
ABSTRACT

Title of dissertation: NEUTRAL GAS AND PLASMA
INTERACTIONS IN THE POLAR CUSP

David K. Olson, Doctor of Philosophy, 2012

Dissertation directed by: Professor Douglas C. Hamilton
University of Maryland

When the solar wind interacts with the Earth’s magnetosphere, both energy

and matter can be transferred across the magnetopause boundary. This transfer

gives rise to numerous phenomena, including ion outflow and neutral upwelling in

the polar cusps. These processes are caused by a transfer of energy to the ionospheric

plasma and neutral gas through various mechanisms. The heated plasma or gas

expands, increasing the density of the atmosphere at high altitudes by as much

as a factor of two, and injecting ionospheric plasma into and even outside of the

magnetosphere. These two phenomena are examined in two ways: A novel high

energy (0.1-10 keV) spectrograph for ionospheric cusp ions was designed as part of

the Rocket Experiment for Neutral Upwelling (RENU), a sounding rocket campaign

carried out at the northern polar cusp to observe the electrodynamic properties of

the cusp during a neutral upwelling event. This instrument is called the KeV Ion

Magnetic Spectrograph (KIMS). Ion outflow in the ionosphere has shown evidence of

correlation with both Poynting flux and soft electron precipitation in the cusp. The

heat input from these energy sources might also affect neutral gas in the ionosphere,

contributing to upwelling phenomena seen at the dayside cusp. Using data from the

Fast Auroral Snapshot Explorer (FAST) and the Challenging Minisatellite Payload

(CHAMP) satellites, correlations of electromagnetic and particle energy inputs are

examined with both ion outflow and neutral upwelling in the cusp. The added

ability to process large quantities of data quickly and reference the data between

separate satellites in this statistical survey gives clues to the consistency of the

observed correlations with ion outflow over time and to the relative importance of

these energy sources in the neutral upwelling phenomenon. It also provides the

ability to understand these connections in a broad spectrum of conditions of the

Sun and solar wind as well as in the Earth’s magnetosphere.

NEUTRAL GAS AND PLASMA INTERACTIONS
IN THE POLAR CUSP

by

David K. Olson

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Douglas C. Hamilton, Chair
Dr. Thomas E. Moore, Advisor
Professor Michael A. Coplan, Advisor
Professor Russel R. Dickerson
Professor William D. Dorland
Professor James F. Drake

c© Copyright by
David K. Olson

2012

Acknowledgments

Though a dissertation is outwardly a very individual experience, no project
of this magnitude could ever be undertaken without the assistance of many other
people. The time spent in research is supported by many who are even unaware
of their help and in ways that I found very surprising in my own experience. I
could never express gratitude to all who have supported this project, but I will try
to do so for a few particular individuals who have provided unique assistance and
opportunity.

My advisors, Dr. Moore and Dr. Coplan, have been very patient in guiding
my work and my education in these past years. I appreciate the consistent encour-
agement and support they offer, and have seen the same extended to other students
and colleagues with whom they have worked.

Dr. Marc Lessard, of the University of New Hampshire, provided the opportu-
nity to participate in the RENU sounding rocket campaign. That was a marvelous
opportunity, and I’m grateful for the experiences I had in Norway to work with
him. Dr. Robert Strangeway, of the University of California in Los Angeles, pro-
vided a lot of assistance in the statistical analysis. I enjoyed getting to know him
and working with him this past year.

The KIMS instrument design is based on a design created by Jack Moore. I had
the privilege of working with Jack directly when he volunteered to come and assist
with the magnetic circuit assembly. His input and support was very encouraging
to me at that time, and I’m grateful he was able to come and help with that part
of the project. Jack passed away shortly after our encounter; he is a great scientist
and a good man. I’m honored that I was able to get to know him.

My parents and family have always been there for me–ready to rejoice in
successes and comfort over failures. I would not be where I am without my family.

There is one individual to whom I owe all my inspiration and motivation. In
reality, I owe Him all I am. This is, after all, His work.

This work was funded in part by the NASA Graduate Student Research Program,
under NASA Grant NNX08AT34H.

ii

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations xii

1 Introduction 1
1.1 Background . 1
1.2 Magnetospheric Physics . 3

1.2.1 The Atmosphere and Ionosphere 5
1.2.2 The Magnetosphere . 8
1.2.3 The Solar Wind . 12
1.2.4 Ionospheric Plasma . 13

1.3 Heating in the Ionosphere . 14
1.3.1 Joule Heating . 15
1.3.2 Ohmic Heating . 16
1.3.3 Electron and Ion Precipitation 17
1.3.4 Alfvén and Other Plasma Waves 17

1.4 Consequences of Ionospheric Heating 18
1.4.1 Upwelling . 18
1.4.2 Jeans Escape . 18
1.4.3 Ion Outflow . 19

1.5 Measurements of Ionospheric Heating 19
1.5.1 Neutral Upwelling . 19

1.6 This Study . 22
1.6.1 RENU . 22
1.6.2 Statistical Analysis of Ionospheric Energy Sources 23

2 Ionospheric Ion Detection and the KIMS Instrument 24
2.1 The KeV Ion Magnetic Spectrograph 26

2.1.1 Energy Spectrum Dispersion 26
2.1.2 Field of View . 27

2.2 Microchannel Plates . 30
2.2.1 KIMS Detector Response . 33

2.3 Project Scope . 33
2.3.1 Goals for KIMS . 35
2.3.2 Changes From Heritage . 36
2.3.3 Basic Parameters for KIMS 37

2.4 KIMS Design . 40
2.4.1 Magnetic Circuit Design . 40
2.4.2 Mechanical Design . 42
2.4.3 Detector Design . 44

2.4.3.1 MCP Housing . 44

iii

2.4.3.2 MCP Stack . 45
2.4.4 Electrical Design . 46

2.4.4.1 Amplifiers and Telemetry 49
2.4.4.2 Electrical Stack Assembly 50

2.4.5 Ground Support Equipment 54
2.5 KIMS Summary . 57

3 KIMS Analysis, Data, and Results 59
3.1 Modeling and Operating Parameters 61

3.1.1 Instrument Simulation . 61
3.1.2 Magnetic Field . 64
3.1.3 MCP Applied Voltage . 66

3.2 Calibration . 69
3.3 Integration Testing . 71

3.3.1 External Magnetic Field . 71
3.3.2 Vibration . 73
3.3.3 Electronics . 74

3.4 RENU . 74

4 Data Analysis Background 76
4.1 Satellite Background . 77

4.1.1 FAST . 77
4.1.2 CHAMP . 79

4.2 The Strangeway Study . 81
4.3 Ion Outflow . 83
4.4 Ionospheric Energy Sources . 85
4.5 Statistics of Ionospheric Energy Sources 86
4.6 Statistics in Neutral Upwelling . 90
4.7 Geophysical and Geomagnetic Coordinate Systems 92

4.7.1 Geographic Coordinates (GEO) 93
4.7.2 Geocentric Equatorial Inertial Coordinates (GEI) 93
4.7.3 Geocentric Solar Magnetospheric Coordinates (GSM) 94
4.7.4 International Geomagnetic Reference Field 94
4.7.5 Solar Magnetic Coordinates (SM) 95

4.8 Summary . 96

5 Data and Analysis Software 98
5.1 Python . 99

5.1.1 Python Structures . 100
5.1.2 NumPy . 102
5.1.3 SciPy . 103
5.1.4 Matplotlib . 103
5.1.5 SpacePy . 103
5.1.6 The Python Pickle . 104

5.2 Methods . 104

iv

5.2.1 FAST Data Processing . 104
5.2.2 FAST Field Data . 105

5.2.2.1 Field Processing Tools 105
5.2.2.2 DC Electric Field . 109
5.2.2.3 ELF AC Electric Field 110
5.2.2.4 DC Magnetic Field 112
5.2.2.5 Poynting Flux . 114

5.2.3 FAST Particle Data . 114
5.2.3.1 Particle Processing Tools 116
5.2.3.2 Electron Flux . 121
5.2.3.3 Ion Flux . 121
5.2.3.4 Using FAST.py . 123

5.2.4 FAST Statistical Analysis . 126
5.2.5 FAST Data Visualization . 131
5.2.6 CHAMP Data Processing . 133

5.2.6.1 Orbit Data . 134
5.2.6.2 Accelerometer Data 135
5.2.6.3 Using champ.py . 139

5.2.7 CHAMP Statistical Analysis 141
5.2.8 CHAMP Data Visualization 143

5.3 Assumptions . 143
5.3.1 Assumptions in Field Quantities 143
5.3.2 Assumptions in Particle Quantities 144
5.3.3 Assumptions in Neutral Density 144
5.3.4 Assumptions in Calculations 145

6 Statistical Analysis 146
6.1 Time Average Consistency . 149
6.2 Poynting Flux . 152
6.3 Electron Precipitation . 157
6.4 Cross Correlations . 161
6.5 Neutral Upwelling . 161

6.5.1 Visual Observations from Selection of CHAMP Data 161
6.5.2 Poynting Flux . 163
6.5.3 Electron Precipitation Density 165
6.5.4 Ion Outflow . 165

6.6 Summary of Findings . 170

7 Conclusion 173
7.1 The KIMS Instrument . 173
7.2 Ion Outflow and Neutral Upwelling 175
7.3 Further Work . 178

v

A KIMS Hardware 180
A.1 Magnetic Circuit . 180
A.2 Clamshell and Cover . 197
A.3 KIMS Electronics . 203

B KIMS Software 212
B.1 Monte Carlo Simulation . 212

B.1.1 mc sim.py . 212
B.2 FPGA . 217

B.2.1 Telemetry/Amplifier Board 217
B.2.1.1 Telemetry Code . 217
B.2.1.2 Amplifier/Counter Code 222

B.2.2 GSE . 225
B.3 MSP430 . 232
B.4 Serial Communication . 239

C KIMS Project Images 241
C.1 Magnetic Circuit Assembly . 241
C.2 KIMS Assembly . 245
C.3 Vibration Testing . 254
C.4 Magnetic Testing . 259
C.5 Integration Photos . 261

D RENU Launch Information 264
D.1 General Overview of Sounding Rocket Campaign RENU 264

D.1.1 Investigators and Team . 265
D.2 Vehicle Requirements and Performance 266

D.2.1 Trajectory Data/Attitude Solution 266
D.2.2 Outgassing, Magnetic Sensitivity, RFI Susceptibility 266
D.2.3 Coning Angle . 267
D.2.4 Despin . 267
D.2.5 Horizon Sensors/Sun Sensors 267
D.2.6 Range Support . 267
D.2.7 Launch Conditions . 268

D.3 Success Criteria . 270
D.3.1 Comprehensive Mission Success 270
D.3.2 Minimum Success . 270

D.4 RENU Launch Conditions . 272

E Statistical Analysis Software 278
E.1 FAST . 278

E.1.1 FAST.py . 278
E.1.2 FAPlot.py . 298
E.1.3 FAST stats.py . 303

E.2 CHAMP . 309

vi

E.2.1 champ.py . 309
E.2.2 champformats.py . 319
E.2.3 CHAMP stats.py . 320

E.3 Coordinate System Transformation 328
E.3.1 cstrans2.py . 328

E.4 Other Code . 334
E.4.1 nantools.py . 334
E.4.2 plot setup.py . 334

Bibliography 336

vii

List of Tables

5.1 FAST Filenames . 105
5.2 CHAMP Orbit Format . 136
5.3 CHAMP Spacecraft Coordinate System 137
5.4 STAR Accelerometer Coordinate System 138

6.1 Poynting Flux Statistical Results . 158
6.2 Electron Precipitation Density Statistical Results 161
6.3 Summary of Poynting Flux—Neutral Upwelling Statistics 165
6.4 Summary of Electron Precipitation Density—Neutral Upwelling Statis-

tics . 168
6.5 Summary of Ion Outflow—Neutral Upwelling Statistics 168

B.1 GSE Commands . 240

viii

List of Figures

1.1 Earth’s atmosphere . 4
1.2 Ionospheric and Atmospheric Composition 7
1.3 Earth’s ionosphere . 9
1.4 Earth’s magnetosphere . 10
1.5 CHAMP Deceleration . 21
1.6 STREAK Ionosphere Density Depletion 21

2.1 Cyclotron Motion . 27
2.2 KIMS Field of View . 29
2.3 Perpendicular Acceptance . 31
2.4 Microchannel Plates . 32
2.5 Detector Response . 34
2.6 Previous Results from KIMS Heritage 38
2.7 Photos of the magnetic circuit . 40
2.8 Photo of the magnetic circuit grid . 42
2.9 Clamshell . 43
2.10 KIMS Instrument . 44
2.11 MCP Stack Drawings . 45
2.12 MCP Stack Assembly . 47
2.13 Anode Board . 48
2.14 MCP Stack Fit . 48
2.15 Amplifier/Telemetry Circuit . 51
2.16 Amplifier/Telemetry Board . 52
2.17 High Voltage Circuit . 55
2.18 Electrical Stack Assembly . 56

3.1 Ion Source . 60
3.2 KIMS Simulation Histogram . 62
3.3 KIMS Simulated Response . 63
3.4 KIMS ∆E/E . 64
3.5 KIMS Interior Fields . 65
3.6 KIMS Bare Anode . 66
3.7 KIMS Bare Anode Test . 67
3.8 KIMS MCP Bias . 68
3.9 KIMS Calibration . 70
3.10 Stray Field Measuring Configuration 72
3.11 Stray Field Measurements . 73

4.1 The FAST Satellite . 78
4.2 The CHAMP Satellite . 81
4.3 Ion pitch-angle spectrogram . 84
4.4 Correlation Relationships in Ion Outflow 87
4.5 Strangeway Correlations . 88

ix

4.6 Electron Precipitation Density Correlation 89

5.1 Chauvenet’s Criterion . 107
5.2 Smoothing Algorithm . 108
5.3 Interpolation . 109
5.4 AC E-field Spectrum . 111
5.5 Interpolated ELF Data . 112
5.6 Interpolate B-field Data . 113
5.7 Interpolated Poynting Flux Data . 115
5.8 Ion Flux Spectra . 118
5.9 Electron Flux Spectra . 119
5.10 Cutoff Routine Example . 120
5.11 Electron Fluxes . 122
5.12 Ion Fluxes . 123
5.13 Summary of FAST Orbit 08276 . 125
5.14 Update Pickle Example . 127
5.15 Time Average Consistency . 129
5.16 Linear Regression . 130
5.17 Orbital Coverage . 132

6.1 July 2002 Event . 147
6.2 July 2002 Orbits . 148
6.3 February 2002 Event . 150
6.4 February 2002 Orbits . 151
6.5 Time Average Consistency . 153
6.6 Time Average Trends . 154
6.7 Sep 1998 Poynting Flux Correlation 156
6.8 2002 Poynting Flux Correlation . 157
6.9 Sep 1998 Electron Precipitation Correlation 159
6.10 2002 Electron Precipitation Correlation 160
6.11 Poynting Flux–Electron Precipitation Cross Correlation 162
6.12 Selection of CHAMP Data . 164
6.13 Neutral Density Correlations with Poynting Flux 166
6.14 Neutral Density Correlations with Electron Precipitation 167
6.15 Neutral Density Correlations with Ion Outflow 169
6.16 Ion Outflow Statistics Summary . 171
6.17 Neutral Upwelling Statistics Summary 172

7.1 Ionospheric Correlations . 176

C.1 Magnetic Circuit Parts . 241
C.2 Magnet Clamp . 242
C.3 Upper Assembly . 242
C.4 Placing Lower Shell . 243
C.5 Partition . 243
C.6 Magnetic Circuit Half . 244

x

C.7 Magnetic Circuit Assembled . 244
C.8 Ground Screen . 245
C.9 Mounting the Magnetic Circuit . 246
C.10 Clamshell Fastened . 246
C.11 Telemetry/Amplifier Boards . 247
C.12 Distribution Board . 247
C.13 Ground Plane . 248
C.14 Inserting the Detector . 248
C.15 High Voltage Board . 249
C.16 High Voltage Control Board . 249
C.17 Clamshell Spacers . 250
C.18 Tray . 251
C.19 Cover . 252
C.20 KIMS Final Assembly . 253
C.21 Axis definitions for vibration testing. 255
C.22 White noise vibration test result of the KIMS instrument X-axis. . . 256
C.23 White noise vibration test result of the KIMS instrument Y-axis. . . 257
C.24 White noise vibration test result of the KIMS instrument Z-axis. . . . 258
C.25 Magnetic Testing Configuration . 259
C.26 Magnetometer Spacing . 260
C.27 KIMS Finalized . 261
C.28 KIMS Mounted . 262
C.29 KIMS Flight Configuration . 263

D.1 All-sky Auroral Photo . 272
D.2 All-sky Red & Green Images . 273
D.3 EISCAT Radar . 274
D.4 Solar Wind Conditions . 275
D.5 Magnetometer Measurements . 276
D.6 SuperDARN Radar Measurements . 277

xi

List of Abbreviations

acc CHAMP Accelerometer Data
CDF Common Data Format
CEM Channel Electron Multiplier
CHAMP Challenging Minisatellite Payload
CTS Conventional Terrestrial System (equivalen to GEO)
dcefs FAST DC Electric Field Survey
dcmag FAST DC Magnetic Field Survey
DSP Digital Signal Processor
dsp v58 FAST Low Frequency, V5-V8 AC Electric Field Data
EDM Electrical Discharge Machining
ees FAST Electron Energy Spectrometer
ELF Extremely Low Frequency
EUV Extreme Ultraviolet
FAC Field aligned current
FAST Fast Auroral Snapshot Explorer
FPGA Field Programmable Gate Array
GEI Geocentric Equatorial Inertial Coordinates
GFZ GeoForschungsZentrum
GHA Greenwich Hour Angle
GSE Geocentric Solar Ecliptic Coordinates
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
GSM Geocentric Solar Magnetospheric Coordinates
GST Greenwich Sidereal Time
IC Integrated Circuit
IDL Interactive Data Language
ies FAST Ion Energy Spectrometer
IGRF International Geomagnetic Reference Field
ILT Invariant Latitude
IPST Institute for Physical Science and Technology
ISDC Information System and Data Center (Potsdam, Germany)
KIMS KeV Ion Magnetic Spectrograph
MCP Microchannel Plate
MLT Magnetic Local Time
MSP430 Texas Instruments Mixed Signal Processor (microcontroller)
NASA National Aeronautics and Space Administration
PCM Pulse Code Modulation
RE Earth radii (unit)
RENU Rocket Experiment for Neutral Upwelling
rso CHAMP Rapid Science Orbit Data
SM Solar Magnetic Coordinates
STAR Spatial Triaxial Accelerometer for Research
UART Universal Asynchronous Receiver/Transmitter
UMD University of Maryland, College Park
USB Universal Serial Bus

xii

Chapter 1

Introduction

This dissertation describes a study involving two phenomena observed in the

Earth’s atmosphere. The two phenomena, neutral upwelling and ion outflow, are

similar in nature. Both are the result of heating processes in the atmosphere, and

both end up in particles rising to higher altitudes within a very localized region. The

goal of this study is to understand the neutral upwelling phenomenon, particularly

in the context of processes similar to those that lead to ion outflow. Because both

phenomena have similar characteristics and happen in the same location, the study

is a search for connections that explain how these phenomena occur. Ultimately,

the two processes stem from interactions at the boundary of Earth’s magnetic field.

1.1 Background

The boundary between the electromagnetic fields of the Earth and the Solar

System is a curious interface between the atmosphere and interplanetary space.

From one aspect, the edge of the Earth’s magnetic field (the magnetopause) marks

a physical boundary where the solar wind is deflected around the planet. From

another aspect, the boundary links the electromagnetic fields of the Sun and its

solar wind with those of the Earth in such a way that motion of the solar wind leads

to energy, and in some cases material, being transferred in and out of the Earth’s

1

ionosphere. These interactions lead to complex phenomena that are challenging to

study, but important to understand because of their direct influence on the Earth.

Among these phenomena, heating in the ionosphere can lead to easily observ-

able results, such as the spectacular displays of light in auroral storms, or to less

obvious consequences, such as local fluctuations in atmospheric density. In some

cases, heating leads to an outflow of atmospheric material from the Earth itself.

One of these less visible, but influential, results is an upward movement of neutral

gas within the polar cusp of the magnetosphere. Material from the mesosphere and

lower thermosphere rise in this region to orbital altitudes in the middle and upper

thermosphere (see Fig. 1.1).

During these neutral upwelling events, the increased density in the thermo-

sphere causes increased drag on satellites in polar orbits as they pass through up-

welling regions, slowing the spacecraft and reducing their orbital lifetimes. A unique

aspect about this phenomenon is that the heating is highly localized and confined

to the region around the Earth’s magnetic poles known as the cusps (see Fig. 1.4).

While there have been a number of clear observations of the neutral upwelling phe-

nomenon, the mechanisms behind neutral upwelling are not yet well understood.

Considering the sharply defined location of the neutral upwelling events within

the cusps of the Earth’s magnetic field, we can reasonably suppose that the mech-

anisms responsible for lifting the neutral gas are in some way connected to the

electromagnetic fields and plasmas that make up the Earth’s ionosphere and mag-

netosphere. A number of electromagnetic and plasma effects can transfer energy

to the neutral atmosphere in the cusp region, either directly or indirectly, and thus

2

contribute to the neutral upwelling phenomenon.

1.2 Magnetospheric Physics

There are many complicated interactions in the magnetosphere, but they can

be understood in terms of basic physics. Dr. E. N. Parker once described the goal

of magnetospheric physics as coming to “. . . understand the active magnetosphere

in terms of the principles of Newton and Maxwell” [1]. In other words, our goal

is to describe the Earth’s atmosphere and electromagnetic fields using Newtonian

mechanics (particularly in terms of gravitation and fluid mechanics) and Maxwell’s

formulation of electromagnetism (in terms of fields, wave propagation, and plasma

properties). This formulation of the physics in the magnetosphere lets us separate

the region into an atmospheric and ionospheric picture. Each picture can be further

described in terms of distinct layers, each with unique properties, much as the

interior of the Earth can be. The atmosphere and ionosphere are very different

from the lithosphere in many ways, however, and the boundaries between layers are

constantly moving. While there are specific general properties in the various layers,

the locations and sizes of the layers constantly vary. The dynamic properties of these

different layers have consequences for radio communication, satellite trajectories,

and the influence of the sun on the Earth through the solar wind.

3

Figure 1.1: Diagram of the Earth’s atmosphere. The Ionosphere varies in location
and size, but typically starts in the upper Mesosphere and extends upward through
the Exosphere. On the right, both pictures are depicted in terms of one of the
parameters that distinguishes the layers in each. In this case, the atmospheric
layers have different temperature profiles, and the ionospheric layers have different
electron density profiles. (Figure credit NASA.)

4

1.2.1 The Atmosphere and Ionosphere

We first draw a distinction between the identified layers of the atmosphere

and the ionosphere. The atmosphere refers to the different layers with distinct

temperatures and compositions. We live in the troposphere, which only extends to

about 0.2% of the entire height of the atmosphere, but it also contains approximately

80% of the material in the atmosphere [2]. The other layers extend upward, to an

altitude of approximately 10,000 km at the exopause (see Fig. 1.1). The atmosphere,

the layers that compose it, and the differing properties in each can be generally

described by Newtonian physics.

The ionosphere refers to the region of the atmosphere where a substantial

portion of the material is in an ionized state. Atmospheric atoms and molecules

are ionized primarily by ultraviolet (UV) radiation from the Sun [3]. Like the

Newtonian atmosphere, the ionosphere also has layers with distinct characteristics,

such as electron density and plasma composition. The ionosphere begins in the

upper mesosphere (typically about 60 km above the Earth’s surface) and extends

to the edge of the magnetosphere, but different conditions in the atmosphere, the

sun, and interplanetary space have significant impact on locations, sizes, and even

number of the ionospheric layers. Just as the atmospheric system can be described

with Newtonian physics, the ionosphere can be described using a combination of

Newtonian and Maxwellian (or electrodynamic) physics.

The highest well defined layer of the ionosphere is referred to as the F layer.

The F layer is of particular interest because peak plasma density occurs there.

5

This layer is generally between 200 and 500 km above the Earth’s surface, in the

atmospheric layer called the thermosphere. It is in this region that neutral upwelling

occurs. Beyond the F layer lies the topside layer, with gradually falling density and

increasing ionization fraction. The topside layer extends through the exosphere and

out to the magnetopause.

A number of important parameters describe the atmosphere and ionosphere.

One of the more important of these is the scale height. This parameter is a measure

of how quickly a value decreases with height, and in terms of the atmosphere is

derived as a description of the atmospheric pressure. The atmospheric scale height is

a ratio of thermal energy to gravitational potential energy. For a given temperature,

the scale height is given by

H =
kT

Mg
(1.1)

using Boltzmann’s constant k, the temperature T , the molecular mass of air M , and

gravitational acceleration g. For a given height above the surface z and base surface

pressure P0, the pressure is then approximately

P = P0e
− z

H (1.2)

As the temperature increases, so does the scale height, and thus the pressure at a

given altitude. We then expect the density of the atmosphere at higher altitudes to

increase because of an increase in temperature. Processes that heat the atmosphere

will increase scale height. As such, scale height varies with time of day, day of year,

latitude, and a number of other parameters that influence the local temperature

of the atmosphere. The Extended Mass Spectrometer–Incoherent Scatter (MSISE)

6

Figure 1.2: Plot showing the densities of various components of both the ionosphere
(solid lines) and the atmosphere (dashed lines). The neutral density in the F layer is
typically 1–3 orders of magnitude greater than the plasma density. These data are
based on multiple mass-spectrometer measurements compiled for the international
quiet solar year in 1969 [6].

atmospheric model [4], which is based on measurements of many different atmo-

spheric and solar parameters, estimates a typical scale height for the Earth’s lower

atmosphere of about 6.7 km [5].

Density is a very important parameter for both the atmosphere and the iono-

sphere. Even at the same altitude, however, both environments can have remarkably

different densities and compositions (see Fig. 1.2). At orbital altitudes multiple

scale heights above the Earth, the density of the neutral atmosphere can be orders

of magnitude greater than the density of the ionospheric plasma.

Related to density is the mean free path. The mean free path is a description

of length scales between particle interactions, typically describing how far a particle

7

may travel before colliding with another particle. This value can be described in

terms of the density n and the cross-section area for collisions σ by

λmfp =
1

σn
(1.3)

The cross-section σ depends on a number of parameters, including the temperature

and composition of the ionosphere in the region of interest. A rough estimate can

be found based on the temperature and density of the electrons, as given by Alfvén

[7]:

λ ∼ 104T
2
e

Ne

(1.4)

For ionospheric plasma in the F region, we find temperatures between 1000 and

2000 K, and densities peaking at 106cm−3. These values suggest a mean free path in

the ionosphere of tens to a few hundreds of kilometers. This length is comparable

to the mean free path of a confined gas with a density approximately that of the

neutral atmosphere at these altitudes, suggesting an overall pressure below 10−6 torr

in this region.

1.2.2 The Magnetosphere

The Earth’s magnetic field creates a third system within the overall region

of interest. The magnetic field interacts with the interplanetary magnetic field

(generated by the Sun) and with the solar wind, creating a shell that surrounds the

Earth to an extent of about 15–20 Earth radii (RE). The solar wind compresses

the front of the shell to about 10–12 RE while the back is extended into a long

“magnetotail”, reaching beyond 200 RE (see Fig. 1.4). We call the boundary of this

8

Figure 1.3: Diagram showing a configuration of Earth’s ionosphere in relation to the
atmosphere. Conditions present during the daytime can also lead to another layer
(the D layer) at lower altitudes, and at times a division is seen in the F layer (the
two parts being called the F1 and F2 layers). (Figure credit M.C. Kelley [3].)

9

Figure 1.4: Diagram of the Earth’s magnetosphere with key features identified. The
bow shock is where the solar wind slows to below the local sound speed, creating a
shock wave as the solar wind is deflected around the magnetosphere. The movement
of the solar wind around the Earth draws the magnetic field lines out to create a
long Magnetotail. The funnel shapes formed at the magnetic poles are called the
polar cusps. Solar wind particles can pass into the cusps and precipitate into the
atmosphere. Atmospheric particles can escape through the cusps. The plasma sheet,
neutral sheet, and magnetosheath are all aspects of Earth’s magnetosphere that
result from interactions of charged and neutral particles with the magnetosphere,
but do not enter this study. (Figure credit NASA.)

10

shell the magnetopause.

Earth’s field is roughly dipolar, with an average strength of approximately

50 µT at the surface. It is currently believed that the field is created by electric cur-

rents in the outer core according to the dynamo theory1. The north and south poles

of Earth’s magnetic field shift in location independently, and both poles have drifted

substantially (on the order of ∼100 km over the past 100 years [55]. Nevertheless,

the magnetosphere can be modeled to fair accuracy as a magnetic dipole with a few

small corrections in higher order terms of a multipole expansion. Standard models

of the Earth’s magnetic field include the International Geomagnetic Reference Field

(IGRF) [9]. The IGRF is often used to evaluate atmospheric and electromagnetic

phenomena as they relate to local changes in the field.

Of particular interest to the neutral upwelling phenomenon being discussed are

the funnel-shaped regions of the magnetic field found at the magnetic poles. These

regions, called the cusps, allow for energy (sourced from both fields and particles)

to be exchanged between the interplanetary medium and the ionosphere [10]. The

nature of this exchange is an ongoing topic of interest in space physics. The cusps

are surrounded by the annular shaped auroral regions, where solar wind interactions

become visible through spectacular displays of light in the atmosphere commonly

known as the northern lights.

1Dynamo theory suggests that the rotation and convection of an electrically conductive fluid,

such as the liquid outer core of the Earth, can sustain magnetic fields for astronomical time scales,

and thus may be the source of planetary and stellar magnetic fields. The theory was first suggested

by Larmor [8].

11

1.2.3 The Solar Wind

The Sun, due to the heat and pressure of the plasma in the corona, drives

material away from itself into interplanetary space. This “solar wind” is made

mostly of electrons and protons, and is accelerated away from the sun by both

thermal and magnetic forces (according to current theories) [11]. Particles able

to escape the Sun’s gravitational pull must have substantial kinetic energy, and in

fact the solar wind is made of energetic particles with velocities of typically 400 to

650 km/s. (For protons, this typical velocity is equivalent to energies on the order

of a few keV per nucleon.)

The solar wind expands through the solar system, interacting with the planets,

moons, comets, and other various objects of the heliosphere (including man-made

objects). The effect the solar wind has in these encounters depends on the nature

of the object; it is responsible for the tails in comets, for example. Other bodies

with atmospheres directly impacted by the solar wind would have that atmosphere

stripped away in like manner [12]. The solar wind would have a similar effect on

our own planet, were it not for the Earth’s magnetic field.

The Earth’s magnetosphere acts as a shield from the solar wind. When elec-

trons and ions in the solar wind encounter the Earth’s fields, the Lorentz force2

causes the particles to slow and deflect around the outside of the field. The result-

ing shock wave3 that results where the solar wind directly impacts the magnetic

2The Lorentz force describes the forces felt by charged particles moving in a magnetic field,

where F = q~v × ~B.
3A shock wave occurs when the velocity of the particles rises above or drops below the local

12

field and slows down is called the bow shock (see Fig. 1.4). Through this interac-

tion, the solar wind particles are heated to energies ranging from 1–10 keV. Most

of the solar wind is deflected completely around the Earth, which has the effect of

creating the long tail characteristic of the Earth’s magnetic field. The compression

that occurs at the bow shock is dependent on the exact conditions of the solar wind.

During periods of substantial solar activity, the Earth’s magnetic field can compress

far enough to expose orbiting satellites directly to the solar wind. Though for the

most part the solar wind material is deflected around the Earth, some of the mate-

rial precipitates into the Earth’s atmosphere through the cusps, resulting in direct

interaction between solar and ionospheric material.

1.2.4 Ionospheric Plasma

A description of the ionospheric plasma depends on the specific region of the

ionosphere. In the topside layer, where much of the direct interaction with the solar

wind takes place, most of the ionospheric plasma is ionized oxygen atoms. The

protons of the solar wind penetrate through the topside layer, and at lower altitudes

account for a substantial portion of the plasma composition. At these altitudes, we

also find ionized molecular oxygen (O+
2), and at the lowest altitudes of the ionosphere

we also find ionized nitric oxide (NO+). Each population of the ionospheric plasma

has different properties, such as energy and density. Though there are potentially

many constituents to the ionospheric plasma, within the region of the polar cusp at

sound speed. The sound speed in a plasma is given by c2s = γp/ρ, where γ is the ratio of specific

heats, p is the plasma pressure, and ρ is the plasma density.

13

orbital altitudes the dominant ions are oxygen ions (O+) at energies of up to 10 eV

and 1–10 keV solar wind protons.

The ionospheric plasma is quasi-neutral4, so a complete description should

also include the electron population. In the F layer, the electron density (and by

quasi-neutrality the ion density) will typically be 105–106 cm−3. Electrons released

from photo-ionization in the ionosphere typically have thermal energies of up to a

few eV [13], while the hotter solar wind electrons have thermal energies of a few 10’s

of eV and can be accelerated to 100’s of eV [14].

1.3 Heating in the Ionosphere

The transfer of energy from outside the magnetosphere to the ionospheric

plasma can result in an increase in temperature of either ions or electrons within

the plasma, the neutral gas of the atmosphere interspersed with the plasma, or any

combination of the particle states. In fact, heating of one component can result in

heating of the others through common interactions. In this way, the neutral gas

can be heated both directly and indirectly by heating processes that occur in the

ionosphere.

There are a number of heating processes that can occur in the ionosphere.

While most of these are similar in the means of heating the neutral gas in the at-

mosphere, the subtle distinctions between them give information about the initial

4Quasi-neutrality is an assumption often made in plasma physics that the number of positive

charges and the number of negative charges within an arbitrary volume of plasma are roughly

equal.

14

causes and sources of energy for the heating. In all cases, heating of the neutral gas

causes it to expand, transporting neutral gas to higher altitudes. This rising, or up-

welling, of the neutral gas increases the density at higher altitudes while decreasing

the density at lower altitudes.

The heating processes that are considered most important are electrodynamic

in nature; while extreme ultraviolet (EUV) light from the sun does heat our atmo-

sphere, magnetospheric inputs dominate the energy transfer to the neutral gas in the

ionosphere [15]. These inputs are the result of an interaction between ionospheric

plasma (created by solar EUV ionizations in the ionosphere) and the solar wind.

1.3.1 Joule Heating

When the solar wind passes over the Earth’s magnetosphere, it produces a

current at the magnetopause. The presence of the current links the solar and ter-

restrial magnetic fields, allowing energy to be transferred from the solar wind to

the ionosphere by induction. The electric fields created between the solar wind

and the ionosphere drive currents in the ionospheric plasma perpendicular to the

magnetic field. Since the neutral gas density is much larger than ion density in the

ionosphere, the ionospheric plasma dragged along by the solar wind currents pass

through a collisional neutral gas. The friction created by collisions between the ions

and the neutrals transfers energy from the solar wind to the neutral gas and causes

it to heat. We refer to this specific heating process as Joule heating.

Joule heating is often seen when an increase in activity between the solar wind

15

and the ionosphere causes a temporary perturbation in Earth’s magnetic field over

a large area. These events are called geomagnetic storms. In typical storms, the

peak Joule heating rate occurs near 150 km in altitude [16].

1.3.2 Ohmic Heating

As the solar wind passes over the Earth, the subsequent movement of the

ionospheric plasma can distort the Earth’s magnetic field locally. Distortion of the

magnetic field causes tension-like forces on the plasma. If the tension created by the

distortion and the forces due to the pressure of the plasma itself are unbalanced,

currents will flow along magnetic field lines. These so-called field aligned currents

(FACs) of ionospheric electrons and ions increase the collision rate between the

charged particles, heating the ionospheric plasma in much the same way a resistor

in an electric circuit is heated when current passes through it. When the electrons

and ions upwell due to the increase in temperature, neutral gas is dragged along

with the rising plasma, causing neutral upwelling.

Though the overall effect is the same as in Joule heating, where the heat

transferred to the ionosphere causes the neutral gas to be heated and upwell, the

distinction is made here that the collisions are primarily between electrons and ions

rather than ions and neutrals. To distinguish this process from Joule heating, this

process is called Ohmic heating to be consistent with literature discussing electron

heating and cooling processes [17].

16

1.3.3 Electron and Ion Precipitation

Under certain conditions, where the solar and terrestrial magnetic fields are

aligned favorably for magnetic reconnection5 to occur, the particles in the solar wind

are able to penetrate the magnetopause at the cusp. These particles are sometimes

responsible for the aurora, and can also heat the ionosphere.

Since the typical temperature of ionospheric plasma is on the order of 1–10 eV,

mixing of solar wind plasma of temperature 1–10 keV with the ionosphere increases

the overall temperature of the electron or ion plasma. An increased number of

charged particles can also lead to increased Ohmic heating. The resulting electric

fields from the movement of the heated plasma particles cause the ionospheric plasma

to expand, again dragging the neutral gas along. This mechanism is distinct in that

the source of energetic particles is the solar wind itself, and not the ionosphere.

1.3.4 Alfvén and Other Plasma Waves

At high altitudes, the ionospheric plasma is turbulent. In this turbulent region,

a number of types of plasma waves can occur. In addition, small-scale field aligned

currents can drive waves in localized regions of ionospheric plasma, particularly in

the auroral zone. The energy in these waves can locally heat the ionosphere through

5Magnetic reconnection describes an interaction of a plasma as it moves between magnetic field

regions with different topologies, such as the interface between the interplanetary magnetic field

and the Earth’s magnetosphere. Reconnection causes charged particles to accelerate outward from

reconnection points. Southward pointing interplanetary magnetic fields are most favorable for

reconnection at the dayside magnetosphere. See, for example, [18] for further information.

17

Joule and Ohmic heating. A key distinction in plasma wave heating is that it is

very localized rather than heating broadly over the ionosphere.

1.4 Consequences of Ionospheric Heating

1.4.1 Upwelling

Whenever a gas is heated at constant pressure, it will expand. The heating

that occurs in the ionosphere has the same effect. When the heating is localized

within a particular altitude, the atmosphere expands upward. The expansion de-

creases gas density at that altitude, and increases density at the altitudes to which

it expands. The resulting density enhancement is what we call upwelling. The

upwelling phenomenon can occur for both neutral gas and plasma.

1.4.2 Jeans Escape

The atoms, molecules, and ions in our atmosphere are confined by Earth’s

gravity. Just as a rocket with enough velocity can escape the gravitational field,

so can any of these particles. If there is sufficient heating, a particle can accelerate

to a velocity above the escape velocity, and the particle can leave the atmosphere.

This mechanism is often called Jeans escape, named after Sir James Jeans, who first

described the process. The escape velocity, given by:

ve =

√
2GM

r
(1.5)

18

depends on the mass of the Earth M and the distance from the center of the Earth

r. At orbital altitudes, this value is roughly 10 to 11 km/s. For hydrogen, that

velocity is equivalent to an energy of only 0.5 eV, which is why we see so little

hydrogen naturally occuring in our atmosphere.

For the common constituents of our neutral atmosphere, heating processes

could feasibly cause some of the gas to escape Earth’s gravity and flow into space.

The amount of heating we observe, however, is not sufficient to cause significant loss

of our neutral atmosphere.

1.4.3 Ion Outflow

While there is not a substantial loss of neutral gas through Jeans escape, there

are periods of sufficient heating, particularly in the cusp, of ions such that they are

able to reach escape velocity. For oxygen atoms, the equivalent energy to escape

velocity is 10 eV, low enough to be achieved through the heating processes we have

described. A loss of ionospheric ions does occur under certain circumstances, and

a flow of ions from the polar cusps with energies ∼10 eV has been observed. This

phenomenon is called ion outflow.

1.5 Measurements of Ionospheric Heating

1.5.1 Neutral Upwelling

The phenomenon of neutral upwelling in the cusp has been observed since

early in the space age. In 1963, the Injun-3 satellite experienced an unexpected

19

increase in drag when traveling through the auroral zones [19]. The increased drag

was attributed to an increased ionosphere density in that part of its orbit. Injun-3

orbited at an altitude of only 250 km. Joule heating processes in the stratosphere

and ionosphere seemed the likely source of the increase in neutral gas density.

