,d, p),T) with respect to (Xz)z∈U⊍O and r.

It is clear that (a,b, g) = E((c,d, h),T) ∈ r
U,OS+ since (c,d, h) ∈ r

U,OS+ by assump-
tion and since r

U,OS+ is closed under erasing by Proposition 4.12 and Lemma 3.25.

Moreover, the fact that erasing preserves ≤ ensures q = E(p,T) ≤ E(h,T) = g.
Given any z ∈ U⊍O and any G ∈ g with G ⊆ ξab←({z}) we distinguish two cases in

order to show R((a,b, q),G) ∈ Xz.
Case 5.1: If there exists H ∈ h with H∩T = ∅ and G = γ k

M,ℓ
←(H), then the fact that

ξab = ξcd ○ γ k
M,ℓ by Lemma 4.2 (d) implies that H = (γ k

M,ℓ → ○ γ k
M,ℓ
←)(H) = γ k

M,ℓ →(G) ⊆
(γ k

M,ℓ → ○ ξab←)({z}) = (γ k
M,ℓ → ○γ k

M,ℓ
← ○ ξcd←)({z}) ⊆ ξcd←({z}), where we have also used

the fact that H ⊆ ran(γ k
M,ℓ ) = M. The assumption that h is a history for (c,d, p)

therefore requies R((c,d, p),H) ∈ Xz. Since, at the same time, R((a,b, q),G) =
R((c,d, p),H) by H∩T = ∅ and by Lemma 4.5 (d) that proves R((a,b, q),G) ∈ Xz in
that case.
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Case 5.2: By definition of g, the alternative possibility is that G = γ k
M,ℓ
←(W)

where W ∶= ⋃{H ∈ h ∧ H∩T ≠ ∅}. In that case we let V ∶= γ k
W,ℓ

←(T) and prove that, if

(f,g, s) ∶= R((c,d, p),W), then E((f,g, s),V) ∈ Xz and R((a,b, q),G) = E((f,g, s),V),
thus proving R((a,b, q),G) ∈ Xz.

Step 5.2.1: First, as an auxiliary step, we show that W ⊆ ξcd←({zT}) and that
z = zT. For any H ∈ h with H ∩ T ≠ ∅, because h ⊆ ker(ξcd) and T ⊆ ξcd←({zT}), the
fact that ∅ ≠ H∩T ⊆ H∩ξcd←({zT}) requires H ⊆ ξcd←({zT}). Because h is a history for
(c,d, p) it follows R((c,d, p),H) ∈ XzT for any H ∈ h with H∩T ≠ ∅ and, consequently,
W ⊆ ξcd←({zT}).

On the other hand, because ξab = ξcd○γ k
M,ℓ by Lemma 4.2 (d), also, G = γ k

M,ℓ
←(W) ⊆

(γ k
M,ℓ
← ○ ξcd←)({zT}) = ξab←({zT}) and thus z = zT by ∅ ≠ G ⊆ ξab←({z}) ∩ ξab←({zT}).

Step 5.2.2: Next, as a second intermediate step we prove (f,g, s) ∈ Xz. In order
to show this, by Lemma 4.20 it suffices to let t ∶= γ k

W,ℓ
⇠(h), to let {x, y} ⊆ N0 be

such that f∶ ⟦x⟧→ (U⊗ {○, ●}) ⊍O and g∶ ⟦y⟧→ (U⊗ {○, ●}) ⊍O and to prove that t
is non-crossing with respect to Γxy and that R((f,g, s),K) ∈ Xz for any K ∈ t.

And, indeed, for any {K1,K2} ⊆ t with K1 ≠ K2, by definition, there exist
{H1,H2} ⊆ h with K1 = γ k

W,ℓ
←(H1) and K2 = γ k

W,ℓ
←(H2). It follows ∅ ≠ γ k

W,ℓ →(K1) ⊆
(γ k

W,ℓ → ○γ k
W,ℓ

←)(H1) ⊆ H1 and thus K1∩W ≠ ∅. Since W is a union of blocks of h and
since H1 ∈ h that requires H1 ⊆W. The same argument can be carried out for H2 to
prove H2. Because W ⊆ ξcd←({z}) by Step 5.2.1 we have thus shown H1 ⊆ ξcd←({z})
and ξcd

←({z}). Moreover, because γ k
W,ℓ is injective, H1∩H2 = γ k

W,ℓ
←(K1)∩γ k

W,ℓ
←(K2) =

γ k
W,ℓ

←(K1∩K2) = ∅ by K1∩K2 = ∅. Equivalently, H1 ≠ H2. Therefore the assumption

that h is a history for (c,d, p) or, more precisely, that (c,d, h) ∈ r
U,OS+ allows us to

conclude H1×k
ℓ H2. Since γ k

W,ℓ is monotonic with respect to Γxy and Γkℓ that requires
K1×x

y K2. Hence, t is non-crossing with respect to Γxy .
Furthermore, given any K ∈ t, if H ∈ h is the unique block with K = γ k

W,ℓ
←(H), then

H ⊆W ⊆ ξcd←({z}). Because h is a history for (c,d, p) it thus follows R((c,d, p),H) ∈
Xz. According to Lemma 4.5 (d), moreover, R((f,g, s),K) = R((c,d, p),H) because
H ⊆W. Hence, (f,g, s) ∈ Xz, as claimed.

Step 5.2.3: γ k
H,ℓ is strictly monotonic with respect to Γxy and Γkℓ by Lemma 4.2 (d),

which is why V = γ k
H,ℓ
←(T) is convex with respect to Γxy and satisfies ∣V∣ = 2. More-

over, of course, V = γ k
H,ℓ
←(T) ⊆ (γ k

H,ℓ → ○ ξcd←) = ξ
f
g
←({z}) because ξfg = ξcd ○ γ k

H,ℓ . And,

if z ∈ U, then zσ
f
g(V) = zσc

d(T) = 0 by Lemma 4.2 (d) and T/H = ∅. It follows
E((f,g, s),V) ∈ Xz by Lemma 3.25 and Step 5.2.2.

Step 5.2.4: Because R((a,b, q),G) = E((f,g, s),V) by Lemma 4.5 (d) that proves
R((a,b, q),G) ∈ Xz in this case, which concludes the proof overall. □

Again, convenient shorthand notation is useful for a particular special case of
Proposition 4.25.

Definition 4.26. If there exists a category C of two-colored or uncolored parti-
tions such that for each z ∈ U⊍O the category Xz is given by C, seen as tagged with
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the single tag z, then we call ∗rz∈U⊍OXz the (little) graph co-power category of C with
respect to U ⊍O and r and also write C∗(U⊍O,r) instead of ∗rz∈U⊍OXz.

Notation 4.27. If r = ∅ in Definition 4.26, we also write C∗U⊍O instead of
C∗(U⊍O,r) and speak of the U ⊍O-fold (little) free co-power category of C.

Remark 4.28. In the setting of Definition 4.26, if r is the trivial commutation
relation {(z, z′) ∣ {z, z′} ⊆ U ⊍O ∧ z ≠ z′}, then C∗(U⊍O,r) coincides with (C☆(U⊍O,r)
and) C×U⊍O.

4.4. Unique graph co-products. When it comes to proving that a certain
partition belongs to the category, the little graph co-product is more complicated
than the big one. Conversely, we will see in Section 5 that little graph co-products
have very small generator sets. In order to best capitalize on the advantages of each
co-product it is useful to know when the two coincide. In this section we show that
this is the case if the factor categories have the following property.

Definition 4.29. Any category C of (U,O)-tagged labeled partitions is called
⊗-elbats (with respect to (U,O)) if for any (c1,d1, p1) ∈ U,OS and (c2,d2, p2) ∈ U,OS,
whenever (c1,d1, p1)⊗ (c2,d2, p2) ∈ C, then also (c1,d1, p1) ∈ C and (c2,d2, p2) ∈ C.

Similarly to how Lemma 4.20 extends the statement that categories are closed
under the monoidal product the next lemma expands on what it means to be ⊗-
elbats.

Lemma 4.30. For any category C of (U,O)-tagged labeled partitions the following
are equivalent:

(i) C is ⊗-elbats with respect to (U,O)
(ii) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O,

any set-theoretical partition p of Πk
ℓ , any set-theoretical partition h of Πk

ℓ

which is non-crossing with respect to Γkℓ and satisfies p ≤ h, if (c,d, p) ∈ C,
then for any S ∈ h,

R((c,d, p),S) ∈ C.
Proof. It is clear that (ii) implies (i). The proof of the converse implication is

very much similar to the proof of Lemma 4.20. Again, it goes by induction over ∣h∣
and there is nothing to show for ∣h∣ = 1. In the general case, there exists S0 ∈ h which
is convex with respect to Γkℓ because h is non-crossing with respect to Γkℓ . Once more
we can employ Lemma 3.22 to assume ◾ℓ ∈ S0 and thus (c,d, p) = R((c,d, p),M) ⊗
R((c,d, p),S0), where M ∶= Πk

ℓ /S0. Since C is ⊗-elbats this decomposition allows us
to infer both R((c,d, p),M) ∈ C and R((c,d, p),S0) ∈ C. It remains to let S ∈ h be
arbitrary with S ≠ S0 and show R((c,d, p),S) ∈ C.

As before, if (a,b, q) ∶= R((c,d, p),M), if {m,n} ⊆ N0 are such that a∶ ⟦m⟧ →
(U ⊗ {○, ●}) ⊍O and b∶ ⟦n⟧ → (U ⊗ {○, ●}) ⊍O and if g ∶= R(h,M), then g is a set-
theoretical partition of Πm

n which is non-crossing with respect to Γmn and satisfies
q ≤ g and ∣g∣ < ∣h∣. By the definition of g and by the assumptions p ≤ h and
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S ≠ S0 we know T ∶= γ k
M,ℓ →(S) ∈ g. Because (a,b, q) ∈ C and because C is ⊗-elbats

the induction hypothesis therefore lets us conclude R((a,b, q),T) ∈ C. Because
R((a,b, q),T) = R((c,d, p),S) by Lemma 4.5 (d) and by S ⊆M that means we have
shown R((c,d, p),S) ∈ C. Hence, (i) really does imply (ii). □

In the proof that there is only one “graph co-product” for ⊗-elbats factors the
following notion plays a crucial role.

Definition 4.31. Given any finite set X, any total cyclic order Γ on X, any set-
theoretical partition p of X and any {a,c} ⊆X, we say that c is connected to a with
respect to Γ and p if there exist m ∈ N and pairwise distinct blocks B1, . . . ,Bm of p
with a ∈ B1 and c ∈ Bm and Bi � Bi+1 with respect to Γ for any i ∈ ⟦m − 1⟧.

This binary relation actually constitutes an equivalence.

Definition 4.32. For any finite set X, any total cyclic order Γ on X and any
set-theoretical partition p of X the set-theoretical partition of X associated with
the equivalence relation of being connected with respect to Γ and p is called the
connected components of X with respect to Γ and p. We speak of any of its blocks
as a connected component of X with respect to Γ and p.

The following is well-known. A proof can also be extracted from that of Case 3.2
in the proof of Proposition 4.35 below.

Proposition 4.33. For any finite set X, any total cyclic order Γ on X and any
set-theoretical partition p of X the connected components of Γ with respect to Γ and p
are non-crossing with respect to Γ. More precisely, they form the finest non-crossing
partition coarser than p.

Assumption 4.34. In Section 4.4, let r be any partial commutation relation on
U⊍O and let (Xz)z∈U⊍O be any family such that Xz is a category of ({z},∅)-tagged
labeled partitions for any z ∈ U and of (∅,{z})-tagged labeled partitions for z ∈O.

Proposition 4.35. If Xz is ⊗-elbats with respect to ({z},∅) for any z ∈ U and
with respect to (∅,{z}) for any z ∈O, then ∗rz∈U⊍OXz =☆r

z∈U⊍OXz.
Proof. The inclusion ∗rz∈U⊍OXz ⊆☆r

z∈U⊍OXz was shown in Proposition 4.21. Let
(c,d, p) ∈ ☆r

z∈U⊍OXz be arbitrary and {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O
and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O. For any z ∈ U ⊍ O abbreviate Yz ∶= ξcd←({z}) and
mz ∶= α(Yz) and nz ∶= β(Yz). We show that

h ∶= {γ k
Yz ,ℓ →(C) ∣ z ∈ U ⊍O ∧ C connected component of Πmz

nz

w.r.t. R(p,Yz) and Γmz
nz
}

is a history for (c,d, p) with respect to (Xz)z and r.
Step 1: h is a set-theoretical partition of Πk

ℓ . For any {z1, z2} ⊆ U ⊍ O, any
connected components C1 and C2 of Π

mz1
nz1

with respect to R(p,Yz1) and Γ
mz1
nz1

re-

spectively of Π
mz2
nz2

with respect to R(p,Yz2) and Γ
mz2
nz2

, if H1 ∶= γ k
Yz1 ,ℓ

→(C1) and
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H2 ∶= γ k
Yz2 ,ℓ

→(C2) satisfy H1 ∩ H2 ≠ ∅, then in particular Yz1 ∩ Yz2 ≠ ∅ because

H1 ⊆ ran(γ k
Yz1 ,ℓ
) = Yz1 and H2 ⊆ ran(γ k

Yz2 ,ℓ
) = Yz2 . Because {Yz1 ,Yz2} ⊆ ker(ξcd) that

requires Yz1 = Yz2 , which is to say z1 = z2. In conclusion, because γ k
Yz1 ,ℓ

is injective,

C1 ∩ C2 = γ k
Yz1 ,ℓ

←(H1) ∩ γ k
Yz2 ,ℓ

←(H2) = γ k
Yz1 ,ℓ

←(H1 ∩ H2) ≠ ∅ because H1 ∩ H2 ⊆ Yz1 .

That requires C1 = C2 and thus H1 = H2.
For any b ∈ Πk

ℓ , if z ∶= ξcd(b), then b ∈ Yz. Because ran(γ k
Yz ,ℓ
) = Yz there is a ∈ Πmz

nz

with b = γ k
Yz ,ℓ
(a). If C is the connected component of a with respect to R(p,Yz) and

Γmz
nz , then b ∈ γ k

Yz ,ℓ →(C). Hence, ⋃h = Πk
ℓ , which makes h a set-theoretical partition

of Πk
ℓ .

Step 2: h respects the tags. For any z ∈ U ⊍O and any connected component of
Πmz
nz with respect to R(p,Yz) and Γmz

nz , obviously, γ k
Yz ,ℓ →(C) ⊆ Yz ∈ ker(ξcd). Hence,

h ≤ ker(ξcd).
Step 3: h meets the non-crossing conditions for being a history. Given any

{z1, z2} ⊆ U ⊍O with (z1, z2) ∉ r and any connected components C1 and C2 of Π
mz1
nz1

with respect to R(p,Yz1) and Γ
mz1
nz1

respectively of Π
mz2
nz2

with respect to R(p,Yz2)
and Γ

mz2
nz2

, if H1 ∶= γ k
Yz1 ,ℓ

→(C1) and H2 ∶= γ k
Yz2 ,ℓ

→(C2) are such that H1 ≠ H2 and,

necessarily, H1 ⊆ Yz1 and H2 ⊆ Yz2 , then we prove H1 ×k
ℓ H2 by distinguishing two

cases.
Case 3.1: Components belonging to identical tags. If z ∶= z1 = z2, then C1 and C2

are both connected components of Πmz
nz with respect to R(p,Yz) and Γmz

nz . And the
asssumption that H1∩H2 = ∅ then implies C1∩C2 = γ k

Yz ,ℓ
←(H1∩H2) = ∅, i.e., C1 ≠ C2.

Since the connected components of Πmz
nz with respect to R(p,Yz) and Γmz

nz are non-
crossing with respect to Γmz

nz by Proposition 4.33, we can thus conclude C1×mz
nz C2.

Because γ k
Yz ,ℓ

is strictly monotonic with respect to Γmz
nz and Γkℓ it follows H1×k

ℓ H2.

Case 3.2: Components belonging to distinct tags. In order to see that H1×k
ℓ H2

in the case where z1 ≠ z2, the proof of Proposition 4.33 can be adapted as follows.
We suppose H1 �k

ℓ H2 and derive a contradiction. More precisely, we find blocks
F1i0 and F2j0 of p with F1i0 ⊆ Yz1 and F2j0 ⊆ Yz2 and F1i0 �k

ℓ F
2
j0

, which contradicts the
assumption p ∈☆r

z∈U⊍OXz.
Step 3.2.1: Definition of the blocks F11, . . . ,F

1
t1
and F21, . . . ,F

2
t2
. Under the assump-

tion H1 �k
ℓ H2 there exist {b11,b12} ⊆ H1 and {b21,b22} ⊆ H2 with (b11 ∣ b21 ∣ b12)kℓ and

(b21 ∣ b12 ∣ b22)kℓ and (b12 ∣ b22 ∣ b11)kℓ . By definition of H1 and H2 we find {a11,a12} ⊆ C1

and {a21,a22} ⊆ C2 with γ k
Yz1 ,ℓ
(a11) = b11 and γ k

Yz1 ,ℓ
(a12) = b12 and γ k

Yz2 ,ℓ
(a21) = b21 and

γ k
Yz2 ,ℓ
(a22) = b22. By nature of C1 and C2 there must then exist {t1, t2} ⊆ N and pair-

wise distinct blocks E11, . . . ,E
1
t1

of R(p,Yz1) and pairwise distinct blocks E21, . . . ,E
2
t2

of R(p,Yz2) such that a11 ∈ E11 and a12 ∈ E1t1 and E1i �
mz1
nz1

E1i+1 for any i ∈ ⟦t1 − 1⟧ and

such that a21 ∈ E21 and a22 ∈ E2t2 and E2j �
mz2
nz2

E2j+1 for any j ∈ ⟦t2 − 1⟧. We now let

F1i ∶= γ k
Yz1 ,ℓ

→(E1i ) for any i ∈ ⟦t1⟧ and F2j ∶= γ k
Yz2 ,ℓ

→(E2j) for any j ∈ ⟦t2⟧.
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Step 3.2.2: Definition of j0. Because b21 = γ k
Yz2 ,ℓ
(a21) ∈ γ k

Yz2 ,ℓ
→(E21) = F21 and

because, by assumption, (b11 ∣ b21 ∣ b12)kℓ the set {j ∈ ⟦t2⟧ ∧ ]b11,b12[kℓ ∩ F2j ≠ ∅} is
non-empty. Define j0 to be its maximal element.

Step 3.2.3: Definition of auxiliary points c1 and c2. In order to define i0, we first
prove that ]b11,b12[kℓ ∩F2j0 ≠ ∅ ≠ ]b12,b11[kℓ ∩F2j0 . That then allows us to find and fix some

c1 ∈ ]b11,b12[kℓ ∩ F2j0 and c2 ∈ ]b12,b11[kℓ ∩ F2j0 . Indeed, ]b11,b12[kℓ ∩ F2j0 ≠ ∅ already holds by

the definition of j0. And, if the set ]b12,b11[kℓ ∩F2j0 was empty, that would require j0 ≠ t2
because b22 = γ k

Yz2 ,ℓ
(a22) ∈ γ k

Yz2 ,ℓ
→(E2t2) = F2t2 by a22 ∈ E2t2 and because, by assumption,

(b12 ∣ b22 ∣ b11)kℓ . The maximality of j0 would then demand ]b11,b12[kℓ ∩ F2j0+1 = ∅. In

other words, we would deduce that F2j0 ⊆ ]b11,b12[kℓ and F2j0+1 ⊆ ]b12,b11[kℓ . Since the

intervals ]b11,b12[kℓ and ]b12,b11[kℓ do not cross each other with respect to Γkℓ we would
infer that also F2j0 ×k

ℓ F
2
j0+1. That would contradict the assumption E2j0 �

mz2
nz2

E2j0+1
because γ k

Yz2 ,ℓ
is monotonic with respect to Γ

mz2
nz2

and Γkℓ by Lemma 4.2 (d). Hence,

]b12,b11[kℓ ∩ F2j0 is non-empty.
Step 3.2.4: Definition of i0. We can define i0 to be the maximal element of the set

{i ∈ ⟦t1⟧ ∧ ]c2,c1[kℓ ∩ F1i ≠ ∅} once we show that this set is non-empty. And, indeed,
since (b11 ∣ c1 ∣ b12)kℓ by the definition of c1 and since the cyclicity of Γkℓ lets us infer
(b11 ∣ b12 ∣ c2)kℓ from (b12 ∣ c2 ∣ b11)kℓ , which holds by the definition of c2, the transitivity
of Γkℓ implies (b11 ∣ c1 ∣ c2)kℓ or, equivalently, (c2 ∣ b11 ∣ c1)kℓ by cyclicity. Because
b11 = γ k

Yz1 ,ℓ
(a11) ∈ γ k

Yz1 ,ℓ
→(E11) = F11 by a11 ∈ E11 that proves the asserted non-emptiness.

Step 3.2.5: Proof of F1i0 �k
ℓ F

2
j0
. Already by definition it holds that ]c2,c1[kℓ ∩F1i0 ≠

∅. If ]c1,c2[kℓ ∩F1i0 was empty, that would imply i0 ≠ t1 for the following two reasons.

First, b12 = γ k
Yz1 ,ℓ
(a12) ∈ γ k

Yz1 ,ℓ
→(E1t1) = F1t1 by a12 ∈ E1t1 . Second, since the definitions of

c2 and c1 ensure (b12 ∣ c2 ∣ b11)kℓ and (b11 ∣ c1 ∣ b12)kℓ , respectively, the latter of which is
equivalent to (b12 ∣ b11 ∣ c1)kℓ by cyclicity of Γkℓ , the transitivity of Γkℓ lets us conclude
(b12 ∣ c2 ∣ c1)kℓ or, equivalently, (c1 ∣ b12 ∣ c2)kℓ by cyclicity. By i0 < t1, the maximality
of i0 would then require ]c2,c1[kℓ ∩ F1i0+1 = ∅, which would mean that F1i0 ⊆ ]c2,c1[kℓ
and F2i0 ⊆ ]c1,c2[kℓ . Because ]c2,c1[kℓ and ]c1,c2[kℓ are non-crossing with respect to Γkℓ
it would follow that also F1i0 ×k

ℓ F
1
i0+1, contradicting the assumption E1i0 �

mz1
nz1

E1i0+1.

Therefore, ]c1,c2[kℓ ∩ F1i0 must be non-empty instead, proving that F1i0 �k
ℓ F

2
j0

since

{c1,c2} ⊆ F2j0 . That is the contradiction we sought. Thus, H1×k
ℓ H2 also in Case 3.2.

Altogether, h meets the non-crossing conditions for being a history.
Step 4: h is coarser than p. Because p ≤ ker(ξcd) by p ∈ ☆r

z∈U⊍OXz, for any
B ∈ p there exists z ∈ U ⊍O such that B ⊆ Yz. Because B ∩ Yz = B ≠ ∅ it follows
A ∶= γ k

Yz ,ℓ
←(B) ∈ R(p,Yz). Since R(p,Yz) refines the connected components of

Πmz
nz with respect to Γmz

nz and R(p,Yz) by Proposition 4.33, there must then exist
such a connected component C with A ⊆ C. Because B ⊆ Yz that implies B =
(γ k

Yz ,ℓ → ○ γ
k

Yz ,ℓ
←)(B) = γ k

Yz ,ℓ →(A) ⊆ γ
k

Yz ,ℓ →(C) ∈ h. Hence, indeed, p ≤ h.
Step 5: h meets the restriction conditions for being a history. Finally, let z ∈ U⊍O

and let C be any connected component of Πmz
nz with respect to Γmz

nz and R(p,Yz).
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By assumption on (c,d, p) then, R((c,d, p),Yz) ∈ Xz. Since the connected compo-
nents of Πmz

nz with respect to Γmz
nz and R(p,Yz) are non-crossing with respect to

Γmz
nz and coarser than R(p,Yz) by Proposition 4.33 and since Xz is ⊗-elbats Lem-

ma 4.30 guarantees that R(R((c,d, p),Yz),C) ∈ Xz. Since R((c,d, p), γ k
Yz ,ℓ →(C)) =

R(R((c,d, p),Yz),C) by Lemma 4.5 (d) that proves R((c,d, p), γ k
Yz ,ℓ →(C)) ∈ Xz.

Thus h is a history for (c,d, p), which concludes the proof. □

4.5. Crossed co-products with cyclic groups. The final general construc-
tion of categories of labeled partitions is that of a crossed co-product with a cate-
gory representing a cyclic group. The partitions of the first factor are required to
be tagged with the elements of the cyclic group. The second factor in the crossed
co-product will be one of the following sets of two-colored partitions (in the sense
of Remark 3.12 (b)) singly tagged with the unitary tag ℵ.

Definition 4.36. (a) For any w ∈ N let Zw be the set of all (c,d, p) ∈ {ℵ},∅S
such that ℵΣc

d ≡w 0 and such that for any B ∈ p always ∣B∣ ≤ 2 and, if ∣A∣ = 2,
then ℵσc

d(A) = 0.
(b) Moreover, let Z0 be the set of all (c,d, p) ∈ {ℵ},∅S for any B ∈ p both ∣A∣ = 2

and ℵσc
d(A) = 0.

Of course, Z0 is simply U from Definition 7.10 (a) below, seen as tagged with the
single tag ℵ.

Remark 4.37. For w ∈ N the category Zw was covered in terms of generators by
the group case classification in [TW18, Theorem 8.3] under the name Bgrp,loc(w). It
is also treated in [MW21b] as RQ for Q = ({1,2},±{0,1},wZ,∅,wZ,Z).

Lemma 4.38. (a) Zw is a category of ({ℵ},∅)-tagged labeled partitions for
any w ∈ N.

(b) Z0 is a category of ({ℵ},∅)-tagged labeled partitions.

Proof. A proof of (a) can be found in [MW21b, Theorem 6.20] (tenth row of
the table, with u = 1). And one of (b) is provided, e.g., in [MW20, Propostion 5.3],
where Z0 is referred to as S1. □

The defining condition of the crossed co-product category will be that under a
certain tag shift, the restriction to the area of the tags pertaining to the first factor
category is an element of that category. The shift in question is achieved as follows.

Notation 4.39. If L is either ({ℵ} ⊗ {○, ●}) ⊍ Z or (Z ⊍ {ℵ}) ⊗ {○, ●}, then for
any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧ → L and d∶ ⟦ℓ⟧ → L, in the following, we write εcd for
the mapping ξcd

←(Z)→ Z defined by

◾i↦ ξcd(◾i) − {
ℵσc

d(] ◾i, ◾1]kℓ ) ∣ i ≠ 1

0 ∣ i = 1
and ◾j ↦ ξcd(◾j) + {

ℵσc
d([◾1, ◾j[kℓ ) ∣ j ≠ 1

0 ∣ j = 1

for any i ∈ ⟦k⟧ with ◾i ∈ ξcd←(Z) and any j ∈ ⟦ℓ⟧ with ◾j ∈ ξcd←(Z).
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In the interest of readability, the formulation of the definition of the crossed co-
product category exploits a particular choice of presentations of the cyclic groups.

Notation 4.40. For any w ∈ N we work with the presentation Zw of the cyclic
group of order w given by the set {0,1, . . . ,w − 1} equipped with the group law +w
defined by (s, t) ↦ s + t if s + t < w and (s, t) ↦ s + t −w otherwise. Also, let πw be
the group homomorphism Z→ Zw with 1↦ 1.

Moreover, we also write Z0 for Z (and +0 for +) and π0 for the identity on Z.

In order for the defining condition of the crossed co-product category to be stable,
the first factor category needs to be closed under shifting all tags of a given partition
simultaneously, by any amount and in any direction.

Definition 4.41. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, if V is the left
action of Zw on (U⊗ {○, ●})⊍O with (z, (x, c))↦ Vz(x, c) ≡ (x+w z, c) for any x ∈ U
and c ∈ {○, ●} and with (z, y) ↦ Vz(y) ≡ y +w z for any y ∈ O and for any z ∈ Zw,
then any category X of (U,O)-tagged labeled partition will be called Zw-invariant
if (Vz ○ f, Vz ○ g, s) ∈ X for any (f,g, s) ∈ X and any z ∈ Zw.

Because our particular choice of presentations for the cyclic groups enables us to
say that Zw is a subset of Z for any w ∈ N0, the following definition makes sense.

Definition 4.42. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any
Zw-invariant category X of (U,O)-tagged labeled partitions the crossed co-product
category X ⋊Zw of X with Zw is the set of all (c,d, p) ∈ U⊍{ℵ},OS for which there exist
{k, ℓ} ⊆ N0 such that c∶ ⟦k⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ ((U⊍{ℵ})⊗{○, ●})⊍
O, such that p ≤ ξcd⇠({U ⊍O,{ℵ}}), such that R((c,d, p), ξcd←({ℵ})) ∈ Zw and such
that, if Y = ξcd←(U ⊍O) and if the labelings u and v are such that ξuv = πw ○ εcd ○ γ k

Y,ℓ

and ζuv = ζcd ○ γ k
Y,ℓ , then (u,v,R(p,Y)) ∈ X .

The following auxiliary result will aid the proof that the above definition does
indeed yield a category.

Lemma 4.43. If L is either ({ℵ} ⊗ {○, ●}) ⊍ Z or (Z ⊍ {ℵ}) ⊗ {○, ●}, then given
any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → L and d∶ ⟦ℓ⟧ → L as well as any {kt, ℓt} ⊆ N0 and any
ct∶ ⟦kt⟧→ L and dt∶ ⟦ℓt⟧→ L for each t ∈ ⟦2⟧, the following hold.
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(a) For any r ∈ {⤹, Á, ¹, ⤸}, if a ◾◾b = (c ◾◾d)r is defined and if e is given by ◾1 if
r =⤹, by ◾k if r =⤸, by ◾1 if r =¹ and by ◾ℓ if r =Á, then

(εab ○ (ωr,kℓ )−1)(t) = εcd(t) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℵσc
d({e}) if r =⤹ ∧t ≠ e

0 if r =⤹ ∧t = e
0 if r =⤸ ∧t ≠ e
−ℵσc

d({e}) + ℵΣc
d if r =⤸ ∧t = e

−ℵσc
d({e}) if r =¹ ∧t ≠ e

0 if r =¹ ∧t = e
0 if r =Á ∧t ≠ e
ℵσc

d({e}) − ℵΣc
d if r =Á ∧t = e

for any t ∈ ξcd←(Z).
(b) If a ◾◾b = (c ◾◾d)∗, then

εab = εcd ○ κkℓ .
(c) If H1 = Πk1

ℓ1
and H2 = Πk1+k2

ℓ1+ℓ2 /Π
k1
ℓ1

and if a ◾◾b = (c1 ◾◾d1)⊗ (c2 ◾◾d2), then for
each t ∈ ⟦2⟧,

(εab ○ γ k1+k2
Ht,ℓ1+ℓ2 )(s) = ε

ct
dt
(s) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t = 1

−ℵΣc1
∅ if t = 2 ∧ s ∈ Πk2

0

−ℵΣc1
∅ + ℵΣc1

d1
if t = 2 ∧ s ∈ Π0

ℓ2

for any s ∈ ξctdt←(Z).
(d) For any S ⊆ Πk

ℓ , if a
◾
◾b = R(c ◾◾d,S), if x = α(S) and y = β(S), then

(εcd ○ γ k
S,ℓ )(s)

= εab(s) +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
if (◾1 ∈ S ∧ s = ◾1)

∨ (◾1 ∈ S ∧ s = ◾1)
−ℵσcd(]γ k

S,ℓ (s), ◾1]kℓ /S) if (◾1 ∉ S ∨ s ≠ ◾1) ∧ s ∈ Πx
0

ℵσcd([◾1, γ k
S,ℓ (s)[kℓ /S) if (◾1 ∉ S ∨ s ≠ ◾1) ∧ s ∈ Π0

y

for any s ∈ Πx
y .

Proof. (a) Only the cases r ∈ {⤹, ⤸} need proving because the others then
follow from (b) by exchaning the roles k↔ ℓ and c↔ d and applying Lemma 4.2 (b).

Case r =⤹: Recall that (ω⤹,kℓ )−1 satisfies ◾1↦ ◾1 and ◾i↦ ◾(i − 1) and ◾j ↦ ◾(j + 1)
for any i ∈ ⟦k⟧ with i ≠ 1 and any j ∈ ⟦ℓ⟧. It follows

(εab ○ (ω⤹,kℓ )−1)(◾1) = εab(◾1) = ξab(◾1) = ξcd(ω
⤹,k
ℓ (◾1)) = ξcd(◾1) = εcd(◾1),

where we have used the definitions of εab and εcd in the second and last step and
Lemma 4.2 (a) in the third step.

Because ω⤹,kℓ and its inverse are monotonic with respect to Γk−1ℓ+1 and Γkℓ and
because ℵσa

b is the pull-back measure of ℵσc
d with respect to ω⤹,kℓ , we find for any
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i ∈ ⟦k⟧ with i ≠ 1,

(εab ○ (ω⤹,kℓ )−1)(◾i) = ξab(
◾(i − 1)) − {ℵσ

a
b(]

◾(i − 1), ◾1]k−1ℓ+1 ) if i − 1 ≠ 1

0 otherwise

= ξcd(◾i) − {
ℵσc

d(] ◾i, ◾2]kℓ ) if i ≠ 2

0 otherwise

= ξcd(◾i) − ℵσ
c
d(] ◾i, ◾1]kℓ ) + ℵσ

c
d({◾1})

= εcd(◾i) + ℵσ
c
d({◾1}),

where we have used the decomposition ] ◾i, ◾1]kℓ =] ◾i, ◾2]kℓ ⊍ {◾1} if i ≠ 2 and the
identity ] ◾2, ◾1]kℓ = {◾1} as well as the additivity of ℵσc

d in the next-to-last step.
For any j ∈ ⟦ℓ⟧ we can compute similarly that

(εab ○ (ω⤹,kℓ )−1)(◾j)
= ξab(◾(j + 1)) + ℵσ

a
b(] ◾1, ◾(j + 1)]k−1ℓ+1 )

= ξab(◾(j + 1)) + {ℵ
σa
b(] ◾2, ◾(j + 1)]k−1ℓ+1 ) if j + 1 ≠ 2

0 otherwise
} + ℵσ

a
b({◾1})

= ξcd(◾j) + {
ℵσ

c
d(] ◾1, ◾j]kℓ ) if j ≠ 1

0 otherwise
} + ℵσ

c
d({◾1})

= εcd(◾j) + ℵσ
c
d({◾1}).

Thus, the claim holds in this case.
Case r =⤸: The mapping (ω⤸,kℓ )−1 is defined by the rule that ◾i ↦ ◾i and ◾k ↦

◾(ℓ + 1) and ◾j ↦ ◾j for any i ∈ ⟦k⟧ with i ≠ k and any j ∈ ⟦ℓ⟧. First of all, because

ℵΣc
d = ℵσc

d(Πk
0) + ℵσc

d(Π0
ℓ), similarly to the other computations,

(εab ○ (ω⤹,kℓ )−1)(
◾k) = ξab(◾(ℓ + 1)) + {ℵσ

a
b([◾1, ◾(ℓ + 1)[k−1ℓ+1 ) if ℓ + 1 ≠ 1

0 otherwise

= ξab(◾(ℓ + 1)) + ℵσ
a
b(Π0

ℓ)
= ξcd(◾k) + ℵσ

c
d(Π0

ℓ)
= ξcd(◾k) − ℵσ

c
d(Πk

0) + ℵΣc
d

= ξcd(◾k) − {
ℵσ

c
d([◾k, ◾1]kℓ ) if k ≠ 1

ℵσ
c
d({◾1}) otherwise

} + ℵΣc
d

= ξcd(◾k) − {
ℵσ

c
d(] ◾k, ◾1]kℓ ) if k ≠ 1

0 otherwise
} − ℵσ

c
d({◾1}) + ℵΣc

d

= εcd(◾k) − ℵσ
c
d({◾k}) + ℵΣc

d.
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On the other hand, for any i ∈ ⟦k⟧ with i ≠ k,

(εab ○ (ω⤹,kℓ )−1)(◾i) = ξab(◾i) − {
ℵσa

b(] ◾i, ◾1]k−1ℓ+1 ) if i ≠ 1

0 otherwise

= ξcd(◾i) − {
ℵσc

d(] ◾i, ◾1]kℓ ) if i ≠ 1

0 otherwise

= εcd(◾i),

and for any j ∈ ⟦ℓ⟧, analogously,

(εab ○ (ω⤹,kℓ )−1)(◾j) = ξab(◾j) − {
ℵσa

b([◾1, ◾j[k−1ℓ+1 ) if j ≠ 1

0 otherwise

= ξcd(◾j) − {
ℵσc

d([◾1, ◾j[kℓ ) if j ≠ 1

0 otherwise

= εcd(◾j),

which concludes the proof of (a).
(b) The mapping κab is anti-monotonic with respect to Γkℓ and Γℓk, and so is its

inverse. Moreover, ℵσd
c is the negative of the pull-back measure of ℵσc

d. In particular,

ℵσa
b([◾1, ◾i[ℓk) = −ℵσc

d(] ◾i, ◾1]kℓ ) and thus

(εab ○ (κkℓ )−1)(◾i) = ξab(◾i) + {
ℵσa

b([◾1, ◾i[ℓk) if i ≠ 1

0 otherwise

= ξcd(◾i) − {
ℵσc

d(] ◾i, ◾1]kℓ ) if i ≠ 1

0 otherwise

= εcd(◾i)

for any i ∈ ⟦k⟧, where we have also used Lemma 4.2 (b) in the second step. S
Completely analogously, for any j ∈ ⟦ℓ⟧, by ℵσa

b(] ◾j, ◾1]ℓk) = −ℵσc
d([◾1, ◾j[kℓ ),

(εab ○ (κkℓ )−1)(◾j) = ξab(◾j) − {
ℵσa

b(] ◾j, ◾1]ℓk) if j ≠ 1

0 otherwise

= ξcd(◾j) + {
ℵσc

d([◾1, ◾j[kℓ ) if j ≠ 1

0 otherwise

= εcd(◾j),

which then verifies (b).
(c) If we abbreviate x ≡ k1 + k2 and y ≡ ℓ1 + ℓ2 and γHt ≡ γ x

Ht,y
, then γHt is

monotonic with respect to Γktℓt and Γxy and ℵσ
ct
dt

is the pull-back measure of ℵσa
b for

each t ∈ ⟦2⟧. In fact, ℵσa
b decomposes as ℵσa

b(D) = ∑
2
t=1 ℵσ

ct
dt
(γ←Ht
(D)) for any D ⊆ Πx

y .
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Hence and because γH1 is the identity on elements, for any g ∈ ⟦k1⟧, by ] ◾g, ◾1]xy ∩
H2 = ∅,

(εab ○ γH1)(◾g) = ξab(◾g) − {
ℵσa

b(] ◾g, ◾1]xy) if g ≠ 1

0 otherwise

= ξc1d1(
◾g) − {ℵσ

c1
d1(] ◾g, ◾1]k1ℓ1 ) if g ≠ 1

0 otherwise

= εc1d1(
◾g)

where we have also employed Lemma 4.2 (c) at the end. Likewise, for any h ∈ ⟦ℓ⟧,
from [◾1, ◾h[xy∩H2 = ∅ it follows

(εab ○ γH1)(◾h) = ξab(◾h) − {
ℵσa

b([◾1, ◾h[xy) if h ≠ 1

0 otherwise

= ξc1d1(◾h) − {
ℵσ

c1
d1([◾1, ◾h[k1ℓ1 ) if h ≠ 1

0 otherwise

= εc1d1(◾h).

In contrast, γH2 is generally not an identity. Namely, it satisfies ◾g ↦ ◾(k1 + g)
and ◾h↦ ◾(ℓ1 + h) for any g ∈ ⟦k2⟧ and h ∈ ⟦ℓ2⟧. Given any g ∈ ⟦k2⟧ we have k1+g = 1
if and only if k1 = 0 and g = 1. Second, given any such g, the set ] ◾(k1 + g), ◾1]xy
can be decomposed as ] ◾(k1 + g), ◾(k1 + 1)]xy ⊍Πk1

0 if g ≠ 1 (regardless of whether k1
is zero or not) and is equal to Πk1

0 if g = 1 and k1 ≠ 0. For those reasons, for any
g ∈ ⟦k2⟧,

(εab ○ γH1)(◾g)

= ξab(
◾(k1 + g)) − {ℵ

σa
b(]

◾(k1 + g), ◾1]xy) if k1 + g ≠ 1

0 otherwise

= ξab(
◾(k1 + g)) −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσ
a
b(]

◾(k1 + g), ◾(k1 + 1)]xy) + ℵσ
a
b(Πk1

0 ) if g ≠ 1

ℵσ
a
b(Πk1

0 ) if k1 ≠ 0 ∧ g = 1

0 if k1 = 0 ∧ g = 1

= ξc2d2(
◾g) −

⎧⎪⎪⎨⎪⎪⎩

ℵσ
c2
d2
(] ◾g, ◾1]k2ℓ2 ) + ℵσ

c1
d1
(Πk1

0 ) if g ≠ 1

ℵσ
c1
d1
(Πk1

0 ) otherwise

= εc2d2(
◾g) − ℵΣc1

∅ ,

where, in the third step, we have used the facts that ℵσa
b(Π

k1
0 ) = 0 if k1 = 0 that

] ◾(k1 + g), ◾(k1 + 1)]xy ⊆ H2 if g ≠ 1 and that Πk1
0 ⊆ H1.
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For lower points the computation is largely analogous but differs in the last step.
Namely, given any h ∈ ⟦ℓ2⟧,
(εab ○ γH1)(◾h)

= ξab(◾(ℓ1 + h)) + {
ℵσa

b([◾1, ◾(ℓ1 + h)[xy) if ℓ1 + h ≠ 1

0 otherwise

= ξab(◾(ℓ1 + h)) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσ
a
b(Π0

ℓ1
) + ℵσ

a
b([◾(ℓ1 + 1), ◾(ℓ1 + h)[xy) if h ≠ 1

ℵσ
a
b(Π0

ℓ1
) if ℓ1 ≠ 0 ∧ h = 1

0 if ℓ1 = 0 ∧ h = 1

= ξc2d2(◾h) + {
ℵσ

c1
d1
(Π0

ℓ1
) + ℵσ

c2
d2
(] ◾g, ◾1]k2ℓ2 )+ if h ≠ 1

ℵσ
c1
d1
(Π0

ℓ1
) otherwise

= εc2d2(◾h) + ℵΣ∅
d1

= εc2d2(◾h) − ℵΣc1
∅ + ℵΣc1

d1
,

where we have used ℵΣc1
d1
= ℵΣc1

∅ + ℵΣ∅
d1

in the last step. With that, the proof of (c)
is complete.

(d) If we abbreviate γS ≡ γ k
S,ℓ , then γS is monotonic with respect to Γxy and Γkℓ

and ℵσa
b is the pull-back of ℵσc

d. Actually, ℵσc
d(D) = ℵσa

b(γS←(D)) + ℵσc
d(D/S) for

any D ⊆ Πk
ℓ , which we will use momentarily. Moreover, given any i ∈ ⟦k⟧ and any

g ∈ ⟦x⟧, by definition, γS(◾g) = ◾i if and only if ◾i ∈ S and ∣Πi
0 ∩ S∣ = g. That has

two consequences. First, if γS(◾g) = ◾i, then i = 1 is equivalent to the conjunction of
◾1 ∈ S and g = 1. Second, if γS(◾g) = ◾i and if ◾1 ∉ S and g = 1, then ] ◾i, ◾1]kℓ ∩ S = ∅.
Therefore, for any g ∈ ⟦x⟧, if ◾i = γS(◾g), then

(εcd ○ γS)(◾g) = ξcd(◾i) − {
ℵσc

d(] ◾i, ◾1]kℓ ) if i ≠ 1

0 otherwise

= ξcd(◾i) −
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσc
d(] ◾i, ◾1]kℓ ∩ S) + ℵσc

d(] ◾i, ◾1]kℓ /S) if g ≠ 1

ℵσc
d(] ◾i, ◾1]kℓ /S) if ◾1 ∉ S ∧ g = 1

0 if ◾1 ∈ S ∧ g = 1

= ξab(◾g) −
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσa
b(] ◾g, ◾1]kℓ ) + ℵσc

d(] ◾i, ◾1]kℓ /S) if g ≠ 1

ℵσc
d(] ◾i, ◾1]kℓ /S) if ◾1 ∉ S ∧ g = 1

0 if ◾1 ∈ S ∧ g = 1

= εab(◾g) − {
ℵσc

d(] ◾i, ◾1]kℓ /S) if ◾1 ∉ S ∨ g ≠ 1

0 if ◾1 ∈ S ∧ g = 1
,

where we havee used Lemma 4.2 (d) in the third step. And that is also what was
claimed in this case.

The computation is very much analogous in the case of lower points. More
precisely, for any h ∈ ⟦y⟧ and j ∈ ⟦ℓ⟧, if ◾j = γS(◾h), then first, ◾j = 1 if and only if

◾1 ∈ S and j = 1, and, second [◾1, ◾j[kℓ∩S = ∅ in case ◾1 ∉ S and g = 1. Hence, for any



200 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

h ∈ ⟦y⟧, if ◾j = γS(◾h), then

(εcd ○ γS)(◾h) = ξcd(◾j) + {
ℵσc

d([◾1, ◾j[kℓ ) if j ≠ 1

0 otherwise

= ξcd(◾j) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσc
d([◾1, ◾j[kℓ∩S) + ℵσc

d([◾1, ◾j[kℓ /S) if h ≠ 1

ℵσc
d([◾1, ◾j[kℓ /S) if ◾1 ∉ S ∧ h = 1

0 if ◾1 ∈ S ∧ h = 1

= ξab(◾h) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵσa
b([◾1, ◾h[kℓ ) + ℵσc

d([◾1, ◾j[kℓ /S) if h ≠ 1

ℵσc
d([◾1, ◾j[kℓ /S) if ◾1 ∉ S ∧ h = 1

0 if ◾1 ∈ S ∧ h = 1

= εab(◾h) + {
ℵσc

d([◾1, ◾j[kℓ /S) if ◾1 ∉ S ∨ h ≠ 1

0 if ◾1 ∈ S ∧ h = 1
,

which we needed to prove. □

Proposition 4.44. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any
Zw-invariant category X of (U,O)-tagged labeled partitions the crossed co-product
X ⋊Zw of X with Zw is a category of (U ⊍ {ℵ},O)-tagged labeled partitions.

Proof. If D is the set of all (c,d, p) ∈ U⊍{ℵ},OS such that p ≤ ξcd⇠({U ⊍O,{ℵ}})
and R((c,d, p), ξcd←({ℵ})) ∈ Zw, then D is a category of (U ⊍ {ℵ},O)-tagged labeled
partitions by Propositions 4.3 and 4.6. (Just choose there Xz = {z},∅S for each z ∈ U
and Xz = ∅,{z}S for each z ∈ O.) Once again we show that the remaining property
which turns a partition of D into one of X ⋊Zw is satisfied by identitites and invariant
under the operations of Proposition 3.26.

Step 1: Identities. For any c ∈ ((U⊍{ℵ})⊗{○, ●})⊍O, by definition, εcc(t) = ξcc(t)
for any t ∈ ξcc←(U ⊍O) ⊆ Π1

1 and thus idc ∈ X ⋊Zw.
Step 2: Rotation. Let k ∈ N and ℓ ∈ N0 and c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and

d∶ ⟦ℓ⟧→ U⊍{ℵ}⊍O and (c,d, p) ∈ X ⋊Zw as well as r ∈ {⤹, ⤸} be arbuirary. Moreover,
let a and b be such that a ◾◾b = (c ◾◾d)r, let Y = ξab←(U ⊍O) and let u and v be such
that ξuv = πw ○ εab ○ γ k−1

Y,k+1 and ζuv = ζab ○ γ k−1
Y,k+1 . We have to prove (u,v,R(pr,Y)) ∈ X .

If Z = ξcd←(U⊍O) and if f and g are such that ξfg = πw○εcd○γ k
Z,ℓ and ζ fg = ζcd○γ k

Z,ℓ , then
(f,g,R(p,Z)) ∈ X by (c,d, p) ∈ X ⋊Zw. If we write e = ◾1 if r =⤹ and e = ◾k if r =⤸,
then R(pr,Y) = R(p,Z) if e ∉ Z and R(pr,Y) = R(p,Z)r if e ∈ Z by Lemma 4.5 (a).
Hence, if we reprise the notation V for the action of Zw on (U ⊗ {○, ●}) ⊍O , then
by the Zw-invariance of X it suffices to find some z ∈ Zw such that

u ◾
◾v = Vz ○ {

f ◾◾g if e ∉ Z
(f ◾◾g)r otherwise

in order to prove (u,v,R(pr,Y)) ∈ X . More precisely, z will be πw(ℵσc
d({e})) if r =⤹

and 0 if r =⤸. The proof is divided into two steps.



4. CO-PRODUCTS OF CATEGORIES OF LABELED PARTITIONS 201

Step 2.1: First, we recognize that for any t ∈ Z,

(πw ○ εab ○ (ωr,kℓ )−1)(t) = (πw ○ εcd)(t) +w z.
To see this, two observations are required. First, ℵΣc

d ≡w 0 for the following reasons.
Because (c,d, p) ∈ X ⋊ Zw, by definition of Zw the total color sum of the labeled
partition R((c,d, p),Z) with respect to ℵ must be a multiple of w. At the same time,
by Lemma 4.2 (d) this total color sum is given by ℵσc

d(Πk
ℓ )−ℵσc

d(Πk
ℓ /S) = ℵΣc

d−ℵσc
d(Z),

where S = Πk
ℓ /Z. Since Z ∩ ξcd←({ℵ}) = ∅ by definition, thus πw(ℵΣc

d) = 0.
The second observation is that for any t ∈ Z, if t = e, then ℵσc

d({e}) = 0 since
Z ∩ ξcd←({ℵ}) = ∅.

With those at hand, we can infer the intermediate claim by using the implication
of Lemma 4.43 (d) that for any t ∈ Z,

(εab ○ (ωr,kℓ )−1)(t) = εcd(t) +

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℵσc
d({e}) if r =⤹ ∧t ≠ e

0 if r =⤹ ∧t = e
0 if r =⤸ ∧t ≠ e
−ℵσc

d({e}) + ℵΣc
d if r =⤸ ∧t = e.

Step 2.2: Because Y = ωr,kℓ←(Z) by definition, for any h ∈ Π
α(Y)
β(Y), if t = (ωr,kℓ ○

γ k−1
Y,ℓ+1 )(h) and m = α(Z) and n = β(Z), then t ∈ Z and thus by Step 2.1:

ξuv(h) = (πw ○ εab ○ γ k−1
Y,ℓ+1 )(h)

= (πw ○ εab ○ (ωr,kℓ )−1)(t)
= (πw ○ εcd)(t) +w z
= (πw ○ εcd ○ ωr,kℓ ○ γ k−1

Y,ℓ+1 )(h) +w z

= {
(πw ○ εcd ○ γ k

Z,ℓ )(h) if e ∉ Z
(πw ○ εcd ○ γ k

Z,ℓ ○ ω
r,m
n )(h) otherwise

} +w z

= {ξ
f
g(h) if e ∉ Z
ξfg(ωr,mn (h)) otherwise

} +w z,

where we have used Lemma 4.5 (a) in the fifth step. Since by the same lemma

ζuv = ζab ○ γ k−1
Y,ℓ+1 = ζcd ○ ωr,kℓ ○ γ k−1

Y,ℓ+1 = {
ζcd ○ γ k

Z,ℓ if e ∉ Z
ζcd ○ γ k

Z,ℓ ○ ω
r,m
n otherwise

}

=
⎧⎪⎪⎨⎪⎪⎩

ζ fg if e ∉ Z
ζ fg ○ ωr,mn otherwise

that is all we needed to prove.
Step 3: Adjoints. Next, let {k, ℓ} ⊆ N0 as well as c∶ ⟦k⟧→ ((U⊍ {ℵ})⊗ {○, ●})⊍O

and d∶ ⟦ℓ⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O and finally (c,d, p) ∈ X ⋊Zw be arbitrary. With
Y = ξdc←(U ⊍O) we let u and v be such that ξuv = πw ○ εdc ○ γ ℓ

Y,k and ζuv = ζdc ○ γ ℓ
Y,k and

then have to show (u,v,R(p∗,Y)) ∈ X .
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If Z = ξcd←(U ⊍O) and if f and g are such that ξfg = πw ○ εcd ○ γ ℓ
Z,k and ζ fg = ζcd ○ γ k

Z,ℓ ,

then (f,g,R(p,Z)) ∈ X by (c,d, p) ∈ X ⋊ Zw. Because X is closed under forming
adjoints it suffices to show that (u,v,R(p∗,Y)) = (f,g,R(p,Z))∗.

Moreover, Y = κkℓ←(Z) because ξdc = ξcd ○ κkℓ by Lemma 4.2 (b) and R(p∗,Y) =
R(p,Z)∗ by Lemma 4.5 (b). Hence, all that is left to show in order to verify
(u,v,R(p∗,Y)) = (g, f,R(p,Z)∗) is that

u ◾
◾v = g ◾◾ f.

And, indeed, if m = α(Z) and n = β(Z), then because κkℓ ○ γ ℓ
Y,k = γ k

Z,ℓ ○ κmn by
Lemma 4.5 (b) and because εdc = εcd ○ κkℓ by Lemma 4.43 (b),

ξuv = πw ○ εdc ○ γ ℓ
Y,k

= πw ○ εcd ○ κkℓ ○ γ ℓ
Y,k

= πw ○ εcd ○ γ k
Z,ℓ ○ κmn

= ξfg ○ κmn
= ξgf

where the last step is also due to Lemma 4.5 (b). Similarly, and because by the
same lemma, ζdc = (⋅) ○ ξcd ○ κkℓ and ζgf = (⋅) ○ ξ

f
g ○ κmn ,

ζuv = ζdc ○ γ ℓ
Y,k

= (⋅) ○ ζcd ○ κkℓ ○ γ ℓ
Y,k

= (⋅) ○ ζcd ○ γ k
Z,ℓ ○ κmn

= (⋅) ○ ζ fg ○ κmn
= ζgf

which is all we had to show.
Step 4: Tensor products. For each t ∈ ⟦2⟧ let {kt, ℓt} ⊆ N0 as well as ct∶ ⟦kt⟧ →

((U⊍{ℵ})⊗{○, ●})⊍O and dt∶ ⟦ℓt⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O and (ct,dt, pt) ∈ X ⋊Zw be
arbitrary. If Y = ξc1⊗c2d1⊗d2

←(U⊍O) and if u and v are such that ξuv = πw ○εc1⊗c2d1⊗d2 ○γ
k1+k2

Y,ℓ1+ℓ2 ,

then we have to prove (u,v,R(p1 ⊗ p2,Y)) ∈ X .
For each t ∈ ⟦2⟧, if Zt = ξctdt←(U⊍O) and if ft and gt are such that ξftgt = πt○εctdt ○γ

kt
Zt,ℓt

and ζ ftgt = ζctdt ○γ
kt

Zt,ℓt
, then (ft,gt,R(pt,Zt)) ∈ X by (ct,dt, pt) ∈ X ⋊Zw. Hence, because

X is closed under tensor products and Zw-invariant it suffices to find {z1, z2} ⊆ Zw
such that

(u,v,R(p1 ⊗ p2,Y)) = (Vz1 ○ f1, Vz1 ○ g1,R(p1,Z1))⊗ (Vz2 ○ f2, Vz2 ○ g2,R(p2,Z2)).
Actually, since R(p1 ⊗ p2,Y) = R(p1,Z1)⊗R(p2,Z2) by Lemma 4.5 (c) it is enough
to find z1 and z2 with

u ◾
◾v = ((Vz1 ○ f1)⊗ (Vz2 ○ f2)) ◾◾ ((Vz1 ○ g1)⊗ (Vz2 ○ g2)),

where, also, the right hand side is identical to (Vz1 ○ (f1 ◾◾g1))⊗ (Vz2 ○ (f2 ◾◾g2)).
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If H1 = Πk1
ℓ1

and H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1

, if mt = α(Zt) and nt = β(Zt) for each t ∈ ⟦2⟧ and if
R1 = Πm1

n1 and R2 = Πm1+m2
n1+n2

/Πm1
n1 , then Zt = γ m1+m2

Ht,n1+n2

←(Y) since ξc1⊗c2d1⊗d2 ○γ
m1+m2

Ht,n1+n2
= ξctdt

by Lemma 4.5 (c) for each t ∈ ⟦2⟧. Moreover, then α(Y) =m1+m2 and β(Y) = n1+n2

and the maps (γ m1+m2

Rt,n1+n2
)2t=1 are jointly surjctive to the common domain Πm1+m2

n1+n2
of

u ◾
◾v and (Vz1 ○ (f1 ◾◾g1)) ⊗ (Vz2 ○ (f2 ◾◾g2)). Therefore, all we have to prove is that

there exist z1 and z2 with, for any t ∈ ⟦2⟧,
(u ◾

◾v) ○ γ m1+m2

Rt,n1+n2
= Vzt ○ (ft ◾◾gt)

because the right hand side of this equation is identically (Vz1 ○ (f1 ◾◾g1)) ⊗ (Vz2 ○
(f2 ◾◾g2)) ○ γ m1+m2

Rt,n1+n2
.

Because, in terms of unitary area and colors, u ◾
◾v by definition coincides with

R((c1 ⊗ c2) ◾◾ (d1 ⊗ d2),Y) and since for each t ∈ ⟦2⟧, likewise, Vzt ○ (ft ◾◾gt) coincides
with R(ft ◾◾gt,Zt), no matter the value of zt, we in fact only need to find z1 and z2
with

(ξuv ○ γ m1+m2

Rt,n1+n2
)(h) = ξftgt(h) +w zt

for any h ∈ Πmt
nt and any t ∈ ⟦2⟧. More precisely, we will now prove this for z1 = 0

and z2 = πw(−ℵΣc1
∅ ).

First, though, we once more need to recognize that ℵΣc1
d1
≡w 0. The argument

is the same as before: Because (c1,d1, p1) ∈ X ⋊ Zw, by definition of Zw the total
ℵ-color-sum of R((c1,d1, p1),Z1) is divided by w. Simultaneously, by Lemma 4.2 (d)
this sum is given by ℵσ

c1
d1
(Πk1

ℓ1
) − ℵσ

c1
d1
(Πk1

ℓ1
/S) = ℵΣc1

d1
− ℵσ

c1
d1
(Z1), where S = Πk1

ℓ1
/Z1,

which proves πw(ℵΣc1
d1
) = 0 by Z1 ∩ ξc1d1←({ℵ}) = ∅.

In consequence, for any t ∈ ⟦2⟧ and s ∈ Zt,

zt ≡w

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t = 1

−ℵΣc1
∅ if t = 2 ∧ s ∈ Πk2

0

−ℵΣc1
∅ + ℵΣc1

d1
if t = 2 ∧ s ∈ Π0

ℓ2

and thus by Lemma 4.43 (c),

(πt ○ εc1⊗c2d1⊗d2 ○ γ
k1+k2

Ht,ℓ1+ℓ2 )(s) = (πw ○ ε
ct
dt
)(s) +w zt.

For any t ∈ ⟦2⟧ and h ∈ Πmt
nt , if we abbreviate s ≡ γ kt

Zt,ℓt
(h), using that γ k1+k2

Y,ℓ1+ℓ2 ○
γ m1+m2

Rt,n1+n2
= γ k1+k2

Ht,ℓ1+ℓ2 ○ γ
kt

Zt,ℓt
by Lemma 4.5 (c),

(ξuv ○ γ m1+m2

Rt,n1+n2
)(h) = (πw ○ εc1⊗c2d1⊗d2 ○ γ

k1+k2
Y,ℓ1+ℓ2 ○ γ

m1+m2

Rt,n1+n2
)(h)

= (πw ○ εc1⊗c2d1⊗d2 ○ γ
k1+k2

Ht,ℓ1+ℓ2 ○ γ
kt

Zt,ℓt
)(h)

= (πw ○ εc1⊗c2d1⊗d2 ○ γ
k1+k2

Ht,ℓ1+ℓ2 )(s)
= (πw ○ εctdt)(s) +w zt
= (πw ○ εctdt ○ γ

kt
Zt,ℓt
)(h) +w zt

= ξftgt(h),
which completes the proof that X ⋊Zw is closed under tensor products.
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Step 5: Erasing. Finally, let k ∈ N0 and ℓ ∈ N as well as c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗
{○, ●}) ⊍O and d∶ ⟦ℓ⟧ → ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and (c,d, p) ∈ X ⋊Zw be arbitrary
and let z ∈ U⊍{ℵ}⊍O and T ⊆ Π0

ℓ be such that T is convex with respect to Γkℓ , such
that ∣T∣ = 2, such that T ⊆ ξcd←({z}) and such that, if T ∈ U ⊍ {ℵ}, then zσc

d(T) = 0.
Moreover, let the labelings a and b be such that a ◾◾b = E(c ◾◾d,T), let Y = ξab←(U⊍O)
and u and v such that ξuv = πw○εab○γ k

Y,ℓ−2 and ζuv = ζab ○γ k
Y,ℓ−2. We have to demonstrate

(u,v,R(E(p,T),Y)).
If Z = ξcd←(U ⊍O) and if f and g are such that ξfg = πw ○ ξcd ○ γ k

Z,ℓ and ζ fg = ζcd ○ γ k
Z,ℓ ,

then (f,g,R(p,Z)) ∈ X by (c,d, p) ∈ X ⋊ Zw. Furthermore, either T ∩ Z = ∅ or

T ⊆ Z because T ⊆ ξcd←({z}) and Z = ξcd←(U ⊍ O). In addition, as ξfg = ξcd ○ γ k
Z,ℓ

by Lemma 4.2 (d), if we let V = γ k
Z,ℓ
←(T), then V ⊆ ξfg←({z}) and, if T ⊆ Z, then

zσ
f
g(V) = zσc

d(T) by the same lemma. Because X is a category of labeled partitions
it thus suffices to prove that (u,v,R(E(p,T),Y)) is identical to (f,g,R(p,Z)) if
T ∩ Z = ∅ and to E((f,g,R(p,Z)),V) if T ⊆ Z.

If we abbreviate M = Πk
ℓ /T, then, as ξcd ○γ k

M,ℓ = ξab by Lemma 4.2 (d), we can infer
Y = γ k

M,ℓ
←(Z). Hence and since by Lemma 4.5 (d) the partition R(E(p,T),Y) is

identical to R(p,Z) if T∩Z = ∅ and to E(R(p,Z),V) if T ⊆ Z, we actually only need
to show

u ◾
◾v = {

f ◾◾g if T ∩ Z = ∅
E(f ◾◾g,V) if T ⊆ Z.

Moreover, because, in terms of colors, u ◾
◾v coincides with R(a ◾◾b,Y) and f ◾◾g

with R(c ◾◾d,Z), all we really need to prove is that

ξuv = ξfg ○ γ m
Q,n ,

regardless of whether T ∩ Z = ∅ or T ⊆ Z (because γ m
Q,n is simply the identy on Πm

n

if T ∩ Z = ∅). This we do in two steps.
Step 5.1: As an intermediate result we first show that for any s ∈ Y,

(εcd ○ γ k
M,ℓ )(s) = εab(s).

By Lemma 4.43 (d), because T ⊆ Π0
ℓ and thus ]γ k

M,ℓ (s), ◾1]kℓ ∩T = ∅ for any s ∈ Πk
ℓ if

◾1 ∉ T and s ≠ ◾1, that is the same as proving for any s ∈ Π0
ℓ that, if ◾1 ∉ T or s ≠ ◾1,

then

ℵσ
c
d([◾1, γ k

M,ℓ (s)[kℓ∩T) = 0.

If T ⊆ Z, then T ⊆ ξcd←({z}) and Z = ξcd←(U ⊍O) demand z ≠ ℵ and thus T ∩
ξcd
←({ℵ}) = ∅. Hence, indeed, ℵσcd([◾1, γ k

M,ℓ (s)[kℓ ∩T) = 0 in that case.
Should T∩Z = ∅ instead, then by the same reasoning, z = ℵ. In that situation, if

◾1 ∈ T, then, necessarily, T = {◾1, ◾2} because T ⊆ Π0
ℓ , because ∣T∣ = 2 and because T

is convex with respect to Γkℓ . Hence, then T ⊆ [◾1, γ k
M,ℓ (s)[kℓ because γ k

M,ℓ (s) ≠ ◾2 ∈ T
by γ k

M,ℓ (s) ∈M = Πk
ℓ /T, which then implies ℵσcd([◾1, γ k

M,ℓ (s)[kℓ∩T) = zσc
d(T) = 0 by as-

sumption. If, alternatively, ◾1 ∉ T, then either T ⊆ [◾1, γ k
M,ℓ (s)[kℓ or [◾1, γ k

M,ℓ (s)[kℓ∩T



4. CO-PRODUCTS OF CATEGORIES OF LABELED PARTITIONS 205

because ◾1 ∉ T and γ k
M,ℓ (s) ∉ T = ∅ and because T is convex. In consequence,

ℵσcd([◾1, γ k
M,ℓ (s)[kℓ∩T) is given by zσc

d(T) or zσc
d(∅), which is zero in both cases.

Step 5.2: By the first step, for any h ∈ Πm
n , if we abbreviate s ≡ γ k

Y,ℓ−2(h), then
because γ k

M,ℓ ○ γ k
Y,ℓ−2 = γ k

Z,ℓ ○ γ m
Q,n by Lemma 4.5 (d),

ξuv(h) = (πw ○ εab ○ γ k
Y,ℓ−2)(h)

= (πw ○ εab)(s)
= (πw ○ εcd ○ γ k

M,ℓ )(s)
= (πw ○ εcd ○ γ k

M,ℓ ○ γ k
Y,ℓ−2)(h)

= (πw ○ εcd ○ γ k
Z,ℓ ○ γ m

Q,n )(h)
= (ξfg ○ γ m

Q,n )(h),
as claimed. That concludes the proof that X ⋊Zw is a category. □

Whereas the definition of the crossed co-product is convenient for the proof of
Proposition 4.44, the following reformulation will be helpful in applications

Proposition 4.45. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for
any Zw-invariant category X of (U,O)-tagged labeled partitions the crossed co-pro-
duct X ⋊ Zw of X with Zw can be expressed as the set of all (c,d, p) ∈ U⊍{ℵ},OS
for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O, such that p ≤ ξcd⇠({U ⊍O,{ℵ}}), such that

(i) if w ∈ N, then ℵΣc
d ≡w 0 and for any B ∈ p with B ⊆ ξcd←({ℵ}) always ∣B∣ ≤ 2

and, if ∣B∣ = 2, then ℵσc
d(B) = 0,

(ii) if w = 0, then for any B ∈ p with B ⊆ ξcd←({ℵ}) both ∣B∣ = 2 and ℵσc
d(B) = 0,

and, in either case, such that, if Y = ξcd←(U⊍O) and if the labelings f and g are such

that ξfg = πw ○ εcd ○ γ k
Y,ℓ and ζ fg = ζcd ○ γ k

Y,ℓ , then (f,g,R(p,Y)) ∈ X ,
Proof. Let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ →

((U⊍{ℵ})⊗{○, ●})⊍O, and let (c,d, p) ∈ U⊍{ℵ},OS be such that p ≤ ξcd⇠({U⊍O,{ℵ}}),
such that, if Y = ξcd←(U ⊍O) and if the labelings f and g satisfy ξfg = πw ○ εcd ○ γ k

Y,ℓ

and ζ fg = ζcd ○ γ k
Y,ℓ , then (f,g,R(p,Y)) ∈ X . In order to prove the claim, we have to

show that, if W = ξcd←({ℵ}) and (a,b, q) = R((c,d, p),W), then (a,b, q) ∈ Zw if and
only if, depending on w, the conditions of (i) respectively (ii) are met.

First, we notice that Lemma 4.2 (d) implies ℵΣa
b = ℵσa

b(γ k
W,ℓ

←(Πk
ℓ )) = ℵσc

d(Πk
ℓ ) =

ℵΣc
d since ℵσc

d(Πk
ℓ /W) = 0 by definition of W.

Moreover, with x ∶= α(W) and y ∶= β(W), consider any C ⊆ Πx
y and B ⊆ W with

C = γ k
W,ℓ

←(B). Then, ∣C∣ = ∣B∣ because γ k
W,ℓ is injective. Furthermore, ℵσc

d(B) =
ℵσa

b(C) by Zw Lemma 4.2 (d) because B/W = ∅ and thus ℵσc
d(B/W) = 0.

Now, the claim follows immediately from the definition of Zw. □

4.6. Wreath graph co-products with cyclic groups. One special case of
the crossed co-product construction deserves emphasis, namely the one where the
other category is a (big or little) graph co-product.



206 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

Definition 4.46. For any w ∈ N0 any partial commutation relation r on Zw is
called Zw-invariant if for any (z, z′) ∈ r also (z +w s, z′ +w s) ∈ r for any s ∈ Zw.

Lemma 4.47. For any category C of two-colored or uncolored partitions, any
w ∈ N0 and any partial commutation relation r on Zw, if r is Zw-invariant, then

(a) the big graph power category C☆(Zw,r) is Zw-invariant.
(b) the (little) graph power category C∗(Zw,r) is Zw-invariant.

Proof. Recall that C☆(Zw,r) and C∗(Zw,r) are given by ☆r
z∈Zw
Xz respectively

∗rz∈Zw
Xz, where for each z ∈ Zw the category Xz is given by C, seen as tagged with

the single tag z. If we reprise the notation V from Definition 4.41 for the actions of
Zw on the tag as well as the label set, then what the definition of (Xz)z∈Zw means
is that for any s ∈ Zw and any (u,v,w) ∈ Xz, also (Vs ○ u, Vs ○ v,w) ∈ Xz+ws. Write
(U,O) for (Zw,∅) if C is two-colored and (∅,Zw) if C is uncolored.

(a) Let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O
and (c,d, p) ∈ ☆r

z∈Zw
Xz and s ∈ Zw be arbitrary. We have to prove (Vs ○ c, Vs ○ d, p) ∈

☆r
z∈Zw
Xz.

First, we recognize that because ξVs○cVs○d = Vs ○ξcd and ζVs○cVs○d = ζcd. That implies in par-

ticular ker(ξVs○cVs○d) = ξcd⇠(Vs⇠({z}z∈Zw)) and thus ker(ξVs○cVs○d) = ker(ξcd) by Vs⇠({z}z∈Zw) =
{z}z∈Zw by definition of V . It follows that p ≤ ker(ξVs○cVs○d) since p ≤ ker(ξcd) by
(c,d, p) ∈☆r

z∈Zw
Xz.

Second, given any z ∈ Zw, if Y = ξVs○cVs○d
←({z}), then we have to show R((Vs ○ c, Vs ○

d, p),Y) ∈ Xz. From ξVs○cVs○d = Vs○ξcd it follows Y = ξcd←(V ←s ({z})) = ξcd←({z−ws}). Hence,
if (u,v,w) = R((c,d, p),Y), we may infer that (u,v,w) ∈ Xz−ws by our assumption
that (c,d, p) ∈ ☆r

z∈Zw
Xz and by the definition of ☆r

z∈Zw
Xz. According to our initial

observation that implies (Vs ○ u, Vs ○ v,w) ∈ X(z−ws)+ws = Xz. Moreover, since also

ξVs○uVs○v = Vs ○ ξuv and ζVs○uVs○v = ζuv we find ξVs○uVs○v = Vs ○ ξuv = Vs ○ ξcd ○ γ k
Y,ℓ = ξ

Vs○c
Vs○d ○ γ k

Y,ℓ

and, likewise, ζVs○uVs○v = ζuv = ζcd ○ γ k
Y,ℓ = ζ

Vs○c
Vs○d ○ γ k

Y,ℓ , where in both cases we have used

Lemma 4.2 (d). But that is to say R((Vs ○ c, Vs ○ d, p),Y) = (Vs ○ u, Vs ○ v,w). Thus,
indeed, R((Vs ○ c, Vs ○ d, p),Y) ∈ Xz.

It remains to let {z, z′} ⊆ Zw and {B,B′} ⊆ p be arbitrary with z ≠ z′ and
(z, z′) ≠ r and B ⊆ ξVs○cVs○d

←({z}) and B′ ⊆ ξVs○cVs○d
←({z′}) and to prove B×k

ℓ B
′. With

ξVs○cVs○d = Vs ○ ξcd we once more conclude B ⊆ ξcd←({z −w s}) and B′ ⊆ ξcd←({z′ −w s}).
Of course, z −w s ≠ z′ −w s. If (z −w s, z′ −w s) ∈ r was true, the Zw-invariance of r
would imply (z, z′) = ((z−ws)+s, (z′−ws)+s) ∈ r, violating the assumption (z, z′) ∉ r.
Hence also (z −w s, z′ −w s) ∉ r. Because (c,d, p) ∈ ☆r

z∈Zw
Xz we can thus infer that

B×k
ℓ B

′ as claimed. Altogether, we have shown ☆r
z∈Zw
Xz to be Zw-invariant.

(b) Now, let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O
and (c,d, p) ∈ ☆r

z∈Zw
Xz and s ∈ Zw and let h be a history for (c,d, p) with respect

to (Xz)z∈U⊍O and r. We prove that h is also a history for (Vs ○ c, Vs ○ d, p). If
Nz ∶= {z},∅S+ for any z ∈ U and Nz ∶= ∅,{z}S+ for any z ∈ O, then ☆r

z∈U⊍ONz is Zw-
invariant by (a). The assumption that (c,d, h) ∈ ☆r

z∈U⊍ONz therefore ensures that
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also (Vs ○ c, Vs ○ d, h) ∈ ☆r
z∈U⊍ONz. Moreover, h being a history for (c,d, p) tells

us that for any z ∈ U ⊍ O and any H ∈ h with h ⊆ ξVs○cVs○d
←({z}) = ξcd←({z −w s})

already (u,v,w) ∶= R((c,d, p),H) ∈ Xz−ws. Since that implies (Vs ○ u, Vs ○ v,w) ∈
X(z−ws)+ws = Xz by our assumption from the very beginning of the proof and since
R((Vs ○ c, Vs ○ d, p),H) = (Vs ○ u, Vs ○ v,w) it follows R((Vs ○ c, Vs ○ d, p),H) ∈ Xz. In
other words, h is a history for (Vs ○ c, Vs ○ d, p) and thus (Vs ○ c, Vs ○ d, p) an element
of ∗rz∈Zw

Xz and thus the latter r-invariant. □

Hence, the following makes sense.

Definition 4.48. Given any category C of two-colored or uncolored partitions,
any w ∈ N0 and any Zw-invariant partial commutation relation r on Zw, the (little)
wreath graph co-product category C ≀rZw of C and Zw with respect to r is the crossed
co-product category C∗(Zw,r) ⋊Zw.

Of course, one could also define a “big wreath graph co-product category”. Since,
in all our cases here, the two coincide, we can save on symbols, though, in this
instance.

Notation 4.49. In Definition 4.48, if r is the trivial partial commutation relation
{(z, z′) ∣ {z, z′} ⊆ Zw ∧ z ≠ z′}, we also speak of simply the wreath co-product of C
and Zw and omit r from the notation, writing C ≀Zw for C ≀r Zw.

By the way, it is easy to classify all invariant partial commutation relations on
cyclic groups.

Proposition 4.50. (a) ∅ is the only Z1-invariant partial commutation re-
lation r on Z1.

(b) For any w ∈ N with 2 ≤ w and any Zw-invariant partial commutation
relation r on Zw there exists a unique X ⊆ {1,2, . . . , ⌊w2 ⌋} such that r =
{(z, z′) ∣ {z, z′} ⊆ Zw ∧ (z′ −w z ∈X ∨ z −w z′ ∈X)}.

(c) For any Z-invariant partial commutation relation r on Z there exists a
unique X ⊆ N such that r = {(z, z′) ∣ {z, z′} ⊆ Z ∧ ∣z′ − z∣ ∈X}.

Proof. Part (a) is clear because Z1 = {0} is a singleton set and partial com-
mutation relations must be anti-reflexive. We can prove (b) and (c) simultaneously.
Hence, let w ∈ N0/{1} and let r be any Zw-invariant partial commutation relation
on Zw.

Existence: Let Yz ∶= {z′ −w z ∣ (z, z′) ∈ r} for any z ∈ Zw. Then, Yz = Y ∶= Y0 for
any z ∈ Zw. Indeed, if (z, z′) ∈ r and d = z′ −w z ∈ Yz, then also (z ±w 1, z′ ±w 1) ∈ r by
the Zw-invariance of r, which implies d = (z′ ±w 1)−w (z ±w 1) ∈ Yz±w1, i.e., Yz ⊆ Yz±1 .
Hence, Yz = Y for any z ∈ Zw by induction.

Moreover, r = s ∶= {(z, z′) ∣ {z, z′} ⊆ Z ∧ z′ −w z ∈ Y } for the following reasons.
If (z, z′) ∈ r, then z′ −w z ∈ Yz = Y by definition of Y and thus also (z, z′) ∈ r by
definition of r. Conversely, if (z, z′) ∈ s, then z′ −w z ∈ Y = Yz by definition of s,
which requires (z, z′) ∈ r by definition of Yz.
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Furthermore, Y is closed under inversion in Zw. That is because for any z =
z −w 0 ∈ Y first (0, z) ∈ r by definition of Y = Y0 and thus also (z,0) ∈ r by the
symmetry of r, from which it follows −wz = 0 −w z ∈ Yz = Y by definition of Yz.

Finally, 0 ∉ Y because by definition of Y0 = Y the opposite would require (0,0) ∈ r,
contradicting the anti-reflexivity of r.

But that means Y = X ⊍ {−wz ∣ z ∈ X} for X defined as Y ∩ {1,2, . . . , ⌊w2 ⌋} if
w ∈ N and as Y ∩ N if w = 0. In the case w = 0 this is clear. If w ∈ N, then
the inclusion Y ⊇ X ⊍ {−wz ∣ z ∈ X} is evident and the converse one is seen as
follows. If d ∈ Y ⊆ {0,1, . . . ,w − 1}, then, of course, d ∈ X ⊍ {−wz ∣ z ∈ X} if d ≤ w

2 .
Should w

2 < d, then also d = −w(−wd) ∈ X ⊍ {−wz ∣ z ∈ X} because then −wd ∈ X by
−wd = w − d < w − w

2 = w
2 .

As obviously, s = {(z, z′) ∣ {z, z′} ⊆ Zw ∧ (z′ −w z ∈X ∨ z −w z′ ∈X)} by definition
of X, this proves the existence part of the claim, also in the case w = 0.

Uniqueness: For each i ∈ ⟦2⟧ let the set Xi be such that r = {(z, z′) ∣ {z, z′} ⊆
Zw ∧ (z′ −w z ∈ Xi ∨ z −w z′ ∈ Xi)}. Given any i ∈ ⟦2⟧ and any z ∈ Xi we can infer
(0, z) ∈ r because z −w 0 ∈ Xi. By assumption that requires z = z −w 0 ∈ X3−i or
−wz = 0 −w z ∈ X3−i. If w = 0, then −wz is not an element of X3−i because X3−i ⊆ N
and z ∈ Xi ⊆ N per assumption. In the case w ∈ N we can also infer z ∈ X3−i,
however for more complicated reasons. If z < w

2 , then −wz is not an element of
X3−i because X3−i ⊆ {1,2, . . . , ⌊w2 ⌋} and w

2 = w − w
2 < w − z = −wz. And, if z = w

2 ,
then −wz = w − z = w − w

2 = w
2 = z. Hence, Xi ⊆ X3−i in any case. That proves the

uniqueness part of the claim. □

In order to find a simpler description of the partitions of a wreath graph co-
product category the following lemma will be very helpful.

Lemma 4.51. If L is either (Z⊍ {ℵ})⊗ {○, ●} or ({ℵ}⊗ {○, ●})⊍Z, then for any
{k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ L and d∶ ⟦ℓ⟧→ L, and any {a,b} ⊆ Πk

ℓ ,

εcd(b) − εcd(a) ≡ ξcd(b) − ξcd(a) + ℵδ
c
d(a,b)

with respect to the additive subgroup of Q generated by {ℵΣc
d,

1
2ℵσ

c
d({a}), 12ℵσc

d({b})}.

Proof. All congruences in the following will be modulo the subgroup from the
claim. By definition, for any t ∈ Πk

ℓ ,

εcd(t) = ξcd(t) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ℵσc
d(]t, ◾1]kℓ ) if t ∈ Πk

0/{◾1}
ℵσ

c
d([◾1,t[kℓ ) if t ∈ Π0

ℓ/{◾1}
0 if t ∈ {◾1, ◾1},

where, if t ≠ ◾1, then

−ℵσc
d(]t, ◾1]kℓ ) = −ℵδcd(t, ◾1) − 1

2ℵσ
c
d({◾1}) + 1

2ℵσ
c
d({t}),

and, likewise, if t ≠ ◾1, then

ℵσ
c
d([◾1, t[kℓ ) = ℵδcd(◾1, t) + 1

2ℵσ
c
d({◾1}) − 1

2ℵσ
c
d({t}).
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In particular, if t ∈ {a,b}, then

εcd(t) ≡ ξcd(t) +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ℵδcd(t, ◾1) − 1
2ℵσ

c
d({◾1}) if t ∈ Πk

0/{◾1}
ℵδ

c
d(◾1,t) + 1

2ℵσ
c
d({◾1}) if t ∈ Π0

ℓ/{◾1}
0 if t ∈ {◾1, ◾1},

or, if we use that 1
2ℵσ

c
d({◾1}) ≡ 0 if t = ◾1 and that 1

2ℵσ
c
d({◾1}) ≡ 0 if t = ◾1, actually,

εcd(t) ≡ ξcd(t) + {
−ℵδcd(t, ◾1) − 1

2ℵσ
c
d({◾1}) if t ∈ Πk

0

ℵδ
c
d(◾1,t) + 1

2ℵσ
c
d({◾1}) if t ∈ Π0

ℓ .

Thus, the number

(εcd(b) − εcd(a)) − (ξcd(b) − ξcd(a))

is congruent with the expression

z ∶= {
−ℵδcd(b, ◾1) − 1

2ℵσ
c
d({◾1}) if b ∈ Πk

0

ℵδcd(◾1,b) + 1
2ℵσ

c
d({◾1}) if b ∈ Π0

ℓ

} − {
−ℵδcd(a, ◾1) − 1

2ℵσ
c
d({◾1}) if a ∈ Πk

0

ℵδcd(◾1,a) + 1
2ℵσ

c
d({◾1}) if a ∈ Π0

ℓ

} .

We prove the claim by showing z ≡ ℵδcd(a,b). To do so, the four obvious cases need
to be treated individually.

Case 1: First, let {a,b} ⊆ Πk
0. Then, z is given by −ℵδcd(b, ◾1)+ℵδcd(a, ◾1). By Lem-

ma 3.10 (b) that is congruent with ℵδcd(a, ◾1)+ ℵδcd(◾1,b), which in turn is congruent
with ℵδcd(a,b) by Lemma 3.10 (c).

Case 2: Similarly, in the case where {a,b} ⊆ Π0
ℓ , the term z is ℵδcd(◾1,b) −

ℵδcd(◾1,a), which congrues with ℵδcd(a, ◾1) + ℵδcd(◾1,b) by Lemma 3.10 (b). Thus,
once more, Lemma 3.10 (c) reveals z to be congruent with ℵδcd(a,b).

Case 3: However, if a ∈ Πk
0 and b ∈ Π0

ℓ , at first nothing seems to cancel out.
More precisely, then z = ℵδcd(◾1,b) + 1

2ℵσ
c
d({◾1}) + ℵδcd(a, ◾1) + 1

2ℵσ
c
d({◾1}). But, since

] ◾1, ◾1[kℓ= ∅, by definition, ℵδcd(◾1, ◾1) = 1
2ℵσ

c
d({◾1}) + 1

2ℵσ
c
d({◾1}). Thus, actually

z = ℵδcd(a, ◾1) + ℵδcd(◾1, ◾1) + ℵδcd(◾1,b), which is congruent with ℵδcd(a,b) by two
applications of Lemma 3.10 (c)

Case 4: Finally, if a ∈ Π0
ℓ and b ∈ Πk

0, then z = −ℵδcd(b, ◾1)− 1
2ℵσ

c
d({◾1})−ℵδcd(◾1,a)−

1
2ℵσ

c
d({◾1}). For the same reason as in the previous case z can thus be rewritten

as −ℵδcd(b, ◾1) − ℵδcd(◾1, ◾1) − ℵδcd(◾1,a), which is congruent with −ℵδcd(b,a) by Lem-
ma 3.10 (c). Hence, a last application of Lemma 3.10 (b) concludes the proof. □

5. Generators of co-products of categories of labeled partitions

In order to be able to connect the co-products on the category level to the prod-
ucts on the quantum group level, Section 5 gives salient generators for (little) graph
co-products and crossed co-products and thus in particular (little) wreath graph co-
products.
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5.1. Generators of graph co-products. The first major result of Section 5
is found in Section 5.1.6, namely Proposition 5.19 about the generators of graph co-
product categories. The generating sets of partitions appearing there are introduced
by Definition 5.12 in Section 5.1.4. The rest of Section 5.1 consists of extensive
preparations for the proof of Proposition 5.19.

Assumptions 5.1. In Section 5.1, let (U,O) be any choice of tags, r any partial
commutation relation on U ⊍O and for each z ∈ U ⊍O let Xz be any category of
({z},∅)-tagged labeled partitions if z ∈ U and of (∅,{z})-tagged labeled partitions
if z ∈O.

The two main ideas behind the definitions and results of Section 5.1 can be
summarized as follows:

(a) Any partition of ∗rz∈U⊍OXz should result from ones of ⋃z∈U⊍OXz by repeated
tensor produts, rotations and “transpositions” of two lower points whose
tags are allowed to commute according to r.

(b) “Transposition” operations of this kind can be implemented as precompo-
sition with an appropriately labeled “crossing” partition .

Hence, ∗rz∈U⊍OXz ought to be category generated by ⋃z∈U⊍OXz and a set of the correct
“crossing” partitions for r.

In Section 5.1 we check that this is indeed the case. However, it is convient to
make some intermediate steps rather than to construct any partition of ∗rz∈U⊍OXz in
the way alluded to. Since many auxiliary results will not depend on (Xz)z∈U⊍O in
any way but only on r it will often simplify things to consider the following set of
partitions.

Notation 5.2. In Section 5.1, let r
U,OUO++ denote the category ∗rz∈U⊍OYz, where

Yz = U+ for any z ∈ U and Yz = O+ for any z ∈ O, and where in each case U+
respectively O+ is seen as tagged with the single tag z.

Note that r
U,OUO++ is contained in ∗rz∈U⊍OXz without our having to make any

assumptions on (Xz)z∈U⊍O. In this sense, r
U,OUO++ is the “minimal” graph co-pro-

duct category with respect to r (whereas the word “minimal” here is not meant
to refer to any distinction between different notions of “graph co-products” such as
little vs. big graph co-products). The proof of Proposition 5.19 is now based on the
following strategy:
Step 1 In Section 5.1.1 a certain class of operations is introduced (under which

∗rz∈U⊍OXz is closed), the so-called r
U,OUO++-allowed covariant rearrangements.

Step 2 Section 5.1.2 classifies the isomorphisms of the category r
U,OUO++.

Step 3 In Section 5.1.3, using Step 2, it is shown that any category containing
the isomorphisms of r

U,OUO++ is closed under r
U,OUO++-allowed covariant

rearrangements.
Step 4 Section 5.1.4 defines supposed generators of ∗rz∈U⊍OXz, the sets of generating

crosses, and shows how to find ones of minimal cardinality.
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Step 5 In Section 5.1.5, with the help of Step 2, it is proved by induction that any
category containing a set of generating crosses necessarily also includes all
isomorphisms of r

U,OUO++.
Step 6 The final step in Section 5.1.6 is to prove via induction and using Step 3

that any category including the isomorphisms of r
U,OUO++ and ⋃z∈U⊍OXz

must be ∗rz∈U⊍OXz.
5.1.1. Rearrangements in graph co-product categories. Think of the following

kind of operation as the permutations one can perform on a labeled partition by
repeatedly “transposing” any two points whose tags commute according to r.

Definition 5.3. Let {k, ℓ} ⊆ N0 as well as {m,n} ⊆ N0 and c∶ ⟦k⟧ → (U ⊗
{○, ●}) ⊍O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O as well as a∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍O and
b∶ ⟦n⟧→ (U⊗ {○, ●})⊍O and let p and q be any set-theoretical partitions of Πk

ℓ and
Πm
n , respectively.

(a) A covariant rearrangement of (c,d, p) into (a,b, q) is any bijection t∶ Πm
n →

Πk
ℓ such that ξab = ξcd ○ t and ζab = ζcd ○ t and q = t⇠(p).

(b) Any given covariant rearrangement t of (c,d, p) into (a,b, q) is said to be
(i) a rotation if it is monotonic with respect to Γmn and Γkℓ .

(ii) r
U,OUO++-allowed if k = ℓ = 0 or there exist b ∈ Πk

ℓ and a ∈ Πm
n such that

for any {a1, a2} ⊆ Πm
n with (ξcd(t(a1)), ξcd(t(a2))) ∉ r, if t(a1) < t(a2)

with respect to the cut of Γkℓ at b, then also a1 < a2 with respect to the
cut of Γmn at a.

Note that in Definition 5.3 (b) (ii) the “if . . . , then . . . ” could be replaced by
“. . . if and only if . . . ” without altering the meanining.

At this point, the following well-known fact, which can be derived inductively
from Lemma 3.22, deserves mentioning.

Proposition 5.4. Any category of (U,O)-tagged labeled partitions is closed un-
der rotations.

We will now show that any graph co-product category (little or big, for that
matter) with respect to r is closed under r

U,OUO++-allowed rearrangements, a fact
that will simplify the induction argument in Proposition 5.19.

Lemma 5.5. Let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍ O and d∶ ⟦ℓ⟧ → (U ⊗
{○, ●})⊍O, let p be any set-theoretical partition of Πk

ℓ , let {m,n} ⊆ N0, let a∶ ⟦m⟧→
(U ⊗ {○, ●}) ⊍O and b∶ ⟦n⟧ → (U ⊗ {○, ●}) ⊍O, let q be any set-theoretical partition
of Πm

n , let t be any mapping Πm
n → Πk

ℓ , let Z ⊆ Πk
ℓ and Z = t←(Z).

(a) There exists a unique mapping s∶ Π
α(Y)
β(Y) → Π

α(Z)
β(Z) with t ○ γ m

Y,n = γ k
Z,ℓ ○ s.

(b) If Z ⊆ ran(t), then s is surjective.
(c) If t∣Y is injective, then s is injective.
(d) If t is a covariant rearrangement of (c,d, p) into (a,b, q), then s is a co-

variant rearrangement of R((c,d, p),Z) into R((a,b, q),Y)
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(e) If t is a r
U,OUO++-allowed covariant rearrangement of (c,d, p) into (a,b, q)

and if there exists z ∈ U ⊍ O with Z ⊆ ξcd←({z}), then s is a rotation of
R((c,d, p),Z) into R((a,b, q),Y).

Proof. (a) For any u ∈ Π
α(Y)
β(Y) the definition of Y ensures that t(γ m

Y,n (u)) ∈ Z.

Because ran(γ k
Z,ℓ ) = Z we thus find v ∈ Π

α(Z)
β(Z) with γ k

Z,ℓ (v) = t(γ m
Y,n (u)). If we now

define s(u) ∶= v, then the resulting mapping s has the desired property. If for each
i ∈ ⟦2⟧ the mapping si satisfies t○γ m

Y,n = γ k
Z,ℓ ○si, then the identity γ k

Z,ℓ ○s1 = γ k
Z,ℓ ○s2

requires s1 = s2 because γ k
Z,ℓ is injective. Hence, s is unique.

(b) Given any u ∈ Π
α(Z)
β(Z), because Z ⊆ ran(t) and because γ k

Z,ℓ (u) ∈ Z, there exists

a ∈ Πm
n with t(a) = γ k

Z,ℓ (u). Because a ∈ Y = ran(γ m
Y,n ) we then find v ∈ Π

α(Y)
β(Y) with

γ m
Y,n (v) = a and thus s(v) = u. It follows γ k

Z,ℓ (s(v)) = t(γ m
Y,n (v)) = t(a) = γ k

Z,ℓ (u) by

t ○ γ m
Y,n = γ k

Z,ℓ ○ s and thus t(v) = u since γ k
Z,ℓ is injective.

(c) If t∣Y is injective, then so is t○γ m
Y,n because γ m

Y,n is and because Y = ran(γ m
Y,n ).

Hence, γ k
Z,ℓ ○ s is injective by t ○ γ m

Y,n = γ k
Z,ℓ ○ s. Then, s must already be injective

by itself.
(d) Parts (b) and (c) ensure that s is a bijection. If (u,v,w) = R((c,d, p),Z) and

(f,g, h) = R((a,b, q),Y), then ξfg = ξab ○ γ m
Y,n = ξcd ○ t ○ γ m

Y,n = ξcd ○ γ k
Z,ℓ ○ s = γ u

Z,v ○ s,
where the first identity holds by the definition of (f,g, h), where the second is due
to the assumption that t is a covariant rearrangement, where the third is implied by
the defining property of s and where the last one holds by the definition of (u,v,w).
An analogous computation shows that ζ fg = ζcd ○ t. And, similarly, h = γ m

Y,n
⇠(q) =

(t ○ γ m
Y,n )⇠(p) = (γ k

Z,ℓ ○ s)⇠(p) = s⇠(w).
(e) By assumption there exist b ∈ Πk

ℓ and a ∈ Πm
n such that for any {a1,a2} ⊆ Πm

n ,
whenever (ξcd(t(a1)), ξcd(t(a2))) ∉ r and t(a1) < t(a2) with respect to the cut of Γkℓ
at b, then a1 < a2 with respect to the cut of Γmn at a. Given any {u1,u2,u3} ⊆ Π

α(Y)
β(Y)

with (s(u1) ∣ s(u2) ∣ s(u3))α(Z)β(Z), we infer (γ k
Z,ℓ (t(u1)) ∣ γ k

Z,ℓ (t(u2)) ∣ γ k
Z,ℓ (t(u3)))kℓ

because γ k
Z,ℓ is strictly monotonic with respect to Γ

α(Z)
β(Z) and Γkℓ by Lemma 4.2 (d).

If ai ∶= γ m
Y,n (ui) for each i ∈ ⟦3⟧, then the defining property of s hence implies

(t(a1) ∣ t(a2) ∣ t(a3))kℓ . With respect to the cut of Γkℓ at b that means that either
b ≤ t(a1) < t(a2) < t(a3) or b ≤ t(a2) < t(a3) < t(a1) or b ≤ t(a3) < t(a1) < t(a2). By
assumption, moreover, ξcd(t(ai)) = z for any i ∈ ⟦3⟧. Because r is anti-reflexive we
thus conclude that (ξcd(t(ai)), ξcd(t(aj))) ∉ r for any {i, j} ⊆ ⟦3⟧. The assumptions on
b and a therefore imply that with respect to the cut of Γmn at a either a ≤ a1 < a2 < a3
or a ≤ a2 < a3 < a1 or a ≤ a3 < a1 < a2. In particular, thus, (a1 ∣ a2 ∣ a3)mn in any case,
i.e., (γ m

Y,n (u1) ∣ γ m
Y,n (u2) ∣ γ m

Y,n (u3))mn . Because γ m
Y,n is monotonic with respect to

Γ
α(Y)
β(Y) and Γmn by Lemma 4.2 (d) it thus follows (u1 ∣ u2 ∣ u3)α(Y)β(Y), proving that s is a

rotation. □
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Proposition 5.6. (a) ☆r
z∈U⊍OXz is closed under r

U,OUO++-allowed covariant
rearrangements.

(b) ∗rz∈U⊍OXz is closed under r
U,OUO++-allowed covariant rearrangements. More-

over, r
U,OUO++-allowed covariant rearrangements preserve histories.

Proof. Let {k, ℓ} ⊆ N0, let c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O,
let p be any set-theoretical partition of Πk

ℓ , let {m,n} ⊆ N0, let a∶ ⟦m⟧→ (U⊗{○, ●})⊍
O and b∶ ⟦n⟧ → (U⊗ {○, ●}) ⊍O, let q be any set-theoretical partition of of Πm

n and
let t be any r

U,OUO++-allowed covariant rearrangement of (c,d, p) into (a,b, q).
(a) We suppose (c,d, p) ∈ D ∶=☆r

z∈U⊍OXz and prove (a,b, q) ∈ D. For any z ∈ U⊍O,
if Y ∶= ξab←({z}) and Z ∶= ξcd←({z}), then Y = t←(Z) by ξab = ξcd ○ t. Hence, by
all parts of Lemma 5.5 taken together there exists a rotation s of R((c,d, p),Z)
into R((a,b, q),Y). Because R((c,d, p),Z) ∈ Xz by (c,d, p) ∈ D it thus follows
R((a,b, q),Y) ∈ Xz by Propositon 5.4.

It remains to show that (a,b, q) satisfies the non-crossing conditions of D. Be-
cause t is a r

U,OUO++-allowed covariant rearrangement there exist b ∈ Πk
ℓ and a ∈ Πm

n

such that for any {a1,a2} ⊆ Πm
n with (ξcd(t(a1)), ξcd(t(a2))) ∉ r the statements that

t(a1) < t(a2) with respect to the cut of Γkℓ at b and that a1 < a2 with respect to the
cut of Γmn at a are equivalent. Given any {z1, z2} ⊆ U⊍O with z1 ≠ z2 and (z1, z2) ∉ r
and any {A1,A2} ⊆ q with A1 ≠ A2 and A1 ⊆ ξab←({z1}) and A2 ⊆ ξab←({z2}), there
exist {B1,B2} ⊆ p with A1 = t←(B1) and A2 = t←(B2) because q = t⇠(p). Since t is
bijective the fact that A1 ∩A2 = ∅ implies that also B1 ∩B2 = ∅, i.e., B1 ≠ B2. More-
over, B1 ⊆ ξcd←({z1}) and B2 ⊆ ξcd←({z1}) by ξab = ξcd ○ t because t is bijective. Since
(c,d, p) ∈ D the assumption that (z1, z2) ∉ r requires B1×k

ℓ B2. We prove A1×m
n A2

by contradiction. If A1 �m
n A2, there exist {a11,a12} ⊆ A1 and {a21,a22} ⊆ A2 such that

(a11 ∣ a21 ∣ a12)mn and (a21 ∣ a12 ∣ a22)mn and (a12 ∣ a22 ∣ a11)mn . Consequently, with respect to
the cut of Γmn at a, either a11 < a21 < a12 < a22 or a21 < a12 < a22 < a11 or a12 < a22 < a11 < a21
or a22 < a11 < a21 < a12. Hence, with respect to the cut of Γkℓ at b either t(a11) < t(a21) <
t(a12) < t(a22) or t(a21) < t(a12) < t(a22) < t(a11) or t(a12) < t(a22) < t(a11) < t(a21) or
t(a22) < t(a11) < t(a21) < t(a12) because (ξcd(t(aij)), ξcd(t(a3−ij′ ))) = (zi, z3−i) ∉ r for any

{i, j, j′} ⊆ ⟦2⟧. In conclusion, (t(a11) ∣ t(a21) ∣ t(a12))kℓ and (t(a21) ∣ t(a12) ∣ t(a22))kℓ and
(t(a12) ∣ t(a22) ∣ t(a11))kℓ , which yields the contradiction B1 �k

ℓ B2 because t→(A1) = B1

and t→(A2) = B2 by the bijectivity of t. Hence, (a) is true.
(b) Now, let even (c,d, p) ∈ C ∶= ∗rz∈U⊍OXz and let h be any history for (c,d, p)

with respect to (Xz)z∈U⊍O and r. We prove that g ∶= t⇠(h) is a history for (a,b, q)
with respect to (Xz)z∈U⊍O and r. By construction, t is a r

U,OUO++-allowed covariant

rearrangement of (c,d, h) into (a,b, g). If Nz ∶= {z},∅S+ for any z ∈ U and Nz ∶=
∅,{z}S+ for any z ∈O, then, because (c,d, h) ∈☆r

z∈U⊍ONz by assumption that implies
(a,b, q) ∈ ☆r

z∈U⊍ONz by (a). Moreover, q = t⇠(p) ≤ t⇠(h) = g because p ≤ h by
assumption and because t⇠ preserves ≤. Finally, for any z ∈ U ⊍O and G ∈ g with
G ⊆ ξab←({z}), if H ∈ h is the unique block with G = t←(H), then the assumption that
ξab = ξcd○t ensures that also H ⊆ ξcd←({z}) because t is bijective. Since that guarantees
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R((c,d, p),H) ∈ Xz the fact that R((a,b, q),G) is a rotation of R((c,d, p),H) by Lem-
ma 5.5 proves that R((a,b, q),G) ∈ Xz by Proposition 5.4. And by Proposition 4.24
that is what we needed to see. □

While we will later also be able to infer (a) and the first part of (b) of Pro-
position 5.6 from Proposition 4.21 and Lemma 5.10, we really needed to verify
Proposition 5.6 in the way we did for the second part of (b).

5.1.2. Isomorphisms of the minimal graph co-product category. Next, we classify
all isomorphisms of r

U,OUO++. The following is well-known.

Proposition 5.7. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and d∶ ⟦ℓ⟧→
(U⊗{○, ●})⊍O and any set-theoretical partition p of Πk

ℓ the labeled partition (c,d, p)
is an isomorphism of U,OS if and only if k = ℓ and ∣B∣ = 2 and B ∩Πk

0 ≠ ∅ ≠ B ∩Π0
ℓ

for any B ∈ p.
Notation 5.8. Given any k ∈ N0, any c∶ ⟦k⟧→ (U⊗{○, ●})⊍O and any permuta-

tion s of ⟦k⟧ the covariant isomorphism induced by c and s is the labeled partition
pmc

s ∶= (c, c ○ s−1,pms), where pms ∶= {{◾i, ◾s(i)} ∣ i ∈ ⟦k⟧}.
Proposition 5.9. For any k ∈ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦k⟧ →

(U ⊗ {○, ●}) ⊍ O and any set-theoretical partition p of Πk
k such that (c,d, p) is an

isomorphism of U,OS the following are equivalent.
(i) (c,d, p) is an isomorphism of r

U,OUO++.

(ii) p ≤ ker(c ◾◾d) and for any {z1, z2} ⊆ U⊍O and {B1,B2} ⊆ p with B1 ≠ B2 and
B1 ⊆ ξcd←({z1}) and B2 ⊆ ξcd←({z2}), whenever (z1, z2) ∉ r, then B1×k

k B2.
(iii) There exists a permutation s of ⟦k⟧ such that (c,d, p) = pmc

s and such that
for any {i1, i2} ⊆ ⟦k⟧ with i1 < i2, if c(i1) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} and
c(i2) ∈ ({z2}⊗ {○, ●}) ⊍ {z2}, whenever (z1, z2) ∉ r, then s(i1) < s(i2).

Proof. For any z ∈ U⊍O abbreviate Yz ∶= ξcd←({z}) and, as in Notation 5.2, let
Yz ∶= U+ for any z ∈ U and Yz ∶= O+ for any z ∈O, where in each case U+ respectively
O+ is seen as tagged with the single tag z.

Step 1: (i) implies (ii). Given any B ∈ p, by Proposition 5.7 there exist {i, j} ⊆ ⟦k⟧
such that B = {◾i, ◾j}. If (c,d, p) ∈ r

U,OUO++, then by Definition 4.17 in particular,

p ≤ ker(ξcd). Hence, there exists z ∈ U⊍O with B ⊆ Yz, i.e., ξcd(◾i) = z = ξcd(◾j). If z ∈O,
that is the same as saying c(i) = z = d(j) or, in other words, B ⊆ (c ◾◾d)←({z}) ∈
ker(c ◾◾d). In case z ∈ U, the assumption that (c,d, p) ∈ r

U,OUO++ and Definition 4.17

further imply (a,b, q) ∶= R((c,d, p),Yz) ∈ Yz = U+. According to Definition 7.10 (b),
if A ∶= γ k

Yz ,k
←(B), then σa

b(A) = 0 because A ∈ q by B ∩ Yz = B ≠ ∅. By Lem-

ma 4.2 (d) that requires zσc
d(B) = 0 because B/Yz = ∅. We conclude 0 = zσc

d({◾i, ◾j}) =
σ(ζcd(◾i)) + σ(ζcd(◾j)). That is only possible if ζcd(◾i) ≠ ζcd(◾j) or, equivalently, c ∶=
c(i) = d(j). In total, if z ∈ U, then (c ◾◾d)(◾i) = (z, c) = (c ◾◾d)(◾j) and thus B ⊆
(c ◾◾d)←({(z, c)}) ∈ ker(c ◾◾d). As B ∈ p was arbitrary, thus p ≤ ker(c ◾◾d).

If now, {B1,B2} ⊆ p with B1 ≠ B2 and B1 ⊆ ξcd←({z1}) and B2 ⊆ ξcd←({z2}) and
(z1, z2) ∉ r, then we distinguish two cases. If z1 ≠ z2, then already B1 ×k

k B2 by
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(c,d, p) ∈ r
U,OUO++ and Definition 4.17. If z ∶= z1 = z2 instead, then again (a,b, q) ∶=

R((c,d, p),Yz) ∈ Yz. Since B1∩B2 = ∅, if A1 ∶= γ k
Yz ,k

←(B1) and A2 ∶= γ k
Yz ,k

←(B2), then

A1 ∩ A2 = γ k
Yz ,k

←(B1 ∩ B2) = ∅, i.e., B1 ≠ B2. Hence, if {m,n} ⊆ N0 are such that

a∶ ⟦m⟧→ (U⊗ {○, ●})⊍O and b∶ ⟦n⟧→ (U⊗ {○, ●})⊍O, then by Definitions 7.10 (b)
and 7.3 (c), regardless of z, necessarily, A1×m

n A2. Since γ k
Yz ,k

is strictly monotonic

by Lemma 4.2 (d) then also B1×k
k B2. Altogether, we have derived (ii).

Step 2: (ii) implies (iii). Since (c,d, p) is assumed to be an isomorphism of

U,OS, by Proposition 5.7 for any i ∈ ⟦k⟧ there exists a unique s(i) ∈ ⟦k⟧ such that
{◾i, ◾s(i)} ∈ p. The rule i ↦ s(i) for any i ∈ ⟦k⟧ thus defines a permutation of ⟦k⟧
with p = pms. Moreover, for any i ∈ ⟦k⟧ the assumption p ≤ ker(c ◾◾d) requires
d(s(i)) = (c ◾◾d)(◾s(i)) = (c ◾◾d)(◾i) = c(i) because {◾i, ◾s(i)} ∈ p. In other words,
d ○ s = c or, equivalently, d = c ○ s−1. Hence, indeed, (c,d, p) = pmc

s.
Furthermore, for any {i1, i2} ⊆ ⟦k⟧ with i1 < i2 and (z1, z2) ∉ r, where c(i1) ∈

({z1} ⊗ {○, ●}) ⊍ {z1} and c(i2) ∈ ({z2} ⊗ {○, ●}) ⊍ {z2}, if B1 ∶= {◾i1, ◾s(i1)} and
B2 ∶= {◾i2, ◾s(i2)}, then {B1,B2} ⊆ p and B1 ≠ B2 by i1 ≠ i2. Moreover, B1 ⊆ ξcd←({z1})
and B2 ⊆ ξcd←({z2}) because p ≤ ker(c ◾◾d) and because ξcd(◾i1) = z1 and ξcd(◾i2) = z2.
Therefore, by assumption, B1 ×k

k B2. Hence and since both (◾s(i1) ∣ ◾i2 ∣ ◾i1)kk and
(◾i2 ∣ ◾i1 ∣ ◾s(i2))kk by i1 < i2, necessarily, (◾i1 ∣ ◾s(i1) ∣ ◾s(i2))kk, which is to say
s(i1) < s(i2).

Step 3: (iii) implies (i). For any i ∈ ⟦k⟧, if z ∈ U ⊍O is such that c(i) ∈ ({z} ⊗
{○, ●}) ⊍ {z}, then the definition of pmc

s implies (c ◾◾d)(◾i) = c(i) = (c ○ s−1)(s(i)) =
d(s(i)) = (c ◾◾d)(◾s(i)) and thus, in particular, ξcd(◾i) = ξcd(◾s(i)) or, equivalently,
{◾i, ◾s(i)} ⊆ ξcd←({z}). Since i was arbitrary and all blocks of p arise in this way it
follows p ≤ ker(ξcd).

Given any z ∈ U ⊍O, if Yz ∶= ξcd←({z}) and (a,b, q) ∶= R((c,d, p),Yz), we have to
prove (a,b, q) ∈ U+ if z ∈ U and (a,b, q) ∈ O+ if z ∈ O. For any A ∈ q there exists
B ∈ p with A = γ k

Yz ,k
←(B) and B ∩ Yz ≠ ∅ or, equivalently, B ⊆ Yz by p ≤ ker(ξcd).

According to the definition of pmc
s we can find i ∈ ⟦k⟧ with B = {◾i, ◾s(i)}. Because

γ k
Yz ,k

is injective, we conclude ∣A∣ = ∣B∣ = 2.

Moreover, if z ∈ U, then the identity (c ◾◾d)(◾i) = (c ◾◾d)(◾s(i)) moreover implies
ζcd(◾i) ≠ ζcd(◾s(i)) and thus zσc

d(B) = σ(ζcd(◾i)) + σ(ζcd(◾s(i))) = 0. It then follows
σa
b(A) = zσc

d(B) = 0 by Lemma 4.2 (d) since B/Yz = ∅.
Furthermore, regardless of whether z ∈ U or z ∈ O, for any {A1,A2} ⊆ q with

A1 ≠ A2 we find {B1,B2} ⊆ p with A1 = γ k
Yz ,k

←(B1) and A2 = γ k
Yz ,k

←(B2) and B1 ∩Yz ≠
∅ ≠ B2∩Yz, i.e., B1 ⊆ Yz and B2 ⊆ Yz. By p = pms there must then exist {i1, i2} ⊆ ⟦k⟧
with B1 = {◾i1, ◾s(i1)} and B2 = {◾i2, ◾s(i2)}. Because ∅ = A1 ∩ A2 = γ k

Yz ,k
←(B1) ∩

γ k
Yz ,k

←(B2) = γ k
Yz ,k

←(B1 ∩B2), necessarily also, B1 ∩B2 = ∅ and thus, i1 ≠ i2. Because

r, being a partial commutation relation, is anti-reflexive, (z, z) ∉ r. In consequence,
either both i1 < i2 and s(i1) < s(i2) or both i2 < i1 and s(i2) < s(i1). Either way,
B1 ×k

k B2 is the consequence. Hence, also A1 ×m
n A2 because γ k

Yz ,k
is monotonic
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with respect to Γmn and Γkk. Thus, we have shown (a,b, q) to be an element of U+ if
z ∈ U and of O+ if z ∈O.

Finally, let {z1, z2} ⊆ U ⊍O with z1 ≠ z2 and (z1, z2) ∉ r and {B1,B2} ⊆ p with
B1 ≠ B2 and B1 ⊆ Yz1 ∶= ξcd←({z1}) and B2 ⊆ Yz2 ∶= ξcd←({z2}) be arbitrary. Again,
by p = pms there are {i1, i2} ⊆ ⟦k⟧ with B1 = {◾i1, ◾s(i1)} and B2 = {◾i2, ◾s(i2)} and,
necessarily, i1 ≠ i2. By (z1, z2) ∉ r, either both i1 < i2 and s(i1) < s(i2) or both i2 < i1
and s(i2) < s(i1). Thus, in any case, B1 ×k

k B2. That makes (c,d, p) an element of
r

U,OUO++. Hence, the claim is true. □

5.1.3. Isomorphisms of the minimal graph category and rearrangements in graph
co-product categories. As the below lemma shows, the isomorphisms of r

U,OUO++,
which were classified in Section 5.1.2, are the partitions which implement the oper-
ations defined in Section 5.1.1 when composed with.

Lemma 5.10. Any category of (U,O)-tagged labeled partitions which contains
the isomorphisms of r

U,OUO++ is closed under r
U,OUO++-allowed covariant rearrange-

ments.

Proof. Given any category C containing the isomorphisms of r
U,OUO++, any

{k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ → (U ⊗ {○, ●}) ⊍O, any set-
theoretical partition p with (c,d, p) ∈ C as well as any {m,n} ⊆ N0, any a∶ ⟦m⟧ →
(U ⊗ {○, ●}) ⊍O and b∶ ⟦n⟧ → (U ⊗ {○, ●}) ⊍O and any set-theoretical partition q
of Πm

n and, finally, any r
U,OUO++-allowed covariant rearrangement t of (c,d, p) into

(a,b, q), we have to show that (a,b, q) ∈ C.
We can assume 0 < k + ℓ because, otherwise, (a,b, q) = (∅,∅,∅) = (c,d, p) ∈ C by

definition. Then, there exist b ∈ Πk
ℓ and a ∈ Πm

n such that for any {a1,a2} ⊆ Πm
n with

(ξcd(t(a1)), ξcd(t(a2))) ∉ r, if t(a1) < t(a2) with respect to the cut of Γkℓ at b, then also
a1 < a2 with respect to the cut of Γmn at a. Let x∶ Π0

k+ℓ → Πk
ℓ be the unique rotation

of (c,d, p) with ◾1 ↦ b and let y∶ Πm
n → Π0

m+n be the unique rotation of (a,b, q)
with a ↦ ◾1. We can define a permutation s of ⟦k + ℓ⟧ = ⟦m + n⟧ by declaring for
any {i, j} ⊆ ⟦k + ℓ⟧ that s(i) ∶= j if and only if (x−1 ○ t ○ y−1)(◾i) = ◾j. Moreover,
let (∅,g, h) be the covariant rearrangement, i.e., rotation, (c,d, p) by x. By Pro-
position 5.4 it is enough to show that (a,b, q) is the covariant rearrangement, i.e.,
rotation, of of the composition pmg

s−1 (∅,g, h) by y and that pmg
s−1 ∈ C.

Step 1: pmg
s−1 belongs to C. In order to see pmg

s−1 ∈ C, by Proposition 5.9 it is
enough to prove that for any {j1, j2} ⊆ ⟦ℓ⟧ with j1 < j2, if {z1, z2} ⊆ U ⊍O are such
that g(j1) ∈ ({z1}⊗ {○, ●}) ⊍ {z1} and g(j2) ∈ ({z2}⊗ {○, ●}) ⊍ {z2} and (z1, z2) ∉ r,
then s−1(j1) < s−1(j2).

By construction, x is strictly monotonic with respect to the cut of Γ0
k+ℓ at ◾1 and

the cut of Γkℓ at b. Because j1 < j2 means ◾j1 < ◾j2 with respect to the cut of Γ0
k+ℓ at

◾1 it thus follows x(◾j1) < x(◾j2) with respect to the cut of Γkℓ at b. In other words,
if a1 ∶= (t−1 ○ x)(◾j1) and a2 ∶= (t−1 ○ x)(◾j2), then t(a1) = x(◾j1) < x(◾j2) = t(a2)
with respect to the cut of Γkℓ at b. Moreover, the identity ξ∅g = ξcd ○ x holding by
definition of (∅,g, h) implies that ξcd(t(a1)) = ξcd(x(◾j1)) = ξ∅g (◾j1) = z1 and, likewise,
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ξcd(t(a2)) = z2. Hence, (ξcd(t(a1)), ξcd(t(a2))) ∉ r by (z1, z2) ∉ r and thus a1 < a2
with respect to the cut of Γmn at a by the initial assumption on t and a and b.
Because y is strictly monotonic with respect to the cut of Γmn at a and the cut of
Γ0
m+n at ◾1 we conclude that y(a1) < y(a2) with respect to the cut of Γ0

m+n at ◾1.
If {i1, i2} ⊆ ⟦m + n⟧ are such that ◾i1 = y(a1) and ◾i2 = y(a2), then we have hence
shown i1 < i2. The definitions ◾i1 = (y ○ t−1 ○ x)(◾j1) and ◾i2 = (y ○ t−1 ○ x)(◾j2) can
also be read as the identities ◾j1 = (x−1 ○ t ○ y−1)(◾i1) and ◾j2 = (x−1 ○ t ○ y−1)(◾i2),
which is to say s(i1) = j1 and s(i2) = j2 or, equivalently, i1 = s−1(j1) and i2 = s−1(j2).
Thus, s−1(j1) < s−1(j2) as claimed, which proves pmg

s−1 ∈ C and hence r
U,OUO++ ∈ C.

Step 2: (a,b, q) is the rotation of pmg
s−1(∅,g, h) by y. If (∅,v,w) ∶= pmg

s−1(∅,g, h),
then by definition for any i ∈ ⟦k + ℓ⟧ the tag ξ∅v (◾i) is given by ξ∅

g○(s−1)−1(◾i) according

to the definition of pmg
s−1 , which is, of course, the same as ξ∅g○s(◾i) or, equivalently,

ξ∅g (◾s(i)). Hence, the definition of s implies ξ∅v ○ y = ξ∅g ○ x−1 ○ t = ξcd ○ t = ξab because
ξ∅g = ξcd ○x. An analogous computation shows ζ∅v ○ y = ζab . Thus, the claimed identity
holds on the level of the labelings. We still need to prove it on the level of the blocks.

The supremum e ∶= κ0k+ℓ⇠(h∣Π0
k+ℓ
)∨(pms−1 ∣Πk+ℓ∅

) is actually just κk+ℓ0
⇠(h). Indeed,

since h has no upper points h∣Π0
k+ℓ
= h. And, because pms−1 = {◾j, ◾s−1(j)}k+ℓj=1 is an

isomorphism, its restriction pms−1 ∣Πk+ℓ
0

to the upper row is given by {{◾j}}k+ℓj=1. Since

this is the unique minimal partition of Πk+ℓ
0 the supremum e = κk+ℓ0

⇠(h) ∨ {{◾j}}k+ℓj=1
is simply κk+ℓ0

⇠(h) again. Taking into account that there are neither any A ∈ p with
A ⊆ Π0

k+ℓ nor any C ∈ pms−1 with C ⊆ Π0
k+ℓ and that A ∩Π0

k+ℓ = ∅ for any A ∈ p with
A ∩ κ0k+ℓ←(B) ≠ ∅ for any B ∈ e, the definition of w implies

w = {⋃{C ∩Π0
k+ℓ ∣C ∈ pms−1 ∧ C ∩B ≠ ∅} ∣B ∈ e}.

Of course, for any C ∈ pms−1 there exists j ∈ ⟦k + ℓ⟧ with C = {◾j ◾s−1(j)}, which is
why C ∩ Π0

k+ℓ = {◾s−1(j)} and why for any B ∈ e the set C ∩ B is non-empty if and
only if ◾j ∈ B. Hence, since e = κ0k+ℓ⇠(h) and since ◾s

−1(j) = (y ○ t−1 ○ x)(◾j) for any
j ∈ ⟦k + ℓ⟧, as seen in Step 1, it follows

w = {{◾s−1(j) ∣ j ∈ ⟦k + ℓ⟧ ∧ ◾j ∈ κ0k+ℓ←(A)} ∣A ∈ h}
= {{(y ○ t−1 ○ x)(◾j) ∣ j ∈ ⟦k + ℓ⟧ ∧ ◾j ∈ A} ∣A ∈ h}.

In other words, w is given by {(y ○ t−1 ○ x)→(A) ∣A ∈ h} or, equivalently, (x−1 ○ t ○
y−1)⇠(h). Because, on the one hand, h = x⇠(p) and, on the other hand, q = t⇠(p)
we have thus proved y⇠(w) = (x−1 ○ t)⇠(h) = t⇠(p) = q. Hence, also on the block
level, (a,b, q) is the rotation of (∅,v,w) by y, which concludes the proof. □

Of course, by Lemma 5.10 in particular the categories r
U,OUO++ and ∗rz∈U⊍OXz but

also ☆r
z∈U⊍OXz are closed under r

U,OUO++-allowed covariant rearrangements. That we
had already seen in Proposition 5.6.

5.1.4. Generating sets of crosses. When it comes to the set of “crossing” parti-
tions composition with which implements the “transposition” of two points whose
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tags commute according to r there is a certain flexibility, as we will see in this
section.

Definition 5.11. For any set X and any partial comutation relation r′ on X
any binary relation s on X is said to generate r′ as a partial commutation relation
if r′ = {(x,x′), (x′, x) ∣ (x,x′) ∈ s}.

Definition 5.12. A generating set of crosses for the r-graph co-product with
respect to (U,O) and r is any subset R of U,OS for which there exists a binary
relation s on U⊍O generating r as a partial commutation relation such that for any
(z, z′) ∈ s there exist {c, c′} ⊆ {○, ●} with, if

(a) (z, z′) ∈ U⊗U, then ((z, c)⊗ (z′, c′), (z′, c′)⊗ (z, c), ) ∈R,
(b) (z, z′) ∈ U⊗O, then ((z, c)⊗ z′, z′ ⊗ (z, c), ) ∈R,
(c) (z, z′) ∈O⊗U, then (z ⊗ (z′, c′), (z′, c′)⊗ z, ) ∈R,
(d) (z, z′) ∈O⊗O, then (z ⊗ z′, z′ ⊗ z, ) ∈R,

where = {{◾1, ◾2},{◾2, ◾1}}. We say that s induces R.

Clearly, ∗rz∈U⊍OXz contains any set of generating crosses for the r-graph co-pro-
duct with respect to (U,O).

Lemma 5.13. For arbitrary z1 and z2, if ⟨ ⋅ ⟩ denotes the generated category of
(a) ({z1, z2},∅)-tagged labeled partitions, then

⟨
z1 z2

z2 z1

⟩ = ⟨
z1 z2

z2 z1

⟩ = ⟨
z1 z2

z2 z1

⟩ = ⟨
z1 z2

z2 z1

⟩

= ⟨
z2 z1

z1 z2

⟩ = ⟨
z2 z1

z1 z2

⟩ = ⟨
z2 z1

z1 z2

⟩ = ⟨
z2 z1

z1 z2

⟩ .

(b) ({z1},{z2})-tagged labeled partitions, then

⟨
z1 z2

z2 z1

⟩ = ⟨
z1 z2

z2 z1

⟩ = ⟨
z2 z1

z1 z2

⟩ = ⟨
z2 z1

z1 z2

⟩ .

(c) (∅,{z1, z2})-tagged labeled partitions, then

⟨
z1 z2

z2 z1

⟩ = ⟨
z2 z1

z1 z2

⟩ .

Proof. (a) Let the eight labeled partitions be enumerated left-to-right and
top-to-bottom as f1, . . . , f8. Then, fi+1 = fi∨ (and thus fi = fi+1∨) for all i ∈
{1,3,5,7}. Moreover, fi+1 = (fi↺)∗ (and thus fi = (fi+1∗)↻) for any i ∈ {2,6}.
Finally, f5 = f4↺ (and thus f4 = f5↻). Hence, the claim follows by Lemmata 3.20
and 3.22.
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(b) If we enumerate the four labeled partitions from left to right as g1, . . . , g4,
then, again, gi+1 = gi∨ (and thus gi = gi+1∨) for any i ∈ {1,3}, and g3 = g2↺ (and
g2 = g3↻). In consequence, Lemmata 3.20 and 3.22 once more prove the claim.

(c) The two labeled partitions are adjoints of each other. □

Lemma 5.14. For any generating set of crosses R for the r-graph co-product with
respect to (U,O), for any (z, z′) ∈ r and any {c, c′} ⊆ {○, ●}, if

(a) (z, z′) ∈ U⊗U, then ((z, c)⊗ (z′, c′), (z′, c′)⊗ (z, c), ) ∈ U,O⟨R⟩,
(b) (z, z′) ∈ U⊗O, then ((z, c)⊗ z′, z′ ⊗ (z, c), ) ∈ U,O⟨R⟩,
(c) (z, z′) ∈O⊗U, then (z ⊗ (z′, c′), (z′, c′)⊗ z, ) ∈ U,O⟨R⟩,
(d) (z, z′) ∈O⊗O, then (z ⊗ z′, z′ ⊗ z, ) ∈ U,O⟨R⟩.

Proof. Follows immediately from the definitions by Lemma 5.13. □

5.1.5. From crosses to the isomorphisms of the minimal graph co-product cate-
gory. We now prove that it is possible to construct by tensor products and composi-
tion from any set of generating crosses for r (and all identities) all the isomorphisms
of r

U,OUO++.

Lemma 5.15. For any {k, ℓ} ⊆ N0, any partition p of Πk
ℓ and any permutations s

of ⟦k⟧ and t of ⟦ℓ⟧,
(a) ppms = {(B ∩Π0

ℓ) ⊍ {
◾
s−1(i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B} ∣B ∈ p}.

(b) pmt p = {{◾t(j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ B} ⊍ (B ∩Πk
0) ∣B ∈ p}.

Proof. (a) Since pms is an isomorphism there are no A ∈ pms with A ⊆ Πk
0

and the restriction pms∣Π0
k

is the minimal partition of Π0
k and thus the pull-back

κ0k
⇠(pms∣Π0

k
) the minimal partition of Πk

0, which is why the supremum κ0k
⇠(pms∣Π0

k
)∨

p∣Πk
0

is simply p∣Πk
0
. Hence, by the definition of the composition operation,

ppms = {C ∈ p ∧ C ⊆ Π0
ℓ} ⊍ {⊍{A ∩Πk

0 ∣A ∈ pms ∧ A ∩ κk0←(B) ≠ ∅}
⊍⊍{C ∩Π0

ℓ ∣C ∈ p ∧ C ∩B ≠ ∅} ∣B ∈ p∣Πk
0
}.

For any {C,C′} ⊆ p with C′ ∩ Πk
0 ≠ ∅, if B = C′ ∩ Πk

0, then C ∩ B ≠ ∅ if only if
C ∩ C′ ∩Πk

0 ≠ ∅, i.e., if and only if C = C′. Hence, actually,

ppms = {B ∈ p ∧ B ⊆ Π0
ℓ} ⊍ {⊍{A ∩Πk

0 ∣A ∈ pms ∧ A ∩ κk0←(B ∩Πk
0) ≠ ∅}

⊍ (B ∩Π0
ℓ) ∣B ∈ p ∧ B ∩Πk

0 ≠ ∅}.

By definition, for any A ∈ pms there exists i ∈ ⟦k⟧ with A = {◾i, ◾s(i)} and thus
A∩Πk

0 = {◾i}. Moreover, then for any B ∈ p with B∩Πk
0 ≠ ∅ because κk0

←(B∩Πk
0) ⊆ Π0

k

saying A∩κk0←(B∩Πk
0) ≠ ∅ is the same as claiming ◾s(i) ∈ κk0←(B∩Πk

0), i.e.,
◾
s(i) ∈ B.

Thus, we have shown that

ppms = {B ∈ p ∧ B ∩Πk
0 = ∅}

⊍ {{◾i ∣ i ∈ ⟦k⟧ ∧ ◾
s(i) ∈ B} ⊍ (B ∩Π0

ℓ) ∣B ∈ p ∧ B ∩Πk
0 ≠ ∅}.
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Of course, for any B ∈ p the sets {◾i ∣ i ∈ ⟦k⟧ ∧ ◾
s(i) ∈ B} and {◾s−1(i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈

B} coincide and, if B∩Πk
0 = ∅, then these two are empty. Hence, ppms = {(B∩Π0

ℓ)⊍
{◾s−1(i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B} ∣B ∈ p}, as claimed.

(b) Since pm∗
t = pmt−1 , by (a) we can infer that p∗ pm∗

t = {(D ∩Π0
k) ⊍ {

◾
t(j) ∣ j ∈

⟦ℓ⟧ ∧ ◾j ∈ D} ∣D ∈ p∗}. Because pmt p = (p∗ pm∗
t )∗ that proves pmt p to be given by

{κℓk←((D ∩ Π0
k) ⊍ {

◾
t(j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ D}) ∣D ∈ p∗}, which is precisely {{◾t(j) ∣ j ∈

⟦ℓ⟧ ∧ ◾j ∈ B} ⊍ (B ∩Πk
0) ∣B ∈ p}. □

The next lemma was implicitly recognized in the proof of [FW16, Proposition 4.11].

Lemma 5.16. For any k ∈ N0, any a∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and c∶ ⟦k⟧ → (U ⊗
{○, ●}) ⊍O and any permutations s and t of ⟦k⟧, the pair (pmc

t,pma
s) is composable

if and only if c = a−1 ○ s and, if so, then pmc
t pma

s = pma
t○s.

Proof. The claim about the composability is clear from the definitions. Lem-
ma 5.15 (a) shows that the composition pmt pms is given by {(B∩Π0

k)⊍{
◾
s−1(i′) ∣ i′ ∈

⟦k⟧ ∧ ◾i′ ∈ B} ∣B ∈ pmt}. By definition, pmt = {{◾j, ◾t(j)}}kj=1 = {{
◾
s(i), ◾t(s(i))}}ki=1

and for any {i′, i} ⊆ ⟦k⟧, if B = {◾s(i), ◾t(s(i))}, then ◾i′ ∈ B if and only if i′ = s(i),
in which case

◾
s−1(i′) = ◾i and B ∩Π0

k = {◾t(s(i))}. Thus we have shown pmt pms =
{{◾i, ◾(t ○ s)(i)}}ki=1 = pmt○s. □

Lemma 5.17. For any generating crosses R of the r-graph co-product with respect
to (U,O) the category U,O⟨R⟩ contains all isomorphisms of r

U,OUO++.

Proof. We prove the claim by induction over the common length of the two
objects linked by the isomorphism. For length 0, where (∅,∅,∅) is the only isomor-
phism, the claim is true by definition of U,O⟨R⟩. Let k ∈ N be arbitrary and suppose
that U,O⟨R⟩ contains all isomorphisms of r

U,OUO++ between objects of lengths up to

and including k − 1. Moreover, let c∶ ⟦k⟧→ (U⊗ {○, ●})⊍O be arbitrary and let s be
any permutation of ⟦k⟧ such that for any {i1, i2} ⊆ ⟦k⟧ with i1 < i2, if {z1, z2} ⊆ U⊍O
are such that c(i1) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} and c(i2) ∈ ({z2} ⊗ {○, ●}) ⊍ {z2} and if
(z1, z2) ∉ r, then s(i1) < s(i2). Then, by Proposition 5.9 the claim is verified once
we show pmc

s ∈ U,O⟨R⟩. To do so we distinguish three cases.
Case 1: Upper and lower last points are in the same block. First, let s(k) = k. In

that case, we let a∶ ⟦k − 1⟧→ (U⊗{○, ●})⊍O and t∶ ⟦k − 1⟧→ N and f ∈ (U⊗{○, ●})⊍O
be defined by a(i) ∶= c(i) and t(i) ∶= s(i) for any i ∈ ⟦k − 1⟧ and by f ∶= c(k). We now
show that pma

t is well-defined isomorphism of r
U,OUO++ between objects of length

k − 1 and that pmc
s = pma

t ⊗ idf. Then, the induction hypothesis and the fact that
idf ∈ U,O⟨R⟩ will imply that pmc

s ∈ U,O⟨R⟩, as claimed.
Step 1.1: The partition pma

t is well-defined isomorphism of r
U,OUO++ Because

s(k) = k and since s is a permutation of ⟦k⟧ the mapping t is actually a permutation
of ⟦k − 1⟧. Moreover, for any {i1, i2} ⊆ ⟦k − 1⟧ with i1 < i2 and with (z1, z2) ∉
r, where {z1, z2} ⊆ U ⊍ O are such that a(i1) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} and a(i2) ∈
({z2}⊗{○, ●})⊍{z2}, by definition, actually, c(i1) ∈ ({z1}⊗{○, ●})⊍{z1} and c(i2) ∈
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({z2}⊗{○, ●})⊍{z2} and thus s(i1) < s(i2) by our initial assumption on s. But that
is to say t(i1) < t(i2) since i1 < i2 < k. Thus, pma

t ∈ r
U,OUO++ by Proposition 5.9.

Step 1.2: The partitions pmc
s and pma

t ⊗ idf are identical. By definition, c = a⊗ f.
Furthermore, according to the definitions, pms = {{◾i, ◾s(i)}}ki=1 = {{◾i, ◾s(i)}}k−1i=1 ⊍
{{◾k, ◾s(k)}} = {{◾i, ◾t(i)}}k−1i=1 ⊍ {{◾k, ◾k}} = pmt ⊗ id1. Lastly, for any j ∈ ⟦k − 1⟧,
because t−1(j) = s−1(j), also (c○s−1)(j) = (c○t−1)(j) = ((c○t−1)⊗f)(j) and, of course,
(c ○ s−1)(k) = c(k) = f = ((c ○ t−1) ⊗ f)(k). Hence, c ○ s−1 = (c ○ t−1) ⊗ f. Altogether
thus, indeed, pmc

s = pma
t ⊗ idf.

Case 2: Last upper point is in a block with neither first nor last lower points.
Next, if 1 < s(k) < k, then let a∶ ⟦k − 1⟧ → (U⊗ {○, ●}) ⊍O be defined by a(i) = c(i)
for any i ∈ ⟦k − 1⟧, let t∶ ⟦k − 1⟧ → N satisfy for any i ∈ ⟦k − 1⟧, if s(i) < s(k),
then t(i) ∶= s(i) and, otherwise, t(i) ∶= s(i) − 1, let f ∶= c(k), let h∶ ⟦s(k) − 1⟧ →
(U ⊗ {○, ●}) ⊍O be given by the rule h(i) ∶= (c ○ s−1)(i) for any i ∈ ⟦s(k) − 1⟧, let
u∶ ⟦k − s(k) + 1⟧ → (U⊗ {○, ●}) ⊍O be defined by u(x) ∶= (c ○ s−1)(x + s(k)) for any
x ∈ ⟦k − s(k)⟧ and u(k − s(k) + 1) ∶= c(k) and let m∶ ⟦k − s(k) + 1⟧ → N be defined
by m(x) = x + 1 for any x ∈ ⟦k − s(k)⟧ and by m(k − s(k) + 1) = 1. We prove
that pma

t and pmu
m are well-defined isomorphisms of r

U,OUO++ between objects of

lengths k − 1 respectively k − s(k) + 1, that (idh ⊗ pmu
m,pma

t ⊗ idf) is composable
and that pmc

s = (idh ⊗ pmu
m)(pma

t ⊗ idf). Then, once more, pmc
s ∈ U,O⟨R⟩ will follow

immediately by the induction hypothesis and the fact that {idf, idh} ⊆ U,O⟨R⟩.
Step 2.1: The partition pma

t is a well-defined isomorphism of r
U,OUO++. First of

all, ran(t) ⊆ ⟦k − 1⟧ because for any i ∈ ⟦t⟧ by definition either t(i) = s(i) < s(k) ≤ k−1
or t(i) = s(i)−1 ≤ k−1. Moreover, if e∶ ⟦k − 1⟧→ N is defined by, for any j ∈ ⟦k − 1⟧,
if j < s(k), then e(j) ∶= s−1(j) and, otherwise, e(j) ∶= s−1(j+1), then e = t−1. Indeed,
since s(k) < k necessitates s−1(k) < k the definition ensures ran(e) ⊆ ⟦k − 1⟧ and
for any j ∈ ⟦k − 1⟧, if j < s(k), then (t ○ e)(j) = t(s−1(j)) = s(s−1(j)) = j because
s(s−1(j)) < s(k) and, otherwise, (t○e)(j) = t(s−1(j+1)) = s(s−1(j+1))−1 = j because
s(k) ≤ j < j + 1 = s(s−1(j + 1)). And, evidently, for any i ∈ ⟦k − 1⟧, if s(i) < s(k),
then (e ○ t)(i) = e(s(i)) = s−1(s(i)) = i and, otherwise, (e ○ t)(i) = e(s(i) − 1) =
s−1((s(i) − 1) + 1) = i. Thus, pma

t is well-defined.
Given any {i1, i2} ⊆ ⟦k − 1⟧ with i1 < i2, if {z1, z2} ⊆ U ⊍O and a(i1) ∈ ({z1} ⊗

{○, ●}) ⊍ {z1} and a(i2) ∈ ({z2} ⊗ {○, ●}) ⊍ {z2} and (z1, z2) ∉ r, then, once more,
c(i1) ∈ ({z1}⊗ {○, ●}) ⊍ {z1} and c(i2) ∈ ({z2}⊗ {○, ●}) ⊍ {z2} by the definition of a.
Per our assumption on s, that requires s(i1) < s(i2). By i1 ≠ k ≠ i2 there are now
the three following possibilities.

Case 2.1.1: If s(i2) < s(k), then it follows s(i1) < s(k) as well as t(i1) = s(i1)
and t(i2) = s(i2) by the definition of t. Hence, t(i1) < t(i2) in this case.

Case 2.1.2: If s(i1) < s(k) < s(i2), then in particular s(i1) < s(i2) − 1. Because,
this time, t(i1) = s(i1) and t(i2) = s(i2) − 1 according to the definition of t that
proves t(i1) < t(i2) here too.

Case 2.1.3: Lastly, if s(k) < s(i1) < s(i2), then by the second inequality also,
s(i1) − 1 < s(i2) − 1 and thus by t(i1) = s(i1) − 1 and t(i2) = s(i2) − 1, indeed,
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t(i1) < t(i2), which hence holds in any case. In conclusion, pma
t ∈ r

U,OUO++ by
Proposition 5.9.

