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Abstract

Lidar has become an essential tool for the mapping and interpretation of natural

and archaeological features within the landscape. It is also increasingly integrated and

visualized within geoarchaeological deposit models, providing valuable topographic and

stratigraphic control from the contemporary ground surface downwards. However, there

is a wide range of methods available for the visualization of lidar elevation models and a

review of existing research suggests that it remains unclear which are most appropriate

for geoarchaeological applications. This paper addresses this issue by providing an

overview and quantitative evaluation of these techniques with examples from

archaeologically resource‐rich alluvial environments. Owing to the relatively low‐relief

nature of the terrain within these temperate lowland flood plain environments, the

results show that there is a small number of visualization methods that demonstrably

improve the detection of geomorphological landforms that can be related to the variable

distribution of archaeological resources. More specifically, a combination of Relative

Elevation Models combined with Simple Local Relief Models offered an optimal

approach that subsequently allows integration with deposit models. Whilst the presented

examples are from a flood plain setting, deposit models are pertinent to a range of

landscape contexts and the methodology applied here has wider applicability.
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1 | INTRODUCTION

Geoarchaeological deposit models are exceptionally useful tools for

investigating the archaeological record and associated landscape

evolution. They provide a framework for understanding subsurface

sediment architectures, processes and depositional environments, which

in turn can be used to inform strategies for geoprospection (e.g.,

the identification of culturally rich sediment units and their spatial

distribution). This typically comprises a visual representation of spatial

and stratigraphic relationships between natural subsurface sediments,

palaeoenvironmental remains and archaeological features (Carey

et al., 2018; Historic England, 2020). However, deposit models vary
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significantly in terms of their visual outputs from relatively simple two‐

dimensional vertical cross‐sections and horizontal surfaces to more

computationally demanding deposit thickness maps and pseudo‐three‐

dimensional models. Some advanced deposit models also integrate a

range of airborne and terrestrial remote sensing (Carey et al., 2019;

Crabb et al., 2022; Schmidt et al., 2019) and geophysical survey data

(Bates & Bates, 2016; Engel et al., 2022; Verhegge et al., 2016, 2021).

Yet, the coalescing of such disparate, albeit complementary, measure-

ments of flood plain surface features together with records of

subsurface sediment stratigraphy and architecture is not straightfor-

ward. In particular, lidar data have become a vital part of developing very

accurate three‐dimensional (3D) models, but it is questionable whether

these data are used to their full potential within geoarchaeological

investigations. Consequently, this paper aims to explore this potential,

review how lidar has been previously applied and establish several key

parameters for its future inclusion within geoarchaeological projects.

1.1 | Deposit modelling in archaeology

Although the specific term ‘deposit model’ is not always applied,

in the last decade, there has been an increasing number of

geoarchaeological investigations that produced land classifications

to construct a ‘model’ of the subsurface. Such an approach is widely

used across Europe and North America, either to inform research‐

driven projects (e.g., Bini et al., 2015; Carlson & Baichtal, 2015;

Castanet et al., 2022; van Dinter et al., 2017; Fontana et al., 2017;

Gregory et al., 2021; Mozzi et al., 2018) or as part of the design of

mitigation and heritage management strategies within commercial

archaeology (Carey et al., 2019; Gearey et al., 2016; Stastney

et al., 2021). Most of the models produced by such investigations are

managed and generated using computational and GIS tools, but

there is also a range of software available that has enabled more

widespread construction of deposit models in recent years (e.g.,

Rockworks, Groundhog, Voxler, Strater, etc.). In tandem with this,

several ‘best practice’ papers have recently been drafted to provide

guidance for their wider application by practitioners, consultants and

planning archaeologists (Carey et al., 2019; Historic England, 2020).

Whilst these documents allude to the incorporation of lidar and other

remote sensing data sets for the definition of surface topography and

landforms, there is limited discussion as to how best to achieve this.

Moreover, most applications of lidar data within geoarchaeological

deposit modelling contexts utilize relatively simple or unaltered

visualizations of lidar‐derived Digital Elevation Models (DEM).

However, a better definition of features may be achieved through

additional visual enhancements, but there has been little discussion/

research into which techniques are most appropriate.

A focused search of existing English‐language literature contain-

ing the keywords ‘Lidar’ and ‘Geoarchaeology’ using Google Scholar

and Scopus (Elsevier's abstract and citation database) in September

2022 returned 71 items dating from 2006. These principally comprise

research articles as well as a small number of book sections and

conference proceedings concerned with regions in the temperate

zone (Figure 1). Of these, 72% dealt with alluvial environments, and

around half include an interpretation analogous to a deposit model

(i.e., they map the distribution of buried deposits of geoarchaeological

interest across a site or landscape). In each case, lidar is integrated

into the analysis to some extent, but only 18% use additional data

transformation techniques to enhance the visibility of resources. In

addition, there is frequently little or no justification for the selection

of these visualizations, although there are exceptions to this (Mayoral

et al., 2017). For example, hillshading is very widely used, but there is

rarely an explanation as to what advantage this has over other

visualization techniques or unaltered versions of lidar DEM. While

alternative visualizations may not always be appropriate or necessary

for every project, they have the potential to define a wide range of

features and landforms more accurately. As such, this paper aims to

provide a detailed review and case study of the suitability and

efficacy of visualization techniques applied for the identification of

geoarchaeological resources within the valley floors of the rivers

Lugg and Wye, Herefordshire (UK). It is hoped that this study will

facilitate wider integration of appropriate visualizations of lidar‐

derived DEMs into investigations of complex depositional environ-

ments not only within fluvial systems but also more broadly within

the study of sediment systems.