In 2000, the CHAMP satellite was put into a circular, polar orbit at approxi-

mately 400 km altitude. CHAMP’s suite of instruments includes a very precise and

sensitive 3-axis accelerometer that takes measurements on a much shorter time base

(typically 10 s) than an orbital period. The high resolution data it provides are use-

ful in resolving features in the atmosphere causing drag on the satellite. Using data

from this instrument, Lühr et al. [20] observed that density enhancements could be

as much as a factor of two greater than normal, and that the enhancements were

highly localized to the cusp region. These enhancements were coincident with large

field-aligned currents in the ionosphere.

More recently, a study using neutral density data from the STREAK mission

found a density depletion, rather than an enhancement, at an altitude of 250 km in

the south magnetic cusp [21]. The depletion was only 1–2% of nominal densities,

however in the context of the results of Lühr et al., the results suggest that there is

something causing the neutral density changes other than (or perhaps in addition

to) Joule heating as previously assumed.

One assumption that explains the observed upwelling is that more Joule heat-

ing occurs than was expected. However, recent modeling suggests that much stronger

Joule heating still is not sufficient to cause the observed upwelling, and does not

explain its distinctive localization [22],[23]. Other possible contributors to neutral

20

Figure 1.5: Results from Lühr (2004) [20] showing the deceleration of the CHAMP
satellite over multiple orbits on 25 Sep 2000. The results show significant density
enhancements at high invariant latitude near magnetic noon, corresponding to the
spacecraft passing through the cusp. Invariant latitude (ILT) of the spacecraft and
magnetic local time (MLT) are labeled at each peak. ILT and MLT are essentially
the equivalent of latitude and longitude in a coordinate system for Earth’s magnetic
field. (See Sec. 4.7.5.)

Figure 1.6: Results from Clemmons (2008) [21] showing a depletion in neutral den-
sity at altitudes where enhancement should be seen assuming Joule heating accounts
for the upwelling. Coordinates are in ILT (radial) and MLT (angular), or latitude
and longitude coordinates in the Solar Magnetic coordinate system (see Section
4.7.5). The white oval suggests the approximate location of the day-side cusp, and
matches the location of the depletion.

21

upwelling include Alfvén waves in the aurora (a potential source of extra Joule

heating), small and large scale field aligned currents, and electron precipitation.

1.6 This Study

1.6.1 RENU

To better understand the neutral upwelling phenomenon and the processes

that ultimately drive the heating of the neutral gas, a sounding rocket campaign was

proposed and carried out. The Rocket Experiment for Neutral Upwelling (RENU)

is a collaboration of six research groups that designed a sounding rocket payload

consisting of 14 separate instruments. The payload was designed to launch on a

Black Brant XII rocket and be carried to an altitude of 500 km over the north

magnetic pole.

Ultimately, the RENU campaign was unable to obtain the needed data due

to a malfunction of the nose cone ejection system. The project is currently under

consideration for refunding to launch again.

Our group at the University of Maryland, College Park (UMD) and NASA’s

Goddard Space Flight Center (NASA/GSFC) designed, built, and tested one of the

instruments on board the RENU payload. The keV Ion Magnetic Spectrograph

(KIMS) instrument measures high energy ion distributions between energies of 0.1

and 10 keV. Chapters 2 and 3 of this dissertation describe the KIMS instrument and

its testing. The design of the instrument developed new techniques for measuring

ion energy distributions that are effective for sounding rocket flights, not the least of

22

which is a new, inexpensive fast amplifier system for microchannel plate detectors.

The mechanisms and design parameters of the KIMS instrument will be described

in Chapter 2, and the testing results in Chapter 3.

1.6.2 Statistical Analysis of Ionospheric Energy Sources

With the loss of the RENU payload, another study was undertaken to bet-

ter understand the role electrodynamic energy sources play in neutral upwelling.

This analysis used data from the Fast Auroral Snapshot Explorer (FAST) in ad-

dition to CHAMP data from the Spatial Triaxial Accelerometer for Research (or

STAR accelerometer) to examine the statistical correlations between electromag-

netic (Poynting) energy flux and kinetic (particle) energy flux. As a statistical

study, no direct causal relations for the causes of neutral upwelling can be drawn

from the correlations, but we can examine the relative importance of these energy

sources. This analysis identifies the properties most useful to study when a second

RENU-like payload is prepared. Further background for this study is provided in

Chapter 4, a description of the analysis methods in Chapter 5, and the results of

the analysis in Chapter 6.

23

Chapter 2

Ionospheric Ion Detection and the KIMS Instrument

The environment in the ionosphere and in space is hostile and unforgiving

to instruments of any sort. Any instrument designed to make measurements in

these regions is a collection of compromises. The goal in developing an instrument

to measure fields or particle properties in space is to sense the properties needed

without affecting the environment itself. In reality, any detection scheme will exert

some influence on its surroundings at the detriment of accuracy in measuring the

properties of interest. For particles, such as ions, instruments are designed to collect

ions from the surroundings in such a way as to be able to determine their sources

and their energies. In some cases, the instrument can also identify the different ion

species present.

Over the years, a number of different detection schemes have been developed.

Each has its advantages for certain types of measurements and certain circum-

stances. Many of these designs use electric fields to select specific energies per

charge or, in some cases, direct particles to a specific detector. These designs often

require sweeping voltages in order to scan energy per charge and/or viewing angles.

Such a detection scheme is termed a spectrometer, as it can only measure one value

of the spectrum (be it energy or direction) at a time. There are also detectors

that are able to measure a range of values simultaneously. Devices that are able to

24

capture a range of values of a spectrum are termed spectrographs.

Descriptions of many successful ion and electron instrument designs that have

flown on important and historical missions have been collected and compiled for

reference [24]. The articles in this compilation help to understand how the various

types of spectrometers and spectrographs were built and how they function. Though

these instruments are very useful and well-designed, new instrument designs make

it possible to examine new environments and phenomena in unique ways.

An ion spectrograph that takes measurements of the local charged particle

energy spectrum at millisecond time resolution is ideal for a study of the neutral

upwelling phenomenon. On a sounding rocket flight, mass is often not so much

of a consideration as on orbiting spacecraft, and so a permanent magnetic field

can be used to separate ions of different momenta in the instrument rather than

using a sweeped voltage to scan ion energies. Aside from the mass of permanent

magnets and its supporting structure (the yoke), this scheme has the disadvantage

of affecting the magnetic fields in the region around the instrument. Materials with

high magnetic permeability and high magnetic saturation points are used to shield

other instruments and the local plasma external to the instrument from the strong

internal fields. In this chapter, we describe a spectrograph designed for the RENU

sounding rocket campaign. This instrument is able to measure ions with energies

between 0.1 and 10 keV (assuming singly charged hydrogen ions) at a rate of 250 Hz.

The instrument design is called the KeV Ion Magnetic Spectrograph (KIMS).

25

2.1 The KeV Ion Magnetic Spectrograph

The KIMS design makes use of two permanent magnets in a high magnetic

permeability yoke. The yoke is specially designed to provide two regions of constant

magnetic field. The magnets and yoke assembly are referred to as the magnetic

circuit. Inside the constant field regions, ions undergo cyclotron motion1. The radius

of the circular ion trajectories is proportional to the momentum per charge of the

ion. In this way, the magnetic field effects a spatial separation of ions according to

their momentum per charge. In the Earth’s cusp, the bulk of the ion composition

is singly-ionized hydrogen atoms (protons) from the precipitating solar wind, and

so, to a reasonable approximation in this region, the momentum distribution is

equivalent to an energy distribution of the ionospheric protons.

2.1.1 Energy Spectrum Dispersion

The predicted energy distribution for the design can be modeled simply. Since

cyclotron motion is circular, we can find the radius of rotation simply:

rc =
v

ωc
=
mv

qB
=

√
2mE

qB
(2.1)

By placing a detector in the same plane as the instrument entrance aperture, parti-

cles will be detected after half of a cyclotron rotation. The position on the detector

where an ion will land is one diameter from the entrance point, or, accounting for a

1 Cyclotron motion refers to the gyration of charged particles in a magnetic field. The Lorentz

force q~v× ~B causes charged particles moving perpendicular to the magnetic field to follow a circular

path (helical if the velocity has a component parallel to ~B).

26

Figure 2.1: Diagram showing the motion of ions in the KIMS magnetic field. Ions
with more momentum (or energy for like-species) per charge have a larger radius,
intersecting the detector farther from the entrance aperture.

finite width aperture,

d = 2rc + s =
2
√

2mE

qB
+ s (2.2)

where s is the entrance point measured from the center of an aperture of width w

with s positive when located closer to the detector than the aperture center. With

these conventions, the value d is the distance from the aperture center to the impact

point, providing a useful reference from which to measure the detector position.

2.1.2 Field of View

In reality, ions do not always enter the instrument at normal incidence. The

incidence directions to this instrument will be described as azimuthal (angles away

from normal parallel to the planes of the magnet surfaces, but still perpendicular

27

to the magnetic field) and perpendicular (as in perpendicular to the magnet surface

plane, but parallel to the magnetic field, see Fig. 2.2). A more general expression

for the trajectory that accounts for the azimuthal angle of incidence is

d = 2 cos θ

√
2mE

qB
+ s (2.3)

where θ runs between the angular limits on the instrument’s view with θ = 0 im-

plying normal incidence. The KIMS instrument is designed with an azimuthal field

of view that ranges between +19◦ and -6◦. KIMS is mounted on the RENU payload

with the azimuthal directions pointing in an arc along the direction of movement

of the rocket. This results in a field of view looking radially outward and slighty

elevated to the payload trajectory. Since the trajectory of RENU is designed to be

aligned with the local magnetic field, ions travelling in directions nearly perpendic-

ular to the local magnetic field are measured by the KIMS instrument.

The instrument also has a finite acceptance angle perpendicular to the plane

of the magnets. Cyclotron motion only results from the perpendicular component

of the ion’s velocity, so the ions are distributed according to their perpendicular

momentum. The effect of nonzero angles in this perpendicular direction is to reduce

the observed energy of the particle. Since nonzero perpendicular motion implies

motion parallel to the magnetic field, the velocity component in this direction is

not subject to magnetic forces, and the cyclotron motion will be determined by the

remaining component perpendicular to ~B.

The height h of the spaces between the magnets and the partition of the

28

Figure 2.2: Field of view for the KIMS instrument. Azimuthal direction looks
upward, between +19◦ and -6◦. Perpendicular direction looks radial, limited by the
mechanical design to between ±5◦.

29

instrument defines the perpendicular acceptance angle φ, as given by

|sinφ| < h

π

qB

mv
(2.4)

At large enough angles, ions will no longer be detected as they will collide with the

magnetic circuit before reaching the detection plane. For increasing energy, the angle

at which this occurs decreases with 1√
E

. At small vertical angles, the ion velocity

component parallel to ~B is negligible. Small, finite acceptance perpendicular to the

plane of the magnets, then, only limits the view of the instrument and does not have

an appreciable effect on the energy response. In KIMS, the height of each partition

is approximately 12.7 mm. With the given magnetic fields of 0.1 and 0.27 T and

measured energies of 0.1 to 10 keV, the perpendicular angular acceptance must be

less than 16◦ with a corresponding reduction in measured energy of less than 8% (see

Fig. 2.3). At this angle, only the lowest energy ions (∼100 eV) are detected, and so

the mechanical structure of the instrument aperture further limits this acceptance

to 5◦ on either side. This limit lowers the effective measured energy reduction to at

most a negligible 0.8%.

2.2 Microchannel Plates

The detector used in the KIMS instrument consists of a pair of microchannel

plates (MCPs) [25]. The MCP is a matrix of narrow glass tubes, or channels, sliced

into thin wafers. Each face of the wafer is coated with a conductive material. An

incident particle of sufficient energy will cause electron emission from the semicon-

ductive wall of the channel struck by the particle. When a strong electric field is

30

Figure 2.3: Particles can only reach the detector in KIMS if they enter the instru-
ment within a finite field of view in the perpendicular direction. A particle entering
at 5◦ will reach the detector with a negligible difference in its effective energy. A 100
eV particle entering at 17◦ would have a more noticible energy reduction, but would
collide with the magnetic circuit’s partition before reaching the detector. Higher
energy ions collide at lower angles. In KIMS, the mechanical structure holding the
magnetic circuit limits the view to ±5◦ in the perpendicular direction.

31

Figure 2.4: Diagram of MCP function, taken from Wiza [1979].

created by applying an electric potential across the plate, the secondary electrons

are accelerated until they collide with the channel wall themselves, producing ad-

ditional secondary electron emissions. The end effect is an avalanche of secondary

emissions as each newly emitted electron is driven further down the channel by the

electric field. The result of a single particle incident on the MCP is an emission of a

large number of electrons, usually on the order of 103. A second plate added to the

system increases the total gain to 106, providing easily detectable current pulses for

single particle events.

Output current pulses from the MCP are collected with a segmented anode. A

circuit board is etched to leave a number of exposed pads located behind the MCP

output. The charge pulses are collected by the plates and amplified by a charge

sensitive amplifier that triggers a logic pulse from a discriminator. The logic pulses

are counted to record the number of events that occur at a given pad over a given

time. Since electron emission in the MCP is a statistical process, a varying number

of electrons can be emitted for each event. The resulting distribution of charge

32

pulse amplitudes are commonly known as the pulse height distribution (PHD). The

pulse height distribution of an MCP can be described as a negative exponential

when the plates are not saturated [26], and have been found to be a property of

the plates themselves, being nearly independent of the type of incident particles

[27]. These properties simplify the detector, as its calibration requires only an

appropriate threshold for counted pulses rather than a full pulse height analysis

[28]. This threshold is selected to separate the PHD from the background noise in

the detector electronics.

2.2.1 KIMS Detector Response

For a given momentum and angle of incidence, a uniform distribution of ions

across the aperture width will map to a region of the same width at the detector

plane. This creates a nearly triangular probability distribution for the energies of

particles detected by any given pad on the segmented anode for a given angle of

incidence (see Fig. 3.3). Including all angles of incidence creates a more Gaussian

distribution. A Monte Carlo simulation including a range of energies, aperture

positions, and angles of incidence provided a model of the energy response function

for the instrument design. (See Section 3.1.1 for more details.)

2.3 Project Scope

The concepts behind the design of KIMS are general and can be adjusted to

suit the needs of a variety of enivronments. The design of the KIMS instrument was

33

Figure 2.5: Response of one of the anode segments at normal incidence only, and
with the full range (-6◦ to +19◦) of azimuthal incidence. The triangular shape at a
given incidence results from the mapping of the aperture width to the same width
at the detector plane.

34

based on previous designs done at the University of Maryland and used spare com-

ponents from those instruments. These earlier designs were also intended for cusp

ion measurements. The basic parameters for the earlier instruments matched well

with the needs of the RENU project. Changes to the heritage design were necessary

to accommodate a new MCP detector system and a new telemetry interface.

2.3.1 Goals for KIMS

When KIMS was added to the instrument suite on RENU, a low-energy ion

detector (observing ions of thermal energy to 800 eV) had already been included on

the payload. The primary goal for KIMS, then, was to observe high-energy ions in

the 1–10 keV range. The overlap of the lower energy range of KIMS with the other

ion instrument on the payload provided the added benefit of redundancy and cross

calibration between ion detectors.

KIMS is designed to take measurements at a rate of 250 Hz, determined pri-

marily by the capabilities of the telemetry unit included on RENU. This sample rate

is fast enough to potentially observe the cyclotron motion of ionospheric atomic oxy-

gen. (O+ in the Earth’s magnetic field has a cyclotron frequency of about 100 Hz.)

The ability to observe this motion would have the added benefit to KIMS of allowing

a coarse mass discrimination not possible using only the momentum separation via

cyclotron motion in the instrument’s magnetic fields. Such a mass discrimination

would be of interest, but not essential for the goals of the KIMS instrument.

35

2.3.2 Changes From Heritage

The original instrument design called for use of a set of 20 discrete channel

electron multipliers (CEMs), separated into groups of 10 channels for each energy

range (100–1000 eV and 1–10 keV). While robust and reliable, the CEM detectors

proved to be prohibitively expensive with a long lead-time for manufacture. The

KIMS design instead uses an MCP stack with a segmented anode as the detector.

The anode design uses 10 pads for each of the energy ranges, keeping a similar

configuration to the original CEM design. MCPs have been used in a number of

sounding rocket flights, and various shapes and sizes are available commercially, off

the shelf. However, the design for KIMS was constrained by the volume in which

the original CEM detectors were to fit. As a result, a custom size MCP plate and

holder were designed, manufactured, and qualified for robustness on a sounding

rocket flight.

To accompany the MCP design, the instrument electronics were also redesigned.

The new electronics make use of an inexpensive IC amplifier (as opposed to the more

costly AmpTek A111 discrete amplifiers). The circuit was designed to operate at

a high frequency, and the overall cost for the complete amplifier circuitry for all

20 channels was less than the price of one of the original amplifiers. The new de-

sign was tested and proved satisfactory for the anticipated flux rates of 104–105 per

(cm2 · s · sr · eV) as observed by one of the earlier instruments on which the KIMS

design is based (see Fig. 2.6). While ideal on a sounding rocket flight, the amplifier

design is not radiation hardened, and would require further modification for orbital

36

or exploratory satellites.

The MCP detector allowed the use of a lighter, lower power high-voltage power

supply because of its low power consumption in operation. The high voltage circuit is

designed with two supplies for redundancy, and still weighs less than the one supply

design used in the earlier instruments. The design of the circuit allows changes to

the applied voltage on the MCPs, requiring the change of only one or two resistors.

2.3.3 Basic Parameters for KIMS

The KIMS design uses two fields of magnitude 0.1 T and 0.27 T. These fields

give energy ranges (for protons) of approximately 100–1000 eV and 1–10 keV over

the length of the detection area. The detection area (or the size of the MCPs)

is roughly the size of a standard microscope slide (2.5 cm x 7.6 cm). An aperture

3 mm wide and 17 mm high opens each region to a field of view that spans −6◦ to

+19◦ in azimuth and ±5◦ in elevation (see Fig. 2.2).

An anode pad pattern of quadratically increasing pad widths was chosen to

provide a similar ∆E/E response over the full energy range to that of the original

CEM design (see Fig. 3.4). The chosen pad widths were constrained by the size

of the detector itself, and so a constant ∆E/E, requiring a much larger detector

size for reasonable pad widths, was not feasible in this design. Each anode pad is

connected to an individual amplifier and discriminator circuit with an output to an

FPGA that counts the number of detected pulses in every 4 ms interval. The FPGA

reports the count values of each anode pad to the rocket telemetry system at a rate

37

Figure 2.6: Figure showing results from measurements taken with instrument de-
signs on which the KIMS instrument was based. The overlayed curves describe the
rocket orientation applicable to this previous study. The contour plot indicates the
flux values one can expect in the polar cusps. For KIMS, with a subtended solid
angle of approximately 8.55× 10−3 sr, a ∆E of about 200 eV (∆E/E of about 0.25),
and an anode size of roughly 1 cm2 indicates an expected maximum count rate of
roughly 104 counts per second per anode at low energies. The KIMS electronics are
designed to be able to handle up to 106 counts per second.

38

of 250 Hz.

Power is provided to the instrument from the +28 V battery on the rocket.

This voltage is regulated to 12 V for the high voltage power supply control and 3.3 V

for the amplifier, discriminator, and FPGA telemetry circuitry. Two high voltage

power supplies connected in parallel provide feedback-controlled -1.6 kV to the MCP

stack. Total power consumption for the instrument during operation is estimated

at a maximum of 8.4 W. Data from integration testing indicated the instrument

performed at half this power on the ground when the MCPs were not fully powered.

Full power consumption was estimated generously to provide a comfortable margin

of error for flight conditions.

The instrument and electronics are enclosed in a µ-metal case with dimensions

9 cm x 17 cm x 20 cm. The combined yoke of the magnetic circuit and this enclosure

are effective in shielding the strong magnetic fields inside the instrument, and reduce

the stray field to 10 nT at a distance of 1 m, as tested at the Magnetic Calibration

Facility at NASA’s Goddard Space Flight Center (see Sec. 3.3.1). An aluminum

bracket was designed to mount the instrument vertically on the rocket payload, with

the azimuthal view along the rocket’s field-aligned trajectory. The instrument view

is centered at about +6◦ above a directly radial view to the magnetic field. The

entire assembly weighs less than 4.5 kg.

39

Figure 2.7: Photos of the magnetic circuit. The apertures are the smaller openings
on the right side. The partition can be seen between the two halves through the
space where the detector is mounted on the left side. The permanent magnets
are attached to the interior of the top and bottom plates, secured with aluminum
clamps. These mangets create fields of 0.1 T on the top and 0.27 T on the bottom.

2.4 KIMS Design

2.4.1 Magnetic Circuit Design

The magnetic circuit refers to the portion of the instrument that creates the

constant magnetic fields needed to accurately disperse the incoming ions by their

momentum per charge. The magnetic circuit is an assembly of specially designed

pieces (the yoke) around two permanent magnets. The yoke provides a return path

for the magnetic field and shields the exterior of the instrument from the strong

magnetic fields inside. The two permanent magnets, of different strengths, are

mounted inside the yoke to create the magnetic field.

The hallmark of the magnetic circuit design is the Vanadium Permendur2

yoke that encases the magnets. Vanadium Permendur is a steel alloy with a high

cobalt concentration and a small portion of vanadium. The alloy is heat treated

2Vanadium Permendur is also called Hiperco 50TM

40

carefully before machining, giving it a high magnetic permeability that does not

saturate in strong magnetic fields. The thickness of each Vanadium Permendur

part is determined through careful simulation of the magnetic fields to optimize the

homogeneity of the field strength inside the instrument throughout the detection

region. Vanadium Permendur is brittle and its magnetic properties sensitive to

both heat and shock. All of the parts made from this alloy were machined via wire

EDM.

The magnetic circuit assembly consists of two halves, with one magnet for

each side of the instrument. Each magnet is a semi-circular plate with a 6 cm ra-

dius. Each is fabricated with an assembly of custom designed segments to create a

uniform field across the face of the plate. The magnets in our design have differing

strengths of approximately 0.1 T and 0.27 T. Each magnet is placed carefully on

one of two Vanadium Permendur plates that become the top and bottom of the

magnetic circuit. The magnets alone are strong enough to keep themselves in place,

however aluminum clamps around the magnet pole faces prevent them from shifting

during vibration. Each magnet is then surrounded with a Vanadium Permendur

shell. Openings in the shells provide for the instrument apertures and the detector

assembly. The two sides of the magnetic circuit are brought together with a Vana-

dium Permendur partition that separates the two regions of magnetic field. The

entire assembly is aligned using three non-magnetic, stainless steel roll pins. Brass

screws are used to secure the clamps in place.

The final part in the magnetic circuit is a wire mesh grid placed at the face of

the detection plane opening. This grid is grounded along with the entire magnetic

41

Figure 2.8: Photo showing the mesh grid in place on the magnetic circuit. An
aluminum clamp holds the grid in place. The entrance apertures for the two sides
of the instrument are visible on the right.

circuit to prevent the electric fields of the detector assembly from distorting the

cyclotron motion of ions inside the instrument. The grid is 70 lpi, 90% transmission,

nickel mesh sandwiched and spot welded between two phosphor bronze frames.

2.4.2 Mechanical Design

The magnetic circuit is held in a close fitting, aluminum bracket referred to

as the clamshell. The clamshell halves bolt together, securely holding the magnetic

circuit while eliminating the need for fasteners in the brittle Vanadium Permendur

parts. The clamshell also serves as a mounting platform for all of the electronics

and the detector assembly. The entrance aperture on the clamshell is cut to provide

the −6◦ to +19◦ azimuthal field of view into the instrument.

42

Figure 2.9: The clamshell halves and assembled around the magnetic circuit. The
detector and electronics are all fastened to the clamshell using tapped bosses on the
outside surfaces.

The circuit boards are mounted on the instrument sides with threaded stand-

offs. The standoffs also support the high-permeability, µ-metal shield that covers

the entire instrument. The shield has openings for the two apertures, the three

cable connectors for power and telemetry, and a safety plug that prevents the high

voltage from being activated accidentally while at atmospheric pressure. All of the

fasteners and connectors in the instrument are made of non-magnetic materials.

A mounting bracket designed specifically for the RENU sounding rocket was

fitted for the KIMS instrument. The bracket fastened into the bottom and the

back of the instrument while leaving access to the cable connections. The bracket

is bolted to the rear bulkhead of the payload, giving the KIMS instrument a view

radial to the axis of the payload.

43

Figure 2.10: The KIMS instrument enclosed in its µ-metal case and attached to its
mounting bracket, and mounted on the RENU main payload. The red plate in the
first image covers the aperture to the instrument for shipping.

2.4.3 Detector Design

The MCP detector stack was designed to fit in the space originally allotted

for the CEM detector array. An MCP stack is typically held by compression in a

housing made of an insulating material. The compressive housing, by its nature,

masks a small portion of the detection area of an MCP. The KIMS detector thus

has a 24% reduction in detector area in comparison to the CEM array due to the

housing, however the difference is negligible for the anticipated ion fluxes in the

cusp.

2.4.3.1 MCP Housing

The MCP housing is built from four pieces: an outer housing, an inner housing,

and two “rabbit ears” that extend to the position of the high voltage supply board.

The rabbit ears are fixed to the inner housing, but the inner and outer housings are

44

Figure 2.11: Engineering drawing and cross-section of the KIMS MCP detector.
The individual components seen in the cross-section are, from bottom to top: outer
housing, HV grid, insulator, contact ring, MCP 1, contact ring, MCP 2, contact
ring, insulator, anode board, spring plate, and inner housing.

maintained in place when connected directly to the instrument. This arrangement

eliminates excess connections, minimizing the size and weight of the detector.

2.4.3.2 MCP Stack

The MCP stack assembly consists of (in order) a grid frame held at a high

negative voltage, an insulator, an electrical contact, the first MCP, an electrical

contact, the second MCP, an electrical contact, an insulator, the anode board, and

finally the spring plate. The spring plate and inner housing have matching blind

holes that accommodate a set of ten small springs. This mechanism provides ade-

quate compression for maintaining electrical contact to the plates while protecting

the plates from vibration during launch.

The electrical contacts, including the front grid, are rectangular frames with

extended tabs bent at 90◦. These tabs are fastened to a set of conductive tabs on the

rabbit ears. The rabbit ear contacts are bent over the top of the rabbit ears, where

45

they are fastened to the high voltage board. This configuration provides electrical

connection between the electrical contacts in the stack to the high voltage board.

To prevent shorts between the extended tabs and the frames within the stack, a pair

of thin UltemTM inserts on either side of the stack slide between the tabs and the

stack pieces.

The anode board is a gold plated, etched PCB with a set of 22 pins extending

from the rear. Each region of the magnetic field is exposed to one half of the board.

The ten pads on each half are sized to produce reasonable ∆E/E values over the

full range of energies while maintaining safe pad spacings to minimize cross-talk

between the pads. The pins, a set of 22 0.1” pitch square header pins, connect to

the first board in the electrical stack assembly to send the charge pulses of each

pad to their respective amplifiers. Two of the pins provide a ground connection for

ground planes above and around the anode pads.

The detector assembly is fastened to a plate that mounts on the face of the

instrument. When in place, the front of the detector is sufficiently offset from the

grounded grid inside the magnetic circuit to prevent arcing when the negative high

voltage is applied to the MCP stack. This mounting method also allows easy access

and removal for assembly and testing of the instrument.

2.4.4 Electrical Design

The electrical system consists of two primary components: the two ampli-

fier/telemetry boards, which have the electronics for counting, processing, and for-

46

Figure 2.12: Exploded view of the MCP stack as a rough sketch for all the parts.
From bottom to top are the outer housing, the grid frame, an insulating ring, elec-
trical contact, the first MCP, electrical contact, second MCP, electrical contact,
insulator, the anode board, the spring plate, and the inner housing. Not shown in
this sketch are the tabs on the electrical contacts or the ears on the inner housing.

47

Figure 2.13: View of the anode board inside the detector. Glass slides are used here
in place of the MCPs for mechanical testing to prevent contamination of the MCPs.

Figure 2.14: Mechanical fit check of the MCP stack design. The front end of the
detector is offset from the grid inside the magnetic circuit to prevent arcing.

48

matting for transmission during flight; and the electrical stack, which provides power

to the MCP stack. The two amplifier boards attach to the sides of the clam shell,

while the electrical stack assembly attaches to the front of the clam shell, directly

above the detector. The stack assembly itself consists of three parts: a distribution

board, which connects the anode board pads to the two amplifier boards; a ground

plane, which shields the pulse signals from noise; and the high voltage supply and

control boards, which turn the high-voltage power supplies on at the appropriate

time during flight.

2.4.4.1 Amplifiers and Telemetry

The amplifier portion of the detector system consists of a charge sensitive pre-

amplifier followed by a shaping amplifier. These functions are both provided by

an individual OPA 2354 dual op-amp chip for each pad on the anode board in the

detector. Each amplifier output is sent to an individual discriminator, provided by

an LMV331 comparator, to detect pulses. The input of the pre-amplifier is also

connected to a 1 pF test input for calibration purposes (see Appendix A.4). Each

of the two amplifier boards has a collection of 10 amplifier-discriminator pairs, one

for each pad on the corresponding side of the instrument.

Calibrating the amplitude of the shaped pulse from a known charge input

allowed us to determine the voltage threshold for detected pulses. Pulses with a

minimum of 500,000 electrons are counted. The pulse discrimination threshold is

typically set by examining the dark count pulse height distribution of the MCPs

49

[29], but this property was not examined for the KIMS instrument MCPs due to

time and equipment constraints. Instead, a threshold typical to the types of MCPs

used in the instrument was chosen. The gains of the MCPs used are high enough

that there are typically more than 106 electrons in an event pulse from a pair of

plates, so 5 × 105 electrons is a reasonable threshold while keeping above typical

noise levels.

Each discriminator provides a logic pulse output that is connected to one of 10

inputs of an FPGA. The FPGA is programmed to count pulses over a 4 ms period.

The counts for each channel are buffered, formatted, and sent to the main payload’s

pulse code modulation (PCM) stack to be transmitted down to the tracking station.

All formatting for the KIMS instrument data is done on-board, so a simple serial

data stream of the values in each amplifier’s counter in the FPGA is sent to PCM

stack of the rocket.

2.4.4.2 Electrical Stack Assembly

The electrical stack assembly consists of four circuit boards stacked together

and attached to the detector stack. These boards distribute the anode signals to the

two amplifier/telemetry boards and control the high voltage applied to the detector.

The distribution board has traces that connect the anodes in the anode board

to the individual amplifiers. The traces on the anode board lead to a pin config-

uration such that we have a pattern of pads A0, B0, A1, B1, ... , A9, B9. This

designation uses A and B to distinguish between the two magnetic field regions,

50

Figure 2.15: Diagram showing the detector signal processing. There are 10 amplifier
units for each side of the instrument. The 10 units are counted individually in an
FPGA that formats the data for the telemetry stream.

51

Figure 2.16: Amplifier/Telemetry board mounted on the KIMS instrument. An
identical board is mounted on the opposite side. Each amplifier (a–j) consists of
a pre-amplifier and shaping amplifier in a dual op-amp package. The amplifiers
are followed by a discriminator. The outputs of each of the 10 discriminators are
connected to individual channels in the FPGA and counted. The FPGA reports the
counts from each 4 ms interval to the payload telemetry unit. Note that because
the boards are identical, amplifier a is connected to anode pad 0 on the KIMS-A low
energy side, but to anode pad 9 on the KIMS-B high energy side. The telemetry is
formatted in the amplifier order A-a, B-a, A-b, B-b, etc., or equivalently to anodes
A0, B9, A1, B8, etc.

52

with A corresponding to the 0.1 T side and B to the 0.27 T side. The numbers 0-9

identify the individual pads in order of increasing energy. The pad widths increase

from pad 0 to pad 9. The amplifiers on each board are labeled a through j. Since

the amplifier boards are identical, the amplifier sequence reverses between the two

sides due to the amplifier board orientation on the instrument; A0-9 connect to

amplifiers a–j respectively on their amplifier board, while B0-9 connect to amplifiers

j–a respectively on their board (see Fig. 2.16).

The ground plane is a two-sided PCB with no traces. The soldermask is

removed in the areas where the assembly is fastened together to ground the two sides

of the board to the instrument case. This piece is simply to isolate and minimize

noise in the MCP anodes.

The high voltage supply board consists of two independently controlled Emco

Q30-12 high voltage DC–DC converters. These power supplies have a proportional

output controlled by a 0–12 V input. They are connected in parallel to provide

redundancy during flight. The rabbit ears from the detector stack extend beyond the

distribution board and ground plane to contact the pads on this board that provide

the voltages at the various points. These are fastened with 0-80 screws to secure

the electrical connection. The high voltage supply is connected across a voltage

divider, using the resistance of the MCPs in series with high-voltage resistors on

the supply board. The supplies are set to provide -1.6 kV across the entire detector

stack, with an approximately 70 V drop from the front grid (at -1.6 kV) to the first

MCP, as well as the second MCP to the anode board (at ground). This voltage

was determined to be within the optimal operating range for the MCPs used in the

53

detector.

Finally, the high voltage control board that drives the HV supplies connects

to the supply board. A feedback loop on this board is used to maintain a constant

-1.6 kV output from each supply. In addition to controlling the high voltage supplies,

this board also connects to the PCM stack to report three analog values in each 4 ms

time interval. The feedback voltage on each high voltage supply is reported, as is

the temperature of the control board.

2.4.5 Ground Support Equipment

Ground support electronics (GSE) were developed to accompany the instru-

ment during testing and integration. The GSE system provides a simulated con-

nection to the rocket’s telemetry unit to check the condition of the instrument

and obtain calibration data. The GSE uses an FPGA to simulate the telemetry

communication and a TI MSP430 microcontroller to interface the instrument to a

computer via USB. The GSE was used for both testing and calibration of the KIMS

instrument.

The amplifier boards are programmed to provide a test signal into each am-

plifier. Pulses at a specified frequency are sent from the FPGA to the test input of

each amplifier on the board, using progressively lower frequencies on each successive

amplifier (dividing by a factor of 2 at each amplifier). This test signal provides a

known count-rate pattern that is reported back to verify that the circuit is work-

ing properly. Each amplifier/telemetry board is programmed with a unique base

54

Figure 2.17: Diagram showing the high voltage system. A feedback loop from the
high voltage supply output is used to keep the output steady through flight, even
if the bus voltage were to change. Three analog signals monitoring the health of
the power supplies are measured and included in the telemetry. These measure the
temperature and voltage values of the high voltage control board.

55

Figure 2.18: Electrical Stack Assembly mounted on the KIMS instrument. The
top board seen here is the high voltage control board. The high voltage power
supplies are on the board immediately behind it, followed by the ground plane and
distribution board that connects to the amplifier boards on either side.

56

frequency to distinguish the signals between the two sides of the instrument, using

100 kHz on the KIMS-A board (each subsequent frequency is reduced by a factor

of two for the 10 amplifiers on the board) and 200 kHz on the KIMS-B board. The

GSE is programmed to issue the same commands to the boards for testing purposes.

For testing and calibration, the GSE uses an MSP430 microcontroller to in-

terface an FPGA simulating the rocket PCM stack with a USB serial connection to

a computer. The MSP430 programming is a simple system that triggers from the

simulated telemetry signals given by the GSE FPGA. When the FPGA simulates

a frame-ready state of the PCM, the MSP430 reads out the proper data from the

telemetry frames corresponding to KIMS data, formats the values into 16-bit hex-

adecimal, and reports the values via serial USB to the computer. A serial terminal

program capable of logging the data stream to a file is used to record the data.

The instrument itself continually takes and reports data, but data are only recorded

when requested. For testing purposes, the MSP430 was programmed to wait for

a single character command input from the terminal program and then record the

next 100 samples reported by the instrument telemetry boards.

2.5 KIMS Summary

In summary, the KIMS instrument uses an efficient permanent-magnet sys-

tem to disperse ions by their momentum. For a given ion mass, this dispersion is

equivalent to a separation by energy. Each side of the instrument measures ten

ranges of energy simultaneously, with side A measuring 100 to 1000 eV, and side

57

B measuring 1 to 10 keV. An MCP detector is used to count individual ions inci-

dent to the detector plane, with 10 anodes on each side collecting the charge pulses

from the MCP stack. The charge pulses are counted with an inexpensive integrated

circuit amplifier/discriminator pair and formatted for telemetry by an FPGA. The

MCP stack is powered with a high-voltage DC–DC converter using feedback con-

trol to maintain a constant bias voltage to the MCPs through the course of flight.

The entire instrument is enclosed and shielded to minimize stray magnetic fields,

and provides an excellent data collection rate at a size and mass compatible with

sounding rocket requirements.

58

Chapter 3

KIMS Analysis, Data, and Results

The KIMS instrument was thoroughly tested and calibrated prior to flight.

Instrument properties were also modeled numerically, and the tests performed show

excellent agreement with the model calculations. The instrument electronics were

also tested and adjusted to optimize operating parameters for the particular sound-

ing rocket flight. In addition, the instrument underwent vibration and magnetic

testing to qualify for the rocket flight profile and parameters. The magnetic testing

also provides understanding of what impact stray magnetic fields from KIMS might

have on other instruments on the payload.

Operational testing done at the University of Maryland used an established

vacuum chamber system. MCPs require pressures below 2× 10−6 torr for safe op-

eration. Calibration testing was done at a pressure of approximately 1× 10−6 torr.

An electron bombardment ion source provided the ions for the tests in this chamber

(see Fig. 3.1). This type of ion source uses a hot tungsten filament as a source of

electrons. These electrons are accelerated into a chamber with the gas to be ionized.

The ions are then accelerated from the chamber, passsing through an electrostatic

lens to form a focused beam of ions. A positive voltage applied to the ionization

chamber is used to accelerate the ions. Because the ions are created with a very low

directed velocity, this voltage also determines the energy of the ions in the beam

59

Figure 3.1: The ion source used for KIMS testing and calibration. The test gas is
leaked in through the flange seen at the bottom of the stack. Tungsten filaments
fastened to the ceramic plate emit electrons that are accelerated into a collision
chamber just above the ceramic plate. The energetic electrons ionize the gas in
the collision chamber. The ions are extracted into the electrostatic lens above the
collision chamber. The resulting ion beam can be deflected by applying a voltage
to the two plates at the top of the source.

leaving the source. The design of the particular source being used could be operated

safely to a maximum ion energy of 3 keV.

60

3.1 Modeling and Operating Parameters

3.1.1 Instrument Simulation

A Monte Carlo simulation of the KIMS instrument operation, written in the

Python language, provided a benchmark for instrument performance. The magnetic

fields in the instrument and the ion masses are fixed in the simulation. Simulated

ions are given uniform distributions of energy over a specified range, entrance offset

from the aperture center, and azimuth within the instrument field of view by random

sampling over each parameter. Sufficient random samples are accumulated to scan

the entire response of the instrument with adequate statistics. By calculating the

position an ion strikes the MCP at the end of its trajectory, we can determine the

energies, offsets, and angles that reach particular sections of the detector plane.

These correspond to the expected response of a chosen anode design. The code for

this simulation can be found in Appendix B.1.

As anticipated from the linear relationship of the detection position to the

finite aperture width, the response functions for each anode take a nearly Gaussian

shape as seen by the obtained histograms as seen in Figure 3.2. The histograms

provide an expected energy distribution over each anode, and are characterized by

the mean expected energy. The histograms also provide a width measurement ∆E

given by taking the width of a rectangle having the same height and area as the

histogram. By using normalized histograms, this width is simply given for each curve

by ∆E = 1
hmax

. A plot of the calculated mean energies and their corresponding ∆E

values is given in Figure 3.3.

61

Figure 3.2: Histograms from a simulation for the high energy side of KIMS using a
uniform energy distribution , offset distribution from aperture center, and entrance
angle distribution. The histograms are normalized over the total counts in the
simulation such that each curve has an area of 1. This set of curves provides a mean
energy and energy spread (∆E/E) for each anode segment, with the curves from
left to right corresponding to pads B0 through B9.

62

Figure 3.3: Simulation calculations showing the mean energy and expected ∆E for
each anode. The mean energy is given by the location of each point and the value
of ∆E by the vertical bar at each point on the plot.