Step 2.2: The partition pmu
m is a well-defined isomorphism of r

U,OUO++. It is clear

that the cyclic shift m of ⟦k − s(k) + 1⟧ by 1 to the right is a permutation. Hence,
pmu

m is well-defined.
Let {x1, x2} ⊆ ⟦k − s(k) + 1⟧ satisfy x1 < x2 and (z1, z2) ∉ r, where {z1, z2} ⊆ U⊍O

are such that u(x1) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} and u(x2) ∈ ({z2} ⊗ {○, ●}) ⊍ {z2}. We
first recognize that x2 < k−s(k)+1. Indeed, if i1 ∶= s−1(x1+s(k)), then the fact that
x1 ≠ 0 implies that, first, x1+s(k) ≠ s(k) and thus i1 = s−1(x1+s(k)) ≠ s−1(s(k)) = k
or, equivalently, i1 < k and, second, s(k) < x1 + s(k) = s(s−1(x1 + s(k))) = s(i1).
Moreover, c(i1) = c(s−1(x1 + s(k))) = u(x1) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} by definition of
u. If x2 was k − s(k) + 1, then the definition of u would also imply c(k) = u(x2) ∈
({z2} ⊗ {○, ●}) ⊍ {z2}. However, that would contradict the initial assumption on s
because i1 < k and s(k) < s(i1) and (z1, z2) ∉ r. Hence, x2 < k − s(k) + 1 must hold
instead. Consequently, not only m(x1) = x1 + 1 but also m(x2) = x2 + 1 and thus
m(x1) <m(x2) by x1 < x2. In conclusion, pmu

m ∈ r
U,OUO++ by Proposition 5.9.

Step 2.3: The pairing (pma
t ⊗ idf, idh ⊗ pmu

m) is composable. We have to prove
h ▵ u = (a ○ t−1) ▵ f. By definition, for any j ∈ ⟦k⟧, if j < s(k), then (h ▵ u)(j) =
h(j) = c(s−1(j)) = a(t−1(j)) = ((a ○ t−1) ▵ f)(j). Similarly, if s(k) ≤ j < k − 1, then
(h▵u)(j) = u(j−(s(k)−1)) = u(j−s(k)+1) = c(s−1((j−s(k)+1)+s(k))) = c(s−1(j+
1)) = a(t−1(j)) = ((a ○ t−1) ▵ f)(j) because t−1(j) = s−1(j + 1), as seen in Step 2.1.
Finally, (h ▵ u)(k) = u(k − (s(k) − 1)) = u(k − s(k) + 1) = c(k) = f = ((a ○ t−1) ▵ f)(k).

Step 2.4: The partitions pmc
s and (idh ⊗ pmu

m)(pma
t ⊗ idf) are identical. Let

v∶ ⟦k⟧→ N be defined for any i ∈ ⟦k − 1⟧ by v(i) ∶= s(i) if s(i) < s(k), by v(i) ∶= s(i)−1
if s(k) < s(i) and by v(k) = k. Moreover, let w∶ ⟦k⟧ → ⟦k⟧ satisfy for any i ∈ ⟦k⟧,
if i < s(k), then w(i) = i, and, if s(k) ≤ i < k, then w(i) = i + 1, and, w(k) = s(k).
In order to prove (idh ⊗ pmu

m)(pma
t ⊗ idf) = pmc

s, by Lemma 5.16 it suffices to show

that pmh⊗u
w and pmc

v are well-defined, that idh ⊗ pmu
m = pmh⊗u

w and pma
t ⊗ idf = pmc

v,
and that w ○ v = s.

Step 2.4.1: The partitions pmc
v is well-defined and coincides with pma

t⊗idf. Since,
on the one hand, v(i) = t(i) for any i ∈ ⟦k − 1⟧ and since t is a permutation of ⟦k − 1⟧,
as well as since, on the other hand, v(k) = k, it is clear that v is a permutation of
⟦k⟧. In particular, v−1(i) = t−1(i) for any i ∈ ⟦k − 1⟧ and v−1(k) = k. Hence, pmc

v is
well-defined.

Already by defintion, a ▵ f = c. Moreover, using what we have already seen in
Step 2.3 we find c ○ v−1 = (a ▵ f) ○ v−1 = (a ○ t−1) ▵ f. And, finally, pmt ⊗ id1 =
{{◾i, ◾t(i)} ∣ i ∈ ⟦k − 1⟧} ⊍ {{◾k, ◾k}} = pmv. Hence, indeed, pmc

v = pma
t ⊗ idf.

Step 2.4.2: The partition pmh⊗u
w is well-defined and coincides with idh ⊗ pmu

m.
By definition, for any i ∈ ⟦k⟧, if i < s(k), then w(i) = i and, if s(k) ≤ i < k, then
w(i) = i+ 1 = ((i− s(k)+ 1)+ 1)+ s(k)− 1 =m(i− s(k)+ 1)+ s(k)− 1, and, likewise,
w(k) = s(k) = 1+(s(k)−1) =m(k−s(k)+1)+s(k)−1. Because the shift by s(k)−1
to the right is a bijection from ⟦k − s(k) + 1⟧ to ⟦k⟧/⟦s(k) − 1⟧ and because m is a
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permutation of ⟦k − s(k) + 1⟧ that proves w to be a permutation with w(i) = i for
any i ∈ ⟦s(k) − 1⟧ and w(i) = m(i − s−1(k) + 1) + s(k) − 1 for any i ∈ ⟦k⟧/⟦s(k) − 1⟧.
In particular, pmh⊗u

w is well-defined.
Moreover, we have shown incidentally that for any i ∈ ⟦k⟧, if i < s(k), then

w−1(i) = i and, if s(k) ≤ i, then w−1(i) = m−1(i − s(k) + 1) + s(k) − 1. By what we
have already seen in Step 2.3 it thus follows (h ▵ u) ○w−1 = h ▵ (u ○m−1).

Lastly, ids(k)−1⊗pmm = {{◾i, ◾i} ∣ i ∈ ⟦s(k) − 1⟧}⊍{◾i, ◾(m(i − s(k) + 1) + s(k) − 1)} ∣
i ∈ N ∧ s(k) ≤ i ≤ k} = {{◾i, ◾i} ∣ i ∈ ⟦s(k) − 1⟧} ⊍ {◾i, ◾(i + 1)} ∣ i ∈ N ∧ s(k) ≤ i <
k} ⊍ {{◾k, ◾s(k)}} = pmw. Hence, indeed, pmh⊗u

w = idh ⊗ pmu
m.

Step 2.4.4: The permutations w ○ v and s coincide. For any i ∈ ⟦k⟧, if s(i) < s(k)
(and thus, necessarily, i < k), then v(i) = s(i) by the definition of v and thus
w(v(i)) = s(i) by the definition of w. If both s(k) ≤ s(i) and i < k (and thus,
actually, s(k) < s(i)), then, v(i) = s(i) − 1 according to the definition of v. Hence,
in that case also, w(v(i)) = (s(i) − 1) + 1 = s(i) by the definition of w because
s(k) ≤ s(i)− 1 by s(k) < s(i) and because, trivially, s(i)− 1 ≤ k − 1 < k. Finally, too,
w(v(k)) = w(k) = s(k) by definition. In total, hence, w ○ v = s. Overall, therefore,
pmc

s ∈ U,O⟨R⟩ in this case as well.
Case 3: Last upper point and first lower point are in the same block. Finally,

we consider the case that s(k) = 1. Since, if k = 1, then pmc
s = idc and since

idc ∈ U,O⟨R⟩ by definition of U,O⟨R⟩, we can assume 2 ≤ k in the following. Under
this assumption, if t∶ ⟦k⟧ → ⟦k⟧ is the permutation defined by 1 ↦ 2 and 2 ↦ 1 and
i ↦ i for any i ∈ ⟦k⟧ with 2 < i, then the pairing (pmc○s−1○t−1

t ,pmc
t○s) is composable

and pmc○s−1○t−1
t pmc

t○s = pmc
t○t○s = pmc

s by Lemma 5.16 because t−1 = t. Hence, in order
to prove that pmc

s ∈ U,O⟨R⟩, it suffices to show that {pmc○s−1○t
t ,pmc

t○s} ⊆ U,O⟨R⟩.
Step 3.1: The partition pmc

t○s is an element of U,O⟨R⟩. Of course, (t ○ s)(k) =
t(s(k)) = t(1) = 2 > 1 by assumption. Hence, cases 1 and 2 will imply that pmc

t○s ∈
U,O⟨R⟩ once we prove that pmc

t○s is an isomorphism of r
U,OUO++.

Let {z1, z2} ⊆ U ⊍ O with (z1, z2) ∉ r as well as {i1, i2} ⊆ ⟦k⟧ with i1 < i2 and
c(i1) ∈ ({z1}⊗ {○, ●}) ⊍ {z1} and c(i2) ∈ ({z2}⊗ {○, ●}) ⊍ {z2} be arbitrary. We show
(t ○ s)(i1) < (t ○ s)(i2). That then verifies pmc

t○s ∈ r
U,OUO++ by Proposition 5.9.

If s(i1) were 1, it would follow i1 = k, contradicting the assumption i1 < i2 ≤ k.
Hence, s(i1) ≠ 1, instead. Because the assumption on s guarantees s(i1) < s(i2)
it must futhermore hold that s(i2) ≠ 1. For the same reason it cannot be that
simultaneously 2 < s(i1) and s(i2) = 2. We now distinguish two cases. If s(i1) ≤ 2,
which is to say s(i1) = 2, then t(s(i1)) = t(2) = 1 < t(s(i2)) by the definition of t.
Alternatively, if 2 < s(i1), and thus, necessarily, 2 < s(i2), then also t(s(i1)) = s(i1) <
s(i2) = t(s(i2)) by the definition of t and the fact that s(i1) < s(i2). In conclusion
(t ○ s)(i1) < (t ○ s)(i2) always holds, proving pmc

t○s ∈ U,O⟨R⟩.
Step 3.2: The partition pmc○s−1○t

t is an element of U,O⟨R⟩. Let h∶ ⟦2⟧ → (U ⊗
{○, ●})⊍O satisfy h(1) ∶= c(s−1(2)) and h(2) ∶= c(k), let u∶ ⟦k − 2⟧→ (U⊗{○, ●})⊍O be
defined by u(x) ∶= c(s−1(x+2)) for any x ∈ ⟦k − 2⟧ and let q be the permutation of ⟦2⟧
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with 1 ↦ 2. Because idu ∈ U,O⟨R⟩ by definition, in order to show pmc○s−1○t
t ∈ U,O⟨R⟩,

it is enough to prove that pmh
q ∈ U,O⟨R⟩ and pmh

q ⊗ idu = pmc○s−1○t
t .

Step 3.2.1: The partition pmh
q is included in U,O⟨R⟩. If {z1, z2} ⊆ U ⊍ O are

such that c(s−1(2)) ∈ ({z1} ⊗ {○, ●}) ⊍ {z1} and c(k) ∈ ({z2} ⊗ {○, ●}) ⊍ {z2}, then
the fact that s−1(2) < k and, at the same time, s(s−1(2)) = 2 ≥ 1 = s(k) demands

(z1, z2) ∈ r by assumption on s. Because pmh
q = (c(s−1(2))⊗c(k), c(k)⊗c(s−1(2)), )

and because z1 ≠ z2 by s−1(2) ≠ k it hence follows pmh
q ∈ U,O⟨R⟩ by Lemma 5.14.

Step 3.2.2: The partitions pmh
q ⊗ idu and pmc○s−1○t

t coincide. By definition, (h ▵
u)(1) = h(1) = c(s−1(2)) = (c ○ s−1 ○ t)(1) and (h ▵ u)(2) = h(2) = c(k) = c(s−1(1)) =
(c ○ s−1 ○ t)(2) and for any i ∈ N with 2 < i ≤ k, also, (h ▵ u)(i) = u(i − 2) =
c(s−1((i − 2) + 2)) = c(s−1(i)) = (c ○ s−1 ○ t)(i).

Similarly, because q−1 = q the definitions imply ((h ○ q−1) ▵ u)(1) = h(q−1(1)) =
h(2) = c(k) = (c○s−1)(1) and ((h○q−1)▵u)(2) = h(q−1(2)) = h(1) = (c○s−1)(2) and for
any i ∈ N with 2 < i ≤ k, also, ((h○q−1)▵u)(i) = u(i−2) = c(s−1((i−2)+2)) = (c○s−1)(i).

Since, of course, pmq⊗idk−2 = {{◾1, ◾2},{◾2, ◾1}}⊍{{◾i, ◾i} ∣ i ∈ N ∧ 2 < i ≤ k} = pmt

we have thus shown pmh
q ⊗ idu = pmc○s−1○t

t . In conclusion, pmc
s ∈ U,O⟨R⟩ in case 3 too.

That completes the induction step and thus the proof overall. □

5.1.6. From the isomorphisms of the minimal graph co-product category to any
graph co-product. With the preparations of Sections 5.1.1– 5.1.5 we are almost ready
to prove the main result of Section 5.1, giving natural generators for ∗rz∈U⊍OXz. The
last ingredient we need is that ∗rz∈U⊍OXz is not only closed under certain covariant
rearrangements as seen in Proposition 5.6 but also under certain reindexed restric-
tions.

Lemma 5.18. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → (U ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ →
(U⊗{○, ●})⊍O, any set-theoretical partition p of Πk

ℓ such that (c,d, p) ∈ ∗rz∈U⊍OXz and
any set-theoretical partition o of Πk

ℓ with p ≤ o, if there exists a history h for (c,d, p)
with respect to (Xz)z∈U⊍O and r which satisfies h ≤ o, then R((c,d, p),O) ∈ ∗rz∈U⊍OXz
for any O ∈ o.

Proof. Given any O ∈ o, let (u,v,w) ∶= R((c,d, p),O) and let {i, j} ⊆ N0 be
such that u∶ ⟦i⟧ → (U ⊗ {○, ●}) ⊍O and v∶ ⟦j⟧ → (U ⊗ {○, ●}) ⊍O. We show that
f ∶= R(h,O) is a history for (u,v,w) with respect to (Xz)z∈U⊍O and r.

Refinement conditions. Since ξuv = ξcd ○ γ k
O,ℓ by Lemma 4.2 (d), since h ≤ ker(ξcd)

by assumption and since γ k
O,ℓ
⇠ preserves ≤ we can rest assured that f = γ k

O,ℓ
⇠(h) ≤

γ k
O,ℓ
⇠(ker(ξcd)) = ker(ξcd ○ γ k

O,ℓ ) = ker(ξuv). Likewise, p ≤ h guarantees w = γ k
O,ℓ
⇠(p) ≤

γ k
O,ℓ
⇠(h) = f . Hence, w ≤ f ≤ ker(ξuv).
Non-crossing conditions. Let {z1, z2} ⊆ U ⊍O with (z1, z2) ∉ r and {F1,F2} ⊆ f

with F1 ⊆ ξuv←({z1}) and F2 ⊆ ξuv←({z2}) be arbitrary. We need to show F1×i
j F2.

By the definition of f ∶= γ k
O,ℓ
⇠(h) there exist {H1,H2} ⊆ h such that F1 =

γ k
O,ℓ
←(H1) and F2 = γ k

O,ℓ
←(H2). Because ran(γ k

O,ℓ ) = O and thus ∅ ≠ γ k
O,ℓ →(F1) =
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(γ k
O,ℓ → ○ γ k

O,ℓ
←)(H1) = H1 ∩O and, likewise, ∅ ≠ H2 ∩O the assumption that h ≤ o re-

quires H1 ⊆ O and H2 ⊆ O. In other words, H1 = γ k
O,ℓ →(F1) and H2 = γ k

O,ℓ →(F2). Since

γ k
O,ℓ is injective, the fact that ∅ = F1 ∩ F2 therefore ensures that also ∅ = γ k

O,ℓ →(F1 ∩
F2) = γ k

O,ℓ →(F1) ∩ γ k
O,ℓ →(F2) = H1 ∩ H2, i.e., H1 ≠ H2. Moreover, by ξuv = ξcd ○ γ k

O,ℓ

we can infer from F1 ⊆ ξuv←({z1}) that H1 = γ k
O,ℓ →(H1) ⊆ (γ k

O,ℓ → ○ ξuv←)({z1}) =
(γ k

O,ℓ → ○ γ k
O,ℓ
← ○ ξcd←)({z1}) ⊆ ξcd←({z1}) and, analogously, H2 ⊆ ξcd←({z2}). By the

assumption on h that then demands H1×k
ℓ H2. Since γ k

O,ℓ is monotonic with respect

to Γij and Γkℓ it follows F1×i
j F2.

Restriction conditions. Finally, for any z ∈ U ⊍O and any F ∈ f = γ k
O,ℓ
⇠(h) with

F ⊆ ξcd←({z}) there exists H ∈ h with F = γ k
O,ℓ
←(H). The, H∩O = (γ k

O,ℓ →∩γ k
O,ℓ
←)(H) =

γ k
O,ℓ →(F) ≠ ∅ by F ≠ ∅ and thus H ⊆ O, i.e., H = γ k

O,ℓ →(F), by h ≤ o. Consequently,

by F ⊆ ξcd←({z}) also H = γ k
O,ℓ →(F) ⊆ (γ k

O,ℓ → ○ξuv←)({z}) = (γ k
O,ℓ → ○γ k

O,ℓ
← ○ξcd←)({z}) ⊆

ξcd
←({z}). It follows R((c,d, p),H) ∈ Xz by the assumption on h. That proves

R((u,v,w),F) ∈ Xz since R((u,v,w),F) = R((c,d, p),H) according Lemma 4.5 (d)
by F = γ k

O,ℓ
←(H) and H ⊆ O. In conclusion, f is a history for (u,v,w). □

That leads us to the main result of Section 5.1.

Proposition 5.19. If Gz ⊆ Xz generates Xz as a category of ({z},∅)-tagged
labeled partitions for any z ∈ U and as one of (∅,{z})-tagged labeled partitions for
any z ∈ O and if R is a set of generating crosses for the r-graph co-product with
respect to (U,O), then R ∪ ⋃z∈U⊍O Gz generates ∗rz∈U⊍OXz as a category of (U,O)-
tagged labeled partitions.

Proof. The proof goes by induction over the total number of points. Already
by definition, in the base case of 0 points, the only element (∅,∅,∅) of C ∶= ∗rz∈U⊍OXz
belongs to B ∶= U,O⟨R∪⋃z∈U⊍O Gz⟩. For general {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ (U⊗{○, ●})⊍O
and d∶ ⟦ℓ⟧→ (U⊗{○, ●})⊍O, any set-theoretical partition of Πk

ℓ such that (c,d, p) ∈ C
and any history h for (c,d, p) with respect to (Xz)z∈U⊍O and r we distiguish three
cases.

Case 1: h consists of one (necessarily convex) block. If h is the maximal partition
{Πk

ℓ} of Πk
ℓ , then the assumption h ≤ ker(ξcd) requires the existence of z ∈ U⊍O with

Πk
ℓ ⊆ ξcd←({z}). Hence, actually, (c,d, p) ∈ Xz. Because Xz = {z},∅⟨Gz⟩ if z ∈ U and
Xz = ∅,{z}⟨Gz⟩ if z ∈O and thus Xz ⊆ U,O⟨Gz⟩ ⊆ B that proves (c,d, p) ∈ B in this case.

Case 2: h has more than one block, at least one of them convex. Next, suppose
that 2 ≤ ∣h∣ and that there exists H ∈ h which is convex with respect to Γkℓ . Because
then o ∶= {H,Πk

ℓ /H} is a set-theoretical partition of Πk
ℓ with h ≤ o which, thanks

to the convexity of H, is non-crossing with respect to Γkℓ , Lemma 4.20 proves that
(c,d, p) ∈ B if we can show that R((c,d, p),O) ∈ B for any O ∈ o. But the latter is
true by the induction hypothesis since for any O ∈ o the partition R((c,d, p),O),
which belongs to C by Lemma 5.18, has ∣O∣ < k + ℓ many points, thanks to 2 ≤ ∣h∣.
Hence, (c,d, p) ∈ B also in this case.



226 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

Case 3: h has no convex blocks. The remaining possibility is that 2 ≤ ∣h∣ but that
none of the blocks of h are convex with respect to Γkℓ . In order to show (c,d, p) ∈ B
it suffices to prove that B is closed under r

U,OUO++-allowed covariant rearrangements

and that B contains a partition (a,b, q) that admits a r
U,OUO++-allowed covariant

rearrangement into (c,d, p).
And, indeed, by virtue of including a set of generating crosses for r with respect

to (U,O), the category B contains all isomorphisms of r
U,OUO++ by Lemma 5.17 and

is therefore closed under r
U,OUO++-allowed covariant rearrangements by Lemma 5.10.

Step 3.1: Definition of (a,b, q). The assumption that h has at least two blocks,
but none which are convex with respect to Γkℓ implies in particular that 2 ≤ ∣H∣ for
any H ∈ h. Hence, the set

{∣[a,b]kℓ /H∣ ∣H ∈ h ∧ {a,b} ⊆ H ∧ a ≠ b ∧ H ⊆ [a,b]kℓ}

is non-empty. Moreover, the assumption ensures that this set only contains non-zero
numbers. If its minimum is realized by n ∶= ∣[a,b]kℓ /H∣ for H ∈ h and {a,b} ⊆ H with
a ≠ b and H ⊆ [a,b]kℓ , then let m ∶= ∣H∣ and let (ei)mi=1, (fj)nj=1 and (vs)n+ms=1 be the

enumerations of, respectively, H, [a,b]kℓ /H and [a,b]kℓ with respect to the cut of Γkℓ
at a. We can then define a permutation t of Πk

ℓ by the rule that t is the identity on
]b,a[kℓ and that for any s ∈ ⟦n +m⟧ the point vs is mapped to fs if s ≤ n and to es−n
if n < s. Indeed the inverse of t is the mapping which is the identity on ]b,a[kℓ and
satisfies ei ↦ vn+i for any i ∈ ⟦m⟧ and fj ↦ vj for any j ∈ ⟦n⟧.

Step 3.2: (c,d, p) and (a,b, q) are r
U,OUO++-allowed covariant rearrangements

of each other. Because the inverse mapping of any r
U,OUO++-allowed covariant re-

arrangement is a r
U,OUO++-allowed covariant rearrangement too it does not matter

whether we show (a,b, q) to result from one of (c,d, p) or the other way around. We
prove that t is a r

U,OUO++-allowed covariant rearrangement of (c,d, p) into (a,b, q).
More precisely we show that for any {a1,a2} ⊆ Πk

ℓ with (ξcd(t(a1)), ξcd(t(a2))) ∉ r,
with respect to the cut of Γkℓ at v1 = a, whenever t(a1) < t(a2), then also a1 < a2.

Step 3.2.1: Auxiliary non-crossing statement. As an intermediate step we prove
(ξcd(ei), ξcd(fj)) ∈ r for any i ∈ ⟦m⟧ and j ∈ ⟦n⟧. Given such i and j, if H′ ∈ h is
the unique block with fj ∈ H′, then H ≠ H′ because ei ∈ H and fj ∈ [a,b]kℓ /H per
definition. Hence, by the definition of C as a graph co-product, in order to verify
that (ξcd(ei), ξcd(fj)) ∈ r, it suffices to show that H �k

ℓ H′. Because {a,b} ⊆ H and
fj ∈ ]a,b[kℓ ∩H′ that in turn is verified once we refute that H′ is a subset of ]a,b[kℓ .
If a′ and b′ are the minimal respectively maximal elements of the non-empty set
]a,b[kℓ ∩H′ with respect to the cut of Γkℓ at a, then disproving that ]a,b[kℓ contains
H′ is the same as showing that H′ /⊆ [a′,b′]kℓ . And by the minimality of n we can
prove the latter by demonstrating that ∣[a′,b′]kℓ /H′∣ < n.

And, indeed, if {j∧, j∨} ⊆ ⟦n⟧ are the unique indices with a′ = fj∧ and b′ =
fj∨ , then the assumption that {a′,b′} ⊆ H′ ensures that [a′,b′]kℓ /H′ = ]a′,b′[kℓ /H′ =
]fj∧ ,fj∨[kℓ /H′ and thus that ∣[a′,b′]kℓ /H′∣ = ∣]fj∧ ,fj∨[kℓ /H′∣ ≤ ∣]fj∧ ,fj∨[kℓ ∣ < ∣[fj∧ ,fj∨]kℓ ∣ =
j∨ − j∧ ≤ j∨ ≤ n. Hence, (ξcd(ei), ξcd(fj)) ∈ r, as claimed.
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Step 3.2.2: t is r
U,OUO++-allowed. Now, let {a1,a2} ⊆ Πk

ℓ be arbitrary with

(ξcd(t(a1)), ξcd(t(a2))) ∉ r and t(a1) < t(a2) with respect to the cut of Γkℓ at v1 = a.
We have to show that a1 < a2 with respect to the cut of Γkℓ at v1 = a. By the reflex-
ivity of r and the auxiliary statement from Step 3.2.1 we know that the assumption
(ξcd(t(a1)), ξcd(t(a2))) ∉ r excludes the possiblity that there exist i ∈ ⟦m⟧ and j ∈ ⟦n⟧
such that {t(a1), t(a2)} and {ei,fj} are the same set. Hence, only the following four
cases are possible.

Step 3.2.2.1: Both t(a1) and t(a2) lie outside of [a,b]kℓ If b < t(a1) (and thus also
b < t(a2)) with respect to the cut of Γkℓ at a, then the definition that t restricts to
the identity on ]b,a[kℓ implies that, indeed, a1 = t(a1) < t(a2) = a2 with respect to
the cut of Γkℓ at a, as claimed.

Step 3.2.2.2: t(a1) is inside and t(a2) outside of [a,b]kℓ . Similarly, if t(a1) ≤ b <
t(a2) with respect to the cut of Γkℓ at a, then the fact that t restricts to permutations
of [a,b]kℓ and of ]b,a[kℓ lets us infer that also a1 ≤ b < t(a2) = a2 with respect to the
cut of Γkℓ at a.

Step 3.2.2.3: Both t(a1) and t(a2) belong to H. If there exist {i1, i2} ⊆ ⟦m⟧ with
t(a1) = ei1 and t(a2) = ei2 , then the assumption on (ei)mi=1 means that the inequality
ei1 < ei2 with respect to the cut of Γkℓ at a requires the inequality i1 < i2. Since then
also n + i1 < n + i2 the assumption on (vs)n+ms=1 implies a1 = t−1(ei1) = vn+i1 < vn+i2 =
t−1(ei2) = a2 with respect to the cut of Γkℓ at a.

Step 3.2.2.4: Both t(a1) and t(a2) lie in [a,b]kℓ /H. The only remaining possibility
is that there are {j1, j2} ⊆ ⟦n⟧ with t(a1) = fj1 and t(a2) = fj2 . By nature of (fj)nj=1,
since fj1 < fj2 with respect to the cut of Γkℓ at a then, necessarily, j1 < j2. By the
assumption on (vs)n+ms=1 it thus follows a1 = t−1(fj1) = vj1 < vj2 = t−1(fj2) = a2 with
respect to the cut of Γkℓ at a. Hence, a1 < a2 with respect to the cut of Γkℓ at a holds
in all cases. In conclusion, t is r

U,OUO++-allowed.

Step 3.3: (a,b, q) belongs to B. Because (a,b, q) is a r
U,OUO++-allowed covariant

rearrangement of (c,d, p) ∈ C by Step 3.2 and because C is closed under r
U,OUO++-

allowed covariant rearrangements by Proposition 5.6 (b) the partition (a,b, q) also
belongs to C. Furthermore, by the same proposition, g ∶= t⇠(h) is a history for
(a,b, q) with respect to (Xz)z∈U⊍O and r. Moreover, because t is bijective 2 ≤ ∣h∣ =
∣t⇠(h)∣ = ∣g∣. Lastly, the definition of t implies G ∶= {vn+1, . . . ,vn+m} = t←({e1, . . . ,em}) =
t←(H) ∈ g. Because G is convex with respect to Γkℓ by definition of (vs)n+ms=1 that means
that the labeled partition (a,b, q) of k+ℓ many points falls under Case 2 and is thus
an element of B by what we have already seen. As explained at the beginning of
Step 3, that concludes the proof. □

5.2. Generators of crossed co-products. The second major result in Sec-
tion 5 is Proposition 5.41 in Section 5.2.5 about the generators of crossed co-products
with cyclic groups. The generating sets of partitions appearing there are introduced
by Definition 5.38 in Section 5.2.4. Once again, the remaining definitions and results
are necessary auxiliaries for the proof of Proposition 5.41.
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Assumptions 5.20. In Section 5.2, let w ∈ N0 be arbitrary, let (U,O) be either
(Zw,∅) or (∅,Zw) and let X be any Zw-invariant category of (U,O)-tagged labeled
partitions.

Additional to the two main ideas of Section 5.1, which also guide Section 5.2,
there are two more.

(a) The category X ⋊Zw is ∗-equivalent to the ∗-categorical product of X and
Zw (whose morphisms are formal pairs of one morphism each from X and
Zw, and likewise for objects).

(b) The natural isomorphisms inducing this equivalence can be built up via
tensor products and compositions from appropriately labeled “crossing”
partitions .

Hence, X ⋊ Zw should be generated by X ∪ Zw and a set of “crossing” partitions.
The strategy for the proof of this is as follows.
Step 1 Section 5.2.1 adds the more precise notation for mappings between sets of

points required in the ensuing sections.
Step 2 Using the language of Step 1, in Section 5.2.2 (one side of) the aforemen-

tioned equivalence between X ⋊Zw and the product of X and Zw is intro-
duced, the “normal form”.

Step 3 That the “normal form” of Step 2 really is an equivalence is established in
Section 5.2.3 with the help of Step 1.

Step 4 Section 5.2.4 defines the alleged generators of X ⋊Zw, again called the “sets
of generating crosses”, and gives insight into how many of those exist.

Step 5 Finally, Section 5.2.5 shows by induction and using the results of Step 3
how any category containing X ∪Zw and a generator from Step 4 must also
contain X ⋊Zw.

5.2.1. Additional notation for co-projections and co-products. In many of the
results and proofs in Section 5.2 (except Proposition 5.41 itsel) fthe categorical
algebra of cocartesian categories shines through so much, that it makes no sense not
to use the established notions from that field. More precisely, the following notation
will be used for co-projections and co-products.

Notation 5.21. (a) For any {k, ℓ} ⊆ N0 let ▲k,ℓ be the mapping ⟦k⟧ → Πk
ℓ

with i↦ ◾i for any i ∈ ⟦k⟧ and let ▼k,ℓ be the mapping ⟦ℓ⟧→ Πk
ℓ with j ↦ ◾j

for any j ∈ ⟦ℓ⟧.
(b) In the same vein, for any {kt}2t=1 ⊆ N0 let ◁k1,k2 be the mapping ⟦k1⟧ →
⟦k1 + k2⟧ with i1 ↦ i1 for any i1 ∈ ⟦k1⟧ and let ▷k1,k2 be the mapping
⟦k2⟧→ ⟦k1 + k2⟧ with i2 ↦ k1 + i2 for any i2 ∈ ⟦k2⟧.

(c) Throughout, for any set X, given any kt ∈ N0 and any ft∶ ⟦kt⟧→X for each
t ∈ ⟦2⟧, let f1 ▵ f2 denote the map ⟦k1 + k2⟧ → X with (f1 ▵ f2) ○ ◁k1,k2 = f1
and (f1 ▵ f2) ○ ▷k1,k2 = f2.

(d) Moreover, given for each t ∈ ⟦2⟧ not only kt ∈ N0 but also xt ∈ N0 as well as
gt∶ ⟦kt⟧→ ⟦xt⟧, write g1 d g2 ∶= (◁x1,x2 ○ g1) ▵ (▷x1,x2 ○ g2).
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(e) Similarly to (b), for any {kt, ℓt}2t=1 ⊆ N0 we can write ◁k1,k2
ℓ1,ℓ2

∶= (▲k1+k2,ℓ1+ℓ2 ○
◁k1,k2) ◾◾ (▼k1+k2,ℓ1+ℓ2 ○◁ℓ1,ℓ2) as well as, analogously, ▷k1,k2

ℓ1,ℓ2
∶= (▲k1+k2,ℓ1+ℓ2 ○

▷k1,k2) ◾◾ (▼k1+k2,ℓ1+ℓ2 ○ ▷ℓ1,ℓ2).
(f) In fact, for any set X and any {kt, ℓt} ⊆ N0 and µt∶ Πkt

ℓt
→ X for each

t ∈ ⟦2⟧ we risk no misunderstandings if we extend the notation and also

write µ1 ▵µ2 for the unique mapping Πk1+k2
ℓ1+ℓ2 →X with (µ1 ▵µ2)○◁k1,k2

ℓ1,ℓ2
= µ1

and (µ1 ▵ µ2) ○ ▷k1,k2
ℓ1,ℓ2
= µ2.

(g) Also, for any {kt}2t=1 ⊆ N0 let τk1,k2 ∶=▷k1,k2 ▵◁k1,k2 .

(h) In the same manner, for any {kt, ℓt}2t=1 ⊆ N0 let τ k1,k2ℓ1,ℓ2
∶=▷k1,k2

ℓ1,ℓ2
▵◁k1,k2

ℓ1,ℓ2
.

(i) Likewise, no confusion need be expected if, given any {kt, ℓt, xt, yt} ⊆ N0 and
any ωt∶ Πkt

ℓt
→ Πxt

yt for each t ∈ ⟦2⟧, we let ω1dω2 ∶= (◁x1,x2
y1,y2 ○ω1)▵(▷x1,x2

y1,y2 ○ω2).
(j) Furthemore, for any {ku}4u=1 ⊆ N0 let

µk1,k2,k3,k4 ∶= ((◁k1+k3,k2+k4 ○ ◁k1,k3) ▵ (▷k1+k3,k2+k4 ○ ◁k2,k4))
▵ ((◁k1+k3,k2+k4 ○ ▷k1,k3) ▵ (▷k1+k3,k2+k4 ○ ▷k2,k4)).

(k) Analogously, for any {ku, ℓu}4u=1 ⊆ N0, let

µk1,k2,k3,k4ℓ1,ℓ2,ℓ3,ℓ4
∶= ((◁k1+k3,k2+k4

ℓ1+ℓ3,ℓ2+ℓ4 ○ ◁k1,k3
ℓ1,ℓ3
) ▵ (▷k1+k3,k2+k4

ℓ1+ℓ3,ℓ2+ℓ4 ○ ◁k2,k4
ℓ2,ℓ4
))

▵ ((◁k1+k3,k2+k4
ℓ1+ℓ3,ℓ2+ℓ4 ○ ▷k1,k3

ℓ1,ℓ3
) ▵ (▷k1+k3,k2+k4

ℓ1+ℓ3,ℓ2+ℓ4 ○ ▷k2,k4
ℓ2,ℓ4
)).

Lemma 5.22. For any {ku, ℓu}4u=1 ⊆ N0 the following hold. then
(a) For any set X, when given any fu∶ Πku

ℓu
→X for each u ∈ ⟦4⟧, then

((f1 ▵ f2) ▵ (f3 ▵ f4)) ○ µk1,k2,k3,k4ℓ1,ℓ2,ℓ3,ℓ4
= (f1 ▵ f3) ▵ (f2 ▵ f4).

(b) µk1,k2,k3,k4ℓ1,ℓ2,ℓ3,ℓ4
= f1 d τ k2,k3ℓ2,ℓ3

d f4, where f1 and f4 are the identity mappings on

Πk1
ℓ1

respectively Πk4
ℓ4
.

Proof. Follows immediately from the definitions. □

5.2.2. Definition of the normal form of labeled partitions in crossed co-products.
To any labeled partition of X ⋊ Zw we can associate one each of X and Zw in a
natural way which is already suggested by the very definition of X ⋊Zw.

Notation 5.23. In Section 5.2, for any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧→ ((U⊍{ℵ})⊗
{○, ●}) ⊍O and d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O let

U(c,d) ∶= ξcd←(Zw) and V(c,d) ∶= ξcd←({ℵ}).
and

tcd ∶= γ k
U(c,d),ℓ ▵ γ k

V(c,d),ℓ .

Definition 5.24. For any k ∈ N0 and any c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O, if
mU = α(U(c,∅)) and mV = α(V(c,∅)), then let the labelings
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(a) LU(c)∶ ⟦mU⟧ → (U ⊗ {○, ●}) ⊍O be such that ξ
LU(c)
∅ = πw ○ εc∅ ○ γ k

U(c,∅),0 and

ζ
LU(c)
∅ = ζc∅ ○ γ k

U(c,∅),0 .

(b) LV(c)∶ ⟦mV⟧→ {ℵ}⊗ {○, ●} be such that ζ
LV(c)
∅ = ζc∅ ○ γ k

V(c,∅),0 .

(c) L(c)∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O be given by LU(c) ▵LV(c).
Definition 5.25. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and

d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and any set-theoretical partition p of Πk
ℓ such that

(c,d, p) ∈ X ⋊Zw let
(a) LU(c,d, p) ∶= (LU(c), LU(d),R(p,U(c,d))).
(b) LV(c,d, p) ∶= (LV(c), LV(d),R(p,V(c,d))).
(c) L(c,d, p) ∶= LU(c,d, p)⊗LV(c,d, p).

Remark 5.26. In terms of Definitions 5.24 and 5.25 any (c,d, p) ∈ U⊍{ℵ},OS is
an element of X ⋊ Zw if and only if p ≤ {U(c,d),V(c,d)} and LU(c,d, p) ∈ X and
LV(c,d, p) ∈ Zw.

Definition 5.27. For any k ∈ N0 and any c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O let
ϕc ∶= (L(c), c,pms), where s is the permutation of ⟦k⟧ with ▲k,0 ○ s = tc∅ ○ ▲k,0.

By Proposition 5.7 the morphism ϕc is clearly invertible for any object c of X⋊Zw.

Definition 5.28. Given for each t ∈ ⟦2⟧ any kt ∈ N0 and any ct∶ ⟦kt⟧→ ((U⊍{ℵ})⊗
{○, ●}) ⊍O, let L⊗,c1,c2 ∶= (L(c1) ▵ L(c1), L(c1 ▵ c2),pms), where, if mt

Z = α(Z(ct,∅))
for each t ∈ ⟦2⟧ and Z ∈ {U,V}, then s = µm1

U
,m2

U
,m1

V
,m2

V
.

Remark 5.29. It can be shown that LU, LV and L, are ∗-functors from X ⋊Zw
to, respectively, X , Zw and X ⋊Zw. Furthermore, one can prove that L⊗ turns L into
a monoidal ∗-endofunctor of X ⋊Zw. It is possible to give natural transformations
that make LU and LV into monoidal ∗-functors as well. Moreover, L can be seen to
be a ∗-equivalence. More precisely, it can be checked that ϕ is a unitary monoidal
natural isomorphism from L to the identity functor on X ⋊Zw.

However, the proof of Proposition 5.41 below will only use a small part of these
properties, which is why no proofs are given for the remaining ones.

5.2.3. Properties of the normal form in crossed co-products. The next three lem-
mata aid in proving those of the results about L and ϕ mentioned in Remark 5.29
which we need in the following.

Lemma 5.30. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧ → ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and any set-theoretical partition p of Πk

ℓ such that
(c,d, p) ∈ X ⋊Zw,

L(c,d, p) = (L(c), L(d), tcd⇠(p)).
Proof. The claim is clear on the level of the labelings right from the definition.

On the level of blocks, if mZ = α(Z(c,d)) and nZ = β(Z(c,d)) for any Z ∈ {U,V} and
if HU = ΠmU

nU and HV = Πk
ℓ /Π

mU
nU , then γ k

HU,ℓ
=◁mU,mV

nU,nV and γ k
HV,ℓ
=▷mU,mV

nU,nV . Hence, the
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definition of tcd = γ k
U(c,d),ℓ ▵ γ k

V(c,d),ℓ means precisely that tcd ○ γ k
HZ,ℓ
= γ k

Z(c,d),ℓ for each

Z ∈ {U,V}.
For any Z ∈ {U,V} and any B ∈ p it follows that the set (γ k

HZ,ℓ → ○ γ
k

Z(c,d),ℓ
←)(B) is

given by (γ k
HZ,ℓ → ○ (t

c
d ○ γ k

HZ,ℓ
)←)(B) = (γ k

HZ,ℓ → ○ γ
k

HZ,ℓ
←)(tcd←(B)) = tcd←(B)∩HZ, which

amounts to ∅ if B ∩ Z(c,d) = ∅ and to γ k
Z(c,d),ℓ

←(B) if B ⊆ Z(c,d), where these two

are the only possibilities since p ≤ {U(c,d),V(c,d)} by (c,d, p) ∈ X ⋊Zw. Hence, by
definition,

R(p,U(c,d))⊗R(p,V(c,d))
= ⊍Z∈{U,V}{γ k

HZ,ℓ →(D) ∣D ∈ γ
k

Z(c,d),ℓ
⇠(p)}

= ⊍Z∈{U,V}{(γ k
HZ,ℓ → ○ γ

k
Z(c,d),ℓ

←)(B) ∣B ∈ p ∧ B ⊆ Z(c,d)}
= ⊍Z∈{U,V}{tcd←(B) ∣B ∈ p ∧ B ⊆ Z(c,d)}
= ⊍Z∈{U,V}{γ k

Z(c,d),ℓ
←(B) ∣B ∈ p ∧ B ⊆ Z(c,d)}

= tcd⇠(p),
which is what we needed to see. □

Lemma 5.31. (a) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O
and d∶ ⟦ℓ⟧→ ((U⊍ {ℵ})⊗ {○, ●})⊍O and any Z ∈ {U,V}, if mZ = α(Z(c,d))
and nZ = β(Z(c,d)) then the following hold.
(i) mZ = α(Z(c,∅)) and nZ = β(Z(∅,d)) and for any x ∈ ⟦mZ⟧ and y ∈
⟦nZ⟧,
γ k
Z(c,d),ℓ (◾x) = γ k

Z(c,∅),0(◾x) ∧ γ k
Z(c,d),ℓ (◾y) = γ 0

Z(∅,d),ℓ (◾y).
(ii) mZ = β(Z(d, c)) and nZ = α(Z(d, c)) and

κkℓ ○ γ ℓ
Z(d,c),k = γ k

Z(c,d),ℓ ○ κmZ
nZ
.

(b) Given for each t ∈ ⟦2⟧ any {kt, ℓt} ⊆ N0 and any ct∶ ⟦kt⟧ → ((U ⊍ {ℵ}) ⊗
{○, ●}) ⊍O and dt∶ ⟦ℓt⟧ → ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O, if mt

Z = α(Z(ct,dt)) and
ntZ = β(Z(ct,dt)) for each t ∈ ⟦2⟧, then m1

Z +m2
Z = α(Z(c1 ▵ c2,d1 ▵ d2)) and

n1
Z + n2

Z = β(Z(c1 ▵ c2,d1 ▵ d2)) and

γ k1+k2
Z(c1▵c2,d1▵d2),ℓ1+ℓ2 ○ ◁

m1
Z,m

2
Z

n1
Z
,n2

Z

=◁k1,k2
ℓ1,ℓ2

○ γ k1
Z(c1,d1),ℓ1 ,

γ k1+k2
Z(c1▵c2,d1▵d2),ℓ1+ℓ2 ○ ▷

m1
Z,m

2
Z

n1
Z
,n2

Z

=▷k1,k2
ℓ1,ℓ2

○ γ k1
Z(c1,d1),ℓ1 .

Proof. (a) (i) Clear by definition.
(ii) Follows immediately from Lemma (a) (b).
(b) Implied by Lemma (a) (c). □

Lemma 5.32. (a) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O
and d∶ ⟦ℓ⟧→ ((U⊍ {ℵ})⊗ {○, ●})⊍O and any Z ∈ {U,V} the following hold.
(i) tcd(◾i) = tc∅(◾i) and tcd(◾j) = t∅d (◾j) for any i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧.
(ii) tcd ○ κkℓ = κkℓ ○ tdc .
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(b) Given for each t ∈ ⟦2⟧ any {kt, ℓt} ⊆ N0, any ct∶ ⟦kt⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O
and any dt∶ ⟦ℓt⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O, if mt

U = α(U(ct,dt)) and ntU =
β(U(ct,dt)) and mt

V = α(V(ct,dt)) and ntV = β(V(ct,dt)) for each t ∈ ⟦2⟧,
then

tc1⊗c2d1⊗d2 ○ µ
m1

U,m
2
U,m

1
V,m

2
V

n1
U
,n2

U
,n1

V
,n2

V

= tc1d1 d t
c2
d2
.

Proof. (a) (i) Follows immediately from Lemma 5.32 (a) (i).
(ii) Likewise, but from Lemma 5.32 (a) (ii).
(b) By definition,

tc1⊗c2d1⊗d2 = γ
k1+k2

U(c1⊗c2,d1⊗d2),ℓ1+ℓ2 ▵ γ
k1+k2

V(c1⊗c2,d1⊗d2),ℓ1+ℓ2

= ((γ k1+k2
U(c1⊗c2,d1⊗d2),ℓ1+ℓ2 ○ ◁

m1
U,m

2
U

n1
U
,n2

U

) ▵ (γ k1+k2
U(c1⊗c2,d1⊗d2),ℓ1+ℓ2 ○ ▷

m1
U,m

2
U

n1
U
,n2

U

))

▵((γ k1+k2
V(c1⊗c2,d1⊗d2),ℓ1+ℓ2 ○ ◁

m1
V,m

2
V

n1
V
,n2

V

) ▵ (γ k1+k2
V(c1⊗c2,d1⊗d2),ℓ1+ℓ2 ○ ▷

m1
V,m

2
V

n1
V
,n2

V

)).

According to Lemma 5.32 (b) that proves

tc1⊗c2d1⊗d2 = ((◁
k1,k2
ℓ1,ℓ2

○ γ k1
U(c1,d1),ℓ1 ) ▵ (▷

k1,k2
ℓ1,ℓ2

○ γ k2
U(c2,d2),ℓ2 ))

▵ ((◁k1,k2
ℓ1,ℓ2

○ γ k1
V(c1,d1),ℓ1 ) ▵ (▷

k1,k2
ℓ1,ℓ2

○ γ k2
V(c2,d2),ℓ2 )).

Hence, by Lemma 5.22,

tc1⊗c2d1⊗d2 ○ µ
m1

U,m
2
U,m

1
V,m

2
V

n1
U,n

2
U,n

1
V,n

2
V

= ((◁k1,k2
ℓ1,ℓ2

○ γ k1
U(c1,d1),ℓ1 ) ▵ (◁

k1,k2
ℓ1,ℓ2

○ γ k1
V(c1,d1),ℓ1 ))

▵ ((▷k1,k2
ℓ1,ℓ2

○ γ k2
U(c2,d2),ℓ2 ) ▵ (▷

k1,k2
ℓ1,ℓ2

○ γ k2
V(c2,d2),ℓ2 ))

= (◁k1,k2
ℓ1,ℓ2

○ (γ k1
U(c1,d1),ℓ1 ▵ γ

k1
V(c1,d1),ℓ1 )) ▵ (▷

k1,k2
ℓ1,ℓ2

○ (γ k2
U(c2,d2),ℓ2 ▵ γ

k2
V(c2,d2),ℓ2 ))

= (γ k1
U(c1,d1),ℓ1 ▵ γ

k1
V(c1,d1),ℓ1 )d (γ

k2
U(c2,d2),ℓ2 ▵ γ

k2
V(c2,d2),ℓ2 )

= tc1d1 d t
c2
d2
,

which is what was claimed. □

The first one of the claims made in Remark 5.29 we will actually need is that ϕ
takes values in the morphisms of X ⋊Zw.

Lemma 5.33. ϕc ∈ X ⋊Zw for any k ∈ N0 and any c∶ ⟦k⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O.

Proof. If s is the permutation of ⟦k⟧ with ◾s(i) = tc∅(◾i) for any i ∈ ⟦k⟧, then
by Remark 5.26 we have to show that pms ≤ {Z(L(c), c)}Z∈{U,V} and LU(ϕc) ∈ X
and LV(ϕc) ∈ X . Hence, it suffices to prove that pms ≤ {Z(L(c), c)}Z∈{U,V} and
LU(ϕc) = idLU(c) and LV(ϕc) = idLV(c). Throughout, let mZ ∶= α(Z(c,∅)) and then
HZ ∶= ΠmZ

0 for any Z ∈ {U,V}.
Step 1: Characterizing U(L(c), c) and V(L(c), c). As a first intermediate step

we show that Z(L(c), c) = HZ ⊍ κk0←(Z(c,∅)) for any Z ∈ {U,V}. Let XU ∶= Zw and
XV ∶= {ℵ} and let Z ∈ {U,V} be arbitrary.
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On the one hand, we decompose ξ
LU(c)▵LV(c)
∅

←(XZ) into⊍Z′∈{U,V} ξ
LU(c)▵LV(c)
∅

←(XZ)∩
HZ′ , i.e., ⊍Z′∈{U,V}(γ k

HZ′ ,0→○γ
k

HZ′ ,0
←○ξLU(c)▵LV(c)

∅
←)(XZ) or, identically, ⊍Z′∈{U,V}(γ k

HZ′ ,0→○
(ξLU(c)▵LV(c)

∅ ○γ k
HZ′ ,0

←))(XZ). By Lemma 4.2 (c) that is the same as ⊍Z′∈{U,V}(γ k
HZ′ ,0→○

ξ
LZ′(c)
∅

←)(XZ). Since, by definition, ξ
LZ′(c)
∅

←(XZ) is ΠmZ
0 if Z′ = Z and ∅ if Z′ ≠ Z we

have thus shown ξ
LU(c)▵LV(c)
∅

←(XZ) = HZ.
On the other hand, Lemma 5.31 (a) (ii) implies ξ∅c

←(XZ) = Z(∅, c) = ran(γ 0
Z(∅,c),k) =

ran(γ 0
Z(∅,c),k ○ κ0mZ

) = ran(γ 0
Z(∅,c),k ○ κ0mZ

) = ran(κ0k ○ γ k
Z(c,∅),0) = κ0k→(ran(γ k

Z(c,∅),0)) =
κk0
←(Z(c,∅)).
Finally, since Z(L(c), c) = ξL(c)c

←(XZ) = ξL(c)∅
←(XZ) ⊍ ξ∅c ←(XZ) that proves the

initial auxiliary claim.
Step 2: Relating γ k

U(L(c),c),k and γ k
V(L(c),c),k to s. The second auxiliary statement

we prove is that γ k
U(L(c),c),k = (▲k,k ○ ◁mU,mV

) ◾◾ (▲k,k ○ s ○ ◁mU,mV
) and γ k

V(L(c),c),k =
(▲k,k ○ ▷mU,mV

) ◾◾ (▲k,k ○ s ○ ▷mU,mV
).

An equivalent way of expressing the outermost identity in the chain tc∅ = γ k
U(c,∅),0 ▵

γ k
V(c,∅),0 = (η k

U(c,∅),0
◾
◾∅) ▵ (η k

V(c,∅),0
◾
◾∅) = (η k

U(c,∅),0 ▵ η k
V(c,∅),0)

◾
◾∅ is to say that both

tc∅ ○ ▲k,0 ○ ◁mU,mV
= η k

U(c,∅),0 and tc∅ ○ ▲k,0 ○ ▷mU,mV
= η k

V(c,∅),0 . The definition of s

therefore implies ▲k,k ○s○◁mU,mV
= η k

U(c,∅),k and ▲k,k ○s○▷mU,mV
= η k

V(c,∅),k , which by

κkk ○▲k,k =▼k,k is equivalent to ▼k,k ○s○◁mU,mV
= κkk ○η k

U(c,∅),k and ▼k,k ○s○▷mU,mV
=

κkk ○ η k
V(c,∅),k . By Step 1 we have thus shown γ k

U(L(c),c),k ○▼k,k =▼k,k ○ s ○◁mU,mV
and

γ k
V(L(c),c),k ○ ▼k,k =▼k,k ○ s ○ ▷mU,mV

.

Furthemore, Step 1 and the facts that η k
HU,0
= ▲k,0 ○ ◁mU,mV

and η k
HV,0
= ▲k,0 ○

▷mU,mV
imply γ k

U(L(c),c),k ○▲k,k =▼k,k ○◁mU,mV
and γ k

V(L(c),c),k ○▲k,k =▼k,k ○▷mU,mV
.

Together the two four established identities prove the auxiliary claim.
Step 3: Formulating pms in terms of U(L(c), c) and V(L(c), c). On the one hand,

the results of Step 2 say, equivalently, that γ k
U(L(c),c),k(

◾iU) = ◾iU and γ k
U(L(c),c),k(◾iU) =

◾s(iU) for any iU ∈ ⟦mU⟧ and that γ k
V(L(c),c),k(

◾iV) = ◾(mU + iV) and γ k
V(L(c),c),k(◾iV) =

◾s(mU + iV) for any iV ∈ ⟦mV⟧. On the other, by definition, pms = {{◾i, ◾s(i)}}ki=1 =
{{◾iU, ◾s(iU)}}

mU
iU=1 ⊍ {{

◾(mU + iV), ◾s(mU + iV)}}mV
iV=1. Hence, Step 2 actually implies

that pms = ⊍Z∈{U,V}{γ k
Z(L(c),c),k→(B) ∣B ∈ idmZ

}.
Step 4: Proving pms ≤ {Z(L(c), c)}Z∈{U,V}. Since ran(γ k

Z(L(c),c),k) = Z(L(c), c) for

any Z ∈ {U,V} Step 3 immediately lets us conclude that pms ≤ {Z(L(c), c)}Z∈{U,V}.
Step 5: Proving LU(L(c)) = LU(c) and LV(L(c)) = LV(c). It suffices to prove

that ξ
LZ(L(c))
∅ = ξLZ(c)

∅ and ζ
LZ(L(c))
∅ = ζLZ(c)

∅ for any Z ∈ {U,V}.
Step 5.1: Tags of LU(L(c)). By the definition of LU, for any i ∈ ⟦k⟧ the

tag ξ
LU(L(c))
∅ (◾i) is given by (πw ○ εL(c)∅ ○ γ k

U(L(c),∅),0)(
◾i). Since U(L(c),∅) = HU ⊍

κk0
←(U(c,∅)) by Step 1 and since κk0

←(U(c,∅)) ⊆ Π0
k the point γ k

U(L(c),∅),0(
◾i) is

the same as γ k
HU,0
(◾i). Thereby and by the definition of L we have shown that
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ξ
LU(L(c))
∅ (◾i) = (πw ○ εLU(c)▵LV(c)

∅ ○ γ k
HU,0
)(◾i). According to Lemma 4.43 (c) the tags

(εLU(c)▵LV(c)
∅ ○ γ k

HU,0
)(◾i) and ε

LU(c)
∅ (◾i) agree. And, of course, ε

LU(c)
∅ (◾i) is already

an element of Zw, which proves . That proves that ξ
LU(L(c))
∅ (◾i) = (πw ○ εLU(c)

∅ )(◾i).
Because ran(ξLU(c)

∅ ) ⊆ Zw the definition implies that ε
LU(c)
∅ = ξLU(c)

∅ = πw ○ ξLU(c)
∅ . In

conclusion, ξ
LU(L(c))
∅ (◾i) = ξLU(c)

∅ (◾i), as claimed.

Step 5.2: Tags of LV(L(c)). The argument for ξ
LV(L(c))
∅ is similar but easier.

Given any i ∈ ⟦k⟧, the definition tells us that the tag ξ
LV(L(c))
∅ (◾i) is given by

(ξLU(c)▵LV(c)
∅ ○ γ k

V(L(c),∅),0)(
◾i), which simplifies to (ξLU(c)▵LV(c)

∅ ○ γ k
HV,0
)(◾i) because

V(L(c),∅) = HV ⊍κk0←(V(c,∅)) by Step 1 and because κk0
←(V(c,∅)) ⊆ Π0

k. Now it is

Lemma 4.2 (c) that lets us rewrite this as ξ
LV(c)
∅ (◾i), proving what we needed to see.

Step 5.3: Colors of LU(L(c)) and LV(L(c)). For any Z ∈ {U,V} the proof that

ζ
LZ(L(c))
∅ = ζLZ(c)

∅ is the same as the one that ζ
LV(L(c))
∅ = ζLV(c)

∅ once there ξ is replaced
by ζ and V by Z. Thus, indeed, LU(L(c)) = LU(c) and LV(L(c)) = LV(c).

Step 6: Proving R(pms,U(L(c), c)) = idmU
and R(pms,V(L(c), c)) = idmV

. Since
pms ≤ {U(L(c), c),V(L(c), c)} by Step 4, since U(L(c), c) ∩V(L(c), c) = ∅ and since
γ k
Z(L(c),c),k is injective, Step 3 proves that R(pms,Z(L(c), c)) = γ k

Z(L(c),c),k
⇠(pms) =

idmZ
for any Z ∈ {U,V}. □

The second result about ϕ we will require is that ϕ is a natural transformation
from L to the identity functor (the former of which we have not even shown to be
functorial at all, of course).

Lemma 5.34. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O and
d∶ ⟦ℓ⟧ → ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O and any set-theoretical partition p of Πk

ℓ such that
(c,d, p) ∈ X ⋊Zw,

ϕdL(c,d, p) = (c,d, p)ϕc.

Proof. If f and g are the permutations of ⟦k⟧ respectively ⟦ℓ⟧ with
◾
f(i) =

tc∅(◾i) for any i ∈ ⟦k⟧and
◾
g(j) = td∅(◾j) for any j ∈ ⟦ℓ⟧ and if v = tcd⇠(p), then it

suffices to show that

ppmf = {tcd←(B ∩Πk
0) ⊍ (B ∩Π0

ℓ) ∣B ∈ p} = pmg v.

where each identity will be proved separately.
Step 1: Left identity. By Lemma 5.15 (b) and the assumption on f ,

ppmf = {{
◾
f−1(i) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B} ⊍ (B ∩Π0

ℓ) ∣B ∈ p}
= {{◾i ∣ i ∈ ⟦k⟧ ∧ ◾

f(i) ∈ B} ⊍ (B ∩Π0
ℓ) ∣B ∈ p}

= {{a ∈ Πk
0 ∧ tc∅(a) ∈ B} ⊍ (B ∩Π0

ℓ) ∣B ∈ p}
= {tc∅←(B ∩Πk

0) ⊍ (B ∩Π0
ℓ) ∣B ∈ p},

which proves the first identity by Lemma 5.32 (a) (i).
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Step 2: Right identity. With the help of both parts of Lemma 5.32 (a) we
can conclude from the assumption on g that ◾g(j) = κ0ℓ(

◾
g(j)) = (κ0ℓ ○ td∅)(◾j) =

(t∅d ○ κ0ℓ)(◾j) = t∅d (◾j) = tcd(◾j) for any j ∈ ⟦ℓ⟧. Hence, Lemma 5.15 (a) implies that

pmg v = {(C ∩Πk
0) ⊍ {◾g(j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ C} ∣C ∈ v}

= {(tcd←(B) ∩Πk
0) ⊍ {tcd(◾j) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ tcd←(B)} ∣B ∈ p}

= {tcd←(B ∩Πk
0) ⊍ {tcd(b) ∣b ∈ Π0

ℓ ∧ tcd(b) ∈ B} ∣B ∈ p}
= {tc∅←(B ∩Πk

0) ⊍ (B ∩Π0
ℓ) ∣B ∈ p},

where we have also used the facts that tcd is bijective and preserves upper and lower
points. □

The final one of the statements about LU, LV, L and ϕ alluded to in Remark 5.29
which we will need is that the natural transformation ϕ from L to the identity
functor is monoidal. The proof of this will use the following fact.

Lemma 5.35. Given for each t ∈ ⟦2⟧ any kt ∈ N0, any ct∶ ⟦kt⟧ → (U ⊗ {○, ●}) ⊍O
and any permutation st of ⟦kt⟧,

pmc1
s1 ⊗ pmc2

s2 = pmc1▵c2
s1ds2 .

Proof. The claim is clear on the level of labels. Of course, ◁k1,k2
k1,k2→({

◾i1, ◾i1}) =
{◾i1, ◾s1(i1)} for any i1 ∈ ⟦k1⟧ and ▷k1,k2

k1,k2→({
◾i1, ◾i1}) = {

◾(k1 + i2), ◾s2(k1 + i2)} for

any i2 ∈ ⟦k2⟧. Therefore, pms1⊗pms2 = {◁
k1,k2
k1,k2→(B1) ∣B1 ∈ pms1}⊍{▷

k1,k2
k1,k2→(B2) ∣B2 ∈

pms2} is given by {{◾i1, ◾s1(i1)},{
◾(k1 + i2), ◾s2(k1 + i2)} ∣ i1 ∈ ⟦k1⟧, i2 ∈ ⟦k2⟧}, i.e., by

{{◾i, ◾(s1 d s2)(i)} ∣ i ∈ ⟦k1 + k2⟧} = pms1ds2 . □

Lemma 5.36. For any {k1, k2} ⊆ N0 and any c1∶ ⟦k1⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O
and c2∶ ⟦k2⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O,

ϕc1⊗c2 L⊗,c1,c2 = ϕc1 ⊗ ϕc2 .

Proof. For any Z ∈ {U,V} and t ∈ ⟦2⟧ let mt
Z ∶= α(Z(ct,∅)). Moreover, let h be

the permutation of ⟦k1 + k2⟧ with ▲k1+k2,0 ○ h = tc1▵c2∅ ○ ▲k1+k2,0, let g ∶= µm1
U
,m2

U
,m1

V
,m2

V

and for each t ∈ ⟦2⟧ let ft be the permutation of ⟦kt⟧ with ▲kt,0○ft = tct∅ ○▲kt,0. Then,
by definition, ϕc1▵c2 = (L(c1 ▵ c2), c1 ▵ c2,pmh) and L⊗,c1,c2 = (L(c1) ▵ L(c2), L(c1 ▵
c2),pmg) and ϕct = (L(ct), ct,pmft) for each t ∈ ⟦2⟧. That implies ϕc1▵c2 L⊗,c1,c2 =
(L(c1) ▵L(c2), c1 ▵ c2,pmh pmg) and ϕc1 ⊗ ϕc2 = (L(c1) ▵L(c2), c1 ▵ c2,pmf1 ⊗ pmf2).
Hence, by Lemmata 5.16 and 5.35 all we have to prove is that h ○ g = f1 d f2.
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Because ▲k1+k2,0○g = µ
m1

U,m
2
U,m

1
V,m

2
V

0,0,0,0 ○▲k1+k2,0 and because ▲k1+k2,0○◁k1,k2 =◁k1,k2
0,0 ○

▲k1,0 and ▲k1+k2,0 ○▷k1,k2 =▷k1,k2
0,0 ○▲k2,0 by definition, Lemma 5.32 (b) lets us infer

▲k1+k2,0 ○ h ○ g = tc1▵c2∅ ○ ▲k1+k2,0 ○ g
= tc1▵c2∅ ○ µm

1
U,m

2
U,m

1
V,m

2
V

0,0,0,0 ○ ▲k1+k2,0

= (tc1∅ d tc2∅ ) ○ ▲k1+k2,0

= (tc1∅ d tc2∅ ) ○ ((▲k1+k2,0 ○ ◁k1,k2) ▵ (▲k1+k2,0 ○ ▷k1,k2))
= (tc1∅ d tc2∅ ) ○ ((◁k1,k2

0,0 ○ ▲k1,0) ▵ (▷k1,k2
0,0 ○ ▲k2,0))

= (((tc1∅ d tc2∅ ) ○ ◁k1,k2
0,0 ○ ▲k1,0) ▵ ((tc1∅ d tc2∅ ) ○ ▷k1,k2

0,0 ○ ▲k2,0))
= (◁k1,k2

0,0 ○ tc1∅ ○ ▲k1,0) ▵ (▷k1,k2
0,0 ○ tc2∅ ○ ▲k2,0)

= (◁k1,k2
0,0 ○ ▲k1,0 ○ f1) ▵ (▷k1,k2

0,0 ○ ▲k2,0 ○ f2)
= (▲k1+k2,0 ○ ◁k1,k2 ○ f1) ▵ (▲k1+k2,0 ○ ▷k1,k2 ○ f2)
=▲k1+k2,0 ○ ((◁k1,k2 ○ f1) ▵ (▷k1,k2 ○ f2))
=▲k1+k2,0 ○ (f1 d f2),

which is all we needed to see because ▲k1+k2,0 is injective. □

The last preparation we need to make for the proof of the main result of Sec-
tion 5.2 about the generators of X ⋊ Zw goes beyond what was claimed in Re-
mark 5.29. It is a result expressing L⊗ in terms of ϕ.

Lemma 5.37. When given for each t ∈ ⟦2⟧ any kt ∈ N0 and any ct∶ ⟦kt⟧ → ((U ⊍
{ℵ})⊗ {○, ●}) ⊍O, then

L⊗,c1,c2 = idLU(c1) ⊗ ϕLV(c1)⊗LU(c2)
∗ ⊗ idLV(c2).

Proof. For any Z ∈ {U,V} let mt
Z ∶= α(Z(ct,∅)) for each t ∈ ⟦2⟧ and let

mZ ∶= α(Z(c1 ▵ c2,∅)). If s is the permutation of ⟦m1
V +m2

U⟧ with ▲m1
V
+m2

U
,0 ○ s =

t
LV(c1)▵LU(c2)
∅ ○▲m1

V
+m2

U
,0, then ϕLV(c1)▵LU(c2) = (L(LV(c1)▵LU(c2)), LV(c1)▵LU(c2),pms)

and, consequently, ϕLV(c1)▵LU(c2)
∗ = (LV(c1) ▵ LU(c2), L(LV(c1) ▵ LU(c2)),pms−1) by

Lemma 5.16. If, moreover, f1 and f2 are the identity mappings of ⟦m1
U⟧ respectively

⟦m2
V⟧, then the partition idLU(c1) ⊗ ϕLV(c1)▵LU(c2)

∗ ⊗ idLV(c2) can thus be written as
(LU(c1)▵(LV(c1)▵LU(c2))▵LV(c2), LU(c1)▵L(LV(c1)▵LU(c2))▵LV(c2),pmf1ds−1df2)
by Lemma 5.35. Similarly, if e ∶= τm2

U
,m1

V
, then L⊗,c1,c2 = (L(c1) ▵ L(c2), L(c1 ▵

c2),pmf1dedf2) by Lemma 5.35 because µm1
U
,m2

U
,m1

V
,m2

V
= f1dedf2 by Lemma 5.22 (b).

Thus, since L(c1) ▵ L(c2) = (LU(c1) ▵ LV(c2)) ▵ (LU(c1) ▵ LV(c2)) by definition, the
claimed identity holds if and only if both L(c1 ▵ c2) = LU(c1) ▵L(LV(c1) ▵LU(c2)) ▵
LV(c2) and e = s−1.

Step 1: Characterizing U(LV(c1) ▵ LU(c2),∅) and V(LV(c1) ▵ LU(c2),∅). As a

first auxiliary statement, we show that, if S1 ∶= Π
m1

V
0 and S2 ∶= Π

m1
V+m2

U
0 /Πm1

V
0 , then

U(LV(c1) ▵LU(c2),∅) = S2 and V(LV(c1) ▵LU(c2),∅) = S1.
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Because S1 ⊍ S2 is the whole area of definition Π
m1

V+m2
U

0 of LV(c1) ▵ LU(c2) we
can decompose U(LV(c1) ▵ LU(c2),∅) into ⋃2

t=1(U(LV(c1) ▵ LU(c2),∅) ∩ St). As

St = ran(γ m1
V+m2

U

St,0
) for each t ∈ ⟦2⟧ and as U(LV(c1)▵LU(c2),∅) = ξLV(c1)▵LU(c2)

∅
←(Zw)

by definition that is identical to ⋃2
t=1(γ

m1
V+m2

U

St,0 →○γ m1
V+m2

U

St,0
←○ξLV(c1)▵LU(c2)

∅
←)(Zw) or,

equivalently, ⋃2
t=1(γ

m1
V+m2

U

St,0 →○(ξLV(c1)▵LU(c2)
∅ ○γ m1

V+m2
U

St,0
)←)(Zw). Since ξ

LV(c1)▵LU(c2)
∅ ○

γ
m1

V+m2
U

S1,0
= ξLV(c1)

∅ and ξ
LV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

S2,0
= ξLU(c2)

∅ by Lemma 4.2 (c) we have

thus shown that U(LV(c1) ▵ LU(c2),∅) is given by (γ m1
V+m2

U

S1,0 → ○ ξLV(c1)
∅

←)(Zw) ⊍
(γ m1

V+m2
U

S2,0 → ○ ξLU(c2)
∅

←)(Zw). Of course, ξ
LV(c1)
∅

←(Zw) = ∅ and ξ
LU(c2)
∅

←(Zw) = Π
m2

U
0

by definition. Thus we conclude that U(LV(c1) ▵ LU(c2),∅) = γ m1
V+m2

U

S2,0 →(Πm2
U

0 ) =
ran(γ m1

V+m2
U

S2,0
) = S2, which proves the first one of the two claimed identities.

In an analogous manner we can decompose the set V(LV(c1) ▵ LU(c2),∅) =
ξ
LV(c1)▵LU(c2)
∅

←({ℵ}) into⋃2
t=1(γ

m1
V+m2

U

St,0 →○(ξLV(c1)▵LU(c2)
∅ ○γ m1

V+m2
U

St,0
)←)({ℵ}) or, equiv-

alently, (γ m1
V+m2

U

S1,0 → ○ξLV(c1)
∅

←)({ℵ})⊍(γ m1
V+m2

U

S2,0 → ○ξLU(c2)
∅

←)({ℵ}). Hence, the facts

that ξ
LV(c1)
∅

←({ℵ}) = Π
m1

V
0 and ξ

LU(c2)
∅

←({ℵ}) = ∅ imply that V(LV(c1)▵LU(c2),∅) is
given by S1. That is what we needed to see.

Step 2: Proving e = s−1. Because S1 = ran(◁m1
V,m

2
U

0,0 ) and S2 = ran(▷m1
V,m

2
U

0,0 ) a

different way of expressing the result of Step 1 is to say that γ
m1

V+m2
U

U(LV(c1)▵LU(c2),∅),0 =
▷m1

V,m
2
U

0,0 and γ
m1

V+m2
U

V(LV(c1)▵LU(c2),∅),0 = ◁m1
V,m

2
U

0,0 . Hence, the definitions imply that

t
LV(c1)▵LU(c2)
∅ = γ m1

V+m2
U

U(LV(c1)▵LU(c2),∅),0 ▵ γ m1
V+m2

U

V(LV(c1)▵LU(c2),∅),0 = ▷m1
V,m

2
U

0,0 ▵◁m1
V,m

2
U

0,0 =
τ
m1

V,m
2
U

0,0 . Since τ
m1

V,m
2
U

0,0 ○ ▲m1
V
+m2

U
,0 = ▲m1

V
+m2

U
,0 ○ τm1

V
,m2

U
= ▲m1

V
+m2

U
,0 ○ e−1 we can thus

infer from the definition of s the identity ▲m1
V
+m2

U
,0 ○ s = tLV(c1)▵LU(c2)

∅ ○ ▲m1
V
+m2

U
,0 =

▲m1
V+m2

U,0
○ e−1. That proves s = e−1 because ▲m1

V+m2
U,0

is injective. Hence, e = s−1, as
claimed.

Step 3: Proving L(c1▵c2) = LU(c1)▵L(LV(c1)▵LU(c2))▵LV(c2). If we abbreviate

T1 ∶= Π
m1

U
0 , T2 ∶= Π

m1
U+m2

U
0 /Πm1

U
0 ,

T3 ∶= Π
m1

U+m2
U+m1

V
0 /Πm1

U+m2
U

0 , T4 ∶= Π
m1

U+m2
U+m1

V+m2
V

0 /Πm1
U+m2

U+m1
V

0 ,

then ⋃4
u=1Tu = Πk1+k2

0 . Therefore we can prove that L(c1 ▵ c2) and e ∶= LU(c1) ▵
L(LV(c1) ▵LU(c2)) ▵LV(c2) agree by showing that for any u ∈ ⟦4⟧,

ξ
L(c1▵c2)
∅ ○ γ k1+k2

Tu,0
= ξe∅ ○ γ k1+k2

Tu,0
∧ ζ

L(c1▵c2)
∅ ○ γ k1+k2

Tu,0
= ζe∅ ○ γ k1+k2

Tu,0
.

Those are the eight identities we will check in the following.
Step 3.1: Key auxiliary statements. We will use the facts that

ℵΣ
LV(c1)
∅ = ℵΣc1

∅ ∧ ξ
LU(c2)
∅ = εLU(c2)

∅
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Indeed, because, by definition, ξ
LV(c1)
∅ = ξc1∅ ○γ k1

V(c1,∅),0 and ζ
LV(c1)
∅ = ζc1∅ ○γ k1

V(c1,∅),0

Lemma (a) (a) implies ℵΣ
LV(c1)
∅ = ℵσ

LV(c1)
∅ (Πm1

V
0 ) = ℵσ

c1
∅ (Πk1

0 ) = ℵΣc1
∅ by Π

m1
V

0 =
γ k1
V(c1,∅),0

←(Πk1
0 ) and ℵσ

c1
∅ (Πk1

0 /V(c1,∅)) = ℵσc1
∅ (U(c1,∅)) = 0.

Similarly, because V(LU(c2),∅) = ∅, for any i ∈ ⟦m2
U⟧ with i ≠ 1, necessarily,

ℵσ
LU(c2)
∅ (] ◾i, ◾1]m

2
U

0 ) = 0 and thus ε
LU(c2)
∅ (◾i) = ξLU(c2)

∅ (◾i) by definition.
Step 3.2: Auxiliary definitions. In addition to {Tu}4u=1 we will need to consider

other set-theoretical partitions of Πk1+k2
0 as well, and to use certain relations between

them and {Tu}4u=1.
Throughout, let also H1 ∶= Πk1

0 and H2 ∶= Πk1+k2
0 /Πk1

0 , and GU ∶= T1 ⊍T2 and GV ∶=
T3⊍T4, and W1 = T1 and W2 = T2⊍T3 and W3 = T4, and I1U ∶= Π

m1
U

0 and I2U ∶= ΠmU
0 /Π

m1
U

0

and I1V ∶= Π
m1

V
0 and I2V ∶= ΠmV

0 Π
m1

V
0 , and KU ∶= Π

m2
U

0 and KV ∶= Π
m1

V+m2
U

0 /Πm2
U

0 . Note that
then,

γ k1+k2
T1,0

= γ k1+k2
GU,0

○ γ mU

I1
U
,0
= γ k1+k2

W1,0

γ k1+k2
T2,0

= γ k1+k2
GU,0

○ γ mU

I2
U
,0
= γ k1+k2

W2,0
○ γ m1

V+m2
U

KU,0

γ k1+k2
T3,0

= γ k1+k2
GV,0

○ γ mV

I1V,0
= γ k1+k2

W2,0
○ γ m1

V+m2
U

KV,0

γ k1+k2
T4,0

= γ k1+k2
GV,0

○ γ mV

I2
V
,0
= γ k1+k2

W3,0
.

Step 3.3: First unwinding the definitions. Furthemore, recognize that by Lem-
ma 4.2 (c) the definition L(c1 ▵ c2) = LU(c1 ▵ c2) ▵LV(c1 ▵ c2) ensures that

ξ
L(c1▵c2)
∅ ○ γ k1+k2

GU,0
= ξLU(c1▵c2)

∅ ∧ ζ
L(c1▵c2)
∅ ○ γ k1+k2

GU,0
= ζLU(c1▵c2)

∅

ξ
L(c1▵c2)
∅ ○ γ k1+k2

GV,0
= ξLV(c1▵c2)

∅ ∧ ζ
L(c1▵c2)
∅ ○ γ k1+k2

GV,0
= ζLV(c1▵c2)

∅ .

By the same reasoning, moreover,

ξ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KU,0
= ξLU(LV(c1)▵LU(c2))

∅

ζ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KU,0
= ζLU(LV(c1)▵LU(c2))

∅

ξ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KV,0
= ξLV(LV(c1)▵LU(c2))

∅

ζ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KV,0
= ζLV(LV(c1)▵LU(c2))

∅ .

And, finally, an iterated application of Lemma 4.2 (c) to e = LU(c1) ▵ (LV(c1) ▵
LU(c2)) ▵LV(c2) shows that

ξe∅ ○ γ k1+k2
W1,0

= ξLU(c1)
∅ ∧ ζe∅ ○ γ k1+k2

W1,0
= ζLU(c1)

∅

ξe∅ ○ γ k1+k2
W2,0

= ξL(LV(c1)▵LU(c2))
∅ ∧ ζe∅ ○ γ k1+k2

W2,0
= ζL(LV(c1)▵LU(c2))

∅

ξe∅ ○ γ k1+k2
W3,0

= ξLV(c2)
∅ ∧ ζe∅ ○ γ k1+k2

W3,0
= ζLV(c2)

∅ .
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Step 3.4: Proving the eight identities. It remains to use the definitions of Step 3.2
and the results of Steps 3.1 and 3.3 to prove the eight identities. Let V denote the
action of Zw on itself.

Step 3.4.1: Tags in area T1. By Step 3.2 we can rewrite the mapping ξ
L(c1▵c2)
∅ ○

γ k1+k2
T1,0

as ξ
L(c1▵c2)
∅ ○ γ k1+k2

GU,0
○ γ mU

I1
U
,0

. According to Step 3.3 that is the same as

ξ
LU(c1▵c2)
∅ ○ γ mU

I1U,0
. By the definition of LU that mapping in turn can be expressed as

πw ○εc1▵c2∅ ○γ k1+k2
U(c1▵c2,∅),0 ○γ mU

I1
U
,0

. By Lemma 5.31 (b) this coincides with πw ○εc1▵c2∅ ○
γ k1+k2
H1,0

○ γ k1
U(c1,∅),0 . Since the restrictions of εc1▵c2∅ ○ γ k1+k2

H1,0
and εc1∅ to I1U coincide

by Lemma 4.43 (d), we can rewrite the previous expression as πw ○ εc1∅ ○ γ k1
U(c1,∅),0 .

Of course, by the definition of LU that mapping is precisely ξ
LU(c1)
∅ . By Step 3.3 this

in turn is another way of writing the mapping ξe∅ ○γ k1+k2
W1,0

. Hence, by Step 3.2 the

mappings ξ
L(c1▵c2)
∅ ○ γ k1+k2

T1,0
and ξe∅ ○ γ k1+k2

T1,0
are one and the same.

Step 3.4.2: Colors in area T1. The argument for the colors is similar but easier.

Namely, ζ
L(c1▵c2)
∅ ○ γ k1+k2

T1,0
is the same as ζ

L(c1▵c2)
∅ ○ γ k1+k2

GU,0
○ γ mU

I1
U
,0

by Step 3.2

and thus as ζ
LU(c1▵c2)
∅ ○ γ mU

I1
U
,0

by Step 3.3. By the definition of LU that is ζc1▵c2∅ ○
γ k1+k2
U(c1▵c2,∅),0 ○γ mU

I1
U
,0

or, equivalently, ζc1▵c2∅ ○γ k1+k2
H1,0

○γ k1
U(c1,∅),0 by Lemma 5.31 (b).

According to Lemma 4.2 (c) that agrees with ζc1∅ ○γ k1
U(c1,∅),0 , i.e., with ζ

LU(c1)
∅ by the

definition of LU. And this is the same as ζe∅ ○ γ k1+k2
W1,0

by Step 3.3 and thus as

ξe∅ ○ γ k1+k2
T1,0

by Step 3.2.
Step 3.4.3: Tags in area T2. For the tags in T2 we can adapt the argument

from T1 with the help of Step 3.1. The mapping ξ
L(c1▵c2)
∅ ○ γ k1+k2

T2,0
is identical to

ξ
L(c1▵c2)
∅ ○γ k1+k2

GU,0
○γ mU

I2
U
,0

by Step 3.2 and thus to ξ
LU(c1▵c2)
∅ ○γ mU

I2
U
,0

by Step 3.3. This

is the same as πw ○εc1▵c2∅ ○γ k1+k2
U(c1▵c2,∅),0 ○γ mU

I2
U
,0

by the definition of LU, which can be

rewritten in the form πw ○εc1▵c2∅ ○γ k1+k2
H2,0

○γ k2
U(c2,∅),0 by Lemma 5.31 (b). Differently

from the case of T1 the implication of Lemma 4.43 (d) can now be expressed by
saying that πw ○ εc1▵c2∅ ○ γ k1+k2

H2,0
and V−ℵΣc1∅

○ πw ○ εc2∅ assume the same values on

the set I2U. Hence, the previous mapping is identical to V−ℵΣc1∅
○ πw ○ εc2∅ ○ γ k2

U(c2,∅),0

or, indeed, V−ℵΣc1∅
○ ξLU(c2)

∅ by the definition of LU. By both the results of Step 3.1

this is another way of writing V−ℵΣLV(c1)∅
○ εLU(c2)

∅ , which is the same as V−ℵΣLV(c1)∅
○

πw ○ εLU(c2)
∅ because ε

LU(c2)
∅ already only takes values in Zw. Because, by applying

Lemma 4.43 (d) in reverse, we know that the mappings V−ℵΣLV(c1)∅
○ πw ○ εLU(c2)

∅ and

πw ○ εLV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

S2,0
agree on the set U(LU(c2),∅), i.e., everywhere, that

is identical to πw ○ εLV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

S2,0
. According to Step 1 that is the same
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as πw ○ εLV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

U(LV(c1)▵LU(c2),∅),∅ . Since this is precisely ξ
LU(LV(c1)▵LU(c2))
∅

by the definition of LU it can also be expressed as ξ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KU,0
by

Step 3.3. Because, also by Step 3.3, this is the same as ξe∅ ○ γ k1+k2
W2,0

○ γ m1
V+m2

U

KU,0

Step 3.2 shows that we have thus proved ξ
L(c1▵c2)
∅ ○ γ k1+k2

T2,0
and ξe∅ ○ γ k1+k2

T2,0
to

coincide.
Step 3.4.4: Colors in area T2. Once more, the reasoning for the colors is very

similar to the one for the tags but easier in key respects. Steps 3.2, 3.3 and the

definition of LU, respectively, let us rewrite ζ
L(c1▵c2)
∅ ○ γ k1+k2

T2,0
first as ζ

L(c1▵c2)
∅ ○

γ k1+k2
GU,0

○ γ mU

I2U,0
, then as ζ

LU(c1▵c2)
∅ ○ γ mU

I2
U
,0

and eventually as ζc1▵c2∅ ○ γ k1+k2
U(c1▵c2,∅),0 ○

γ mU

I2
U
,0

. By Lemma 5.31 (b) that is the same as ζc1▵c2∅ ○ γ k1+k2
H2,0

○ γ k2
U(c2,∅),0 , which

by Lemma 4.2 (c) is identical to ζc2∅ ○ γ k2
U(c2,∅),0 , i.e., to ζ

LU(c2)
∅ according to the

definition of LU. Using, in succession, Step 3.3, Step 1 and the definition of LU

again, we can transform this into first ζ
LV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

S2,0
, then ζ

LV(c1)▵LU(c2)
∅ ○

γ
m1

V+m2
U

U(LV(c1)▵LU(c2),∅),∅ and then ζ
LU(LV(c1)▵LU(c2))
∅ . By two identities from Step 3.3

this is the same as ζ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KU,0
and thus ζe∅ ○ γ k1+k2

W2,0
○ γ m1

V+m2
U

KU,0
or,

indeed, ζe∅ ○ γ k1+k2
T2,0

by Step 3.2.
Step 3.4.5: Tags in area T3. The cases T3 and T4 are thankfully easier. We

rewrite ξ
L(c1▵c2)
∅ ○ γ k1+k2

T3,0
as ξ

L(c1▵c2)
∅ ○ γ k1+k2

GV,0
○ γ mV

I1V,0
with the help Step 3.2 and

thus as ξ
LV(c1▵c2)
∅ ○ γ mV

I1
V
,0

, according to Step 3.3. By the definition of LV that is the

same as ξc1▵c2∅ ○γ k1+k2
V(c1▵c2,∅),0 ○γ mV

I1
V
,0

or, equivalently, ξc1▵c2∅ ○γ k1+k2
H1,0

○γ k1
V(c1,∅),0 by

Lemma 5.31 (b). Lemma 4.2 (c) lets us transform this into ξc1∅ ○ γ k1
V(c1,∅),0 , which is

to say ξ
LV(c1)
∅ by the definition of LV. A second application Lemma 4.2 (c) rewrites

this as ξ
LV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

S1,0
, which is ξ

LV(c1)▵LU(c2)
∅ ○ γ m1

V+m2
U

V(LV(c1)▵LU(c2),∅),0 by

Step 1. The definition of LV is such that this mapping is precisely ξ
LV(LV(c1)▵LU(c2))
∅ ,

i.e., ξ
L(LV(c1)▵LU(c2))
∅ ○ γ m1

V+m2
U

KV,0
by Step 3.3. Since this is identical to ξe∅ ○ γ k1+k2

W2,0
○

γ
m1

V+m2
U

KV,0
by Step 3.3 and thus ξe∅ ○ γ k1+k2

T3,0
by Step 3.2 the tags in T3 do agree.

Step 3.4.6: Colors in area T3. The proof for the colors is exactly the same as for
the tags. Merely replace ξ with ζ everywhere.

Step 3.4.7: Tags in area T4. By Step 3.2 the mapping ξ
L(c1▵c2)
∅ ○ γ k1+k2

T4,0
is the

same as ξ
L(c1▵c2)
∅ ○γ k1+k2

GV,0
○γ mV

I2
V
,0

, which by Step 3.3 is identical to ξ
LV(c1▵c2)
∅ ○γ mV

I2
V
,0

.

This is another way of writing ξc1▵c2∅ ○γ k1+k2
V(c1▵c2,∅),0 ○γ mV

I2
V
,0

according to the definition

of LV. By Lemma 5.31 (b) this can also be expressed as ξc1▵c2∅ ○ γ k1+k2
H2,0

○ γ k2
V(c2,∅),0 ,

which in turn is the same as ξc2∅ ○ γ k2
V(c2,∅),0 by Lemma 4.2 (c), i.e., as ξ

LV(c2)
∅ by the
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definition of LV. And that coincides with ξe∅ ○ γ k1+k2
W3,0

by Step 3.3 and thus with

ξe∅ ○ γ k1+k2
T4,0

by Step 3.2.
Step 3.4.8: Colors in area T4. As in the case of T3 the proof for the colors in T4

is identical to the one for the tags upon replacing ξ with ζ. And that concludes the
proof. □

5.2.4. Generating crosses for crossed co-products. Similar to the generating crosses
for graph co-products, “crossing” partitions implement the label-altering transposi-
tions allowed in a crossed co-product. However, closer attention is required to the
possible labelings of these crosses than in the graph co-product case. Nonetheless,
there is still a lot of flexibility when choosing generators.

Definition 5.38. A generating set of crosses for the Zw-crossed co-product with
respect to (U,O) is any subset R of U⊍{ℵ},OS such that for any z ∈ U⊍O there exist
{c′, c} ⊆ {○, ●} such that,

(a) if z ∈ U, then ((ℵ, c) ⊗ (πw(z + δc,●), c′), (πw(z + δc,○), c′) ⊗ (ℵ, c), ) ∈ R or
((πw(z + δc,○), c′)⊗ (ℵ, c), (ℵ, c)⊗ (πw(z + δc,●), c′), ) ∈R,

(b) if z ∈ O, then ((ℵ, c) ⊗ πw(z + δc,●), πw(z + δc,○) ⊗ (ℵ, c), ) ∈ R or (πw(z +
δc,○)⊗ (ℵ, c), (ℵ, c)⊗ πw(z + δc,●), ) ∈R,

where = {{◾1, ◾2},{◾2, ◾1}}.

Again, it is clear from the definition that any generating set of crosses for the
Zw-crossed co-product with respect to (U,O) is contained in X ⋊Zw.

Lemma 5.39. For any z ∈ Zw, if ⟨ ⋅ ⟩ denotes the generated category of
(a) ({ℵ, z},∅)-tagged labeled partitions, then

⟨
ℵ z

z+1 ℵ

⟩ = ⟨
ℵ z+1

z ℵ

⟩ = ⟨
ℵ z

z+1 ℵ

⟩ = ⟨
ℵ z+1

z ℵ

⟩

= ⟨
z+1 ℵ

ℵ z

⟩ = ⟨
z ℵ

ℵ z+1

⟩ = ⟨
z ℵ

ℵ z+1

⟩ = ⟨
z+1 ℵ

ℵ z

⟩ ,

(b) ({ℵ},{z})-tagged labeled partitions, then

⟨
ℵ z

z+1 ℵ

⟩ = ⟨
ℵ z+1

z ℵ

⟩ = ⟨
z+1 ℵ

ℵ z

⟩ = ⟨
z ℵ

ℵ z+1

⟩ ,

where everywhere, by an abuse of notation, z + 1 stands for πw(z + 1) (and thus, in
particular, actually for just z if w = 1).

Proof. The proofs of the parts (a) and (b) of Lemma 5.13 apply respectively.
□
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Lemma 5.40. For any generating set of crosses R for the Zw-crossed co-product
with respect to (U,O), any z ∈ U ⊍O and any {c′, c} ⊆ {○, ●},

(a) if z ∈ U, then ((ℵ, c)⊗(πw(z+δc,●), c′), (πw(z+δc,○), c′)⊗(ℵ, c), ) ∈ U⊍{ℵ},O⟨R⟩
and ((πw(z + δc,○), c′)⊗ (ℵ, c), (ℵ, c)⊗ (πw(z + δc,●), c′), ) ∈ U⊍{ℵ},O⟨R⟩,

(b) if z ∈ U, then ((ℵ, c)⊗ πw(z + δc,●), πw(z + δc,○)⊗ (ℵ, c), ) ∈ U⊍{ℵ},O⟨R⟩ and
(πw(z + δc,○)⊗ (ℵ, c), (ℵ, c)⊗ πw(z + δc,●), ) ∈ U⊍{ℵ},O⟨R⟩,

Proof. Follows immediately from the definitions and Lemma 5.39. □

5.2.5. From generating crosses to all partitions in crossed co-products. Capital-
izing on the results of Sections 5.2.3 and 5.2.4 we can now prove the main result of
Section 5.2.

Proposition 5.41. For any G1 ⊆ X generating X as a category of (U,O)-tagged
labeled partitions, any G2 ⊆ Zw generating Zw as a category of ({ℵ},∅)-tagged labeled
partitions and any set R of generating crosses for the Zw-crossed co-product with
respect to (U,O), the set G1 ∪G2 ∪R generates X ⋊Zw as a category of (U⊍{ℵ},O)-
tagged labeled partitions.

Proof. Abbreviate C ∶= U⊍{ℵ},O⟨G1∪G2∪R⟩. The proof is divided into two steps.
Step 1: Simplification. We justify that it is enough to prove ϕc ∈ C for any object c

of X ⋊Zw. Indeed, if so, then for any (c,d, p) ∈ X ⋊Zw since (c,d, p) = ϕdL(c,d, p)ϕ−1c
by Lemma 5.34 the conclusion (c,d, p) ∈ C is clear once we prove L(c,d, p) ∈ C.
But that is obvious since, by definition, L(c,d, p) = LU(c,d, p) ⊗ LV(c,d, p), where
LU(c,d, p) ∈ X = U,O⟨G1⟩ ⊆ U⊍{ℵ},O⟨G1⟩ ⊆ C and, likewise, LV(c,d, p) ∈ Zw = {ℵ},∅⟨G2⟩ ⊆
U⊍{ℵ},O⟨G2⟩ ⊆ C.

Step 2: Proof of the simplified claim. We show ϕc ∈ C for any object c of X ⋊Zw
by induction over the length of c.

Step 2.1: Base case: As the base for our induction step we will need to know that
the claim holds for at least the lengths zero, one and two. The only object of length
0 is ∅ and, obviously, the definitions ensure ϕ∅ = (∅,∅,∅) ∈ C. For any object c of
X ⋊ Zw of length 1, i.e., any c ∈ ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O, the pair (LU(c), LV(c))
is either (c,∅) or (∅, c). Then, necessarily, ϕ∅ = idc ∈ C by definition. The first
interesting case is that of length 2. For any c∶ ⟦2⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O, if
{z1, z2} ⊆ U⊍{ℵ}⊍O and {c1, c2} ⊆ {○, ●} are such that ξc∅(◾1) = z1 and ξc∅(◾2) = z2 and
such that, if z1 ∈ U⊍ {ℵ}, then ζc∅(◾1) = c1 and, if z2 ∈ U⊍ {ℵ}, then ζc∅(◾2) = c2, then
there are eight cases to distinguish. Abbreviate Y ∶= ξc∅←(U⊍O) and Z ∶= ξc∅←({ℵ}).

Case 2.1.1: If {z1, z2} ⊆ U ⊍O, then Y = Π2
0 and Z = ∅. Hence, the definitions

imply εc∅ = ξc∅ and thus LU(c) = c and LV(c) = ∅ and thus L(c) = c. Hence and since
γ k
Y,0 is then the identity on Π2

0 and γ k
Z,0 the empty map, ultimately, ϕc = (c, c, id2) =

idc. Hence, ϕc ∈ X ⊆ C in that case.
Case 2.1.2: Similarly, if z1 = z2 = ℵ, then Y = ∅ and Z = Π2

0. It follows tthat
LU(c) = ∅ and LV(c) = c and that γ k

Y,0 is the empty map and γ k
Z,0 the identity on

Π2
0. Therefore, L(c) = c and ϕc = (c, c, id2) = idc ∈ Zw ⊆ C.
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Case 2.1.3: In the situation that z1 ∈ U ⊍ O and z2 = ℵ, of course, Y = {◾1}
and Z = {◾2}. Moreover, then εc∅(◾1) = z1 by definition and thus LU(c) = c(1) and
LV(c) = c(2) and thus L = c. Furthermore, γ k

Y,0 is then the identity on {◾1} and γ k
Z,0

is defined by ◾1 ↦ ◾2. It follows that ϕc = (c, c, id1 ⊗ id1) = idc(1) ⊗ idc(2) = idc. In
conclusion, ϕc ∈ C also in this case.

Case 2.1.4: The final possibility is that z1 = ℵ and z2 ∈ U ⊍O, in which case,
Y = {◾2} and Z = {◾1}. Now, εc∅(◾2) = ξc∅(◾2) − ℵσc

∅(] ◾2, ◾1]20) = z2 − ℵσc
∅({◾1}) =

z2−σ(ζc∅(◾1)) = z2+σ(c1) and thus LU(c) = (πw(z2+σ(c1)), c2) if z2 ∈ U and LU(c) =
πw(z2+σ(c1)) if z2 ∈O as well as LV(c) = (ℵ, c1). Furthermore, γ k

Y,0 is then defined by
◾1↦ ◾2 and γ k

Z,0 is the identity on {◾1}, whence {{γ 2
Y,0(◾1), ◾1},{γ 2

Z,0(◾1), ◾(1 + 1)}} =
{{◾2, ◾1},{◾1, ◾2}} = . Thus, ϕc is (((ℵ, c1), (z2, c2)), ((πw(z2+σ(c1)), c2), (ℵ, c1)), )
if z2 ∈ U and (((ℵ, c1), z2), (πw(z2 + σ(c1)), (ℵ, c1)), ) if z2 ∈O.

Note that, if c ∶= c1 and z ∶= πw(z2 − δc1,●), then z ∈ Zw and z2 = πw(z + δc,●) and
πw(z2 + σ(c1)) = πw(z + δc,○) by σ(c1) = −δc,● + δc,○. Therefore, if c′ ∶= c2, then ϕc can
also be written as ((ℵ, c)⊗ (πw(z + δc,●), c′), (πw(z + δc,○), c′)⊗ (ℵ, c), ) ∈R if z ∈ U
and as ((ℵ, c)⊗πw(z + δc,●), πw(z + δc,○)⊗ (ℵ, c), ) ∈R if z ∈ U. Because G1 ∪G2 ∪R
includes the set of generating crosses R for the Zw-crossed product with respect to
(U,O) the category C thus contains ϕc by Lemma 5.40. Thus the claim holds for all
lengths less than or equal to 2.

Step 2.2: Induction step: Let now k ∈ N0 with 2 < k and c∶ ⟦k⟧ → ((U ⊍ {ℵ}) ⊗
{○, ●}) ⊍O be arbitrary. In two steps we show that ϕc ∈ C. The assumption 2 < k
will be crucial to the first one.

Step 2.2.1: First, we prove that there exists k1 ∈ N0 such that, first, k1 < k,
second, k2 ∶= k − k1 < k, and, third, if c1∶ ⟦k1⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍ O and
c2∶ ⟦k2⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O are such that c = c1▵c2 and if m1,2 ∶= α(ξc1∅ ←({ℵ}))
and m2,1 ∶= α(ξc2∅ ←(U ⊍O)), then m1,2 +m2,1 < k.

Indeed, if k′1 ∶= 1 and k′2 ∶= k − k′1, then both k′1 < k (for which assuming 2 ≤ k
would have sufficed) and k′2 < k. Moreover, let c′1∶ ⟦k′1⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O
and c′2∶ ⟦k′2⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O be the unique labelings with c = c′1 ▵ c′2 and let

m′
t,1 ∶= α(ξ

c′t
∅
←(U⊍O)) andm′

t,2 ∶= α(ξ
c′t
∅
←({ℵ})) for each t ∈ ⟦2⟧. Ifm′

1,2+m′
2,1 < k, then

k1 ∶= k′1 and k2 ∶= k′2 obviously satisfy all three requirements set out in the beginning.
Otherwise, we put k1 ∶= k′1 + 1 = 2 and k2 ∶= k′2 − 1 = k − 2. The assumption that 2 < k
then allows us to conclude that, still, k1 < k. (That is why we needed lengths zero,
one and two as the base for the induction.) Of course, k2 < k holds true as well.
What remains to be shown is that, if now c1∶ ⟦k1⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O and
c2∶ ⟦k2⟧→ ((U⊍{ℵ})⊗{○, ●})⊍O are such that c = c1▵c2 and if m1,2 ∶= α(ξc1∅ ←({ℵ}))
and m2,1 ∶= α(ξc2∅ ←(U ⊍O)), then m1,2 +m2,1 < k.

Because m′
1,2 ≤ k′1 and m′

2,1 ≤ k′2 and because k′1+k′2 = k, of course, m′
1,2+m′

2,1 ≤ k′1+
k′2 = k. Hence, the assumption that k ≤m′

1,2+m′
2,1 actually means that m′

1,2+m′
2,1 = k.

We conclude that m′
2,1 = k−m′

1,2 ≥ k−k′1 = k′2 and, likewise, m′
1,2 = k−m′

2,1 ≥ k−k′2 = k′1.
Because m′

t,1+m′
t,2 = k′t for each t ∈ ⟦2⟧, that only leaves the possibility that m′

1,2 = k′1
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and m′
2,1 = k′2 and m′

1,1 =m′
2,2 = 0. In other words, ξ

c′1
∅ is constant with value ℵ and ξ

c′2
∅

only takes values in U⊍O. Thus, on the one hand, ξc1∅ (◾i) = ξ
c′1
∅ (◾i) = ℵ for each i ∈ ⟦k′1⟧

and ξc1∅ (◾k1) = ξ
c′2
∅ (◾1) ∈ U⊍O and, hence, m1,2 = ∣ξc1∅ ←({ℵ})∣ = ∣ξ

c′1
∅
←({ℵ})∣ =m′

1,2. On

the other hand, ξc2∅ (◾i) = ξ
c′2
∅ (◾i + 1) ∈ U ⊍O for any i ∈ ⟦k2⟧ and ξ

c′1
∅ (◾1) ∈ U ⊍O and,

hence, m2,1 = ∣ξc1∅ ←(U ⊍O)∣ = ∣ξ
c′1
∅
←(U ⊍O)/{◾1}∣ = ∣ξc

′
1
∅
←(U ⊍O)∣ − ∣{◾1}∣ =m′

1,2 − 1. In
conclusion, m1,2 +m2,1 = m′

1,2 + (m′
2,1 − 1) = k − 1 < k, which is what we needed to

prove.
Step 2.2.2: Because k1 < k and k2 < k the induction hypothesis guarantees

{ϕc1 , ϕc2} ⊆ C. And the third property of k1 and k2, namely that the number
m1,2 +m2,1, the sum of the lengths of LV(c1) and LU(c2), is also less than k, lets us
apply the induction hypothesis one more time to infer that also ϕLV(c1)⊗LV(c2) ∈ C.
Consequently, L⊗,c1,c2 = idLU(c1) ⊗ ϕLV(c1)⊗LV(c2)

∗ ⊗ idLV(c2) is an element of C as well.
Because ϕc1⊗c2 = (ϕc1 ⊗ ϕc2)L⊗,c1,c2∗ by Lemma 5.36 that proves ϕc = ϕc1⊗c2 ∈ C,
concluding the induction step and thus the proof. □

5.3. Generators of wreath graph co-products. Naturally, the definitions
and results of Sections 5.1 and 5.2 in combination give us a statement about the
generators of wreath graph co-products.

Assumptions 5.42. In Section 5.3, let (w ∈ N0) be arbitrary, let r be any Zw-
invariant partial commutation relation on Zw, let C be any category of uncolored or
two-colored partitions, for each z ∈ Zw let Xz be given by C interpreted as tagged
with z and let (U,O) be (Zw,∅) if C is uncolored and (∅,Zw) if C is two-colored.

Proposition 5.43. For any GC ⊆ C generating C as a category of uncolored par-
tition if C is uncolored and as a category of two-colored partitions if C is two-colored,
any GZw ⊆ Zw generating Zw as a category of ({ℵ},∅)-tagged labeled partitions,
any set R∗r of generating crosses for the r-graph co-product with respect to (U,O)
and any set R⋊ of generating crosses for the Zw-crossed co-product with respect to
(U,O), if for each z ∈ Zw the set GXz is given by GC interpreted as tagged with z,
then ⋃z∈Zw

GXz ∪GZw ∪R∗r ∪R⋊ generates C ≀rZw as a category of (U⊍{ℵ},O)-tagged
labeled partitions.

Proof. Because GC generates C, for each z ∈ Zz the set GXz generates Xz as a
category of ({z},∅)-tagged labeled partitions if z ∈ U and as a category of (∅,{z})-
tagged labeled partitions if z ∈ O. Therefore, by Proposition 5.19 the set GX ∶=
⋃z∈Zw

GXz ∪R∗r generates C∗(Zw,r) = ∗rz∈Zw
Xz as a category of (U,O)-tagged labeled

partitions. By Proposition 5.41 it thus follows that a generator of C ≀rZw = C∗(Zw,r)⋊
Zw as a category of (U⊍{ℵ},O)-tagged labeled partitions is given by GX ∪GZw∪R⋊ =
⋃z∈Zw

GXz ∪ GZw ∪R∗r ∪R⋊. □
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6. Relating the products on the category and the quantum group level

The results of 5 now allow us to show that the easy CQG Hopf ∗-algebra asso-
ciated with the (graph, crossed, wreath graph) co-product category of a family of
input categories is isomorphic to the respective CQG Hopf ∗-algebra co-product of
the easy CQG Hopf ∗-algebras associated with the input categories.

6.1. Relating the graph co-products. For the graph co-product it is Propo-
sition 5.19 that enables us to make the connection.

Lemma 6.1. For any {z, z′} ⊆ U⊍O, any {c, c′} ⊆ {○, ●}, and any {N(z),N(z′)} ⊆
N, if p = ,

(a) if (z, z′) ∈ U⊗U and c = (z, c)⊗(z′, c′) and d = (z′, c′)⊗(z, c), then rcd(p)j,g =
(uz′j1,g2)c

′(uzj2,g1)c − (uzj2,g1)c(uz
′
j1,g2
)c′ for any g ∈ JNc and j ∈ JNd .

(b) if (z, z′) ∈ U ⊗ O and c = (z, c) ⊗ z′ and d = z′ ⊗ (z, c), then rcd(p)j,g =
uz

′
j1,g2
(uzj2,g1)c − (uzj2,g1)cuz

′
j1,g2

for any g ∈ JNc and j ∈ JNd .
(c) if (z, z′) ∈ O ⊗ U and c = z ⊗ (z′, c′) and d = (z′, c′) ⊗ z, then rcd(p)j,g =
(uz′j1,g2)c

′
uzj2,g1 − uzj2,g1(uz

′
j1,g2
)c′ for any g ∈ JNc and j ∈ JNd .

(d) if (z, z′) ∈ O ⊗O and c = z ⊗ z′ and d = z′ ⊗ z, then rcd(p)j,g = uz
′
j1,g2

uzj2,g1 −
uzj2,g1u

z′
j1,g2

for any g ∈ JNc and j ∈ JNd .

Proof. Immediate from the definitions. □

Proposition 6.2. Given any choice of tags (U,O), any partial commutation
relation r on U ⊍O, any category Xz of ({z},∅)-tagged labeled partitions for each
z ∈ U, any category Xz of (∅,{z})-tagged labeled partitions for each z ∈O, as well as
any dimension Nz ∈ N for each z ∈ U⊍O, if Hz is the CQG Hopf ∗-algebra associated
with ({z},∅,Xz,Nz) for each z ∈ U and the one associated with (∅,{z},Xz,Nz) for
each z ∈O and if H ′ is the CQG Hopf ∗-algebra associated with (U,O,∗rz∈U⊍OXz,N),
where N = (Nz)z∈U⊍O, if (ιz)z∈U⊍O are the associated co-projections of the graph co-
product CQG Hopf ∗-algebra ∗rz∈U⊍OHz of (Hz)z∈U⊍O with respect to r, then there
exists an isomorphism of CQG Hopf ∗-algebras from ∗rz∈U⊍OHz to H ′ such that for
any x ∈ U and any {ix, jx} ⊆ ⟦Nx⟧ and any y ∈O and any {iy, jy} ⊆ ⟦Ny⟧,

ιx(ujx,ix)↦ v
(x,○)
jx,ix

∧ ιy(ujy ,iy)↦ vyjy ,iy ,

where ujx,ix and v
(x,○)
jx,ix

are both short for ((x, ○), jx, ix), and where ujy ,iy and vyjy ,iy
are both short for (y, jy, iy). Moreover, this isomorphism is the unique ∗-algebra
morphism betwen the underlying ∗-algebras with the given property.

Proof. For any z ∈ U ⊍ O, by Proposition 3.40 we can identify Hz with the
underlying CQG Hopf ∗-algebra of the CMMQG ∗-algebra of profile Nz given by
(Az, uz) where Az is the universal ∗-algebra over {uj,i}Nz

i,j=1, where uj,i means (z, j, i)
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for any {i, j} ⊆ ⟦Nz⟧, subject to the relations

{rcd(p)j,g(uz) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (({z} ∩U)⊗ {○, ●}) ⊍ ({z} ∩O)
∧ d∶ ⟦ℓ⟧→ (({z} ∩U)⊗ {○, ●}) ⊍ ({z} ∩O)

∧ (c,d, p) ∈ Xz ∧ g ∈ ⟦Nz⟧⊗k ∧ j ∈ ⟦Nz⟧⊗ℓ}

and, if z ∈O, the relations {u∗j,i − uj,i ∣ {i, j} ⊆ ⟦Nz⟧}, and where uz = (uj,i)(j,i)∈⟦Nz⟧⊗2 .
If Rr is the maximal set of generating crosses for the r-graph co-product with

respect to (U,O), then Proposition 5.19 guarantees that Rr ∪ ⋃z∈U⊍OXz generates
∗rz∈U⊍OXz as a category of (U,O)-tagged labeled partitions. Hence, Proposition 3.40
lets us identity H ′ with the underlying CQG Hopf ∗-algebra of the CMMQG ∗-
algebra of profile N given by (A′, (vz)z∈U⊍O), where A′ is the universal ∗-algebra over
{(z, jz, iz) ∣ z ∈ U⊍O ∧ {iz, jz} ⊆ ⟦Nz⟧}, whose elements we write as vzjz ,iz = (z, jz, iz)
for any z ∈ U ⊍O and any {iz, jz} ⊆ ⟦Nz⟧, subject to the relations

{rcd(p)j,g((vz)z∈U⊍O) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈Rr ∪⋃z∈U⊍OXz
∧ g ∈ JNc ∧ j ∈ JNd }

and, additionally, the relations {(vyjy ,iy)∗ − v
y
jy ,iy
∣ {iy, jy} ⊆ ⟦Ny⟧ ∧ y ∈O}, and where

vz = (vzjz ,iz)(jz ,iz)∈⟦Nz⟧⊗2 for any z ∈ U ⊍O.
By Lemma 6.1 the set

{rcd(p)j,g((vz)z∈U⊍O) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈Rr
∧ g ∈ JNc ∧ j ∈ JNd }

is given by

⋃{{(vz1j1,i1)
c1(vz2j2,i2)

c2 − (vz2j2,i2)
c2(vz1j1,i1)

c1 ∣ (z1, z2) ∈ r ∩ (U⊗U) },
{ (vz1j1,i1)

c1vz2j2,i2 − v
z2
j2,i2
(vz1j1,i1)

c1 ∣ (z1, z2) ∈ r ∩ (U⊗O) },
{ vz1j1,i1(v

z2
j2,i2
)c2 − (vz2j2,i2)

c2vz1j1,i1 ∣ (z1, z2) ∈ r ∩ (O⊗U) },
{ vz1j1,i1v

z2
j2,i2

− vz2j2,i2v
z1
j1,i1

∣ (z1, z2) ∈ r ∩ (O⊗O)}
∣ {i1, j1} ⊆ ⟦Nz1⟧ ∧ {i2, j2} ⊆ ⟦Nz2⟧ ∧ {c1, c2} ⊆ {○, ●}}.

If in the free algebra over {vzjz ,iz ∣ z ∈ U ⊍ O ∧ {iz, jz} ⊆ ⟦Nz⟧} for any z ∈ U ⊍ O

the ∗-subalgebra generated by {vzj,i}Nz
i,j=1 is denoted by A′

z, then the above set, the
relations induced by Rr, generates the same ∗-ideal as the set

{a1a2 − a2a1 ∣a1 ∈ A′
z1 ∧ a2 ∈ A′

z2 ∧ (z1, z2) ∈ r}.

In the light of Definition 2.22 that proves the claim. □
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6.2. Relating the crossed co-products. In the case of the crossed co-product
the link between the category and the CQG Hopf ∗-algebra level is established by
Proposition 5.41. However, first, it is important to note that the easy CQG Hopf ∗-
algebras associated with the category Zw is actually the group CQG Hopf ∗-algebra
of Zw for eadch w ∈ N0.

Lemma 6.3. For any w ∈ N0 the category Zw is generated as a category of two-
colored partitions by the set { } if w = 0 and by { , ⊗w} if 1 ≤ w.

Proof. Because ⟨ ⟩ = ⟨ ⟩ the case w = 0 of the claim is shown in [MW20,
Proposition 7.3 (a)] where Z0 is referred to as S1. For 1 ≤ w a proof can be found in
[TW18, Theorem 8.3] since Zw is the same category as Bgrp,loc(w) there and since
⊗ ∈ ⟨ ⊗w⟩. □

For the next lemma to make sense, recall that C is a zero element in the category
of CQG Hopf ∗-algebras.

Lemma 6.4. For any w ∈ N0, if Zw is the easy CQG Hopf ∗-algebra associated
with ({ℵ},∅,Zw,1), then there exists an isomorphism of CQG Hopf ∗-algebras from
Zw to C[Zw] such that, if w ≠ 1, then

ℵ↦ ℵ,
where the left ℵ is short for ((ℵ, ○),1,1) and where the right ℵ is the basis vector
of the free vector space over Zw belonging to the group element 1. Moreover, this
isomorphism is the unique ∗-algebra morphism between the underlying ∗-algebras
with the given property.

Proof. Let ⊗0 ∶= ∅ denote the empty partition. By Proposition 3.40 we can
identify Zw with the underlying CQG Hopf ∗-algebra of the CMMQG ∗-algebra of
profile 1 given by (A,ℵ), where A is the universal ∗-algebra over {ℵ} subject to the
relations

{rcd(p)j,g(ℵ) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ {ℵ}⊗ {○, ●} ∧ d∶ ⟦ℓ⟧→ {ℵ}⊗ {○, ●}
∧ (c,d, p) ∈ { , , , , ⊗w} ∧ g ∈ ⟦1⟧⊗k ∧ j ∈ ⟦1⟧⊗ℓ}.

By definition, this set is the same as

{ℵℵ∗ − 1,ℵ∗ℵ − 1,1 − ℵℵ∗,1 − ℵ∗ℵ,ℵw − 1},
which now proves the claim. □

Lemma 6.5. For any w ∈ N0 and any n ∈ N, if the dimension profile N is such
that N(z) = n for any z ∈ Zw and N(ℵ) = 1, if p = , if ℵ is short for (ℵ,1,1), if
uzj,i is short for (z, j, i) for any {i, j} ⊆ ⟦n⟧ and any z ∈ Zw, then for any z ∈ Zw and
any {c, c′} ⊆ {○, ●},

(a) if z ∈ U and c = (ℵ, c) ⊗ (πw(z + δc,●), c′) and d = (πw(z + δc,○), c′) ⊗ (ℵ, c),
then rcd(p)j,g = (u

πw(z+δc,○)
j1,g2

)c′ℵc − ℵc(uπw(z+δc,●)j1,g2
)c′ for any g ∈ JNc and j ∈ JNd .
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(b) if z ∈ U and c = (πw(z + δc,○), c′) ⊗ (ℵ, c) and d = (ℵ, c) ⊗ (πw(z + δc,●), c′),
then rcd(p)j,g = ℵc(u

πw(z+δc,●)
j2,g1

)c′ − (uπw(z+δc,○)j2,g1
)c′ℵc for any g ∈ JNc and j ∈ JNd .

(c) if z ∈ O and c = (ℵ, c) ⊗ πw(z + δc,●) and d = πw(z + δc,○) ⊗ (ℵ, c), then

rcd(p)j,g = u
πw(z+δc,○)
j1,g2

ℵc − ℵcuπw(z+δc,●)j1,g2
for any g ∈ JNc and j ∈ JNd .

(d) if z ∈ O and c = πw(z + δc,○) ⊗ (ℵ, c) and d = (ℵ, c) ⊗ πw(z + δc,●), then

rcd(p)j,g = ℵcu
πw(z+δc,●)
j2,g1

− uπw(z+δc,○)j2,g1
ℵc for any g ∈ JNc and j ∈ JNd .

Proof. Immediate from the definitions. □

Again, in the next proposition, remember that C is the zero object of the category
of CQG Hopf ∗-algebras.

Proposition 6.6. For any w ∈ N0 and any n ∈ N, if (U,O) is either (Zw,∅)
or (∅,Zw), if V is the action of Zw on (U⊗ {○, ●}) ⊍O, then for any Zw-invariant
category X of (U,O)-tagged labeled partitions, if H is the CQG Hopf ∗-algebra asso-
ciated with (U,O,X , (n)z∈Zw), if α is the group homomorphism from Zw to the group
of CQG Hopf ∗-algebra automorphisms of H such that αz is given by the unique ∗-
algebra endomorphism of the underlying ∗-algebra of H with ucj,i ↦ uVz○cj,i for any
k ∈ N0, any c∶ ⟦k⟧ → (U⊗ {○, ●}) ⊍O, any {i, j} ⊆ ⟦n⟧ and any z ∈ Zw, and if H ′ is
the CQG Hopf ∗-algebra associated with (U ⊍ {ℵ},O,X ⋊Zw,N), where the dimen-
sion profile N is such that Nz = n for any z ∈ Zw and Nℵ = 1, if (ιH , ιZw) are the
associated co-projections of the crossed co-product CQG Hopf ∗-algebra H ⋊αC[Zw]
of H and C[Zw] with respect to α, then there exists an isomorphism of CQG Hopf
∗-algebras from H ⋊α C[Zw] to H ′ such that for any x ∈ U, any y ∈ O and any
{i, j} ⊆ ⟦n⟧,

ιH(u(x,○)j,i )↦ v
(x,○)
j,i ∧ ιH(uyj,i)↦ vyj,i ∧ (w ≠ 1 ⇒ ιZw(1)↦ vℵ1,1),

where u
(x,○)
j,i and v

(x,○)
j,i are both short for ((x, ○), j, i), where uyj,i and v

y
j,i are both short

for (y, j, i), where 1 is the basis vector of the free vector space over Zw belonging to
the group element 1, and where vℵ1,1 is short for (ℵ,1,1). Moreover, this isomorphism
is the unique ∗-algebra morphism betwen the underlying ∗-algebras with the given
property.

Proof. By Proposition 3.40 we can identify H with the underlying CQG Hopf
∗-algebra of the CMMQG ∗-algebra of profile (n)z∈Zw given by (A, (uz)z∈Zw) where
A is the universal ∗-algebra over {uzj,i ∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧}, where uzj,i means (z, j, i)
for any {i, j} ⊆ ⟦n⟧ and z ∈ Zw, subject to the relations

{rcd(p)j,g((uz)z∈Zw) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (U⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ (U⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈ X
∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ}

and, additionally, the relations {(uyj,i)∗ − u
y
j,i ∣ {i, j} ⊆ ⟦n⟧ ∧ y ∈ O}, and where uz =

(uzj,i)(j,i)∈⟦n⟧⊗2 for any z ∈ Zw.
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If Rw is the union of all sets of generating crosses for the Zw-crossed co-pro-
duct with respect to (U,O), then X ∪ Zw ∪Rw generates X ⋊ Zw as a category of
(U ⊍ {ℵ},O)-tagged labeled partitions by Proposition 5.41. By applying Proposi-
tion 3.40 a second time we can thus identify H ′ with the underlying CQG Hopf ∗-
algebra of the CMMQG ∗-algebra of profile N given by (A′, (vz)z∈Zw⊍{ℵ}), where A′

is the universal ∗-algebra over {(z, j, i) ∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧} ⊍ {(ℵ,1,1)}, whose
elements we write as vzj,i = (z, j, i) for any z ∈ Zw and any {i, j} ⊆ ⟦n⟧ and as
vℵ1,1 = (ℵ,1,1), subject to the relations

{rcd(p)j,g((vz)z∈Zw⊍{ℵ}) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ (c,d, p) ∈ X ∪Zw ∪Rw ∧ g ∈ JNc ∧ j ∈ JNd }
and, additionally, the relations {(vyj,i)∗ − v

y
j,i ∣ {i, j} ⊆ ⟦n⟧ ∧ y ∈ O}, and where vz =

(vzj,i)(j,i)∈⟦n⟧⊗2 for any z ∈ Zw and vℵ = vℵ1,1.
According to Lemma 6.5 another way of writing the set

{rcd(p)j,g((vz)z∈Zw⊍{ℵ}) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈Rw
∧ g ∈ JNc ∧ j ∈ JNd }

is the following:

⋃{{(vπw(z+δc,○)j,i )c′(vℵ1,1)c − (vℵ1,1)c(v
πw(z+δc,●)
j,i )c′ ,

(vℵ1,1)c(v
πw(z+δc,●)
j,i )c′ − (vπw(z+δc,○)j,i )c′(vℵ1,1)c ∣ z ∈ U},

{ v
πw(z+δc,○)
j,i (vℵ1,1)c − (vℵ1,1)cv

πw(z+δc,●)
j,i ,

(vℵ1,1)cv
πw(z+δc,●)
j,i − vπw(z+δc,○)j,i (vℵ1,1)c ∣ z ∈O}

∣ z ∈ Zw ∧ {c, c′} ⊆ {○, ●} ∧ {i, j} ⊆ ⟦n⟧}.
Simplified, if (U,O) = (Zw,∅), then this set is the same as the relations

{±(vℵ1,1(vzj,i)c
′ − (vπw(z+1)j,i )c′vℵ1,1),±((vℵ1,1)∗(vzj,i)c

′ − (vπw(z−1)j,i )c′(vℵ1,1)∗)
∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧ ∧ c′ ∈ {○, ●}}

and, if (U,O) = (∅,Zw), then this set is the same as

{±(vℵ1,1vzj,i − v
πw(z+1)
j,i vℵ1,1),±((vℵ1,1)∗vzj,i − v

πw(z−1)
j,i (vℵ1,1)∗),

∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧}
If in the free algebra over {vzj,i ∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧} ⊍ {vℵ1,1} the ∗-subalgebra

generated by {vzj,i ∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧} is denoted by A′, then the above set, the
relations induced by Rw, generates the same ∗-ideal as the set

{vℵ1,1a − α1(a)vℵ1,1, (vℵ1,1)∗a − αw−1(a)(vℵ1,1)∗ ∣a ∈ A′}.
By Definition 2.24 and Lemma 6.4 that is what we needed to see. □
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6.3. Relating the wreath graph co-products. Combining the results of Sec-
tions 6.1 and 6.2 then yields the following characterization of the easy quantum group
associated with the a wreath graph co-product category.

Proposition 6.7. For any w ∈ N0, any n ∈ N, any category C of either two-
colored or uncolored partitions, seen as singly tagged with ℶ, for any Zw-invariant
partial commutation relation r on Zw, if H is the easy CQG Hopf ∗-algebra associ-
ated with ({ℶ},∅,C, n) if C is two-colored and with (∅,{ℶ},C, n) if C is uncolored, if
(ιz)z∈Zw⊍{ℵ} are the co-projections associated with the wreath graph co-product CQG
Hopf ∗-algebra of H and C[Zw] with respect to r, if (U,O) is given by (Zw,∅) if C
is two-colored and by (∅,Zw) if C is uncolored, if the dimension profile N is such
that Nz = n for any z ∈ Zw and Nℵ = 1, if H ′ is the easy CQG Hopf ∗-algebra
associated with (U ⊍ {ℵ},O,C ≀r Zw,N), then there exists an isomorphism of CQG
Hopf ∗-algebras from H ≀r C[Zw] to H ′ such that for any x ∈ U, any y ∈ O and any
{i, j} ⊆ ⟦n⟧,

ιx(u(ℶ,○)j,i )↦ v
(x,○)
j,i ∧ ιy(uℶj,i)↦ vyj,i ∧ ιℵ(1)↦ vℵ1,1,

where u
(ℶ,○)
j,i is short for ((ℶ, ○), j, i) and uℶj,i short for (ℶ, j, i), where v

(x,○)
j,i is short

for ((x, ○), j, i) and vyj,i short for (y, j, i), where 1 is the basis vector of the free vector
space over the set Zw belonging to the group element 1, and where vℵ1,1 is short for
((ℵ, ○),1,1). Moreover, this isomorphism is the unique ∗-algebra morphism betwen
the underlying ∗-algebras with the given property.

Proof. By Proposition 3.40 we can identify H with the underlying CQG Hopf
∗-algebra of the CMMQG ∗-algebra of profile n given by (A,uℶ) where A is the
universal ∗-algebra over {uℶj,i ∣ {i, j} ⊆ ⟦n⟧}, where uℶj,i means (ℶ, j, i) for any {i, j} ⊆
⟦n⟧, subject to the relations

{rcd(p)j,g(uℶ) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ (({ℶ} ∩U)⊗ {○, ●}) ⊍ ({ℶ} ∩O)
∧ d∶ ⟦ℓ⟧→ (({ℶ} ∩U)⊗ {○, ●}) ⊍ ({ℶ} ∩O) ∧ (c,d, p) ∈ C

∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ}

and, if ℶ ∈ O, additionally, the relations {(uℶj,i)∗ − uℶj,i ∣ {i, j} ⊆ ⟦n⟧}, and where
uℶ = (uℶj,i)(j,i)∈⟦n⟧⊗2 .

If R∗r is the largest generating set of crosses for the r-graph product with respect
to (U,O) and if R⋊ is the largest generating set of crosses for the Zw-crossed product
with respect to (U,O), if Xz is given by C, but singly tagged with z, for any z ∈ Zw.
then (⋃z∈Zw

Xz)∪Zw∪R∗r ∪R⋊ generates C ≀rZw as a category of (U⊍{ℵ},O)-tagged
labeled partitions by Proposition 5.43. Hence, Proposition 3.40 lets us identitfy H ′

with the underlying CQG Hopf ∗-algebra of the CMMQG ∗-algebra of profile N
given by (A′, (vz)z∈Zw⊍{ℵ}), where A′ is the universal ∗-algebra over {(z, j, i) ∣ z ∈
Zw ∧ {i, j} ⊆ ⟦n⟧} ⊍ {(ℵ,1,1)}, whose elements we write as vzj,i = (z, j, i) for any
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z ∈ Zw and any {i, j} ⊆ ⟦n⟧ and as vℵ1,1 = (ℵ,1,1), subject to the relations

{rcd(p)j,g((vz)z∈Zw⊍{ℵ}) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ (c,d, p) ∈ (⋃z∈Zw
Xz) ∪Zw ∪R∗r ∪R⋊

∧ g ∈ JNc ∧ j ∈ JNd }
and, if C is uncolored, additionally, the relations {(vzj,i)∗ −vzj,i ∣ {i, j} ⊆ ⟦n⟧ ∧ z ∈ Zw},
and where vz = (vzj,i)(j,i)∈⟦n⟧⊗2 for any z ∈ Zw and vℵ = vℵ1,1.

By Lemma 6.1 the set

{rcd(p)j,g((vz)z∈Zw⊍{ℵ}) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈R∗r

∧ g ∈ JNc ∧ j ∈ JNd },
if C is two-colored, is given by

{(vz1j1,i1)
c1(vz2j2,i2)

c2 − (vz2j2,i2)
c2(vz1j1,i1)

c1

∣ (z1, z2) ∈ r ∧ {i1, i2, j1, j2} ⊆ ⟦n⟧ ∧ {c1, c2} ⊆ {○, ●}},
and, if C is uncolored, by

{vz1j1,i1v
z2
j2,i2

− vz2j2,i2v
z1
j1,i1
∣ (z1, z2) ∈ r ∧ {i1, i2, j1, j2} ⊆ ⟦n⟧}.

Furthermore, according to Lemma 6.5 the relations

{rcd(p)j,g((vz)z∈Zw⊍{ℵ}) ∣ {k, ℓ} ⊆ N0 ∧ c∶ ⟦k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O

∧ d∶ ⟦ℓ⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O ∧ (c,d, p) ∈R⋊

∧ g ∈ JNc ∧ j ∈ JNd },
if C is two-colored, are the same as

{±(vℵ1,1(vzj,i)c
′ − (vπw(z+1)j,i )c′vℵ1,1),±((vℵ1,1)∗(vzj,i)c

′ − (vπw(z−1)j,i )c′(vℵ1,1)∗)
∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧ ∧ c′ ∈ {○, ●}},

and, if C is uncolored, the same as

{±(vℵ1,1vzj,i − v
πw(z+1)
j,i vℵ1,1),±((vℵ1,1)∗vzj,i − v

πw(z−1)
j,i (vℵ1,1)∗),

∣ z ∈ Zw ∧ {i, j} ⊆ ⟦n⟧}.
Thus, a comparison with Definition 2.26 and Lemma 6.4 proves the claim. □

7. The partitions of the orthogonal and unitary half-liberations

Section 7 recalls the definitions of the categories of un- and two-colored partitions
inducing the representation theories of the orthogonal respectively unitary half-
liberations. In the latter case, a new formulation of those definitions is given.
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7.1. The partitions of the orthogonal half-liberations. The original case
of labeled partitions considered already by Brauer in the group case [Bra37] and
famously by Banica and Speicher for quantum groups [BS09] is the “orthogonal”
one, where there is only one tag and no colors.

Assumption 7.1. In Section 7.1, our choice of tags will be (U,O) = (∅,{z}),
where z can be arbitrary (but fixed in the following).

Notation 7.2. Because U ⊍O consists of only a single orthogonal tag, actually,
the only information retained by labels is their lengths. However, those can already
be recovererd from the partition itself. Hence, in Section 7.1 labels, both tags and
colors, will be omitted altogether. A labeled partition is then only an ordinary, set-
theoretical partition. Instead of (U,O)-tagged labeled partitions we simply speak
of partitions.

In the orthogonal case, there are only three “half-liberations”, as shown by Banica
and Speicher [BS09].

Definition 7.3. (a) Let O be the set of all partitions p such that ∣B∣ = 2
for any B ∈ p.

(b) Let O∗ be the set of all partitions p for which there exist {k, ℓ} ⊆ N0

such that p is a set-theoretical partition of Πk
ℓ and such that ∣B∣ = 2 and

∣]b,b′[kℓ ∣ ≡2 0 for any {b,b′} ⊆ B with b ≠ b′ and any B ∈ p.
(c) Let O+ be the set of all partitions p for which there exist {k, ℓ} ⊆ N0 such

that p is a set-theoretical partition of Πk
ℓ , such that ∣B∣ = 2 for any B ∈ p

and such that B1×k
ℓ B2 for any {B1,B2} ⊆ p with B1 ≠ B2.

Proposition 7.4. (a) O, O∗ and O+ are categories of partitions.
(b) Those three are the only categories C of partitions with O+ ⊆ C ⊆ O.
(c) O+ ⊊ O∗ ⊊ O.
(d) O+ = ⟨∅⟩ and O∗ = ⟨ ⟩ and O = ⟨ ⟩.

Definition 7.5. Any partition p has no odd blocks if ∣B∣ ≡2 0 for any B ∈ p.
The following is well-known (compare also [TW18, Lemma 1.1 (c)]).

Proposition 7.6. Any category of partitions consisting only of partitions which
have no odd blocks is ⊗-elbats. In particular, so are O, O∗ and O+.

Proof. For each t ∈ ⟦2⟧, if {kt, ℓt} ⊆ N0 and if pt is any set-theoretical partition
of Πkt

ℓt
with even blocks, then kt + ℓt = ∑B∈pt ∣B∣ ≡2 0. For that reason, if q1 ∶= p1⤹k1

and q2 ∶= p2⤸k2 , then (q1 ⊗ q2, idk1+ℓ1 ⊗ ev(k2+ℓ2)/2) and (q1 ⊗ q2, ev(k1+ℓ1)/2 ⊗ idk2+ℓ2)
are well-defined composable pairings. Because the compositions of those pairings
are precisely q1 and q2, respectively, that proves {q1, q2} ⊆ ⟨q1 ⊗ q2⟩. Since p1 = q1¹k1
and p2 = q2Ák2 and since q1 ⊗ q2 = ((p1 ⊗ p2)⤹k1)⤸k2 we have thus shown {p1, p2} ⊆
⟨p1 ⊗ p2⟩. □

By Proposition 4.35 it follows that for such categories there is no difference be-
tween big and little graph power or wreath graph power categories.
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Definition 7.7. For any n ∈ N we call the easy algebraic compact quantum
group asssociated with

(a) (O, n) the orthogonal group On

(b) (O∗, n) the half-liberated orthogonal quantum group O∗
n

(c) (O+, n) the fre orthogonal quantum group O+
n

in dimension n.

7.2. The partitions of the unitary half-liberations. We recall the defini-
tion of the categories inducing the representations of the unitary half-liberations in
the sense of [MW20] and [MW21a]. Moreover, it is convenient to give a reformulation
of their definitions in terms of reindexed restrictions.

Assumption 7.8. In Section 7.2, our choice of tags will be (U,O) = ({z},∅),
where z can be arbitrary (but fixed in the following).

Notation 7.9. Since the tag set U ⊍O is a singleton, tags will be omitted from
the notation altogether in Section 7.2. Instead of (U,O)-tagged labeled partitions
we simply speak of two-colored partitions.

The two extreme unitary half-liberations are well-known.

Definition 7.10. (a) Let U be the set of all (c,d, p) ∈ S with ∣B∣ = 2 and
σc
d(B) = 0 for any B ∈ p.

(b) Let U+ be the set of all (c,d, p) ∈ S for which there exist {k, ℓ} ⊆ N0 with
c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●} such that ∣B∣ = 2 and σc

d(B) = 0 for any
B ∈ p and such that B1×k

ℓ B2 for any {B1,B2} ⊆ p with B1 ≠ B2.

Of course, they correspond respectively to the classical unitary groups (Un)n∈N
and Wang’s [Wan95a] free unitary quantum groups (U+

n )n∈N.

Definition 7.11. (a) For any w ∈ N let U∗w be the set of all (c,d, p) ∈ S
such that ∣B∣ = 2 and σc

d(B) = 0 and δcd(b,b′) ≡w 0 for any B ∈ p and any
{b,b′} ⊆ B.

(b) For any additive subsemigroup D of N let U×D be the set of all (c,d, p) ∈ S
for which there exist {k, ℓ} ⊆ N0 with c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}
such that ∣B∣ = 2 and σc

d(B) = 0 and δcd(b,b′) = 0 for any B ∈ p and any
{b,b′} ⊆ B, and such that for any {B1,B2} ⊆ p with B1 ≠ B2, whenever there
exist b1 ∈ B1 and b2 ∈ B2 with ∣δcd(b1,b2)∣ ∈D, then B1×k

ℓ B2.
(c) For any additive subsemigroup D of N let U×+D be the set of all (c,d, p) ∈ S

for which there exist {k, ℓ} ⊆ N0 with c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}
such that ∣B∣ = 2 and σc

d(B) = 0 and δcd(b,b′) = 0 for any B ∈ p and any
{b,b′} ⊆ B, and such that for any {B1,B2} ⊆ p with B1 ≠ B2, whenever there
exist b1 ∈ B1 and b2 ∈ B2 with ∣δcd(b1,b2)∣ ∈D ⊍ {0}, then B1×k

ℓ B2.

The sets U∗w for w ∈ N were denoted by Sw in [MW20] and [MW21a]. And for
any subsemigroup D of (N,+) the sets U×D and U×+D were called ID and ID⊍{0},
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respectively. In contrast to [MW20] and [MW21a], the category I0 there is not
addressed as “U∗0 ” here, only as U×∅.

The following was shown in [MW20] and [MW21a].

Proposition 7.12. (a) U∗w, U×D and U×+D are categories of two-colored parti-
tions for any w ∈ N and any additive subsemigroup D of N.

(b) For any category C of two-colored partitions with U+ ⊆ C ⊆ U there exists
w ∈ N such that C = U∗w or an additive subsemigroup D of N such that C = U×D
or C = U×+D .

(c) For any w ∈ N and any additive subsemigroup D of N:

U×N U×D U×∅ U∗w U∗1 U

U+ U×+N U×+D U×+∅

⊂ ⊂ ⊂ ⊂ =

= ⊂ ⊂

⊂ ⊂ ⊂

Moreover, all these inclusions are strict if w ≠ 1 and D ∉ {∅,N}.
(d) If Br●(∅) ∶= (∅,∅,∅) and if for any finite e ⊆ N with e ≠ ∅ the partition

max(e) j ∈ e i ∉ e 0

. . . . . . . . .

. . . . . . . . .

. . .. . .. . .

. . .. . .. . .

is denoted by Br●(e), then for any w ∈ N and any additive subsemigroup D
of N,

U∗w = ⟨
⊗w ⟩,

U×D = {
⟨Br●(⟦k⟧/D), ∣k ∈ N/D⟩ if ∣N/D∣ =∞
⟨Br●(N/D), ⟩ otherwise

,

U×+D = {
⟨Br●(⟦k⟧/D) ∣k ∈ N/D⟩ if ∣N/D∣ =∞
⟨Br●(N/D)⟩ otherwise

.

The reformulation of the definitions of these categories developed below (see Pro-
position 7.19) motivates all the results in this chapter.

By Lemma 3.10 the following definitions make sense.

Definition 7.13. Let w ∈ N0 and let {k, ℓ} ⊆ N0 and c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→
{○, ●} be such that Σc

d ≡w 0.
(a) We call the set-theoretical partition w∆c

d of Πk
ℓ associated with the equiv-

alence relation which for any {b,b′} ⊆ Πk
ℓ calls b and b′ equivalent if and
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only if δcd(b,b′) ≡w 0 the w-parts for k upper c-colored and ℓ lower d-colored
points.

(b) For any {S1,S2} ⊆ w∆c
d we write wδcd(S1,S2) ∶= δcd(b1,b2), where b1 ∈ S1 and

b2 ∈ S2 can be arbitrary.

As the next proposition shows, with respect to a pair of labelings with vanishing
total color sum, any part also has color sum zero.

Proposition 7.14. For any w ∈ N0, any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧→ {○, ●} and
d∶ ⟦ℓ⟧→ {○, ●}, if Σc

d = 0, then σc
d(S) = 0 for any S ∈ w∆c

d.

Proof. The proof goes by induction over k + ℓ. It is vacuously true for k + ℓ = 0
because then w∆c

d = ∅. For general 0 < k + ℓ we are going to construct {m,n} ⊆ N0

and a∶ ⟦m⟧ → {○, ●} and b∶ ⟦n⟧ → {○, ●} with m + n < k + ℓ and Σa
b = 0 as well as

R ∈ w∆a
b ⊍ {∅} with σa

b(R) = σc
d(S). In the case that R = ∅ the claim will then

be trivially true. And, in the alternative case it will then follow immediately by
applying the induction hypothesis to a, b and R.