1.2 | Using lidar to define the archaeological
potential

Within many parts of the temperate zone, postglacial lowland flood

plains are low‐ relief environments containing a complex assemblage of

alluvial landforms that provide a record of the evolution of the river

system (Brown, 1997; Howard et al., 2015). Topographic expressions of

natural landforms such as palaeochannels, gravel islands, levees, bars

and other bedforms may be present and can exert a significant

influence on past settlement patterns, human exploitation and impact

on the landscape (Carey et al., 2017). Mapping and understanding these

landform assemblages can, therefore, offer significant insights into the

distribution of archaeological remains (Carey et al., 2006; Challis &

Howard, 2003, 2006; Passmore & Waddington, 2009). However, the

lateral and vertical accretion of fine‐grained alluvial sediments within

lowland flood plains, which are associated with human activity and

land‐use changes, can conceal and/or reduce the topographic expres-

sions of these landforms (Brown, 2009; French, 2003; Howard &

Macklin, 1999). Thus, while lidar visualizations aid in the interpretation

of geomorphological processes and landscape evolution, they cannot

be taken at face value and are most effective when integrated with

other intrusive data sets (e.g., boreholes, test‐pitting, etc.) or deeper

methods of geophysical survey such as low‐frequency ground

penetrating radar (GPR), electrical resitivity tomography (ERT), or

electromagnetic induction (EM) (Bates & Bates, 2016; Engel et al., 2022;

Verhegge et al., 2016, 2021).

Over the last two decades, lidar has become a staple method

used within both landscape archaeological and geoarchaeological

projects, primarily within temperate regions of the northern
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hemisphere (Figure 1). This is partly due to the accessibility of

national or near‐national data coverage within these areas at a

relatively high spatial resolution (0.5−2m), which has led to the wide

use of these data sets to study the topographic expression of

archaeological remains and natural landforms that can contain

significant archaeological and palaeoenvironmental archives (e.g.,

Crutchley & Crow, 2010; Höfle & Rutzinger, 2011; A. F. Jones

et al., 2007; Notebaert et al., 2009; Opitz & Cowley, 2013). Beyond

this, numerous geoarchaeological projects have also used lidar to map

geomorphological landforms within alluvial environments to model

the distribution of archaeological resources (Brunning & Farr‐

Cox, 2005; Carey et al., 2017; Challis, 2006; Challis & Howard, 2006;

Challis, Carey, et al., 2011; Stein et al., 2017). However, alongside

simply applying lidar topography to map and model landforms and

archaeology, an increasingly diverse range of methods that provide

visual enhancements of the topographic models have been devel-

oped, allowing for better identification of surface and subsurface

features and sediments (Devereux et al., 2008; Hesse, 2016; Kokalj,

Zakšek, Oštir, Pehani, et al., 2019; Štular, Lozić, et al., 2021).

Lidar visual enhancement methods vary in complexity and

applicability across the full range of landscape settings (e.g., from

shallow superficial cover in uplands to deeper sequences found in

lowland alluvial and intertidal areas). Within the context of

geoarchaeological applications, lidar is commonly used for topo-

graphic modelling of landforms of variable archaeological or

palaeoenvironmental potential (Corrò & Mozzi, 2017; Mozzi

et al., 2018; Ninfo et al., 2011, 2016; Passmore & Waddington, 2009)

and given its relatively wide use for geoarchaeological deposit

modelling, it is timely to provide a more thorough evaluation of

visualization techniques that are most effective for this purpose.

Moreover, alluvial environments offer a unique and challenging

setting, where consideration of these visual enhancement techniques

is of specific importance for the enhancement of subtle geo-

morphological features and associated modelling of their archaeolog-

ical potential.

2 | LIDAR FUNDAMENTALS

Lidar (Light Detection and Ranging) is an active form of remote sensing

that uses pulses of laser light to measure distances to the earth's

surface. Most lidar systems operate using very narrow beams of laser

(NIR) light (typically 1064 nm) and are operated from airborne

platforms, though there is an increasing array of UAV‐mounted

F IGURE 1 Visual summary of existing geoarchaeological literature that integrates lidar as part of their methodology. The term deposit model is
applied in its broadest sense (e.g., the distribution of buried deposits of geoarchaeological interest is mapped across a site or landscape) and additional
data transformations refer to any visualization method applied, beyond the simple display of an unaltered DEM. The total number of publications
identified was 71 and full details are available in the table provided as Supporting Information Material. DEM, Digital Elevation Models.
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(drone) sensors and terrestrial laser scanners that have been used

for archaeological research and a variety of Earth observation

applications (Pádua et al., 2017; Telling et al., 2017). However, this

paper is principally concerned with airborne laser scanning and its

geoarchaeological application within temperate alluvial environments.

Lidar is typically acquired as discrete return or full‐waveform

data, which are then converted into a point cloud. Discrete return

data record information only from targets that yield strong returns

over a predefined threshold, whereas in full‐waveform data, the

whole waveform is practically digitized, regardless of intensity or

strength, to provide a vertical profile over time (Melin et al., 2017).