63

Figure 3.4: Plot of ∆E/E from the KIMS simulation. The dashed line corresponds
to a best fit of a quadratic curve to the values. The anode pad dimensions were
chosen to give a response similar to the original CEM design, but with a smoother
change in ∆E/E over the array of anode segments.

3.1.2 Magnetic Field

The magnetic field of the instrument was measured in two different ways. The

first used a gaussmeter with a Hall probe. A jig made from Delrin placed inside the

opening for the detector allowed the Hall probe to be precisely located at half of the

gap height on either side of the magnetic circuit. Field strengths were measured in

the center of each side of the instrument at various depths into the magnetic circuit

to produce the maps shown in Figure 3.5. A major issue with the gaussmeter is

the lack of a precise calibration, though a comparison to a typical value for Earth’s

magnetic field suggested it was accurate to within 20%. An estimate of the Hall

probe calibration provided a measurement of the low field at 0.098 T and the high

field side at 0.278 T. This measurement may have significant absolute error, but it

does show clearly the uniformity of the field in the interior of the KIMS instrument.

64

Figure 3.5: Measured fields on the interior of the KIMS instrument. A refers to the
low energy side (with anodes A0-9), and B to the high energy side (with anodes
B0-9).

The homogeneous field is expected for the magnetic circuit design. Preliminary

measurement of the magnetic field as a function of height in each side of the magnetic

circuit also showed uniformity within 10%.

The instrument was then placed in a vacuum chamber with a bare anode de-

tector in place of the MCPs. An electrometer was used to detect the small currents

collected on each anode. The ion source, using hydrogen gas, scanned the responses

of each anode over ion energies from 50 to 1200 eV. The dominant signal corre-

sponding to the H+
2 base is clear, but background gas also provided weaker signals

65

Figure 3.6: Photo of the bare anode detector used for measuring the absolute field
strength. The conductive pads are exposed directly to the flux of ions at the de-
tection plane in the instrument. The pads collect incident ions and the generated
currents (on the order of 10’s of pA) are measured by an electrometer. The detector
is attached to a plate that fastens to the instrument’s clam shell.

in water and nitrogen. A weak proton signal can be seen as well. The results of this

test are shown in the contour plot of Fig. 3.7. Superimposed on this plot are the

predicted positions of each ion species from the Monte Carlo model. Because the

model predictions match these results well, we can conlude that the absolute values

of the magnetic fields are, in fact, very close to the intended design values of 0.1 T

and 0.27 T used in the model.

3.1.3 MCP Applied Voltage

MCPs require a bias voltage across their thickness to operate, and can be

operated over a range of voltages. The optimal voltage for operation depends on

the plate properties and resistances, and is unique to each set of plates. As a general

rule of thumb, a nominal voltage of about 1 kV per plate is needed. To determine the

optimum voltage for the plates used in KIMS, we examined the response of the MCP

66

Figure 3.7: Bare anode results with simulated response lines overlayed for the two
sides of the KIMS instrument. Simulation curves correspond to, from top to bot-
tom, H+, H+

2 , H2O
+, and N+

2 . The contour plot shows the general response of the
instrument in energy for anode pads 0–9 across the horizontal axis. The current at
a given pad is a function of energy as previously discussed. The measured response
using the bare anode matches the simulation quite well, with the difference being
attributed to the uncalibrated values of the magnetic field measurement. This plot
uses the estimated 0.098 and 0.278 T of each field. The low energy side suggests the
estimate is low, and actually closer to the expected 0.1 T.

67

Figure 3.8: Plot showing the MCP response vs. applied voltage (control voltage
to the supplies) for various channels of the instrument. The general shape of each
curve is independent of the energy, and MCPs in detection systems are typically
operated at the “knee” of this curve. The actual applied voltage used on KIMS is
marked on the plot.

detector at different applied voltages. For particle detection, we typically choose

an operating voltage that approaches the point of maximum sensitivity without

saturating the plates. This saturation can be seen in Fig. 3.8. The plates saturate

when very little signal gain is obtained for an increase in voltage. An MCP can be

easily damaged if too high of a voltage is applied. (Operating at these voltage levels

is safe at the recommended operating pressure of 10−6 torr.) From this plot, we are

able to determine the optimal operating potential by selecting a voltage just above

the “knee”. In the case of the MCPs used in the KIMS instrument, the value turns

out to be -1.6 kV, or 800 V per plate.

68

3.2 Calibration

Full calibration of a particle instrument requires measuring the instrument

response across a full range of energies using ion beams of known current and en-

ergy. KIMS was calibrated using an un-calibrated ion source, limiting knowledge of

the absolute densities being measured. The ion source could, however, accurately

determine the range of energies measured at each anode pad, leaving the absolute

densities somewhat undetermined (though the actual densities will be at least as

great as that measured by KIMS). Though not ideal, this time and cost-saving mea-

sure is helped by the presence of a second ion instrument on the payload. Cross

calibration between the two instruments over their overlapping energy range can

provide knowledge of the absolute scale of ion fluxes being measured. In any case,

the primary interest in this mission was the relative profile of the energetic ions with

height, and the absolute fluxes are not essential.

The nominal energy ranges quoted for KIMS, 100–1000 eV and 1–10 keV,

correspond to the energies of protons (H+) with a momentum per charge that leads

to the ion reaching the detector. Because the ion source could only be used with an

accelerating voltage of no more than 3 kV, helium (He+) gas was used for calibrating

the instrument. Because the position on the detector scales as
√
mE, this test is

equivalent to measuring the response with H+ of energies up to 12 keV, which is

adequate to cover the full range of the KIMS instrument.

The response of both the KIMS-A low energy and KIMS-B high energy sides

of the instrument can be considered identical, assuming uniform magnetic fields and

69

Figure 3.9: Calibration data from the high-energy side of the KIMS instrument.
Overlayed are the simulation results for various background gas elements.

identical anode pad configurations. Using He+ has the disadvantage of lowering the

equivalent energy range for KIMS-A to 25–250 eV, a regime where the ion source

is less reliable. Fortunately, initial testing with hydrogen gas (H+
2) between 50 and

500 eV indicated the expected response found in the model, and so this assumption

is not unreasonable. For brevity, then, only the results for the KIMS-B calibration

are presented here.

The calibration data, shown as a contour plot in Figure 3.9, show excellent

agreement with the simulation results. Again, model calculations for various gasses

are overlaid on the contour plot. The strongest signal is, by far, the He+ used as the

base gas, though other background gasses do appear in the instrument signals. It

70

should also be noted that the widths of energies measured at each pad are in good

agreement with the model.

These data were taken with the ion source beam directed at the aperture with

no azimuthal component (ie. at 0◦). Data were also taken with the ion source at -5◦,

+5◦, and +10◦. These data sets show nearly identical curves with reduced count

rates at the extreme angles. As found in the simulation, the azimuthal acceptance

range designed into the instrument is small enough to not significantly affect the

instrument response, but large enough to provide a sufficient number of counts

during flight for good statistics. The solid angle subtended by the view of the KIMS

instrument is approximately 0.075 sr.

3.3 Integration Testing

3.3.1 External Magnetic Field

In addition to the internal magnetic fields, the external fields were measured.

These measurements were performed at the magnetic calibration facility at NASA

Goddard Space Flight Center. Sensitive magnetometers were placed at distances

of 20, 40, 60, and 80 cm from the center of the KIMS instrument (see Fig. 3.10).

The 3-axis data from the magnetometers were combined to obtain magnetic field

magnitudes at these distances. There are noticeable fringe fields at the surface of

the instrument case, but for reasonable distances (other payload instruments were

not within 30–40 cm of the KIMS instrument) the fields fall as 1
r3

, characteristic of

a dipole field. The weak field at these distances indicates the effectiveness of the

71

Figure 3.10: Photo showing placement of the magnetometers during the stray field
measurement.

shielding from the magnetic circuit and µ-metal case.

The external fields can be fit to a function of the form

B =
a

x3
+

b

x2
+
c

x
+ d (3.1)

The measured external fields are well fit with the coefficients a = −4.02×106 nT·cm3,

b = 1.79 × 106 nT · cm2, c = −2.06× 104 nT · cm, and d = 96.7 nT. This fit gives

an accurate representation of the near field of the KIMS instrument to a distance

of about 100 cm.

A second fit to a roughly dipolar form is given by:

B =
a

x3
+

b

x2
(3.2)

where a = 24.8× 106 nT · cm3 and b = 0.4× 106 nT · cm2. As seen in Fig. 3.11, this

second fit gives a good description of the external fields for distances greater than

40 cm, with an accuracy of better than 10 nT.

While these fits do not show the direction of the magnetic field, they give an

idea for overall offset the instrument will cause to the instruments on the payload.

72

Figure 3.11: Fits to stray field measurement results. These values are absolute
magnitudes and do not indicate field direction.

Near the instrument, this offset is roughly comparable to the typical 30 µT of the

Earth’s magnetic field in the ionosphere. However, since the instrument is designed

with permanent magnets, the offset is constant and easily measured at the magne-

tometer locations so that the offset may be subtracted from their measurements.

3.3.2 Vibration

The KIMS instrument was subjected to vibration tests individually and on the

RENU payload. A typical flight profile for a Blackbrant XII rocket was used for the

test, with accelerations up to 12 times that of Earth’s gravity per Hz. To prevent

contamination of or damage to the MCPs, the vibration tests were done with glass

slides in place of the MCPs. Since MCPs have shown to be robust in vibration

tests of previous instrument designs, this substitution was satisfactory for meeting

73

the overall payload requirements. The slides were cut to match the dimensions of

the MCPs, and no issues with vibration were found. Since the orientation of the

MCPs is such that the trajectory lies along their long axis, the strongest anticipated

vibrations would be along the most rigid dimension of the plates. Because the slides

showed no damage or shifting, the KIMS detector stack design proved to be sufficient

to keep the microchannel plates intact through the launch of the sounding rocket.

3.3.3 Electronics

During integration testing, the interface between the KIMS instrument and

the telemetry module of the sounding rocket was also examined. This test sim-

ply ensured that the communication between the KIMS telemetry boards and the

payload PCM stack was done properly. With the telemetry board test patterns ini-

tiated, the expected signals were reported through the PCM stack, indicating good

handshaking and data transfer for the instrument.

3.4 RENU

The KIMS instrument was mounted on the lower bulkhead of the RENU pay-

load with a view oriented radially outward (directed slightly up due to the designed

field of view). RENU launched from the Andøya Rocket Range in Andenes, Norway

on 12 Dec 2010 with a nominal trajectory over Longyearbyen, Svalbard. The nomi-

nal apogee was expected to be 473.2 km altitude. Further details about the launch

criteria and conditions can be found in Appendix D.

74

Unfortunately, a failure in the nose cone ejection prevented RENU from ob-

taining the data. While the loss of the payload is unfortunate, there are other means

of examining the neutral upwelling phenomenon that led to the development of an-

other study using satellite data to examine the importance of various electrodynamic

energy sources in neutral upwelling and ion outflow.

75

Chapter 4

Data Analysis Background

The primary problem in understanding the neutral upwelling phenomenon is

a lack of data observing the various electromagnetic energy inputs to the ionosphere

in conjunction with neutral upflowing events. While it would be preferable to make

such measurements in situ, which is what the RENU project hopes to accomplish,

there is another means of observing this phenomenon indirectly using statistical

correlations of parameters measured by satellites. While no satellite exists that

can observe all of the parameters of interest to this particular phenomenon at the

necessary orbital configuration, a careful study using multiple spacecraft can provide

insight into the most likely places to search for the cause of the neutral upwelling

phenomenon.

As the RENU project was unsuccessful at providing meaningful data for the

study, we will turn to examining this phenomenon using data acquired by two satel-

lites: the Fast Auroral Snapshot Explorer (FAST) and the Challenging Minisatellite

Payload (CHAMP). Both of these missions are highly successful and have already

provided significant results to the space science community. (See for example [30],

[31], and [32] for examples of FAST results, and [33], [34], and [35] for examples of

CHAMP results.)

It is worth noting that this study cannot, by its very nature, substitute for

76

direct (prefereably in situ) measurements. A correlation study of neutral upwelling

with various energy inputs cannot determine the sources of the phenomenon, as

correlation alone does not imply causality. The benefit of such a study, rather, lies

in pointing to features in the ionosphere that appear in conjunction with upwelling

events. By determining how other parameters of the ionosphere change when the

neutral density in the cusp increases, we have information about the particular

measurements that may be most beneficial in determining the overall cause.

4.1 Satellite Background

4.1.1 FAST

The FAST satellite was the second mission chosen for NASA’s Small Explorer

Satellite Program (SMEX). FAST was launched on 21 August 1996 into a highly

elliptical orbit with an inclination of 83◦. FAST was deployed in a reverse cartwheel

configuration1 with a 5 s period. The instruments included on the spacecraft were a

leap forward in the technologies used to study auroral phenomena. The instruments

provide a full, 360◦ view of plasma particles in the spin plane of the spacecraft at a

much faster data rate than had been done previously [36].

The FAST electric field instrument consists of six booms. Four booms extend

28 m radially from the spacecraft, each with two spheres located at the end and at

5 m in from the end. The other two booms extend along the spacecraft’s spin axis

1A reverse cartwheel configuration has the spacecraft spinning opposite the direction of travel.

As such, the spin angular momentum vector points opposite the orbital angular momentum vector.

77

Figure 4.1: Diagram of the FAST satellite and its instruments. (Figure taken from
[36].)

78

3.8 m from the spacecraft center. Each of these two booms have only one sphere.

On deployment, one of the four radial booms did not extend fully [37].

The FAST magnetic field instrument uses a three-axis fluxgate magnetome-

ter for measuring DC magnetic fields and a three-axis search coil magnetometer

for measuring AC magnetic fields. Both magnetometers are placed on 2 m booms

extending radially from the spacecraft [38].

FAST also includes a set of 16 electrostatic analyzers for measuring charged

particle energy distributions. Sets of four top-hat style analyzers are distributed at

90◦ intervals around the spacecraft. Each analyzer has a 180◦ field of view, providing

a full 360◦ view at all times for the FAST spacecraft with ∼ 90◦ overlap between

adjacent instruments. The 180◦ field of view is separated into 16 individual segments

in each spectrometer. Each set of four includes an ion spectrometer, an electron

spectrometer, and a pair of electron spectrometers operating in conjunction with

the other sets as an electron spectrograph [39]. Further details about the particle

instruments are provided in Section 5.2.3.

4.1.2 CHAMP

The CHAMP satellite was a project developed at the GeoForschungsZen-

trum (GFZ) in Potsdam, Germany, with sponsoring groups including NASA. It

was launched 15 July 2000 into a nearly circular polar orbit with a nominal altitude

of 454 km. CHAMP was 3-axis stabilized, providing a consistent reference system

for the instruments on board. The goal of CHAMP was to provide measurements

79

of the gravitational and magnetic fields of the Earth as well as atmospheric density

and composition. The extremely sensitive accelerometer on CHAMP provides pre-

cise data on the forces exerted on the satellite that are used to measure both gravity

fluctuations and atmospheric density through measurements of satellite drag [40].

The primary instrument of interest for this study on CHAMP is the STAR

accelerometer. The instrument design consists of a proof-mass electrostatically sus-

pended in a cage. The instrument applies voltages to keep the mass translationally

and rotationally stable. The applied forces are directly counter to the outside forces

acting on the satellite. The STAR instrument was placed at the center of mass

of the CHAMP satellite to remove the influence of gravity on it. It measures the

very small changes in gravitational acceleration and forces caused by air drag, the

Earth’s albedo, and solar radiation.

The STAR accelerometer is aligned with one axis along the spacecraft direction

of travel. The measured acceleration along this axis provides the data necessary for

determining the density of the atmosphere by the drag felt in this direction. There

are detailed methods of deriving atmospheric density from this data [41], however a

simpler model as used by Lühr et al. [20] is sufficient for this study. In the simple

model, drag in the direction of travel is proportional to density by

d =
1

2
ρcf

A

m
v2 (4.1)

The values cf (drag coefficient), A (cross sectional area of the satellite), and m (mass

of the satellite) are all constant, and so for a constant velocity, d is proportional to

ρ, and the decceleration measured in this direction is a sufficient measure of the

80

Figure 4.2: Diagram of the CHAMP satellite and its instruments. (Figure credit
GFZ Potsdam.)

atmospheric density.

4.2 The Strangeway Study

On 24–25 September 1998, a particularly interesting ion outflow event was ob-

served by the Polar satellite [42]. This event was also observed by the FAST satellite,

along with strong field-aligned currents in the ionosphere [43]. Using the electric

and magnetic field data provided by the instruments on FAST, it was observed that

the outflow exhibited a strong correlation with Poynting flux in the direction of the

local magnetic field. An effort was then made by Strangeway [44] to examine the

correlations of this particular event with other parameters, particularly in terms of

81

precipitating electron flux.

These two studies used a collection of 33 orbits of the FAST satellite, centered

about the September 1998 outflow event. To filter out high frequency field fluctu-

ations, Strangeway averaged the field data over 4 s intervals, then interpolated the

averaged data to 1 s intervals. Only data at times where ion outflow was measured

in each orbit were included. The selected times were found to correspond to the

satellite passing over the dayside cusp. The parameters used in the statistics were

also averaged over the entire selected window of each orbit, giving a single data

point for each of the 33 orbits in the linear regression.

Because the study was done on such a distinct and limited time period, there

are many unanswered questions about these correlations. Do the correlations per-

sist over time, or are they singular to this particular event? With the aggressive

averaging used in the study, would the results change with changes in the averaging

periods, or inclusion of more data in each average? And, most particularly, what is

the change in neutral density during such periods?

The statistical study presented in this dissertation addresses these questions

and expands on Strangeway’s work to examine these correlations in greater detail.

While it is unfortunate that the CHAMP satellite was not in orbit in 1998, prevent-

ing the examination of the neutral density during the September 1998 event, there

are a number of time periods where the orbits of FAST and CHAMP overlap suffi-

ciently to get meaningful information from of a cross-study between these two data

sets. The month of July 2002 proves to be a particularly good period for study, as

the orbital planes of the two satellites are within 5◦ of each other, a number of neu-

82

tral upwelling and ion outflow events were observed, and data are readily available

from both satellites during the month.

Unfortunately, one of the FAST satellite’s electric field probes developed a

fault in September, 2001. Electric field data are available during the time intervals

studied, however the faulty probe compromises their integrity. While the faulty

data make a correlation result for Poynting flux values inconclusive during this

time period, Strangeway found that Poynting flux and electron precipitation density

themselves show a correlation. This suggests that particle data should be sufficient

in this analysis.

4.3 Ion Outflow

This study correlates energy inputs with neutral upwelling and ion outflow.

Ion outflow is a phenomeon that occurs at the polar cusps when ions are heated to

energies such that they are able to escape Earth’s gravitational field. This mecha-

nism can be compared to atomspheric, or Jeans, escape [45].

In ion outflow, a stream of charged particles (primarily oxygen) flow along

magnetic field lines out of the cusp, but at a slight angle of a few tens of degrees.

A satellite passing over the cusp would observe a maximum ion flux at pitch angles

on either side of the direction anti-parallel to the local magnetic field, and a low

flux directly anti-parallel to the field line. This resulting pattern is characteristic of

what is referred to as an ion conic [46], [47]. (See Fig. 4.3 as an example of these

signatures.)

83

Figure 4.3: An example of a pitch-angle spectrogram of ions in the cusp, from
FAST 9/25/1998. The first three panels show energy spectra at directions 0◦–30◦,
40◦–140◦, and 150◦–180◦ from the local magnetic field direction respectively. The
following panels show the pitch angle spectra for low energy (< 1 keV) and high
energy (> 1 keV) particles. The 180◦ direction is anti-parallel to the local magnetic
field, or pointing roughly upward from the Earth’s northern pole. In the pitch angle
spectra, a reduced count of particles is observed at all energies in this direction.
However, in directions a few tens of degrees to either side, a large flux of low energy
particles is observed. This pattern is characteristic of an ion conic.

84

Ion outflows reach high enough altitudes in the ionosphere to be injected into

the plasma sheet and ring current of the magnetosphere [48]. Some with sufficient

energy even leave the Earth’s magnetosphere completely, joining the solar wind as

“pick-up ions” [49]. For oxygen atoms at these altitudes, the required energy for

escape (assuming the Jean’s escape mechanism) is around 10 eV, which corresponds

to the typical energies measured in ion outflow streams.

4.4 Ionospheric Energy Sources

The sources of energy that cause ion outflow have been associated with elec-

trodynamic systems, particularly from waves in the aurora [50] and Poynting flux

from the electric and magnetic fields in the ionosphere [43]. Outflow has also been

associated with electron precipitation in the cusp [51].

The unexpected result of Strangeway et al. showed that these three parameters

all show strong correlations with the ion outflow flux over the 33 orbit period. The

parameters also exhibited strong correlations with each other. These correlations

indicate the possibility of a power law scaling between the energy inputs and the

ion outflow. As it is statistical in nature, this result does not necessarily mean that

the particular inputs cause ion outflow, but rather that there exists some connection

between them that can be described mathematically.

85

4.5 Statistics of Ionospheric Energy Sources

Three electrodynamic systems have shown to be strongly correlated with ion

outflow: Poynting flux; electron precipitation; and extremely low frequency (ELF)

waves. ELF waves are a known mechanism for heating ionospheric oxygen suffi-

ciently for outflow to occur [52], and heating processes such as Joule heating or

electron ionization are known to lead to ELF waves, indirectly linking Poynting flux

and electron precipitation with ion outflow [43]. It comes as no surprise, then, that

the Poynting flux and electron precipitation would show good correlation with ELF

waves.

Surprisingly, both Poynting flux and electron precipitation show good correla-

tion with ion outflow directly, and with each other. Strangeway et al. used the field

and particle flux data from the FAST satellite to examine the correlation between

Poynting flux, electron number flux, and electron energy flux with ion number flux,

as seen in figure 4.5. Of these, only electron energy flux exhibited weak correlation.

However, by using dimensional analysis, a parameter using the electron energy and

number fluxes was established to describe the electron precipitation density within

the cusp [44]. This parameter is given by

nep ∝ f 3/2
en /f

1/2
ee (4.2)

where fen is the electron number flux in cm−2· s−1, and fee is the electron energy flux

in mW/m2. Correlation of this parameter with the ion number flux proves to have a

higher correlation than all of the other parameters examined in the Strangeway study

(see fig. 4.6). Strangeway found the proportionality constant to be 2.134×10−14. A

86

Figure 4.4: Diagram depicting the statistical relationships between energy input
parameters in the ionosphere with ion outflow. Solid arrows are used in relationship
that are known to be causal, medium-tone outline arrows where a causal relation-
ship might exist, and light-tone outline arrows where a statistical correlation exists
between two otherwise independent parameters. The correlation coefficients are re-
ported for correlations with ion outflow measurements, and show good correlations
in each. Figure from [44].

87

Figure 4.5: Correlation relations of the energy inputs measured by the FAST satellite
for 33 orbits centered on the 25 Sep 1998 event (orbits 8260-8292).

similar result was obtained using data from the Polar spacecraft (at a higher altitude

then FAST) for the year 2000 [53].

In this portion of the dissertation, the consistency of these correlations are

examined over a larger number of orbits and at different periods of time. Because of

the known relationship between Poynting flux and electron precipitation with ELF

waves, and because the electron precipitation density parameter encompasses both

the number and energy fluxes, we limit our study to correlations with the Poynting

88

Figure 4.6: Correlation of the electron precipitation density parameter nep. This
plot uses a symetrical logarithm plot, with a linear scale for the intervals closest
to zero and a logarithmic scale for the other intervals. Negative values of the ion
flux indicate in-flow as opposed to outflow, and negative values of the electron
precipitation density indicate upwelling as opposed to precipitation. Individual data
points and the orbital averages are both plotted, showing not only the excellent
correlation obtained for nep, but also the consistency of the averages in comparison
to the individual data points.

89

flux and electron precipitation density.

4.6 Statistics in Neutral Upwelling

From the measured values of ion outflow and energy fluxes with the FAST

satellite, it is apparent that there is a large discrepancy in the energy balance from

the different sources. The amount of energy available in the ionosphere for heating

processes is orders of magnitude greater than the energy required to obtain the

observed outflows. As the plasma density at these altitudes is significantly less than

the neutral density, we expect that some of the remaining energy goes into heating

processes of the neutral gas. If this is the case, a correlation between the energy

inputs with the neutral density should exist.

Because the FAST satellite does not have an instrument that measures neutral

gas density, we use the acceleration data from the CHAMP satellite to obtain this

information. It is non-trivial to correlate data sets from two separate satellites. To

calculate correlations, it would be ideal to have field, charged particle, and neutral

density measurements all measured at the same point in space and instant in time,

which is impossibile using two spacecraft. Since the study uses orbital averages, we

can instead use averages from similar time periods for each satellite. As long as the

orbital inclinations of the two satellites are close together and the phenomena being

observed have lifetimes longer than an orbital period, the exact conjunction of time

is less essential and this averaging scheme provides an adequate measurement of the

process.

90

In the case of the correlations between FAST and CHAMP, time periods were

selected where the orbits of the two satellites lie within 15◦ of each other. The

two time periods chosen are July and February 2002. The July period has the

two satellites orbiting within 5◦, while the February period is between 5 and 10◦.

CHAMP, at a 400 km altitude, has a shorter orbital period than FAST. During a

single orbit of FAST, CHAMP will pass over the polar cusp at least once but no more

than twice. Data from CHAMP is selected by identifying the positions in latitude

where FAST data are included for the study. CHAMP data showing a deviation

from the orbital trend in the density variation near the same time period as each

pass of the FAST satellite over the dayside cusp are selected for inclusion in the

analysis. Averages and local maxima of these deviations, or spikes, are compared

to the selected orbital averages of the FAST data.

Before being able to use the CHAMP data, the orbital positions of the data

need to be compared from within the same coordinate system. FAST coordinates

are reported in Solar Magnetic (SM) coordinates, while CHAMP orbits are reported

in Geocentric Equatorial Intertial (GEI) coordinates. To work with the two datasets

together, the CHAMP orbital data is transformed into SM coordinates. The follow-

ing section describes the computations needed in order to transform the coordinates,

and the code used to do so is found in Appendix E.3.1.

91

4.7 Geophysical and Geomagnetic Coordinate Systems

In space physics, there are a number of coordinate systems in common use,

each used to describe positions, velocities, and directions in terms of some convenient

inertial reference frame. For examining the motion of celestial bodies in relation to

the Earth, we often use a coordinate system centered on the Earth with an axis

fixed to point to the First Point of Aries (or the point in the constellation Aries that

is perpendicular to the line between the sun and the Earth on the Vernal Equinox),

which we call the Geocentric Equatorial Inertial (GEI) system. In describing events

dealing with interactions between the sun and the Earth, however, it is often more

convenient to work in a geocentric system with an axis fixed along the line between

the sun and the Earth, called Geocentric Solar Ecliptic (GSE). More commonly,

most people are familiar with the lines of latitude and longitude used in describing

location on the surface of the earth, called the Geographic (GEO) coordinate system.

The magnetospheric system is best described in a different set of coordinates, similar

to GEI but rotated to the location of the magnetic poles. Two types of coordinates

often used in magnetospheric studies are Geocentric Solar Magnetospheric (GSM)

coordinates and Solar Magnetic (SM) coordinates.

Each of these systems as well as others are commonly used, and transfor-

mations between systems are well understood. Russell has provided an excellent

summary describing the systems and the transformations between them [54]. Here

we will describe the coordinate systems and transformations pertinent to this par-

ticular study.

92

4.7.1 Geographic Coordinates (GEO)

Geographic Coordinates describe a system centered on the earth with the

z-axis through the North geopgraphic pole and the x-axis through the equator and

prime meridian. Usually expressed in terms of latitude, longitude, and altitude,

these coordinates are commonly used by anyone familiar with geographic maps.

This system is often used in transformations between other systems as well.

4.7.2 Geocentric Equatorial Inertial Coordinates (GEI)

For systems that need to reference the earth without its rotation, we switch

to a coordinate system where the x-axis does not rotate with the earth. Convention

sets the x-axis to point perpendicular to the Earth-sun line on the Vernal Equinox.

This direction happens to point toward the constellation Aries, and is known as the

First Point of Aries.

Transformation from GEO to GEI is simply a rotation about the z-axis, but

the angle of rotation must be calculated based upon the date and time. This angle,

known as the Greenwich Hour Angle (GHA) or Greenwich Sidereal Time (GST),

can be found with a number of different formulas of varying accuracy. A commonly

used formula, given by Russell, is as follows:

θGST = 279.690983 + 0.9856473354×DJ + 360× fD + 180 (4.3)

In this formula, DJ is given by the Julian Date, while fD is the time of day expressed

as a fraction of a day. The result is the Greenwich Hour Angle in degrees. The

resulting value can be restricted to be within the range of 0—360◦ by calculating

93

the result modulo 360.

4.7.3 Geocentric Solar Magnetospheric Coordinates (GSM)

For systems related to the Earth’s magnetic field, it is useful to have a coor-

dinate system relative to the magnetic poles rather than the geographic poles. In

addition, the position of the sun is a convenient fixed point for these systems. GSM

aligns the z-axis to be in the same plane as the Earth’s magnetic dipole moment.

The x-axis points toward the sun.

Transformation from GEI to GSM is linear, however it also requires a calcu-

lation of not just the GHA, but also the position of the sun. Again, formulae are

available to make this transformation easy, particularly those given by Russell which

provide an accuracy to within 0.006◦ [54].

4.7.4 International Geomagnetic Reference Field

In addition to solar position, GSM requires knowledge of Earth’s magnetic

field. Unfortunately, the magnetic field is not constant, particularly over long time

periods. The magnetic poles are not aligned and drift independently. Models have

been developed, however, that allow us to predict the Earth’s magnetic field to

good accuracy. While it is not a perfect dipole, the dipole term of these models is

generally sufficient to locate the position of the north magnetic pole and make the

transformation from GEI to GSM.

One of the more commonly used models of the magnetic field (and that used

94

in this study) is the International Geomagnetic Reference Field (IGRF) [55]. As

more data are acquired, updates to the model are released periodically. The most

recent model is IGRF-11, released in 2010. Strangeway uses IGRF-7 (1995) in his

calculations, and high resolution data for the FAST satellite are processed using the

same model regardless of the time period selected. To remain in a consistent coor-

dinate system with the orbital parameters provided for the FAST satellite, IGRF-7

is used in transforming CHAMP orbital data for this study.2

4.7.5 Solar Magnetic Coordinates (SM)

GSM is particularly useful for studying the magnetosphere and solar wind. For

systems closer to earth and more strongly associated with the local magnetic field,

a slight adjustment can improve the accuracy. The Solar Magnetic (SM) coordinate

system rotates the GSM system about its y-axis to bring the z-axis parallel to the

dipole moment. We can then express this system in terms of latitude and longitude,

just as we do in Geographic coordinates. In this system, latitude, measured in

degrees, is called Invariant Latitude (ILT). Longitude, measured in hours with 12:00

being the line of longitude aligned with the x-axis, is called Magnetic Local Time

(MLT). (Note that magnetic noon in this system, the x-axis, is aligned with the

sub-solar point, or the point where solar radiation directly impinges the Earth. The

x-axis does not, however, point directly at the sun in this system.)

SM coordinates are used in this study, and have the same assumptions and

2Further information on and the matrix coefficients used in the IGRF model can be found at

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (retrieved 27 Sep 2011).

95

requirements described above for GSM coordinates. A simple way to view the

transformation is to take GEI coordinates, and rotate about the z and y axes by the

angles given by the longitude and latitude of the north magnetic pole respectively,

in that order. Then a rotation about the new z-axis brings the x-axis to point at

the sun. Russell gives this transformation as a single rotation matrix as follows:

X1 X2 X3

Y1 Y2 Y3

D1 D2 D3

Vx

Vy

Vz

GEI

=

Vx

Vy

Vz

SM

(4.4)

The vectors X and Y are obtained from the vectors S and D, which describe

the Earth-Sun direction and the dipole direction in GEI, respectively. After calcu-

lating the vectors S and D,

~Y =
~D × ~S

| ~D × ~S|
(4.5)

~X = ~Y × ~D (4.6)

4.8 Summary

The goal of this portion of the dissertation is to perform a statistical analysis

relating ionospheric energy inputs to ion outflow and neutral upwelling by using

data from the FAST and CHAMP satellites. The techniques are based on Strange-

way’s work and used to expand the results reported by him. To correlate neutral

density data taken from the CHAMP satellite’s accelerometer, time periods within

the orbital period of FAST are selected for computing the average densities corre-

sponding to the averages from each FAST orbit. The study is limited to two energy

96

inputs: electromagnetic energy (Poynting flux) and electron precipitation density.

The results of this study will demonstrate that the power law relationship observed

for these inputs with ion outflow is indeed a consistent result and that a correlation

exists between ion outflow and neutral upwelling, suggesting a relationship with

these energy inputs.

97

Chapter 5

Data and Analysis Software

In this chapter, we give a description of the analysis techniques and software

employed in analyzing the FAST and CHAMP data sets. FAST data are available

for download from a website established at the University of California, Berkeley

[57]. Data are downloaded by orbit number in the Common Data Format (CDF)

[58]. CHAMP data are available at the Information System and Data Center at the

Helmholtz Center, Potsdam, Germany [59].

One of the underlying goals of this study was to create a software framework

that simplifies the analysis of data from both FAST and CHAMP in examining

these correlations. Our hope was to make the process as autonomous as possible

and to be able to provide processed data in an easily accessible format. The Python

language was chosen to do the analysis of the data, partly because it provides

a binary data storage method that makes data products compact, portable, and

easily documented. An overview of basic Python tools needed in this study is given

in Section 5.1.

The data processing consists of preparing the various spacecraft measurements

and interplating each to a common time base. DC electric and magnetic field data

are smoothed and interpolated to provide the calculation of Poynting flux, as de-

scribed in Section 5.2.2. AC electric field data are integrated to examine extremely

98

low frequency waves (see the same Section). Particle data are integrated to pro-

vide ion and electron flux measurements using methods described in Section 5.2.3.

Particle data used in the analysis are selected based on ion outflow signatures and

adjusted when necessary to account for the spacecraft motion. Neutral gas density is

derived from acceleration measurements, using methods described in Section 5.2.6.

Because these data come from the CHAMP satellite rather than the FAST satellite,

special handling is done to identify data for analysis by examining CHAMP orbits

over the northern cusp at times corresponding to FAST orbits over the cusp within

an orbit period. The processed data are then averaged and analyzed with statistical

methods described in Sections 5.2.4 and 5.2.7.

5.1 Python

To meet the goals of the software development, the Python programming lan-

guage is an ideal environment for establishing a consistent framework. Because of

its scripting capabilities, Python is very good at handling the ASCII text format

of the CHAMP satellite, something that typical computation enviornments such as

Matlab or IDL do not handle well. The recent public release of the SpacePy library

made it possible to also work with CDF archives within Python, which was the pri-

mary motivation to use Matlab or IDL. The C language also does well with parsing

text files and handling CDF, but visualizing and plotting the data would require a

great deal of effort. By combining the power of Python with the NumPy [60], SciPy

[61], Matplotlib [62], and SpacePy [63] libraries, all of the needed tools to easily

99

handle the data sets are available within a single environment.

Finally, Python provides a binary data storage format that makes it simple to

store computational results for further processing later. This format, the “pickle”,

allows transferring data and metadata easily from one user to another. The code

used in this dissertation (found in Appendix E) was built to be a general framework

for using FAST and CHAMP data sets. There are some differences between how

the two satellites are handled in the code, partly due to the different data formats

and availablity, and partly to explore different ideas of interaction in the inital

processing.

Currently, two somewhat incompatible versions of Python are available. This

code was developed using the Python 2.7 branch. Ideally, the data products of the

code would be useable in either the 2.x or 3.x branches, and indeed the pickle format

was designed to be able to do that. However, the NumPy array structure encodes

in pickles slightly differently between the 2.x and 3.x systems (as of this writing, at

least), and so provision must be made to use the same branch of Python as that in

which the data products are made.

5.1.1 Python Structures

The code used in this study make extensive use of two structures provided

by the Python framework: the list and the dictionary. A list is simply an ordered

collection of data, and is denoted using the bracket:

list = [1, 2, 3]

100

The data included in a list can be of any type, and there is no stipulation that each

entry in the list must be of the same type. Elements are referenced by index, with

the leftmost starting at 0 (ie. list[0] = 1 and list[2] = 3 in the above example).

Elements can also be referenced using a negative index, with the rightmost starting

at -1 (ie. list[-1] = 3 and list[-3] = 0 in this example). Portions of lists can

be referenced using the slice, with the subset including the starting index and not

including the ending index (ie. list[0:2] = [1, 2]. The notation list[:2] is

equivalent to a slice starting at the first (0th) element and including up to index 2.

list[1:] would start at index 1 and include all the following elements, and list[:]

includes all elements.

The dictionary is a structure that is similar to the list, but with a user defined

index. Dictionaries are denoted with braces. For example,

dict = {0:1, 1:2, 2:3}

creates a structure similar to the above list, with dict[0] = 1 and so forth. Users

are not limited to integer indicies, however, and the following is equally valid:

dict = {’a’:1, ’b’:2, ’c’:3}

This example would allow us to reference each element as dict[’a’] = 1 and so

forth. The dictionary structure is particularly useful in creating data structures for

storage, as saved arrays can be referenced by their function rather than having to

specify the arrangement of data in the file.

101

5.1.2 NumPy

Numerical Python, or NumPy, is an extension to the Python language that

provides array-like structures and extensive computational libraries. NumPy arrays

can be made of any dimension or size within the bounds of the computer’s memory.

The array is essential in scientific computing not only for vector calculations, but

also for performing operations on any time or spatial series. For example, to scale

a standard Python list such as 3× [1, 2, 3], a loop is required to create a new list:

list = [1, 2, 3]

newlist = []

for i in list:

newlist.append(3*i)

NumPy simplifies this process by allowing operations to extend across the array:

import numpy

list = numpy.array([1, 2, 3])

newlist = 3*list

NumPy also provides essential libraries, such as fft, histogram generation, and

various mathematical operations for array computations. The NumPy package can

be included in a Python program by importing the entire library or individual parts.

import numpy will bring in the entire library, accessible by referencing various func-

tions as numpy.function . The notation from numpy import function provides

access to a specific function by name directly into the local namespace, rather than

having to reference the numpy namespace. The code listings in Appendix E make

use of the latter method. Imports are done at the beginning of each listing for quick

reference to what libraries and functions are needed in the code.

102

5.1.3 SciPy

Scientific Python, or SciPy, builds on the NumPy package to provide further

functions useful in scientific computing. SciPy includes functions for integration,

optimization, linear algebra, interpolation, and statistics, to name only a few. Fur-

ther information on the NumPy and SciPy packages is available, along with binary

installation files and source code, at the SciPy website [61].

5.1.4 Matplotlib

Matplotlib is a package that provides 2D plotting capability. Some 3D plot

ability is available as well, and will continue to improve as the package is further

developed. The syntax and functionality of Matplotlib is similar to that available

in Matlab. All graphs and plots provided in this dissertation are created using

Matplotlib.

5.1.5 SpacePy

SpacePy is a new package, released publicly under an open source license dur-

ing the course of this study. The purpose of SpacePy is to provide a Python interface

to computational libraries developed for space physics modeling and analysis. For

this study, the particular functionality needed is an interface to NASA’s Common

Data Format. CDF is a binary file format that is used for storing data and meta-

data in the space physics community. The FAST data is provided as a CDF file, and

this package made it possible to work directly with those files rather than having to

103

extract the data and convert it to a different format.

5.1.6 The Python Pickle

The pickle module in Python is a method of converting data objects in memory

into a byte stream that can be saved to a disk for later retrieval. Data products in

this study are saved as a pickle format which are then used for doing the statistical

analysis.

The Python langauge also provides a data structure called a shelf. The shelf is

a way of storing multiple pickles in a single file, each referenced in a similar manner

to a dictionary. This function is similar to pickling a dictionary structure as is done

in this work. Future work would benefit from using the built in pickle shelf for

simplicity.