Step 1: Definition of a, b and R. More precisely, we are going to define a proper
subset M of Πk

ℓ and then let m ∶= α(M) and n ∶= β(M) and a ∶= (c ◾◾d) ○ η k
M,ℓ and

b ∶= (c ◾◾d) ○ θ k
M,ℓ and R = γ k

M,ℓ
←(S). Actually, M is going to be the complement of a

set T ⊆ Πk
ℓ with ∣T∣ = 2 and σc

d(T) = 0 which is convex with respect to Γkℓ .
Such a set T exists because Σc

d = 0. Indeed, if {t ∈ Πk
ℓ ∧ ζcd(νkℓ (t)) ≠ ζcd(t)}

was empty, it would inductively follow ζcd(a) = ζcd(b) for any {a,b} ⊆ Πk
ℓ and thus

Σc
d = ∑a∈Πk

ℓ
σ(ζcd(a)) = ε ⋅ (k + ℓ) ≠ 0 for some ε ∈ {−1,1}. If t ∈ Πk

ℓ is such that

ζcd(νkℓ (t)) ≠ ζcd(t), then the two-elemental set T ∶= {t, νkℓ (t)} is convex with respect
to Γkℓ and satisfies σc

d(T) = σ(ζcd(t)) + σ(ζcd(νkℓ (t))) = 0.
Step 2: Verifying the asserted properties of a, b and R. It remains to prove that

Σa
b = 0 and R ∈ w∆a

b ⊍ {∅} and σa
b(R) = σc

d(S).
Step 2.1: Proving Σa

b = 0. The definition ζab = ζcd ○ γ k
M,ℓ allows us to compute

Σa
b = σa

b(Πm
n )

= ∑z∈Πm
n
σ(ζab(z))

= ∑z∈Πm
n
σ(ζcd(γ k

M,ℓ (z)))
= ∑e∈M σ(ζcd(e))
= σc

d(M)
= σc

d(Πk
ℓ ) − σc

d(T)

and because σc
d(Πk

ℓ ) = Σc
d = 0 by assumption and σc

d(T) = 0 by construction.
Step 2.2: Proving σa

b(R) = σc
d(S). Since ]t, νkℓ (t)[kℓ= ∅, by definition, δcd(t, νkℓ (t)) =

1
2σ

c
d({t, νkℓ (t)}) + σc

d(]t, νkℓ (t)[kℓ ) = 1
2σ

c
d(T) = 0. In other words, t and νkℓ (t) belong

to the same w-part. Consequently, either T ⊆ S or T ∩ S = ∅ because w∆c
d is a
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set-theoretical partition of Πk
ℓ . Furthermore, we conclude from ζab = ζcd ○ γ k

M,ℓ that

σa
b(R) = ∑z∈R σ(ζab(z))

= ∑z∈R σ(ζcd(γ k
M,ℓ (z)))

= ∑e∈S∩M σ(ζcd(e))
= σc

d(S ∩M)
= σc

d(S/T),

which is σc
d(S) if T ∩ S = ∅ and σc

d(S) − σc
d(T) if T ⊆ S and thus by σc

d(T) = 0,
ultimately, σc

d(S) in any case.
Step 2.3: Proving R ∈ w∆a

b⊍{∅}. If S ⊆ T, then R = γ k
M,ℓ
←(S) ≠ ∅ and the proof is

complete. Hence, we can assume S /⊆ T, i.e., S∩M ≠ ∅. Because then R ∈ R(w∆c
d,M)

it suffices to show that, actually, w∆a
b = R(w∆c

d,M). That is the same as proving for
any {x,y} ⊆ Πm

n that δab(x,y) ≡w 0 if and only if δcd(γ k
M,ℓ (x), γ k

M,ℓ (y)) ≡w 0. This is

certainly true if for any {x,y} ⊆ Πm
n already δab(x,y) = δcd(γ k

M,ℓ (x), γ k
M,ℓ (y)), which

we now show.
For x = y this is clear. If x ≠ y and a ∶= γ k

M,ℓ (x) and b ∶= γ k
M,ℓ (y), then also a ≠ b

because γ k
M,ℓ is injective. Since γ k

M,ℓ is also cyclically monotonic with respect to Γmn
and Γkℓ , moreover, γ k

M,ℓ →(]x,y[mn ) = ]a,b[kℓ ∩M. Because {a,b} ∩T = ∅ and because

T is convex, either T ∩ ]a,b[kℓ = ∅ or T ⊆ ]a,b[kℓ . In conclusion, σc
d(]a,b[kℓ ∩M) is

given by σc
d(]a,b[kℓ ) in the former case, by σc

d(]a,b[kℓ ) − σc
d(T) in the latter case and

by virtue of σc
d(T) = 0 thus by σc

d(]a,b[kℓ ) in any case.
Hence, the definition ζab = ζcd ○ γ k

M,ℓ implies first

σa
b(]x,y[mn ) = ∑z∈]x,y[mn σ(ζab(z))

= ∑z∈]x,y[mn σ(ζcd(γ k
M,ℓ (z)))

= ∑e∈]a,b[k
ℓ
∩M σ(ζcd(e))

= σc
d(]a,b[kℓ ∩M)

= σc
d(]a,b[kℓ )

and σa
b({x}) = σc

d({a}) and σa
b({y}) = σc

d({b}), and thus

δab(x,y) = 1
2σ

a
b({x}) + σa

b(]x,y[mn ) + 1
2σ

a
b({y})

= 1
2σ

c
d({a}) + σc

d(]a,b[kℓ ) + 1
2σ

c
d({b})

= δcd(a,b).

And that is all we needed to see. □

Next, we prove that the points of any 0-part alternate in normalized color and
that any two subsequent points of distinct 0-parts have identical normalized colors.
The proof of this will require the following discrete intermediate value theorem.
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Lemma 7.15. For any {a, b} ⊆ Z with a < b and any f ∶ {i ∈ Z ∣a ≤ i ≤ b} → Z, if
∂f ∶ {i ∈ Z ∣a < i ≤ b} → Z, j ↦ f(j) − f(j − 1) satisfies ran(∂f) ⊆ {−1,0,1} and if
f(a) ⋅ f(b) < 0, then there exists x ∈ Z with a < x < b such that f(x) = 0.

Proof. First, note that for any x ∈ Z with a < x ≤ b, necessarily, f(x−1)⋅f(x) ≥ 0
because, if f(x) and f(x − 1) were both non-zero and had opposite signs, it would
follow ∣f(x) − f(x − 1)∣ = ∣f(x)∣ + ∣f(x − 1)∣ ≥ 1 + 1 = 2, contradicting the assumption
∣∂f(x)∣ ≤ 1. In particular, the premise f(a) ⋅ f(b) < 0 guarantees 1 < b − a.

The proof goes by induction over b − a. In the base case 2 = b − a, by the initial
remark, both f(a)⋅f(a+1) ≥ 0 and f(a+1)⋅f(b) ≥ 0. Hence, if f(a+1) was non-zero,
f(a) and f(b) would have the same sign, in contradiction to our assumption.

For general 2 ≤ b−a we can assume f(b−1) ≠ 0. If so, then by the observation at
the beginning of the proof f(b− 1) has the same sign as f(b). Hence, f(a) ⋅ f(b) < 0
and the induction hypothesis yields an x ∈ Z with a < x < b − 1 and f(x) = 0, which
concludes the proof. □

Lemma 7.16. For any {k, ℓ} ⊆ N0, any c ∶ ⟦k⟧ → {○, ●} and d ∶ ⟦ℓ⟧ → {○, ●} with
Σc

d = 0, any {S,S′} ⊆ 0∆c
d and any a ∈ S and a′ ∈ S′ with a ≠ a′ and ]a,a′[kℓ∩(S∪S′) = ∅,

S = S′⇔ ζcd(a) ≠ ζcd(a′).
Proof. We prove both implications simultaneously and distinguish two cases.
Case 1: a is the predecessor of a′. If ]a,a′[kℓ = ∅, then, by definition, δcd(a,a′) =

1
2σ

c
d({a,a′}), which is 0 if and only if σc

d({a,a′}) = 0, i.e., if and only if ζcd(a) ≠ ζcd(a′).
Because the identity S = S′ holds if and only if δcd(a,a′) = 0 that proves the assertion
in this case.

Case 2: a is not the predecessor of a′. Now, let ]a,a′[kℓ≠ ∅ instead. Then,
there exist m ∈ N with 1 < m and pairwise distinct points b0,b1, . . . ,bm such that
(bn ∣ bn+1 ∣ bn+2)kℓ for all n ∈ N0 with n < m − 1 and (bm−1 ∣ bm ∣ b0)kℓ and such that
{b0,b1, . . . ,bm} = [a,a′]kℓ , in particular, b0 = a and bm = a′. For every n ∈ N0 with
n ≤m let xn ∶= σc

d({bn}). Then, we must show x0 ≠ xm if S = S′ and x0 = xm if S ≠ S′.
Define the function f ∶ {0} ∪ ⟦ℓ⟧→ Z, n↦ δcd(bn,bm).

Step 2.1: f←({0}) is {0,m} if S = S′ and {m} if S ≠ S′. By definition, for any
n ∈ N0 with n ≤ m, the statement f(n) = 0 is equivalent to proposing δcd(bn,bm) =
0, which in turn is the same as saying bn ∈ S′ because bm = a′ ∈ S′. Because
]b0,bm[kℓ ∩ S′ = ]a,a′[kℓ ∩ S′ = ∅ per assumption, the inclusion f←({0}) ⊆ {0,m} has
thus been shown. Moreover, we can conclude that m ∈ f←({0}) is always true and
that 0 ∈ f←({0}) holds if and only if S = S′ (because b0 = a ∈ S).

Step 2.2: f←({f(0)}) is {0,m} if S = S′ and {0} if S ≠ S′. For all n ∈ N0 with
n ≤ m the statement f(n) = f(0) is equivalent to claiming δcd(bn,bm) = δcd(b0,bm);
and this in turn is true if and only if 0 = δcd(b0,bm) − δcd(bn,bm) = δcd(b0,bm) +
δcd(bm,bn) = δcd(b0,bn) by Lemma 3.10 and Σc

d = 0. As b0 = a ∈ S we have thus
checked for any n ∈ ⟦m⟧ that f(n) = f(0) if and only if bn ∈ S. It follows, on the
one hand, that f←({0}) ⊆ {0,m} because ]b0,bm[kℓ ∩ S = ]a,a′[kℓ ∩ S = ∅, and, on the
other hand, that m ∈ f←({0}) if and only if S = S′ (because bm = a′ ∈ S′).
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Step 2.3: Proving ran(∂f) ⊆ {−1,0,1} and a formula for ∂f . We show that
∂f ∶ ⟦ℓ⟧→ Z, n↦ f(n)− f(n− 1) satisfies ran(∂f) ⊆ {−1,0,1} and find a formula for
∂f . Per definition and by Lemma 3.10 and Σc

d = 0, for any n ∈ ⟦m⟧,
f(n) − f(n − 1) = δcd(bn,bm) − δcd(bn−1,bm) = δcd(bn,bm) + δcd(bm,bn−1)

= δcd(bn,bn−1) = −δcd(bn−1,bn) = −1
2σ

c
d({bn−1,bn})

= −1
2(xn−1 + xn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if xn−1 = xn = 1,

1 if xn−1 = xn = −1,

0 if xn−1 ≠ xn,
which in particular proves ran(∂f) ⊆ {−1,0,1}.

Step 2.4: Proving ∂f(1) ≠ 0 ≠ ∂f(m). From {m} ⊆ f←({0}) ⊆ {0,m} by Step 2.1
it follows ∂f(m) = f(m) − f(m − 1) = −f(m − 1) ≠ 0 because 1 < m. Likewise,
{0} ⊆ f←({f(0)}) ⊆ {0,m} by Step 2.2 proves ∂f(1) = f(1) − f(0) ≠ 0, also since
1 <m.

Step 2.5: Sign of f and definition of ε. We show by contradiction that there
exists ε ∈ {−1,1} such that εf(n) > 0 for all n ∈ ⟦m−1⟧.

Suppose that there exist {n,n′} ⊆ ⟦m−1⟧ with n < n′ such that f(n)f(n′) < 0.
Because ran(∂f) ⊆ {−1,0,1}, Lemma 7.15 then ensures the existence of i ∈ ⟦m⟧ with
0 < n < i < n′ < m and f(i) = 0. That contradicts the result f←({0}) ⊆ {0,m} of
Step 2.1. Hence, an ε ∈ {−1,1} such that εf(n) > 0 for all n ∈ ⟦m−1⟧ exists.

Step 2.6: Sign of f(0)−f . Now, we prove that, if f(0) ≠ 0, then ε(f(0)−f(n)) > 0
for all n ∈ ⟦m−1⟧.

Again, assume that f(0) ≠ 0 and that there exist {n,n′} ⊆ ⟦m−1⟧ with n < n′
such that (f(0) − f(n))(f(0) − f(n′)) < 0. Because ran(∂(f(0) − f)) = −ran(∂f) =
−{−1,0,1} = {−1,0,1}, by Lemma 7.15 there is i ∈ ⟦m⟧ such that 0 < n < i < n′ < m
and f(0)−f(i) = 0. This is the contradiction we sought because f←({f(0)}) ⊆ {0,m}
by Step 2.2.

Step 2.7: ∂f(1) ≠ ∂f(m) if and only if S = S′. According to Step 2.1 the assump-
tion S = S′ is equivalent to f(0) = 0. Because ∂f(1) ≠ 0 ≠ ∂f(m) by Step 2.4 and
because ran(∂f) ⊆ {−1,0,1} by Step 2.3, it suffices to prove that ∂f(1) and ∂f(m)
have different signs if and only if f(0) = 0 in order to see that ∂f(1) ≠ ∂f(m) if and
only if S = S′.

First, suppose f(0) = 0. Then, ∂f(1) = f(1) − f(0) = f(1) and ∂f(m) = f(m) −
f(m−1) = −f(m−1) by Step 2.1 and thus ε∂f(1) = εf(1) and ε∂f(m) = −εf(m−1).
Because εf(1) > 0 and εf(m−1) > 0 by Step 2.5, it follows ε∂f(1) > 0 and ε∂f(m) <
0. In conclusion, ∂f(1) ≠ ∂f(m).

Alternatively, let f(0) ≠ 0. Then, ε∂f(1) = −ε(f(0) − f(1)) and, still, ε∂f(m) =
−εf(m − 1) because f(m) = 0 by Step 2.1. Now, εf(m − 1) > 0 by Step 2.5 and
ε(f(0)−f(1)) > 0 by Step 2.6 imply ε∂f(1) < 0 and ε∂f(m) < 0. Thus, in this case,
∂f(1) = ∂f(m).

Step 2.8: x0 ≠ xm if and only if S = S′. From the statement 0 ≠ ∂f(1) ≠ ∂f(m) ≠ 0
which holds in case S = S′ by Steps 2.4 and 2.7 and from our formula for ∂f found
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in Step 2.3 it follows 0 ≠ −1
2(x0 + x1) ≠ −1

2(xm−1 + xm) ≠ 0 and thus 0 ≠ x0 + x1 ≠
xm−1 + xm ≠ 0. That is only possible if x0 = x1 ≠ xm−1 = xm.

Likewise, if S ≠ S′, then ∂f(1) = ∂f(m) ≠ 0, as shown in Steps 2.4 and 2.7, then
x0 + x1 = xm−1 + xm ≠ 0 by Step 2.3 requires x0 = x1 = xm−1 = xm. That is what we
needed to see. □

In particular, we can now prove the following.

Proposition 7.17. For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}
with Σc

d = 0, any S ∈ 0∆c
d and any {a,b} ⊆ S with a ≠ b the statements σc

d({a,b}) = 0
and ∣]a,b[kℓ ∩ S∣ ≡2 0 are equivalent.

Proof. If m ∈ N and {ci}mi=0 ⊆ Πk
ℓ are such that [a,b]kℓ ∩ S = {c0,c1, . . . ,cm},

i.e., c0 = a and cm = b in particular, such that (ci ∣ ci+1 ∣ ci+2)kℓ for any i ∈ N0 with
i <m − 1 and such that (cm−1 ∣ c1 ∣ c0)kℓ , then ]ci,ci+1[kℓ ∩ S = ∅ for each i ∈ N0 with
i <m. Thus, ζcd(ci) ≠ ζcd(ci+1) for each i ∈ N0 with i <m by Lemma 7.16. Inductively,
it follows that ζcd(a) ≠ ζcd(b) if m ∈ 2N0 and ζcd(a) = ζcd(b) if m ∈ 2N0 + 1, which is
what was claimed. □

With that result at hand, we can now give a reformulation of the definition of
the categories of the unitary half-liberations. The following lemma unclutters the
proof of Proposition 7.19.

Lemma 7.18. For any w ∈ N0, any D ⊆ N, any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → {○, ●}
and d∶ ⟦ℓ⟧→ {○, ●} and any (c,d, p) ∈ S, if Σc

d ≡w 0, then the following hold.
(a) The following are equivalent:

(i) δcd(b,b′) ≡w 0 for any {b,b′} ⊆ B and any B ∈ p.
(ii) p ≤ w∆c

d.
(b) If p ≤ w∆c

d, then the following are equivalent.
(i) ∣B∣ = 2 for any B ∈ p.
(ii) For any S ∈ w∆c

d, if s = R(p,S), then ∣A∣ = 2 for any A ∈ s.
(c) If p ≤ w∆c

d, then following hold:
(i) σc

d(B) = 0 for any B ∈ p.
(ii) For any S ∈ w∆c

d, if (f,g, s) = R((c,d, p),S), then σf
g(A) = 0 for any

A ∈ s.
(d) If w = 0, if p ≤ w∆c

d and if ∣B∣ = 2 and σc
d(B) = 0 for any B ∈ p, then for any

S ∈ w∆c
d, if s = R(p,S) and if {m,n} ⊆ N0 are such that s is a partition of

Πm
n , then ∣]a,a′[mn ∣ ≡2 0 for any {a,a′} ⊆ A with a ≠ a′ and any A ∈ s.

(e) If w = 0 and if p ≤ w∆c
d, then the following are equivalent:

(i) For any {B1,B2} ⊆ p, whenever there exist b1 ∈ B1 and b2 ∈ B2 with
∣δcd(B1,B2)∣ ∉D, then B1×k

ℓ B2.
(ii) For any {S1,S2} ⊆ 0∆c

d, if ∣0δcd(S1,S2)∣ ∉ D, then B1 ×k
ℓ B2 for any

{B1,B2} ⊆ p with B1 ⊆ S1 and B2 ⊆ S2.
(f) If w = 0 and if p ≤ w∆c

d, then the following are equivalent:
(i) For any {B1,B2} ⊆ p with B1 ≠ B2, whenever there exist b1 ∈ B1 and

b2 ∈ B2 with ∣δcd(b1,b2)∣ = 0, then B1×k
ℓ B2.
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(ii) For any S ∈ 0∆c
d, if s = R(p,S) and if {m,n} ⊆ N0 are such that s is a

partition of Πm
n , then A1×m

n A2 for any {A1,A2} ⊆ s with A1 ≠ A2.

Proof. (a) That follows immediately from the definition of w∆c
d and is only

stated for emphasis.
(b)+(c) We can show (b) and (c) simultaneously. For any B ∈ p, for any S ∈ p

and, if (f,g, s) = R((c,d, p),S), for any A ∈ s, if B ⊆ S and A = γ k
S,ℓ
←(B), then, on

the one hand, ∣A∣ = ∣γ k
S,ℓ
←(B)∣ = ∣B∣ because γ k

S,ℓ is injective. On the other hand, also

σc
d(B) = σf

g(γ k
S,ℓ
←(B)) = σf

g(A) by Lemma 4.2 (d) because B/S = ∅.
The assumption p ≤ w∆c

d ensures that for any B ∈ p there exist exactly such
S ∈ w∆c

d and A ∈ R(p,S) with B ⊆ S and A = γ k
S,ℓ
←(B) and that, conversely, for

any S ∈ w∆c
d and any A ∈ R(p,S) we can always find such a B ∈ p that B ⊆ S and

A = γ k
S,ℓ
←(B). Hence, the claims are true.

(d) Given any S ∈ 0∆c
d, any A ∈ s ∶= R(p,S) and any {a,a′} ⊆ A with a ≠ a′, there

exists by definition B ∈ p such that A = γ k
S,ℓ
←(B) and, consequently, b ∶= γ k

S,ℓ (a) ∈ B
and b′ ∶= γ k

S,ℓ (a′) ∈ B. The fact that thus, in particular, B ∩ S ≠ ∅ demands that

already B ⊆ S because p ≤ w∆c
d. Moreover, by assumption, then σc

d(B) = 0 and
∣B∣ = 2. Since γ k

S,ℓ is injective, furthermore, b ≠ b′. From ∣B∣ = 2 it thus follows

B = {b,b′} and hence σc
d({b,b′}) = 0 by σc

d(B) = 0. Proposition 7.17 therefore
implies ∣]b,b′[kℓ ∩ S∣ ≡2 0. Because γ k

S,ℓ is monotonic with respect to Γmn and Γkℓ by

Lemma 4.2 (d), moreover, ]a,a′[mn = γ k
S,ℓ
←(]b,b′[kℓ ∩ S). By the injectivity of γ k

S,ℓ ,

thus, ∣]a,a′[mn ∣ = ∣]b,b′[kℓ ∩ S∣ ≡2 0, as claimed.
(e) Again, this is clear from the definition of 0∆c

d and 0δcd and only stated in the
interest of emphasis.

(f) By definition of 0∆c
d the statement (i) is equivalent to the requirement that

B1×k
ℓ B2 for any S ∈ 0∆c

d and any {B1,B2} ⊆ p with B1 ⊆ S and B2 ⊆ S and B1 ≠ B2.
For any S ∈ 0∆c

d, if s = R(p,S) and if {m,n} ⊆ N0 are such that s is a partition
of Πk

ℓ , then for any {B1,B2} ⊆ p with B1 ⊆ S and B2 ⊆ S and B1 ≠ B2, and any
{A1,A2} ⊆ s with A1 ≠ A2, whenever A1 = γ k

S,ℓ
←(B1) and A2 = γ k

S,ℓ
←(B2), then

B1 �k
ℓ B2 if and only if A1 �m

n A2 because γ k
S,ℓ is strictly monotonic by Lemma 4.2 (d).

And, once more, the assumption p ≤ 0∆c
d guarantees that for any {B1,B2} as

above there exist {A1,A2} with the above properties, and vice versa. Hence, (f) is
valid. □

Proposition 7.19. Let w ∈ N and let D be any additive subsemigroup of N.
(a) For any w ∈ N the category U∗w can be expressed as the set of all (c,d, p) ∈ S

such that Σc
d ≡w 0 and p ≤ w∆c

d and R((c,d, p),S) ∈ U for any S ∈ w∆c
d.

(b) The category U×D can be expressed as the set of all (c,d, p) ∈ S for which
there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, such
that Σc

d = 0, such that p ≤ 0∆c
d, such that R((c,d, p),S) ∈ U for any S ∈ 0∆c

d

and such that for any {S1,S2} ⊆ 0∆c
d, if ∣0δcd(S1,S2)∣ ∉D, then B1×k

ℓ B2 for
any {B1,B2} ⊆ p with B1 ⊆ S1 and B2 ⊆ S2.
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(c) The category U×D can be expressed as the set of all (c,d, p) ∈ S for which
there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, such
that Σc

d = 0, such that p ≤ 0∆c
d, such that R(p,S) ∈ O∗ for any S ∈ 0∆c

d and
such that for any {S1,S2} ⊆ 0∆c

d, if ∣0δcd(S1,S2)∣ ∉D, then B1×k
ℓ B2 for any

{B1,B2} ⊆ p with B1 ⊆ S1 and B2 ⊆ S2.
(d) The category U×+D can be expressed as the set of all (c,d, p) ∈ S for which

there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, such
that Σc

d = 0, such that p ≤ 0∆c
d, such that R((c,d, p),S) ∈ U+ for any S ∈ 0∆c

d

and such that for any {S1,S2} ⊆ 0∆c
d, if ∣0δcd(S1,S2)∣ ∉D, then B1×k

ℓ B2 for
any {B1,B2} ⊆ p with B1 ⊆ S1 and B2 ⊆ S2.

(e) The category U×+D can be expressed as the set of all (c,d, p) ∈ S for which
there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, such
that Σc

d = 0, such that p ≤ 0∆c
d, such that R(p,S) ∈ O+ for any S ∈ 0∆c

d and
such that for any {S1,S2} ⊆ 0∆c

d, if ∣0δcd(S1,S2)∣ ∉D, then B1×k
ℓ B2 for any

{B1,B2} ⊆ p with B1 ⊆ S1 and B2 ⊆ S2.

Proof. With the help of Lemma 7.18 all the claims follow immediately from
Definitions 7.3, 7.10 and 7.11. More, precisely:

(a) Direct implication of Definition 7.11 (a) on the one hand and Definition 7.10 (a)
and Lemma 7.18 (a) on the other.

(b) Consequence of Definition 7.11 (b) as well as Definition 7.10 (a) and Lem-
ma 7.18 (a)–(d).

(c) Follows from Definition 7.11 (b) combined with Definition 7.3 (b) and all
parts except (b) and (f) of Lemma 7.18.

(d) Implied by Definition 7.11 (c) and Definition 7.10 (b) and all parts besides
(e) of Lemma 7.18.

(e) Can be inferred immediately from Definition 7.11 (c) in combination with
Definition 7.3 (c) and all parts other than (b) of Lemma 7.18. □

Definition 7.20. Any two-colored partition (c,d, p) is said to have no non-
neutral blocks if σc

d(B) = 0 for any B ∈ p.
The below result parallels Proposition 7.6. Again, this was recognized before (see

[TW18, Lemma 1.1 (c)]).

Proposition 7.21. Any category of two-colored partitions consisting only of par-
titions which have no non-neutral blocks is ⊗-elbats. In particular, so are U∗w, U×D
and U×+D for any w ∈ N and any additive subsemigroup D of N.

Proof. The proof of [MW20, Lemma 6.8] applies. The assumption there that
any block have only two legs is immaterial. □

Thus, also for those categories big and little graph power or wreath graph co-
product categories coincide by Proposition 4.35.

Definition 7.22. For any n ∈ N, any w ∈ N and any additive subsemigroup of N
the easy algebraic compact quantum group asssociated with
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(a) (U∗w, n) is denoted by U∗
w,n.

(b) (U×D, n) is denoted by U×
D,n.

(c) (U×+D , n) is denoted by U×+
D,n.

8. The related categories of labeled partitions

While it would have been possible to give an ad-hoc definition of the supercate-
gories of the unitary half-liberations, verifying that these are indeed categories would
have been complicated and repetitive. With the general theorems about categories
of labeled partitions from Section 4 at hand, however, all that is left to do is to
reformulate a little the descriptions obtained from those results. This is achieved in
Proposition 8.5. In order to make its proof as efficient as possible, an intermediate
step is taken.

8.1. Reformulating the occurring graph co-products. This intermediate
step consists in reformulating the definitions of certain graph co-product categories,
see Proposition 8.3 below. The next lemma simplifies its proof.

Lemma 8.1. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any partial
commutation relation r on Zw, any {m,n} ⊆ N0, any f∶ ⟦m⟧ → (U⊗ {○, ●}) ⊍O and

g∶ ⟦n⟧→ (U⊗ {○, ●}) ⊍O and any (f,g, s) ∈ U,OS with s ≤ ker(ξfg) the following hold.
(a) The following are equivalent:

(i) ∣A∣ = 2 for any A ∈ s.
(ii) For any z ∈ Zw, if (u,v,w) = R((f,g, s), ξfg←({z})), then ∣D∣ = 2 for any

D ∈ w.
(b) If (U,O) = (Zw,∅), then the following are equivalent:

(i) ∑z∈Zw zσ
f
g(A) = 0 for any A ∈ s.

(ii) For any z ∈ Zw, if (u,v,w) = R((f,g, s), ξfg←({z})), then zσ
f
g(D) = 0 for

any D ∈ w.
(c) The following are equivalent:

(i) For any A ∈ s and any {a,a′′} ⊆ A, if a ≠ a′′, then ∣]a,a′′[mn ∩ {a′ ∈
Πm
n ∧ ξfg(a′) − ξfg(a) = 0}∣ ≡2 0.

(ii) For any z ∈ Zw, if {i, j} ⊆ N0 and u∶ ⟦i⟧→ (U⊗{○, ●})⊍O and v∶ ⟦j⟧→
(U⊗{○, ●})⊍O and (u,v,w) = R((f,g, s), ξfg←({z})), then for any D ∈ w
and any {x,x′} ⊆ D, if x ≠ x′, then ∣]x,x′[ij ∣ ≡2 0.

(d) The following are equivalent:
(i) For any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and

a2 ∈ A2, such that ξfg(a2) − ξfg(a1) = 0, then A1×m
n A2.

(ii) For any z ∈ Zw, if {i, j} ⊆ N0 and u∶ ⟦i⟧→ (U⊗{○, ●})⊍O and v∶ ⟦j⟧→
(U ⊗ {○, ●}) ⊍O and (u,v,w) = R((f,g, s), ξfg←({z})), then D1 ×i

j D2

for any {D1,D2} ⊆ w with D1 ≠ D2.
(e) The following are equivalent:
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(i) For any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and

a2 ∈ A2 such that ξfg(a1) ≠ ξfg(a2) and (ξfg(a1), ξfg(a2)) ∉ r, then A1 ×m
n

A2.
(ii) For any {z1, z2} ⊆ Zw with z1 ≠ z2, whenever (z1, z2) ∉ r, then A1×m

n A2

for any {A1,A2} ⊆ s with A1 ⊆ ξfg←({z1}) and A2 ⊆ ξfg←({z2}).

Proof. (a),(b) We can prove (a) and (b) simultaneously.

If z ∈ Zw, if Y = ξfg←({z}), if (u,v,w) = R((f,g, s),Y) and if D ∈ w, then by

definition there exists A ∈ s with A ∩ Y ≠ ∅ and D = γ m
Y,n

←(A). As s ≤ ker(ξfg),
that demands A ⊆ Y and thus ∣D∣ = ∣A∣ because γ m

Y,n is injective. Hence, if ∣A∣ = 2,

then also ∣D∣ = 2. Moreover, if (U,O) = (Zw,∅), then Lemma 4.2 (d) implies that

∑x∈Zw xσ
f
g(A) = ∑x∈Zw xσ

f
g(D) because Y/A = ∅. As ξuv is constant with value z by defi-

nition of Y, of course, ∑x∈Zw xσ
f
g(D) = zσu

v(D) and thus zσu
v(D) = 0 if∑z∈Zw xσ

f
g(A) = 0.

Conversely, if A ∈ s, then by s ≤ ker(ξfg) there is z ∈ Zw with A ⊆ Y ∶= ξfg←({z}). If
(u,v,w) = R((f,g, s),Y), then D ∶= γ m

Y,n
←(A) ∈ w and thus ∣A∣ = ∣D∣ since γ m

Y,n is in-

jective. In conclusion, if ∣D∣ = 2, then ∣A∣ = 2 as well. Furthermore, because the defini-

tion of Y implies that ξuv is constant with value z we can infer zσu
v(D) = ∑x∈Zw xσ

f
g(D)

and because ∑x∈Zw xσ
f
g(D) = ∑x∈Zw xσ

f
g(A) by Lemma 4.2 (d), if zσu

v(D) = 0, then also

∑z∈Zw xσ
f
g(A) = 0.

(c) If z ∈ Zw, if {i, j} ⊆ N0, if u∶ ⟦i⟧→ (U⊗{○, ●})⊍O and v∶ ⟦j⟧→ (U⊗{○, ●})⊍O,

if Y = ξfg←({z}), if (u,v,w) = R((f,g, s),Y), if D ∈ w, if {x,x′} ⊆ D and if x ≠ x′,
then by definition of w there exists A ∈ s with D = γ m

Y,n
←(A). If a ∶= γ m

Y,n (x)
and a′′ ∶= γ m

Y,n (x′), then {a,a′′} ⊆ A and a ≠ a′′ since γ m
Y,n is injective. Moreover,

]x,x′[ij = γ m
Y,n

←(]a,a′′[mn ) = γ m
Y,n

←(]a,a′′[mn ∩Y) because γ m
Y,n is also monotonic with

respect to Γij and Γmn by Lemma 4.2 (d). In particular, ∣]x,x′[ij ∣ = ∣]a,a′′[mn ∩ {a′ ∈
Πm
n ∧ ξfg(a′)− ξfg(a) = 0}∣ and because Y = {a′ ∈ Πm

n ∧ ξfg(a′)− ξfg(a) = 0} and because
γ m
Y,n is injective. That proves one implication.

Conversely, if A ∈ s, if {a,a′′} ⊆ A, if a ≠ a′′, then by s ≤ ker(ξfg) there exists z ∈ Zw
with A ⊆ Y ∶= ξfg←({z}). Consequently, if {i, j} ⊆ N0, if u∶ ⟦i⟧ → (U⊗ {○, ●}) ⊍O and

v∶ ⟦j⟧ → (U ⊗ {○, ●}) ⊍ O, if Y = ξfg←({z}) and if (u,v,w) = R((f,g, s),Y), then
D ∶= γ m

Y,n
←(A) ∈ w. Because A ⊆ Y we find {x,x′} ⊆ A with γ m

Y,n (x) = a and

γ m
Y,n (x′) = a′′. Because a ≠ a′′ also x ≠ x′. And since γ m

Y,n is monotonic with respect

to Γij and Γmn by Lemma 4.2 (d), again, ]x,x′[ij = γ m
Y,n

←(]a,a′′[mn ∩ Y) and thus

∣]x,x′[ij ∣ = ∣]a,a′′[mn ∩Y∣, which proves the other implication.

(d) If (i) holds and if z ∈ Zw, if {i, j} ⊆ N0, if Y = ξfg←({z}), if u∶ ⟦i⟧→ (U⊗{○, ●})⊍
O and v∶ ⟦j⟧ → (U⊗ {○, ●}) ⊍O, if (u,v,w) = R((f,g, s),Y) and if {D1,D2} ⊆ w and
D1 ≠ D2, then by definition of w there exist {A1,A2} ⊆ s with D1 = γ m

Y,n
←(A1)

and D2 = γ m
Y,n

←(A2). Since γ m
Y,n is injective, A1 ∩ A2 = γ m

Y,n →(D1) ∩ γ m
Y,n →(D2) =

γ m
Y,n →(D1 ∩ D2) and thus A1 ∩ A2 = ∅ by D1 ∩ D2 = ∅, or, equivalently, A1 ≠ A2.

Moreover, because D1 ≠ ∅ ≠ D2 there exist x1 ∈ D1 and x2 ∈ D2. For a1 ∶= γ m
Y,n (x1)
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and a2 ∶= γ m
Y,n (x2) then, a1 ∈ A1 and a2 ∈ A2 and ξfg(a1) = ξfg(a2) = z by definition of

Y, which is to say ξfg(a2) − ξfg(a1) = 0. Hence, assumption (i) guarantees A1×m
n A2.

Because γ m
Y,n is strictly monotonic with respect to Γij and Γmn by Lemma 4.2 (d) this

requires that, too, D1×i
j D2.

Conversely, if (ii) is true, if {A1,A2} ⊆ s and a1 ∈ A1 and a2 ∈ A2 are such

that A1 ≠ A2 and ξfg(a2) − ξfg(a1) = 0, then defining z ∶= ξfg(a1) and Y ∶= ξfg←({z})
implies a1 ∈ A1 ∩ Y ≠ ∅ and a2 ∈ A2 ∩ Y ≠ ∅. Consequently, if {i, j} ⊆ N0 and
u∶ ⟦i⟧→ (U⊗ {○, ●}) ⊍O and v∶ ⟦j⟧→ (U⊗ {○, ●}) ⊍O and (u,v,w) = R((f,g, s),Y),
then D1 ∶= γ m

Y,n
←(A1) ∈ w and D2 ∶= γ m

Y,n
←(A2) ∈ w. Moreover, since A1 ∩ A2 = ∅,

also D1 ∩ D2 = γ i
Y,j
←(A1) ∩ γ i

Y,j
←(A2) = γ i

Y,j
←(A1 ∩ A2) = ∅, i.e., D1 ≠ D2. Hence,

by assumption (ii), necessarily, D1 ×i
j D2. Since γ m

Y,n is injective we may conclude
A1×m

n A2, as claimed.
(e) That is clear because s ≤ ker(ξfg) and only stated for emphasis. □

Notation 8.2. For any additive subsemigroup D of N let

rD ∶= {(z, z′) ∣ {z, z′} ⊆ Z ∧ ∣z′ − z∣ ∉D ⊍ {0}}.
Proposition 8.3. Let w ∈ N and let D be any additive subsemigroup of N.
(a) For any w ∈ N the category U×Zw can be expressed as the set of all (f,g, s) ∈

Zw,∅S such that s ≤ ker(ξfg) and such that ∣A∣ = 2 and ∑z∈Zw zσ
f
g(A) = 0 for

any A ∈ s.
(b) The category U∗(Z,rD) can be expressed as the set of all (f,g, s) ∈ Z,∅S for

which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧ → Z ⊗ {○, ●} and g∶ ⟦n⟧ →
Z ⊗ {○, ●}, such that s ≤ ker(ξfg), such that ∣A∣ = 2 and ∑z∈Z zσf

g(A) = 0 for
any A ∈ s, and such that for any {A1,A2} ⊆ s with A1 ≠ A2, whenever there

exist a1 ∈ A1 and a2 ∈ A2 such that ∣ξfg(a2) − ξfg(a1)∣ ∈D, then A1×m
n A2.

(c) The category (U+)∗(Z,rD) can be expressed as the set of all (f,g, s) ∈ Z,∅S for
which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧ → Z ⊗ {○, ●} and g∶ ⟦n⟧ →
Z ⊗ {○, ●}, such that s ≤ ker(ξfg), such that ∣A∣ = 2 and ∑z∈Z zσf

g(A) = 0 for
any A ∈ s, and such that for any {A1,A2} ⊆ s with A1 ≠ A2, whenever there

exist a1 ∈ A1 and a2 ∈ A2 such that ∣ξfg(a2)−ξfg(a1)∣ ∈D⊍{0}, then A1×m
n A2.

(d) The category (O∗)∗(Z,rD) can be expressed as the set of all (f,g, s) ∈ ∅,ZS for
which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧ → Z and g∶ ⟦n⟧ → Z, such
that s ≤ ker(ξfg), such that ∣A∣ = 2 for any A ∈ s, such that ∣]a,c[mn ∩{b ∈
Πm
n ∧ ξfg(b) − ξfg(a) = 0}∣ ≡2 0 for any {a,c} ⊆ A with a ≠ c and any A ∈ s,

and such that for any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1

and a2 ∈ A2 such that ∣ξfg(a2) − ξfg(a1)∣ ∈D, then A1×m
n A2.

(e) The category (O+)∗(Z,rD) can be expressed as the set of all (f,g, s) ∈ ∅,ZS
for which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧ → Z and g∶ ⟦n⟧ → Z,
such that s ≤ ker(ξfg), such that ∣A∣ = 2 for any A ∈ s, and such that for any
{A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and a2 ∈ A2 such that

∣ξfg(a2) − ξfg(a1)∣ ∈D ⊍ {0}, then A1×m
n A2.
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Proof. The claims all follow from the definitions and Lemma 8.1.
(a) By Definitions 7.10 (a) and 4.7 the category U×Zw is given by the set of all

(f,g, s) ∈ Zw,∅S such that s ≤ ker(ξfg) and such that for any z ∈ Zw, if (u,v,w) =
R((f,g, s), ξfg←({z})), then ∣D∣ = 2 and zσu

v(D) = 0 for any D ∈ w. Hence, if we
remember Remark 4.13, we can apply Lemma 8.1 (a) and (b), which then yields the
assertion.

(b) Similarly, according to Definitions 7.10 (a) and 4.13 the category U∗(Z,rD) is
given by the set of all (f,g, s) ∈ Z,∅S for which there exist {m,n} ⊆ N0 such that

f∶ ⟦m⟧ → Z ⊗ {○, ●} and g∶ ⟦n⟧ → Z ⊗ {○, ●}, such that s ≤ ker(ξfg), such that for

any z ∈ Z, if (u,v,w) = R((f,g, s), ξfg←({z})), then ∣D∣ = 2 and zσu
v(D) = 0 for any

D ∈ w, and such that for any {z1, z2} ⊆ Z with z1 ≠ z2, whenever (z1, z2) ∉ rD, then

A1 ×m
n A2 for any {A1,A2} ⊆ s with A1 ⊆ ξfg←({z1}) and A2 ⊆ ξfg←({z2}). Thus, the

claim follows by Lemma 8.1 (a), (b) and (e).
(c) Definitions 7.10 (b) and 4.13 tell us that (U+)∗(Z,rD) consists precisely of all

(f,g, s) ∈ Z,∅S for which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧ → Z ⊗ {○, ●} and

g∶ ⟦n⟧ → Z ⊗ {○, ●}, such that s ≤ ker(ξfg), such that for any z ∈ Z, if {i, j} ⊆ N0

and u∶ ⟦i⟧ → Z⊗ {○, ●} and v∶ ⟦j⟧ → Z⊗ {○, ●} and (u,v,w) = R((f,g, s), ξfg←({z})),
then ∣D∣ = 2 and zσu

v(D) = 0 for any D ∈ w and D1×i
j D2 for any {D1,D2} ⊆ w with

D1 ≠ D2, and such that for any {z1, z2} ⊆ Z with z1 ≠ z2, whenever (z1, z2) ∉ rD, then

A1×m
n A2 for any {A1,A2} ⊆ s with A1 ⊆ ξfg←({z1}) and A2 ⊆ ξfg←({z2}). Hence, the

claim follows by Lemma 8.1 (a), (b), (d) and (e). Note that the conditions coming
from Parts (d) and (e) have been combined in the claim.

(d) By Definitions 7.3 (b) and 4.13 the category (O∗)∗(Z,rD) comprises exactly all
(f,g, s) ∈ ∅,ZS for which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧→ Z and g∶ ⟦n⟧→ Z,

such that s ≤ ker(ξfg), such that for any z ∈ Z, if {i, j} ⊆ N0 and u∶ ⟦i⟧ → Z and

v∶ ⟦j⟧ → Z and (u,v,w) = R((f,g, s), ξfg←({z})), then ∣D∣ = 2 and ∣]x,x′[ij ∣ ≡2 0 for
any {x,x′} ⊆ D with x ≠ x′ and D ∈ w, and such that for any {z1, z2} ⊆ Z with z1 ≠ z2,
whenever (z1, z2) ∉ rD, then A1 ×m

n A2 for any {A1,A2} ⊆ s with A1 ⊆ ξfg←({z1})
and A2 ⊆ ξfg←({z2}). Therefore, we can infer the claimed identity with the help of
Lemma 8.1 (a), (c) and (e).

(e) Finally, it is by Definitions 7.3 (c) and 4.13 that we know (O+)∗(Z,rD) to be
made up of all (f,g, s) ∈ ∅,ZS for which there exist {m,n} ⊆ N0 such that f∶ ⟦m⟧→ Z
and g∶ ⟦n⟧ → Z, such that s ≤ ker(ξfg), such that for any z ∈ Z, if {i, j} ⊆ N0

and u∶ ⟦i⟧ → Z and v∶ ⟦j⟧ → Z and (u,v,w) = R((f,g, s), ξfg←({z})), then ∣D∣ = 2
and ∣]x,x′[ij ∣ ≡2 0 for any {x,x′} ⊆ D with x ≠ x′ and D ∈ w and D1 ×i

j D2 for
any {D1,D2} ⊆ w with D1 ≠ D2, and such that for any {z1, z2} ⊆ Z with z1 ≠ z2,
whenever (z1, z2) ∉ rD, then A1×m

n A2 for any {A1,A2} ⊆ s with A1 ⊆ ξfg←({z1}) and

A2 ⊆ ξfg←({z2}). In conclusion, Lemma 8.1 (a), (c), (d) and (e) proves the assertion
if we once more combine the conditions coming from Parts (d) and (e) into one. □
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8.2. Reformulating the wreath graph co-products. With the help of Pro-
position 8.3 we are now able to reformulate the definitions of the wreath graph co-
product supercategories of the unitary half-liberations. The ensuing lemma system-
atizes the required proofs.

Lemma 8.4. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any Zw-
invariant partial commutation relation r on Zw, any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ ((U⊍
{ℵ}) ⊗ {○, ●}) ⊍O and d∶ ⟦ℓ⟧ → ((U ⊍ {ℵ}) ⊗ {○, ●}) ⊍O and any (c,d, p) ∈ U⊍{ℵ},OS
with ℵΣc

d ≡w 0 and p ≤ ξcd⇠({Zw,{ℵ}}) the following hold if Y = ξcd←(Zw), if {m,n} ⊆
N0 and if f∶ ⟦m⟧ → (U ⊗ {○, ●}) ⊍ O and g∶ ⟦n⟧ → (U ⊗ {○, ●}) ⊍ O are such that

ξfg = πw ○ εcd ○ γ k
Y,ℓ and ζ fg = ζcd ○ γ k

Y,ℓ and if s = R(p,Y).
(a) The following are equivalent:

(i) ξcd(b′) − ξcd(b) + ℵδcd(b,b′) ≡w 0 for any {b,b′} ⊆ B and any B ∈ p with
B ⊆ ξcd←(Zw).

(ii) s ≤ ker(ξfg).
(b) The following are equivalent:

(i) ∣B∣ = 2 for any B ∈ p with B ⊆ ξcd←(Zw).
(ii) ∣A∣ = 2 for any A ∈ s.

(c) If (U,O) = (Zw,∅), then the following are equivalent:
(i) ∑z∈Zw zσc

d(B) = 0 for any B ∈ p with B ⊆ ξcd←(Zw).
(ii) ∑z∈Zw zσ

f
g(A) = 0 for any A ∈ s.

(d) If s ≤ ker(ξfg), then the following are equivalent:
(i) For any B ∈ p with B ⊆ ξcd←(Zw) and any {b,b′′} ⊆ B, if b ≠ b′′, then
∣]b,b′′[kℓ ∩ {b′ ∈ Πk

ℓ ∧ ξcd(b′) ∈ Zw ∧ ξcd(b′)− ξcd(b)+ ℵδcd(b,b′) ≡w 0}∣ ≡2 0.
(ii) For any A ∈ s and any {a,a′′} ⊆ A, if a ≠ a′′, then ∣]a,a′′[mn ∩ {a′ ∈

Πm
n ∧ ξfg(a′) − ξfg(a) = 0}∣ ≡2 0.

(e) If s ≤ ker(ξfg), then the following are equivalent :
(i) For any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Zw) and B2 ⊆ ξcd←(Zw) and B1 ≠ B2,

whenever there exist b1 ∈ B1 and b2 ∈ B2 such that ξcd(b2) − ξcd(b1) +
ℵδcd(b1,b2) ≡w 0, then B1×k

ℓ B2.
(ii) For any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and

a2 ∈ A2 such that ξfg(a2) − ξfg(a1) = 0, then A1×m
n A2.

(f) If s ≤ ker(ξfg), if w = 0, if D is any additive subsemigroup of N and if r = rD,
then the following are equivalent:
(i) For any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Zw) and B2 ⊆ ξcd←(Zw) and B1 ≠ B2,

whenever there exist b1 ∈ B1 and b2 ∈ B2 such that ∣ξcd(b2) − ξcd(b1) +
ℵδcd(b1,b2)∣ ∉D, then B1×k

ℓ B2.
(ii) For any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and

a2 ∈ A2 such that ξfg(a1) ≠ ξfg(a2) and (ξfg(a1), ξfg(a2)) ∉ rD, then A1×m
n

A2.

Proof. The following observation will be used in the proofs of all claims except
(b) and (c). For any {a,a′} ⊆ Πm

n and any {b,b′} ⊆ Y, if b = γ k
Y,ℓ (a) and b′ = γ k

Y,ℓ (a′),
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then

ξfg(a) = ξfg(a′)⇔ ξcd(b′) − ξcd(b) + ℵδ
c
d(b,b′) ≡w 0.

Indeed, since ℵσc
d({b}) = ℵσc

d({b′}) = 0 by {b,b′} ∩ ξcd←({ℵ}) = ∅ and since ℵΣc
d ≡w 0

by assumption, Lemma 4.51 implies εcd(b′)−εcd(b) ≡w ξcd(b′)−ξcd(b)+ℵδcd(b,b′). And,

by definition, ξfg(a) = ξfg(a′) if and only if εcd(b′) − εcd(b) ≡w 0.
(a) First suppose that (i) holds. Given any A ∈ s the definition of s guarantees the

existence of some B ∈ p with B ⊆ Y and A = γ k
Y,ℓ
←(B). Hence, for any {a,a′} ⊆ A, if

b ∶= γ k
Y,ℓ (a) and b′ ∶= γ k

Y,ℓ (a′), then {a,a′} ⊆ B and thus ξcd(b′)−ξcd(b)+ℵδcd(b,b′) ≡w 0

by (i). Since that requries ξfg(a) = ξfg(a′) by the initial remark we have thus shown

s ≤ ker(ξfg).
Conversely, if (ii) holds and if B ∈ p with B ⊆ Y and {b,b′} ⊆ B are arbitrary,

then A ∶= γ k
Y,ℓ
←(B) ∈ s. Moreover, then there exist {a,a′} ⊆ A with b = γ k

Y,ℓ (a) and

b′ = γ k
Y,ℓ (a′) and with ξfg(a) = ξfg(a′) by (ii). The observation at the beginning of the

proof therefore implies ξcd(b′) − ξcd(b) + ℵδcd(b,b′) ≡w 0, as claimed.
(b)+(c) We can prove (b) and (c) at the same time. If (U,O) = (Zw,∅), then,

given any B ∈ p and A ∈ s with B ⊆ Y and A = γ k
Y,ℓ
←(B), since γ k

Y,ℓ is injective,

∣B∣ = ∣γ k
Y,ℓ
←(B)∣ = ∣A∣. simultaneously, since B ∩ ξcd←({ℵ}) = ∅ and ζ fg = ζcd ○ γ k

Y,ℓ ,

∑
z∈Zw

ℵσ
c
d(B) = ∑

z∈U⊍{ℵ}⊍O
ℵσ

c
d(B) =∑

b∈B
σ(ζcd(b)) =∑

a∈A
σ(ζcd(γ k

Y,ℓ (b))) = ∑
z∈Zw

zσ
f
g(A).

By definition of s for any B as above there exists A of the above description, and
vice versa. Hence, (i) and (ii) are equivalent.

(d) The remark right at the beginning of the proof is equivalent to saying that
for any a ∈ Πm

n and b ∈ Y with b = γ k
Y,ℓ (a),

{a′ ∈ Πm
n ∧ ξfg(a′) − ξfg(a) = 0} = γ k

Y,ℓ
←({b′ ∈ Y ∧ ξcd(b′) − ξcd(b′) + ℵδ

c
d(b,b) ≡w 0}).

Given any a′′ ∈ Πm
n and b′′ ∈ Y with a ≠ a′′ and b ≠ b′′ and b′′ = γ k

Y,ℓ (a′′), moreover,
]a,a′′[mn = γ k

Y,ℓ
←(]b,b′′[kℓ ) since γ k

Y,ℓ is strictly monotonic with respect to Γmn and Γkℓ .
Hence,

]a,a′′[mn ∩ {a′ ∈ Πm
n ∧ ξfg(a′) − ξfg(a) = 0}

= γ k
Y,ℓ
←(]b,b′′[kℓ ∩ {b′ ∈ Y ∧ ξcd(b′) − ξcd(b′) + ℵδ

c
d(b,b) ≡w 0}).

Because the set ]b,b′′[kℓ ∩ {b′ ∈ Y ∧ ξcd(b′) − ξcd(b′) + ℵδcd(b,b) ≡w 0} is contained
in Y and because γ k

Y,ℓ is injective the above identity proves that ∣]a,a′′[mn ∩ {a′ ∈
Πm
n ∧ ξfg(a′) − ξfg(a) = 0}∣ and ∣]b,b′′[kℓ ∩ {b′ ∈ Y ∧ ξcd(b′) − ξcd(b′) + ℵδcd(b,b) ≡w 0}∣

coincide.
Since by definition of s for any B ∈ p with B ⊆ Y and any {b,b′′} ⊆ B with b ≠ b′′

there exist A, a and a′′ as above, (i) implies (ii). The converse implication holds as
well, since also for any A ∈ s and any {a,a′′} ⊆ A with a ≠ a′′ we can always find B,
b and b′′ as above.



268 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

(e) If (i) holds and if {A1,A2} ⊆ s with A1 ≠ A2 and if there exist a1 ∈ A1 and a2 ∈ A2

such that ξfg(a2) − ξfg(a1) = 0, then by definition of s there exist {B1,B2} ⊆ p with
B1 ⊆ Y and B2 ⊆ Y and A1 = γ k

Y,ℓ
←(B1) and A2 = γ k

Y,ℓ
←(B2) as well as, consequently,

b1 ∶= γ k
Y,ℓ (a1) ∈ B1 and b2 ∶= γ k

Y,ℓ (a2) ∈ B2. Moreover, because A1 ∩ A2 = ∅ and

because γ k
Y,ℓ is injective, B1 ∩ B2 = γ k

Y,ℓ →(A1) ∩ γ k
Y,ℓ →(A2) = γ k

Y,ℓ →(A1 ∩ A2) = ∅, i.e.,

B1 ≠ B2. By the initial remark, the assumption that ξfg(a2) − ξfg(a1) = 0 ensures that
ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2) ≡w 0. Hence, B1 ×k

ℓ B2. Since γ k
Y,ℓ is monotonic with

respect to Γmn and Γkℓ that requires A1×m
n A2. Since γ k

Y,ℓ . Hence, (i) implies (ii).

Conversely, if (ii) is true and if {B1,B2} ⊆ p and B1 ≠ B2 and B1 ⊆ Y and B2 ⊆ Y
and if b1 ∈ B1 and b2 ∈ B2 are such that ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2) ≡w 0, then
A1 ∶= γ k

Y,ℓ
←(B1) ∈ s and A2 ∶= γ k

Y,ℓ
←(B2) ∈ s. Moreover, there are then a1 ∈ A1 and

a2 ∈ A2 with b1 = γ k
Y,ℓ (a1) and b2 = γ k

Y,ℓ (a2). By the observation at the beginning of

the proof the assumption ξcd(b2)− ξcd(b1)+ ℵδcd(b1,b2) ≡w 0 implies ξfg(a2)− ξfg(a1) = 0.
By (ii) we conclude A1 ×m

n A2. Because γ k
Y,ℓ is strictly monotonic with respect to

Γmn and Γkℓ by Lemma 4.2 (d) it follows B1×k
ℓ B2. In other words, (ii) requires (i).

(f) Let (i) be true and let {A1,A2} ⊆ s, let A1 ≠ A2, let a1 ∈ A1 and a2 ∈ A2, let

ξfg(a1) ≠ ξfg(a2) and let (ξfg(a1), ξfg(a2)) ∉ rD. By definition of s there exist {B1,B2} ⊆ p
with A1 = γ k

Y,ℓ
←(B1) and A2 = γ k

Y,ℓ
←(B2) and, consequently, b1 ∶= γ k

Y,ℓ (a1) ∈ B1

and b2 ∶= γ k
Y,ℓ (a2) ∈ B2. Moreover, because p ≤ ξcd⇠({Z,{ℵ}}) and B1 ∩ Y ≠ ∅

and B2 ∩ Y ≠ ∅, necessarily, B1 ⊆ Y and B2 ⊆ Y. By definition, the assumption
(ξfg(a1), ξfg(a2)) ∉ rD implies ∣ξfg(a2) − ξfg(a1)∣ ∈ D ⊍ {0}. Hence, the assumption

ξfg(a1) ≠ ξfg(a2) lets us infer ∣ξfg(a2) − ξfg(a1)∣ ∈ D. By the initial remark that means
∣ξcd(a2) − ξcd(a1) + ℵδcd(a1, a2)∣ ∈ D. Therefore, (i) guarantees B1 ×k

ℓ B2. Since γ k
Y,ℓ

is monotonic with respect to Γmn and Γkℓ by Lemma 4.2 (d) that warrants that
A1×m

n A2 too. Thus, we have shown that (i) implies (ii).
If, conversely, (ii) holds and {B1,B2} ⊆ p and b1 ∈ B1 and b2 ∈ B2 are such

that B1 ≠ B2 and B1 ⊆ Y and B2 ⊆ Y and ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈ D, then
A1 ∶= γ k

Y,ℓ
←(B1) ∈ s and A2 ∶= γ k

Y,ℓ
←(B2) ∈ s and there are a1 ∈ A1 and a2 ∈ A2 with

b1 = γ k
Y,ℓ (a1) and b2 = γ k

Y,ℓ (a2). By the auxiliary statement at the very beginning of

the proof the assumption ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈ D implies ∣ξfg(a2) − ξfg(a1)∣ ∈
D. In particular, 0 ∉ D requires ξfg(a2) ≠ ξfg(a1). Moreover, ∣ξfg(a2) − ξfg(a1)∣ ∈ D
necessitates (ξfg(a2), ξfg(a1)) ∉ rD by definition of rD. Hence, (ii) ensures A1×m

n A2.
Because γ k

Y,ℓ is strictly monotonic with respect to Γmn and Γkℓ by Lemma 4.2 (d) we

can infer that also B1×k
ℓ B2, i.e., have derived (i). □

Proposition 8.5. Let w ∈ N and let D be any additive subsemigroup of N.
(a) The category U ≀ Zw can be expressed as the set of all (c,d, p) ∈ Zw∪{ℵ},∅S

such that ℵΣc
d ≡w 0, such that p ≤ ξcd⇠({Zw,{ℵ}}), such that for any B ∈ p

with B ⊆ ξcd←({ℵ}) always ∣B∣ ≤ 2 and, if ∣B∣ = 2, then ℵσc
d(B) = 0, and such

that for any B ∈ p with B ⊆ ξcd←(Zw) not only ∣B∣ = 2 and ∑z∈Zw zσc
d(B) = 0

but also ξcd(b′) − ξcd(b) + ℵδcd(b,b′) ≡w 0 for any {b,b′} ⊆ B.
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(b) The category U ≀rD Z0 can be expressed as the set of all (c,d, p) ∈ Z⊍{ℵ},∅S
for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → (Z ⊍ {ℵ}) ⊗ {○, ●} and
d∶ ⟦ℓ⟧→ (Z⊍{ℵ})⊗{○, ●}, such that p ≤ ξcd←({Z,{ℵ}}), such that ∣B∣ = 2 for
any B ∈ p, such that ℵσc

d(B) = 0 for any B ∈ p with B ⊆ ξcd←({ℵ}), such that
∑z∈Z zσc

d(B) = 0 and ξcd(b′)−ξcd(b)+ℵδcd(b,b′) = 0 for any {b,b′} ⊆ B and any
B ∈ p with B ⊆ ξcd←(Z), and such that for any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Z)
and B2 ⊆ ξcd←(Z) and B1 ≠ B2, whenever there exist b1 ∈ B1 and b2 ∈ B2 such
that ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈D, then B1×k

ℓ B2.
(c) The category U+ ≀rD Z0 can be expressed as the set of all (c,d, p) ∈ Z⊍{ℵ},∅S

for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → (Z ⊍ {ℵ}) ⊗ {○, ●} and
d∶ ⟦ℓ⟧→ (Z⊍{ℵ})⊗{○, ●}, such that p ≤ ξcd←({Z,{ℵ}}), such that ∣B∣ = 2 for
any B ∈ p, such that ℵσc

d(B) = 0 for any B ∈ p with B ⊆ ξcd←({ℵ}), such that
∑z∈Z zσc

d(B) = 0 and ξcd(b′)−ξcd(b)+ℵδcd(b,b′) = 0 for any {b,b′} ⊆ B and any
B ∈ p with B ⊆ ξcd←(Z), and such that for any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Z)
and B2 ⊆ ξcd←(Z) with B1 ≠ B2, whenever there exist b1 ∈ B1 and b2 ∈ B2 such
that ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈D ⊍ {0}, then B1×k

ℓ B2.
(d) The category O∗ ≀rD Z0 can be expresssed as the set of all (c,d, p) ∈ {ℵ},ZS

for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → ({ℵ} ⊗ {○, ●}) ⊍ Z and
d∶ ⟦ℓ⟧→ ({ℵ}⊗{○, ●})⊍Z, such that p ≤ ξcd←({Z,{ℵ}}), such that ∣B∣ = 2 for
any B ∈ p, such that ℵσc

d(B) = 0 for any B ∈ p with B ⊆ ξcd←({ℵ}), such that
ξcd(b′) − ξcd(b) + ℵδcd(b,b′) = 0 for any {b,b′} ∈ B and B ∈ p with B ⊆ ξcd←(Z),
such that ∣]b,b′′[kℓ ∩{b′ ∈ Πk

ℓ ∧ ξcd(b′) ∈ Z ∧ ξcd(b′)−ξcd(b)+ℵδcd(b,b′) = 0}∣ ≡2 0
for any {b,b′′} ∈ B with b ≠ b′′ and B ∈ p with B ⊆ ξcd←(Z), and such that for
any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Z) and B2 ⊆ ξcd←(Z) with B1 ≠ B2, whenever
there exist b1 ∈ B1 and b2 ∈ B2 such that ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈ D,
then B1×k

ℓ B2.
(e) The category O+ ≀rD Z0 can be expresssed as the set of all (c,d, p) ∈ {ℵ},ZS

for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ → ({ℵ} ⊗ {○, ●}) ⊍ Z and
d∶ ⟦ℓ⟧→ ({ℵ}⊗{○, ●})⊍Z, such that p ≤ ξcd←({Z,{ℵ}}), such that ∣B∣ = 2 for
any B ∈ p, such that ℵσc

d(B) = 0 for any B ∈ p with B ⊆ ξcd←({ℵ}), such that
ξcd(b′) − ξcd(b) + ℵδcd(b,b′) = 0 for any {b,b′} ∈ B and B ∈ p with B ⊆ ξcd←(Z),
such that ∣]b,b′′[kℓ ∩{b′ ∈ Πk

ℓ ∧ ξcd(b′) ∈ Z ∧ ξcd(b′)−ξcd(b)+ℵδcd(b,b′) = 0}∣ ≡2 0
for any {b,b′′} ∈ B with b ≠ b′′ and B ∈ p with B ⊆ ξcd←(Z), and such that for
any {B1,B2} ⊆ p with B1 ⊆ ξcd←(Z) and B2 ⊆ ξcd←(Z), whenever there exist
b1 ∈ B1 and b2 ∈ B2 such that ∣ξcd(b2) − ξcd(b1) + ℵδcd(b1,b2)∣ ∈ D ⊍ {0}, then
B1×k

ℓ B2.

Proof. All claims follow from Propositions 4.45 and 8.3 in combination with
Lemma 8.4. More precisely:

(a) If we take Propositions 4.45 and 8.3 (a) into account, then by definition the
category U ≀Zw = (U×Zw)⋊Zw is given by the set of all (c,d, p) ∈ Zw⊍{ℵ},∅S such that

ℵΣc
d ≡w 0, such that p ≤ ξcd⇠({Zw,{ℵ}}), such that for any B ∈ p with B ⊆ ξcd←({ℵ})

always ∣B∣ ≤ 2 and, if ∣B∣ = 2, then ℵσc
d(B) = 0, and such that, if {k, ℓ} ⊆ N0 are such
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that c∶ ⟦k⟧ → (Zw ⊍ {ℵ}) ⊗ {○, ●} and d∶ ⟦ℓ⟧ → (Zw ⊍ {ℵ}) ⊗ {○, ●}, if Y = ξcd←(Zw),
if the labelings f and g are such that ξfg = πw ○ εcd ○ γ k

Y,ℓ and ζ fg = ζcd ○ γ k
Y,ℓ and if

s = R(p,Y), then s ≤ ker(ξfg) and ∣A∣ = 2 and ∑z∈Zw zσ
f
g(A) = 0 for any A ∈ s. Thus,

the claim follows from Lemma 8.4 (a)–(c).
(b) By Propositions 4.45 and 8.3 (b) the category U ≀rD Z0 = (U∗(Z,rD)) ⋊ Z0 is

the set of all (c,d, p) ∈ Z⊍{ℵ},∅S for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ →
(Z ⊍ {ℵ})⊗ {○, ●} and d∶ ⟦ℓ⟧→ (Z ⊍ {ℵ})⊗ {○, ●}, such that p ≤ ξcd⇠({Z,{ℵ}}), such
that for any B ∈ p with B ⊆ ξcd←({ℵ}) both ∣B∣ = 2 and ℵσc

d(B) = 0, and such that, if
Y = ξcd←(Z), if {m,n} ⊆ N0 and f∶ ⟦m⟧ → Z⊗ {○, ●} and g∶ ⟦n⟧ → Z⊗ {○, ●} are such

that ξfg = πw○εcd○γ k
Y,ℓ and ζ fg = ζcd○γ k

Y,ℓ , and if s = R(p,Y), then s ≤ ker(ξfg), and ∣A∣ = 2

and ∑z∈Z zσf
g(A) = 0 for any A ∈ p, and for any {A1,A2} ⊆ s with A1 ≠ A2, whenever

there exist a1 ∈ A1 and a2 ∈ A2 such that ∣ξfg(a2)−ξfg(a1)∣ ∈D, then A1×m
n A2. Hence,

Lemma 8.4 (a)–(c) and (e) prove the claim.
(c) According to Propositions 4.45 and 8.3 (c) the category U+ ≀rD Z0, which is

to say ((U+)∗(Z,rD)) ⋊ Z0, is the set of all (c,d, p) ∈ Z⊍{ℵ},∅S for which there exist
{k, ℓ} ⊆ N0 such that c∶ ⟦k⟧→ (Z⊍ {ℵ})⊗ {○, ●} and d∶ ⟦ℓ⟧→ (Z⊍ {ℵ})⊗ {○, ●}, such
that p ≤ ξcd⇠({Z,{ℵ}}), such that for any B ∈ p with B ⊆ ξcd←({ℵ}) both ∣B∣ = 2 and

ℵσc
d(B) = 0, and such that, if Y = ξcd←(Z), if {m,n} ⊆ N0 and f∶ ⟦m⟧ → Z ⊗ {○, ●}

and g∶ ⟦n⟧ → Z ⊗ {○, ●} are such that ξfg = πw ○ εcd ○ γ k
Y,ℓ and ζ fg = ζcd ○ γ k

Y,ℓ , and if

s = R(p,Y), then s ≤ ker(ξfg), and ∣A∣ = 2 and ∑z∈Z zσf
g(A) = 0 for any A ∈ p, and for

any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and a2 ∈ A2 such that

∣ξfg(a2) − ξfg(a1)∣ ∈ D ⊍ {0}, then A1 ×m
n A2. Therefore, Lemma 8.4 (a)–(c), (d) and

(e) verify the assertion.
(d) Per Propositions 4.45 and 8.3 (d) the category O∗ ≀rD Z0 = ((O∗)∗(Z,rD))⋊Z0

is the set of all (c,d, p) ∈ {ℵ},ZS for which there exist {k, ℓ} ⊆ N0 such that c∶ ⟦k⟧ →
({ℵ} ⊗ {○, ●}) ⊍ Z and d∶ ⟦ℓ⟧ → ({ℵ} ⊗ {○, ●}) ⊍ Z, such that p ≤ ξcd⇠({Z,{ℵ}}),
such that for any B ∈ p with B ⊆ ξcd←({ℵ}) both ∣B∣ = 2 and ℵσc

d(B) = 0, and such
that, if Y = ξcd←(Z), if {m,n} ⊆ N0 and f∶ ⟦m⟧ → Z and g∶ ⟦n⟧ → Z are such that

ξfg = πw ○ εcd ○ γ k
Y,ℓ and if s = R(p,Y), then s ≤ ker(ξfg) and ∣A∣ = 2 for any A ∈ s and

∣]a,a′′[mn ∩ {a′ ∈ Πm
n ∧ ξfg(a′) − ξfg(a) = 0}∣ ≡2 0 for any {a,a′′} ⊆ A with a ≠ a′′ and

any A ∈ s, and for any {A1,A2} ⊆ s with A1 ≠ A2, whenever there exist a1 ∈ A1 and

a2 ∈ A2 such that ∣ξfg(a2) − ξfg(a1)∣ ∈ D, then A1 ×m
n A2. Thus, the claim follows by

Lemma 8.4 (a), (b), (d) and (e).
(e) Finally, Propositions 4.45 and 8.3 (e) tell us that the category O+ ≀rD Z0 =

((O+)∗(Z,rD)) ⋊ Z0 is the set of all (c,d, p) ∈ {ℵ},ZS for which there exist {k, ℓ} ⊆ N0

such that c∶ ⟦k⟧ → ({ℵ} ⊗ {○, ●}) ⊍ Z and d∶ ⟦ℓ⟧ → ({ℵ} ⊗ {○, ●}) ⊍ Z, such that
p ≤ ξcd⇠({Z,{ℵ}}), such that for any B ∈ p with B ⊆ ξcd←({ℵ}) both ∣B∣ = 2 and

ℵσc
d(B) = 0, and such that, if Y = ξcd←(Z), if {m,n} ⊆ N0 and f∶ ⟦m⟧ → Z and

g∶ ⟦n⟧ → Z are such that ξfg = πw ○ εcd ○ γ k
Y,ℓ and if s = R(p,Y), then s ≤ ker(ξfg) and

∣A∣ = 2 for any A ∈ s and ∣]a,a′′[mn ∩ {a′ ∈ Πm
n ∧ ξfg(a′) − ξfg(a) = 0}∣ ≡2 0 for any

{a,a′′} ⊆ A with a ≠ a′′ and any A ∈ s, and for any {A1,A2} ⊆ s with A1 ≠ A2,
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whenever there exist a1 ∈ A1 and a2 ∈ A2 such that ∣ξfg(a2) − ξfg(a1)∣ ∈ D ⊍ {0}, then
A1×m

n A2. Hence, Lemma 8.4 (a), (b) and (d)–(f) prove the claim. □

9. The functor between the two-colored and the labeled categories

In this section, a faithful strict monoidal functor is constructed from each category
of two-colored partitions from Section 7.2, i.e., one representing a unitary half-
liberation, into its associated supercategory from Section 8. It is convenient to
define it on the set of all two-colored partitions. Concretely, on objects it will be
completely determined by the condition that ○ is sent to (0, ○)⊗ (ℵ, ○) respectively
0⊗ (ℵ, ○), depending on whether the tags other than ℵ are unitary or orthogonal in
the supercategory. On partitions, it will simply “double up” the original partition,
one copy on the 0-area, the other on the ℵ-area.

9.1. Definition of the general functor. On objects the alleged functor is
defined as follows.

Definition 9.1. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then let F ≡ F0 ≡
U,OF 0 be the mapping with the property that for any k ∈ N0 and any c∶ ⟦k⟧→ {○, ●}
the labeling F (c)∶ ⟦2k⟧→ ((U ⊍ {ℵ})⊗ {○, ●}) ⊍O satisfies

x↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ℵ, ●) if x odd ∧ c(x+12 ) = ●
(0, ○) if x odd ∧ c(x+12 ) = ○ ∧ (U,O) = (Zw,∅)
0 if x odd ∧ c(x+12 ) = ○ ∧ (U,O) = (∅,Zw)
(0, ●) if x even ∧ c(x2) = ● ∧ (U,O) = (Zw,∅)
0 if x even ∧ c(x2) = ● ∧ (U,O) = (∅,Zw)
(ℵ, ○) if x even ∧ c(x2) = ○

for any x ∈ ⟦2k⟧.
Defining the functor on morphisms only requires part (c) of the following lemma.

However, it is convenient to prove the other statements at this point as well.

Lemma 9.2. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any {k, ℓ} ⊆
N0 and any c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, if a = F (c) and b = F (d) and
Y = ξab←(U ⊍O) and Z = ξab←({ℵ}), the following hold.

(a) For any x ∈ ⟦2k⟧ and y ∈ ⟦2ℓ⟧,

ξab(◾x) = {
0 ∣ (x odd ∧ c(x+12 ) = ○) ∨ (x even ∧ c(x2) = ●)
ℵ ∣ (x odd ∧ c(x+12 ) = ●) ∨ (x even ∧ c(x2) = ○)

,

ξab(◾y) = {
0 ∣ (y odd ∧ d(y+12 ) = ○) ∨ (y even ∧ d(y2) = ●)
ℵ ∣ (y odd ∧ d(y+12 ) = ●) ∨ (y even ∧ d(y2) = ○)

.

In particular,

Y = {◾x ∣x ∈ ⟦2k⟧ ∧ ((x odd ∧ c(x+12 ) = ○) ∨ (x even ∧ c(x2) = ●))}
⊍ {◾y ∣ y ∈ ⟦2ℓ⟧ ∧ ((y odd ∧ d(y+12 ) = ○) ∨ (y even ∧ d(y2) = ●))}
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and

Z = {◾x ∣x ∈ ⟦2k⟧ ∧ ((x odd ∧ c(x+12 ) = ●) ∨ (x even ∧ c(x2) = ○))}
⊍ {◾y ∣ y ∈ ⟦2ℓ⟧ ∧ ((y odd ∧ d(y+12 ) = ●) ∨ (y even ∧ d(y2) = ○))}.

(b) For any x ∈ ⟦2k⟧ and y ∈ ⟦2ℓ⟧, if (U,O) = (Zw,∅) and if ◾x ∈ Y and ◾y ∈ Y,
then

ζab(◾x) = {
○ ∣x odd ∧ c(x+12 ) = ○
● ∣x even ∧ c(x2) = ●

, ζab(◾y) = {
○ ∣ y odd ∧ d(y+12 ) = ○
● ∣ y even ∧ d(y2) = ●

,

and, if ◾x ∈ Z and ◾y ∈ Z, then

ζab(◾x) = {
● ∣x odd ∧ c(x+12 ) = ●
○ ∣x even ∧ c(x2) = ○

, ζab(◾y) = {
● ∣ y odd ∧ d(y+12 ) = ●
○ ∣ y even ∧ d(y2) = ○

.

(c) α(Y) = α(Z) = k and β(Y) = β(Z) = ℓ.
(d) For any i ∈ ⟦k⟧ and any j ∈ ⟦ℓ⟧,

γ 2k
Y,2ℓ (◾i) = {

◾(2i) ∣ c(i) = ●
◾(2i − 1) ∣ c(i) = ○ , γ 2k

Y,2ℓ (◾j) = {◾
(2j) ∣d(j) = ●
◾(2j − 1) ∣d(j) = ○

and

γ 2k
Z,2ℓ (◾i) = {

◾(2i − 1) ∣ c(i) = ●
◾(2i) ∣ c(i) = ○ , γ 2k

Z,2ℓ (◾j) = {◾
(2j − 1) ∣d(j) = ●
◾(2j) ∣d(j) = ○ .

(e) For any b ∈ Πk
ℓ , if a = γ 2k

Y,2ℓ (b) and z = γ 2k
Z,2ℓ (b), then

(z = ν2k2ℓ (a)⇔ ζcd(b) = ○) ∧ (a = ν2k2ℓ (z)⇔ ζcd(b) = ●).
Proof. (a) and (b) are evident from the definition. In order to facilitate the

proofs of (c) and (d) we first show the auxiliary statement that for any x ∈ ⟦2k⟧ and
y ∈ ⟦2ℓ⟧,

∣Y ∩Πx
0 ∣ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x−1
2 ∣x odd ∧ c(x+12 ) = ●
x+1
2 ∣x odd ∧ c(x+12 ) = ○
x
2 ∣x even

, ∣Y ∩Π0
y ∣ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y−1
2 ∣ y odd ∧ d(y+12 ) = ●
y+1
2 ∣ y odd ∧ d(y+12 ) = ○
y
2 ∣ y even

and

∣Z ∩Πx
0 ∣ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x+1
2 ∣x odd ∧ c(x+12 ) = ●
x−1
2 ∣x odd ∧ c(x+12 ) = ○
x
2 ∣x even

, ∣Z ∩Π0
y ∣ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y+1
2 ∣ y odd ∧ d(y+12 ) = ●
y−1
2 ∣ y odd ∧ d(y+12 ) = ○
y
2 ∣ y even

.

Indeed, e.g., for any x ∈ ⟦2k⟧ part (a) shows that the number ∣Y ∩Πx
0 ∣ is given by

∣{t ∈ ⟦x⟧ ∧ ((t odd ∧ c( t+12 ) = ○) ∨ (t even ∧ c( t2) = ●))}∣,
which, of course, is the same

∣{t ∈ ⟦x⟧ ∧ t odd ∧ c( t+12 ) = ○}∣ + ∣{t ∈ ⟦x⟧ ∧ t even ∧ c( t2) = ●}∣.
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By the change of variable t = 2i − 1 in the first and t = 2i in the second term this
number can also be expressed as

∣{i ∈ ⟦k⟧ ∧ i ≤ x+1
2 ∧ c(i) = ○}∣ + ∣{i ∈ ⟦k⟧ ∧ i ≤ x

2 ∧ c(i) = ●}∣.
Distinguishing the two cases i ≤ x

2 and x
2 < i ≤ x+1

2 in the first case and then combining
two of three resulting overall cases let us rewrite ∣Y ∩Πx

0 ∣ as

∣{i ∈ ⟦k⟧ ∧ i ≤ x
2 ∧ (c(i) = ○ ∨ c(i) = ●)}∣ + ∣{i ∈ ⟦k⟧ ∧ x

2 < i ≤ x+1
2 ∧ c(i) = ○}∣.

The condition in the second expression can only be satisfied if x is odd. Otherwise,
this case yields no contribution. Thus, we have shown,

∣Y ∩Πx
0 ∣ = ⌊x2 ⌋ + {

1 ∣x odd ∧ c(x+12 ) = ○
0 ∣otherwise,

which is what was claimed. The proof for ∣Y∩Π0
y ∣ is analogous. And for ∣Z∩Πx

0 ∣ and
∣Z ∩Π0

y ∣ the roles of ○ and ● in the above proof are exchanged.

(c) The preceding observation implies in particular that α(Y) = ∣Y∩Π2k
0 ∣ = 2k

2 = k
and, likewise, β(Y) = ∣Y ∩Π0

2ℓ∣ = ℓ. It follows α(Z) = k and β(Z) = ℓ by Z = Πk
ℓ /Y.

(d) Given any i ∈ ⟦k⟧ and x ∈ ⟦2k⟧ according to the definition γ 2k
Y,2ℓ (◾i) = ◾x if

and only if both ∣Y ∩Πx
0 ∣ = i and ◾x ∈ Y. By (a) that is equivalent to the condition

that

i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x−1
2 ∣x odd ∧ c(x+12 ) = ●
x+1
2 ∣x odd ∧ c(x+12 ) = ○
x
2 ∣x even

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∧ ((x odd ∧ c(x+12 ) = ○) ∨ (x even ∧ c(x2) = ●)),

which immediately simplifies to the demand that

i = {
x+1
2 ∣x odd ∧ c(x+12 ) = ○
x
2 ∣x even ∧ c(x2) = ●

.

And that proves the claim about γ 2k
Y,2ℓ (◾i). The proof of the claim about γ 2k

Y,2ℓ (◾j)
for j ∈ ⟦2ℓ⟧ is completely analogous. Just replace i with j and c with d.

Moreover, for any i ∈ ⟦k⟧ and x ∈ ⟦2k⟧ it holds γ 2k
Z,2ℓ (◾i) = ◾x if and only if both

∣Z ∩Πx
0 ∣ = i and ◾x ∈ Z, which by (a) is satisfied in turn if and only if

i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x+1
2 ∣x odd ∧ c(x+12 ) = ●
x−1
2 ∣x odd ∧ c(x+12 ) = ○
x
2 ∣x even

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∧ ((x odd ∧ c(x+12 ) = ●) ∨ (x even ∧ c(x2) = ○)),

Since that is equivalent to the condition that

i = {
x+1
2 ∣x odd ∧ c(x+12 ) = ●
x
2 ∣x even ∧ c(x2) = ○

.

the claim about γ 2k
Z,2ℓ (◾i) is true as well. Once more, the claim about γ 2k

Z,2ℓ (◾j) for

j ∈ ⟦2ℓ⟧ is analogous.



274 3. HALF-LIBERATED UNITARY EASY QUANTUM GROUPS

(e) If b = ◾j for some j ∈ ⟦ℓ⟧, then by (d), if d(j) = ●, then a = ◾(2j) and z =
◾(2j − 1) and, if d(j) = ○, then a = ◾(2j − 1) and z = ◾(2j). As ν2k2ℓ (◾(2j − 1)) = ◾(2j)
and ζcd(b) = d(j) then, this is the proof in that case. In the opposite situation, where
b = ◾i for some i ∈ ⟦k⟧, part (d) shows that, likewise, if c(i) = ●, then a = ◾(2j) and
z = ◾(2j − 1) and, if c(j) = ○, then a = ◾(2j − 1) and z = ◾(2j). Contrary to the

previous case, though, ν2k2ℓ (
◾(2j)) = ◾(2j − 1), here. However, now also ζcd(b) = c(j).

Thus, the two “inversions” cancel out and we see that the claim is true in both
cases. □

By Lemma 9.2 (c) the following makes sense.

Definition 9.3. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, let F ≡ U,OF be
defined as the pair (F0, F1), where F0 is the mapping from Definition 9.1 and where
F1 is the mapping from S to U⊍{ℵ},OS which for any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → {○, ●}
and d∶ ⟦ℓ⟧ → {○, ●} and any (c,d, p) ∈ S satisfies (c,d, p) ↦ (a,b, q), where a = F0(c)
and b = F0(d) and where, if Y = ξab←(U ⊍O) and Z = ξab←({ℵ}), then

q = {γ 2k
Y,2ℓ →(B), γ 2k

Z,2ℓ →(B) ∣B ∈ p}.
9.2. Functoriality of the construction. Next, we show that F is indeed a

faithful strict monoidal ∗-functor. Once more, only part (f) of the next lemma will
be required to prove this. However, the other properties of F (which will be needed
later) are convenient to prove at the same time.

Lemma 9.4. For any w ∈ N0, if (U,O) ∈ {(Zw,∅), (∅,Zw)}, then for any {k, ℓ} ⊆
N0, any c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→ {○, ●} and any (c,d, p) ∈ S, if (a,b, q) = F (c,d, p)
and Y = ξab←(U ⊍O) and Z = ξab←({ℵ}), then

(a) q ≤ ξab⇠({U ⊍O,{ℵ}}).
(b) If (U,O) = (Zw,∅), then ζab ○ γ 2k

Y,2ℓ = ζcd. Moreover, ζab ○ γ 2k
Z,2ℓ = ζcd.

(c) {∣A∣ ∣A ∈ q ∧ A ⊆ Y} = {∣C∣ ∣C ∈ q ∧ C ⊆ Z} = {∣B∣ ∣B ∈ p}.
(d) If (U,O) = (Zw,∅), then {∑z∈Zw zσa

b(A) ∣A ∈ q ∧ A ⊆ Y} = {σc
d(B) ∣B ∈ p}.

Moreover, {ℵσa
b(C) ∣C ∈ q ∧ C ⊆ Z} = {σc

d(B) ∣B ∈ p}.
(e) If (U,O) = (Zw,∅), then ∑z∈Zw zΣa

b = Σc
d. Moreover, ℵΣa

b = Σc
d.

(f) R(q,Y) = R(q,Z) = p.
(g) If Σc

d ≡w 0, then for any {b,b′} ⊆ Πk
ℓ , if a = γ 2k

Y,2ℓ (b) and a′ = γ 2k
Y,2ℓ (b′), then

ξab(a′) − ξab(a) + ℵδ
a
b(a,a′) = δcd(b,b′).

(h) If Σc
d ≡w 0, then for any {b,b′′} ⊆ Πk

ℓ with b ≠ b′′, if a = γ 2k
Y,2ℓ (b) and

a′′ = γ 2k
Y,2ℓ (b′′), then

∣]a,a′′[2k2ℓ ∩ {a′ ∈ Π2k
2ℓ ∧ ξab(a′) ∈ Zw
∧ ξab(a′) − ξab(a) + ℵδ

a
b(a,a′) ≡w 0}∣

= ∣]b,b′′[kℓ ∩ {b′ ∈ Πk
ℓ ∧ δcd(b,b′) ≡w 0}∣.

Proof. (a) If k = ℓ = 0 and thus q = ∅ = ξab⇠({U ⊍O,{ℵ}}), there is nothing
to show. Otherwise, ξab

⇠({U⊍O,{ℵ}}) = {Y,Z}. But that is clear since for any A ∈ q
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by definition there exists B ∈ p such that either A = γ 2k
Y,2ℓ →(B) or A = γ 2k

Z,2ℓ →(B) and

since γ 2k
Y,2ℓ →(B) ⊆ Y and γ 2k

Z,2ℓ →(B) ⊆ Z.

(b) If (U,O) = (Zw,∅), then for any i ∈ ⟦k⟧ by Lemma 9.2 (d) the point γ 2k
Y,2ℓ (◾i)

is given by
◾(2i) if c(i) = ● and by

◾(2i − 1) if c(i) = ○. That is why by Lemma 9.2 (b),
the color ζab(γ 2k

Y,2ℓ (◾i)) is equal to ○ if c(i) = ● and to ● if c(i) = ○, i.e., to ζcd(◾i).
Likewise, Lemma 9.2 (d) shows that for any j ∈ ⟦ℓ⟧ the point γ 2k

Y,2ℓ (◾j) is ◾(2j) if

d(j) = ● and ◾(2j − 1) if d(j) = ○, whence we conclude with the help of Lemma 9.2 (b)
that ζab(γ 2k

Y,2ℓ (◾j)) is ● if d(j) = ● and ○ if d(j) = ○, which, of course, is ζcd(◾j). The
proves the first claim.

Analogously, for any i ∈ ⟦k⟧ by Lemma 9.2 (d) the point γ 2k
Z,2ℓ (◾i) is given by

◾(2i − 1) if c(i) = ● and by
◾(2i) if c(i) = ○ and thus by Lemma 9.2 (b) the color

ζab(γ 2k
Z,2ℓ (◾i)) by ○ if c(i) = ● and by ● if c(i) = ○. And, for any j ∈ ⟦ℓ⟧ Lemma 9.2 (d)

tells us that γ 2k
Z,2ℓ (◾j) is ◾(2j − 1) if d(j) = ● and ◾(2j) if d(j) = ○, which is why by

the Lemma 9.2 (b) the color ζab(γ 2k
Z,2ℓ (◾j)) is ● if d(j) = ● and ○ if d(j) = ○. Hence,

the second claim is true as well.
(c) Because Y ∩ Z = ∅ and because Y is the image of γ 2k

Y,2ℓ and Z is the image of

γ 2k
Z,2ℓ the definition of q implies {A ∈ q ∧ A ⊆ Y} = {γ 2k

Y,2ℓ →(B) ∣B ∈ p} and {A ∈ q ∧ A ⊆
Z} = {γ 2k

Z,2ℓ →(B) ∣B ∈ p}. Hence, the fact that γ 2k
Y,2ℓ and γ 2k

Z,2ℓ are injective proves the
claim.

(d) If (U,O) = (Zw,∅), then for any B ∈ p by definition of a and b the block
A = γ 2k

Y,2ℓ →(B) of q is contained in Y = ξab←(Zw) and thus satisfies by the first part of
(b),

∑z∈Zw zσa
b(A) = ∑e∈A σ(ζab(e)) = ∑d∈B σ(ζab(γ 2k

Y,2ℓ (d))) = ∑d∈B σ(ζcb(d)) = σc
d(B).

Since any A ∈ q with A ⊆ Y arises in this way, that proves the first assertion.
Similarly, if, instead, A = γ 2k

Z,2ℓ →(B), then A ⊆ Z = ξab←({ℵ}) and by the second
part of (b),

ℵσc
b(A) = ∑e∈A σ(ζab(e)) = ∑d∈B σ(ζab(γ 2k

Y,2ℓ (d))) = ∑d∈B σ(ζcb(d)) = σc
d(B).

And because all A ∈ q with A ⊆ Z are of this kind, we have thus confirmed the second
claim too.

(e) If (U,O) = (Zw,∅), then the first part of (d) and Π2k
2ℓ = ⋃A∈q A imply

∑z∈Zw zΣa
b = ∑z∈Zw ∑A∈q zσ

a
b(B) = ∑A∈q ∧A⊆Y∑z∈Zw zσa

b(B) = ∑B∈p σ
c
d(p) = Σc

d.

Likewise, the second part of (d) lets us conclude

ℵΣa
b = ∑A∈q ℵσ

a
b(B) = ∑A∈q ∧A⊆Z ℵσa

b(B) = ∑B∈p σ
c
d(p) = Σc

d.
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(f) For any B ∈ p both γ 2k
Y,2ℓ

←(γ 2k
Y,2ℓ →(B)) = B ≠ ∅ because γ 2k

Y,2ℓ is injective and
γ 2k
Y,2ℓ

←(γ 2k
Z,2ℓ →(B)) = ∅ because Y ∩ Z = ∅. Hence, indeed

R(q,Y) = γ 2k
Y,2ℓ

⇠({γ 2k
Y,2ℓ →(B), γ 2k

Z,2ℓ →(B)}B∈p)
= {γ 2k

Y,2ℓ
←(γ 2k

Y,2ℓ →(B)), γ 2k
Y,2ℓ

←(γ 2k
Z,2ℓ →(B))}B∈p/{∅}

= p.

Exchanging the roles of Y and Z proves R(q,Z) = p.
(g) For any {b,b′} ⊆ Πk

ℓ , if a = γ 2k
Y,2ℓ (b) and a′ = γ 2k

Y,2ℓ (b′), then ξab(a) = ξab(a′) = 0

because Y = ξab←({0}) by Lemma 9.2 (a). Hence, if Σc
d ≡w 0 and thus also ℵΣa

b ≡w 0
by the second part of (e), it is sufficient to show is that ℵδab(a,a′) and coincide
δcd(b,b′) coincide. If b = b′, that is clear. Hence, let b ≠ b′ in the following. Because

ℵσa
b({a}) = ℵσa

b({a′}) = 0 by {a,a′} ⊆ Y it is enough to to prove that ℵσa
b(]a,a′[2k2ℓ ) is

equal to δcd(b,b′).
If z ∶= γ 2k

Z,2ℓ (b) and z′ ∶= γ 2k
Z,2ℓ (b′), then ℵδab(z,z′) = δcd(b,b′) for the the follow-

ing reasons. Since ζab = ζcd ○ γ 2k
Z,2ℓ by the second part of (b) the measure ℵσa

b is
the push-forward of σc

d, i.e., ℵσa
b(X) = σc

d(γ 2k
Z,2ℓ

←(X)) for any X ⊆ Π2k
2ℓ . Moreover,

γ 2k
Z,2ℓ

←(]z,z′[2k2ℓ ) = ]b,b′[kℓ since γ 2k
Z,2ℓ is strictly monotonic with respect to Γkℓ and

Γ2k
2ℓ by Lemma 4.2 (a). Thus,

ℵδ
a
b(z,z′) = 1

2ℵσ
a
b({z}) + ℵσa

b(]z,z′[2k2ℓ ) + 1
2ℵσ

a
b({z′})

= 1
2σ

c
d({b}) + σc

d(]b,b′[kℓ ) + 1
2σ

c
d({b′})

= δcd(b,b′).

Hence, it suffices to prove that ℵσa
b(]a,a′[2k2ℓ ) and ℵδab(z,z′) are the same.

Furthermore, by two applications of Lemma 9.2 (e),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a = ν2k2ℓ (z) ∧ z′ = ν2k2ℓ (a′) if ζcd(b) = ● ∧ ζcd(b′) = ○
a = ν2k2ℓ (z) ∧ a′ = ν2k2ℓ (z′) if ζcd(b) = ● ∧ ζcd(b′) = ●
z = ν2k2ℓ (a) ∧ z′ = ν2k2ℓ (a′) if ζcd(b) = ○ ∧ ζcd(b′) = ○
z = ν2k2ℓ (a) ∧ a′ = ν2k2ℓ (z′) if ζcd(b) = ○ ∧ ζcd(b′) = ●.

On the other hand, naturally,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{a} ⊍ ]a,a′[2k2ℓ ⊍ {a′} = ]z,z′[2k2ℓ if a = ν2k2ℓ (z) ∧ z′ = ν2k2ℓ (a′)
{a} ⊍ ]a,a′[2k2ℓ = ]z,z′[2k2ℓ ⊍ {z′} if a = ν2k2ℓ (z) ∧ a′ = ν2k2ℓ (z′)

]a,a′[2k2ℓ ⊍ {a′} = {z} ⊍ ]z,z′[2k2ℓ if z = ν2k2ℓ (a) ∧ z′ = ν2k2ℓ (a′)
]a,a′[2k2ℓ = {z} ⊍ ]z,z′[2k2ℓ ⊍ {z′} if z = ν2k2ℓ (a) ∧ a′ = ν2k2ℓ (z′).
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Combining the two statements and using the additivity of ℵσa
b and the fact that

ℵσa
b({a}) = ℵσa

b({a′}) = 0 by {a,a′} ⊆ Y thus yields

ℵσ
a
b(]a,a′[2k2ℓ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℵσa
b(]z,z′[2k2ℓ ) if ζcd(b) = ● ∧ ζcd(b′) = ○

ℵσa
b(]z,z′[2k2ℓ ) + ℵσa

b({z′}) if ζcd(b) = ● ∧ ζcd(b′) = ●
ℵσa

b({z}) + ℵσa
b(]z,z′[2k2ℓ ) if ζcd(b) = ○ ∧ ζcd(b′) = ○

ℵσa
b({z}) + ℵσa

b(]z,z′[2k2ℓ ) + ℵσa
b({z′}) if ζcd(b) = ○ ∧ ζcd(b′) = ●.

Actually, the right hand side is identical to 1
2ℵσ

a
b({z}) + ℵσa

b(]z,z′[2k2ℓ ) + 1
2ℵσ

a
b({z′})

because ℵσa
b({z}) = σ(ζcd(b)) and ℵσa

b({z′}) = σ(ζcd(b′)). Thus, the claim is true.
(h) By (g) the mapping γ 2k

Y,2ℓ restricts to a bijection from the set {b′ ∈ Πk
ℓ ∧

δcd(b,b′) ≡w 0} to {a′ ∈ Y ∧ ξab(a′) − ξab(a) + ℵδab(a,a′) ≡w 0}. By Lemma 4.2 (a) it is
also strictly monotonic with respect to Γkℓ and Γ2k

2ℓ and thus restricts to a bijection
from ]b,b′′[kℓ to ]a,a′′[2k2ℓ ∩Y. And that concludes the proof. □

We are now ready to show that the construction really does yield a functor.
More precisely, below we show that for any w ∈ N0 and any n ∈ N, if (U,O) ∈
{(Zw,∅), (∅,Zw)} and if N ∶ Zw ⊍ {ℵ}→ N is such that N(z) = n for any z ∈ Zw and
N(ℵ) = 1, then

◻ F is a faithful strict monoidal ∗-functor from S to U⊍{ℵ},OS.
◻ n,NCF is a faithful C-linear strict monoidal ∗-functor from nCS to NCU⊍{ℵ},OS.

faithful strict monoidal linear ∗-functor between the linear versions of the
categories.

Proposition 9.5. For any w ∈ N0 and any n ∈ N, if (U,O) ∈ {(Zw,∅), (∅,Zw)}
and if N ∶ Zw ⊍ {ℵ} → N is such that N(z) = n for any z ∈ Zw and N(ℵ) = 1, then
the following are true.

(a) For any {(c,d, p), (c′,d′, p′)} ⊆ S, if F (c,d, p) = F (c′,d′, p′), then already
(c,d, p) = (c′,d′, p′).

(b) F (idc) = idF (c) for any c∶ ⟦k⟧→ {○, ●} and any k ∈ N0

(c) F ((c,d, p)∗) = (F (c,d, p))∗ for any (c,d, p) ∈ S.
(d) F (c1⊗c2) = F (c1)⊗F (c2) for any c1∶ ⟦k1⟧→ {○, ●} and c2∶ ⟦k2⟧→ {○, ●} and

any {k1, k2} ⊆ N0.
(e) F ((c1,d1, p1)⊗ (c2,d2, p2)) = F (c1,d1, p1)⊗F (c2,d2, p2) for any {(c1,d1, p1),
(c2,d2, p2)} ⊆ S.

(f) F ((d, e, q)(c,d, p)) = F (d, e, q)F (c,d, p) as well as nlf((d, e, q), (c,d, p)) =
N lf(F (d, e, q), F (c,d, p)) for any {(c,d, p), (d, e, q)} ⊆ S.

Proof. Throughout, the following shorthand will be used.
Notation in this proof. For any {k, ℓ} ⊆ N0 and any two-colorings c∶ ⟦k⟧ → {○, ●}

and d∶ ⟦ℓ⟧→ {○, ●} let

Y(c,d) ∶= ξF (c)
F (d)

←(Zw) ∧ Z(c,d) ∶= ξF (c)
F (d)

←({ℵ}).
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Auxiliary statements. It will be used on numerous occasions that then for any
X ∈ {Y,Z} and i ∈ ⟦k⟧ and j ∈ ⟦ℓ⟧,

γ 2k
X(c,d),2ℓ (◾i) = γ 2k

X(c,∅),0 (◾i) ∧ γ 2k
X(c,d),2ℓ (◾j) = γ 0

X(∅,d),2ℓ(◾j)

and

κ2ℓ2k ○ γ 2k
X(c,d),2ℓ = γ 2ℓ

X(d,c),2k ○ κℓk.

Indeed, for X = Y and any x ∈ ⟦2k⟧, by definition, γ 2k
Y(c,d),2ℓ (

◾i) = ◾x if and only

if ◾x ∈ Y(c,d) and ∣Y(c,d) ∩ Πx
0 ∣ = i, which is to say ξ

F (c)
F (d)(

◾i) ∈ Zw and ∣{t ∈ ⟦x⟧ ∧
ξ
F (c)
F (d)(◾t) ∈ Zw}∣ = i or, equivalently, F (c)(x) ∈ Zw and ∣{t ∈ ⟦x⟧ ∧ F (c)(t) ∈ Zw}∣ = i.

But exactly that is also what it means for γ 2k
Y(c,∅),0 (

◾i) = ◾x to hold. The proofs

for ◾j and for the case X = Z are analogous. The second identity follows similarly.

And, indeed, the fact that ξ
F (d)
F (c) = ξ

F (c)
F (d) ○ κ2k2ℓ by Lemmy 4.2 (b) implies X(d, c) =

κ2k2ℓ
←(X(c,d)), which then proves κ2ℓ2k ○ γ 2k

X(c,d),2ℓ = γ 2ℓ
X(d,c),2k ○ κℓk by Lemmy 4.5 (b).

(a) Given any {k, ℓ} ⊆ N0 and c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→ {○, ●} and (c,d, p) ∈ S,
if (a,b, q) = F (c,d, p), then p can be recovered from q because R(q,Z(c,d)) = p by
Lemma 9.4 (f). That proves the first claim.

(b) For any k ∈ N0 and c∶ ⟦k⟧→ {○, ●}, if (F (c), F (c), q) = F (idc), then by defini-
tion q = {γ 2k

X(c,c),2k→({
◾i, ◾i}) ∣X ∈ {Y,Z} ∧ i ∈ ⟦k⟧}. According to Lemma 9.2 (d) the

set γ 2k
X(c,c),2k→({

◾i, ◾i}) is given by {◾(2i), ◾(2i)} if either c(i) = ● and X = Y or c(i) = ○
and X = Z and by {◾(2i − 1), ◾(2i − 1)} if either c(i) = ○ and X = Y or c(i) = ● and
X = Z. In consequence, q = {{◾(2i), ◾(2i)},{

◾(2i − 1), ◾(2i − 1)} ∣ i ∈ ⟦k⟧} = id2k, which
proves F (idc) = idF (c).

(c) Given any {k, ℓ} ⊆ N0 and c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→ {○, ●} and (c,d, p) ∈ S, if
(a,b, q) = F (c,d, p) and (b,a, r) = F (d, c, p∗), then r = {γ 2ℓ

X(d,c),2k→(E) ∣X ∈ {Y,Z}∧E ∈
p∗} = {γ 2ℓ

X(d,c),2k→(κkℓ←(B)) ∣X ∈ {Y,Z} ∧ B ∈ p} by definition. Since (κkℓ )−1 = κℓk the

mapping γ 2ℓ
X(d,c),2k→ ○ κkℓ← is the same as γ 2ℓ

X(d,c),2k→ ○ κℓk→ = (γ 2ℓ
X(d,c),2k ○ κℓk)→, which,

because κ2ℓ2k ○ γ 2k
X(c,d),2ℓ = γ 2ℓ

X(d,c),2k ○ κℓk by the initial remark, is in turn identical to

(κ2ℓ2k ○ γ 2k
X(c,d),2ℓ )→ = κ2ℓ2k→ ○ γ 2k

X(c,d),2ℓ →. Hence, considering that (κ2ℓ2k)−1 = κ2k2ℓ , we have

shown r = {κ2k2ℓ←(γ 2k
X(c,d),2ℓ →(B)) ∣X ∈ {Y,Z} ∧B ∈ p} = {γ 2k

X(c,d),2ℓ →(B) ∣X ∈ {Y,Z} ∧B ∈
p}∗ = q∗. In other words, F ((c,d, p)∗) = F (c,d, p)∗.

(d) If at = F (ct) for each t ∈ ⟦2⟧ and if e = F (c1 ⊗ c2), then we have to prove
e = a1⊗ a2. If the statements (U,O) = (Zw,∅) and (U,O) = (∅,Zw) are abbreviated
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by U and O, respectively, then for any x ∈ ⟦2⟧, by definition, on the one hand,

(a1 ⊗ a2)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ℵ, ●) ∣ x ≤ 2k1 ∧ x odd ∧ c1(x+12 ) = ●
(0, ○) ∣ x ≤ 2k1 ∧ x odd ∧ c1(x+12 ) = ○ ∧ U
0 ∣ x ≤ 2k1 ∧ x odd ∧ c1(x+12 ) = ○ ∧ O
(0, ●) ∣ x ≤ 2k1 ∧ x even ∧ c1(x2) = ● ∧ U
0 ∣ x ≤ 2k1 ∧ x even ∧ c1(x2) = ● ∧ O
(ℵ, ○) ∣ x ≤ 2k1 ∧ x even ∧ c1(x2) = ○
(ℵ, ●) ∣ 2k1 < x ∧ x − 2k1 odd ∧ c2(x−2k1+12 ) = ●
(0, ○) ∣ 2k1 < x ∧ x − 2k1 odd ∧ c2(x−2k1+12 ) = ○ ∧ U
0 ∣ 2k1 < x ∧ x − 2k1 odd ∧ c2(x−2k1+12 ) = ○ ∧ O
(0, ●) ∣ 2k1 < x ∧ x − 2k1 even ∧ c2(x−2k12 ) = ● ∧ U
0 ∣ 2k1 < x ∧ x − 2k1 even ∧ c2(x−2k12 ) = ● ∧ O
(ℵ, ○) ∣ 2k1 < x ∧ x − 2k1 even ∧ c2(x−2k12 ) = ○

and, on the other hand,

e(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ℵ, ●) ∣ x odd ∧ c1(x+12 ) = ● ∧ x+1
2 ≤ k1

(ℵ, ●) ∣ x odd ∧ c2(x+12 − k1) = ● ∧ k1 < x+1
2

(0, ○) ∣ x odd ∧ c1(x+12 ) = ○ ∧ U ∧ x+1
2 ≤ k1

(0, ○) ∣ x odd ∧ c2(x+12 − k1) = ○ ∧ U ∧ k1 < x+1
2

0 ∣ x odd ∧ c1(x+12 ) = ○ ∧ O ∧ x+1
2 ≤ k1

0 ∣ x odd ∧ c2(x+12 − k1) = ○ ∧ O ∧ k1 < x+1
2

(0, ●) ∣ x even ∧ c1(x2) = ● ∧ U ∧ x
2 ≤ k1

(0, ●) ∣ x even ∧ c2(x2 − k1) = ● ∧ U ∧ k1 < x
2

0 ∣ x even ∧ c1(x2) = ● ∧ O ∧ x
2 ≤ k1

0 ∣ x even ∧ c2(x2 − k1) = ● ∧ O ∧ k1 < x
2

(ℵ, ○) ∣ x even ∧ c1(x2) = ○ ∧ x
2 ≤ k1

(ℵ, ○) ∣ x even ∧ c1(x2 − k1) = ○ ∧ k1 < x
2

.

Of course, x − 2k1 ≡2 x and x−2k1+1
2 = x+1

2 − k1 and x−2k1
2 = x

2 − k1. Moreover, if x is
odd, then the two statements x+1

2 ≤ k1 and x ≤ 2k1 are equivalent (and thus also the
statements k1 < x+1

2 and 2k1 < x). Hence, e = a1 ⊗ a2.
(e) If {kt, ℓt} ⊆ N0 are such that ct∶ ⟦kt⟧ → {○, ●} and dt∶ ⟦ℓt⟧ → {○, ●} for each

t ∈ ⟦2⟧, if (at,bt, qt) = F (ct,dt, pt) for each t ∈ ⟦2⟧ and if (a1 ⊗ a2,b1 ⊗ b2, r) =
F (c1 ⊗ c2,d1 ⊗ d2, p1 ⊗ p2), we are to show r = q1 ⊗ q2.

If H1 = Πk1
ℓ1

and H2 = Πk1+k2
ℓ1+ℓ2 /Π

k1
ℓ1

and if S1 = Π2k1
2ℓ1

and S2 = Π
2(k1+k2)
2(ℓ1+ℓ2) /Π

2k1
2ℓ1

, then for

any X ∈ {Y,Z} and any t ∈ ⟦2⟧,
γ

2(k1+k2)
X(c1⊗c2,d1⊗d2),2(ℓ1+ℓ2) ○ γ

k1+k2
Ht,ℓ1+ℓ2 = γ

2k1+2k1
St,2ℓ1+2ℓ1 ○ γ

2kt
X(ct,dt),2ℓt .
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Indeed, if X stands for Zw if X = Y and for {ℵ} if X = Z, then X(c1 ⊗ c2,d1 ⊗
d2) = ξF (c1⊗c2)F (d1⊗d2)

←(X) = ξF (c1)⊗F (c2)
F (d1)⊗d2

←(X) = ξa1⊗a2b1⊗b2
←(X) since F respects the monoidal

product on the level of objects by Step 3.1. For that reason and because ξa1⊗a2b1⊗b2 ○
γ 2k1+2k1
St,2ℓ1+2ℓ1 = ξ

at
bt

for each t ∈ ⟦2⟧ by Lemma 4.2 (c) we can infer X(ct,dt) = ξatbt←(X) =
(ξa1⊗a2b1⊗b2 ○γ

2k1+2k1
St,2ℓ1+2ℓ1 )←(X) = γ

2k1+2k1
St,2ℓ1+2ℓ1

←(ξa1⊗a2b1⊗b2
←(X)) = γ 2k1+2k1

St,2ℓ1+2ℓ1
←(X(c1⊗ c2,d1⊗d2))

for each t ∈ ⟦2⟧. Hence, the above identity follows by Lemma 4.5 (c).
Consequently and since by definition, p1 ⊗ p2 = {γ k1+k2

Ht,ℓ1+ℓ2 →(Bt) ∣ t ∈ ⟦2⟧ ∧ Bt ∈ pt},

r = {γ 2(k1+k2)
X(c1⊗c2,d1⊗d2),2(ℓ1+ℓ2) →(A) ∣X ∈ {Y,Z} ∧ A ∈ p1 ⊗ p2}

= {(γ 2(k1+k2)
X(c1⊗c2,d1⊗d2),2(ℓ1+ℓ2) ○ γ

k1+k2
Ht,ℓ1+ℓ2 )→(Bt) ∣X ∈ {Y,Z} ∧ t ∈ ⟦2⟧ ∧ Bt ∈ pt}

= {(γ 2k1+2k1
St,2ℓ1+2ℓ1 ○ γ

2kt
X(ct,dt),2ℓt )→(Bt) ∣X ∈ {Y,Z} ∧ t ∈ ⟦2⟧ ∧ Bt ∈ pt}

= {γ 2k1+2k1
St,2ℓ1+2ℓ1 →(At) ∣ t ∈ ⟦2⟧ ∧ At ∈ qt}

= q1 ⊗ q2,
where the last equality is the definition.

(f) Let {k, ℓ,m} ⊆ N0 be such that c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→ {○, ●} and e∶ ⟦m⟧→
{○, ●}. If (f,g, s) = F (c,d, p) and (g,h, t) = F (d, e, q) and (f,h, r) = F (c, e, qp), then
we have to prove that r = ts as well as

nlf((d, e, q), (c,d, p)) = N lf((g,h, t), (f,g, s)).
On the one hand, by definition,

r = {γ 2k
Y(c,e),2m→(D), γ 2k

Z(c,e),2m→(D) ∣D ∈ qp},
where, if

u = (κ0ℓ⇠(p∣Π0
ℓ
)) ∨ (q∣Πℓ

0
),

then

qp = {A ∈ p ∧ A ⊆ Πk
0}

⊍ {⋃{A ∩Πk
0 ∣A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅}
⊍⋃{C ∩Π0

m ∣C ∈ q ∧ C ∩B ≠ ∅} ∣B ∈ u} /{∅}
⊍ {C ∈ q ∧ C ⊆ Π0

m}
And, on the other hand, if

v = (κ02ℓ⇠(s∣Π0
2ℓ
)) ∨ (t∣Π2ℓ

0
),

then

ts = {E ∈ s ∧ E ⊆ Π2k
0 }

⊍ {⋃{E ∩Π2k
0 ∣E ∈ s ∧ E ∩ κ02ℓ→(F) ≠ ∅}
⊍⋃{G ∩Π0

2m ∣G ∈ t ∧ G ∩ F ≠ ∅} ∣F ∈ v} /{∅}
⊍ {G ∈ t ∧ G ⊆ Π0

m}.
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where

s = {γ 2k
Y(c,d),2ℓ →(A), γ 2k

Z(c,d),2ℓ →(A) ∣A ∈ p}
and

t = {γ 2ℓ
Y(d,e),2m→(C), γ 2ℓ

Z(d,e),2m→(C) ∣C ∈ q}.
We prove the two claims in four steps, beginning with the assertion r = ts.

Step 1: Relating v and u. First, we show that

v = {γ 2ℓ
Y(d,∅),0 →(B), γ 2ℓ

Z(d,∅),0 →(B) ∣B ∈ u}
by verifying that the right-hand side has the universal property of v.

Step 1.1: We begin by proving t∣Π2ℓ
0
≤ {γ 2ℓ

Y(d,∅),0 →(B), γ 2ℓ
Z(d,∅),0 →(B) ∣B ∈ u}.

Given any F ∈ t∣Π2ℓ
0

, by definition, there exists G ∈ t with F = G∩Π2ℓ
0 . By the definition

of t we then find C ∈ q and X ∈ {Y,Z} such that G = γ 2ℓ
X(d,e),2m→(C). Since γ 2ℓ

X(d,e),2m is

injective and since, trivially, γ 2ℓ
X(d,e),2m

←(Π2ℓ
0 ) = Πℓ

0 it follows F = γ 2ℓ
X(d,e),2m→(C)∩Π2ℓ

0 =
γ 2ℓ
X(d,e),2m→(C ∩ Πℓ

0). Because F ≠ ∅ we can thus infer C ∩ Πℓ
0 ≠ ∅, which is to say

C ∩ Πℓ
0 ∈ q∣Πℓ

0
. Hence, by the universal property of u there exists B ∈ u such that

C ∩ Πℓ
0 ⊆ B. It follows F = γ 2ℓ

X(d,e),2m→(C ∩ Πℓ
0) ⊆ γ 2ℓ

X(d,e),2m→(B). Because B ⊆ Πℓ
0,

moreover, γ 2ℓ
X(d,e),2m→(B) = γ 2ℓ

X(d,∅),0 →(B), as seen initially. Hence, F ⊆ γ 2ℓ
X(d,∅),0 →(B),

which is what we needed to see.
Step 1.2: Next, we show κ02ℓ

⇠(s∣Π0
2ℓ
) ≤ {γ 2ℓ

Y(d,∅),0 →(B), γ 2ℓ
Z(d,∅),0 →(B) ∣B ∈ u}, the

proof of which is very similar to the one in Step 1.1. For any F ∈ κ02ℓ⇠(s∣Π0
2ℓ
)

we find, by definition, E ∈ s such that F = κ02ℓ←(E ∩ Π0
2ℓ). Hence, by nature of

s there exist A ∈ p and X ∈ {Y,Z} with E = γ 2k
X(c,d),2ℓ →(A). Because γ 2k

X(c,d),2ℓ is

injective and because γ 2k
X(c,d),2ℓ

←(Π0
2ℓ) = Π0

ℓ we thus infer F = κ02ℓ←(γ 2k
X(c,d),2ℓ →(A) ∩

Π0
2ℓ) = κ2k2ℓ←(γ 2k

X(c,d),2ℓ →(A ∩ Π0
ℓ)) = (κ2ℓ2k ○ γ 2k

X(c,d),2ℓ )→(A ∩ Π0
ℓ), where we have also

used that γ 2k
X(c,d),2ℓ →(A ∩ Π0

ℓ) ⊆ Π0
2ℓ and that (κ2k2ℓ )−1 = κ2ℓ2k. Furthermore, since

κ2ℓ2k○γ 2k
X(c,d),2ℓ = γ 2ℓ

X(d,c),2k○κℓk, as recognized at the very beginning, we have hence shown

F = (γ 2ℓ
X(d,c),2k○κℓk)→(A∩Π0

ℓ) or, equivalently, F = γ 2ℓ
X(d,∅),0 →(κ0ℓ←(A∩Π0

ℓ)) once we take

into account that (κℓk)−1 = κkℓ , that A∩Π0
ℓ ⊆ Π0

ℓ and that κ0ℓ
←(A∩Π0

ℓ) ⊆ Πℓ
0 and thus

γ 2ℓ
X(d,c),2k→(κ0ℓ←(A ∩ Π0

ℓ)) = γ 2ℓ
X(d,∅),0 →(κ0ℓ←(A ∩ Π0

ℓ)) by what we saw initially. Since

∅ ≠ F = γ 2ℓ
X(d,∅),0 →(κ0ℓ←(A∩Π0

ℓ)), in particular, A∩Π0
ℓ ≠ ∅. Consequently, A∩Π0

ℓ ∈ p∣Π0
ℓ

and thus κ0ℓ
←(A∩Π0

ℓ) ∈ κ0ℓ⇠(p∣Π0
ℓ
). The definition of u therefore implies the existence

of B ∈ u with κ0ℓ
←(A∩Π0

ℓ) ⊆ B. We conclude γ 2ℓ
X(d,∅),0 →(κ0ℓ←(A∩Π0

ℓ)) ⊆ γ 2ℓ
X(d,∅),0 →(B).

And that is what we had to show.
Step 1.3: Finally, we let w be any set-theoretical partition of Π2ℓ

0 satisfying
κ02ℓ
⇠(s∣Π0

2ℓ
) ≤ w and t∣Π2ℓ

0
≤ w and prove {γ 2ℓ

Y(d,∅),0 →(B), γ 2ℓ
Z(d,∅),0 →(B) ∣B ∈ u} ≤

w. Hence, let X ∈ {Y,Z} and B ∈ u be arbitrary. We have to find F ∈ w with
γ 2ℓ
X(d,∅),0 →(B) ⊆ F. That requires three steps in itself.
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Step 1.3.1: First, we prove the auxiliary result that γ 2ℓ
X(d,∅),0

⇠(t∣Π2ℓ
0
) = q∣Πℓ

0
.

Indeed, by definition, any B′ ⊆ Πℓ
0 is an element of γ 2ℓ

X(d,∅),0
⇠(t∣Π2ℓ

0
) if and only if there

exists C ∈ q with both C∩Πℓ
0 ≠ ∅ and with either both γ 2ℓ

Y(d,e),2m→(C∩Πℓ
0)∩X(d,∅) ≠ ∅

and B′ = γ 2ℓ
X(d,∅),0

←(γ 2ℓ
Y(d,e),2m→(C ∩ Πℓ

0)) or both γ 2ℓ
Z(d,e),2m→(C ∩ Πℓ

0) ∩ X(d,∅) ≠ ∅
and B′ = γ 2ℓ

X(d,∅),0
←(γ 2ℓ

Z(d,e),2m→(C ∩ Πℓ
0)). Because X(d,∅) ⊆ X(d, e) and Y(d, e) ∩

Z(d, e) = ∅ that is equivalent to there existing C ∈ q with both C ∩ Πℓ
0 ≠ ∅ and

B′ = γ 2ℓ
X(d,∅),0

←(γ 2ℓ
X(d,e),2m→(C∩Πℓ

0)). And because the injectivity of γ 2ℓ
X(d,∅),0 of course

implies γ 2ℓ
X(d,∅),0

←(γ 2ℓ
X(d,e),2m→(C ∩Πℓ

0)) for any C ⊆ Πℓ
m that proves the assertion.

Step 1.3.2: We will also need to know that γ 2ℓ
X(d,∅),0

⇠(κ02ℓ⇠(s∣Π0
2ℓ
)) = κ0ℓ⇠(p∣Π0

ℓ
).

According to the observation at the very beginning of the proof, κ02ℓ ○ γ 2ℓ
X(d,∅),0 =

γ 0
X(∅,d),2ℓ ○κ0ℓ and thus γ 2ℓ

X(d,∅),0
⇠ ○κ02ℓ⇠ = (κ02ℓ ○ γ 2ℓ

X(d,∅),0 )⇠ = (γ 0
X(∅,d),2ℓ ○κ0ℓ)⇠ = κ0ℓ⇠ ○

γ 0
X(∅,d),2ℓ

⇠. Hence, it suffices to show γ 0
X(∅,d),2ℓ

⇠(s∣Π0
2ℓ
) = p∣Π0

ℓ
. And the proof of this is

similar to the one in Step 1.3.1: Any B′ ⊆ Π0
ℓ belongs to γ 0

X(∅,d),2ℓ
⇠(s∣Π0

2ℓ
) if and only

if there is A ∈ p with A∩Π0
ℓ ≠ ∅ and with either both γ 2k

Y(c,d),2ℓ →(A∩Π0
ℓ)∩X(∅,d) ≠ ∅

and B′ = γ 0
X(∅,d),2ℓ

←(γ 2k
Y(c,d),2ℓ →(A∩Π0

ℓ)) or both γ 2k
Z(c,d),2ℓ →(A∩Π0

ℓ)∩X(∅,d) ≠ ∅ and

B′ = γ 0
X(∅,d),2ℓ

←(γ 2k
Z(c,d),2ℓ →(A ∩ Π0

ℓ)). Since X(∅,d) ⊆ X(c,d) and Y(c,d) ∩ Z(c,d) =
∅ that is true if and only if there exists A ∈ p with both A ∩ Π0

ℓ ≠ ∅ and B′ =
γ 0
X(∅,d),2ℓ

←(γ 2k
X(c,d),2ℓ →(C ∩Π0

ℓ)), which is to say B′ ∈ p∣Π0
ℓ
.

Step 1.3.3: With the results of Steps 1.3.1 and 4.1.3.2 at hand, we can now
construct F. Namely, they allow us to conlude from the assumptions κ02ℓ

⇠(s∣Π0
2ℓ
) ≤ w

and t∣Π2ℓ
0
≤ w that κ0ℓ

⇠(p∣Π0
ℓ
) ≤ γ 2ℓ

X(d,∅),0
⇠(w) and q∣Πℓ

0
≤ γ 2ℓ

X(d,∅),0
⇠(w). Hence,

u ≤ γ 2ℓ
X(d,∅),0

⇠(w) by the universal property of u, which implies that there is F ∈ w
with B ⊆ γ 2ℓ

X(d,∅),0
←(F). Because, trivially, γ 2ℓ

X(d,∅),0 →(γ 2ℓ
X(d,∅),0

←(F)) ⊆ F it follows

that F has the desired property γ 2ℓ
X(d,∅),0 →(B) ⊆ F.

Step 2: Conclusions of the relationship between u and v. As the second prepara-
tory step to proving that r and ts coincide we show that for any B ∈ u and X ∈ {Y,Z}
and F ∈ v, if F = γ 2ℓ

X(d,∅),0 →(B), then

⋃{E ∩Π2k
0 ∣E ∈ s ∧ E ∩ κ02ℓ→(F) ≠ ∅}

⊍⋃{G ∩Π0
2m ∣G ∈ t ∧ G ∩ F ≠ ∅}

= γ 2k
X(c,e),2m→(⋃{A ∩Πk

0 ∣A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅}
⊍⋃{C ∩Π0

m ∣C ∈ q ∧ C ∩B ≠ ∅}).

To that end it suffices to show that already,

{E ∩Π2k
0 ∣E ∈ s ∧ E ∩ κ02ℓ→(F) ≠ ∅}

= {γ 2k
X(c,e),2m→(A ∩Πk

0) ∣A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅}
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and

{G ∩Π0
2m ∣G ∈ t ∧ G ∩ F ≠ ∅} = {γ 2k

X(c,e),2m→(C ∩Π0
m) ∣C ∈ q ∧ C ∩B ≠ ∅}.

Step 2.1: As an intermediate step we first note κ02ℓ→(F) = γ 2k
X(c,d),2ℓ →(κ0ℓ→(B)) and

F = γ 2ℓ
X(d,e),2m→(B). Indeed, because B ⊆ Πℓ

0, by the remark at the very beginning of

the proof, F = γ 2ℓ
X(d,∅),0 →(B) = γ 2ℓ

X(d,e),2m→(B). And, per assumption the set κ02ℓ→(F)
is given by (κ02ℓ ○ γ 2ℓ

X(d,∅),0 )→(B), which can also be written as (γ 0
X(∅,d),2ℓ ○ κ0ℓ)→(B)

since κ02ℓ ○γ 2ℓ
X(d,∅),0 = γ 0

X(∅,d),2ℓ ○κ0ℓ as seen at the beginning. In fact, since B ⊆ Πℓ
0 and

thus κ0ℓ→(B) ⊆ Π0
ℓ the other part of the initial observation now tells us that κ02ℓ→(F)

is identical to γ 2k
X(c,d),2ℓ →(κ0ℓ→(B)).

Step 2.2: The second intermediate step consists in recognizing that the first one
implies

{E ∩Π2k
0 ∣E ∈ s ∧ E ∩ κ02ℓ→(F) ≠ ∅}
= {γ 2k

X(c,d),2ℓ →(A) ∩Π2k
0 ∣A ∈ p ∧ γ 2k

X(c,d),2ℓ →(A) ∩ γ 2k
X(c,d),2ℓ →(κ0ℓ→(B)) ≠ ∅}

and

{G ∩Π0
2m ∣G ∈ t ∧ G ∩ F ≠ ∅}

= {γ 2ℓ
X(d,e),2m→(C) ∩Π0

2m ∣C ∈ q ∧ γ 2ℓ
X(d,e),2m→(C) ∩ γ 2ℓ

X(d,e),2m→(B) ≠ ∅}.
In the case of the second identity that is for the following reasons. By definition

any G is an element of t if and only if there exists C ∈ q such that G = γ 2ℓ
Y(d,e),2m→(C)

or G = γ 2ℓ
Z(d,e),2m→(C). However, since F = γ 2ℓ

X(d,e),2m→(B) ⊆ X(d, e) by Step 2.1 and

since Y(d, e) ∩ Z(d, e) = ∅, whenever such a G satisfies G ∩ F ≠ ∅, it must already be
of the form γ 2ℓ

X(d,e),2m→(C).
Similarly, any E belongs to s if and only if there is A ∈ p with E = γ 2k

Y(c,d),2ℓ →(A) or

E = γ 2k
Z(c,d),2ℓ →(A), which narrows to just E = γ 2k

X(c,d),2ℓ →(A) as soon as E∩κ02ℓ→(F) ≠ ∅
because κ02ℓ→(F) = γ 2k

X(c,d),2ℓ →(κ0ℓ→(B)) ⊆ X(c,d) by Step 2.1 and because Y(c,d) ∩
Z(c,d) = ∅.

Step 2.3: Now, we can conclude from the preceding step that

{E ∩Π2k
0 ∣E ∈ s ∧ E ∩ κ02ℓ→(F) ≠ ∅}

= {γ 2k
X(c,d),2ℓ →(A) ∩Π2k

0 ∣A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅}
and

{G ∩Π0
2m ∣G ∈ t ∧ G ∩ F ≠ ∅} = {γ 2ℓ

X(d,e),2m→(C) ∩Π0
2m ∣C ∈ q ∧ C ∩B ≠ ∅}.

Indeed, the injectivity of γ 2k
X(c,e),2ℓ ensures that γ 2ℓ

X(d,e),2m→(C)∩ γ 2ℓ
X(d,e),2m→(B) and

γ 2ℓ
X(d,e),2m→(C ∩ B) coincide for any C ∈ q. And, of course, γ 2ℓ

X(d,e),2m→(C ∩ B) ≠ ∅ if

and only if C ∩ B ≠ ∅. Likewise, the sets γ 2k
X(c,d),2ℓ →(A) ∩ γ 2k

X(c,d),2ℓ →(κ0ℓ→(B)) and

γ 2k
X(c,d),2ℓ →(A ∩ κ0ℓ→(B)) are the same for any A ∈ p because γ 2ℓ

X(d,e),2m is injective,

whence γ 2k
X(c,d),2ℓ →(A) ∩ γ 2k

X(c,d),2ℓ →(κ0ℓ→(B)) ≠ ∅ if and only if A ∩ κ0ℓ→(B) ≠ ∅.
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Step 2.4: Given the results of Step 2.3, the assertion is certainly true if γ 2k
X(c,d),2ℓ →(A)∩

Π2k
0 = γ 2k

X(c,e),2m→(A∩Πk
0) for any A ∈ p and γ 2ℓ

X(d,e),2m→(C)∩Π0
2m = γ 2k

X(c,e),2m→(C∩Π0
m)

for any C ∈ q.
Because, trivially, γ 2ℓ

X(d,e),2m→(Π0
m) = X(d, e)∩Π0

2m the facts that γ 2ℓ
X(d,e),2m is injec-

tive and that γ 2ℓ
X(d,e),2m→(C) ⊆ X(d, e) allow us to conclude that γ 2ℓ

X(d,e),2m→(C)∩Π0
2m =

γ 2ℓ
X(d,e),2m→(C ∩Π0

m). And because C ∩Π0
m ⊆ Π0

m the remark made at the very begin-

ning of the proof implies γ 2ℓ
X(d,e),2m→(C ∩Π0

m) = γ 0
X(∅,e),2m→(C ∩Π0

m) = γ 2k
X(c,e),2m→(C ∩

Π0
m). Analogously, γ 2k

X(c,d),2ℓ →(A) ∩ Π2k
0 = γ 2k

X(c,d),2ℓ →(A ∩ Πk
0) = γ 2k

X(c,∅),0 →(A ∩ Πk
0) =

γ 2k
X(c,e),2m→(A ∩Πk

0).
Step 3: Showing r = ts. With the help of the results of Steps 1 and 2 we can now

verify r ⊆ ts and r ⊇ ts.
Step 3.1: Given any H ∈ r, there exist X ∈ {Y,Z} and D ∈ qp such that H =

γ 2k
X(c,e),2m→(D). According to the definition of qp there are now three cases to consider.

Case 3.1.1: If there exists A ∈ p with A ⊆ Πk
0 and D = A, then H = γ 2k

X(c,e),2m→(A) =
γ 2k
X(c,∅),0 →(A) = γ 2k

X(c,d),2ℓ →(A) by two subsequent application of the auxiliary state-

ment at the beginning of the proof. Hence, actually, H ∈ s by definition of s. Because
A ⊆ Πk

0 also ensures H = γ 2k
X(c,d),2ℓ →(A) ⊆ Π2k

0 we conclude H ∈ ts by definition of ts.

Case 3.1.2: Similarly, if there is C ∈ q with C ⊆ Π0
m and D = C, then H =

γ 2k
X(c,e),2m→(C) = γ 0

X(∅,e),2m→(C) = γ 2ℓ
X(d,e),2m→(C) ∈ t and thus H ∈ qp because H ⊆ Π0

2m.

Case 3.1.3: The only remaining possibility is that there exists B ∈ u such that
D = ⋃{A ∩ Πk

0 ∣A ∈ p ∧ A ∩ κ0ℓ→(B) ≠ ∅} ⊍ ⋃{C ∩ Π0
m ∣C ∈ q ∧ C ∩ B ≠ ∅}. If so,

then γ 2ℓ
X(d,∅),0 →(B) ∈ v by Step 1 and thus H = γ 2k

X(c,e),2m→(D) ∈ ts by Step 2. Hence,

indeed, r ⊆ ts.
Step 3.2: For any H ∈ ts the definition of ts requires us to distinguish three cases

as well if we want to prove H ∈ ts.
Case 3.2.1: If there exists E ∈ s with E ⊆ Π2k

0 and H = E, then by definition
of s there are X ∈ {Y,Z} and A ∈ p such that H = γ 2k

X(c,d),2ℓ →(A). From E ⊆ Π2k
0 it

follows that A ⊆ γ 2k
X(c,d),2ℓ

←(H) ⊆ γ 2k
X(c,d),2ℓ →(Π2k

0 ) = Πk
0 and thus A ∈ qp by definition

of qp. Another consequence of A ⊆ Πk
0 is that H = γ 2k

X(c,d),2ℓ →(A) = γ 2k
X(c,∅),0 →(A) =

γ 2k
X(c,e),2m→(A) by the auxiliary statement at the beginning of the proof. Hence, by

definition, H ∈ r.
Case 3.2.2: Analogously, in the case of there being G ∈ t with H = G ⊆ Π0

2m, we
find X ∈ {Y,Z} and C ∈ q such that G = γ 2ℓ

X(d,e),2m→(C). Then, G ⊆ Π0
2m demands, on

the one hand, C ⊆ γ 2ℓ
X(d,e),2m

←(H) ⊆ γ 2ℓ
X(d,e),2m→(Π0

2m) = Π0
m, ensuring C ∈ qp, and, on

the other hand, G = γ 2ℓ
X(d,e),2m→(C) = γ 0

X(∅,e),2m→(C) = γ 2k
X(c,e),2m→(C) and thus G ∈ r.

Case 3.2.3: Lastly, there can exist F ∈ v such that H = ⋃{E ∩ Π2k
0 ∣E ∈ s ∧ E ∩

κ02ℓ→(F) ≠ ∅} ⊍ ⋃{G ∩ Π0
2m ∣G ∈ t ∧ G ∩ F ≠ ∅}. According to Step 1 we then find

X ∈ {Y,Z} and B ∈ u such that F = γ 2ℓ
X(d,∅),0 →(B). In consequence, if D = ⋃{A∩Πk

0 ∣A ∈
p ∧ A ∩ κ0ℓ→(B) ≠ ∅} ⊍⋃{C ∩Π0

m ∣C ∈ q ∧ C ∩B ≠ ∅}, then D ∈ qp by definition of qp
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and H = γ 2k
X(c,e),2m→(D) by Step 2. It follows H ∈ r by definition of r, which concludes

the proof of r = ts.
Step 4: It remains to prove

nlf((d, e, q), (c,d, p)) = N lf((g,h, t), (f,g, s)).

According to Proposition 3.31, on the one hand, of course,

nlf((d, e, q), (c,d, p)) = nrl(q,p).

On the other hand, ker(N) = {Zw,{ℵ}} implies ker(N ○ ξfg) = {Y(c,d),Z(c,d)}/{∅}
and, likewise, ker(N ○ ξgh) = {Y(d, e),Z(d, e)}/{∅}. Moreover, R(q,Y(d, e)) = q and
R(p,Y(c,d)) = p by Lemma 9.4 (f). Hence, Proposition 3.31 here yields

N lf((g,h, t), (f,g, s)) = nrl(R(q,Y(d,e)),R(p,Y(c,d))) ⋅ 1rl(R(q,Z(d,e)),R(p,Z(c,d)))

= nrl(q,p).

Thus, all the claims are true. □

9.3. Restriction to unitary half-liberations. Finally, with the help of Lem-
ma 9.4 we show that the functor restricts to a functor between each category inducing
a unitary half-liberation and the associated supercategory of labeled partitions.

More precisely, we prove that for any w ∈ N and any additive subsemigroup D
of N the following are well-defined faithful strict monoidal ∗-functors by ways of
restriction:

◻ Zw,∅F from U∗w to U ≀Zw.
◻ Z,∅F from U×D to U ≀rD Z0.
◻ Z,∅F from U×+D to U+ ≀rD Z0.
◻ ∅,ZF from U×D to O∗ ≀rD Z0.
◻ ∅,ZF from U×+D to O+ ≀rD Z0.

It then follows immediately that for any n ∈ N, if the profile N is such that
N(ℵ) = 1 and N(z) = n for any z ≠ ℵ, then also following restrictions are well-
defined faithful strict monoidal C-linear ∗-functors:

◻ n,NCZw,∅F from nCU∗w to NC(U ≀Zw).
◻ n,NCZ,∅F from nCU×D to NC(U ≀rD Z0).
◻ n,NCZ,∅F from nCU×+D to NC(U+ ≀rD Z0).
◻ n,NC∅,ZF from nCU×D to NC(O∗ ≀rD Z0).
◻ n,NC∅,ZF from nCU×+D to NC(O+ ≀rD Z0).

Proposition 9.6. For any w ∈ N and any additive subsemigroup D of N,
(a) Zw,∅F maps U∗w into U ≀Zw.
(b) Z,∅F maps U×D into U ≀rD Z0.
(c) Z,∅F maps U×+D into U+ ≀rD Z0.
(d) ∅,ZF maps U×D into O∗ ≀rD Z0.
(e) ∅,ZF maps U×+D into O+ ≀rD Z0.
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Proof. We can verify all five claims simultaneously. In each case (a)–(e), let
C be the respective domain category, D the co-domain category and F the functor.
Furthemore, let w ∶= 0 in cases (b)–(e). Finally, let E stand for ∅ in case (a), for D
in cases (b) and (d) and for D ⊍ {0} in cases (c) and (e).

Given any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧→ {○, ●} and d∶ ⟦ℓ⟧→ {○, ●} and any (c,d, p) ∈ C,
by Proposition 9.5 we only have to prove (a,b, q) = F (c,d, p) ∈ D, i.e., we need to
check that (a,b, q) has the properties listed in the respective claim of Proposition 8.5.

If Z = ξab←({ℵ}) and Y = ξab←(Zw), then it suffices to show that ℵΣa
b ≡w 0, that

q ≤ {Y,Z}, that ∣A∣ = 2 for each A ∈ q, that ℵσa
b(C) = 0 for any C ∈ q with C ⊆ Z, that

ξab(a′) − ξab(a) + ℵδab(a,a′) ≡w 0 for any {a,a′} ⊆ A and A ∈ q, that ∑z∈Zw zσa
b(A) = 0

for any A ∈ q with A ⊆ Y in cases (a)–(c), that ∣]a,a′′[2k2ℓ ∩ {a′ ∈ Y ∧ ξab(a′) − ξab(a) +
ℵδab(a,a′) ≡w 0}∣ ≡2 0 for any {a,a′′} ⊆ A with a ≠ a′′ and A ∈ q with A ⊆ Y in
cases (d) and (e), that A1 ×2k

2ℓ A2 for any {A1,A2} ⊆ q such that A1 ⊆ Y and
A2 ⊆ Y, such that A1 ≠ A2 and such that there exist a1 ∈ A1 and a2 ∈ A2 with
∣ξab(a2) − ξab(a1) + ℵδab(a1,a2)∣ ∈ E.

Total color sum. First of all, ℵΣa
b = Σc

d by the second part of Lemma 9.4 (e) and
thus ℵΣa

b ≡w 0 because Σc
d = ∑B∈p σ

c
d(B) = 0 by Definition 7.11.

Tag areas. Lemma 9.4 (a) guarantees q ≤ {Y,Z}, regardless of C.
Block sizes. Since ∣B∣ = 2 for any B ∈ p by Definition 7.11, Lemma 9.4 (c) implies

∣A∣ = 2 for any A ∈ q.
Block color sums in Z. For any C ∈ q with C ⊆ Y the second part of Lemma 9.4 (d)

guarantees ℵσa
b(C) = 0 since, as we have already used, σc

d(B) = 0 for any B ∈ p by
Definition 7.11.

Block leg tag distances. For any A ∈ q with A ⊆ Y there exists B ∈ p with B =
γ 2k
Y,2ℓ

←(A) and because p = R(q,Y) by Lemma 9.4 (e). Consequently, for any {a,a′} ⊆
A there are {b,b′} ⊆ B with a = γ 2k

Y,2ℓ (b) and a′ = γ 2k
Y,2ℓ (b′). By Definition 7.11 then

δcd(b,b′) ≡w 0. According to Lemma 9.4 (g) that proves ξab(a′)−ξab(a)+ℵδab(a,a′) ≡w 0.
Block color sums in Y. In cases (a)–(c), for any A ∈ q with A ⊆ Y the first part of

Lemma 9.4 (d) is applicable and allows us to conclude ∑z∈Zw zσa
b(A) = 0 since, as we

already know, σc
d(B) = 0 for any B ∈ p by Definition 7.11.

Block spread parities. Now consider the cases (d) and (e) instead. For any A ∈ q
with A ⊆ Y and any {a,a′′} ⊆ A with a ≠ a′′, because p = R(q,Y) by Lemma 9.4 (e),
there exist B ∈ p with B = γ 2k

Y,2ℓ
←(A) and thus {b,b′′} ⊆ B with a = γ 2k

Y,2ℓ (b) and

a′′ = γ 2k
Y,2ℓ (b′′). Since a ≠ a′′ and since γ 2k

Y,2ℓ is injective, b ≠ b′′. If S = {b′ ∈ Πk
ℓ ∧

δcd(b,b′) ≡0 0}, then S ∈ 0∆c
d and B ⊆ S because p ≤ 0∆c

d by Definition 7.11. Defini-
tion 7.11 also implies σc

d(B) = 0. Finally, ∣B∣ = 2 by Definition 7.11 and thus, actually,
B = {b,b′′} and σc

d({b,b′′}) = 0. Hence, ∣]b,b′′[kℓ ∩ S∣ ≡2 0 by Proposition 7.17. By
Lemma 9.4 (h) that means ∣]a,a′′[2k2ℓ ∩ {a′ ∈ Y ∧ ξab(a′)− ξab(a)+ ℵδab(a,a′) ≡0 0}∣ ≡2 0.

Non-crossing conditions. Given any {A1,A2} ⊆ q with A1 ⊆ Y and A2 ⊆ Y and
A1 ≠ A2 and any a1 ∈ A1 and a2 ∈ A2 with ∣ξab(a2) − ξab(a1) + ℵδab(a1,a2)∣ ∈ E, by
Lemma 9.4 (e) there exist {B1,B2} ⊆ p with A1 = γ 2k

Y,2ℓ
←(B1) and A2 = γ 2k

Y,2ℓ
←(B2)

and, consequently, b1 ∈ B1 and b2 ∈ B2 with a1 = γ 2k
Y,2ℓ (b) and a2 = γ 2k

Y,2ℓ (b′′). Since
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A1 ∩ A2 = ∅, also B1 ∩ B2 = γ 2k
Y,2ℓ

←(A1) ∩ γ 2k
Y,2ℓ

←(A2) = γ 2k
Y,2ℓ

←(A1 ∩ A2) = ∅ and

thus B1 ≠ B2. Moreover, δcd(b1,b2) = ξab(a2) − ξab(a1) + ℵδab(a1,a2) by Lemma 9.4 (g)
and thus ∣δcd(b1,b2)∣ ∈ E. Hence, B1×k

ℓ B2 by Definition 7.11. Since γ 2k
Y,2ℓ is strictly

monotonic by Lemma 4.2 (a) that warrants A1×2k
2ℓ A2 and thus allows us to conclude

(a,b, q) ∈ D, as claimed. □

9.4. Preservation of the fiber functor. The rule F does not only map the
categories of the categories of the unitary half-liberations into their respetive super-
categories if labeled partitions, it also preserves the fiber functors. More precisely,
the functor is not strictly preserved. We show that a unitary natural transformation
is involved.