Discrete return data sets are most common and are sufficient for

most geoarchaeological applications but full‐waveform data may

offer some distinct advantages, particularly in densely vegetated

areas, where it can increase the number of data points derived from

the ground surface (Doneus et al., 2008; Lasaponara et al., 2011;

Stott et al., 2015) while also informing understanding of vertical

structure (Brolly et al., 2016).

2.1 | Data acquisition

Lidar data sets have been extensively collected by national

governmental survey agencies and research institutions, many of

which are freely available, providing an exceptional resource for

geoarchaeological and archaeological projects. An extensive list of

agencies or organizations that provide access to these lidar data sets

can be found in Melin et al. (2017) and Kokalj and Hesse (2017). In

England, the Environment Agency's National Lidar Programme (NLP)

provides high spatial resolution (0.5–2m) elevation data for most of

the country (Environment Agency, 2021). Surveys are principally

undertaken during the winter months and are available as Open

Government license data, which can be downloaded from the DEFRA

Data Services Platform as point cloud and rasters (Department for

Environment Food and Rural Affairs, 2021).

For projects that integrate airborne lidar collected by govern-

ment agencies, the choice of instrumentation or data collection

parameters is predetermined and, as a result, in some cases, it can be

beneficial to commission a bespoke lidar survey from a private

company, when specific data acquisition is required. Whilst this can

be expensive, as with most technologies, this type of data is

becoming more affordable (Bluesky International Ltd., 2022). The

cost of lightweight lidar sensors that can be mounted on UAV

systems (drones) is also coming down, but these range from survey‐

grade instruments to repurposed sensors originally designed for the

automotive industry. As the characteristics of these instruments vary,

numerous data acquisition parameters require consideration to

ensure their effective use, including range accuracy, beam divergence

(footprint size and shape), wavelength, number of returns recorded

and accuracy of the GPS and IMU (Kellner et al., 2019). There are also

numerous complexities surrounding mission planning and subsequent

data processing to ensure the generation of accurate terrain models

(Casana et al., 2021). However, archaeological applications of this

technology are increasing and perform well in a variety of conditions

(Casana et al., 2021; Risbøl & Gustavsen, 2018; van Valkenburgh

et al., 2020). The main advantages are the increased flexibility, low

flight altitudes, small laser footprint and the advantages of a far‐

reaching field of view, which ultimately enable a higher point‐cloud

density (Risbøl & Gustavsen, 2018). Previous research has also shown

that this higher spatial resolution enables an improved definition of

the physical properties of topography (Resop et al., 2019). This may

also provide improved capabilities within wooded environments, but

since most sensors provide discrete return rather than full waveform

data, this may be relatively limited, as only a small number of the last

returns may relate to the ground.

2.2 | Standards and guidance

There is currently no standard approach to the integration of lidar in

archaeological practice but there are several overviews of ap-

proaches to airborne data (Crutchley & Crow, 2010; Historic

England, 2018; Kokalj & Hesse, 2017; Opitz & Cowley, 2013). The

Europae Archaeologiae Consilium (EAC) Remote Sensing Working

Group is, however, currently preparing guidelines for the use of lidar

in heritage management across Europe, which is due to be published

in 2024 (Europae Archaeologiae Consilium, 2022). In addition, a

recent research article has provided a comprehensive review of

archaeology‐specific workflows for airborne lidar data acquisition,

processing and interpretation (Lozić & Štular, 2021). This highlights a

series of common steps and sub‐processes centred around point‐

cloud processing and derivation of products, followed by archaeo-

logical interpretation, dissemination and archiving. However, the

specific considerations and workflow of each project will depend on

the nature of the landscape in question and whether it involves

commissioning the acquisition of new data or integration of

existing data.

2.3 | Data products

Regardless of whether lidar data are captured from an airborne or

UAV‐based platform, the primary data set for lidar is a point cloud,

which comprises information regarding the X, Y and Z coordinates of

the returns and additional attribute information such as GPS time,

intensity and scanning angle (Lozić & Štular, 2021). These points can

be classified into different object types such as ground, low, medium

and high vegetation classes using an automated or manual process

(Štular, Eichert, et al., 2021), although manual classifications are rarely

done on a large scale. Ideally, point‐cloud data will be provided in

a.LAZ format, which must be decompressed into a.LAS format for use

within GIS software. These files are not always available, can be very

large and can be efficiently converted through the open‐source LAZ

converter provided by LAStools (rapidlasso GmbH, 2021). These data

can then be used in the creation of different DEMs. Point‐cloud data

allow the data quality and effectiveness of the classification to be
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interrogated/checked (Kokalj & Oštir, 2018; White, 2013). They also

enable the gridding of Digital Surface Models (DSMs) and Digital

Terrain Models (DTMs) by only considering the first and last returns,

but preprepared DSMs and DTMs can also be downloaded in a

standard ASCII format.