5.2 Methods

5.2.1 FAST Data Processing

A variety of data types from the FAST satellite are made available at the FAST

website. The data types used in this study include the despun DC electric field, the

despun DC magnetic field, the electron spectrometer survey, the ion spectrometer

survey, the low frequency V5-V8 AC electric field, and the orbital parameters. The

magnetic field data is built off a model including the IGRF-7, and requires a full

orbit’s worth of data to ensure its accuracy. Hence, each data type is downloaded by

orbit number rather than by a specified time period. Each file is stored in directories

104

dcefs ooooo.cdf DC Electric Field

dcmag ooooo.cdf DC Magnetic Field

ees ooooo.cdf Electron Survey

ies ooooo.cdf Ion Survey

dsp v58 ooooo.cdf AC Electric Field

orbit ooooo.cdf Orbit Parameters

Table 5.1: Filename conventions used for FAST CDF data files. ooooo is given by
the orbit number with padded zeros to give 5 characters.

named by orbit number using the filenames given in Table 5.1.

The data types are all measured independently and come with their own time

bases. Each must be extracted individually and interpolated to a common time

base. The routines in FAST.py (Appendix E.1.1) were written to take a collection

of orbit numbers as inputs and automatically extract and interpolate all of the data

types for that orbit. The following sections will describe the various components of

this code.

5.2.2 FAST Field Data

5.2.2.1 Field Processing Tools

Three functions are provided for preparing electric and magnetic field data in

this study. These functions are:

105

FAST.chauvenet(data, window, weight)

DC electric field data from FAST often has periodic spikes corresponding to

the rotation of the spacecraft. These spikes can be large enough to throw off averages

and interpolations, and so the Chauvenet criterion is used to filter these spikes out

of the data used in averaging and interpolating. This criterion removes any data

points that are farther from the sample mean than a given threshold, usually given

in multiples of the standard deviation.

In this function, a window and weight are passed along with the data to be

filtered. The window specifies how many points to include in calculating the sample

mean, and the weight sets the threshold in standard deviations. The first window/2

points are compared to a set of the first window points, the last window/2 points

to a set of the last window points, and all others to a set of size window centered

about the point under consideration. Provision must be made to accommodate data

with a value of nan1, lest the average and standard deviation are returned as nan

values. The nantools.py routines (Appendix E.4.1) provide this ability. Any data

point farther than the number of standard deviations from the sample mean given

by weight is itself set to the value nan. This study used a window of 100 points

and a weight of 2 standard deviations when applying this filter. All DC electric field

data was filtered.

1The nan value indicates a non-numerical result, or “not a number”.

106

Figure 5.1: DC electric field data from a portion of FAST orbit 8276 showing the
effect of applying Chauvenet’s criterion with a window of 100 points and a weight
of 2 standard deviations.

FAST.smooth(data, r data, interval)

All field data are smoothed, or averaged, to 4 s intervals. The smooth function

takes the data, the corresponding time series, and the new, smoothed time series

to create an averaged array of the data. The new time series is created by making

an array with the same endpoints as the raw data, but at intervals of 4 s. A fixed-

width window is used in this scheme, averaging only data points between ±2 s. For

end data points where data do not exist in the entire window, only data within the

window are used.

Smoothing is applied to all the field data types before interpolating to 1 s

intervals. The effect of the aggressive smoothing algorithm is to limit data to slowly

varying changes in the DC field data.

107

Figure 5.2: DC electric field data from a portion of FAST orbit 8276 showing the
effect of applying the the despiking and smoothing algorithms to the raw data. The
data are smoothed to 4 s intervals.

FAST.interpolate(x, y, x new, width, int kind)

An interpolation routine is provided that makes use of the interp1d function

within scipy.interpolate. The FAST.interpolate function accepts the raw time

and data values (x and y) and the time base to which the data should be interpolated

(x new). In addition, a width is given to limit the amount of data used in the

interpolation as well as an optional parameter to specify the interpolation type.

(Cubic spline interpolation is used by default.) The width limit was necessary to

avoid calculating cubic splines over the entire data set for a single point. A width

of 30 s was used in the study, or in other words, 7 data points from the smoothed

data were used for each interpolation point.

The time base used for interpolation is obtained from the orbital parameters

data of the orbit. These data are given in a 1 s interval time base, and for con-

108

Figure 5.3: DC electric field data from a portion of FAST orbit 8276 showing the
effect of applying the interpolation algorithm over 1 s intervals.

venience the same base was used for all other data types. Note that this function

will only work if the end points of the raw data are at least width/2 further than

the end points of the time base to which the interpolation is done. (Extrapolation

is not provided in this code.) To accommodate the time values in the orbit where

data are not provided, the function sets the interpolated values to nan.

5.2.2.2 DC Electric Field

FAST.get E(orbit, t base, margin, subset)

The FAST.get E function imports the data from the CDF file corresponding to

the specified orbit. Electric field data are sampled at 3.125 ms intervals on FAST.

t base is passed to the function from outside, and as mentioned previously the

time series from the orbit data was used. A default margin of 30 s was given for

109

the interpolation window. By default the function parses the entire data set, but

provision is made to process only a subset of the data if desired. This functionality

was not used beyond testing purposes in this study.

From the dcefs data, two time limits are found. The t min/t max pair limit

the time values in the electric field data to the end points of the interpolation

(extended by margin/2 on either side to accommodate the interpolation). The

ti/tf pair limit the time values in the interpolation time base where data will be

provided. In the context of processing the entire orbit, only the latter pair is needed.

Once the time endpoints are found, the raw data are converted to numpy

arrays. The electric field data are filtered with FAST.chauvenet, smoothed with

FAST.smooth, and finally interpolated with FAST.interpolate. The interpolated

E field at the time values given in t base is then returned. An example of the result

is given in Figure 5.3.

A fault in the V5 electric field probe in Sep. 2001 has affected the quality of the

electric field data obtained by FAST. The fault causes the data to show oscillations

on scales larger than the ambient electric fields. Because of this fault, electric field

data from after Sep. 2001 should be considered as compromised.

5.2.2.3 ELF AC Electric Field

FAST.get ELF(orbit, t base, margin, subset)

AC electric field data is processed by the FAST.get ELF function. The function

parameters being passed indicate an intentional similarity in how this function is

110

Figure 5.4: Spectrum of the AC electric field from FAST orbit 8276.

written to the FAST.get E function, and so those details will not be rediscussed

here.

The dsp v58 data provides a power spectrum at frequencies between 0 and

16 kHz (see Fig. 5.4). The power spectrum is integrated over frequency using the

trapezoid method. A separate smoothing algorithm is used to smooth the ELF data

by replacing each data point with the average of the five points centered about it.

(The separate routine was done to avoid a complication in the differences of how

the data type is provided.) Finally, the data are also interpolated to the orbit time

base. An example of the result of this function is given in Figure 5.5.

111

Figure 5.5: Interpolated data from the DSP V5-V8 power spectrum from a portion
of FAST orbit 8276.

5.2.2.4 DC Magnetic Field

FAST.get B(orbit, t base, margin, subset)

The FAST magnetometers provide three-axis magnetic field data as devia-

tions from Earth’s magnetic field as provided by the IGRF model. DC magnetic

field data are processed by the FAST.get B function. This function is analogous

to the FAST.get E function, and uses a nearly identical routine. For the magnetic

field, however, Chauvenet’s criterion is not needed, and three components of ~B are

provided. ~B field data are sampled at 7.8125 ms intervals. The data are smoothed

to 4 s intervals to remove high frequency changes and interpolated to 1 s intervals

just as the ~E field data are.

The FAST magnetic field data provided are the measured deviations from the

model provided by IGRF-7. The coordinate system used is a spacecraft-centric, field-

112

Figure 5.6: Interpolated data of the magnetic field deviation from a portion of FAST
orbit 8276. The three components given are along the local magnetic field (b̂),
perpendicular to the magnetic field and the spacecraft-Earth line pointing eastward
(ê), and the right-handed complement pointing outward, or away from the Earth
(ô).

aligned, right-handed coordinate system using the notation ô, b̂, ê. The b̂ component

points in the direction of the local magnetic field (downward, in the case of the

northern cusp). The ê component points perpendicular to the plane defined by the

magnetic field and the radius vector to the spacecraft, or perpendicular to the local

magnetic meridian with the positive direction pointing eastward. The ô component

completes the triad, and points “outward”, meaning in a northerly direction in the

northern hemisphere and a southerly direction in the southern hemisphere. Note

that for a given magnetic field line, a transition over the cusp results in a rotation

of this coordinate system by 180◦ about the b̂-axis.

An example of the result from FAST.get B is given in Figure 5.6.

113

5.2.2.5 Poynting Flux

FAST.get EBS(orbit, t base, margin)

The Poynting flux is found by

~S =
1

µ0

~E × ~B (5.1)

The FAST spacecraft only measures the electric field along the field direction and

along the spacecraft trajectory. At the cusp, the spacecraft velocity is nearly per-

pendicular to the magnetic field, and so the Poynting flux along the magnetic field

lines can be found by

Sz =
1

µ0

EVsc · δBe (5.2)

The FAST.get EBS function gets the interpolated fields from FAST.get E and

FAST.get B, and calculates Sz according to formula 5.2. The electric field along the

trajectory, the three components of the magnetic field deviation, and the Poynting

flux are all returned as interpolations along a common time base.

5.2.3 FAST Particle Data

FAST particle data are provided as flux per energy · solid-angle at various

energies over the 64 detector segments covering the full 360◦ view with a 6◦ resolution

around the spacecraft spin axis. The data for each species are aggregated from the

four ion and electron spectrometers around the spacecraft. Energies are measured

in 48 steps ranging from 3 eV to 25 keV for electrons, and 4 eV to 30 keV for ions.

The spacing between samples was chosen for an approximately constant ∆E/E for

114

Figure 5.7: Interpolated data of the Poynting flux calculated from E-field and B-field
measurements from a portion of FAST orbit 8276.

the detectors.

Data are provided as frames for a given moment in time, or timestamp. Each

flux density frame is a 2-D array of energy versus detector number. Because of

the spacecraft’s rotation, each energy measurement is taken at a slightly different

angle, and so a pitch angle spectrum is provided with each frame to give the average

pitch angle view for each detector during the time it was accumulating data at each

energy.

The flux density I(E, θ) is averaged over either energy or pitch angle to pro-

vide pitch angle or energy spectra, respectively. Integrating over both dimensions

provides energy or number flux in the spacecraft spin plane, with the (ẑ) direction

aligned with the magnetic field, according to

Jz =
∫ ∫

I(E, θ) dΩ dE (5.3)

Nz =
∫ ∫ I(E, θ)

E
dΩ dE (5.4)

115

where Jz refers to the energy flux, Nz refers to the number flux, and dΩ is the usual

spherical expression sin θ dθ dφ. θ refers to the spin plane, or pitch, angle. Because

the FAST detectors do not view the more than 10◦ in the direction along the spin

axis, we assume isotropy in φ, or around the magnetic field lines. Allowing θ to run

over the full 360◦ in the spin plane, we must introduce an extra factor of 1/2 to the

integral, giving the expression

dΩ = π| sin θ| cos θ dθ (5.5)

The fluxes are then calculated with

Jz =
∫ 16kHz

0

∫ 2π

0
I(E, θ) · π| sin θ| cos θ dθ dE (5.6)

Nz =
∫ 16kHz

0

∫ 2π

0

I(E, θ)

E
· π| sin θ| cos θ dθ dE (5.7)

5.2.3.1 Particle Processing Tools

FAST.get flux(I, E, dE, theta)

The FAST.get flux function performs the integration to obtain flux versus

time for a given orbit. Energy flux is obtained by passing an array of ones with the

same dimension as E so that the division in equation 5.7 is equivalent to equation

5.6. Integration is done using the trapezoidal rule, and so the array dE contains the

differences between each energy bin value.

An alternative function FAST.get flux2 is also provided. This method per-

forms the same integration, but removes the spacecraft velocity from the measured

116

energies. The difference in flux values obtained between the two methods is neg-

ligible, but is more noticeable for high populations of low energy ions. Even in

these cases, the difference is no more than 10%. To reduce computation time,

FAST.get flux is used for obtaining the electron fluxes and FAST.get flux2 is

used for the ion fluxes.

The FAST.get spectra(orbit, species) function creates energy and pitch

angle spectra from the FAST data for both ions and electrons. The function returns

the two spectra as well as the average pitch angle for each detector. The function

was built for diagnostic purposes, and is not used in the preparation of data for

statistical analysis.

Only lower energy ions contribute to ion outflow, but the specific range of

energies of outflowing ions can vary. As such, we cannot set a hard limit on what

energies to include when measuring ion outflow. This limit was previously deter-

mined by viewing the ion energy spectrum and selecting an obvious limit by eye.

For example, the ion spectrum in Figure 5.8 has an obvious division near 300 eV.

The lower energy ions have negative flux values while the higher energy ions have

positive flux values, indicating both outflowing and precipitaing ions2. An algorithm

was developed to predict this division and was shown to give reasonable judgements

on the separation of outflowing from precipitating ions compared to the spectra.

This algorithm is found in the function FAST.cutoff(orbit, maxE).

2Since at the northern cusp the magnetic field points downward, using the 0◦ mark aligned with

~B gives negative values for outflow and positive values for precipitation. The ion fluxes reported

in the next chapter are multiplied by -1 to indicate outflow.

117

Figure 5.8: Energy and pitch angle spectra for ion fluxes measured in FAST orbit
8276. In the coordinate system used by FAST, 0◦ corresponds to the local magnetic
field direction. Since at the northern cusp the field points downward, outflowing
ions will be near the 180◦ direction, where we see a large flux in this example.

118

Figure 5.9: Energy and pitch angle spectra for electron fluxes measured in FAST
orbit 8276. See Figure 5.8 for a description of the pitch angle variable.

119

Figure 5.10: Example of the FAST.cutoff function results with the automated
choice (solid red) nearly matching a visually selected choice (dashed cyan). The
algorithm consistently matches cutoffs selected by hand.

The FAST.cutoff function calculates the ion number fluxes for each individual

energy over a given orbit. Negative ion number fluxes indicate outflowing ions, so

the cutoff is found by analyzing a number of characteristics of the data set. The

energy steps where the mean number flux is negative and greater than 0.01% of the

maximum outflowing number flux in magnitude are identified. These are further

filtered to those showing at least 30% of the measurements over the orbit indicating

outflow. The lesser of the highest energy matching these criteria and the specified

maximum energy is selected as the cutoff for the analysis.

120

5.2.3.2 Electron Flux

FAST.get EES(orbit, t base, margin, subset)

The electron number and energy fluxes are obtained with the FAST.get EES

function. This function is similar to the treatment described in section 5.2.2.2. Time

endpoints are found, and the flux, energy, and pitch angle products are extracted

from the CDF file. Fluxes are calculated for all energies above 50 eV. These data

are not smoothed to 4 s intervals as the field data are, but are interpolated to the

same time base. The time intervals between frames for the particle data are typically

0.3 s, and no smoothing is done in accordance with the treatment by Strangeway

et al. [44]. This function returns both the energy flux and number flux over the

interpolated time series.

5.2.3.3 Ion Flux

FAST.get IES(orbit, t base, margin, subset)

Ion number and energy flux are obtained in the same way as the electron

fluxes, using FAST.get IES. The only difference in this routine, aside from using

ies data, is that energies are limited to above 4 eV and below the value obtained

from FAST.cutoff. An arbitrary maximum limit of 500 eV is used for the cutoff

value. The energy limits are returned along with the energy and number fluxes for

reference.

A function FAST.get IES2 was written to obtain ion fluxes with corrections for

121

Figure 5.11: Electron energy and number fluxes from a portion of FAST orbit 8276.

122

Figure 5.12: Ion energy and number fluxes from a portion of FAST orbit 8276.
Fluxes obtained using satellite velocity corrections are overlayed for comparison.
The velocity correction is only noticeable in situations where the energies of the
ions are low. Note that in the last 100 s of this plot the energy flux falls by a factor
of 4, and the number flux differs by ∼10% in the same time period.

the spacecraft motion using FAST.get flux2. It is a little slower than FAST.get IES,

but does provide better accuracy for low energy ions (see Fig. 5.12).

5.2.3.4 Using FAST.py

The functions in FAST.py can be used individually after importing into a

Python shell, or can be used in an automated fashion by making use of the function

processFAST(orbits, getelf). This function uses all of the other functions to

create a data set including each data type interpolated to a common time base. The

123

results are saved to the disk as a pickle.

processFAST expects a list of orbits to process. The CDF files for each data

type should be saved to individual directories named by orbit, and the basedir

variable should point to the directory where these directories are located. If a

single orbit is to be processed it must still be passed as a list of length 1 (eg.

orbits=[’08276’]). The getelf parameter is an optional boolean parameter to

specify whether ELF data is available for the orbit. It is set as True by default.

Once run, processFAST will extract the orbit parameter data and create a flag

array CUSPF that simply marks times where the orbit is over the cusp, as judged by

being between invariant latitudes of 70 and 80◦. Field and particle data are then

processed, and a dictionary is created for the pickle. This dictionary has two other

dictionaries as its elements. The ’data’ dictionary holds the actual data being

saved, while the ’meta’ dictionary contains metadata pertinent to each element in

the ’data’ dictionary, such as units and the software versions used in creating the

data. The pickles are named by orbit and include information on the software version

and Python version compatible with the pickle. Each pickle is saved within the same

directory as its corresponding CDF files. The pickles can be loaded individually into

Python as necessary for future processing.

The processFAST function runs for about 30 min. for each orbit in the list on

a typical desk-top computer.

124

Figure 5.13: Summary of data from FAST orbit 8276 made using the routines in
FAST.py to process the data. The panels show, from top to bottom, the electric
field along the spacecraft trajectory, the three components of the magnetic field
deviation, the Poynting flux, the electron number flux, the electron energy flux, the
ELF wave amplitude, and the ion number flux. This figure is analogous to Fig. 3
in Strangeway 2005 [44].

125

5.2.4 FAST Statistical Analysis

This and the following section rely on the two Python programs FAPlot.py

and FAST stats.py (see Appendix E.1.2 and E.1.3 respectively). Before any statis-

tical analysis can be done for the FAST data, the pickles returned by the function

FAST.processFAST need to be updated to add an array identifying periods of ion

outflow to be included in the study. While an automated method of doing this was

sought, the number of changes from one orbit to another in the way ion outflow is

identified proved too difficult, and this task remains to be done by hand. Much of

the preparation to identify these periods can be automated, and so a function was

created to be combined with user input as a means of identifying appropriate data

for inclusion.

FAPlot.update pickle(orbits)

The FAPlot.update pickle function makes identifying periods of ion outflow

simple. For each orbit in the list passed to the function, an ion pitch-angle spectrum

is created using FAST.get spectra. The spectrum is displayed with lines showing

the invariant latitude (divided by two for convenience) and magnetic local time

for reference. The code then pauses and asks for input to identify the starting

and stopping indicies of data to be included. The plot is displayed against index

number, making it simple to identify the desired points. Lines are displayed at the

input indicies to verify the selection. Multiple segments of the data can be included.

When all desired segments have been identified, an array is marked with ones for all

126

Figure 5.14: Example showing the spectrum for selecting ion outflow times from
FAST orbit 8276. The two vertical lines correspond to the period selected. All
data between these lines will be flagged as points to include in the statistics. In
this study, data were not limited to only those regions where strong ion outflow is
observed, as seen in this example.

points to be included. The array is then put into the dictionaries from the pickle,

and the pickle is resaved with a modified name.

Periods to be included are primarily identified by including data showing

strong ion conics, such as that seen in Figure 5.14. A difference in this study from

the Strangeway study is that data from a larger time window were included in each

orbit. Some orbits did not have strong ion conic signatures, but portions within

the dayside cusp were included for a more comprehensive coverage of ionospheric

conditions in the study.

FAPlot.py also includes a basedir variable to be used in the same manner

as that in FAST.py. The filesuff variable should be set to match the suffix of the

127

filenames for the pickles being processed.

FAST stats.get averages(orbits, has elf, alt scale, length)

Once the pickles have been updated, averages can be calculated. Averages

are found using the FAST stats.get averages function, that provides a way to

automatically collect averages from the FAST data with optional altitude scaling

and period selection for the averages. By default, the function includes ELF data,

does not do altitude scaling, and averages over the entire orbit. If desired, an integer

number can be passed for the length parameter, allowing specific time intervals for

the averages. (Eg. length=60 would do averages over 60 points, or 60 s in the case

of this study. See Figure 5.15.)

This function calls the FAST stats.get nep(orbit, alt scale) function to

generate the electron precipitation density, given by equation 4.2. When altitude

scaling is enabled, all values are scaled to a standard 1000 km altitude assuming the

flux scales as
√
B, or equivalently as r−

3
2 .

When a collection of averages is obtained, linear regression is used to find

linear fit parameters between pairs of data types. The 1-D linear regression routine

in scipy.stats is used, which returns slope and intercept, the r-value correlation

coefficient, the p-value test, and the standard error. Fits are made to the base-10

logarithm of each data type. As such, the slope indicates a power-law scaling value

between energy inputs and the values to which they are regressed (in the case of the

FAST data, the ion outflow).

128

Figure 5.15: Plot showing orbital averages and 60 s averages for Poynting flux and
ion number flux. Averaging over an entire orbit does give a good representation of
shorter time averages, as the orbit averages maintain the general trend seen in the
shorter averages. While there is more scatter in the shorter average data, a linear
regression to the orbital average data is a good representation of the shorter average
data.

129

Figure 5.16: Linear Regression of FAST data from orbits 8260 to 8292. Each point
is an average over an entire orbit. The regression parameters are similar to the
values obtained by Strangeway for the same orbits.

130

5.2.5 FAST Data Visualization

FAPlot.gen pole plot(orbits, ofp)

Two sets of code were developed to assist in examining the results of the data

processing and statistics. In FAPlot.py, a polar plot of the orbit paths with the

regions chosen for inclusion is useful to identify that the region of interest is, in

fact, the dayside cusp (see Fig. 5.17). This plot is similar to one presented by

Strangeway, and a comparison between them highlights the difference in the way

the included data for the statistical averages were chosen. Our data inclusion is more

comprehensive, and thus covers larger portions of each orbit than in Strangeway et

al. [44].

The plot can be easily generated using the function FAPlot.gen pole plot.

This function is passed a list of orbits with an optional parameter to plot only the

portions where outflow is observed as chosen in the FAPlot.update pickle routine.

The plot in Fig. 5.17 was generated by running this function once with ofp=False

and again with ofp=True.

FAST stats.get plot(x, y)

The FAST stats.get plot function is used to generate a log-log plot of the

two data types passed as x and y, with a linear fit and the key statistical parameters

displayed as seen in Figure 5.16. The function first removes any data points with nan

values, then generates the scatter plot with linear fit. Note that since ion outflow

has a negative flux along the magnetic field line, the ion outflow data are given a

131

Figure 5.17: Plots showing portions of the orbits used in the statistics presented in
Fig. 5.16 (above) and in the Strangeway study [44] (below).

132

sign change to generate this plot, as well as in all other plots showing the ion number

flux.

FAPlot.gen summary plot(orbit)

Finally, a simple routine in FAPlot.gen summary plot is provided to produce

a plot similar to the one seen in Figure 5.13 for any specified orbit. This function asks

for user input to select the starting time in the format YYYY,M,D,h,m,s. Leading

0’s should be left out in this input.

5.2.6 CHAMP Data Processing

CHAMP data types are available at the ISDC website in different formats. The

types pertinent to this study include the STAR accelerometer data (acc) and the

rapid science orbit data (rso). Both of these data types are found in an ASCII text

format detailed in the CHAMP Data Format [64] and the CHAMP Orbit Format

[65].

Because the CHAMP data come in an ASCII format rather than CDF, a

different coding scheme was necessary to parse the data for use. CHAMP data are

also organized by day rather than by orbit, and each file includes data from multiple

orbits. The scheme developed for processing the CHAMP data uses an interactive

menu to identify what data types are available in a given file and select which data

types will be extracted.

Care must be given to applying the following code to any data from CHAMP,

133

as some files are formatted with slight changes. While the changes are unimportant

when looking at the text file directly, they make any automated data extraction

scheme impossible. The code presented here was tested and worked successfully for

the time periods used in this study (both in 2002). Some changes may be necessary

to generalize it to other time periods.

5.2.6.1 Orbit Data

champ.pso extract()

CHAMP orbit parameters come in three types: rapid science orbits (RSO),

predicted science orbits (PDO), and post-processed science orbits (PSO). Because

the availability of the post-processed orbit data is not complete, the rapid science

orbit data are used. The RSO data come in 14-hour files. The filename is descriptive

of the data set, with the format CH-OG-3-RSO+CTS-CHA <YYYY> <DOY> <HH>.dat. In

this filename, CTS refers to the coordinate system used, the Conventional Terrestrial

System, or GEO. CHA specifies the data is for the CHAMP satellite. <YYYY>, <DOY>,

and <HH> give the year, day of year, and hour for the start of the file. In the time

periods studied, data were available in two files per day, starting at 10:00 AM and

10:00 PM UT.

The CHAMP orbit data format provides time, position, velocity, and attitude

data in addition to flags indicating the conditions for the satellite at that particular

time (eg. over land/water, in the Earth’s shadow, etc.). Time is provided as the

number of days from the J2000.0 epoch (noon on 1 January 2000) and the fraction

134

of a day in microseconds. Data are provided for 30 s intervals. Position is given

as X, Y, and Z in mm for the GEO coordinate system. Velocity is given for X, Y,

and Z in 10−7 m/s. A column is provided in the orbit data format for the neutral

gas density, however it will only be non-zero in PSO data, and for the time periods

studied was not used even there.

Orbit data are provided with one line of data per time stamp. The locations

of each data type are specified and consistent, allowing easy parsing of the data.

The champ.pso extract function automates this process with input from the user

to select which data types should be extracted. Because the data format is the same

for both PSO and RSO data, the routine can be used for either type.

5.2.6.2 Accelerometer Data

champ.acc extract()

CHAMP accelerometer data also come in ASCII format, but are handled dif-

ferently than the orbit data. The filename follows a similar convention, where

CH-OG-2-ACC+<YYYY> <DOY> <HH>.n.dat indicates the data type (accelerometer),

the year, day of year, and starting hour as before. The numerical value n indicates

the revision number of the software that produced the data file. In general, the most

recent revision should be used when multiple files are available.

The ACC files include important information in the header. Most of the

information is unnecessary for the data itself, but calibration constants are included

that are necessary to obtain the correct values from the accelerometer data. These

135

Char # Description

1–6 Time tag (10**-1 d since J2000.0)

7–17 Time tag (10**-6 s since 0 hours)

18–29 X coordinate of position (10**-3 m)

30–41 Y coordinate of position (10**-3 m)

42–53 Z coordinate of position (10**-3 m)

54–65 X coordinate of velocity (10**-7 m/s)

66–77 Y coordinate of velocity (10**-7 m/s)

78–89 Z coordinate of velocity (10**-7 m/s)

90–96 Roll angle (10**-3 deg)

97–103 Pitch angle (10**-3 deg)

104–110 Yaw angle (10**-3 deg)

111–115 Neutral gas density (10**-16 g/cm**3)

116 Maneuver flag (M = yes, else blank)

117 Land/water flag (L = Land, W = Water)

118 Ascending/descending arc flag (A = ascending, D = descending)

119 Eclipse flag (E = satellite in Earth’s shadow, else blank)

Table 5.2: Summary of the CHAMP orbit data format.

136

CHAMP Spacecraft Coordinate System

Origin Spacecraft center of gravity

X̂sc Aligned with the long side of the spacecraft towards the boom, in

nominal attitude pointing in flight direction (roll axis)

Ŷsc Forming a right-handed system with X̂sc and Ẑsc (pitch axis)

Ẑsc Nadir pointing in nominal attitude (yaw axis)

Table 5.3: Description of the coordinate system used to reference the position of
instruments relative to the CHAMP satellite. The first column lists the coordinate
system component, and the second a description of how that component is defined.
Instruments define their viewing direction relative to this coordinate system.

constants provide a scale and offset to the individual components of acceleration

and should be applied to the data before use.

Accelerometer data are provided for 10 s intervals and come in an instrument

fixed, inertial coordinate system as described in the CHAMP Reference Systems,

Transformations and Standards [66]. The spacecraft coordinate system is body-

fixed, with X̂sc aligned with the long dimension of the spacecraft, nominally in the

flight direction, Ẑsc pointing in the nadir direction (or always toward the Earth), and

Ŷsc completing a right-handed triad. The instrument coordinate system is aligned

such that X̂acc is anti-parallel to Ẑsc, Ŷacc is parallel to X̂sc, and Ẑacc is anti-parallel

to Ŷsc. In this coordinate system, Ŷacc points along the trajectory and gives the

acceleration felt by the spacecraft from atmospheric drag. This component provides

the desired density information, and is the only component used in this study.

137

STAR Accelerometer Reference Coordinate System

Origin Accelerometer proof-mass centre = (nominal)

Spacecraft Center of Gravity

X̂acc Anti-parallel to Ẑsc (less sensitive axis)

Ŷacc Parallel to X̂sc

Ẑacc Anti-parallel to Ŷsc

Φ Rotation about X̂acc

Θ Rotation about Ŷacc

Ψ Rotation about Ẑacc

Table 5.4: Description of the coordinate system used by the STAR accelerometer.
Note that the vector components are defined relative to the spacecraft coordinate
system given in Table 5.3.

138

ACC data is given in chunks, with one line giving the time stamp and subse-

quent lines prior to the next time stamp providing other data types. Not every data

type appears in every time stamp, and so parsing the file to extract the data requires

watching for key words to identify when the different data types are used. When a

data type is missing for a given time stamp, a nan value is inserted to ensure the

array lengths are equal. The champ.acc extract function extracts the calibration

data and the data values for each time stamp with user input to identify which data

types should be kept.

5.2.6.3 Using champ.py

champ.extract data()

The champ.py code is written as an interactive menu for selecting the data to

be extracted. The champ.filename variable should be set to the name of the file

to be extracted. champ.extract data asks the user to specify the file type given

in champ.filename. A menu comes up listing the data types found in the file. By

default, all data are included in the extraction, but the menu allows the user to select

only the data types desired. When the list of included data is deemed satisfactory,

the function calls the appropriate extraction function for the specific data file type.

champ.process CHAMP orb(directory, days)

In addition to the individual file handling routines, there are two routines

provided in champ.py to automate the extraction of data for a given list of days.

139

champ.process CHAMP orb handles the orbit data processing for multiple files. The

directory where files are located is specified, and a list of days (given in the format

’yyyy ddd’) is passed to the function for processing. The individual files are located

that contain data for each day to be processed, and data is extracted from each us-

ing the generalized champ.extract data routine. The time stamps are converted to

UNIX time with champ.time convert(d, s), and the position and velocity compo-

nents are converted to SM coordinates using the routines provided in cstrans2.py.

The data for each day are put into a dictionary and saved as a pickle. Note that

while an entire day of data is spanned by three files as provided by GFZ Potsdam,

starting with the later file of the previous day, the pickles merge the data from the

different files to create one single file per day, starting at 00:00 UT. For this study,

only the time, position, and velocity data are used. Other data included in the

CHAMP files may be selected out in the champ.extract data menu.

champ.process CHAMP acc(directory, days)

The champ.process CHAMP acc function handles the accelerometer data pro-

cessing for multiple files. As before, the proper data files are identified, though for

ACC data only one file exists per day. The CHAMP data revision number is speci-

fied in the code, and this must be modified if that particular revision is not available

for that day. The menu is used to select the desired data types. The extracted time

stamps are converted to UNIX time and the calibration data are applied to the Ŷacc

component acceleration data. The time and calibrated decceleration are added to

140

the dictionary, which is then saved to a pickle. For this study, only the time and

calibrated decceleration are necessary.

5.2.7 CHAMP Statistical Analysis

The choice of data is the primary difficulty in comparing CHAMP data to

FAST data. The two satellites have different orbits and do not make measurements

in the same region at the same time. Even when the orbital planes are aligned, the

two satellites have very different altitudes, with FAST at 350–4175 km, and CHAMP

near 400 km. By selecting orbits that have nearly aligned orbital planes, however, it

is possible to choose portions of data for analysis if we assume the altitude difference

is unimportant.

CHAMP stats.create pickle(days)

To be used together, the extracted CHAMP data are interpolated onto a com-

mon time base, using the standard 10 s intervals provided by the accelerometer data.

The acceleration data must also be interpolated to allow for missing time stamps.

The CHAMP stats.create pickle function creates an interpolation time base and

provides interpolated data for invariant position (ie. invariant latitude, magnetic

local time, and altitude), velocity, and decceleration.

141

CHAMP stats.find upwelling(fa orbit, fa basedir)

Identifying the proper data for inclusion in the study is done using the function

CHAMP stats.find upwelling. For a specified orbit of the FAST satellite (including

the directory where the orbit data is stored), the invariant latitude of both the

FAST and CHAMP satellites are plotted with the CHAMP decceleration data. The

FAST data are examined to identify the range of invariant latitudes on the dayside

of the magnetosphere that have been pre-selected for inclusion in the statistics.

(Ideally, this corresponds to the region where ion outflow is observed by FAST.)

The corresponding regions (dayside invariant latitudes in the same range as those

identified in the FAST outflow data) are marked in the CHAMP accelerometer

data, as is the time during which FAST was passing through the region. From this

information, the CHAMP data to include in the statistical analysis is selected. An

example of this process is shown in Figure 6.12, and discussed further in section

6.5.1.

The CHAMP data that are selected correspond with the region of interest that

exhibits neutral upwelling, evidenced by an increase in decceleration, an indication

of an increase in atmospheric density. The increased decceleration region is then

marked for interpolation, using data of an equal time window to that selected on

either side of the spike. The difference between the decceleration increase and the

interpolation from the baseline density from that observed on either side is used to

provide a measure of the amount of neutral upwelling occurring for the given orbit.

The baseline decceleration was found using a linear interpolation routine. The mean

142

and peak value of the difference is returned by the function.

5.2.8 CHAMP Data Visualization

When averages are obtained for a list of corresponding FAST orbits, the func-

tions in FAST stats.py and FAPlot.py can be used to examine the data. No further

routines specific to CHAMP were used in this study.

5.3 Assumptions

Any analysis is subject to uncertainty due to the underlying assumptions made

in the analysis. Space missions require many simplifying assumptions in order to

work with data, and care was taken to ensure the underlying assumptions of this

study were reasonable and justified. This section will describe the key assumptions

in this study.

5.3.1 Assumptions in Field Quantities

Electric field data are assumed to be an accurate representation of electric field

strengths along the spacecraft trajectory. This assumption is valid for FAST data

prior to Sep 2001, however due to a faulty probe on the spacecraft the assumption

is less certain for the 2002 data analyzed. Examination of the 2002 electric field

data showed that the data had been compromised by the faulty probe as evidenced

by large oscillations in the data. However, the averages may still show the general

trends as evidenced by the results presented in the next chapter.

143

Magnetic field variations are calculated by finding the difference between mea-

surements made with the FAST magnetometers and the IGRF-7 1995 modeled mag-

netic field. We assume that the configuration (strength and position) of Earth’s

magnetic field has not changed significantly since 1995. Since IGRF-7 was only

designed to be valid until the year 2000, this assumption is a little weaker for the

2002 data. However, since all FAST data (including recent data) are processed with

this model, IGRF-7 was used to remain consistent with the data set.

5.3.2 Assumptions in Particle Quantities

The particle detectors on FAST have a limited view perpendicular to the

spin plane of the spacecraft. Flux values are found under the assumption that the

ionospheric plasma is isotropic in this direction. This assumption is typically made

in plasma analyzers, and seems to be a reasonable simplification in measuring plasma

fluxes in the ionosphere, where much of the plasma is attached to the magnetic field.

5.3.3 Assumptions in Neutral Density

While the CHAMP spacecraft decceleration is proportional to the neutral den-

sity, it is also proportional to the square of the spacecraft velocity. The CHAMP

orbit is nearly circular, and so the velocity changes only slightly over the course

of an orbit. The resulting change in the corrected decceleration accounting for a

difference in orbit velocity is negligible, and the decceleration data are assumed to

scale only with density.

144

The primary goal of the STAR accelerometer was to measure gravitational

fluctuations. We also assume that any gravitational fluctuation in this direction is

negligible compared to the atmospheric drag. Since we only use the decceleration

component in the direction of motion of the spacecraft, which is nearly perpendicular

to the vector toward the center of the Earth, this assumption is reasonable.

5.3.4 Assumptions in Calculations

In calculating Poynting flux, only the ê component of magnetic field is used.

The desired quantity of Sz should also have a contribution from the ô component,

but deviations from the model in this direction are small compared to those in the

ê direction. This component is assumed to always be negligible in comparsion, and

is left out in the calculation of Sz. In addition, the calculation of the cross-product

assumes that δBe is perpendicular to EVsc . The spacecraft trajectory over the cusp

is nearly perpendicular to the local magnetic field, and so this assumption is also

reasonable.

Precipitating electron density is calculated using the formula derived by Strange-

way et al. [44]. This formula, as given in Equation 4.2, was derived through dimen-

sional analysis, and is assumed to be an accurate representation of the density of

electrons precipitating into the cusp.

145

Chapter 6

Statistical Analysis

Statistical analysis of the data was done on three different time periods. The

first of these periods centered on the 25 Sep 1998 event studied by Strangeway,

but includes orbits 8227 through 8325, spanning nearly 219 hours of time between

20 Sep and 29 Sep 1998. Five of these orbits were not included due to the software

not detecting any significant ion outflow (viz. orbits 8236, 8295, 8302, 8305, and

8308). In this time period, the results show the consistency of the relationships

found in the Strangeway study, even with more data over a broader range of outflow

conditions included.

The second time period studied is centered on an event identified on 6 July 2002.

This event (as seen in Fig. 6.1) is similar in nature to that observed in the 1998

event, and there is excellent conjunction between the FAST and CHAMP satellites,

both crossing the northern cusp aligned with the 09:00–21:00 magnetic meridian

(see Fig. 6.2). Data from FAST orbits 23387 through 23418 are included, spanning

a little less than 70 hours between 4 Jul and 7 Jul 2002. Data from all orbits in

this time period were used. The results from this time period are compared to the

Strangeway results. This event is also used to examine neutral upwelling.

The third time period studied is a collection of 60 orbits during the first week

of February 2002. These data were used because a different type of outflow signature

146

Figure 6.1: Pitch-angle spectrogram summary of the observed event in July 2002.
This event has characteristics similar to the Sep 1998 event, showing strong ion
conics in the low-energy pitch-angle spectrum, and large fluxes of outflowing ions in
the energy spectra. (See Fig. 4.3 for comparison.)

147

Figure 6.2: Orbital coverage of the time period studied in July 2002. The FAST
and CHAMP satellites are aligned to within 5◦ and oriented along the 09:00–21:00
magnetic meridian.

148

was seen fairly constantly throughout the month of February in this year, and also

because of good alignment between the FAST and CHAMP satellites along the

noon–midnight magnetic meridian (see Fig.s 6.3 and 6.4). Because of the weaker

signals in this month, not every orbit contributed to this data set. FAST orbits

21688 through 21747 were analyzed, with 21694, 21696, 21701, 21703, 21707, 21718,

21733, 21742, and 21744 not contributing. The overall time period spans just over

130 hours from 1 Feb through 6 Feb 2002. This event examines the correlations at

a different time and under different ionospheric conditions. This time period is also

used to examine neutral upwelling.

All data sets are evaluated at a scaled altitude of 1000 km to account for

variations in altitude. The scaling process used is described in Section 5.2.4. In

each of the following plots, the data presented are scaled to this altitude.

6.1 Time Average Consistency

One of the assumptions to be examined is the validity of correlating average

values when taken over the entire selected time period of each orbit as opposed to

multiple points averaged over shorter time periods. In each orbit, the measured

values can vary over a wide range. For example, in orbit 8276, the Poynting Flux

measurements can range between 0.1 and 100 mW/m2. The upper portion of Fig-

ure 6.5 shows the change in orbital average by averaging over data that has been

smoothed further to 10 through 90 s intervals (by 10 s increments) compared to the

average over the entire orbit from the 1 s data used in the study. The average value

149

Figure 6.3: Pitch-angle spectrogram summary of the observed event in February
2002. While the ion conics in the low-energy pitch-angle spectrum are weak, strong
ion outflow are seen at energies less than 10 eV. The energy spectra of down-flowing
ions at high energies are seen in many passes of the FAST satellite during this
month.