Assumption 9.7. In Section 9.4, let w ∈ N0, let n ∈ N, let (U,O) be either
(Zw,∅) or (∅,Zw) and let the profile N be such that N(ℵ) = 1 and N(z) = n for
any z ∈ Zw.

Notation 9.8. For any k ∈ N0 and c∶ ⟦k⟧ → {○, ●} let ωc ≡ n
U,Oωc be the mapping

Jnc → [⟦2k⟧,N] such that for any f ∈ Jnc the mapping ωc(f)∶ ⟦2k⟧→ N satisfies

x↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x+12 ) if x odd ∧ c(x+12 ) = ○
f(x2) if x even ∧ c(x2) = ●
1 otherwise

for any x ∈ ⟦2k⟧.
Lemma 9.9. Let k ∈ N0 and c∶ ⟦k⟧→ {○, ●} be arbitrary.
(a) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●} and any f ∈ Jnc

and g ∈ Jnd , if Y = ξcd←(Zw), then
(ωc(f) ◾◾ωd(g)) ○ γ 2k

Y,2ℓ = f ◾
◾ g,

and, if Z = ξcd←({ℵ}), then the mapping (ωc(f) ◾◾ωd(g)) ○ γ 2k
Z,2ℓ is constant

with value 1.
(b) ωc is a bijection from Jnc to JN

F (c) for any k ∈ N0 and c∶ ⟦k⟧→ {○, ●}.

Proof. (a) If u = ωc(f) and v = ωc(g), then for any i ∈ ⟦k⟧, if c(i) = ●, then
γ 2k
Y,2ℓ (◾i) =

◾(2i) by Lemma 9.2 (d). If so and if x = 2i, then x is even and, by
x
2 = i, first c(x2) = c(i) = ● and thus u(x) = f(x2) = f(i) by definition of u. It follows
((u ◾

◾ v) ○ γ 2k
Y,2ℓ )(◾i) = (u ◾

◾ v)(◾x) = u(x) = f(i) = (f ◾
◾ g)(◾i) in this case. Under

the same assumptions on i, on the other hand, γ 2k
Z,2ℓ (◾i) =

◾(2i − 1) Lemma 9.2 (d),

which implies that, if, instead, x = 2i − 1, then x is odd and, by i = x+1
2 , first

c(x+12 ) = c(i) = ● and thus u(x) = 1 by definition of u. Hence, ((u ◾
◾ v) ○ γ 2k

Z,2ℓ )(◾i) =
(u ◾

◾ v)(◾x) = u(x) = 1 then.
Alternatively, if c(i) = ○, then Lemma 9.2 (d) implies γ 2k

Y,2ℓ (◾i) =
◾(2i − 1) and

thus for the odd number x = 2i − 1 because of i = x+1
2 first c(x+12 ) = ○ and thus

u(x) = f(x+12 ) = f(i), ensuring ((u ◾
◾ v) ○ γ 2k

Y,2ℓ )(◾i) = (f ◾
◾ g)(◾i) in the same way as
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before. Similarly, if, still, c(◾i) = ○ but if now x = 2i, then x is even with c(x2) = ○
and thus u(x) = 1. Because then γ 2k

Z,2ℓ (◾i) = ◾x by Lemma 9.2 (d) that proves

((u ◾
◾ v) ○ γ 2k

Z,2ℓ )(◾i) = 1 in this case as well. The remaining cases are analogous.

(b) Abbreviate a ∶= F (c) and for each x ∈ ⟦2k⟧ let the tag zx ∈ Zw ⊍ {ℵ} be such
that a(x) ∈ ({zx}⊗ {○, ●}) ⊍ {zx}.

Well-defined. We begin by showing that the mapping ωc maps Jnc into JNa , where
a = F (c). Given any f ∈ Jnc , if u = ωc(f), we have to show u(x) ∈ ⟦N(zx)⟧. Since
ran(N) ⊆ {1, n}, since N(ℵ) = 1 and ran(u) ⊆ ran(f)⊍ {1} ⊆ ⟦n⟧ by definition of ωc,
it is enough to show that u(x) = 1 for any x ∈ ⟦2k⟧ with zx = ℵ. By definition of
F , whenever zx = ℵ, then either x is odd and c(x+12 ) = ● or x is even and c(x2) = ○.
Of course, the definition of ωc was chosen in such a way that in these cases, indeed,
u(x) = 1. Hence, ωc is well-defined.

Injective. That ωc is injective follows from (a). Indeed, given any {f, f ′} ⊆ Jnc
such that u = ωc(f) and u′ = ωc(f ′) coincide, we can apply (a) with ℓ = 0 and g = ∅
to prove f ◾

◾∅ = (u ◾
◾∅) ○ γ 2k

Y,0 = (u′ ◾◾∅) ○ γ 2k
Y,0 = f ′ ◾◾∅ and thus f = f ′.

Surjective. It remains to prove that ωc is surjective. If presented with any u ∈ JNc ,
we define f(i) as u(2i) if c(i) = ● and as u(2i−1) if c(○). From the definition of JNc we
know that u(x) = 1 for any x ∈ ⟦2k⟧ with zx = ℵ as well as u(x) ≤ n for any x ∈ ⟦2k⟧
with zx ∈ Zw. In particular, f(i) ≤ n for any i ∈ ⟦k⟧ and thus f ∈ Jnc = [⟦k⟧, ⟦n⟧].
Moreover, u′(x) ∶= ωc(f)(x) = u(x) for any x ∈ ⟦2k⟧. Indeed, if either x is odd and
c(x+12 ) = ● or x is even and c(x2) = ○, then, on the one hand, zx = ℵ by definition of
F and thus, as seen, u(x) = 1 and, on the other hand, u′(x) = 1 by definition of ωc.
Hence, u(x) = u′(x) in these cases. If x is odd and c(x+12 ) = ●, then the definitions
of u′ and f imply u′(x) = f(x+12 ) = u(2x+12 − 1) = u(x). Likewise, if x is even and
c(x2) = ●, then u′(x) = f(x2) = u(2x2) = u(x) for the same reasons. □

Lemma 9.10. For any {k, ℓ} ⊆ N0, any ⟦c⟧⟦k⟧{○, ●} and ⟦d⟧⟦ℓ⟧{○, ●} and any
(c,d, p) ∈ S, if a = F (c) and b = F (d) and Y = ξab←(Zw) and Z = ξab←({ℵ}), then for
any set-theoretical partition q of Π2k

2ℓ with q ≤ {Y,Z} and p = R(q,Y) and any f ∈ Jnc
and g ∈ Jnd ,

ζ(p,ker(f ◾
◾ g)) = ζ(q,ker(ωc(f) ◾◾ωd(g))).

Proof. If we let u ∶= ωc(f) and v ∶= ωd(g), then we have to show that p ≤
ker(f ◾

◾ g) if and only q ≤ ker(u ◾
◾ v).

First, suppose p ≤ ker(f ◾
◾ g) and let A ∈ q be arbitrary. Then, either A ⊆ Y

or A ⊆ Z because q ≤ {Y,Z}. If A ⊆ Z, then ∅ ≠ A ⊆ (u ◾
◾ v)←({1}) ∈ ker(u ◾

◾ v)
because (u ◾

◾ v)○γ 2k
Z,2ℓ and thus (u ◾

◾ v)∣Z is constant with value 1 by Lemma 9.9 (a).

Alternatively, if A ⊆ Y, then A∩Y = A ≠ ∅ and thus B ∶= γ 2k
Y,2ℓ

←(A) ∈ p by p = R(q,Y).
Hence, by p ≤ ker(f ◾

◾ g) there exists m ∈ N with B ⊆ (f ◾
◾ g)←({m}). Because

γ 2k
Y,2ℓ is surjective onto Y and because (u ◾

◾ v) ○ γ 2k
Y,2ℓ = f ◾

◾ g by Lemma 9.9 (a) it

thus follows A = γ 2k
Y,2ℓ →(γ 2k

Y,2ℓ
←(A)) = γ 2k

Y,2ℓ →(B) ⊆ γ 2k
Y,2ℓ →((f ◾

◾ g)←({m})) = (γ 2k
Y,2ℓ → ○

γ 2k
Y,2ℓ

←)((u ◾
◾ v)←({m})) ⊆ (u ◾

◾ v)←({m}) ∈ ker(u ◾
◾ v). That proves one implication.
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Conversely, if q ≤ ker(u ◾
◾ v) and if B ∈ p, then by p = R(q,Y) there exists A ∈ q

with A ⊆ Y and B = γ 2k
Y,2ℓ

←(A). Hence, by q ≤ ker(u ◾
◾ v) there exists m ∈ N with

A ⊆ (u ◾
◾ v)←({m}). Since (u ◾

◾ v) ○ γ 2k
Y,2ℓ = f ◾

◾ g by Lemma 9.9 (a) we conclude

B = γ 2k
Y,2ℓ

←(A) ⊆ γ 2k
Y,2ℓ

←((u ◾
◾ v)←({m})) = (f ◾

◾ g)←({m}) ∈ ker(f ◾
◾ g). Therefore,

the other implication holds too. □

Definition 9.11. For each k ∈ N0 and each c∶ ⟦k⟧→ {○, ●} let

χc ≡ n
U,Oχc

∶= ℓ2(ωc)∶ ℓ2(Jnc )→ ℓ2(JNF (c)).

Now we prove that n
U,Oχ is a unitary monoidal C-linear natural transformation

from nT to N
U,OT ○ n,NC(U,OF ).

Proposition 9.12. (a) n
U,Oχd

○ nT (c,d, p) = N
U,OT (U,OF (c,d, p)) ○ n

U,Oχc
for

any (c,d, p) ∈ S.
(b) n

U,Oχc
is a unitary ℓ2(Jnc )→ ℓ2(JN

F (c)) for any k ∈ N0 and c∶ ⟦k⟧→ {○, ●}.
(c) N

U,OT⊗,U,OF (c1),U,OF (c2)
○( n

U,Oχc1
⊗ n

U,Oχc2
) = n

U,Oχc1⊗c2
○nT⊗,c1,c2 for any {k1, k2} ⊆

N0 and any c1∶ ⟦k1⟧→ {○, ●} and c2∶ ⟦k2⟧→ {○, ●}.

Proof. (a) Let {k, ℓ} ⊆ N0 be such that c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}.
If (a,b, q) = F (c,d, p), then we have to prove

χd ○ nT (c,d, p) = N
U,OT (a,b, q) ○ χc.

Indeed, for any f ∈ Jnc , according to the definitons of nT and χd = ℓ2(ωd), the vec-
tor (χd ○ nT (c,d, p))(f) is given by ∑g∈Jn

d
ζ(p,ker(f ◾

◾ g)) ωd(g), where we have also

used the linearity of χd. Because q ≤ ξab⇠({Zw,{ℵ}}) and p = R(q, ξab←(Zw)) by Lem-
ma 9.4 (a) and (f), Lemma 9.10 lets this equal ∑g∈Jn

d
ζ(q,ker(ωc(f) ◾◾ωd(g))) ωd(g).

Since ωd is a bijection from Jnd to JNb by Lemma 9.9 (b) we can reindex the sum and
see that this vector is the same as ∑v∈JN

b
ζ(q,ker(ωc(f) ◾◾ v)) v. And, by definition

of N
U,OT that is precisely N

U,OT (a,b, q)(ωc(f)) or, equivalently, ( N
U,OT (a,b, q) ○χc)(f)

by the definition of χc = ℓ2(ωc).
(b) That χc is in fact an isomorphism is clear because ωc is bijective by Lem-

ma 9.9 (b) and χc = ℓ2(ωc) by definition. Moreover, if a = F (c), then for any f ∈ Jnc
and any u ∈ JNa , by definition of ℓ2,

⟨u ∣ χc(f)⟩ℓ2(JN
a ) = δu,ωc(f) = δω−1c (u),f = ⟨ω

−1
c (u) ∣ f⟩ℓ2(Jn

c )

and thus χ∗c = ℓ2(ω−1c ) = χ−1c because JNa is an orthonormal basis of ℓ2(JNa ) and Jnc
one of ℓ2(Jnc ). Hence, χc is indeed unitary.

(c) We have to prove that, if at = F (ct) for each t ∈ ⟦2⟧, then

N
U,OT⊗,a1,a2

○ (χc1 ⊗ χc2) = χc1⊗c2 ○ nT⊗,c1,c2 .

Step 1: First, we justify that it suffices to show for any f1 ∈ Jnc1 and f2 ∈ Jnc2 ,
ωc1(f1) ▵ ωc2(f2) = ωc1⊗c2(f1 ▵ f2).
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If r is the mapping Jnc1 ⊗ Jnc2 → Jnc1⊗c2 with (f1, f2) ↦ f1 ▵ f2 for any f1 ∈ Jnc1 and
f2 ∈ Jnc2 and if s is the mapping JNa1 ⊗ JNa2 → JNa1⊗a2 with (h1, h2) ↦ h1 ▵ h2 for any
h1 ∈ Jna1 and h2 ∈ Jna2 , then nT⊗,c1,c2 = ℓ2(r)○ℓ2⊗,Jn

c1
,Jn

c2
and N

U,OT⊗,a1,a2
= ℓ2(s)○ℓ2⊗,JN

a1
,JN

a2

by definition. Also using the functoriality of ℓ2, hence, N
U,OT⊗,a1,a2

○ (χc1 ⊗ χc2) =
ℓ2(ωc1⊗c2 ○ r) ○ ℓ2⊗,Jn

c1
,Jn

c2
and χc1⊗c2 ○ nT⊗,c1,c2 = ℓ2(s) ○ ℓ2⊗,JN

a1
,JN

a2
○ (ℓ2(ωc1)⊗ ℓ2(ωc2)).

Because ℓ2 is a monoidal functor, ℓ2⊗,JN
a1
,JN

a2
○ (ℓ2(ωc1) ⊗ ℓ2(ωc2)) = ℓ2(ωc1 ⊗ ωc2) ○

ℓ2⊗,JN
c1
,JN

c2
. Therefore, χc1⊗c2○nT⊗,c1,c2 = ℓ2(s○(ωc1⊗ωc2))○ℓ2⊗,JN

c1
,JN

c2
. Thus, the identity

N
U,OT⊗,a1,a2

○ (χc1 ⊗ χc2) = χc1⊗c2 ○ nT⊗,c1,c2 holds if ℓ2(ωc1⊗c2 ○ r) = ℓ2(s ○ (ωc1 ⊗ ωc2)).
And that is true if ωc1⊗c2 ○ r = s ○ (ωc1 ⊗ ωc2). But, in terms of elements, that is
exactly what the above identity says.

Step 2: By Step 1 we only need to prove ωc1(f1)▵ωc2(f2) = ωc1⊗c2(f1 ▵f2) for any
f1 ∈ Jnc1 and f2 ∈ Jnc2 . Given any such f1 and f2, for any x ∈ ⟦2k1 + 2k2⟧, by definition,
on the one hand,

ωc1⊗c2(f1 ▵ f2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x+12 ) ∣ x odd ∧ c1(x+12 ) = ○ ∧ x+1
2 ≤ k1

f2(x+12 − k1) ∣ x odd ∧ c2(x+12 − k1) = ○ ∧ k1 < x+1
2

f1(x2) ∣x even ∧ c1(x2) = ● ∧ x
2 ≤ k1

f2(x2 − k1) ∣x even ∧ c2(x2 − k1) = ● ∧ k1 < x
2

1 ∣otherwise

and, on the other hand,

ωc1(f1) ▵ ωc2(f2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x+12 ) ∣ x ≤ 2k1 ∧ x odd ∧ c1(x+12 ) = ○
f1(x2) ∣ x ≤ 2k1 ∧ x even ∧ c1(x2) = ●
f2(x−2k1+12 ) ∣2k1 < x ∧ x − 2k1 odd ∧ c1(x−2k1+12 ) = ○
f2(x−2k12 ) ∣2k1 < x ∧ x − 2k1 even ∧ c1(x−2k12 ) = ●
1 ∣otherwise

.

Because x ≡2 x − 2k1, because x−2k1+1
2 = x+1

2 − k1 and x−2k1
2 = x

2 − k1 and because, if
x is odd, then x+1

2 ≤ k1 if and only if x ≤ 2k1, the two agree. Hence, χ is indeed a
unitary monoidal C-linear natural isomorphism. □

9.5. Fullness of image functor. While, as is not difficult to see, the functors
of Proposition 9.6 are never full, together with the appropriate restrictions of the
natural isomorphisms of Proposition 9.12 they induce full functors between the full
images of the fiber functors.

More precisely, we show that for any w ∈ N, any additive subsemigroup D of N
and any n ∈ N, if the profile N is such that N(ℵ) = 1 and N(z) = n for any z ≠ ℵ,
then the following restrictions are full on the operator level.

◻ (n,NCZw,∅F,
n

Zw,∅χ) from the restriction of nT to nCU∗w to the restriction of
N

Zw⊍{ℵ},∅ T to NC(U ≀Zw).
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◻ (n,NCZ,∅F, n
Z,∅χ) from the restriction of nT to nCU×D to the restriction of

N
Z⊍{ℵ},∅ T to NC(U ≀rD Z0).

◻ (n,NCZ,∅F, n
Z,∅χ) from the restriction of nT to nCU×+D to the restriction of

N
Z⊍{ℵ},∅ T to NC(U+ ≀rD Z0).

◻ (n,NC∅,ZF, n
∅,Zχ) from the restriction of nT to nCU×D to the restriction of

N
{ℵ},Z T to NC(O∗ ≀rD Z0).

◻ (n,NC∅,ZF, n
∅,Zχ) from the restriction of nT to nCU×+D to the restriction of

N
{ℵ},Z T to NC(O+ ≀rD Z0).

That is equivalent to the following proposition.

Proposition 9.13. For any w ∈ N, any additive subsemigroup D of N and any
n ∈ N, if the profile N is such that N(ℵ) = 1 and N(z) = n for any z ≠ ℵ, and if the
tuple (C,R ∣D, S ∣ F,χ) is one of the following

(a) (U∗w, nT ∣ U ≀Zw, N
Zw⊍{ℵ},∅ T ∣ Zw,∅F,

n
Zw,∅χ)

(b) (U×D, nT ∣ U ≀rD Z0, N
Z⊍{ℵ},∅ T ∣ Z,∅F, n

Z,∅χ)
(c) (U×+D , nT ∣ U+ ≀rD Z0, N

Z⊍{ℵ},∅ T ∣ Z,∅F, n
Z,∅χ)

(d) (U×D, nT ∣ O∗ ≀rD Z0, N
{ℵ},Z T ∣ ∅,ZF, n

∅,Zχ)
(e) (U×+D , nT ∣ O+ ≀rD Z0, N

{ℵ},Z T ∣ ∅,ZF, n
∅,Zχ),

then for any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●}, if a = F (c) and
b = F (d), then for any set-theoretical partition q of Π2k

2ℓ with (a,b, q) ∈ D there exists
a set-theoretical partition p of Πk

ℓ such that (c,d, p) ∈ C and

R(c,d, p) = χd
−1 ○ S(a,b, q) ○ χc.

Proof. We can prove all claims simultaneously. Let w ∶= 0 in cases (b)–(e) and
let E be given by ∅ in case (a), by D in cases (b) and (d) and by D ⊍ {0} in cases
(c) and (e).

We show that for any {k, ℓ} ⊆ N0 and any c∶ ⟦k⟧ → {○, ●} and d∶ ⟦ℓ⟧ → {○, ●},
if a = F (c) and b = F (d), then for any set-theoretical partition q of Π2k

2ℓ with
(a,b, q) ∈ D there exists a set-theoretical partition p of Πk

ℓ such that (c,d, p) ∈ C and

χd ○R(c,d, p) = S(a,b, q) ○ χc.

More precisely, if Y = ξab←(Zw) and Z = ξab←({ℵ}), we prove that p ∶= R(q,Y) has the
desired properties.

Step 1: We first check that (c,d, p) ∈ p, i.e., that ∣B∣ = 2 and σc
d(B) = 0 and

δcd(b,b′) ≡w 0 for any {b,b′} ⊆ B and B ∈ p, and that for any {B1,B2} ⊆ p with B1 ≠ B2,
whenever there exist b1 ∈ B1 and b2 ∈ B2 with ∣δcd(b1,b2)∣ ∈ E, then B1×k

ℓ B2.
By definition of D the assumption that (a,b, q) ∈ D ensures that ℵΣa

b ≡w 0, that
q ≤ {Y,Z}, that for any C ∈ q with C ⊆ Z always ∣C∣ ≤ 2 and, if ∣C∣ = 2, then

ℵσa
b(C) = 0, as well as ∣C∣ ≥ 2 in cases (b)–(e), that any A ∈ q with A ⊆ Y satisfies

∣A∣ = 2 and ξab(a′) − ξab(a) + ℵδab(a,a′) ≡w 0 for any {a,a′} ⊆ A, and ∑z∈Zw ℵσa
b(A) = 0

in cases (a)–(c), and ∣]a,a′′[2k2ℓ ∩ {a′ ∈ Y ∧ ξab(a′) − ξab(a) + ℵδab(a,a′) = 0}∣ ≡2 0 for
any {a,a′′} ⊆ A with a ≠ a′′ in cases (d) and (e), and that for any {A1,A2} ⊆ q with
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A1 ⊆ Y and A2 ⊆ Y and A1 ≠ A2, whenever there exist a1 ∈ A1 and a2 ∈ A2 with
∣ξab(a2) − ξab(a1) + ℵδab(a1,a2)∣ ∈ E, then A1×2k

2ℓ A2.
Step 1.1: Block size. Given any B ∈ p, by definition of p there exists A ⊆ q with

B = γ 2k
Y,2ℓ

←(A). Because q ≤ {Y,Z} by (a,b, q) ∈ D the fact that B ≠ ∅ and thus

A ∩ Y ⊇ γ 2k
Y,2ℓ →(B) ≠ ∅ ensures A ⊆ Y. Hence, ∣B∣ = 2 because γ 2k

Y,2ℓ is injective and

∣A∣ = 2 by (a,b, q) ∈ D.
Step 1.2: Block spread. Moreover, if B ∈ p and A are as in the preceding step,

and if {b,b′} ⊆ B are arbitrary, then a ∶= γ 2k
Y,2ℓ (b) ∈ A and a′ ∶= γ 2k

Y,2ℓ (b′) ∈ A. Hence,

ξab(a′) − ξab(a) + ℵδab(a,a′) ≡w 0 by (a,b, q) ∈ D. And, according to Lemma 9.4 (g)
that implies δcd(b,b′) ≡w 0.

Step 1.3: Block color sum. If, still, B and A are as before, then the assumption
(a,b, q) ∈ D guarantees in cases (a)–(c) that ∑z∈Zw zσa

b(A) = 0. Since ζab ○ γ 2k
Y,2ℓ = ξcd

by Lemma 9.4 (b) we can thus conclude σc
d(B) = ∑b∈B σ(ζcd(b)) = ∑a∈A σ(ζab(a)) =

∑z∈Zw zσa
b(A) = 0 in those cases. In cases (d) and (e) by ∣B∣ = 2 there exist {b,b′′} ⊆ Πk

ℓ

with b ≠ b′′ and {b,b′′} = B. Since γ 2k
Y,2ℓ is injective the points a ∶= γ 2k

Y,2ℓ (b) and

a ∶= γ 2k
Y,2ℓ (b′′) satisfy a ≠ a′′. Hence, the facts that w = 0 and {a,a′′} ⊆ A ∈ q imply

∣]a,a′′[2k2ℓ ∩ {a′ ∈ Y ∧ ξab(a′) − ξab(a) + ℵδab(a,a′) = 0}∣ ≡2 0 by (a,b, q) ∈ D. Lem-
ma 9.4 (h) tells us that this requires ∣]b,b′′[kℓ ∩ {b′ ∈ Πk

ℓ ∧ δcd(b,b′) = 0}∣ ≡2 0. Since
S ∶= {b′ ∈ Πk

ℓ ∧ δcd(b,b′) = 0} ∈ 0∆c
d and since, as we have seen, B ⊆ S, that implies

σc
d({b,b′′}) = 0 by Proposition 7.17. Hence, σc

d(B) = 0 in any case.
Step 1.4: Non-crossing conditions. For any {B1,B2} ⊆ p with B1 ≠ B2 and any

b1 ∈ B1 and b2 ∈ B2 with ∣δcd(b1,b2)∣ ∈ E, by definition of p, there exist A1 ∈ q
and A2 ∈ q such that B1 = γ 2k

Y,2ℓ
←(A1) and B1 = γ 2k

Y,2ℓ
←(A2). Again, that demands

B1 ⊆ Y and B2 ⊆ Y because q ≤ {Y,Z} by (a,b, q) ∈ D. Moreover, since A1 ∩ A2 ⊆ Y
the fact that ∅ = B1 ∩ B2 = γ 2k

Y,2ℓ
←(A1) ∩ γ 2k

Y,2ℓ
←(A2) = γ 2k

Y,2ℓ
←(A1 ∩ A2) requires

A1 ∩ A2 = ∅. Finally, the points a1 ∶= γ 2k
Y,2ℓ (b1) ∈ A1 and a2 ∶= γ 2k

Y,2ℓ (b2) ∈ A2 satisfy

∣ξab(a2)−ξab(a1)+ℵδab(a1,a2)∣ ∈ E by Lemma 9.4 (g). The assumption that (a,b, q) ∈ D
therefore necessitates A1×2k

2ℓ A2. Because γ 2k
Y,2ℓ is monotonic with respect to Γkℓ and

Γ2k
2ℓ by Lemma 4.2 4.2, we can thus infer B1×k

ℓ B2. In conclusion, (c,d, p) ∈ C.
Step 2: It remains to prove that (χd ○R(c,d, p))(f) = (S(a,b, q) ○χc)(f) for any

f ∈ Jnc , which, by definition, is to say

∑g∈Jn
d
ζ(p,ker(f ◾

◾ g)) ωd(g) = ∑v∈JN
b
ζ(q,ker(ωc(f) ◾◾ v)) v.

Since ωd is a bijection from Jnd to JNb by Lemma 9.9 (b), we can reindex the sum on
the right-hand side and see that it is identical to∑g∈Jn

d
ζ(q,ker(ωc(f) ◾◾ωd(g))) ωd(g).

Moreover, ζ(p,ker(f ◾
◾ g)) = ζ(q,ker(ωc(f) ◾◾ωd(g))) for any g ∈ Jnd according to

Lemma 9.10 because p = R(q,Y) by construction and q ≤ {Y,Z} by (a,b, q) ∈ D.
Thus, the above identity is indeed satisfied for any f ∈ Jnc , which is what we needed
to prove. □
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10. Characterizing the unitary half-liberations

Assumption 10.1. In Section 10, for any w ∈ N0, any n ∈ N, if (U,O) is either
(Zw,∅) or (∅,Zw), if the dimension profile N for (U,O) is such that N(z) = n for
any z ∈ Zw and N(ℵ) = 1, then for any k ∈ N0 and any c∶ ⟦k⟧ → {○, ●} we identify
the Hilbert spaces ℓ2(Jnc ) and ℓ2(JN

U,OF (c)) via the unitary operator n
U,Oχc

, as we can

do by Proposition 9.12.

At last, all requirements have been compiled to prove the Main Result.

Proof of the main result. It suffices to prove (a) because then (b) follows
by Proposition 2.53 and (c) by Proposition 2.57 and (d) by by Proposition 2.11.
Depending on (G,KG) define (C,DC,U,O, F ) as follows

(G,KG) C DC U O F

(U∗
w,n, Un) U∗w U ≀Zw Zw ∅ Zw,∅F

(U×
D,n, Un) U×D U ≀rD Z0 Z ∅ Z,∅F

(U×
D,n,O

∗
n) U×D O∗ ≀rD Z0 ∅ Z ∅,ZF

(U×+
D,n, U

+
n ) U×+D U+ ≀rD Z0 Z ∅ Z,∅F

(U×+
D,n,O

+
n) U×+D O+ ≀rD Z0 ∅ Z ∅,ZF

Then, by Proposition 6.7 we can identify KG ≀̂rG ẐmG
with the easy algebraic compact

quantum group associated with (U⊍ {ℵ},O,DC,N), where N is such that N(z) = n
for any z ∈ U⊍O and N(ℵ) = 1. Let R and S be the easy rigid concrete monoidal W ∗-
categories associated with ({ℶ},∅,C, n) adnd (U ⊍ {ℵ},O,DC,N), respectively. By
Propositions 9.5, 9.6 and 9.13 then F is a full strict concrete monoidal W ∗-functor
R → S which satisfies (ℶ, ○)↦ (0, ○) ▵ (ℵ, ○). And that is what (a) claims. □

11. Concluding remarks

The chapter concludes with three remarks on the main result and its implications.

11.1. Co-amenability. Banica and Bichon note in [BB17] that their charac-
terization of the compact quantum group U∗

w,n for w ∈ N and n ∈ N as a quotient
compact quantum group of Un ≀̂Zw implies that U∗

w,n is co-amenable. The same logic
applies to at least one other half-liberated unitary easy quantum group.

Theorem 11.1. U×
∅,n is co-amenable for any n ∈ N.

Proof. Step 1: Auxiliary statement. We first recognize that any CQG Hopf ∗-
algebra has a co-amenable dual if it admits a CQG Hopf ∗-algebra morphism into the
formal dual of a co-amenable algebraic compact quantum group. This follows from
[KR17, Lemma 1.11], which says that any CQG Hopf ∗-algebra has a co-amenable
formal dual if and only if no element of the kernel of its co-unit is invertible in the
reduced CQG C∗-algebra induced. Namely, for the following reasons.

Let H and K be any CQG Hopf ∗-algebras, let ϵH and ϵK be their respective
co-units, let jH and jK be the inclusions of H into R(H) respectively of K into
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R(K), let ψ be any CQG Hopf ∗-algebra morphism H →K, let φ denote R(ψ), let
the dual of K be co-amenable and let a be any vector of H with ϵH(a) = 0. Then
ϵK(ψ(a)) = 0 by ϵKψ = ϵH . Hence, jK(ψ(a)) is not invertible in R(K) by [KR17,
Lemma 1.11] since K has a co-amenable dual. Because φjH = jKψ, that means that
φ(jH(a)) has no inverse in R(K). Since φ is an algebra morphism R(H)→ R(K) it
must map invertible elements to invertible elements. Thus, by contraposition, jH(a)
cannot have an inverse in R(H). Since a was arbitrary the formal dual of H thus
has to be co-amenable by [KR17, Lemma 1.11].

Step 2: Proof of the claim. By the main result the CQG Hopf ∗-algebra of U×
∅,n

admits a CQG Hopf ∗-algebra into the CQG Hopf ∗-algebra of (Un)×̂Z ⋊̂ Ẑ. Since

(Un)×̂Z is a compact group and since Z is an amenable discrete group, (Un)×̂Z ⋊̂ Ẑ is
co-amenable by [Kye08a, Proposition 7.4]. Hence, U×

∅,n is co-amenable by Step 1. □

11.2. Degenerate cases. Graph products can degenerate into free products
of direct products or into direct products or free products. One may ask whether
this can happen for any of the graph products occurring in the main result.

Proposition 11.2. For any countable set I, any partial commutation relation r
on I and any family (Gi)i∈I of algebraic compact quantum groups, the cases where
∗̂ri∈I Gi can be written as a combination of free and tensor products of the factors
(Gi)i∈I are precisely those where r ≡ r ∪ {(i, i) ∣ i ∈ I} or ¬r ≡ (I ⊗ I)/r is transitive.

(a) If r is an equivalence on I, then
r

∗̂
i∈I
Gi ≅ ∗̂

B∈I/r
( ×̂
i∈B
Gi).

(b) If ¬r is an equivalence on I, then
r

∗̂
i∈I
Gi ≅ ×̂

B∈I/¬r
( ∗̂
i∈B
Gi).

Proof. Follows immediately from the universal properties. □

Proposition 11.3. For any subsemigroup D of (N,+), if
rD = {(s, t) ∣ {s, t} ⊆ Z ∧ ∣t − s∣ ∉ {0} ∪D},

then
(a) rD ≡ rD ∪ {(s, s) ∣ s ∈ Z} is an equivalence on Z if and only if D ∈ {∅,N},
(b) ¬rD ≡ (Z⊗Z)/rD is an equivalence on Z if and only if D ∈ {∅, dN ∣d ∈ N}.

Proof. (a) For any {s, t} ⊆ Z, by definition, (s, t) ∈ rD if and only if ∣t−s∣ ∉D
or s = t. Thus, r∅ = Z ⊗ Z and rN = {(s, s) ∣ s ∈ Z}, which are clearly equivalences.
If D ∉ {∅,N}, then 1 < g ∶= minD because D is a subsemigroup of (N,+). Then,
(−1,0) ∈ rD because ∣0−(−1)∣ = 1 ∉D and (0, g−1) ∈ rD because ∣(g−1)−0∣ = g−1 ∉D
but (−1, g−1) ∉ rD as ∣(g−1)−(−1)∣ = g ∈D and −1 ≠ g−1, which proves rD intranstive.

(b) Now, for any {s, t} ⊆ Z, by definition, (s, t) ∈ ¬rD if and only if ∣t−s∣ ∈ {0}∪D.
Hence, ¬r∅ = {(s, s) ∣ s ∈ Z}, which is obviously an equivalence. For any d ∈ N
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the relation ¬rdN = {(s, t) ∣ t − s ∈ dZ} is simply congruence modulo d and thus an
equivalence relation as well.

If D ∉ {∅, dN ∣d ∈ N} and g ∶= minD, then gN ⊆ D because D is a subsemigroup
of (N,+). Because D ≠ gN by assumption, h ∶=min(D/gN) is a well-defined element
of D with g < h. If ∣h−g∣ = h−g was in D, then the inequality h−g < h would imply
h − g ∈ gN by the minimality of h and thus h = (h − g) + g ∈ gN – a contradiction.
Now, (g,0) ∈ ¬rD because ∣0 − g∣ = g ∈ D and (0, h) ∈ ¬rD because ∣h − 0∣ = h ∈ D.
However, (g, h) ∉ ¬rD because ∣h−g∣ ∉ {0}∪D. Hence, ¬rD fails to be transitive. □

11.3. Generalization to other non-hyperoctahedral categories. The func-
tor U,OF constructed in Section 9 was defined on the set S of all two-colored parti-
tions and shown to restrict to functors mapping each category of the unitary half-
liberation into a particular subcategory of U⊍{ℵ},OS. That only the three families
of categories of two-colored partitions associated with the unitary half-liberations
were considered in this chapter was mainly an issue of practical feasibility, not of
mathematical necessity. Of course, we can also restrict U,OF to other, say, non-
hyperoctahedral categories C of two-colored partitions and see what the resulting
images U,OF→(C) are. Where U,OF→(C) turns out to be a subcategory of U⊍{ℵ},OS
we have found yet another new relationship between two easy compact quantum
groups.

The appropriate choice of tags (U,O) probably depends on the parameters de-
noted by L(C) and K(C) in [MW21b; MW21c]: Depending on whether (L,K)(C) is
given by (∅,wZ), (wZ,wZ) or (w + 2wZ,2wZ) for some w ∈ N0, one might want to
consider (Zw,∅), (∅,Zw) and (∅,Zw), respectively. If U,OF→(C) can be written as
a wreath graph co-product E ≀r Zw for some category E of two-colored or uncolored
partitions, then the parameter X(C) from [MW21b; MW21c] will likely indicate the
partial commutation relation r as {(s, t) ∣ {s, t} ⊆ Zw ∧ s ≠ t ∧ (t−w s ∈X(C) ∨ s−w t ∈
X(C))}. The category E will be non-crossing if and only if 0 ∉X(C). Moreover, one
should be able to find E as {R((c,d, p),S) ∣ (c,d, p) ∈ C ∧ S ∈ w∆c

d} if (U,O) = (Zw,∅)
and as {R(p,S) ∣ (c,d, p) ∈ C ∧ S ∈ w∆c

d} if (U,O) = (∅,Zw).
In fact, this set of rules for determining (U,O,w,E , r) seems likely to exhibit C

as a full subcategory of E ≀r Zw if and only if the parameter Σ(C) from [MW21b;
MW21c] is {0}. For other values of Σ(C) it is less clear what to expect. Judging
by [TW16], nested wreath graph co-products may make an appearance. Likely, a
different definition of U,OF is in order there.

Finally, for hyperoctahedral C, it is quite unclear what a good functor U,OF might
look like or if there even is a helpful one to be found.
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CHAPTER 4

First cohomology of unitary easy quantum group duals

1. Introduction

The first quantum group cohomology with trivial coefficients of the discrete dual
of any unitary easy quantum group is computed. Even those potential quantum
groups whose associated categories of two-colored partitions have not yet been found.
Some remarks on computing the second cohomology are offered.

1.1. Background and context. In [BS09] Banica and Speicher provided a way
of constructing compact quantum groups (in the sense of [Wor87; Wor91; Wor98])
by solving infinite combinatorics puzzles: They introduced three operations on the
collection of all equivalence relations of disjoint unions of finite sets and showed
that each subset which is closed under these operations gives rise to a compact
quantum group. An uncountable number of such sets and of the resulting so-called
“easy” quantum groups and, in fact, all there can be, have since been found in
[BS09; BCS10; Web13; RW14; RW16a; RW16b]. In [TW18], Tarrago and Weber
extended Banica and Speicher’s operations to the collection of all “two-colored”
partitions, thus providing even more quantum groups to find. The classification
program they initiated to determine all sets closed under the operations is still
ongoing (see [TW18; Gro18; MW20; MW21a; MW21b; MW21c; Maa21]). The
construction has since been further extended to partitions with arbitrarily many
“colors” by Freslon in [Fre17], to “three-dimensional” sets in by Cébron and Weber
in [CW16] and to equivalence relations on graphs instead of sets by Mančinska and
Roberson in [MR20].

An issue that all these constructions share is that it is difficult to tell which of
the resulting compact quantum groups are new and which are isomorphic to al-
ready known ones. In particular, each solution to the combinatorics puzzle does
not only provide one quantum group but an entire countably infinite series, one for
each dimension of its fundamental representation. And already Banica and Speicher
themselves observed in [BS09, Proposition 2.4 (4)] that, at least in some cases, the
quantum groups of one solution are isomorphic to those of another, just shifted by
one dimension. That underlines the importance of studying quantum group invari-
ants with the potential of telling easy quantum groups apart. Of course, these are
often very difficult to compute like, e.g., the L2-cohomology of [Kye08c] of discrete
quantum groups. But perhaps at least the cohomology with trivial coefficients is
a reasonable goal to strive for. The present chapter computes its first order for all
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of Tarrago and Weber’s so-called unitary easy quantum groups, even the potential
ones whose combinatorics puzzles have not been solved yet.

Moreover, it provides a few remarks on the computation of the second order
begun by Bichon, Das, Franz, Kula and Skalski in [BFG17; Das+18] as well as
Wendel in [Wen20]. The former five investigated the cohomology of certain easy
quantum groups out of a different motivation. In particular, they were interested
in the Calabi-Yau property of [Gin06], a generalization of Poincaré duality, and
the classification of Schürmann triples. Namely, a quantum group whose second
cohomology vanishes has the AC property, defined in [FGT15], which is important
in the study of quantum Lévy processes because it guarantees the existence of an
associated Schürmann triple.

In [BFG17; Das+18], Bichon, Das, Franz, Kula and Skalski had already laid out a
potential strategy for computing the second cohomology of any easy quantum group.
This strategy is based on two key insights and goes as follows. They interpreted
quantum group cohomology as Hochschild cohomology and chose the Hochschild
complex as their resolution. Thus, they were faced with having to compute the
quotient space of the 2-cocycles by the 2-coboundaries. By a very clever use of the
universal property of the quantum groups in question they managed to solve the
linear system of equations determining the space of 2-coboundaries. This use of
the universal property is the first key tool (see [BFG17, Lemma 5.4] and [Das+18,
Lemma 4.1]).

Understanding the 2-cocycles then allowed them to define a “defect map”, an
injective linear map from 2-cohomology to a certain finite-dimensional vector space
of matrices. Thus, at this point they only needed to determine the image of this
defect map in order to compute the second cohomology. This is where their second
key insight comes into play. Namely, although being interested only in the second
order cohomology, they incidentally also computed the first. That is because they
wanted to make use of the multiplicative structure of the cohomology ring. They
showed that, at least for the specific quantum groups they investigated, each 2-
cocycle was cohomologous to a cup product of two 1-cocycles. Thus, rather than
having to probe the infinite-dimensional vector space of all 2-cocycles as the domain
of the defect map they could confine themselves to determining the image of the
restriction to the cup-products, a finite-dimensional space.

In short, when trying to compute the second cohomology of any easy quantum
group it might be helpful, perhaps even necessary, to know the first cohomology.
Hence, the main result of the present chapter might also constitute an intermediate
step in computing the higher cohomologies of all easy quantum groups.

1.2. Main results. The next result extends and generalizes those of [BFG17]
and [Das+18] an [Wen20].

Main results. For any n ∈ N, any unitary easy compact n × n-matrix quan-
tum group G with fundamental representation u and any category C of two-colored
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partitions associated with G an isomorphism of vector spaces over C is given by

H1(Ĝ) {v ∈Mn(C) ∧ A(C, v)} ≅ C⊕β1(Ĝ)

η +B1(Ĝ)z→ (η(uj,i))(j,i)∈{1,...,n}⊗{1,...,n},
where Mn(C) is the C-vector space of n×n-matrices with complex entries and where,
if we say that C has property

1 if and only if every block of every partition of C has at most two points,
2 if and only if every block of every partition of C has at least two points,
3 if and only if each block of each partition of C with at least two points
contains as many white lower and black upper points as it does black lower
and white upper points,

4 if and only if each partition of C has as many white lower and black upper
points as it has black lower and white upper points,

then β1(Ĝ) ∈ N0 and for any v ∈Mn(C) the predicate A(C, v) are as follows:

If C is . . . , then A(C, v) is “. . . ” and β1(Ĝ) is . . .
1 ∧ 2 ∧ 3 ⊺ n2

1 ∧ ¬2 ∧ 3 ∃λ ∈ C ∶ v − λI is small (n − 1)2 + 1
1 ∧ ¬2 ∧ 3 ∧ ¬4 v is small (n − 1)2
1 ∧ 2 ∧ ¬3 ∧ 4 ∃λ ∈ C ∶ v − λI is skew-symmetric 1

2n(n − 1) + 1
1 ∧ 2 ∧ ¬3 ∧ ¬4 v is skew-symmetric 1

2n(n − 1)
1 ∧ ¬2 ∧ ¬3 ∧ 4 ∃λ ∈ C ∶ v−λI is skew-symmetric and small 1

2(n − 1)(n − 2) + 1
1 ∧ ¬2 ∧ ¬3 ∧ ¬4 v is skew-symmetric and small 1

2(n − 1)(n − 2)
¬1 ∧ 2 ∧ 3 ∧ 4 v is diagonal n
¬1 ∧ ¬3 ∧ 4 ∃λ ∈ C ∶ v = λI 1
¬1 ∧ ¬3 ∧ ¬4 v = 0 0

And these are all the cases that can occur. Here, a matrix is called “small” if each of
its rows and each of its columns sums to 0. And I denotes the identity n×n-matrix.

Note that if G is an orthogonal easy compact n × n-matrix quantum group, i.e.,
if ∈ C, then C obviously has neither property 3 nor property 4. Hence, β1(Ĝ) can
only take the three values 1

2n(n − 1), 1
2(n − 1)(n − 2) and 0.

1.3. Structure of the chapter. Section 2 recalls the definition of compact
quantum groups and the quantum group cohomology with trivial coefficients of
their discrete duals.

Following that, Section 3 provides particular examples of compact quantum
groups by presenting the definitions of categories of two-colored partitions and uni-
tary easy quantum groups.

For the convenience of the reader, the definitions of the first and second order
Hochschild cohomology and important results about them are stated and proved in
Section 4. The section also contains a characterization of those cohomologies for
universal algebras.
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Section 5 defines the vector spaces of matrices appearing in the main result and
computes their dimensions.

The proof of the main theorem is contained in Section 6. Starting from the
characterization of the first cohomology of a universal algebra from Section 4 and
using the auxiliary results from 5 the first quantum group cohomology as defined
in Section 2 is computed of the discrete duals of the quantum groups defined in
Section 3.

The chapter concludes with Section 7 offering a few remarks on computing the
second cohomology of all unitary easy compact quantum groups.

1.4. Notation. In the following, all algebras are meant to be associative and
unital. Throughout, the symbols ▷ and ◁ are used to denote the left respectively
right actions of any algebra on any bimodule. Moreover, given any vector spaces
V and W over any field the symbol [V,W ] will stand for the vector space of linear
maps from V to W . For any vector space X the name End(X) will be used for
[X,X] considered as an algebra via composition. Furthermore, for any vector space
X and any (possibly infinite) set E the notation X×E will be used for the E-fold
direct product vector space of X (not to be confused with the direct sum X⊕E).
Finally, for any field K and any set E the free K-algebra over E will be denoted by
K⟨E⟩. For any R ⊆ K⟨E⟩ we will write K⟨E ∣R⟩ for the universal K-algebra with
generators E and relations R. For any complex vector space V the conjugate vector
space is denoted by V cj and any element f of [V,W ] between any complex vector
spaces V and W if interpreted as a linear map from V cj to W cj is referred to as f cj.

2. Quantum groups and their cohomology

The most general kind of “quantum group” in the sense considered here are the
locally compact quantum groups introduced by Kustermans and Vaes in [KV00;
Kus01; KV03; Kus05]. Two subcategories of these are Woronowicz’s compact quan-
tum groups defined in [Wor87; Wor91; Wor98] and Van Daele’s discrete quantum
groups studied in [Van96; Van98].

While of those two each is equivalent to the dual category of the other via Pon-
tryagin duality, it is customary to ascribe the cohomology discussed in the present
chapter to the discrete quantum group rather than its compact dual in order to pre-
serve the analogy with the group case. At the same time, the particular quantum
groups treated in this chapter are usually considered to be compact rather than
discrete.

To keep the presentation as short as possible only the definition of compact
quantum groups will be given and the fact that the quantum group cohomology
is actually that of discrete quantum groups will be glossed over by only giving
the definition of the composition of the cohomology functor with the Pontryagin
transformation. However, the custom will be respected when it comes to notation.
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2.1. Compact quantum groups. Quantum groups can be defined both on
an analytic, namely von-Neumann- or C∗-algebraic level, and on a purely alge-
braic level. The two definitions give rise to intimately related but ultimately non-
equivalent categories. However, for the purposes of quantum group cohomology
this is unimportant. Instead, it fully suffices and is easiest to consider the purely
algebraic definition, which reads as follows.

Definition 2.1. (a) An (algebraic) compact quantum group G is the formal

dual of any tuple (A,m,1,∆,∗, ϵ, S), then denoted by C[Ĝ], consisting of
◻ a C-algebra (A,m,1) (with underlying vector space A, multiplication
m∶ A⊗C A→ A and unit 1∶ C→ A),

◻ a linear map ∗∶ A→ Acj, the ∗-operation,
◻ a C-linear map ∆∶ A → A ⊗C A and morphism of C-algebras from
(A,m,1) to the tensor product C-algebra of (A,m,1) with itself, the
comultiplication,

◻ a C-linear functional ϵ on A and morphism of C-algebras from (A,m,1)
to C, the counit,

◻ a C-linear map S∶ A→ A, the antipode or coinverse,
such that the following conditions are met

(i) ∗cj ○ ∗ = idA,
(ii) ∗○m ○γA,A =mcj ○ (∗⊗∗), where γA,A is the unique C-linear endomor-

phism of A⊗A with a⊗ b↦ b⊗ a for any {a, b} ⊆ A,
(iii) (∗ ⊗ ∗) ○∆ =∆cj ○ ∗,
(iv) (idA ⊗∆) ○∆ = αA,A,A ○ (∆ ⊗ idA) ○∆, where αA,A,A is the unique C-

linear map (A⊗A)⊗A→ A⊗ (A⊗A) with (a⊗ b)⊗ c↦ a⊗ (b⊗ c) for
any {a, b, c} ⊆ A.

(v) idA = λA ○ (ϵ⊗ idA)○∆, where λA is the C-linear map C⊗CA→ A with
z ⊗ a↦ z a for any z ∈ C and a ∈ A,

(vi) idA = ρA ○ (idA⊗ ϵ) ○∆, where ρA is the C-linear map A⊗CC→ A with
a⊗ z ↦ z a for any z ∈ C and a ∈ A,

(vii) m ○ (S ⊗ idA) ○∆ = 1 ○ ϵ,
(viii) m ○ (idA ⊗ S) ○∆ = 1 ○ ϵ.

(ix) there exists a (then uniquely determined) C-linear functional h, the
integral, such that

(1) h ○ 1 = idC,
(2) h(a∗a) ∈ R and 0 ≤ h(a∗a) for any a ∈ A,
(3) a = 0 for any a ∈ A with h(a∗a) = 0,
(4) 1 ○ h = λA ○ (h⊗ idA) ○∆,
(5) 1 ○ h = ρA ○ (idA ⊗ h) ○∆.

(b) A morphism φ∶ G′ → G of (algebraic) compact quantum groups from any
compact quantum group G′ with formal dual (A′,m′,1′,∗′,∆′, ϵ′, S′) to any
compact quantum group G with formal dual (A,m,1,∗,∆, ϵ, S) is the for-
mal dual of any f , denoted by C[φ̂], such that
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(i) f is a morphism of C-algebras from (A,m,1) to (A′,m′,1′),
(ii) ∗′ ○ f = f cj ○ ∗,

(iii) (f ⊗ f) ○∆ =∆′ ○ f ,
(iv) ϵ′ ○ f = ϵ,
(v) f ○ S = S′ ○ f .

2.2. Quantum group cohomology. For any discrete group Γ the group co-
homology of Γ can be defined in many equivalent ways, e.g., as the right derived
functor of the functor ( ⋅ )Γ from the category of Γ-modules to the category of abelian
groups which sends any Γ-module M to the abelian subgroup MΓ of M given by the
invariant elements {m ∈M ∧ g▷m =m} and which sends any Γ-module morphism
h∶ M → N to the morphism of abelian groups fΓ∶ MΓ → NΓ with m↦ h(m) for any
m ∈MΓ.

A naturally isomorphic definition is to say that the p-th group cohomology of
Γ with coefficients in M is given by ExtpC[Γ](C, M ), the image of M under the

right derivative of the functor HomC[Γ](C, ⋅) which maps a left C[Γ]-module to the
abelian group of left C[Γ]-module morphisms from the trivial left C[Γ]-module C
to M and which maps any morphism h∶ M → N of left C[Γ]-modules to the group
homomorphism which assigns to any group homomorphism f ∶ C → M the group
homomorphism h ○ f ∶ C→ N .

Neither of those is the position taken in the present chapter. Rather, a third
naturally isomorphic definition of group cohomology justifies the language adopted
below. Namely, using Shapiro’s Lemma (see [Ben98, Lemma 2.8.4]) it is possible
to consider instead the p-th Hochschild cohomology Hp

HS(C[Γ],M) of C[Γ] with
coefficients in the bi-module M with the trivial right action of C[Γ]. Of course, in
this chapter, we are only interested in quantum group cohomology with trivial coef-
ficients. An ad-hoc definition at least the first two orders of Hochschild cohomology
is provided in Section 4.

Definition 2.2. For any compact quantum group G and any p ∈ N0, if A is the
underlying algebra and ϵ the co-unit of C[Ĝ] and if X denotes the A-bimodule given
by the complex vector space C equipped with the left and right A-actions defined
by a⊗ λ ↦ ϵ(a)λ respectively λ⊗ a ↦ λϵ(a) for any a ∈ A and λ ∈ C, then the p-th
quantum group cohomology with trivial coefficients of the discrete dual Ĝ of G is
defined as

Hp(Ĝ) =Hp
HS(A,X),

the p-th Hochschild cohomology of A with coefficients in X.

3. Categories of two-colored partitions and unitary easy quantum
groups

The quantum groups whose quantum group cohomology is investigated in the
present chapters are the discrete duals of so-called easy quantum groups. They
can be defined via Tannaka-Krein duality (see [Wor88]) using the combinatorics of
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partitions. An ad-hoc definition is given below. Note that the word “partition” here
refers to something (similar but) different from its meanings in other contexts. To
avoid confusion the following language is adopted throughout the chapter.

Notation 3.1. (a) For any mapping f ∶ X → Y between any sets X and
Y and any subsets A ⊆ X and B ⊆ Y let f→(A) ∶= {f(x) ∣x ∈ A} and
f←(B) ∶= {x ∈ X ∧ f(x) ∈ B} denote the image of A respectively the
pre-image of B under f . Moreover, let ran(f) ∶= f→(X) and ker(f) ∶=
{f←({y}) ∣ y ∈ ran(f)} be the image and kernel of f .

(b) For any set-theoretical partition p of, i.e., quotient set of an equivalence
relation on, X write πp for the associated projection, the mapping X → p
which maps any x ∈X to the unique B ∈ p with x ∈ B. And for any second set
Y and any mapping f ∶ X → Y with p ≤ ker(f) let f/p denote the quotient
mapping, the unique mapping p→ Y with (f/p) ○ πp = f .

(c) Given any two set-theoretical partitions p and q of any common set X, write
p ≤ q if p is finer than q, i.e., if for any B ∈ p there exists C ∈ q with B ⊆ C.
In that case, let ζ(p, q) ∶= 1 and let ζ(p, q) ∶= 0 otherwise. Furthermore, for
any set-theoretical partitions p1 and p2 of X let p1∨p2 denote the join of p1
and p2, the unique set-theoretical partition s of X which satisfies p1 ≤ s and
p2 ≤ s and which is minimal with that property with respect to the partial
order ≤.

Any “partition” will be a set-theoretical partition but not vice versa.

3.1. Two-colored partitions and their categories. Rather, (two-colored)
partitions can be defined as follows. For further details see [TW18], where two-
colored partitions were first introduced, generalizing the “uncolored” partitions con-
sidered in [BS09].

Assumptions 3.2. (a) Let
◾(⋅) and ◾(⋅) be any two injections with common

domain N and with disjoint ranges.
(b) Let ○ and ● be any two sets with ○ ≠ ●.

Definition 3.3. (a) For any {k, ℓ} ⊆ N0 we call Πk
ℓ ∶= {◾i, ◾j ∣ i ∈ ⟦k⟧ ∧ j ∈

⟦ℓ⟧} the set of k upper and ℓ lower points.
(b) Given any {k, ℓ} ⊆ N0, any set X and any mappings g∶ ⟦k⟧→X and j∶ ⟦ℓ⟧→

X denote by g ◾◾ j the mapping Πk
ℓ → X with ◾i ↦ g(i) for any i ∈ ⟦k⟧ and

◾j ↦ j(j) for any j ∈ ⟦ℓ⟧.
(c) ○ and ● are called the two colors and are said to be dual to each other, in

symbols, ○ ∶= ● and ● ∶= ○. They moreover have the color values σ(○) ∶= 1
and σ(●) ∶= −1.

(d) For any {k, ℓ} ⊆ N0, any c∶ ⟦k⟧ → {○, ●} and any d∶ ⟦ℓ⟧ → {○, ●} the color
sum of (c,d) is the Z-valued measure σc

d on Πk
ℓ with density −σ(ci) on ◾i for

any i ∈ ⟦k⟧ and density σ(dj) on ◾j for any j ∈ ⟦ℓ⟧. Moreover, Σc
d ∶= σc

d(Πk
ℓ )

is called the total color sum of (c,d).
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Definition 3.4. (a) A two-colored partition is any triple (c,d, p) for which
there exist {k, ℓ} ⊆ N0 such that c and d are mappings from ⟦k⟧ respectively
⟦ℓ⟧ to {○, ●}, the upper and lower colorings, and such that p, the collection
of blocks, is a set-theoretical partition of of points.

(b) Any set C of two-colored partitions meeting the following conditions is called
a category of two-colored partitions :

(i) C contains , , and .
(ii) (d, c, p∗) ∈ C for any (c,d, p) ∈ C, where, if {k, ℓ} ⊆ N0 are such that

p is a set-theoretical partition of Πk
ℓ , then p∗ ∶= {{◾j ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈

B} ⊍ {◾i ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B}}B∈p is the adjoint of p.
(iii) (c1 ⊗ c2,d1 ⊗ d2, p1 ⊗ p2) ∈ C for any (c1,d1, p1) ∈ C and (c2,d2, p2) ∈ C,

where, if kt and ℓt are such that pt is a set-theoretical partition of Πkt
ℓt

for each t ∈ ⟦2⟧, then c1 ⊗ c2 ∈ {○, ●}⊗(k1+k2) is defined by i ↦ c1(i) if
i ≤ k1 and i↦ c2(i−k1) if k1 < i and, analogously, d1⊗d2 ∈ {○, ●}⊗(ℓ1+ℓ2)
is defined by j ↦ d1(j) if j ≤ ℓ1 and j ↦ d2(j − ℓ1) if ℓ1 < j, and where
p1 ⊗ p2 ∶= p1 ⊍ {{◾(k1 + i) ∣ i ∈ ⟦k2⟧ ∧ ◾i ∈ B} ⊍ {◾(ℓ1 + j) ∣ j ∈ ⟦ℓ2⟧ ∧ ◾j ∈
B}}B∈p2 is the tensor product of (p1, p2).

(iv) (c, e, qp) ∈ C for any (c,d, p) ∈ C and (d, e, q) ∈ C, where if {k, ℓ,m} ⊆ N0

are such that p is a set-theoretical partition of Πk
ℓ and q one of Πℓ

m, and
if s is the join of the two set-theoretical partitions {{j ∈ ⟦ℓ⟧∧ ◾j ∈ A}}A∈p
and {{i ∈ ⟦ℓ⟧ ∧ ◾i ∈ C}}C∈q of ⟦ℓ⟧, then qp ∶= {A ∈ p ∧ A ⊆ Πk

0} ⊍ {C ∈
q ∧ C ⊆ Πm

0 }⊍{⊍{A∩Πk
0 ∣A ∈ p ∧ ∃j ∈ B ∶ ◾j ∈ A}⊍⊍{C∩Π0

m ∣C ∈ q ∧ ∃i ∈
B ∶ ◾i ∈ C}}B∈s/{∅} is the composition of (q, p).

(c) For any set G of two-colored partition we write ⟨G⟩ for the intersection of
all categories of partitions containing G and we say that G generates ⟨G⟩.

Definition 3.5. We say that any category C of two-colored partitions
(a) is case O if ⊗ ∉ C and ∉ C.
(b) is case B if ⊗ ∈ C and ∉ C.
(c) is case H if ⊗ ∉ C and ∈ C.
(d) is case S if ⊗ ∈ C and ∈ C.
(e) has only neutral non-singleton blocks if σc

d(B) = 0 for any (c,d, p) ∈ C and
any B ∈ p with 2 ≤ ∣B∣ and that C has some non-neutral non-singleton blocks
otherwise.

(f) has only neutral partitions if Σc
d = 0 for any (c,d, p) ∈ C and that C has some

non-neutral partitions otherwise.

We will need to know the following elementary facts about categories of two-
colored partitions.

Definition 3.6. Given any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ and
any set-theoretical partition p of Πk

ℓ the dual of (c,d, p) is the triple (d, c, p), where
d ∈ {○, ●}⊗ℓ is defined by j ↦ dℓ−j+1, where c ∈ {○, ●}⊗k is defined by i ↦ ck−i+1, and
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where p ∶= {{◾(ℓ − j + 1) ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ B} ⊍ {◾(k − i + 1) ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B}}B∈p is the
dual of p.

Lemma 3.7. Let C be any category of two-colored partitions.
(a) (d, c, p) ∈ C for any (c,d, p) ∈ C.
(b) ⊗ ∈ C if and only if there exist (c,d, p) ∈ C and B ∈ p such that ∣B∣ < 2.
(c) ∈ C if and only if there exist (c,d, p) ∈ C and B ∈ p such that ∣B∣ > 2.
(d) If ⊗ ∈ C and ∈ C, then ∈ C.
(e) If ⊗ ∈ C, then ⊗∣Σc

d∣ ∈ C for any (c,d, p) ∈ C.

Proof. Part (a) is implied by [TW18, Lemmata 1.1 (a)]. Parts (b) and (c)
are [TW18, Lemmata 1.3 (b), 2.1 (a)]. and [TW18, Lemmata 1.3 (d), 2.1 (b)],
respectively. Parts (d) and (e) follow immediately from [TW18, Lemmata 1.3 (b),
2.1 (a)] and [TW18, Lemmata 1.1 (a), (b)]. □

3.2. Unitary easy quantum groups. “Easy” quantum groups are now de-
fined by transforming the elements of a given category of partitions into relations for
the generators of a universal algebra that can be given the structure of a compact
quantum group. To be more precise, an entire series of compact quantum groups
indexed by N arises in this way.

Assumptions 3.8. In the following, fix any n ∈ N and any 2n2-elemental set E =
{u○j,i, u●j,i}ni,j=1 and define the two families u○ ∶= (u○j,i)(j,i)∈⟦n⟧⊗2 and u● ∶= (u●j,i)(j,i)∈⟦n⟧⊗2 .

The transformation of partitions into relations is accomplished by the following
formula.

Notation 3.9. For any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ, any partition
p of Πk

ℓ and any g ∈ ⟦n⟧⊗k and j ∈ ⟦n⟧⊗ℓ, let, in C⟨E⟩,

rcd(p)j,g ∶= ∑
i∈⟦n⟧⊗ℓ

ζ(p,ker(g ◾◾ i))
ℓÐ→
∏
b=1
udbjb,ib − ∑

h∈⟦n⟧⊗k

ζ(p,ker(h ◾
◾ j))

kÐ→
∏
a=1
ucaha,ga .

For example, the relations induced by and will be of the utmost importance.

Lemma 3.10. For any g ∈ ⟦n⟧⊗2 and j ∈ ⟦n⟧⊗2 the following hold.

r∅●○( )j,∅ = ∑ni=1 u●j1,iu○j2,i − δj1,j21 r●○∅ ( )∅,g = δg1,g21 −∑nh=1 u●h,g1u
○
h,g2

r∅○●( )j,∅ = ∑ni=1 u○j1,iu●j2,i − δj1,j21 r○●∅ ( )∅,g = δg1,g21 −∑nh=1 u○h,g1u
●
h,g2

Proof. Immediate from the definition. □

The definition of “easy” quantum groups now goes as follows.

Definition 3.11. For any category C of two-colored partitions the unitary easy
(algebraic) compact quantum group of (C, n) is (A,m,1,∗,∆, ϵ, S), where
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(a) (A,m,1) is given by C⟨E ∣R⟩, where

R = {rcd(p)g,j ∣ {k, ℓ} ⊆ N0 ∧ c ∈ {○, ●}⊗k ∧ d ∈ {○, ●}⊗ℓ

∧ (c,d, p) ∈R ∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ} ,

where

R = G ∪ {(c,d, (p)∗) ∣ (c,d, p) ∈ G} ∪ { , },

where G can be any set of two-colored partitions generating C,
(b) ∗∶ A→ Acj is the unique C-algebra morphism from (A,m,1) to the opposite

algebra of (A,m,1) with ucj,i ↦ ucj,i for any {i, j} ⊆ ⟦n⟧ and c ∈ {○, ●},
(c) ∆∶ A→ A⊗CA is the unique morphism of C-algebras from (A,m,1) to the

tensor product of (A,m,1) with itself such that ucj,i ↦ ∑ns=1 ucj,s⊗ucs,i for any
{i, j} ⊆ ⟦n⟧ and c ∈ {○, ●},

(d) ϵ∶ A → C is the unique morphism of C-algebras from (A,m,1) to C with
ucj,i ↦ δj,i for any {i, j} ⊆ ⟦n⟧ and c ∈ {○, ●},

(e) S∶ A→ A is the unique morphism of C-algebra from (A,m,1) to the oppo-
site algebra of (A,m,1) with ucj,i ↦ uci,j for any {i, j} ⊆ ⟦n⟧ and c ∈ {○, ●}.

Remark 3.12. The definition of unitary easy quantum groups is usually given
in terms of universal ∗-algebras. In order to see that the variant given above is
equivalent observe that for any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ, any
p ∈ C(c,d), any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ, if for any m ∈ N0 and any e ∈ ⟦n⟧⊗m the
tuple e ∈ ⟦n⟧⊗m is defined by i ↦ em−i+1 for any i ∈ ⟦m⟧, then, with respect to the
∗-map in Definition 3.11,

(rcd(p)j,g)∗ = ∑
i∈⟦n⟧⊗ℓ

ζ(p,ker(g ◾◾ i))
ℓ←Ð
∏
b=1
(udbjb,ib)

∗ − ∑
h∈⟦n⟧⊗k

ζ(p,ker(h ◾
◾ j))

k←Ð
∏
a=1
(ucaha,ga)

∗

= ∑
i∈⟦n⟧⊗ℓ

ζ((p)∗,ker(g ◾◾ i))
ℓÐ→
∏
b=1
udb
jb,ib

− ∑
h∈⟦n⟧⊗k

ζ((p)∗,ker(h ◾
◾ j))

kÐ→
∏
a=1
uca
ha,ga

= rc
d
((p)∗)j,g.

That shows that adding the relations {(c,d, (p)∗) ∣ (c,d, p) ∈ G} to G in the defini-
tion of R compensates for the switch from the universal ∗-algebra to the universal
algebra.

4. First and second Hochschild cohomology of universal algebras

For the convenience of the reader Section 4 recalls the definitions of and some
elementary results about the first and second Hochschild cohomology of arbitrary al-
gebras (Sections 4.1 and 4.3), including the normalization of 2-coycles (Section 4.3.1)



4. FIRST AND SECOND HOCHSCHILD COHOMOLOGY OF UNIVERSAL ALGEBRAS 309

and the reduction of second cohomology to first cohomology with different coeffi-
cients (Section 4.3.2). Moreover, it provides an algebraic characterization of 2-
coboundaries (Section 4.3.3) as well as a way of producing 2-coycles from 1-cocycles
(Section 4.3.4) via so-called “cup-products”.

However, the main goal of the section is to address very generally the first and
second Hochschild cohomologies of universal algebras, i.e., algebras defined in terms
of generators and relations, in Sections 4.2 and 4.4.

No claim to originality is made with respect to the material of this section.

4.1. First Hochschild cohomology of arbitrary algebras. The following
definitions were first given by Hochschild in [Hoc56].

Assumptions 4.1. In Section 4.1, let K be any field, A any K-algebra and X
any A-bimodule.

Definition 4.2. (a) The X-valued Hochschild 1-cocycles of A are the K-
vector subspace Z1

HS(A,X) of [A,X] formed by all elements η such that

(∂η)(a1 ⊗ a2) ∶= a1 ▷ η(a2) − η(a1a2) + η(a1)◁ a2 = 0

for any {a1, a2} ⊆ A.
(b) The X-valued Hochschild 1-coboundaries of A are the K-vector subspace

B1
HS(A,X) of [A,X] formed by all elements η such that there exists x ∈X

with

η(a) = (∂x)(a) ∶= a▷ x − x◁ a

for any a ∈ A.

Lemma 4.3. B1
HS(A,X) is a K-vector subspace of Z1

HS(A,X).

Proof. For any x ∈X, if η = ∂x, then

(∂η)(a1 ⊗ a2)
= a1 ▷ (∂x)(a2) − (∂x)(a1a2) + (∂x)(a1)◁ a2

= a1 ▷ (a2 ▷ x − x◁ a2) − (a1a2 ▷ x − x◁ a1a2) + (a1 ▷ x − x◁ a1)◁ a2

= 0

by a1 ▷ (a2 ▷ x) = a1a2 ▷ x and a1 ▷ (x ◁ a2) = (a1 ▷ x) ◁ a2 and x ◁ a1a2 =
(x◁ a1)◁ a2. □

Definition 4.4. We call the quotient K-vector space H1
HS(A,X) of Z1

HS(A,X)
with respect to B1

HS(A,X) the first Hochschild cohomology of A with X-coefficients.

Remark 4.5. It is important to the proof of the next result to observe that for any
η ∈ Z1

HS(A,X) necessarily, η(1) = 0 because η(1) = η(1⋅1) = η(1)◁1+1▷η(1) = 2η(1).

The following is a reformulation and explication of [KR17, Lemma 1.9].
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Lemma 4.6. (a) The K-vector space A ⊕ X becomes a K-algebra A |1 X
when equipped with the unit (1,0) and the multiplication defined by

(a1, x1)⊗ (a2, x2)↦ (a1a2, a1 ▷ x2 + x1 ◁ a2)

for any {a1, a2} ⊆ A and {x1, x2} ⊆X.
(b) For any m ∈ N, any {ai}mi=1 ⊆ A and any {xi}mi=1 ⊆X, in A|1X,

Ð→
∏m
i=1(ai, xi) = (

Ð→
∏m
i=1ai,∑mi=1 (

Ð→
∏i−1
j=1aj)▷ xi◁ (

Ð→
∏m
j=i+1aj)) .

(c) If π1∶ A⊕X → A, (a, x) ↦ a and π2∶ A⊕X → X, (a, x) ↦ x are the projec-
tions, then there exists a bijection

Z1
HS(A,X) {f K-algebra homomorphism A→ A|1X

∧ π1 ○ f = idA}

which assigns to any η ∈ Z1
HS(A,X) the mapping A → A ⊕ X with a ↦

(a, η(a)) for any a ∈ A. Its inverse obeys the rule f ↦ π2 ○ f for any
K-algebra homomorphism f from A to A|1X with π1 ○ f = idA.

Proof. (a) For any a ∈ A and any x ∈X,

(a, x)(1,0) = (a1, a▷ 0 + x◁ 1) = (a, x) = (1a,1▷ x + 0◁ a) = (1,0)(a, x),

which proves that (1,0) is a unit. The multiplication is associative because for any
{a1, a2, a3} ⊆ A and any {x1, x2, x3} ⊆X, on the one hand,

((a1, x1) ⋅ (a2, x2)) ⋅ (a3, x3) = (a1a2, a1 ▷ x2 + x1 ◁ a2) ⋅ (a3, x3)
= (a1a2a3, (a1a2)▷ x3 + (a1 ▷ x2 + x1 ◁ a2)◁ a3),

and, on the other hand,

(a1, x1) ⋅ ((a2, x2) ⋅ (a3, x3)) = (a1, x1) ⋅ (a2a3, a2 ▷ x3 + x2 ◁ a3)
= (a1a2a3, a1 ▷ (a2 ▷ x3 + x2 ◁ a3) + x1 ◁ (a2a3)),

which is identically (a1a2a3, a1a2 ▷ x3 + a1 ▷ x2 ◁ a3 + x1 ◁ a2a3) in both cases.
(b) Respectively, the cases m = 1,2,3 are trivial, the definition of the multiplica-

tion and a result in the proof of (a). We assume the claim holds for m−1 and prove
it for m. Indeed, the product

Ð→
∏m
i=1(ai, xi) = (

Ð→
∏m−1
i=1 ai,∑m−1i=1 (

Ð→
∏i−1
j=1aj)▷ xi◁ (

Ð→
∏m−1
j=i+1aj)) ⋅ (am, xm),

by definition, is given by

((Ð→∏m−1
i=1 ai)am, (

Ð→
∏m−1
i=1 ai)▷ xm + (∑m−1i=1 (

Ð→
∏i−1
j=1aj)▷ xi◁ (

Ð→
∏m−1
j=i+1aj))◁ am)

which can be rewritten as

(Ð→∏m
i=1ai,∑mi=1 (

Ð→
∏i−1
j=1aj)▷ xi◁ (

Ð→
∏m
j=i+1aj)) .
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(c) For any K-linear map f from A to A⊕X with f 1 = π1○f and f 2 = π2○f , being
a homomorphism of K-algebras from A to A|1 X is equivalent to the conjunction
of f 1(1) = 1 and f 2(1) = 0 and f 1(a1a2) = f 1(a1)f 1(a2) and

f 2(a1a2) = f 1(a1)▷ f 2(a2) + f 2(a1)◁ f 1(a2)
holding for any {a1, a2} ⊆ A. Hence, f is a homomorphism of K-algebras from A to
A|1 X with f 1 = idA if and only if f 2(1) = 0 and ∂f 2 = 0. By definition and by
Remark 4.5 that is the case if and only if f 2 ∈ Z1

HS(A,X). □

Remark 4.7. If A|1 X is the K-algebra structure on A ⊕X from Lemma 4.6
and if M = {f K-algebra hom. A→ A|1X ∧ π1 ○ f = idA} ⊆ [A,A⊕X], then, even
though the rule f ↦ π2 ○ f defines a K-linear map from [A,A ⊕X] to [A,X] and
even though this mapping restricts to a bijection from M to the K-vector subspace
Z1

HS(A,X) of [A,X], the set M is generally not a K-vector subspace of [A,A⊕X].

4.2. First Hochschild cohomology of universal algebras. Using Lem-
ma 4.6, it is possible to give an equational characterization of the 1-cocycles on
any universal algebra.

Assumptions 4.8. In Section 4.2, let K be any field, E any (not necessarily
finite) set, R ⊆ K⟨E⟩ any subset, J the two-sided K-ideal of K⟨E⟩ generated by R,
and X any K⟨E ∣R⟩-bimodule.

Definition 4.9. Let

F 1
E,R,X ∶ K⟨E⟩→ [X×E,X], p↦ F 1,p

E,R,X

be the unique K-linear map with for any m ∈ N and any {ei}mi=1 ⊆ E, if p = Ð→∏m
i=1ei,

then for any x ∈X×E,

F 1,p
E,R,X(x) = ∑

m
i=1 (
Ð→
∏i−1
j=1ej + J)▷ xei ◁ (

Ð→
∏m
j=i+1ej + J) ,

and with F 1,1
E,R,X = 0.

Lemma 4.10. A commutative diagram of K-linear maps is given by

Z1
HS(K⟨E ∣R⟩,X) {x ∈X×E ∧ ∀r ∈ R ∶ F 1,r

E,R,X(x) = 0}

B1
HS(K⟨E ∣R⟩,X) {((e + J)▷ z − z◁ (e + J))e∈E ∣ z ∈X}

⊆ ⊆ ,

where the sets on the right are K-vector subspaces of X×E and where the horizontal
arrows both assign to any element η of their respective domains the tuple

(η(e + J))e∈E.
In particular, the lower right space is a subspace of the one above. Moreover, the
horizontal arrows are both K-linear isomorphisms. Their respective inverses both
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assign to any element x of their respective domains the mapping K⟨E ∣R⟩→X with

p + J ↦ F 1,p
E,R,X(x)

for any p ∈ K⟨E⟩. For the lower row of the diagram that is the same as assigning
((e + J)▷ z − z◁ (e + J))e∈E ↦ ∂z for any z ∈X.

Proof. We prove the many statements constituting the claim in five steps.
Throughout, abbreviate A ≡ K⟨E ∣R⟩, let B ≡ A |1 X be the algebra structure
on A ⊕X from Lemma 4.6 and let π1 and π2 be the projections A ⊕X → A and
A⊕X →X, respectively.

Step 1: First auxiliary statement: We prove for any z ∈X that, if x = ((e + J)▷
z − z ◁ (e + J))e∈E, then ∂z(p + J) = F 1,p

E,R,X(x) for any p ∈ K⟨E⟩. Indeed, for any
m ∈ N0 and any {ei}mi=1 ⊆ E, if p = e1 . . . em, then by definition,

F 1,p
E,R,X(x) = ∑

m
i=1 (
Ð→
∏i−1
j=1ej + J)▷ xei ◁ (

Ð→
∏m
j=i+1ej + J)

= ∑mi=1 (
Ð→
∏i−1
j=1ej + J)▷ (ei + J ▷ z − z◁ ei + J)◁ (

Ð→
∏m
j=i+1ej + J)

= (∑m+1i=2 (
Ð→
∏i−1
j=1ej + J)▷ z◁ (Ð→∏m

j=iej + J))

− (∑mi=1 (
Ð→
∏i−1
j=1ej + J)▷ z◁ (Ð→∏m

j=iej + J))

= (Ð→∏m
i=1ei + J)▷ z − z◁ (Ð→∏m

i=1ei + J)

and thus by K-linearity, actually, F 1,p
E,R,X(x) = (p + J)▷ z − z ◁ (p + J) = ∂z(p + J)

for any p ∈ K⟨E⟩.
Step 2: Vertical arrows. By Lemma 4.3 the left vertical arrow is well-defined and

injective. The same is true for the right one: Given any z ∈ X, if x = ((e + J)▷ z −
z ◁ (e + J))e∈E, then F 1,r

E,R,X(x) = 0 for any r ∈ R because F 1,r
E,R,X(x) = ∂z(r + J) by

Step 1 and because r ∈ J .
Step 3: Upper horizontal arrow. Next, we prove that the upper horizontal arrow

is a well-defined bijection and that it has the alleged inverse. Namely, we prove that
it can be written as W ○ V ○ U for well-defined bijections W , V and U and that
U−1 ○V −1 ○W −1 is the claimed inverse. Actually, we will construct V out of another
bijection V0.

Step 3.1: Second auxiliary statement. Before the introduction of the various
bijections it is convenient to observe the following. For any b ∈ B×E, if (ae, xe) = be
for each e ∈ E, then for any m ∈ N0 and any {ei}mi=1 ⊆ E by Lemma 4.6 (b),

(Ð→∏m
i=1ei) (b) = (

Ð→
∏m
i=1aei ,∑mi=1 (

Ð→
∏i−1
j=1ej + J)▷ xei ◁ (

Ð→
∏m
j=i+1ej + J)) .

Thus, by K-linearity, for any b ∈ B×E, if a ∈ A×E and x ∈ X×E are such that be =
(ae, xe) for each e ∈ E, then for any p ∈ K⟨E⟩,

p(b) = (p(a), F 1,p
E,R,X(x)).
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Step 3.2: Definition of V0. The universal property of A = K⟨E ∣R⟩ applied to our
B says precisely that a certain bijection

V0∶ {f K-algebra hom. A→ B} {b ∈ B×E ∧ ∀r ∈ R ∶ r(b) = 0},

is defined by f ↦ (f(e + J))e∈E for any K-algebra homomorphism f from A to B
and that the inverse assigns to any b ∈ B×E wth r(b) = 0 for any r ∈ R the mapping
A→ B with p + J ↦ p(b) for any p ∈ K⟨E⟩.

Step 3.3: Definition of V . The bijection V0 from Step 3.2 restricts to a bijection

V ∶ {f K-algebra hom. A→ B ∧ π1 ○ f = idA}
{b ∈ B×E ∧ ∀r ∈ R ∶ r(b) = 0 ∧ ∀p ∈ K⟨E⟩ ∶ π1(p(b)) = p + J}

for the following reasons.
On the one hand, for any K-algebra homomorphism f from A to B with π1 ○ f =

idA and any p ∈ K⟨E⟩, if b = (f(e + J))e∈E and a = (π1(be))e∈E, then a = (e + J)e∈E
by π1 ○ f = idA, which means p(a) = p + J , and thus π1(p(b)) = p + J since Step 3.1
implies π1(p(b)) = p(a).

On the other hand, given any b ∈ B×E with r(b) = 0 for each r ∈ R and π1(p(b)) =
p + J for any p ∈ K⟨E⟩, if the K-algebra homomorphism f from A to B is such that
p+J ↦ p(b) for each p ∈ K⟨E⟩, then, of course, the assumption that π1(p(b)) = p+J
for any p ∈ K⟨E⟩ is exactly what π1 ○ f = idA means.

Step 3.4: Definition of W . Next, we justify that a particular bijection

W ∶ {b ∈ B×E ∧ ∀r ∈ R ∶ r(b) = 0 ∧ ∀p ∈ K⟨E⟩ ∶ π1(p(b)) = p + J}
{x ∈X×E ∧ ∀r ∈ R ∶ F 1,r

E,R,X(x) = 0}

is given by b ↦ (π2(be))e∈E for any b ∈ B×E with r(b) = 0 for each r ∈ R and
π1(p(b)) = p + J for any p ∈ K⟨E⟩ and that its inverse maps x ↦ ((e + J, xe))e∈E for
any x ∈X×E with F 1,r

E,R,X(x) = 0 for all r ∈ R.

Indeed, given any b ∈ B×E such that r(b) = 0 for any r ∈ R and π1(p(b)) = p + J
for any p ∈ K⟨E⟩, if x = (π2(be))e∈E, then Step 3.1 lets us infer F 1,p

E,R,X(x) = π2(p(b))
for any p ∈ K⟨E⟩ and thus, in particular, F 1,r

E,R,X(x) = 0 by r(b) = 0 for any r ∈ R.

Conversely, given any x ∈ X×E with F 1,r
E,R,X(x) = 0 for any r ∈ R, if b = ((e +

J, xe))e∈E, then p(b) = (p+J,F 1,p
E,R,X(x)) for any p ∈ K⟨E⟩ by Step 3.1. In particular,

for any r ∈ R, since r ∈ J and F 1,r
E,R,X(x) = 0, this implies r(b) = 0. Besides that, it

also ensures π1(p(b)) = p + J and π2(p(b)) = F 1,p
E,R,X(x) for any p ∈ K⟨E⟩.

Step 3.5: Definition of U . According to Lemma 4.6 (c) a certain bijection

U ∶ Z1
HS(A,X) {f K-algebra hom. A→ B ∧ π1 ○ f = idA}.

sends any η ∈ Z1
HS(A,X) to the mapping A → B with a ↦ (a, η(a)) for any a ∈ A

and has its inverse satisfy f ↦ π2 ○ f for any K-algebra homomorphism f from A to
B with f = idA.
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Step 3.6: Synthesis for upper arrow. In conclusion, the mapping W ○V ○U yields
a well-defined bijection

Z1
HS(A,X) {x ∈X×E ∧ ∀r ∈ R ∶ F 1,r

E,R,X(x) = 0}

with η ↦ (η(e+ J))e∈E for any η ∈ Z1
HS(A,X) and its inverse assigns to any x ∈X×E

with F 1,r
E,R,X(x) = 0 for all r ∈ R the mapping A→X with p+ J ↦ F 1,p

E,R,X(x) for any

p ∈ K⟨E⟩.
Step 4: Lower horizontal arrow. We prove that the lower horizontal arrow is a

well-defined bijection and has the inverse stated in the claim.
For any η ∈ B1

HS(A,X) and any z ∈ X with η = ∂z the upper horizontal arrow
by definition maps η to the tuple x ∈ X×E with xe = η(e + J) = (∂z)(e + J) =
(e + J)▷ z − z◁ (e + J). Hence, the lower horizontal arrow is well-defined.

Conversely, given any z ∈ X, if x = ((e + J)▷ z − z ◁ (e + J))e∈E and if η is the
image of x under the inverse of the upper horizontal arorw, i.e., the mapping A→X
with p + J ↦ F 1,p

E,R,X(x) for any p ∈ K⟨E⟩, then η = ∂z by Step 1.
Step 5: Commutativity. Since the lower horizontal arrow is defined by the same

rule as the upper one and since the vertical arrows are set inclusions, it is clear that
the diagram commutes. □

Proposition 4.11. There exists an isomorphism of K-vector spaces

H1
HS(K⟨E ∣R⟩,X)

{x ∈X×E ∧ ∀r ∈ R ∶ F 1,r
E,R,X(x) = 0}

{((e + J)▷ z − z◁ (e + J))e∈E ∣ z ∈X}

where the sets on the right-hand side are K-vector subspaces of X×E, such that for
any η ∈ Z1

HS(K⟨E ∣R⟩,X) the class of η is sent to the class of x with xe = η(e + J)
for any e ∈ E. For any x ∈ X×E with F 1,r

E,R,X(x) = 0 for each r ∈ R the inverse

isomorphism sends the class of x to the class of η with η(p+J) = F 1,p
E,R,X(x) for any

p ∈ K⟨E⟩.

Proof. Follows immediately from Lemma 4.10. □

4.3. Second Hochschild cohomology of arbitrary algebras. The second
Hochschild cohomology is defined in Section 4.3.1 for arbitrary algebras. That is also
where the normalization of 2-cocycles is addressed and where certain basic identities
are proved for later use. Following that, Section 4.3.2 discusses how to express the
second Hochschild cohomology in terms of the first. Section 4.3.3 characterizes 2-
coboundaries in terms of algebra homomorphisms. And Section 4.3.4 gives a way of
producing explicit 2-cocycles.

Assumptions 4.12. In Section 4.3, let K be any field, A any algebra and X any
A-bimodule.
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4.3.1. Definition, normalization and basic identities. Again, the following defi-
nitions are taken from [Hoc56].

Definition 4.13. (a) The X-valued Hochschild 2-cocycles of A are the K-
vector subspace Z2

HS(A,X) of [A ⊗ A,X] formed by all elements c such
that

(∂c)(a1 ⊗ a2 ⊗ a3) ∶=
a1 ▷ c(a2 ⊗ a3) − c(a1a2 ⊗ a3) + c(a1 ⊗ a2a3) − c(a1 ⊗ a2)◁ a3 = 0

for any {a1, a2, a3} ⊆ A.
(b) The X-valued Hochschild 2-coboundaries of A are the K-vector subspace

B2
HS(A,X) of [A ⊗ A,X] formed by all elements c such that there exists

ψ ∈ [A,X] with

c(a1 ⊗ a2) = (∂ψ)(a1 ⊗ a2) ∶= a1 ▷ ψ(a2) − ψ(a1a2) + ψ(a1)◁ a2

for any {a1, a2} ⊆ A.

Lemma 4.14. B2
HS(A,X) is a K-vector subspace of Z2

HS(A,X).

Proof. For any ψ ∈ [A,X], if c = ∂ψ, then

(∂c)(a1 ⊗ a2 ⊗ a3)
= a1 ▷ (∂ψ)(a2 ⊗ a3) − (∂ψ)(a1a2 ⊗ a3) + (∂ψ)(a1 ⊗ a2a3) − (∂ψ)(a1 ⊗ a2)◁ a3

= a1 ▷ (a2 ▷ ψ(a3) − ψ(a2a3) + ψ(a2)◁ a3)
− (a1a2 ▷ ψ(a3) − ψ(a1a2a3) + ψ(a1a2)◁ a3)

+ (a1 ▷ ψ(a2a3) − ψ(a1a2a3) + ψ(a1)◁ a2a3)
− (a1 ▷ ψ(a2) − ψ(a1a2) + ψ(a1)◁ a2)◁ a3,

which is zero by a1 ▷ (a2 ▷ ψ(a3)) = a1a2 ▷ ψ(a3) and a1 ▷ (ψ(a2)◁ a3) = (a1 ▷
ψ(a2))◁ a3 and ψ(a1)◁ a2a3 = (ψ(a1)◁ a2)◁ a3. □

Definition 4.15. We call the quotient K-vector space H2
HS(A,X) of Z2

HS(A,X)
with respect toB2

HS(A,X) the second Hochschild cohomology of A with X-coefficients.

Differently from 1-cocycles, a 2-cocycle need not vanish on the identity. However,
they can be normalized to do so without affecting their cohomology class. The
following is the first step in seeing how.

Lemma 4.16. Let c ∈ Z2
HS(A,X) be arbitrary.

(a) The following are equivalent:
(i) c(1⊗ 1) = 0.
(ii) c(a⊗ 1) = 0 for any a ∈ A.
(iii) c(1⊗ a) = 0 for any a ∈ A.

(b) If there exists ψ ∈ [A,X] such that c = ∂ψ, then c(1⊗ 1) = ψ(1).
In particular, c(1⊗ 1) = 0 if and only if ψ(1) = 0.
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Proof. (a) It is clear that (ii) and (iii) each imply (i). Because c is a 2-
cocycle we infer for any a ∈ A,

0 = (∂c)(a⊗ 1⊗ 1) = a▷ c(1⊗ 1) − c(a ⋅ 1⊗ 1) + c(a⊗ 1 ⋅ 1) − c(a⊗ 1)◁ 1

which is to say c(a⊗ 1) = a▷ c(1⊗ 1). From this we can conclude that (i) requires
(ii). Similarly, for any a ∈ A,

0 = (∂c)(1⊗ 1⊗ a) = 1▷ c(1⊗ a) − c(1 ⋅ 1⊗ a) + c(1⊗ 1 ⋅ a) − c(1⊗ 1)◁ a

and thus c(1 ⊗ a) = c(1 ⊗ 1)◁ a, proving that (i) necessitates (ii). That is all we
needed to see.

(b) By definition, c(1⊗1) = (∂ψ)(1⊗1) = 1▷ψ(1)−ψ(1 ⋅1)+ψ(1)◁1 = ψ(1). □

Definition 4.17. (a) Any c ∈ Z2
HS(A,X) is called a normalized X-valued

Hochschild 2-cocycle if any (and thus all) of the three conditions of Lem-
ma 4.16 (a) are satisfied. Likewise, if any c ∈ B2

HS(A,X) meets the condi-
tion of Lemma 4.16 (b), we speak of a normalized X-valued Hochschild 2-
coboundary.

(b) We write Z2,0
HS(A,X) andB2,0

HS(A,X) for the K-vector subspaces of Z2
HS(A,X)

respectively B2
HS(A,X) formed by all normalized elements.

(c) Finally, we letH2
HS(A,X) stand for the quotient K-vector space of Z2,0

HS(A,X)
with respect to B2,0

HS(A,X).
The next lemma shows how for any normalized 2-cocycle products in the first

argument can be shifted to the second one, an auxiliary result we will need in the
proof of Lemma 4.30.

Lemma 4.18. For any c ∈ Z2,0
HS(A,X), any m ∈ N0, any {ai}mi=1 ⊆ A and any b ∈ A,

c ((Ð→∏m
i=1ai)⊗ b) =

m

∑
i=1
(Ð→∏i−1

j=1aj)▷ [c (ai ⊗ (
Ð→
∏m
j=i+1aj) b) − c (ai ⊗ (

Ð→
∏m
j=i+1aj))◁ b] .

Proof. In the case m = 0 the claim is equivalent to the statement c(1 ⊗ b) = 0
which holds by c(1 ⊗ 1) = 0 according to Lemma 4.16 (a). Hence, we can assume
1 ≤m in the following. For each i ∈ ⟦m⟧, because c is a 2-cocycle,

∂c (ai ⊗ (
Ð→
∏m
j=i+1aj)⊗ b) = 0,

which, when written out, is equivalent to

c (ai ⊗ (
Ð→
∏m
j=i+1aj) b) − c (ai ⊗ (

Ð→
∏m
j=i+1aj))◁ b

= c ((Ð→∏m
j=iaj)⊗ b) − ai▷ c ((Ð→∏m

j=i+1aj)⊗ b) .

Multiplying the equation for i ∈ ⟦m⟧ with
Ð→
∏i−1
j=1aj from the left and then summing

up the m many equations shows that the right-hand side of the claimed identity is
equal to

m

∑
i=1
(Ð→∏i−1

j=1aj)▷ c ((Ð→∏m
j=iaj)⊗ b) −

m

∑
i=1
(Ð→∏i

j=1aj)▷ c ((Ð→∏m
j=i+1aj)⊗ b) .
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Upon shifting the summation index in the first term by 1 to the left, this expression
takes the form

m−1
∑
i=0
(Ð→∏i

j=1aj)▷ c ((Ð→∏m
j=i+1aj)⊗ b) −

m

∑
i=1
(Ð→∏i

j=1aj)▷ c ((Ð→∏m
j=i+1aj)⊗ b) .

Of this telescoping sum only

c ((Ð→∏m
j=1aj)⊗ b) − (

Ð→
∏m
j=1aj)▷ c (1⊗ b)

remains, which is identical to the left-hand side of the asserted equality because
c(1⊗ b) = 0 by c(1⊗ 1) = 0 and Lemma 4.16 (a). Thus, the claim holds. □

Lemma 4.19. (a) A commutative diagram of K-linear maps is given by

Z2
HS(A,X) Z2,0

HS(A,X)⊕X

B2
HS(A,X) B2,0

HS(A,X)⊕X

⊆ ⊆ ,

where each one of the horizontal arrows assigns to any element c of its do-
main the pair whose first component is given by the unqiue K-linear mapping
A⊗A→X with

a1 ⊗ a2 ↦ c(a1 ⊗ a2) − a1 ▷ c(1⊗ 1)◁ a2

for any {a1, a2} ⊆ A and whose second component is given by c(1 ⊗ 1).
Moreover, the horizontal arrows are K-linear isomorphisms whose inverses
map any element (c, x) of their respective domains to the unique K-linear
mapping A⊗A→X with

a1 ⊗ a2 ↦ c(a1 ⊗ a2) + a1 ▷ x◁ a2

for any {a1, a2} ⊆ A.
(b) There exists an isomorphism of K-vector spaces

H2
HS(A,X) H2,0

HS(A,X)

which for any c ∈ Z2
HS(A,X) maps the class of c with respect to B2

HS(A,X)
to the class with respect to B2,0

HS(A,X) of the uniquely determined K-linear
mapping A⊗A→X with

a1 ⊗ a2 ↦ c(a1 ⊗ a2) − a1 ▷ c(1⊗ 1)◁ a2

for any {a1, a2} ⊆ A. For any c ∈ Z2,0
HS(A,X) the inverse assigns to the class

of c with respect to B2,0
HS(A,X) its class with respect to B2

HS(A,X).

Proof. The proofs of all claims will use the following fact: For any x ∈ X the
map wx ∈ [A ⊗ A,X] defined by wx(a1 ⊗ a2) ∶= a1 ▷ x◁ a2 for any {a1, a2} ⊆ A is
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an element of B2
HS(A,X) because, if we consider νx ∈ [A,X] with a↦ a▷ x for any

a ∈ A, then for any {a1, a2} ⊆ A,

(∂νx)(a1 ⊗ a2) = a1 ▷ a2 ▷ x − a1a2 ▷ x + a1 ▷ x◁ a2 = wx(a1 ⊗ a2).
Moreover, wx(1⊗ 1) = 1▷ x◁ 1 = x by definition.

(a) Step 1: We begin with the supposed map from Z2
HS(A,X) to Z2,0

HS(A,X)⊕X.
It assigns to any c ∈ Z2

HS(A,X) the tuple

(c −wc(1⊗1), c(1⊗ 1)).
For any c ∈ Z2

HS(A,X), clearly, c−wc(1⊗1) ∈ Z2
HS(A,X) because wc(1⊗1) ∈ B2

HS(A,X) ⊆
Z2

HS(A,X), and (c−wc(1⊗1))(1⊗1) = 0 by wc(1⊗1)(1⊗1) = c(1⊗1). Thus, the mapping
is well-defined.

Conversely, a well-defined linear map from Z2,0
HS(A,X) ⊕X to Z2

HS(A,X) is ob-

tained via the rule (c̃, x) ↦ c̃ + wx for any c̃ ∈ Z2,0
HS(A,X) and x ∈ X because

wx ∈ B2
HS(A,X).

Now, on the one hand, for any c ∈ Z2
HS(A,X), if x = c̃(1⊗ 1) and c̃ = c −wx, then

c̃ + wx = (c − wx) + wx = c. And, on the other hand, for any c̃ ∈ Z2
HS(A,X) with

c̃(1 ⊗ 1) = 0 and any x ∈ X, if c = c̃ + wx, then c(1 ⊗ 1) = (c̃ + wx)(1 ⊗ 1) = x by
c̃(1⊗1) = 0 and wx(1⊗1) = x, and thus c−wc(1⊗1) = (c̃+wx)−wx = c̃. In conclusion,
the two maps are inverse to each other.

Step 2: Since wc(1⊗1) ∈ B2
HS(A,X) for any c ∈ Z2

HS(A,X), let alone c ∈ B2
HS(A,X),

the rule c ↦ (c − wc(1⊗1), c(1 ⊗ 1)) for any c ∈ Z2
HS(A,X) by restriction also yields

a map from B2
HS(A,X) to B2,0

HS(A,X) ⊕X. It is an isomorphism because also the
inverse of the map from Step 1, defined by the rule (c̃, x) ↦ c̃ + wx for any c̃ ∈
Z2,0

HS(A,X) and x ∈ X, restricts to a map from B2,0
HS(A,X) ⊕X to B2

HS(A,X) since
wx ∈ B2

HS(A,X) for any x ∈X.

(b) By (a) the rule c +B2,0
HS(A,X) ↦ (c − wc(1⊗1), c(1 ⊗ 1)) +B2,0

HS(A,X) for any

c ∈ Z2,0
HS(A,X) defines an isomorphism from H2

HS(A,X) to the quotient space Q of

Z2,0
HS(A,X)⊕X with respect to B2,0

HS(A,X)⊕X. Hence, it suffices to prove that an iso-

morphism from Q to H2,0
HS(A,X) is obtained via the assignment (c̃, x)+B2,0

HS(A,X)⊕
X ↦ c̃ +B2,0

HS(A,X) for any c̃ ∈ Z2,0
HS(A,X) and x ∈ X. And that is indeed the case

because assigning c + B2,0
HS(A,X) ↦ (c,0) + B

2,0
HS(A,X) ⊕X for any c ∈ Z2,0

HS(A,X)
defines a map from H2,0

HS(A,X) to Q and because the two are inverse to each other

by (c̃, x) +B2,0
HS(A,X) ⊕X = (c̃,0) +B

2,0
HS(A,X) ⊕X holding for any c̃ ∈ Z2,0

HS(A,X)
and any x ∈X. □

4.3.2. Reduction to first Hochschild cohomology with other coefficients. It is pos-
sible to express normalized 2-cocycles and 2-coboundaries as 1-cocycles respectively
1-coboundaries valued in an appropriate module of normalized linear maps.

Notation 4.20. For any K-vector spaces A, B and C write θB,A,C for the currying
K-linear isomorphism [A⊗B,C]→ [A, [B,C]] which assigns to any f ∶ A⊗B → C the
mapping A→ [B,C] which sends any a ∈ A to the mapping B → C with b↦ f(a⊗b)
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for any b ∈ B (and whose inverse assigns to any g∶ A → [B,C] the unique K-linear
mapping A⊗B → C with a⊗ b↦ (g(a))(b) for any a ∈ A and b ∈ B.

Lemma 4.21. (a) The K-vector subspace {γ ∈ [A,X] ∧ γ(1) = 0} of [A,X]
becomes an A-bimodule A∣X when equipped with the left action given by the
unique K-linear map which for any a ∈ A and γ ∈ [A,X] with γ(1) = 0
assigns to a⊗ γ the mapping A→X with

b↦ a▷ γ(b)
for any b ∈ A and with the right action given by the unique K-linear map
which for any a ∈ A and γ ∈ [A,X] with γ(1) = 0 assigns to γ ⊗ a the
mapping A→X with

b↦ γ(ab) − γ(a)◁ b

for any b ∈ A.
(b) A commutative diagram of K-linear maps is given by

Z2,0
HS(A,X) Z1

HS(A,A∣X)

B2,0
HS(A,X) B1

HS(A,A∣X)

⊆ ⊆ ,

where the horizontal arrows are restrictions of the currying isomorphism
θA,A,X . Moreover, the horizontal arrows are K-linear isomorphisms whose
inverses are given by the respective restrictions of θA,A,X−1.

(c) There exists an isomorphism of K-vector spaces

H2,0
HS(A,X) H1

HS(A,A∣X)

with

c +B2,0
HS(A,X)↦ θA,A,X(c) +B1

HS(A,A∣X)
for any c ∈ Z2,0

HS(A,X). Its inverse satisfies

c̃ +B1
HS(A,A∣X)↦ θA,A,X

−1(c̃) +B2,0
HS(A,X)

for any c̃ ∈ Z1
HS(A,A∣X).

Proof. (a) The alleged left action ▶ and right action ◀ of A on {γ ∈ [A,X]∧
γ(1) = 0} are well-defined. Indeed, for any a ∈ A and γ ∈ [A,X] with γ(1) = 0 both
(a▶ γ)(1) = a▷ γ(1) = 0 and (γ ◀ a)(1) = γ(a1) − γ(a)◁ 1 = 0.

That ▶ and ◀ do define commuting left respectively right actions is evidenced
by the facts that for any {a1, a2} ⊆ A, any γ ∈ [A,X] with γ(1) = 0 and any b ∈ A,

(a1 ▶ (a2 ▶ γ))(b)
= a1 ▷ (a2 ▶ γ)(b) = a1 ▷ (a2 ▷ γ(b)) = a1a2 ▷ γ(b) = (a1a2 ▶ γ)(b)
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and, thanks to γ(a1)◁ a2b = (γ(a1)◁ a2)◁ b,

((γ ◀ a1)◀ a2)(b) = (γ ◀ a1)(a2b) − (γ ◀ a1)(a2)◁ b

= γ(a1(a2b)) − γ(a1)◁ a2b − (γ(a1a2) − γ(a1)◁ a2)◁ b

= γ((a1a2)b) − γ(a1a2)◁ b

= (γ ◀ a1a2)(b)

as well as (1▶ γ)(b) = 1▷ γ(b) = γ(b) and (γ ◀ 1)(b) = γ(1b) − γ(1)◁ b = γ(b) by
virtue of γ(1) = 0 and, lastly, thanks to (a1 ▷ γ(a2))◁ b = a1 ▷ (γ(a2)◁ b),

((a1 ▶ γ)◀ a2)(b) = (a1 ▶ γ)(a2b) − (a1 ▶ γ)(a2)◁ b

= a1 ▷ γ(a2b) − (a1 ▷ γ(a2))◁ b

= a1 ▷ (γ(a2b) − γ(a2)◁ b)
= a1 ▷ (γ ◀ a2)(b)
= (a1 ▶ (γ ◀ a2))(b).

(b) Step 1: First, we show that θ ≡ θA,A,X restricts to a map from Z2,0
HS(A,X) to

Z1
HS(A,A∣X).

Indeed, given any c ∈ Z2,0
HS(A,X), if c̃ = θ(c) and if c̃a ≡ c̃(a) for any a ∈ A, then

Lemma 4.16 (a) implies that c̃a(1) = c(a ⊗ 1) = 0 for any a ∈ A, which is to say
c̃ ∈ [A,A∣X]. Moreover, then for any {a1, a2, a3} ⊆ A,

((∂1c̃)(a1 ⊗ a2))(a3)
= (a1 ▶ c̃a2)(a3) − (c̃a1a2)(a3) + (c̃a1 ◀ a2)(a3)
= a1 ▷ c̃a2(a3) − c̃a1a2(a3) + (c̃a1(a2a3) − c̃a1(a2)◁ a3)
= a1 ▷ c(a2 ⊗ a3) − c(a1a2 ⊗ a3) + c(a1 ⊗ a2a3) − c(a1 ⊗ a2)◁ a3

= (∂2c)(a1 ⊗ a2 ⊗ a3)
= 0,

i.e., c̃ ∈ Z1
HS(A,A∣X).

Moreover, θ−1 restricts to a map from Z1
HS(A,A∣X) to Z2,0

HS(A,X), thus confirming
that θ is an isomorphism. Indeed, given any c̃ ∈ Z1

HS(A,A∣X), if c = θ−1(c̃), then we
can read the above computation backwards to find (∂2c)(a1⊗a2⊗a3) = ((∂1c̃)(a1⊗
a2))(a3) = 0 for any {a1, a2, a3} ⊆ A and so infer c ∈ Z2

HS(A,A∣X). And, of course,
c(1⊗ 1) = c̃(1)(1) = 0 by c̃(1) ∈ A∣X.

Step 2: It remains to prove that θ also gives an isomorphism from B2,0
HS(A,X) to

B1
HS(A,A∣X). For any ψ ∈ [A,X], if c = ∂1ψ ∈ Z2

HS(A,X) satisfies c(1⊗ 1) = 0, then
also ψ(1) = 0 by Lemma 4.16 (b), i.e., ψ ∈ A∣X. Furthermore, if c̃ = θ(c), then for
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any {a1, a2} ⊆ A,

c̃(a1)(a2) = c(a1 ⊗ a2)
= (∂1ψ)(a1 ⊗ a2)
= a1 ▷ ψ(a2) − ψ(a1a2) + ψ(a1)◁ a2

= (a1 ▶ ψ)(a2) − (ψ◀ a1)(a2)
= ((∂0ψ)(a1))(a2),

which means c̃ = ∂ψ ∈ B1
HS(A,A∣X). So, θ becomes a map from B2,0

HS(A,X) to
B1

HS(A,A∣X).
Conversely, also θ−1 restricts to a map from B1

HS(A,A∣X) to B2,0
HS(A,X). That is

because for any ψ ∈ A∣X, if c̃ = ∂ψ ∈ B1
HS(A,A∣X) and c = θ−1(c̃), then the last three

identities of the above computation still hold and show c = ∂ψ, i.e., c ∈ Z2
HS(A,X).

Naturally, also c(1 ⊗ 1) = c̃(1)(1) = ((∂ψ)(1))(1) = (1 ▶ ψ)(1) − (1 ◀ ψ)(1) =
1▷ ψ(1) − ψ(1) + ψ(1)◁ 1 = ψ(1) = 0 by ψ ∈ A∣X. Thus, all claims of (b) are true.

(c) Follows immediately from (b). □

4.3.3. Algebra homomorphism characterization of 2-coboundaries. The following
lemma is adapted from [BFG17, Lemma 5.4].

Lemma 4.22. For any c ∈ Z2,0
HS(A,X) and any ψ ∈ [A,X] with ψ(1) = 0, the

K-linear map Tc,ψ ∶ A → [A ⊕ X,A ⊕ X] which assigns to any a ∈ A the mapping
A⊕X → A⊕X with

(b, y)↦ (ab, c(a⊗ b) − ψ(a)◁ b + a▷ y)
for any b ∈ A and y ∈X is a K-algebra homomorphism A→ End(A⊕X) if and only
if c = ∂ψ.

Proof. Because c(1 ⊗ b) = c(1 ⊗ 1) = ψ(1) = ψ(1)◁ b = 0 by Lemma 4.16 (b),
always,

Tc,ψ(1)(b, y) = (1b, c(1⊗ b) − ψ(1)◁ b + 1▷ y) = (b, y)
for any b ∈ A and y ∈ X, which is to say that Tc,ψ is unital in any case. Thus, it
only matters whether Tc,ψ is multiplicative. For any {a1, a2} ⊆ A and any b ∈ A and
y ∈X, on the one hand, Tc,ψ(a1a2) sends (b, y) to

(a1a2b, c(a1a2 ⊗ b) − ψ(a1a2)◁ b + a1a2 ▷ y)
and, on the other hand, Tc,ψ(a1)Tc,ψ(a2) maps (b, y) to

Tc,ψ(a1)(a2b, c(a2 ⊗ b) − ψ(a2)◁ b + a2 ▷ y)
= (a1(a2b), c(a1 ⊗ a2b) − ψ(a1)◁ a2b + a1 ▷ (c(a2 ⊗ b) − ψ(a2)◁ b + a2 ▷ y))
= (a1a2b, a1 ▷ c(a2 ⊗ b) + c(a1 ⊗ a2b) − a1 ▷ ψ(a2)◁ b − ψ(a1)◁ a2b + a1a2 ▷ y).

Hence, Tc,ψ(a1a2) = Tc,ψ(a1)Tc,ψ(a2) holds if and only if for any b ∈ A,

a1 ▷ c(a2 ⊗ b) − c(a1a2 ⊗ b) + c(a1 ⊗ a2b)
= a1 ▷ ψ(a2)◁ b − ψ(a1a2)◁ b + ψ(a1)◁ a2b.
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Because ∂c(a1 ⊗ a2 ⊗ b) = 0, which is to say,

a1 ▷ c(a2 ⊗ b) − c(a1a2 ⊗ b) + c(a1 ⊗ a2b) − c(a1 ⊗ a2)◁ b = 0,

the previous statement is equivalent to

c(a1 ⊗ a2)◁ b = (a1 ▷ ψ(a2) − ψ(a1a2) + ψ(a1)◁ a2)◁ b.

Thus, we have shown that Tc,ψ is a K-algebra homomorphism from A to End(A⊕X)
if and only if c(a1 ⊗ a2)◁ b = ∂ψ(a1 ⊗ a2)◁ b for any {a1, a2, b} ⊆ A. Because A has
a unit, this last condition is equivalent to c = ∂ψ. Thus, the proof is complete. □

The following auxiliary result will be used to prove a refinement of Lemma 4.22
in Lemma 4.30.

Lemma 4.23. For any c ∈ [A ⊗ A,X], for any m ∈ N, any {ai}mi=1 ⊆ A and any
{xai}mi=1 ⊆X, if ti is the K-linear endomorphism of A⊕X with

(b, y)↦ (aib, c(ai ⊗ b) − xai ◁ b + ai▷ b)
for any b ∈ A, any y ∈ X and any i ∈ ⟦m⟧, then the composition t1 ○ t2 ○ . . . ○ tm is
given by the K-linear endomorphism of A ⊕X which for any b ∈ A and any y ∈ X
maps (b, y) to the pair with first component a1a2 . . . amb and second component

m

∑
i=1
(Ð→∏i−1

j=1aj)▷ [c (ai ⊗ (
Ð→
∏m
j=i+1aj) b) − xai ◁ ((

Ð→
∏m
j=i+1aj) b)] + (

Ð→
∏m
i=1ai)▷ y.

Proof. The claim holds for m = 1 by definition. In order to prove it for m+1 we
compose tm+1 with the expression claimed to be t1○t2○. . .○tm. For any b ∈ A and y ∈X
the resulting map sends (b, y) to the pair with first component (a1a2 . . . am)am+1b
and second component

m

∑
i=1
(Ð→∏i−1

j=1aj)▷ [c (ai ⊗ (
Ð→
∏m
j=i+1aj)am+1b) − xai ◁ ((

Ð→
∏m
j=i+1aj)am+1b)]

+ (Ð→∏m
i=1ai)▷ (c(am+1 ⊗ b) − xam+1 ◁ b) + (Ð→∏m

i=1ai)▷ am+1 ▷ y

=
m+1
∑
i=1
(Ð→∏i−1

j=1aj)▷ [c (ai ⊗ (
Ð→
∏m+1
j=i+1aj) b) − xai ◁ ((

Ð→
∏m+1
j=i+1aj) b)] + (

Ð→
∏m+1
i=1 ai)▷ y,

which concludes the proof. □

4.3.4. Constructing particular 2-cocycles from 1-cocycles. If the coefficient bi-
module is equipped with an algebra structure compatible with the bimodule ac-
tions, there is a simple way of obtaining 2-cocycles, normalized ones, from 1-cocycles.

Lemma 4.24. If X is also a K-algebra with multiplication ⋅ such that for any
a ∈ A and any {x1, x2} ⊆X,

(a▷ x1) ⋅ x2 = a▷ (x1 ⋅ x2)
and (x1 ◁ a) ⋅ x2 = x1 ⋅ (a▷ x2)
and x1 ⋅ (x2 ◁ a) = (x1 ⋅ x2)◁ a,
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then there exists a unique K-linear map

Z1
HS(A,X)⊗Z1

HS(A,X)→ Z2,0
HS(A,X).

which for any {η, η′} ⊆ Z1
HS(A,X) assigns to η ⊗ η′ the unique K-linear mapping

A⊗A→X with

a⊗ b↦ η(a) ⋅ η′(b)

for any {a, b} ⊆ A.

Proof. All we have to show is that the mapping really does yield normalized 2-
cocycles. For any {η, η′} ⊆ Z1

HS(A,X), if c ∈ [A⊗A,X] is defined by a⊗b↦ η(a)⋅η′(b)
for any {a, b} ⊆ A, then for any {a1, a2, a3} ⊆ A the vector (∂c)(a1⊗a2⊗a3) is given
by

a1 ▷ (η(a2) ⋅ η′(a3)) − η(a1a2) ⋅ η′(a3) + η(a1) ⋅ η′(a2a3) − (η(a1) ⋅ η(a2))◁ a3.

Because the 1-cocycle properties of η and η′ imply η(a1a2) = η(a1)◁ a2 + a1▷ η(a2)
and η′(a2a3) = η′(a2)◁ a3 + a2 ▷ η′(a3), after switching the two middle ones of the
resulting six terms, this can be rewritten as

a1 ▷ (η(a2) ⋅ η′(a3)) − (η(a1)◁ a2) ⋅ η′(a3) + η(a1) ⋅ (η′(a2)◁ a3)
− (a1 ▷ η(a2)) ⋅ η′(a3) + η(a1) ⋅ (a2 ▷ η′(a3)) − (η(a1) ⋅ η(a2))◁ a3.

The assumptions on the algebra structure of X ensure that each of the three terms
in the first row cancels the one below it, proving (∂c)(a1 ⊗ a2 ⊗ a3) = 0 as asserted.
Moreover, c(1⊗ 1) = η(1) ⋅ η′(1) = 0 by η(1) = η′(1) = 0 by Remark 4.5. □

Remark 4.25. If in Lemma 4.24 the bimodule X lacks an appropriate algebra
structure, one can also search for A-subbimodules M of A∣X from Lemma 4.21 (a).
The inclusion of M into A∣X then yields a linear map Z1

HS(A,M)→ Z2,0
HS(A,X) via

the isomorphism from Lemma 4.21 (c).
In particular, if ab▷ x = ba▷ x for any {a, b} ⊆ A and x ∈ X, then Z1

HS(A,X) is
a viable choice for M .

4.4. Second Hochschild cohomology of universal algebras. As with the
first Hochschild cohomology, the results obtained for arbitrary algebras can be im-
proved in the case of universal algebras.

Assumptions 4.26. In Section 4.4, let K be any field, E any (not necessarily
finite) set, R ⊆ K⟨E⟩ any subset, J the two-sided K-ideal of K⟨E⟩ generated by R
and X any K⟨E ∣R⟩-bimodule.

Definition 4.27. (a) Let

F 2
E,R,X ∶ K⟨E⟩→ [[K⟨E ∣R⟩,X]×E, [K⟨E ∣R⟩,X]], r ↦ F 2,r

E,R,X
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be the K-linear map with for any m ∈ N and any {ei}mi=1 ⊆ E, if r = Ð→∏m
i=1ei,

then for any γ ∈ [K⟨E ∣R⟩,X]×E and any a ∈ K⟨E ∣R⟩,
F 2,r
E,R,X(γ)(a)

=
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [γei ((
Ð→
∏m
j=i+1ej + J)a) − γei (

Ð→
∏m
j=i+1ej + J)◁ a] ,

and with F 2,1
E,R,X = 0.

(b) Similarly, let

G2
E,R,X ∶ K⟨E⟩→ [[K⟨E ∣R⟩,X]×E,X], r ↦ G2,r

E,R,X

be the K-linear map with for any m ∈ N0 and any {ei}mi=1 ⊆ E, if r =Ð→∏m
i=1ei,

then for any γ ∈ [K⟨E ∣R⟩,X]×E,

G2,r
E,R,X(γ) =

m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ γei (
Ð→
∏m
j=i+1ej + J) ,

and with G2,1
E,R,X = 0.

Lemma 4.28. A commutative diagram of K-linear maps is given by

Z2,0
HS(K⟨E ∣R⟩,X)

B2,0
HS(K⟨E ∣R⟩,X)

{γ ∈ [K⟨E ∣R⟩,X]×E ∧ ∀e ∈ E ∶ γe(1 + J) = 0
∧ ∀r ∈ R ∶ F 2,r

E,R,X(γ) = 0}

{γ ∈ [K⟨E ∣R⟩,X]×E ∧ ∃ψ ∈ [K⟨E ∣R⟩,X] ∶
ψ(1 + J) = 0 ∧ ∀b ∈ K⟨E ∣R⟩ ∶ ∀e ∈ E ∶
γe(b) = (e + J)▷ ψ(b) − ψ((e + J)b) + ψ(e + J)◁ b}

⊆ ⊆ ,

where the sets on the right-hand side are K-vector subspaces of [K⟨E ∣R⟩,X]×E and
where the horizontal arrows both assign to any element c of their respective domains
the tuple γ with γe for each e ∈ E being the mapping K⟨E ∣R⟩→X with

b↦ c((e + J)⊗ b)
for any b ∈ K⟨E ∣R⟩.
In particular, the lower right space is contained in the above one. Moreover, the hor-
izontal arrows are both K-linear isomorphisms. Their respective inverses both assign
to any element γ of their respective domains the unique K-linear map K⟨E ∣R⟩ ⊗
K⟨E ∣R⟩→X with

(p + J)⊗ b↦ F 2,p
E,R,X(γ)(b)

for any p ∈ K⟨E⟩ and b ∈ K⟨E ∣R⟩. For the lower row of the diagram that is the
same as assigning γ ↦ ∂ψ for any ψ ∈ [K⟨E ∣R⟩,X] with ψ(1 + J) = 0 such that
γe = (e + J)▷ ψ(b) − ψ((e + J)b) + ψ(e + J)◁ b for any b ∈ K⟨E ∣R⟩ and e ∈ E.
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Proof. If we abbreviate A ≡ K⟨E ∣R⟩ and if A∣X is then the A-bimodule from
Lemma 4.21 (a) with left respectively right A-actions ▶ and ◀, then by the combi-
nation of Lemma 4.21 (b) and Lemma 4.10 the diagram

Z2,0
HS(A,X) Z1

HS(A,A∣X) {γ ∈ (A∣X)×E ∧ ∀r ∈ R ∶ F 1,r
E,R,A∣X(γ) = 0}

B2,0
HS(A,X) B1

HS(A,A∣X) {(e + J ▶ ψ − ψ◀ e + J)e∈E ∣ψ ∈ A∣X}

⊆ ⊆ ⊆

of K-linear maps commutes, where the left horizontal arrows are the restrictions of
the currying isomorphism θA,A,X , where the inverses of the left horizontal arrows
are the restrictions of θA,A,X−1, where the right horizontal are both K-linear isomor-
phisms assigning to any element η of their respective domains the tuple (η(e+J))e∈E
and whose respective inverses map any element γ of their respective domains to the
mapping A→ A∣X with p+J ↦ F 1,p

E,R,A∣X(γ) for any p ∈ K⟨E⟩, which in the case of the

lower right horizontal arrow is the same as assigning ((e+J)▶ψ−ψ◀(e+J))e∈E ↦ ∂ψ
for any ψ ∈ A∣X.

We first show that the right upper corner of the above diagram is the same as
the one from the diagram in the claim. To see this we first remember that, as a
K-vector space, A∣X is by definition {γ ∈ [A,X] ∧ γ(1+J) = 0}. Hence, demanding
γ ∈ (A∣X)×E is the same as asking both γ ∈ [A,X]×E and γe(1+J) = 0 for any e ∈ E.
Moreover, F 1

E,R,A∣X = F 2
E,R,X . Indeed, F 1,1

E,R,A∣X = F
2,1
E,R,X = 0, of course, and for any

m ∈ N and {ei}mi=1 ⊆ E, by definition,

F 1,r
E,R,A∣X(γ)(b)

= ∑mi=1 ((
Ð→
∏i−1
j=1ej + J)▶ γei ◀ (

Ð→
∏m
j=i+1ej + J)) (b)

= ∑mi=1 (
Ð→
∏i−1
j=1ej + J)▷ [(γei ◀ (

Ð→
∏m
j=i+1ej + J)) (b)]

= ∑mi=1 (
Ð→
∏i−1
j=1ej + J)▷ [γei ((

Ð→
∏m
j=i+1ej + J) b) − γei (

Ð→
∏m
j=i+1ej + J)◁ b]

= F 2,r
E,R,X(γ)(b).

for any γ ∈ (A∣X)×E and b ∈ A, from which F 1
E,R,A∣X = F 2

E,R,X follows by K-linearity.

Hence, the right upper corner of the diagrams agree.
The same is true for the lower right corners because for any ψ ∈ A∣X, any e ∈ E

and any b ∈ A, by definition,

(e + J ▶ ψ − ψ◀ e + J)(b) = e + J ▷ ψ(b) − ψ((e + J)b) + ψ(e + J)◁ b.

Furthermore, the composition of the horizontal arrows in the composite diagram
above yields exactly the horizontal arrows of the diagram in the assertion. And the
same holds for the inverses. □

Lemma 4.28 can be refined by characterizing the 2-coboundaries with the help of
Lemma 4.22. Doing so will require the following auxiliary result.
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Lemma 4.29. For any c ∈ Z2,0
HS(K⟨E ∣R⟩,X) and any x ∈ X×E there exists a K-

algebra homomorphism K⟨E ∣R⟩→ End(K⟨E ∣R⟩⊕X) with the property that for any
e ∈ E the element e + J is mapped to the endomorphism with for any b ∈ K⟨E ∣R⟩
and y ∈X,

(b, y)↦ ((e + J)b, c((e + J)⊗ b) − xe◁ b + (e + J)▷ y)

if and only if for any r ∈ R, if r = ∑m∈N0∑e∈E⊗m λm,e
Ð→
∏m
i=1ei, then

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))

− xei ◁ (
Ð→
∏m
j=i+1ej + J)] .

Proof. By the universal property of K⟨E ∣R⟩ the existence of a K-algebra ho-
momorphism t∶ K⟨E ∣R⟩→ End(K⟨E ∣R⟩⊕X) with the stated property is equivalent
to r((te)e∈E) = 0 holding for any r ∈ R, where for any e ∈ E the endomorphism te of
K⟨E ∣R⟩⊕X satisfies

(b, y)↦ ((e + J)b, c((e + J)⊗ b) − xe◁ b + (e + J)▷ y)

for any b ∈ K⟨E ∣R⟩ and y ∈ X. If r = ∑m∈N0∑e∈E⊗m λm,e
Ð→
∏m
i=1ei ∈ R is any relation,

then by the definition of End(K⟨E ∣R⟩⊕X), by Lemma 4.23 and by K-linearity the
element r((te)e∈E) = ∑m∈N0∑e∈E⊗m λm,e t1 ○ t2 ○ . . .○ tm is given by the mapping which
for any b ∈ K⟨E ∣R⟩ and y ∈X sends (b, y) to the pair with first component

∑m∈N0∑e∈E⊗m λm,e (
Ð→
∏m
i=1ei + J) b = r((e + J)e∈E)b = 0.

and second component

∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b)

− xei ◁ ((
Ð→
∏m
j=i+1ej + J) b)] + ∑

m∈N0

∑
e∈E⊗m

λm,e (
Ð→
∏m
i=1ei + J)▷ y,

where, actually, the last summand can be ignored because

∑
m∈N0

∑
e∈E⊗m

λm,e (
Ð→
∏m
i=1ei + J)▷ y = r((e + J)e∈E)▷ y = 0.

Hence, r((te)e∈E) = 0 if and only if for any b ∈ K⟨E ∣R⟩,

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b)

− xei ◁ ((
Ð→
∏m
j=i+1ej + J) b)] .

On the other hand, because c ∈ Z2,0
HS(K⟨E ∣R⟩,X) Lemma 4.28 assures us that

for any b ∈ K⟨E ∣R⟩, if γ ∈ [K⟨E ∣R⟩,X]×E is such that for any e ∈ E the component
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γe is given by the mapping with b ↦ c((e + J) ⊗ b) for any b ∈ K⟨E ∣R⟩, then
F 2,r
E,R,X(γ)(b) = 0, which is to say

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b)

− c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))◁ b] .

By subtracting this equation from the one preceding it we see that r((te)e∈E) = 0 if
and only if for any b ∈ K⟨E ∣R⟩,

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))

− xei ◁ (
Ð→
∏m
j=i+1ej + J)]◁ b.

And that proves the claim because K⟨E ∣R⟩ has a unit. □

It follows a first formulation of the anounced characterization of 2-coboundaries
to be integrated in Lemma 4.28.

Lemma 4.30. Any c ∈ Z2,0
HS(K⟨E ∣R⟩,X) satisfies c ∈ B

2,0
HS(K⟨E ∣R⟩,X) if and only

if there exists x ∈X×E such that

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))

− xei ◁ (
Ð→
∏m
j=i+1ej + J)]

for any r = ∑m∈N0∑e∈E⊗m λm,e
Ð→
∏m
i=1ei ∈ R.

Proof. We show each implication separately.
Coboundary implies solution. First, suppose that there exists ψ ∈ [K⟨E ∣R⟩,X]

with ψ(1 + J) = 0 such that c = ∂ψ and let x ∈ X×E be such that xe ∶= ψ(e + J) for
any e ∈ E. Then, given any r ∈ R as in the claim, the expression on the right hand
side of the equation in the claim, by

∂ψ ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))

= (ei + J)▷ ψ (Ð→∏m
j=i+1ej + J) − ψ (

Ð→
∏m
j=iej + J) + ψ(ei + J)◁ (

Ð→
∏m
j=i+1ej + J)

holding for any m ∈ N0, any e ∈ E⊗m and any i ∈ ⟦m⟧, is identical to

∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [(ei + J)▷ ψ (Ð→∏m
j=i+1ej + J) − ψ (

Ð→
∏m
j=iej + J)] .

Distributing the left action shows that this is the same as

∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
[(Ð→∏i

j=1ej + J)▷ ψ (Ð→∏m
j=i+1ej + J)

− (Ð→∏i−1
j=1ej + J)▷ ψ (Ð→∏m

j=iej + J)] ,
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or, after reassociating the outer sum and shifting the summation index in the second
sum by 1 to the left, identically,

∑
m∈N0

∑
e∈E⊗m

λm,e [
m

∑
i=1
(Ð→∏i

j=1ej + J)▷ ψ (Ð→∏m
j=i+1ej + J)

−
m−1
∑
i=0
(Ð→∏i

j=1ej + J)▷ ψ (Ð→∏m
j=i+1ej + J)] .

By ψ(1 + J) = 0 this elements coincides with

− ∑
m∈N0

∑
e∈E⊗m

λm,eψ (
Ð→
∏m
j=1ej + J)

or, in other words, −ψ(r((e+J)e∈E)), which is zero by r((e+J)e∈E) = 0. Hence, this
part of the claim is true.

Solution implies coboundary. Conversely, let there now exist x ∈ X×E such that
the identities in the claim are satisfied. Then, by Lemma 4.29 there exists an
algebra homomorphism t∶ K⟨E ∣R⟩→ End(K⟨E ∣R⟩⊕X) such that for any e ∈ E the
endomorphism t(e + J) satisfies

(b, y)↦ ((e + J)b, c((e + J)⊗ b) − xe◁ b + (e + J)▷ y)
for any b ∈ K⟨E ∣R⟩ and y ∈ X. Thus, if π2 is the projection K⟨E ∣R⟩ ⊕ X →
X, (b, y)↦ y, we obtain a K-linear map ψ∶ K⟨E ∣R⟩→X by defining

ψ(a) ∶= −π2(t(a)(1 + J,0))
for any a ∈ K⟨E ∣R⟩. By Lemma 4.22, in order to show c = ∂ψ it suffices to prove
that the K-linear map Tc,ψ ∶ K⟨E ∣R⟩ → [K⟨E ∣R⟩ ⊕X,K⟨E ∣R⟩ ⊕X] which assigns
to any a ∈ K⟨E ∣R⟩ the endomorphism with

(b, y)↦ (ab, c(a⊗ b) − ψ(a)◁ b + a▷ y)
for any b ∈ K⟨E ∣R⟩ and y ∈ X is a K-algebra homomorphism from K⟨E ∣R⟩ to
End(K⟨E ∣R⟩ ⊕X). Thus, we can prove our claim by verifying that Tc,ψ coincides
with the known algebra homomorphism t.

By K-linearity of Tc,ψ and t it suffices to show Tc,ψ(
Ð→
∏m
i=1ei + J) = t(

Ð→
∏m
i=1ei + J)

for any m ∈ N0 and e ∈ E⊗m. Since t is a K-algebra homomorphism from K⟨E ∣R⟩ to
End(K⟨E ∣R⟩⊕X) and since E generates K⟨E ∣R⟩ we find by the defining property
of t and by Lemma 4.23 that the element

t(Ð→∏m
i=1ei + J) =

Ð→
∏m
i=1t(ei + J)

of End(K⟨E ∣R⟩⊕X) is given by the mapping which for any b ∈ K⟨E ∣R⟩ and y ∈X
sends (b, y) to the pair with first component (e1e2 . . . em + J)b and with second
component

m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b)

− xei ◁ ((
Ð→
∏m
j=i+1ej + J) b)] + (

Ð→
∏m
j=1ej + J)▷ y.
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In particular, we can infer

−ψ (Ð→∏m
i=1ei + J)

= π2 (t (Ð→∏m
i=1ei + J) (1 + J,0))

=
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J)) − xei ◁ (

Ð→
∏m
j=i+1ej + J)] .

On the other hand, by the definition of Tc,ψ, the endomorphism Tc,ψ(
Ð→
∏m
i=1ei + J) for

any b ∈ K⟨E ∣R⟩ and y ∈X maps (b, y) to the pair with first entry (e1e2 . . . em + J)b
and with second entry

c ((Ð→∏m
i=1ei + J)⊗ b) − ψ (

Ð→
∏m
i=1ei + J)◁ b + (Ð→∏m

i=1ei + J)▷ y.

It follows that all we have to prove is that for any b ∈ K⟨E ∣R⟩,
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b) − xei ◁ ((

Ð→
∏m
j=i+1ej + J) b)]

= c ((Ð→∏m
i=1ei + J)⊗ b) − ψ (

Ð→
∏m
i=1ei + J)◁ b.

Inserting the expression for −ψ(e1e2 . . . em+J) obtained above shows that the right-
hand side of this equation is identical to

c ((Ð→∏m
i=1ei + J)⊗ b)

+
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J)) − xei ◁ (

Ð→
∏m
j=i+1ej + J)]◁ b.

Hence, Tc,ψ(
Ð→
∏m
i=1ei + J) = t(

Ð→
∏m
i=1ei + J) holds if and only if

c ((Ð→∏m
i=1ei + J)⊗ b) =

m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J) b)

− c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))◁ b] ,

which is true by Lemma 4.18. Thus, the proof is complete. □

For integrating Lemma 4.30 into Lemma 4.28 it is convenient to reformulate it
in the following way

Lemma 4.31. For any γ ∈ [K⟨E ∣R⟩,X]×E such that γe(1 + J) = 0 for any e ∈ E
and such that F 2,r

E,R,X(γ) = 0 for any r ∈ R there exists ψ ∈ [K⟨E ∣R⟩,X] such that
ψ(1 + J) = 0 and

γe(b) = (e + J)▷ ψ(b) − ψ((e + J)b) + ψ(e + J)◁ b

for any e ∈ E if and only if there exists x ∈X×E such that for any r ∈ R,
G2,r
E,R,X(γ) = F

1,r
E,R,X(x).
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Proof. By Lemma 4.28 there exists c ∈ Z2,0
HS(K⟨E ∣R⟩,X) with c((e + J)⊗ b) =

γe(b) for any e ∈ E and b ∈ K⟨E ∣R⟩. Consequently, Lemma 4.30 tells us that
c ∈ B2

HS(K⟨E ∣R⟩,X) if and only if there exists x ∈X×E such that

0 = ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [c ((ei + J)⊗ (
Ð→
∏m
j=i+1ej + J))

− xei ◁ (
Ð→
∏m
j=i+1ej + J)]

= ∑
m∈N0

∑
e∈E⊗m

λm,e
m

∑
i=1
(Ð→∏i−1

j=1ej + J)▷ [γei (
Ð→
∏m
j=i+1ej + J) − xei ◁ (

Ð→
∏m
j=i+1ej + J)]

= G2,r
E,R,X(γ) − F

1,r
E,R,X(x)

for any r = ∑m∈N0∑e∈E⊗m λm,e
Ð→
∏m
i=1ei ∈ R, i.e., if and only if the condition in the asser-

tion is satisfied. And, by Lemma 4.28 the map c being an element ofB2
HS(K⟨E ∣R⟩,X)

is equivalent to there existing ψ ∈ [K⟨E ∣R⟩,X] such that ψ(1 + J) = 0 and γe(b) =
((e + J)▷ ψ(b) − ψ((e + J)b) + ψ(e + J)◁ b) for any e ∈ E and b ∈ K⟨E ∣R⟩. Hence,
the claim is true. □

The following proposition now gives the combined results of Lemma 4.28 and
Lemma 4.30 and is the characterization of the second Hochschild cohomology of
universal algebras we sought.

Proposition 4.32. There exists an isomorphism of K-vector spaces

H2
HS(K⟨E ∣R⟩,X)

{γ ∈ [K⟨E ∣R⟩,X]×E ∧ ∀e ∈ E ∶ γe(1 + J) = 0

∧ ∀r ∈ R ∶ F 2,r
E,R,X(γ) = 0}

{γ as above ∧ ∃x ∈X×E ∶
∀r ∈ R ∶ G2,r

E,R,X(γ) = F
1,r
E,R,X(x)}

,

where the sets on the right-hand side are K-vector subspaces of [K⟨E ∣R⟩,X]×E,
which for any c ∈ Z2

HS(K⟨E ∣R⟩,X) assigns to the class of c the class of the tuple γ
with γe for each e ∈ E being the mapping with

b↦ c((e + J)⊗ b) − (e + J)▷ c((1 + J)⊗ (1 + J))◁ b

for any b ∈ K⟨E ∣R⟩. For any γ ∈ [K⟨E ∣R⟩,X]×E with γe(1 + J) = 0 for any e ∈ E
and with F 2,r

E,R,X(γ) = 0 for each r ∈ R the inverse isomorphism maps the class of γ
to the class of the unique K-linear map K⟨E ∣R⟩⊗K⟨E ∣R⟩→X with

(p + J)⊗ b↦ F 2,p
E,R,X(γ)(b)

for any b ∈ K⟨E ∣R⟩ and p ∈ K⟨E⟩.
Proof. Composing the isomorphism implied by Lemma 4.28 with the one from

Lemma 4.21 (c) and using Lemma 4.30 yields the claim. □

Lastly, we can refine Lemma 4.24 to give a construction of particular 2-cocycles
on universal algebras.
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Proposition 4.33. If X is simultaneously a K-algebra with multiplication ⋅ such
that for any a ∈ K⟨E ∣R⟩ and any {x,x′} ⊆X,

(a▷ x) ⋅ x′ = a▷ (x ⋅ x′)
and (x◁ a) ⋅ x′ = x ⋅ (a▷ x′)
and x ⋅ (x′◁ a) = (x ⋅ x′)◁ a,

then there exists a unique K-linear map

{x ∈X×E ∧ ∀r ∈ R ∶ F 1,r
E,R,X(x) = 0}⊗2

Ð→ {γ ∈ [K⟨E ∣R⟩,X]×E ∧ ∀e ∈ E ∶ γe(1 + J) = 0 ∧ ∀r ∈ R ∶ F 2,r
E,R,X(γ) = 0}

which for any {x,x′} ⊆ X×E with F 1,r
E,R,X(x) = F

1,r
E,R,X(x′) = 0 for each r ∈ R maps

x⊗ x′ the tuple γ with for any e ∈ E the component γe given by the mapping with

p + J ↦ xe ⋅ F 1,p
E,R,X(x′)

for any p ∈ K⟨E⟩.
Proof. By Lemmata 4.10, 4.24 and 4.28 there is a diagram of three composable

K-linear maps as below

{x ∈X×E ∧ ∀r ∈ R ∶ F 1,r
E,R,X(x) = 0}⊗2 {γ ∈ [K⟨E ∣R⟩,X]×E ∧ ∀e ∈ E ∶

γe(1 + J) = 0 ∧ ∀r ∈ R ∶ F 2,r
E,R,X(γ) = 0}

Z1
HS(K⟨E ∣R⟩,X)⊗2 Z2,0

HS(K⟨E ∣R⟩,X),

where the left vertical arrow is the unique K-linear mapping which for any {x,x′} ⊆
X×E with F 1,r

E,R,X(x) = F
1,r
E,R,X(x′) = 0 for each r ∈ R maps x⊗x′ to η⊗η′ with η(p+J) =

F 1,p
E,R,X(x) and η′(p + J) = F 1,p

E,R,X(x′) for any p ∈ K⟨E⟩, where the lower horizontal

arrow is the unique K-linear mapping which for any {η, η′} ⊆ Z1
HS(K⟨E ∣R⟩,X) maps

η ⊗ η′ to the unique K-linear mapping c with c(a⊗ b) = η(a) ⋅ η′(b) for any {a, b} ⊆
K⟨E ∣R⟩, and where the right horizontal arrow maps any c ∈ Z2,0

HS(K⟨E ∣R⟩,X) to the
tuple γ with for any e ∈ E the component γe being the mapping with b↦ c((e+J)⊗b).
We prove that the composition of the three arrows is exactly the rule in the claim.

Indeed, for any {x,x′} ⊆ X×E with F 1,r
E,R,X(x) = F

1,r
E,R,X(x′) = 0 for each r ∈ R, if

η ⊗ η′ is the image of x ⊗ x′ under the first arrow, if c is the image of η ⊗ η′ under
the second arrow and if γ is the image of c under third arrow, then for any e ∈ E,

γe(e + J) = c((e + J)⊗ (p + J)) = η(e + J) ⋅ η′(p + J) = F 1,e
E,R,X(x) ⋅ F

1,p
E,R,X(x′)

= xe ⋅ F 1,p
E,R,X(x′)

for any p ∈ K⟨E⟩. That is what we needed to prove. □

To do.example of a non-trivial submodule K⟨E ∣R⟩∣X as a way of producing
elements of Z2

HS(A,X)
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5. Certain spaces of scalar matrices and their dimensions

Recall that for any n ∈ N any v ∈Mn(C) is called skew-symmetric if v = −vt.

Definition 5.1. For the sake of brevity we call any v ∈Mn(C) small if ∑ni=1 vj,i =
0 for any j ∈ ⟦n⟧ and ∑nj=1 vj,i = 0 for any i ∈ ⟦n⟧, i.e., if each row and each column
sums to zero.

Lemma 5.2. For any n ∈ N and v ∈Mn(C) the following equivalences hold.
(a) There is λ ∈ C such that v−λI is small if and only if ∑ns=1 vj,s−∑ns=1 vs,i = 0 for

any {i, j} ⊆ ⟦n⟧. Moreover, then λ = ∑ns=1 vj,s = ∑ns=1 vs,i for any {i, j} ⊆ ⟦n⟧.
(b) There is λ ∈ C such that v − λI is skew-symmetric if and only if for any
{i, j} ⊆ ⟦n⟧ with i ≠ j both vj,i + vi,j = 0 and vj,j − vi,i = 0. Moreover, then
λ = vi,i for any i ∈ ⟦n⟧.