DSMs are created from the lidar pulses returned to the sensor

relating to all ground surface objects, whereas DTMs are created from

the last return classified as ground by filtering out surface objects

(Environment Agency, 2021). For the DTM, manual filtering can also be

undertaken to improve the automated classification routines and

produce the most likely ground surface model. While surface objects

such as modern buildings and vegetation are useful to orientate data in

the landscape, they can be distracting for palaeolandscape reconstruc-

tions associated with geoarchaeological deposit models and DTMs are,

therefore, most extensively used, as this provides a refined bare earth

(ground) model. The intensity data for each area can also be used to

provide a measure of the amount of laser light from each laser pulse

reflecting from an object (Environment Agency, 2021). This reflectivity

is a function of the near‐infrared wavelength used and the material

incident upon, but also the angle of incidence, flight altitude and the

number of returns that can be used as a proxy to analyse the

reflectivity of the surface (Historic England, 2018). Although previous

applications of these data within an alluvial context have proved

inconclusive, it can aid interpretation, particularly relating to the

location of organic and waterlogged deposits (Challis et al., 2008),

2.4 | Processing software and tools

Lidar data can be processed through a variety of proprietary or open‐

source GIS and remote sensing software (e.g., ArcGIS, ENVI, GRASS,

SAGA and QGIS). These enable the generation of standard lidar

products from the original point‐cloud data and there are numerous

tutorials and guides available (e.g., Davis, 2012). In addition,

numerous visualization methods are also integrated or can be

installed as an additional plugin but some methods may require

bespoke model building or equations. Given that most geoarchaeol-

ogists will be familiar with GIS, this is perhaps the most convenient

environment for processing lidar data. In addition, there are freely

available toolboxes (e.g. RVT, LiVT and Whitebox tools) that are

dedicated to the production of lidar visualizations and facilitate a

wide range of advanced visualization procedures (Hesse, 2013;

Kokalj, Zakšek, Oštir, Pehani, et al., 2013).

3 | CONTEMPORARY APPROACHES
TO LIDAR VISUALIZATION

Lidar‐derived DEMs can be difficult to interpret in their raw data

form but visualization techniques can be used to improve the

definition of features of interest or transform the data into other

physical quantities such as degree of slope or aspect (Kokalj &

Hesse, 2017). While the simple visualization of lidar data within

standard GIS software converts the original data into new values by

applying a histogram stretch that distorts but does not store the

original data, other visualizations transform the data values, which

can then be stored as a new independent raster data set. A growing

number of these transformation techniques that vary significantly in

complexity but can be broadly grouped into three categories that use

similar approaches are provided as follows:

1. Illumination techniques.

2. Topographic filtering.

3. Blending.

While there have been several empirical assessments of these

techniques (e.g. Bennett et al., 2012; Challis et al., 2011b; Devereux

et al., 2008; Štular et al., 2012; Thompson, 2020), it can be very difficult

to establish the most appropriate technique for a particular site or

landscape. There has also been a small number of more objective

evaluations for a limited range of archaeological features (e.g., field

systems and burial monuments) and landforms such as palaeochannels

and landslide scars (Guyot et al., 2021; Mayoral et al., 2017; Notebaert

et al., 2009) and when new visualization methods are proposed, they

are normally assessed in relation to pre‐existing approaches (e.g.,

Doneus, 2013; Hesse, 2010; Orengo & Petrie, 2018; Zakšek

et al., 2011). However, the results of these studies have emphasized

that there is no single visualization, or combination of visualizations,

that consistently performs well in all situations. Despite this, it is often

possible to identify techniques that are most suited to specific types of

terrain. For example, Local Relief Models (LRMs) are commonly found

to perform well in low‐relief areas, whereas the Sky‐View factor may be

more appropriate in areas of steeper ground (Kokalj, Zakšek, Oštir,

Pehani, et al., 2019; Mayoral et al., 2017).

Since alluvial landscapes contain rich archaeological records closely

linked to a range of landform assemblages, it is challenging to select

appropriate visualization methods that can enhance the visibility of the

full range of resources that are potentially present. Many of the

approaches to lidar visualization are designed to highlight small‐scale

archaeological features, but larger‐scale natural landforms such as

broad palaeochannels, levees and gravel islands may only exist as slight

topographic variations that extend over hundreds of metres (Orengo &

Petrie, 2018). As such, there is a need to establish which techniques are

most appropriate for the identification of geoarchaeological features

within alluvial environments, as well as consider how they might be

integrated within a deposit modelling framework. The remainder of this

paper provides an overview and quantitative evaluation of a range of

commonly used lidar visualization techniques in archaeology and

geomorphology and highlights those that are likely to be most

applicable from a geoarchaeological perspective.

3.1 | What makes a good visualization?

Within geoarchaeological deposit modelling, the purpose of using

lidar is to define the surface expressions of geomorphological
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landforms and relate these to more deeply buried deposits of

geoarchaeological interest across a site or landscape, which can then

be interpreted in terms of their archaeological and palaeoenviron-

mental potential. In essence, this is not dissimilar to archaeologists

working in dryland environments to identify topographic features

associated with past human activity or geomorphologists studying

landforms and landscape evolution; rather, it is a combination of the

two. However, as discussed, the physical shape and extent of

archaeological features and geomorphological landforms are very

different, ranging from small to large scale. Consequently, effective

geoarchaeological visualizations need to account for this wider range

of different feature types.

More generally, the visualization of lidar data should follow good

practice principles required for any cartographic or raster data set

(e.g., Borland & Taylor Ii, 2007). Grey or colour scales should be easily

understandable and representative of the order of data (Kirk, 2019).