150

Figure 6.4: Orbital covereage of the time period studied in February 2002. The
FAST and CHAMP satellites are aligned to within 10◦, with an orientation along
the 12:00–00:00 magnetic meridian.

151

for the orbit does not change significantly with the added smoothing, and so the

orbital average is a good representation of the orbit as a whole.

In addition, an examination of the orbital average as it compares to 10 s

and 60 s averages for each orbit is presented in the lower portion of Figure 6.5.

This figure shows that the use of an average value over the entire orbit as opposed

to a number of shorter averages for each orbit is an adequate representation of

the ionospheric conditions measured. While beyond the scope of this work, it is

interesting to note the difference in orbit 8275 (before the onset of the storm) varies

greatly in ion outflow with reduced ion number fluxes, while orbits 8276, 8277, and

8278 (all during the storm) show greater variation in Poynting flux and an order of

magnitude or greater increase in ion number flux. A logarithmic average may also

be appropriate to use here, but to a simple linear average was used in this study.

It is also worth examining whether the trends established by the orbital aver-

ages are consistent with individual data. Figure 6.6 shows that the orbital average

points are indeed consistent with trends seen using averages of 10 s and 60 s. Shorter

time intervals broaden the distribution in the scatter plot, but the general trend is

still clearly visible.

6.2 Poynting Flux

The results of the statistical correlation between Poynting flux and ion outflow

for the Sep 1998 data are shown in Fig. 6.7. We see good agreement between the

Strangeway result and this result, especially when considering only the same orbit

152

Figure 6.5: Plots showing the effect of using shorter time intervals for averaging.
The overall change is not significant from using the average over the entire orbit
rather than averaging over shorter intervals. Below are scatter plots using all data
for incremental average intervals. The orbital average represents the overall data
well.

153

Figure 6.6: Data from FAST orbits 8260–8292 by averaging interval. The orbital
averages are an accurate representation of the overall trend seen in the shorter
interval data.

154

set (FAST orbits 8260–8292). The parameters of the linear regression of these

averages also agrees with the Strangeway result, supporting the general validity of

the correlation between Poynting flux and ion outflow. Because the methods used

to select data for inclusion in this study selected a broader range of data from

each orbit, this agreement indicates that arguments against his findings based on

selectivity of data are unlikely to be correct. The included data for this study cover

a much longer period of time, extend beyond the impact of the studied event on

both ends, and include a more larger portion of each orbit’s data in the calculated

averages. Even with all of these changes, the results are consistent, suggesting it is

valid to describe a power law relation between the Poynting flux and the ion outflow

at the northern dayside cusp. The observed power law exponent is approximately

1.2.

Electric field data from FAST are compromised in 2002, however the statistical

analysis of this time period shows a correlation similar to that found in 1998, with a

slope within 10% of the previous fit. The observed power law exponent in this data

set is approximately 1.3. The shift observed in the data seen in Fig. 6.8 could be

attributed to a strong attenuation of the measurement of the real fields observed in

the damaged V5 probe. The fact that a correlation consistent with the 1998 period

results may indicate that on average some of the signal may retain a portion of the

actual electric fields observed by the FAST satellite in this time period and not just

the faulty oscillations. This conclusion is supported by the correlation found for

electron precipitation density to be presented shortly. Nevertheless, because of the

degredation in data quality this result should not be taken as a confirmation of the

155

Figure 6.7: Poynting flux correlation for the orbits in September 1998. This and
the subsequent plots all show the measured data scaled to a 1000 km altitude. See
Sec. 5.2.4 for details on the altitude scaling.

156

Figure 6.8: Poynting flux correlation for the orbits in February and July 2002.

Strangeway result.

6.3 Electron Precipitation

The results of the statistical correlation between electron precipitation density

and ion outflow for the Sep 1998 data are shown in Fig. 6.9. As in the case of the

Poynting flux statistics, we again see agreement with the Strangeway result. When

157

Data Set Slope r-value t-test

Strangeway-2005 1.27 ± 0.45 0.72 5.80

Sep 1998 1.18 ± 0.24 0.65 9.64

All 2002 1.27 ± 0.63 0.55 4.05

Table 6.1: Summary of the statistical results for the Poynting flux correlation.
Uncertainties are for a 95% confidence interval. The r-value gives the correlation
coefficient, which is a measure of the linearity of the data. (Larger r-values are
better.) The t-test is a statistical test describing how likely the result is to be
significant. (Again, larger numbers are better.)

removing a few outlying data points for the purpose of obtaining a more descriptive

fit, we find again that a power law description is appropriate, with an exponent of

2.1. While other factors play a role in ion outflow, electron precipitation density is

consistently found to correlate with ion outflow.

The result of the electron precipitation density correlation in 2002 reveals a

similar trend to that found in 1998 (again, with outlying data points removed in

the linear regression). Particularly, the Jul 2002 data are found to agree with the

Sep 1998 data, as can be seen in Fig. 6.10. The Feb 2002 data also agrees in the

trend, showing a nearly identical slope to the regressions of the other data sets.

An increase in the observed ion outflows in this month may indicate a difference

between the types of events studied, but it is clear that the statistical relation

between electron precipitation density and ion outflow is consistent over the times

studied.

158

Figure 6.9: Electron precipitation density correlation for the orbits in September
1998.

159

Figure 6.10: Electron precipitation density correlation for the orbits in February
and July 2002.

160

Data Set Slope r-value t-test

Strangeway-2005 2.20 ± 0.49 0.86 9.18

Sep 1998 2.11 ± 0.38 0.77 10.98

Feb 2002 1.41 ± 0.37 0.76 7.72

Jul 2002 1.83 ± 0.56 0.82 6.72

Jul 02 & Sep 98 2.07 ± 0.63 0.68 6.60

Table 6.2: Summary of the statistical results for the electron precipitation density
correlations. Uncertainties are for a 95% confidence interval.

6.4 Cross Correlations

The cross-correlation found by Strangeway between the ionospheric energy in-

puts studied is also present in the data used in this study. The selected data from

2002 show a weaker cross-correlation between Poynting flux and electron precipita-

tion density than found by Strangeway, due to a larger spread in the February data

(see Fig. 6.11). The July data alone show a strong cross-correlation, with a slope

of 1.18 and corresponding r-value of 0.73.

6.5 Neutral Upwelling

6.5.1 Visual Observations from Selection of CHAMP Data

Not every orbit of the CHAMP satellite sees evidence of neutral upwelling.

Many factors go into whether a density enhancement is observed, but two observa-

161

Figure 6.11: Cross correlation between Poynting flux and electron precipitation
density for FAST data in 2002. Note that the July data alone is found to show a
stronger correlation.

162

tions made while selecting data to include from the CHAMP accelerometer provide

good insight to some of those factors. First, when an enhancement is seen in the

data, it always occurs at or around the same range of invariant latitudes of the day-

side magnetosphere where the FAST satellite observes ion outflow. This observation

leads us to expect some sort of correlation at least in location. Second, on some

orbits (see for example the data from FAST orbit 21688 in Fig. 6.12) CHAMP will

pass over the cusp twice in the orbital period of FAST. There are cases where both

passes observe neutral upwelling, and others where only one pass will show a density

enhancement in the cusp. In the latter case, the second pass is always the one to

show the enhancement, indicating there may be some time delay between the onset

of an ion outflow event and the upwelling of the neutral gas.

Correlations were obtained for the various ionospheric energy inputs with the

neutral density represented by the decceleration of the CHAMP satellite. The dec-

celeration value used is the deviation from the baseline decceleration as interpolated

from the orbital trends observed by CHAMP. Both the mean deviation and the peak

deviation from the baseline were examined.

6.5.2 Poynting Flux

Examining the correlations for neutral density showed no correlation between

Poynting flux and CHAMP decceleration (see Fig. 6.13). This result may be due

to the compromised electric field data from FAST. Another possibility may be that

Poynting flux is negligible during neutral upwelling events. Schlegel et al. found

163

Figure 6.12: Sample plot showing how CHAMP data are selected for study using
FAST orbit 21688. On the lower plot, invariant latitude for both satellites is plotted
against time, indicating the synchronicity of their passing over the CUSP. On the
upper plot, the CHAMP accelerometer data are plotted with indicators to assist se-
lection. The green regions indicate portions of CHAMP data from the same latitude
range of the dayside magnetosphere where ion outflow was observed by FAST. The
red region indicates the time interval when FAST is passing over those latitudes.
The black, vertical dashed lines indicate the portion of data selected for study, and
the red dashed line below the selected data shows the baseline density interpolation
for the selected region.

164

Data Set Slope r-value t-test

Feb 2002 -0.15 ± 0.19 0.27 1.58

Jul 2002 0.17 ± 0.40 0.22 0.85

All 2002 -0.07 ± 0.18 0.11 0.75

Table 6.3: Summary of the statistical results for correlations between Poynting
flux and average neutral density deviation. Uncertainties are for a 95% confidence
interval.

that electric field strengths were quite small during upwelling events [22]. In any

case, even removing orbits with negative average Poynting flux yields no correlation

for these data. (See Table 6.3.)

6.5.3 Electron Precipitation Density

Correlations between the neutral density and electron precipitation density

showed little correlation. Correlations for each period individually were better, but

the derived power law scalings varied widely. (See Fig. 6.14 and Table 6.4.)

6.5.4 Ion Outflow

Neither of the studied ionospheric energy inputs provide good correlation with

neutral upwelling as observed by the decceleration of the CHAMP satellite. How-

ever, a good correlation does exist between the measured ion outflow by FAST with

the CHAMP decceleration deviations. (See Fig. 6.15 and Table 6.5.) While more

scatter is observed in this correlation than in those for the ion outflow data in the

165

Figure 6.13: Plots of the average Poynting flux versus decceleration deviation (pro-
portional to neutral density). Poynting flux shows no coorelation for both average
deviation and peak deviation.

166

Figure 6.14: Plots of the average electron precipitation density versus deccelera-
tion deviation. Electron precipitation density shows a lack of correlation for both
deviation measurements.

167

Data Set Slope r-value t-test

Feb 2002 0.19 ± 0.24 0.22 1.55

Jul 2002 0.15 ± 0.17 0.36 1.87

All 2002 0.12 ± 0.14 0.19 1.68

Table 6.4: Summary of the statistical results for correlations between electron pre-
cipitation density and average neutral density deviation. Uncertainties are for a
95% confidence interval.

Data Set Slope r-value t-test

Feb 2002 0.30 ± 0.12 0.58 4.96

Jul 2002 0.16 ± 0.09 0.59 3.61

All 2002 0.20 ± 0.06 0.60 6.49

Table 6.5: Summary of the statistical calculations for correlations between ion out-
flow and average neutral density deviation. Errors are for the 95% confidence inter-
val.

previous sections, the data here are spread over nearly five orders of magnitude in

ion outflow. A correlation of the ion outflow and neutral upwelling phenomena in-

dicate some connection between the two, even though correlations with the energy

sources that correlate with ion outflow do not exist for neutral upwelling.

168

Figure 6.15: Plots of the average ion outflow versus decceleration deviation. Ion
outflow has good correlation with both measurements.

169

6.6 Summary of Findings

This study finds agreement with the Strangeway results after using a larger

data set centered on the September 1998 event. Both Poynting flux and electron

precipitation density are found to correlate well with ion outflow flux in the dayside

cusp. In addition, similar correlations are found for both ionospheric energy inputs

with ion outflow fluxes in the two periods studied in 2002, though the Poynting

flux data suffer from a faulty electric field probe on the FAST satellite. The no-

ticeable difference between the February and July data is likely indicative of the

different types of ionospheric conditions, as the July data is similar to the Septem-

ber 1998 data in ion outflow signatures. Finally, no strong correlations are observed

between the energy inputs with neutral density in the dayside cusp, however a good

correlation is found between ion outflow itself with the CHAMP decceleration.

170

Figure 6.16: Summary of the statistical results for ion outflow, showing the power
law scaling parameter with statistical uncertainty for a confidence interval of 95%.
The overlapping confidence intervals indicate the consistent results, showing a power
law scaling exponent of 1.2 for Poynting flux to ion outflow and 2.1 for electron
precipitation to ion outflow (1.7 in 2002).

171

Figure 6.17: Summary of the statistical results for neutral upwelling, showing the
power law scaling parameter with statistical uncertainty for a confidence interval of
95%. Poynting flux and electron precipitation scaling law exponents are near zero,
and are considered uncorrelated. A scaling law exponent of 0.2 is found for the
correlation between ion outflow and neutral density.

172

Chapter 7

Conclusion

Ultimately, the best way to determine the true causes and relationships be-

tween various ionospheric energy inputs and the ion outflow and neutral upwelling

phenomena is to make in situ measurements of each property from the vantage point

of a common spacecraft. Both sounding rocket and satellite platforms would be use-

ful, since sounding rockets can target very specific locations and conditions for study,

while satellites can aggregate a large quantity of data over a long period of time.

Both would be very useful in understanding the neutral upwelling phenomenon, and

it is hoped that in the future there will be a new RENU campaign.

7.1 The KIMS Instrument

The techonology to make these measurements is readily available to us today;

we have presented one such instrument that would be very useful in the study of

high energy ions in this context. This instrument (KIMS, as designated in this

instance) is suited to a sounding rocket platform. KIMS provides unique benefits

in its design, primarily as a means of assessing the energy distribution of the local

ion plasma over short time scales because it is able to measure a range of energies

simultaneously rather than requiring steps to sample the energy spectrum of the

local plasma.

173

KIMS does have a few limitations, with its large mass and non-negligible

external magnetic field. However, the external field is constant and small compared

to the Earth’s field, and careful measurements can provide necessary offsets for

magnetometers. Particle instruments placed near the KIMS instrument may still be

adversly affected, depending on the design, and so use of a KIMS type instrument

necessitates careful planning and layout of a payload to minimize any adverse effects

from the external magnetic fields.

Our experience in the assembly and testing of KIMS found that the magnetic

circuit concept was very effective in practice. The assembly of the parts is straight-

forward, and the resulting magnetic fields are uniform and well-suited for effecting

a separation of ions by their energy per charge. The calibration data showed very

clearly that the overall instrument design worked as expected, and that the resulting

response of the MCP detector matched the numerical model. If desired, a similar

instrument design could be created for other energy ranges of ions, or even for

electrons.

The MCP detector design and its accompanying electronics provide a lighter,

less-expensive system than other particle detectors. The amplifier circuit design

provides a fast, inexpensive pulse-counting system for such detectors and easily

scales to any number of detector segments. The circuit design can easily be adjusted

for other instruments used on sounding rocket payloads. The circuit design may also

be of use for satellites with, at the added cost of further testing and use of radiation

hardened components.

The electronics for the instrument were further simplified by using an FPGA

174

for interfacing with the payload’s telemetry unit. The GSE developed for testing and

calibration made effective use of both FPGA and microcontroller design to interface

the instrument with a computer.

7.2 Ion Outflow and Neutral Upwelling

Though the technology is available, the question still remains as to the value

and feasibility of further missions to examine the neutral upwelling and ion outflow

phenomena in the polar cusps. It is clear from the results of this study that the

statistical relations derived by Strangeway et al. are consistent, and we expect

there to be a power-law scaling for ion outflow from both Poynting flux and electron

precipitation as energy sources (see Fig. 7.1). However, the amount of energy

available in both of these sources is orders of magnitude more than is seen in the

typical fluxes in ion outflow. The most likely place for the excess energy to go is the

neutral gas in the ionosphere. It is reasonable to assume, then, that there is some

electrodynamic contribution to the neutral upwelling phenomenon, and it may help

to explain why this upwelling occurs.

A clear correlation is, in fact, found between the ion outflow and neutral

upwelling phenomena. As the heating processes that lead to ion outflow are elec-

trodynamic in nature, we expect there to be an electrodynamic connection to the

heating of the neutral atmosphere, leading to the neutral upwelling phenomenon.

Unfortunately, there is at best a poor correlation between the ionospheric energy

sources considered in this work with the neutral density as measured by the CHAMP

175

Figure 7.1: Figure similar to that in Strangeway et al., 2005 [44], showing the
correlations found in this study for the same ion outflow parameters (in blue) and
for the neutral upwelling parameters (in red). In the case of neutral upwelling,
only the ion outflow correlation was significant. The r-values from the ion outflow
correlations compare well with those found in Strangeway (in black), as do the
derived power law scaling values. Quoted values are for 2002 data unless otherwise
specified.

176

satellite’s accelerometer.

The most likely explanation of these results is that as energy is transferred

to the ionospheric plasma from the fields and particles in the cusp, energy is also

transferred to the neutral atmosphere as ion streams outflow from the ionosphere.

In the case of the Poynting flux measurements, the low correlations observed may be

due to compromised data or possibly a lack of Poynting flux during neutral upwelling

events. The large spatial and temporal separation between the FAST and CHAMP

satellites may be influential in the case of precipitating electrons. If field aligned

currents at scales smaller than the spacecraft separation between the two satellites

are driving the heating in the neutral atmosphere, this picture may be reasonable.

If, however, there is no correlation to be found between these energy sources

and the neutral density, the correlation with ion outflow could indicate something

entirely different, such as the outflowing ions themselves being the mechanism of

transferring heat to the neutral gas. In this case, either the ions would be heated to

well above escape velocity and lose the excess energy to the atmosphere, or the lost

energy would be replenished through the same processes that drive the ion outflow

in the first place.

What we can certainly conclude from these results is that there is good evi-

dence for an electrodynamic connection between the two phenomena that justifies

further study, preferably using in situ data from a common platform. A sounding

rocket campaign such as RENU would be the most beneficial start in a further study

searching for these connections.

177

7.3 Further Work

Were the KIMS instrument to be used in such a study, there are a few as-

pects where improvement could be made. Though the results of the calibration of

this instrument show that we can be confident in the magnetic field strengths and

uniformity we expected, it would be reassuring to have a calibrated measurement

of the fields themselves. Ultimately the energy response of each anode segment is

all that is necessary, so this measurement would be for further confidence in the

overall instrument design. Use of a calibrated ion source would make it possible to

obtain an absolute flux calibration for the instrument. A more comprehensive range

of energies used in calibration would also be helpful, particularly at low energies. In

addition, a more accurate scan in azimuth would lead to a more complete picture

of the instrument response and would help in deciphering the actual data.

With little change to the instrument design itself, a very effective ion spec-

trograph could easily be made for another sounding rocket campaign. (An electron

spectrograph could also be designed by using much lower magnetic fields in the

magnetic circuit.) The instrument would fly in conjunction with other instruments,

including other particle, neutral gas, and field detectors. Though there are many

options for a high energy ion instrument, this design has excellent qualities that

are beneficial to this type of study. A satellite platform may benefit from a lighter

weight design, however.

Satellite measurements would also be very helpful in analyzing the two phe-

nomena examined in this dissertation. Ideally the satellite would be able to provide

178

all of the necessary data itself, but it is not unreasonable to use other satellites in

conjunction to study these processes. The unfortunate loss of electric field data in

the FAST satellite would suggest the need to use other satellites instead to further

this study. Potentially useful satellites for this type of study may include the Defense

Meteorological Satellite Program (DMSP) satellites. A new satellite, carrying a full

suite of instrumentation in a polar orbit at an altitude between 300 and 500 km

would be an ideal means of a long term study of the neutral upwelling phenomenon,

but inclusion of these other satellites can extend our understanding.

As we develop new methods of understanding how to correlate data sets from

multiple spacecraft in environments as complex as the Earth’s atmosphere, iono-

sphere, and magnetosphere, new insights and understandings will be discovered in

relation to these phenomena as well as a number of others. The only way to com-

pletely untangle the complex interactions and changes that occur in these boundary

regions is to examine both the broad and small scale properties simultaneously.

While we continue to develop the tools and instruments necessary to undertake that

task, there is much we can do with what we have. The statistical techniques used

in this dissertation make it evident that there is a connection between the neutral

upwelling and ion outflow phenomena. As we try to understand that connection,

we will further our progress in being able to unravel these mysteries.

179

Appendix A

KIMS Hardware

A.1 Magnetic Circuit

The following pages include the diagrams for the major components of the

magnetic circuit, and the assembly checklist procedure for assembling the parts

together. As the magnets are very strong, the checklist is recommended to ensure

proper assembly the first time.

180

PART NO: CUSP-1015
TITLE: UPPER SHELL
NO. REQ'D: ONE
MAT'L: VANADIUM PERMENDUR
TOL: X.XXX = ±.001
DATE: 18 JAN 1997
U. MD. - J. H. MOORE - (301)-405-1

NOTE 1: THREE HOLES FOR 1/8D TYPE 302 STAINLESS
STEEL ROLL PINS. THESE HOLES MUST ALIGN WITH
HOLES IN PARTS CUSP-1016, CUSP-1017, CUSP-1018,
AND CUSP-1019.

NOTE 2: PARTS CUSP-1015, CUSP-1016, CUSP-1017,
CUSP-1018, AND CUSP-1019 ALIGN ON THIS CENTER.

.6691.000 .331
2.593

2.728
1.255

1.969

2.469 1.131
1.651

2.286

2.473

.370

.094R

.094R

.250R

.062R

.063R

NOTE 1

.490 .508

NOTE 1

3.047R
3.126R

4-40, 4 PLCS

.567 .646

.250R

SEE ASSY DWG, CUSP-1020, FOR SURFACE FINISH
SURFACES FLAT AND PARALLEL WITHIN .001

.125R

.512 .630

NOTE 2

3.001

1.039 .125R

.833

1.288

2.985

3.143

.125R BOTH SIDES

NOTE 1

181

PART NO: CUSP-1016
TITLE: LOWER SHELL
NO. REQ'D: ONE
MAT'L: VANADIUM PERMENDUR
TOL: X.XXX = ±.001
DATE: 20 JAN 1997
U. MD. - J. H. MOORE - (301)-405-1

NOTE 1: THREE HOLES FOR 1/8D TYPE 302 STAINLESS
STEEL ROLL PINS. THESE HOLES MUST ALIGN WITH
HOLES IN PARTS CUSP-1015, CUSP-1017, CUSP-1018,
AND CUSP-1019.

NOTE 2: PARTS CUSP-1015, CUSP-1016, CUSP-1017,
CUSP-1018, AND CUSP-1019 ALIGN ON THIS CENTER.

3.126R 2.953R

2.593 (NOTE 1) 1.255 (NOTE 1)
2.728 1.390

.370 .490 (NOTE 1) .472
.050R

.150R
.250R

.646

NOTE 1

.060R .050R

2.469 1.131
1.651

2.286

.791
.125R .512

SEE ASSY DWG, CUSP-1020, FOR SURFACE FINISH
SURFACES FLAT AND PARALLEL WITHIN .001

NOTE 2

NOTE 1

.833
1.039

1.288

3.143
3.001

2.985

NOTE 1

.125R

.125R BOTH SIDES

182

PART NO: CUSP-1017 (rev 1)
TITLE: UPPER COVER
NO. REQ'D: ONE
MAT'L: VANADIUM PERMENDUR
TOL: X.XXX = ±.001 ; X.X° = ± � .02°
DATE: 20 JAN 1997
U. MD. - J. H. MOORE - (301)-405-1

NOTE 1: THREE HOLES FOR 1/8D TYPE 302 STAINLESS
STEEL ROLL PINS. THESE HOLES MUST ALIGN WITH
HOLES IN PARTS CUSP-1015, CUSP-1016, CUSP-1018, AND
CUSP-1019.

NOTE 2: PARTS CUSP-1015, CUSP-1016, CUSP-1017,
CUSP-1018, AND CUSP-1019 ALIGN ON THIS CENTER.

42.5° 3.126R

2.593 (NOTE 1)

1.255 (NOTE 1)

.490 (NOTE 1) .646

SEE ASSY DWG, CUSP-1020, FOR SURFACE FINISH
SURFACES FLAT AND PARALLEL WITHIN .001

NOTE 2

.669

1.669

.331

1.969
NOTE 1

.185
.508

.118

.250R

42.5°

2.677R

CLEAR 4-40, 11 PLCS.

NOTE 1

.833
1.039

1.288

2.985

3.001

3.143

.125R

.125R BOTH SIDES

NOTE 1

1.355
1.355

183

NOTE 1: THREE HOLES FOR 1/8D TYPE 302 STAINLESS
STEEL ROLL PINS. THESE HOLES MUST ALIGN WITH
HOLES IN PARTS CUSP-1015, CUSP-1016, CUSP-1017,
AND CUSP-1019.

NOTE 2: PARTS CUSP-1015, CUSP-1016, CUSP-1017,
CUSP-1018, AND CUSP-1019 ALIGN ON THIS CENTER.

PART NO: CUSP-1018 (rev 1)
TITLE: LOWER COVER
NO. REQ'D: ONE
MAT'L: VANADIUM PERMENDUR
TOL: X.XXX = ±.001 ; X.X° = ±.02°
DATE: 20 JAN 1997
U. MD. - J. H. MOORE - (301)-405-1

3.126R

2.593 (NOTE 1)

1.255 (NOTE 1)

.490 (NOTE 1) .646

SEE ASSY DWG, CUSP-1020, FOR SURFACE FINISH
SURFACES FLAT AND PARALLEL WITHIN .001

NOTE 2

NOTE 1

.185
.250R

.276

NOTE 1

CLEAR 4-40, 7 PLCS

42.5°

42.5°

2.677R

.833
1.039

1.288

2.985

3.001

3.143

.125R

.125R BOTH SIDES

NOTE 1

1.355

1.355

184

NOTE 1: THREE HOLES FOR 1/8D TYPE 302 STAINLESS
STEEL ROLL PINS. THESE HOLES MUST ALIGN WITH
HOLES IN PARTS CUSP-1015, CUSP-1016, CUSP-1017,
AND CUSP-1018.

NOTE 2: PARTS CUSP-1015, CUSP-1016, CUSP-1017,
CUSP-1018, AND CUSP-1019 ALIGN ON THIS CENTER.

PART NO: CUSP-1019
TITLE: PARTITION
NO. REQ'D: ONE
MAT'L: VANADIUM PERMENDUR
TOL: X.XXX = ±.001 ; X.X° = ±.02°
DATE: 20 JAN 1997
U. MD. - J. H. MOORE - (301)-405-1

3.126R

2.593 (NOTE 1) 1.255 (NOTE 1)

.490 (NOTE 1) .646

SEE ASSY DWG, CUSP-1020, FOR SURFACE FINISH
SURFACES FLAT AND PARALLEL WITHIN .001

NOTE 2

NOTE 1

.250R

NOTE 1

.833
1.039
1.288

2.985

3.001

3.143

.125R
.125R BOTH SIDES

NOTE 1

2.469 1.131

.118

.125R

185

186

187

188

189

190

191

192

KIMS/Proton Magnetic Spectrograph 
Magnetic Circuit Assembly 
Rev. D      26 Jan 2010 
 
1. Locate and clean: 
 

◊ 1015 – Upper Shell 
◊ 1016 – Lower Shell 
◊ 1017 – Upper Cover 
◊ 1018 – Lower Cover 
◊ 1019 – Partition 
◊ 1036/2036 – Lower Magnet Clamp 
◊ Lower Aperture 
◊ 1034/3034 – Modified Upper Magnet Clamp 
◊ Upper Aperture 
◊ Lower Magnet (Thick) 
◊ Upper Magnet (Thin) 
◊ 4‐40 x 1” Slotted Screws (6) 
◊ 4‐40 x ½” Phillips Screws (8) 
◊ 4‐40 x 3/8” Phillips Screws (8) 
◊ 4‐40 x ¼” Phillips Screws (8) 
◊ 2‐56 x 3/16” Phillips Screws (6) 
◊ 2‐56 x ¼” Slotted Screws (8) 
◊ 1/8” x 2” Roll Pins (5) 
◊ 1/8” rods 6” long 
◊ Jig Base 
◊ Jig Nuts & Washers (4 ea.) 
◊ Pads A, B, C, and D 
◊ Spacers L and U 
◊ Non‐Magnetic Stainless Washers, 0.045” thickness (8) 
◊ Non‐Magnetic Slotted Screwdriver 
◊ Non‐Magnetic Phillips Screwdriver 
◊ Non‐Magnetic Needle Nose Pliers and/or Tweezers 
◊ Non‐Magnetic Mallet 
◊ Chunk of plastic for setting pins 
◊ 9V Battery 
◊ Length of Insulated Wire 

193

2. Lower Shell Assembly 
 
◊ Put Lower Cover in jig, tab right. 
◊ Place Pad A in jig (letter down). 
◊ Thread and tighten 4 jig nuts on the jig bolts. 
◊ Attach Lower Aperture to Lower Clamp, bevel in, with 2‐
56 x 3/16” screws and Loctite. 

◊ Place Lower Magnet on the pad, pole face up. 
◊ Place Lower Clamp over the Lower Magnet. 
◊ Check that current running up the magnet (into the 
aperture) deflects left. 

◊ Slide magnet onto the Lower Cover, carefully line up with 
holes 1‐5. 

◊ Thread holes 1 and 5 with ½” screws. (Screws will be 
upside down, and don’t actually attach the clamp to the 
cover.  This is only to keep the clamp from shifting on 
removal.) 

◊ Remove Pad A. 
◊ Remove Assembly. 
◊ Thread holes 2 and 4 with 1” screws. 
◊ Remove screws in 1 and 5. 
◊ Replace Lower Assembly in jig, tab right. 
◊ Attach Spacer L and thread holes 1, 3, and 5 with 1” 
screws. 

◊ Slide Lower Shell onto assembly, aperture to the right. 
◊ Remove screws in 1, 3, and 5. 
◊ Remove Spacer L. 
◊ Remove Assembly. 
◊ Thread holes 1, 3, 5, and 6 with ½” screws. 
◊ Remove screws in 2 and 4, replace with ½” screws. 
◊ Carefully set Lower Assembly to the side, away from any 
magnetic materials. 

194

3. Upper Shell Assembly 
 
◊ Place Upper Cover in jig, tab left. 
◊ Place Pad D in jig (letter down). 
◊ Thread and tighten 4 jig nuts on the jig bolts. 
◊ Attach Upper Aperture to Upper Clamp, bevel in, with 2‐
56 x ¼” screws and Loctite. 

◊ Place Upper Magnet on the pad, pole face up. 
◊ Place Upper Clamp over the Upper Magnet. 
◊ Check that the current running up the magnet (into the 
aperture) deflects right. 

◊ Slide magnet onto the Upper Cover, carefully line up with 
holes 1‐5. 

◊ Thread holes 1 and 5 (screws upside down). 
◊ Remove Pad D. 
◊ Remove Assembly. 
◊ Thread screws 2 and 4 with 1” long screws. 
◊ Remove screws in 1 and 5. 
◊ Thread hole 6 with 1” long screws (upside down), flush to 
top of cover. 

◊ Attach Spacer U and thread holes 1, 3, and 5 with 1” 
screws. 

◊ Slide Upper Shell onto assembly, aperture to the left. 
◊ Remove screws in 1, 3, and 5. 
◊ Remove Spacer U 
◊ Remove screw in 6. 
◊ Remove assembly. 
◊ Thread holes 1, 3, and 5 with 3/8” screws. 
◊ Remove screws in 2 and 4. 
◊ Thread holes 2 and 4 with 3/8” screws. 

195

4. Circuit Assembly 
 
◊ Place Partition in jig, tab right. 
◊ Place Pad D in jig (letter down). 
◊ Thread and tighten 4 jig nuts on the jig bolts. 
◊ Slide Upper Assembly onto Partition. 
◊ Remove Pad D 
◊ Remove Upper Assembly with Partition. 
◊ Place 2 Washers ea. on jig bolts. 
◊ Replace Upper Assembly with tab left; the partition will 
be on top. 

◊ Place Pads A, B, C, and D in jig. 
◊ Thread and tighten 4 jig nuts on the jig bolts. 
◊ Slide Lower Assembly onto the partition. 
◊ Insert pins 1, 2, and 3. 
◊ Remove Pads A, B, C, and D. 
◊ Remove Finished Circuit and Inspect. 
◊ Thread Upper holes 5, a, b, c, and d with ¼” screws. 
◊ Wrap carefully for storage to prevent contamination of 
the magnetic poles. 

196

A.2 Clamshell and Cover

The following pages include the diagrams for the clamshell and cover for the

KIMS instrument.

197

198

199

200

201

202

A.3 KIMS Electronics

The following pages include the circuit schematics for the KIMS electronics.

203

204

205

206

207

208

209

210

211

Appendix B

KIMS Software

B.1 Monte Carlo Simulation

B.1.1 mc sim.py

from numpy import array,arange,append,shape,zeros,histogram

from pylab import loadtxt,plot,figure

from math import cos,sqrt,pi

from random import random

q = 2*1.60218e-19

mp = 1.67262e-27

B0 = 0.096

cel = -2.286*0.0254 # collimator edges

cer = -1.651*0.0254

dhel = -1.130*0.0254 # detector housing edges

dher = 2.469*0.0254

pcb_w = 3.265*0.0254

pcb_h = 0.945*0.0254

mask = 0.115*0.0254

partition = 0.118*0.0254

pad_height = (pcb_h-partition)/2. - mask

off = (dhel + dher - pcb_w)/2.0 # offset to edge of pcb: pcb edge is 0

alpha = (cer + cel)/2.0 - off # location of aperture center

w = 0.118*0.0254 # aperture half width

N_pads=10

x=loadtxt(raw_input(’Filename: ’))

tm = -6.0*pi/180.

tp = 19.0*pi/180.

212

def locate(E,theta,s,m,B):

return alpha + s + 2*sqrt(2*m*E/q)/B * cos(theta)

def pad_sim(N,E_min,E_max,theta_min,theta_max,s_min,s_max,a,b,m=mp,B=B0):

hits = []

done = 0.10

for n in range(N):

e = E_min + (E_max-E_min)*random()

t = theta_min + (theta_max-theta_min)*random()

s = s_min + (s_max-s_min)*random()

pos = locate(e,t,s,m,B)

if pos >= a and pos <= b:

hits.append((e,t,s))

if n > N*done:

print done*100,’% done’

done += 0.10

print 100.0, ’% done’

out = zeros(shape(hits))

I,J = shape(hits)

for i in range(I):

for j in range(J):

out[i,j]=hits[i][j]

return out

def KIMS_hist(E,a,b,m=mp,B=B0):

hits=pad_sim(int(2e7),E[0],E[1],tm,tp,-w,w,a,b,m,B)

dE=5.0

edges=arange(E[0],E[1]+dE,dE)

centers=zeros(len(edges)-1)

for i in range(len(centers)):

centers[i]=(edges[i]+edges[i+1])/2.0

hist,junk=histogram(hits[:,0],bins=edges,normed=True)

plot(centers,hist)

return hits,edges,hist

def full_sim():

E=array([0,0])

E[0]=float(raw_input("Lowest energy in eV: "))

E[1]=float(raw_input("Highest energy in eV: "))

BA=float(raw_input("Low Energy B: "))

BB=float(raw_input("High Energy B: "))

m=float(raw_input("Particle Mass: "))

B = BA

213

figure()

EA = zeros(10)

dEA = zeros(10)

print(":: A0 ::")

hits_a0,edges,hist_a0 = KIMS_hist(E,x[0],x[1],m,B)

centers=zeros(len(edges)-1)

for i in range(len(centers)):

centers[i]=(edges[i]+edges[i+1])/2.0

EA[0] = sum(centers*hist_a0*5.0)

dEA[0] = 1./max(hist_a0)

print(":: A1 ::")

hits_a1,edges,hist_a1 = KIMS_hist(E,x[2],x[3],m,B)

EA[1] = sum(centers*hist_a1*5.0)

dEA[1] = 1./max(hist_a1)

print(":: A2 ::")

hits_a2,edges,hist_a2 = KIMS_hist(E,x[4],x[5],m,B)

EA[2] = sum(centers*hist_a2*5.0)

dEA[2] = 1./max(hist_a2)

print(":: A3 ::")

hits_a3,edges,hist_a3 = KIMS_hist(E,x[6],x[7],m,B)

EA[3] = sum(centers*hist_a3*5.0)

dEA[3] = 1./max(hist_a3)

print(":: A4 ::")

hits_a4,edges,hist_a4 = KIMS_hist(E,x[8],x[9],m,B)

EA[4] = sum(centers*hist_a4*5.0)

dEA[4] = 1./max(hist_a4)

print(":: A5 ::")

hits_a5,edges,hist_a5 = KIMS_hist(E,x[10],x[11],m,B)

EA[5] = sum(centers*hist_a5*5.0)

dEA[5] = 1./max(hist_a5)

print(":: A6 ::")

hits_a6,edges,hist_a6 = KIMS_hist(E,x[12],x[13],m,B)

EA[6] = sum(centers*hist_a6*5.0)

dEA[6] = 1./max(hist_a6)

print(":: A7 ::")

hits_a7,edges,hist_a7 = KIMS_hist(E,x[14],x[15],m,B)

EA[7] = sum(centers*hist_a7*5.0)

214

dEA[7] = 1./max(hist_a7)

print(":: A8 ::")

hits_a8,edges,hist_a8 = KIMS_hist(E,x[16],x[17],m,B)

EA[8] = sum(centers*hist_a8*5.0)

dEA[8] = 1./max(hist_a8)

print(":: A9 ::")

hits_a9,edges,hist_a9 = KIMS_hist(E,x[18],x[19],m,B)

EA[9] = sum(centers*hist_a9*5.0)

dEA[9] = 1./max(hist_a9)

B = BB

figure()

EB = zeros(10)

dEB = zeros(10)

print(":: B0 :")

hits_b0,edges,hist_b0 = KIMS_hist(E,x[0],x[1],m,B)

EB[0] = sum(centers*hist_b0*5.0)

dEB[0] = 1./max(hist_b0)

print(":: B1 ::")

hits_b1,edges,hist_b1 = KIMS_hist(E,x[2],x[3],m,B)

EB[1] = sum(centers*hist_b1*5.0)

dEB[1] = 1./max(hist_b1)

print(":: B2 ::")

hits_b2,edges,hist_b2 = KIMS_hist(E,x[4],x[5],m,B)

EB[2] = sum(centers*hist_b2*5.0)

dEB[2] = 1./max(hist_b2)

print(":: B3 ::")

hits_b3,edges,hist_b3 = KIMS_hist(E,x[6],x[7],m,B)

EB[3] = sum(centers*hist_b3*5.0)

dEB[3] = 1./max(hist_b3)

print(":: B4 ::")

hits_b4,edges,hist_b4 = KIMS_hist(E,x[8],x[9],m,B)

EB[4] = sum(centers*hist_b4*5.0)

dEB[4] = 1./max(hist_b4)

print(":: B5 ::")

hits_b5,edges,hist_b5 = KIMS_hist(E,x[10],x[11],m,B)

215

EB[5] = sum(centers*hist_b5*5.0)

dEB[5] = 1./max(hist_b5)

print(":: B6 ::")

hits_b6,edges,hist_b6 = KIMS_hist(E,x[12],x[13],m,B)

EB[6] = sum(centers*hist_b6*5.0)

dEB[6] = 1./max(hist_b6)

print(":: B7 ::")

hits_b7,edges,hist_b7 = KIMS_hist(E,x[14],x[15],m,B)

EB[7] = sum(centers*hist_b7*5.0)

dEB[7] = 1./max(hist_b7)

print(":: B8 ::")

hits_b8,edges,hist_b8 = KIMS_hist(E,x[16],x[17],m,B)

EB[8] = sum(centers*hist_b8*5.0)

dEB[8] = 1./max(hist_b8)

print(":: B9 ::")

hits_b9,edges,hist_b9 = KIMS_hist(E,x[18],x[19],m,B)

EB[9] = sum(centers*hist_b9*5.0)

dEB[9] = 1./max(hist_b9)

return EA,dEA,EB,dEB

216

B.2 FPGA

B.2.1 Telemetry/Amplifier Board

B.2.1.1 Telemetry Code

-- Company: University of Maryland

-- Engineer: Larry Lutz

--

-- Create Date: 01/17/2010

-- Module Name: IonSpectr_TM - Behavioral

--

-- Revision:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IonSpectr_TM is

Port (Clock : in STD_LOGIC; -- Telemetry Clock Input (10 MHz)

MFSync : in STD_LOGIC; -- Major Frame Sync

GtdClk : in STD_LOGIC; -- Gated Clock

Counter_Input : in STD_LOGIC_VECTOR (9 downto 0);

-- Counter Inputs from CSAs

DataOut : out STD_LOGIC; -- Data Output to Telemetry

Test_On : in STD_LOGIC; -- Test On Command

Calibrate_Out : out STD_LOGIC_VECTOR (9 downto 0);