(c) There are {λ1, λ2} ⊆ C such that v−λ1I is skew-symmetric and v−λ2I small
if and only if there is λ ∈ C such that v − λI is both skew-symmetric and
small. Moreover, then λ = λ1 = λ2.

Proof. (a) If λ ∈ C is such that w ≡ v − λI is small, then for any {i, j} ⊆
⟦n⟧ it follows 0 = ∑ns=1wj,s = ∑ns=1(vj,s − λδj,s) = ∑ns=1 vj,s − λ and 0 = ∑ns=1ws,i =
∑ns=1(vs,i −λδs,i) = ∑ns=1 vs,i −λ, which proves ∑ns=1 vj,s = λ = ∑ns=1 vs,i. Of course, then
∑ns=1 vj,s −∑ns=1 vs,i = λ − λ = 0 for any {i, j} ⊆ ⟦n⟧.

Conversely, if ∑ns=1 vj,s −∑ns=1 vs,i = 0 for any {i, j} ⊆ ⟦n⟧ and if we let λ ≡ ∑ns=1 v1,s
and w ≡ v − λI, then for any {i, j} ⊆ ⟦n⟧, first, λ = ∑ns=1 vj,s = ∑ns=1 vs,i and thus,
second, ∑ns=1wj,s = ∑ns=1(vj,s − λδj,s) = ∑ns=1 vj,s − λ = 0 and, likewise, ∑ns=1ws,i =
∑ns=1(vs,i − λδs,i) = ∑ns=1 vs,i − λ = 0. Hence, w is small then.

(b) If for λ ∈ C the matrix w ≡ v − λI is skew-symmetric, then 0 = wj,i + wi,j =
(vj,i − λδj,i) + (vi,j − λδi,j) = vj,i + vi,j − 2λδj,i for any {i, j} ⊆ ⟦n⟧. Consequently, if
i ≠ j, this means 0 = vj,i + vi,j and, if i = j, we find 0 = 2vi,i − 2λ, i.e., λ = vi,i. And
that implies in particular vj,j − vi,i = λ − λ = 0.

If, conversely, vj,i + vi,j = 0 and vj,j − vi,i = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j and if
we let λ ≡ v1,1 and w ≡ v − λI, then, on the one hand, λ = vi,i for any i ∈ ⟦n⟧ and, on
the other hand, for any {i, j} ⊆ ⟦n⟧, generally, wj,i+wi,j = (vj,i−λδj,i)+(vi,j −λδi,j) =
vj,i + vi,j − 2λδj,i, which in case i ≠ j simply means wj,i + wi,j = vj,i + vi,j = 0 and
which for i = j amounts to wj,i + wi,j = 2vi,i − 2λ = 2λ − 2λ = 0. In conclusion, w is
skew-symmetric then.

(c) One implication is clear. If, conversely, {λ1, λ2} ⊆ C are such that v − λ1I is
skew-symmetric and v−λ2I is small, then λ1 = v1,1 by (b) and λ2 = ∑nj=1 vj,1 = ∑ni=1 v1,j
by (a). Subtracting the two identities ∑nj=1 vj,1 = λ1 +∑nj=2 vj,1 and ∑ni=1 v1,i = λ1 +
∑ni=2 v1,i from each other therefore yields 0 = ∑nj=2 vj,1−∑ni=2 v1,i. Since also vi,1 = −v1,i
for each i ∈ ⟦n⟧ with 1 < i by (b), that is the same as saying 0 = 2∑nj=2 vj,1. And
∑nj=2 vj,1 = 0 then implies λ2 = λ1 +∑nj=2 vj,1 = λ1, which is all we needed to see. □

Lemma 5.3. For any n ∈ N and each statement A below the set {v ∈ Mn(C) ∧
A(v)} is a complex vector subspace of Mn(C) and has the listed dimension.
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A(v) dimC{v ∈Mn(C) ∧ A(v)}
⊺ n2

∃λ ∈ C ∶ v − λI is small (n − 1)2 + 1
v is small (n − 1)2

∃λ ∈ C ∶ v − λI is skew-symmetric 1
2n(n − 1) + 1

v is skew-symmetric 1
2n(n − 1)

∃λ ∈ C ∶ v − λI is skew-symmetric and small 1
2(n − 1)(n − 2) + 1

v is skew-symmetric and small 1
2(n − 1)(n − 2)

v is diagonal n
∃λ ∈ C ∶ v = λI 1

v = 0 0

Proof. (a) It is well known that, if for any {k, ℓ} ⊆ ⟦n⟧ the matrix En
ℓ,k ∈

Mn(C) has δℓ,jδk,i as its (j, i)-entry for any {i, j} ⊆ ⟦n⟧, then the family (En
ℓ,k)(ℓ,k)∈⟦n⟧⊗2

is a C-linear basis of {v ∈Mn(C) ∧ A(v)} =Mn(C).
(b) Since A can be expressed by a homogenous system of linear equations by Lem-

ma 5.2 (a) the set {v ∈Mn(C) ∧ A(v)} is indeed a vector space. Hence, it suffices
to show that a C-linear isomorphism φn∶ Mn−1(C) ⊕ C → {v ∈ Mn(C) ∧ A(v)} is
defined by the rule that (u,λ)↦ v, where for any {i, j} ⊆ ⟦n⟧,

vj,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uj,i + λδj,i ∣ j < n ∧ i < n
−∑n−1ℓ=1 uℓ,i ∣ j = n ∧ i < n
−∑n−1k=1 uj,k ∣ j < n ∧ i = n
∑n−1k,ℓ=1 uℓ,k + λ ∣ j = n ∧ i = n

,

for any u ∈ Mn−1(C) and λ ∈ C. We begin by proving that φn is well-defined. For
any u ∈ Mn−1(C) and λ ∈ C, if φn(u,λ) = v and if w = v − λI, then for any i ∈ ⟦n⟧
with i < n, by definition,

∑nj=1wj,i = ∑n−1j=1 (vj,i − λδj,i) + vn,i = ∑n−1j=1 uj,i + (−∑n−1ℓ=1 uℓ,i) = 0

and also,

∑nj=1wj,n = ∑n−1j=1 (vj,n − λδj,n) + (vn,n − λ) = ∑n−1j=1 (−∑n−1k=1 uj,k) +∑n−1k,ℓ=1 uℓ,k = 0,

as well as for any j ∈ ⟦n⟧ with j < n,

∑ni=1wj,i = ∑n−1i=1 (vj,i − λδj,i) + vj,n = ∑n−1i=1 uj,i + (−∑n−1k=1 uj,k) = 0

and also,

∑ni=1wn,i = ∑n−1i=1 (vn,i − λδn,i) + (vn,n − λ) = ∑n−1i=1 (−∑n−1ℓ=1 uℓ,i) +∑n−1k,ℓ=1 uℓ,k = 0,

proving that w is small, i.e., that A(v) holds.
On the other hand, by Lemma 5.2 (a) a well-defined C-linear map ψn∶ {v ∈

Mn(C) ∧ A(v)} → Mn−1(C) ⊕ C is given by the rule that for any v ∈ Mn(C) sat-
isfying A(v), if λ ∈ C is such that v − λI is small, then v ↦ (u,λ), where for any
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{k, ℓ} ⊆ ⟦n − 1⟧,

uℓ,k = vℓ,k − λδℓ,k.

It remains to show ψn○φn = id and φn○ψn = id. And, indeed, for any u ∈Mn−1(C)
and λ ∈ C, if v = φn(u,λ), then we have already seen that w = v − λI is small. For
any {k, ℓ} ⊆ ⟦n⟧, by definition, wℓ,k = vℓ,k − λδℓ,k = (uℓ,k + λδℓ,k) − λδℓ,k = uℓ,k, which
proves φn(v) = (u,λ) and thus ψn ○ φn = id.

Conversely, for any v ∈Mn(C) such that A(v) is satisfied, if (u,λ) = ψn(v), then
we already know λ = ∑nℓ=1 vℓ,i = ∑nk=1 vj,k for any {k, ℓ} ⊆ ⟦n⟧ by Lemma 5.2 (a). If
v′ = ψn(u,λ), then for any {i, j} ⊆ ⟦n⟧ with i < n and j < n it hence follows by
definition v′j,i = uj,i + λδj,i = (vj,i − λδj,i) + λδj,i = vj,i as well as by λ = ∑nℓ=1 vℓ,i,

v′n,i = −∑n−1ℓ=1 uℓ,i = −∑n−1ℓ=1 (vℓ,i − λδℓ,i) = λ −∑n−1ℓ=1 vℓ,i = vn,i
and by λ = ∑nk=1 vk,j,

v′j,n = −∑n−1k=1 uj,k = −∑n−1k=1(vj,k − λδj,k) = λ −∑n−1k=1 vj,k = vj,n
and, lastly,

v′n,n = ∑n−1k,ℓ=1 uℓ,k + λ = ∑n−1k,ℓ=1(vℓ,k − λδℓ,k) + λ = ∑n−1ℓ=1 (∑n−1k=1 vℓ,k − λ) + λ
= ∑n−1ℓ=1 (−vℓ,n) + λ = vn,n,

where we have used λ = ∑nk=1 vℓ,k for any ℓ ∈ ⟦n⟧ in the next-to-last step and λ =
∑nℓ=1 vℓ,n in the last. Thus, we have shown v′ = u and thus φn ○ ψn = id, which
concludes the proof in this case.

(c) By by Lemma 5.2 (a) the space {v ∈Mn(C) ∧ A(v)} is exactly the image of
Mn−1(C)⊕ {0} under φn.

(d) Lemma 5.2 (b) showed that A can be equivalently expressed as a system of
homogenous linear equations, thus proving {v ∈Mn(C) ∧A(v)} to be a vector space.
Let Γn = {(j, i) ∣ {i, j} ⊆ ⟦n⟧ ∧ j < i} ⊍ {∅} as well as Bn

(j,i) = T nj,i = En
j,i −En

i,j for any

{i, j} ⊆ ⟦n⟧ with j < i and Bn
∅ = id. Then, the claim will be verified once we show

that (Bn
γ )γ∈Γn is a C-linear basis of {v ∈Mn(C) ∧ A(v)}.

The family (Bn
γ )γ∈Γn is C-linearly independent. Indeed, if (aγ)γ∈Γn ∈ C×Γn is such

that ∑γ∈Γn
aγ Bn

γ = 0, then by I = ∑ni=1En
i,i,

0 = ∑
(j,i)∈⟦n⟧⊗2

∧ j<i

a(j,i) (En
j,i −En

i,j) + a∅
n

∑
i=1
En
i,i = ∑

(j,i)∈⟦n⟧⊗2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(j,i) ∣ j < i
−a(i,j) ∣ i < j
a∅ ∣ j = i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
En
j,i,

which demands (aγ)γ∈Γn = 0 since (En
ℓ,k)(ℓ,k)∈⟦n⟧⊗2 is C-linearly independent.

It remains to prove that {Bn
γ ∣γ ∈ Γn} spans {v ∈Mn(C) ∧ A(v)}. If v ∈Mn(C)

and λ ∈ C are such that w = v−λI is skew-symmetric, then vj,i = −vi,j and λ = vj,j = vi,i
for any {i, j} ⊆ ⟦n⟧ with j ≠ i by Lemma 5.2 (b). Hence, if we let a∅ = λ and
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a(j,i) = wj,i = vj,i for any {i, j} ⊆ ⟦n⟧ with j < i, then

∑
γ∈Γn

aγ B
n
γ = ∑

(j,i)∈⟦n⟧⊗2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(j,i) ∣ j < i
−a(i,j) ∣ i < j
a∅ ∣ j = i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
En
j,i = ∑

(j,i)∈⟦n⟧⊗2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vj,i ∣ j < i
−vi,j ∣ i < j
λ ∣ j = i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
En
j,i = v.

Thus, (Bn
γ )γ∈Γn is a C-linear basis.

(e) The proof of the previous claim shows that any v ∈Mn(C) is skew-symmetric
if and only if it is in the span of {Bn

γ ∣γ ∈ Γn} and has coefficient 0 with respect to
Bn
∅. Hence, {T nj,i ∣ {i, j} ⊆ ⟦n⟧ ∧ j < i} is a C-linear basis of {v ∈Mn(C) ∧ A(v)}.
(f) All three parts (a)–(c) of Lemma 5.2 combined imply that {v ∈Mn(C)∧A(v)}

is the solution set to a homogenous system of linear equations and thus a vector
space. Hence, it suffices to prove that φn restricts to a mapping {u ∈Mn−1(C) ∧ u =
−ut}→ {v ∈Mn(C) ∧ A(v)} and ψn to one in the reverse direction.

For any skew-symmetric u ∈Mn−1(C) and any λ ∈ C, if v = φn(u,λ) and w = v−λI,
then for any {i, j} ⊆ ⟦n⟧ with i < n and j < n we have already seen that wj,i = uj,i,
implying wj,i +wi,j = uj,i + ui,j = 0 by u = −ut. Moreover, for the same reason,

wn,i +wi,n = (vn,i − λδn,i) + (vi,n − λδi,n) = vn,i + vi,n
= (−∑n−1ℓ=1 uℓ,i) + (−∑n−1k=1 ui,k) = −∑n−1ℓ=1 (uℓ,i + ui,ℓ) = 0

and

wj,n +wn,j = (vj,n − λδj,n) + (vn,j − λδn,j) = vj,n + vn,j
= (−∑n−1k=1 uj,k) + (−∑n−1ℓ=1 uℓ,j) = −∑n−1k=1(uj,k + uk,j) = 0

as well as

wn,n +wn,n = 2(vn,n − λ) = 2∑n−1k,ℓ=1 uℓ,k = ∑n−1k,ℓ=1(uℓ,k + uk,ℓ) = 0,

which completes the proof that φn restricts to a map into {v ∈Mn(C) ∧ A(v)}.
Conversely, if v ∈ Mn(C) and λ ∈ C are such that w = v − λI is skew-symmetric

and small, then λ = vi,i for any i ∈ ⟦n⟧ by Lemma 5.2 (b). For (u,λ) = ψn(v) and
any {k, ℓ} ⊆ ⟦n − 1⟧, by definition, uℓ,k = wℓ,k and thus uℓ,k + uk,ℓ = wℓ,k +wk,ℓ = 0 by
w = −wt. Hence, ψn maps {v ∈Mn(C) ∧ A(v)} into {u ∈Mn−1(C) ∧ u = −ut}⊕C.

(g) As we have just shown, any v ∈ MC(n) is skew-symmetric and small if and
only if it lies in the image of {u ∈Mn−1(C) ∧ u = −ut}⊕ {0} under φn. And φn is a
C-linear isomorphism from this space to {v ∈Mn(C) ∧ A(v)}.

(h) It is well-known that (En
i,i)i∈⟦n⟧ is a C-linear basis of {v ∈Mn(C) ∧ A(v)}.

(i) In this case, {v ∈Mn(C) ∧ A(v)} is the C-linear span of I in Mn(C).
(j) Here, {v ∈Mn(C) ∧ A(v)} is the zero C-linear space. □

6. First cohomology of unitary easy quantum group duals

This section computes the first quantum group cohomology with trivial coef-
ficients as defined in Section 2 of the discrete duals of all unitary easy compact
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quantum groups, which were defined in Section 3. That is achieved by applying the
method of Section 4 while using the results of Section 5 as auxiliaries.

More precisely, because unitary easy quantum groups can be expressed in terms of
universal algebras Proposition 4.11 gives a way of expressing the first cohomology as
the set of solutions to a linear equation for scalar vectors with as many components
as there are generators, modulo the set of solutions to a second set of such equations.
However, the latter will turn out to be trivial. Hence, only the first set of solutions
will have to be solved. Doing so, first by successively simplifying the equations and
then by distinuishing cases, is the main contents of this section.

6.1. Equational characterization of first cohomology. In addition to re-
suming the Assumptions 3.8 and the abbreviations from Notation 3.9 the following
shorthand will be used.

Notation 6.1. (a) Let Y be the C⟨E⟩-bimodule C with left and right ac-
tions given by ucj,i⊗x↦ δj,ix respectively x⊗ucj,i ↦ δj,ix for any {i, j} ⊆ ⟦n⟧,
any c ∈ {○, ●} and any x ∈ C.

(b) For any v ∈Mn(C) let the vector xv ∈ C×E be such that for any {i, j} ⊆ ⟦n⟧,
xvu○j,i

∶= vj,i and xvu●j,i
∶= −vi,j.

Not only will the first step in determining the first cohomology of the duals of
all unitary easy quantum groups apply Proposition 4.11 to Definition 3.11, it will
also make an immediate first simplification. More precisely, the implications of the
relations coming from and will be acounted for.

Lemma 6.2. For any g ∈ ⟦n⟧⊗2 and j ∈ ⟦n⟧⊗2 and any x ∈ C×E, if r is given by
(a) r∅●○( )j,∅, then F 1,r

E,∅,Y (x) = xu●j1,j2 + xu○j2,j1
(b) r∅○●( )j,∅, then F 1,r

E,∅,Y (x) = xu○j1,j2 + xu●j2,j1
(c) r●○∅ ( )∅,g, then F 1,r

E,∅,Y (x) = −xu●g2,g1 − xu○g1,g2
(d) r○●∅ ( )∅,g, then F 1,r

E,∅,Y (x) = −xu○g2,g1 − xu●g1,g2
Proof. Starting from Lemma 3.10 the claims all follow immediately from Def-

inition 4.9. □

Proposition 6.3. For any category C of two-colored partitions, any generator
set G of C, if G is the unitary easy compact quantum group associated with (C, n), if

R = G ∪ {(c,d, (p)∗) ∣ (c,d, p) ∈ G} ,
and if

R = {rcd(p)j,g ∣ {k, ℓ} ⊆ N0 ∧ c ∈ {○, ●}⊗k ∧ d ∈ {○, ●}⊗ℓ ∧ (c,d, p) ∈R
∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ} ,

then there exists an isomorphism of C-vector spaces

H1(Ĝ) {v ∈Mn(C) ∣∀r ∈ R ∶ F 1,r
E,∅,Y (xv) = 0},
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where the set on the right is regarded as a C-vector subspace of Mn(C), with

η +B1(Ĝ)z→ (η(u○j,i))(j,i)∈⟦n⟧⊗2 .

for any η ∈ Z1(Ĝ).

Proof. Let R′ be the auxiliary relation set R ∪ {r∅○●( )j,∅, r∅●○( )j,∅ ∣ j ∈ ⟦n⟧⊗2}.
The proof is organized into two parts.

Step 1: First, we show that there exists an isomorphism of C-vector spaces from
H1(Ĝ) to {x ∈ C×E ∣∀r ∈ R′ ∶ F 1,r

E,∅,Y (x) = 0}, the latter seen as a C-vector subspace

of C×E, which for any η ∈ Z1(Ĝ) maps η+B1(Ĝ) to the E-indexed family of complex
number with u○j,i ↦ η(u○j,i) and u●j,i ↦ η(u●j,i) for any {i, j} ⊆ ⟦n⟧.

By definition, H1(Ĝ) =H1
HS(C[Ĝ],X), where X is the C-vector space C equipped

with the C[Ĝ]-bimodule structure defined by a ⊗ λ ↦ ε(a) ⋅ λ and λ ⊗ a ↦ λ ⋅ ε(a)
for any λ ∈ C and a ∈ C[Ĝ], where ε is the co-unit of C[Ĝ].

By Proposition 4.11, there exists a C-linear isomorphism from Z1
HS(C⟨E ∣R′⟩,X)

to the quotient C-vector space of {x ∈ C×E ∣∀r ∈ R′ ∶ F 1,r
E,R′,X(x) = 0} with respect to

{((e+J)▷λ−λ◁ (e+J))e∈E ∣λ ∈ C}, where both are seen as subspace of C×E, such

that for any η ∈ Z1(Ĝ) the class of η is sent to the class of (η(e + J))e∈E.
But, of course, by definition of X, for any λ ∈ C, any c ∈ {○, ●} and any {j, i} ⊆ ⟦n⟧,

the number (ucj,i + J) ▷ λ − λ ◁ (ucj,i + J) = ε(ucj,i)λ − λε(ucj,i) = 0 because C is

commutative. Hence, the subspace {((e + J)▷ λ − λ◁ (e + J))e∈E ∣λ ∈ C} of C×E is
actually the trivial one, {0}.

Lastly, because Y is precisely the restriction of scalars of X along the projection
C⟨E⟩ → C⟨E ∣R′⟩, p ↦ p + J , actually, F 1,p

E,R′,X(x) = F
1,p
E,∅,Y (x) for any p ∈ C⟨E⟩ and

x ∈ CE. Hence, we have verified what we wanted to show in this first part of the
proof.

Step 2: It remains to prove that the rule x ↦ (xu○j,i)(j,i)∈⟦n⟧⊗2 gives a C-linear
isomorphism

{x ∈ C×E ∣∀r ∈ R′ ∶ F 1,r
E,∅,Y (x) = 0} {v ∈Mn(C) ∣∀r ∈ R ∶ F 1,r

E,∅,Y (xv) = 0}.

The claimed isomorphism is well-defined: Let any x ∈ C×E be such that F 1,r
E,∅,Y (x) =

0 for any r ∈ R′. Then, for any j ∈ ⟦n⟧⊗2 because r∅○●( )j,∅ ∈ R′ in particular

xu○j1,j2
+ xu●j2,j1 = 0

by Lemma 6.2, i.e., xu●j2,j1
= −xu○j1,j2 . Hence, if we let v ≡ (xu○j,i)(j,i)∈⟦n⟧⊗2 , then for

any {i, j} ⊆ ⟦n⟧ by definition not only xvu○j,i
= vj,i = xu○j,i but also

xvu●j,i = −vi,j = −xu○i,j = xu●j,i ,

which is to say xv = x. Thus, per assumption, in particular F 1,r
E,∅,Y (xv) = F

1,r
E,∅,Y (x) =

0 for any r ∈ R since R ⊆ R′. That proves that the map is well-defined.
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It is clear that the mapping is C-linear. Moreover, it is injective because, if again
x ∈ C×E is such that F 1,r

E,∅,Y (x) = 0 for any r ∈ R′ and if again v ≡ (xu○j,i)(j,i)∈⟦n⟧⊗2 ,

then v = 0 necessitates xv = 0 by definition of xv and thus x = 0 by the identity
xv = x established in the preceding paragraph.

To show surjectivity we let v ∈ Mn(C) be arbitrary with F 1,r
E,∅,Y (xv) = 0 for any

r ∈ R and abbreviate x ≡ xv. Then, of course, F 1,r
E,∅,Y (x) = 0 for any r ∈ R since

R ⊆ R′. But this is also true for any r ∈ R′/R. Namely, by Lemma 6.2, if j ∈ ⟦n⟧⊗2
and r = r∅○●( )j,∅, then

F 1,r
E,∅,Y (x) = xu○j1,j2 + xu●j2,j1 = x

v
u○j1,j2

+ xvu●j2,j1 = vj1,j2 − vj1,j2 = 0

and, likewise, if r = r∅●○( )j,∅, then F 1,r
E,∅,Y (x) = 0. Hence, x is a preimage of v. That

is all we needed to prove. □

The task laid out by Proposition 6.3 is clear. We need to solve the set of linear
equations in Mn(C) on the right hand side of the isomorphism there – for each
category of two-colored partitions.

6.2. Simplifying the equations. Eventually, in Section 6.3 namely, solving
the equations of Proposition 6.3 will require case distinctions for different kinds of
categories of two-colored partitions. However, there are a great number of simplifica-
tion we can make to the equation system before it needs to come to that. Moreover,
this reduces the number of cases we eventually have to consider immensely. That is
what Section 6.2 is about.

6.2.1. First round of simplifications. The first simplification is achieved in Lem-
ma 6.8 below. We will see that for r = rcd(p)j,g for any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k,
any d ∈ {○, ●}⊗ℓ, any two-colored partition (c,d, p), any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ at
most those summands in F 1,r

E,∅,Y possibly survive where the linear coefficient involving

ζ inherited from r compares p to the kernel of a mapping Πk
ℓ → ⟦n⟧ which differs

from g ◾◾ j on at most a single element of Πk
ℓ . The next three lemmata explicate

when such a comparison can possibly yield 1 and what that then implies about p, g
and j.

Notation 6.4. For any set S, any {k, ℓ} ⊆ N0, any mapping f ∶ Πk
ℓ → S, any

x ∈ Πk
ℓ and any s ∈ S write f ↓x s for the mapping Πk

ℓ → S with y ↦ f(y) for any
y ∈ Πk

ℓ /{x} and with x↦ s.

Lemma 6.5. For any n ∈ N, any {k, ℓ} ⊆ N0, any mapping f ∶ Πk
ℓ → ⟦n⟧, any

partition p of Πk
ℓ , any x ∈ Πk

ℓ and any s ∈ ⟦n⟧, the statements p ≤ ker(f ↓x s) and

p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f) ∧ πp(x)/{x} ⊆ f←({s}).

are equivalent.
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Proof. We show each implication separately. We will use many times the fact
that for any r ∈ ⟦n⟧,

(f ↓x s)←({r})/{x} = {a ∈ Πk
ℓ ∧ (f ↓x s)(a) = r ∧ a ≠ x}

= {a ∈ Πk
ℓ ∧ f(a) = r ∧ a ≠ x}

= f←({r})/{x}.
Step 1: First, suppose p ≤ ker(f ↓x s). Then, there exists r ∈ ran(f ↓x s) such

that πp(x) ⊆ (f ↓x s)←({r}). Because x ∈ πp(x) this requires x ∈ (f ↓x s)←({r}) and
thus r = s by (f ↓x s)(x) = s. It follows πp(x) ⊆ (f ↓x s)←({s}) and thus in particular
πp(x)/{x} ⊆ f←({s})/{x} = f←({s})/{x} ⊆ f←({s}), which is one half of what we
had to show.

It is trivially true that {x} ⊆ f←({f(x)}) ∈ ker(f). We have already seen
πp(x)/{x} ⊆ f←({s}) ∈ ker(f). For any B ∈ p with B ≠ πp(x), i.e., x ∉ B, there
exists by assumption r′ ∈ ran(f ↓x s) with B ⊆ (f ↓x s)←({r′}). We conclude
B = B/{x} ⊆ (f ↓x s)←({r′})/{x} = f←({r′})/{x} ⊆ f←({r′}) ∈ ker(f). Thus, the
other half of the claim, p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f) holds as well.
That proves one implication.

Step 2: In order to show the converse implication we assume that both p/{πp(x)}⊍
{πp(x)/{x},{x}}/{∅} ≤ ker(f) and πp(x)/{x} ⊆ f←({s}) and then we distinguish
two cases.

Case 2.1: If {x} ∈ p and thus πp(x) = {x} and πp(x)/{x} = ∅, then the assumption
is simply equivalent to the statement p ≤ ker(f). Naturally, {x} ⊆ (f ↓x s)←({s}) ∈
ker(f) by (f ↓x s)(x) = s. For any B ∈ p with B ≠ {x} there exists by our premise
a value r ∈ ran(f) with B ⊆ f←({r}). Thus, also B = B/{x} ⊆ f←({r})/{x} = (f ↓x
s)←({r})/{x} ∈ ker(f ↓x s). In conclusion, p ≤ ker(f ↓x s).

Case 2.2: In the instance that {x} ∉ p the initial assumption simplifies to the
statement p/{πp(x)} ⊍ {πp(x)/{x},{x}} ≤ ker(f) and πp(x)/{x} ⊆ f←({s}). The
latter condition implies πp(x)/{x} ⊆ f←({s})/{x} = (f ↓x s)←({s})/{x} ⊆ (f ↓x
s)←({s}) and thus by (f ↓x s)(x) = s also πp(x) = πp(x)/{x}⊍{x} ⊆ (f ↓x s)←({s})∪
{x} ⊆ (f ↓x s)←({s}) ∈ ker(f ↓x s). On the other hand, for any B ∈ p with B ≠ πp(x),
which is to say x ∉ B, there exists by assumption r ∈ ran(f) with B ⊆ f←({r}). It
follows B = B/{x} ⊆ f←({r})/{x} = (f ↓x s)←({r})/{x} ⊆ (f ↓x s)←({r}) ∈ ker(f ↓x
s). Hence, altogether, p ≤ ker(f ↓x s), which concludes the proof. □

Lemma 6.6. For any n ∈ N, any {k, ℓ} ⊆ N0, any partition p of Πk
ℓ and any

mapping f ∶ Πk
ℓ → ⟦n⟧ there exist x ∈ Πk

ℓ and s ∈ ⟦n⟧ such that p ≤ ker(f ↓x s) if and
only if one of the following mutually exclusive statements is true.

(i) p ≠ ∅ and p ≤ ker(f).
(ii) There exists a (necessarily unique) {x1,x2} ∈ p such that for any A ∈ p with

A ≠ {x1,x2} there exists B ∈ ker(f) with A ⊆ B, and such that f(x1) ≠ f(x2).
(iii) There exist (necessarily unique) X ∈ p and x ∈ X and s ∈ ⟦n⟧ such that

3 ≤ ∣X∣, such that for any A ∈ p with A ≠ X there exists B ∈ ker(f) with
A ⊆ B, such that s ≠ f(x) and such that f(y) = s for any y ∈ X with y ≠ x.
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Proof. Step 1: Equivalence. Ignoring, for now, the claim that (i)– (iii) are
mutually exclusive and the uniquness assertions in (ii) and (iii), we prove that there
exist x ∈ Πk

ℓ and s ∈ ⟦n⟧ such that p ≤ ker(f ↓x s) if and only if one of (i)– (iii) holds.
Each implication is shown individually.

Step 1.1: First, we suppose that at least one of the three statements (i)– (iii)
is true and deduce the existence of x ∈ Πk

ℓ and s ∈ ⟦n⟧ with p ≤ ker(f ↓x s). By
Lemma 6.5 that is the same as finding x ∈ Πk

ℓ and s ∈ ⟦n⟧ such that p/{πp(x)} ⊍
{πp(x)/{x},{x}}/{∅} ≤ ker(f) and πp(x)/{x} ⊆ f←({s}). The three cases need to
be treated individually.

Case 1.1.1: Suppose p ≠ ∅ and p ≤ ker(f). Then, by p ≠ ∅, we can find and fix
some x ∈ Πk

ℓ and put s ∶= f(x). From p ≤ ker(f) it then follows πp(x) ⊆ f←({s}) and
thus in particular πp(x)/{x} ⊆ f←({s}), which is one part of what we have to show.
The other part, p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f) is a consequence of the
fact p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ p and the assumption p ≤ ker(f).

Case 1.1.2: Next, let there exist {x1,x2} such that for any A ∈ p with A ≠ {x1,x2}
there exists B ∈ ker(f) with A ⊆ B, and such that f(x1) ≠ f(x2). If we define x ∶= x1
and s ∶= f(x2), then πp(x) = {x1,x2} and thus πp(x)/{x} = {x2} ⊆ f←({s}). On the
other hand, p/{πp(x)}⊍ {πp(x)/{x},{x}}/{∅} = p/{{x1,x2}}⊍ {{x1},{x2}} ≤ ker(f)
because, by assumption, for each A ∈ p/{{x1,x2}} there exists B ∈ ker(f) with
A ⊆ B ∈ ker(f) and, of course, {x1} ⊆ f←({f(x1)}) ∈ ker(f) and {x2} ⊆ f←({s}).

Case 1.1.3: Finally, let X ∈ p and x ∈ X and s ∈ ⟦n⟧ be such that 3 ≤ ∣X∣, such
that for any A ∈ p with A ≠ X there exists B ∈ ker(f) with A ⊆ B, such that s ≠ f(x)
and such that f(y) = s for any y ∈ X with y ≠ x. Then, obviously, πp(x)/{x} =
X/{x} ⊆ f←({s}) by assumption. And, p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} = p/{X} ⊍
{X/{x},{x}} ≤ ker(f) because, by assumption, for any A ∈ p/{X} there exists B ∈
ker(f) with A ⊆ B and because X/{x} ⊆ f←({s}) ∈ ker(f) and {x} ⊆ f←({f(x)}) ∈
ker(f).

Altogether, if (i), (ii) or (iii) hold, there are x ∈ Πk
ℓ and s ∈ ⟦n⟧ with p ≤ ker(f ↓x s).

Step 1.2: In order to show the converse we assume that there exist x ∈ Πk
ℓ and s ∈

⟦n⟧ such that p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f) and πp(x)/{x} ⊆ f←({s})
(which we can by Lemma 6.5) and derive one of (i)– (iii). Again, a case distinction
is in order. Note that the existence of x requires p ≠ ∅.

Case 1.2.1: First, let f(x) = s. Then πp(x) = πp(x)/{x} ⊍ {x} ⊆ f←({s}) ∈ ker(f)
by πp(x)/{x} ⊆ f←({s}). Thus p ≤ ker(f) by p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤
ker(f). In other words, we have shown (i) in this case.

Case 1.2.2: Similarly, if πp(x) = {x}, then p = p/{πp(x)}⊍{πp(x)/{x},{x}}/{∅} ≤
ker(f) and thus (i) holds.

Case 1.2.3: If f(x) ≠ s and ∣πp(x)∣ = 2, then we put x1 ∶= x and we let x2 be
the unique element of πp(x)/{x}. It follows {x2} = πp(x)/{x} ⊆ f←({s}) and thus
f(x2) = s ≠ f(x) = f(x1) by our assumptions. And, the premise p/{{x1,x2}} ⊍
{{x1},{x2}} = p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f) means that for any A ∈ p
with A ≠ {x1,x2} there exists B ∈ ker(f) with A ⊆ B. Hence, this case implies (ii).
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Case 1.2.4: The last remaining possibility is that f(x) ≠ s and 3 ≤ ∣πp(x)∣.
Putting X ∶= πp(x) implies X/{x} = πp(x)/{x} ⊆ f←({s}) by assumption, which
is to say f(y) = s ≠ f(x) for any y ∈ X with y ≠ x. On the other hand, since
p/{X} ⊍ {X/{x},{x}} = p/{πp(x)} ⊍ {πp(x)/{x},{x}}/{∅} ≤ ker(f), for any A ∈ p
with A ≠ X there exists B ∈ ker(f) with A ⊆ B. In other words, (iii) holds.

That concludes the verification of the equivalence of one of (i)–(iii) being true
and there existing x ∈ Πk

ℓ and s ∈ ⟦n⟧ with p ≤ ker(f ↓x s).
Step 2: Uniqueness. Next, we need to prove the uniqueness assertions contained

in (ii) and (iii).
Step 2.1: In case (ii), suppose {x′1,x′2} ∈ p also has the property that for any

A ∈ p with B ≠ {x′1,x′2} there exists B ∈ ker(f) with A ⊆ B and that f(x′1) = f(x′2).
Then, if {x1,x2} ≠ {x′1,x′2} were true, then by assumption on {x1,x2} there would
exist B ∈ ker(f) with {x′1,x′2} ⊆ B, meaning f(x′1) = f(x′2) in contradiction to our
assumption. Hence, {x1,x2} = {x′1,x′2} must be true instead. Hence, {x1,x2} is
unique.

Step 2.2: Now, let (iii) hold and let X′ ∈ p and x′ ∈ X′ and s′ ∈ ⟦n⟧ too be such
that 3 ≤ ∣X′∣, such that for any A ∈ p with A ≠ X′ there exists B ∈ ker(f) with A ⊆ B,
such that s′ ≠ f(x′) and such that f(y′) = s′ for any y′ ∈ X′ with y′ ≠ x′.

If X ≠ X′ held, the assumption on X would imply the existence of B ∈ p with
X′ ⊆ B. In particular, it would follow f(y′) = f(x′) for any y′ ∈ X′ with y′ ≠ x′,
of which there exists at least one by 3 ≤ ∣X′∣. Because that would contradict the
assumption, we must have X = X′ instead.

Furthermore, supposing x ≠ x′ demands of any y ∈ X/{x,x′} both f(y) = s by the
assumption on x and s and f(y) = s′ by the one on x′ and s′. Hence, as X/{x,x′} ≠ ∅
by 3 ≤ ∣X′∣, if x′ ≠ x, then s = s′. That would be a contradiction because the property
of x′ also requires s ≠ f(x) = s′ in that case. Hence, only x = x′ can be true.

Lastly, because the assumptions on s and s′ imply f(y) = s respectively f(y) = s′
for any y ∈ X with y ≠ x = x′ and because X/{x} ≠ ∅, we must have s = s′ as well.
Thus, the uniqueness claim of (iii) has been demonstrated.

Step 3: Mutual exclusivity. Finally, we show that the three statements (i)– (iii)
are mutually exclusive. If (ii) holds, then (i) cannot be true because f(x1) ≠ f(x2)
excludes the existence of B ∈ ker(f) with {x1,x2} ⊆ B, which would be necessary for
p ≤ ker(f) to hold. Similarly, (iii) forbids (i) because the existence of y ∈ X/{x} ≠ ∅
with f(x) ≠ s = f(y) does not allow for any B ∈ ker(f) with X ⊆ B, which p ≤ ker(f)
would require. Lastly, if (i) and (iii) were both true, then {x1,x2} ≠ X would follow
from 3 ≤ ∣X∣, thus demanding by the property of X the existence of B ∈ ker(f) with
{x1,x2} ⊆ B, in contradiction to f(x1) ≠ f(x2). In summary, we have shown that
(i)– (iii) are mutually exclusive, which concludes the proof overall. □

Lemma 6.7. Let n ∈ N, let {k, ℓ} ⊆ N0, let p be any partition of Πk
ℓ , let f ∶ Πk

ℓ → ⟦n⟧
be any mapping and let z ∈ Πk

ℓ and t ∈ ⟦n⟧ be arbitrary.
(a) If p ≠ ∅ and p ≤ ker(f), then p ≤ ker(f ↓z t) if and only if either ∣πp(z)∣ = 1

or both 2 ≤ ∣πp(z)∣ and t = f(z).
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(b) If there exists (a necessarily unique) {x1,x2} ∈ p such that for any A ∈ p with
A ≠ {x1,x2} there exists B ∈ ker(f) with A ⊆ B, and such that f(x1) ≠ f(x2),
then p ≤ ker(f ↓z t) if and only if either both z = x1 and t = f(x2) or both
z = x2 and t = f(x1).

(c) If there exist (necessarily unique) X ∈ p and x ∈ X and s ∈ ⟦n⟧ such that
3 ≤ ∣X∣, such that for any A ∈ p with A ≠ X there exists B ∈ ker(f) with
A ⊆ B, such that s ≠ f(x) and such that f(y) = s for any y ∈ X with y ≠ x,
then p ≤ ker(f ↓z t) if and only if z = x and t = s.

Proof. By Lemma 6.5 the statement p ≤ ker(f ↓z t) is equivalent to the con-
junction of p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅} ≤ ker(f) and πp(z)/{z} ⊆ f←({t}).

(a) Because p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅} ≤ p, in the situation of (a), where
p ≤ ker(f), we only need to determine when πp(z)/{z} ⊆ f←({t}). If ∣πp(z)∣ = 1,
i.e., πp(z)/{z} = ∅, this condition is trivially satisfied. And if 2 ≤ ∣πp(z)∣, then
πp(z)/{z} ⊆ f←({t}) holds if and only if t = f(z) because πp(z)/{z} ⊆ πp(z) ⊆
f←({f(z)}) by assumption. That proves (a).

(b) In case (b), if z ∉ {x1,x2}, then {x1,x2} ∈ p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅}.
However, because f(x1) ≠ f(x2) there cannot exist any B ∈ ker(f) with {x1,x2} ⊆ B.
Hence, z ∉ {x1,x2} excludes {x1,x2} ∈ p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅} ≤ ker(f)
and thus p ≤ ker(f ↓z t).

Hence, p ≤ ker(f ↓z t) requires the existence of i ∈ ⟦2⟧ with z = xi. If so, then
p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅} = p/{{x1,x2}} ⊍ {{x1},{x2}} ≤ ker(f) since by
assumption for any A ∈ p with A ∉ {x1,x2} there exists B ∈ ker(f) with A ⊆ B. Thus,
in this case, p ≤ ker(f ↓z t) is equivalent to {x3−i} = {x1,x2}/{xi} = πp(z)/{z} ⊆
f←({t}), i.e., to f(x3−i) = t, just as (b) claimed.

(c) Finally, under the assumptions of (c), whenever z ∉ X, then X ∈ p/{πp(z)} ⊍
{πp(z)/{z},{z}}/{∅} /≤ ker(f) by the existence of y ∈ X/{x} ≠ ∅ with f(x) ≠ s =
f(y). Consequently, p /≤ ker(f ↓z t) if z ∉ X.

For z ∈ X, because by assumption there is for any A ∈ p with A ≠ X = πp(z)
a B ∈ ker(f) with A ⊆ B the condition p/{πp(z)} ⊍ {πp(z)/{z},{z}}/{∅} ≤ ker(f)
simplifies to the existence of B ∈ ker(f) with πp(z)/{z} ⊆ B, which is subsumed by
the second condition. In other words, if z ∈ X, then p ≤ ker(f ↓z t) if and only if
πp(z)/{z} ⊆ f←({t}).

If z ≠ x, then πp(z)/{z} /⊆ f←({t}) because, by 3 ≤ ∣X∣, there exist y ∈ X/{x,z}
with f(y) = s ≠ f(x) by assumption. Hence, p ≤ ker(f ↓z t) requires z = x. And in
that case is is equivalent to X/{x} = πp(z)/{z} ⊆ f←({t}), which is satisfied if and
only if t = s because f(y) = s for any y ∈ X/{x} ≠ ∅. Thus, the assertion of (c) is
true as well and, thus, so is the claim overall. □

In regard of the preceding three lemmata we can make the first round of simplifica-
tions to the equation system we need to solve.
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Lemma 6.8. For any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ, any partition
p of Πk

ℓ , any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ, if r ≡ rcd(p)j,g and if we abbreviate f ≡ g ◾◾ j
and w ≡ c ◾◾d, then for any x ∈ C×E the number F r,1

E,∅,Y (x) is given by,
(i) if p ≠ ∅ and p ≤ ker(f),

∑
x∈Πk

ℓ
∧ ∣πp(x)∣=1

n

∑
s=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x)
s,f(x)

if x ∈ Πk
0

x
u
w(x)
f(x),s

if x ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ∑

x∈Πk
ℓ

∧2≤∣πp(x)∣

{
−1 if x ∈ Πk

0

1 if x ∈ Π0
ℓ

}x
u
w(x)
f(x),f(x)

,

(ii) if (necessarily p ≠ ∅ and p /≤ ker(f) and) there exists a (necessarily unique)
{x1,x2} ∈ p such that for any A ∈ p with A ≠ {x1,x2} there exists B ∈ ker(f)
with A ⊆ B, and such that f(x1) ≠ f(x2),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x1)
f(x2),f(x1)

if x1 ∈ Πk
0

x
u
w(x1)
f(x1),f(x2)

if x1 ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x2)
f(x1),f(x2)

if x2 ∈ Πk
0

x
u
w(x2)
f(x2),f(x1)

if x2 ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

(iii) if (necessarily p ≠ ∅ and p /≤ ker(f) and) there exist (necessarily unique)
X ∈ p and x ∈ X and s ∈ ⟦n⟧ such that 3 ≤ ∣X∣, such that for any A ∈ p with
A ≠ X there exists B ∈ ker(f) with A ⊆ B, such that f(x) ≠ s and such that
f(y) = s for any y ∈ X with y ≠ x,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x)
s,f(x)

if x ∈ Πk
0

x
u
w(x)
f(x),s

if x ∈ Π0
ℓ ,

(iv) and 0 otherwise.

Proof. By definition of F r,1
E,∅,Y and Y , for any x ∈ C×E (with the same abbrevi-

ations as in the claim),

F r,1
E,∅,Y (x) = ∑

i∈⟦n⟧⊗ℓ

ζ(p,ker(g ◾◾ i))
ℓ

∑
b=1

⎛
⎜⎜
⎝
∏
q∈⟦ℓ⟧
∧ q≠b

δjb,ib

⎞
⎟⎟
⎠
x
u
db
jb,ib

− ∑
h∈⟦n⟧⊗k

ζ(p,ker(h ◾
◾ j))

k

∑
a=1

⎛
⎜⎜
⎝
∏
q∈⟦k⟧
∧ q≠a

δha,ga

⎞
⎟⎟
⎠
xuca

ha,ga
,

which after commuting the sums and evaluating the sums over i respectively h (as
far as possible) is identical to

ℓ

∑
b=1

n

∑
ib=1

ζ(p,ker(g ◾◾ (j1, . . . , jb−1, ib, jb+1, . . . , jℓ))) xudbjb,ib

−
k

∑
a=1

n

∑
ha=1

ζ(p,ker((g1, . . . , ga−1, ha, ga+1, . . . , gk) ◾◾ j)) xuca
ha,ga

.
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In other words, for any x ∈ C×E,

F r,1
E,∅,Y (x) = ∑

z∈Πk
ℓ

n

∑
t=1
ζ(p,ker(f ↓z t))

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(z)
t,f(z)

if z ∈ Πk
0

x
u
w(z)
f(z),t

if z ∈ Π0
ℓ .

From this identity we see immediately that F r,1
E,∅,Y ≠ 0 requires the existence of

x ∈ Πk
ℓ and s ∈ ⟦n⟧ with p ≤ ker(f ↓x s). Thus, Lemma 6.6 verifies (iv). It remains

to treat the cases (i)–(iii).
(i) In the situation of (i), for any z ∈ Πk

ℓ and t ∈ ⟦n⟧ we know from Lemma 6.7 (a)
that p ≤ ker(f ↓z t) if and only if either ∣πp(z)∣ = 1 or both 2 ≤ ∣πp(z)∣ and t = f(z).
Consequently, for any x ∈ C×E,

F r,1
E,∅,Y (x) = ∑

x∈Πk
ℓ

∧ ∣πp(x)∣=1

n

∑
s=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x)
s,f(x)

if x ∈ Πk
0

x
u
w(x)
f(x),s

if x ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ∑

x∈Πk
ℓ

∧2≤∣πp(x)∣

{
−1 if x ∈ Πk

0

1 if x ∈ Π0
ℓ

}x
u
w(x)
f(x),f(x)

,

as claimed in (i).
(ii) Under the assumptions of (ii), Lemma 6.7 (b) tells us for any z ∈ Πk

ℓ and
t ∈ ⟦n⟧ that p ≤ ker(f ↓z t) if and only if either both z = x1 and t = f(x2) or both
z = x2 and t = f(x1). It follows for any x ∈ C×E,

F r,1
E,∅,Y (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x1)
f(x2),f(x1)

if x1 ∈ Πk
0

x
u
w(x1)
f(x1),f(x2)

if x1 ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x2)
f(x1),f(x2)

if x2 ∈ Πk
0

x
u
w(x2)
f(x2),f(x1)

if x2 ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

which is what we had to prove in this case.
(iii) Finally, if the premises of (iii) are satisfied, then for any z ∈ Πk

ℓ and t ∈ ⟦n⟧
Lemma 6.7 (c) lets us infer that p ≤ ker(f ↓z t) if and only if z = x and t = s. Hence,
in this case, for any x ∈ C×E,

F r,1
E,∅,Y (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
u
w(x)
s,f(x)

if x ∈ Πk
0

x
u
w(x)
f(x),s

if x ∈ Π0
ℓ

,

which concludes the proof. □

6.2.2. Second round of simplifications. Whereas Lemma 6.8 still considered the
numbers F 1,r

E,∅,Y (x) for arbitrary x ∈ C×E, Lemma 6.9 now takes into account that,

by Proposition 4.11, we only need to solve the equations F 1,r
E,∅,Y (x) = 0 for those x

for which there exists v ∈Mn(C) with x = xv. That further simplifies the system of
equations.

Lemma 6.9. For any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ, any partition
p of Πk

ℓ , any g ∈ ⟦n⟧⊗k, any j ∈ ⟦n⟧⊗ℓ and any v ∈ Mn(C), if r ≡ rcd(p)j,g and if

f ≡ g ◾◾ j, then F 1,r
E,∅,Y (xv) is given by,
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(i) if p ≠ ∅ and p ≤ ker(f),

∑
A∈p
∧ ∣A∣=1

σc
d(A)

n

∑
s=1
{
v(f/p)(A),s if σc

d(A) = 1

vs,(f/p)(A) otherwise
} + ∑

A∈p
∧2≤∣A∣

σc
d(A) v(f/p)(A),(f/p)(A),

(ii) if (necessarily p ≠ ∅ and p /≤ ker(f) and) there exists a (necessarily unique)
{x1,x2} ∈ p such that for any A ∈ p with A ≠ {x1,x2} there exists B ∈ ker(f)
with A ⊆ B, and such that f(x1) ≠ f(x2),

1
2σ

c
d({x1,x2}) (vf(x1),f(x2) + vf(x2),f(x1)),

(iii) if (necessarily p ≠ ∅ and p /≤ ker(f) and) there exist (necessarily unique)
X ∈ p and x ∈ X and s ∈ ⟦n⟧ such that 3 ≤ ∣X∣, such that for any A ∈ p with
A ≠ X there exists B ∈ ker(f) with A ⊆ B, such that f(x) ≠ s and such that
f(y) = s for any y ∈ X with y ≠ x,

σc
d({x}){

v(f/p)(X),s if σc
d({x}) = 1

vs,(f/p)(X) otherwise,

(iv) and 0 otherwise.

Proof. The claim follows from Lemma 6.8. We only have to show that in each
of the first three cases the numbers coincide. For the purposes of this proof, let
vb(1) = v and vb(−1) = vt and recall σ(○) = 1 and σ(●) = −1. Then, for any c ∈ {○, ●}
and {i, j} ⊆ ⟦n⟧ the definitions imply

xvucj,i = {
vj,i if c = ○
−vi,j if c = ●} = (−1)σ(c)(vb(σ(c)))j,i.

If w = c ◾◾d, then it follows for any x ∈ Πk
ℓ and any z ∈ ⟦n⟧ that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xv
u
w(x)
z,f(x)

if x ∈ Πk
0

xv
u
w(x)
f(x),z

if x ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= {

−(−1)σ(w(x))(vb(σ(w(x))))z,f(x) if x ∈ Πk
0

(−1)σ(w(x))(vb(σ(w(x))))f(x),z if x ∈ Π0
ℓ

}

=
⎧⎪⎪⎨⎪⎪⎩

(−1)σ(w(x))(vb(σ(w(x))))f(x),z if x ∈ Πk
0

(−1)σ(w(x))(vb(σ(w(x))))f(x),z if x ∈ Π0
ℓ

⎫⎪⎪⎬⎪⎪⎭
= σc

d({x}) (vb(σ
c
d({x})))f(x),z

by the definition of the color sum and, analogously,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xv
u
w(x)
f(x),z

if x ∈ Πk
0

xv
u
w(x)
z,f(x)

if x ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= σc

d({x}) (vb(σ
c
d({x})))z,f(x).

We now distinguish the three relevant cases.
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(i) In the situation of (i), by Lemma 6.8 the number F 1,r
E,∅,Y (xv) is given by,

∑
x∈Πk

ℓ
∧ ∣πp(x)∣=1

n

∑
s=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xv
u
w(x)
s,f(x)

if x ∈ Πk
0

xv
u
w(x)
f(x),s

if x ∈ Π0
ℓ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ∑

x∈Πk
ℓ

∧2≤∣πp(x)∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xv
u
w(x)
f(x),f(x)

if x ∈ Πk
0

xv
u
w(x)
f(x),f(x)

if x ∈ Π0
ℓ .

⎫⎪⎪⎪⎬⎪⎪⎪⎭

By what was shown initially, this can be rewritten identically as

∑
x∈Πk

ℓ
∧ ∣πp(x)∣=1

n

∑
s=1
σc
d({x}) (vb(σ

c
d({x})))f(x),s + ∑

x∈Πk
ℓ

∧2≤∣πp(x)∣

σc
d({x}) (vb(σ

c
d({x})))f(x),f(x).

And that is excatly what was claimed because ker(f) ≤ p and ∑x∈A σ
c
d({x}) = σc

d(A)
for any A ∈ p.

(ii) Under the assumptions of (ii), Lemma 6.8 tells us that F 1,r
E,∅,Y (xv) can be

computed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−xv
u
w(x1)
f(x2),f(x1)

if x1 ∈ Πk
0

xv
u
w(x1)
f(x1),f(x2)

if x1 ∈ Π0
ℓ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−xv
u
w(x2)
f(x1),f(x2)

if x2 ∈ Πk
0

xv
u
w(x2)
f(x2),f(x1)

if x2 ∈ Π0
ℓ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

which, by our initial observerations, is identical to

σc
d({x1}) (vb(σ

c
d({x1})))f(x2),f(x1) + σc

d({x2}) (vb(σ
c
d({x2})))f(x1),f(x2).

Since σc
d({xi}) ∈ {−1,1} for each i ∈ ⟦2⟧, either σc

d({x1}) = σc
d({x2}), in which case

we infer

F 1,r
E,∅,Y (xv) = 2σc

d({x1}) ((vb(σ
c
d({x1})))f(x2),f(x1) + (vb(σ

c
d({x1})))f(x1),f(x2)),

= 1
2σ

c
d({x1,x2}) (vf(x1),f(x2) + vf(x2),f(x1)),

or σc
d({x1}) = −σc

d({x2}), implying

F 1,r
E,∅,Y (xv) = σc

d({x1}) (vb(σ
c
d({x1})))f(x2),f(x1) − σc

d({x1}) (vb(−σ
c
d({x1})))f(x1),f(x2) = 0.

And that is precisely what we needed to show in this case.
(iii) Finally, if the premises of (iii) are satisfied, according to Lemma 6.8 and by

our initial findings,

F 1,r
E,∅,Y (xv) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xv
u
w(x)
s,f(x)

if x ∈ Πk
0

xv
u
w(x)
f(x),s

if x ∈ Π0
ℓ ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= σc

d({x}) (vb(σ
c
d({x})))f(x),s.

Since this is just what we claimed, that concludes the proof. □
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6.2.3. Third round of simplifications. Up to now we have only analyzed the num-
bers F 1,r

E,∅,Y (xv) for one single r = rcd(p)j,g at a time, i.e., for a fixed parameter tuple

(c,d, p, g, j). However, the parameter set indexing our equations has many symme-
try properties. The first we now take into acount with Lemma 6.10 below is that,
with (c,d, p, g, j), it also includes (c,d, p, j′, g′) for arbitrary g′ ∈ ⟦n⟧⊗k and j′ ∈ ⟦n⟧⊗ℓ,
where {k, ℓ} ⊆ N0 are such that c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ. We ask what it means
for F 1,r

E,∅,Y (xv) to vanish for all such r = rcd(p)j′,g′ simultaneously.

Lemma 6.10. For any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ, any partition
p of Πk

ℓ and any v ∈Mn(C), if
R = {rcd(p)j,g ∣ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ} ,

then F 1,r
E,∅,Y (xv) = 0 holds for any r ∈ R if and only if all of the following are satisfied.

(i) For any h∶ p→ ⟦n⟧,

∑
B∈p
∧ ∣B∣=1

σc
d(B)

n

∑
s=1
{
vh(B),s if σc

d(B) = 1

vs,h(B) otherwise
} + ∑

B∈p
∧2≤∣B∣

σc
d(B) vh(B),h(B) = 0.

(ii) If there exists B ∈ p with ∣B∣ = 2 and σc
d(B) ≠ 0, then vb,a + va,b = 0 for any

{a, b} ⊆ ⟦n⟧ with a ≠ b.
(iii) If there exists B ∈ p with 2 < ∣B∣, then vb,a = 0 for any {a, b} ⊆ ⟦n⟧ with a ≠ b.
Proof. First, suppose that conditions (i)–(iii) are satisfied, let g ∈ ⟦n⟧⊗k and

j ∈ ⟦n⟧⊗ℓ be arbitrary and abbreviate r ≡ rcd(p)j,g and f ≡ g ◾◾ j. We show that

F 1,r
E,∅,Y (xv) = 0. If f is as in case (i) of Lemma 6.9 and if we let h = f/p, then

condition (i) says precisely that F 1,r
E,∅,Y (xv) = 0. If we find x1 and x2 as in case (ii)

of Lemma 6.9, then F 1,r
E,∅,Y (xv) = 1

2σ
c
d({x1,x2}) (vf(x1),f(x2) + vf(x2),f(x1)). Hence, if

σc
d({x1,x2}) = 0 we have nothing to prove. Otherwise, condition (ii) guarantees that
vb,a+va,b = 0 for any {a, b} ⊆ ⟦n⟧, thus showing F 1,r

E,∅,Y (xv) = 0 since f(x2) ≠ f(x1). If

there exist s, X and x as in case (iii) of Lemma 6.9, then condition (iii) implies that v
is diagonal. Since F 1,r

E,∅,Y (xv) is given by σc
d({x}) v(f/p)(X),s or σc

d({x}) vs,(f/p)(X) that

proves F 1,r
E,∅,Y (xv) = 0 in this case since s ≠ (f/p)(X). Finally, if f is as in case (iv)

of Lemma 6.9 there is nothing to show. Hence, F 1,r
E,∅,Y (xv) as asserted.

To show the converse we assume F 1,r
E,∅,Y (xv) = 0 for any r ∈ R. For any h∶ p→ ⟦n⟧,

if we let f = h ○ π∼p and r = rcd(p)j,g, then p ≤ ker(f) and F 1,r
E,∅,Y (xv) is exactly the

left-hand side of the equation in condition (i) by case (i) of Lemma 6.9, which proves
condition (i) to be satisfied.

Now, suppose that there exists B ∈ p with ∣B∣ = 2, i.e., B = {x1,x2} for some
{x1,x2} ⊆ Πk

ℓ with x1 ≠ x2, and with σc
d(B) ≠ 0 and let {a, b} ⊆ ⟦n⟧ with a ≠ b be

arbitrary. If f is such that x1 ↦ a and y ↦ b for any y ∈ Πk
ℓ /{x1}, case (ii) of Lem-

ma 6.9 tells us that F 1,r
E,∅,Y (xv) = 1

2σ
c
d({x1,x2}) (vb,a + va,b). Since σc

d({x1,x2}) ≠ 0 by

assumption, (ii) is thus true as well.
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Lastly, let there exist B ∈ p with 2 < ∣B∣ and let {a, b} ⊆ ⟦n⟧ be arbitrary with
a ≠ b. We can choose any x ∈ X ∶= B and define f by demanding x↦ a and y↦ s ∶= b
for any y ∈ Πk

ℓ /{x} to ensure that f , s, X and x are as in case (iii) of Lemma 6.9

and thus that F 1,r
E,∅,Y (xv) is given by σc

d({x}) va,b or σc
d({x}) vb,a. Thus, also the last

condition (iii) is satisfied and the proof is complete. □

6.2.4. Fourth round of simplifications. In Lemma 6.11 below, continuing what
we began with Lemma 6.10, we capitalize on further symmetries of the parameter set
indexing the equations. Namely, with any (c,d, p, g, j) it includes also (c,d, p∗, g′, j′)
for any g′ and j′. Moreover, we only need to consider special (c,d, p).

Lemma 6.11. For any {k, ℓ} ⊆ N0, any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ, any partition
p of Πk

ℓ and any v ∈Mn(C), if
R = {rcd(p)j,g, rcd((p)

∗)j,g ∣ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ} ,
then the statement that F r,1

E,∅,Y (xv) = 0 holds for any r ∈ R is equivalent in the case

that (c,d, p) is given by
(a) to v being diagonal.
(b) ⊗ to there existing λ ∈ C such that v − λI is small.
(c) ⊗t for some t ∈ N to v being small.

Proof. (a) Because (c,d, (p)∗) = we only need to consider the conditions
coming from , i.e., R = {r∅○●○●( )j,∅ ∣ j ∈ ⟦n⟧⊗4}.

Because ∣B∣ ≠ 1 and σ∅○●○●(B) = 0 for the only B ∈ condition (i) of Lemma 6.10
is satisfied for any h∶ → ⟦n⟧, regardless of whether v is diagonal or not. Similarly,
since also ∣B∣ ≠ 2 for the only B ∈ the same is true about condition (ii) of Lem-
ma 6.10. It is condition (iii) of Lemma 6.10 alone which is relevant. Namely, since
there is B ∈ with 3 < ∣B∣ it implies that F r,1

E,∅,Y (xv) = 0 for any r ∈ R if and only
if v is diagonal.

(b) Once more, the fact that (c,d, (p)∗) is identical to ⊗ allows us to draw the
simplifying conclusion R = {r∅○●( )j,∅ ∣ j ∈ ⟦n⟧⊗2}. Furthermore, because ∣B∣ = 1 for
any B ∈ and because σ∅○●({◾1}) = 1 and σ∅○●({◾2}) = −1, for any h∶ → ⟦n⟧ what
condition (i) of Lemma 6.10 demands is that ∑ns=1 vh({◾1}),s−∑

n
s=1 vs,h({◾2}) be zero. At

the same time, condition (ii) and condition (iii) of Lemma 6.10 are always trivially
satisfied since there are no B ∈ with ∣B∣ = 2 or even 2 < ∣B∣. Hence, F r,1

E,∅,Y (xv) = 0

holds for any r ∈ R if and only if ∑ns=1 vj,s − ∑ns=1 vs,i for any {i, j} ⊆ ⟦n⟧, i.e., by
Lemma 5.2 (a), if and only if there exists λ ∈ C such that v − λI is small.

(c) In this case, the partitions (c,d, (p)∗) = ⊗t and (c,d, p) are distinct and must
thus both be considered.

Since ∣B∣ = 1 and σ∅
c⊗t(B) = σ(c) for any B ∈ ⊗t and any c ∈ {○, ●} condition (i)

of Lemma 6.10 is satisfied for ⊗t and ⊗t if and only if ∑td=1∑ns=1 vh({◾d}),s = 0 re-

spectively −∑td=1∑ns=1 vs,h({◾d}) = 0 for any h∶ ⊗t → ⟦n⟧. Moreover, conditions (ii)
and (iii) of Lemma 6.10 are trivially satisfied by the absence of any B ∈ ⊗t with
2 ≤ ∣B∣.
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Consequently, if v is small and thus ∑ns=1 vh({◾d}),s = ∑
n
s=1 vs,h({◾d}) = 0 for any

d ∈ ⟦t⟧ all three conditions of Lemma 6.10 are met for both ⊗t and ⊗t.
If, conversely, F r,1

E,∅,Y (xv) = 0 for any r ∈ R, then for any i ∈ ⟦n⟧, if h∶ ⊗t → ⟦n⟧
is constant with value i, condition (i) of Lemma 6.10 for ⊗t and ⊗t lets us infer
0 = t ∑ns=1 vi,s respectively 0 = t ∑ns=1 vs,i, proving v to be small. □

6.3. Case distinctions. Having studied first single equations and then larger
subsystems of the linear equations of Proposition 4.11 we are now at the point where
we can solve the system for all categories of two-colored partitions simultaneously
by distinguishing just twelve cases.

In a sense this is yet another extension of the process begun in Lemma 6.11 and
continued in Lemma 6.10 of considering ever more equations simultaneously in a
way inspired by the symmetries of the parameter set. The symmetries we now take
into account are much deeper than the ones used before. They rely on combinatorial
analyses and are listed in Lemma 3.7.

Proposition 6.12. For any category C of two-colored partitions and any v ∈
Mn(C)if

R = {rcd(p)j,g ∣ {k, ℓ} ⊆ N0 ∧ c ∈ {○, ●}⊗k ∧ d ∈ {○, ●}⊗ℓ ∧ (c,d, p) ∈ C
∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ} ,

then F 1,r
E,∅,Y (xv) = 0 holding for any r ∈ R is equivalent,

(i) if C is case O and
(1) has only neutral non-singleton blocks, to the absolutely true statement.
(2) has some non-neutral non-singleton blocks but only neutral partitions,

to there existing λ ∈ C such that v − λI is skew-symmetric.
(3) has some non-neutral partitions, to v being skew-symmetric.

(ii) if C is case B and
(1) has only neutral non-singleton blocks and only neutral partitions, to

there existing λ ∈ C such that v − λI is small.
(2) has only neutral non-singleton blocks and some non-neutral partitions,

to v being small
(3) has some non-neutral non-singleton blocks and only neutral partitions,

to there existing λ ∈ C such that v − λI is skew-symmetric and small.
(4) has some non-neutral non-singleton blocks and some non-neutral par-

titions, to v being skew-symmetric and small.
(iii) if C is case H and

(1) has only neutral non-singleton blocks, to v being diagonal.
(2) has some non-neutral non-singleton blocks but only neutral partitions,

to there existing λ ∈ C such that v = λI.
(3) has some non-neutral partitions, to v = 0.

(iv) if C is case S and
(1) has only neutral partitions, to there existing λ ∈ C such that v = λI.
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(2) has some non-neutral partitions, to v = 0.
Other cases cannot occur.

Proof. We need to treat each case individually. By Lemma 6.10 what we
have to show is that the asserted statement about v is true if and only if for each
(c,d, p) ∈ C the conditions (i)–(iii) of Lemma 6.10 are satisfied.

(i) First, suppose that C is case O. By Lemma 3.7 (b) and (c) that means ∣B∣ = 2
for any B ∈ p and any (c,d, p) ∈ C.

(1) Let C have only neutral non-singleton blocks. All we have to show is that
for any (c,d, p) ∈ C all three conditions (i)–(iii) of Lemma 6.10 are satisfied. Indeed,
if (c,d, p) ∈ C and h∶ p → ⟦n⟧, then, since ∣B∣ = 2 for any B ∈ p, condition (i) of
Lemma 6.10 is met if ∑B∈p σ

c
d(B) vh(B),h(B) = 0. And because also σc

d(B) = 0 for any
B ∈ p by C having only neutral singleton blocks this is very much the case. For
the same reason condition (i) of Lemma 6.10 is trivially satisfied. The same is true
about condition (i) of Lemma 6.10 since there are no B ∈ p with 2 < ∣B∣.

(2) The next case is that C has some non-neutral non-singleton blocks but still
only neutral partitions.

Suppose that there exists λ ∈ C such that v − λI is skew-symmetric and let
(c,d, p) ∈ C and h∶ p→ ⟦n⟧ be arbitrary. Because ∣B∣ = 2 for any B ∈ p condition (i) of
Lemma 6.10 is satisfied if and only if ∑B∈p σ

c
d(B) vh(B),h(B) = 0. Since v − λI is skew-

symmetric vj,j = vi,i for any {i, j} ⊆ ⟦n⟧ with j ≠ i by Lemma 5.2 (b). Thus, what con-
dition (i) of Lemma 6.10 actually demands is that the term ∑B∈p σ

c
d(B) v1,1 = Σc

d v1,1
be zero, which it is since C having only neutral partitions ensures Σc

d = 0. Lem-
ma 5.2 (b) furthermore guarantees that vj,i + vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with j ≠ i,
which is why condition (ii) of Lemma 6.10 is met, regardless of whether there is
B ∈ p with σc

d(B) ≠ 0 or not. And since there are no B ∈ p with 2 < ∣B∣ condition (iii)
of Lemma 6.10 is trivially satisfied.

Conversely, let now F 1,r
E,∅,Y (xv) = 0 hold for any r ∈ R. By assumption we find

(c,d, p) ∈ C and A ∈ p with σc
d(A) ≠ 0 but still Σc

d = 0 and, of course, with ∣A∣ = 2
since C is case O. Hence, vj,i + vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j by condi-
tion (ii) of Lemma 6.10. But also, given any {i, j} ⊆ ⟦n⟧ with i ≠ j, if h∶ p → ⟦n⟧
is such that A ↦ j and B ↦ i for any B ∈ p/{A}, condition (i) of Lemma 6.10
implies then σc

d(A) vj,j +∑B∈p∧B≠A σ
c
d(B) vi,i = 0. Since 0 = Σc

d = ∑B∈p σ
c
d(B) = σc

d(A) +
∑B∈p∧B≠A σ

c
d(B), i.e., ∑B∈p∧B≠A σ

c
d(B) = −σc

d(A), this means σc
d(A) (vj,j − vi,i) = 0,

which implies vj,j − vi,i = 0 by σc
d(A) ≠ 0. Hence, there exists λ ∈ C such that v − λI

is skew-symmetric by Lemma 5.2 (b).
(3) The last possiblity in case O is for C to have some non-neutral partitions.
Assume that v is skew-symmetric and let (c,d, p) ∈ C and h∶ p → ⟦n⟧ be arbi-

trary. Since there are no B ∈ p with ∣B∣ ≠ 1 condition (i) of Lemma 6.10 is met if
∑B∈p σ

c
d(B) vh(B),h(B) = 0 Since v being skew-symmetric implies vh(B),h(B) = 0 for any

B ∈ p this is indeed true. But v being skew-symmetric also implies vj,i + vi,j = 0 for
any {i, j} ⊆ ⟦n⟧ with j ≠ i, which is why condition (ii) of Lemma 6.10 is satisfied
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no matter whether there is B ∈ p with σc
d(B) ≠ 0 or not. Finally, condition (i) of

Lemma 6.10 is of course fulfilled by C being case O.
To see the converse, we assume that F 1,r

E,∅,Y (xv) = 0 holds for any r ∈ R. Because

C has some non-neutral partitions there exists (c,d, p) ∈ C with Σc
d ≠ 0. For any

i ∈ ⟦n⟧, if h∶ p → ⟦n⟧ is constant with value i, then condition (ii) of Lemma 6.10
implies 0 = ∑B∈p σ

c
d(B) vi,i = Σc

d vi,i and thus vi,i = 0 by Σc
d ≠ 0. Futhermore, Since

Σc
d = ∑B∈p σ

c
d(B) the assumption Σc

d ≠ 0 also requires the existence of at least one
B ∈ p with σc

d(B) ≠ 0. Because C is case O condition (ii) of Lemma 6.10 therefore
yields vj,i+vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with j ≠ i. In other words, v is skew-symmetric.

(ii) If C is case B, then ∣B∣ ≤ 2 for any B ∈ p and any (c,d, p) ∈ p by Lemma 3.7 (c)
and, of course, ⊗ ∈ C by definition.

(1) As the first subcase, let C have only neutral non-singleton blocks and only
neutral partitions.

Suppose that λ ∈ C is such that v − λI is small and let (c,d, p) ∈ C and h∶ p →
⟦n⟧ be arbitrary. By Lemma 5.2 (a) then λ = ∑ns=1 vh(B),s = ∑ns=1 vs,h(B) for any
B ∈ p. Hence, and because σc

d(B) = 0 for any B ∈ p with 2 ≤ ∣B∣ by C having only
neutral non-singleton blocks, in order to satisfy condition (i) of Lemma 6.10 the term
∑B∈p∧ ∣B∣=1 σ

c
d(B)λ has to vanish. And, of course, it does since C having only neutral

partitions ensures 0 = Σc
d = ∑B∈p∧ ∣B∣=1 σ

c
d(B) + ∑B∈p∧2≤∣B∣ σ

c
d(B) = ∑B∈p∧ ∣B∣=1 σ

c
d(B),

where the last step is due to C having only neutral non-singleton blocks again.
If on the other hand F 1,r

E,∅,Y (xv) = 0 for any r ∈ R, then Lemma 6.11 (b) the fact
that ⊗ ∈ C already implies by that there exists λ ∈ C such that v − λI is small.

(2) Next, suppose that C has only neutral non-singleton blocks and some non-
neutral partitions.

Let v be small and let (c,d, p) ∈ C and h∶ p→ ⟦n⟧ be arbitrary. Then ∑ns=1 vh(B),s =
∑ns=1 vs,h(B) = 0 for any B ∈ p. For that reason the first sum on the left hand side
of the equation in condition (i) of Lemma 6.10 vanishes. And since C having only
neutral non-singleton blocks means σc

d(B) = 0 for any B ∈ p with 2 ≤ ∣B∣ the second
term does as well. Hence, condition (i) of Lemma 6.10 is satisfied. The fact that
σc
d(B) = 0 for any B ∈ p with 2 ≤ ∣B∣ also implies that condition (ii) of Lemma 6.10

is trivially fulfilled. Finally, condition (iii) of Lemma 6.10 is met as well since C is
case B.

Because C has some non-neutral partitions we find a (c,d, p) ∈ C with t = ∣Σc
d∣ ≠ 0.

By Lemma 3.7 (e) that necessitates ⊗t ∈ C. Hence, if F 1,r
E,∅,Y (xv) = 0 for any r ∈ R,

then v is small by Lemma 6.11 (c).
(3) Now, let C have some non-neutral non-singleton blocks but only neutral par-

titions.
If λ ∈ C is such that v − λI is both skew-symmetric and small, then given any

(c,d, p) ∈ C and h∶ p → ⟦n⟧, we infer for any B ∈ p, first, λ = ∑ns=1 vh(B),s = ∑ns=1 vs,h(B)
by Lemma 5.2 (a) and, second, λ = vh(B),h(B) by Lemma 5.2 (b). Consequently,
condition (i) of Lemma 6.10 is satisfied if and only if the term ∑B∈p∧ ∣B∣=1 σ

c
d(B)λ +

∑B∈p∧2≤∣B∣ σ
c
d(B)λ = ∑B∈p σ

c
d(B)λ = Σc

d λ is zero, which, of course, it is since C having
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only neutral partitions guarantees Σc
d = 0. Because Lemma 5.2 (b) also tells us that

vj,i + vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j condition (ii) of Lemma 6.10 is met,
irrespective of whether there actually is some B ∈ p with ∣B∣ = 2 and σc

d(B) ≠ 0.
Lastly, condition (iii) of Lemma 6.10 is trivially fulfilled since C is case B.

Conversely, if F 1,r
E,∅,Y (xv) = 0 for any r ∈ R, then the fact that ⊗ ∈ C ensures the

existence of λ1 ∈ C such that v−λ1I is small by Lemma 6.11 (b). Additionally, since
C has some non-neutral non-singleton blocks we find a (c,d, p) ∈ C with the property
that there is A ∈ p with 2 ≤ ∣A∣ and σc

d(A) ≠ 0. Because C being case B then also
demands ∣A∣ ≤ 2 that means vj,i+vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j by condition (ii)
of Lemma 6.10. Moreover, given any {i, j} ⊆ ⟦n⟧ with i ≠ j, if h∶ p→ ⟦n⟧ is such that
A ↦ j and B ↦ i for any B ∈ p/{A} and if h′∶ p → ⟦n⟧ is constant with value i, then,
considering that λ1 = ∑ns=1 vi,s = ∑ns=1 vs,i by Lemma 5.2 (a), condition (i) of Lem-
ma 6.10 yields the identities∑B∈p∧ ∣B∣=1 σ

c
d(B)λ1+σc

d(A) vj,j+∑B∈p∧2≤∣B∣∧B≠A σ
c
d(B) vi,i =

0 and ∑B∈p∧ ∣B∣=1 σ
c
d(B)λ1 +∑B∈p∧2≤∣B∣ σ

c
d(B) vi,i = 0. Subtracting the second from the

first thus yields the identity σc
d(A) (vj,j − vi,i) = 0. Since σc

d(A) ≠ 0 we can infer
vj,j = vi,i for any {i, j} ⊆ ⟦n⟧ with i ≠ j. Since also vj,i + vj,i = 0 for any {i, j} ⊆ ⟦n⟧
with i ≠ j by condition (i) of Lemma 6.10, by Lemma 5.2 (b) we have thus shown that
there exists λ2 ∈ C such that v−λ2I is skew-symmetric. According to Lemma 5.2 (c)
that is all we needed to see.

(4) As the final subcase for case B let C have some non-neutral non-singleton
blocks as well as some non-neutral partitions.

If v is skew-symmetric and small and if (c,d, p) ∈ C and h∶ p → ⟦n⟧ are arbitrary,
then by definition, ∑ns=1 vh(B),s = ∑ns=1 vs,h(B) = 0 and vh(B),h(B) = 0 for any B ∈ p. For
that reason condition (i) of Lemma 6.10 is trivially satisfied. Because also vj,i+vi,j = 0
for any {i, j} ⊆ ⟦n⟧ with i ≠ j condition (ii) of Lemma 6.10 is met as well, no matter
whether there exists B ∈ p with ∣B∣ = 2 and σc

d(B) ≠ 0. And, of course, condition (iii)
of Lemma 6.10 is vacuous for (c,d, p) since C is case B.

In order to prove the converse, let F 1,r
E,∅,Y (xv) = 0 for any r ∈ R. Since C has

some non-neutral partitions we find a (c,d, p) ∈ C with t ≡ ∣Σc
d∣ ≠ 0. As ⊗ ∈ C we

conclude ⊗t ∈ C by Lemma 3.7 (e). It follows that v is small by Lemma 6.11 (c).
Furthermore, the assumption of C having some non-neutral non-singleton blocks
implies the existence of (a,b, q) ∈ C and A ∈ q with 2 ≤ ∣A∣ and σa

b(A) ≠ 0. If now
for any {i, j} ⊆ ⟦n⟧ with i ≠ j the mapping h∶ q → ⟦n⟧ is such that A ↦ j and B ↦ i
for any B ∈ p/{A} and if h′∶ q → ⟦n⟧ is constant with value i, then condition (i)
of Lemma 6.10 implies the identities σa

b(A) vj,j + ∑B∈q ∧2≤∣B∣∧B≠A σ
a
b(B) vi,i = 0 and

∑B∈q ∧2≤∣B∣ σ
a
b(B) vi,i = 0 because ∑ns=1 vi,s = ∑ns=1 vs,i = 0 by v being small. Subtracting

the second from the first yieds σa
b(A) (vj,j − vi,i) = 0 and thus vj,j = vi,i by σa

b(A) ≠ 0.
Because the presence of A in q also ensures vj,i+vi,j = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j
by condition (ii) of Lemma 6.10 we have thus shown that there exists λ2 ∈ C such
that v −λ2I is skew-symmetric by Lemma 5.2 (b). Because v is also small, applying
Lemma 5.2 (c) (with λ1 = 0) we see that λ2 = 0, i.e., that v is skew-symmetric and
small.
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(iii) If C is case H, then ∈ C and 2 ≤ ∣B∣ for any B ∈ p and any (c,d, p) ∈ C by
Lemma 3.7 (b) and ⊗ ∉ C.

(1) Suppose first that C has only neutral non-singleton blocks.
If v is diagonal, if (c,d, p) ∈ C and if h∶ p → ⟦n⟧, then because both 2 ≤ ∣B∣ and

σc
d(B) = 0 for any B ∈ p by assumption, condition (i) of Lemma 6.10 is satisfied

trivially. For the same reason, condition (ii) of Lemma 6.10 is vacuous. And con-
dition (iii) of Lemma 6.10 is met as well, regardless of whether there is B ∈ p with
2 < ∣B∣, because v is diagonal per assumption.

If, conversely, F 1,r
E,∅,Y (xv) = 0 for any r ∈ R, then ∈ C by Lemma 6.11 (a) forces

v to be diagonal.
(2) Next, suppose that v has some non-neutral non-singleton blocks but only

neutral partitions.
Let λ ∈ C be such that v = λI and let (c,d, p) ∈ C and h∶ p → ⟦n⟧ be arbitrary.

As there are no B ∈ p with ∣B∣ = 1 condition (i) of Lemma 6.10 demands precisely
that the term ∑B∈p σ

c
d(B)λ = Σc

d λ vanishes, which, of course, it does by C having
only neutral partitions. Moreover, since vj,i = 0 for any {i, j} ⊆ ⟦n⟧ with i ≠ j condi-
tion (ii) of Lemma 6.10 is certainly satisfied, even if there is B ∈ p with ∣B∣ = 2 and
σc
d(B) ≠ 0. The same reason also ensures that condition (iii) of Lemma 6.10 is met,

irrespective of whether there exists B ∈ p with 2 < ∣B∣ or not.
Conversely, if F 1,r

E,∅,Y (xv) = 0 for any r ∈ R, then v is diagonal by ∈ C according

to Lemma 6.11 (a). Moreover, C having some non-neutral non-singleton blocks lets
us find a (c,d, p) ∈ C and an A ∈ p with 2 ≤ ∣p∣ and σc

d(A) ≠ 0. If, given any {i, j} ⊆ ⟦n⟧
with i ≠ j we let h∶ p → ⟦n⟧ be such that A ↦ j and B ↦ i for any B ∈ p/{A}, then
condition (i) of Lemma 6.10 lets us know that σc

d(A) vj,j +∑B∈p∧B≠A σ
c
d(B) vi,i = 0.

Since C having only neutral partitions implies 0 = Σc
d = σc

d(A) +∑B∈p∧B≠A σ
c
d(B) that

is the same as saying σc
d(A) (vj,j − vi,i) = 0, which means vj,j = vi,i by σc

d(A) ≠ 0.
Hence, if λ = v1,1, then v = λI as claimed.

(3) Lastly for case H, let C have non-neutral partitions. If v = 0, then con-
ditions (i)–(iii) of Lemma 6.10 are trivially satisfied. We only need to prove the
converse. If F 1,r

E,∅,Y (xv) = 0 for any r ∈ R, then, as before, v is diagonal by ∈ C
and Lemma 6.11 (a). By assumption there exists (c,d, p) ∈ C with Σc

d ≠ 0. Hence,
for any i ∈ ⟦n⟧, if h∶ p → ⟦n⟧ is constant with value i, then by 2 ≤ ∣B∣ for any B ∈ p
condition (i) of Lemma 6.10 shows that 0 = ∑B∈p σ

c
d(B) vi,i = Σc

d vi,i, i.e., that vi,i = 0.
In other words, v = 0.

(iv) It only remains to consider the eventuality that C is case S. There are only
two possibilities here to treat.

(1) First, let C have only neutral partitions.
If there is λ ∈ C such that v = λI and if (c,d, p) ∈ C and h∶ p → ⟦n⟧ are arbitrary,

then what condition (i) of Lemma 6.10 demands is that the sum ∑B∈p∧ ∣B∣=1 σ
c
d(B)λ+

∑B∈p∧2≤∣B∣ σ
c
d(B)λ = ∑B∈p σ

c
d(B)λ = Σc

d λ vanish. And because C having neutral par-
titions implies Σc

d = 0 this is indeed the case. Moreover, v being diagonal of course
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guarantees that conditions (ii) and (iii) of Lemma 6.10 are satisfied, no matter what
the blocks of p.

If, conversely, F 1,r
E,∅,Y (xv) = 0 for any r ∈ R, then v is diagonal by ∈ C and

Lemma 6.11 (a).
(2) The alternative is that C has some non-neutral partitions.
Of course, if v = 0, then conditions (i)–(iii) of Lemma 6.10 are satisfied trivially.
Conversely, assuming F 1,r

E,∅,Y (xv) = 0 for any r ∈ R, from ∈ C it again follows

that v is diagonal by Lemma 6.11 (a). In addition, for any i ∈ ⟦n⟧, if (c,d, p) ∈
C is such that Σc

d ≠ 0, as there must exist by assumption, and if h∶ p → ⟦n⟧ is
constant with value i, then condition (i) of Lemma 6.10 lets us know that 0 =
∑B∈p∧ ∣B∣=1 σ

c
d(B) vi,i + ∑B∈p∧2≤∣B∣ σ

c
d(B) vi,i = ∑B∈p σ

c
d(B) vi,i = Σc

d vi,i. Because Σc
d ≠ 0

that requires vi,i = 0 and thus v = 0, which concludes the proof. □

Now, we have all the ingredients required to prove the main theorem.

Proof of the Main Result. The claims that the sets of matrices are vector
spaces of the given dimensions β1(Ĝ) were shown in Lemma 5.3. The remainder of
the assertions are the combined result of Propositions 6.3 and 6.12. □

7. Remarks on the second cohomology

In the following, let us make the Assumptions 3.8 and use the abbreviations
from both Notation 3.9 and Notation 6.1. While, for the first cohomology it was
convenient to pull every thing back to C⟨E⟩ and work with the C⟨E⟩-bimodule Y ,
this is much less often so for the second cohomology. Instead, we shall make the
following assumptions throughout. Section 7.

Assumptions 7.1. Let n ∈ N, let C be any category of two-colored partitions and
let G be any generator set of C.

Notation 7.2. (a) Write G for the unitary easy compact quantum group
associated with (C, n).

(b) Denote

R ∶= G ∪ {(c,d, p∗) ∣ (c,d, p) ∈ G} ∪ { , }.
(c) And then let

R ∶= {rcd(p)j,g ∣ {k, ℓ} ⊆ N0 ∧ c ∈ {○, ●}⊗k ∧ d ∈ {○, ●}⊗ℓ

∧ (c,d, p) ∈R ∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ},
(d) Finally, write X for the C⟨E ∣R⟩-module C equipped with the left and right

actions respectively defined by ucj,i ⊗ λ ↦ δj,iλ and λ ⊗ ucj,i ↦ δj,iλ for any
λ ∈ C, any c ∈ {○, ●} and any {i, j} ⊆ ⟦n⟧.

Lemma 7.3. For any g ∈ ⟦n⟧⊗2 and j ∈ ⟦n⟧⊗2, any γ ∈ [C⟨E⟩,C]×E with γ(1) = 0
and any a ∈ C⟨E⟩, if å ≡ a − ε(a)1, then the following identities hold:
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r F 2,r
E,∅,Y (γ)(a) G2,r

E,∅,Y (γ)
r∅●○( )j,∅ ∑ni=1 γu●j1,i(u

○
j2,i̊
a) + γu○j2,j1 (̊a) ∑ni=1 γu●j1,i(u

○
j2,i
)

r∅○●( )j,∅ ∑ni=1 γu○j1,i(u
●
j2,i̊
a) + γu●j2,j1 (̊a) ∑ni=1 γu○j1,i(u

●
j2,i
)

r●○∅ ( )∅,g −∑nh=1 γu●h,g1(u
○
h,g2

å) − γu○g1,g2 (̊a) −∑nh=1 γu●h,g1(u
○
h,g2
)

r○●∅ ( )∅,g −∑nh=1 γu○h,g1(u
●
h,g2

å) − γu●g1,g2 (̊a) −∑nh=1 γu○h,g1(u
●
h,g2
)

Proof. Starting from Lemma 3.10 all the claims follow immediately from Def-
inition 4.27. □

Proposition 7.4. There exists an isomorphism of C-vector spaces

H2(Ĝ)

{γ ∈ [C⟨E ∣R⟩,C]×E ∧ ∀e ∈ E ∶ γe(1 + J) = 0

∧ ∀r ∈ R ∶ F 2,r
E,R,X(γ) = 0}

{γ as above ∧ ∃x ∈ C×E ∶
∀r ∈ R ∶ G2,r

E,R,X(γ) = F
1,r
E,R,X(x)}

,

where the sets on the right-hand side are C-vector subspaces of [C⟨E ∣R⟩,C]×E, which
for any c ∈ Z2(Ĝ) assigns to the class of c the class of the tuple γ with γe for each
e ∈ E being the mapping with

a↦ c((e + J)⊗ a) − (e + J)▷ c((1 + J)⊗ (1 + J))◁ a

for any a ∈ C⟨E ∣R⟩. For any γ ∈ [C⟨E ∣R⟩,C]×E with γe(1 + J) = 0 for any e ∈ E
and with F 2,r

E,R,X(γ) = 0 for each r ∈ R the inverse isomorphism maps the class of γ
to the class of the unique C-linear map C⟨E ∣R⟩⊗C⟨E ∣R⟩→ C with

(p + J)⊗ a↦ F 2,p
E,R,X(γ)(a)

for any a ∈ C⟨E ∣R⟩ and p ∈ C⟨E⟩.
Proof. Follows immediately from Definition 3.11 Proposition 4.32. □

Now, the results of Lemma 6.8 tell us a lot about the right-hand sides of the
equations determining the denominator in the quotient from Proposition 7.4.





CHAPTER 5

L2-Betti numbers of certain unitary easy quantum group
duals

As shown by Bichon, Kyed and Raum it is possible to determine the L2-Betti
numbers of the discrete duals of certain unitary easy compact quantum groups by
presenting those compact quantum groups as graded twists by the cyclic group of
order two of the free product of two copies of appropriately chosen orthogonal easy
compact quantum groups. In particular, that is how the higher L2-Betti numbers
of the free unitary quantum group were first computed by the three authors. The
present chapter is a very minor extension of their work. By applying exactly the
same method as Bichon, Kyed and Raum the L2-Betti numbers of six near-free
unitary easy quantum groups are computed.

1. Introduction

1.1. Background and Context. Easy quantum groups, introduced in the
orthogonal case in [BS09] and in the unitary case in [TW18], are particular compact
quantum groups in Woronowicz’s sense, as defined in [Wor87; Wor91; Wor98].

They result by applying the Tannaka-Krein duality theorem from [Wor88] to so-
called categories of uncolored respectively two-colored partitions. These are com-
binatorial in nature: With horizontal concatenation as composition, vertical con-
catenation as tensor product and horizontal reflection as star operation, the set of
all set-theoretical partitions of any two distinguished disjoint totally ordered sets,
addtionally equipped with a bivalent map in the two-colored case, becomes a rigid
monoidal ∗-category. Finding rigid monoidal ∗-subcategories then yields the easy
quantum groups, compact quantum subgroups of Wang’s free orthogonal respec-
tively unitary quantum groups, which were defined in [Wan95a].

While this construction produces vast numbers of compact quantum groups of
which there was a distinct dirth of examples beforehand, there is a significant dis-
advantage to it. It is difficult to say which of the resulting quantum groups are
isomorphic and to relate them to compact quantum groups defined by other means
than Tannaka-Krein reconstruction. One way of addressing this issue is to study the
quantum group invariants of easy quantum groups such as the L2-Betti numbers of
their discrete duals.

These invariants were first introduced for quantum groups by Kyed in [Kye08b]
but have been studied for Riemannian manifolds since the work of Atiyah in [Ati76]
and for discrete groups since Cheeger and Gromov’s work in [CG86]. Thus, highly
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analytical in their origins L2-Betti numbers at first glance may seem difficult to link
to the combinatorics of easy quantum groups. But in [Lüc97; Lüc98a; Lüc98b] Lück
managed to give a far more algebraic definition of L2-Betti numbers, opening the
door to the use of classical results from homological algebra.

It is via this route, also incorporating extensions by Thom from [Tho08] that
Kyed and Raum computed the first L2-Betti number of the discrete dual of the free
unitary quantum group in [KR17]. Further refining this approach Bichon, Kyed and
Raum were able to compute also the higher order numbers of that quantum group in
[BKR18]. The prior corresponding computation for the case of the free orthogonal
quantum group by Vergnioux, Collins, Härtel and Thom in [Ver12] and [CHT09]
had made use of very intricate custom-made tools, quantum cayley trees, and even
computer algebra. But using these results, Bichon, Kyed and Raum managed to do
their computations by more or less purely algebraic considerations.

Besides the free unitary quantum group there were two other unitary easy quan-
tum groups of whose discrete duals Bichon, Kyed and Raum determined all L2-Betti
numbers. The method of proof was the same in all three cases. The present work
is merely the observation of the fact, of which Bichon, Kyed and Raum were surely
aware themselves, that their proof strategy applies to even more unitary easy quan-
tum groups than these three. More precisely, the L2-Betti numbers of six other
unitary quantum groups are computed in this chapter. For the discrete dual of a
seventh unitary easy quantum group Bichon, Kyed and Raum’s method can at least
be used to express the L2-Betti numbers through those of a certain orthogonal easy
quantum group which might be easier to compute.

It should be noted that after their work in [BKR18] Kyed and Raum together
with Vaes and Valvekens found a way to generalize their method even further in
[Kye+17] by using the L2-theory of quasi-regular inclusions of von Neumann algebras
developed by Popa, Shlyakhtenko and Vaes in [PSV18]. Likely, it is possible to give
an alternative proof of the results in this article be using this method. See Section 8
for more details.

1.2. Main Result. The results represented by the first three rows of the below
table were proved by Bichon, Kyed and Raum in [BKR18]. To my knowledge, the
remaining ones are new.

Main result. For any p ∈ N0, any n ∈ N and any of the sets GG of two-colored
partitions listed below the discrete dual of the unitary easy compact quantum group
G associated with the category ⟨GG⟩ of two-colored partitions generated by GG and
with n has the following p-th L2-Betti number:
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G GG β
(2)
p (Ĝ)

(1 − δn,1)δp,1
U×
N,n (1 − δn,1)δp,1

U+
n = U×+

N,n ∅ (1 − δn,1)δp,1
, (1 − δn,1 − 1

2δn,2)δp,1
, 2bp + (1 − 2b0)δp,1 − 2b0δp,0

(2 − 2δn,1 − δn,2)δp,1
(1 − δn,1 − 1

2δn,2)δp,1
, , (1 − 1

n!)δp,1
, (1 − δn,1 − 1

2δn,2 − 1
3δn,6)δp,1

(2 − δn,1 − δn,2 − δn,3)δp,1
Here, (bp)p∈N0 are the L

2-Betti numbers of the discrete dual of B#∗
n , the half-liberated

bistochastic quantum group introduced in [Web13, Definition 3.2 (3)], and is the
only partition with a block of size greater than two.

1.3. Structure of the Chapter. Section 2 recalls the necessary definitions of
Hopf ∗-algebras and (algebraic) compact quantum groups, including direct and free
products of the latter.

The key notion used in the proof given by Bichon, Kyed and Raum is that of
a graded twist of a Hopf ∗-algebra by an invariant co-central action of a discrete
group. The required definitions and results about this construction are provided in
Section 3.

Following that, the concepts and theorems about both orthogonal and unitary
easy compact quantum groups which are needed in order to express and prove the
main result are given in Section 4.

Section 5 treats L2-Betti numbers of the discrete duals of compact quantum
groups.

The strategy employed by Bichon, Kyed and Raum is summarized in Section 6.
Proposition 6.1 lists all the statements about the input quantum group one needs
to prove in order to infer the L2-Betti numbers of its discrete dual.

That the new inputs to Bichon, Kyed and Raum’s method actually meet its
requirements is then verified in Section 7, proving the main result.

Section 8 closes with a few remarks, including one about a conjectured alternative
proof of the main theorem.

2. Compact quantum groups

In the following, all vector spaces are complex and all (*-)algebras unital.

Definition 2.1. (a) A Hopf ∗-algebra is any ∗-algebraA additionally equip-
ped with three mappings ∆, ϵ and S such that, if m is the multiplication
of A and 1 the unit, then

(i) ∆, the comultiplication, is a linear map A → A ⊗ A and a ∗-algebra
morphism from A to the tensor product of A with itself,
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(ii) ϵ, the counit, is a linear functional on A and a ∗-algebra morphism
from A to C,

(iii) S is a linear map A→ A, the antipode or coinverse,
(iv) (idA ⊗∆) ○∆ = (∆⊗ idA) ○∆,
(v) idA = (ϵ⊗ idA) ○∆,

(vi) idA = (idA ⊗ ϵ) ○∆,
(vii) m ○ (S ⊗ idA) ○∆ = 1 ○ ϵ,

(viii) m ○ (idA ⊗ S) ○∆ = 1 ○ ϵ.
(b) A morphism of Hopf-∗-algebras from any Hopf ∗-algebra A with co-mul-

tiplication ∆, co-unit ϵ and antipode S to any Hopf ∗-algebra A′ with
co-multplication ∆′, co-unit ϵ′ and antipode S′ is any morphism f of ∗-
algebras from A to A′ such that

(i) (f ⊗ f) ○∆ =∆′ ○ f ,
(ii) ϵ′ ○ f = ϵ,

(iii) f ○ S = S′ ○ f ,
(c) For any Hopf-∗-algebra A with co-multiplication ∆ and unit 1 an integral

of A is any faithful state h such that
(i) 1 ○ h = (h⊗ idA) ○∆,

(ii) 1 ○ h = (idA ⊗ h) ○∆.

Antipodes are anti-multiplicative. On any Hopf ∗-algebra there can exist at most
one integral.

Definition 2.2. (a) An (algebraic) compact quantum group G is the formal
dual of any Hopf ∗-algebra, denoted by Pol(G), which admits an integral.
Equivalently, we say that Pol(G) is a CQG algebra.

(b) For any compact quantum groups G′ and G a morphism u of (algebraic)
compact quantum groups from G′ to G is the formal dual of any morphism
of Hopf ∗-algebras, denoted by Pol(u), from G to G′.

Definition 2.3. (a) Any compact quantum group G is said to be of Kac
type if the antipode of Pol(G) is involutive.

(b) For each g ∈ ⟦2⟧ let Gg be any compact quantum group, Ag its formal dual
and ∆g, ϵg and Sg, respectively, the co-multplication, co-unit and antipode
of Ag.

(i) The direct product G1 ×̂G2 of (G1,G2) is the formal dual of the CQG
algebra given by the tensor product ∗-algebra A1 ⊗A2 equipped with
the co-multiplication (id⊗ γA1,A2 ⊗ id) ○ (∆1 ⊗∆2), where γA1,A2 is the
linear isomorphism which swaps the two tensor factors in A1⊗A2, with
the co-unit ϵ1 ⊗ ϵ2 and with the antipode S1 ⊗ S2.

(ii) The free product G1∗̂G2 of (G1,G2) is the formal dual of the CQG alge-
bra given by the free product (i.e., categorically speaking, co-product)
∗-algebra A1 ∗ A2 equipped with the co-multiplication given by the
unique ∗-algebra morphism ∆ from A1 ∗A2 to (A1 ∗A2) ⊗ (A1 ∗A2)
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with ∆○ιg = (ιg⊗ιg)○∆g, where ιg is the co-projection of Ag into A1∗A2,
for each g ∈ ⟦2⟧, with the co-unit given by the unique ∗-algebra mor-
phism ϵ from A1 ∗ A2 to C with ϵ ○ ιg = ϵg for each g ∈ ⟦2⟧ and with
the unique anti-multiplicative linear endomorphism S of A1 ∗A2 with
S ○ ιg = ιg ○ Sg for each g ∈ ⟦2⟧.

The direct or free product of two Kac type compact quantum groups is evidently
again of Kac type.

3. Graded Twists

The key notion used in Bichon, Kyed and Raum’s strategy in [BKR18] is that
of a graded twist, to be explained in this section. As a background the following
general Hopf algebra terms are needed (see [AD95]).

Definition 3.1. (a) Any Hopf ∗-algebra morphism p∶ A → B for any Hopf
∗-algebras A and B is called co-central if

(idA ⊗ p) ○∆A = (idA ⊗ p) ○ γA,A ○∆A,

where γA,A is the symmetry of (A,A), i.e., the linear endomorphism of
A ⊗ A with a1 ⊗ a2 ↦ a2 ⊗ a1 for any {a1, a2} ⊆ A, and where ∆A is the
co-multiplication of A.

(b) For any Hopf ∗-algebras A and B any Hopf ∗-algebra morphism p∶ A → B
the Hopf kernel of p is the Hopf ∗-subalgebra hker(p) of A formed by the
kernel of the linear map

(idA ⊗ (p − 1BϵA)⊗ idA) ○ (∆A ⊗ idA) ○∆A

where ∆A and ϵA are the co-multplication and co-unit of A, respectively,
and where 1B is the unit of B.

(c) Any short sequence of Hopf ∗-algebras

C A B C Ci p

is called exact if, where
◻ ker(p) is the kernel of p as a linear map,
◻ im(i) is the image of p as a linear map,
◻ i(A)+ is the subspace of B formed by the set {i(a) ∣a ∈ A ∧ ϵA(a) = 0},

where ϵA is the co-unit of A,
◻ Bi(A)+ and i(A)+B are the subspaces of B generated by the sets
{bb0 ∣ b ∈ B ∧ b0 ∈ i(A)+} respectively {b0b ∣ b ∈ B ∧ b0 ∈ i(A)+},

◻ BcoC and coCB are the subspaces of B formed by {b ∈ B ∧ ((id ⊗ p) ○
∆B)(b) = b⊗ 1} respectively {b ∈ B ∧ ((id⊗ p) ○ γB,B ○∆B)(b) = b⊗ 1},
where ∆B is the co-multiplication of B and where γB,B is the symmetry
of (B,B),

the following conditions are satisfied cumulatively:
(i) i is injective,
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(ii) p is surjective,
(iii) ker(p) = Bi(A)+ = i(A)+B,
(iv) im(i) = BcoC = coCB.

The following definitions and the results ensuring they make sense are taken from
[BNY16].

Definition 3.2. Let A be any Hopf ∗-algebra, ∆ its co-multiplication, ϵ its
co-unit, S its antipode, Γ any discrete group and e its neutral element.

(a) A Hopf ∗-algebra Γ-grading of A is any family (Ag)g∈Γ of vector subspaces
of A such that A ≅⊕g∈ΓAg as vector spaces, such that ∆(a) ∈ Ag ⊗Ag for
any a ∈ Ag and g ∈ Γ, such that ab ∈ Agh for any a ∈ Ag, any h ∈ Ah and any
{g, h} ⊆ Γ, and such that a∗ ∈ Ag−1 for any a ∈ Ag and g ∈ Γ.

(b) For any co-central Hopf ∗-algebra morphism p∶ A→ C[Γ], if

Ag ∶= {a ∈ A ∧ ((idA ⊗ p) ○∆)(a) = a⊗ g}
for any g ∈ Γ, then the Hopf ∗-algebra Γ-grading of A given by (Ag)g∈Γ is
called the grading associated with p.

(c) For any action α of Γ on A by Hopf ∗-algebra automorphisms the crossed
product A ⋊α C[Γ] of A and C[Γ] with respect to α is the Hopf ∗-algebra
given by the vector space A⊗C[Γ] equipped with the multiplication defined
by

(a⊗ g)⊗ (b⊗ h)↦ aαg(b)⊗ gh
for any {a, b} ⊆ A and {g, h} ⊆ Γ, with the unit 1 ⊗ e, with the co-
multiplication defined by

a⊗ g ↦ (id⊗ γA,C[Γ] ⊗ id)(∆(a)⊗ g ⊗ g)
for any a ∈ A and g ∈ Γ, where γA,C[Γ] is the mapping which swaps the two
tensor factors in A⊗C[Γ], with the co-unit defined by

a⊗ g ↦ ϵ(a)
for any a ∈ A and g ∈ Γ, with the antipode defined by

(a⊗ g)↦ S(αg−1(a))⊗ g−1

for any a ∈ A and g ∈ Γ and with the ∗-operation defined by

(a⊗ g)↦ αg−1(a∗)⊗ g−1

for any a ∈ A and g ∈ Γ.
(d) For any action α of Γ on A by Hopf ∗-algebra automorphisms any Hopf

∗-algebra Γ-grading (Ag)g∈Γ of A is called α-invariant if αh(a) ∈ Ag for any
a ∈ Ag and {g, h} ⊆ Γ.

(e) Any pair (p,α) of a co-central Hopf ∗-algebra morphism p∶ A→ C[Γ] and an
action α of Γ on A by Hopf ∗-algebra automorphisms is called an invariant
co-central action of Γ on A if the grading associated with p is α-invariant.
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The next proposition is a combination of [BNY16, Lemma 2.13] and [BNY18,
Proposition 1.2].

Proposition 3.3. Let Γ be any discrete group, e its neutral element, A any Hopf
∗-algebra, ∆ its co-multiplication, ϵ its co-unit, p any surjective co-central Hopf ∗-
algebra morphism A→ C[Γ], and (Aa)a∈Γ the associated grading.

(a) Then the following are true.
(i) The sequence of Hopf ∗-algebras

C hker(p) A C[Γ] C.⊆ p

is exact.
(ii) hker(p) is the Hopf ∗-subalgebra of A formed by the space Ae.
(iii) If A is a CQG algebra, then so is hker(p).

(b) For any action α of Γ on A by Hopf ∗-automorphisms which turns (p,α)
into a co-central invariant action the following are true.
(i) There also exists an exact sequence of Hopf ∗-algebras

C hker(p) At,(p,α) C[Γ] C,j p̃

where j is defined by a↦ a⊗e for any a ∈ hker(p) and where p̃ is given
by a⊗ g ↦ ϵ(a)g for any a ∈ Ag and g ∈ Γ.

(ii) If A is a CQG algebra, then so is At,(p,α).

Notation 3.4. In the context of any discrete group Γ denote by −ι the inversion
of Γ, i.e., the mapping Γ→ Γ with g ↦ g−1 for any g ∈ Γ.

Unwinding the definitions used in the statement of [BNY16, Lemma 2.14] and
transfer to Hopf ∗-algebras produces the following lemma.

Proposition 3.5. For any invariant co-central actions (p,α) and (q, β) of any
discrete abelian group Γ on any Hopf ∗-algebras A respectively B by Hopf ∗-algebra
automorphisms and any Hopf ∗-algebra morphism f ∶ B → At,(p,α), if ∆A and ϵA
are the co-multiplication respectively co-unit of A, if ∆B and ϵB are those of B,
if ∆ is the co-multiplication of C[Γ], i.e., the linear map with g ↦ g ⊗ g for any
g ∈ Γ, if ι and ι′ are the inclusions of At,(p,α) in A⋊αC[Γ] respectively Bt,(q,β(−ι)) in
B⋊β(−ι)C[Γ], and if there exists a Hopf ∗-algebra morphism f ′∶ A→ Bt,(q,β(−ι)) such
that

(a) (ϵA ⊗ id) ○ ι ○ f = q,
(b) (ϵB ⊗ id) ○ ι′ ○ f ′ = p,
(c) (αh ⊗ id) ○ ι ○ f = ι ○ f ○ βh for any h ∈ Γ,
(d) (βg−1 ⊗ id) ○ ι′ ○ f ′ = ι′ ○ f ′ ○ αg for any g ∈ Γ,
(e) ((ι′ ○ f ′)⊗ id) ○ ι ○ f = (id⊗ (∆ ○ q)) ○∆B,
(f) ((ι ○ f)⊗ id) ○ ι′ ○ f ′ = (id⊗ (∆ ○ p)) ○∆A,

then f is an isomorphism of Hopf ∗-algebras B → At,(p,α).
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4. Easy quantum groups

Let
◾(⋅) and ◾(⋅) be two fixed injections with disjoint ranges and common domain

N. Moreover, let {○, ●} be any two-elemental set.

Definition 4.1. (a) A (uncolored) partition is any triple (k, ℓ, p) such that
{k, ℓ} ⊆ N0 and such that p, the collection of blocks, is a set-theoretical
partition of (i.e., quotient set of an equivalence relation on) the set Πk

ℓ ∶=
{◾i}ki=1⊍{◾j}ℓj=1, the collection of points, consisting of the upper points {◾i}ki=1
and the lower points {◾j}ℓj=1.

(b) Similarly, a two-colored partition is any triple (c,d, p) for which there exist
{k, ℓ} ⊆ N0 such that (k, ℓ, p) is an uncolored partition, and such that c
and d are k- respectively ℓ-tuples of elements of {○, ●}, the colorings of the
upper and lower points, respectively.

Uncolored or two-colored partitions can be depicted graphically. The points are
arranged in two rows, the upper ones above the lower ones. Curves are drawn
between points belonging to the same block. It will be clear from the context
whether intersecting curves indicate that more than two points are included in a
common block or that two or more distinct blocks “cross” each other.

Definition 4.2. (a) A category of partitions is any set C of partitions such
that the following conditions are met:

(i) C contains and and .
(ii) (ℓ, k, p∗) ∈ C for any (k, ℓ, p) ∈ C, where p∗ ∶= {{◾j ∣ j ∈ ⟦ℓ⟧ ∧ ◾j ∈ B} ⊍
{◾i ∣ i ∈ ⟦k⟧ ∧ ◾i ∈ B}}B∈p is the adjoint of p.

(iii) (k1 + k2, ℓ1 + ℓ2, p1 ⊗ p2) ∈ C for any (k1, ℓ1, p1) ∈ C and (k2, ℓ2, p2) ∈ C,
where p1⊗p2 ∶= p1⊍{{◾(k1 + i) ∣ i ∈ ⟦k2⟧∧ ◾i ∈ B}⊍{◾(ℓ1 + j) ∣ j ∈ ⟦ℓ2⟧∧ ◾j ∈
B}}B∈p2 is the tensor product of (p1, p2).

(iv) (k,m, qp) ∈ C for any (k, ℓ, p) ∈ C and (ℓ,m, q) ∈ C, where, if s is the join
of the two set-theoretical partitions {{j ∈ ⟦ℓ⟧ ∧ ◾j ∈ A}}A∈p and {{i ∈
⟦ℓ⟧ ∧ ◾i ∈ C}}C∈q of ⟦ℓ⟧, i.e., the quotient set of the finest equivalence
relation on ⟦ℓ⟧ containing the equivalence relations associated with
these two, then qp ∶= {A ∈ p ∧A ⊆ Πk

0}⊍{C ∈ q ∧C ⊆ Πm
0 }⊍{⊍{A∩Πk

0 ∣A ∈
p ∧ ∃j ∈ B ∶ ◾j ∈ A} ⊍⊍{C ∩Π0

m ∣C ∈ q ∧ ∃i ∈ B ∶ ◾i ∈ C}}B∈s/{∅} is the
composition of (q, p).

(b) Similarly, a category of two-colored partitions is any set C of two-colored
partitions with the ensuing properties.

(i) C contains , , , , and .
(ii) (d, c, p∗) for any (c,d, p) ∈ C.

(iii) (c1 ⊗ c2,d1 ⊗ d2, p1 ⊗ p2) ∈ C for any (c1,d1, p1) ∈ C and (c2,d2, p2) ∈ C,
where, if kt and ℓt are the lengths of the tuples ct respectively dt for
each t ∈ ⟦2⟧, then c1 ⊗ c2 is a (k1 + k2)-tuple in {○, ●} with i ↦ c1(i)
if i ≤ k1 and i ↦ c2(i − k1) if k1 < i and, analogously, d1 ⊗ d2 is a
(ℓ1 + ℓ2)-tuple with j ↦ d1(j) if j ≤ ℓ1 and j ↦ d2(j − ℓ1) if ℓ1 < j.
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(iv) (c, e, qp) ∈ C for any (c,d, p) ∈ C and (d, e, q) ∈ C.
(c) Finally, for any set G of only uncolored or only two-colored partitions we

write ⟨G⟩ for the intersection of all categories of uncolored respectively two-
colored partitions containing G and we say that G generates ⟨G⟩.

Categories of partitions can be used to construct compact quantum groups in the
following way.

Notation 4.3. Let n ∈ N be arbitrary, let {vj,i}ni,j=1 and {u○j,i, u●j,i}ni,j=1 be any n2-
respectively 2n2-elemental sets, and let v ∶= (vj,i)(j,i)∈⟦n⟧⊗n and u○ ∶= (u○j,i)(j,i)∈⟦n⟧⊗2

and u● ∶= (u●j,i)(j,i)∈⟦n⟧⊗2 . Moreover, let {k, ℓ} ⊆ N0 and let p be any set-theoretical

partition of Πk
ℓ .

(a) For any e ∈ ⟦n⟧⊗k and any f ∈ ⟦n⟧⊗ℓ let the number ζ(p,ker(e ◾◾ f)) be either
0 or 1 and let it be 1 if and only if for any {i, i′} ⊆ ⟦k⟧, whenever there is
B ∈ p with {◾i, ◾i′} ⊆ B, then ei = ei′ , and for any {j, j} ⊆ ⟦ℓ⟧, whenever there
is B ∈ p with {◾j, ◾j′} ⊆ B, then fj = fj′ , and for any i ∈ ⟦k⟧ and any j ∈ ⟦ℓ⟧,
whenever there exists B ∈ p with {◾i, ◾j} ⊆ B, then ei = fj.

(b) For any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ let rkℓ (p)j,g(v) be the polynomial in the
indeterminates {vj,i}ni,j=1 given by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1vjb,ib

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1vha,ga .

(c) For any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ, any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ, let
rcd(p)j,g(u○, u●) be the polynomial in the indeterminates {u○j,i, u●j,i}ni,j=1 given
by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1u

db
jb,ib

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1u

ca
ha,ga

.

Definition 4.4. Let n be arbitrary.
(a) For any category C of uncolored partitions the orthogonal easy compact

quantum group associated with C and n is the formal dual of the CQG al-
gebra given by the universal ∗-algebra A with n2 many generators {vj,i}ni,j=1
subject to the relations

{v∗j,i − vj,i}ni,j=1
⊍ {rkℓ (p)j,g(v) ∣ (k, ℓ, p) ∈ G ∪ { , } ∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ},

where G can be any generating set of C and where v = (vj,i)(j,i)∈⟦n⟧⊗2 ,
equipped with the unique morphism of ∗-algebras from A to A ⊗ A with
vj,i ↦ ∑ns=1 vj,s ⊗ vs,i for any {i, j} ⊆ ⟦n⟧ as co-multiplication, the unique
morphism of ∗-algebras from A to C with vj,i ↦ δj,i for any {i, j} ⊆ ⟦n⟧
as co-unit and the unique antimultiplicative linear map from A to A with
vj,i ↦ vi,j and v∗j,i ↦ v∗i,j for any {i, j} ⊆ ⟦n⟧ as antipode.
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(b) For any category C of two-colored partitions the unitary easy compact quan-
tum group associated with C and n is the formal dual of the CQG algebra
given by the universal ∗-algebra with n2 many generators {uj,i}ni,j=1 subject
to the relations

{rcd(p)j,g(u,u) ∣ {k, ℓ} ⊆ N0 ∧ c ∈ {○, ●}⊗k ∧ d ∈ {○, ●}⊗ℓ

∧ (c,d, p) ∈ G ∪ { , , , }
∧ g ∈ ⟦n⟧⊗k ∧ j ∈ ⟦n⟧⊗ℓ},

where G can be any generating set of C and where u = (uj,i)(j,i)∈⟦n⟧⊗n and
u = (u∗j,i)(j,i)∈⟦n⟧⊗n , equipped with the unique morphism of ∗-algebras from A
to A⊗A with uj,i ↦ ∑ns=1 uj,s ⊗ us,i for any {i, j} ⊆ ⟦n⟧ as co-multplication,
the unique morphism of ∗-algebras from A to C with uj,i ↦ δj,i for any
{i, j} ⊆ ⟦n⟧ as co-unit and with the unique anti-multiplicative linear map
from A to A with uj,i ↦ u∗i,j and u∗j,i ↦ ui,j for any {i, j} ⊆ ⟦n⟧ as antipode.

Any easy orthogonal or easy unitary compact quantum group is evidently of Kac
type.

5. L2-Betti numbers

When it comes to the definition, given in [Kye08b], of the p-th L2-Betti number

β
(2)
p (Ĝ) ∶= dimL∞(G)TorPol(G)p (C,L2(G))

of the discrete dual of any compact quantum group G of Kac type, we can afford
to be agnostic. For the purposes of this chapter it suffices entirely to know that the
number only depends on the isomorphism class of G and that one can prove certain
results about it which we take as axioms.

In the below proposition, (a), (b) and (c) were shown by Kyed in [Kye08b, Propo-
sition 2.9] in combination with [Kye11, Theorem 2.1], in [Kye08a, Corollary 6.2] and
in [Kye12, Corollary 3.2], respectively. Parts (d) and (e) were proved by Bichon,
Kyed and Raum in Theorems C respectively D of [BKR18]. Keep in mind that
0 ∉ N. Just as with the definition of the L2-Betti numbers themselves we can be
agnostic about the notion of co-amenability appearing below (which was defined in
[BMT01]). We only need to know its consequence.

Proposition 5.1. (a) For any compact quantum group G of Kac type,

β
(2)
0 (Ĝ) =

⎧⎪⎪⎨⎪⎪⎩

1
dimC(Pol(G)) if dimC(Pol(G)) <∞
0 otherwise.

(b) For any compact quantum group G of Kac type, if G is co-amenable, then
for any p ∈ N,

β
(2)
p (Ĝ) = 0.

However, β
(2)
0 (Ĝ) may well be non-zero still.
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(c) For any finite set Γ, any family (Gg)g∈Γ of compact quantum groups of Kac
type and any p ∈ N0,

β
(2)
p (×g∈ΓĜg) = ∑

q∶Γ→N0

∑g∈Γ qg=p

∏
g∈Γ
β
(2)
qg (Ĝg).

(d) For any finite set Γ, any family (Gg)g∈Γ of non-trivial compact quantum
groups of Kac type and any p ∈ N0,

β
(2)
p ( ∗

g∈Γ
Ĝg) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p = 0

∣Γ∣ − 1 +∑g∈Γ(β(2)1 (Ĝg) − β(2)0 (Ĝg)) if p = 1

∑g∈Γ β(2)p (Ĝg) if 2 ≤ p.
(e) For any compact quantum groups G and H of Kac type and any finite

abelian group Γ, if there exists an exact sequence of Hopf ∗-algebras
C Pol(H) Pol(G) C[Γ] C

then for any p ∈ N0,

β
(2)
p (Ĥ) = ∣Γ∣β(2)p (Ĝ).

Besides on these results we also take as axiomatic inputs the following values of
L2-Betti numbers of certain quantum groups. They were computated by or easily
result from other computations by various other authors, as explained below. Note
that the quantum groups (B#∗

n )n∈N are not listed in the table.

Proposition 5.2. For any p ∈ N0, any n ∈ N and the orthogonal easy compact
quantum group K associated with the category C = ⟨GK⟩ of partitions listed in the
below table and n the discrete dual of K has the p-th L2-Betti number given in the
corresponding row.

K GK β
(2)
p (K̂)

On
1
2δn,1δp,0

O∗
n

1
2δn,1δp,0

O+
n

1
2δn,1δp,0

B′
n , 1

2(δn,1 + 1
2δn,2)δp,0

B′+
n

1
2(δn,1 + 1

2δn,2)δp,0
B#+
n

1
2δn,1δp,0 + 1

2(1 − δn,1 − δn,2)δp,1
S′n , , 1

2
1
n! δp,0

S′+n , 1
2(δn,1 + 1

2δn,2 + 1
6δn,3)δp,0

H+
n

1
2δn,1δp,0 + 1

2(1 − δn,2 − 1
3δn,3)δp,1

In particular, K is non-trivial. Here, is the only partition with a block of size
greater than two.

Proof. The claim about the L2-Betti numbers is all we have to prove since it

implies that K is non-trivial because β
(2)
0 (K̂) ≠ 1 and because triviality of K would

require the opposite by Proposition 5.1 (a).
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Case On. If n = 1, then On is the finite multiplicative group {−1,1}. If 2 ≤ n the
group On is infinite. Hence, the zeroth L2-Betti number of its discrete dual is 1

2 if
n = 1 and 0 otherwise by Proposition 5.1 (a). And because On is a compact group
its dual is amenable and thus has vanishing L2-Betti numbers of all positive orders
by Proposition 5.1 (b).

Case O∗
n. For n = 1 the compact quantum groups On and O∗

n coincide. If 2 ≤ n,
then O∗

n is infinite since even On is. Thus the zeroth L2-Betti number of the dual
of O∗

n is the same as that of the dual of On. Since O∗
n is co-amenable by [BV10,

Corollary 9.3] the remaining numbers are zero too by Proposition 5.1 (b).
Case O+

n. In the case n = 1, in fact, all three compact quantum groups On, O∗
n and

O+
n are identical. And, again, if 2 ≤ n, then, like On and O∗

n, the compact quantum
group O+

n is infinite. That proves the claim about the zeroth L2-Betti number of
its discrete dual. That the numbers also vanish in positive order was computed in
[CHT09, Section 4] and [Ver12, Corollary 5.3].

Case B′
n. The compact group B′

n is isomorphic to Bn ×̂ Ẑ2 by [BS09, Proposi-
tion 2.4 (4)], where, if we let O0 be the trivial group, then Bn is isomorphic to On−1
by [BS09, Proposition 2.4 (6)]. Hence, B′

n is isomorphic to On−1 ×̂ Ẑ2. Of course,

β
(2)
q (Ô0) = δq,0 by Proposition 5.1 (a) and thus β

(2)
q (Ôn−1) = (δn−1,0 + 1

2δn−1,1)δq,0 =
(δn,1 + 1

2δn,2)δq,0 for any q ∈ N0 by what we have already seen. Furthermore,

β
(2)
q (Z2) = 1

2δq,0 for any q ∈ N0 by Proposition 5.1 (a). Thus Proposition 5.1 (c)
implies that

β
(2)
p (B̂′

n) = ∑(p1,p2)∈N0
⊗2

p1+p2=p
β
(2)
p1 (Ôn−1)β(2)p2 (Z2)

= ∑(p1,p2)∈N0
⊗2

p1+p2=p
(δn,1 + 1

2δn,2)δp1,0 ⋅ 12δp2,0

= 1
2(δn,1 + 1

2δn,2)∑(p1,p2)∈N0
⊗2

p1+p2=p
δp1,0δp2,0

= 1
2(δn,1 + 1

2δn,2)δp,0.

Case B′+
n . By [Web13, Proposition 5.1 (a)] or [Web13, Proposition 5.2 (b)] the

compact quantum group B′+
n is isomorphic to the direct product B+

n ×̂ Ẑ2, where, if
B+

0 is the trivial group, then B+
n is isomorphic to O+

n−1 by [Rau12, Theorem 4.1 (1)].

In conclusion, B′+
n is isomorphic to O+

n−1 ×̂ Ẑ2. Since, as already seen, the duals of
O+
n−1 and On−1 have identical L2-Betti numbers, the same proof as in the case of B′

n

applies and proves the assertion.
Case B#+

n . According to [Web13, Proposition 5.2 (b)] or [Rau12, Theorem 4.1 (3)]

(where B#+
n is called B′+

n ) the compact quantum groups B#+
n and B+

n ∗̂Ẑ2 are isomor-
phic, where, as already noted, B+

n ≅ O+
n−1, with O+

0 being the trivial group. Thus,

B#+
n is isomorphic to O+

n−1 ∗̂ Ẑ2.

This implies B#+
1 ≅ Ẑ2 from which we conclude that β

(2)
p (B̂#+

n ) = 1
2δp,0. If 2 ≤ n,

then O+
n−1 is non-trivial because even On−1 is, and so is Ẑ2. Hence, Proposition 5.1 (d)

is applicable in that case. By Proposition 5.1 (a) and by what we proved previously,
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if 2 ≤ n, then β
(2)
q (Ô+

n−1) = 1
2δn,2δq,0 and β

(2)
q (Z2) = 1

2δq,0 for any q ∈ N0. Therefore,

β
(2)
0 (B̂

#+
n ) = 0 and

β
(2)
1 (B̂

#+
n ) = 1 + β(2)1 (Ô+

n−1) − β
(2)
0 (Ô+

n−1) + β
(2)
1 (Z2) − β(2)0 (Z2)

= 1 + 0 − 1
2δn,2 + 0 − 1

2

= 1
2(1 − δn,2)

as well as, if 2 ≤ p, then β
(2)
p (B̂#+

n ) = β(2)p (Ô+
n−1 ∗ Z2) = β(2)p (Ô+

n−1) + β
(2)
p (Z2) = 0.

Combining all the cases into one statement now yields the claim.
Case S′n. By [BS09, Proposition 2.4 (5)] there is an isomorphism between S′n

and Sn ×̂ Ẑ2. Proposition 5.1 (a) tells us that β
(2)
q (Ŝn) = 1

n!δq,0 and β
(2)
q (Z2) = 1

2δq,0.
Hence, Proposition 5.1 (c) implies

β
(2)
p (Ŝ′n) = ∑(p1,p2)∈N0

⊗2

p1+p2=p
β
(2)
p1 (Ŝn)β(2)p2 (Z2)

= ∑(p1,p2)∈N0
⊗2

p1+p2=p

1
n!δp1,0 ⋅ 12δp2,0

= 1
2

1
n! ∑(p1,p2)∈N0

⊗2

p1+p2=p
δp1,0δp2,0

= 1
2

1
n!δp,0.

Case S′+n . By [Web13, Proposition 5.1 (a)] or [Rau12, Theorem 4.1 (2)] the
compact quantum group S′+n is isomorphic to S+n ×̂ Ẑ2, where S+n is the quantum
permutation group of [Wan98]. If n ≤ 3, then the compact quantum groups S+n
and Sn coincide by [Wan98] and [Ban05], which is why β

(2)
q (Ŝ+n) = 1

n!δq,0 for any
q ∈ N0 in that case. It was shown in [Kye+17, Theorem 5.2 (ii)] that, if 4 ≤ n, then

β
(2)
q (Ŝ+n) = 0 for any q ∈ N0. In total, β

(2)
q (Ŝ+n) = (δn,1 + 1

2δn,2 + 1
6δn,3)δq,0 for any

q ∈ N0. Of course, β
(2)
q (Z2) = 1

2δq,0 for any q ∈ N0 by Proposition 5.1 (a). Hence, by
Proposition 5.1 (c),

β
(2)
p (Ŝ′+n ) = ∑(p1,p2)∈N0

⊗2

p1+p2=p
β
(2)
p1 (Ŝ+n)β

(2)
p2 (Z2)

= ∑(p1,p2)∈N0
⊗2

p1+p2=p
(δn,1 + 1

2δn,2 + 1
6δn,3)δp1,0 ⋅ 12δp2,0

= 1
2(δn,1 + 1

2δn,2 + 1
6δn,3)∑(p1,p2)∈N0

⊗2

p1+p2=p
δp1,0δp2,0

= 1
2(δn,1 + 1

2δn,2 + 1
6δn,3)δp,0.

Case H+
n . The compact quantum group H+

1 is isomorphic to Ẑ2 by [BBC07, p. 15].

Thus, β
(2)
p (Ĥ+

1 ) = 1
2δp,0. It was proved in [Kye+17, Theorem 5.2 (v)] that, if 4 ≤ n,

then β
(2)
q (Ĥ+

n) = 1
2δq,1 for any q ∈ N0. But, in fact, the reasoning behind the proof

is valid also in the cases n = 2 and n = 3. If 2 ≤ n, then by [BBC07, Theorem 5.5]
the compact quantum group H+

n is isomorphic to the free wreath product Ẑ2 ≀∗ S+n ,
defined in [Bic04], of Ẑ2 and the quantum group S+n we encountered in the case S′+n .
The action of S+n on the space of n many points is ergodic, no matter the value
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of 2 ≤ n. Moreover, S+n is non-trivial because already Sn is, for 2 ≤ n. For that
reason [Kye+17, Theorem 5.2 (iv)] applies and tells us that the L2-Betti numbers
of the duals of Ẑ2 ≀∗ S+n and Ẑ2 ∗ S+n coincide. As already seen, if 2 ≤ n, then
β
(2)
q (Ŝ+n) = (12δn,2 + 1

6δn,3)δq,0 and β
(2)
q (Z2) = 1

2δq,0 for any q ∈ N0. Hence Proposi-

tion 5.1 (d) implies that β
(2)
0 (Ĥ+

n) = 0, that

β
(2)
1 (Ĥ+

n) = 1 + β(2)1 (Z2) − β(2)0 (Z2) + β(2)1 (Ŝ+n) − β
(2)
0 (Ŝ+n)

= 1 + 0 − 1
2 + 0 − (12δn,2 + 1

6δn,3)
= 1

2 − 1
2δn,2 − 1

6δn,3

and that, if 2 ≤ p, then β
(2)
p (Ĥ+

n) = β
(2)
p (Z2) + β(2)p (Ŝ+n) = 0. That concludes the

proof. □

6. The proof strategy

Bichon, Kyed and Raum’s strategy for computing the L2-Betti numbers from
[BKR18] and [BNY16, Example 2.18] can be summarized as follows.

Proposition 6.1. For any two compact quantum groups G and K of Kac type
such that K is non-trivial, if B = Pol(G) and A = Pol(K) ∗ Pol(K), if there exist
(p,α, q, β, f, f ′) such that

(a) (p,α) is an invariant co-central action of Z2 on A,
(b) (q, β) is an invariant co-central action of Z2 on B,
(c) p is surjective,
(d) q is surjective,
(e) f is a Hopf ∗-algebras morphism from B to At,(p,α),
(f) f ′ is a Hopf ∗-algebras morphism from A to Bt,(q,β(−ι)),
(g) (ϵA ⊗ id) ○ ι ○ f = q,
(h) (ϵB ⊗ id) ○ ι′ ○ f ′ = p,
(i) (αg−1 ⊗ id) ○ ι ○ f = ι ○ f ○ βg for any g ∈ Z2,
(j) (βg ⊗ id) ○ ι′ ○ f ′ = ι′ ○ f ′ ○ αg for any g ∈ Z2,
(k) ((ι′ ○ f ′)⊗ id) ○ ι ○ f = (id⊗ (∆ ○ q)) ○∆B,
(l) ((ι ○ f)⊗ id) ○ ι′ ○ f ′ = (id⊗ (∆ ○ p)) ○∆A,

where ∆A and ϵA are the co-multiplication respectively co-unit of A, where ∆B and
ϵB are those of B, where ∆ is the co-multiplication of Z2, and where ι and ι′ are the
inclusions of At,(p,α) into A⋊α C[Γ] respectively of Bt,(q,β(−ι)) in B ⋊β(−ι) C[Γ], then

β
(2)
p (Ĝ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p = 0

1 + 2β
(2)
1 (K̂) − 2β

(2)
0 (K̂) if p = 1

2β
(2)
p (K̂) if 2 ≤ p

Proof. Let 1 be the neutral and z the other element of Z2 and let (Ag)g∈Z2 and
(Bg)g∈Z2 be the Z2-gradings of A associated with p respectively of B associated with
q. By Proposition 3.3, due to assumptions (a)– (d) the Hopf ∗-algebras hker(p) = A1
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and hker(q) = B1 as well as At,(p,α) are CQG algebras and the two maximal horizontal
strings of arrows form exact sequences of Hopf ∗-algebras in the diagram

C

B1

A1

B

At,(p,α)

C[Γ] C,

⊆

j

q

p̃

fu

where p̃ = (ϵA ⊗ id) ○ ι and where j is the unique linear map with a ↦ a⊗ 1 for any
a ∈ A1.

Moreover, because Z2 is abelian, by Proposition 3.5 assumptions (e)– (l) imply
that f is actually an isomorphism of Hopf ∗-algebras from B to At,(p,α).

That ensures that there exists an isomorphism u of Hopf ∗-algebras from B1 to
A1 with j(u(b)) = f(b) for any b ∈ B1. Indeed, if ∆t denotes the co-multiplication
of At,(p,α), then assumptions (e) and (g) allow us to infer that

(id⊗ p̃) ○∆t ○ f = (f ⊗ ((ϵA ⊗ id) ○ ι ○ f)) ○∆B

= (f ⊗ q) ○∆B,

and thus for any b ∈ B1 that ((id⊗p̃)○∆t)(f(b)) = ((f⊗q)○∆B)(b) = (f⊗q)(b⊗1B) =
f(b) ⊗ 1, where 1B is the unit of B. Hence, u is well-defined and injective. It is
also surjective because, if ∆B is the co-multplication of B, if ∆A, and ϵA are the
co-multiplication respectively co-unit of A, if ∆A1 is the co-mulitplication of A1, if i
is the inclusion of A1 in A, and if v is the linear map A→ At,(p,α) with a↦ a⊗ g for
any a ∈ Ag and any g ∈ Z2, then (ϵA ⊗ id) ○ ι ○ j = 1 ○ ϵA ○ i and j = v ○ i and thus by
a second application of (g),

(id⊗ q) ○∆B ○ f−1 ○ j = (id⊗ q) ○ (f−1 ⊗ f−1) ○∆t ○ j
= (f−1 ⊗ ((ϵA ⊗ id) ○ ι)) ○ (j ⊗ j) ○∆A1

= ((f−1 ○ v ○ i)⊗ (1 ○ ϵA ○ i)) ○∆A1

= ((f−1 ○ v)⊗ 1) ○ (id⊗ ϵA) ○∆A ○ i
= ((f−1 ○ v)⊗ 1) ○ i
= (f−1 ○ j)⊗ 1.

Hence, for any a ∈ A1, if b ∶= f−1(j(a)), then clearly u(b) = a by the injectivity of j,
and b ∈ B1 by ((id⊗q)○∆B)(b) = ((id⊗q)○∆B ○f−1○j)(a) = ((f−1○j)⊗1)(a) = b⊗1,
as just seen.

Consequently, if H is the compact quantum group with Pol(H) ≅ B1 ≅ A1, then

Proposition 5.1 (e) informs us that 2β
(2)
p (K̂∗K̂) = β(2)p (Ĥ) = 2β

(2)
p (Ĝ) for any p ∈ N0.

Since K is non-trivial the claim now follows by Proposition 5.1 (d). □
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7. The computation

To prove the main result it suffices to check the conditions of Propositon 6.1 for
the following inputs.

Assumptions 7.1. In Section 7, let
(a) 1 be the neutral and z the other element of Z2, whose law we write multi-

plicatively,
(b) n ∈ N be arbitrary,
(c) (GK ,GG) be one of the following pairs of sets of uncolored and two-colored

partitions:

⟨GK⟩ GK GG
O , , , , , , ,
O∗ , , , , , , ,
O+ , , , ,
B′ , , , , , , , , , ,

B#∗ , , , , , , , , , ,
B′+ , , , , , , ,
B#+ , , , , , , ,
S′ , , , , , , , , , , , , ,
S′+ , , , , , , , , , ,
H+ , , , , , , ,

where , and are the only partitions with blocks of sizes greater
than two,

(d) K be the orthogonal easy compact n×n-matrix quantum group associated
with the category ⟨GK⟩ of uncolored partitions,

(e) G be the unitary easy compact n×n-matrix quantum group associated with
the category ⟨GG⟩ of two-colored partitions,

(f) {uj,i}ni,j=1 be the generators of the universal ∗-algebra

B ∶= C∗⟨{uj,i}ni,j=1 ∣∀{k, ℓ} ⊆ N0 ∶ ∀c ∈ {○, ●}⊗k ∶ ∀d ∈ {○, ●}⊗ℓ ∶
∀(c,d, p) ∈ GG ∶ ∀g ∈ ⟦n⟧⊗k ∶ ∀j ∈ ⟦n⟧⊗ℓ ∶
rcd(p)j,g(u,u) = 0⟩,

i.e., the Hopf ∗-algebra Pol(G) given by the regular functions on G, where
u ∶= (uj,i)(j,i)∈⟦n⟧⊗2 and u ∶= (u∗j,i)(j,i)∈⟦n⟧⊗2 .

(g) {v(1)j,i , v
(2)
j,i }ni,j=1 be the generators of the universal ∗-algebra

A ∶= C∗⟨{v(1)j,i , v
(2)
j,i }ni,j=1 ∣∀2

q=1 ∶ ∀ni,j=1 ∶ (v
(q)
j,i )∗ = v

(q)
j,i

∧ ∀(k, ℓ, p) ∈ GK ∶
∀g ∈ ⟦n⟧⊗k ∶ ∀j ∈ ⟦n⟧⊗ℓ ∶
rkℓ (p)j,g(v(q)) = 0⟩,



7. THE COMPUTATION 373

i.e., the Hopf ∗-algebra Pol(K ∗̂K) given by the regular functions on the

free product of G with itself, where v(q) ∶= (v(q)j,i )(j,i)∈⟦n⟧⊗⟦n⟧ for each q ∈ ⟦2⟧.

Remark 7.2. (a) The sets of partitions given as generators in Assump-
tions 7.1 are non-standard. To recognize the more familiar generators note
that

(i) ⟨ ⟩ = ⟨ ⟩ because, on the one hand, (⊗ ⊗ )( ⊗ ⊗ ) = and, on
the other hand, ( ⊗ ⊗ ) = and because = (⊗ ⊗ )( ⊗ ).

(ii) ⟨ ⟩ = ⟨ ⟩ because ( ⊗ ⊗ ⊗ )( ⊗ )( ⊗ ⊗ ⊗ ) = and because
( ⊗ )( ⊗ ⊗ )( ⊗ ) = .

(iii) ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ since ( ⊗ ⊗ ⊗ )( ⊗ )( ⊗ ⊗ ⊗ ) =
and ( ⊗ ⊗ ⊗ )( ⊗ ⊗ )( ⊗ ⊗ ⊗ ) = and ( ⊗ )( ⊗ ⊗
)( ⊗ ) = and since the same computation can be carried out

with the roles of ● and ○ reversed.
(iv) ⟨ ⟩ = ⟨ ⟩ because ( ⊗ ⊗ ⊗ ⊗ )( ⊗ ⊗ ) = and because

of the same identity with ○ and ● exchanged.
(v) ⟨ ⟩ = ⟨ ⟩ because ( ⋅ ⋅ ⋅ ⋅ )( ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ )( ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ )( ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ )( ⋅ ⋅ ⋅ ⋅ )( ⋅ ⋅ ) , where ⋅ is short for ⊗,
and because the same can be done with ○ in place of ● and vice versa.

(vi) ⟨ ⟩ = ⟨ ⟩ because ( ⊗ ⊗ )( ⊗ ⊗ ) = and because of the
analogous computation with ○↔ ●.

(vii) ⟨ ⟩ = ⟨ ⟩ since ( ⊗ ⊗ ⊗ ⊗ )( ⊗ ⊗ ) = and the same
with ○↔ ●.

(b) Except in the case of the last row of the table in Assumption 7.1 (c)
the category ⟨GG⟩ is non-hyperoctahedral an thus included in the scope of
[MW21b]. In the language of that article, ⟨GG⟩ is the category RQ, where
Q = (f, v, s, l, k, x) is as follows.

⟨GK⟩ f v s l k x

O {2} ±{0,2} {0} {0} {0} {0}
O∗ {2} {0} {0} ∅ {0} {0}
O+ {2} {0} {0} ∅ {0} ∅
B′ {1,2} ±{0,1,2} {0} {0} {0} {0}

B#∗ {1,2} ±{0,1} {0} ∅ {0} {0}
B′+ {1,2} ±{0,1,2} {0} {0} {0} ∅
B#+ {1,2} ±{0,1} {0} ∅ {0} ∅
S′ N Z {0} {0} {0} {0}
S′+ N Z {0} {0} {0} ∅

(c) Moreover, in the case of the last row of the table in Assumption 7.1 (c) the
category ⟨GG⟩ is H′

loc = ⟨ ⟩ in the language of [TW18, Proposition 4.3]
and W{○,●} in that of Chapter 5.
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(d) By definition, the Hopf ∗-algebra A is also the co-product Hopf ∗-algebra
Pol(K) ∗Pol(K) of the regular functions

Pol(K) = C∗⟨{vj,i}ni,j=1 ∣∀ni,j=1 ∶ v∗j,i = vj,i ∧ ∀(k, ℓ, p) ∈ GK ∶
∀g ∈ ⟦n⟧⊗k ∶ ∀j ∈ ⟦n⟧⊗ℓ ∶ rkℓ (p)j,g(v) = 0⟩,

on K with itself.