However, if the data values have a zero point, a dichromatic scale

may be more appropriate to emphasize deviation from this (Campbell

& Shin, 2011). It is also sometimes useful to use pseudo‐realistic

multipart colour schemes, but the number of contingent colours

should not be excessive so that they cause confusion. Some colour

scales, such as rainbow palettes, should be avoided as their

nonsequential luminosity intensities can introduce false borders or

artefacts in the data (Kokalj & Somrak, 2019).

Beyond increasing image contrast for the human perception of

archaeological features and natural landforms, lidar visualizations are

also utilized to improve automated, or semiautomated, object

detection (Davis, 2019; Verschoof‐van der Vaart & Lambers, 2022).

In geomorphology, these procedures are increasingly critical for

providing a quantification and recognition of landforms that possess

unique morphometric characteristics (Evans, 2012; Jasiewicz &

Stepinski, 2013; Lin et al., 2021; Wang et al., 2010). In archaeology,

the focus of these procedures has also been more restricted to the

detection of morphologically distinct features such as pits, linear

features, mounds and other structures (e.g., Cerrillo‐Cuenca, 2017;

Freeland et al., 2016; Niculiță, 2020; Schneider et al., 2015; Trier &

Pilø, 2012). However, algorithms for multiple and more complex

feature types are increasingly being developed, particularly through

the application of deep learning techniques such as convolutional

neural networks (Bonhage et al., 2021; Bundzel et al., 2020; Meyer

et al., 2019; Trier et al., 2019, 2021; Verschoof‐van der Vaart &

Lambers, 2019; Verschoof‐van der Vaart et al., 2020). As such, some

visualizations are targeted toward ensuring that the broadest range

of features is detectable by combining optimal aspects of various

techniques (Guyot et al., 2021; Kokalj & Somrak, 2019). However,

there is no agreement in terms of which visualization methods

produce the best results for these approaches. Despite this, the

principles of what makes a good visualization are largely the same,

regardless of whether it is produced for an automated or manual

interpretation. Thus, although this study does not attempt any

automated procedures, the considerations presented here are

important for any future research that may aim to utilize these

methods within an alluvial setting.

The default visualization of raster data sets within GIS software is a

linear grey scale, with black denoting low values and white defining

high values. A very simple method of improving the contrast of this is

to constrain the image to a more appropriate data range, which can be

achieved using a linear histogram stretch or manual saturation of

extreme values (e.g., identifying the mean and range of elevation values

contained within an area of interest such as a flood plain). ‘Elevation’

colour ramps are also widely used as they are very intuitive, where light

blue relates to low‐lying positions and darker red and white relate to

higher areas. However, where the overall topography deviates from

horizontal, it can be difficult to select the optimal elevation range for

the full suite of landforms within a flood plain (Kokalj & Hesse, 2017).

One approach to overcoming the issue of identifying effective

elevation ranges was developed by A. F. Jones et al. (2007). This

comprised classifying multiple elevation ranges to enable the

visualization of different landforms at different intervals (e.g., 4, 2,

1, 0.5 m, etc). This approach allowed the delineation of both large

features, such as prominent terrace edges, and subtle features, such

as shallow palaeochannels, which were mapped sequentially depend-

ing on the range of these intervals. Whilst this approach was

successful, it also highlights the fundamental issue with such

visualizations: that it is difficult to characterize the full range of

features contained within a DTM of the flood plain using a single

image. Moreover, it is also still subject to numerous biases of the

landscape such as the inherited form and morphology of the flood

plain profile and downstream slope.

3.2 | Illumination techniques

A wide range of image enhancement techniques has been developed

for lidar, many of which explore the interaction between the

landscape and a hypothetical light source (summarized in Figure 2).

The best known and well established of these is hillshading, where

each cell is assigned a value (or shading) based on the illumination at a

specified azimuth and elevation angle. Areas perpendicular to the

light beam are most illuminated, while areas with an incidence angle

equal to or greater than 90° are dark (Kokalj & Hesse, 2017). Under

very low light source angles (below 10°), more subtle features are

enhanced but the use of a single illumination can be problematic for

any features that are aligned parallel with the light source

(Davis, 2012). To overcome this, different illumination angles can

be produced from multiple directions and displayed as an RGB

composite image (Devereux et al., 2008). Then, Principal Components

Analysis (PCA) can also be used to summarize the variance contained

across these multiple (>3) hillshade directions (Crutchley &

Crow, 2010). Within such images, high levels of the original data

set variance are accounted for within the first three components

(c. 99%), meaning that the first three‐component bands presented as

a false colour composite can be an extremely effective way of

reducing data dimensionality.

Alternative illumination techniques such as Sky‐view factor (SVF)

and openness can also be used to overcome the directional problems
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of hillshading (Kokalj & Hesse, 2017). Both techniques involve

calculating the proportion of visible sky above (or below, as for

negative openness) a certain observation point by computing the

horizon angle in different directions to a specified radius (e.g.,

10–20m) (Kokalj & Hesse, 2017; Yokoyama et al., 2002; Zakšek

et al., 2011). Openness can be provided in a positive (OPP) and

negative (OPN) format, where the mean value of all zenith angles

gives positive openness and the mean nadir value gives negative

openness (Figure 2). Positive openness is similar to Sky‐view factor,

while negative openness gives additional information on convex

features (Doneus, 2013). These techniques provide good general

visualizations because they enhance the visibility of simple and

complex small‐scale features, regardless of their orientation and

shape, on most types of terrain (Kokalj, Zakšek, Oštir, 2013).