-- Calibration Outputs

TP : out STD_LOGIC_VECTOR (8 downto 0)

-- Test Points

217

);

end IonSpectr_TM;

architecture Behavioral of IonSpectr_TM is

component Counter

port (

Clock : in STD_LOGIC;

Reset : in STD_LOGIC;

Counter_In : in STD_LOGIC;

Dataout : out STD_LOGIC_VECTOR (19 downto 0)

);

end component;

signal Shiftreg : std_logic_vector (199 downto 0);

-- Shift Register

signal Shiftin : std_logic_vector (199 downto 0);

-- Shift Register Input

signal CalCount : std_logic_vector (14 downto 0);

-- Calibration Counter/Divider

signal MFCount : std_logic_vector (2 downto 0);

-- MFSync Timing Counter

signal Reset : std_logic; -- Counter Reset

signal Srload : std_logic; -- Shift Register Load

begin

process (Clock, MFSync, MFCount) -- MFSync Timing Counter

218

begin

if MFSync = ’0’ then MFCount <= "000";

elsif rising_edge (Clock) then

if MFCount /= "111" then

MFCount <= MFCount + ’1’;

end if;

end if;

end process;

Srload <= ’1’ when MFCount = "001" else ’0’;

Reset <= ’1’ when MFCount = "011" else ’0’;

process (Srload, GtdClk, Shiftreg, Shiftin)

-- Shift Register

begin

if Srload = ’1’ then Shiftreg <= Shiftin;

elsif rising_edge (GtdClk) then

Shiftreg <= Shiftreg (198 downto 0) & ’0’;

end if;

end process;

DataOut <= Shiftreg (199);

219

process (Clock, Test_On, CalCount) -- Calibration Counter/Divider

begin

if Test_On = ’0’ then CalCount <= "000000000000000";

elsif rising_edge (Clock) then

CalCount <= CalCount + ’1’;

end if;

end process;

Calibrate_Out <= CalCount (14 downto 5);

TP(0) <= GtdClk;

TP(1) <= Shiftreg (199);

TP(2) <= Clock;

TP(3) <= Counter_Input (0);

TP (8 downto 4) <= "00000";

Counters: -- Generate Counters

for I in 0 to 9 generate

begin

CounterGen : Counter

port map (

Clock => Clock,

Reset => Reset,

220

--Counter_In => CalCount (I+5),

Counter_In => Counter_Input (I),

Dataout => Shiftin (((I*20)+19) downto (I*20))

);

end generate;

end Behavioral;

221

B.2.1.2 Amplifier/Counter Code

-- Company: University of Maryland

-- Engineer: Larry Lutz

--

-- Create Date: 01/17/2010

-- Module Name: Counter - Behavioral

--

-- Revision:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter is

Port (Clock : in STD_LOGIC; -- Clock Input

Reset : in STD_LOGIC; -- Reset Input

Counter_In : in STD_LOGIC; -- Counter Input

DataOut : out STD_LOGIC_VECTOR (19 downto 0)

-- Data Output

);

end Counter;

architecture Behavioral of Counter is

signal Count : std_logic_vector (15 downto 0);

-- Count Value

signal InputReg : std_logic; -- Input Registered

signal InputEdge : std_logic; -- Input Edge

222

begin

process (Clock, InputReg, Counter_In) -- Input Edge Detector

begin

if rising_edge (Clock) then

InputReg <= Counter_In;

end if;

end process;

InputEdge <= ’1’ when InputReg = ’1’ and Counter_In = ’0’ else ’0’;

process (Reset, Clock, InputEdge, Count) -- Counter

begin

if Reset = ’1’ then Count <= "0000000000000000";

elsif rising_edge (Clock) then

if InputEdge = ’1’ then

Count <= Count + ’1’;

end if;

end if;

end process;

DataOut (19 downto 16) <= "0000";

DataOut (15 downto 0) <= Count;

223

--DataOut <= "10100000000000000000";

end Behavioral;

224

B.2.2 GSE

-- Company: University of Maryland

-- Engineer: Larry Lutz

--

-- Create Date: 05/31/2010

-- Module Name: IonSpectr_GSE - Behavioral

--

-- Revision:

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IonSpectr_GSE is

Port (Osc : in STD_LOGIC; -- Oscillator (40 MHz)

-- TM Interface

ClockOut : out STD_LOGIC; -- Clock Out (10 MHz)

MFSync : out STD_LOGIC; -- Major Frame Sync

GatedClock : out STD_LOGIC; -- Gated Clock

Enable : out STD_LOGIC; -- Enable

DataIn1 : in STD_LOGIC; -- Data Input Side 1

DataIn2 : STD_LOGIC; -- Data Input Side 2

-- MicroController Interface

DataOut : out STD_LOGIC_VECTOR (15 downto 0);

-- Data from Shift Registers

Sync : out STD_LOGIC; -- Frame Sync

SyncAck : in STD_LOGIC; -- Sync Acknowledge

225

DataRdy : out STD_LOGIC; -- Data Ready

DataAck : in STD_LOGIC; -- Data Acknowledge

Chan2 : in STD_LOGIC; -- Channel 2 Data Select

-- Test Points

TP : out STD_LOGIC_VECTOR (8 downto 0)

-- Test Points

);

end IonSpectr_GSE;

architecture Behavioral of IonSpectr_GSE is

signal Clockdiv : std_logic_vector (1 downto 0);

-- Clock Divider

signal Divide20 : std_logic_vector (4 downto 0);

-- 20 Bit Word Divider

signal WordCnt : std_logic_vector (12 downto 0);

-- Word Counter

signal GateCnt : std_logic_vector (4 downto 0);

-- Gate Counter

signal DataReg1 : std_logic_vector (15 downto 0);

-- Data 1 Shift Register

signal DataReg2 : std_logic_vector (15 downto 0);

-- Data 2 Shift Register

signal DataInt : std_logic; -- Data Interval

signal Word20 : std_logic; -- Word Synch Bit

signal Clock10 : std_logic; -- 10 MHz Synch Bit

signal Frame : std_logic; -- Frame Sync

signal GateCtEn : std_logic; -- Gate Counter Enable

226

signal Gate : std_logic; -- Gate for Gated Clock

signal GtdClock : std_logic; -- Gated Clock

signal GatCkEdg : std_logic; -- Gated Clock Edge

signal DataMicr : std_logic; -- Data Ready for MicroController

constant Count20 : std_logic_vector := "10011";

-- 20 Bit Word End Count (19)

begin

process (Osc, Clockdiv) -- Clock Divider for 10 MHz

begin

if rising_edge (Osc) then

Clockdiv <= Clockdiv + ’1’;

end if;

end process;

Clock10 <= ’1’ when Clockdiv = "00" else ’0’;

ClockOut <= Clockdiv(1);

process (Osc, Clock10, Word20, Divide20) -- Clock Divider for 20 Bit Words

227

begin

if rising_edge (Osc) then

if Clock10 = ’1’ then

if Word20 = ’1’ then Divide20 <= "00000";

else Divide20 <= Divide20 + ’1’;

end if;

end if;

end if;

end process;

Word20 <= ’1’ when Divide20 = Count20 else ’0’;

process (Osc, Clock10, Word20, WordCnt) -- Word Counter

begin

if rising_edge (Osc) then

if Clock10 = ’1’ and Word20 = ’1’ then

WordCnt <= WordCnt + ’1’;

end if;

end if;

end process;

Frame <= ’1’ when WordCnt (12 downto 6) = "00000000" else ’0’;

MFSync <= Frame;

228

Sync <= Frame;

DataInt <= ’1’ when WordCnt (8 downto 6) = "00000" else ’0’;

DataMicr <= DataInt and not Gate and not Frame;

DataRdy <= DataMicr;

process (Osc, DataInt, Clock10, GateCtEn, GateCnt)

-- Gate Clock Divider (20 Bits)

begin

if DataInt = ’0’ then GateCnt <= "00000";

elsif rising_edge (Osc) then

if Clock10 = ’1’ and GateCtEn = ’1’ then

GateCnt <= GateCnt + ’1’;

end if;

end if;

end process;

GateCtEn <= ’0’ when GateCnt = "10100" else ’1’;

Gate <= DataInt and GateCtEn and not Frame;

Enable <= Gate;

GtdClock <= Gate and Clockdiv(1);

GatedClock <= GtdClock;

GatCkEdg <= ’1’ when GtdClock = ’1’ and Clockdiv = "10" else ’0’;

229

process (Osc, GatCkEdg, DataReg1, DataIn1)

-- Data 1 Shift Register

begin

if rising_edge (Osc) then

if GatCkEdg = ’1’ then

DataReg1 <= DataReg1(14 downto 0) & DataIn1;

end if;

end if;

end process;

process (Osc, GatCkEdg, DataReg2, DataIn2)

-- Data 2 Shift Register

begin

if rising_edge (Osc) then

if GatCkEdg = ’1’ then

DataReg2 <= DataReg2(14 downto 0) & DataIn2;

end if;

end if;

end process;

DataOut <= DataReg1 when Chan2 = ’0’ else DataReg2;

TP(0) <= Frame;

TP(1) <= DataMicr;

TP(2) <= GtdClock;

TP(3) <= GatCkEdg;

TP(4) <= SyncAck;

230

TP(5) <= DataAck;

TP(6) <= DataIn1;

TP(7) <= DataIn2;

TP(8) <= ’0’;

end Behavioral;

231

B.3 MSP430

The following code programmed the MSP430F5438 on the GSE board to in-

terface with the KIMS telemetry boards. The MSP430 served to send the data

received from the telemetry boards by an FPGA to a computer where they could

be recorded to a file.

/* KIMSF5438 v. 0.5: 24 August 2010

* GSE programming for the MSP430F5438.

* Increase operating/transmission rates to see if it affects data read.

*/

#include <msp430f5438.h>

#include <stdio.h>

#include <string.h>

#define CHAN2 BIT2

#define DATAACK BIT3

#define SYNCACK BIT4

#define DATARDY BIT5

#define SYNC BIT6

#define V24_MON BIT0

#define HV_MON2 BIT1

#define HV_MON1 BIT2

#define TEMP BIT3

void port_init(void);

void xtal_init(void);

void uart_init(void);

void adc12_init(void);

void call_0(void);

void call_1(void);

void call_2(void);

void call_3(void);

void call_r(void);

void send_message(void);

int analog[4];

int ad_ready;

232

char command = ’p’;

void main(void) {

int i, j, data_value, count; // Two iterators and storage for data

char hex_word[5]; // String for converting data to ASCII hex

char message[36];

WDTCTL = WDTPW + WDTHOLD; // WDT off

port_init();

xtal_init();

uart_init();

adc12_init();

_enable_interrupts(); // Allow interrupts without entering LPM

i=0; j=0; ad_ready=0; count=0; // initialize software flags/iterators

for (;;) {

switch (command) {

case ’p’:

break; // hold until command issued

case ’s’:

sprintf(message, "P4IN: %d\tSYNC: %d\tP4SY:%d\r\n", P4IN,

SYNC, (P4IN & SYNC));

j=0;

while (message[j] !=’\0’) {

while (!(UCA3IFG&UCTXIFG));

UCA3TXBUF = message[j++];

}

command=’p’;

break;

case ’r’:

while (count++ < 100) {

while ((P4IN & SYNC) == SYNC); // Pass any missed frames

while ((P4IN & SYNC) != SYNC); // Wait for MFRAME SYNC

P4OUT |= BIT4; // Acknowledge SYNC

for (i=0; i<10; i++) { // 10 sets of data

while ((P4IN & DATARDY) != DATARDY); // Wait for DATARDY

P4OUT |= DATAACK; // Acknowledge DATARDY

data_value = PAIN; // Read KIMS_A word

sprintf(hex_word, "%04x\t", data_value);

for (j=0; j<5; j++) { // Send KIMS_A word

233

while (!(UCA3IFG & UCTXIFG)); // Wait for TX finish

UCA3TXBUF = hex_word[j];

}

/* data_value = P2IN;

sprintf(hex_word, "%02x\t", data_value);

for (j=0; j<3; j++) {

while (!(UCA3IFG & UCTXIFG));

UCA3TXBUF = hex_word[j];

}

data_value = P1IN;

sprintf(hex_word, "%02x\t", data_value);

for (j=0; j<3; j++) {

while (!(UCA3IFG & UCTXIFG));

UCA3TXBUF = hex_word[j];

}

*/ P4OUT |= CHAN2; // Switch to KIMS_B (CHAN2 on)

__delay_cycles(1000); // Wait for data to settle

data_value = PAIN; // Read KIMS_B word

sprintf(hex_word, "%04x\t", data_value);

for (j=0; j<5; j++) { // Send KIMS_B word

while (!(UCA3IFG & UCTXIFG)); // Wait for TX finish

UCA3TXBUF = hex_word[j];

}

P4OUT &= ~CHAN2; // Switch to KIMS_A (CHAN2 off)

P4OUT &= ~DATAACK; // Data received, wait for next

// DATARDY

}

P4OUT &= ~SYNCACK; // Sample received, wait for next

// MFRAME SYNC

ADC12CTL0 |= ADC12SC; // Start ADC conversions

while (!(ad_ready)); // wait for ADC data

for (i=0; i<4; i++) { // Send Analog words

sprintf(hex_word, "%04x\t", analog[i]);

for (j=0; j<5; j++) { // Send V24_MON word

while (!(UCA3IFG & UCTXIFG)); // Wait for TX finish

UCA3TXBUF = hex_word[j];

}

}

ad_ready = 0; // reset software flag

234

while (!(UCA3IFG & UCTXIFG)); // Done with data, send newline

UCA3TXBUF = ’\r’;

while (!(UCA3IFG & UCTXIFG));

UCA3TXBUF = ’\n’;

}

count = 0;

command = ’p’;

break;

default:

sprintf(message, "Unknown command %c-- holding.\r\n", command);

j=0;

while (message[j] != ’\0’) {

while (!(UCA3IFG & UCTXIFG));

UCA3TXBUF = message[j++];

}

command = ’p’;

break;

} // switch

} // for(;;)

} // main

void port_init(void) {

P1DIR = 0x00; // Ports 1 and 2 are data in (Port A word)

P2DIR = 0x00;

P3OUT = 0x06; // Set P3.1 and P3.2 on, all others off

P3DIR = 0xFF;

P4OUT = 0x00; // P4.0,1,7 unused, P4.2,3,4 initially off

P4DIR = 0x9F; // P4.5,6 inputs, all others out.

P5OUT = 0x00;

P5DIR = 0xFF; // P5.2,3 already set to XT2

P6OUT = 0x00;

P6DIR = 0xF0; // P6.0-3 are ADC12, all others off

P7OUT = 0x00;

P7DIR = 0xFF; // All other ports off

P8OUT = 0x00;

P8DIR = 0xFF;

P9OUT = 0x00;

P9DIR = 0xFF;

P10OUT = 0x00;

P10DIR = 0xFF;

} // port_init

void xtal_init(void) {

/* LFXT1 is the default source for ACLK and FLL. These sources must be

* changed in order to prevent XT1 fault flags from interrupting the code.

235

* FLL is changed to source from XT2 and ACLK from REFO. When the

* oscillators are considered stable, ACLK is changed to source from XT2.

*/

P5SEL |= 0x0c; // Port 5 select XT2

UCSCTL6 &= ~XT2OFF; // Enable XT2

UCSCTL3 |= SELREF_2; // Source FLL with XT2 since XT1 is not

// present in the circuit.

UCSCTL4 |= SELA_2; // ACLK = REFO, SMCLK = DCO, MCLK = DCO

__bis_SR_register(SCG0); // Disable the FLL control loop

UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx

UCSCTL1 = DCORSEL_5; // Select DCO range 16MHz operation

UCSCTL2 = FLLD_1 + 374; // Set DCO Multiplier for 8MHz

// (N + 1) * FLLRef = Fdco

// (249 + 1) * 32768 = 8MHz

// Set FLL Div = fDCOCLK/2

__bic_SR_register(SCG0); // Enable the FLL control loop

// Worst-case settling time for the DCO when the DCO range bits have been

// changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in

// 5xx User’s Guide for optimization.

// 32 x 32 x 8 MHz / 32,768 Hz = 250000 = MCLK cycles for DCO to settle

__delay_cycles(375000);

// Loop until Oscillators stabilize

do {

// Clear XT1, XT2, DCO fault flags

UCSCTL7 &= ~(XT1LFOFFG + XT1HFOFFG + XT2OFFG + DCOFFG);

SFRIFG1 &= ~OFIFG; // Clear osc. fault interrupt flag

} while (SFRIFG1 & OFIFG); // Check osc. fault interrupt flag

UCSCTL6 &= ~XT2DRIVE0; // Drive for 7.3728 MHz

UCSCTL4 |= SELA_5; // ACLK = XT2

} // xtal_init

void uart_init(void) {

P10SEL = 0x30; // Port 10 select USCI_A3 TxD/RxD

UCA3CTL1 |= UCSWRST; // Reset USCI state machine

UCA3CTL1 |= UCSSEL_1; // USCI CLK = ACLK (sourced by XT2)

UCA3BR0 = 0x10; // 7.3728 MHz / 230400 = 32 -> 0x20

UCA3BR1 = 0x00; // 0x0020 gives 230400 baud

// 0x0080 gives 57600 baud

// 0x0300 gives 9600 baud

UCA3MCTL = UCBRS_0 + UCBRF_0; // No modulation needed at this frequency

236

UCA3CTL1 &= ~UCSWRST; // Initialize USCI state machine

UCA3IE |= UCRXIE; // Enable USCI_A3 Rx interrupt.

} // uart_init

void adc12_init(void) {

P6SEL |= 0x0F; // P6.0-3 ADC select

ADC12CTL0 = ADC12MSC + ADC12SHT0_2 + ADC12ON; // Sampling time, ADC12 on

ADC12CTL1 = ADC12SHP + ADC12CONSEQ_1; // Use sampling timer

ADC12MCTL0 = ADC12INCH_0; // channel A0 = V24_MON

ADC12MCTL1 = ADC12INCH_1; // channel A1 = HV_MON2

ADC12MCTL2 = ADC12INCH_2; // channel A2 = HV_MON1

ADC12MCTL3 = ADC12INCH_3+ADC12EOS; // channel A3 = TEMP, End of sequence

ADC12IE = 0x08; // ADC12 interrupt flags data ready:

// ADC12IFG.3

ADC12CTL0 |= ADC12ENC; // Enable ADC conversion

} // adc12_init

// Interrupt Service for UCA3 Rx interrupt

#pragma vector=USCI_A3_VECTOR

__interrupt void USCI_A3_ISR(void) {

switch(__even_in_range(UCA3IV,4)) {

case 0: break; // Vector 0 - no interrupt

case 2: // Vector 2 - RXIFG

command = UCA3RXBUF;

break;

case 4: // Vector 4 - TXIFG

break;

default: break;

}

} // USCI_A3_ISR

#pragma vector=ADC12_VECTOR

__interrupt void ADC12ISR (void)

{

switch(__even_in_range(ADC12IV,34))

{

case 0: break; // Vector 0: No interrupt

case 2: break; // Vector 2: ADC overflow

case 4: break; // Vector 4: ADC timing overflow

case 6: break; // Vector 6: ADC12IFG0

case 8: break; // Vector 8: ADC12IFG1

case 10: break; // Vector 10: ADC12IFG2

case 12: // Vector 12: ADC12IFG3

analog[0] = ADC12MEM0; // Move results, IFG is cleared

analog[1] = ADC12MEM1; // Move results, IFG is cleared

237

analog[2] = ADC12MEM2; // Move results, IFG is cleared

analog[3] = ADC12MEM3; // Move results, IFG is cleared

ad_ready = 1;

break;

case 14: break; // Vector 14: ADC12IFG4

case 16: break; // Vector 16: ADC12IFG5

case 18: break; // Vector 18: ADC12IFG6

case 20: break; // Vector 20: ADC12IFG7

case 22: break; // Vector 22: ADC12IFG8

case 24: break; // Vector 24: ADC12IFG9

case 26: break; // Vector 26: ADC12IFG10

case 28: break; // Vector 28: ADC12IFG11

case 30: break; // Vector 30: ADC12IFG12

case 32: break; // Vector 32: ADC12IFG13

case 34: break; // Vector 34: ADC12IFG14

default: break;

}

}

238

B.4 Serial Communication

Communication with the GSE is done through a CP2102 Serial USB interface.

This chip allows you to use the USB port of a computer as a serial port, from which

you can communicate with the MSP430 via any serial terminal emulator. The open

source software RealTerm [56] was used in this study.

Communication requires proper setup of the terminal. The MSP430 UART

uses 8N1 (8 data bits, no parity, 1 stop bit), the common standard in UART trans-

mission. The baud rate is set in the MSP430 code with the assignments to the

registers UCA3BR0 and UCA3BR1. These registers give the number of clock cy-

cles to divide to produce the correct timing for serial communication. With the

crystal oscillator used, a division of 768 is required to get a baud rate of 9600. (ie.

7372800/768 = 9600) In order to accommodate the faster rates of the telemetry

board, faster baud rates are required. The code presented in the previous section

sets the division factor to 0x0010, which provides a rate of 460800 baud. This rate

should be set in the terminal accordingly.

Within the terminal, commands can be sent and data received. The valid

commands in this version of the MSP430 code are as follows:

239

p Hold and wait for another command. (Default mode)

s Print a status message (used for debugging). Currently set to

show the values in key registers to demonstrate timings are correct.

r Read the next 100 data values received.

Anything else returns an error to the terminal window and sets

the mode to hold.

Table B.1: Description of commands available in the KIMS GSE.

240

Appendix C

KIMS Project Images

Assembly Photos

C.1 Magnetic Circuit Assembly

The following pages include photographs taken during the magnetic circuit

assembly. See the checklist in Appendix A.1 for reference.

Figure C.1: Gathered parts for the magnetic circuit assembly.

241

Figure C.2: Clamp placed on low field magnet. The magnet is slid onto the upper
cover.

Figure C.3: The upper half of the magnetic circuit fully assembled. The nylon
spacer was used to help keep alignment.

242

Figure C.4: Placing the lower shell around the magnet. A nylon spacer is used to
help keep alignment.

Figure C.5: The upper assembly is slid onto the partition.

243

Figure C.6: Half of the magnetic circuit fully assembled. The final step is to slide
the lower assembly onto the partition.

Figure C.7: The completed magnetic circuit. Stainless steel roll pins are used to
align the parts. Brass screws secure the clamps to keep the magnets from shifting
on launch.

244

C.2 KIMS Assembly

The following pages include photographs of the assembly of the KIMS instru-

ment in preparation for vibration testing.

Figure C.8: The ground screen is placed inside the magnetic circuit and held in
place with a compressive clamp.

245

Figure C.9: The magnetic circuit is placed inside one of the clamshell halves.

Figure C.10: The other half of the clamshell is attached and bolted to secure the
magnetic circuit inside. The magnetic circuit itself is not fastened, but held securely
by the close fitting clamshell.

246

Figure C.11: The two telemetry/amplifier boards are fastened to each side of the
clamshell with standoffs.

Figure C.12: The distribution board is fastened to the MCP stack. Spacers are
threaded on to secure the board.

247

Figure C.13: The ground plane board is attached with another set of threaded
spacers.

Figure C.14: The MCP stack is inserted into the magnetic circuit, and the distri-
bution board connects to each telemetry/amplifier board.

248

Figure C.15: The high voltage board is connected to the electrical stack assembly.
Note that the high voltage supplies are not connected yet in this photo.

Figure C.16: The high voltage control board is the final component of the electrical
stack assembly.

249

Figure C.17: Spacers are placed on the top of the clamshell.

250

Figure C.18: The tray of the KIMS cover is fastened to the back plate.

251

Figure C.19: The cover is slid onto the instrument. The material has just enough
give to slide over the DB-15 connections on the telemetry/amplifier boards.

252

Figure C.20: The KIMS instrument completely assembled. The cover is fastened to
the standoffs on the clamshell to prevent vibration at launch. The entire instrument
is attached to an aluminum bracket for mounting on the lower bulkhead of the
RENU payload.

253

Testing Photos

C.3 Vibration Testing

The following pages show the vibration test results for the KIMS instrument.

The X, Y, and Z axes are as denoted in Fig. C.21. Natural modes are seen in all

three directions at frequencies of 100’s of Hz, but at the vibration levels of launch

are not of concern. Note that the Z-axis is the thrust axis of the payload.

254

Figure C.21: Axis definitions for vibration testing.

255

Figure C.22: White noise vibration test result of the KIMS instrument X-axis.

256

Figure C.23: White noise vibration test result of the KIMS instrument Y-axis.

257

Figure C.24: White noise vibration test result of the KIMS instrument Z-axis.

258

C.4 Magnetic Testing

The following pages show the configuration of the magnetometers for measur-

ing the external fields of the KIMS instrument.

Figure C.25: Configuration for magnetic calibration

259

Figure C.26: Close up view of the magnetometer spacing at calibration

260

C.5 Integration Photos

The following pages include photographs from the final integration of the KIMS

instrument on the RENU payload in Andøya, Norway.

Figure C.27: Final state of the KIMS instrument prior to integration with the RENU
payload.

261

Figure C.28: KIMS mounted at the base of the RENU payload

262

Figure C.29: KIMS with aperture exposed and high-voltage safety removed, ready
for launch

263

Appendix D

RENU Launch Information

D.1 General Overview of Sounding Rocket Campaign RENU

RENU is a sounding rocket project for investigating neutral upwelling in the

cusp. The rocket launched in the winter of 2011 from Andøya Rocket Range. RENU

is designed to transit the cusp region during a neutral upwelling event, equipped with

a suite of instruments that will build on previous observations of this phenomenon,

as well as acquire new types of data to provide a fresh perspective on this problem.

Successful acquisition of these data provide fundamental information, essential for

the advancement of our understanding of this problem. The specific objectives of

the mission are:

1. To measure netural gas, ion and electron temperature enhancements, which

will provide an initial assessment of the upwelling process.

2. To measure large– and small–scale Joule heating in the cusp during the RENU

flight. Large–scale data will be acquired by EISCAT; small–scale data (per-

haps associated with Alfvén waves) will be acquired using onboard electric

field measurements.

3. To measure the precipitating electron energy input.

264

4. To use measured quantities as inputs to thermodynamic and electrodynamic

models for comparison to the observed upwelling.

D.1.1 Investigators and Team

Principle Investigator Dr. Marc Lessard, University of New Hampshire

Co-investigators Dr. Jim Clemmons, Aerospace

Dr. James Hecht, Aerospace

Dr. Payl M. Kintner, Cornell University

Dr. Kristina Lynch, Dartmouth College

Dr. Matthew G. McHarg, USAF Academy

Engineering Designers Dr. Parris Neal, USAF Academy

Dr. Kevin G. Rhoads, Dartmouth College

David K. Olson, University of Maryland

Steven Powell, Cornell University

Paul Riley, University of New Hampshire

Mission Manager Jay Scott, NSROC

Project Manager Libby West, NASA Goddard Space Flight Center

Flight Performance Mike Disbrow, NSROC

Mechanical Systems Shane Thompson, NSROC

Mechanical Technician Clay Merscham, NSROC

Telemetry Systems Jim Diehl, NSROC

Power Systems Tom Malaby, NSROC

265

Attitude Control System (ACS) Valerie Gsell, NSROC

Vehicle Systems Nick Wroblewski, NSROC

SQA James Alexander, NSROC

Ground Safety Chico Ayers, CSC

Flight Safety Jim Veney, NASA Goddard Space Flight Center

D.2 Vehicle Requirements and Performance

D.2.1 Trajectory Data/Attitude Solution

Absolute trajectory knowledge is required at the 500 meter level. These re-

quirements are satisfied by the accuracy of the data supplied by the NSROC and

Cornell GPS receivers. The science team requires an attitude solution with an ac-

curacy within one degree.

D.2.2 Outgassing, Magnetic Sensitivity, RFI Susceptibility

The Dartmouth/UNH particle detector experiments on the main payload are

sensitive to payload outassing and steps need to be taken to keep outgassing to

a minimum. These steps include proper material selection (see NASA Reference

Publication 1124) and payload cleanliness.

266

D.2.3 Coning Angle

Prior to subpayload ejection, the main payload coning should be driven as

close as possible to zero and the payload aligned to the background magnetic field.

In order to keep the payload within the deadband, ACS updates may be required,

although we emphasize that particle data acquired during ACS maneuvers are not

usable and, so, ACS maneuvers should be kept to a minimum by ensuring that the

payload is very well balanced.

The final spin rate of the payload should be 0.5 Hz. While the accuracy of

the actual final spin rate is not critical, the imagers will need to ’despin’ and will

need an accurate measure of the roll rate provided continuously.

D.2.4 Despin

After all deployments, a final main payload spin rate of approximately 0.5 Hz

is desired to ensure payload stability and achieve the scientific objectives.

D.2.5 Horizon Sensors/Sun Sensors

A horizon sensor and/or a sun sensor will be needed for each payload to assist

in the attitude solution.

D.2.6 Range Support

• Dry nitrogen purge of payload (particle detectors, imager) required during

build–up and on launcher. This minimizes the moisture absorption of the

267

particle detectors. Once the nose cone is installed, the dry nitrogen purge is

to be connected to the payload skin through a “fly–a–way” disconnect.

• Liquid Nitrogen cooling support for Aerospace PMT

• Standard Wallops “lunchbox” parallel interface for real time UNH imager sys-

tem

• Distribution of real time trajectory data and/or look angles for use by the

ground based imaging instruments at the Longyearbyen science station

• On-site generation of flight telemetry data on CD within 4 hours of launch

using Programmable Telemetry Processor (PTP) with data in PTP Stamp

time format.

• TDP bit sync for Aerospace Instrumentation, both in the TM building and at

the science center

D.2.7 Launch Conditions

• Andøya Rocket Range — Nov 28 to Dec 12

• 5 hour period within 0300–1100 UT, nominally 0600–1100 UT (0700–1200

Local Time)

• Moon in last or first quarter or below the horizon at Longyearbyen

• Solar depression angle greater than 10 degrees at Longyearbyen

268

• The payload must be in sunlight to permit nominal functioning of the on-

board solar aspect sensor during the prime data taking period (above 500 km

altitude)

• Azimuth and launch angle chosen for apogee over Svalbard at 1000 km down-

range — this is northward. We desire the apogee point to be chosen such that

the projection of the B–field vector at apogee down to 100 km altitude results

in a point directly overhead Longyearbyen. If this is not possible, then the

magnetic footprint of the trajectory should pass overhead Longyearbyen.

• It will be necessary to hold the count at T minus 2 minutes for up to 30

minutes at a time

Launch requires:

• An active cleft ionosphere with 5577 and 6300 light emissions overhead at

either Longyearbyen of Ny–Ålesund.

• At least 20 nT of magnetometer activity at either Longyearbyen or Ny–

Ålesund.

• Clear skies at either Longyearbyen or Ny-Ålesund such that either auroral TV

or meridian scanning photometers provide data.

• EISCAT Svalbard Radar recording ion outflows and elevated electron temper-

aturs.

• No fishing vessels in impact area.

269

D.3 Success Criteria

D.3.1 Comprehensive Mission Success

Comprehensive success means that we meet the minimum success criteria and

that we also acquire supportive data, including in–situ observations of:

1. Apogee of 500 km

2. Onboard auroral images

3. Upward looking PMTs

4. Medium energy ions (to observe outflow)

5. Ion composition (BEEPS)

6. Energetic ions (KIMS)

D.3.2 Minimum Success

Minimum success means that the data needed to provide a basic assessment

of thermospheric upwelling associated with ionospheric processes is acquired. This

requires the following in-situ measurements, acquired in the vicinity of the EISCAT

radar:

1. Apogee of at least 410 km

2. Electron temperature (ERPA)

3. Electron precipitation

270

4. Ion temperature

5. Neutral gas temperature

6. Electric fields

7. Magnetic fields

271

Figure D.1: All-sky photograph of the aurora at launch.

D.4 RENU Launch Conditions

The RENU sounding rocket launched at 06:33 UT on 12 December 2010. The

following images describe the conditions present when it was decided to launch.

272

Figure D.2: All-sky view of red and green wavelengths from the observatory at
Svalbard.

273

Figure D.3: EISCAT radar measurements of precipitating electrons.

274

Figure D.4: Solar wind conditions measured by the ACE satellite.

275

Figure D.5: Collected magnetometer measurements in the Svalbard and northern
Norway regions.

276

Figure D.6: SuperDARN radar measurements showing ionospheric convection.

277

Appendix E

Statistical Analysis Software

Some lines in this code are longer than will fit on a printed page. Places where

an artificial line break has been inserted are marked with the characters “:::” at the

beginning of the line.

E.1 FAST

E.1.1 FAST.py

Routines for analysis of FAST data

v1.7 changelog:

:: changed to automatically deal with differing energy scales

for particle data

:: 1.6 error had ees energy > 4 and ies energy > 50. Corrected

to ees > 50 and ies > 4.

from sys import stdout,version

from nantools import nanmean,nanstd

from numpy import nan,isnan,array,zeros,arange,shape,sum,mean,log10,arccos

from pylab import find,contourf

from math import sin,cos,sqrt,pi

from scipy.interpolate import interp1d

from spacepy import pycdf

from time import time,gmtime

import pickle

softversion="FAST.py 1.71"

basedir="/home/david/research/FAST/data/"

f=open(’FAST-values.pkl’,’rb’)

standard_E=pickle.load(f)

f.close()

278

def chauvenet(data,window,weight):

f_data=zeros(len(data))

for i in range(len(data)):

if i<window/2:

m=nanmean(data[i:i+window/2])

s=nanstd(data[i:i+window/2])

elif (len(data)-i)<window/2:

m=nanmean(data[i-window/2:])

s=nanstd(data[i-window/2:])

else:

m=nanmean(data[i-window/2:i+window/2])

s=nanstd(data[i-window/2:i+window/2])

if abs(data[i]-m)>weight*s:

f_data[i]=nan

else:

f_data[i]=data[i]

return f_data

def smooth(data,r_data,interval):

s_data=zeros(len(interval))

for i in range(len(interval)):

if i==0:

r_min=interval[i]

else:

r_min=(interval[i]+interval[i-1])/2.

if i==len(interval)-1:

r_max=interval[i]

else:

r_max=(interval[i]+interval[i+1])/2.

a=find(r_data<r_max)

collect=find(r_data[a[0]:a[-1]]>r_min)

s_data[i]=nanmean(data[collect])

return s_data

def interpolate(x,y,x_new,width,int_kind=’cubic’):

y_new=zeros(len(x_new))

for i in range(len(x_new)):

j=0

while(x[j]<x_new[i]):

j+=1

collect=arange(j,j+1)

279

while x[collect[0]]>x_new[i]-width/2. and collect[0]!=0:

collect=arange(collect[0]-1,collect[-1]+1)

while x[collect[-1]]<x_new[i]+width/2. and collect[-1]!=len(x)-1:

collect=arange(collect[0],max(collect)+2)

if len(collect)<4:

y_new[i]=nan

else:

f=interp1d(x[collect],y[collect],kind=int_kind)

y_new[i]=f(x_new[i])

return y_new

def get_E(orbit,t_base,margin=30.,subset=False):

dcefs=pycdf.CDF(basedir+orbit+’/dcefs_’+orbit+’.cdf’)

print("Getting Time array...")

t_E=dcefs[’TIME’]

if subset:

ti=0

tf=len(t_base)-1

i=0

while(t_E[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_E[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

else:

t_min=0

t_max=len(t_E)

i=0

while(t_base[i]<t_E[0]):

ti=i+1

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_E[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_E[t_min+j]

t_E=tnew

280

print(" done!")

print("Getting E_along V array...")

E_V=zeros(len(t_E))

for j in range(len(t_E)):

E_V[j]=dcefs[’E_ALONG_V’][t_min+j]

print(" Filtering E_V...")

E_V=chauvenet(E_V,100,2)

t_avg=arange(t_E[0],t_E[-1]+4.,4.)

print(" Smoothing E_V...")

E_avg=smooth(E_V,t_E,t_avg)

print(" Interpolating E_V...")

E_base=zeros(len(t_base))

if ti>0:

E_base[:ti]=nan

if tf<len(t_base)-1:

E_base[tf:]=nan

E_base[ti:tf]=interpolate(t_avg,E_avg,t_base[ti:tf],margin)

print(" done!")

return E_base

def get_ELF(orbit,t_base,margin=30.,subset=False):

dsp=pycdf.CDF(basedir+orbit+’/dsp_v58_’+orbit+’.cdf’)

print("Getting Time array...")

t_elf=dsp[’TIME’]

if subset:

ti=0

tf=len(t_base)-1

i=0

while(t_elf[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_elf[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

else:

t_min=0

t_max=len(t_elf)

i=0

while(t_base[i]<t_elf[0]):

ti=i+1

281

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_elf[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_elf[t_min+j]

t_elf=tnew

print(" done!")

print("Getting frequencies...")

f=zeros(512)

for i in range(512):

f[i]=dsp[’FREQ’][i]

print(" done!")

print("Getting DSP data...")

spec=zeros((len(t_elf),512))

for j in range(len(t_elf)):

spec[j]=dsp[’DSP’][j]

print(" Integrating DSP data...")

P=zeros(len(t_elf))

for i in range(len(t_elf)):

d=array(spec[i])

for j in range(511):

P[i]+=10**mean(d[j:j+2])*(f[j+1]-f[j])*1000.

print(" Smoothing DSP Power...")

Ps=zeros(len(P))

for i in range(len(t_elf)):

if i<2:

Ps[i]=mean(P[:i+3])

elif i>len(Ps)-3:

Ps[i]=mean(P[i-2:])

else:

Ps[i]=mean(P[i-2:i+3])

print(" Interpolating DSP Power...")

P_base=zeros(len(t_base))

if ti>0:

P_base[:ti]=nan

if tf<len(t_base)-1:

P_base[tf:]=nan

P_base[ti:tf]=interpolate(t_elf,Ps,t_base[ti:tf],margin)

print(" done!")

282

return P_base

def get_B(orbit,t_base,margin=30.,subset=False):

dcmag=pycdf.CDF(basedir+orbit+’/dcmag_’+orbit+’.cdf’)

print("Getting Time array...")

t_B=dcmag[’TIME’]

if subset:

ti=0

tf=len(t_base)-1

i=0

while(t_B[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_B[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

else:

t_min=0

t_max=len(t_B)

i=0

while(t_base[i]<t_B[0]):

ti=i+1

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_B[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_B[t_min+j]

t_B=tnew

print(" done!")

print("Getting dB_o array...")

dBo=zeros(len(t_B))

for j in range(len(dBo)):

dBo[j]=dcmag[’DB_FAC_O’][t_min+j]

t_avg=arange(t_B[0],t_B[-1]+4.,4.)

print(" Smoothing dB_o...")

283

dBo_avg=smooth(dBo,t_B,t_avg)

print(" Interpolating dB_o...")

dBo_base=zeros(len(t_base))

if ti>0:

dBo_base[:ti]=nan

if tf<len(t_base)-1:

dBo_base[tf:]=nan

dBo_base[ti:tf]=interpolate(t_avg,dBo_avg,t_base[ti:tf],margin)

print(" done!")

print("Getting dB_e array...")

dBe=zeros(len(t_B))

for j in range(len(dBe)):

dBe[j]=dcmag[’DB_FAC_E’][t_min+j]

print(" Smoothing dB_e...")

dBe_avg=smooth(dBe,t_B,t_avg)

print(" Interpolating dB_e...")

dBe_base=zeros(len(t_base))

if ti>0:

dBe_base[:ti]=nan

if tf<len(t_base)-1:

dBe_base[tf:]=nan

dBe_base[ti:tf]=interpolate(t_avg,dBe_avg,t_base[ti:tf],margin)

print(" done!")

print("Getting dB_b array...")

dBb=zeros(len(t_B))

for j in range(len(dBb)):

dBb[j]=dcmag[’DB_FAC_B’][t_min+j]

print(" Smoothing dB_b...")

dBb_avg=smooth(dBb,t_B,t_avg)

print(" Interpolating dB_b...")

dBb_base=zeros(len(t_base))

if ti>0:

dBb_base[:ti]=nan

if tf<len(t_base)-1:

dBb_base[tf:]=nan

dBb_base[ti:tf]=interpolate(t_avg,dBb_avg,t_base[ti:tf],margin)

print(" done!")

return dBo_base,dBe_base,dBb_base

def get_EBS(orbit,t_base,margin=30.):

tic=time()

print("Processing E-fields...")