Throughout we will use the fact that the sets {○, ●} ≅ {1,∗} and ⟦2⟧ are equinu-
merous and admit (left) actions of Z2 equivariant under the bijection.

Notation 7.3. (a) ϕ○ ∶= 1 and ϕ● ∶= 2 as well as ψ1 ∶= ○ and ψ2 ∶= ●.
(b) 1.○ = ○ and 1.● = ● and z.○ = ● and z.● = ○.
(c) 1.1 = 1 and 1.2 = 2 and z.1 = 2 and z.2 = 1.
(d) For any k ∈ N0, any c ∈ {○, ●}⊗k and any g ∈ Z2 let g.c ∈ {○, ●}⊗k be such

that (g.c)i = g.(ci) for any i ∈ ⟦k⟧.
(e) For any k ∈ N0, any q ∈ ⟦2⟧⊗k and any g ∈ Z2 let g.q ∈ ⟦2⟧⊗k be such that
(g.q)i = g.(qi) for any i ∈ ⟦k⟧.

(f) From now on, in any ∗-algebra, for any element a let a○ ∶= a and a● ∶= a∗.
The key to the proofs in this section are the following properties of (GK ,GG) (and

of (⟨GK⟩, ⟨GG⟩) actually):
◻ All partitions occurring in either set have evenly many points.
◻ The points of any two-colored partition in GG alternate in normalized color.
◻ Forgetting all colors in GG produces exactly the partitions of GK .
◻ Conversely, coloring the partitions of GK in any way such that normalized

colors alternate yields precisely the partitions of GG.
In more detail, we can record the following facts.

Lemma 7.4. Let {k, ℓ} ⊆ N0 be arbitrary and let p be any partition of Πk
ℓ .

(a) For any c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ, if (c,d, p) ∈ GG, then
(i) k + ℓ is even.
(ii) There exists x ∈ {○, ●} such that ca = za−1.x for any a ∈ ⟦k⟧ and db =

zb−1.x for any b ∈ ⟦ℓ⟧.
(iii) (z.c, z.d, p) ∈ GG.
(iv) (k, ℓ, p) ∈ GK.

(b) If (k, ℓ, p) ∈ GK, then
(i) k + ℓ is even.
(ii) For any x ∈ {○, ●}, if c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ are such that ca =

za−1.x for any a ∈ ⟦k⟧ and db = zb−1.x for any b ∈ ⟦ℓ⟧, then (c,d, p) ∈ GG.
Proof. Obvious from the definitions. □

Let us now start carrying out the proof strategy of Proposition 6.1.

Lemma 7.5. There exists a unique surjective co-central morphism q∶ B → C[Γ]
of Hopf ∗-algebras such that for any {i, j} ⊆ ⟦n⟧,

ui,j z→ δi,jz.
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Proof. First, we show that there exists a unique morphism q of ∗-algebras with
the prescribed property. Then, we prove this q to also respect the Hopf ∗-algebra
operations and be co-central. It will then automatically be surjective because its
image will be a ∗-subalgebra of C[Z2] containing the ∗-generator q(u1,1) = z of the
latter.

Step 1: q exists and is unique as a ∗-algebra morphism. The desired property of
q can be rephrased by saying that id ⊗ q is supposed to map u to 1n×n ⊗ z, where
1n×n is the identity scalar n × n-matrix. The matrix (1n×n ⊗ z)● in C[Z2] is given
by 1n×n ⊗ z because z∗ = z. Hence, by the universal property of B it suffices to
check that rcd(p)j,g(1n×n ⊗ z,1n×n ⊗ z) = 0 for any {k, ℓ} ⊆ N0, any c ∶ ⟦k⟧ → {○, ●},
d ∶ ⟦ℓ⟧→ {○, ●}, any partition p of Πk

ℓ such that (c,d, p) ∈ GG, any g ∈ ⟦n⟧⊗k and any
j ∈ ⟦n⟧⊗ℓ.

By definition, the element rcd(p)j,g(1n×n ⊗ z,1n×n ⊗ z) of C[Z2] is given by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(δjb,ibz)db

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1(δha,gaz)ca

which by z = z∗ simplifies to

∑
i∈⟦n⟧⊗ℓ

ζ(p,ker(g ◾◾ i)) δj,i zℓ − ∑
h∈⟦n⟧⊗k

ζ(p,ker(h ◾
◾ j)) δh,g zk

or, even more simply,

ζ(p,ker(g ◾◾ j)) zℓ − ζ(p, g ◾◾ j) zk.

Because k + ℓ is even by Lemma 7.4 (a) (i) and thus zℓ = 1z−ℓ = zk+ℓz−ℓ = zk we have
thus shown rcd(p)j,g(1n×n ⊗ z,1n×n ⊗ z) = 0, which proves that q exists and is unique
as a ∗-algebra morphism.

Step 2: q is a Hopf ∗-morphism. Because q is known to be a morphism of ∗-
algebras by Step 1 it is enough that we check the conditions for being a morphism of
Hopf ∗-algebra on the ∗-generators of B. If ∆B, ϵB and SB are the co-multiplication,
co-unit and antipode of B, respectively, and if ∆, ϵ and S are those of C[Z2], then
for any {i, j} ⊆ ⟦n⟧,

((q ⊗ q) ○∆B)(uj,i) = (q ⊗ q)(∑ns=1uj,s ⊗ us,i)
= ∑ns=1δj,s z ⊗ δs,iz
= δj,i z ⊗ z
=∆(δj,iz)
= (∆ ○ q)(uj,i)

and

ϵB(uj,i) = δj,i = ϵ(δj,iz) = (ϵ ○ q)(uj,i)
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and

(q ○ SB)(uj,i) = q(u∗i,j)
= δi,j z∗

= δj,i z−1

= S(δj,i z)
= (S ○ q)(uj,i).

Thus, q is also a morphism of Hopf ∗-algebras from B to C[Γ].
Step 3: q is co-central. Once more, Step 1 allows to confine ourselves to ∗-ge-

nerators of B when verifying the co-centrality condition. If γB,B is the flip of the
tensor factors in B ⊗B, then for any {i, j} ⊆ ⟦n⟧,

((id⊗ q) ○∆B)(uj,i) = (id⊗ q)(∑ns=1uj,s ⊗ us,i)
= ∑ns=1uj,s ⊗ δs,i z
= uj,i ⊗ z
= ∑ns=1us,i ⊗ δj,s z
= (id⊗ q)(∑ns=1us,i ⊗ uj,s)
= ((id⊗ q) ○ γB,B)(∑ns=1uj,s ⊗ us,i)
= ((id⊗ q) ○ γB,B ○∆B)(uj,i).

Thus, the morphism q is also co-central. □

Lemma 7.6. There exists a unique action β of Z2 on B by Hopf ∗-automor-
phisms such that βz is the unique Hopf ∗-algebra endomorphism of B such that for
any {i, j} ⊆ ⟦n⟧,

uj,i ↦ u∗j,i.

Proof. If βz exists, it is obviously involutive. Hence, it suffices to show that
βz exists and is unique as a Hopf ∗-algebra morphism. Once more, we first show
that βz exists and is unique as a ∗-algebra morphism and then verify that it is also
a morphism of Hopf ∗-algebras.

Step 1: βz exists and is unique as a ∗-algebra morphism. Given any {k, ℓ} ⊆ N0,
any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ, any partition p of Πk

ℓ such that (c,d, p) ∈ GG,
any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ, we have to prove that rcd(p)j,g(u,u) = 0 (note the
inverted order of u and u compared to the definition of B) in order to establish
that βz exists as a morphism of ∗-algebras. By Lemma 7.4 (a) (iii) the assumption
that (c,d, p) ∈ GG guarantees that also (z.c, z.d, p) ∈ GG and thus rz.cz.d(p)j,g(u,u) = 0
by the definition of B. In consequence, it is enough to prove that rcd(p)j,g(u,u) =
rz.cz.d(p)j,g(u,u).

And, indeed, by definition, the element rcd(p)j,g(u,u) of B is given by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(u∗jb,ib)db −∑h∈⟦n⟧⊗k ζ(p,ker(h ◾

◾ j))
Ð→
∏k
a=1(u∗ha,ga)ca ,
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which we can obviously just as well write as

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1u

z.db
jb,ib

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1u

z.ca
ha,ga

,

i.e., as rz.cz.d(p)j,g(u,u).
Step 2: βz is a Hopf ∗-algebra morphism. By Step 1 it suffices to check the

conditions on the ∗-generators of B. If ∆B, ϵB and SB are the co-multiplication,
co-unit and antipode of B, respectively, then for any {i, j} ⊆ ⟦n⟧,

((βz ⊗ βz) ○∆B)(uj,i) = ∑ns=1(βz ⊗ βz)(uj,s ⊗ us,i)
= ∑ns=1(u∗j,s ⊗ u∗s,i)
=∆B(u∗j,i)
= (∆B ○ βz)(uj,i).

Likewise, for any {i, j} ⊆ ⟦n⟧,
(ϵB ○ βz)(uj,i) = ϵB(u∗j,i) = δj,i = ϵB(uj,i)

and

(SB ○ βz)(uj,i) = SB(u∗j,i) = ui,j = βz(u∗i,j) = (βz ○ SB)(uj,i)
since u and u are both unitary. Thus, βz is a Hopf ∗-morphism, which is all we
needed to prove. □

Lemma 7.7. (q, β) is a co-central invariant action of Z2 by Hopf ∗-algebra auto-
morphisms on B.

Proof. If (Bg)g∈Z2 denotes the Z2-grading of B associated with q, then by
β1 = idB it suffices to prove for any b ∈ B that βz(b) ∈ B1 if b ∈ B1 and that
βz(b) ∈ Bz if b ∈ Bz. Moreover, it is enough to check this on linear generators.

If ∆B is the co-multiplication of B, then for any g ∈ Z2, any m ∈ N0, any e ∈
{○, ●}⊗m and any {i, j} ⊆ ⟦n⟧⊗m the element b ∶=Ð→∏m

t=1u
et
jt,it

belongs to Bg if and only
if ((id⊗ q) ○∆B)(b) = b⊗ g, where

((id⊗ q) ○∆B)(b) = (id⊗ q)(∆B(
Ð→
∏m
t=1u

et
jt,it
))

=Ð→∏m
t=1((id⊗ q) ○∆B)(uetjt,it)

=Ð→∏m
t=1 (∑mst=1(id⊗ q)(u

et
jt,st

⊗ uetst,it))

=Ð→∏m
t=1 (∑mst=1 δst,it u

et
jt,st

⊗ zet)

=Ð→∏m
t=1 (uetjt,it ⊗ z

et)

= (Ð→∏m
t=1u

et
jt,it
)⊗ z∑m

t=1 σ(et)

= b⊗ zΣ∅e .
Furthermore, by definition,

βz(b) =
Ð→
∏n
t=1βz(uetjt,it) =

Ð→
∏n
t=1u

z.et
jt,it
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and therefore

((id⊗ q) ○∆B)(βz(b)) = βz(b)⊗ z∑
m
t=1 σ(z.et) = βz(b)⊗ z−Σ

∅
e .

Because z−1 = z that proves the claim. □

Lemma 7.8. There exists a unique surjective co-central morphism p∶ A → C[Γ]
of Hopf ∗-algebras such that for any q ∈ ⟦2⟧ and any {i, j} ⊆ ⟦n⟧,

v
(q)
j,i ↦ δj,iz.

Proof. In the same way as before we show that a unique morphism of ∗-algebras
with the prescribed values exists and then prove that to be a co-central Hopf ∗-
algebra morphism. It will then obviously also be surjective.

Step 1: p exists and is unique as a ∗-algebra morphism. Because z = z∗, obviously,

v
(q)
j,i is mapped to a self-adjoint element of C[Z2] for any {i, j} ⊆ ⟦n⟧ and q ∈ ⟦2⟧.

Thus, in order to prove the existence of p as a ∗-algebra morphism it is enough to
check the relations coming from the partitions.

For any {k, ℓ}, any set-theoretical partition p of Πk
ℓ with (k, ℓ, p) ∈ GK , any g ∈

⟦n⟧⊗k, any j ∈ ⟦n⟧⊗ℓ, and any q ∈ ⟦2⟧, if 1n×n is the identity n × n-matrix, then v(q)

would be mapped to 1n×n ⊗ z by id⊗ p. Thus we need to prove that the element

rkℓ (p)j,g(1n×n ⊗ z) = ∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(δjb,ib z)

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1(δha,ga z)

= ∑i∈⟦n⟧⊗ℓ δj,i ζ(p,ker(g ◾◾ i)) zk
−∑h∈⟦n⟧⊗k δh,g ζ(p,ker(h ◾

◾ j)) zℓ

= ζ(p,ker(g ◾◾ j)) (zℓ − zk)
of C[Z2] is zero. And, indeed, because the assumption that (k, ℓ, p) ∈ GK requires
k + ℓ to be even by Lemma 7.4 (a) (i) we can infer that zℓ = 1z−ℓ = zk+ℓz−ℓ = zk and
thus rkℓ (p)j,g(1n×n ⊗ z) = 0. Hence, such a morphism p of ∗-algebras does exist and
is unique.

Step 2: p is a Hopf ∗-algebra morphism. By Step 1 it is enough to verify the
conditions on the ∗-generators. If ∆A, ϵA and SA are the co-multplication, co-unit
and antipode of A, respectively, and if ∆, ϵ and S are those of C[Z2], then for any
q ∈ ⟦2⟧ and any {i, j} ⊆ ⟦n⟧,

((p⊗ p) ○∆A)(v(q)j,i ) = ∑ns=1(p⊗ p)(v
(q)
j,s ⊗ v

(q)
s,i )

= ∑ns=1(δj,s z)⊗ (δs,i z)
= δj,i z ⊗ z
=∆(δj,i z)
= (∆ ○ p)(v(q)j,i )

and

(ϵ ○ p)(v(q)j,i ) = ϵ(δj,i z) = δj,i = (ϵA)(v
(q)
j,i )
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and

(S ○ p)(v(q)j,i ) = S(δj,i z) = δj,i z−1 = δi,j z = p(v
(q)
i,j ) = (p ○ SA)(v

(q)
j,i ).

Thus, p is a morphism of Hopf ∗-algebras.
Step 3: p is co-central. It is enough to prove the co-centrality condition on ∗-

generators since the mappings on both sides are ∗-algebra morphisms. If γA,A is the
symmetry isomorphism of A⊗A, then for any q ∈ ⟦2⟧ and any {i, j} ⊆ ⟦n⟧,

((id⊗ p) ○∆A)(v(q)j,i ) = ∑ns=1(id⊗ p)(v
(q)
j,s ⊗ v

(q)
s,i )

= ∑ns=1 δs,i v
(q)
j,s ⊗ z

= v(q)j,i ⊗ z
= ∑ns=1 δj,s v

(q)
s,i ⊗ z

= ∑ns=1(id⊗ p)(v
(q)
s,i ⊗ v

(q)
j,s )

= ∑ns=1((id⊗ p) ○ γA,A)(v
(q)
j,s ⊗ v

(q)
s,i )

= ((id⊗ p) ○ γA,A ○∆A)(v(q)j,i ).

That is what we needed to see. □

Lemma 7.9. There exists a unique action α of Z2 on A by Hopf ∗-automor-
phisms such that αz is the unique Hopf ∗-algebra endomorphism of A such that for
any q ∈ ⟦2⟧ and any {i, j} ⊆ ⟦n⟧,

v
(q)
j,i ↦ v

(3−q)
j,i .

Proof. The fact that αz exists and is a Hopf ∗-algebra endomorphism of A =
Pol(K) ∗Pol(K) is guaranteed by the universal property of the co-product of Hopf
∗-algebras. It is obviously involutive by definition, which is why α is a well-defined
action of Z2 on A by Hopf ∗-algebra automorphisms. □

Lemma 7.10. (p,α) is a co-central invariant action of Z2 by Hopf ∗-algebra
automorphisms on A.

Proof. Let (Ag)g∈Z2 be the Z2-grading of A associated with p. Then, all we
have to prove is that αz(a) ∈ A1 for any a ∈ A1 and that αz(a) ∈ Az for any a ∈ Az.
In fact, we can confine ourselves to checking this on elements a of a linear generator
set of A.



380 5. L2-BETTI NUMBERS OF CERTAIN UNITARY EASY QUANTUM GROUP DUALS

Given any m ∈ N0, any q ∈ ⟦2⟧⊗m and any {i, j} ⊆ ⟦n⟧⊗m, if a ∶= Ð→∏m
t=1v

(qt)
jt,it

and if
∆A is the co-multplication of A, then

((id⊗ p) ○∆A)(a) =
Ð→
∏m
t=1(id⊗ p)(∆A(v(qt)jt,it

))
=Ð→∏m

t=1 (∑nst=1(id⊗ p)(v
(qt)
jt,st

⊗ v(qt)st,it
))

=Ð→∏m
t=1 (∑nst=1 δst,it v

(qt)
jt,st

⊗ z)

=Ð→∏m
t=1 (v

(qt)
jt,it

⊗ z)
= a⊗ zm.

This shows that a ∈ A1 if and only if m is even and that a ∈ Az if and only if m is
odd. Since

αz(a) =
Ð→
∏m
t=1αz(v

(qt)
jt,it
) =Ð→∏m

t=1v
(z.qt)
jt,it

,

i.e., since α does not affect the length of monomials in the ∗-generators, it is clear
that, necessarily, {a,αz(a)} ⊆ A1 or {a,αz(a)} ⊆ Az. In conclusion, (Ag)g∈Z2 is
α-invariant, which is what we had to prove. □

Lemma 7.11. There exists a unique morphism of Hopf ∗-algebras f ∶ B → At,(p,α(−ι))

such that for any {i, j} ⊆ ⟦n⟧,
uj,i ↦ v

(1)
j,i ⊗ z.

Proof. By the definition of At,(p,α) as a Hopf ∗-subalgebra of A ⋊α C[Γ] it is
enough to prove that there exists a unique morphism g∶ B → A ⋊α C[Γ] of Hopf

∗-algebras which satisfies uj,i ↦ v
(1)
j,i ⊗ z for any {i, j} ⊆ ⟦n⟧ and whose image lies

within At,(p,α). As many times before we first show that such a map g exists and is
unique as a morphism of ∗-algebras and then check that it respects Hopf ∗-algebra
operations.

Step 1: g exists and is unique as a ∗-algebra morphism. By the universal property
of B the alleged g exists and is unique at least as a morphism of ∗-algebras if v(1)⊗z
satisfies the defining ∗-relations for u.

For any {i, j} ⊆ ⟦n⟧ the definition of A ⋊α C[Γ] implies that the adjoint of the

element v
(1)
j,i ⊗ z is given by

(v(1)j,i ⊗ z)∗ = αz−1((v
(1)
j,i )∗)⊗ z−1 = αz(v

(1)
j,i )⊗ z = v

(z.1)
j,i ⊗ z = v(2)j,i ⊗ z.

Hence, in order to establish the existence of g we have to check that for any {k, ℓ} ⊆
N0, any c ∈ {○, ●}⊗k, any d ∈ {○, ●}⊗ℓ, any partition p of Πk

ℓ such that (c,d, p) ∈ GG,
any g ∈ ⟦n⟧⊗k and any j ∈ ⟦n⟧⊗ℓ the element rcd(p)j,g(v(1) ⊗ z, v(2) ⊗ z) of A ⋊α C[Γ]
is zero.

Because, by Lemma 7.4 (a) (iv), our assumption that (c,d, p) ∈ GG implies
that (k, ℓ, p) ∈ GK and thus rkℓ (p)j,g(v(q)) = 0 for any q ∈ ⟦2⟧ we can prove that
rcd(p)j,g(v(1) ⊗ z, v(2) ⊗ z) = 0 by giving some x ∈ {○, ●} and m ∈ N0 such that
rcd(p)j,g(v(1) ⊗ z, v(2) ⊗ z) is equal to rkℓ (p)j,g(v(ϕx) ⊗ z)⊗ zm. More precisely, we will
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choose m ∶= k and let x be that element of {○, ●} with the property that ca = za−1.x for
any a ∈ ⟦k⟧ and db = zb−1.x for any b ∈ ⟦ℓ⟧ guaranteed to exist by Lemma 7.4 (a) (ii).

And, indeed, by definition, rcd(p)j,g(v(1) ⊗ z, v(2) ⊗ z) is given by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(v

(1)
jb,ib

⊗ z)db

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1(v

(1)
ha,ga

⊗ z)ca .

By what we saw initially about adjoints in A ⋊α C[Γ] this can be simplified to

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(v

(ϕdb)
jb,ib

⊗ z)
−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾

◾ j))
Ð→
∏k
a=1(v

(ϕca)
ha,ga

⊗ z).

The definition of the multiplication of A ⋊α C[Γ] implies that this element is the
same as

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1αzb−1(v

(ϕdb)
jb,ib
))⊗ zℓ

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1αza−1(v

(ϕca)
ha,ga
))⊗ zk,

i.e., by the definition of α the same as

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1v

(zb−1.ϕdb)
jb,ib

)⊗ zℓ

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1v

(za−1.ϕca)
ha,ga

)⊗ zk.

From the definition of x it now follows that za−1.ϕca = za−1.ϕza−1.x = (za−1za−1).ϕx =
z2a−2.ϕx = ϕx and likewise zb−1.ϕdb = ϕx for any a ∈ ⟦k⟧ and b ∈ ⟦ℓ⟧. Moreover, by
Lemma 7.4 (a) (i) the assumption that (c,d, p) ∈ GG also requires that k + ℓ is even
and thus that zm = zk = zℓ. Hence, we have shown that rcd(p)j,g(v(1) ⊗ z, v(2) ⊗ z) is
given by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1v

(ϕx)
jb,ib
)⊗ zm

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1v

(ϕx)
ha,ga
)⊗ zm,

which is precisely rkℓ (p)j,g(v(ϕx) ⊗ z)⊗ zm. That is what we needed to see.
Step 2: g is a Hopf ∗-algebra morphism. According to Step 1 it suffices to check

the conditions on the ∗-generators of B. Let ∆B, ϵB and SB be, respectively, the
co-multplication, the co-unit and the antipode of B, let ∆⋊, ϵ⋊ and S⋊ be those of
A ⋊α C[Γ], moreover, ∆A, ϵA and SA those of A and, finally, ∆, ϵ and S those of
C[Z2]. If, furthermore, γA,C[Z2] is the linear map which flips the two tensor factors
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in A⊗C[Z2] then for any {i, j} ⊆ ⟦n⟧,
((g ⊗ g) ○∆B)(uj,i) = ∑ns=1(g ⊗ g)(uj,s ⊗ us,i)

= ∑ns=1 v
(1)
j,s ⊗ z ⊗ v

(1)
s,i ⊗ z

= (id⊗ γA,C[Z2] ⊗ id)(∑ns=1 v
(1)
j,s ⊗ v

(1)
s,i ⊗ z ⊗ z)

= (id⊗ γA,C[Z2] ⊗ id)(∆A ⊗∆)(v(1)j,i ⊗ z)
=∆⋊(v(1)j,i ⊗ z)
= (∆⋊ ○ g)(uj,i)

and

(ϵ⋊ ○ g)(uj,i) = ϵ⋊(v(1)j,i ⊗ z) = (ϵA ⊗ ϵ)(v
(1)
j,i ⊗ z) = δj,i = ϵB(uj,i)

as well as, using what we showed initially about the adjoints in A ⋊α C[Γ],
(S⋊ ○ g)(uj,i) = S⋊(v(1)j,i ⊗ z)

= SA(αz−1(v(1)j,i ))⊗ S(z)
= SA(v(z

−1.1)
j,i )⊗ z−1

= SA(v(2)j,i )⊗ z
= v(2)i,j ⊗ z
= (v(1)i,j ⊗ z)∗

= g(ui,j)∗

= g(u∗i,j)
= (g ○ SB)(uj,i).

Hence, g is indeed a morphism of Hopf ∗-algebras.

Step 2: The image of g lies inside At,(p,α). For any {i, j} ⊆ ⟦n⟧ the element v
(1)
j,i ⊗z

of A⋊αC[Γ] belongs to the Hopf ∗-subalgebra At,(p,α) because ((id⊗p)○∆A)(v(1)j,i ) =
∑ns=1(id ⊗ p)(v

(1)
j,s ⊗ v

(1)
s,i ) = ∑ns=1 δs,i v

(1)
j,s ⊗ z = v

(1)
j,i ⊗ z. Since g is a morphism of ∗-

algebras and since {v(1)j,i ⊗z}ni,j=1 is a ∗-generator set of its image this proves the image
in its entirety to lie in A ⋊α C[Γ]. By the initial remark this proves the existence
and uniqueness of f with all the asserted properties. □

Lemma 7.12. There exists a unique morphism of Hopf ∗-algebras f ′∶ A→ Bt,(q,β(−ι))

such that for any {i, j} ⊆ ⟦n⟧,
v
(1)
j,i ↦ uj,i ⊗ z ∧ v

(2)
j,i ↦ u∗j,i ⊗ z.

Proof. Again, because Bt,(q,β(−ι)) is a Hopf ∗-subalgebra of B ⋊β(−ι) C[Γ] it
suffices to give a morphism g′∶ A → B ⋊β(−ι) C[Γ] of Hopf ∗-algebras which satisfies

v
(q)
j,i ↦ u

ψq

j,i ⊗ z for any q ∈ ⟦2⟧ and {i, j} ⊆ ⟦n⟧ and which maps to Bt,(q,β(−ι)).



7. THE COMPUTATION 383

Step 1: g′ exists as a ∗-algebra morphism. To prove that there is at least a unique
morphism g′ of ∗-algebras with the prescribed values we need to check that each of
u⊗ z and u⊗ z has only self-adjoint entries and that u⊗ z satisfies the relations of
v(1) and u⊗ z those of v(2).

Indeed, for any x ∈ {○, ●} and {i, j} ⊆ ⟦n⟧ by the definition of B ⋊β(−ι) C[Γ],

(uxj,i ⊗ z)∗ = (β(−ι))z−1((uxj,i)∗)⊗ z−1 = βz(uz.xj,i )⊗ z = uz
2.x
j,i ⊗ z = uxj,i ⊗ z.

It remains to check the relations induced by the partitions. Equivalently, given any
{k, ℓ} ⊆ N0, any partition p of Πk

ℓ such that (k, ℓ, p) ∈ GK , any g ∈ ⟦n⟧⊗k, any j ∈ ⟦n⟧⊗ℓ
and any q ∈ ⟦2⟧ we have to prove that rkℓ (p)j,g(uψq ⊗ z) = 0.

Letm ∶= k, let c ∶= ψq and let c ∈ {○, ●}⊗k and d ∈ {○, ●}⊗ℓ be such that ca = za−1.c for
any a ∈ ⟦k⟧ and db = zb−1.c for any b ∈ ⟦ℓ⟧. Then by Lemma 7.4 (a) (ii) the assumption
that (k, ℓ, p) ∈ GK guarantees that (c,d, p) ∈ GG. Because thus rcd(p)j,g(u,u) = 0
by the definition of B it suffices to prove that rkℓ (p)j,g(uψq ⊗ z) is the same as
rcd(p)j,g(u,u)⊗ zm.

And, indeed, by definition the element rkℓ (p)j,g(uψq ⊗ z) of B ⋊β(−ι) C[Γ] is given
by

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i))
Ð→
∏ℓ
b=1(u

ψq

jb,ib
⊗ z)

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j))
Ð→
∏k
a=1(u

ψq

ha,ga
⊗ z).

The definition of the multiplication in B ⋊β(−ι)C[Γ] implies that this is the same as

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1(β(−ι))zb(u

ψq

jb,ib
))⊗ zℓ

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1(β(−ι))za(u

ψq

ha,ga
))⊗ zk,

which agrees with

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1u

z−b.ψq

jb,ib
)⊗ zℓ

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1u

z−a.ψq

ha,ga
)⊗ zk.

Since the assumption that (k, ℓ, p) ∈ GK demands that k+ℓ is even by Lemma 7.4 (a) (i)
and thus that zm = zℓ = zk, we can rewrite the above as

∑i∈⟦n⟧⊗ℓ ζ(p,ker(g ◾◾ i)) (
Ð→
∏ℓ
b=1u

zb.c
jb,ib
)⊗ zm

−∑h∈⟦n⟧⊗k ζ(p,ker(h ◾
◾ j)) (

Ð→
∏k
a=1u

za.c
ha,ga
)⊗ zm,

which is the same as rcd(p)j,g(u,u)⊗ zm, as we needed to see.
Step 2: g′ is a Hopf ∗-algebra morphism. By Step 1 we only need to check the

conditions on the ∗-generators of B. Let ∆A, ϵA and SA be, respectively, the co-
multplication, the co-unit and the antipode of A, let ∆⋊, ϵ⋊ and S⋊ be those of
B ⋊β(−ι)C[Γ], moreover, ∆B, ϵB and SB those of B and, finally, ∆, ϵ and S those of
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C[Z2]. If, furthermore, γB,C[Z2] is the linear map which flips the two tensor factors
in B ⊗C[Z2] then for any q ∈ ⟦2⟧ and {i, j} ⊆ ⟦n⟧,

((g′ ⊗ g′) ○∆A)(v(q)j,i ) = ∑ns=1(g′ ⊗ g′)(v
(q)
j,s ⊗ v

(q)
s,i )

= ∑ns=1 u
ψq

j,s ⊗ z ⊗ u
ψq

s,i ⊗ z
= (id⊗ γB,C[Z2] ⊗ id)(∑ns=1 u

ψq

j,s ⊗ u
ψq

s,i ⊗ z ⊗ z)
= (id⊗ γB,C[Z2] ⊗ id)(∆B ⊗∆)(uψq

j,i ⊗ z)
=∆⋊(uψq

j,i ⊗ z)
= (∆⋊ ○ g′)(v(q)j,i )

and

(ϵ⋊ ○ g′)(v(q)j,i ) = ϵ⋊(u
ψq

j,i ⊗ z) = (ϵB ⊗ ϵ)(u
ψq

j,i ⊗ z) = δj,i = ϵA(v
(q)
j,i )

as well as

(S⋊ ○ g′)(v(q)j,i ) = S⋊(u
ψq

j,i ⊗ z)
= SB((β(−ι))z−1(uψq

j,i))⊗ S(z)
= SB(uz.ψq

j,i )⊗ z−1

= uz
2.ψq

i,j ⊗ z
= uψq

i,j ⊗ z
= g′(v(q)i,j )
= (g′ ○ SA)(v(q)j,i ).

Hence, g′ is indeed a morphism of Hopf ∗-algebras.
Step 3: The image of g′ lies inside Bt,(q,β(−ι)). For any q ∈ ⟦2⟧ and any {i, j} ⊆ ⟦n⟧

the element u
ψq

j,i satisfies ((id⊗q)○∆B)(uψq

j,i) = ∑ns=1(id⊗q)(u
ψq

j,s⊗u
ψq

s,i) = ∑ns=1 δs,i u
ψq

j,s⊗
z = uψq

j,i ⊗ z, rendering u
ψq

j,i ⊗ z an element of Bt,(q,β(−ι)). Because the image of the

∗-algebra morphism g′ is generated as ∗-algebra by {uψq

j,i ⊗z ∣ q ∈ ⟦2⟧ ∧ {i, j} ⊆ ⟦n⟧} =
{uj,i ⊗ z, u∗j,i ⊗ z}ni,j=1 this proves this image to be contained entirely in Bt,(q,β(−ι)).
By what was said in the beginning that is all we needed to see. □

Lemma 7.13. If ∆A and ϵA are the co-multiplication respectively co-unit of A, if
∆B and ϵB are those of B, if ∆ is the co-multiplication of C[Z2], and if ι and ι′ are
the inclusions of At,(p,α) into A ⋊α C[Γ] respectively of Bt,(q,β(−ι)) in B ⋊β(−ι) C[Γ],
then

(a) (ϵA ⊗ id) ○ ι ○ f = q.
(b) (ϵB ⊗ id) ○ ι′ ○ f ′ = p.
(c) (αg−1 ⊗ id) ○ ι ○ f = ι ○ f ○ βg for any g ∈ Z2.
(d) (βg ⊗ id) ○ ι′ ○ f ′ = ι′ ○ f ′ ○ αg for any g ∈ Z2.
(e) ((ι′ ○ f ′)⊗ id) ○ ι ○ f = (id⊗ (∆ ○ q)) ○∆B.
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(f) ((ι ○ f)⊗ id) ○ ι′ ○ f ′ = (id⊗ (∆ ○ p)) ○∆A.

Proof. Since the mappings on both sides of the asserted identities are mor-
phisms of ∗-algebras it suffices to prove the claims on ∗-generators. Moreover, since
α1 = idA and β1 = idB it is enough to check claims (c) and (d) only for g = z. Let
{i, j} ⊆ ⟦n⟧ and x ∈ {○, ●} as well as q ∈ ⟦2⟧ be arbitrary.

(a) ((ϵA ⊗ id) ○ ι ○ f)(uxj,i) = (ϵA ⊗ id)(v(ϕx)j,i ⊗ z) = δj,i z = q(uxj,i).
(b) ((ϵB ⊗ id) ○ ι′ ○ f ′)(v(q)j,i ) = (ϵB ⊗ id)(uψq

j,i ⊗ z) = δj,i z = p(v
(q)
j,i ).

(c) We can compute, using only the definitions,

((αz−1 ⊗ id) ○ ι ○ f)(uxj,i) = (αz ⊗ id)(v(ϕx)j,i ⊗ z)
= v(z.ϕx)j,i ⊗ z
= v(ϕz.x)j,i ⊗ z
= (ι ○ f)(uz.xj,i )
= (ι ○ f ○ βz)(uxj,i).

(d) Similarly,

((βz ⊗ id) ○ ι′ ○ f ′)(v(q)j,i ) = (βz ⊗ id)(uψq

j,i ⊗ z)
= uz.ψq

j,i ⊗ z
= uψz.q

j,i ⊗ z
= (ι′ ○ f ′)(v(z.q)j,i )
= (ι′ ○ f ′ ○ αz)(v(q)j,i ).

(e) The definitions imply that

(((ι′ ○ f ′)⊗ id) ○ ι ○ f)(uxj,i) = ((ι′ ○ f ′)⊗ id)(v(ϕx)j,i ⊗ z)
= uxj,i ⊗ z ⊗ z
= (id⊗∆)(uxj,i ⊗ z)
= ∑ns=1 δs,i (id⊗∆)(uxj,s ⊗ z)
= ∑ns=1(id⊗ (∆ ○ q))(uxj,s ⊗ uxs,i)
= ((id⊗ (∆ ○ q)) ○∆B)(uxj,i).
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(f) In the same way,

(((ι ○ f)⊗ id) ○ ι′ ○ f ′)(v(q)j,i ) = ((ι ○ f)⊗ id)(uψq

j,i ⊗ z)
= v(q)j,i ⊗ z ⊗ z
= (id⊗∆)(v(q)j,i ⊗ z)
= ∑ns=1 δs,i (id⊗∆)(v(q)j,s ⊗ z)
= ∑ns=1(id⊗ (∆ ○ p))(v(q)j,s ⊗ v

(q)
s,i )

= ((id⊗ (∆ ○ p)) ○∆A)(v(q)j,i ).

Thus, all the claims are true. □

Proof of the main result. The claim from Section 1.2 follows from Lem-
mata 7.5–7.13 in combination with Proposition 6.1 and Proposition 5.2. □

8. Concluding remarks

8.1. Unitary easy quantum groups as graded twists. It should be em-
phasized that in the process of proving the main result any unitary easy quantum
group G listed in the main result has been shown to be isomorphic as a compact
quantum group to the graded twist by Z2 of the free product of two copies of the
orthogonal quantum group K obtained by forgetting the colors of the associated
category of partitions.

8.2. Alternative proof. Another way of proving the main result might go
as follows. As developed by Freslon in [Fre17], easy quantum groups can also be
constructed via Tannaka-Krein duality from categories of partitions labeled not only
with two but any number of colors. In particular, one can define direct and free
products of categories of partitions by tagging partitions with the factor category
they come from, concatenating them horizontally and then permuting points in any
respectively such a way that, roughly said, there are no crossings between blocks with
distinct tags. (In truth, it is more complicated than that.) As seen in Chapter 3, it
is even possible to introduce a crossed product of the category of any cyclic group
with any category of partitions equipped with an invariant action of that group.

By employing the same functor F used there, ⟨GK⟩ can be embedded in the
crossed product of ⟨GG⟩ ∗ ⟨GG⟩ with the category of Z2 as a subcategory, which
becomes full on the operator level. Via Tannaka-Krein duality F gives rise exactly
to the morphism ι ○ f of Hopf ∗-algebras from B to A ⋊α C[Γ]. Similarly, once can
exhibit ⟨GG⟩ ∗ ⟨GG⟩ as a full subcategory of the crossed product of ⟨GK⟩ with the
category Z2 on the operator level, which then induces the map f ′. And also the
maps q and p can be implemented as functors of partitions. Actually, in the end,
the diagram from the proof of Proposition 6.1 is fully reproduced purely in terms of
categories of multi-colored partitions and functors between them.
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An analog to Proposition 5.1 (e) is then provided by [Kye+17, Theorem 3.9]. The
assumption there that the tensor C∗-categories be Cauchy complete is immaterial
because the functors between the categories of partitions extend to fully faithful and
injective-on-objects functors between the Cauchy completions. If there is also an
analog of Proposition 5.1 (d) for rigid tensor C∗-categories, one only needs to check
that the categories of partitions corresponding to B1 and A1 are equivalent in order
to reproduce the argument from Proposition 6.1. In this way, the algebraic proof
could then even be devolved to the level of pure combinatorics.

8.3. Generalizations. While there are vastly more categories of two-colored
partitions than the ones considered as inputs ⟨GK⟩ in the main result of this chap-
ter the strategy of proof employed here seems to rely critically on the properties
of (⟨GK⟩, ⟨GG⟩) listed in Lemma 7.4. Some of them generalize to other pairs of
uncolored and two-colored categories, others do not.

More precisely, there are no known other pairs (⟨GK⟩, ⟨GG⟩) with all the properties
of Lemma 7.4. One property which is satisfied more broadly, though, is the one from
Lemma 7.4 (a) (iii). It remains true for many more general ⟨GK⟩. For example, all
hyperoctahedral categories of two-colored partitions are closed under color inversion.
Likewise, Lemma 7.4 (a) (i) is valid for many more categories.

Of course, Lemma 7.4 (a) (i) and Lemma 7.4 (a) (iii) are implied by all the
remaining parts of Lemma 7.4. Unfortunately, it is these remaining parts which
seem present nowhere else. At best, it seems, something similar but less favorable
can be found: The relationship between ⟨GK⟩ and ⟨GG⟩ expressed in those parts of
Lemma 7.4, for example between the categories U+ = U×+N and O+ associated with
U+
n = U×+

N,n respectively O+
n, is not so different from the one between the categories U×+D

and O+ demonstrated in Chapter 3 (or between U×D and O∗), for arbitrary additive
subsemigroups D of N: In any element of ⟨GK⟩ the restriction to each block of the
set-theoretical partition of the set of points which is induced by the condition of
having zero color distance is an element of ⟨GG⟩. What makes the pairs (⟨GK⟩, ⟨GG⟩)
covered by the main result special is that there all points have color distance zero.

As seen in Chapter 3, the categories U×+D can be understood (at least on the
operator level) as full subcategories of a wreath graph product of O+ and the cate-
gory of Z. Unfortunately, the fact that Z is infinite means that there is no scaling
formula analogous to Proposition 5.1 (e). Besides that, there is no Künneth for-
mula for finite, let alone infinite graph products generalizing Proposition 5.1 (c)
and Proposition 5.1 (d). Hence, the analogous strategy to Proposition 6.1 leads
nowhere.





Part 3

Compact quantum groups of
combinatorial type





CHAPTER 6

Compact quantum groups of combinatorial type

1. Introduction

This final chapter studies a generalization of the tensor envelope of a regular
category (and the resulting group) introduced by Friedrich Knop. The generaliza-
tion developed here provides a uniform framework which encompasses the categories
of partitions and associated so-called easy compact quantum groups of Banica and
speicher, their generalizations by Tarrago and Weber and by Freslon as well as
the categories of bi-labeled graphs and induced graph-theoretic compact quantum
groups of Mančinska and Roberson. In particular the latter are not covered by
Knop’s construction, which was the main motivation of this joint project with Jo-
hannes Flake and Moritz Weber. Unfortunately, due to time constraints not all
conjectures could be verified. Any claims for which there was no time left to work
out a proof are clearly marked.

1.1. Background and context. Quantum group objects in the sense of formal
duals of not necessarily commutative Hopf objects are linked by a bi-adjunction,
variously named Tannaka or Tannaka-Krein duality, to certain functors from rigid
monoidal enriched categories to the self-enriched cosmos (see, e.g., [Del07a] in an
algebraic and [Wor88] in an analytic context). Many known examples of quantum
group objects are defined in this way by first providing a functor rather than the
Hopf object itself. In these cases the functors in question often have a combinatorial
nature. For example, the classical compact groups are related to functors which are
determined by the combinatorics of certain “partitions” of finite sets (see [Bra37]
for the special case of the orthogonal groups). As another example, Banica and
Speicher’s easy quantum groups from [BS09] are also intimately linked to partitions.
Actually, until Mančinska and Roberson’s graph-theoretical quantum groups, which
are defined in [MR19] through the combinatorics of finite “bi-labeled graphs”, all the
known examples of such “quantum groups of combinatorial type” could be subsumed
under a single common construction procedure: forming Knop’s tensor envelope of
a regular category, as defined in [Kno07]. The aim of this chapter was to provide
a true generalization of Knop’s work that accounts for Mančinska and Roberson’s
quantum groups and hopefully leads to a large number of new functors/quantum
groups which have not been studied yet.

Starting from a regular category, Knop modifies the associated category of re-
lations. The latter were first introduced, not for arbitrary regular categories, but
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only for abelian categories by Mac Lane in [Mac61] and by Puppe in [Pup62]. It
was Barr, Grillet and Osdol who extended the definition to regular categories in
[Bar70; BGO71]. Roughly, a relation in this sense is any monomorphism into a
product of two objects. Two such monomorphisms can be composed if they share
a common object. In that case, the two components with respect to the common
object are pulled back. Composing the pull-backs with the other two components
and forming the product morphism yields another relation. Or, rather, it almost
does. The resulting morphism need not be monic. Instead it must first be factorized
into a regular epimorphism followed by a monorphism. And it is this mono which is
then named the composed relation. Generalizing Deligne’s idea from [Del07b], Knop
considered the base change of the set-enriched category of relations along the free
functor to modules over a given ring and then rescaled the composition operation.
Namely rather than simply forgetting the regular epimorphism part of the factor-
ization, this morphism is transformed into a scalar and kept as a linear factor of the
ordinary composition result. Simplifying broadly, a functor defined on this modified
relation category is then obtained by a construction involving the hom functor of
the regular input category.

As noted by Knop in [Kno07] applying this construction to the regular category
given by a skeleton of the dual category of finite sets produces exactly the “par-
titions” used by Deligne in [Del07b]. Moreover, Banica and Speicher’s “categories
of partitions” from [BS09] are revealed to be special subcategories of Deligne’s. It
is very tempting to conjecture that Mančinska and Roberson’s “graph categories”
from [MR19] can be understood as certain subcategories of Knop’s tensor envelope
of the dual category of finite graphs. However this is not the case. The reasons for
this are explained in Section 1.2 below. Suffice it to say that the hom functor of
this regular category does not have the properties required by Knop in order for the
construction of the fiber functor to succeed.

That Mančinska and Roberson’s graph categories and graph-theoretical quantum
groups from [MR19] cannot be explained through Knop’s tensor envelopes of regular
categories is not just a cosmetic issue. In [Kno07], beyond the construction itself,
Knop manages to draw far-reaching conclusions about the groups resulting via Tan-
naka-Krein from the regular category. For particularly favorable input categories he
can show that the tensor envelope is a semi-simple tensor category in the sense of
[Eti+16] and can even classify the simple objects. These results were even extended
to the case of, not the whole, but certain subcategories of Deligne’s category by
Flake and Maaßen in [FM21]. Having results of this kind available for Mančinska
and Roberson’s categories would be massively helpful. And the hope for the work
presented in this chapter was that the generalization of Knop’s construction would
allow for such theorems to be proved.

This chapter puts forth a construction of a “tensor envelope” that applies to more
general inputs than regular categories with suitable hom functors. In particular, it
can be used to produce Mančinska and Roberson’s graph categories and associated
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graph-theoretical quantum groups. The idea behind the construction presented is
to loosen the requirements for what counts as a “relation”, which is not a new one.
It was noted early on in category theory that many of the properties of regular
epimorphisms and monomorphisms which are used in the construction of the rela-
tions category are shared by more general structures called “factorization systems”.
Those and the resulting generalized “relations” were intensively studied, especially
by Klein in [Kle70], Freyd and Kelly in [FK72], Meisen in [Mei74a; Mei74b], Pavlovic
in [Pav95; Pav96] and Jaywardene and Wyler in [JW00]. Though, this list is far
from complete.

Generalizing Knop’s construction, the concept of a regular category will be re-
placed by that of a cartesian monoidal category with pull-backs and a pull-back-
stable orthogonal factorization system. In the theory of relations, it has been known
for some time that this step does not necessarily provide much of a generalization
at all. Kelly showed in [Kel91] that the category of relations with respect to a
pull-back-stable proper factorization system is always isomorphic to a category of
relations in the classical sense, i.e., one constructed from a regular category. How-
ever, proper is the crucial term here, meaning that every morphism is decomposed
into an epimorphism and a monomorphism. Our construction manages to provide
a true generalization of [Kno07] exactly because we allow “improper” factorization
systems, the Mančinska-Roberson case being a prime example.

However, there are three caveats.
1. The construction does generally not yield a tensor category. Rather, the

best that can be guaranteed in general is a strong concrete monoidal †-
functor defined on a rigid monoidal †-category, both enriched in modules
over a commutative ∗-ring. In particular, the morphism spaces of the cat-
egory are generally infinite-dimensional. (Summary in Section 2.)

2. That the resulting categories and functors have all these properties just laid
out has not yet been fully verified due to the high number of rather lengthy
and at times quite difficult computations involved in proving those claims
and a correspondingly large lack of time before the due date of this thesis.
(Partial proof in Section 5.)

3. While the properties of the particularly favorable input categories which
enable Knop to prove semisimplicity and classify the simple objects admit
generalizations, the latter have less powerful implications. In particular,
no criterion for semisimplicity is presented. However, it is shown that a
crucial ingredient of Knop’s proof, the so-called “through block” or “core”
factorization, generalizes under fairly benign assumptions. (See Sections 6
and 7.)

1.2. Why an extension of Knop’s construction is needed. For the reader
familiar with [Kno07] it is explained in the following why Knop’s construction does
not explain Mančinska and Roberson’s.
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Let fGr be the category of all finite undirected graphs with or without loops
as objects and with adjacency-preserving maps between vertex sets as morphisms.
The category fGrop is essentially small, locally finite and regular. Regular epimor-
phisms of fGrop are equivalently graph embeddings. For any graph Z the functor
homfGr( ⋅ , Z)∶ fGrop → fSet is left-exact. However, there do exist graphs Z for which
homfGr( ⋅ , Z) fails to be uniform, as the following counterexample illustrates.

Let Z = ({λ,µ, ν},{{λ,µ},{µ, ν}}), where λ, µ, and ν are pairwise distinct, be
the line graph on three vertices, X = ({η, θ},{{η, θ}}), where η ≠ θ, the line graph
on two vertices and S = ({α},∅) the one on a single vertex. The mapping α ↦ η
defines a graph embedding of S into X, i.e., a regular epimorphism e∶ X → S of
fGrop. We show that homfGr(e,Z) is not a uniform mapping.

α

η

θ

λ

µ
ν

e

S

X Z

f

g

Of course, both f ∶ α ↦ λ and g ∶ α ↦ µ are graph homomorphisms from S to Z, i.e.,
morphisms Z → S of fGrop. The fibers of f and g with respect to homfGr(e,Z) have
different cardinalities: There is only a single graph homomorphism from X to Z
which, when composed with e, yields f , namely the mapping with η ↦ λ and θ ↦ µ.
However, two graph homomorphisms compose with e to produce g: Naturally we
map η ↦ µ. But now we have two choices, θ ↦ λ or θ ↦ ν. Thus, homfGr( ⋅ , Z) is
not uniform.

Hence, if one is interested in constructing fiber functors for T from homfGr( ⋅ , Z)
for such Z, then not only does one need to choose a degree function adapted to that
functor but also to select a factorization system for fGrop which turns homfGr( ⋅ , Z)
into a uniform functor in the first place.

1.3. Technical caveats. One technicality should be pointed out rightaway:
In [Kno07], Knop takes care to carry out his construction not directly on his input
category A but on A∅, the input with an absolutely initial object ∅ freely adjoined to
it. For example, he does not requireA to be a regular category – as one would usually
do when considering relations – but A∅ (see [Kno07, Definition 2.2]). Likewise, when
producing fiber functors for his category A, it is not the input functor P ∶ A → Set
which he demands be left-exact but P∅, the extension of P to A∅ via ∅ ↦ ∅
(see [Kno07, Definition 9.2]). In the present chapter it was chosen to abstain from
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adjoining ∅ to A, not because the same could not be done in this setting but only
because it makes for an easier read. Moreover, for the same reason, only the analogs
of what Knop calls non-degenerate uniform functors (see [Kno07, Remark, p. 599])
will be considered here. Thus, technically, the results of this chapter generalize
Knop’s only insofar as A is complete and regular in his sense (and not just regular)
and P is left-exact and non-degenerate.

1.4. Structure of the chapter. Section 2 gives a quick overview of the gener-
alization of Knop’s construction from [Kno07] proposed here. It includes definitions
and some proofs for the most important standard concepts and the new ones intro-
duced here. However, it does not spell out the proofs that the definitions, which
often may seem to depend on particular choices of representatives of equivalence
classes, in actuality do not. Nor is it shown in Section 2 that the constructions have
all the properties asserted by Conjectures 2.14 and 2.19. It must be emphasized
that, while most of these properties were checked, not all of them could be, due to
time constraints.

The ensuing Section 3 explains how the known constructions by Banica and
Speicher, by Tarrago and Weber, by Freslon, by Deligne, by Knop himself, and,
crucially, by Mančinska and Roberson are special cases of the construction from
Section 2. Moreover, it hints at the vast wealth of examples not yet considered.

Section 5 gives a partial proof that the construction is well-defined and has all
the properties asserted. This partial proof is prepared by Section 4, which offers
additional background knowledge on crucial concepts used in Section 5

A major feature of Knop’s construction is that the quotient of the Cauchy com-
pletion of his modified relation category with respect to the tensor radical forms a
semi-simple tensor category. This result does not seem to pass to the more general
setting considered here. However, Sections 6 and 7 investigate how two important
ingredients of Knop’s semi-simplicity proof generalize or fail to do so, the theory of
subquotients and the property of being both (Barr-)exact and Mal’cev.

Finally, Section 8 points out some research questions raised by the generalized
construction.

2. Overview of the construction

Philosophically, Deligne and Knop’s construction can be understood as partial
horizontal decategorification, the collapsing of a multiple-object category into a
single-object one – but applied not to an entire category but only a subcategory. In
somewhat greater detail: In any regular category A, as mentioned, any morphism
decomposes into a product of a regular epimorphism and a monomorphism. Thus,
with every hom set X → A⊗B one can associate collections EA,B of morphisms X → ⋅
of the subcategory E of regular epimorphisms and MA,B of morphisms ⋅ → A ⊗ B
of the subcategory M of monomorphisms by considering all the E- and M-parts of
decompositions of A-morphisms X → A ⊗ B. In a loose, non-technical sense EA,B
“acts” by composition onMA,B to produce the hom set. This describes a situation
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similar in spirit to a category enriched in a monoidal category of module objects over
a monoid object. However, the collections EA,B, firstly, depend on A and B and,
secondly, are not monoids but something more complicated, involving potentially
all objects of A. The Deligne-Knop procedure constructs from E via the means of
a degree function a monoid object R and produces an honest R-modules-enriched
category with the hom object A→ B given by a free action of R on MA,B.

Notation 2.1. Always, 0 ∉ N. Rather, N0 = N ∪ {0}. We will write epiC, repC,
monC, rmoC and isoC for the subcategories of epimorphisms, regular epimorphisms,
monomorphisms, regular epimorphisms and isomorphisms, respectively, of any cat-
egory C. Given any category C equipped with monoidal structure the monoidal
product of C will be denoted by ⊗C, the monoidal unit by IC, the associator by αC
and the left and right unitors by λC and ρC, respectively. If the category in question
is clear from the context the index may be omitted. If C is endowed with a braiding,
the latter will be addressed by γC. For any monoidal functor F the symbols F⊗ and
FI will be used, respectively, for the product and the unit coherence transformations.
For any given ∗-monoid M we will write OM for the underlying object, ⊗M for the
operation, IM for the unit and ∗M for the star of M . Finally, the push-forward of a
monoid M along a monoidal functor F is denoted by F⊳(M).

2.1. Ingredients for the construction. The following definitions are required
to formulate the generalized construction.

2.1.1. Cartesian monoidal categories. Any symmetric monoidal category is said
to be cartesian monoidal if I is a terminal object and if for any objects A and
B, if ωA and ωB denote the terminal morphisms of A and B, respectively, the left
projection π1

A,B ∶= ρA ○ (idA ⊗ ωB) and the right projection π2
A,B ∶= λB ○ (ωA ⊗ idB)

form a product of A and B. If so, given any f ∶ X → A and g∶ X → B their product
morphism X → A⊗B with respect to this product will be denoted by f × g.

2.1.2. Pull-backs. Recall that a span is any
pair of morphisms with common domain and,
dually, a co-span any pair with common co-
domain. Given a co-span (g, p) with g∶ X → B
and p∶ Y → B a pull-back of (g, p) is any span
(a, b) such that there exists P with a∶ P → X
and b∶ P → Y and g ○ a = p ○ b and such that
(a, b) is universal with this property.

X

P ′ P B

Y

g
a′

b′

∃!m
a

b
p

In this situation we say that a is a pulled-back version or, simply, a pull-back of p
along g (and, likewise, b a pull-back of g along p).

We call any wide subcategory E of A pull-back-stable if e′ belongs to E for any
e ∈morE(A,B) and any pull-back e′∶ A′ → B′ of e in A along any morphism B′ → B
of A.

Lemma 2.2. Let E be any pull-back-stable wide subcategory of any category A.
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(a) Every isomorphism of A is a morphism of E .
(b) If A is equipped with a cartesian monoidal structure, then E is even a sym-

metric monoidal subcategory.

Proof. Claim (a) holds because for any isomorphism u∶ A→X of A a pull-back
in A of the co-span (idX , idX) of E is given by (u,u). If A is cartesian monoidal
and if ei ∈ morE(Ai,Xi) for each i ∈ {1,2}, then, first, (e1 ⊗ idA2 , π

1
A1,A2
) is a pull-

back of (π1
X1,A2

, e1) in A, which makes e1 ⊗ idA2 a morphism of E , and, second,

(idX1 ⊗ e2, π2
X1,A2

) is a pull-back of (π2
X1,X2

, e2), ensuring that idX1 ⊗ e2 belongs to

E . Now, the identity (idX1 ⊗ e2) ○ (e1 ⊗ idA2) = e1 ⊗ e2 proves (b). □

A functor H ∶ A→ A′ between categories with pull-backs is said to preserve pull-
backs if for any pull-back (a, b) of any co-span (g, p) in A the span (H(a),H(b)) is
a pull-back of (H(g),H(p)) in A′.

Given pull-back-preserving functors H,K ∶ A → A′ any natural transformation
η∶ H ⇒ K is called equifibered if for any morphism f ∶ X → Y of A the span
(H(f), ηX) is a pull-back of (ηY ,K(f)) in A′.

2.1.3. Factorization systems. In any category A we say that any
morphism e∶ A → B is left-orthogonal to any morphism m∶ C → D
or, equivalently, that m is right-orthogonal to e, in symbols: e ⊥m,
if for any f ∶ A→ C and g∶ B →D such that g○e =m○f there exists
a unique d∶ B → C, a diagonal, such that f = d ○ e and g =m ○ d.

A B

C D

e

f g∃!d

m

For any systems E and M of morphisms of A let E⊥ ∶= {m ∣∀e ∈ E ∶ e ⊥ m} and
⊥M ∶= {e ∣∀m ∈ M∶ e ⊥ m}. Then, E⊥ and ⊥M are wide subcategories of A con-
taining the core isoA of A by [FK72, Propositions 2.1.1 (a) and 2.1.2]. Any pair
(E ,M) of systems of morphisms is called a pre-factorization-system if E⊥ =M and
E = ⊥M. If so, thenM is pull-back-stable by [FK72, Proposition 2.1.1 (b)]. Finally,
we call any pre-factorization-system (E ,M) a factorization system of A if for any
morphism f ∶ X → Y of A there exists an object S, an image object, and (e,m), a
factorization, such that e∶ X → S is a morphism of E and m∶ S → Y one of M and
such that f = m ○ e. Completely analogous is the definition of a weak factorization
system, with the sole difference that we do not demand that the diagonal be unique.
Rather than speaking of orthogonality, we say that the morphisms have the lifting
property with respect to each other and write ⋔ instead of ⊥.

Lemma 2.3. [JW00, Proposition 1.1.1] For any cartesian monoidal category A
and any factorization system (E ,M) of A all morphisms of E are epimorphisms of
A if and only if idA,X ×A h is a morphism of M for any h ∈morA(X,Y ).
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Proof. If E ↪ epiA, then, given any e ∈ morE(A,B) and
any f and g1 × g2 such that (g1 × g2) ○ e = (idX × h) ○ f ,
the diagonal g1∶ B →X already satisfies g1 ○ e = f trivially.
And, the other identity (idX×h)○g1 = g1×g2, i.e., effectively,
g2 = h ○ g1, follows from g2 ○ e = h ○ f = h ○ g1 ○ e because
e is an epimorphism. For the same reason the diagonal is
unique.

A B

X X ⊗ Y
f

e

g1×g2g1

idX×h

A B

B B ⊗K

e

e idB×k2∃!d

idB×k1

To show the converse, if e ∈ morE(A,B) and ki∶ B →
K for each i ∈ {1,2} are such that k1 ○ e = k2 ○ e, then,
because (idB ×k1) ○ e = (idB ×k2) ○ e and because idB ×k1 ∈
morM(B,B ⊗K) by assumption, there exists d∶ B → B
such that, in particular, (idB × k1) ○ d = idB × k2. But that
already implies d = idB and, thus, k1 = k2. ◻

Finally, given any wide subcategoryM of A we say that A isM-subobject-small
respectively M-subobject-finite if the slice category M/X of M over X is essentially
small respectively finite, i.e., equivalent to a small respectively finite category, for
any object X of A.

2.1.4. Generalized degree functions. The next definition encompasses [Kno07,
Definition 3.1] as the special case where S is given by the abelian groups Ab, where
A is regular and where E is the subcategory repA of regular epimorphisms of A.

Definition 2.4. Let S with US∶ S→ Set be any concrete symmetric monoidal cat-
egory and let Md(S) be the symmetric monoidal category of commutative monoid
objects of S and UMd(S) its forgetful symmetric monoidal functor Md(S)→ Set.

(a) For any object R of Md(S), any cartesian monoidal category A with pull-
backs and any pull-back-stable wide subcategory E of A, an (S, US)-type
R-valued E-degree function is any pull-back-invariant functor from E to the
delooping of the monoid object US⊳(R) of Set underlying R, i.e., any δ such
that

(i) δ is a family of morphisms δA,B of Set indexed by all pairs (A,B) of
objects of A such that

δA,B ∈morSet(morE(A,B),OUS⊳(R)),

(ii) δX,X○Set idE,X = IUS⊳(R) for any object X of A, where we have considered
idE,X to be a morphism ISet →morE(X,X) of Set,

ISet

morE(X,X) OUS⊳(R)

idE,X IUS⊳(R)

δX,X
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(iii) ⊗US⊳(R) ○Set (δB,C ⊗Set δA,B) = δA,C ○Set ○E,A,B,C for any objects A, B and
C of A, and

morE(B,C)⊗Set morE(A,B) morE(A,C)

OUS⊳(R) ⊗Set OUS⊳(R) OUS⊳(R)

○E,A,B,C

δB,C⊗SetδA,B δA,C

⊗US⊳(R)

(iv) δA′,B′(e′) = δA,B(e) for any e ∈ morE(A,B) and any pull-back e′ ∈
morE(A′,B′) along any morphism B′ → B of A.

(b) We say that δ is a co-universal (S, US)-type E-degree function forA if for any
object R′ of Md(S) and any (S, US)-type R′-valued E-degree function δ′ for
A there exists a unique f ∈morMd(S)(R,R′) with δ′A,B = UMd(S)(f) ○Set δA,B
for any objects A and B of A.

(c) For any further concrete symmetric monoidal category (S′, US′), any functor
F ∶ S′ → S with US○F = US′ , any commutative monoid object R′ of S′ and any
j ∈morMd(S)(R,F⊳(R′)) the transformation (F, j)⊛(δ) of δ with respect to
F and j is the (S′, US′)-type R′-valued E-degree function for A with

((F, j)⊛(δ))A,B ∶= UMd(S)(j) ○Set δA,B,
for any objects A and B of A.

(d) The trivial (S, US)-type E-degree function for A is the unique IMd(S)-valued
one.

By the same reasoning as in [Kno07, Section 8, p. 593], if a cartesian monoi-
dal category with pull-backs is essentially small, then any pull-back-stable wide
subcategory has (at least) a co-universal Set-type as well as Ab-type degree func-
tion.

Lemma 2.5. Let (S, US) be any concrete symmetric monoidal category, R any
commutative S-monoid, A any cartesian monoidal category, E any pull-back-stable
wide subcategory of A and δ any (S, US)-type R-valued E-degree function for A.

(a) δA,X(u) = IUS⊳(R) for any isomorphism u∶ A→X of A.
(b) ⊗US⊳(R)○Set(δA1,X1⊗SetδA2,X2) = δA1⊗AA2,X1⊗AX2○Set(⊗E)1,(A1,A2),(X1,X2), where

⊗E is the restriction of ⊗A.

morE(A1,X1)⊗Set morE(A2,X2) morE(A1 ⊗A A2,X1 ⊗AX2)

OUS⊳(R) ⊗Set OUS⊳(R) OUS⊳(R)

(⊗E)1,(A1,A2),(X1,X2)

δA1,X1
⊗SetδA2,X2

δA1⊗AA2,X1⊗AX2

⊗US⊳(R)

Proof. The proof of Lemma 2.2 (a) showed that u can be written as a pull-
back of idX , which proves (a). If ei ∈morE(Ai,Xi) for each i ∈ {1,2}, we saw in the
proof of Lemma 2.2 (b) that e1⊗ idA2 is a pull-back of e1 and idX1 ⊗ e2 one of e2. It
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follows δ(e1 ⊗ e2) = δ((idX1 ⊗ e2) ○ (e1 ⊗ idA2)) = δ(idX1 ⊗ e2) ⊗US⊳(R) δ(e1 ⊗ idA2) =
δ(e2)⊗US⊳(R) δ(e1) = δ(e1)⊗US⊳(R) δ(e2), verifying (b). □

Lemma 2.5 (a) shows in particular that for any cartesian monoidal categoryA and
any concrete symmetric monoidal category (S, US) there is exactly one isoA-degree
function, the trivial one.

2.1.5. Quasi-projections. We exhibit a natural pull-back-stable wide subcategory
on any given monoidal category and determine its universal Set-type degree function
in good cases.

Definition 2.6. In any cartesian monoidal cat-
egory a quasi-projection is any morphism of the
form e = π1

X,K ○ v for any objects A, X and K and
any isomorphism v∶ A→X ⊗K.
We write qprA for the collection of all quasi-pro-
jections of any given cartesian monoidal category
A.

A X

X ⊗K

e

v π1
X,K

For any essentially small cartesian monoidal category A the set A/≅ of all isomor-
phism classes [X] of objects X of A becomes a commutative monoid object MA of
Set, the object monoid of A, when equipped with the operation [X1] ⊗MA [X2] ∶=
[X1 ⊗AX2] and the unit [IA].

Definition 2.7. Any essentially small cartesian monoidal category A is said to
be monoidally cancellative if the commutative monoid MA is cancellative.

In such an A, for any object X and any isomorphisms v∶ A→X ⊗K and v′∶ A→
X ⊗ K ′, whenever π1

X,K ○ v = π1
X,K′ ○ v′, then [K] = [K ′] because v′ ○ v−1 is an

isomorphism X ⊗K →X ⊗K ′. Hence, the following definition makes sense.

Definition 2.8. In any monoidally cancellative essentially small cartesian mo-
noidal category A the degree of any quasi-projection e∶ A→X is the unique element
qkerA,A,X(e) ∶= [K] of MA for which there exists an invertible v∶ A → X ⊗K such
that e = π1

X,K ○ v.

Proposition 2.9. Let A be any cartesian monoidal category.
(a) qprA is a pull-back-stable wide subcategory of A.
(b) If A is essentially small and monoidally cancellative, then qkerA is a co-

universal (Set, idSet)-type qprA-degree function for A.
Proof. Identities. For any object X the decomposition idX = ρX ○ ρ−1X = π1

X,I ○
ρ−1X shows that qprA contains all identities and, under the premises of (b), that
qkerA(idX) = IMA .

Composition. Given any isomorphisms v∶ A → B ⊗ K and u∶ B → X ⊗ L the
morphism w ∶= αX,L,K ○ (u⊗ idK) ○ v is invertible and satisfies π1

X,L⊗K ○w = (π1
X,L ○

u)○(π1
B,K ○v), proving that qprA is closed under composition. Under the additional

assumptions of (b), we can moreover infer qkerA((π1
X,L ○u) ○ (π1

B,K ○ v)) = [L⊗K] =
[L]⊗MA [K] = qkerA(π1

X,L ○ u)⊗MA qkerA(π1
B,K ○ v).
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Pullbacks. If v∶ A → X ⊗K is any isomorphism and f ∶ C → X any morphism
of A, then (v−1 ○ (f ⊗ idK), π1

C,K) is a pull-back of (π1
X,K ○ v, f). Hence, if (f ′, e′)

is an arbitrary pull-back of (π1
X,K ○ v, f) we find an isomorphism u such that f ′ =

v−1 ○ (f ⊗ idK) ○ u and e′ = π1
C,K ○ u, which exhibits e′ as a quasi-projection. Thus

qprA is pull-back-stable. Moreover, the identity qkerA(e′) = [K] = qkerA(π1
X,K ○ v)

in the situation of (b) completes the proof that qkerA is a degree function.
Co-universality It only remains to show that qkerA is co-universal. If R is any

commutative monoid of Set and δ any Set-type R-valued qprA-degree function, then
at most one monoid morphism u∶ MA → R with δA,X = UMd(Set)(u)○qkerA,A,X for all
objects A and X can exist because the Set morphisms qkerA,A,X are by construction
jointly epimorphic. We exhibit such a u.

The rule [K] ↦ δ(π1
I,K) defines a morphism ũ∶ A/≅ → OUSet⊳(R) of Set because

π1
I,K is a quasi-projection and because for any isomorphism w∶ K → K ′, as idI ⊗ w

is invertible, δ(π1
I,K′ ○ (idI ⊗w)) = δ(π1

I,K) by Lemmata 2.2 (a) and 2.5 (a).

Moreover, for any isomorphism v∶ A→X⊗K Lemma 2.2 (b) and Part (a) ensure
that idX ⊗ π1

I,K belongs to qprA and Lemma 2.2 (b) guarantees δ(idX ⊗ π1
I,K) =

δ(π1
I,K). As ρX , (idX ⊗λ−1K ) and v are all invertible and thus by Lemma 2.2 (a) and

Part (a) morphisms of qprA as well, δ is defined on every factor in the decomposition
ρX ○ (idX ⊗ π1

I,K) ○ (idX ⊗ λ−1K ) ○ v of e ∶= π1
X,K ○ v. Thus, δ(e) = δ(π1

I,K) = ũ([K]) =
ũ(qkerA(e)) by both parts of Lemma 2.5.

As π1
I,I = λI is an isomorphism, ũ(IMA) = ũ([I]) = δ(π1

I,I) = IR by Part (a) and

Lemmata 2.2 (a) and 2.5 (a). Given any objects K1 and K2, the three morphisms
e1 ∶= π1

I⊗K2,K1
○α−1I,K2,K1

, e2 ∶= π1
I,K2

and e ∶= π1
I,K2⊗K1

are all quasi-projections, which

is why, by what we saw in the preceding paragraph, δ(e1) = ũ(qkerA(e1)) = ũ([K1])
and δ(e2) = ũ([K2]) as well as δ(e) = ũ([K1 ⊗ K2]) . From e = e2 ○ e1 it now
follows ũ([K1] ⊗MA [K2]) = ũ([K1 ⊗ K2]) = δ(e) = δ(e2 ○ e1) = δ(e2) ⊗R δ(e1) =
ũ([K2]) ⊗R ũ([K1]). Thus, ũ indeed lifts to a morphism u∶ MA → R with the
desired properties. □

In [Kno07, Section 9, p. 599] Knop defines a uniform map as a mapping between
finite sets all of whose fibers have the same cardinality. This cardinality he calls the
degree of the uniform map (but only if the co-domain of the latter is non-empty). In
our language: The full subcategory nefSet of Set generated by all non-empty finite
sets is a cartesian monoidal category; its class qprnefSet of quasi-projections, given
by all uniform maps between non-empty sets, is a pull-back-stable subcategory of
nefSet by Proposition 2.9 (a); its universal degree function is qkernefSet by Proposi-
tion 2.9 (b), which via the isomorphism of MnefSet → (N, ⋅ ), [K] ↦ ∣K ∣ corresponds
to the degree of a uniform map in Knop’s sense.

2.2. The generalized Deligne-Knop functor. With the terms and results of
Section 2.1 at hand, we can formulate the definition of the generalization of Knop’s
construction from [Kno07], which in turn generalized Deligne’s from [Del07b]. More
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precisely, there will be two versions, one without and one with fiber functors to be
used for Tannaka-Krein duality.

2.2.1. Non-Tannakian version. Throughout, this section let S with US∶ S → Set
be any concrete symmetric monoidal category with co-equalizers such that ( ⋅ )⊗SX
preserves co-equalizers for each object X of S and such that US admits a symmetric
(necessarily strong) monoidal left adjoint GS∶ Set → S, let R be any commutative
∗-monoid object of S, let M ≡ ModR(S) be the symmetric monoidal category of
module objects over R in S and let GM∶ Set → M and UM∶ M → Set be, respectively,
the free and the forgetful symmetric monoidal functors induced by GS and US, let
cuM∶ GM ○ UM ⇒ idM be the co-unit and unM∶ idSet ⇒ UM ○ GM the unit of the
adjunction GM ⊣ UM, and let cjM be the endofunctor of M which replaces any
module by the module with the conjugate action of R (and which is the identity on
morphisms). Notable examples of S are Set or Ab.

The following definition describes the inputs as well as the outputs of the gener-
alized Deligne-Knop construction.

Definition 2.10. (a) Write dS,ResmCATcart,fc for the strict 2-category whose
0-cells are triples (A,E , δ) such that

(i) A is any cartesian monoidal category with pull-backs,
(ii) E is any wide pull-back-stable subcategory of A such that E consists

of epimorphisms of A
(iii) δ is any (S, US)-type R-valued E-degree function for A,
whose 1-cells from (A,E , δ) and (A′,E ′, δ′) are all H such that

(i) H is a symmetric strong monoidal pull-back-preserving functorA→ A′,
(ii) H restricts to a functor E → E ′, and

(iii) δ′
H(A),H(B) ○SetH1,A,B = δA,B for any objects A and B of A,

morE(A,B) morE ′(H(A),H(B))

UMd(S)(R)
δA,B

H1,A,B

δ′
H(A),H(B)

whose 2-cells of 1-cells from (A,E , δ) to (A′,E ′, δ′) from H to G are given by
all equifibered monoidal natural transformations H ⇒ G, and whose identi-
ties and operations are inherited from the 2-category smCAT of symmetric
monoidal categories.

(b) Let dS,ResmCATcart,fc
fs be the sub-2-category of dS,ResmCATcart,fc with all

(i) 0-cells (A,E , δ) such that (E ,E⊥) is a factorization system for A and
such that A is E⊥-subobject-small,

(ii) 1-cells H between such 0-cells, say from (A,E , δ) to (A′,E ′, δ′), such
that H restricts to a functor E⊥ → (E ′)⊥, and

(iii) 2-cells between such 1-cells.
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(c) Write smModR(S)†CATr for the (strict) 2-category of rigid symmetric mo-
noidal ModR(S)-enriched †-categories (with symmetric monoidal ModR(S)-
enriched †-functors as 1-cells and monoidal ModR(S)-enriched natural trans-
formations as 2-cells).

Because any commutative monoid object is trivially a commutative ∗-monoid ob-
ject when equipped with the identity, no effective restriction is imposed by requiring
∗-monoid objects instead of just monoid objects in Definition 2.10 (a).

Lemma 2.3 ensures that the following definitions make sense. It can be checked
that they are independent of the choices of representatives of equivalence classes.

Definition 2.11. For any 0-cell (A,E , δ) of dS,ResmCATcart,fc
fs make the following

definitions, where M ∶= E⊥ and where T 0 is short for T 0(A,E , δ):
(a) Objects. Let objT 0 be the same as objA.
(b) Morphisms. For any objects A and B of A let, temporarily,

r(A,B) ≡ rA(A,B) ∶= (MÒ(A⊗A B))Ò≅
∈ objSet

denote the set of all isomorphism classes of objects of the slice category of
M over the object A⊗A B and then let

morT 0(A,B) ∶= (GM)0(r(A,B)) ∈ objM,

be the free R-module over that.
(c) Composition. For any objects A, B and C of A let, temporarily,

cA,B,C ∈morSet(r(B,C)⊗Set r(A,B), UM(IM)⊗Set r(A,C))

be given by

(y, x)↦ (δ(e), [m])

for any f ∈ morA(X,A) and g ∈ morA(X,B) such that f ×A g ∈ x, any
p ∈morA(Y,B) and q ∈morA(Y,C) such that p×Aq ∈ y, any a ∈morA(P,X)
and b ∈ morA(P,Y ) such that (a, b) is a pull-back of (g, p) and any e ∈
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morE(P,S) and m ∈ morM(S,A⊗A C) such that (e,m) is an (E ,M)-
factorization of (f ○A a) ×A (q ○A b),

A

X A⊗B

P S B A⊗C

Y B ⊗C

C

f

g

f×g

π1
A,B

π2
A,B

a

b

e

m

π1
A,C

π2
A,C

p

q

p×q

π1
B,C

π2
B,C

and then, suppressing everywhere the index M, define

○T 0,A,B,C ∶= λG(r(A,C)) ○ (εI ⊗ idG(r(A,C))) ○G⊗,U(I),r(A,C)
−1

○G(cA,B,C) ○G⊗,r(B,C),r(A,B).

G(r(B,C))⊗G(r(A,B)) G(r(B,C)⊗ r(A,B))

G(U(I)⊗ r(A,C))

G(U(I))⊗G(r(A,C))

G(r(A,C)) I ⊗G(r(A,C))

G⊗,r(B,C),r(A,B)

○T 0,A,B,C

G(cA,B,C)

G⊗,U(I),r(A,C)−1

εI⊗idG(r(A,C))

λG(r(A,C))

(d) Identities. For any object A of A, if we interpret the isomorphism class
[idA,A ×A idA,A] of objects of M/(A⊗A A) as a morphism ISet →morT 0(A,A),
define

idT 0,A ∶= GM([idA,A ×A idA,A]) ○M (GM)I .

(e) Monoidal product. For any objects A1 and A2 of A let

A1 ⊗T 0 A2 ∶= A1 ⊗A A2.



2. OVERVIEW OF THE CONSTRUCTION 405

Moreover, for any objects A1, A2, B1 and B2 of A if, temporarily,

mA1,A2,B1,B2 ∈
morSet(r(A1,B1)⊗Set r(A2,B2), r(A1 ⊗A A2,B1 ⊗A B2))

denotes the mapping with

(x1, x2)↦ [(f1 ⊗A f2) ×A (g1 ⊗A g2)]
for any fi ∈ morA(Xi,Ai) and gi ∈ morA(Xi,Bi) such that fi ×A gi ∈ xi for
each i ∈ {1,2}, let

(⊗T 0)1,(A1,A2),(B1,B2) ∶= GM(mA1,A2,B1,B2) ○M (GM)⊗,r(A1,B1),r(A2,B2).

(f) Monoidal Unit. Let IT 0 be the same as IA.
(g) Associator. For any objects A1, A2 and A3 of A if we consider the iso-

morphism class

[idA,(A1⊗AA2)⊗AA3
×A αA,A1,A2,A3]

of objects of the category

MÒ(((A1 ⊗A A2)⊗A A3)⊗A (A1 ⊗A (A2 ⊗A A3)))
to be a morphism ISet → r((A1 ⊗AA2)⊗AA3,A1 ⊗A (A2 ⊗AA3)) of Set, we
can put

αT 0,A1,A2,A3
∶= G([idA,(A1⊗AA2)⊗AA3

×A αA,A1,A2,A3]) ○M GI .

(h) Left unitor. For any object A of A, if the class [idA,IA⊗AA ×A λA,A] of
objects ofM/((IA ⊗A A)⊗A A) is thought of as a morphism ISet → r(IA⊗AA,A)
of Set, one can define

λA,A ∶= GM([idA,IA⊗AA ×A λA,A]) ○M (GM)I .
(i) Right unitor. Likewise, for any object A of A it makes sense to define

ρA,A ∶= GM([idA,A⊗AIA ×A ρA,A]) ○M (GM)I .
(j) Braiding. For any objects A1 and A2 of A, if we interpret the isomor-

phism class [idA,A1⊗AA2 ×A γA,A1,A2] of objects of M/(A1 ⊗A A2)⊗A (A2 ⊗A A1)
as a morphism ISet → r(A1 ⊗A A2,A2 ⊗A A1), we can let

γT 0,A1,A2
∶= GM([idA,A1⊗AA2 ×A γA,A1,A2]) ○M (GM)I .

(k) Dagger. Finally, for any objects A and B of A, if, temporarily,

dA,B ∈morSet(r(A,B), r(B,A))
is the mapping with

x↦ [g ×A f]
for any f ∈ morA(X,A) and g ∈ morA(X,B) such that f ×A g ∈ x, then let
(†T 0)0 be the identity on objA and let

(†T 0)1,A,B ∶= εM,cjM(GM(r(B,A))) ○M GM(ηM,r(B,A) ○Set dA,B).
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Definition 2.12. For any 1-cellH from any 0-cell (A,E , δ) to any 0-cell (A′,E ′, δ′)
of dS,ResmCATcart,fc

fs , define T 0(H) as follows, where M′ ∶= (E ′)⊥.
(a) On objects: (T 0(H))0 is the same as H0.
(b) On morphisms: For any objects A and B of A, if, temporarily,

vA,B ∈morSet(rA(A,B), rA′(H0(A),H0(B)))
denotes the mapping

x↦ [H1,X,A(f) ×A′ H1,X,B(g)]
for any f ∈morA(X,A) and g ∈morA(X,B) such that f ×A g ∈ x, then

(T 0(H))1,A,B ∶= GM(vA,B).
(c) Monoidal product coherence: For any objects A1 and A2 of A, if we

interpret the isomorphism class

[idA′,H(A1)⊗A′H(A2) ⊗A′ H⊗,A1,A2]
of objects of

M′
Ò((H(A1)⊗A′ H(A2))⊗A′ (H(A1 ⊗A A2)))

as a morphism ISet → rA′(H(A1)⊗A′ H(A2),H(A1 ⊗A A2)), then

(T 0(H))⊗,A1,A2
∶= GM([idA′,H(A1)⊗A′H(A2) ⊗A′ H⊗,A1,A2]) ○M (GM)I .

(d) Monoidal unit coherence: Finally, if we consider the isomorphism class

[idA′,IA′ ×A′ HI]
of objects of

M′
Ò(IA′ ⊗A′ H(IA))

a morphism ISet → rA′(IA′ ,H(IA)), then

(T 0(H))I ∶=M([idA′,IA′ ×A′ HI]) ○M (GM)I .
Definition 2.13. For any 1-cells H and K from any 0-cell (A,E , δ) to any 0-cell

(A′,E ′, δ′) and for any 2-cell η from H to K of dS,ResmCATcart,fc
fs , if for any object A

of A the isomorphism class

[idA′,H(A) ×A′ ηA]
of objects of the category

M′
Ò(H(A)⊗A′ K(A))

is interepreted as a morphism ISet → rA′(H(A),K(A)), then define

(T 0(η))A ∶= GM([idA′,H(A) ×A′ ηA]) ○M GMI .

Unfortunately, I was not able to check all the constituent claims of the following
assertion because I ran out of time.
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Conjecture 2.14. T 0 is a 2-functor dS,ResmCATcart,fc
fs → smModR(S)†CATr.

Of course, we are then free to consider a composition of T 0 with any or all of (at
least) the following 2-functors, in various orders:

(1) going from smModR(S)†CATr to smModK(V)†CATr a change W_ of en-
riching category along any symmetric monoidal functor W ∶ ModR(S) →
ModK(V), in particular, if S = V, restriction, extension or co-extension
of scalars R ↔ K, or, a W induced by any symmetric monoidal functor
S→V, notably, if S = Set and V = Ab, via the free functor GAb∶ Set→ Ab,

(2) the 2-functor that forgets the †-structure,
(3) provided the current enriching category is complete and co-complete, the

Cauchy completion 2-functor (for rigid symmetric monoidal (†-)categories),
e.g., if enriched over Ab-modules the 2-functor also known as the Karoubian
or pseudo-abelian closure.

2.2.2. Tannakian version. As with the non-Tannakian version of the construc-
tion, there are numerous variants to consider with respect to different enriching
categories and points in time when a change of enriching category may occur. For
the sake of brevity only one scenario is treated. Namely, let R be a commutative
unital ∗-ring, i.e., a commutative ∗-monoid object in Ab and let j be the unique
morphism of ∗-monoid objects MnefSet ≅ (N, ⋅ )→ UAb⊳(R).

Definition 2.15. (a) Of dAb,ResmCATcart,fc
fs let dAb,ResmCatcart,fcfs be the full

sub-2-category generated by all 0-cells (A,E , δ) such that A is small.
(b) Let smModR(Ab)†Catr be the full sub-2-category of smModR(Ab)†CATr

on all small 0-cells.

We describe a 2-functor, an extension of T 0, denoted by T 0
T ,

dAb,ResmCatcart,fcfs Ò(nefSet,qprnefSet, (UAb, j)⊛(qkernefSet))

smModR(Ab)†CatrÒ↑ModR(Ab)fgp

∗Hopf(ModR(Ab)),

T 0
T

⊣ Comoduni

where the top is the sub-2-category of the slice-2-category of dAb,ResmCATcart,fc

over the 0-cell (nefSet,qprnefSet, (UAb, j)⊛(qkernefSet)) induced by dAb,ResmCatcart,fcfs ,
and where the middle is the slice 2-category of smModR(S)†CATr over the 0-cell
↑
ModR(Ab)fgp, the category ModR(Ab)fgp of finitely generated projective R-mod-

ules considered (via self-enrichment) as a ModR(Ab)-enriched category, induced
by smModR(Ab)†Catr. At least if R = C, then by Tannaka-Krein duality there is
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a 2-adjunction between this 2-category and ∗Hopf(ModR(Ab)), the 2-category of
∗-Hopf-monoids (and only trivial 2-cells).

Resume the abbreviations from the beginning of Section 2.2.1 with S = Ab. More-
over, let νM∶ UM○[ ⋅ , ⋅ ]M⇒ homM be the natural isomorphism connecting the internal
and external hom functors and the forgetful functor and let ( ⋅ )∨M denote the du-
alization with respect to the canonical dual objects X∨M = X for any dualizable
object X of M. Finally, for any object X of M let evM,X ∶ [X, ⋅ ]M ⊗M X ⇒ idM

and ceM,X ∶ idM⇒ [X, ( ⋅ )⊗X]M be the evaluations respectively co-evaluations with
respect to ⊗M and [ ⋅ , ⋅ ]M.

Definition 2.16. For any 0-cell (A,E , δ) of dAb,ResmCatcart,fcfs and any 1-cell P

of dAb,ResmCATcart,fc from (A,E , δ) to (nefSet,qprnefSet, (UAb, j)⊛(qkernefSet)) make
the following definitions for T 0

T (P ).
(a) On objects. For any object A of A let (T 0

T (P ))0(A) ∶= GM(P (A)).
(b) On morphisms. If for any objects A and B of A, temporarily,

tA,B ∈morSet(r(A,B),morM(GM(P (A)),GM(P (B))))

denotes the mapping given by

x↦ GM(P (g)) ○M GM(P (f))∨M

for any f ∈ morA(X,A) and g ∈ morA(X,B) such that f ×A g ∈ x, then
define

(T 0
T (P ))1 ∶= cuM,[GM(P (A)),GM(P (B))]M

○M GM(ν−1M,GM(P (A)),GM(P (B)) ○Set tA,B).

(c) Monoidal product coherence. For any objects A1 and A2 of A let

(T 0
T (P ))⊗,A1,A2

∶= [idM,GM(P (A1))⊗MGM(P (A2)), (GM ○ P )⊗,A1,A2
]M

○M [idM,GM(P (A1))⊗MGM(P (A2)), λM,GM(P (A1))⊗MGM(P (A2))]M
○M ceM,GM(P (A1))⊗MGM(P (A2)),IM .

(d) Monoidal unit coherence. Finally, define

(T 0
T (P ))I ∶= [idM,IM , (GM ○ P )I ○M λM,IM]M ○M ceM,IM,IM .

Definition 2.17. Given, in dAb,ResmCatcart,fcfs , any 0-cells (A,E , δ) and (A′,E ′, δ′),
any 1-cell H from (A′,E ′, δ′) to (A,E , δ), and, in dAb,ResmCATcart,fc, any 1-cells P
from (A,E , δ) and P ′ from (A′,E ′, δ′) to (nefSet,qprnefSet, (UAb, j)⊛(qkernefSet)), and
any invertible 2-cell η from P to P ′ ○H, define T 0

T (H,η) as the pair with
(a) first component given by T 0(H) and
(b) second component given by the family of M-morphisms indexed over objA

such that, if for any object A of A, if we interpret GM(ηA) as a morphism
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ISet →morM(GM(P (A)),GM(P ′(H(A)))) of Set, the A-component is given
by

cuM,[GM(P (A)),GM(P ′(H(A)))]M
○M GM(ν−1M,GM(P (A)),GM(P ′(H(A))) ○Set ηA) ○M (GM)I .

We use the symbol ◇ for the horizontal composition of 2-cells and ▷ for the right
whiskering of 1-cell and 2-cells.

Definition 2.18. Given, in dAb,ResmCatcart,fcfs , any 0-cells (A,E , δ) and (A′,E ′, δ′)
and any 1-cellsH andK from (A′,E ′, δ′) to (A,E , δ), as well as, in dAb,ResmCATcart,fc,
any 1-cells P from (A,E , δ) and P ′ from (A′,E ′, δ′) to the 0-cell (nefSet,qprnefSet,
(UAb, j)⊛(qkernefSet)), any invertible 2-cells η and θ from P to P ′ ○H respectively
P ′ ○K, and any 2-cell ξ from H to K such that (P ′▷ ξ) ◇ η = θ, let T 0

T (ξ) ∶= T 0(ξ).

Again, since I ran out of time, I was not able to fully confirm that the following
is true.

Conjecture 2.19. T 0
T defines a 2-functor as indicated.

Beware that, differently from [Kno07, Theorem 9.4 (a)] we have only considered
“non-degenerate uniform functors” in Knop’s sense by working in the slice category
over nefSet rather than just fSet.

3. Examples

Section 3 illustrates the reach of the construction presented by listing how it
subsumes (posibly via subcategories) the various relation categories studied in the
tensor category and compact quantum group literature (up to (unitary) monoidal
linear equivalence). Beware 0 ∉ N.

Examples 3.1. (a) Of course, Deligne’s category Rep(St) from [Del07b]
had already been shown to be a special case of Knop’s construction in
[Kno07, pp. 579, 590, 596, 599]. It is obtained as the Cauchy completion of
T 0(A,E , δ) for A being the skeleton of fSetop with objects {∅,{1, . . . , n} ∣n ∈
N} and with the cartesian monoidal structure induced by {1, . . . , n1} ⊗
{1, . . . , n2} ∶= {1, . . . , n1+n2} and π1

{1,...,n1},{1,...,n2} ∶ j ↦ j and π2
{1,...,n1},{1,...,n2} ∶

j ↦ n1 + j for all {n1, n2} ⊆ N and for E = qprA and S = Ab and R = C[t]
and δ being the transformation of qkerA with respect to UAb∶ Ab→ Set and
MA ≅ (N0,+) → C[t],1 ↦ t. To construct its Tannakian version (meaning
t ∈ N) one considers R = C and P = homA({1, . . . , t}, ⋅ ).

(b) But, naturally, most (see Section 1.3) of Knop’s categories T 0 of [Kno07,
Theorem 3.4] can be obtained as the categories T 0(A,E , δ) for A being any
regular (in the usual sense, “complete and regular” in Knop’s sense) cate-
gory (with any cartesian monoidal structure chosen, as Knop only defines
up to symmetric monoidal equivalence) and E = repA and S = Ab and R
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being any commutative unital ring and δ being any Ab-type R-valued repA-
degree function. For the Tannakian version of [Kno07, Theorem 9.4 (a)],
we are limited to considering P to be any left-exact non-degenerate uniform
functor in Knop’s sense.

(c) The categories of partitions defined by Banica and Speicher in [BS09] and
subsequently classified in [Web13],[RW16a], [RW14], [RW16b] by Raum and
the third author can be found as subcategories of T 0(A,E , δ) for A being as
in (a), for E = qprA, for S = Set, for δ being the Set-type trivial qprA-degree
function. To obtain the Tannakian version for n ∈ N one considers instead
S = Ab and R = C and P = homA({1, . . . , n}, ⋅ ).

(d) In order to find the categories of two-colored partitions introduced by
Tarrago and the second author in [TW18] and further studied in [Gro18],
[MW20], [MW21a], [MW21b] and [MW20] one considers subcategories of
T 0(A,E , δ), where A is the category (equivalent but, crucially, not iso-
morphic to fSetop) with object set {∅, (c1, . . . , cn) ∣n ∈ N,{c1, . . . , cn} ⊆
C}, where C = {○, ●} and where (c1, . . . , cn) ∶= {{1, c1}, . . . ,{n, cn}} and
C ∩ N = ∅ and ● ≠ ○, and with the cartesian monoidal structure induced
by (c1, . . . , cm) ⊗ (c′1, . . . , c′n) ∶= (c1, . . . , cm, c′1, . . . , c′n) and the projections
π1
(c1,...,cm),(c′1,...,c′n)

∶ {j, cj} ↦ {j, cj} and π2
(c1,...,cm),(c′1,...,c′n)

∶ {j, c′j} ↦ {m +
j, c′j}, where E = qprA, where S = Set and where δ is the trivial Set-type
qprA-degree function. “Subcategories” here are only those which, if ○ ∶= ●
and ● ∶= ○ contain for each c ∈ C the morphism ∅ → (c, c) given by the
classes of the unique maps (c) ↦ (c, c) of A. As in the one-colored case,
to get the Tannakian version for n ∈ N, one chooses S = Ab and R = C and
P = homA((○, . . . , ○), ⋅ ), where (○, . . . , ○) has cardinality n.

(e) For Freslon’s categories of colored partitions from [Fre17, Definition 5]
one does the same as in (d) with the abstract color set C (in Freslon’s
notation A) and its involution c↦ c playing the roles of the set and map of
the same names there.

(f) Mančinska and Roberson’s graph categories from [MR20, Definition 8.1]
are subcategories of T 0(A,E ,R) for the following choices of A, E , δ: If fGr
is the cartesian monoidal category of simple undirected finite graphs (with
or without loops) and adjacency-preserving maps between their vertex sets
and if UfGr∶ fGr → fSet is the functor which sends each graph to its set
of vertices, then A is the full subcategory of fGrop on all graphs which
are mapped by (UfGr)op to the category A from Example 3.1 (a). It is
equipped with a cartesian monoidal structure with respect to which (UfGr)op
becomes a strict monoidal functor. We choose E = isoA and S = Set and
let δ be the unique isoA-degree function. In particular, Mančinska and
Roberson’s graph category G of all bi-labeled graphs is then given by the
full subcategory of T 0(A,E ,R) generated by all co-free objects (with respect
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to the right adjoint fSetop → fGrop of (UfGr)op). For the Tannakian version,
one considers S = Ab and R = C and P = homA(G, ⋅ ) for any graph G.

If Conjectures 2.14 and 2.19 are correct, though, we can immediately recognize
a sheer unlimited number of further categories.

Examples 3.2. (a) Because the right adjoint of (UfGr)op embeds fSetop into
fGrop Mančinska and Roberson’s graph categories (Example 3.1 (f)) general-
ize Banica and Speicher’s partition categories (Example 3.1 (c)). However,
this embedding does not send the E of the former, quasi-projections, to
those of the latter, isomorphisms. This can be remedied in two ways. First,
we can consider “categories of bi-labeled sets” in Mančinska and Rober-
son’s language, i.e., in Example 3.1 (c), replace qprA by isoA (and δ with
the trivial degree function).

Alternatively, one may consider subcategories of T 0(A,E , δ) for A as
in Example 3.1 (f) and E = qprA and δ = qkerA. Like MfSetop , the object
monoid MfGrop is free, however not singly generated but free over the set of
all isomorphism classes of connected graphs instead.

(b) We can give a choice of A, E and δ that generalizes Mančinska and Rober-
son’s graph categories (Example 3.1 (f)) in the same way that Freslon’s
categories (Example 3.1 (e)) generalize those of Banica and Speicher (Ex-
ample 3.1 (c)). Given a “color set” C we let A be the full subcategory
of fGrop (equivalent but not isomorphic to fGrop) generated by all objects
which are mapped by (UfGr)op to objects of the category A from Exam-
ple 3.1 (e). We can then choose E = qprA and δ = qkerA and S = Set to
obtain a T 0(A,E , δ) whose subcategories correspond to categories of “col-
ored graphs”. However, this is not to be confused with colored graphs
in the sense (of graph theory) that vertices or edges are labeled and ho-
momorphisms are required to preserve these labels (as sketched in [MR20,
Section 8.2]). The colors are only relevant for controlling the number of iso-
morphic objects for the purpose of then carrying out constructions which
violate the principle of equivalence, such as taking subcategories.

4. Auxiliaries for the proof

The partial proof offered in Section 5 that the construction from Section 2 has all
the properties asserted requires more theory about pull-backs, cartesian monoidal
categories and orthogonal factorization than was provided in Section 2. The material
in Section 4 is not new.

4.1. Pull-backs. On many occasions proving the main results will require us
to compute pull-backs, particularly in cartesian monoidal categories. The next few
results facilitate such computations in many situations.
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Lemma 4.1. In any category, for any {X,X ′, Y, Y ′, Z,Z ′} ⊆ obj, any morphisms
f ∈ mor(X,Z) and g ∈ mor(Y,Z) and a ∈ mor(P,X) and b ∈ mor(P,Y ), and any
v ∈ iso(X ′,X) and u ∈ iso(Y ′, Y ) and w ∈ iso(Z ′, Z) the following are equivalent:

(a) (a, b) is a pull-back of (f, g).
(b) (v−1 ○ a, u−1 ○ b) is a pull-back of (w−1 ○ f ○ v,w−1 ○ g ○ u).

X
f

  
P

a
>>

b   

Z

Y

g

>>

X ′ � p
v

!! !!
X
. �

v−1
>> >>

X
f

  
P

a
>>

b   

Z �
� w−1 // // Z ′

Y � p

u−1 !! !!

Y

g

>>

Y ′
. �

u

>> >>

Proof. Because w is an isomorphism it is clear that f ○ a = g ○ b is true if and
only if (w−1 ○f ○v) ○ (v−1 ○a) = (w−1 ○g ○u)○ (u−1 ○ b) holds. Hence, the left diagram
commutes if and only if the right ones is commutative.

Now, suppose that (a, b) is a pull-back of (f, g) and let Q and r∶ Q → X ′ and
s∶ Q→ Y ′ be such that (w−1○f ○v)○r = (w−1○g○u)○s. It follows f ○(v○r) = g○(u○s).
Thus, by the assumption there exists a morphism t∶ Q→ P with r = a○ t and s = b○ t
and, moreover, there is only such morphism. Since the pair of identities v ○ r = a ○ t
and u○s = b○ t is equivalent to the pair r = v−1 ○ t and s = u−1 ○ t, we have thus shown
that (v−1 ○ a, u−1 ○ b) is a pull-back of (w−1 ○ f ○ v,w−1 ○ g ○ u).

Conversely, let now (v−1 ○ a, u−1 ○ b) be a pull-back of (w−1 ○ f ○ v,w−1 ○ g ○ u) and
let C and d∶ C → X and e∶ C → Y be such that f ○ d = g ○ e. Then, because w is an
isomorphism, (w−1 ○f ○v)○ (v−1 ○d) = (w−1 ○g ○u)○ (u−1 ○e). Hence, the assumption
implies the existence of h∶ C → P such that v−1○d = (v−1○a)○h and u−1○e = (u−1○b)○h
and its uniqueness with these properties. However, this pair of identities is clearly
equivalent to the pair d = a ○ h and e = b ○ h, which proves that (a, b) is a pull-back
of (f, g). □

Lemma 4.2. In any category, for any {X,Y,Z,P,P ′} ⊆ obj and any f ∈mor(X,Z)
and g ∈mor(Y,Z) and a ∈mor(P,X) and b ∈mor(P,Y ), and let w ∈ iso(P ′, P ), the
span (a, b) is a pull-back of (f, g) if and only if (a ○w, b ○w) is one.

Proof. Follows from the definitions. □

The following important associativity law for pull-backs was proved in [Kel69,
Lemma 5.1].

Lemma 4.3. The following statements hold in any category.
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(a) If a commutative diagram is given by

A
b //

a
��

B
q //

p

��

C

h
��

D
f
// E g

// F

and thus also by

A
q○b //

a
��

C

h
��

D
g○f

// F

and if (p, q) is a pull-back of (g, h), then the following are equivalent:
(i) (a, b) is a pull-back of (f, p).
(ii) (a, q ○ b) is a pull-back of (g ○ f, h).

(b) If commutative diagrams are given by

B
q //

p

��

C

h
��

E g
// F

and

A
r //

a
��

C

h
��

D
g○f

// F

and if (p, q) is a pull-back of (g, h) and (a, r) is a pull-back of (g ○ f, h),
then there exists a unique morphism b

A
b
//

a
��

r
++

B q
//

p

��

C

h
��

D
f
// E g

// F

such that r = q ○ b and f ○ a = p ○ b.

Lemma 4.4. In any category, for any n ∈ N, for any objects B1, . . . ,Bn+1 and
C1, . . . ,Cn+1 and for any morphisms a1, . . . , an+1 and b1, . . . , bn and c1, . . . , cn such
that bi∶ Bi → Bi+1 and ci∶ Ci → Ci+1 for each i ∈ {1, . . . , n}, and such that ai∶ Bi → Ci
for each i ∈ {1, . . . , n + 1}, whenever (ai, bi) is a pull-back of (ci, ai+1) for each i ∈
{1, . . . , n}, then (a1, bn ○ . . . ○ b1) is a pull-back of (cn ○ . . . ○ c1, an+1).

C1 C2 C3 C4 Cn−1 Cn Cn+1

B1 B2 B3 B4 Bn−1 Bn Bn+1

c1 c2 c3 cn−1 cn

a1

b1

a2

b2

a3

b3

a4 ⋯ an−1

bn−1

an

bn

an+1

Proof. For n = 1 the claim is entailed by Lemma 4.3 (a). Suppose it is true for
all such diagrams of length n. Then, in particular in the current diagram of length
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(n + 1) we can conclude that (a1, bn−1 ○ . . . ○ b1) is a pull-back of (cn−1 ○ . . . ○ b1, an).

C1 Cn Cn+1

B1 Bn Bn+1

cn−1○...○c1 cn

bn−1○...○b1

a1

bn

an an+1

Applying Lemma 4.3 (a) to the remaining length 2 diagram now yields that the pair
(a1, bn ○ . . . ○ b1) is a pull-back of (cn ○ . . . ○ c1, an+1). □

We need the following extension of Lemma 4.3.

Lemma 4.5. If a commutative diagram is given by

A
b //

a
��

B
q //

p

��

C

k
��

D
d
//

c
��

E

s
��

t
// F

h
��

G
f
// H g

// K

and thus also by

A
q○b //

a○c

��

C

k○h

��
G

g○f
// K

and if (s, t) is a pull-back of (g, h), if (c, d) is one of (f, s), if (p, q) is one of (t, k),
and if (a, b) is one of (d, p), then (c ○ a, q ○ b) is a pull-back of (g ○ f, h ○ k).

Proof. By Lemma 4.3 (a), applied to each of the diagrams

A
b //

a
��

B
q //

p

��

C

k
��

D
d
// E

t
// F

and

D
d //

c
��

E

s
��

t // F

h
��

G
f
// H g

// K

,

the pair (a, q ○ b) is a pull-back of (t ○ d, k) and (c, t ○ d) one of (g ○ f, h). Now,
applying Lemma 4.3 (a) a third time to the diagram

A
a //

q○b
��

D
c //

t○d
��

G

g○f
��

C
k
// F

h
// K

yields the claim. □

The following shows that identities also act as neutral elements for pull-backs
and will be used countless times.

Lemma 4.6. In any category, (idA, f) is a pullback of (f, idB) for any f ∈
mor(A,B) and any {A,B} ⊆ obj.
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Proof. Of course, idB ○ f = f ○ idA. If a∶ P → A and b∶ P → B are such that
f ○ a = idB ○ b, then u ∶= a is a morphism P → A with a = idA ○ u and b = f ○ u.

A
f

  
P

a //

a
33

b ++

A

idA
??

f ��

B

B
idB

>>

Moreover, if u′∶ P → A satisfies a = idA ○u′ and b = f ○u′, then u′ = a = u by the first
equality. □

Finally, for the 2-functorial part of the main results it will be important to know
that natural isomorphisms are equifibered.

Lemma 4.7. Any natural isomorphism η from any functor F to any functor G
from any category C to any category D is equifibered.

Proof. Let {A,B} ⊆ objC and any h ∈morC(A,B) be arbitrary and let P ∈ objD
and x ∈morD(P,F (B)) and y ∈morD(P,G(A)) be such that ηB ○D x = G(h) ○D y.

F (B)

P F (A) G(B)

G(A)

ηB

η−1A ○y

x

y

F (h)

ηA G(h)

Since η is a natural isomorphism the naturality condition ηB ○D F (h) = G(h) ○D ηA
implies η−1B ○DG(h) = F (h)○Dη−1A . Hence, if we define m ∶= η−1A ○Dy ∈morD(P,F (A)),
then, on the one hand, of course, ηA○Dm = y, but on the other hand also F (h)○Dm =
F (h) ○D (η−1A ○D y) = (F (h) ○D η−1A ) ○D y = (η−1B ○D G(h)) ○D y = η−1B ○D (G(h) ○D y) =
η−1B ○D ηB ○D x = x. Moreover, m is unique with these properties because ηA is a
monomorphism of D. □

4.2. Cartesian Monoidal Categories. For the proofs in Section 5 it is espe-
cially important to know how to compute pull-backs involving the structure mor-
phisms of a cartesian monoidal category. The next lemma gives an overview of how
those structure morphisms arise from the projections.

Notation 4.8. In any symmetric monoidal category C denote by

µC,A,B,C,D = α−1C,A,C,B⊗CD ○C (idC,A ⊗C αC,C,B,D) ○C (idC,A ⊗C (γC,B,C ⊗C idC,D))
○ (idA ⊗ α−1B,C,D) ○ αA,B,C⊗D
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the four middle interchnage of (A,B,C,D). If C is clear from the context, the index
C may be omitted.

Lemma 4.9. In any cartesian monoidal category
(a) (π1

A,B, π
2
A,B) is a product of (A,B) for any {A,B} ⊆ obj.

(b) ωA is the unique morphism A→ I for each A ∈ obj.
(c) f1 ⊗ f2 = (f1 ○ π1

A1,A2
) × (f2 ○ π2

A1,A2
) for any f1∶ A1 → B1 and f2∶ A2 → B2.

(d) αA,B,C = (π1
A,B ○ π1

A⊗B,C) × ((π2
A,B ○ π1

A⊗B,C) × π2
A⊗B,C) as well as α−1A,B,C =

π1
A,B⊗C × ((π1

B,C ○ π2
A,B⊗C) × (π2

B,C ○ π2
A,B⊗C)) for any {A,B,C} ⊆ obj.

(e) λA = π2
I,A and λ−1A = ωA × idA for any A ∈ obj.

(f) ρA = π1
A,I and ρ−1A = idA × ωAfor any A ∈ obj.

(g) γA,B = π2
A,B × π1

A,B for any objects {A,B} ⊆ obj.
(h) for any {A,B,C,D} ⊆ obj,

µA,B,C,D = ((π1
A,B ○ π1

A⊗B,C⊗D) × (π1
C,D ○ π2

A⊗B,C⊗D))
× ((π2

A,B ○ π1
A⊗B,C⊗D) × (π2

C,D ○ π2
A⊗B,C⊗D)).

Proof. The proof is omitted. □

Lemma 4.10. If commutative diagrams in any cartesian monoidal category are
given by

A1
a1 //

b1
��

B1

g1
��

C1
h1

// D1

and

A2
a2 //

b2
��

B2

g2
��

C2
h2

// D2

and thus also by

A1 ⊗A2
a1⊗a2 //

b1⊗b2
��

B1 ⊗B2

g1⊗g2
��

C1 ⊗C2
h1⊗h2

// D1 ⊗D2

,

and if (a1, b1) is a pull-back of (g1, h1) and (a2, b2) one of (g2, h2), then the pair
(a1 ⊗ a2, b1 ⊗ b2) is a pull-back of (g1 ⊗ g2, h1 ⊗ h2).

Proof. By assumption, (g1 ⊗ g2) ○ (a1 ⊗ a2) = (g1 ○ a1) ⊗ (g2 ○ a2) = (h1 ○ b1) ⊗
(h2 ○b2) = (h1⊗h2)○(b1⊗b2) because ⊗ is a functor. We prove that (a1 ⊗ a2, b1 ⊗ b2)
is universal with that property.

For each i ∈ {1,2} let the objects Xi, Yi, and Bi be such that gi∶ Xi → Bi and
hi∶ Yi → Bi, let Pi be the common domain of (ai, bi) and let (a′, b′) be a pair of
morphisms with common domain P ′ and with (g1 ⊗ g2) ○ a′ = (h1 ⊗ h2) ○ b′. By
the universal property of (ai, bi) for each i ∈ {1,2} there exists a unique morphism
ui∶ P ′ → Pi with πiX1,X2

○ a′ = ai ○ ui and πiY1,Y2 ○ b′ = bi ○ ui: Indeed,

gi ○ (πiX1,X2
○ a′) = (gi ○ πiX1,X2

) ○ a′ = (πiY1,Y2 ○ ((g1 ○ π
1
X1,X2

) × (g2 ○ π2
X1,X2

))) ○ a′

= (πiY1,Y2 ○ (g1 ⊗ g2)) ○ a
′ = πiY1,Y2 ○ ((g1 ⊗ g2) ○ a

′)
= πiY1,Y2 ○ ((h1 ⊗ h2) ○ a

′)
= hi ○ (πiY1,Y2 ○ a

′),
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where the last step is analogous to the ones leading up to it, only in reverse and
with the roles of gi and hi exchanged. For u1 × u2∶ P ′ → P1 ⊗ P2 we find

a′ = (π1
X1,X2

○ a′) × (π2
X1,X2

○ a′) = (a1 ○ u1) × (a2 ○ u2)
= (a1 ○ (π1

P1,P2
○ (u1 × u2))) × (a2 ○ (π2

P1,P2
○ (u1 × u2)))

= ((a1 ○ π1
P1,P2
) × (a2 ○ π2

P1,P2
)) ○ (u1 × u2)

= (a1 ⊗ a2) ○ (u1 × u2)
and by an analogous computation b′ = (b1 ⊗ b2) ○ (u1 × u2). It remains to prove that
u1×u2 is unique with that property. Let u′∶ P ′ → P1⊗P2 be such that a′ = (a1⊗a2)○u′
and b′ = (b1 ⊗ b2) ○ u′. For each i ∈ {1,2} the morphism πiP1,P2

○ u′∶ P ′ → Pi satisfies

πiX1,X2
○ a′ = πiX1,X2

○ ((a1 ⊗ a2) ○ u′) = πiX1,X2
○ (((a1 ○ π1

P1,P2
) × (a2 ○ π2

P1,P2
)) ○ u′)

= (πiX1,X2
○ ((a1 ○ π1

P1,P2
) × (a2 ○ π2

P1,P2
))) ○ u′ = (ai ○ πiP1,P2

) ○ u′

= ai ○ (πiP1,P2
○ u′)

and, analogously, πiX1,X2
○ b′ = bi ○ (πiP1,P2

○u′), the properties which characterized ui
uniquely. From ui = πiP1,P2

○ u′ for each i ∈ {1,2} it now follows u′ = u1 × u2 by the
uniqueness of product morphisms. And that is what we needed to see. □

Lemma 4.11. In any cartesian monoidal category, the following statements hold
for any {X,Y } ⊆ obj.

(a) For any f ∈mor(A,X) a pull-back of (π1
X,Y , f) is given by (f ⊗ idY , π1

A,Y ).
(b) For any g ∈mor(B,Y ) a pull-back of (π2

X,Y , g) is given by (idX ⊗ g, π2
X,B).

Proof. (a) Because C is cartesian monoidal, f⊗idY = (f ○π1
A,Y )×(idY ○π2

A,Y ),
obviously, π1

X,Y ○ (f ⊗ idY ) = f ○ π1
A,Y . Now, let the object P and the morphisms

p1 × p2∶ P →X ⊗ Y and q∶ P → A be such that π1
X,Y ○ (p1 × p2) = p1 = f ○ q.

X ⊗ Y
π1
X,Y

##
P

p1×p2
11

q
--

∃!m // A⊗ Y
f⊗idY

99

π1
A,Y

%%

X

A
f

;;

If we define m ∶= q × p2, then, evidently, π1
A,Y ○m = q. But also, (f ⊗ idY ) ○m =

(f○q)×(idY ○p2) = p1×p2. Moreover, m is unique with this property: If m′∶ P → A⊗Y
satisfies π1

A,Y ○m′ = q and (f ⊗ idY ) ○m′ = p1 × p2, then the first identity implies

π1
A,Y ○m = q = π1

A,Y ○m′ and the second π2
A,Y ○m = p2 = π2

A,Y ○m′ and thus m =m′.

(b) If we apply Part (a) with B in the role of A and g in that of f (and, accord-
ingly, the roles of X and Y reversed), we infer that (g ⊗ idX , π1

B,X) is a pull-back

of (π1
Y,X , g). It follows by Lemma 4.1 that (γ−1X,Y ○ (g ⊗ idX), π1

B,X) is a pull-back

of (π1
Y,X ○ γX,Y , g). By nature of the braiding, that is equivalent to saying that
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((idX ⊗ g) ○ γB,X , π2
X,B ○ γB,X) is a pull-back of (π2

X,Y , g). now, Lemma 4.2 yields
the claim. □

Lemma 4.12. In any cartesian monoidal category, for any {X,A,B,C} ⊆ obj
and any f ∈mor(X,A), any g ∈mor(X,B) and any h ∈mor(X,C),

αA,B,C ○ ((f × g) × h) = (f × (g × h)).

Proof. Since, per assumption, αA,B,C = (π1
A,B ○ π1

A⊗B,C) × ((π2
A,B ○ π1

A⊗B,C) ×
π2
A⊗B,C), we can compute directly

π1
A,B⊗C ○ αA,B,C ○ ((f × g) × h)

= π1
A,B⊗C ○ ((π1

A,B ○ π1
A⊗B,C) × ((π2

A,B ○ π1
A⊗B,C) × π2

A⊗B,C)) ○ ((f × g) × h)
= π1

A,B ○ π1
A⊗B,C ○ ((f × g) × h)

= π1
A,B ○ (f × g)

= f.

and

π1
B,C ○ π2

A,B⊗C ○ αA,B,C ○ ((f × g) × h)
= π1

B,C ○ π2
A,B⊗C ○ ((π1

A,B ○ π1
A⊗B,C) × ((π2

A,B ○ π1
A⊗B,C) × π2

A⊗B,C)) ○ ((f × g) × h)
= π1

B,C ○ ((π2
A,B ○ π1

A⊗B,C) × π2
A⊗B,C) ○ ((f × g) × h)

= π2
A,B ○ π1

A⊗B,C ○ ((f × g) × h)
= π2

A,B ○ (f × g)
= g

as well as

π2
B,C ○ π2

A,B⊗C ○ αA,B,C ○ ((f × g) × h)
= π2

B,C ○ π2
A,B⊗C ○ ((π1

A,B ○ π1
A⊗B,C) × ((π2

A,B ○ π1
A⊗B,C) × π2

A⊗B,C)) ○ ((f × g) × h)
= π2

B,C ○ ((π2
A,B ○ π1

A⊗B,C) × π2
A⊗B,C) ○ ((f × g) × h)

= π2
A⊗B,C ○ ((f × g) × h)

= h.

The last two identities prove π2
A,B⊗C ○ αA,B,C ○ ((f × g) × h) = g × h by the universal

property of (π1
B,C , π

2
B,C). Together with the first identity this proves the claim by

the universal property of (π1
A,B⊗C , π

2
A,B⊗C). □

Lemma 4.13. In any cartesian monoidal category, let {Xi,Ai} ⊆ obj and fi ∈
mor(Xi,Ai) for each i ∈ {1,2,3}, and let {X,A} ⊆ obj and f ∈mor(X,A).

(a) ((f1 ⊗ f2)⊗ f3, αX1,X2,X3) is a pull-back of (αA1,A2,A3 , f1 ⊗ (f2 ⊗ f3)).
(b) (idI ⊗ f, λX) is a pull-back of (λA, f).
(c) (f ⊗ idI , ρX) is a pull-back of (ρA, f).
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Proof. (a) The identity αA1,A2,A3 ○((f1⊗f2)⊗f3) = (f1⊗(f2⊗f3))○αX1,X2,X3

holds as αA is a natural transformation from (( ⋅1)⊗A ( ⋅2)) ⊗A ( ⋅3) to ( ⋅1) ⊗A
(( ⋅2)⊗A ( ⋅3)). We just have to show that ((f1 ⊗ f2)⊗ f3, αX1,X2,X3) is universal with
that property. Let P ∈ obj and let a∶ P → (A1⊗A2)⊗A3 and b∶ P →X1⊗ (X2⊗X3)
satisfy αA1,A2,A3 ○ a = (f1 ⊗ (f2 ⊗ f3)) ○ b.

(A1 ⊗A2)⊗A3
αA1,A2,A3

))
P

a
22

b ,,

m // (X1 ⊗X2)⊗X3

(f1⊗f2)⊗f3

55

αX1,X2,X3

))

A1 ⊗ (A2 ⊗A3)

X1 ⊗ (X2 ⊗X3)
f1⊗(f2⊗f3)

55

Define m ∶= α−1X1,X2,X3
○b. Then, all that is left to show is that a

!= ((f1⊗f2)⊗f3)○m.

We have already seen that αA1,A2,A3 ○ ((f1 ⊗ f2) ⊗ f3) = (f1 ⊗ (f2 ⊗ f3)) ○ αX1,X2,X3 .
This can be rewritten as ((f1 ⊗ f2)⊗ f3) ○ α−1X1,X2,X3

= α−1A1,A2,A3
○ (f1 ⊗ (f2 ⊗ f3)). It

follows ((f1 ⊗ f2)⊗ f3) ○m = α−1A1,A2,A3
○ (f1 ⊗ (f2 ⊗ f3)) ○ b. And the right hand side

of that is just a per assumption.
(b) Again, the identity λA ○ (idI ⊗ f) = f ○ λX follows from the axiom that λ is a

natural transformation I ⊗ ( ⋅ ) → ( ⋅ ). Only universality needs proving. Hence, let
P and a∶ P → I ⊗A and b∶ P →X be such that λA ○ a = f ○ b.

I ⊗A
λA

""
P

a
22

b ,,

m // I ⊗X
idI⊗f

::

λX

$$

A

X
f

<<

If we put m ∶= λ−1X ○b, then a
!= (idI⊗f)○m is all that is left to prove. We can rewrite

λA ○ (idI ⊗ f) = f ○ λX as (idI ⊗ f) ○ λ−1X = λ−1A ○ f . Hence, (idI ⊗ f) ○m = λ−1A ○ f ○ b.
And this equals a per assumption.

(c) ρA ○ (f ⊗ idI) = f ○ ρX because λ is a natural transformation I ⊗ ( ⋅ ) → ( ⋅ ).
We show universality. Let P and a∶ P → I ⊗A and b∶ P →X satisfy ρA ○ a = f ○ b.

A⊗ I
ρA

""
P

a
22

b ,,

m // X ⊗ I
f⊗idI

::

ρX

$$

A

X
f

<<
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We let m ∶= ρ−1X ○b and prove a
!= (f ⊗ idI)○m. From (f ⊗ idI)○ρ−1X = ρ−1A ○f it follows

(f ⊗ idI) ○m = ρ−1A ○ f ○ b = a, which concludes the proof. □

Lemma 4.14. In any cartesian monoidal the following are true for any A ∈ obj.
(a) A pull-back of (αA,A,A ○ ((idA × idA)⊗ idA), idA ⊗ (idA × idA)) is given by
(idA × idA, idA × idA).

(b) A pull-back of (α−1A,A,A ○ (idA ⊗ (idA × idA)), (idA × idA)⊗ idA) is given by

(idA × idA, idA × idA).
(c) ωA × idA is an isomorphism A→ I ⊗A.
(d) idA × ωA is an isomorphism A→ A⊗ I.

Proof. (a) Because (idA ⊗ (idA × idA)) ○ (idA × idA) = idA × (idA × idA) and,
likewise, ((idA × idA) ⊗ idA) ○ (idA × idA) = (idA × idA) × idA, the alleged pull-back
(idA × idA, idA × idA) satisfies

(αA,A,A ○ ((idA × idA)⊗ idA)) ○ (idA × idA)
= αA,A,A ○ (((idA × idA)⊗ idA) ○ (idA × idA))
= αA,A,A ○ ((idA × idA) × idA)
= idA × (idA × idA)
= (idA ⊗ (idA × idA)) ○ (idA × idA),

where Lemma 4.12 justifies the third step. We prove that (idA × idA, idA × idA) is
unique with that property. Let P ∈ obj and a∶ P → A⊗A and b∶ P → A⊗A satisfy
(αA,A,A ○ ((idA × idA)⊗ idA)) ○ a = (idA ⊗ (idA × idA)) ○ b.

A⊗A
αA,A,A○((idA×idA)⊗idA)

&&
P

a
22

b ,,

m // A

idA×idA

77

idA×idA
''

A⊗ (A⊗A)

A⊗A
idA⊗(idA×idA)

88

We prove for m ∶= π1
A,A ○ b that b

!= (idA × idA) ○m = m ×m != a and that m is the

only morphism P → A which satisfies these equations. Abbreviate a1 ∶= π1
A,A ○ a

and a2 ∶= π2
A,A ○ a as well as b1 ∶= π1

A,A ○ b and b2 ∶= π2
A,A ○ b, i.e., a = a1 × a2 and

b = b1×b2. Then, using Lemma 4.12, the assumptions on a and b can be expressed as
a1×(a1×a2) = αA,A,A○((a1×a1)×a2) = (αA,A,A○((idA×idA)⊗idA))○(a1×a2) = (idA⊗
(idA × idA)) ○ (b1 × b2) = b1 × (b2 × b2). That demands a1 = b1 and (a1 ×a2) = (b2 × b2),
which in turn requires a1 = a2 = b2. Thus, in combination, m = b1 = b2 = a1 = a2 and
thus b = a = m ×m, as claimed. Of course, m is the only possible morphism with
this property.
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(b) The proof is almost the same as for Part (a). Here, too, Lemma 4.12 yields

(α−1A,A,A ○ (idA ⊗ (idA × idA))) ○ (idA × idA)
= α−1A,A,A ○ (idA × (idA × idA)) = (idA × idA) × idA

= ((idA × idA)⊗ idA) ○ (idA × idA),

If a1 × a2∶ P → A ⊗ A and b1 × b2∶ P → A ⊗ A also satisfy (a1 × a2) × a2 = (α−1A,A,A ○
(idA ⊗ (idA × idA))) ○ (a1 × a2) = ((idA × idA)⊗ idA) ○ (b1 × b2) = (b1 × b1) × b2,

A⊗A
α−1A,A,A○(idA⊗(idA×idA))

&&
P

a1×a2
22

b1×b2 ,,

m // A

idA×idA

77

idA×idA
''

(A⊗A)⊗A

A⊗A
(idA×idA)⊗idA

88

which is to say a1 = a2 = b1 = b2, then m ∶= b1 gives a unique mediating morphism.
(c) We show that π2

I,A is the inverse of ωA× idA. Of course, π2
I,A ○(ωA× idA) = idA.

As there is only one morphism I⊗A→ I the two morphisms π1
I,A ○((ωA× idA)○π2

I,A)
and π1

I,A must be the same. On the other hand, π2
I,A ○ ((ωA × idA) ○ π2

I,A) = (π2
I,A ○

(ωA × idA)) ○ π2
I,A = idA ○ π2

I,A = π2
I,A. That proves (ωA × idA) ○ π2

I,A = idI⊗A.

(d) The proof is analogous to that of Part (c); the inverse of idA ×ωA is π1
A,I . □

Lemma 4.15. In any cartesian monoidal category, for any {X,A,B} ⊆ obj and
f ∈mor(X,A) and g ∈mor(X,B),

g × f = γA,B ○ (f × g).

Proof. Because γA,B = π2
A,B × π1

A,B we can compute immediately

γA,B ○ (f × g) = (π2
A,B × π1

A,B) ○ (f × g)
= (π2

A,B ○ (f × g)) × (π1
A,B ○ (f × g))

= g × f,

thus proving the claim. □

Lemma 4.16. In any cartesian monoidal category, if {Xi,Ai} ⊆ obj and fi ∈
mor(Xi,Ai) for each i ∈ {1,2}, then the span (f1 ⊗ f2, γX1,X2) is a pull-back of the
co-span (γA1,A2 , f2 ⊗ f1).

Proof. Because γ is a natural transformation ( ⋅1)⊗( ⋅2)→ ( ⋅2)⊗( ⋅1) the equa-
tion γA1,A2 ○ (f1⊗ f2) = (f2⊗ f1) ○γX1,X2 is automcatically satisfied. We just need to
verify that (f1 ⊗ f2, γX1,X2) is universal with that property. Let P and a∶ P →X1⊗X2
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and b∶ P →X2⊗X1 with a = a1×a2 and b = b1×b2 be such that γA1,A2 ○a = (f2⊗f1)○b.

A1 ⊗A2
γA1,A2

&&
P

a
22

b ,,

m // X1 ⊗X2

f1⊗f2

88

γX1,X2

&&

A2 ⊗A1

X2 ⊗X1

f2⊗f1

88

This means a2×a1 = (π2
A1,A2

○a)×(π1
A1,A2

○a) = (π2
A1,A2

×π1
A1,A2
)○a = γA1,A2 ○a = (f2⊗

f1)○(b1×b2) = (f2○b1)×(f1○b2), which is to say a2 = f2○b1 and a1 = f1○b2. If we define
m ∶= b2×b1, then m∶ P →X1⊗X2 satisfies (f1⊗f2)○m = (f1○b2)×(f2○b1) = a1×a2 = a
and γX1,X2 ○m = (π2

X1,X2
×π1

X1,X2
)○(b2×b1) = (π2

X1,X2
○(b2×b1))×(π1

X1,X2
○(b2×b1)) =

b1 × b2 = b. Moreover, m is unique with that property: If m′∶ P → X1 ⊗X2 is any
morphism with a = (f1 ⊗ f2) ○m′ and b = γX1,X2 ○m′ and if m′ = m′

1 ×m′
2, then

b1 × b2 = b = γX1,X2 ○m′ = (π2
X1,X2

×π1
X1,X2

) ○ (m′
1 ×m′

2) =m′
2 ×m′

1 implies m′
1 = b2 and

m′
2 = b1, i.e., m′ = b2 × b1 =m. □

Lemma 4.17. In any cartesian monoidal category, for any {X,A,B} ⊆ obj, any
f ∈mor(X,A) and any g ∈mor(X,B) a pull-back of

(a) (idB ⊗ (idA × idA), idB ⊗ (f ⊗ idA)) is given by (idB ⊗ f, idB ⊗ (idX × f)),
(b) ((idB ⊗ g)⊗ idA, (idB × idB)⊗ idA) is given by ((g × idX)⊗ idA, g ⊗ idA),
(c) (idB ⊗ (idX × f), αB,X,A ○ ((g × idX)⊗ idA)) is given by (g × idX , idX × f).

Proof. (a) The alleged pull-back satisfies

(idB ⊗ (idA × idA)) ○ (idB ⊗ f) = (idB ○ idB)⊗ ((idA × idA) ○ f)
= idB ⊗ (f × f)
= idB ⊗ ((f ○ idX) × (idA ○ f))
= (idB ○ idB)⊗ ((f ⊗ idA) ○ (idX × f))
= (idB ⊗ (f ⊗ idA)) ○ (idB ⊗ (idX × f)).

Hence, we only need to show that it is universal with that property. Let P ∈ obj
and a = a1 × a2 ∈mor(P,B ⊗A) and b = b1 × (b2 × b3) ∈mor(P,B ⊗ (X ⊗A)) be such
that (idB ⊗ (idA × idA)) ○ a = (idB ⊗ (f ⊗ idA)) ○ b.

B ⊗A
idB⊗(idA×idA)

((
P ∃!m //

a1×a2
11

b1×(b2×b3) ,,

B ⊗X
idB⊗f

77

idB⊗(idX⊗f)
&&

B ⊗ (A⊗A)

B ⊗ (X ⊗A)

idB⊗(f⊗idA)
66
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The assumptions on a and b imply

a1 × (a2 × a2) = (idB ○ a1) × ((idA × idA) ○ a2)
= (idB ⊗ (idA × idA)) ○ (a1 × a2)
= (idB ⊗ (f ⊗ idA)) ○ (b1 × (b2 × b3))
= (idB ○ b1) × ((f ⊗ idA) ○ (b2 × b3))
= b1 × ((f ○ b2) × (idA ○ b3))
= b1 × ((f ○ b2) × b3)

and thus a1 = b1 and a2 = f ○ b2 = b3.
Hence, if we define m ∶= a1 × b2 ∈ mor(P,B ⊗X), then (idB ⊗ f) ○m = (idB ○

a1) × (f ○ b2) = a1 × a2 = a and (idB ⊗ (idX × f)) ○m = (idB ○ a1) × ((idX × f) ○ b2) =
a1 × ((idX ○ b2) × (f ○ b2)) = b1 × (b2 × b3) = b.

Moreover, if any m′ = m′
1 × m′

2 ∈ mor(P,B ⊗X) also has the properties a =
(idB ⊗ f) ○m′ and b1 × (b2 × b3) = b = (idB ⊗ (idX × f)) ○m′ = m′

1 × (m′
2 × (f ○m′

2)),
then second equation demands a1 = b1 = m′

1 and b2 = m′
2, which is to say m′ = m.

That proves the claim.
(b) The proof is similar to that of Part (a). First, we can verify by direct com-

putation that

((idB ⊗ g)⊗ idA) ○ ((g × idX)⊗ idA) = ((idB ⊗ g) ○ (g × idX))⊗ (idA ○ idA)
= (g × g)⊗ idA

= ((idB × idB)⊗ idA) ○ (g ⊗ idA).
And if P ∈ obj and a = (a1 × a2) × a3 ∈ mor(P, (B ⊗X)⊗A) and b = b1 × b2 ∈

mor(P,B ⊗A) satisfy ((idB ⊗ g)⊗ idA) ○ a = ((idB × idB)⊗ idA) ○ b,
(B ⊗X)⊗A

(idB⊗g)⊗idA
((

P ∃!m //

(a1×a2)×a3 22

b1×b2 --

X ⊗A

(g×idX)⊗idA

88

g⊗idA
''

(B ⊗B)⊗A

B ⊗A
(idB×idB)⊗idA

66

then this means

(a1 × (g ○ a2)) × a3 = ((idB ○ g) ○ (a1 × a2)) × (idA ○ a3)
= (idB ⊗ g)⊗ idA) ○ ((a1 × a2) × a3)
= ((idB × idB)⊗ idA) ○ (b1 × b2)
= (b1 × b1) × b2,

or, equivalently, a1 = b1 = g ○ a2 and a3 = b2.
Therefore, we can conclude for m ∶= a2×b2 ∈mor(P,X ⊗A) that ((g×idX)⊗idA)○

m = ((g ○a2)×a2)× b2 = (a1 ×a2)×a3 = a and (g⊗ idX)○m = (g ○a2)× b2 = b1 × b2 = b.
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And m is unique with that property as for any m′ =m′
1×m′

2 ∈mor(P,X ⊗A) with
(a1 ×a2)×a3 = a = ((g× idX)⊗ idA)○m′ = ((g ○m′

1)×m′
1)×m′

2 and (g⊗ idA)○m′ = b,
the first equation already implies a2 =m′

1 and b2 = a3 =m′
2. That is what we needed

to see.
(c) Also the third proof is similar to the two previous ones. With the help of

Lemma 4.12 we compute

(idB ⊗ (idX × f)) ○ (g × idX) = (idB ○ g) × ((idX × f) ○ idX)
= g × (idX × f)
= α−1B,X,A ○ ((g × idX) × f)
= α−1B,X,A ○ (((g × idX) ○ idX) × (idA × f))
= (α−1B,X,A ○ ((g × idX)⊗ idA)) ○ (idX × f).

If P ∈ obj and a = a1 × a2 ∈mor(P,B ⊗X) and b = b1 × b2 ∈mor(P,X ⊗A) satisfy
(idB ⊗ (idX × f)) ○ a = (αB,X,A ○ ((g × idX)⊗ idA)) ○ b,

B ⊗X
idB⊗(idX×f)

''
P ∃!m //

a1×a2
22

b1×b2 ,,

X

g×idX

;;

idA×f
##

B ⊗ (X ⊗A)

X ⊗A

αB,X,A○((g×idX)⊗idA)
77

then we find, again using Lemma 4.12,

a1 × (a2 × (f ○ a2)) = (idB ○ a1) × ((idX × f) ○ a2)
= (idB ⊗ (idX × f)) ○ (a1 × a2)
= (α−1B,X,A ○ ((g × idX)⊗ idA)) ○ (b1 × b2)
= α−1B,X,A ○ (((g ○ b1) × b1) × b2)
= (g ○ b1) × (b1 × b2),

and thus a1 = g ○ b1 and a2 = b1 and f ○ a2 = b2.
Consequently, m ∶= a2 ∈mor(P,X) satisfies (g×idX)○m = (g○a2)×a2 = (g○b1)×a2 =

a and (idX × f) ○m = a2 × (f ○ a2) = b1 × b2 = b.
Finally, if m′ ∈ mor(P,X) is any morphism with a1 × a2 = a = (g × idX) ○m′ =

(g ○m′) ×m′ and b = (idX × f) ○m′, it follows m = a2 = m′ from the first identity.
That concludes the proof. □

Lemma 4.18. In any cartesian monoidal category, for any {X,A1,A2,B1,B1} ⊆
obj, if pi ∈mor(X,Ai) and qi ∈mor(X,Bi) for any i ∈ {1,2}, then

µA1,B1,A2,B2 ○ ((p1 × q1) × (p2 × q2)) = (p1 × p2) × (q1 × q2).
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Proof. Recall that

µA1,B1,A2,B2 = α−1A1,A2,B1⊗B2
○ (idA1 ⊗ αA2,B1,B2) ○ (idA1 ⊗ (γB1,A2 ⊗ idB2))

○ (idA1 ⊗ α−1B1,A2,B2
) ○ αA1,B1,A2⊗B2 .

Using Lemma 4.12, we compute

αA1,B1,A2⊗B2 ○ ((p1 × q1) × (p2 × q2)) = p1 × (q1 × (p2 × q2))
and

(idA1 ⊗ α−1B1,A2,B2
) ○ (p1 × (q1 × (p2 × q2))) = p1 × ((q1 × p2) × q2)

and, because γB1,A2 ○ (q1 × p2) = (π2
B1,A2

× π1
B1,A2
) ○ (q1 × p2) = p2 × q1,

(idA1 ⊗ (γB1,A2 ⊗ idB2)) ○ (p1 × ((q1 × p2) × q2)) = (p1 × ((p2 × q1) × q2))
and

(idA1 ⊗ αA2,B1,B2) ○ (p1 × ((p2 × q1) × q2)) = (p1 × (p2 × (q1 × q2)))
and, finally,

α−1A1,A2,B1⊗B2
○ (p1 × (p2 × (q1 × q2))) = ((p1 × p2) × (q1 × q2)),

which concludes the proof. □

Lemma 4.19. In any cartesian monoidal category, for any objects A and X
and for any morphism f ∶ X → A a pull-back of (idA × idA, f ⊗ idA) is given by
(f, idX × f).

Proof. That the supposed pull-back completes a commutative square is seen
by

(idA × idA) ○ f = f × f = (f ○ idX) × (idA ○ f) = (f ⊗ idA) ○ (idX × f).
Let the object P and the morphisms a∶ P → A and b1 × b2∶ P → X ×A be such that
(idA × idA) ○ a = (f ⊗ idA) ○ (b1 × b2).

A

idA×idA
%%

P ∃!m //

a
11

b1×b2 ,,

X

f

;;

idX×f
##

A⊗A

X ⊗A
f⊗idA

99

That is to say a× a = (f ○ b1)× b2 or, equivalently, a = f ○ b1 = b2. Hence, if we define
m ∶= b1, then a = f ○m and b1 × b2 = (idX ○ b1) × (f ○ b1) = (idX × f) ○m. Moreover,
any m′∶ P →X with a = f ○m′ and b1×b2 = (idX ×f)○m′ necessarily satisfies m′ = b1
due to the second identity. That is what we needed to see. □

Lemma 4.20. In any cartesian monoidal category, for any object A a pull-back
of (γA,A, idA × idA) is given by (idA × idA, idA).
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Proof. From Lemma 4.15 it follows

γA,A ○ (idA × idA) = idA × idA = (idA × idA) ○ idA.

If we let P and a1 × a2∶ P → A ⊗ A and b∶ P → A be such that γA,A ○ (a1 × a2) =
(idA × idA) ○ b, then

A⊗A
γA,A

%%
P ∃!m //

a1×a2
22

b --

A

idA×idA

;;

idA

##

A⊗A

A

idA×idA

99

another application of Lemma 4.15 yields a2×a1 = γA,A○(a1×a2) = (idA×idA)○b = b×b
and thus a1 = a2 = b. Consequently, for m ∶= a1 we obtain a1 × a2 = a1 × a1 = (idA ×
idA)○m and b = a1 = idA○m. And, finally, any m′∶ P → A with a2×a2 = (idA×idA)○m′

and b = idA ○m′ of course satisfies m′ = b = a1 =m. Hence, the claim is true.̧ □

Lemma 4.21. For any cartesian monoidal category C and any pull-back-stable
wide subcategory M of C and any object X of C the following are equivalent:

(a) m1 ×m2 ∈morM for any {m1,m2} ⊆morM with common domain X.
(b) idX ×m ∈morM and m × idX ∈morM for any m ∈morM with domain X.
(c) idX × idX ∈morM.

Proof. BecauseM is a wide subcategory, idX ∈morM. Hence, the implications
(a) ⇒ (b) ⇒ (c) are clear. We suppose (c) is true and prove (a). Let Y1 and
Y2 be the co-domains of m1 and m2, respectively. By Lemma 4.11 (a) the span
(m1 ⊗ idX , π1

X,X) is a pull-back of (π1
Y1,X

,m1). Because M is pull-back-stable and

because m1 ∈morM we thus conclude m1⊗ idX ∈morM. Similarly, (idY2 ⊗m2, π2
Y1,X
)

is a pull-back of (π2
Y1,Y2

,m2) by Lemma 4.11 (b), implying idY2 ⊗m2 ∈morM. Since
M is a subcategory and since idX × idX by assumption, these two conclusions allow
us to infer m1 ×m2 = (idY1 ⊗m2) ○ (m1 ⊗ idX) ○ (idX × idX) ∈ morM. That is all we
needed to see. □

4.3. Orthogonality and (Pre-)Factorization Systems. Section 5 but also
Section 7 will require us to know more properties of orthogonality, pre-factorization
and factorization systems, in particular in cartesian monoidal categories, than were
given in Section 2. Moreover, the present section provides some proofs for claims in
Section 2 whose proofs were omitted there.