3.3 | Topographic filtering

Topographic filtering methods attempt to remove the influence of

wider topographic trends or convert elevation values into other

variables (Figure 3). Many of these are targeted toward the

investigation of terrain and landform properties and are widely

integrated within commercial GIS software and other open‐source

tools (e.g., Whitebox tools; Szypuła, 2017). These also enable

landform classifications (e.g., De Reu et al., 2013; Jasiewicz &

Stepinski, 2013) or specific hydrological or morphometric character-

istics to be defined (Gomez‐Heras et al., 2019). While they are not all

relevant for geoarchaeological research, some are highly applicable

for the visualization of low‐relief variations associated with landforms

and archaeological features.

F IGURE 2 Comparison of the calculation principles of illumination techniques for a typical flood plain profile including (a) hillshading,
(b) Sky‐view factor, (c) positive openness and (d) negative openness (Adapted from Hesse, 2016). R, search radius and colours denote
hypothetical sediment units.
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Slope models calculate the slope severity for each cell (calculated

as the degree of slope) and darker shades typically represent more

steeply sloping areas, with lighter areas corresponding to flatter

terrain (Smith & Clark, 2005). Challis et al. (2011b) found slope

gradient as the best visualization technique for the identification of

most archaeological resources in a flood plain setting. However, a

limitation of this method is that it is difficult to distinguish between

convex and concave features, as slopes of the same gradient are

presented with the same colour regardless of whether they are

inclined or declined (Kokalj & Hesse, 2017).

Other topographic filters such as Local Dominance (LD) and Local

Relief Models (LRM) attempt to remove the influence of broad

topographic trends to highlight more localized variations. Within LD

images, the brightness of each pixel corresponds to the mean angle

from which a virtual observer looks within a given radius, giving an

impression of how a pixel dominates its local surroundings

(Hesse, 2016). Simple Local Relief Models (SLRM) are very similar

to Local Dominance but apply a low‐pass filter to the original DEM,

which provides a smoothed version only showing large‐scale

landscape forms. This is then subtracted from the original DEM to

enhance small‐scale features. Within a full LRM, a further processing

step is applied where a purged DEM is created from the zero‐metre

contour lines in the SLRM, which is then subtracted from the original

DEM to create a less biased elevation of small‐scale features than the

SLRM, as the elevations of features are relative to the surrounding

landscape. However, the SLRM is faster to compute than LRMs and

the visibility of the features of interest remains (Trier et al., 2021). In

general, these techniques are well suited for very subtle positive

relief features such as former upstanding field boundaries and slight

depressions such as infilled ditches (Kokalj & Hesse, 2017). They have

also been shown to be well suited to areas of relatively flat

topography (Kokalj & Hesse, 2017; Mayoral et al., 2017) and are

often preferred for the automated detection of archaeological

features (Trier et al., 2021; Verschoof‐van der Vaart & Lambers, 2019;

Verschoof‐van der Vaart et al., 2020), although there is rarely explicit

justification for their selection over other methods.

An increasingly popular filtering method in geomorphological

research is Relative Elevation Models (REMs), which were developed

to facilitate examination to delineate fluvial processes and channel

migration (Coe, 2022; Notebaert et al., 2009). They are sometimes

referred to as Height Above River (HAR) models as they normalize

the elevation of the active river channel by creating a detrended

DEM and subtracting it from the original data set. REMs can be

created using several different methods, including using bespoke

F IGURE 3 Comparison of the effects of topographic filtering on the original Digital Terrain Models (DTM) (a) using slope gradient (b), the
Local Dominance (c), the Relative Elevation Model (d) and Simple Local Relief Model (SLRM) for a downslope profile derived from a portion of
the Middle Lugg flood plain.

8 | CRABB ET AL.



cross‐sections of the flood plain (J. L. Jones, 2006) or smoothing

algorithms such as Kernel Density (Dilts et al., 2010) and Inverse

Distance Weighting (IDW) (Olson et al., 2014). However, the

principles behind the process are essentially the same, whereby

the DEM is detrended by using the water surface of the present river

channels to remove the influence of the downstream slope. In the

IDW method, the analysis involves first extracting elevations along

the channel to generate a detrended DEM using the IDW tool (Olson

et al., 2014). Finally, the detrended DEM is subtracted from the

original DEM, resulting in elevation values relative to the water

surface of the channel. This produces positive values, except where

there are low‐lying zones (below the height of the river) within the

flood plain. This has obvious merits for identifying upstanding alluvial

landforms that may have a high archaeological potential (e.g., gravel

islands or terraces) as any elevated parts of the flood plain will be

more readily apparent.

3.4 | Blending

There have been several attempts to capitalize on the relative

advantages of multiple techniques through image fusion and

allow for the simultaneous display of distinct topographical

features in a single (enhanced) image (Kokalj & Somrak, 2019).

This is potentially less onerous than a manual or automated

interpretation of multiple images, but it can be difficult to identify

exactly what topographic characteristics are displayed within the

resulting visualizations.

Kokalj and Somrak (2019) developed a specific Visualization for

Archaeological Topography (VAT) using blending techniques to

combine hillshading, slope, positive openness and sky‐view factor.