284

Ev=get_E(orbit,t_base,margin)

toc=time()

tet=toc-tic

print(" ET: {0}".format(toc-tic))

tic=time()

print("Processing B-fields...")

dBo,dBe,dBb=get_B(orbit,t_base,margin)

toc=time()

tet+=toc-tic

print(" ET: {0}".format(toc-tic))

tic=time()

print("Calculating S...")

S=Ev*(dBe*1e-9)/(4e-7*pi)

print(" done!")

toc=time()

print(" ET: {0}".format(toc-tic))

tet+=toc-tic

print("\nTotal ET: {0}".format(tet))

return Ev,dBo,dBe,dBb,S

def get_flux(I,E,dE,theta):

Na,Nb=shape(I)

dOmega=zeros((Na,Nb))

for a in range(Na-1):

for b in range(Nb):

th1=theta[a,b]*pi/180.

th2=theta[a+1,b]*pi/180.

if abs(th1-th2)>pi:

dth=abs(th1-th2)-2*pi

else:

dth=abs(th1-th2)

dOmega[a,b]=pi*abs(sin(th1))*cos(th1)*dth

int_wz=sum(I*dOmega,0)

Jz=sum(dE/E*int_wz)

return Jz

def get_flux2(I,E,dE,theta,KE,alpha):

Na,Nb=shape(I)

285

Jz=0

for a in range(Na-1):

for b in range(Nb):

th1=theta[a,b]*pi/180.

th2=theta[a+1,b]*pi/180.

if abs(th1-th2)>pi:

dth=abs(th1-th2)-2*pi

else:

dth=abs(th1-th2)

dOmega=pi*abs(sin(th1))*cos(th1)*dth

if type(E)==int:

Jz+=I[a,b]*dOmega*dE[b]

else:

E_eff=E[b]-KE*cos(theta[a,b]-alpha)

Jz+=I[a,b]*dOmega*dE[b]/E_eff

return Jz

def get_spectra(orbit,species):

ies=pycdf.CDF(basedir+orbit+’/ies_’+orbit+’.cdf’)

t=array(ies[’TIME’])

th=arange(0,360,360./64)

Es=zeros((len(t),48))-1

PAs=zeros((len(t),64))-1

for i in range(len(t)):

print(" {0}%...\r".format(int(float(i+1)/len(t)*100))),

stdout.flush()

Efa=array(ies[’Eflux’][i])

Ea=array(ies[’energy’][i])

PAa=array(ies[’angle’][i])

if (Ea==standard_E[species+’ energy’]).all() and not isnan(Efa).any():

Es[i,:]=sum(Efa,0)/64.

for j in range(64):

for k in range(48):

if PAa[j,k]<0:

PAa[j,k]+=360.

l=max(find(th<=PAa[j,k]))

PAs[i,l]+=Efa[j,k]

return Es,PAs,th

286

def cutoff(orbit,maxE):

ies=pycdf.CDF(basedir+orbit+’/ies_’+orbit+’.cdf’)

print("Calculating ion cutoff energy with maximum {0} eV...".format(maxE))

print(" Getting Time array...")

t=array(ies[’TIME’])

print(" done!")

print(" Getting dayside cusp array...")

ilt=array(ies[’ILAT’])

mlt=array(ies[’MLT’])

cusp=zeros(len(ilt))

for i in range(len(ilt)):

if ilt[i]>70. and ilt[i]<80. and abs(12-mlt[i])<6.:

cusp[i]=1

if sum(cusp)==0:

for i in range(len(ilt)):

if ilt[i]>65. and ilt[i]<85. and abs(12-mlt[i])<7.:

cusp[i]=1

print(" done!")

print(" Getting Flux list...")

Ef=ies[’Eflux’]

print(" Getting Energy list...")

E=ies[’energy’]

print(" Getting Pitch Angle list...")

PA=ies[’angle’]

print(" done!")

N=nan*zeros((len(t),47)) # Flux arrays by energy

m=zeros(47) # Mean flux over orbit by energy

c=zeros(47) # percent of outflow measurements by energy

k=0

K=len(find(cusp==1))

print(" Getting {0} flux arrays by energy...".format(K))

for i in find(cusp==1):

k+=1

print("\r {0}%...".format(int(float(k)/K*100))),

stdout.flush()

Efa=array(Ef[i])

Ea=array(E[i])

s=1

if (Ea==standard_E[’ion energy’]).all():

PAa=array(PA[i])

dE=abs(Ea[:-1]-Ea[1:])

287

for j in range(len(dE)-1):

N[i,j]=get_flux(Efa[:,j+1:j+2],Ea[j+1:j+2],dE[j:j+1],

::: PAa[:,j+1:j+2])

print(" done!")

print(" Averaging fluxes...")

for j in range(47):

m[j]=nanmean(N[:,j])

if sum(isnan(N[:,j]))==len(N[:,j]):

c[j]=nan

else:

c[j]=float(sum(N[:,j]<0))/float(len(N[:,j])-sum(isnan(N[:,j])))

print(" done!")

k=46

kmin=max(min(find(m/min(m)>1e-4)),min(find(Ea[1:]<maxE)))

kmin=max(kmin,min(find(c>0.3)))

found=False

while not found:

if (m[k]>0 and m[k-1]>0) or (k<=kmin):

found=True

else:

k-=1

cut=k+1

return cut #,t,N,m,c

def get_EES(orbit,t_base,margin=30.,subset=False):

ees=pycdf.CDF(basedir+orbit+’/ees_’+orbit+’.cdf’)

print("Getting Time array...")

t_ees=ees[’TIME’]

if subset:

ti=0

tf=len(t_base)-1

i=0

while(t_ees[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_ees[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

288

else:

t_min=0

t_max=len(t_ees)

i=0

while(t_base[i]<t_ees[0]):

ti=i+1

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_ees[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_ees[t_min+j]

t_ees=tnew

print(" done!")

print("Getting Flux list...")

Ef=ees[’Eflux’][t_min:t_max]

print(" done!")

print("Getting Energy array...")

E=ees[’energy’][t_min:t_max]

print(" done!")

print("Getting Pitch Angle list...")

PA=ees[’angle’][t_min:t_max]

print(" done!")

print("Getting flux arrays...")

Jz=zeros(len(t_ees))

NJz=zeros(len(t_ees))

for i in range(len(t_ees)):

print("\r {0}%...".format(int(float(i+1)/len(t_ees)*100))),

stdout.flush()

Ea=array(E[t_min+i])

if not isnan(Ea).any():

Efa=array(Ef[t_min+i])

PAa=array(PA[t_min+i])

dE=abs(Ea[:-1]-Ea[1:])

Eh=0

El=min(find(Ea<50.))

if len(Ea[Eh:El])==0:

NJz[i]=nan

Jz[i]=nan

289

else:

NJz[i]=get_flux(Efa[:,Eh:El],Ea[Eh:El],dE[Eh:El],PAa[:,Eh:El])

Jz[i]=get_flux(Efa[:,Eh:El],1,dE[Eh:El],PAa[:,Eh:El])

else:

NJz[i]=nan

Jz[i]=nan

print("\n Smoothing flux arrays...")

t_avg=arange(t_ees[0],t_ees[-1]+4.,4.)

Jz_avg=smooth(Jz,t_ees,t_avg)

NJz_avg=smooth(NJz,t_ees,t_avg)

print(" Interpolating flux arrays...")

Jz_base=zeros(len(t_base))

NJz_base=zeros(len(t_base))

if ti>0:

Jz_base[:ti]=nan

NJz_base[:ti]=nan

if tf<len(t_base)-1:

Jz_base[tf:]=nan

NJz_base[tf:]=nan

Jz_base[ti:tf]=interpolate(t_ees,Jz,t_base[ti:tf],margin)

NJz_base[ti:tf]=interpolate(t_ees,NJz,t_base[ti:tf],margin)

print(" done!")

return Jz_base,NJz_base

def get_IES(orbit,t_base,margin=30.,subset=False):

ies=pycdf.CDF(basedir+orbit+’/ies_’+orbit+’.cdf’)

print("Getting Time array...")

t_ies=ies[’TIME’]

if subset:

i=0

while(t_ies[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_ies[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

else:

t_min=0

t_max=len(t_ies)

290

i=0

while(t_base[i]<t_ies[0]):

ti=i+1

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_ies[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_ies[t_min+j]

t_ies=tnew

print(" done!")

print("Getting Flux list...")

Ef=ies[’Eflux’][t_min:t_max]

print(" done!")

print("Getting Energy list...")

E=ies[’energy’][t_min:t_max]

print(" done!")

print("Getting Pitch Angle list...")

PA=ies[’angle’][t_min:t_max]

print(" done!")

Eh=cutoff(orbit,500.)

print("Getting flux arrays...")

Jz=zeros(len(t_ies))

NJz=zeros(len(t_ies))

for i in range(len(t_ies)):

print("\r {0}%...".format(int(float(i+1)/len(t_ies)*100))),

stdout.flush()

Ea=array(E[t_min+i])

if not isnan(Ea).any():

Efa=array(Ef[t_min+i])

PAa=array(PA[t_min+i])

dE=abs(Ea[:-1]-Ea[1:])

El=max(find(Ea>4.))+1

if len(Ea[Eh:El])==0:

NJz[i]=nan

Jz[i]=nan

else:

NJz[i]=get_flux(Efa[:,Eh:El],Ea[Eh:El],dE[Eh-1:El-1],

291

::: PAa[:,Eh:El])

Jz[i]=get_flux(Efa[:,Eh:El],1,dE[Eh-1:El-1],PAa[:,Eh:El])

else:

NJz[i]=nan

Jz[i]=nan

print("\n Smoothing flux arrays...")

t_avg=arange(t_ies[0],t_ies[-1]+4.,4.)

Jz_avg=smooth(Jz,t_ies,t_avg)

NJz_avg=smooth(NJz,t_ies,t_avg)

print("\n Interpolating flux arrays...")

Jz_base=zeros(len(t_base))

NJz_base=zeros(len(t_base))

if ti>0:

Jz_base[:ti]=nan

NJz_base[:ti]=nan

if tf<len(t_base)-1:

Jz_base[tf:]=nan

NJz_base[tf:]=nan

Jz_base[ti:tf]=interpolate(t_ies,Jz,t_base[ti:tf],margin)

NJz_base[ti:tf]=interpolate(t_ies,NJz,t_base[ti:tf],margin)

print(" done!")

return Jz_base,NJz_base,[Ea[Eh],Ea[El-1]]

def get_IES2(orbit,t_base,margin=30.,subset=False):

ies=pycdf.CDF(basedir+orbit+’/ies_’+orbit+’.cdf’)

orb=pycdf.CDF(basedir+orbit+’/orbit_’+orbit+’.cdf’)

print("Getting Time array...")

t_ies=ies[’TIME’]

if subset:

i=0

while(t_ies[i]<t_base[0]-margin):

t_min=i

i+=1

print(" found t_min...")

while(t_ies[i]<t_base[-1]+margin):

t_max=i

i+=1

print(" found t_max...")

else:

t_min=0

t_max=len(t_ies)

292

i=0

while(t_base[i]<t_ies[0]):

ti=i+1

i+=1

print(" found ti...")

while(i<len(t_base) and (t_base[i]<t_ies[-1])):

tf=i

i+=1

print(" found tf...")

tnew=zeros(t_max-t_min)

for j in range(len(tnew)):

tnew[j]=t_ies[t_min+j]

t_ies=tnew

print(" done!")

print("Getting Flux list...")

Ef=ies[’Eflux’][t_min:t_max]

print(" done!")

print("Getting Energy list...")

E=ies[’energy’][t_min:t_max]

print(" done!")

print("Getting Pitch Angle list...")

PA=ies[’angle’][t_min:t_max]

print(" done!")

print("Getting FAST velocity...")

Vo=array(orb[’FA_VEL’])

print(" vx...")

vx=interpolate(t_base,Vo[:,0],t_ies,margin)

print(" vy...")

vy=interpolate(t_base,Vo[:,1],t_ies,margin)

print(" vz...")

vz=interpolate(t_base,Vo[:,2],t_ies,margin)

print(" done!")

print("Getting B-field direction...")

Bo=array(orb[’B_MODEL’])

print(" Bx...")

Bx=interpolate(t_base,Bo[:,0],t_ies,margin)

print(" By...")

By=interpolate(t_base,Bo[:,1],t_ies,margin)

print(" Bz...")

Bz=interpolate(t_base,Bo[:,2],t_ies,margin)

print(" done!")

293

print("Getting energy and correction angle...")

KE=zeros(len(t_ies))

alpha=zeros(len(t_ies))

for i in range(len(t_ies)):

vdB=vx[i]*Bx[i]+vy[i]*By[i]+vz[i]*Bz[i]

v=sqrt(vx[i]**2+vy[i]**2+vz[i]**2)

B=sqrt(Bx[i]**2+By[i]**2+Bz[i]**2)

KE[i]=0.083575035*v**2 # 1/2 mv^2 for oxygen

alpha[i]=arccos(vdB/v/B)

print(" done!")

print("Getting cutoff energy...")

Eh=cutoff(orbit,500.)

print(" done!")

print("Getting flux arrays...")

Jz=zeros(len(t_ies))

NJz=zeros(len(t_ies))

for i in range(len(t_ies)):

print("\r {0}%...".format(int(float(i+1)/len(t_ies)*100))),

stdout.flush()

Ea=array(E[t_min+i])

if not isnan(Ea).any():

Efa=array(Ef[t_min+i])

PAa=array(PA[t_min+i])

dE=abs(Ea[:-1]-Ea[1:])

El=max(find(Ea>4.))+1

if len(Ea[Eh:El])==0:

NJz[i]=nan

Jz[i]=nan

else:

NJz[i]=get_flux2(Efa[:,Eh:El],Ea[Eh:El],dE[Eh-1:El-1],

::: PAa[:,Eh:El],KE[i],alpha[i])

Jz[i]=get_flux2(Efa[:,Eh:El],1,dE[Eh-1:El-1],PAa[:,Eh:El],

::: KE[i],alpha[i])

else:

NJz[i]=nan

Jz[i]=nan

print("\n Interpolating flux arrays...")

Jz_base=zeros(len(t_base))

NJz_base=zeros(len(t_base))

if ti>0:

Jz_base[:ti]=nan

294

NJz_base[:ti]=nan

if tf<len(t_base)-1:

Jz_base[tf:]=nan

NJz_base[tf:]=nan

Jz_base[ti:tf]=interpolate(t_ies,Jz,t_base[ti:tf],margin)

NJz_base[ti:tf]=interpolate(t_ies,NJz,t_base[ti:tf],margin)

print(" done!")

return Jz_base,NJz_base,[Ea[Eh],Ea[El-1]]

def processFAST(orbits,getelf=True):

tic=time()

for o in orbits:

print("Processing orbit {0} information...".format(o))

orb=pycdf.CDF(basedir+o+’/orbit_’+o+’.cdf’)

print(" Extracting base time...")

T_base=zeros(len(orb[’TIME’]))

for j in range(len(T_base)):

T_base[j]=orb[’TIME’][j]

print(" Extracting satellite position...")

X=zeros((len(T_base),3))

for j in range(len(T_base)):

X[j]=orb[’FA_POS’][j]

print(" Extracting invariant latitude...")

ILT=zeros(len(T_base))

for j in range(len(T_base)):

ILT[j]=orb[’ILAT’][j]

print(" Extracting magnetic local time...")

MLT=zeros(len(T_base))

for j in range(len(T_base)):

MLT[j]=orb[’MLT’][j]

print(" Extracting altitude...")

ALT=zeros(len(T_base))

for j in range(len(T_base)):

ALT[j]=orb[’ALT’][j]

print(" Creating in-cusp flag...")

CUSPF=range(len(ILT))

for j in range(len(CUSPF)):

if (ILT[j]>70. and ILT[j]<80.):

CUSPF[j]=1

else:

CUSPF[j]=0

print(" done!")

toc=time()

print("Orbit {0} elapsed time: {1}".format(o,toc-tic))

295

print("Processing orbit {0} DC fields...".format(o))

Ev,dBo,dBe,dBb,S=get_EBS(o,T_base)

toc=time()

print("Orbit {0} elapsed time: {1}".format(o,toc-tic))

if getelf:

print("Processing orbit {0} AC fields...".format(o))

elf=get_ELF(o,T_base)

toc=time()

print("Orbit {0} elapsed time: {1}".format(o,toc-tic))

else:

elf=[]

print("Processing orbit {0} electrons...".format(o))

eJz,eNJz = get_EES(o,T_base)

toc=time()

print("Orbit {0} elapsed time: {1}".format(o,toc-tic))

print("Processing orbit {0} ions...".format(o))

iJz,iNJz,E_ends = get_IES(o,T_base)

toc=time()

print("Orbit {0} elapsed time: {1}".format(o,toc-tic))

print("Getting orbit {0} outflow times...".format(o))

print(" Creating spectra...")

Es,PAs,t,th=get_spectra(o,’ion’)

contourf(log10(PAs.T))

ti=t[int(raw_input("Enter the start time for outflow: "))]

tf=t[int(raw_input("Enter the stop time for outflow: "))]

OUTFLOW=0*range(len(ILT))

for j in range(len(OUTFLOW)):

if T_base[j]>ti and T_base[j]<tf:

OUTFLOW[j]=1

print(" done!")

print("Pickling orbit {0} data...".format(o))

print(" Creating data structure...")

data={}

data[’Time’]=T_base

data[’Position’]=X

data[’Invariant Position’]=[ILT,MLT,ALT]

data[’In Cusp’]=CUSPF

data[’Outflow’]=OUTFLOW

data[’E along Vsc’]=Ev

296

data[’dB fac’]=[dBo,dBe,dBb]

data[’Poynting Flux’]=S

data[’ELF Amplitude’]=elf

data[’eln_Eflux’]=eJz

data[’eln_Nflux’]=eNJz

data[’ion_Eflux’]=iJz

data[’ion_Nflux’]=iNJz

print(" Creating meta data structure...")

units={}

units[’Time’]=’UNX sec’

units[’Position’]=’GEI km’

units[’Invariant Position’]=[’ILAT deg’,’MLT hrs’,’ALT km’]

units[’In Cusp’]=’flag’

units[’Outflow’]=’flag’

units[’E along Vsc’]=’mV/m’

units[’dB fac’]=[’o nT’,’e nT’,’b nT’]

units[’Poynting Flux’]=’mW/m**2’

units[’ELF Power’]=’(V/m)**2’

units[’eln_Eflux’]=’mW/m**2’

units[’eln_Nflux’]=’#/cm**2/s’

units[’ion_Eflux’]=’mW/m**2’

units[’ion_Nflux’]=’#/cm**2/s’

meta={}

meta[’orbit’]=o

meta[’time covered’]=[T_base[0],T_base[-1]]

meta[’date processed’]=gmtime(time())

meta[’software version’]=softversion

meta[’python version’]=version[:3]

meta[’units’]=units

meta[’ion energies’]=E_ends

print(" Pickling data to file...")

filename=basedir+o+"/FAST_"+o+"-"+softversion[8:]+"-py"+version[0]

::: +".pkl"

f=open(filename,’wb’)

pickle.dump({’meta’:meta,’data’:data},f)

f.close()

print(" Orbit {0} processing complete.".format(o))

toc=time()

print(" Total elapsed time: {0}".format(toc-tic))

297

E.1.2 FAPlot.py

from matplotlib.pyplot import *

from pylab import r_,find

from numpy import sqrt,sin,cos,pi,array,zeros,nanmin,log10

import plot_setup

import pickle

import FAST

import calendar

basedir="/home/david/research/FAST/data/"

filesuff="-1.7-py2.pkl"

def update_pickle(orbits):

for o in orbits:

print("Orbit "+o)

print(" Extracting data...")

ies=FAST.pycdf.CDF(basedir+o+"/ies_"+o+".cdf")

t=array(ies[’TIME’])

mlt=array(ies[’MLT’])

ilt=array(ies[’ILAT’])

f=open(basedir+o+"/FAST_"+o+filesuff,’rb’)

d=pickle.load(f)

f.close()

it=d[’data’][’Time’]

print(" done!")

OUTFLOW=zeros(len(it))

Es,PAs,th=FAST.get_spectra(o,’ion’)

figure()

contourf(log10(PAs.T),N=75,antialiased=False)

plot(mlt,’r-’,linewidth=2)

plot(ilt/2.,’m-’,linewidth=2)

ti=0

while ti != -1:

ti=input("Start time (-1 is done): ")

tf=input("Stop time: ")

if ti!= -1 and tf != -1:

plot([ti,ti],[0,64])

plot([tf,tf],[0,64])

ok=raw_input("Good times?: ")

if ok==’y’:

298

for j in range(len(it)):

if it[j]>=t[ti] and it[j]<=t[tf]:

OUTFLOW[j]=1

d[’data’][’Outflow’]=OUTFLOW

d[’meta’][’units’][’Outflow’]=’flag’

f=open(basedir+o+"/FAST_"+o+"-a"+filesuff,’wb’)

pickle.dump(d,f)

f.close()

def gen_pole_plot(orbits=[],ofp=False):

if not ofp:

plot_setup.set_params(8,’square’,14,linewidth=1.)

p=plot([0,0],[-50,50],’k-’)

plot([-50,50],[0,0],’k-’)

plot([-40,40],[40,-40],’k-’)

plot([-40,40],[-40,40],’k-’)

x=r_[-10:10:1000j]

plot(x,sqrt(100-x**2),’k-’)

plot(x,-sqrt(100-x**2),’k-’)

x=r_[-20:20:1000j]

plot(x,sqrt(400-x**2),’k-’)

plot(x,-sqrt(400-x**2),’k-’)

x=r_[-30:30:1000j]

plot(x,sqrt(900-x**2),’k-’)

plot(x,-sqrt(900-x**2),’k-’)

x=r_[-40:40:1000j]

plot(x,sqrt(1600-x**2),’k-’)

plot(x,-sqrt(1600-x**2),’k-’)

axis([-68,68,-68,68])

setp(gca(), ’xticklabels’, [])

setp(gca(), ’yticklabels’, [])

a=3*pi/8

text(10*cos(a),10*sin(a),r’80°’)

text(20*cos(a),20*sin(a),r’70°’)

text(30*cos(a),30*sin(a),r’60°’)

text(40*cos(a),40*sin(a),r’50°’)

text(-7,51,’12 MLT’)

text(-67,-1.8,’18 MLT’)

text(51,-1.8,’06 MLT’)

text(-7,-54.3,’00 MLT’)

for orb in orbits:

print("Orbit " + orb)

299

f=open(basedir+orb+ "/FAST_" +orb+"-a"+filesuff, ’rb’)

d=pickle.load(f)

f.close()

ilt=d[’data’][’Invariant Position’][0]

mlt=d[’data’][’Invariant Position’][1]

of=d[’data’][’Outflow’]

i=[]

m=[]

o=[]

for j in range(len(ilt)):

if ilt[j]>=45.:

i.append(90.-ilt[j])

m.append((mlt[j]-6)*pi/12.)

o.append(of[j])

i=array(i)

m=array(m)

if not ofp:

plot(i*cos(m),i*sin(m),’r-’)

io=[]

mo=[]

for j in range(len(i)):

if o[j]==1:

io.append(i[j])

mo.append(m[j])

io=array(io)

mo=array(mo)

if ofp:

plot(io*cos(mo),io*sin(mo),’k-’,linewidth=5.)

def gen_summary_plot(orbit):

f=open(basedir+orbit+"/FAST_"+orbit+"-a"+filesuff,’rb’)

d=pickle.load(f)

f.close()

plot_setup.set_params(8.5,’long’,12,1)

start=raw_input("Enter start time as yyyy,m,d,h,m,s: ").split(’,’)

for i in range(len(start)):

start[i]=int(start[i])

t0=calendar.timegm(start)

t=(d[’data’][’Time’]-t0)/60.

figure()

300

subplot(711)

title("FAST Orbit "+orbit)

plot(t,d[’data’][’E along Vsc’],’k-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("E along V$_{sc}$\n[DC] (mV/m)\n",horizontalalignment=’center’)

subplot(712)

plot(t,d[’data’][’dB fac’][0],’r-’)

plot(t,d[’data’][’dB fac’][1],’g-’)

plot(t,d[’data’][’dB fac’][2],’b-’)

legend([’o’,’e’,’b’])

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("δB fac\n[DC] (nT)\n",horizontalalignment=’center’)

subplot(713)

plot(t,d[’data’][’Poynting Flux’],’m-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("Poynting Flux\n[DC] (mW/m2)\n",horizontalalignment=’center’)

subplot(714)

plot(t,d[’data’][’eln_Nflux’],’k-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("Electron Flux\n(#/cm2/s)\n",horizontalalignment=’center’)

subplot(715)

plot(t,d[’data’][’eln_Eflux’]*1.6022e-12,’r-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("Electron\nEnergy Flux\n(mW/m2)\n",horizontalalignment=’center’)

subplot(716)

plot(t,sqrt(d[’data’][’ELF Amplitude’]),’g-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("ELF Amplitude\n(V/m)\n",horizontalalignment=’center’)

301

subplot(717)

plot(t,-d[’data’][’ion_Nflux’],’b-’)

oa=axis()

axis([0,17,oa[2],oa[3]])

plot([0,17],[0,0],’k--’)

ylabel("Ion FLux\n(#/cm2/s)\n",horizontalalignment=’center’)

xlabel("Time from {0:04d}/{1:02d}/{2:02d} {3:02d}:{4:02d}:{5:02d} (min)"

::: .format(start[0],start[1],start[2],start[3],start[4],start[5]))

302

E.1.3 FAST stats.py

from matplotlib.pyplot import *

from pylab import find

from numpy import array,zeros,arange,isnan,nansum,nanmin,log10,r_,delete

from scipy.stats import stats

import pickle

import plot_setup

basedir="/home/david/research/FAST/data/"

filesuff="-a-1.71-py2.pkl"

def get_averages(orbits,has_elf=True,alt_scale=False,length=’Full’):

if length==’Full’:

iNf=zeros(len(orbits))

S=zeros(len(orbits))

eNf=zeros(len(orbits))

eEf=zeros(len(orbits))

elf=zeros(len(orbits))

nep=zeros(len(orbits))

orbit=orbits

else:

iNf=[]

S=[]

eNf=[]

eEf=[]

elf=[]

nep=[]

orbit=[]

for i in range(len(orbits)):

o=orbits[i]

f=open(basedir+o+"/FAST_"+o+filesuff,’rb’)

d=pickle.load(f)

f.close()

infr=d[’data’][’ion_Nflux’]

ofr=d[’data’][’Outflow’]

sr=d[’data’][’Poynting Flux’]

enfr=d[’data’][’eln_Nflux’]

eefr=d[’data’][’eln_Eflux’]

if has_elf:

elfr=d[’data’][’ELF Amplitude’]

if alt_scale:

alt=d[’data’][’Invariant Position’][2]

303

infr*=(1000./alt)**(-3./2)

sr*=(1000./alt)**(-3./2)

enfr*=(1000./alt)**(-3./2)

eefr*=(1000./alt)**(-3./2)

if length==’Full’:

iNf[i]=nansum(infr*ofr)/nansum(ofr)

S[i]=nansum(sr*ofr)/nansum(ofr)

eNf[i]=nansum(enfr*ofr)/nansum(ofr)

eEf[i]=nansum(eefr*ofr)/nansum(ofr)

if has_elf:

elf[i]=nansum(elfr*ofr)/nansum(ofr)

nep[i]=nansum(get_nep(o,alt_scale)*ofr)/nansum(ofr)

else:

idx=find(d[’data’][’Outflow’]==1)

j=idx[0]

while j<=idx[-1]:

iNf.append(nansum(d[’data’][’ion_Nflux’][j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

S.append(nansum(d[’data’][’Poynting Flux’][j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

eNf.append(nansum(d[’data’][’eln_Nflux’][j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

eEf.append(nansum(d[’data’][’eln_Eflux’][j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

if has_elf:

elf.append(nansum(d[’data’][’ELF Amplitude’][j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

nep.append(nansum(get_nep(o)[j:j+length]

::: *d[’data’][’Outflow’][j:j+length])

::: /nansum(d[’data’][’Outflow’][j:j+length]))

orbit.append(o)

j+=length

if not length==’Full’:

iNf=array(iNf)

S=array(S)

eNf=array(eNf)

eEf=array(eEf)

if has_elf:

304

elf=array(elf)

nep=array(nep)

return iNf,S,eNf,eEf,elf,nep,orbit

def get_plot(x,y):

remove=find(x<=0)

x=delete(x,remove)

y=delete(y,remove)

remove=find(y<=0)

x=delete(x,remove)

y=delete(y,remove)

remove=find(isnan(x))

x=delete(x,remove)

y=delete(y,remove)

remove=find(isnan(y))

x=delete(x,remove)

y=delete(y,remove)

plot_setup.set_params(8,’square’,16,linewidth=3)

slp,itc,r,p,stderr=stats.linregress(log10(x),log10(y))

loglog(x,y,’ko’)

a=r_[axis()[0]:axis()[1]:100j]

plot(a,a**slp*10**itc,’r-’)

text(min(x),max(y),"slope = {0:.3f}\nr = {1:.3f}\np = {2:.3e}"

::: .format(slp,r,p))

def get_nep(orbit,alt_scale=False):

f=open(basedir+orbit+"/FAST_"+orbit+filesuff,’rb’)

d=pickle.load(f)

f.close()

enf=d[’data’][’eln_Nflux’]

eef=d[’data’][’eln_Eflux’]

if alt_scale:

alt=d[’data’][’Invariant Position’][2]

enf*=(1000./alt)**(-3./2)

eef*=(1000./alt)**(-3./2)

return 2.134e-14*(enf**1.5/eef**0.5)

def get_4qplot(x,y):

limx=nanmin(abs(x))/2.

limy=nanmin(abs(y))/2.

print("Using {0:.3e},{1:.3e}".format(limx,limy))

plot(x,y,’k.’)

xscale(’symlog’,linthreshx=1e-3,linthreshy=1e5)

305

yscale(’symlog’,linthreshx=1e-3,linthreshy=1e5)

def gen_4qp(orbits,xtype,ytype,full=False):

for o in orbits:

print o

f=open(basedir+o+"/FAST_"+o+filesuff,’rb’)

d=pickle.load(f)

f.close()

if ytype==’ion_Nflux’:

c=-1

else:

c=1

if xtype==’nep’:

X=get_nep(o)

Y=d[’data’][ytype]

else:

X=d[’data’][xtype]

Y=d[’data’][ytype]

valid=find(d[’data’][’Outflow’]==1)

if not isnan(X[valid]).all():

if not full:

scatter(X[valid],c*Y[valid],1)

else:

scatter(X,c*Y,1)

def count_orbits(orbits,T):

n=zeros(len(T))

for o in orbits:

print o

f=open(basedir+o+"/FAST_"+o+filesuff,’rb’)

d=pickle.load(f)

f.close()

of=d[’data’][’Outflow’]

t=d[’data’][’Time’]

if sum(of)>0:

st=t[min(find(of==1))]

sp=t[max(find(of==1))]

i=0

while i<len(T) and st>T[i]:

i+=1

j=i

while j<len(T) and sp>T[i]:

j+=1

if i==j:

n[i-1]+=1

306

else:

n[i-1]+=1

n[j-1]+=1

return n

def time_to_latitude(orbit,lat):

f=open(basedir+orbit+"/FAST_"+orbit+filesuff,’rb’)

d=pickle.load(f)

f.close()

ilt=d[’data’][’Invariant Position’][0]

alt=d[’data’][’Invariant Position’][2]

of=d[’data’][’Outflow’]

inf=d[’data’][’ion_Nflux’]*(1000./alt)**(-1.5)

s=d[’data’][’Poynting Flux’]*(1000./alt)**(-1.5)

enf=d[’data’][’eln_Nflux’]*(1000./alt)**(-1.5)

eef=d[’data’][’eln_Eflux’]*(1000./alt)**(-1.5)

nep=get_nep(orbit,True)

linf=zeros(len(lat))

ls=zeros(len(lat))

lenf=zeros(len(lat))

leef=zeros(len(lat))

lnep=zeros(len(lat))

n=zeros(len(lat))

for i in range(len(ilt)):

if ilt[i]>lat[0] and of[i]==1:

nogo=isnan(inf[i]) or isnan(s[i]) or isnan(enf[i]) or isnan(eef[i])

::: or isnan(nep[i])

if not nogo:

j=0

while j<len(lat) and lat[j]<ilt[i]:

j+=1

j-=1

linf[j]+=inf[i]

ls[j]+=s[i]

lenf[j]+=enf[i]

leef[j]+=eef[i]

lnep[j]+=nep[i]

n[j]+=1

return linf,ls,lenf,leef,lnep,n

def get_latavg(orbits,t,lat=arange(70.,80.,0.5)):

307

size=(len(t),len(lat))

inf=zeros(size)

s=zeros(size)

enf=zeros(size)

eef=zeros(size)

nep=zeros(size)

cts=zeros(size)

n=count_orbits(orbits,t)

used=[]

for i in range(len(t)):

print("Time Range {0}".format(i))

print(" Finding used orbits...")

used.append([])

for j in arange(n[i])+sum(n[:i]):

used[i].append(orbits[int(j)])

print(used[i])

print("\n Getting values...")

for o in used[i]:

linf,ls,lenf,leef,lnep,lcts=time_to_latitude(o,lat)

inf[i]+=linf

s[i]+=ls

enf[i]+=lenf

eef[i]+=leef

nep[i]+=lnep

cts[i]+=lcts

return inf,s,enf,eef,nep,cts,used

308

E.2 CHAMP

E.2.1 champ.py

champ.py: tools for extracting and manipulating the datasets from the

CHAMP satellite.

#

Rev. beta-3 16 Nov 2011

#

Beta status. Began adding routines to process champ data for study.

from sys import stdout

from numpy import nan,isnan,array,zeros,shape

from math import atan2,sqrt

from scipy.interpolate import interp1d

import cstrans2

import champformats

import pickle

import time

import calendar

::: not Py3 compatible; needs to be changed to input() for Py3.

On import, prompts for dataset to work. Calling the load() function

allows for dataset changing without reimporting champ.py

version = ’b3’

filename=raw_input("Working dataset filename: ")

def load():

global filename

filename=raw_input("Working dataset filename: ")

def process_CHAMP_orb(directory,days):

global filename

for d in days:

print(d)

filename=directory+"CH-OG-3-RSO+CTS-CHA_"+d[:-1]+str(int(d[-1])-1)

::: +"_22.dat"

dat=extract_data()

t=zeros(len(dat[’dJ2’]))

T=[]

Xgeo=[]

309

Vgeo=[]

for i in range(len(t)):

t[i]=time_convert(dat[’dJ2’][i],dat[’sJ2’][i])

if time.gmtime(t[i])[7]==int(d[5:]):

T.append(t[i])

Xgeo.append(dat[’pos’][i])

Vgeo.append(dat[’vel’][i])

filename=directory+"CH-OG-3-RSO+CTS-CHA_"+d+"_10.dat"

dat=extract_data()

t=zeros(len(dat[’dJ2’]))

for i in range(len(t)):

t[i]=time_convert(dat[’dJ2’][i],dat[’sJ2’][i])

T.append(t[i])

Xgeo.append(dat[’pos’][i])

Vgeo.append(dat[’vel’][i])

filename=directory+"CH-OG-3-RSO+CTS-CHA_"+d+"_22.dat"

dat=extract_data()

t=zeros(len(dat[’dJ2’]))

for i in range(len(t)):

t[i]=time_convert(dat[’dJ2’][i],dat[’sJ2’][i])

if time.gmtime(t[i])[7]==int(d[5:]):

T.append(t[i])

Xgeo.append(dat[’pos’][i])

Vgeo.append(dat[’vel’][i])

T=array(T)

Xgeo=array(Xgeo)*1e-6

Vgeo=array(Vgeo)*1e-10

print(shape(Xgeo))

ipos=zeros((len(T),3))

for i in range(len(T)):

Xgei=cstrans2.geo2gei(Xgeo[i],T[i])

Xmag=cstrans2.gei2mag(Xgei,T[i])

ipos[i,0:2]=Xmag[1:3]

ipos[i,2]=sqrt(sum(Xgeo[i]**2))

new_dat={}

new_dat[’t’]=T

new_dat[’pos’]=Xgeo

new_dat[’vel’]=Vgeo

new_dat[’ipos’]=ipos

fs=open(directory+’RSO_’+d+’-’+version+’.pkl’,’wb’)

pickle.dump(new_dat,fs)

310

fs.close()

def process_CHAMP_acc(directory,days):

global filename

for d in days:

f="CH-OG-2-ACC+"+d+"_00.9.dat"

filename=directory+f

print(filename)

dat=extract_data()

t=zeros(len(dat[’tim’]))

dcy=zeros(len(t))

for i in range(len(t)):

t[i]=calendar.timegm(dat[’tim’][i])

dcy[i]=(dat[’acl’][i][1]-dat[’lk’][0][1])*dat[’lk’][1][1]

dat[’t’]=t

dat[’dcy’]=dcy

fs=open(directory+’ACC_’+f[12:20]+’-’+version+’.pkl’,’wb’)

pickle.dump(dat,fs)

fs.close()

Routine checks to ensure working dataset matches the requested

set type

def check_dataset(set_type):

known_sets={’acc’:’%chacc’, ’pso’:’DSIDP ’, ’rso’:’DSIDP ’}

if set_type not in known_sets:

error("CD01", set_type)

return 0

dataset=open(filename,’r’)

format_id=dataset.read(6)

if format_id != known_sets[set_type]:

error("CD02", set_type)

dataset.close()

return 0

else:

print("Found correct file type " + format_id)

dataset.close()

return 1

Data extractor, general routine. Sets dataset type, checks the file

for set consistency, and prompts to select data elements for extraction

def extract_data():

extractor={’acc’:acc_extract, ’pso’:pso_extract, ’rso’:pso_extract}

311

::: not Py3 compatible; needs to be changed to input() for Py3.

set_type=raw_input("Set type for dataset: ")

print(’’)

if set_type not in extractor:

error("ED01")

return []

if not check_dataset(set_type):

error("ED02")

return []

data = extractor[set_type]()

return data

data extraction routines

def pso_extract():

line_format={’dJ2’:float, ’sJ2’:float, ’pos’:float, ’vel’:float,

::: ’orn’:float, ’ngd’:float, ’flg’:str}

data={}

dataset=open(filename,’r’)

last=’file unread’

while(dataset.read(5) != ’ORBIT’ and last != ’’):

last=dataset.readline()

if(last == ’’):

error("EX01",’pso’)

return []

last=dataset.readline()

setkey={0:’dJ2’, 1:’sJ2’, 2:’pos’, 3:’vel’, 4:’orn’, 5:’ngd’, 6:’flg’}

used=key_select(setkey)

datasize={0:(1,6), 1:(1,11), 2:(3,12), 3:(3,12), 4:(3,7), 5:(1,5), 6:(4,1)}

for key in used:

data.update({key:[]})

while(last != ’’):

for key in datasize.keys():

if datasize[key][0]>1:

new_data = []

for i in range(datasize[key][0]):

new_data.append(line_format[setkey[key]](

312

::: dataset.read(datasize[key][1])))

else:

new_data = dataset.read(datasize[key][1])

if new_data==’’:

break

else:

new_data=line_format[setkey[key]](new_data)

if (setkey[key] in used and new_data != ’’):

data[setkey[key]].append(new_data)

last=dataset.readline()

dataset.close()

return data

accelerometer data extraction

def acc_extract():

define the format of the lines in the data file. These formats

do not include the 3 byte label in the first three characters

of the line in the champ data files, which is accounted for in

the scanning for position before parsing the data.

line_format={’tim’:champformats.tim, ’acl’:champformats.acl,

’aca’:champformats.aca, ’att’:champformats.att,

’thr’:[], ’acc’:[]}

data={} # initialize the extracted data set

marked={} # flag used to identify when a data type is missing

from a given timestamp

dataset=open(filename,’r’)

last=’file unread’ # last is a place to dump the remainder of

a read line that is preserved to identify

the %eof

while(dataset.read(10) != ’+data_____’ and last != ’’):

last=dataset.readline() # Scan to find the data description

if(last == ’’):

error("EX01",’acc’)

return []

setkey={} # If not at %eof, start extracting the data types

i=0 # included in the file, 3 byte labels with spaces

while(dataset.read(1) != ’\n’): # between them.