Lemma 4.22. For any morphisms e and m in any category A the two statements
e ⊥A m and m ⊥Aop e are equivalent.
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Proof. It suffices to show one implication. Let e ⊥A m and let h and k be such
that k ○Aop m = e ○Aop h.

in Aop ∶
A

m //

h
��

B

k
��

∃!v
~~

X e
// Y

⇐⇒ in A ∶
B A

moo

Y

h

OO

∃!v

>>

Xe
oo

k

OO
⇐⇒ in A ∶

X
e //

k
��

Y

h
��

∃!v
~~

A m
// B

That means h ○A e =m ○A k. Hence, by e ⊥A m there exists a unique morphism v of
A such that k = v ○A e and h =m ○A v. However, this pair of equations is equivalent
to the identities h = v ○Aop m and k = e ○Aop v. In other words, m ⊥Aop e. □

Lemma 4.23. For any category A and any system E and M of morphisms the
following are equivalent:

(a) (E ,M) is a pre-factorization-system of A.
(b) (Mop,Eop) is a pre-factorization-system of Aop.

Proof. Follows from Lemma 4.22. □

One of the morphism classes of a pre-factorization system already fully determines
the other. This is also implied by [FK72, p. 173].

Lemma 4.24. Let (E ,M) and (E ′,M′) be any two pre-factorization systems of
the same category.

(a) If E = E ′, then (E ,M) = (E ′,M′).
(b) If M =M′, then (E ,M) = (E ′,M′).
Proof. (a) From E = E ′ it follows M = E⊥ = E ′⊥ =M′.
(b) Follows by Lemma 4.23 and Part (a). □

Lemma 4.25. For any isomorphism u in any category A, both u ⊥A m and e ⊥A u
for any morphisms e and m of A.

Proof. By Lemma 4.22 we only need to prove u ⊥m for arbitrary m. Let f and
g be such that g ○u =m○f . Then, w ∶= f ○u−1 is the unique solution of the equation
f = w ○u. Since it satisfies m ○w =m ○ (f ○u−1) = (m ○ f) ○u−1 = (g ○u) ○u−1 = g, we
have shown u ⊥m. □

The following very remarkable property of pre-factorization systems was shown
in [FK72, Proposition 2.1.1 (e)].

Lemma 4.26. Let (E ,M) be any pre-factorization-system of any category A.
(a) For any {X,Y,Z} ⊆ objA and any e ∈ morA(X,Y ) and e′ ∈ morA(Y,Z),

whenever e′ ○ e ∈ morE(X,Z) and e ∈ morE(X,Y ) ∪ epiA(X,Y ), then e′ ∈
morE(Y,Z).

(b) For any {X,Y,Z} ⊆ objA and any m ∈ morA(X,Y ) and m′ ∈ morA(Y,Z),
whenever m′ ○m ∈ morM(X,Z) and m′ ∈ morM(Y,Z) ∪monA(Y,Z), then
m ∈morM(X,Y ).
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Proof. (a) Let {A,B} ⊆ objA and m ∈morM(A,B) and f ∈morA(Y,A) and
g ∈ morA(Z,B) be such that g ○ e′ = m ○ f . We need to prove that there exists a
unique w ∈morA(Z,A) such that w ○ e′ = f and m ○w = g.

Step 1: Existence of w. The assumption g ○ e′ = m ○ f implies g ○ (e′ ○ e) =
(g○e′)○e = (m○f)○e =m○(f ○e). Because e′ ○e ∈morE(X,Z) and m ∈morM(A,B)
and thus e′ ○ e ⊥ m we find w ∈ morA(Z,A) with w ○ (e′ ○ e) = f ○ e and m ○ w = g.
Moreover, w is unique with these properties.

X Z

A B

e′○e

f○e g∃!w

m

Note that the second identity is already one of the properties we seek w to have.
Now, we prove w ○ e′ = f . To do so, we need to distinguish the two cases of whether
e is a morphism of E or an epimorphism of A.

Case 1.1: If e ∈ epiA(X,Y ), then (w ○ e′) ○ e = w ○ (e′ ○ e) = f ○ e ensures this
rightaway.

Case 1.2: Hence, we suppose e ∈ morE(X,Y ) and prove the same for this case.
Another implication of our premise g ○ e′ = m ○ f is that (g ○ e′) ○ e = (m ○ f) ○ e =
m ○ (f ○ e). Therefore, e ∈ morE(X,Y ) and m ∈ morM(A,B) and thus e ⊥ m allow
us to infer the existence of d ∈morA(Y,A) with d ○ e = f ○ e and m ○ d = g ○ e′, which
is also uniquely determined by these two properties.

X Y

A B

e

f○e g○e′∃!d

m

In fact, we can recognize that d = f : It is clear that f satisfies the first characteristic
equation of d; and the second one, m ○ f = g ○ e′, holds per our initial assumptions
on f , g and m.

Thus, in order to show w ○ e′ = f it suffices to prove d = w ○ e′, which we do
by verifying that the latter satisfies the defining equations of the former. Firstly,
(w ○ e′) ○ e = w ○ (e′ ○ e) = f ○ e we have only just observed. Secondly, m ○ (w ○ e′) =
(m ○w) ○ e′ = g ○ e′ by the other unique property of w. Hence, indeed, f = d = w ○ e′,
as claimed.

Step 2: Uniqueness of w. It remains to show that w is unique with w ○ e′ = f and
m ○w = g. Once more, the justification depends on whether e is a morphism of E or
an epimorphism of A.

Case 2.1: If e ∈ epiA(X,Y ), then the characteristic properties (w ○ e′) ○ e = f ○ e
and m ○w = g which w has by our assumptions are obviously equivalent to the ones
we claim it to have.

Case 2.2: Thus, we only need to consider the case e ∈ morE(X,Y ). If so, let
w̃ ∈ morA(Z,A) be arbitrary with w̃ ○ e′ = f and m ○ w̃ = g. The second identity



4. AUXILIARIES FOR THE PROOF 429

means that w̃ has one of the two universal properties determining w. Furthermore,
the first identity implies that w̃ also has the other, w̃ ○ (e′ ○ e) = (w̃ ○ e′) ○ e = f ○ e.
Hence, w̃ = w, which concludes the proof of (a).

(b) Follows from (a) and Lemma 4.23. □

Lemma 4.27. For any category A and any pre-factorization-system (E ,M) of A
the following are equivalent:

(a) morE(X,Y ) ⊆ epiA(X,Y ) for any {X,Y } ⊆ objA.
(b) For any {X,Y,Z} ⊆ objA and any m ∈morM(X,Y ) and m′ ∈morM(Y,Z),

whenever m′ ○m ∈morM(X,Z), then m ∈morM(Y,Z).
(c) m ∈morM(X,Y ) for any {Y,C} ⊆ objA and {h1, h2} ⊆morA(Y,C) and any

equalizer m of (h1, h2) in A with equalizer object X.
(d) m ∈morM(X,Y ) for any {X,Y } ⊆ objA and any m ∈morA(X,Y ) which is

a section in A.

Proof. Follows by Lemma 4.23 from [FK72, Proposition 2.1.4]. □

Definition 4.28. For any two pre-factzorization systems (E ,M) and (E ′,M′)
of any category C we write (E ,M) ≤ (E ′,M′) if E ⊆ E ′ and M′ ⊆M.

Also the following is noted in [FK72, p. 173].

Lemma 4.29. (a) For any pre-factzorization systems (E ,M) and (E ′,M′)
of the same category the statements E ⊆ E ′ andM′ ⊆M are actually equiv-
alent.

(b) The binary relation ≤ is a partial order on the class of all pre-factorization
systems of the same category.

(c) The partially ordered class of all pre-factorization systems is a (possibly
large) complete lattice.

(d) If (Ei,Mi)i∈I is any set-indexed family of pre-factorization systems of the
same category, then its meet is given by

(⋂i∈IEi, (⋂i∈IEi)⊥)
and its join by

(⊥(⋂i∈IMi),⋂i∈IMi) .

The next important properties of pre-factorization system was proved in [FK72,
Proposition 2.1.1 (b)].

Lemma 4.30. Let A be any category and (E ,M) a pre-factorization system in A.
(a) For any span (e, a) and any push-out (a′, e′) of (e, a) in A, whenever e ∈ E ,

then e′ ∈ E .
(b) For any co-span (m,f) and any pull-back (f ′,m′) of (m,f) in A, whenever

m ∈M, then m′ ∈M.

The next lemma can be found in [AHS04, Lemma 14.5].



430 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

Lemma 4.31. For any pre-factorization system (E ,M) of any category A, for
any e ∈ E , any m ∈M and any commutative diagram in A

X
e //

id
��

Y
d

~~
m
��

A
f
// B

,

e is an isomorphism and f ∈M.

One inclusion of the following identity was proved in [FK72, Proposition 2.1.1 (1)].
The other is shown in [AHS04, Proposition 14.6 (1)].

Lemma 4.32. E ∩M = isoA for any pre-factorization system (E ,M) of any cate-
gory A.

Proof. For any f ∈ E∩M the diagonal property of (E ,M) ensures the existence
of a morphism w such that id = w ○ f and id = f ○w.

f //

id

��
w

��
id

��
f
//

Conversely, let f be an isomorphism ofA and let (e,m) be an (E ,M)-factorization
of f . Then, in A the diagram

e //

id

��
f−1○m
��

m

��

f
//

commutes, implying f ∈M by Lemma 4.31. Considering the fact that (M,E) is a
factorization system of Aop, this argument also proves f ∈ E . □

The following was shown in [FK72, Proposition 2.1.1 (a)]. See also [AHS04,
Proposition 14.6 (2)].

Lemma 4.33. For any pre-factorization system (E ,M) of any category A both E
and M are each closed under composition, i.e.,

(a) where defined, e′ ○A e ∈ E for e′ ∈ E and e ∈ E , and,
(b) where defined, m′ ○Am ∈M for m′ ∈M and m ∈M.

Proof. Again, by duality it suffices to prove Part (a). Let (e0,m0) be an
(E ,M)-factorization of m′ ○m. By the diagonal property of (E ,M) there exists a
morphism w such that m = w ○ e0 and m0 =m′ ○w.

e0 //

m

��
w

��
m0

��
m′
//
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In particular, w ○ e0 = m ○ id allows a second application of the diagonal property
axiom, yielding a morphism x such that id = x ○ e0 and w =m ○ x.

e0 //

id

��
x

��
w

��
m
//

In consequence, the identity m0 = m′ ○ w = m′ ○ (m ○ x) = (m′ ○m) ○ x renders the
diagram

e0 //

id

��
x

��
m0

��
m′○m

//

commutative. It follows m′ ○m ∈M by Lemma 4.31. □

The following is proved in [AHS04, Proposition 14.15].

Lemma 4.34. For any pre-factorization system (E ,M) of any cartesian monoidal
category A the category M is closed under monoidal products, i.e., m1 ⊗Am2 ∈M
for any m1 ∈M and m2 ∈M.

Proof. For each i ∈ {1,2} let Ai and Bi be such that mi∶ Ai → Bi, let (e,m) be
an (E ,M)-factorization of m1 ⊗m2 and let R be the domain of m. Then, for each
i ∈ {1,2} because mi ○ πiA1,A2

= (πiB1,B2
○m) ○ e by the diagonal property of (E ,M)

there exists a morphism wi∶ R → Ai such that πiA1,A2
= wi ○e and πiB1,B2

○m =mi ○wi.

A1 ⊗A2
e //

πi

��

R

wi

zz
πi○m
��

Ai mi

// Bi

It follows (w1 × w2) ○ e = (w1 ○ e) × (w2 ○ e) = π1
A1,A2

× π2
B1,B2

= idA1⊗A2 as well as
(m1 ⊗m2) ○ (w1 ×w2) = (m1 ○w1) × (m2 ○w2) = (π1

B1,B2
○m) × (π2

B1,B2
○m) = m. In

other words, the diagram

A1 ⊗A2
e //

id
��

R

w1×w2

xx
m

��
A1 ⊗A2m1⊗m2

// B1 ⊗B2

is commutative. Because e ∈ E and m ∈M Lemma 4.31 hence implies m1⊗m2 ∈M,
as claimed. □

For the next lemma, the assumed stability of (E ,M) is crucial.
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Lemma 4.35. For any pre-factorization system (E ,M) of any cartesian monoidal
category A, if the subcategory E is pull-back stable, then E is closed under monoidal
products, i.e., e1 ⊗A e2 ∈ E for any e1 ∈ E and e2 ∈ E .

Proof. For each i ∈ {1,2} let the objects Ai and Bi be such that ei∶ Ai → Bi.
Once we show that e1 ⊗ idA2 and idB1 ⊗ e2 are elements of E , Lemma 4.33 (a) will
imply the claim because (idB1 ⊗ e2) ○ (e1 ⊗ idA2) = (idB1 ○ e1)⊗ (e2 ○ idA2) = e1 ⊗ e2.

Step 1: Since (E ,M) is stable and e1 ∈ E we can prove that e1 ⊗ idA2 belongs to
E by showing that (π1

A1,A2
, e1 ⊗ idA2) is a pull-back of (e1, π1

B1,A2
). The diamond in

the diagram

A1

e1

$$
P

a
22

b1×b2 ,,

m // A1 ⊗A2

π1
A1,A2

88

e1⊗idA2
&&

B1

B1 ⊗A2

π1
B1,A2

::

commutes as π1
B1,A2

○(e1⊗ idA2) = π1
B1,A2

○((e1 ○π1
A1,A2
)×(idA2 ○π2

A1,A2
)) = e1 ○π1

A1,A2
.

Let P be an object and let a∶ P → A1 and b1 × b2∶ P → B1 ⊗ A2 be morphisms
such that e1 ○ a = π1

B1,A2
○ (b1 × b2). If we define m ∶= a × b2, then, immediately,

π1
A1,A2

○m = a, and e1 ○ a = b1 implies (e1 ⊗ idA2) ○m = (e1 ○ a) × (idA2 ○ b2) = b1 × b2.
Moreover, if m′

1 ×m′
2∶ P → A1⊗A2 is any morphism with a = π1

A1,A2
○ (m′

1 ×m′
2) and

b1 × b2 = (e2⊗ idA2) ○ (m′
1 ×m′

2), then the first of these identities requires m′
1 = a and

the second m′
2 = b2, which is to say m′

1 ×m′
2 =m.

Step 2: Again, we use the assumptions that (E ,M) is stable and that e2 ∈ E
and prove that idB1 ⊗ e2 is an element of E by showing that (idB1 ⊗ e2, π2

B1,A2
) is a

pull-back of (π2
B1,B2

, e2). Because π2
B1,B2

○ (idB1 ⊗ e2) = π2
B1,B2

○ ((idB1 ○π1
B1,A2
)× (e2 ○

π2
B1,A2
)) = e2 ○ π2

B1,A2
the diamond in

B1 ⊗B2

π2
B1,B2

$$
Q

c1×c2
22

d ,,

n // B1 ⊗A2

π2
B1,A2

&&

idB1
⊗e2

88

B1

A2

e2

::

commutes. If c1×c2∶ Q→ B1⊗B2 and d∶ Q→ A2 also satisfy π2
B1,B2

○(c1×c2) = e2 ○d,

then defining n ∶= c1 × d leads to d = π2
B1,A2

○ n and (idB1 ⊗ e2) ○ n = c1 × (e2 ○ d) =
c1 × c2. And n is unique with this property because any n′1 × n′2∶ Q → B1 ⊗A2 with
c1 × c2 = (idB1 ⊗ e2) ○ (n′1 × n′2) = n′1 × (e2 ○ n′2) and d = π2

B1,A2
○ (n′1 × n′2) = n′2 has to

satisfy n′1 × n′2 = c1 × d = n. That concludes the proof. □

The following extended version of Lemma 2.2 is given in [JW00, Proposition 1.1.1].
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Lemma 4.36. For any cartesian monoidal category A with pull-backs and any
factorization system (E ,M) of A the following are equivalent:

(i) All elements of E are epimorphisms of A.
(ii) Any strong monomorphism of A is an element of M.
(iii) Any equalizer of A is an element of M.
(iv) For any morphisms f and g of A with common co-domain and any pull-back
(u, v) of (f, g) in A the morphism u ×A v is an element of M.

(v) idA,A ×A f ∈M for any morphism f of A with domain A.
(vi) idA,X ×A idA,X ∈M for any X ∈ objA.

Proof. (i) ⇒ (ii): Let E consist of epimorphisms and let m∶ X → Y be a strong
monomorphism. If (e0,m0) is an (E ,M)-factorization ofm with image object I, then
m0 ○ e0 =m ○ idX .

X
e0 // //

idX
��

I

m0

��
∃d
~~

X �
�

m
// Y

Since m is a strong monomorphism and since e0 is an epimorphism there must then
exist a morphism d∶ I → X with d ○ e0 = idX and m ○ d = m0. It follows m ∈M by
Lemma 4.31.

(ii) ⇒ (iii): Suppose thatM contains all strong monomorphisms and let m with
domain E be an equalizer of f ∶ A → B and g∶ A → B. In order to show m ∈M it
suffices to show that m is a strong monomorphism.

We prove that m is a monomorphism: If h1∶ X → E and h2∶ X → E are such that
m ○ h1 =m ○ h2,

E
m // A

f //
g
// B

X

h1

OO

h2

OO

m○h1=m○h2

>>

then m ○ h1 equalizes (f, g) because f ○ (m ○ h1) = (f ○ m) ○ h1 = (g ○ m) ○ h1 =
g ○ (m ○h1). Hence, by the universal property of equalizers any morphism u∶ X → E
with m ○ h1 = m ○ u is unique with that property. It follows h1 = h2, making m a
monomorphism.

The monomorphism m is in fact strong: Let e∶ P → Q be an epimorphism and
let p∶ P → E and q∶ Q→ A be such that q ○ e =m ○ p.

P
e // //

p

��

Q

q

��
∃!w
��

E �
�

m
// A

E
m // A

f //
g
// B

P

p
??

e
// // Q

q

??

∃!w

OO



434 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

Because e is an epimorphism the identity (f ○ q) ○ e = f ○ (q ○ e) = f ○ (m ○ p) =
(f ○m) ○ p = (g ○m) ○ p = g ○ (m ○ p) = g ○ (q ○ e) = (g ○ q) ○ e allows us to conclude
that f ○ q = g ○ q. Hence, by the universality of m as a morphism equalizing (f, g)
there exists a unique w∶ Q → E such that q = m ○ w. Since m is a monomorphism
it follows from m ○ (w ○ e) = (m ○w) ○ e = q ○ e = m ○ p that w ○ e = p. Thus, m is a
strong monomorphism.

(iii) ⇒ (iv): Let M contain all equalizers and let (u, v) be a pull-back of (f, g)
with pull-back object P , where f ∶ A → X and g∶ B → X. Once we show that u × v
is an equalizer of (f ○ π1

A,B, g ○ π2
A,B) the claim u × v ∈M will have been proven.

Clearly, (f ○π1
A,B)○(u×v) = f ○(π1

A,B ○(u×v)) = f ○u = g ○v = g ○(π2
A,B ○(u×v)) =

(g ○ π2
A,B) ○ (u × v). Let m∶ E → A⊗B be such that (f ○ π1

A,B) ○m = (g ○ π2
A,B) ○m.

A

f

  

P

u

77

v

��

u×v

''
A⊗B

f○π1

//

g○π2
//

π1

OO

π2

��

X

E

π1○m

DD

π2○m ''

m

77∃!w

OO

B

g

>>

Since this is equivalent to f ○ (π1
A,B ○ m) = g ○ (π2

A,B ○ m) there exists by the

universal property of (u, v) as a pull-back of (f, g) exactly one morphism w∶ E → P
such that π1

A,B ○m = u ○ w and π2
A,B ○m = v ○ w. Because the latter two identities

are equivalent to m = (u ○w) × (v ○w) = (u × v) ○w we have thus shown u × v is an
equalizer of (f ○ π1

A,B, g ○ π2
A,B).

(iv) ⇒ (v): Suppose that M contains all products of pull-back pairs and let
f ∶ A → B be arbitrary. By Lemma 4.6 the pair (idA, f) is a pull-back of (f, idB).
Hence, the assumption implies idA × f ∈M.

(v) ⇒ (vi): If idA × f ∈M for any morphisms f with domain A, then the choice
A =X and f = idX implies idX × idX ∈M for any object X.

(vi) ⇒ (i): Let idX × idX ∈M for any object X and let e∶ A → B with e ∈ E be
arbitrary. We show that e is an epimorphism.
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Hence, let f1∶ B → C and f2∶ B → C be such that f1 ○ e = f2 ○ e. Because
(f1 × f2) ○ e = (f1 ○ e) × (f2 ○ e) = (f1 ○ e) × (f1 ○ e) = (idC × idC) ○ (f1 ○ e)

A
e //

f1○e=f2○e
��

B

∃!d
{{

f1×f2
��

C
id×id
// C ⊗C

and because e ∈ E and idC × idC ∈M per our assumptions, the diagonal property of
(E ,M) implies the existence of a morphism d∶ B → C such that d ○ e = f1 ○ e and
(idC × idC) ○ d = f1 × f2, which is also unique with that property. From the identity
f1 × f2 = (idC × idC) ○ d = d × d we can conclude f1 = d = f2. Thus, e is indeed an an
epimorphism. □

5. Partial proof of the construction

Section 5 offers partial proofs are of Conjectures 2.14 and 2.19. Unfortunately, I
was unable to check everything in the time allotted.

The construction of the generalized relation envelope proceeds in three stages,
which themselves are divided into several steps each. We first construct the so-
called span category, then the generalized relation category and only then the actual
category from Section 2.2.

The results presented here about spans and relations are not new. N claims to
originality are made for any of the first two stages of the construction. Some of
the proofs can also be found in the literature (see [Kle70; Mei74a; Mei74b; Pav95;
Pav96; Jay95; JW00]), however, far from all of them. In particular, since spans
and relations were mainly studied there out of an interest in bicategories, the rigid
monoidal structure is seldom considered in the literature.

5.1. Stage 1a: Spans. The starting point for the construction is a category
of (classes of) “spans”. We obtain it from Bénabou’s bicategory of spans, which he
introduced in [Bén67, Section 2.6], generalizing an idea of Yoneda’s from [Yon60,
§ 3, Section 3.0].

5.1.1. Category. The inputs to the span category stage of the category can be
more general than the ones allowed for the final stage of the construction presented
in Section 2.

Definition 5.1. (a) Let smCAT denote the strict 2-category of all symmet-
ric monoidal categories, symmetric monoidal functors and monoidal natural
transformations.

(b) Write smCATcart,fc for the sub-2-category of smCAT whose 0-cells are all
cartesian monoidal categories with pull-backs, whose 1-cells are all sym-
metric strong monoidal pull-back-preserving functors between these, and
whose 2-cells are all equifibered monoidal natural transformations between
those.
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(c) Denote by smCATcart,fc
sos the full sub-2-category of smCATcart,fc generated by

all 0-cells A which are A-subobject-small.
(d) Finally, let rsm†CAT be the strict 2-category of rigid symmetric monoidal †-

categories, symmetric monoidal †-functors and monoidal natural transfor-
mations.

Definition 5.2. For any two objects A and B of any category a span from A
to B is any pair (f, g) such that there exists an object X, the base, with f ∶ X → A
and g∶ X → B.

If one reframes isomorphy of 1-cells under 2-cells in Bénabou’s bicategory of
spans, one is lead to make the following definition.

Definition 5.3. For any objects A and B in any category any two spans (f, g)
and (f ′, g′) from A to B with bases X and X ′, respectively, are said to be equivalent
if there exists an isomorphism u∶ X ′ →X such that f ′ = f ○A u and g′ = g ○A u.

A

X ′

f ′
>>

g′   

� �

u
// // X

f
``

g~~
B

This does indeed define an equivalence relation on spans.

Notation 5.4. For any span (f, g) in A we write [f, g] for the class of all spans
in A equivalent to (f, g).

Classes of spans will be composed via pull-backs. We need to check that this
makes sense.

Lemma 5.5. In any category, let {A,B,C} ⊆ obj let (f ′, g′) be spans from A to
B, let (p, q) and (p′, q′) be spans from B to C, let (a, b) be a pull-back of (g, p) and
let (a′, b′) be a pull-back of (g′, p′). If (f, g) and (f ′, g′) are equivalent and (p, q)
and (p′, q′) are equivalent, then (f ○ a, q ○ b) and (f ′ ○ a′, q′ ○ b′) are equivalent spans
from A to C.

Proof. Let the objects X, X ′, Y , Y ′, P and P ′ be as in the below diagram.
Moreover, let u be an isomorphism X ′ → X with f ○ u = f ′ and g ○ u = g′ and,
likewise, v an isomorphism Y ′ → Y with p ○ v = p′ and q ○ v = q′.
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A

X ′

f ′
>>

g′   

� � u // // X

f
``

g~~
P ′

a′
==

b′ !!

B P

a
``

b~~
Y ′

p′
>>

q′   

� � v // // Y

p
``

q~~
C

Step 1: We justify that it suffices to prove that (u ○ a′, v ○ b′) is a pull-back of
(g, p). Indeed, if so, then by the essential uniqueness of (a, b) we find a morphism
w∶ P ′ → P with u ○ a′ = a ○w and v ○ b′ = b ○w and w is unique with that property
and an isomorphism. Moreover,

(f ○ a) ○w = f ○ (a ○w) = f ○ (u ○ a′) = (f ○ u) ○ a′ = f ′ ○ a′

and, analogously, (q ○ b) ○w = q′ ○ b′. And that is what we needed to see.
Step 2: Now, we actually show that (u ○ a′, v ○ b′) is a pull-back of (g, p). Firstly,

g ○ (u ○ a′) = (g ○ u) ○ a′ = g′ ○ a′ = p′ ○ b′ = (p ○ v) ○ b′ = p ○ (v ○ b′),
which is necessary. Secondly, let (c, d) be a pair of morphisms with common domain
Q and with g ○ c = p ○ d. We need to prove that there exists a unique morphism
s∶ Q→ P ′ such that c = (u ○ a′) ○ s and d = (v ○ b′) ○ s. Because

g′ ○ (u−1 ○ c) = (g′ ○ u−1) ○ c = g ○ c = p ○ d = (p′ ○ v−1) ○ d = p′ ○ (v−1 ○ d)
and because (a′, b′) is a pull-back of (g′, p′) there exists a unique morphism s∶ Q→ P ′

with u−1 ○ c = a′ ○ s and v−1 ○ d = b′ ○ s, i.e., with c = (u ○ a′) ○ s and d = (v ○ b′) ○ s,
as desired. And, in fact, s is unique with the latter property: Any s′∶ Q → P ′ with
c = (u ○ a′) ○ s′ and d = (v ○ b′) ○ s′ also satisfies u−1 ○ c = a′ ○ s′ and v−1 ○ d = b′ ○ s′,
from which s′ = s follows by the uniqueness of s. That concludes the proof. □

Now we can give the definition of the span category, Part (d) of course enabled
by Lemma 5.5.

Definition 5.6. For any 0-cell A of smCATcart,fc
sos make the following definitions:

S(A) ∶= (objS(A),morS(A), ○S(A), idS(A))
(a) Let objS(A) ∶= objA,
(b) For any {A,B} ⊆ objS(A) let

morS(A)(A,B) ∶= (
AÒ(A⊗A B))Ò≅
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be the set of all equivalence classes of spans in A from A to B.
(c) For each A ∈ objS(A) let idS(A),A ∶= [idA,A, idA,A].
(d) For any {A,B,C} ⊆ objS(A), any [f, g] ∈ morS(A)(A,B) and any [p, q] ∈

morS(A)(B,C) let

[p, q] ○S(A) [f, g] ∶= [f ○A a, q ○A b]
for any pull-back (a, b) of (g, p) in A.

The following is claimed in [Bén67, Section 2.6] without proof. A proof of a
similar result can be found at [Kle70, Theorem 2.5].

Lemma 5.7. For any 0-cell A of smCATcart,fc
sos the following are true:

(a) For any {A,B,C} ⊆ objS(A), any x ∈morS(A)(A,B), any y ∈morS(A)(B,C)
and any z ∈morS(A)(C,D),

(z ○S(A) y) ○S(A) x = z ○S(A) (y ○S(A) x).
(b) For any {A,B} ⊆ objS(A) and any x ∈morS(A)(A,B),

idS(A),B ○S(A) x = x and x ○S(A) idS(A),A = x.

Proof. (a) Let A, B, C and D be objects of A and let [f, g] be a class of
spans from A to B, let [h, k] be one from B to C and let [ℓ,m] be one from C
to D. By Lemma 5.5 it suffices to show that (f ○ a ○ p,m ○ q) and (f ○ r,m ○ d ○ s)
are equivalent spans from A to D for a pull-back (a, b) of (g, h), a pull-back (c, d)
of (k, ℓ), a pull-back (p, q) of (k ○ b, ℓ), and a pull-back (r, s) of (g, h ○ c). Let the
objects X, Y , Z, P , Q, S and T be as in the diagram.

A

X

f
>>

g   

X

f
``

g~~
P

a
>>

b   

B

S

p
??

q

��

Y

h
>>

k ��

Y

h
``

k��

T

r

``

s��
C Q

c

__

d��
Z

ℓ

??

m   

Z

ℓ

__

m~~
D



5. PARTIAL PROOF OF THE CONSTRUCTION 439

By applying Part (b) of Lemma 4.3 to each of the diagrams, where in each case
both the large square and the right small square are pull-backs by assumption,

S x
//

p

��

q
++

Q
d
//

c
��

Z

ℓ
��

P
b
// Y

k
// C

T y
//

s
��

r
++

P a
//

b
��

X

g

��
Q c

// Y
h
// B

we find unique morphisms x∶ S → Q with q = d ○ x and b ○ p = c ○ x and y∶ T → P
with r = a ○ y and b ○ y = c ○ s. Moreover, both (p, x) and (y, s) are each pull-backs
of (b, c) by Part (a) of Lemma 4.3.

By the essential uniqueness of pull-backs there must then exist an isomorphism
w∶ S → T with p = y○w and x = s○w. It follows r○w = (a○y)○w = a○(y○w) = a○p and
q = d○x = d○(s○w) = (d○s)○w. Because that implies in particular f ○a○p = (f ○r)○w
and m ○ q = (m ○d ○ s) ○w, the spans (f ○ a ○ p,m ○ q) and (f ○ r,m ○ d ○ s) have thus
been shown to be equivalent.

(b) Let A and B be objects ofA and let [f, g] be any class of spans from A to B. If
X is the base of (f, g), then by Lemma 4.6 a pull-back of (idA, f) is given by (f, idX).
Lemma 5.5 hence assures us that [f, g] ○ [idA, idA] = [idA ○ f, g ○ idX] = [f, g]. The
proof of the other identity is analogous. □

Proposition 5.8. (objS(A),morS(A), ○S(A), idS(A)) is a category for any 0-cell A
of smCATcart,fc

sos .

Proof. That is the implication of Lemma 5.7. □

On countless occasions we will have to compute products in span categories with
more than two factors. The following is the key result for doing so efficiently. It will
be used in later computations without explicit reference.

Lemma 5.9. For any 0-cell A of smCATcart,fc
sos and any n ∈ N, if {X1, . . . ,Xn+1} ⊆

objS(A) and if xi ∈morS(A)(Xi,Xi+1) for each i ∈ {1, . . . , n}, then

xn ○S(A) . . . ○S(A) x1 = [fn,1 ○A fn−1,1 ○A . . . ○A f1,1, gn,n ○A gn−1,n−1 ○A . . . ○A g1,1],

where (fn,j, gn,j) ∈ xj for each j ∈ {1, . . . , n} are arbitrary representatives and where
for each i ∈ {1, . . . , n − 1} and each j ∈ {1, . . . , i} the span (fi,j, gi,j) is any pull-back
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of (gi+1,j, fi+1,j+1) in A.

X1

Xn,1

X2

X3,1 Xn,2

X2,1 X3

X1,1 X3,2 ⋮

X2,2 ⋮

X3,3 Xn,n−1

Xn

Xn,n

Xn+1

fn,1

gn,1

fn,2

gn,2f2,1

g2,1f1,1

g1,1 f2,2

g2,2

gn,n−1

fn,n

gn,n

Proof. For n = 1 the claim is simply the definition of ○S(A). Suppose it is true
for n − 1, where n ≥ 2. We prove it for n. By the induction hypothesis,

xn−1 ○ . . . ○ x1 = [fn,1 ○ fn−1,1 ○ . . . ○ f2,1, gn,n−1 ○ gn−1,n−2 ○ . . . ○ g2,1].

And it remains to prove that

[fn,n, gn,n] ○ [fn,1 ○ fn−1,1 ○ . . . ○ f2,1, gn,n−1 ○ gn−1,n−2 ○ . . . ○ g2,1]
!= [fn,1 ○ fn−1,1 ○ . . . ○ f1,1, gn,n ○ gn−1,n−1 ○ . . . ○ g1,1].
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By the definition of ○S(A) and Lemma 5.5 that in turn is true if a pull-back of
(gn,n−1 ○ gn−1,n−2 ○ . . . ○ g2,1, fn,n) in A is given by (f1,1, gn−1,n−1 ○ gn−2,n−2 ○ . . . ○ g1,1).
And that this is the case is guaranteed by Lemma 4.4. □

Definition 5.10. For any X ∈ objA let ΘA(X) ∶= X and for any {A,B} ⊆ objA
and any f ∈morA(A,B) define ΘA(f) ∶= [idA,A, f].

Lemma 5.11. For any 0-cell A of smCATcart,fc
sos the following are true:

(a) For any {A,B} ⊆ objA, any f ∈morA(A,B) and any g ∈morA(B,C),
ΘA(g) ○S(A) ΘA(f) = ΘA(g ○A f).

(b) ΘA(idA,X) = idS(A),X for any X ∈ objA.
(c) (ΘA)0 is injective.
(d) (ΘA)1,A,B is injective for any {A,B} ⊆ objA.

Proof. (a) Given any objects A, B and C and morphisms f ∶ A → B and
g∶ B → C, a pull-back of (f, idB) is given by (idA, f) according to Lemma 4.6.
Hence, by Lemma 5.5, it follows [idB, g] ○ [idA, f] = [idA ○ idA, g ○ f]. And that is
what we needed to see.

(b) Clear from the definition.
(c) Trivially true.
(d) For any objects A and B and morphisms f and f ′ from A to B in A, the

assumption [idA, f] = [idA, f ′] implies the existence of an automorphism u of A with
idA ○ u = idA and f ′ ○ u = f . Because the first identity requires u = idA, the second
shows f ′ = f . □

Proposition 5.12. ΘA is a categorial embedding A → S(A) for any 0-cell A of
smCATcart,fc

sos .

Proof. This is what Lemma 5.11 spells out. □

Lemma 5.13. For any categories A and B and any functor H ∶ A → B and
{A,B} ⊆ objA, if any (f, g) and (f ′, g′) of A are equivalent spans of A from A
to B, then (H(f),H(g)) and (H(f ′),H(g′)) are equivalent spans of B from H(A)
to H(B).

Proof. If X and X ′ are the bases of (f, g) respectively (f ′, g′), then equivalence
of (f, g) and (f ′, g′) implies the existence of an isomorphism u of A from X to X ′

with f ′ ○u = f and g′ ○u = g. Because H is a functor, H(u) is invertible in B. Hence,
H(f ′) ○H(u) = H(f ′ ○ u) = H(f) and H(g′) ○H(u) = H(g′ ○ u) = H(g) prove that
(H(f),H(g)) and (H(f ′),H(g′)) are equivalent as well. □

The following definition makes sense by Lemma 5.13

Definition 5.14. For any 0-cells A and B and any 1-cell H from A to B of
smCATcart,fc

sos define
(a) S(H)0 ∶=H0 and
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(b) for any {A,B} ⊆ objS(A) let S(H)1,A,B be the morphism

morS(A)(A,B)→morS(B)(H0(A),H0(B))

of Set defined by

[f, g]↦ [H1(f),H1(g)].

Lemma 5.15. For any 0-cells A and B and any 1-cell H from A to B of smCATcart,fc
sos

the following are true:
(a) For any {A,B,C} ⊆ objS(A), any x ∈morS(A)(A,B) and y ∈morS(A)(B,C),

S(H)(y) ○S(B) S(H)(x) = S(H)(y ○S(A) x).

(b) S(H)(idS(A),X) = idS(B),S(H)(X) for any X ∈ objS(A).

Proof. (a) Given any objects A, B and C of A and any spans [f, g] from A
to B with base X and [p, q] from B to C with base Y in A as well as any pull-back
(a, b) of (g, p) in A with pull-back object P the span [f ○A a, q ○B ○b] represents
[p, q] ○S(A) [f, g] by Lemma 5.5. Because H preserves pull-backs (H(a),H(b)) is
a pull-back in B of (H(g),H(p)). Thus, by a second application of Lemma 5.5,
the span (H(f ○A a),H(f ○A a)) = (H(f) ○B H(a),H(f) ○B H(a)) represents the
morphism S(H)([p, q]) ○S(B) S(H)([f, g]) = [H(p),H(q)] ○S(B) [H(f),H(g)].

(b) Clearly, S(H)(idS(A),X) = S(H)([idA,X , idA,X]) = [H(idA,X),H(idA,X)] =
[idB,H(X), idB,H(X)] = idS(B),S(H)(X). □

Proposition 5.16. For any 0-cells A and B and any 1-cell H from A to B
of smCATcart,fc

sos the pair (S(H)0,S(H)1) is a functor from (objS(A),morS(A), ○S(A),
idS(A)) to (objS(B),morS(B), ○S(B), idS(B))

Proof. This is a summary of the results of Lemma 5.15. □

Definition 5.17. For any 0-cells A and B, any 1-cells H and K from A to B
and for any 2-cell from H to K of smCATcart,fc

sos let S(η) be the objA-indexed family
with components (S(η))A ∶= ΘB(ηA) for any object A of A.

Lemma 5.18. For any 0-cells A and B, any 1-cells H and K from A to B, any 2-
cell from H to K of smCATcart,fc

sos , any {A,B} ⊆ objS(A) and any x ∈morS(A)(A,B),

S(η)B ○S(B) S(H)(x) = S(K)(x) ○S(B) S(η)A.
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Proof. Let A and B be any objects and (f, g) any span of A from A to B and
let X be its base.

H(A) H(A)

H(X) H(A)

H(X) H(B) K(A) H(X)

H(B) K(X)

K(B) K(B)

H(f)

H(g)

idH(A)

ηA

idH(X)

H(g)

H(f)

ηX

idH(B)

ηB

K(f)

K(g)

Then, because (idB,H(X),H(g)) is a pull-back of (H(g), idB,idB,H(B)) in B by Lem-
ma 4.6,

S(η)B ○S(B) S(H)([f, g]) = [idB,H(B), ηB] ○S(B) [H(f),H(g)]
= [H(f) ○B idB,H(X), ηB ○B H(g)]
= [idB,H(A) ○B H(f),K(g) ○B ηX],

where we have used the assumption that η is a natural transformation from H to
K in the last step.

Because η is even equifibered (H(f), ηX) is a pull-back of (ηA,K(f)) in B. For
that reason,

S(K)([f, g]) ○S(B) S(η)A = [K(f),K(g)] ○S(B) [idB,H(A), ηA]
= [idB,H(A) ○B H(f),K(g) ○B ηX],

which proves the claim. □

Proposition 5.19. For any 0-cells A and B, any 1-cells H and K from A to
B and for any 2-cell from H to K of smCATcart,fc

sos the family S(η) is a natural
transformation from S(H) to S(K).

Proof. Follows from Lemma 5.18. □

The next lemma will be a useful tool for later computations.

Lemma 5.20. For any 0-cells A and B and any 1-cell H from A to B of smCATcart,fc
sos ,

S(H) ○CAT ΘA = ΘB ○CATH.



444 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

Proof. For any X ∈ objA the definitions imply

(S(H) ○ΘA)(X) = S(H)(ΘA(X)) = S(H)(X) =H(X) = ΘB(H(X))
= (ΘB ○H)(X).

Likewise, for any {A,B} ⊆ objA and any f ∈morA(A,B),
(S(H) ○ΘA)(f) = S(H)(ΘA(f)) = S(H)([idA,A, f]) = [H(idB,H(A)),H(f)]

= ΘB(H(f)),
which completes the proof. □

5.1.2. Monoidal Category. The next step is to prove that the span category can
be given a rigid monoidal structure if the input has products and a terminal object.

Lemma 5.21. In any cartesian monoidal category, for each i ∈ {1,2} let {Ai,Bi} ⊆
obj and let (fi, gi) and (f ′i , g′i) be two spans from Ai to Bi. If for each i ∈ {1,2} the
spans (fi, gi) and (f ′i , g′i) are equivalent, then (f1 ⊗ f2, g1 ⊗ g2) and (f ′1 ⊗ f ′2, g′1 ⊗ g′2)
are equivalent spans from A1 ⊗A2 to B1 ⊗B2.

Proof. For each i ∈ {1,2}, if Xi denotes the base of (fi, gi) and X ′
i the base of

(f ′i , g′i), then by assumption there exists an isomorphism ui∶ X ′
i →Xi with f ′i = fi○ui

and g′i = gi ○ ui. Since ⊗ is a functor, the morphism u1 ⊗ u2 is an isomorphism
X ′

1⊗X ′
2 →Xi⊗X2. For the same reason, u1⊗u2 satisfies f ′1⊗f ′2 = (f1○u1)⊗(f2○u2) =

(f1 ⊗ f2) ○ (u1 ⊗ u2) and, likewise, g′1 ⊗ g′2 = (g1 ⊗ g2) ○ (u1 ⊗ u2), which proves the
asserted equivalence. □

By the preceding lemma, Part (c) in the following Definition makes sense. For
Parts (d)–(f) recall the Definition 5.10 of the embedding ΘA for any 0-cell A of
smCATcart,fc

sos .

Definition 5.22. For any 0-cell A of smCATcart,fc
sos , any objects A, A1, A2, B,

B1, B2 and C of A and any [f1, g1] ∈morS(A)(A1,B1) and [f2, g2] ∈morS(A)(A2,B2)
define

(a) A1 ⊗S(A) A2 ∶= A1 ⊗A A2.,
(b) IS(A) ∶= IA,
(c) [f1, g1]⊗S(A) [f2, g2] ∶= [f1 ⊗A f2, g1 ⊗A g2],
(d) αS(A),A,B,C ∶= ΘA(αA,A,B,C),
(e) λS(A),A ∶= ΘA(λA,A),
(f) ρS(A),A ∶= ΘA(ρAA).

The following lemma is not part of the main claim but an important tool for later
proofs.

Lemma 5.23. For any 0-cell A of smCATcart,fc
sos and any two morphisms f1 and f2

of A,
ΘA(f1 ⊗A f2) = ΘA(f1)⊗S ΘA(f2).
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Proof. For each i ∈ {1,2} let Xi and Ai be such that fi∶ Xi → Ai. Per definition
and by Lemma 5.21,

ΘA(f1 ⊗A f2) = [idA,X1⊗AX2 , f1 ⊗A f2] = [idA,X1 ⊗A idA,X2 , f1 ⊗A f2]
= [idA,X1 , f1]⊗S [idA,X2 , f2] = ΘA(f1)⊗S ΘA(f2),

where we have used that ⊗A is a functor A⊗CAT A→ A in the second step. □

Lemma 5.24. Let A be any 0-cell of smCATcart,fc
sos and abbreviate S(A) by S.

(a) ⊗S is a functor S⊗CAT S→ S.
(b) αS is a natural isomorphism of functors S⊗CAT S⊗CAT S→ S from
(( ⋅1)⊗S ( ⋅2))⊗S ( ⋅3) to ( ⋅1)⊗S (( ⋅2)⊗S ( ⋅3)).

(c) λS is a natural isomorphism of S-endofunctors from IS ⊗S ( ⋅ ) to ( ⋅ ).
(d) ρS is a natural isomorphism of S-endofunctors from ( ⋅ )⊗S IS to ( ⋅ ).
(e) For any objects A, B, C and D of S a commutative diagram in S is given

by

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

**
((A⊗B)⊗C)⊗D

αA,B,C⊗idD
��

αA⊗B,C,D
44

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗C))⊗D αA,B⊗C,D

// A⊗ ((B ⊗C)⊗D)

idA⊗αB,C,D

OO

(f) For any objects A and B of S a commutative diagram in S is given by

(A⊗ I)⊗B
αA,I,B //

ρA⊗idB &&

A⊗ (I ⊗B)

idA⊗λBxx
A⊗B

Proof. (a) We have to show that ⊗S respects composition and identities.
Composition. For each i ∈ {1,2} let Ai, Bi and Ci be objects of A, let (fi, gi) be

a span in A from A to B and let (pi, qi) be one from B to C and let (ai, bi) be a
pull-back of (gi, pi). Hence, by definition and Lemma 5.5,

([p1, q1] ○S [f1, g1])⊗S ([p2, q2] ○S [f2, g2])
= [f1 ○A a1, q1 ○A b1]⊗S [f2 ○A a2, q2 ○A b2]
= [(f1 ○A a1)⊗A (f2 ○A a2), (q1 ○A b1)⊗A (q2 ○A b2)]
= [(f1 ⊗A f2) ○A (a1 ⊗A a2), (q1 ⊗A q2) ○A (b1 ⊗A b2)],
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where we have used that ⊗A is a functor A × A → A in the last step. On the
other hand, because (a1 ⊗A a2, b1 ⊗A b2) is a pull-back of (g1 ⊗A g2, p1 ⊗A p2) by Lem-
ma 4.10 the definition of ○S allows us to conclude

= [p1 ⊗A p2, q1 ⊗A q2] ○S [f1 ⊗A f2, g1 ⊗A g2]
= ([p1, q1]⊗S [p2, q2]) ○S ([f1, g1]⊗S [f2, g2]).

Thus, ⊗S does indeed respect composition.
Identities. For any objects X and Y of A, by definition,

idS,X ⊗S idS,Y = [idA,X , idA,X]⊗S [idA,Y , idA,Y ]
= [idA,X ⊗A idA,Y , idA,X ⊗A idA,Y ] = [idA,X⊗AY , idA,X⊗AY ],

where again we have used the assumption that ⊗A is a functor A ×A→ A.
(b) By Proposition 5.12 the morphisms making up αS are isomorphisms because

αA consists of isomorphisms. We only need to show that αS is a natural transfor-
mation. For each i ∈ {1,2,3} let (fi, gi) be a span in A from object Ai to Bi with
base Xi. By Lemma 4.6 a pull-back of ((g1 ⊗A g2)⊗A g3, idA,(B1⊗AB2)⊗AB3

) is given
by (idA,(A1⊗AA2)⊗AA3

, (g1 ⊗A g2)⊗A g3). Hence, by definition and Lemma 5.5,

αS,B1,B2,B3 ○S (([f1, g1]⊗S [f2, g2])⊗S [f3, g3])
= [idA,(B1⊗AB2)⊗AB3

, αA,B1,B2,B3] ○S [(f1 ⊗A f2)⊗A f3, (g1 ⊗A g2)⊗A g3]
= [((f1 ⊗A f2)⊗A f3) ○A idA,(A1⊗AA2)⊗AA3

, αA,B1,B2,B3 ○A ((g1 ⊗A g2)⊗A g3)]
= [(f1 ⊗A f2)⊗A f3, (g1 ⊗A (g2 ⊗A g3)) ○A αA,X1,X2,X3],

where we have used that αA is a natural transformation from (( ⋅1)⊗A ( ⋅2))⊗A( ⋅3) to
( ⋅1)⊗A(( ⋅2)⊗A ( ⋅3)). As by Lemma 4.13 (a) the pair ((f1 ⊗A f2)⊗A f3, αA,X1,X2,X3)
is a pull-back of (αA,A1,A2,A3 , f1 ⊗A (f2 ⊗A f3)),

= [f1 ⊗A (f2 ⊗A f3), g1 ⊗A (g2 ⊗A g3)] ○S [idA,(A1⊗AA2)⊗AA3
, αA,A1,A2,A3]

= ([f1, g1]⊗S ([f2, g2]⊗S [f3, g3])) ○S αS,A1,A2,A3 ,

which is what we needed to see.
(c) Again, Proposition 5.12 provides us with inverses for the morphisms λS.

Hence, all we have to show is that λS is natural. Let (f, g) be a span in A from
object A to object B with base X. A pull-back of (idA,IA ⊗A g, idA,IA⊗AB) is given
by (idA,IA⊗AX , idA,IA ⊗A g) according to Lemma 4.6. Thus, by Lemma 5.5,

λS,B ○S (idS,IS ⊗S [f, g]) = [idA,IA⊗AB, λA,B] ○S [idA,IA ⊗A f, idA,IA ⊗A g]
= [(idA,IA ⊗A f) ○A idA,IA⊗AX , λA,B ○A (idA,IA ⊗A g)]
= [idA,IA ⊗A f, g ○A λA,X],

where the last step is due to λA being a natural transformation IA ⊗A ( ⋅ ) → ( ⋅ ).
Lemma 4.13 (b) tells us that (idA,IA ⊗A f, λA,X) is a pull-back of (λA,A, f). Hence,
the above is identical to [f, g] ○S [idA,IA⊗AA, λA,A] = [f, g] ○S λS,A, which is precisely
what we needed to prove.
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(d) Proposition 5.12 relieves of us of proving that ρS is comprised of isomor-
phisms. To see naturality we let (f, g) be any span in A from A to B with base X.
Lemma 4.6 lets us find a pull-back of (g ⊗A idA,IA , idA,B⊗AIA) in (idA,X⊗AIA , g ⊗A idA,IA).
With the help of Lemma 5.5 we then compute

ρS,B ○S ([f, g]⊗S idS,IS) = [idA,B⊗AIA , ρA,B] ○S [f ⊗A idA,IA , g ⊗A idA,IA]
= [(f ⊗A idA,IA) ○A idA,X⊗AIA , ρA,B ○A (g ⊗A idA,IA)]
= [f ⊗A idA,IA , g ○A ρA,X],

using the naturality of ρA. Since (f ⊗A idA,IA , ρA,X) is a pull-back of (ρA,A, f) by
Lemma 4.13 (c), the above is the same as [f, g] ○S [idA,A⊗AIA , ρA,A] = [f, g] ○S ρS,A,
proving the claim.

(e) Associators in S are defined as images of the corresponding associators of A
under ΘA. With the help of Proposition 5.12 and, crucially, Lemma 5.23 we can
recognize

αS,A,B,C ⊗S idS,D = ΘA(αA,A,B,C ⊗A idA,D)
and idS,A ⊗S αS,B,C,D = ΘA(idA,A ⊗A αA,B,C,D).

Hence, what we actually claim is that the image of the corresponding diagram in
A under the functor ΘA commutes. Because A is a monoidal category, of course,
the diagram in question is commutative in A. By Proposition 5.12 the same is then
true for the image of that diagram in S.

(f) Again, by Proposition 5.12 and Lemma 5.23 the diagram in S is simply the
image under ΘA of the corresponding diagram in A. Since it commutes in A and
since ΘA is a functor it also commutes in S. □

Proposition 5.25. S(A), when equipped with (⊗S(A), IS(A), αS(A), λS(A), ρS(A)),
is a monoidal category for any 0-cell A of smCATcart,fc

sos .

Proof. That is the combined implication of Lemma 5.24 □

Proposition 5.26. ΘA is a strict monoidal functor A → S(A) for any 0-cell A
of smCATcart,fc

sos .

Proof. Follows immediately from Proposition 5.25 and Lemma 5.23. □

Definition 5.27. For any 0-cells A and B and any 1-cell H from A to B of
smCATcart,fc

sos define
(a) S(H)⊗,A1,A2

∶= ΘB(H⊗,A1,A2) for any {A1,A2} ⊆ objA, and

(b) S(H)I ∶= ΘA(HI).

Lemma 5.28. For any 0-cells A and B and any 1-cell H from A to B of smCATcart,fc
sos

the following hold:
(a) For any {A1,A2} ⊆ objA the morphism S(H)⊗,A1,A2

is invertible in S(B).
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(b) For any {A1,A2,B1,B2} ⊆ objS(A) and any x1 ∈ morS(A)(A1,B1) and any
x2 ∈morS(A)(A2,B2),

S(H)⊗,B1,B2
○S(B) (S(H)(x1)⊗S(B) S(H)(x2))

= S(H)(x1 ⊗S(A) x2) ○S(B) S(H)⊗,A1,A2
.

S(H)(A1)⊗S(B) S(H)(A2) S(H)(B1)⊗S(B) S(H)(B2)

S(H)(A1 ⊗S(A) A2) S(H)(B1 ⊗S(A) B2)

S(H)⊗,A1,A2

S(H)(x1)⊗S(B)S(H)(x2)

S(H)⊗,B1,B2

S(H)(x1⊗S(A)x2)

(c) The morphism S(H)I is invertible in S(B).
(d) For any {A1,A2,A3} ⊆ objS(A),

S(H)(αS(A),A1,A2,A3
) ○S(B) S(H)⊗,A1⊗S(A)A2,A3

○S(B) (S(H)⊗,A1,A2
⊗S(B) idS(B),S(H)(A3))

= S(H)⊗,A1,A2⊗S(A)A3
○S(B) (idS(B),S(H)(A1) ⊗S(B) S(H)⊗,A2,A3

)
○S(B) αS(B),S(H)(A1),S(H)(A2),S(H)(A3).

(S(H)(A1)⊗S(B) S(H)(A2))
⊗S(B) S(H)(A3)

S(H)(A1)⊗S(B) (S(H)(A2)
⊗S(B) S(H)(A3))

S(H)(A1 ⊗S(A) A2)
⊗S(B) S(H)(A3)

S(H)(A1)
⊗S(B) S(H)(A2 ⊗S(A) A3)

S(H)((A1 ⊗S(A) A2)⊗S(A) A3) S(H)(A1 ⊗S(A) (A2 ⊗S(A) A3))

αS(B),S(H)(A1),S(H)(A2),S(H)(A3)

S(H)⊗,A1,A2
⊗S(B)idS(B),S(H)(A3)

S(H)⊗,A1⊗S(A)A2,A3

S(H)(αS(A),A1,A2,A3
)

idS(B),S(H)(A1)⊗S(B)S(H)⊗,A2,A3

S(H)⊗,A1,A2⊗S(A)A3

(e) For any X ∈ objS(A),

λS(B),S(H)(X) = S(H)(λS(A),X) ○S(B) S(H)⊗,IS(A),X
○S(B) (S(H)I ⊗S(B) idS(B),S(H)(X)).
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IS(B) ⊗S(B) S(H)(X) S(H)(IS(A))⊗S(B) S(H)(X)

S(H)(X) S(H)(IS(A) ⊗S(B)X)

S(H)I⊗S(B)idS(B),S(H)(X)

λS(B),S(H)(X) S(H)⊗,IS(A),X

S(H)(λS(A),X)

(f) For any X ∈ objS(A),

ρS(B),S(H)(X) = S(H)(ρS(A),X) ○S(B) S(H)⊗,X,IS(A)
○S(B) (idS(B),S(H)(X) ⊗S(B) S(H)I).

S(H)(X)⊗S(B) IS(B) S(H)(X)⊗S(B) S(H)(IS(A))

S(H)(X) S(H)(X ⊗S(B) IS(A))

idS(B),S(H)(X)⊗S(B)S(H)I

ρS(B),S(H)(X) S(H)⊗,X,IS(A)

S(H)(ρS(A),X)

Proof. (a) Since H is by assumption a strong monoidal functor the mor-
phism H⊗,A1,A2 is invertible in B. Hence, the definition S(H)⊗,A1,A2

= ΘB(H⊗,A1,A2)
and Proposition 5.12 prove the assertion.

(b) For each i ∈ {1,2} let (fi, gi) ∈ xi be arbitrary and let Xi its base. Unwinding
the definitions yields

S(H)⊗,B1,B2
○S(B) (S(H)(x1)⊗S(B) S(H)(x2))

= [idB,H(B1)⊗BH(B2),H⊗,B1,B2] ○S(B) [H(f1)⊗B H(f2),H(g1)⊗B H(g2)].

Because the span (idB,H(X1)⊗BH(X2),H(g1)⊗B H(g2)) is a pull-back of the co-span
(H(g1)⊗B H(g2), idB,H(B1)⊗BH(B2)) in B by Lemma 4.6 the above is identical to

[(H(f1)⊗B H(f2)) ○B idB,H(X1)⊗BH(X2),H⊗,B1,B2 ○B (H(g1)⊗B H(g2))]
= [idB,H(A1)⊗BH(A2) ○B (H(f1)⊗B H(f2)),H(g1 ⊗A g2) ○B H⊗,X1,X2].

Because H is a strong monoidal functor H⊗ is a natural isomorphism and thus
equifibered by Lemma 4.7. Consequently, (H(f1)⊗B H(f2),H⊗,X1,X2) is a pull-
back of (H⊗,A1,A2 ,H(f1 ⊗A f2)) in B, which lends the following form to the previous
expression:

[H(f1 ⊗A f2),H(g1 ⊗A g2)] ○S(B) [idB,H(A1)⊗BH(A2),H⊗,A1,A2]
= S(H)(x1 ⊗S(H)A x2) ○S(B) S(H)⊗,A1,A2

.

That is what we needed to see.
(c) Again, the assumption that H is strong monoidal makes HI invertible in B

and thus S(H)I = ΘB(HI) invertible in S(B) by Proposition 5.12.



450 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

(d) Proposition 5.26, and Lemma 5.20 allow a quick computation:

S(H)(αS(A),A1,A2,A3
) ○S(B) S(H)⊗,A1⊗S(A)A2,A3

○S(B) (S(H)⊗,A1,A2
⊗S(B) idS(B),S(H)(A3))

= S(H)(ΘA(αA,A1,A2,A3)) ○S(B) ΘB(H⊗,A1⊗AA2,A3)
○S(B) (ΘB(H⊗,A1,A2)⊗S(B) ΘB(idB,H(A3)))

5.26=
5.20

ΘB(H(αA,A1,A2,A3)) ○S(B) ΘB(H⊗,A1⊗AA2,A3) ○S(B) ΘB(H⊗,A1,A2 ⊗B idB,H(A3))
5.12= ΘB(H(αA,A1,A2,A3) ○B H⊗,A1⊗AA2,A3 ○B (H⊗,A1,A2 ⊗B idB,H(A3)))
= ΘB(H⊗,A1,A2⊗AA3 ○B (idB,H(A1) ⊗B H⊗,A2,A3) ○B αB,H(A1),H(A2),H(A3))

5.12= ΘB(H⊗,A1,A2⊗AA3) ○S(B) ΘB(idB,H(A1) ⊗B H⊗,A2,A3) ○S(B) ΘB(αB,H(A1),H(A2),H(A3))
5.26= ΘB(H⊗,A1,A2⊗AA3) ○S(B) (ΘB(idB,H(A1))⊗S(B) ΘB(H⊗,A2,A3))

○S(B) ΘB(αB,H(A1),H(A2),H(A3))
= S(H)⊗,A1,A2⊗S(A)A3

○S(B) (idS(B),S(H)(A1) ⊗S(B) S(H)⊗,A2,A3
)

○S(B) αS(B),S(H)(A1),S(H)(A2),S(H)(A3),

where the fourth step is enabled by H being a monoidal functor from A to B.
(e) Similarly to Part (d), we compute with the help of Proposition 5.26, and

Lemma 5.20:

S(H)(λS(A),X) ○S(B) S(H)⊗,IS(A),X ○S(B) (S(H)I ⊗S(B) idS(B),S(H)(X))
= S(H)(ΘA(λA,X)) ○S(B) ΘB(H⊗,IA,X) ○S(B) (ΘB(HI)⊗S(B) ΘB(idB,H(X)))

5.26=
5.20

ΘB(H(λA,X)) ○S(B) ΘB(H⊗,IA,X) ○S(B) ΘB(HI ⊗B idB,H(X))
5.12= ΘB(H(λA,X) ○B H⊗,IA,X ○B (HI ⊗B idB,H(X)))
= ΘB(λB,H(X))
= λS(B),S(H)(X),

where the fourth step is due to H being a monoidal functor from A to B.
(f) The proof is analogous to that of Part (e):

S(H)(ρS(A),X) ○S(B) S(H)⊗,X,IS(A) ○S(B) (idS(B),S(H)(X) ⊗S(B) S(H)I)
= S(H)(ΘA(ρA,X)) ○S(B) ΘB(H⊗,X,IA) ○S(B) (ΘB(idB,H(X))⊗S(B) ΘB(HI))

5.26=
5.20

ΘB(H(ρA,X)) ○S(B) ΘB(H⊗,X,IA) ○S(B) ΘB(idB,H(X) ⊗B HI)
5.12= ΘB(H(ρA,X) ○B H⊗,X,IA ○B (idB,H(X) ⊗B HI))
= ΘB(ρB,H(X))
= ρS(B),S(H)(X),

where, again, we can make the fourth step becausee H is a monoidal functor from
A to B. □
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Proposition 5.29. S(H), when equipped with (S(H)⊗,S(H)I), is a strong mo-
noidal functor from S(A) to S(B) for any 0-cells A and B and any 1-cell H from A
to B of smCATcart,fc

sos

Proof. Implied by the entirety of Lemma 5.28. □

Lemma 5.30. For any 0-cells A and B, any 1-cells H and K from A to B and
any 2-cell η from H to K of smCATcart,fc

sos the following hold:
(a) For any {A1,A2} ⊆ objS(A),

S(K)⊗,A1,A2
○S(B) (S(η)A1

⊗S(B) S(η)A2
) = S(η)A1⊗S(A)A2

○S(B) S(H)⊗,A1,A2
.

S(H)(A1)⊗S(B) S(H)(A2) S(K)(A1)⊗S(B) S(K)(A2)

S(H)(A1 ⊗S(A) A2) S(K)(A1 ⊗S(A) A2)

S(η)A1
⊗S(B)S(η)A2

S(H)⊗,A1,A2
S(K)⊗,A1,A2

S(η)A1⊗S(A)A2

(b) S(K)I = S(η)IS(A) ○S(B) S(H)I .

IS(B)

S(H)(IS(A)) S(K)(IS(A))

S(K)IS(H)I

S(η)IS(A)

Proof. (a) Direct computation, relying on Proposition 5.26, shows:

S(K)⊗,A1,A2
○S(B) (S(η)A1

⊗S(B) S(η)A2
)

= ΘB(K⊗,A1,A2) ○S(B) (ΘB(ηA1)⊗S(B) ΘB(ηA2))
5.26= ΘB(K⊗,A1,A2 ○B (ηA1 ⊗B ηA2))
= ΘB(ηA1⊗AA2 ○B H⊗,A1,A2)

5.12= ΘB(ηA1⊗AA2) ○S(A) ΘB(H⊗,A1,A2)
= S(η)A1⊗S(A)A2

○S(B) S(H)⊗,A1,A2
,

where the third step is enabled by η being a monoidal natural transformation from
H to K.

(b) Again, we can infer immediately, with the help of Proposition 5.26,

S(η)IS(A) ○S(B) S(H)I = ΘB(ηIA) ○S(B) ΘB(HI)
5.26= ΘB(ηIA ○B HI)
= ΘB(KI)
= S(K)I ,
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where we have used the fact that η is a monoidal natural transformation from H to
K in the third step. □

Proposition 5.31. S(η) is a monoidal natural transformation of monoida func-
tors from S(A) to S(B) from S(H) to S(K) for any 0-cells A and B, any 1-cells H
and K from A to B and any 2-cell η from H to K of smCATcart,fc

sos .

Proof. The claim summarizes Lemma 5.30. □

5.1.3. Symmetric Monoidal Category. The monoidal structure defined on the
span category inherits its symmetric nature from the cartesian monoidal input cat-
egory.

Definition 5.32. For any {A,B} ⊆ objS(A) define γS(A),A,B ∶= ΘA(γA,A,B) for

any 0-cell A of smCATcart,fc
sos .

Lemma 5.33. Let A be any 0-cell of smCATcart,fc
sos and abbreviate S(A) by S.

(a) γS is a natural isomorphism of functors S ⊗CAT S → S from ( ⋅1) ⊗S ( ⋅2) to
( ⋅2)⊗S ( ⋅1).

(b) For any objects A, B and C of S commutative diagrams in S are given by

(A⊗B)⊗C
αA,B,C//

γA,B⊗idC
��

A⊗ (B ⊗C)
γA,B⊗C// (B ⊗C)⊗A

αB,C,A

��
(B ⊗A)⊗C αB,A,C

// B ⊗ (A⊗C)
idB⊗γA,C

// B ⊗ (C ⊗A)

and

A⊗ (B ⊗C)
α−1A,B,C//

idA⊗γB,C

��

(A⊗B)⊗C
γA⊗B,C// C ⊗ (A⊗B)

α−1C,A,B

��
A⊗ (C ⊗B)

α−1A,C,B

// (A⊗C)⊗B
γA,C⊗idB

// (C ⊗A)⊗B

.

(c) γS,B,A ○S γS,A,B = idS,A⊗SB for any objects A and B of S.

Proof. (a) Proposition 5.12 ensures that γS is made up of isomorphisms
because γA is. What we have to prove is that γS is a natural transformation. For each
i ∈ {1,2} let (fi, gi) be a span in A from Ai to Bi with base object Xi. Lemma 4.6
implies that a pull-back of (g1 ⊗A g2, idA,B1⊗AB2) is given by (idA,X1⊗AX2 , g1 ⊗A g2).
Hence, by Lemmata 5.5 and 5.21,

γS,B1,B2 ○S ([f1, g1]⊗S [f2, g2])
= [idA,B1⊗AB2 , γA,B1,B2] ○S [f1 ⊗A f2, g1 ⊗A g2]
= [(f1 ⊗A f2) ○A idA,X1⊗AX2 , γA,B1,B2 ○A (g1 ⊗A g2)]
= [idA,A1⊗AA2 ○ (f1 ⊗A f2), (g2 ⊗A g1) ○ γA,X1,X2],

where we have used that γA is a natural transformation ( ⋅1)⊗A ( ⋅2)→ ( ⋅2)⊗A ( ⋅1).
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Because (f1 ⊗A f2, γA,X1,X2) is a pull-back of (γA,A1,A2 , f2 ⊗A f1) by Lemma 4.16
it follows

= [f2 ⊗A f1, g2 ⊗A g1] ○S [idA,A1⊗AA2 , γA,A1,A2]
= ([f2, g2]⊗S [f1, g1]) ○S γS,A1,A2

which is what we needed to prove.
(b) For any objects X, Y and Z of A Proposition 5.12 implies that α−1S,X,Y,Z =

ΘA(αA,X,Y,Z)−1 = ΘA(α−1A,X,Y,Z) and, together with Lemma 5.23, that γS,X,Y ⊗S idS,Z =
ΘA(γA,X,Y ) ⊗S ΘA(idA,Z) = ΘA(γA,X,Y ⊗A idA,Z) and, likewise, idS,Z ⊗S γS,X,Y =
ΘA(idA,Z ⊗A γA,X,Y ). Hence, what we claim is that the images of the corresponding
diagrams of A under ΘA commute. And because ΘA is a functor by Proposition 5.12
this is indeed true.

(c) Proposition 5.12 lets us compute γS,B,A ○SγS,A,B = ΘA(γA,B,A)○SΘA(γA,A,B) =
ΘA(γA,B,A ○A γA,A,B) = ΘA(idA,A⊗AB) = idS,A⊗SB, where we have used that A is
symmetric. □

Proposition 5.34. γS(A) is a symmetric braiding for the monoidal category S(A)
for any 0-cell A of smCATcart,fc

sos .

Proof. The claim is the conclusion from all parts of Lemma 5.33 taken together.
□

Lemma 5.35. For any 0-cells A and B and any 1-cell H from A to B in smCATcart,fc
sos

it holds for any {A1,A2} ⊆ objS(A) that

S(H)⊗,A2,A1
○S(B) γS(B),S(H)(A1),S(H)(A2) = S(H)(γS(A),A1,A2

) ○S(B) S(H)⊗,A1,A2
.

S(H)(A1)⊗S(B) S(H)(A2) S(H)(A2)⊗S(B) S(H)(A1)

S(H)(A1 ⊗S(A) A2) S(H)(A2 ⊗S(A) A1)

γS(B),S(H)(A1),S(H)(A2)

S(H)⊗,A1,A2
S(H)⊗,A2,A1

S(H)(γS(A),A1,A2
)

Proof. The proof is a direct computation employing Lemma 5.20:

S(H)⊗,A2,A1
○S(B) γS(B),S(H)(A1),S(H)(A2)

= ΘB(H⊗,A2,A1) ○S(B) ΘB(γB,H(A1),H(A2))
5.12= ΘB(H⊗,A2,A1 ○B γB,H(A1),H(A2))
= ΘB(H(γA,A1,A2) ○B H⊗,A1,A2)

5.12= ΘB(H(γA,A1,A2)) ○S(B) ΘB(H⊗,A1,A2)
5.20= S(H)(ΘA(γA,A1,A2)) ○S(B) ΘB(H⊗,A1,A2)
= S(H)(γS(A),A1,A2

) ○S(B) S(H)⊗,A1,A2
,
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where we have used that H is a symmetric monoidal functor from A to B in the
third step. □

Proposition 5.36. S(H) is a symmetric monoidal functor from S(A) to S(B)
for any 0-cells A and B and any 1-cell H from A to B of smCATcart,fc

sos .

Proof. That is what Lemma 5.35 says in summary. □

The next result will again be a powerful tool in proving upcoming claims.

Proposition 5.37. ΘA is a symmetric monoidal functor A → S(A) for any 0-
cell A of smCATcart,fc

sos .

Proof. By Proposition 5.26, the monoidal functor ΘA∶ A → S(A) is strict.
Hence, we only have to show ΘA(γA,A1,A2) = γS(A),ΘA(A1),ΘA(A2) for any {A1,A2} ⊆
objA.

Θ(A1)⊗Θ(A2)
γΘ(A1),Θ(A2) // Θ(A2)⊗Θ(A1)

Θ(A1 ⊗A2)
Θ(γA1,A2

)
// Θ(A2 ⊗A1)

However, because ΘA is the identity on objects, this is just the definition of γS(A). □

5.1.4. Rigid Symmetric Monoidal Category. Crucially, via terminal and diagonal
morphisms in the cartesian monoidal input category the span category can be turned
into a rigid symmetric monoidal category.

Definition 5.38. For any 0-cell A of smCATcart,fc
sos and any A ∈ objS(A) define

(a) A∨S(A) ∶= A.
(b) εS(A),A ∶= [idA,A ×A idA,A, ωA,A], and
(c) ηS(A),A ∶= [ωA,A, idA,A ×A idA,A],

where ωA,A is the unique morphism A→ IA of A.

Lemma 5.39. For any 0-cell A of smCATcart,fc
sos and for any object A of S(A) a

commutative diagrams in S(A) are given by

I ⊗A λA //

ηA⊗idA
��

A

(A⊗A∨)⊗A

αA,A∨,A ((

A⊗ I

ρA

OO

A⊗ (A∨ ⊗A)
idA⊗εA

88
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and

A∨ ⊗ I ρA∨ //

idA∨⊗ηA
��

A∨

A∨ ⊗ (A⊗A∨)

α−1
A∨,A,A∨ ((

I ⊗A∨

λA∨

OO

(A∨ ⊗A)⊗A∨
εA⊗idA∨

77

Proof. We treat the two diagrams separately. Abbreviate S(A) by S in the
following.

First diagram. In order to verify our claim

λS,A
!= (ρS,A ○S (idS,A ⊗S εS,A)) ○S (αS,A,A∨S ,A ○S (ηS,A ⊗S idS,A))

we compute directly the composition on the right hand side. This we do by evalu-
ating first the composition of the first two morphisms and that of the last two and
then composing the results.

I ⊗A

A⊗A
ωA⊗idA

66

(idA×idA)⊗idA
((

A⊗A

idA⊗A

88

(idA×idA)⊗idA
&&

(A⊗A)⊗A

(A⊗A)⊗A

id(A⊗A)⊗A

66

αA,A,A

((
A

idA×idA

FF

idA×idA

��

A⊗ (A⊗A) I ⊗A

idI⊗A

VV

λA

��

A⊗A
idA⊗(idA×idA)

66

idA⊗ωA

((
A⊗A

idA⊗A

77

idA⊗ωA

''

A⊗ I

A⊗ I
idA⊗I

66

ρA

((
A
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By definition, if ωA,A is the unique morphism A→ IA,

ρS,A ○S (idS,A ⊗S εS,A)
= [idA,A⊗AIA , ρA,A] ○S ([idA,A, idA,A]⊗S [idA,A ×A idA,A, ωA,A])
= [idA,A⊗AIA , ρA,A] ○S [idA,A ⊗A (idA,A ×A idA,A), idA,A ⊗A ωA,A]
= [idA,A ⊗A (idA,A ×A idA,A), ρA,A ○A (idA,A ⊗A ωA,A)],

where the last step is due to Lemma 4.6, which informs us that a pull-back of
(idA,A ⊗A ωA,A, idA,A⊗AIA) is given by (idA,A⊗AA, idA,A ⊗A ωA,A).

Similarly,

αS,A,A∨S ,A ○S (ηS,A ⊗S idS,A)
= [idA,(A⊗AA)⊗AA, αA,A,A,A] ○S ([ωA,A, idA,A ×A idA,A]⊗S [idA,A, idA,A])
= [idA,(A⊗AA)⊗AA, αA,A,A,A] ○S [ωA,A ⊗A idA,A, (idA,A ×A idA,A)⊗A idA,A]
= [ωA,A ⊗A idA,A, αA,A,A,A ○A ((idA,A ×A idA,A)⊗A idA,A)],

where, again, the last step is justified by Lemma 4.6, according to which a pullback of
((idA,A ×A idA,A)⊗A idA,A, idA,(A⊗AA)⊗AA) is (idA,A⊗AA, (idA,A ×A idA,A)⊗A idA,A).

Now, we can compose these two results. By Lemma 4.14 (a) a pull-back of the
pair (αA,A,A,A ○A ((idA,A ×A idA,A)⊗A idA,A), idA,A ⊗A (idA,A ×A idA,A)) is given by
(idA,A ×A idA,A, idA,A ×A idA,A). Thus, we obtain for the final composition,

(ρS,A ○S (idS,A ⊗S εS,A)) ○S (αS,A,A∨S ,A ○S (ηS,A ⊗S idS,A))
= [(ωA,A ⊗A idA,A) ○A (idA,A ×A idA,A), (ρA,A ○A (idA,A ⊗A ωA,A)) ○A (idA,A ×A idA,A)]
= [ωA,A ×A idA,A, ρA,A ○A (idA,A ×A ωA,A)].

Exploiting the special form of the left and right unitors of A, we see

ρA,A ○A (idA,A ×A ωA,A)
= π1
A,A,IA ○A (idA,A ×A ωA,A) = idA,A = π2

A,IA,A ○A (ωA,A ×A idA,A)
= λA,A ○A (ωA,A ×A idA,A)

Hence, the right hand side of the claimed identity evaluates to

[idA,IA⊗AA ○A (ωA,A ×A idA,A), λA,A ○A (ωA,A ×A idA,A)].

Because ωA,A ×A idA,A is an isomorphism A → IA ⊗A A by Lemma 4.14 (c), this
is nothing but [idA,IA⊗AA, λA,A] = λS,A. And thus the first diagram is commutative.

Second diagram. The proof is very much analogous to the one for the first dia-
gram. This time we have to show

ρS,A∨S
!= (λS,A∨S ○S (εS,A ⊗S idS,A∨S))

○S (α−1S,A∨S ,A,A∨S ○S (idS,A∨S ⊗S ηS,A))

and we apply the same strategy.
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A⊗ I

A⊗A
idA⊗ωA

66

idA⊗(idA×idA)
((

A⊗A

idA⊗A

88

idA⊗(idA×idA)
&&

A⊗ (A⊗A)

A⊗ (A⊗A)

idA⊗(A⊗A)
66

α−1A,A,A

((
A

idA×idA

FF

idA×idA

��

(A⊗A)⊗A A⊗ I

idA⊗I

VV

ρA

��

A⊗A
(idA×idA)⊗idA

66

ωA⊗idA
((

A⊗A
idA⊗A

77

ωA⊗idA
''

I ⊗A

I ⊗A
idI⊗A

66

λA

((
A

The composition of the first two morphisms on the right hand side evaluates to

(λS,A∨S ○S (εS,A ⊗S idS,A∨S))
= [idA,IA⊗AA, λA,A] ○S [(idA,A ×A idA,A)⊗A idA,A, ωA,A ⊗A idA,A]
= [(idA,A ×A idA,A)⊗A idA,A, λA,A ○A (ωA,A ⊗A idA,A)]

because (idA,A⊗AA, ωA,A ⊗A idA,A) is a pull-back of (ωA,A ⊗A idA,A, idA,IA⊗AA) by
Lemma 4.6.

And, because ΘA(αA,A,A,A)−1 = ΘA(α−1A,A,A,A) by Proposition 5.12, composing the
second pair of morphisms on the right-hand side of the assertion gives

α−1S,A∨S ,A,A∨S ○S (idS,A∨S ⊗S ηS,A)
= [idA,A⊗A(A⊗AA), α−1A,A,A,A] ○S [idA,A ⊗A ωA,A, idA,A ⊗A (idA,A ×A idA,A)]
= [idA,A ⊗A ωA,A, α−1A,A,A,A ○A (idA,A ⊗A (idA,A ×A idA,A))],

since a pull-back of (idA,A ⊗A (idA,A ×A idA,A), idA,A⊗A(A⊗AA)), according to Lem-
ma 4.6, is given by (idA,A⊗AA, idA,A ⊗A (idA,A ×A idA,A)).
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With the knowledge from Lemma 4.14 (b) that (idA,A ×A idA,A, idA,A ×A idA,A)
is a pull-back of (α−1A,A,A,A ○A (idA,A ⊗A (idA,A ×A idA,A)), (idA,A ×A idA,A)⊗A idA,A)
the right-hand of the claim as a whole is then given by

[(idA,A ⊗A ωA,A) ○A (idA,A ×A idA,A), (λA,A ○A (ωA,A ⊗A idA,A)) ○A (idA,A ×A idA,A)]
= [idA,A ×A ωA,A, λA,A ○A (ωA,A ×A idA,A)]
= [idA,A ×A ωA,A, ρA,A ○A (idA,A ×A ωA,A)]
= ρS,A∨S ,

where the last step is due to the fact that idA,A×AωA,A is an isomorphism A→ A⊗AIA
by Lemma 4.14 (d). That concludes the proof. □

Proposition 5.40. The symmetric monoidal category S(A) is rigid for any 0-
cell A of smCATcart,fc

sos . Left duals with associated evaluations and co-evaluations are
given by ( ⋅ )∨S(A), εS(A) and ηS(A), respectively.

Proof. That is the combined result of Lemma 5.39. □

For later steps in the construction process it is convenient to now determine the
dual morphisms with respect to the self-dual structure of S.

Proposition 5.41. For any 0-cell A of S, any objects A and B and any mor-
phism [f, g]∶ A → B of S(A) the dual morphism [f, g]∨S(A) of [f, g] with respect to
the dualization (( ⋅ )∨S(A) , εS(A), ηS(A)) is given by [g, f].

Proof. Abbreviate S(A) by S. We have to verify that the following identity of
morphisms of S (the index S is omitted here)

[g, f] != λA∨ ○ (εB ⊗ idA∨) ○ α−1B∨,B,A∨ ○ (idB∨ ⊗ ([f, g]⊗ idA∨)) ○ (idB∨ ⊗ ηA) ○ ρ−1B∨ .

If X is the base object of the span (f, g), then the composition of the morphisms on
the right-hand side of the claim is the class of the span formed by the two outermost
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arms of the following diagram (from now on the index A is omitted instead):

B

B

idB

66

ρ−1B
((

B⊗A
ρB○(idB⊗ωA)

66

idB⊗A

((

B⊗I

B⊗X
idB⊗f

77

idB⊗X

''

B⊗A
idB⊗ωA

66

idB⊗(idA×idA)
((

B⊗X
idB⊗X

::

idB⊗X

$$

B⊗X
idB⊗f

66

idB⊗(idX×f)
((

B⊗(A⊗A)

X

g×idX

<<

idX

""

B⊗X
idB⊗X

88

idB⊗(idX×f)
&&

B⊗(X⊗A)
idB⊗(f⊗idA)

66

idB⊗(g⊗idA)
((

X

idX

@@

idX
��

X

g×idX

::

idX×f
$$

B⊗(X⊗A)
idB⊗(X⊗A)

66

idB⊗(g⊗idA)
((

B⊗(B⊗A)

X

idX

<<

idX×f
""

X⊗A
αB,X,A○((g×idX)⊗idA)

88

g⊗idA
&&

B⊗(B⊗A)
idB⊗(B⊗A)

66

α−1B,B,A

((
X⊗A

idX⊗A

::

g⊗idA
$$

B⊗A
αB,B,A○((idB×idB)⊗idA)

66

idB⊗A

((

(B⊗B)⊗A

B⊗A
idB⊗A

88

idB⊗A

''

B⊗A
(idB×idB)⊗idA

66

ωB⊗idA
((

B⊗A
idB⊗A

66

ωB⊗idA
((

I⊗A

I⊗A
idI⊗A

66

λA

((A

That requires justifying. We start at the top and move downward, then passing to
the next column to left, again starting from the top, and so on. A pull-back of

◻ (ρ−1B , idB ⊗ ωA) is given by (ρB ○ (idB ⊗ ωA), idB⊗A) by Lemma 4.1 because
this is a pull-back of (idB, ρB ○ (idB ⊗ ωA)) by Lemma 4.6,

◻ (idB ⊗ (idA × idA), idB ⊗ (f ⊗ idA)) is (idB ⊗ f, idB ⊗ (idX × f)) according
to Lemma 4.17 (a),

◻ (idB ⊗ (g ⊗ idA), idB⊗(B⊗A)) is (idB⊗(X⊗A), idB ⊗ (g ⊗ idA)) by Lemma 4.6,
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◻ (α−1B,B,A, (idB × idB)⊗ idA) is (αB,B,A ○ ((idB × idB)⊗ idA), idB⊗A) by Lem-

ma 4.1 because, according to Lemma 4.6, in ((idB × idB)⊗ idA, idB⊗A) we
have a pull-back of (id(B⊗B)⊗A, (idB × idB)⊗ idA),

◻ (ωB ⊗ idA, idI⊗A) is given by (idB⊗A, ωB ⊗ idA) by Lemma 4.6,
◻ (idB⊗A, idB ⊗ f) is given by (idB ⊗ f, idB⊗X) by Lemma 4.6,
◻ (idB ⊗ (idX × f), idB⊗(X⊗A)) is (idB⊗X , idB ⊗ (idX × f)) by Lemma 4.6,
◻ (idB ⊗ (g ⊗ idA), αB,B,A ○ ((idB × idB)⊗ idA)) is given, according to Lem-

ma 4.1, by (αB,X,A ○ ((g × idX)⊗ idA), g ⊗ idA) because, by Lemma 4.17 (b),
one of ((idB ⊗ g)⊗ idA, (idB × idB)⊗ idA) is ((g × idX)⊗ idA, g ⊗ idA) and
because αB,B,A ○ ((idB ⊗ g)⊗ idA) = (idB ⊗ (g ⊗ idA)) ○ αB,X,A,

◻ (idB⊗A, idB⊗A) is given by (idB⊗A, idB⊗A) by Lemma 4.6,
◻ (idB⊗X , idB⊗X) is given by (idB⊗X , idB⊗X) by Lemma 4.6,
◻ (idB ⊗ (idX × f), αB,X,A ○ ((g × idX)⊗ idA)) is (g × idX , idX × f) according

to Lemma 4.17 (c),
◻ (g ⊗ idA, idB⊗A) is given by (idX⊗A, g ⊗ idA) by Lemma 4.6,
◻ (idB⊗X , g × idX) is given by (g × idX , idX) by Lemma 4.6,
◻ (idX × f, idX⊗A) is given by (idX , idX × f) by Lemma 4.6,
◻ (idX , idX) is given by (idX , idX) by Lemma 4.6.

Because ρB○(idB⊗ωA) = π1
B,I○(π1

B,A×(ωA○π2
B,A)) = π1

B,A we obtain for the uppermost
arm of the diagram

idB ○ ρB ○ (idB ⊗ ωA) ○ (idB ⊗ f) ○ idB⊗X ○ (g × idX) ○ idX

= π1
B,A ○ (idB ⊗ f) ○ (g × idX)

= π1
B,A ○ (g × f)

= g.
Similarly, since λA ○ (ωB ⊗ idA) = π2

B,A, the lowermost arm evaluates to

λA ○ (ωB ⊗ idA) ○ idB⊗A ○ (g ⊗ idA) ○ (idX × f) ○ idX

= π2
B,A ○ (g ⊗ idA) ○ (idX × f)

= π2
B,A ○ (g × f)

= f.
That is what we needed to see. □

Moreover, we characterize the traces with respect to the dualization defined
above, also for later use.

Proposition 5.42. For any 0-cell A of smCATcart,fc
sos , any For any A ∈ objS(A)

and any endomorphism [f, g] of A in S(A) the trace trS(A)([f, g]) of [f, g] with
respect to the dualization (( ⋅ )∨S(A) , εS(A), ηS(A)) is given by

[ωA,A ○A f ○A p,ωA,A ○A g ○A q]
for any pull-back (p, q) of (idA,X ×A f, idA,X ×A g), where X is the base object of the
span (f, g) in A.
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Proof. Abbreviate S(A) by S. We need to confirm that the term given for
trS([f, g]) in the claim is identical to the morphism

εS,A ○S γS,A,A∨S ○S ([f, g]⊗S idS,A∨S) ○S ηS,A.

I

A

ωA

99

idA×idA
%%

X

f

99

idX×f
%%

A⊗A

X

idX

;;

idX×f
##

X ⊗A
f⊗idA

99

g⊗idA
%%

P

p

>>

q

  

X ⊗A
idX⊗A

99

g⊗idA
%%

A⊗A

X

idX×g

;;

g

##

A⊗A
idA⊗A

99

γA,A

%%
A

idA×idA

99

idA

%%

A⊗A

A

idA×idA

99

ωA

%%
I

By unwinding the definitions, this assertion is seen to be equivalent to the identity

[ωA,A ○A f ○A p,ωA,A ○A g ○A q]
!= [idA,A ×A idA,A, ωA,A] ○S [idA,A⊗AA, γA,A,A]

○S [f ⊗A idA,A, g ⊗A idA,A] ○S [ωA,A, idA,A ×A idA,A].

In the above A-diagram, all small squares are pull-backs for the following reasons:
◻ (f, idA,X ×A f) is a pull-back of (idA,A ×A idA,A, f ⊗A idA,A) by Lemma 4.19.
◻ (idA,X⊗AA, g ⊗A idA,X) is one of (g ⊗A idA,A, idA,A⊗AA) by Lemma 4.6.
◻ (idA,A ×A idA,A, idA,A) is one of (γA,A,A, idA,A ×A idA,A) by Lemma 4.20.
◻ (idA,X , idA,X ×A f) is one of (idA,A ×A f, idA,X⊗AA) by Lemma 4.6.
◻ (idA,X ×A g, g) is one of (g ⊗A idA,A, idA,A ×A idA,A) by a second application

of Lemma 4.19.
Now, the claim easily follows by Lemmata 4.3 and 4.5. □
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Lastly, it is convenient to observe the following property of S for which the fact
that all objects are self-dual is crucial.

Proposition 5.43. For any {A,B} ∈ objA and any span (f, g) of A from A to
B,

[f, g] = ΘA(g) ○S ΘA(f)∨S .

Proof. If X denotes the base object of the span (f, g) in A, then by Proposi-
tion 5.41,

ΘA(g) ○S ΘA(f)∨S = [idA,X , g] ○S [idA,X , f]∨S

= [idA,X , g] ○S [f, idA,X]
= [f ○A idA,X , g ○A idA,X]
= [f, g],

where we have used in the next-to-last step that (idA,X , idA,X) is a pull-back of itself
in A by Lemma 4.6. □

5.2. Stage 1b: Spans (with †). In the previous section, for any 0-cell A of
smCATcart,fc

sos we saw that exchanging the roles of input and output morphism in a
span corresponds to forming the dual morphism with respect to the self-dualization
(( ⋅ )∨S(A) , εS(A), ηS(A)). From this point of view the following definitions and results

might seem superfluous because the functors ( ⋅ )∨S(A) and ( ⋅ )†S(A) will be the same.
However, we will be interested in rigid monoidal †-subcategories of S(A) which will
not necessarily contain the evaluation and co-evaluation morphisms needed in order
for all objects to be self-dual. Therefore, ( ⋅ )†S(A) is crucial.

5.2.1. †-category. We first have to check that the supposed † is well-defined.

Lemma 5.44. For any category A, any {A,B} ⊆ objA, any spans (f, g) and
(f ′, g′) of A from A to B, whenever (f, g) and (f ′, g′) are equivalent, (g, f) and
(g′, f ′) are equivalent as spans of A from B to A.

Proof. Let X and X ′ be the bases of (f, g) and (f ′, g′), respectively. Because
(f, g) and (f ′, g′) are equivalent we find an isomorphism u from X to X ′ such that
f ′ ○ u = f and g′ ○ u = g. We can read these equations equally as proof of (g, f) and
(g′, f ′) being equivalent. □

Definition 5.45. For any 0-cell of smCATcart,fc
sos let

(a) X†S(A) ∶=X for any X ∈ objS(A),

(b) [f, g]†S(A) ∶= [g, f] for any {A,B} ⊆ objS(A) and any [f, g] ∈morS(A)(A,B).

Lemma 5.46. Let A be any 0-cell of smCATcart,fc
sos . Abbreviate S(A) by S.

(a) ( ⋅ )†S is a contravariant endofunctor of S.
(b) ( ⋅ )†S is the identity on objects.
(c) (( ⋅ )†S)opCAT ○CAT ( ⋅ )†S = idCAT,S.
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Proof. (a) Clearly, idS,X
†S = [idA,X , idA,X]†S = [idA,X , idA,X] = idS,X for any

X ∈ objA. For any {A,B,C} ⊆morS and [f, g] ∈morS(A,B) and [p, q] ∈morS(B,C),
if (a, b) is any pull-back of (g, p), then (b, a) is a pull-back of (p, g). Hence, by
definition,

([p, q] ○S [f, g])†S = [f ○A a, q ○A b]†S = [q ○A b, f ○A a] = [g, f] ○S [q, p]
= [f, g]†S ○S [p, q]†S ,

which is what we needed to show.
(b) Holds by definition.
(c) For objects the identity is clear by (b). If {A,B} ⊆ objS and [f, g] ∈morS(A,B),

then, by definition, ([f, g]†S)†S = [g, f]†S = [f, g]. □

Proposition 5.47. S(A), when equipped with ( ⋅ )†S(A), is a †-category for any
0-cell A of smCATcart,fc

sos .

Proof. The claim is the combined implication of Lemma 5.46. □

Lemma 5.48. For any 0-cells A and B and any 1-cell H from A to B,
S(H)(x†S(A)) = S(H)(x)†S(B) .

Proof. For any (f, g) ∈ x, by definition

S(H)(x†S(A)) = S(H)([f, g]†S(A))
= S(H)([g, f])
= [H(g),H(f)]
= [H(f),H(g)]†S(B)

= S(H)([f, g])†S(B)

= S(H)(x)†S(B) ,
as claimed. □

Proposition 5.49. S(H) is a †-functor from S(A) to S(B) for any 0-cells A
and B and any 1-cell H from A to B of smCATcart,fc

sos .

Proof. The claim is a reformulation of Lemma 5.48. □

5.2.2. Monoidal †-category. Next, we prove that the span category with its al-
ready defined monoidal structure also becomes a monoidal †-category. Denote by
∗CAT the (large) monoidal category of †-categories.

Lemma 5.50. Let A be any 0-cell of smCATcart,fc
sos and abbreviate S(A) by S.

(a) ⊗S is a †-functor S⊗∗CAT S→ S.
(b) αS,A1,A2,A3

†S = αS,A1,A2,A3
−1S for any {A1,A2,A3} ⊆ objS.

(c) λS,A
†S = λS,A−1S for any A ∈ objS.

(d) ρS,A†S = ρS,A−1S for any A ∈ objS.



464 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

Proof. (a) We already know that ⊗S is a functor S⊗CAT S → S. Hence, the
only part of the claim which needs proving is that ⊗S respects ( ⋅ )†S .

And this is immediately clear on the level of objects because there ( ⋅ )†S is simply
the identity. Hence, let {A1,A2,B1,B2} ⊆ objS and [f1, g1] ∈ morS(A1,B1) and
[f2, g2] ∈morS(A2,B2) be arbitrary. By definition, then,

([f1, g1]⊗S [f2, g2])†S = [f1 ⊗A f2, g1 ⊗A g2]†S = [g1 ⊗A g2, f1 ⊗A f2]
= [g1, f1]⊗S [g2, f2] = [f1, g1]†S ⊗S [f2, g2]†S ,

which is what we needed to see.
(b) We compute immediately,

αS,A1,A2,A3

−1S = ΘA(αA,A1,A2,A3)
−1S

= ΘA(αA,A1,A2,A3

−1A)
= [idA,A1⊗A(A2⊗AA3), αA,A1,A2,A3

−1A]
= [idA,A1⊗A(A2⊗AA3) ○A αA,A1,A2,A3 , αA,A1,A2,A3

−1A ○A αA,A1,A2,A3]
= [αA,A1,A2,A3 , idA,(A1⊗AA2)⊗AA3

]
= [idA,A1⊗A(A2⊗AA3), αA,A1,A2,A3]

†S

= ΘA(αA,A1,A2,A3)
†S

= αS,A1,A2,A3

†S ,

where the second step is due to Proposition 5.12 and the fourth to the definition of
span equivalence.

(c) The proof is completely analogous to that of (b): We find,

λS,A
−1S = ΘA(λA,A)−1S

= ΘA(λA,A−1A)
= [idA,A, λA,A−1A]
= [idA,A ○A λA,A, λA,A−1A ○A λA,A]
= [λA,A, idA,IA⊗AA]
= [idA,IA⊗AA, λA,A]

†S

= ΘA(λA,A)†S
= λS,A†S ,

where again we have employed Proposition 5.12.
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(d) As before,

ρS,A
−1S = ΘA(ρA,A)−1S

= ΘA(ρA,A−1A)
= [idA,A, ρA,A−1A]
= [idA,A ○A ρA,A, ρA,A−1A ○A ρA,A]
= [ρA,A, idA,A⊗AIA]
= [idA,A⊗AIA , ρA,A]

†S

= ΘA(ρA,A)†S
= ρS,A†S

by Proposition 5.12. That concludes the proof. □

Proposition 5.51. S(A) is a monoidal †-category for any 0-cell A of smCATcart,fc
sos .

Proof. That is the combined implication of Lemma 5.50. □

It is worth noting for the future that the embedding of any cartesian monoidal
input category turns isomorphisms into unitary morphisms of the span category.

Lemma 5.52. For any 0-cell A of smCATcart,fc
sos , any {X,Y } ⊆ objA and any h ∈

morA(X,Y ), if h is invertible in A, then
ΘA(h)†S(A) = ΘA(h−1A).

Proof. By definition,

ΘA(h)†S(A) = [idA,X , h]†S(A) = [h, idA,X] = [h ○A h−1A , idA,X ○A h−1A] = [idA,Y , h−1A]
= ΘA(h−1A),

as asserted. □

Lemma 5.53. For any 0-cells A and B and any 1-cell H from A to B of smCATcart,fc
sos ,

(a) for any {X1,X2} ⊆ objS(A),

(S(H)⊗,X1,X2
)†S(B) ○S(B) S(H)⊗,X1,X2

= idS(B),S(H)(X1)⊗S(B)S(H)(X2)

and

S(H)⊗,X1,X2
○S(B) (S(H)⊗,X1,X2

)†S(B) = idS(B),S(H)(X1⊗S(A)X2).

(b) as well as

(S(H)I)
†S(B) ○S(B) S(H)I = idS(B),IS(B)

and

S(H)I ○S(B) (S(H)I)
†S(B) = idS(B),S(H)(IS(A)).

Proof. Follows from Lemma 5.52. □
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Proposition 5.54. S(H) is a monoidal †-functor from S(A) to S(B) for any 0-
cells A and B and any 1-cell H from A to B of smCATcart,fc

sos .

Proof. That claim is another way of expressing Lemma 5.53. □

5.2.3. Symmetric Monoidal †-category. Also the braiding of the span category
is a unitary morphism.

Lemma 5.55. γS(A),A1,A2

†S(A) = γS(A),A1,A2

−1S(A) for any {A1,A2} ⊆ objS(A) and

any 0-cell A of smCATcart,fc
sos .

Proof. As in the proof of Lemma 5.50, we infer

γS(A),A1,A2

−1S(A) = ΘA(γA,A2,A1)
−1S(A)

= ΘA(γA,A1,A2

−1A)
= [idA,A2⊗AA1 , γA,A1,A2

−1A]
= [idA,A2⊗AA1 ○A γA,A1,A2 , γA,A1,A2

−1A ○A γA,A1,A2]
= [γA,A1,A2 , idA,A1⊗AA2]
= [idA,A1⊗AA2 , γA,A1,A2]

†S

= ΘA(γA,A1,A2)
†S

= γS(A),A1,A2

†S ,

employing Proposition 5.12. □

Proposition 5.56. S(A) is a symmetric monoidal †-category for any 0-cell A
of smCATcart,fc

sos .

Proof. Follows from Lemma 5.55. □

5.2.4. Rigid Symmetric Monoidal †-category. Finally, the rigid monoidal struc-
ture of the span category is compatible with its †-structure.

Lemma 5.57. γS(A),A∨S(A) ,A ○S(A) εS(A),A†S(A) = ηS(A),A for any A ∈ objS(A) and any

0-cell A of smCATcart,fc
sos . In other words, in S(A) the diagram

A∨ ⊗A

γA∨,A

��

I

εA
†

;;

ηA ##
A⊗A∨

commutes.

Proof. By Lemma 4.6 a pull-back of (idA,A ×A idA,A, idA,A⊗AA) in A is given
by (idA,A, idA,A ×A idA,A). Moreover, γA,A,A ○A (idA,A ×A idA,A) = idA,A ×A idA,A by
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Lemma 4.16. Abbreviate S(A) by S. Hence, using A∨S = A, we compute directly

γS,A∨S ,A ○S εS,A†S = [idA,A⊗AA, γA,A,A] ○S [idA,A ×A idA,A, ωA,A]†S
= [idA,A⊗AA, γA,A,A] ○S [ωA,A, idA,A ×A idA,A]
= [ωA,A ○A idA,A, γA,A,A ○A (idA,A ×A idA,A)]
= [ωA,A, idA,A ×A idA,A]
= ηS,A,

and obtain the claimed identity. □

Proposition 5.58. S(A) is a rigid symmetric monoidal †-category for any 0-
cell A of smCATcart,fc

sos .

Proof. Was shown in Lemma 5.57. □

That concludes the first stage of the construction. All the claims for this state
that will be required in order to show the main result on later stages have been
proved. Again, it must be emphasized, that none of this was new.

5.3. Stage 2a: Relations. In the second step of the construction, we pass from
the span category to the generalized relations category with respect to a pull-back
stable factorization system. While all proofs for the span stage of the construction
could still be given, this is unfortunately no longer the case for the this stage.
However, times was still enough to prove all the claim for the 0-cells of the 2-
functor. Since the construction on 1-cells and 2-cells is not covered, there is no
problem making the below assumption in the following.

Assumptions 5.59. Throughout this section, let A be a cartesian monoidal cat-
egory with pull-backs and let (E ,M) be any pull-back-stable factorization system
of A. Moreover, S(A) will be abbreviated by S if there is no risk of confusion.

As explained at the beginning of the section, the construction of the relation
category is well-known. However, only few of the involved proofs can be found in
the literature. That makes it quite difficult to convince oneself that the construction
works. In order to remedy this situation, the proofs are provided in this chapter.

When referring to the literature it is important to keep track of the different
assumptions made on (E ,M). For example, [Kle70] only treats the case where
(E ,M) is proper, i.e., where E ↪ epiA and M ↪ monA. In contrast, [Jay95; JW00]
mostly assumes M ↪ monA. And [Mei74a; Mei74b] and [Pav95; Pav96] assume
neither. For the third stage we will later assume E ↪ epiA.

5.3.1. Category. First, we define the basic category structure for (E ,M)-relations.

Lemma 5.60. For any objects A and B of A and any two spans (f, g) and (f ′, g′)
in A from A to B, whenever (f, g) and (f ′, g′) are equivalent, then f ×A g ∈M if
and only if f ′ ×A g′ ∈M.
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Proof. By symmetry it suffices to assume f × g ∈ M and prove f ′ × g′ ∈ M.
Let X be the base of (f, g) and X ′ that of (f ′, g′). By assumption there exists
an isomorphism u∶ X ′ → X with f ′ = f ○ u and g′ = g ○ u. It follows f ′ × g′ =
(f ○ u) × (g ○ u) = (f × g) ○ u. Because M is closed under appending its elements to
isomorphisms of A we have thus shown f ′ × g′ ∈M as claimed. □

Definition 5.61. We call a class [f, g] of spans in A from object A to object B
of A an (E ,M)-relation in A if f ×A g ∈M.

Obviously, every relation is a span but generally not vice versa. There is a kind
of “projection” operation which allows us to turn any span into a relation.

Lemma 5.62. Let A and B be objects of A, let (f, g) and (f ′, g′) be spans in A
from A to B and let (e,m) be an (E ,M)-factorization of f ×A g and (e′,m′) one
of f ′ ×A g′. If (f, g) and (f ′, g′) form a pair of equivalent spans in A from A to B,
then so do (π1

A,A,B ○Am,π2
A,A,B ○Am) and (π1

A,A,B ○Am′, π2
A,A,B ○Am′).

Proof. Let X and X ′ be the bases of (f, g) and (f ′, g′), respectively. By
assumption there exists an isomorphsim u∶ X ′ →X such that f ′ = f ○u and g′ = g○u.

A

X ′

f ′
66

g′
((

e′
// R′

m′
// A ×B
π1

OO

π2

��

Rm
oo Xe

oo

f

hh

g
vvB

It follows, f ′×g′ = (f ○u)×(g○u) = (f×g)○u = (m○e)○u =m○(e○u). Moreover, u ∈ E
by Lemma 4.32 since u is an isomorphism. Hence, also e ○u ∈ E by Lemma 4.33 (b).
Thus, (e ○ u,m) ∈ E ×M is an (E ,M)-factorization of f ′ × g′. By the essential
uniqueness of factorizations we can infer the existence of an isomorphism w∶ R′ → R
with e ○u = w ○ e′ and m′ =m ○w. The latter identity of course implies in particular
πiA,B ○m′ = πiA,B ○m ○w for each i ∈ {1,2} and thus shows (π1

A,B ○m,π2
A,B ○m) and

(π1
A,B ○m′, π2

A,B ○m′) to be equivalent. □

By the preceding lemma the following is a well-defined mapping.

Definition 5.63. For any object X ∈ A define ΦA,E(X) ∶= X and for any ob-
jects A and B and any class [f, g] of spans in A from A to B let ΦA,E([f, g]) ∶=
[π1
A,A,B ○Am,π2

A,A,B ○Am], where (e,m) is any (E ,M)-factorization of f ×A g.

Relations are precisely the “fixed points” of this “projection” operation.

Lemma 5.64. Any class [f, g] of spans in A from any object A to any object B
is an (E ,M)-relation in A if and only if ΦA,E([f, g]) = [f, g].
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Proof. If (e,m) is any (E ,M)-factorization of f × g, by definition, Φ([f, g]) =
[π1

A,B ○m,π2
A,B ○m]. Because (π1

A,B ○m)× (π2
A,B ○m) = (π1

A,B × π2
A,B) ○m =m, Lem-

ma 5.60 assures us that Φ([f, g]) is an (E ,M)-relation. Hence, if [f, g] = Φ([f, g]),
then [f, g] is an (E ,M)-relation. We only need to show the converse.

Let [f, g] be an (E ,M)-relation. We prove that (f, g) and (π1
A,B ○m,π2

A,B ○m)
are equivalent. Let X be the base of (f, g) and R the domain of e. By Lemma 4.32
the class E contains the isomorphism idX . Since f ×g ∈M according to Lemma 5.60,
the pair (idX , f × g) is an (E ,M)-factorization of f × g. By the essential uniqueness
of factorizations there must then exist an isomorphism u∶ R → X with idX = u ○ e
and m = (f × g) ○ u. The latter identity implies π1

A,B ○m = π1
A,B ○ (f × g) ○ u = f ○ u

and, likewise, π2
A,B ○m = g ○ u. And that is what we needed to see. □

The following crucial result about the “projection” being idempotent is shown in
[JW00, Section 2.4] under even weaker assumptions.

Lemma 5.65. For any objects A, B and C of A and any classes [f, g] of spans
in A from A to B and [p, q] from B to C,

ΦA,E(ΦA,E([p, q]) ○S ΦA,E([f, g])) = ΦA,E([p, q] ○S [f, g]).

Proof. Let X1 be the base of (f, g) and X2 that of (p, q), let (e1,m1) be an
(E ,M)-factorization of f × g, let (e2,m2) be one of p × q, let R1 be the domain of
m1 and R2 that of m2, let (a1, a2) be a pull-back of (π1

A,B ○m1, π2
B,C ○m2) with pull-

back object P and (a′1, a′2) a pull-back of (g, p) with pull-back object P ′, let (e,m)
be an (E ,M)-factorization of (π1

A,B ○m1 ○ a1) × (π2
B,C ○m2 ○ a2) and (e′,m′) one of

(f ○a′1)× (q ○a′2) and let R be the domain of m and R′ that of m′. By Lemma 5.5 it
suffices to prove that the two spans (π1

A,C ○m,π2
A,C ○m) and (π1

A,C ○m′, π2
A,C ○m′)

from A to C are equivalent. More precisely, we construct an isomorphism u∶ R′ → R
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with π1
A,C ○m′ = (π1

A,C ○m) ○ u and π2
A,C ○m′ = (π2

A,C ○m) ○ u, i.e., with m′ =m ○ u.

A

X1 e1 //

g

��

f

55

R1 m1 //

π2○m1

��

A ×B
π1

OO

π2

��

X1

f

ee

g

��

T1

c1

==

d1
  

S

s1

??

s2
��

P e //

a1

AA

a2

��

R m // A ×C

π1

II

π2

��

B A ×C

π1

UU

π2

		

R′m′oo P ′e′oo

a′1

]]

a′2

��

T2

c2

!!

d2

>>

X2 e2 //

p

??

q

))

R2 m2 //

π1○m2

FF

B ×C

π1

OO

π2

��

X2

q

zz

p

XX

C

Step 1: Construction of v. As an intermediate step we find a second pull-back of
(g, p). Since A has all pull-backs there exist in particular pull-backs (c1, d1) of
(e1, a1) with pull-back object T1 and (c2, d2) of (e2, a2) with pull-back object T2.
Then, there also exists a pull-back (s1, s2) of (d1, d2) with pull-back object S. Since
all of the four small squares in the resulting diagram

S
s1 //

s2
��

T1
c1 //

d1
��

X1

e1
��

T2
d2

//

c2
��

P a1
//

a2
��

R1

π2○m1

��
X2 e2

// R2
π1○m2

// B

are pull-backs by assumption, Lemma 4.5 guarantees that (c1 ○ s1, c2 ○ s2) is a pull-
back of ((π2

A,B ○m1) ○ e1, (π1
B,C ○m2) ○ e2). Because (π2

A,B○m1)○e1 = π2
A,B○(m1○e1) =

π2
A,B ○(f ×g) = g and, likewise, (π1

B,C ○m2)○e2 = p, the pair (c1 ○ s1, c2 ○ s2) is indeed
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a pull-back of (g, p). By the essential uniqueness of pull-backs there then exists an
isomorphism v∶ P ′ → S with a′1 = (c1 ○ s1) ○ v and a′2 = (c2 ○ s2) ○ v.

Step 2: Construction of u. In order to find u we construct a second (E ,M)-
factorization of (f ○a′1)× (q ○a′2). Because the factorization system (E ,M) is stable
the morphisms d1 and d2, being pull-backs of e1 ∈ E and e2 ∈ E , respectively, are
elements of E themselves. By the same reasoning, s1 as a pull-back of d2 ∈ E also
belongs to E . In conclusion, d1 ○ s1 ∈ E since E is closed under composition by
Lemma 4.33. Applying that same lemma once more then yields e ○ (d1 ○ s1) ∈ E
because e ∈ E . Since E contains all isomorphisms by Lemma 4.32 and thus also v in
particular we can infer (e○d1○s1)○v ∈ E by Lemma 4.33. Moreover, by construction,

(π1
A,C ○m) ○ (e ○ d1 ○ s1 ○ v)
= (π1

A,C ○m ○ e) ○ d1 ○ s1 ○ v = (π1
A,C ○m1 ○ a1) ○ d1 ○ s1 ○ v

= π1
A,C ○m1 ○ (a1 ○ d1) ○ s1 ○ v = π1

A,C ○m1 ○ (e1 ○ c1) ○ s1 ○ v
= π1

A,C ○ (m1 ○ e1) ○ (c1 ○ s1 ○ v) = π1
A,B ○ f ○ a′1,

and, by an analogous computation, (π2
A,C ○m) ○ (e ○ d1 ○ s1 ○ v) = π1

A,C ○ q ○ a′2. In

other words, m ○ (e ○ d1 ○ s1 ○ v) = (f ○ a′1) × (q ○ a′2). Thus, (e ○ d1 ○ s1 ○ v,m) is an
(E ,M)-factorization of (f ○ a′1) × (q ○ a′2) as intended. Since those are essentially
unique there must then exist an isomorphism u∶ R′ → R with e ○ d1 ○ s1 ○ v = u ○ e′
and m′ =m ○ u. And the second identity is just what we needed to prove. □

We can now give the definition of the basic category structure of the relations
categories.

Definition 5.66. (a) Define objRel(A,E) ∶= objA.
(b) For any objects A and B of A let morRel(A,E)(A,B) be the class of all
(E ,M)-relations from A to B in A.

(c) For any object X of A define idRel(A,E),X ∶= ΦA,E(idS(A)X).
(d) Given any objects A, B and B of A and any (E ,M)-relations [f, g] from

A to B and [p, q] from B to C in A define

[p, q] ○Rel(A,E) [f, g] ∶= ΦA,E([p, q] ○S(A) [f, g]).

Proposition 5.67. (objRel(A,E),morRel(A,E), ○Rel(A,E), idRel(A,E)) is a category.

Proof. Let Rel be short for Rel(A,E). We need to confirm that ○Rel is an
associative operation and that idRel provide neutral elements for it.

Composition is associative. Let A, B, C and D be objects of A and let x be an
(E ,M)-relation in A from A to B, let y be one from B to C and let z be one from
C to D. Then, since z = Φ(z) and x = Φ(x) by Lemma 5.64, applying Lemma 5.65
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yields

z ○Rel (y ○Rel x) = Φ(z ○S Φ(y ○S x)) = Φ(Φ(z) ○S Φ(y ○S x))
= Φ(z ○S (y ○S x)) = Φ((z ○S y) ○S x)
= Φ(Φ(z ○S y) ○S Φ(x)) = Φ(Φ(z ○S y) ○S x)
= (z ○Rel y) ○Rel x,

where we have used that ○S is associative in the fourth step.
Identities are neutral elements. If A and B are any objects of A and x any

relation in A from A to B, then, since x = Φ(x) by Lemma 5.64, Lemma 5.65
implies x ○Rel idRel,A = Φ(x ○S Φ(idS,A)) = Φ(Φ(x) ○S Φ(idS,A)) = Φ(x ○S idS,A) =
Φ(x) = x because idS gives neutral elements of ○S. Analogously, one computes
idRel,B ○Rel x = x. □

Proposition 5.68. ΦA,E is a full functor S(A) → Rel(A,E) which is surjective
on objects.

Proof. This is literally the definition of Rel(A,E). □

The equivalence relation x ∼ x′ between morphisms x and x′ defined by ΦA,E(x) =
ΦA,E(x′) of S(A) is a congruence on S(A) by Lemma 5.65. Hence, ΦA,E actually
exhibits Rel(A,E) as (one representative of) a quotient category of S(A) (a co-
subobject of S(A) in the the category of categories).

Proposition 5.69. If A is M-subobject-small, Rel(A,E) is locally small.

Proof. Let A and B be any objects of S, i.e., of A. Let MA⊗AB denote the
class of all elements of M with co-domain A ⊗A B and let ∼ be the equivalence
relation on MA⊗AB which calls two such morphisms m and m′ equivalent if there
exists an isomorphism u of A with m′ = m ○A u. Then the assumption that A be
M-subobject-small ensures that MA⊗AB/ ∼ is a set. By the universal property of
products and Lemma 5.60 the rule [f, g] ↦ [f ×A g]∼ defines a bijection of classes
morRel(A,B)→MA⊗AB/ ∼. □

5.3.2. Monoidal Category. The relation category inherits a monoidal structure
from the span category.

In regard of Lemma 5.64 the next result shows in particular that the monoidal
product of two relations, viewed as span classes, is again a relation.

Lemma 5.70. For any objects A1, A2, B1 and B2 of A and any (E ,M)-relations
[f1, g1] from A1 to B1 and [f2, g2] from A2 to B2 in A,

ΦA,E([f1, g1])⊗A ΦA,E([f2, g2]) = ΦA,E([f1, g1]⊗S [f2, g2]).

Proof. For each i ∈ {1,2} let (ei,mi) be an (E ,M)-factorization of fi × gi with
image object Ri, and let (e,m) be one of (f1 ⊗ f2) × (g1 ⊗ g2) with image object
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R. Then, we need to find an isomorphism w∶ R1 ⊗R2 → R of A such that for each
i ∈ {1,2}

(πiA1,B1
○m1)⊗ (πiA2,B2

○m2) != (πiA1⊗A2,B1⊗B2
○m) ○w.

Step 1: Reformulation. Abbreviate m1 = m1
1 ×m2

1 and m2 = m1
2 ×m2

2. Using the
universal property of products, this assertion can then be rephrased as

(m1
1 ⊗m1

2) × (m2
1 ⊗m2

2)
!=m ○w.

For brevity, let u ∶= µA1,B1,A2,B2 be the middle four interchange isomorphism
(A1 ⊗B1)⊗ (A2 ⊗B2)→ (A1 ⊗A2)⊗ (B1 ⊗B2).

A1⊗A2

X1⊗X2
e1⊗e2 //

f1⊗f2

22

g1⊗g2

,,

R1⊗R2
m1⊗m2//

(π1
A1,B1

○m1)⊗(π1
A2,B2

○m2)

77

(π2
A1,B1

○m1)⊗(π2
A2,B2

○m2)

''

(A1⊗B1)
⊗(A2⊗B2)

� � u // // (A1⊗A2)
⊗(B1⊗B2)

π1
A1⊗A2,B1⊗B2

OO

π2
A1⊗A2,B1⊗B2

��

R
moo X1⊗X2

eoo

f1⊗f2

kk

g1⊗g2

ssB1⊗B2

By using Lemma 4.18 we can recognize

(m1
1 ⊗m1

2) × (m2
1 ⊗m2

2)
= ((m1

1 ○ π1
R1,R2
) × (m1

2 ○ π2
R1,R2
)) × ((m2

1 ○ π1
R1,R2
) × (m2

2 ○ π2
R1,R2
))

= u ○ (((m1
1 ○ π1

R1,R2
) × (m2

1 ○ π1
R1,R2
)) × ((m1

2 ○ π2
R1,R2
) × (m2

2 ○ π2
R1,R2
)))

= u ○ (((m1
1 ×m2

1) ○ π1
R1,R2
) × ((m1

2 ×m2
2) ○ π2

R1,R2
))

= u ○ ((m1 ○ π1
R1,R2
) × (m2 ○ π2

R1,R2
))

= u ○ (m1 ⊗m2).

Consequently, we can reformulate the claim as

u ○ (m1 ⊗m2) !=m ○w.

Step 2: Construction of w. If we show that (e1 ⊗ e2, u ○ (m1 ⊗m2)) is an (E ,M)-
factorization of (f1⊗f2)×(g1⊗g2), then by the essential uniqueness of factorizations
we will have shown the existence of an isomorphism w∶ R1 ⊗ R2 → R with e =
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w ○ (e1 ⊗ e2) and u ○ (m1 ⊗m2) =m ○w – and thus, by Step 1, the claim.

X1 ⊗X2
e1⊗e2 //

e

��

R1 ⊗R2

u○(m1⊗m2)
��

H h

∃!w
uuuu

R m
// (A1⊗A2)⊗(B1⊗B2)

Lemma 4.35 assures us that e1⊗e2 ∈ E because e1 ∈ E and e2 ∈ E . Likewise, m1⊗m2 ∈
M follows from m1 ∈M and m2 ∈M by Lemma 4.34. Since, u is an isomorphism
Lemmata 4.32 and 4.33 (b) therefore allow us to conclude u○(m1⊗m2) ∈M. Finally,
by Lemma 4.18,

(u ○ (m1 ⊗m2)) ○ (m1 ⊗m2)
= u ○ ((m1 ⊗m2) ○ (m1 ⊗m2))
= u ○ ((m1 ○ e1)⊗ (m2 ○ e2))
= u ○ ((f1 × g1)⊗ (f2 × g2))
= u ○ (((f1 × g1) ○ π1

X1,X2
) × ((f2 × g2) ○ π2

X1,X2
))

= u ○ (((f1 ○ π1
X1,X2

) × (g1 ○ π1
X1,X2

)) × ((f2 ○ π2
X1,X2

) × (g2 ○ π2
X1,X2

)))
= (((f1 ○ π1

X1,X2
) × (f2 ○ π2

X1,X2
)) × ((g1 ○ π1

X1,X2
) × (g2 ○ π2

X1,X2
)))

= (f1 ⊗ f2) × (g1 ⊗ g2).

And that is all we needed to see. □

As announced, Rel(A,E) inherits its monoidal structure from S(A).

Definition 5.71. For any objects A, A1, A2, B, B1, B2 and C of A and any
(E ,M)-relations [f1, g1] ∈morRel(A,E)(A1,B1) and [f2, g2] ∈morRel(A,E)(A2,B2) in A
define

(a) A1 ⊗Rel(A,E) A2 ∶= ΦA,E(A1 ⊗S(A) A2) = A1 ⊗A A2,
(b) IRel(A,E) ∶= ΦA,E(IS) = IA,
(c) [f1, g1]⊗Rel(A,E) [f2, g2] ∶= ΦA,E([f1, g1]⊗SA [f2, g2]) = [f1, g1]⊗S(A) [f2, g2],
(d) αRel(A,E),A,B,C ∶= ΦA,E(αS(A),A,B,C),
(e) λRel(A,E),A ∶= ΦA,E(λS(A),A),
(f) ρRel(A,E),A ∶= ΦA,E(ρS(A),A),

Lemma 5.72. Let Rel be short for Rel(A,E).
(a) ⊗Rel is a functor Rel⊗CAT Rel→ Rel.
(b) αRel is a natural isomorphism of functors Rel⊗CAT Rel⊗CAT Rel→ Rel

from (( ⋅1)⊗Rel ( ⋅2))⊗Rel ( ⋅3) to ( ⋅1)⊗Rel (( ⋅2)⊗Rel ( ⋅3)).
(c) λRel is a natural isomorphism of Rel-endofunctors IRel ⊗Rel ( ⋅ )→ ( ⋅ ).
(d) ρRel is a natural isomorphism of Rel-endofunctors ( ⋅ )⊗Rel IRel → ( ⋅ ).
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(e) For any objects A, B, C and D of Rel a commutative diagram in Rel is
given by

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

**
((A⊗B)⊗C)⊗D

αA,B,C⊗idD
��

αA⊗B,C,D
44

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗C))⊗D αA,B⊗C,D

// A⊗ ((B ⊗C)⊗D)

idA⊗αB,C,D

OO

(f) For any objects A and B of Rel a commutative diagram in Rel is given by

(A⊗ I)⊗B
αA,I,B //

ρA⊗idB &&

A⊗ (I ⊗B)

idA⊗λBxx
A⊗B

Proof. (a) We have to prove that ⊗Rel respects identities and composition.
Step 1: Identities respected. For any {A1,A2} ⊆ objRel we conclude, using that S

is a monoidal category,

idRel,A1 ⊗Rel idRel,A2 = Φ(idS,A1)⊗S Φ(idS,A2)
5.70= Φ(idS,A1 ⊗S idS,A2)
5.25= Φ(idS,A1⊗SA2)
= idRel,A1⊗RelA2 ,

where are all other identities hold by definition.
Step 2: Composition respected. For any i ∈ {1,2} let {Ai,Bi,Ci} ⊆ objRel as well

as xi ∈ morRel(Ai,Bi) and yi ∈ morRel(Bi,Ci). Again, S being a monoidal category
lets us infer,

(y1 ⊗Rel y2) ○Rel (x1 ⊗Rel x2) = Φ(y1 ⊗S y2) ○Rel Φ(x1 ⊗S x2)
5.68= Φ((y1 ⊗S y2) ○S (x1 ⊗S x2))
5.25= Φ((y1 ○S x1)⊗S (y2 ○S x2))
5.70= Φ(y1 ○S x1)⊗S Φ(y2 ○S x2)
= (y1 ○Rel x1)⊗S (y2 ○Rel x2)
= (y1 ○Rel x1)⊗Rel (y2 ○Rel x2),

where we have used that Φ is a functor S → Rel by Proposition 5.68. That proves
(a).
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(b) First, we show that αRel is a natural transformation. For each i ∈ {1,2,3} let
{Ai,Bi} ⊆ objRel and xi ∈morRel(Ai,Bi). Then, we find

αRel,B1,B2,B3 ○Rel ((x1 ⊗Rel x2)⊗Rel x3)
5.64, 5.70= Φ(αS,B1,B2,B3) ○Rel Φ((x1 ⊗S x2)⊗S x3)

5.68= Φ(αS,B1,B2,B3 ○S ((x1 ⊗S x2)⊗S x3))
5.25= Φ((x1 ⊗S (x2 ⊗S x3)) ○S αS,A1,A2,A3)
5.68= Φ(x1 ⊗S (x2 ⊗S x3)) ○Rel Φ(αS,A1,A2,A3)

5.64, 5.70= (x1 ⊗Rel (x2 ⊗Rel x3)) ○Rel αRel,A1,A2,A3 ,

as required. Moreover, because αS is a natural isomorphism by Proposition 5.25, the
definitions and Proposition 5.68 imply that αRel is a natural isomorphism as well.

(c) By Proposition 5.68 and the definition of λRel it suffices to prove that λRel is a
natural transformation. And, indeed, for any {A,B} ⊆ objRel and x ∈morRel(A,B),

λRel,B ○Rel (idRel,IRel
⊗Rel x) 5.64= Φ(λS,B) ○Rel (Φ(idS,IS)⊗S Φ(x))

5.70= Φ(λS,B) ○Rel Φ(idS,IS ⊗S x)
5.68= Φ(λS,B ○S (idS,IS ⊗S x))
5.25= Φ(x ○S λS,IS)
5.68= Φ(x) ○Rel Φ(λS,IS)
5.64= x ○Rel λRel,A,

which is what we needed to see.
(d) The proof is analogous to that of (c): For any {A,B} ⊆ objRel and x ∈

morRel(A,B),

ρRel,B ○Rel (x⊗Rel idRel,IRel
) 5.64= Φ(ρS,B) ○Rel (Φ(x)⊗S Φ(idS,IS))

5.70= Φ(ρS,B) ○Rel Φ(x⊗S idS,IS)
5.68= Φ(ρS,B ○S (x⊗S idS,IS))
5.25= Φ(x ○S ρS,IS)
5.68= Φ(x) ○Rel Φ(ρS,IS)
5.64= x ○Rel ρRel,A,

from which the assertion follows by Proposition 5.68.
(e) For any {A,B,C,D} ⊆ objRel the definitions and Lemma 5.70 imply

αRel,A,B,C ⊗Rel idRel,D = Φ(αS,A,B,C)⊗S Φ(idS,D)
= Φ(αS,A,B,C ⊗S idS,D)
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and, likewise,

idRel,A ⊗Rel αRel,B,C,D = Φ(idS,A)⊗S Φ(αS,B,C,D)
= Φ(αS,A,B,C ⊗S idS,D).

Moreover, by definition, αRel,A⊗RelB,C,D = Φ(αS,A⊗SB,C,D) as well as αRel,A,B⊗RelC,D =
Φ(αS,A,B⊗RelC,D) and αRel,A,B,C⊗RelD = Φ(αS,A,B,C⊗SD). Hence, the claimed identity
is precisely the assertion that the image of the pentagon diagram in S under Φ
commutes in Rel. Because Φ is a functor S → Rel by Proposition 5.68 and S a
monoidal category by Proposition 5.25, this is indeed true.

(f) Because Φ is the identity on objects, because ⊗Rel and ⊗S agree on objects,
because

idRel,A ⊗Rel λRel,B = Φ(idS,A)⊗S Φ(λS,B) = Φ(idS,A ⊗S λS,B)
and, likewise,

ρRel,A ⊗Rel idRel,B = Φ(ρS,A)⊗S Φ(idS,B) = Φ(ρS,B ⊗S idS,A),
and because αRel,A,IRel,B = Φ(αS,A,IS,B) by definition, the assertion that the triangle
identity holds in Rel is equivalent to the claim that image of triangle diagram in
S under Φ commutes. Because S is a monoidal category by Proposition 5.25 and
because Φ is a functor S→ Rel by Proposition 5.68 that already proves the claim. □

Proposition 5.73. With (⊗Rel, IRel, αRel, λRel, ρRel) the relations Rel become a
monoidal category, where Rel is short for Rel(A,E).

Proof. All parts of Lemma 5.72 taken together warrant this conclusion. □

Proposition 5.74. ΦA,E is a strict monoidal functor S(A)→ Rel(A,E).
Proof. That ΦA,E is functorial was shown in Proposition 5.68. That it strictly

preserves monoidal units is clear because it is the identity on objects. And Lem-
mata 5.70 and 5.64 together prove that □

5.3.3. Symmetric Monoidal Category. The monoidal category Rel(A,E) inherits
a braiding from S(A) via ΦA,E .

Definition 5.75. For any {A,B} ⊆ objRel(A,E) let γRel(A,E),A,B ∶= ΦA,E(γS(A),A,B).
Lemma 5.76. Let Rel be short for Rel(A,E).
(a) γRel is a natural isomorphism of functors Rel⊗CAT Rel→ Rel from ( ⋅1)⊗Rel

( ⋅2) to ( ⋅2)⊗Rel ( ⋅1).
(b) For any objects A, B and C of Rel commutative diagrams in Rel are given

by

(A⊗B)⊗C
αA,B,C//

γA,B⊗idC
��

A⊗ (B ⊗C)
γA,B⊗C// (B ⊗C)⊗A

αB,C,A

��
(B ⊗A)⊗C αB,A,C

// B ⊗ (A⊗C)
idB⊗γA,C

// B ⊗ (C ⊗A)
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and

A⊗ (B ⊗C)
α−1A,B,C//

idA⊗γB,C

��

(A⊗B)⊗C
γA⊗B,C// C ⊗ (A⊗B)

α−1C,A,B

��
A⊗ (C ⊗B)

α−1A,C,B

// (A⊗C)⊗B
γA,C⊗idB

// (C ⊗A)⊗B

.

(c) γRel,B,A ○Rel γRel,A,B = idRel,A⊗RelB for any objects A and B of Rel.

Proof. (a) First, we show that γRel is a natural transformation. For each
i ∈ {1,2} let {Ai,Bi} ⊆ objRel and xi ∈morRel(Ai,Bi). Then,

x1 ⊗Rel x2
5.64= Φ(x1)⊗Rel Φ(x2) = Φ(x1)⊗S Φ(x2) 5.70= Φ(x1 ⊗S x2)

and, likewise, x2 ⊗Rel x1 = Φ(x2 ⊗S x1). Thus, we conclude

γRel,B1,B2 ○Rel (x1 ⊗Rel x2) = Φ(γS,B1,B2) ○Rel Φ(x1 ⊗S x2)
5.68= Φ(γS,B1,B2 ○S (x1 ⊗S x2))
5.34= Φ((x2 ⊗S x1) ○S γS,A1,A2)
5.68= Φ(x2 ⊗S x1) ○Rel Φ(γS,A1,A2)
= (x2 ⊗Rel x1) ○Rel γRel,A1,A2 .

Moreover, because γS is a natural isomorphism and Φ a functor S → Rel by Propo-
sition 5.68, the image γRel of γS under Φ is a natural isomorphism as well.

(b) According to Proposition 5.34 the corresponding diagrams in S commute.
Because Φ is a functor S → Rel by Proposition 5.68 it suffices to prove that the
Rel-diagrams in the claim are the images of the corresponding S-diagrams under Φ.

By definition, αRel,A1,A2,A3 = Φ(αS,A1,A2,A3) for any {A1,A2,A3} ⊆ objRel. And
because Φ is a functor, also αRel,A1,A2,A3

−1Rel = Φ(αS,A1,A2,A3
−1S) for any {A1,A2,A3} ⊆

objRel. Of course, γRel,A1,A2 = Φ(γS,A1,A2) for any {A1,A2} ⊆ objRel is the very
definition of γRel. Finally,

idRel,A1 ⊗Rel γRel,A2,A3 = Φ(idS,A1)⊗Rel Φ(γS,A2,A3)
5.74= Φ(idS,A1 ⊗S γS,A2,A3)

and, likewise, γRel,A1,A2 ⊗Rel idRel,A3 = Φ(γS,A1,A2 ⊗S idS,A3) for any {A1,A2,A3} ⊆
objRel. Hence, the claim is indeed true.

(c) Because S is symmetric and Φ a functor S→ Rel the definitions imply

γRel,B,A ○Rel γRel,A,B = Φ(γS,B,A) ○Rel Φ(γS,A,B)
5.68= Φ(γS,B,A ○S γS,A,B)
5.34= Φ(idS,A⊗SB)
= idRel,A⊗RelB,

thus proving the claim. □
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Proposition 5.77. γRel(A,E) is a symmetric braiding for the monoidal category
Rel(A,E).

Proof. Follows from all parts of Lemma 5.76 read together. □

Proposition 5.78. ΦA,E is a symmetric functor S(A)→ RelA,E .

Proof. We already know from Proposition 5.74 that the functor Φ∶ S → Rel
is strict monoidal. We still have to prove that Φ(γS,A1,A2) = γRel,Φ(A1),Φ(A2) for any
{A1,A2} ⊆ objS.

Φ(A1)⊗Φ(A2)
γΦ(A1),Φ(A2) // Φ(A2)⊗Φ(A1)

Φ(A1 ⊗A2)
Φ(γA1,A2

)
// Φ(A2 ⊗A1)

But, of course, this is just the definition of γRel. □

5.3.4. Rigid Symmetric Monoidal Category. Also the rigid structure of the span
category passes to the relation category.

Definition 5.79. For any A ∈ objRel(A,E) define
(a) A∨Rel(A,E) ∶= ΦA,E(A∨S(A)) = A.
(b) εRel(A,E),A ∶= ΦA,E(εS(A),A), and
(c) ηRel(A,E),A ∶= ΦA,E(ηS(A),A).

Lemma 5.80. For any object A of Rel(A,E) commutative diagrams in Rel(A,E)
are given by

I ⊗A λA //

ηA⊗idA
��

A

(A⊗A∨)⊗A

αA,A∨,A ((

A⊗ I

ρA

OO

A⊗ (A∨ ⊗A)
idA⊗εA

88

and

A∨ ⊗ I ρA∨ //

idA∨⊗ηA
��

A∨

A∨ ⊗ (A⊗A∨)

α−1
A∨,A,A∨ ((

I ⊗A∨

λA∨

OO

(A∨ ⊗A)⊗A∨
εA⊗idA∨

77
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Proof. According to Proposition 5.40 the corresponding diagrams in S com-
mute. Moreover, Φ is a functor S → Rel which is the identity on objects by Propo-
sition 5.68. Hence, it suffices to show that the Rel-diagrams in the assertion are the
images of their respective corresponding S-diagram under Φ.

By definition, λRel,X = Φ(λS,X) and ρRel,X = Φ(ρS,X) for any X ∈ objRel. Likewise,
αS,X1,X2,X3 = Φ(αS,X1,X2,X3) for any {X1,X2,X3} ⊆ objRel. And, because Φ is a
functor, also αRel,X1,X2,X3

−1Rel = Φ(αS,X1,X2,X3
−1S) for any {X1,X2,X3} ⊆ objRel. Of

course, X∨Rel = Φ(X∨S) and εRel,X = Φ(εS,X) and ηRel,X = Φ(ηS,X) are the very
definitions for any X ∈ objRel. Finally,

ηRel,A ⊗Rel idRel,A = Φ(ηS,A)⊗Rel idRel,A
5.74= Φ(ηS,A ⊗S idS,A)

and, likewise, idRel,A⊗RelεRel,A = Φ(idS,A⊗SεS,A) and idRel,A∨Rel⊗RelηRel,A = Φ(idS,A∨S⊗S

ηS,A) and εRel,A ⊗Rel idRel,A∨Rel = Φ(εS,A ⊗S idS,A∨S). Thus, the claim is true. □

Proposition 5.81. The symmetric monoidal category Rel(A,E) is rigid. Left
duals with associated evaluations and co-evaluations are given by ( ⋅ )∨Rel(A,E), εRel(A,E)
and ηRel(A,E), respectively.

Proof. That is the combined results of 5.80. □

Again, we compute the dual morphisms with respect to the chosen dualization.
The following lemma shows that the ensuing proposition makes sense.

Lemma 5.82. For any {A,B} ⊆ objA and any span (f, g) in A from A to B the
two statements f ×A g ∈M and g ×A f ∈M are equivalent.

Proof. By symmetry it suffices to show one implication. Hence, suppose that
f × g ∈ M. Because M is closed under composition with isomorphisms by Lem-
mata 4.34 and 4.32 and because γA,B is an isomorphism, γA,B ○ (f × g) ∈ M. By
Lemma 4.15 that proves g × f ∈M, which is what we needed to see. □

Proposition 5.83. For any {A,B} ⊆ objRel(A,E) and any [f, g] ∈morRel(A,E)(A,B)
the dual morphism [f, g]∨Rel(A,E) of [f, g] with respect to (( ⋅ )∨Rel(A,E) , εRel(A,E), ηRel(A,E))
is given by [g, f].

Proof. If we read the equation

[g, f] = λA∨ ○ (εB ⊗ idA∨) ○ α−1B∨,B,A∨ ○ (idB∨ ⊗ ([f, g]⊗ idA∨)) ○ (idB∨ ⊗ ηA) ○ ρ−1B∨

as an identity in S, then this is the result of Proposition 5.41; and if we read it as
an identity in Rel, then it is precisely our claim.

By definition,

λRel,A∨Rel = Φ(λS,A∨S).
Proposition 5.74 implies

εRel,B ⊗Rel idRel,A∨Rel = Φ(εS,B ⊗S idS,A∨S)
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Also by definition and Proposition 5.68,

α−1Rel,B∨Rel ,B,A∨Rel = Φ(α−1S,B∨S ,B,A∨S).
Lemma 5.64 shows [f, g] = Φ([f, g]), which is why Proposition 5.74 lets us infer

idRel,B∨Rel ⊗Rel ([f, g]⊗Rel idRel,A∨Rel) = Φ(idS,B∨S ⊗S ([f, g]⊗S idS,A∨S)).
Another application of that proposition yields

idRel,B∨Rel ⊗Rel ηRel,A = Φ(idS,B∨S ⊗S ηS,A)
And

ρRel,B∨S
−1Rel = Φ(ρS,B∨S

−1S)
is true by Proposition 5.68 and by definition of ρRel.

Hence, the right hand side of the claimed identity is a composition in Rel of images
of morphisms of S under Φ. Because Φ is a functor S → Rel by Proposition 5.68,
the right hand side of the assertion is thus identical to

Φ(λA∨ ○ (εB ⊗ idA∨) ○ α−1B∨,B,A∨ ○ (idB∨ ⊗ ([f, g]⊗ idA∨)) ○ (idB∨ ⊗ ηA) ○ ρ−1B∨),
where the index S was suppresed. Since the argument of Φ in this term evaluates to
[g, f] by the S-version of the initial identity, our claim is equivalent to the identity
[g, f] = Φ([g, f]). However, this is clear by Lemmata 5.64 and 5.82. Hence, the
assertion is true. □

Moreover, we can link the traces in the span category to those in the relation
category.

Proposition 5.84. For any A ∈ objRel(A,E) and any endomorphism x of A in
Rel(A,E) the trace trRel(A,E)(x) of x with respect to (( ⋅ )∨Rel(A,E) , εRel(A,E), ηRel(A,E))
is given by

trRel(A,E)(x) = ΦA,E(trS(A)(x)).
Proof. The definitions, Lemma 5.64 and Proposition 5.78 imply

trRel(x)
= εRel,A ○Rel γRel,A,A∨Rel ○Rel ([f, g]⊗Rel idRel,A∨Rel) ○Rel ηRel,A

= Φ(εS,A) ○Rel Φ(γS,A,A∨S) ○Rel (Φ([f, g])⊗Rel Φ(idS,A∨S))
○Rel Φ(ηS,A)
= Φ(εS,A) ○Rel Φ(γS,A,A∨S) ○Rel Φ([f, g]⊗S idS,A∨S) ○Rel Φ(ηS,A)
= Φ(εS,A ○S γS,A,A∨S ○S ([f, g]⊗S idS,A∨S) ○S ηS,A)
= Φ(trS(x)),

as claimed. □

5.4. Stage 2b: Relations (with †). As for spans, we can consider the cate-
gory of relations as equipped with the extra structure of a †-operation.
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5.4.1. †-category. Next, we show that Rel(A,E) also inherits via ΦA,E the †-
structure of S(A) and that ΦA,E thus becomes a †-functor. The following definition
makes sense by Lemmata 5.64 and 5.82.

Definition 5.85. Let
(a) X†Rel(A,E) ∶= ΦA,E(X†S(A)) =X for any X ∈ objRel(A,E),

(b) [f, g]†Rel(A,E) ∶= ΦA,E([f, g]†S(A)) = [g, f] for any {A,B} ⊆ objRel(A,E) and
[f, g] ∈morRel(A,E)(A,B).

Note that for the relation category it is significantly less immediate than for the
span category that the †-operation is functorial.