It includes options for ‘normal’, complex and very flat terrain and can

be very effective for small‐scale features or local geomorphological

characteristics, but larger‐scale topographic variations that might

relate to alluvial landforms may not be well represented (Guyot

et al., 2021).

Another blending technique is Red Relief Image Maps (RRIMs),

which were developed by Chiba et al. (2008) to overcome the

limitations of openness by combining it with a slope gradient. To

achieve this, positive openness (OPP) and negative openness (OPN)

are combined using the following formula, which is sometimes

referred to as the I‐factor;

I =
OPP − OPN

2
.

The slope image is then presented in a red‐colour scale and

overlaid on top of the I‐factor images using transparencies. This aims

to simultaneously highlight morphological features and broad and

small‐scale topographic features. However, the performance of the

I‐factor is often poor when compared with other techniques (Mayoral

et al., 2017).

To overcome the scale‐dependent disadvantages of many

lidar visualization techniques, Lindsay et al. (2015), developed the

Multi‐scale Topographic Position (MSTP). This was primarily designed

for geomorphological research but has recently been adapted for

archaeological applications (Danese et al., 2022; Guyot et al.,

2018, 2021). It combines metrics relating to the deviation from

mean elevation (DEV) calculated at multiple scales (micro, meso and

macro) from roving windows of different sizes between a predefined

range for each scale at incremental steps. The size of the window is

determined by the size of the features of interest and the incremental

step can be set to avoid excessive calculations, with the resulting

three DEV combined within a colour‐composite or MSTP image

(Guyot et al., 2018; Lindsay et al., 2015). These have been objectively

shown to perform extremely well in a range of settings (Guyot

et al., 2021) but can produce high‐contrast images that may be

difficult to interpret without a detailed understanding of the

technique and its input parameters.

3.5 | Visualization of archaeological resources in
alluvial environments

Each of the above visualization techniques has advantages and

disadvantages, and some are more appropriate than others for the

study of geoarchaeological resources in alluvial environments. For

example, some methods are known to be effective over low‐relief

terrain (e.g., SLRM) or are specifically designed for use within flood

plain settings (REM). However, it is impractical and time‐consuming

to interpret multiple lidar visualizations, particularly when many of

the techniques repeat the same information, highlighting features to

a slightly different degree. While the use of blending techniques can

be used to overcome this issue, the resultant images are often

unintuitive for nonspecialists and difficult to relate to the topographic

characteristics they were originally derived from. Consequently, it is

useful to identify a smaller set of demonstrably effective image‐

enhancement techniques for use within geoarchaeological projects.

To achieve this, a quantitative evaluation has been undertaken for a

series of landforms identified within the Lugg and Wye Valleys of

Herefordshire, UK. This is combined with qualitative statements and

a discussion of their applicability and potential integration with

geoarchaeological deposit models.

4 | MATERIALS AND METHODS

4.1 | The Lugg and WyeValleys, Herefordshire, UK

The Lugg and Wye Valleys were selected for this analysis as they

represent typical lowland flood plain settings within the temperate

zone, and have been a recent focus for investigating the application

of hyper‐ and multi‐spectral data sets within an alluvial geoarchaeol-

ogy context (Crabb et al., 2022). Both river systems have complex

depositional histories, with closely related human–environmental

interactions demonstrated by a palimpsest of archaeological

records, which have been the focus of previous geoarchaeological

CRABB ET AL. | 9



investigations (Brown et al., 2005; Carey et al., 2017; Dinn &

Roseff, 1992; Hemingway & Dinn, 1996; Jackson & Miller, 2011;

Pears et al., 2020). This has established secure chronostratigraphic

knowledge of the landform assemblages, in turn aiding geoprospec-

tion at a reach scale, which may be tentatively applied more widely.

The specific study areas comprise sections of the Middle and Lower

Lugg and the Middle Wye Valleys (Figure 4), each containing a range

of alluvial landforms to enable the assessment of lidar visualization.

4.2 | Lidar data

The lidar data used in this analysis were downloaded as 5 × 5 km tiles

from the UK Environment Agency NLP (Department for Environment

Food and Rural Affairs, 2021). These use the last return data, selected

by automated algorithms and manual editing to produce terrain

models (UK Environment Agency). The elevation values are recorded

in metres above Ordnance Datum Newlyn (aOD) with a vertical

accuracy of ±0.15m, which are then outputted to a DTM with a

resolution of 1m. Where necessary, they were combined to create

single mosaics in ArcGIS, covering each study area (Davis, 2012).

4.3 | Calculation of lidar visualizations

In total, 16 different visualizations have been calculated for each

of the study areas. These have been created using the Relief

Visualization Toolbox (RVT) or ArcGIS and associated plugins or

toolboxes (Qiusheng, 2022; Whitebox Geospatial Inc). The specific

input parameters are provided (Table 1) and wherever possible, they

have been optimized for low‐relief variations (Kokalj, Zakšek,

Oštir, 2013). For many of these, a search radius of 20 pixels was

used to transform the data as this helped to enhance many of the

features but also preserved some finer details of the palaeochannels,

ridge and swale, and levees adjacent to the river. Although a larger

operating window (e.g., 50 pixels) may provide better results for

extremely large features, this was found to give a ‘washed out’

appearance to the smaller‐scale features.