setkey.update({i:dataset.read(3)})

i += 1

313

used=key_select(setkey) # run key selection routine with the keys

found in the dataset.

if ’acl’ in used: # extract acl calibration constants

while(dataset.read(10) != ’+acl_k0___’ and last != ’’):

last=dataset.readline()

if(last == ’’):

error("EX02",’acl’)

return[]

lk0=[0,0,0]

for i in range(3):

lk0[i]=float(dataset.read(16))

lk0_app=int(dataset.read(2))

last=dataset.readline()

while(dataset.read(10) != ’+acl_k1___’ and last != ’’):

last=dataset.readline()

if(last == ’’):

error("EX02",’acl’)

return []

lk1=[0,0,0]

for i in range(3):

lk1[i]=float(dataset.read(16))

lk1_app=int(dataset.read(2))

last=dataset.readline()

print("Linear ACC Calibration values: "),

print(lk0,lk1)

data.update({’lk’:[lk0,lk1]})

if ’aca’ in used: # extract aca calibration constants

while(dataset.read(10) != ’+aca_k0___’ and last != ’’):

last=dataset.readline()

if(last == ’’):

error("EX02", ’aca’)

return []

ak0=[0,0,0]

for i in range(3):

ak0[i]=float(dataset.read(16))

ak0_app=int(dataset.read(2))

last=dataset.readline()

while(dataset.read(10) != ’+aca_k1___’ and last != ’’):

last=dataset.readline()

314

if(last == ’’):

error("EX02", ’aca’)

ak1=[0,0,0]

for i in range(3):

ak1[i]=float(dataset.read(16))

ak1_app=int(dataset.read(2))

last=dataset.readline()

print("Angular ACC calibration values: "),

print(ak0,ak1)

data.update({’ak’:[ak0,ak1]})

for key in used: # load data and marked dictionaries with used keys

data.update({key:[]})

marked.update({key:1}) # flags set to 1 to prevent initial

timestamp from triggering a line of nan’s

for the other extracted variables

key=dataset.read(3) # scan to data lines

while(key != ’tim’ and last != ’’):

last=dataset.readline()

key=dataset.read(3)

while(key != ’’): # parse until %eof

if (key == ’tim’): # first fill in data holes of used types

for i in used: # with nan’s for previous timestamp

if marked[i] == 0:

new_data=[]

for j in range(len(line_format[i])):

if line_format[i][j][0] != ’blank’:

new_data.append(nan)

data[i].append(new_data)

else:

marked[i]=0 # reset flag

Parsing routine

currently set to avoid use of thr and acc until coded

check if key is used, otherwise pass to the next line

if (key in used and key not in (’thr’,’acc’)):

new_data=[]

for i in range(len(line_format[key])):

315

line definitions with blanks should be parsed across

if line_format[key][i][0]==’blank’:

dataset.read(line_format[key][i][1]+1)

all others are formatted according to their datatype

as defined in champformats.py

else:

new_data.append({’int’:int,’float’:float,’bin’:str

::: }[line_format[key][i][0]](

::: dataset.read(line_format[key][i][1]+1)))

add the line of data and flag marked as done

data[key].append(new_data)

marked[key]=1

temporary warning until thr and acc code is done

if (key in used and key in (’thr’,’acc’)):

print("Not programmed for {0} yet.".format(key))

final step to parse line is to finish the readline (ideally only

picks up the \n at the line end) and read the key on the next

line. Returns to while loop.

last=dataset.readline()

key=dataset.read(3)

Finished parsing, close the file and return the extracted data

currently does not return calibration values, only displayed on

screen.

dataset.close()

return data

key_select() and key_menu() are used to modify the extracted data set

selection visually.

def key_select(setkey):

choice = ’z’

used=setkey.keys() # defaults to using all extracted keys

key_menu(setkey)

while (choice != ’c’):

print("> Current set uses {0} (order not preserved)".format(used))

print("> Enter ’d’ to redisplay, ’a’ to add, ’r’ to remove, "),

print("or ’c’ to continue.")

choice=raw_input("> ")

316

if (choice == ’d’):

key_menu(setkey)

if (choice in [’a’,’r’]):

print("> Enter a value to {0}: ".format({’a’:’add’, ’r’:’remove’

::: }[choice]))

entry = int(raw_input("> "))

if entry in {’a’:setkey.keys(),’r’:used}[choice]:

{’a’:used.append,’r’:used.remove}[choice](entry)

else:

print("No value with key {0}".format(entry))

used_names=[]

for i in used:

used_names.append(setkey[i])

return used_names

def key_menu(menu):

print(’’)

for i in menu.keys():

print(" : {0} : {1}:".format(i,menu[i]))

print(’’)

Error Code Definitions for all functions

def error(code, *info):

if (len(info) == 0):

info=[’’]

message = {

"CD01" : "Unknown set type {0}".format(info[0]),

"CD02" : "Incorrect file type for set type {0}".format(info[0]),

"ED01" : "Unknown set type for extraction",

"ED02" : "Data set not compatible with set type",

"EX01" : "Extractor {0} found no data head".format(info[0]),

"EX02" : "Extractor failed to find {0} calibration values"

:: .format(info[0])

}

print("ERR {0}: ".format(code) + message[code])

Data Analysis Routines

317

def time_convert(d,s):

J2000=946728000.0

return J2000+24.*360.*d+s/1e6

def interpolate(x,y,width=20):

y_new=zeros(len(y))

for i in range(len(y)):

if isnan(y[i]):

x2=[]

y2=[]

for j in range(i-width/2,i+width/2):

if isnan(y[j])==False:

x2.append(x[j])

y2.append(y[j])

f=interp1d(x2,y2,kind=’cubic’)

y_new[i]=f(x[i])

else:

y_new[i]=y[i]

return y_new

318

E.2.2 champformats.py

champformats: data file formatting details

Rev. A1 20 Jan 2011

tim = [(’int’,4), # year

(’int’,2), # month

(’int’,2), # day

(’int’,2), # hours

(’int’,2), # minutes

(’float’,10)] # seconds

acl = [(’blank’,4),

(’float’,13), # linear ax

(’float’,13), # linear ay

(’float’,13), # linear az

(’int’,5), # samples nx

(’int’,5), # samples ny

(’int’,5)] # samples nz

aca = [(’blank’,4),

(’float’,13), # angular aphi

(’float’,13), # angular atheta

(’float’,13), # angular apsi

(’int’,5), # samples nphi

(’int’,5), # samples ntheta

(’int’,5)] # samples npsi

att = [(’bin’,4), # star camera flags

(’float’,13), # attitude quaternions

(’float’,13), # q1, q2, q3: vector part

(’float’,13),

(’float’,13), # q4: scalar part

(’float’,4)] # quaternion accuracy

319

E.2.3 CHAMP stats.py

from matplotlib.pyplot import *

from pylab import find

from math import pi

from numpy import array,zeros,arange,isnan,nansum,nanmin,log10,r_,delete,fft,

::: nan,mean,concatenate

from scipy.stats import stats

from scipy.interpolate import interp1d

import process

import pickle

import plot_setup

import time

basedir="/home/david/research/CHAMP/data/"

filesuff="-b3.pkl"

def get_averages(orbits,bd_append,type=’raw’):

f_basedir="/home/david/research/FAST/data/"

mt=[]

mdcy=[]

milt=[]

mmlt=[]

for o in orbits:

print("Geting averages for orbit {0}".format(o))

f=open(f_basedir+bd_append+o+"/FAST_"+o+"-a-1.71-py2.pkl",’rb’)

fd=pickle.load(f)

f.close()

i=min(find(fd[’data’][’Outflow’]==1))

j=max(find(fd[’data’][’Outflow’]==1))+1

doy=time.gmtime(fd[’data’][’Time’][i])[7]

if time.gmtime(fd[’data’][’Time’][j])[7]!=doy:

print("Error! Orbit {0} overlaps two days!".format(o))

d1=time.gmtime(fd[’data’][’Time’][0])[7]

d2=time.gmtime(fd[’data’][’Time’][-1])[7]

if d1==d2:

cd1={}

f=open(basedir+"RSO_2002_{0:03}".format(d1)+filesuff,’rb’)

d=pickle.load(f)

cd1[’rso’]=d

f.close()

f=open(basedir+"ACC_2002_{0:03}".format(d1)+filesuff,’rb’)

d=pickle.load(f)

320

cd1[’acc’]=d

f.close()

cd2=cd1

else:

cd1={}

f=open(basedir+"RSO_2002_{0:03}".format(d1)+filesuff,’rb’)

d=pickle.load(f)

cd1[’rso’]=d

f.close()

f=open(basedir+"ACC_2002_{0:03}".format(d1)+filesuff,’rb’)

d=pickle.load(f)

cd1[’acc’]=d

f.close()

cd2={}

f=open(basedir+"RSO_2002_{0:03}".format(d2)+filesuff,’rb’)

d=pickle.load(f)

cd2[’rso’]=d

f.close()

f=open(basedir+"ACC_2002_{0:03}".format(d2)+filesuff,’rb’)

d=pickle.load(f)

cd2[’acc’]=d

f.close()

cd={}

cd[’acc’]={}

cd[’rso’]={}

if d1==d2:

cd[’acc’][’t’]=cd1[’acc’][’t’]

cd[’acc’][’dcy’]=cd1[’acc’][’dcy’]

cd[’acc’][’filtered t’]=cd1[’acc’][’filtered t’]

cd[’acc’][’filtered day’]=cd1[’acc’][’filtered day’]

cd[’rso’][’t’]=cd1[’rso’][’t’]

cd[’rso’][’ipos’]=cd1[’rso’][’ipos’]

else:

cd[’acc’][’t’]=concatenate((cd1[’acc’][’t’],cd2[’acc’][’t’]))

cd[’acc’][’dcy’]=concatenate((cd1[’acc’][’dcy’],cd2[’acc’][’dcy’]))

if type==’change’:

cd[’acc’][’filtered t’]=concatenate((

::: cd1[’acc’][’filtered t’],cd2[’acc’][’filtered t’]))

cd[’acc’][’filtered day’]=concatenate((

::: cd1[’acc’][’filtered day’],cd2[’acc’][’filtered day’]))

cd[’rso’][’t’]=concatenate((cd1[’rso’][’t’],cd2[’rso’][’t’]))

321

cd[’rso’][’ipos’]=concatenate((

::: cd1[’rso’][’ipos’],cd2[’rso’][’ipos’]))

t1=min(find(cd[’rso’][’t’]>fd[’data’][’Time’][0]))

t2=min(find(cd[’rso’][’t’]>fd[’data’][’Time’][-1]))

ilt1=fd[’data’][’Invariant Position’][0][i]

ilt2=fd[’data’][’Invariant Position’][0][j]

min_ilt=min(ilt1,ilt2)

max_ilt=max(ilt1,ilt2)

t=[]

dcy=[]

ILT=[]

MLT=[]

if type==’raw’:

f=interp1d(cd[’acc’][’t’],cd[’acc’][’dcy’],kind=’linear’)

elif type==’change’:

f=interp1d(cd[’acc’][’filtered t’],cd[’acc’][’filtered day’],

::: kind=’linear’)

for k in range(t1,t2):

ilt=cd[’rso’][’ipos’][k,0]*180/pi

mlt=cd[’rso’][’ipos’][k,1]

if ilt > min_ilt and ilt < max_ilt:

if mlt > 6. and mlt < 18.:

dcy.append(f(cd[’rso’][’t’][k]))

ILT.append(ilt)

MLT.append(mlt)

t=mean(cd[’rso’][’t’][t1:t2])

mt.append(t)

mdcy.append(mean(dcy))

milt.append(mean(ILT))

mmlt.append(mean(MLT))

return array(mt),array(mdcy),array(milt),array(mmlt)

def time_to_latitude(ends,days,lat):

for d in days:

print(d)

f=open(basedir+"RSO_"+d+filesuff,’rb’)

rso=pickle.load(f)

f.close()

f=open(basedir+"ACC_"+d+filesuff,’rb’)

acc=pickle.load(f)

322

f.close()

tr=rso[’t’]

ilt=rso[’ipos’][:,0]*180./pi

ta=acc[’filtered t’]

if len(days)==1:

a=min(find(ends[0]<ta))

b=min(find(ends[1]<ta))

else:

if d==days[0]:

a=min(find(ends[0]<ta))

b=len(ta)

else:

a=0

b=min(find(ends[1]<ta))

print(a,b)

ta=ta[a:b]

ay=acc[’filtered ay’][a:b]

nilt=nan*zeros(len(ta))

a=0

b=len(ta)

for i in range(len(ta)):

if ta[i]<tr[0]:

a=i+1

if ta[i]>tr[-1]:

b=i

print(a,b)

nilt[a:b]=process.interp(tr,ilt,ta[a:b],100.)

lay=zeros(len(lat))

n=zeros(len(lat))

for i in range(len(ta)):

if nilt[i]>lat[0] and nilt[i]<(2*lat[-1]-lat[-2]):

nogo=isnan(ay[i])

if not nogo:

j=0

while j<len(lat) and lat[j]<nilt[i]:

j+=1

j-=1

lay[j]+=ay[i]

n[j]+=1

return lay,n

def get_latavg(t,lat=arange(70.,80.,0.5)):

323

size=(len(t),len(lat))

ay=zeros(size)

cts=zeros(size)

used=[]

for i in range(len(t)):

print("Time Range {0}".format(i))

print(" Finding used sets...")

used.append([])

d0=time.gmtime(t[i])[7]

if i<len(t)-1:

d1=time.gmtime(t[i+1])[7]

ends=[t[i],t[i+1]]

else:

d1=time.gmtime(2*t[i]-t[i-1])[7]

ends=[t[i],2*t[i]-t[i-1]]

day0="{0}_{1}".format(time.gmtime(t[i])[0],d0)

day1="{0}_{1}".format(time.gmtime(t[i])[0],d1)

if day0==day1:

used[i].append(day0)

else:

used[i].append(day0)

used[i].append(day1)

print(" Allocating data...")

ay[i],cts[i]=time_to_latitude(ends,used[i],lat)

return ay,cts

def update_acc_pickle(days,notch=’’):

for d in days:

print("Updating {0}...".format(d))

f=open(basedir+"ACC_"+d+filesuff,’rb’)

acc=pickle.load(f)

f.close()

t=acc[’t’]

ay=-acc[’dcy’]

t_interp=arange(t[0],t[-1]+10.,10.)

ay_interp=process.interp(t,ay,t_interp,100.)

ay_fft=fft.fft(ay_interp)

ay_frq=fft.fftfreq(ay_fft.size, d=10.)

if notch==’’:

P=zeros(ay_fft.size)

for i in range(P.size):

324

P[i]=ay_fft[i].real**2+ay_fft[i].imag**2

plot(ay_frq,P)

notch = raw_input("max freq: ")

for i in range(ay_fft.size):

if abs(ay_frq[i])>notch:

ay_fft[i]=0

new_ay=fft.ifft(ay_fft).real

acc[’filtered ay’]=new_ay

acc[’filtered t’]=t_interp

acc[’filtered day’]=ay_interp-new_ay

f=open(basedir+"ACC_"+d+filesuff,’wb’)

pickle.dump(acc,f)

f.close()

def create_pickle(days):

for d in days:

print("Creating Pickle for {0}...".format(d))

f=open(basedir+"ACC_"+d+filesuff,’rb’)

acc=pickle.load(f)

f.close()

f=open(basedir+"RSO_"+d+filesuff,’rb’)

rso=pickle.load(f)

f.close()

t=arange(rso[’t’][0]//10*10.+10.,rso[’t’][-1]//10*10.+10.,10.)

print(" interpolating invariant latitude...")

ilt=process.interp(rso[’t’],rso[’ipos’][:,0]*180./pi,t,100.)

print(" interpolating magnetic local time...")

mlt=process.interp(rso[’t’],rso[’ipos’][:,1],t,100.)

print(" interpolating altitude...")

alt=process.interp(rso[’t’],rso[’ipos’][:,2],t,100.)

print(" interpolating x velocity...")

vx=process.interp(rso[’t’],rso[’vel’][:,0],t,100.)

print(" interpolating y velocity...")

vy=process.interp(rso[’t’],rso[’vel’][:,1],t,100.)

print(" interpolating z velocity...")

vz=process.interp(rso[’t’],rso[’vel’][:,2],t,100.)

print(" interpolating decceleration...")

dcy=process.interp(acc[’t’],acc[’dcy’],t,100.)

data={’t’:t, ’ipos’:array([ilt,mlt,alt]), ’vel’:array([vx,vy,vz]),

::: ’dcy’:dcy}

f=open(basedir+"CHAMP_"+d+filesuff,’wb’)

pickle.dump(data,f)

f.close()

325

print(" done!")

def find_upwelling(fa_orbit,fa_basedir):

plot_setup.set_params(10,’default’,16)

f=open(fa_basedir+fa_orbit+’/FAST_’+fa_orbit+’-a-1.71-py2.pkl’,’rb’)

fd = pickle.load(f)

f.close()

d1=time.gmtime(fd[’data’][’Time’][0])[7]

d2=time.gmtime(fd[’data’][’Time’][-1])[7]

if d1==d2:

f=open(basedir+’CHAMP_2002_{0:03}-b3.pkl’.format(d1),’rb’)

cd=pickle.load(f)

f.close()

else:

f=open(basedir+’CHAMP_2002_{0:03}-b3.pkl’.format(d1),’rb’)

cd1=pickle.load(f)

f.close()

f=open(basedir+’CHAMP_2002_{0:03}-b3.pkl’.format(d2),’rb’)

cd2=pickle.load(f)

f.close()

cd={}

cd[’t’]=concatenate((cd1[’t’],cd2[’t’]))

cd[’ipos’]=zeros((3,len(cd[’t’])))

cd[’ipos’][0]=concatenate((cd1[’ipos’][0],cd2[’ipos’][0]))

cd[’ipos’][1]=concatenate((cd1[’ipos’][1],cd2[’ipos’][1]))

cd[’ipos’][2]=concatenate((cd1[’ipos’][2],cd2[’ipos’][2]))

cd[’vel’]=concatenate((cd1[’vel’],cd2[’vel’]))

cd[’dcy’]=concatenate((cd1[’dcy’],cd2[’dcy’]))

i=min(find(fd[’data’][’Outflow’]==1))

j=max(find(fd[’data’][’Outflow’]==1))

ilt_min=min(fd[’data’][’Invariant Position’][0][i],

::: fd[’data’][’Invariant Position’][0][j])

ilt_max=max(fd[’data’][’Invariant Position’][0][i],

::: fd[’data’][’Invariant Position’][0][j])

cusp=zeros(len(cd[’t’]))

fast=zeros(len(cd[’t’]))

for k in range(cusp.size):

if cd[’ipos’][0][k]>ilt_min and cd[’ipos’][0][k]<ilt_max:

if cd[’ipos’][1][k]>6. and cd[’ipos’][1][k]<18.:

cusp[k]=1

326

if cd[’t’][k]>fd[’data’][’Time’][i] and

::: cd[’t’][k]<fd[’data’][’Time’][j]:

fast[k]=1

t0=fd[’data’][’Time’][0]

close()

figure()

subplot(212)

plot(fd[’data’][’Time’]-t0,fd[’data’][’Invariant Position’][0],’r-’)

plot(cd[’t’]-t0,cd[’ipos’][0],’b-’)

axis([0,fd[’data’][’Time’][-1]-t0,-90,90])

legend([’FAST’,’CHAMP’],loc=’best’)

xlabel(’Time (s)’)

ylabel(’Invariant Latitude (deg)’)

subplot(211)

plot(cd[’t’]-t0,-1000*cd[’dcy’])

fill_between(cd[’t’]-t0,0,2,where=(fast==1),facecolor=’red’,alpha=0.5)

fill_between(cd[’t’]-t0,0,2,where=(cusp==1),facecolor=’green’,alpha=0.5)

axis([0,fd[’data’][’Time’][-1]-t0,0,1.1*max(-1000*cd[’dcy’])])

ylabel(’Decceleration (μm/s2)’)

good=’n’

while(good!=’y’):

ax=gca()

if len(ax.lines)>3:

ax.lines=ax.lines[:3]

draw()

start=float(raw_input("Enter starting time: "))

stop=float(raw_input("Enter stopping time: "))

plot([start,start],[0,2],’k--’)

plot([stop,stop],[0,2],’k--’)

good=raw_input("Good times (y/n): ")

a=min(find(cd[’t’]>start+t0))

b=min(find(cd[’t’]>stop+t0))

t_interp=concatenate((cd[’t’][2*a-b:a],cd[’t’][b:2*b-a]))

dcy_interp=concatenate((cd[’dcy’][2*a-b:a],cd[’dcy’][b:2*b-a]))

f=interp1d(t_interp,dcy_interp,kind=’linear’)

base=zeros(b-a)

for i in range(b-a):

base[i]=f(cd[’t’][a+i])

plot(cd[’t’][a:b]-t0,-1000*base,’r--’)

327

raw_input("Press Enter to continue.")

spike=array(cd[’dcy’][a:b]-base)

subplot(212)

ax=gca()

ax.clear()

plot(cd[’t’][a:b]-t0,-1000*spike,’m-’)

plot(cd[’t’][a:b]-t0,zeros(b-a),’k--’)

axis([cd[’t’][a]-t0,cd[’t’][b]-t0,min(-1000*spike)*0.9,max(-1000*spike)*1.1])

return mean(-1000*spike),max(-1000*spike)

E.3 Coordinate System Transformation

E.3.1 cstrans2.py

:: cstrans.py ::

#

Coordinate System Transformation tools

v0.2

#

David K. Olson Jul 2011

NASA/Goddard Space Flight Center

david.olson@nasa.gov

#

Requires IGRF.py to do magnetic-aligned coordinate systems.

#

::::::::::::::::::::

from numpy import array,matrix,zeros,dot,cross,sign

from math import sqrt,sin,asin,cos,acos,tan,atan,atan2,pi

from datetime import datetime

from time import gmtime

from calendar import timegm

from spacepy import time as spt

import IGRF

known_systems=[’GEO’,’GEI’]

centered dipole calculation from IGRF

see eg. http://www.spenvis.oma.be/help/background/magfield/cd.html

def get_dipole(model,year,eccentric=False):

g,h=IGRF.load_IGRF(model,year)

B0=sqrt(g[1,0]**2+g[1,1]**2+h[1,1]**2)

328

c11=sqrt(g[1,1]**2+h[1,1]**2)

theta=acos(-g[1,0]/B0)

phi=asin(-h[1,1]/c11)

if eccentric:

L0=2*g[1,0]*g[2,0]+sqrt(3)*(g[1,1]*g[2,1]+h[1,1]*h[2,1])

L1=-g[1,1]*g[2,0]+sqrt(3)*(g[1,0]*g[2,1]+g[1,1]*g[2,2]+h[1,1]*h[2,2])

L2=-h[1,1]*g[2,0]+sqrt(3)*(g[1,0]*h[2,1]-h[1,1]*g[2,2]+g[1,1]*h[2,2])

E=(L0*g[1,0]+L1*g[1,1]+L2*h[1,1])/(4*B0**2)

x=array([(L1-g[1,1]*E)/(3*B0**2),(L2-h[1,1]*E)/(3*B0**2),

::: (L0-g[1,0]*E)/(3*B0**2)])*6371.2

else:

x=array([cos(pi/2-theta)*cos(phi),cos(pi/2-theta)*sin(phi),

::: sin(pi/2-theta)])

return theta,phi,x

def jd(t,Julian=False):

t_ex=gmtime(t)

y=t_ex[0]

m=t_ex[1]

d=t_ex[2]

H=t_ex[3]

M=t_ex[4]

S=t_ex[5]+t-int(t)

fd = d+(H+(M+(S/60.))/60.)/24.

if m<=2:

y-=1

m+=12

A=y//100

if Julian:

B=0

else:

B=2-A+A//4

return int(365.25*(y+4716))+int(30.6001*(m+1))+fd+B-1524.5

Greenwich mean Sidereal Time from Meeus

def gst(t):

djm=jd(t)-2451545.0

T=djm/36525.

return (280.46061837 + 360.98564736629*djm+3.87933e-4*T**2-T**3/3.871e7)%360.

329

Greenwich mean Sidereal Time from Russell

def gst2(t):

date=gmtime(t)

y=date[0]

d=date[7]

fd=(date[3]+(date[4]+(date[5]+(t-int(t)))/60.)/60.)/24.

dj=365.*(y-1900)+(y-1901)/4.+d+fd-0.5

T=dj/36525.

return (279.690983+0.9856473354*dj+360.*fd+180.)%360.

def gst3(t):

t=spt.Ticktock(t,’UNX’)

mjd=t.MJD[0]

T0=(mjd-51544.5)/36525.0

return (100.461+36000.770*T0+15.04107)

def sun(t):

date=gmtime(t)

y=date[0]

d=date[7]

fd=(date[3]+(date[4]+(date[5]+(t-int(t)))/60.)/60.)/24.

dj=365.*(y-1900)+(y-1901)/4+d+fd-0.5

T=dj/36525.

vl=(279.696678+0.9856473354*dj)%360.

gst=(279.690983+0.9856473354*dj+360.*fd+180.)%360.

g=((358.475845+0.985600267*dj)%360.)*pi/180.

slong=vl+(1.91946-0.004789*T)*sin(g)+0.020094*sin(2.*g)

obliq=(23.45229-0.0130125*T)*pi/180.

slp=(slong-0.005686)*pi/180.

sind=sin(obliq)*sin(slp)

cosd=sqrt(1.-sind**2)

sdec=180./pi*atan(sind/cosd)

srasn=180.-180./pi*atan2(sind/cosd/tan(obliq),-cos(slp)/cosd)

r=149598000.

x=r*cos(srasn*pi/180.)*cos(sdec*pi/180.)

y=r*sin(srasn*pi/180.)*cos(sdec*pi/180.)

z=r*sin(sdec*pi/180.)

return array([x,y,z])

330

def geo2gei(x_geo,t):

theta=gst2(t)*pi/180.

x_gei=zeros(len(x_geo))

x_gei[0]=x_geo[0]*cos(theta)-x_geo[1]*sin(theta)

x_gei[1]=x_geo[0]*sin(theta)+x_geo[1]*cos(theta)

x_gei[2]=x_geo[2]

return x_gei

def gei2geo(x_gei,t):

theta=gst2(t)*pi/180.

x_geo=zeros(len(x_gei))

x_geo[0]=x_gei[0]*cos(theta)+x_gei[1]*sin(theta)

x_geo[1]=-1*x_gei[0]*sin(theta)+x_gei[1]*cos(theta)

x_geo[2]=x_gei[2]

return x_geo

def gei2gsm(x_gei,t):

theta,phi,D=get_dipole(7,1995)

Dp=geo2gei(D,t)

S=sun(t)

DpS=cross(Dp,S)

Y=DpS/sqrt(sum(DpS**2))

Z=cross(S,Y)

x_gsm=zeros(3)

x_gsm[0]=dot(S,x_gei)

x_gsm[1]=dot(Y,x_gei)

x_gsm[2]=dot(Z,x_gei)

return x_gsm

def gei2sm(x_gei,t):

theta,phi,D=get_dipole(7,1995)

Dp=geo2gei(D,t)

S=sun(t)

DpS=cross(Dp,S)

Y=DpS/sqrt(sum(DpS**2))

X=cross(Y,Dp)

x_sm=zeros(3)

x_sm[0]=dot(X,x_gei)

x_sm[1]=dot(Y,x_gei)

x_sm[2]=dot(Dp,x_gei)

331

return x_sm

def transform(x,fr,to):

error=False

if fr not in known_systems:

print("Unknown system {0}.".format(fr))

error=True

if to not in known_systems:

print("Unknown system {0}.".format(to))

error=True

if len(x) != 3:

print("Vector length needs to be 3 components.")

error=True

if error==True:

return []

T={’geogei’:1, ’geigeo’:2}

v=array([[x[0]],[x[1]],[x[2]]])

return T[fr+to]*v

###

#def solar_pos_GEI(year,day,time):

if year<1901 or year>2099:

print("year out of range for solar position.")

return

else:

if len(time)==3:

ftime=(time[0].+(time[1]+(time[2]/60.))/60.)/24.

elif len(time)==1:

ftime=time/86400.

else:

print("time formatting error: use either [hh,mm,ss.ss] or ss.sss")

return

#

DJ=365*(year-1900)+(year-1901)/4+day+ftime-0.5

T=DJ/36525.

VL=(279.696678+0.9856473354*DJ)%360.

GST=(279.690983+0.9856473354*DJ+360*ftime+180.)%360.

G=(358.475845+0.985600267*DJ)%360.*180./pi

SLONG=VL+(1.91946-0.

###

332

def rotate_x(v,theta):

R=array([[1.,0.,0.],[0.,cos(theta),-sin(theta)],[0.,sin(theta),cos(theta)]])

return dot(R,v)

def rotate_y(v,theta):

R=array([[cos(theta),0.,sin(theta)],[0.,1.,0.],[-sin(theta),0.,cos(theta)]])

return dot(R,v)

def rotate_z(v,theta):

R=array([[cos(theta),-sin(theta),0.],[sin(theta),cos(theta),0.],[0.,0.,1.]])

return dot(R,v)

def gei2mag(Xgei,t):

X=gei2geo(Xgei,t)

theta,phi,off=get_dipole(7,1995,eccentric=True)

Xm=rotate_y(rotate_z(X-off,-phi),-theta)

S=gei2geo(sun(t),t)

Sm=rotate_y(rotate_z(S-off,-phi),-theta)

mrad=sqrt(sum(Xm**2))

mlat=asin(Xm[2]/mrad)

mlon=atan2(Xm[1],Xm[0])

slon=atan2(Sm[1],Sm[0])

ilat=sign(Xm[2])*acos(min(1.,sqrt(6371.2/mrad)*cos(mlat)))

if slon-mlon>pi:

alpha=slon-mlon-2*pi

elif slon-mlon<-pi:

alpha=slon-mlon+2*pi

else:

alpha=slon-mlon

mlt=12.-alpha*12./pi

return Xm,ilat,mlt

333

E.4 Other Code

E.4.1 nantools.py

from numpy import nansum

from math import sqrt

def nanmean(a):

return nansum(a)/nansum(a/a)

def nanstd(a):

return sqrt(nanmean((a-nanmean(a))**2))

E.4.2 plot setup.py

from math import sqrt

from pylab import rcParams as rc

shapes={’default’: 0.774193548387, ’golden mean’: (sqrt(5)-1)/2,

::: ’square’: 1., ’portrait’: 11./8.5, ’landscape’: 8.5/11.,

::: ’long’: 1.5}

pti=72.27

def set_params(width=’’,shape=’’,fontsize=’’,linewidth=2.):

if width==’’:

width=rc[’figure.figsize’][0]

if shape==’’:

w,h=rc[’figure.figsize’]

mt=1-rc[’figure.subplot.top’]

mb=rc[’figure.subplot.bottom’]

ml=rc[’figure.subplot.left’]

mr=1-rc[’figure.subplot.right’]

factor=h*(1-mt-mb)/w/(1-ml-mr)

else:

if not shapes.has_key(shape):

print("Unkown shape.")

return

factor=shapes[shape]

if fontsize==’’:

fontsize=rc[’text.fontsize’]

else:

fontsize=int(fontsize)

334

print("Using width {0}, factor {1}, fontsize {2}".format(

:: width,factor,fontsize))

ml = 6.0225*fontsize/pti

mr = 4.8180*fontsize/pti

mt = 3.6135*fontsize/pti

mb = 3.6135*fontsize/pti

pw = width - ml - mr

ph = factor*pw

height = mt + ph + mb

params = { ’lines.linewidth’: linewidth,

’figure.figsize’: [width,height],

’figure.subplot.bottom’: mb/height,

’figure.subplot.top’: 1-mt/height,

’figure.subplot.left’: ml/width,

’figure.subplot.right’: 1-mr/width,

’font.size’: fontsize }

rc.update(params)

335

Bibliography

[1] E.N. Parker, Newton, Maxwell, and Magnetospheric Physics, in Magnetospheric
Current Systems, Geophys. Monogr. Ser., 118, edited by S.-I. Ohtani et al., 1-
10, AGU, Washington, D.C. (2000).

[2] McGraw-Hill Concise Encyclopedia of Science & Technology, Troposphere,
(1984).

[3] M.C. Kelley, The Earth’s Ionosphere: Plasma Physics & Electrodynamics, El-
sevier Inc., London (2009).

[4] A.E. Hedin, J. Geophys. Res., 96, 1159 (1991).

[5] Data obtained via http://ccmc.gsfc.nasa.gov/modelweb/models/msis vitmo.php
(last retrieved 7 Feb 2012).

[6] C.Y. Johnson, “Ion and neutral composition of the ionosphere”, Annals of the
IQSY, 5, 197 (1969).

[7] H. Alfvén, L. Danielsson, C.G. Fälthammer, and L. Lindberg, Natural Electro-
magnetic Phenomena Below 30 kc/s, pp. 33–48, edited by D.F. Bleil, Plenum,
New York (1964).

[8] J. Larmor, Rep. of the British Assoc., 87, 159 (1919).

[9] IGRF details can be found at: http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

[10] M.F. Smith and M. Lockwood, Rev. Geophys., 34, 233 (1996).

[11] N. Meyer-Vernet, Basics of the Solar Wind, Cambridge Atmospheric and Space
Science Series, Cambridge University Press, Cambridge (2009).

[12] T.E. Moore and J.L. Horwitz, Rev. Geophys., 45, RG3002 (2007).

[13] M.F. Shea, R.D. Sharp, and M.B. McElroy, J. Geophys. Res., 73, 4199–4212
(1968).

[14] W.G. Pilipp, H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosen-
bauer, and R. Schwenn, J. Geophys. Res., 92, 1075–1092 (1987).

336

[15] G.R. Wilson, D.R. Weimer, J.O. Wise, and F.A. Marcos, J. Geophys. Res.,
111, A10314 (2006).

[16] A.D. Richmond and J.P. Thayer, Ionospheric electrodynamics: A tutorial, in
Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, edited by
S.-I. Ohtani et al., 131-146, AGU, Washington, D.C. (2000).

[17] B. Gustavsson, M.T. Reitveld, N.V. Ivchenko, and M.J. Kosch, J. Geophys.
Res., 115, A12332 (2010).

[18] E.N. Parker, J. Geophys. Res., 62, 509 (1957).

[19] L.G. Jacchia and J. Slowey, J. Geophys. Res., 69, 905-910 (1964).

[20] H. Lühr, M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt, Geophys. Res.
Lett., 31 , 6805 (2004).

[21] J.H. Clemmons, J.H. Hecht, D.R. Salem, and D.J. Strickland, Geophys. Res.
Lett., 35, L24103 (2008).

[22] K. Schlegel, H. Lühr, J.P. St. Maurice, G. Crowley, and C. Hackert, Ann.
Geophy., 23, 1659 (2005).

[23] H.G. Demars and R.W. Schunk, J. Atmos. Solar-Terr. Phy., 69, 649 (2007).

[24] Various Authors, Measurement Techniques in Space Plasmas: Particles, Geo-
phys. Monogr. Ser., 102, edited by R.F. Pfaff, J.E. Borovsky, and D.T. Young,
AGU, Washington, D.C. (1998).

[25] J.L. Wiza, Nucl. Inst. And Meth., 162, 587-601 (1979).

[26] E.J. Gamboa, C.M. Huntington, E.C. Harding, and R.P. Drake, Rev. Sci. Inst.,
81, 10E310 (2010).

[27] K. Furuya and Y. Hatano, Int. J. of Mass Spectrom., 218, 237 (2002).

[28] D.T. Young, Measurement Techniques in Space Plasmas: Particles, Geophys.
Monogr. Ser., 102, 1 (1998).

[29] J. Oberheide, P. Wilhelms, and M. Zimmer, Meas. Sci. Technol., 8, 351 (1997).

[30] R.E. Ergun et al., Geophys. Res. Lett., 25, 2041 (1998).

337

[31] W.K. Peterson et al., Geophys. Res. Lett, 25, 2081 (1998).

[32] R. Lysak, Geophys. Res. Lett, 25, 2089 (1998).

[33] H. Lühr, S. Maus, and M. Rother, J. Geophys. Res., 109, A01306 (2004).

[34] H. Lühr, S. Maus, and M. Rother, Gephys. Res. Lett., 29, 1489 (2002).

[35] C. Stolle, H. Lühr, M. Rother, and G. Balasis, J. Geophys. Res., 111, A02304
(2006).

[36] R. Pfaff, C. Carlson, J. Watzin, D. Everett, and T. Gruner, Space Sci. Rev.,
98, 1 (2001).

[37] R.E. Ergun et al., Space Sci. Rev., 98, 67 (2001).

[38] R.C. Elphic, J.D. Means, R.C. Snare, R.J. Strangeway, L. Kepko, and R.E.
Ergun, Space Sci. Rev., 98, 151 (2001).

[39] C.W. Carlson, J.P. McFadden, P. Turin, D.W. Curtis, and A. Magoncelli, Space
Sci. Rev., 98, 33 (2001).

[40] C. Reigber, H. Lühr, and P. Schwintzer, “Announcement of Opportunity for
CHAMP”, CH-GFZ-AO-001, GFZ Potsdam, Germany (2001).

[41] S. Bruinsma, D. Tamagnan, and R. Biancale, Planet Space Sci., 52, 297 (2004).

[42] T.E. Moore et al., Geophys. Res. Lett., 26, 2339 (1999).

[43] R.J. Strangeway et al., J. Geophys. Res., 105, 21,129 (2000).

[44] R.J. Strangeway, R.E. Ergun, Y.-J. Su, C.W. Carlson, and R.C. Elphic, J.
Geophys. Res., 110, A03221 (2005).

[45] K.J. Zahnle and D.C. Catling, ”Our Planet’s Leaky Atmosphere,” Scientific
American, May 2009.

[46] R.D. Sharp, R.G. Johnson, and E.G. Shelley, J. Geophys. Res., 82, 3324 (1977).

[47] D.J. Gorney, A. Clarke, D. Croley, J. Fennell, J. Luhmann, and P. Mizera, J.
Geophys. Res., 86, 83 (1981).

338

[48] C.R. Chappell, T.E. Moore, and J.H. Waite Jr., J. Geophys. Res., 92, 5896
(1987).

[49] M.-C. Fok, T.E. Moore, and M.R. Collier, J. Geophys. Res., 109, A01206
(2004).

[50] R.L. Lysak and M. André, Phys. Chem. Earth (C), 26, 3 (2001).

[51] K.A. Lynch et al., Ann. Geophys., 25, 1967 (2007).

[52] M. Andre, J. Atmos. Terr. Phys., 59, 1687 (1997).

[53] Y. Zheng, T.E. Moore, F.S. Mozer, C.T. Russell, and R.J. Strangeway, J.
Geophys. Res., 110, A07210 (2005).

[54] C.T. Russell, Cosmic Electrodynamics, 2, 184 (1971).

[55] C.C. Finlay et al., Geophys. J. Int., 183, 1216 (2010).

[56] Available at http://realterm.sourceforge.net

[57] The Fast Auroral SnapshoT Explorer, http://sprgl.ssl.berkeley.edu/fast

[58] CDF Home Page, http://cdf.gsfc.nasa.gov

[59] The Information System and Data Center, http://isdc.gfx-potsdam.de

[60] Numerical Python, http://numpy.scipy.org

[61] Scientific Tools for Python, http://www.scipy.org

[62] The matplotlib Plotting Library for Python, http://matplotlib.sourceforge.net

[63] Python-based Tools for the Space Science Community, http://spacepy.lanl.gov

[64] C. Förste, P. Schwintzer, and C. Reigber, “The CHAMP Data Format”, CH-
GFZ-FD-001, GFZ Potsdam, Germany (2002).

[65] R. König, P. Schwintzer, and C. Reigber, “The CHAMP Orbit Format
CHORB”, CH-GFZ-FD-002, GFZ Potsdam, Germany (2001).

339

[66] P. Schwintzer, H. Lühr, C. Reigber, L. Grunwaldt, and C. Förste, “CHAMP
Reference Systems, Transformations and Standards”, CH-GFZ-RS-002, GFZ
Potsdam, Germany (2002).

340