Lemma 5.86. ΦA,E(x†S(A)) = ΦA,E(x)†S(A) for any morphism x of S(A).
Proof. Let {X,A,B} ⊆ objA and f ∈morA(X,A) and g ∈morA(X,B) be such

that x = [f, g], and let (e,m) be an (E ,M)-factorization of f ×A g.
Because γA,A,B ∈ isoA ⊆ M by Lemma 4.32 and thus also γA,A,B ○A m ∈ M by

Lemma 4.33 (b) and because

(γA,A,B ○Am) ○A e = γA,A,B ○A (m ○A e) = γA,A,B ○A (f ×A g) = g ×A f
by Lemma 4.15, the pair (e, γA,A,B ○Am) is an (E ,M)-factorization of g×Af . Hence,
by definition (and Lemma 5.62),

Φ([g, f]) = [π1
A,B,A ○A (γA,A,B ○Am), π1

A,B,A ○A (γA,A,B ○Am)].
From π1

A,B,A ○A γA,A,B = π1
A,B,A ○A (π2

A,A,B ×A π1
A,A,B) = π2

A,A,B and, likewise, π2
A,B,A ○A

γA,A,B = π1
A,A,B it then follows

Φ([f, g]†S) = Φ([g, f])
= [π2

A,A,B ○Am,π1
A,A,B ○Am]

= [π1
A,A,B ○Am,π2

A,A,B ○Am]
†S

= Φ[f, g]†S ,
which concludes the proof □

Lemma 5.87. (a) ( ⋅ )†Rel(A,E) is a contravariant endofunctor of Rel.
(b) ( ⋅ )†Rel(A,E) is the identity on objects.
(c) (( ⋅ )†Rel(A,E))opCAT ○CAT ( ⋅ )†Rel(A,E) = idCAT,Rel(A,E).

Proof. (a) For any X ∈ objRel, by definition and Lemmata 5.64 and 5.82,

idRel,X
†Rel = Φ(idS,X)†S 5.86= Φ(idS,X

†S) 5.47= Φ(idS,X) = idRel,X .

For any {A,B,C} ⊆ morS and any x ∈ morRel(A,B) and y ∈ morRel(B,C) the
definitions and Lemmata 5.64 and 5.82 once more allow us to conclude

(y ○Rel x)†Rel = (Φ(y ○S x))†S 5.86= Φ((y ○S x)†S) 5.47= Φ(x†S ○S y†S)
= x†Rel ○Rel y

†Rel .

Both results together prove (a).
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(b) Holds by definition.
(c) On the level of objects the claim is clear. Because on morphisms, ( ⋅ )†Rel is

merely a restriction of ( ⋅ )†S , Proposition 5.47 implies the assertion. □

Proposition 5.88. Rel(A,E), when equipped with ( ⋅ )†Rel(A,E), is a †-category.

Proof. The claim is the combined implication of Lemma 5.87. □

Moreover, the “projection” even respects the †-operation.

Proposition 5.89. ΦA,E is a †-functor S(A)→ Rel(A,E).

Proof. Because Φ is the identity on objects, we only need to prove the identity
( ⋅ )†Rel ○CAT Φ = ΦopCAT ○CAT ( ⋅ )†S on morphisms. But, there, the claim is merely
Lemma 5.86. □

5.4.2. Monoidal †-category. In fact, just like the span category the relation cat-
egory is even a monoidal †-category. Recall that ∗CAT denotes the (large) monoidal
category of †-categories.

Lemma 5.90. Let Rel be short for Rel(A,E).
(a) ⊗Rel is a †-functor Rel⊗∗CAT Rel→ Rel.
(b) αRel,A1,A2,A3

†Rel = αRel,A1,A2,A3
−1Rel for any {A1,A2,A3} ⊆ objRel.

(c) λRel,A
†Rel = λRel,A

−1Rel for any A ∈ objRel.
(d) ρRel,A

†Rel = ρRel,A
−1Rel for any A ∈ objRel.

Proof. (a) For any {X1,X2} ⊆ objRel the definitions imply

(X1 ⊗RelX2)†Rel = (X1 ⊗SX2)†S 5.51= X1
†S ⊗SX2

†S =X1
†Rel ⊗RelX2

†Rel .

Similarly, if {Ai,Bi} ⊆ objRel and xi ∈ morRel(Ai,Bi) for each i ∈ {1,2}, then, by
definition,

(x1 ⊗Rel x2)†Rel = (x1 ⊗S x2)†S 5.51= x1
†S ⊗S x2

†S = x1†Rel ⊗Rel x2
†Rel .

Hence, (a) is true.
(b) For any {A1,A2,A3} ⊆ objRel,

αRel,A1,A2,A3

†Rel = Φ(αS,A1,A2,A3)
†Rel

5.89= Φ(αS,A1,A2,A3

†S)
5.51= Φ(αS,A1,A2,A3

−1S)
5.68= Φ(αS,A1,A2,A3)

−1Rel

= αRel,A1,A2,A3

−1Rel .
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(c) In full analogy to the proof of (b), for any A ∈ objRel,

λRel,A
†Rel = Φ(λS,A)†Rel

5.89= Φ(λS,A†S)
5.51= Φ(λS,A−1S)
5.68= Φ(λS,A)−1Rel

= λRel,A
−1Rel .

(d) Once more, an analogous computation yields for any A ∈ objRel,

ρRel,A
†Rel = Φ(ρS,A)†Rel

5.89= Φ(ρS,A†S)
5.51= Φ(ρS,A−1S)
5.68= Φ(ρS,A)−1Rel

= ρRel,A
−1Rel .

That concludes the proof. □

Proposition 5.91. Rel(A,E) is a monoidal †-category.

Proof. That is the combined implication of Lemma 5.90. □

5.4.3. Symmetric Monoidal †-category. As is to be expected, the relation cate-
gory is actually a symmetric monoidal †-category like the span category.

Lemma 5.92. γRel(A,E),A1,A2

†Rel(A,E) = γRel(A,E),A1,A2

−1Rel(A,E) for any {A1,A2} ⊆
objRel(A,E).

Proof. The proof is completely analogous those of Parts (b)–(d) of Lemma 5.90.
For any {A1,A2} ⊆ objRel,

γRel,A1,A2

†Rel = Φ(γS,A1,A2)
†Rel

5.89= Φ(γS,A1,A2

†S)
5.51= Φ(γS,A1,A2

−1S)
5.68= Φ(γS,A1,A2)

−1Rel

= γRel,A1,A2

−1Rel ,

which is what we needed to see. □

Proposition 5.93. Rel(A,E) is a symmetric monoidal †-category.

Proof. Follows from Lemma 5.92. □
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5.4.4. Rigid Symmetric Monoidal †-category. Finally, the rigid structure of the
relation category is compatible with its †-structure, just as it was the case for the
span category.

Lemma 5.94. If Rel is short for Rel(A,E), then γRel,A∨Rel ,A ○Rel εRel,A
†Rel = ηRel,A

for any A ∈ objRel. In other words, in Rel the diagram

A∨ ⊗A

γA∨,A

��

I

εA
†

;;

ηA ##
A⊗A∨

commutes.

Proof. We compute immediately

γRel,A∨Rel ,A ○Rel εRel,A
†Rel = Φ(γS,A∨S ,A) ○Rel Φ(εS,A)†Rel

5.89= Φ(γS,A∨S ,A) ○Rel Φ(εS,A†S)
5.68= Φ(γS,A∨S ,A ○S εS,A†S)
5.58= Φ(ηS,A)
= ηRel,A,

which is what we needed to see. □

Proposition 5.95. Rel(A,E) is a rigid symmetric monoidal †-category.

Proof. Was shown in Lemma 5.94. □

That completes the second stage of the construction – at least on 0-cells. As
explained, none of this was new. However, this changes in the next section.

5.5. Stage 3a: Linearized Relations. With the results of the preceding two
stages at hand, one should be able to prove at least Conjecture 2.14. However, I
was not able to confirm this before the due date of the thesis. The computational
effort greatly increases from the second to the third stage because of the change
in enriching category. For that reason, most claims on this stage have to remain
conjectures for now. Not even for 0-cells the construction is complete.

The construction carried out below generalizes [Kno07]. The corresponding
proofs are however not given in [Kno07]. Hence, it is not possible to simply re-
fer to them and point out the necessary modifications.

Assumptions 5.96. Make the same assumptions about (S, US) and R and M
as well as GM ⊣ UM via cuM and unM as in Section 2, let B be the symmetric
monoidal bicategory of small M-enriched categories, let (A,E , δ) be any 0-cell of
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dS,ResmCATcart,fc
fs and let M ∶= E⊥. Moreover, as before, S will be short for S(A) on

occasion. Likewise, Rel will abbreviate Rel(A,E) sometimes.

Mind that we have thus assumed E ↪ epiA in particular.
5.5.1. Linear Category. The first step is to define the generalized tensor enve-

lope just as an enriched category, i.e., to introduce the composition and identities.
In that context, it is important to note that our assumption about E consisting of
epimorphisms of A allows us to draw the following conclusions about the identi-
ties. Note that this was never claimed anywhere on the second stage (and also not
required).

Lemma 5.97. idRel(A,E),X = idS(A),X for any object X of A.

Proof. Since E consists of epimorphisms of A Lemma 4.36 guarantees that
idA,X ×A idA,X ∈M. Hence, idRel,X = Φ(idS,X) = Φ([idA,X , idA,X]) = [idA,X , idA,X] by
Lemma 5.64. □

It is no surprise that we will indeed inherit the identities from the relations and
thus, by the above lemma, from the spans. In order to define the composition, we
first introduce an analog of the “projection” ΦA,E . It will send any span, not to a
relation, but to a scalar. The next lemma ensures that this definition makes sense.
It is analogous to Lemma 5.62.

Lemma 5.98. Let A and B be objects of A, let (f, g) and (f ′, g′) be spans in A
from A to B and let (e,m) be an (E ,M)-factorization of f ×A g and (e′,m′) one
of f ′ ×A g′. If (f, g) and (f ′, g′) form a pair of equivalent spans in A from A to B,
then δ(e) = δ(e′).

Proof. The assumptions are the same as in Lemma 5.62. In the proof of that
lemma it was shown that, if u∶ X ′ → X is an isomorphism such that f ′ = f ○ u
and g′ = g ○ u, then (since (e ○ u,m) ∈ E ×M is an (E ,M)-factorization of f ′ × g′)
there exists an isomorphism w∶ R′ → R with e ○ u = w ○ e′ and m′ = m ○ w. Once
we prove that (u, e′) is a pull-back of (e,w) the claim will be clear because δ, as a
degree-function, is invariant under pull-backs.

X

e   
P

a
33

b ++

x // X ′
u

==

e′

!!

R

R′

w
>>

We only need to show that (u, e′) is universal with the property e ○ u = w ○ e′. Let
a∶ P → X and b∶ P → R′ be such that e ○ a = w ○ b. If we define x ∶= u−1 ○ a, then
obviously u○x = a. But w−1○e = e′○u−1 also implies e′○x = e′○(u−1○a) = (e′○u−1)○a =



5. PARTIAL PROOF OF THE CONSTRUCTION 487

(w−1 ○ e) ○ a = w−1 ○ (e ○ a) = w−1 ○ (w ○ b) = b. And it is clear that the condition
a = u ○ x determines x uniquely. Hence, the claim is true. □

Hence, we can introduce the “functional” as follows by using the degree function.

Definition 5.99. For any objects A and B and any class [f, g] of spans in A
from A to B let ∆A,E,δ([f, g]) ∶= δ(e), where (e,m) is any (E ,M)-factorization of
f ×A g.

Conversely, the degree function δ can be recovered from ∆A,E,δ via the identity
δ(e) = ∆A,E,δ([e, e]), which holds for any e ∈ E because, if X is the co-domain of e,
then (e, idA,X ×A idA,X) is an (E ,M)-factorization of e ×A e. In analogy to Lem-
ma 5.64, which showed that (E ,M)-relations are fixed points of the “projection”
ΦA,E , below we show that the “funcional” ∆A,E,δ maps (E ,M)-relations to the unit.

The following is a side remark unrelated to the proof of the construction. It
shows that the “projection” and the “functional” together are able to discriminate
whether a morphism belongs to E .

Remark 5.100. For any {X,Y } ⊆ objA, if we resume the terms from Defini-
tion 5.103, then the inclusion

morE(X,Y )→morA(X,Y )

is the equalizer in Set of the two morphisms

(δX,Y ⊗Set idRel,Y ) ○Set ρSet,morA(X,Y )
−1Set ,

where we interpret idRel,Y as a morphsim ISet →morRel(Y,Y ), and

cY,X,Y ○Set (idSet,morRel(X,Y ) ⊗Set (( ⋅ )†Rel)1,X,Y ) ○Set ((ΘRel)1,X,Y ×Set (ΘRel)1,X,Y ).

morE(X,Y ) morA(X,Y ) UM(IM)⊗morRel(Y,Y )

morRel(X,Y )⊗morRel(X,Y ) morRel(X,Y )⊗morRel(Y,X)

morA(X,Y )⊗ I

∃! ρSet,morA(X,Y )
−1 δX,Y ⊗ idRel,Y

(ΘRel)1,X,Y × (ΘRel)1,X,Y

idSet,morRel(X,Y ) ⊗ (( ⋅ )†Rel)1,X,Y

cY,X,Y

Or, in terms of elements, for any e ∈morA(X,Y ),

∆A,E,δ(ΘA(e) ○S ΘA(e)†S) = δ(e)
and ΦA,E(ΘA(e) ○S ΘA(e)†S) = idS,Y

⇐⇒ e ∈morE(X,Y ).
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Proof. By Lemma 4.36 we know ΘA(e) ○S ΘA(e)†S = [e, e]. Hence, if (e0,m0)
is any (E ,M)-factorization of e ×A e with image object S, then

∆A,E,δ(ΘA(e) ○S ΘA(e)†S) = δ(e0)
and ΦA,E(ΘA(e) ○S ΘA(e)†S) = [π1

A,Y,Y ○Am0, π
2
A,Y,Y ○Am0].

In consequence, the claim is equivalent to the assertion that e ∈ morM(X,Y ) holds
if and only if δ(e) = δ(e0) is true and simultaneously the spans (idA,Y , idA,Y ) and
(π1
A,Y,Y ○Am0, π2

A,Y,Y ○Am0) are equivalent. The latter is true if and only if there

exists u ∈ isoA(Y,S) such that m0 = (idA,Y ×A idA,Y ) ○A u.
Now, if e ∈ morE(X,Y ), we can choose (e0,m0) = (e, idA,Y ×A idA,Y ) by Lem-

ma 4.36 and S = Y and u = idA,Y and thus find the conditions trivially satisfied.
Conversely, if δ(e) = δ(e0) and m0 = (idA,Y ×A idA,Y )○A u for some u ∈ isoA(Y,S),

then it follows e×A e =m0 ○A e0 = ((idA,Y ×A idA,Y )○Au)○A e0 = (u○A e0)×A (u○A e0).
The consequence e = u ○A e0 proves e ∈ morE(X,Y ) by Lemma 4.33 (a) because
e0 ∈morE(X,S) and u ∈morE(Y,S) by Lemma 4.32. □

Lemma 5.101. For any objects A and B of A and any (E ,M)-relation [f, g], if
we interpret ∆A,E,δ([f, g]) as a mapping ISet → US(OR), then

∆A,E,δ([f, g]) = I(US)⊳(R).

Proof. Let X be the base of (f, g). Then, idA,X ∈ E by Lemma 4.32 and
f ×Ag ∈M because [f, g] is an (E ,M)-relation. Hence, (idA,X , f ×A g) is an (E ,M)-
factorization of f ×A g. It follows ∆A,E,δ([f, g]) = δ(idA,X) = US(IR)○Set (US)I by the
axioms of δ. □

And, once more, an analogy to the second stage of the construction arises. The
following lemma can be understood as the counterpart to 5.65. It is the crucial ingre-
dient to the proof that composition is associative.

Lemma 5.102. For any {A,B,C} ⊆ objA,

(∆A,E,δ)1,A,C ○Set ○S,A,B,C

= ⊗(US)⊳(R) ○Set ((⊗(US)⊳(R) ○Set((∆A,E,δ)1,B,C ⊗Set (∆A,E,δ)1,A,B))

×Set((∆A,E,δ)1,A,C ○Set ○S,A,B,C ○Set ((ΦA,E)1,B,C ⊗Set (ΦA,E)1,A,B)))
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where we interpret (ΦA,E)1,A,B and (ΦA,E)1,B,C as self-mappings of morS(A,B) re-
spectively morS(B,C).

mor(B,C)⊗mor(A,B) (mor(B,C)⊗mor(A,B))⊗ (mor(B,C)⊗mor(A,B))

mor(A,C) (mor(B,C)⊗mor(A,B))⊗ (mor(B,C)⊗mor(A,B))

U(I)

(U(I)⊗U(I))⊗mor(A,C)

U(I)⊗U(I)

idmor(B,C)⊗mor(A,B) × idmor(B,C)⊗mor(A,B)

○S,A,B,C

(∆A,E,δ)1,A,C

idmor(B,C)⊗mor(A,B) ⊗ ((ΦA,E)1,B,C ⊗Set (ΦA,E)1,A,B)

((∆A,E,δ)1,B,C ⊗Set (∆A,E,δ)1,A,B)⊗ ○S,A,B,C

⊗(US)⊳(R) ⊗ (∆A,E,δ)1,A,C

⊗(US)⊳(R)

Or, in terms of elements, for any classes x ∈morS(A,B) and y ∈morS(B,C),
∆A,E,δ(y ○S x) = (∆A,E,δ(y)⊗(US)⊳(R) ∆A,E,δ(x))⊗(US)⊳(R) ∆A,E,δ(ΦA,E(y) ○S ΦA,E(x)).

Proof. If we let [f, g] be a class of spans in A from A to B and [p, q] one
of spans from B to C, then the premises are identical with those of Lemma 5.65.
Resume the definitions from the proof there. Then, ∆([p, q] ○S [f, g]) = δ(e′) and
∆([p, q]) = δ(e2) and ∆([f, g]) = δ(e1) as well as ∆(Φ([p, q]) ○S Φ([f, g])) = δ(e).
Hence what we have to show is that

δ(e′) != (δ(e2)⊗(US)⊳(R) δ(e1))⊗(US)⊳(R) δ(e).
The assumption that δ is invariant under pull-backs has the following impli-

cations: δ(d1) = δ(e1) because (c1, d1) is a pull-back of (e1, a1) and, likewise,
δ(d2) = δ(e2) because (c2, d2) is one of (e2, a2); moreover, δ(s1) = δ(d2) since (s1, s2)
is a pull-back of (d1, d2). In conclusion, δ(e1) = δ(d1) and δ(e2) = δ(s1).

Because u and v are isomorphisms, δ(u) = δ(v) = I(US)⊳(R) by Lemma 2.5 (a).
We have already seen e ○ d1 ○ s1 ○ v ∈ E and e ○ d1 ○ s1 ○ v = u ○ e′. Hence, δ being
multiplicative lets us infer

δ(e′) = δ(u)⊗(US)⊳(R) δ(e′)
= δ(u ○ e′)
= δ(e ○ d1 ○ s1 ○ v)
= (δ(e)⊗(US)⊳(R) (δ(d1)⊗(US)⊳(R) δ(s1)))⊗(US)⊳(R) δ(v)
= (δ(e2)⊗(US)⊳(R) δ(e1))⊗(US)⊳(R) δ(e),

where we have used that (US)⊳(R) is commutative. That concludes the proof. □
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Since Rel(A,E) is locally small by Proposition 5.69 the following makes sense. It
is the same definition as given in Section 2.2.

Definition 5.103. Let T 0 be short for T 0(A,E , δ).
(a) Define objT 0 ∶= objRel.
(b) For any {A,B} ⊆ objRel let morT 0(A,B) ∶= GM(morRel(A,B)).
(c) Given any {A,B,C} ⊆ objT 0 , if cA,B,C temporarily stands for the mapping

morRel(B,C)⊗Set morRel(A,B)→ UM(IM)⊗Set morRel(A,C),
(y, x)↦ (∆A,E,δ(y ○S x), y ○Rel x),

then define

○T 0,A,B,C ∶= λM,morT 0(A,C) ○M (cuM,IM ⊗M idM,morT 0(A,C))
○M (GM)⊗,UM(IM),morRel(A,C)

−1M ○M GM(cA,B,C)
○M (GM)⊗,morRel(B,C),morRel(A,B)

(d) For any A ∈ objT 0 , considering idRel,A a mapping ISet →morRel(A,A), let

idT 0,A ∶= GM(idRel,A) ○M (GM)I .

The following is the centerpiece of the proof that the composition of T 0(A,E , δ)
is associative. It is enabled by Lemmata 5.101 and 5.102.

Lemma 5.104. For any {A,B,C,D} ⊆ objS, if we resume the names from Defi-
nition 5.103, then

(⊗(US)⊳(R) ⊗Set idSet,morRel(A,B)) ○Set αSet,UM(IM),UM(IM),morRel(A,D)
−1Set

○Set(idSet,UM(IM) ⊗Set cA,B,D) ○ αSet,UM(IM),morRel(B,D),morRel(A,B)

○Set(cB,C,D ⊗Set idSet,morRel(A,B))
= (⊗(US)⊳(R) ⊗Set idSet,morRel(A,B)) ○Set αSet,UM(IM),UM(IM),morRel(A,D)

−1Set

○Set (idSet,UM(IM) ⊗Set cA,C,D) ○ αSet,UM(IM),morRel(C,D),morRel(A,C)

○Set (γSet,morRel(C,D),UM(IM) ⊗Set idSet,morRel(A,C)) ○Set αSet,morRel(C,D),UM(IM),morRel(A,C)
−1Set

○Set (idSet,morRel(C,D) ⊗Set cA,B,C) ○Set αSet,morRel(C,D),morRel(B,C),morRel(A,B).
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(mor(C,D)⊗mor(B,C))⊗mor(A,B) mor(C,D)⊗ (mor(B,C)⊗mor(A,B))

(U(I)⊗mor(B,D))⊗mor(A,B) mor(C,D)⊗ (U(I)⊗mor(A,C))

(mor(C,D)⊗U(I))⊗mor(A,C)

(U(I)⊗mor(C,D))⊗mor(A,C)

U(I)⊗ (mor(B,D)⊗mor(A,B)) U(I)⊗ (mor(C,D)⊗mor(A,C))

U(I)⊗ (U(I)⊗mor(A,D)) U(I)⊗ (U(I)⊗mor(A,D))

(U(I)⊗U(I))⊗mor(A,D) (U(I)⊗U(I))⊗mor(A,D)

U(I)⊗mor(A,D) U(I)⊗mor(A,D)

αmor(C,D),mor(B,C),mor(A,B)

cB,C,D⊗idmor(A,B) idmor(C,D)⊗cA,B,C

αU(I),mor(B,D),mor(A,B)

α−1
mor(C,D),U(I),mor(A,C)

γU(I),mor(C,D)⊗idmor(A,C)

αU(I),mor(C,D),mor(A,C)

idU(I)⊗cA,B,D idU(I)⊗cA,C,D

α−1
U(I),U(I),mor(A,D) α−1

U(I),U(I),mor(A,D)

⊗U⊳(R)⊗idmor(A,D) ⊗U⊳(R)⊗idmor(A,D)

Or, in terms of elements, for any x ∈ morRel(A,B) and y ∈ morRel(B,C) and z ∈
morRel(C,D),

∆A,E,δ(z ○S y)⊗(US)⊳(R) ∆A,E,δ(ΦA,E(z ○S y) ○S x)
=∆A,E,δ(y ○S x)⊗(US)⊳(R) ∆A,E,δ(z ○S ΦA,E(y ○S x))

and

ΦA,E(ΦA,E(z ○S y) ○S x) = ΦA,E(z ○S ΦA,E(y ○S x)).
Proof. We show both identities separately. Firstly, since z and x are (E ,M)-

relations Lemma 5.64 implies Φ(z) = z and Φ(x) = x. For the same reason, ∆(z) =
∆(x) = I(US)⊳(R) by Lemma 5.101. Hence we infer with the help of Lemma 5.102

∆(y ○S x)⊗(US)⊳(R) ∆(z ○S Φ(y ○S x))
= (∆(z)⊗(US)⊳(R) ∆(y ○S x))⊗(US)⊳(R) ∆(Φ(z) ○S Φ(y ○S x))
=∆(z ○S (y ○S x))
=∆((z ○S y) ○S x)
= (∆(z ○S y)⊗(US)⊳(R) ∆(x))⊗(US)⊳(R) ∆(Φ(z ○S y) ○S Φ(x))
=∆(z ○S y)⊗(US)⊳(R) ∆(Φ(z ○S y) ○S x),

where we have used Proposition 5.67 in the third step.
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Similarly, Φ(z) = z and Φ(x) = x also prove, by Lemma 5.65,

Φ(Φ(z ○S y) ○S x) = Φ(Φ(z ○S y) ○S Φ(x))
= Φ((z ○S y) ○S x)
= Φ(z ○S (y ○S x))
= Φ(Φ(z) ○S Φ((y ○S x)))
= Φ(z ○S Φ(y ○S x)),

where again the third step used Proposition 5.67. □

The proof that the composition of T 0(A,E , δ) is associative a very long compu-
tation. Due to time constraints, only half of the proof is given here.

Lemma 5.105. For any {A,B,C,D} ⊆ objT 0,

○T 0,A,C,D ○M (idM,morT 0(C,D) ⊗M ○T 0,A,B,C) ○M αM,morT 0(C,D),morT 0(B,C),morT 0(A,B)

= ○T 0,A,B,D ○M (○T 0,B,C,D ⊗M idM,morT 0(A,B))

(morT 0(C,D)⊗morT 0(B,C))⊗morT 0(A,B)

morT 0(C,D)⊗morT 0(A,C)

morT 0(A,D)

morT 0(B,D)⊗morT 0(A,B)

morT 0(C,D)⊗ (morT 0(B,C)⊗morT 0(A,B))

○T 0,B,C,D⊗idmorT 0 (A,B)

αmorT 0 (C,D),morT 0 (B,C),morT 0 (A,B)

○T 0,A,B,D

○T 0,A,C,D

idmorT 0 (C,D)⊗○T 0,A,B,C

Proof. The proof strategy is to transform each side of the claimed identity into
the same expression. Unfortunately, there only was time to write this down for the
left-hand side. The rest of the proof is very similar. Transforming the left-hand side
into the intended midway point between both sides takes 25 steps. In each step,
the part of the expression that will be substituted in the next step is printed in
red. Insofar as the current form of the left-hand side already agrees with the target
expression it is colored green.

The key to the proof is Lemma 5.104. The notation from Definition 5.103 is
continued. Due to the long formulas occurring, the following abbreviations are used
throughout the proof: Firstly, all category indices T 0, M, S and Set are suppressed.
Secondly, for any {X,Y } ⊆ objT 0 we write XY instead of morRel(X,Y ).
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Step 1: By definition, the left-hand side of the claimed identity is given by

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC

○ (idG(CD) ⊗ (λG(AC) ○ (cuI ⊗ idG(AC)) ○G−1
⊗,U(I),AC ○G(cA,B,C) ○G⊗,BC,AB))

○ αG(CD),G(BC),G(AB).
Step 2: Since, by the general theory of monoidal adjunctions, G−1

⊗,U(I),AC =
cuG(U(I))⊗G(AC) ○G(U⊗,G(U(I)),G(AC)) ○G(unU(I) ⊗ unBD), this is the same as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC

○ (idG(CD) ⊗ (λG(AC) ○ (cuI ⊗ idG(AC)) ○ cuG(U(I))⊗G(AC) ○G(U⊗,G(U(I)),G(AC)
○ (unU(I) ⊗ unBD) ○ cA,B,C) ○G⊗,BC,AB)) ○ αG(CD),G(BC),G(AB).

Step 3: Because cu is a natural transformation from G ○ U to id we can use the
identity λG(AC) ○ (cuI ⊗ idG(AC)) ○ cuG(U(I))⊗G(AC) = cuG(AC) ○G(U(λG(AC) ○ (cuI ⊗
idG(AC)))) and reassociate the terms to transform this into

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC

○ (idG(CD) ⊗ (cuG(AC) ○G(U(λG(AC) ○ (cuI ⊗ idG(AC))) ○U⊗,G(U(I)),G(AC)
○(unU(I) ⊗ unBD) ○ cA,B,C) ○G⊗,BC,AB)) ○ αG(CD),G(BC),G(AB).

Step 4: By the counit-unit equation, idG(CD) = cuG(CD) ○G(unCD), which is why
the above can be rewritten as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC

○ (cuG(CD) ⊗ cuG(AC)) ○ (G(unCD)⊗G(U(λG(AC) ○ (cuI ⊗ idG(AC)))
○U⊗,G(U(I)),G(AC) ○ (unU(I) ⊗ unBD) ○ cA,B,C) ○G⊗,BC,AB)) ○ αG(CD),G(BC),G(AB).

Step 5: The identity

cuG(CD) ⊗ cuG(AC) = cuG(CD)⊗G(AC) ○G(U⊗,G(CD),G(AC)) ○G⊗,U(G(CD)),U(G(AC)),

which is due to the fact that cu is a monoidal natural transformation from G ○U to
id, lets us express this term as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U⊗,G(CD),G(AC)) ○G⊗,U(G(CD)),U(G(AC)) ○ (G(unCD)⊗G(U(λG(AC)
○ (cuI ⊗ idG(AC))) ○U⊗,G(U(I)),G(AC) ○ (unU(I) ⊗ unBD) ○ cA,B,C))
○ (idG(CD) ⊗G⊗,BC,AB) ○ αG(CD),G(BC),G(AB).

Step 6: If we now make use of the fact that G is a monoidal functor and thus,

G⊗,U(G(CD)),U(G(AC)) ○ (G(unCD)⊗G(U(λG(AC) ○ (cuI ⊗ idG(AC)))
○U⊗,G(U(I)),G(AC) ○ (unU(I) ⊗ unBD) ○ cA,B,C))
= G(unCD ⊗ (U(λG(AC) ○ (cuI ⊗ idG(AC))) ○U⊗,G(U(I)),G(AC) ○ (unU(I) ⊗ unBD)

○ cA,B,C)) ○G⊗,CD,BC⊗AB
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the above expression takes on the form

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U⊗,G(CD),G(AC) ○ (unCD ⊗ (U(λG(AC) ○ (cuI ⊗ idG(AC))) ○U⊗,G(U(I)),G(AC)
○ (unU(I) ⊗ unBD) ○ cA,B,C))) ○G⊗,CD,BC⊗AB ○ (idG(CD) ⊗G⊗,BC,AB)
○ αG(CD),G(BC),G(AB).

Step 7: By the associativity axiom for monoidal functors, G⊗,CD,BC⊗AB○(idG(CD)⊗
G⊗,BC,AB)○αG(CD),G(BC),G(AB) = G(αCD,BC,AB)○G⊗,CD⊗BC,AB○(G⊗,CD,BC⊗idG(AB)).
Hence, we can reformulate our morphism as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U⊗,G(CD),G(AC) ○ (idU(G(CD)) ⊗ (U(λG(AC)) ○U(cuI ⊗ idG(AC))
○U⊗,G(U(I)),G(AC))) ○ (unCD ⊗ (unU(I) ⊗ unAC)) ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)),

where also several terms have been reassociated.
Step 8: Because U is a monoidal functor, U(cuI ⊗ idG(AC)) ○ U⊗,G(U(I)),G(AC) =

U⊗,I,G(AC) ○ (U(cuI) ⊗ idU(G(AC))), which, in combination with some reassociation,
makes the above equal to

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U⊗,G(CD),G(AC) ○ (U(idG(CD))⊗U(λG(AC))) ○ (idU(G(CD)) ⊗U⊗,I,G(AC))
○ (unCD ⊗ ((U(cuI) ○ unU(I))⊗ unAC)) ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 9: Once more, a counit-unit equation yields U(cuI) ○ unU(I) = idU(I). At
the same time, because U is a monoidal functor, U⊗,G(CD),G(AC) ○ (U(idG(CD)) ⊗
U(λG(AC))) = U(idG(CD) ⊗ λG(AC)) ○U⊗,G(CD),I⊗G(AC). Therefore, the previous term
is identical to

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(idG(CD) ⊗ λG(AC)) ○U⊗,G(CD),I⊗G(AC) ○ (idU(G(CD)) ⊗U⊗,I,G(AC))
○ (unCD ⊗ (idU(I) ⊗ unAC)) ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 10: Since M is a symmetric monoidal category,

(idG(CD) ⊗ λG(AC)) ○ αG(CD),I,G(AC) = ρG(CD) ⊗ idAC .

That is why our morphism can also be written as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(ρG(CD) ⊗ idAC) ○U(α−1G(CD),I,G(AC)) ○U⊗,G(CD),I⊗G(AC)
○ (idU(G(CD)) ⊗U⊗,I,G(AC)) ○ (unCD ⊗ (idU(I) ⊗ unAC)) ○ (idCD ⊗ cA,B,C)
○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).
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Step 11: The associativity axiom for monoidal functors tells us that

U⊗,G(CD),I⊗G(AC) ○ (idU(G(CD)) ⊗U⊗,I,G(AC)) ○ αU(G(CD)),U(I),U(G(AC))
= U(αG(CD),I,G(AC)) ○U⊗,G(CD)⊗I,G(AC) ○ (U⊗,G(CD),I ⊗ idU(G(AC)))

Thus, the above term agrees with

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(ρG(CD) ⊗ idAC) ○U⊗,G(CD)⊗I,G(AC) ○ (U⊗,G(CD),I ⊗ idU(G(AC)))
○ α−1U(G(CD)),U(I),U(G(AC)) ○ (unCD ⊗ (idU(I) ⊗ unAC)) ○ (idCD ⊗ cA,B,C)
○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 12: Using that ρG(CD) = λG(CD) ○ γG(CD),I in the braided monoidal category
M and the fact that αU(G(CD)),U(I),U(G(AC)) ○ ((unCD ⊗ unU(I)) ⊗ unAC) = (unCD ⊗
(idU(I) ⊗ unAC)) ○ αCD,U(I),AC , we rewrite the morphism as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(λG(CD) ⊗ idAC) ○U(γG(CD),I ⊗ idAC) ○U⊗,G(CD)⊗I,G(AC)
○ (U⊗,G(CD),I ⊗ idU(G(AC))) ○ ((unCD ⊗ idU(I))⊗ unAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 13: Now λG(CD) ⊗ idAC = λG(CD)⊗G(AC) ○ αI,G(CD),G(AC). At the same time,
because U is a monoidal functor,

U(γG(CD),I ⊗ idAC) ○U⊗,G(CD)⊗I,G(AC)
= U⊗,I⊗G(CD),G(AC) ○ (U(γG(CD),I)⊗ idU(G(AC))).

Hence, the previous term is the same as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(λG(CD)⊗G(AC) ○ αI,G(CD),G(AC)) ○U⊗,I⊗G(CD),G(AC)
○ ((U(γG(CD),I) ○U⊗,G(CD),I)⊗ idU(G(AC))) ○ ((unCD ⊗ idU(I))⊗ unAC)
○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB

○ (G⊗,CD,BC ⊗ idG(AB)).
Step 14: Since U is a braided monoidal functor,

U(γG(CD),I) ○U⊗,G(CD),I = U⊗,I,G(CD) ○ γU(G(CD)),U(I),
which, together with some reassociation, lets us rewrite the above as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(λG(CD)⊗G(AC)) ○U(αI,G(CD),G(AC)) ○U⊗,I⊗G(CD),G(AC)
○ (U⊗,I,G(CD) ⊗ idU(G(AC))) ○ ((γU(G(CD)),U(I) ○ (unCD ⊗ idU(I)))⊗ unAC)
○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB

○ (G⊗,CD,BC ⊗ idG(AB)).
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Step 15: For the next transformation of the term we use γU(G(CD)),U(I) ○ (unCD⊗
idU(I)) = (idU(I) ⊗ unCD) ○ γCD,U(I). Moreover, the associativity axiom for the mo-
noidal functor U yields

U(αI,G(CD),G(AC)) ○U⊗,I⊗G(CD),G(AC) ○ (U⊗,I,G(CD) ⊗ idU(G(AC)))
= U⊗,I,G(CD)⊗G(AC) ○ (idU(I) ⊗U⊗,G(CD),G(AC)) ○ αU(I),U(G(CD)),U(G(AC)),

allowing us to rewrite the previous expression as

λG(AD) ○ (cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC ○ cuG(CD)⊗G(AC)

○G(U(λG(CD)⊗G(AC)) ○U⊗,I,G(CD)⊗G(AC) ○ (idU(I) ⊗U⊗,G(CD),G(AC))
○ αU(I),U(G(CD)),U(G(AC)) ○ ((idU(I) ⊗ unCD)⊗ unAC) ○ (γCD,U(I) ⊗ idAC)
○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB

○ (G⊗,CD,BC ⊗ idG(AB)),
where also several terms have been reassociated.

Step 16: At this point, cu being a transformation from G ○U to id lets us make
the substitution

((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC○)cuG(CD)⊗G(AC)

= cuI⊗G(AD) ○G(U((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC)).

Using, additionally,

αU(I),U(G(CD)),U(G(AC)) ○ ((idU(I) ⊗ unCD)⊗ unAC)
= (idU(I) ⊗ (unCD ⊗ unAC)) ○ αU(I),CD,AC

thus gives, after some reassociation,

λG(AD) ○ cuI⊗G(AD) ○G(U((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D)

○G⊗,CD,AC ○ λG(CD)⊗G(AC)) ○U⊗,I,G(CD)⊗G(AC) ○ (idU(I) ⊗U⊗,G(CD),G(AC))
○ (idU(I) ⊗ (unCD ⊗ unAC)) ○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 17: After the switch

((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC) ○ λG(CD)⊗G(AC)

= λI⊗G(AD) ○ (idI ⊗ ((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC))

this is identical to

λG(AD) ○ cuI⊗G(AD) ○G(U(λI⊗G(AD)) ○U(idI ⊗ ((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD

○G(cA,C,D) ○G⊗,CD,AC)) ○U⊗,I,G(CD)⊗G(AC) ○ (idU(I) ⊗U⊗,G(CD),G(AC))
○ (idU(I) ⊗ (unCD ⊗ unAC)) ○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).
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Step 18: From U being a monoidal functor it follows

U(idI ⊗ ((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC)) ○U⊗,I,G(CD)⊗G(AC)

= U⊗,I,I⊗G(AD) ○ (idU(I) ⊗U((cuI ⊗ idG(AD)) ○G−1
⊗,U(I),AD ○G(cA,C,D) ○G⊗,CD,AC)).

This identity and reassociation of terms show that the above morphism is the same
as

λG(AD) ○ cuI⊗G(AD) ○G(U(λI⊗G(AD)) ○U⊗,I,I⊗G(AD) ○ (idU(I) ⊗U((cuI ⊗ idG(AD))
○G−1

⊗,U(I),AD ○G(cA,C,D))) ○ (idU(I) ⊗ (U(G⊗,CD,AC) ○U⊗,G(CD),G(AC)
○ (unCD ⊗ unAC))) ○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 19: Because G ⊣ U is a monoidal adjunction,

unCD⊗AC = U(G⊗,CD,AC) ○U⊗,G(CD),G(AC) ○ (unCD ⊗ unAC),
which is why the previous expression can be rewritten as

λG(AD) ○ cuI⊗G(AD) ○G(U(λI⊗G(AD)) ○U⊗,I,I⊗G(AD) ○ (idU(I) ⊗U((cuI ⊗ idG(AD))
○G−1

⊗,U(I),AD)) ○ (idU(I) ⊗ (U(G(cA,C,D)) ○ unCD⊗AC)) ○ αU(I),CD,AC
○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 20: The preceding step finally allows us to move the second composition
map past the units because U(G(cA,C,D)) ○ unCD⊗AC = unU(I)⊗AC ○ cA,C,D, yielding

λG(AD) ○ cuI⊗G(AD) ○G(U(λI⊗G(AD)) ○U⊗,I,I⊗G(AD) ○ (idU(I) ⊗U(cuI ⊗ idG(AD)))
○ (idU(I) ⊗ (U(G−1

⊗,U(I),AD) ○ unU(I)⊗AD)) ○ (idU(I) ⊗ cA,C,D) ○ αU(I),CD,AC
○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 21: Having commuted unit and composition map, we immediately reverse
the operation which allowed us to do this in the first place. Once more, G ⊣ U being
a monoidal adjunction tells us that

unU(I)⊗AD = U(G⊗,U(I),AD) ○U⊗,G(U(I)),G(AD) ○ (unU(I) ⊗ unAD).
Hence our morphism can also be expressed as

λG(AD) ○ cuI⊗G(AD) ○G(U(λI⊗G(AD)) ○U⊗,I,I⊗G(AD) ○ (idU(I) ⊗ (U(cuI ⊗ idG(AD))
○U⊗,G(U(I)),G(AD))) ○ (idU(I) ⊗ (unU(I) ⊗ unAD)) ○ (idU(I) ⊗ cA,C,D) ○ αU(I),CD,AC
○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 22: Since U is a monoidal functor we can infer

U(cuI ⊗ idG(AD)) ○U⊗,G(U(I)),G(AD) = U⊗,I,G(AD) ○ (U(cuI)⊗ idU(G(AD))).
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At the same time, λI⊗G(AD)○αI,I,G(AD) = λI⊗ idG(AD). Hence, our morphism concurs
with

λG(AD) ○ cuI⊗G(AD) ○G(U(λI ⊗ idG(AD)) ○U(α−1I,I,G(AD)) ○U⊗,I,I⊗G(AD)
○ (idU(I) ⊗U⊗,I,G(AD)) ○ (idU(I) ⊗ ((U(cuI) ○ unU(I))⊗ unAD)) ○ (idU(I) ⊗ cA,C,D)
○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 23: The associativity axiom satisfied by the monoidal functor U implies

U(αI,I,G(AD)) ○U⊗,I⊗I,G(AD) ○ (U⊗,I,I ⊗ idU(G(AD)))
= U⊗,I,I⊗G(AD) ○ (idU(I) ⊗U⊗,I,G(AD)) ○ αU(I),U(I),U(G(AD)).

Moreover, by one of the two co-unit-unit-equations, U(cuI)○unU(I) = idU(I). Hence,
the above expression is identical to

λG(AD) ○ cuI⊗G(AD) ○G(U(λI ⊗ idG(AD)) ○U⊗,I⊗I,G(AD) ○ (U⊗,I,I ⊗ idU(G(AD)))
○ α−1U(I),U(I),U(G(AD)) ○ (idU(I) ⊗ (idU(I) ⊗ unAD)) ○ (idU(I) ⊗ cA,C,D)
○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC ○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB)
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 24: Because, on the one hand,

αU(I),U(I),U(G(AD)) ○ (idI⊗I ⊗ unAD) = (idU(I) ⊗ (idU(I) ⊗ unAD)) ○ αU(I),U(I),AD
and, on the other hand,

U(λI ⊗ idG(AD)) ○U⊗,I⊗I,G(AD) = U⊗,I,G(AD) ○ (U(λI)⊗ idU(G(AD))),
we can rewrite the previous term as

λG(AD) ○ cuI⊗G(AD) ○G(U⊗,I,G(AD) ○ ((U(λI) ○U⊗,I,I)⊗ unAD) ○ α−1U(I),U(I),AD
○ (idU(I) ⊗ cA,C,D) ○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).

Step 25: Halfway point. Since U(λI) ○ U⊗,I,I = ⊗U(R) we have transformed our
morphism into the form

λG(AD) ○ cuI⊗G(AD) ○G(U⊗,I,G(AD) ○ (idU(I) ⊗ unAD) ○ (⊗U(R) ⊗ idAD)
○ α−1U(I),U(I),AD ○ (idU(I) ⊗ cA,C,D) ○ αU(I),CD,AC ○ (γCD,U(I) ⊗ idAC) ○ α−1CD,U(I),AC
○ (idCD ⊗ cA,B,C) ○ αCD,BC,AB) ○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)),

which allows us to apply Lemma 5.104 in order to see that this equals

λG(AD) ○ cuI⊗G(AD) ○G(U⊗,I,G(AD) ○ (idU(I) ⊗ unAD) ○ (⊗U(R) ⊗ idAD)
○ α−1U(I),U(I),AD ○ (idU(I) ⊗ cA,B,D) ○ αU(I),BD,AB ○ (cB,C,D ⊗ idAB))
○G⊗,CD⊗BC,AB ○ (G⊗,CD,BC ⊗ idG(AB)).
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That was the crucial step. It is possible to transform the right-hand side of the
asserted identity into the same form using similar arguments. As mentioned, that
part of the proof had to be omitted. □

There is some anecdotal evidence that of the many axioms to check for T 0(A,E , δ)
the associativity of the composition is the most complicated. For example, confirm-
ing the identity axioms for the composition is comparatively simple. The following
lemma is the key to proving that.

Lemma 5.106. For any {A,B} ⊆ objRel, in the terms of Definition 5.103, and if
we interpret idRel,A and idRel,B as mappings ISet → morRel(A,A) respectively ISet →
morRel(B,B), then

cA,B,B ○Set (idRel,B ⊗Set idSet,morRel(A,B)) = I(US)⊳(R) ⊗Set idSet,morRel(A,B)

I ⊗ I U(I)⊗mor(A,B)

mor(B,B)⊗mor(A,B)

IU⊳(R)⊗idmor(A,B)

idRel,B⊗idmor(A,B) cA,B,B

and

cA,A,B ○Set (idSet,morRel(A,B) ⊗Set idRel,A)
= γSet,morRel(A,B),UM(IM) ○Set (idSet,morRel(A,B) ⊗Set I(US)⊳(R)).

I ⊗ I mor(A,B)⊗U(I)

mor(A,B)⊗mor(A,A) U(I)⊗mor(A,B)

idmor(A,B)⊗IU⊳(R)

idmor(A,B)⊗idRel,A γmor(A,B),U(I)

cA,A,B

Or, in terms of elements, for any x ∈morRel(A,B),
∆A,E,δ(idRel,B ○S x) =∆A,E,δ(x ○S idRel,A) = I(US)⊳(R)

and

ΦA,E(idRel,B ○S x) = ΦA,E(x ○S idRel,A) = x.

Proof. Because Lemma 5.97 ensures idRel,A = idS,A and idRel,B = idS,B we can
indeed infer ∆(idRel,B ○S x) = ∆(idS,B ○S x) = ∆(x) = I(US)⊳(R) and, likewise, ∆(x ○S
idRel,A) = I(US)⊳(R) by Lemma 5.101.

Similarly, Lemma 5.97 implies Φ(idRel,B ○S x) = Φ(idS,B ○S x) = Φ(x) = x and,
likewise, Φ(x ○S idRel,A) = x by Lemma 5.64. □

The following lemma shows that the identities of the span category are left and
right neutral elements even for the linearly modified composition of relations.
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Lemma 5.107. For any {A,B} ∈ objT 0,

○T 0,A,B,B ○M (idT 0,B ⊗M idM,morT 0(A,B)) = λM,morT 0(A,B)

I ⊗morT 0(A,B) morT 0(B,B)⊗morT 0(A,B)

morT 0(A,B)

idT 0,B⊗idmorT 0 (A,B)

λmorT 0 (A,B) ○T 0,A,B,B

and

○T 0,A,A,B ○M (idM,morT 0(A,B) ⊗M idT 0,A) = ρM,morT 0(A,B).

morT 0(A,B)⊗ I morT 0(A,B)⊗morT 0(A,A)

morT 0(A,B)

idmorT 0 (A,B)⊗idT 0,A

ρmorT 0 (A,B) ○T 0,A,A,B

Proof. As in the proof of Lemma 5.105 the category indices T 0, Rel, M, S and
Set will be suppressed and morRel(X,Y ) ≡XY for any {X,Y } ⊆ objA. For emphasis,
the index Rel is kept for idRel,A and idRel,B, though.

First identity. By definition the left hand side of the first identity is equal to

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(cA,B,B)

○G⊗,BB,AB ○ (G(idRel,B)⊗G(idAB)) ○ (GI ⊗ idG(AB)).
Because G is a monoidal functor, G⊗,BB,AB ○ (G(idRel,A) ⊗G(idAB)) = G(idRel,B ⊗
idAB) ○G⊗,I,AB, where I is the monoidal unit of Set. Hence, the above expression is
the same as

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(cA,B,B ○ (idRel,B ⊗ idAB))

○G⊗,I,AB ○ (GI ⊗ idG(AB)).
Since cA,B,B ○(idRel,B⊗ idAB) = UI⊗ idAB by Lemma 5.106, we have thus transformed
the left hand side of the assertion into

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(UI ⊗ idAB) ○G⊗,I,AB ○ (GI ⊗ idG(AB)).

With the identity G−1
⊗,U(I),AB ○G(UI ⊗ idAB) = (G(UI)⊗ idG(AB)) ○G−1

⊗,I,AB, which is
due to G being strong monoidal, we can reverse the previous switch and rewrite the
above as

λG(AB) ○ ((cuI ○G(UI) ○GI)⊗ idG(AB)).
Now, the assumption thatG ⊣ U is a monoidal adjunction implies cuI○(G(UI)○GI) =
idI . Thus, the first claim is true.
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Second identity. The computation is largely analogous: The left hand side of the
second claimed identity is given by

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(cA,A,B)

○G⊗,AB,AA ○ (G(idAB)⊗G(idRel,A)) ○ (idG(AB) ⊗GI),
which is the same as

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(cA,A,B ○ (idAB ⊗ idRel,A))

○G⊗,AB,I ○ (idG(AB) ⊗GI).
Thus, Lemma 5.106 allows us to rewrite it as

λG(AB) ○ (cuI ⊗ idG(AB)) ○G−1
⊗,U(I),AB ○G(γAB,U(I)) ○G(idAB ⊗UI)

○G⊗,AB,I ○ (idG(AB) ⊗GI).
Again we reverse the previous switch via G(idAB ⊗ UI) ○ G⊗,AB,I = G⊗,AB,U(I) ○
(idG(AB) ⊗ G(UI)). Now, though, we use in addition the assumption that G is a
strong symmetric monoidal functor and concludeG(γAB,U(I))○G⊗,AB,U(I) = G⊗,U(I),AB○
γG(AB),G(U(I)). Hence, the left hand side of the claim is identical to

λG(AB) ○ (cuI ⊗ idG(AB)) ○ γG(AB),G(U(I)) ○ (idG(AB) ⊗ (G(UI) ○GI)),
Since M is symmetric monoidal, (cuI⊗idG(AB))○γG(AB),G(U(I)) = γG(AB),I ○(idG(AB)⊗
cuI), which is why the above is equal to

λG(AB) ○ γG(AB),I ○ (idG(AB) ⊗ (cuI ○ (G(UI) ○GI))).
The identity cuI ○ (G(UI) ○GI) = idI and now, additionally, the identity λG(AB) ○
γG(AB),I = ρG(AB), which holds because M is symmetric monoidal, prove the second
claim. □

The following is the last part of the constuction which I was able to verify (even
though a part of the proof is not given here). For the remaining axioms there was
no time left.

Proposition 5.108. (objT 0 ,morT 0 , ○T 0 , idT 0) is an M-enriched category.

Proof. That is the combined implication of Lemmata 5.105 and 5.107. □

Useful in confirming the remaining properties might be the following functor from
GM(S(A)) (the base change of S(A) along the monoidal functor GM, producing an
M-enriched category) to T 0(A,E , δ).

Conjecture 5.109. A full M-enriched functor GM(S) → T 0 which is bijective
on objects is defined by X ↦X for objects X ∈ objGM(S) and by

(A,B)↦ λM,GM(morRel(A,B)) ○M (cuM,IM ⊗M idM,GM(morRel(A,B)))
○M (GM)⊗,UM(IM),morRel(A,B)

−1M ○M GM((∆A,E,δ)1,A,B ×Set (ΦA,E)1,A,B)
for morphisms.
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5.5.2. Monoidal Linear Category. The monoidal structure of Rel(A,E) should
be passed on to T 0(A,E , δ). The following is probably the key lemma for proving
that.

Lemma 5.110. For any {A1,A2,B1,B2} ⊆ objS,

⊗(US)⊳(R) ○Set ((∆A,E,δ)1,A1,B1
⊗Set (∆A,E,δ)1,A2,B2

)
= (∆A,E,δ)1,A1⊗SA2,B1⊗SB2

○Set (⊗S)1,(A1,A2),(B1,B2)

morS(A1,B1)⊗morS(A2,B2) U(I)⊗U(I)

morS(A1 ⊗S A2,B1 ⊗S B2) U(I)

(∆A,E,δ)1,A1,B1
⊗(∆A,E,δ)1,A2,B2

(⊗S)1,(A1,A2),(B1,B2) ⊗U⊳(R)

(∆A,E,δ)1,A1⊗SA2,B1⊗SB2

Or, in terms of elements, for any x1 ∈morS(A1,B1) and x2 ∈morS(A2,B2),

∆A,E,δ(x1 ⊗S x2) =∆A,E,δ(x1)⊗(US)⊳(R) ∆A,E,δ(x2).

Proof. Resume the definitions of the proof of Lemma 5.70 with x1 ∶= [f1, g1]
and x2 = [f2, g2]. Then, ∆([fi, gi]) = δ(ei) for each i ∈ {1,2} per assumption. In
the proof of Lemma 5.70 we showed that (e1 ⊗A e2, u ○A (m1 ⊗Am2)) is an (E ,M)-
factorization of (f1⊗A f2)×A (g1⊗A g2). Hence, by definition ∆([f1, g1]⊗S [f2, g2]) =
δ(e1 ⊗A e2). Because δ is a E-degree function, Lemma 2.5 (b) guarantees δ(e1 ⊗A e2) =
δ(e1) ⊗(US)⊳(R) δ(e2). Thus, ∆(x1 ⊗S x2) = δ(e1 ⊗A e2) = δ(e1) ⊗(US)⊳(R) δ(e2) =
∆(x1)⊗(US)⊳(R) ∆(x2) as claimed. □

Using this lemma it should be straightforward to show the following result,
which is likely the centerpiece to showing that the monoidal product is functo-
rial.

Conjecture 5.111. If {Ai,Bi,Ci} ⊆ objS and for each i ∈ {1,2} and if we resume
the definition from Definition 5.103, then

cA1⊗SA2,B1⊗SB2,C1⊗SC2

○Set ((⊗S)1,(B1,B2),(C1,C2) ⊗Set (⊗S)1,(A1,A2),(B1,B2))
○Set µSet,morS(B1,C1),morS(A1,B1),morS(B2,C2),morS(A2,B2)

= (⊗(US)⊳(R) ⊗Set (⊗S)1,(A1,A2),(C1,C2))
○Set µSet,UM(IM),UM(IM),morS(A1,C1),morS(A2,C2)

○Set (cA1,B1,C1 ⊗Set cA2,B2,C2).
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(mor(B1,C1)⊗mor(A1,B1))
⊗ (mor(B2,C2)⊗mor(A2,B2))

(mor(B1,C1)⊗mor(B2,C2))
⊗ (mor(A1,B1)⊗mor(A2,B2))

(U(I)⊗mor(A1,C1))
⊗ (U(I)⊗mor(A2,C2))

mor(B1 ⊗B2,C1 ⊗C2)
⊗mor(A1 ⊗A2,B1 ⊗B2)

(U(I)⊗U(I))
⊗ (mor(A1,C1)⊗mor(A2,C2))

U(I)⊗mor(A1 ⊗A2,C1 ⊗C2)

µmor(B1,C1),mor(A1,B1),mor(B2,C2),mor(A2,B2)

cA1,B1,C1 ⊗ cA2,B2,C2 (⊗S)1,(B1,B2),(C1,C2) ⊗ (⊗S)1,(A1,A2),(B1,B2)

µU(I),mor(A1,C1),U(I),mor(A2,C2) cA1⊗A2,B1⊗B2,C1⊗C2

⊗U⊳(R) ⊗ (⊗S)1,(A1,A2),(C1,C2)

Or, in terms of elements, if xi ∈ morS(Ai,Bi) and yi ∈ morS(Bi,Ci) for each i ∈
{1,2}, then for any

∆A,E,δ((y1 ⊗S y2) ○S (x1 ⊗S x2)) =∆A,E,δ(y1 ○S x1)⊗(US)⊳(R) ∆A,E,δ(y2 ○S x2)
and

ΦA,E((y1 ⊗S y2) ○S (x1 ⊗S x2)) = ΦA,E(y1 ○S x1)⊗S ΦA,E(y2 ○S x2).
The following definition of the monoidal structure of T 0(A,E , δ) is the same as

the one given in Section 2.

Definition 5.112. (a) For any {A1,A2} ⊆ objT 0 let A1⊗T 0A2 ∶= A1⊗RelA2.
(b) Given any {Ai,Bi} ⊆ objT 0 for each i ∈ {1,2}, let

(⊗T 0)1,(A1,A2),(B1,B2)
∶= GM((⊗Rel)1,(A1,A2),(B1,B2)) ○M (GM)⊗,morRel(A1,B1),morRel(A2,B2).

(c) Let IT 0 ∶= IRel.
(d) For any {A1,A2,A3} ⊆ objT 0 , considering αRel,A1,A2,A3 a mapping ISet →

morRel((A1 ⊗Rel A2)⊗Rel A3,A1 ⊗Rel (A2 ⊗Rel A3)), define

αT 0,A1,A2,A3
∶= GM(αRel,A1,A2,A3) ○M (GM)I .

(e) For any A ∈ objT 0 , viewing λRel,A a map ISet →morRel(IRel ⊗Rel A,A), let

λT 0,A ∶= GM(λRel,A) ○M (GM)I .
(f) For any A ∈ objT 0 , viewing ρRel,A a map ISet →morRel(A⊗Rel IRel,A), let

ρT 0,A ∶= GM(ρRel,A) ○M (GM)I .
One then has to check the following in order to prove that T 0(A,E , δ) is a monoi-

dal M-enriched category. Recall that B denotes the symmetric monoidal 2-category
of small M-enriched categories. The composition of 1-cells in B is written as ○B and
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the vertical composition of 2-cells as ⋅B. The symbols ◁B and ▷B are used for the
left respectively right whiskering in B. Moreover, we write <B and =B for the left
and right tensor whiskering in B, respectively, (forming the monoidal product of a
given 2-cell with the identity 2-cell of a given 1-cell).

Conjecture 5.113. (a) ⊗T 0 is an M-enriched functor T 0 ⊗B T 0 to T 0.
(b) IT 0 is an M-enriched functor from IB to T 0.
(c) αT 0 is an M-enriched natural isomorphism of M-enriched functors from
(T 0 ⊗B T 0) ⊗B T 0 to T 0 from ⊗T 0 ○B (⊗T 0 ⊗B idB,T 0) to ⊗T 0 ○B (idB,T 0 ⊗B

⊗T 0) ○B αB,T 0,T 0,T 0.
(d) λT 0 is an M-enriched natural isomorphism of M-enriched functors from

IB ⊗B T 0 to T 0 from ⊗T 0 ○B (IT 0 ⊗B idB,T 0) to λB,T 0.
(e) ρT 0 is an M-enriched natural isomorphism of M-enriched functors from
T 0 ⊗B IB to T 0 from ⊗T 0 ○B (idB,T 0 ⊗B IT 0) to ρB,T 0.

(f) The pentagon identity holds:

(αT 0 ◁B (((idB,T 0 ⊗B idB,T 0)⊗B ⊗T 0) ○B αB,T 0⊗BT 0,T 0,T 0))
⋅B (αT 0 ◁B ((⊗T 0 ⊗B idB,T 0)⊗B idB,T 0))

= (⊗T 0 ▷B (idB,T 0 =B αT 0)◁B (αB,T 0,T 0⊗BT 0,T 0 ○B (αB,T 0,T 0,T 0 ⊗B idB,T 0)))
⋅B (αT 0 ◁B (((idB,T 0 ⊗B ⊗T 0)⊗B idB,T 0) ○B (αB,T 0,T 0,T 0 ⊗B idB,T 0)))
⋅B (⊗T 0 ▷B (αT 0 <B idB,T 0)).

(g) The triangle identity holds:

⊗T 0 ▷B (ρT 0 <B idB,T 0)
= (⊗T 0 ▷B (idB,T 0 =B λT 0)◁B αB,T 0,IB,T 0)
⋅B (αT 0 ◁B ((idB,T 0 ⊗B IT 0)⊗B idB,T 0)).

Once that conjecture is confirmed, we will have shown the following.

Conjecture 5.114. T 0(A,E , δ) is a monoidal M-enriched category.

5.5.3. Symmetric Monoidal Linear Category. The symmetric braiding of S(A)
should also induce one for T 0(A,E , δ). The next definition is the same as the one
given in Section 2.

Definition 5.115. For any {A1,A2} ⊆ objT 0 , considering γRel,A1,A2 a mapping
ISet →morRel(A1 ⊗Rel A2,A2 ⊗Rel A1) define

γT 0,A1,A2
∶= GM(γRel,A1,A2) ○M (GM)I .

What needs to be checked are the following statements. There, the symbol iB is
used for the identity 2-cells of B.

Conjecture 5.116. (a) γT 0 is an M-enriched natural transformation of M-
enriched functors from T 0 ⊗B T 0 to T 0 from ⊗T 0 to ⊗T 0 ○B γB,T 0,T 0.
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(b) The first hexagon identity holds:

(αT 0 ◁B (γB,T 0,T 0⊗BT 0 ○B αB,T 0,T 0,T 0))
⋅B (γT 0 ◁B ((idB,T 0 ⊗B ⊗T 0) ○B αB,T 0,T 0,T 0))
⋅B αT 0

= (⊗T 0 ▷B (idB,T 0 =B γT 0)◁B (αB,T 0,T 0,T 0 ○B (γB,T 0,T 0 ⊗B idB,T 0)))
⋅B (αT 0 ◁B (γB,T 0,T 0 ⊗B idB,T 0))
⋅B (⊗T 0 ▷B (γT 0 <B idB,T 0)).

(c) The second hexagon identity holds:

(αT 0
−1B ◁B (αB,T 0,T 0,T 0

−1B ○B γB,T 0⊗BT 0,T 0 ○B αB,T 0,T 0,T 0
−1B))

⋅B (γT 0 ◁B ((⊗T 0 ⊗B idB,T 0) ○B αB,T 0,T 0,T 0
−1B))

⋅B (αT 0
−1B ◁B αB,T 0,T 0,T 0

−1B)
= (⊗T 0 ▷B (γT 0 <B idB,T 0)◁B (αB,T 0,T 0,T 0

−1B ○B (idB,T 0 ⊗B γB,T 0,T 0)))
⋅B (αT 0

−1B ◁B (αB,T 0,T 0,T 0
−1B ○B (idB,T 0 ⊗B γB,T 0,T 0)))

⋅B (⊗T 0 ▷B (idB,T 0 =B γT 0)).
(d) (γT 0 ◁B γB,T 0,T 0) ⋅B γT 0 = iB,⊗T 0 .

Then the following will have been confirmed.

Proposition 5.117. T 0(A,E , δ) is a symmetric monoidal M-enriched category.

5.5.4. Rigid Symmetric Monoidal Linear Category. Of course, the most impor-
tant part of the construction from the quantum group perspective is the rigidity.
This property should be inherited by T 0(A,E , δ) from S(A). Explicitly, it should
be true that one always choose the following dualizations.

Definition 5.118. For any X ∈ objT 0 let

X∨T 0 ∶=X∨Rel

and, considering εRel,X a mapping ISet → morRel(X∨Rel ⊗RelX,IRel) and ηRel,X a
mapping ISet →morRel(IT 0 ,X ⊗T 0 X∨T 0), define

εT 0,X ∶= GM(εRel,X) ○M (GM)I
and

ηT 0,X ∶= GM(ηRel,X) ○M (GM)I .
To confirm that this definition really does provide duals for all objects of T 0(A,E , δ)

we need to prove the below conjectures.

Conjecture 5.119. (a) εT 0,X is an M-enriched natural transformation of

M-enriched functors IB → T 0 from ⊗T 0 ○B (X∨T 0 ⊗BX) ○B λB,IB−1B to IT 0,
(b) ηT 0,X is an M-enriched natural transformation of M-enriched functors IB →
T 0 from IT 0 to ⊗T 0 ○B (X ⊗BX∨T 0) ○B ρB,IB−1B,
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(c) The first triangle identity holds,

λT 0 ◁B ((idB,IB ⊗BX) ○B λB,IB−1B)
= ⋅B(ρT 0 ◁B ((X ⊗B idB,IB) ○B ρB,IB−1B))
⋅B (⊗T 0 ▷B (X =B εT 0,X)◁B λB,IB

−1B)
⋅B (αT 0 ◁B ((((X ⊗BX

∨T 0) ○B ρB,IB−1B)⊗BX) ○B λB,IB−1B))
⋅B (⊗T 0 ▷B (ηT 0,X <BX)◁B λB,IB

−1B).
(d) The second triangle identity holds,

ρT 0 ◁B ((X∨T 0 ⊗B idB,IB) ○B ρB,IB−1B)
= ⋅B(λT 0 ◁B ((idB,IB ⊗BX

∨T 0) ○B λB,IB−1B))
⋅B (⊗T 0 ▷B (εT 0,X <BX

∨T 0)◁B ρB,IB
−1B)

⋅B (αT 0
−1B ◁B ((((X∨T 0 ⊗BX) ○B λB,IB−1B)⊗BX

∨T 0) ○B ρB,IB−1B))
⋅B (⊗T 0 ▷B (X∨T 0 =B ηT 0,X)◁B λB,IB

−1B).
Then, the below conclusion will be immediate.

Conjecture 5.120. T 0(A,E , δ) is a rigid symmetric monoidal M-enriched cat-
egory.

5.6. Stage 3b: ∗-Linear Relations (with †). An important particularity of
the span category is, obviously, the natural †-structure. This should also pass to
the generalized tensor envelope. This is the point where the ∗-structure of R and
the induced endofunctor cjM of M come into play. Recall that cjM maps any module
object over R to the module object with the same underlying S-object but with the
conjugate action of R.

5.6.1. ∗-Linear †-category. Note that the †-functor of T 0(A,E , δ) is supposed to
be anti-linear. Hence, cjM appears in the definition. Remember that UM ○CAT cjM =
UM.

Definition 5.121. Define X†T 0 ∶=X for any X and let

(( ⋅ )†T 0)1,A,B ∶= cuM,cjM(morT 0(B,A)) ○M GM(unM,morRel(B,A) ○Set (( ⋅ )†Rel)1,A,B)
for any {A,B} ⊆ objT 0 .

In the following conjecture ∗B is the opconjugation 2-functor. It maps any M-
enriched category to the base change of the opposite M-enriched category along the
monoidal functor cjB.

Conjecture 5.122. (a) ( ⋅ )†T 0 is an M-enriched functor T 0 → (T 0)∗B.
(b) X†T 0 =X for any X ∈ objT 0.
(c) (( ⋅ )†T 0)∗B ○B ( ⋅ )†T 0 = idB,T 0.

Proving these conjecture is by definition equvivalent to showing the following.

Conjecture 5.123. T 0 is an M-enriched †-category.
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5.6.2. Monoidal ∗-Linear †-category. As with S(A) the †-structure should be
compatible with the monoidal one. We have to check that the monoidal structure
maps are unitary. Here, ∗B is the symmetric monoidal 2-category of M-enriched †-
categories.

Conjecture 5.124. (a) ⊗T 0 is an M-enriched †-functor T 0 ⊗∗B T 0 → T 0.
(b) αT 0 is a natural unitary M-enriched isomorphism.
(c) λT 0 is a natural unitary M-enriched isomorphism.
(d) ρT 0 is a natural unitary M-enriched isomorphism.

Then the following will be true.

Conjecture 5.125. T 0(A,E , δ) is a monoidal M-enriched †-category.

5.6.3. Symmetric Monoidal ∗-Linear †-category. There is no reason why the
braiding of T 0(A,E , δ) should not be compatible with the †-structure since this is
the case for S(A) and Rel(A,E). Concretely, one would have to check the following.

Conjecture 5.126. γT 0 is a unitary M-enriched isomorphism.

Then, the below conjecture would be confirmed.

Conjecture 5.127. T 0(A,E , δ) is a symmetric monoidal M-enriched †-category.

5.6.4. Rigid Symmetric Monoidal ∗-Linear †-category. Finally, the particular re-
lationship between the duals and the † that is present in S(A) and Rel(A,E) should
be inherited by T 0(A,E , δ).

Conjecture 5.128. For any X ∈ objT 0 and any dual (X∨T 0 , εT 0,X , ηT 0,X) of X
in T 0,

(γT 0 ◁B (X∨T 0 ⊗BX) ○B λB,IB−1B) ⋅B (εT 0,X)†B = ηT 0,X .

In other words, the following should hold.

Conjecture 5.129. T 0 is a rigid symmetric monoidal M-enriched †-category.

After that Conjecture 2.14 will be confirmed – at the level of 0-cells. Of course,
much more is asserted, which still needs to be checked as well. Unfortunately, this
was not possible in the allotted. The same is true about Conjecture 2.19.

6. Subquotients

A crucial ingredient in the proof of Knop’s semisimplicity result in [Kno07, The-
orem 6.1] is the theory of subquotients and Lemmata 2.5 and 2.6 especially. Unfor-
tunately, as mentioned in the introduction, the generalization from uniform functors
on regular categories to the inputs considered here comes at a price. The present
section investigates which results about subquotients carry over from Knop’s setting
and which do not.

The following is the natural generalization of the notion of subquotient object
considered by Knop (see [Kno07, p. 577] after Definition 2.4).
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Definition 6.1. Let A be any category, let E and M be any subcategories of
A and let {X,Y } ⊆ objA be arbitrary. X is said to be an (E ,M)-subquotient of Y ,
in symbols: X ≲A,E,M Y , if there exists A ∈ objA such that morM(A,Y ) ≠ ∅ and
morE(A,X) ≠ ∅.

X A Ye m

And, in fact, the first half of [Kno07, Lemma 2.5] remains valid under far more
general assumptions, as the below reasoning shows.

Lemma 6.2. For any category A with pull-backs and any subcategories E and
M of A such that E is M-pull-back-stable and M is E-pull-back-stable ≲A,E,M is a
pre-order on objA.

Proof. Clearly, ≲ is reflexive. We need to show that ≲ is transitive. If {X,Y,Z} ⊆
objA are such that X ≲ Y and Y ≲ Z, then there exist {A,B} ⊆ objA and m ∈
morM(A,Y ) and e ∈ morE(A,X) as well as n ∈ morM(B,Z) and f ∈ morE(B,Y ).
Because A has pull-backs we find a pull-back (a, b) of (m,f) with pull-back object
C.

X C Z

A B

Y

e○a

a b

n○b

e

m f

n

Since M is stable under pull-backs along E and since m ∈ morM(A,Y ) and f ∈
morE(B,Y ) we can infer a ∈ morM(C,A). Likewise, because E is M-pull-back-
stable, b ∈morE(C,B). As E andM are subcategories it follows n ○ b ∈morM(C,Z)
and e ○ a ∈morE(C,X). Thus, X ≲ Z. □

However, the second half of [Kno07, Lemma 2.5] is generally false in the more
general setting, as the next remark shows.

Remark 6.3. Given any category A and any subcategories E andM of A saying,
for any {X,Y } ⊆ objA, that X is a proper (E ,M)-subquotient of Y , in symbols:
X ≺A,E,M Y , if there exists A ∈ objA such that morM(A,Y ) ≠ ∅ and morE(A,X) ≠ ∅
and, additionally, morE(A,X)/isoA(A,X) ≠ ∅ or morM(A,Y )/isoA(A,Y ) ≠ ∅, does
not yield a transitive relation, even if E isM-pull-back-stable andM is E-pull-back-
stable, unless both E ↪ epiA and M↪monA.

As a counterexample consider the second case of Example 3.2 (a). In other
words, we choose the opposite category fGrop of all finite undirected graphs with or
without loops as A, the class of all graph embeddings whose images are unions of
connected components as E and the the class of all graph homomorphisms whose
image intersects each connected component of their target as M. Then, consider
the graphs X = Z = ({α},{{α}}) and Y = ({α′, β′},{{α′},{α′, β′}}), where α′ ≠ β′.
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The unique graph morphism m∶ Y → X and the graph morphism n∶ Z → Y with
α ↦ α′ each hit all components of their respective co-domains. Since neither of them
is a graph isomorphism, that makes X a proper (E ,M)-subquotient of Y and Y a
proper (E ,M)-subquotient of Z in fGrop.

α α

β′

α′

β′

α′

α

X

Y

Z

m n

However, X is not a proper subquotient of Z. Indeed, suppose that C is a graph
which admits a graph embedding g of X into C whose image is a union of connected
components as well as a graph homomorphism p from Z to C whose image intersects
each component of Z. Since {g(α)} is a connected component of C, which p has to
hit, we must have p(α) = g(α). That forces {g(α)} to be the only component of C
because we have run out of vertices of Z which we could map to further components
under p. Hence, C = ({g(α)},{{g(α)}}) and g = p are both isomorphisms.

Thus, for our more general inputs a more detailed analysis is required. Perhaps
the following notion with more favorable properties plays a role there. Of course,
the inherent asymmetry complicates things.

Definition 6.4. Let A be any category, let E andM be any subcategories of A
and let {X,Y } ⊆ objA be arbitrary. W call X a half-proper (E ,M)-subquotient of
Y , in symbols: X ≲⋅A,E,M Y , if there exists A ∈ objA such that morM(A,Y ) ≠ ∅ and
morE(A,X)/isoA(A,X) ≠ ∅.

Lemma 6.5. For any category A with pull-backs and any subcategories E andM
of A such that E is M-pull-back-stable and M is E-pull-back-stable and such that
E ↪ epiA the binary relation ≲⋅A,E,M on objA is transitive.

Proof. Make the same assumptions as in the proof of Lemma 6.2. If we suppose
in addition that X ≲⋅ Y ≲⋅ Z, we can choose e and f non-invertible. In order to
prove X ≲⋅ Z it suffices to show that e ○ a is not an isomorphism. This we show
by contradiction. If u ∈ isoA(X,C) is an inverse of e ○ a, then the identity idC =
u ○ (e ○a) = (u ○ e) ○a exhibits u ○ e as a left-inverse of a. Since the premise E ↪ epiA
implies that a is an epimorphism, a is thus invertible with a−1 = u ○ e. It follows
e ○ (a ○ u) = (e ○ a) ○ u = idA and (a ○ u) ○ e = a ○ (u ○ e) = idX , which means that a is
invertible, contradictory to our assumption. Thus, ≲⋅ is transitive. □
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7. Core factorization

Next to [Kno07, Lemmata 2.5, 2.6], another prerequisite to Knop’s semisimplicity
result in [Kno07, Theorem 6.1] is the theory of core factorizations and [Kno07, Lem-
ma 5.2] in particular. Although it is never explicit expressed in this way, Knop
recognizes an orthogonal factorization system for the category of relations that is
inherited by his tensor envelope (see (i) of [Kno07, Lemma 5.2]). Moreover, this
factorization system has a certain stability property with respect to the subquotient
relation (see (ii)). Section 7 examines which parts of [Kno07, Lemma 5.2] hold true
in the more general setting considered in this chapter.

7.1. Cores. We begin by showing that it at least makes sense to speak of the
core (see [Kno07, Definition 5.1]) of a relation in our context. (However, we will see
that the existence and properties of such a core are a different matter.)

Assumptions 7.1. For the remainder of Section 7 let (A,E , δ) be any 0-cell of

dS,ResmCATcart,fc
fs andM ∶= E⊥ and let S be short for S(A) and Rel for Rel(A,E) and

T 0 for T 0(A,E , δ).
The next result justifies that the definition following it works.

Lemma 7.2. If {A,B} ⊆ objA, if (f, g) and (f ′, g′) are spans in A from A to B
with base objects X and X ′, respectively, if (ef ,mf) is an (E ,M)-factorization of
f with image object Sf and (eg,mg) one of g with object Sg and (e′f ,m′

f) one of f ′

with object S′f and (e′g,m′
g) one of g′ with object S′g and if (cf , cg) if a push-out of

(ef , eg) in A with push-out object C and (c′f , c′g) one of (e′f , e′g) with object C ′, then,

if (f, g) and (f ′, g′) are equivalent as spans in A from A to B, then there exists
w ∈ isoA(C,C ′) such that (mf ,w ○ cf) and (m′

f , c
′
f) are equivalent spans in A from

A to C ′ and such that (w ○ cg,mg) and (c′g,m′
g) are equivalent spans in A from C ′

to B.

Proof. The assumption that (f, g) and (f ′, g′) are equivalent spans allows us
to find u ∈ iso(X,X ′) such that f = f ′ ○ u and g = g′ ○ u.

A

Sf S′f

X C C ′ X ′

Sg S′g

B

mf

cf

vf

m′
f

c′f

f

g

ef

eg u

w

f ′

g′

e′f

e′g

mg

cg

vg

m′
g

c′g
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Since u is an isomorphism, e′f ○ u ∈ morE(X,S′f) and e′g ○ u ∈ morE(X,S′g) by Lem-

ma 4.33 (a). Hence, by f = f ′○u = (m′
f ○e′f)○u =m′

f ○(e′f ○u) the pair (m′
f , e

′
f ○ u) is an

(E ,M)-factorization of f . Likewise, the identity g = g′○u = (m′
g○e′g)○u =m′

g○(e′g○u)
proves (m′

g, e
′
g ○ u) to be an (E ,M)-factorization of g. Because (E ,M)-factorizations

are essentially unique we hence find unique isomorphisms vf ∈ isoA(Sf , S′f) and

vg ∈ isoA(Sg, S′g) such that vf ○ef = e′f ○u and mf =m′
f ○vf and, likewise, vg○eg = e′g○u

and mg =m′
g ○ vg.

We show that (c′f ○ vf , c′g ○ vg) is a push-out of (ef , eg). Indeed, (c′f ○vf)○ef = c′f ○
(vf ○ef) = c′f ○(e′f ○u) = (c′f ○e′f)○u = (c′g○e′g)○u = c′g○(e′g○u) = c′g○(vg○eg) = (c′g○vg)○eg.
Let P ∈ objA and a ∈morA(Sf , P ) and b ∈morA(Sg, P ) be such that a ○ ef = b ○ eg.

Sf S′f

X X ′ C ′ P

Sg S′g

vf

a

c′fef

eg

u

e′f

e′g

∃!h

vg

b

c′g

The identities vf ○ef = e′f ○u and vg ○eg = e′g ○u prove vf−1 ○e′f = ef ○u−1 and, likewise,

vg−1 ○ e′g = eg ○ u−1. Hence, we find (a ○ vf−1) ○ e′f = a ○ (vf−1 ○ e′f) = a ○ (ef ○ u−1) =
(a ○ ef) ○ u−1 = (b ○ eg) ○ u−1 = b ○ (eg ○ u−1) = b ○ (vg−1 ○ e′g) = (b ○ vg−1) ○ e′g. Since
(c′f , c′g) is a push-out of (e′f , e′g) there then exists a unique h ∈morA(C ′, P ) such that

h ○ c′f = a ○ vf−1 and h ○ c′g = b ○ vg−1. But the latter is equivalent to h ○ (c′f ○ vf) = a
and h ○ (c′g ○ vg) = b holding. Thus we have shown (c′f ○ vf , c′g ○ vg) to be a push-out

of (ef , eg).
By the essential uniqueness of push-outs we therefore find a unique w ∈ isoA(C,C ′)

such that w ○ cf = c′f ○ vf and w ○ cg = c′g ○ vg. Now the identities m′
f ○ vf = mf and

c′f ○ vf = w ○ cf and the fact that vf is invertible together imply that the spans

(mf ,w ○ cf) and (m′
f , c

′
f) are equivalent. Likewise, (mg,w ○ cg) and (m′

g, c
′
g) are

equivalent because m′
g ○ vg = mg and c′g ○ vg = w ○ cg and because vg is an isomor-

phism. In other words, w has the desired property. □

Note that the isomorphism in Lemma 7.2 will generally not be unqiue. Nonethe-
less, at least the following makes sense.

Definition 7.3. If E has push-outs, then for any {A,B} ⊆ objA and any x ∈
morRel(A,B) the core (object class) of x is [C]A, where C is the push-out object
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of any push-out (cf , cg) of (ef , eg) for any (E ,M)-factorizations (ef ,mf) of f and
(eg,mg) of g for any (f, g) ∈ x.

A

Sf

X C

Sg

B

mf

cf

f

g

ef

eg

mg

cg

The core of a relation will obviously be the image object of the factorization.
We proceed to define the two wide subcategories making up the factorization sys-
tem.

Lemma 7.4. For any {A,B} ⊆ objA and for any spans (f, g) and (f ′, g′) of A
from A to B with base objects X and X ′, respectively, the following hold if (f, g)
and (f ′, g′) are equivalent:

(a) (f, g) ∈morM(X,A)⊗SetmorE(X,B) if and only if (f ′, g′) ∈morM(X ′,A)⊗Set

morE(X ′,B)
(b) (f, g) ∈morE(X,A)⊗SetmorM(X,B) if and only if (f ′, g′) ∈morE(X ′,A)⊗Set

morM(X ′,B)

Proof. (a) By symmetry it suffices to show one implication. Hence, suppose
f ∈morM(X,A) and g ∈morE(X,B). Because (f, g) and (f ′, g′) are equivalent there
exists u ∈ isoA(X ′,X) such that f ○u = f ′ and g ○u = g′. By Lemma 4.33 that means
both f ′ ∈morM(X ′,A) and g′ ∈morE(X ′,B).

(b) The proof is analogous to the one for Part (a). □

Hence, the following definition makes sense.

Definition 7.5. For any {A,B} ⊆ objA any x ∈morS(A,B) is called
(a) pre-core if there exist X ∈ objA and (f, g) ∈ morM(X,A) ⊗Set morE(X,B)

such that (f, g) ∈ x, and
(b) post-core if there exist X ∈ objA and (f, g) ∈ morE(X,A)⊗Set morM(X,B)

such that (f, g) ∈ x.

The pre-cores and post-cores are to be the two families of morphisms into which
any relation factorizes, ideally. The next result confirms that those kinds of spans
are indeed relations.
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Lemma 7.6. For any {A,B} ⊆ objA and any x ∈ morS(A,B) if x is pre-core or
post-core, then x ∈morRel(A,B).

Proof. If x is pre-core, there exist X ∈ objA as well as f ∈ morM(X,A) and
g ∈ morE(X,B) with (f, g) ∈ x. As E ↪ epiA, Lemma 4.36 guarantees idA,X ×A g ∈
morM(X,X ⊗A B). And, on the other hand, Lemma 4.34 lets us deduce f ⊗A
idA,B ∈ morM(X ⊗A B,A⊗A B). Hence, f ×A g = (f ⊗A idA,B) ○A (idA,X ×A g) ∈
morM(X,A⊗A B) by Lemma 4.33. Thus, x = [f, g] ∈ morRel(A,B). The proof for
the case that x is post-core is analogous. □

Moreover, as required for a factorization system the isomorphisms belong to both
halfs.

Lemma 7.7. For any {A,B} ⊆ objRel any x ∈ isoS(A,B) is both pre-core and
post-core.

Proof. The assumption that x is invertible in S implies the existence of an
f ∈ isoA(A,B) such that (idA,A, f) ∈ x. Since isoA ↪ E and isoA ↪ M by Lem-
ma 4.32 that already proves the claim. □

Finally, we can verify that the classes of pre-cores and post-cores do form sub-
categories of the relations. Moreover, very conveniently, relation composition is the
same as span composition for any pairs of pre-cores or post-cores.

Lemma 7.8. For any {A,B,C} ⊆ objA, any x ∈ morRel(A,B) and any y ∈
morRel(B,C),

(a) if x and y are pre-core, then y ○Rel x is pre-core, and
(b) if x and y are post-core, then y ○Rel x is post-core.

Moreover, in both cases, x ○Rel y = x ○S y.
Proof. Let (f, g) ∈ x and (p, q) ∈ y be arbitrary, let X and Y be the base

objects of (f, g) and (p, q), respectively, let (p′, g′) be any pull-back of (g, p) and
let U be the pull-back object of (p′, g′). We only show (a) since the proof of (b) is
analogous.

If x and y are pre-core, then f ∈ morM(X,A) and p ∈ morM(Y,B) while g ∈
morE(X,B) and q ∈ morE(Y,C). Because M is naturally closed under pull-backs
as the right part of a factorization system, the fact p ∈ morM(Y,B) implies p′ ∈
morM(U,X). Likewise, since also E is pull-back-stable per our assumption, g′ ∈
morE(U,Y ) is ensured by g ∈ morE(X,B). It follows f ○A p′ ∈ morM(U,A) and
q ○A g′ ∈ morE(U,C) by Lemma 4.33. Thus we have shown y ○S x = [f ○A p′, q ○A g′]
to be pre-core. Because y ○Rel x = ΦA,E(y ○S x) the remainder of the claim follows
from Lemmata 7.6 and 5.64. □

For later, let us fix symbols for the two parts of the to-be factorization system.

Definition 7.9. Let E denote the wide subcategory of Rel given by all pre-core
relations and let M be the one of all post-core relations.
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7.2. Pseudo-exact-Mal’cev properties. Actually, to be precise, Knop’s se-
misimplicity result, [Kno07, Theorem 6.1], is formulated not for arbitrary regular
categories but only for such which are exact and Mal’cev. Recalling the individual
definitions of the exactness and Mal’cev properties would lead us far into the theory
of equivalences on regular categories, which is actually not required in the following.
The interested reader may refer to [CKP93] for those details. On its own, each
of those two definitions does not seem to make too much sense for the general
factorization systems (E ,M) considered in this chapter. However, technically, Knop
himself does not use the definitions individually, either. Rather, he only works with
a reformulation of the combination of both properties which he gives in [Kno07,
Proposition 1.2]. And for this reformulation a natural generalization to our present
context comes to mind readily, as we will see (in Definition 7.14).

The truth is, though, that this adapted property has much less of an impact
than its analog has for regular categories. Just supposing that A is regular and that
the abstact version of [Kno07, Proposition 1.2] is satisfied does not produce all the
benefical effects Knop requires to prove [Kno07, Lemma 5.2]. In fact, even adding
the assumption that (E ,M) is proper does not achieve this. For that reason, in the
following, not just one “pseudo-exact-Mal’cev property” but three of them will be
defined and examined for their implications (see Definitions 7.10, 7.14 and 7.21).

The second pseudo-exact-Mal’cev property will guarantee the existence of (E,M)-
(factorizations (see Lemma 7.16) but does not ensure E ⋔M, let alone E ⊥M. How-
ever, adding the first pseudo-exact-Mal’cev property will allow us to infer that at
least E ⋔M (see Lemma 7.18). Even then, though, E and M need not be orthogonal
to each other (see Remark 7.20 for a counterexample). In other words, the combina-
tion of the first two pseudo-exact-Mal’cev properties yields only a weakened version
of [Kno07, Lemma 5.2 (i)] (in Lemma 7.17). It does not seem to imply a version
of [Kno07, Lemma 5.2 (ii)], though. That is where the third pseudo-exact-Mal’cev
property comes it. Making this third assumption will let us conclude a weak analog
of [Kno07, Lemma 5.2 (ii)] (in Lemma 7.24).

7.2.1. First pseudo-exact-Mal’cev property. The first property an input (A,E)
may have that give it properties similar to the ones of exact Mal’cev regular cate-
gories is the following.

Definition 7.10. We say that A has the first (E ,M)-pseudo-exact-Mal’cev prop-
erty if for any {A,X,X ′} ⊆ objA, any e0 ∈ morE(X ′,X), any f ∈ morA(A,X),
any pull-back (f ′, e′0) of (e0, f) with object A′, any (E ,M)-factorization of (e,m)
of f with object S and any (E ,M)-factorization (e′,m′) of f ′ with object S′, if
v ∈ morA(S′, S) is the unique diagonal with e0 ○m′ = m ○ v and v ○ e′ = e ○ e′0, then
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(m′, v) is a pull-back of (e0,m).

A S X

A′ S′ X ′

e

f

m

e′

f ′

e′0
m′

v e0

A′ S′

S X

e′

e○e′0 e0○m′∃!v

m

Remark 7.11. Note that in Definition 7.10 the diagonal v is necessarily a mor-
phism of E by Lemma 4.26 and that, if (m′, v) is a pull-back of (e0,m), then (e′0, e′)
is also a pull-back of (e, v) by Lemma 4.3.

The next lemma shows that the first pseudo-exact-Mal’cev property captures an
aspect of what it means for (E ,M) to be proper.

Lemma 7.12. The category A has the first (E ,M)-pseudo-exact-Mal’cev property
if M↪monA.

Proof. Let A, A′, X, X ′, S and S′ as well as f , f ′, e0, e′0, e, e
′, m, m′ and v all

be as in Definition 7.10. In order to show that (m′, v) is a pull-back of (e0,m) we
let P ∈ objA and a ∈morA(P,X ′) and b ∈morA(P,S) be arbitrary with e0 ○a =m ○ b
and we prove the existence of a unique h ∈morA(P,S′) with a =m′ ○h and b = v ○h.

Step 1: Construction of auxiliary morphism c. Let (ē, b̄) be any pull-back of
(b, e) with object Q. Because e0 ○ (a ○ ē) = (e0 ○ a) ○ ē = (m ○ b) ○ ē = m ○ (b ○ ē) =
m ○ (e ○ b̄) = (m ○ e) ○ b̄ = f ○ b̄ the assumption that (e′0, f ′) is a pull-back of (f, e0)
implies that there is some c ∈ morA(Q,A′) with f ′ ○ c = a ○ ē and e′0 ○ c = b̄ and that
c is unique with these properties.

P

X ′

Q A′ X S

A

b

a

e0

b̄

∃!c

ē

e′0

f ′
m

f

e

Step 2: Construction of h from c. Since ē is the pull-back of e along b, since
e ∈morE(A,S) and since E is pull-back-stable we can infer ē ∈morE(Q,P ) and thus,
in particular, ē ⊥ m′ as m′ ∈ morM(S′,X ′). Because m′ ○ (e′ ○ c) = (m′ ○ e′) ○ c =
f ′ ○ c = a ○ ē we hence find a h ∈ morA(Q,A′) with e′ ○ c = h ○ ē and a = m′ ○ h and
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which is in fact the only morphism satisfying these equations.

Q P

S′ X ′

ē

e′○c a∃!h

m′

Step 3: Verifying that h is as desired. While we have thus already seen that
h has the first asserted property, a = m′ ○ h, we still need to show that it also
has the second one, b = v ○ h. This is where the assumption M ↪ monA comes
into play: Because m ∈ morM(S,X) is a monomorphism, proving b = v ○ h is the
same as showing m ○ b = m ○ (v ○ h). And, indeed, m ○ b = e0 ○ a = e0 ○ (m′ ○ h) =
(e0 ○m′) ○ h = (m ○ v) ○ h = m ○ (v ○ h). Moreover, h is unique: Let k ∈ morA(P,S′)
be any morphism with a = m′ ○ k and b = v ○ k. Because the square from Step 2
commutes, m′ ○ (k ○ ē) = (m′ ○k) ○ ē = a ○ ē =m′ ○ (e′ ○ c). Because m′ ∈morM(S′,X ′)
is a monomorphism byM↪monA, that allows us to infer k○ ē = e′○c. But m′○k = a
and k○ ē = e′○c demand k = h by the universality of h. That concludes the proof. □

Remark 7.13. In particular, Lemma 7.12 holds if A is regular and E andM are
given by the regular epimorphisms and monomorphisms ofA, respectively. Crucially,
though, there exist A which have the first (E ,M)-pseudo-exact-Mal’cev property
such that M /↪monA, for example, A = fGrop with E = qprfGrop .

7.2.2. Second pseudo-exact-Mal’cev property. The next property is the announced
analog of [Kno07, Proposition A1.2].

Definition 7.14. A is said to have the second (E ,M)-pseudo-exact-Mal’cev
property if E has push-outs and if for any {X,Y1, Y2, Z} ⊆ objA and any ei ∈
morE(X,Yi) and ci ∈ morE(Yi, Z) for each i ∈ {1,2} such that c1 ○ e1 = c2 ○ e2 it
holds that (e1, e2) is a pull-back of (c1, c2) in A if and only if both (c1, c2) is a
push-out of (e1, e2) and e1 × e2 ∈morM(X,Y1 ⊗ Y2).

Y1

X Y1 ⊗ Y2 Z

Y2

c1

∃!

e1

e2

e1×e2 ∃!

c2

Proposition 7.15. A has the second (E ,M)-pseudo-exact-Mal’cev property if A
is regular exact Mal’cev and if E andM are given by the regular epimorphisms and
the monomorphisms of A, respectively.

Proof. That is precisely [Kno07, Proposition A.1.2]. □

The second pseudo-exact-Mal’cev property on its own ensures the existence of
core factorizations.
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Lemma 7.16. If A has the second (E ,M)-pseudo-exact-Mal’cev property, then
for any {A,B} ⊆ objRel and any x ∈ morRel(A,B) there exist C ∈ objRel and (y, z)
such that y ∈morE(A,C) and z ∈morM(C,B) and x = z ○Rel y = z ○S y.

Proof. Let (f, g) ∈ x be arbitary, let X be the base object of (f, g), let (ef ,mf)
be any (E ,M)-factorization of f , let (eg,mg) be any (E ,M)-factorization of g and
let Sf and Sg be the image objects of (ef ,mf) and (eg,mg), respectively. Since A has
the second (E ,M)-pseudo-exact-Mal’cev property there exists a push-out (cf , cg) of
(ef , eg). Call its push-out object C. Because E is closed under push-outs we can infer
cf ∈morE(Sf ,C) and cg ∈morE(Sg,C) from eg ∈morE(X,Sg) and ef ∈morE(X,Sf).
Hence, y ∶= [mf , cf ] ∈ morS(A,C) is pre-core and z ∶= [cg,mg] ∈ morS(C,B) is post-
core. Lemma 7.6 guarantees that y and z are indeed morphisms of Rel. It remains
to prove x = z ○Rel y = z ○S y.
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Sf

X C

Sg
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mf

cf

f

g

ef

eg

mg

cg

Because A has the second (E ,M)-pseudo-exact-Mal’cev property the assumption
that (cf , cg) is a push-out of (ef , eg) implies that, in turn, (ef , eg) is a pull-back of
(cf , cg). In consequence, (f, g) = (mf ○ ef ,mg ○ eg) ∈ z ○S y by the definition of span
class composition. Because x = [f, g] ∈ morRel(A,B) by assumption and because
z ○Rel y = ΦA,E(z ○S y) Lemma 5.64 thus proves the claim. □

The ensuing result generalizes [Kno07, Lemma 5.2 (i)], saying that the factoriza-
tion from the preceding lemma is not just one in Rel but also one in T 0.

Lemma 7.17. If A has the second (E ,M)-pseudo-exact-Mal’cev property, then
for any {A,B} ⊆ objT 0 and x ∈ morRel(A,B) there exist C ∈ objT 0 and (y, z) such
that y ∈morE(A,C) and z ∈morM(C,B) and such that, if we interpret x, y and z as
morphisms from ISet to morRel(A,B), morRel(A,C) and morRel(C,B), respectively,
then

GM(x) ○M (GM)I
= ○T 0,A,C,B ○M ((GM(z) ○M (GM)I)⊗M (GM(y) ○M (GM)I)) ○M λM,IM

−1M .
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Proof. By Lemma 7.16 there exist y and z with all the asserted properties,
except that the identity x = z ○Rel y = z ○S y is satisfied instead of the one we claim.
Thus, we only need to prove the missing identity.

Step 1: Resuming the definitions from 5.103, note that because of

cA,C,B(z, y) = (∆A,E,δ(z ○S y),ΦA,E(z ○S y)) = (∆A,E,δ(x),ΦA,E(x))
and because of x ∈morRel(A,B) Lemmata 5.64 and 5.101 imply

cA,C,B ○Set (z ⊗Set y) = I(US)⊳(R) ⊗Set x.

Step 2: By definition the right hand side of the claimed identity is equal to

λM,GM(morRel(A,B)) ○M (cuM,IM ⊗M idM,GM(morRel(A,B))) ○M (GM)⊗,UM(IM),morRel(A,B)
−1M

○M GM(cA,C,B) ○M (GM)⊗,morRel(C,B),morRel(A,C) ○M (GM(z)⊗GM(y))
○M ((GM)I ⊗M (GM)I) ○M λM,IM

−1M .

Step 3: Because

(GM)⊗,morRel(C,B),morRel(A,C) ○M (GM(z)⊗GM(y)) = GM(z ⊗Set y) ○M (GM)⊗,ISet,ISet
and because GM(cA,C,B ○Set (z ⊗Set y)) = GM(I(US)⊳(R) ⊗Set x) this is the same as

λM,GM(morRel(A,B)) ○M (cuM,IM ⊗M idM,GM(morRel(A,B))) ○M (GM)⊗,UM(IM),morRel(A,B)
−1M

○M GM(I(US)⊳(R) ⊗Set x) ○M (GM)⊗,ISet,ISet ○M ((GM)I ⊗M (GM)I) ○M λM,IM
−1M .

Step 4: Now, the fact that

(GM)⊗,UM(IM),morRel(A,B) ○M (GM(I(US)⊳(R))⊗M GM(x))
= GM(I(US)⊳(R) ⊗Set x) ○M (GM)⊗,ISet,ISet

transforms this into the morphism

λM,GM(morRel(A,B))

○M ((cuM,IM ○M GM(I(US)⊳(R)) ○M (GM)I)⊗M (GM(x) ○M (GM)I)) ○M λM,IM
−1M .

Step 5: Since cuM is a monoidal transformation from (GM ○Cat UM) to idCat,M,

cuM,IM ○M GM((UM)I) ○M (GM)I = idM,IM

and since

I(US)⊳(R) = US(IR) ○Set (US)I = US((AM)I) ○Set (US)I = (US ○Cat AM)I = (UM)I
we have thus shown the right hand side of the claim to be equal to

λM,GM(morRel(A,B)) ○M (idM,IM ⊗M (GM(x) ○M (GM)I)) ○M λM,IM
−1M .

From this the claim now follows immediately. □

Combining the first and second pseudo-exact-Mal’cev properties gives pre-cores
and post-cores the lifting property against each other.

Lemma 7.18. If A has the first and second (E ,M)-pseudo-exact-Mal’cev proper-
ties, then E ⋔M in Rel.
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Proof. We let {A1,A2,B1,B2} ⊆ objRel and [m1, e1] ∈morE(A1,B1) and [e2,m2] ∈
morM(B2,A2) be arbitrary and prove [m1, e1] ⋔Rel [e2,m2]. Hence, let [f1, g1] ∈
morRel(A1,B2) and [g2, f2] ∈morRel(B1,A2) be arbitrary with [g2, f2] ○Rel [m1, e1] =
[e2,m2] ○Rel [f1, g1]. We show that there exists [d1, d2] ∈ morRel(B1,B2) such that
[f1, g1] = [d1, d2] ○Rel [m1, e1] and [e2,m2] ○Rel [d1, d2] = [g2, f2].

A1 B1

B2 A2

[m1,e1]

[f1,g1] [g2,f2]∃! [d1,d2]

[e2,m2]

The proof is divided into two steps. In the first, we construct [d1, d2]. The second is
dedicated to showing that [d1, d2] has the desired properties. For brevity, ¬i ∶= 3− i
for each i ∈ {1,2}.

Step 1: Constructing the relation [d1, d2]. The construction of [d1, d2] will itself
be divided into several steps. First, some definitions used throughout the entire
proof. Let X1 denote the base of (m1, e1) and X2 that of (e2,m2). Likewise, let U1

and U2 be the base objects of (f1, g1) and (g2, f2), respectively. Moreover, for each
i ∈ {1,2} let (g′i, e′¬i) be any pull-back of (e¬i, gi) and let Pi be its pull-back object.
In addition, for each i ∈ {1,2} let (efi ,mfi) be any (E ,M)-factorization of fi, let
(egi ,mgi) be any of gi and (eg′i ,mg′i) any of g′i. Furthermore, for each i ∈ {1,2} let Sfi ,
Sgi and Sg′i be the image objects of (efi ,mfi), (egi ,mgi) and (eg′i ,mg′i), respectively.
Because A has the second (E ,M)-pseudo-exact-Mal’cev property, for each i ∈ {1,2}
we find a push-out (cgi , cfi) of the E-span (egi , efi), whose push-out object we then
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denote by Ri.

A1

B1

B2

A2

X1

X2

U1

U2 P1

P2 R1

R2

Sg′1

Sg′2 Sf1

Sf2

Sg1

Sg2

Z

w1

w2

z2

z1

u2

u1

m1

e1

e2

m2

eg′1

mg′1

eg′2

mg′2

e′2e′1

eg1

ef1

eg2

ef2

mg1

mf2

mf1

mg2

cg1

cf1

cg2

cf2
v1

v2

h1

h2

d1

d2

Step 1.1: Construction of v1 and v2. For each i ∈ {1,2} since (e¬i ○mg′i) ○ eg′i =
e¬i ○ (mg′i ○ eg′i) = e¬i ○ g

′
i = gi ○ e′¬i = (mgi ○ egi) ○ e′¬i =mgi ○ (egi ○ e′¬i) and

Pi Sg′i

Sgi B¬i

eg′
i

egi○e
′
¬i e¬i○mg′

i
∃!vi

mgi

since eg′i ∈morE(Pi, Sg′i) andmgi ∈morM(Sgi ,B¬i) there exists a unique vi ∈morA(Sg′i , Sgi)
such that

vi ○ eg′i = egi ○ e
′
¬i and mgi ○ vi = e¬i ○mg′i .
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Moreover, because, on the one hand, egi ∈ morE(Ui, Sgi) and e′¬i ∈ morE(Pi, Ui),
and thus egi ○ e′¬i ∈ morE(Pi, Sgi) by Lemma 4.33, and, on the other hand, eg′i ∈
morE(Pi, Sg′i), the first equation implies vi ∈morE(Sg′i , Sgi) by Lemma 4.26.

Step 1.2: Construction of w1 and w2. Because A has the first (E ,M)-pseudo-
exact-Mal’cev property the assumptions that (e′¬i, g′i) is a pull-back of (gi, e¬i), that
e¬i ∈ morE(X¬i,B¬i), that (egi ,mgi) is a factorization of gi, that (eg′i ,mg′i) is one of
g′i and that vi is the unique diagonal with vi ○ eg′i = egi ○ e

′
¬i and mgi ○ vi = e¬i ○mg′i

allows us to conclude that (vi,mg′i) is a pull-back of (mgi , e¬i) for each i ∈ {1,2}.

Ui Sgi B¬i

Pi Sg′i X¬i

gi

egi mgi

g′i

e′¬i
eg′

i

vi
mg′

i

e¬i

Now that we know that both (e′¬i, g′i) is a pull-back of (gi, e¬i) and (vi,mg′i) is a
pull-back of (mgi , e¬i) we can infer by Lemma 4.3 that also (e′¬i, eg′i) is a pull-back
of (egi , vi) for each i ∈ {1,2}.

As [f1, g1] ∈ morRel(A1,B2) and [g2, f2] ∈ morRel(B1,A2), which by Lemma 5.88
is to say [gi, fi] ∈ morRel(Bi,Ai) for each i ∈ {1,2}, we are assured that gi × fi ∈
morM(Ui,Bi ⊗Ai) for each i ∈ {1,2}. For that reason, for each i ∈ {1,2}, once
we write gi × fi = (mgi ○ egi) × (mfi ○ efi) = (mgi ⊗ mfi) ○ (egi × efi) we can rec-
ognize egi × efi ∈ morM(Ui, Sgi ⊗ Sfi) by Lemma 4.26 because also mgi ⊗ mfi ∈
morM(Sgi ⊗ Sfi ,Bi ⊗Ai) by Lemma 4.34.

Since A has the second (E ,M)-pseudo-exact-Mal’cev property the assumption
that (cgi , cfi) is a push-out of (egi , efi) and since all the morphisms egi , efi , cgi and
cfi belong to E our conclusion egi × efi ∈morM(Ui, Sgi ⊗ Sfi) implies that (egi , efi) is
a pull-back of (cgi , cfi) for each i ∈ {1,2}.

For each i ∈ {1,2} because (cgi ○ vi) ○ eg′i = cgi ○ (vi ○ eg′i) = cgi ○ (egi ○ e
′
¬i) =

(cgi ○ egi) ○ e′¬i = (cfi ○ efi) ○ e′¬i = cfi ○ (efi ○ e′¬i), because (eg′i , e
′
¬i) is a pull-back of

(vi, egi) and (egi , efi) is one of (cgi , cfi) another application of Lemma 4.3 now shows
that (eg′i , efi ○ e

′
¬i) is a pull-back of (cgi ○ vi, eg′i).

Sg′i Sgi Ri

Pi Ui Sfi

vi cgi

eg′
i

e′¬i

egi

efi

cfi
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Since A has the second (E ,M)-pseudo-exact-Mal’cev property, since the four
morphisms eg′i , cfi , cgi ○vi and efi ○e′¬i are in E , in the case of the latter two by Lem-
ma 4.33, and since (eg′i , efi ○ e

′
¬i) is a pull-back of (cgi ○ vi, cfi) we know in particular

that eg′i × (efi ○ e
′
¬i) ∈morM(Pi, Sg′i ⊗ Sfi) for each i ∈ {1,2}.

Because, naturally m¬i ⊗mfi ∈ morM(X¬i ⊗ Sfi ,A¬i ⊗Ai) by Lemma 4.34, this
consequence proves (m¬i ○ g′i) × (fi ○ e′¬i) = (m¬i ○ (mg′i ○ eg′i)) × ((mfi ○ efi) ○ e′¬i) =
((m¬i ○ mg′i) ⊗ mfi) ○ (eg′i × (efi ○ e

′
¬i)) ∈ morM(Pi,A¬i ⊗Ai) by Lemma 4.33 for

each i ∈ {1,2}. Thus, we have shown [m¬i ○ g′i, fi ○ e′¬i] ∈ morRel(A¬i,Ai) for both
i ∈ {1,2}.

By definition of the composition of span classes this means [e2,m2] ○S [f1, g1] ∈
morRel(A1,A2) and [g2, f2] ○S [m1, e1] ∈ morRel(A1,A2), in the latter case via an
application of 5.87. It follows [e2,m2] ○Rel [f1, g1] = ΦA,E([e2,m2] ○S [f1, g1]) =
[e2,m2] ○S [f1, g1] and, likewise, [g2, f2] ○Rel [m1, e1] = [g2, f2] ○S [m1, e1] by Lem-
ma 5.64.

Consequently, our assumption that [e2,m2] ○Rel [f1, g1] = [g2, f2] ○Rel [m1, e1]
implies [e2,m2] ○S [f1, g1] = [g2, f2] ○S [m1, e1], which then yields the existence of
w2 ∈ isoA(P1, P2) with f1 ○ e′2 = (m1 ○ g′2) ○w2 and m2 ○ g′1 = (f2 ○ e′1) ○w2. If we define
w1 ∶= w2

−1, then we can express these two identities equivalently by saying that

mi ○ g′¬i = (fi ○ e′¬i) ○wi
for each i ∈ {1,2}, where wi ∈ isoA(P¬i, Pi).

Step 1.3: Construction of z1 and z2. For each i ∈ {1,2}, because (m¬i○mg′i)○eg′i =
m¬i○(mg′i ○eg′i) =m¬i○g′i = (f¬i○e′i)○w¬i = (mg′¬i ○eg′¬i)○e

′
i○w¬i =mg′¬i ○(eg′¬i ○e

′
i○w¬i),

Pi Sg′i

Sf¬i A¬i

eg′
i

ef¬i○e
′
i○w¬i m¬i○mg′

i
∃!zi

mf¬i

because eg′i ∈ morE(Pi, Sg′i) and m¬i ○ mg′i ∈ morM(Sg′i ,A¬i)by Lemma 4.33, and
because, likewise, ef¬i ○ e′i ○ w¬i ∈ morE(Pi, Sf¬i), again by Lemma 4.33 and now
also by Lemma 4.32, and mf¬i ∈ morM(Sf¬i ,A¬i) the pairs (eg′i ,m¬i ○mg′i) and
(ef¬i ○ e′i ○w¬i,mf¬i) are two (E ,M)-factorizations of the same morphism. Hence,
for each i ∈ {1,2} there exists zi ∈ isoA(Sg′i , Sf¬i) such that

zi ○ eg′i = ef¬i ○ e
′
i ○w¬i and mf¬i ○ zi =m¬i ○mg′i .

Step 1.4: Construction of u1 and u2. Since the pair (eg′i , e
′
¬i ○ efi) is a pull-back

of (cgi ○ vi, cfi), as seen in the second step, and since A has the second (E ,M)-pseu-
do-exact-Mal’cev property, conversely (cgi ○ vi, cfi) is a push-out of (eg′i , e

′
¬i ○ efi)

for each i ∈ {1,2}. Hence, from the identity (cf¬i ○ zi) ○ eg′i = cf¬i ○ (zi ○ eg′i) =
cf¬i ○(ef¬i ○e′i ○w¬i) = (cf¬i ○ef¬i)○e′i ○w¬i = (cg¬i ○eg¬i)○e′i ○w¬i = cg¬i ○(eg¬i ○e′i)○w¬i =
cg¬i ○(v¬i○eg′¬i)○w¬i = cg¬i ○v¬i○z−1¬i ○(z¬i○eg′¬i)○w¬i = cg¬i ○v¬i○z−1¬i ○(efi ○e′¬i○wi)○w¬i =
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(cg¬i ○ v¬i ○ z−1¬i ) ○ (efi ○ e′¬i)

Sg′i

Pi Ri R¬i

Sfi

cgi○vi

cf¬i○zi

eg′
i

efi○e
′
¬i

∃!ui

cfi

cg¬i○v¬i○z
−1
¬i

it follows that there exists ui ∈ isoA(Ri,R¬i) such that

cf¬i ○ zi = ui ○ (cgi ○ vi) and cg¬i ○ v¬i ○ z−1¬i = ui ○ cfi
for each i ∈ {1,2}.

These identities imply for each i ∈ {1,2} that (u¬i○ui)○(cgi○vi) = u¬i○(ui○cgi○vi) =
u¬i ○ (cf¬i ○ zi) = (u¬i ○ cf¬i) ○ zi = (cgi ○ vi ○ z−1i ) ○ zi = cgi ○ vi and (u¬i ○ ui) ○ cfi =
u¬i ○ (ui ○ cfi) = u¬i ○ (cg¬i ○ v¬i ○ z−1¬i ) = (u¬i ○ cg¬i ○ v¬i) ○ z−1¬i = (cfi ○ z¬i) ○ z−1¬i = cfi .
But idRi

is the only morphism ω ∈ morA(Ri,Ri) with ω ○ (cgi ○ vi) = cgi ○ vi and
ω○cfi = cfi because (cgi ○ vi, cfi) is a push-out of (eg′i , efi ○ e

′
¬i). Thus, we have shown

ui ∈ isoA(Ri,R¬i) and u−1¬i = ui for each i ∈ {1,2}.
Step 1.5: Definition of [d1, d2]. Because A is finitely complete we can find a

pull-back (h1, h2) of the co-span (u1 ○ cg1 , cg2). Denote its pull-back object by Z and
define d1 ∶=mg2 ○ h2 and d2 ∶=mg1 ○ h1.

B1

Sg2

Z R2

Sg1

B2

mg2

cg2

d1

d2

h2

h1 u1○cg1

mg1

Since cg2 ∈morE(Sg2 ,R2), since u1○cg1 ∈morE(Sg1 ,R2) by Lemmata 4.33 and 4.32
and since E is pull-back-stable the definition of (h1, h2) implies h1 ∈ morE(Z,Sg1)
and h2 ∈ morE(Z,Sg2). In particular, the square formed by the morphisms h2,
h1, cg2 and u1 ○ cg1 lies entirely in E . Hence, as A has the second (E ,M)-pseudo-
exact-Mal’cev property the assumption that (h1, h2) is a pull-back of (u1 ○ cg1 , cg2)
implies that, in turn, (u1 ○ cg1 , cg2) is a push-out of (h1, h2) and that h2 × h1 ∈
morM(Z,Sg2 ⊗ Sg1). From this, from mg2 ⊗ mg1 ∈ morM(Sg2 ⊗ Sg1 ,B1 ⊗B2) and



524 6. COMPACT QUANTUM GROUPS OF COMBINATORIAL TYPE

from the decomposition d1 × d2 = (mg2 ○ h2) × (mg1 ○ h1) = (mg2 ⊗mg1) ○ (h2 × h1)
it follows d1 × d2 ∈ morM(Z,B1 ⊗B2). Thus, indeed, [d1, d2] ∈ morRel(B1,B2) as
needed.

Step 2: Proving that [d1, d2] is a diagonal. Just like the construction of [d1, d2],
the proof that [d1, d2] is the diagonal we seek requires several steps. Again, further
definitions common to all the steps. For each i ∈ {1,2} let (yi, xi) be any pull-
back of (di, ei) and let Qi be its pull-back object. Morover, let (exi ,mxi) be any
(E ,M)-factorization of xi for each i ∈ {1,2} and call its image object Sxi .

A1

B1

B2

A2

X1

X2

U1

U2

R1

R2

Sg′1

Sg′2

Sf1

Sf2

Sg1

Sg2

Z

Q1

Q2

Sx1

Sx2

z2

z1

u2

u1

τ1

τ2

ζ1

δ1

ζ2

δ2

m1

e1

e2

m2

mg′1

mg′2

eg1

ef1

eg2

ef2
mg1

mf2

mf1

mg2

cg1

cf1

cg2

cf2

v1

v2

h1

h2

y1

y2

ex1

ex2

mx1

mx2

r1

r2
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Step 2.1: Construction of r1 and r2. For each i ∈ {1,2} the identity (ei○mxi)○exi =
ei ○ (mxi ○ exi) = ei ○ xi = di ○ yi = (mg¬i ○ h¬i) ○ yi =mg¬i ○ (h¬i ○ yi) and

Qi Sxi

Sg¬i Bi

exi

h¬i○yi ei○mxi∃!ri

mg¬i

the assumptions that exi ∈morE(Qi, Sxi) and mg¬i ∈morM(Sg¬i ,Bi) imply that there
exists some ri ∈morA(Sxi , Sg¬i) with

ri ○ exi = h¬i ○ yi and mg¬i ○ ri = ei ○mxi

and that ri is unique with these properties.
Moreover, because E is pull-back-stable and because ei ∈ morE(X,B) also yi ∈

morE(Qi, Z) and thus h¬i ○ yi ∈ morE(Qi, Sg¬i) by Lemma 4.33 for each i ∈ {1,2}.
Consequently, from ri ○ exi = h¬i ○ yi it follows ri ∈ morE(Sxi , Sg¬i) for each i ∈ {1,2}
by Lemma 4.26.

Step 2.2: Construction of τ1 and τ2. BecauseA has the first (E ,M)-pseudo-exact-
Mal’cev property, because (yi, xi) is a pull-back of (di, ei), because ei ∈morE(Xi,Bi),
because (h¬i,mg¬i) is an (E ,M)-factorization of di and (exi ,mxi) one of xi and
because ri is the unique diagonal with ri ○ exi = h¬i ○ yi and mg¬i ○ ri = ei ○mxi we
can infer that (ri,mxi) is a pull-back of (mg¬i , ei) for each i ∈ {1,2}.

Z Sg¬i Bi

Qi Sxi Xi

h¬i

di

mg¬i

exi

yi

xi

mxi

ri ei

Thus, for each i ∈ {1,2}, both (v¬i,mg′¬i) and (ri,mxi) are pull-backs of (mg¬i , ei),
whence, by essential uniqueness, there exists an isomorphism τi ∈ isoA(Sg′¬i , Sxi) with

v¬i = ri ○ τi and mg′¬i =mxi ○ τi.

Step 2.3: Construction of δ1 and δ2. By Lemma 4.3, since (yi,mxi ○ exi) is a
pull-back of (mg¬i ○ h¬i, ei) by assumption, since (ri,mxi) is a pull-back of (mg¬i , ei)
by the previous step and because ri ○ exi = h¬i ○ yi and mg¬i ○ ri = ei ○mxi the pair
(yi, exi) is a pull-back of (h¬i, ri) for each i ∈ {1,2}.

On the other hand, thanks to Lemma 4.1 the assumption that (h2, h1) is a pull-
back of (cg2 , u1 ○ cg1) implies (h¬i, hi) is a pull-back of (u¬i ○ cg¬i , cgi) for each i ∈
{1,2}.

As ((u¬i ○ cg¬i) ○ ri) ○ exi = u¬i ○ cg¬i ○ (ri ○ exi) = u¬i ○ cg¬i ○ (h¬i ○ yi) = ((u¬i ○ cg¬i) ○
h¬i) ○yi = (cgi ○hi) ○yi = cgi ○ (hi ○yi), as (h¬i, hi) is a pull-back of (u¬i ○ cg¬i , cgi) and
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as (exi , yi) is a pull-back of (ri, h¬i) Lemma 4.3 ensures that also (exi , hi ○ yi) is a
pull-back of ((u¬i ○ cg¬i) ○ ri, cgi) for each i ∈ {1,2}.

Sxi Sg¬i Ri

Qi Z Sgi

ri u¬i○cg¬i

yi

exi

hi

h¬i cgi

For that reason, for each i ∈ {1,2}, we can infer from ((u¬i○cg¬i)○ri)○(τi○z−1¬i ○efi) =
u¬i ○ cg¬i ○ (ri ○ τi) ○ z−1¬i ○ efi = u¬i ○ cg¬i ○ v¬i ○ z−1¬i ○ efi = u¬i ○ (cg¬i ○ v¬i ○ z−1¬i ) ○ efi =
u¬i ○ (ui ○ cfi) ○ efi = cfi ○ efi = cgi ○ egi

Sxi

Ui Qi Ri

Sgi

u¬i○cg¬i○ri

τi○z−1¬i ○efi

egi

∃!δi

exi

hi○yi
cgi

that there exists δi ∈morA(Ui,Qi) with

exi ○ δi = τi ○ z−1¬i ○ efi and (hi ○ yi) ○ δi = egi
and that δi is the only morphism satisfying these equations.

Step 2.4: Construction of ζ1 and ζ2. Conversely, since cfi ○ (z¬i ○ τ−1i ○ exi) =
(cfi○z¬i)○τ−1i ○exi = (u¬i○cg¬i○v¬i)○τ−1i ○exi = u¬i○cg¬i○(v¬i○τ−1i )○exi = u¬i○cg¬i○ri○exi =
u¬i○cg¬i ○(ri○exi) = u¬i○cg¬i ○(h¬i○yi) = (u¬i○cg¬i ○h¬i)○yi = (cgi ○hi)○yi = cgi ○(hi○yi),
where we have used that (h¬i, hi) is a pull-back of (u¬i ○ cg¬i , cgi),

Sfi

Qi Ui Ri

Sgi

cfi

z¬i○τ−1i ○exi

hi○yi

∃!ζi

efi

egi
cgi

and because (efi , egi) is a pull-back of (cfi , cgi) there exists ζi ∈ morA(Qi, Ui) such
that

efi ○ ζi = z¬i ○ τ−1i ○ exi and egi ○ ζi = hi ○ yi
for each i ∈ {1,2} and such that no other morphism has these properties.

Step 2.5: δi and ζi are inverses of each other. Since (exi , hi ○ xi) is a pull-back
idQi

is the only endomorphism ω of Qi with exi ○ ω = exi and (hi ○ yi) ○ ω = hi ○ yi.
Hence, the identities exi ○(δi○ζi) = (exi ○δi)○ζi = (τi○z−1¬i ○efi)○ζi = τi○z−1¬i ○(efi ○ζi) =



7. CORE FACTORIZATION 527

τi ○ z−1¬i ○ (z¬i ○ τ−1i ○ exi) = exi and (hi ○ yi) ○ (δi ○ ζi) = (hi ○ yi ○ δi) ○ ζi = egi ○ ζi = hi ○ yi
prove δi ○ ζi = idQi

.
Likewise, because (efi , egi) is a pull-back and thus idUi

the only ω ∈morA(Ui, Ui)
with efi ○ idUi

= efi and egi ○ idUi
= egi we can infer from efi ○ (ζi ○ δi) = (efi ○ ζi) ○

δi = (z¬i ○ τ−1i ○ exi) ○ δi = z¬i ○ τ−1i ○ (exi ○ δi) = z¬i ○ τ−1i ○ (τi ○ z−1¬i ○ efi) = efi and
egi ○ (ζi ○ δi) = (egi ○ ζi) ○ δi = (hi ○ yi) ○ δi = egi that ζi ○ δi = idUi

for each i ∈ {1,2}.
Thus, we have shown ζ1 = δ−11 and ζ2 = δ−12 .

Step 2.6: δi induces an equivalence of spans. Since δi ∈ isoA(Ui,Qi) and since
(mi ○ xi) ○ δi = mi ○ (mxi ○ exi) ○ δi = mi ○mxi ○ (exi ○ δi) = mi ○mxi ○ (τi ○ z−1¬i ○ efi) =
mi ○ (mxi ○ τi) ○ z−1¬i ○ efi = mi ○mg′¬i ○ z

−1
¬i ○ efi = (mi ○mg′¬i ○ z

−1
¬i ) ○ efi = mfi ○ efi = fi

and (d¬i ○ yi) ○ δi = (mgi ○ hi ○ yi) ○ δi = mgi ○ (hi ○ yi ○ δi) = mgi ○ egi = gi the spans
(fi, gi) and (mi ○ xi, d¬i ○ yi) are equivalent for each i ∈ {1,2}.

Since (xi, yi) is a pull-back of (ei, di) we have thus verified for each i ∈ {1,2} that
[fi, gi] = [di, d¬i] ○S [mi, ei]. Since [fi, gi] ∈ morRel(Ai,B¬i), by assumption in the
case of [f1, g1] and by Proposition 5.88 in the case of [f2, g2], that actually means
[di, d¬i] ○Rel [mi, ei] = ΦA,E([di, d¬i] ○S [mi, ei]) = ΦA,E([fi, gi]) = [fi, gi] by Lem-
ma 5.64. By Lemma 5.47 that is the same as saying [f1, g1] = [d1, d2] ○Rel [m1, e1]
and [g2, f2] = [e2,m2]○Rel[d1, d2]. Thus, [d1, d2] is indeed the diagonal we sought. □

By combining everything we have seen so far, we can prove a weakened version
of [Kno07, Lemma 5.2 (i)].

Proposition 7.19. If A has the first and second (E ,M)-pseudo-exact-Mal’cev
properties, then (E,M), the categories of pre-core and post-core relations, form a
weak factorization system of Rel.

Proof. Follows from Lemmata 7.8, 7.7, 7.18 and 7.16. □

Unfortunately, even in good cases, this factorization is only a weak one.

Remark 7.20. If M ↪ monA it can be seen that (E,M) is actually an orthog-
onal factorization system of Rel. However, that is generally false otherwise. As a
counterexample consider the case A = fGrop and E = qprfGrop :

In the notation of the proof of Lemma 7.18 let A1 = A2 = ({1},∅), let B1 =
B2 = X1 = X2 = ({1,2},{{1,2}}), let U1 = U2 = ({1,2,3},{{1,2},{2,3}}), let e1 =
e2 = {(1,1), (2,2)}, let m1 = {(1,1)} and m2 = {(1,2)}, let f1 = f2 = {(1,2)},
let g1 = {(1,1), (2,2)} and g2 = {(1,2), (2,3)}. Then there exist two diagonals
[d1, d2] and [k1, k2] with [d1, d2] ≠ [k1, k2]. Namely, let d1 = {(1,2), (2,3)} and
d2 = {(1,1), (2,2)} as well as k1 = {(1,2), (2,1)} and k2 = {(1,1), (2,2)} and consider
both (d1, d2) and (k1, k2) as spans B1 → B2 over the base U1 = U2.

7.2.3. Third pseudo-exact-Mal’cev property. The third and final property studied
in this chapter is the following. The distinction between push-out in E and A is
crucial.

Definition 7.21. If A is any category and (E ,M) any factorization system of
A, then A is said to have the third (E ,M)-pseudo-exact-Mal’cev property if for any
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{B1,B2,D} ⊆ objA, any f1 ∈ morA(S1,D) and f2 ∈ morA(S2,D), and any pull-back
(f ′2, f ′1) of (f1, f2) in A, if A is the pull-back object of (f ′2, f ′1), if for any i ∈ {1,2}
the pair (ei,mi) is any (E ,M)-factorization of fi with image object Si and (e′i,m′

i)
one of f ′i with image object S′i and if the morphisms v1 ∈ morE(S′2,C) and v2 ∈
morE(S′1,C) and w1 ∈morM(C,S1) and w2 ∈morM(C,S2) satisfy m1 ○w1 =m2 ○w2

and v1 ○ e′2 = v2 ○ e′1 and e1 ○m′
2 = w1 ○ v1 and e2 ○m′

1 = w2 ○ v2, then (v1, v2) is a
push-out of (e′2, e′1) in E (although, not necessarily in A).

B1 S1 D

S′2 C S2

A S′1 B2

e1

f1

m1

m′
2

v1

w1

w2

m2

e′2
e′1

f ′2

f ′1

v2

m′
1

e2

f2

A S′1

S1 D

e′1

e1○f ′2 f2○m′
1∃!w1○v2

m1

A S′2

C S1

e′2

v2○e′1 e1○m′
2∃!v1

w1

S′1 C

S2 D

v2

e2○m′
1

m1○w1∃!w2

m2

Proposition 7.22. A has the third (E ,M)-pseudo-exact-Mal’cev property if A
is regular exact Mal’cev and if E andM are given by the regular epimorphisms and
the monomorphisms of A, respectively.

Proof. Suppose we find ourselves in the situation of Definition 7.21. We prove
that (v1, v2) is a push-out of (e′2, e′1) in E .

Step 1: In fact, our first step is to show that in this case, where A is regular exact
Mal’cev, (v1, v2) is a push-out of (e′2, e′1) in A. Since A has the second (E ,M)-pseu-
do-exact-Mal’cev property by Proposition 7.15 it suffices to verify that (e′2, e′1) is a
pull-back of (v1, v2) in A in order to show this.

Hence, let X ∈ objA and x1 ∈ morA(X,S′2) and x2 ∈ morA(X,S′1) be arbitrary
with v1 ○ x1 = v2 ○ x2.

B1

S′2 S1

X A C D

S′1 S2

B2

e1

v1

m′
2

m1

∃!h

x1

x2

e′2

e′1

w1

w2v2

m′
1

m2

e2
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Because f1 ○(m′
2 ○x1) = (m1 ○e1)○(m′

2 ○x1) =m1 ○(e1 ○m′
2)○x1 =m1 ○(w1 ○v1)○x1 =

(m1 ○w1) ○ (v1 ○ x1) = (m2 ○w2) ○ (v2 ○ x2) =m2 ○ (w2 ○ v2) ○ x2 =m2 ○ (e2 ○m′
1) ○ x2 =

(m2 ○ e2) ○ (m′
1 ○ x2) = f2 ○ (m′

1 ○ x2) and because (m′
2 ○ e′2,m′

1 ○ e′1) is a pull-back
of (f1, f2) in A there exists a unique h ∈ morA(X,A) with (m′

2 ○ e′2) ○ h = m′
2 ○ x1

and (m′
1 ○ e′1) ○ h = m′

1 ○ x2. Since m′
2 and m′

1 are monomorphisms these last two
conditions are satisfied if and only if e′2 ○h = x1 and e′1 ○h = x2. Thus, we have shown
that (e′2, e′1) is a pull-back of (v1, v2) in A.

Step 2: Having seen that (v1, v2) is a push-out of (e′2, e′1) in A it is now immediate
that (v1, v2) is also a push-out of (e′2, e′1) in E : Let Y ∈ objA and y2 ∈morE(S′2, Y ) and
y1 ∈ morE(S′1, Y ) be arbitrary with y2 ○ e′2 = y1 ○ e′1. By Step 1 there exists a unique
k ∈ morA(C,Y ) with k ○ v1 = y2 and k ○ v2 = y1. Since E consists of epimorphisms
and since v1 and y2 are both morphisms of E , Lemma 4.36 tells us that the identity
k ○ v1 = y2 ensures k ∈morE(C,Y ). Since k is already unique in all of A it is so in E
in particular. □

Remark 7.23. Importantly, A can have the third (E ,M)-pseudo-exact-Mal’cev
property even if A is not regular, e.g., if A = fGrop and E = qprfGrop .

If both the second and third pseudo-exact-Mal’cev properties are satisfied a
weaker form of [Kno07, Lemma 5.2 (ii)] holds.

Lemma 7.24. If A has the second and third (E ,M)-pseudo-exact-Mal’cev proper-
ties, then for any {A,B,Z} ⊆ objA and any x ∈ morRel(A,B) and y ∈ morRel(A,Z)
and z ∈morRel(Z,B), if x = z ○Rel y, then R ≲A,E,M Z for any core object R of x.

Proof. It suffices to prove the claim for some R, rather than any R. If (f1, f2) ∈
x and if for each i ∈ {1,2} the pair (efi ,mfi) is any (E ,M)-factorization of fi and
Sfi its image object, then the co-span (ef1 , ef2) in E has a push-out (cf1 , cf2) in E
because A has the second (E ,M)-pseudo-exact-Mal’cev property. By definition the
push-out object of (cf1 , cf2), call it R, is a core object of x. We construct C ∈ objA
such that there exist s ∈ morM(C,Z) and q ∈ morE(C,R), which then proves the
claim.
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A

B

X R

Sf1

Sf2

Y1

Y2

P ZS C

Sh1

Sh2

Sp1

Sp2

Sk1

Sk2

u

z1

z2

ef1

ef2

cf1

cf2

mf1

mf2

ep1

ep2

eh1

eh2

w1

w2

mp1

mp2

j

v1

v2

mh1

mh2

ek1

ek2

mk1

mk2

t1

t2

g1

g2

q

s

Step 1: Construction of R. Let Y1 and Y2 be the bases of (g1, h1) ∈ y and
(h2, g2) ∈ z, respectively, let (p1, p2) be any pull-back of (h1, h2) with pull-back
object P . Moreover, for each i ∈ {1,2} let (ehi ,mhi) be any (E ,M)-factorization of
hi with object Shi , let (epi ,mpi) be any of pi with object Spi and let (eki ,mki) be
any of ki with object Ski .

Since (h1 ○mp1) ○ ep1 = h1 ○ (mp1 ○ ep1) = h1 ○ p1 = h2 ○ p2 = (mh2 ○ eh2) ○ p2 =
mh2 ○ (eh2 ○ p2) and because ep1 ∈ morE(P,Sp1) and mh2 ∈ morM(Sh2 , Z), and thus
ep1 ⊥mh2 ,

P Sp1

Sh2 Z

ep1

eh2○p2 h1○mp1∃!d

mh2

there exists a unique d ∈morA(Sp1 , Sh2) with eh2 ○ p2 = d ○ ep1 and mh2 ○ d = h1 ○mp1 .
Let (v1,w2) be any (E ,M)-factorization of d and let C be its image object.

Step 2: Construction of s. Given thatmh2 ∈morM(Sh2 , Z) and w2 ∈morM(C,Sh2),
Lemma 4.33 guarantees s ∶=mh2 ○w2 ∈morM(C,Z).
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Step 3: Construction of q. Constructing q ∈ morE(C,R) requires multiple steps.
The third (E ,M)-pseudo-exact-Mal’cev property is used only in the last one.

Step 3.1: Construction of v2. Because (eh2 ○ mp2) ○ ep2 = eh2 ○ (mp2) ○ ep2) =
eh2 ○ p2 = d ○ ep1 = (w2 ○ v1) ○ ep1 = w2 ○ (v1 ○ ep1) and because ep2 ∈ morE(P,Sp2) and
w2 ∈morM(C,Sh2), implying ep2 ⊥ w2,

P Sp2

C Sh2

ep2

v1○ep1 eh2○mp2∃!v2

w2

we find a unique v2 ∈ morA(Sp2 ,C) with v1 ○ ep1 = v2 ○ ep2 and w2 ○ v2 = eh2 ○mp2 .
And by Lemma 4.26 the former of these identities ensures v2 ∈morE(Sp2 ,C) because
v1 ○ ep1 ∈morE(P,C) and ep2 ∈morE(P,Sp2).

Step 3.2: Construction of w1. The identity (mh2 ○ w2) ○ v1 = mh2 ○ (w2 ○ v1) =
mh2 ○ d = h1 ○ mp1 = (mh1 ○ eh1) ○ mp1 = mh1 ○ (eh1 ○ mp1) and the assumptions
v1 ∈morE(Sp1 ,C) and mh1 ∈morM(Sh1 , Z), which let us infer v1 ⊥mh1 ,

Sp1 C

Sh1 Z

v1

eh1○mp1
mh2

○w2∃!w1

mh1

prove the existence of a unique w1 ∈ morA(C,Sh1) with eh1 ○ mp1 = w1 ○ v1 and
mh1 ○ w1 = mh2 ○ w2. We may further conclude w1 ∈ morM(C,Sh1) from mh2 ○ w2 ∈
morM(C,Z) and mh1 ∈morM(Sh1 , Z) by Lemma 4.26.

Step 3.3: Construction of u. If (j, k1 × k2) is any (E ,M)-factorization of (g1 ○
p1) × (g2 ○ p2) with image object S, then, by definition, (k1, k2) ∈ z ○Rel y. Hence, if
X is the base of (f1, f2), the assumption x = z ○Rel y allows us to find u ∈ isoA(S,X)
with ki = fi ○ u for each i ∈ {1,2}.

Step 3.4: Construction of z1 and z2. If for each i ∈ {1,2} any (E ,M)-factorization
of ki is given by (eki ,mki) and if Ski is the corresponding image object, then mki ○
(eki ○ u−1) = (mki ○ eki) ○ u−1 = ki ○ u−1 = fi for each i. As, for each i ∈ {1,2}, both
eki ○u−1 ∈morE(X,Ski) and mki ∈morM(Ski ,Ai), where A1 = A and A2 = B, the pair
(eki ○ u−1,mi) is an (E ,M)-factoriation of fi. Since those are essentially unique,

X Ski

Sfi Ai

efi

eki○u
−1

mki∃!zi

eki

for each i ∈ {1,2} there exists a unique zi ∈morA(Ski , Sfi) with efi = zi ○eki ○u−1 and
mki ○ zi =mfi .
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Step 3.5: Construction of t1 and t2. For each i ∈ {1,2} since (gi ○mpi) ○ epi =
gi○(mpi ○epi) = gi○pi = ki○j = (mki ○eki)○j =mki ○(eki ○j) and since epi ∈morE(P,Spi)
and mki ∈ morM(Spi ,Ai), where again A1 = A and A2 = B, from which it follows
epi ⊥mki ,

P Spi

Ski Ai

epi

eki○j gi○mpi∃! ti

mki

we can find ti ∈morA(Spi , Ski) with eki ○j = ti ○epi and mki ○ ti = gi ○mpi . In addition,
Lemma 4.26 allows us to infer ti ∈ morE(Spi , Ski) from eki ○ j ∈ morE(P,Ski) and
epi ∈morE(P,Spi).

Step 3.6: Construction of q. Since A has the third (E ,M)-pseudo-exact-Mal’cev
property and since (p1, p2) is a pull-back of (h1, h2) in A the co-span (v1, v2) is a
push-out of (ep1 , ep2) in A. Moreover, (cf1 ○ z1 ○ t1, cf2 ○ z2 ○ t2) is a co-span in E by
Lemma 4.33. Therefore, the identity

Sp1

P C R

Sp2

v1

cf1○z1○t1

ep1

ep2

∃!q
v2

cf2○z2○t2

implies the existence of a unique q ∈morE(C,R) with ci○zi○ti = vi for each i ∈ {1,2}.
That concludes the proof. □

For the reader familiar with the semisimplicity proof of [Kno07] the following
remark sketches where the analogous argument fails for the more general inputs
considered in this chapter.

Remark 7.25. As explained in Example 3.1 (f), for Mančinska and Roberson’s
categories input (A,E , δ) the right complementM of E does not consist of monomor-
phisms anymore. Then, the proof given by Knop for his critical Lemma 5.2 (ii) no
longer works: It is no longer possible to conclude in (5.3) from r̃ → z being in E
that also s → z and t → z are elements of E. This step rests on M consisting of
monomorphisms. Namely it uses [FK72, Proposition 2.1.4 (c)] to infer this. But this
statement that for composable morphisms p and q whenever pq ∈ E, then already
p ∈ E, is only true in case M is a class of monomorphisms.
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8. Future Research Directions

Questions 8.1. (a) Most importantly, if S is closed symmetric monoidal
and has equalizers, what are the epic 1-cells of smModR(S)†CATr from

T 0(A,E , δ) to
↑
ModR(S)fgp, the dualizable R-module objects of S consid-

ered as enriched over themselves?
(b) Is there a right 2-adjoint to the Tannakian version T 0

T of the Deligne-Knop 2-
functor, thus completing the diagram following Definition 2.15 and yielding
a 2-adjunction between the compositions?

(c) The Tannakian biadjunction in the said diagram is even monoidal. For
which monoidal structures on its domain and co-domain can T 0

T be extended
to a monoidal 2-functor?

(d) What is a or, ideally, the most general setting for A which makes it possible
to perform “liberation” in the sense of [BS09] in T 0(A,E , δ)? In other words,
what are the abstract analogs of non-crossing partitions or planar bi-labeled
graphs?

(e) Is there a wide subcategory of T 0(fGrop,qprfGrop ,qkerfGrop) which restricts
to the graph category of all planar bi-labeled graphs in the sense of [MR20]?
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chine decompositions for generating functionals on algebras associated
to universal compact quantum groups”. Infinite Dimensional Analysis,
Quantum Probability and Related Topics 21.03 (2018), p. 1850017. doi:
10.1142/S0219025718500170.

[Del07a] Pierre Deligne. “Catégories tannakiennes”. In: The Grothendieck Fest-
schrift: A Collection of Articles Written in Honor of the 60th Birthday of
Alexander Grothendieck. Ed. by Pierre Cartier et al. Birkhäuser Boston,
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