4.4 | Evaluation of lidar visualizations in alluvial
environments

There is no consensus on the best method to evaluate the capability

of lidar visualizations and approaches have varied from qualitative

assessments of their performance (e.g., the number of features

detected; Bennett et al., 2012; Thompson, 2020) to more empirical

judgements based on the success of automated interpretation

procedures (e.g., Guyot et al., 2021; Mayoral et al., 2017). A small

number of studies have evaluated signal‐to‐noise ratios as a proxy for

image contrast (Štular et al., 2012), but there are currently no studies

that quantitatively interrogate the effectiveness of different lidar

visualizations. However, within passive remote sensing (e.g.,

multi/hyperspectral imagery), such an undertaking is of principal

importance for image classification where the contrast of different

Regions of Interest (ROI) can vary significantly across wavelength

bands and spectral indices (H. Jones & Vaughan, 2010). The extent to

which a feature (or ROI) can be discerned against its surrounding

background is referred to as its ‘separability’ and there are several

numeric (distance) measurements that can be deployed to evaluate

this (Swain & Davis, 1978).

The main aim of undertaking these separability analyses is to

identify optimal images or assess the effectiveness of training data

sets for the automatic classification of different land surface types

(Tso & Mather, 2009). Even though automated procedures are

becoming increasingly commonplace for archaeological applications

of lidar data sets (Bennett et al., 2014; Sevara et al., 2016), it is often

not clear why certain visualizations are chosen over others. This is

potentially because, until relatively recently, the number of available

visualization techniques was limited, and therefore such analyses

were not required. Moreover, most evaluations of the quality of lidar

data are often more concerned with spatial accuracy (Bakuła

et al., 2017), registration of features (Arnold et al., 2006), or

classification of point clouds (Melin et al., 2017), as opposed to

ensuring maximum feature contrast or enhancement. However, given

the increasing diversity of lidar visualization techniques and the

availability of open‐source software tools, it is necessary to consider

such issues more rigorously, and separability measurements provide

one method of achieving this.

The M‐statistic is a relatively simple separability metric that

calculates the difference between the means μ( ) of two ROIs,

normalized by the sum of the standard deviation σ( ) using the

following formula:

M
μ μ

σ σ
=

( − )

( + )
.

1 2

1 2

This provides a measurement of the separation between the

histograms of two classes, with M > 1.0 indicating good separabil-

ity and M < 1.0 indicating poor separability (Kaufman &

Remer, 1994). As archaeological features and natural landforms

are often very subtle, they will typically fall below this threshold,

but the metric can still be used as an evaluative tool. Although it

does not enable the separability of features within multiband

images, their constituent parts (individual RGB bands) can be

assessed. While other separability measurements (e.g., JM dis-

tance or transformed divergence) are better suited to multiband

images, it is difficult to compare the results to the assessment of

single‐band images provided through the M‐statistic (Crabb

et al., 2022; Richards, 2013). However, in contrast to these and

other common statistical analyses of variance and difference

(ANOVA/t tests), the M‐statistic does not account for sample size.

Although this can influence the results, it is of less concern for

larger data sets, as the influence of any outliers is reduced. As

such, the M‐statistic was selected to assess the capability of the 16

visualization techniques undertaken as part of this analysis, but it

was ensured that each ROI consisted of >1000 pixels.
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F IGURE 4 Location of Lugg and Wye Valley study areas on a national, regional and local scale, with British Geological Survey (BGS)
superficial geological deposits. The colours of the polygons relate to each of the Regions of Interest (ROI) pairs used in this analysis.
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Six ROI pairs were established for evaluation through

separability tests, which were derived from the Middle and Lower

Lugg valleys and the Middle Wye Valley. These comprise a

‘feature’, indicated by an ‘a’, and their surrounding background,

indicated by a ‘b’, from a select sample of typical alluvial

landforms (e.g., palaeochannels, gravel islands, ridge, swale,

etc.). The features were principally defined topographically and

have been subsequently confirmed through boreholes, although

the results of this are not reported here. Each ROI was digitized as

a polygon and was observable in the original (unaltered) DTM

presented in Figure 5. Each ROI pair has been assigned a colour,

with the surrounding background response highlighted in grey

(Table 2).

5 | RESULTS

Each of the visualizations of the 1m lidar DTMs is presented in a grid

layout to facilitate comparison but are grouped into illumination

techniques (Figure 6), topographic filtering (Figure 7), and blending

methods (Figure 8). Through empirical observation, it is apparent that

palaeochannels are often poorly defined in the original DTM, but

are visibly enhanced by topographic filtering, as well as some of

the illumination and blending techniques. In addition, most of the

larger‐scale landforms (e.g., gravel terraces and islands) are less

clearly represented by visualization techniques than the original

DTM, except for REM, which provides an improved definition.

However, it is not possible from a simple visual comparison to

establish which technique is most effective.

5.1 | Quantitative assessment

The results of the M‐statistic calculations are shown in Figures 9

and 10. The cumulative scores in Figure 9 illustrate which

visualization methods work best overall, across each of the feature

types covered by the study areas. In contrast, Figure 10 shows the

variable effectiveness of each technique for these different feature

types (ROI). Perhaps one of the clearest and most important aspects

of this is that the original (unaltered) DTM provides some of the best

separability results of all the visualizations, particularly for larger

features. For example, both ROI 3a/3b and 5a/5b produce scores

above the threshold (M > 1) and 1a/1b is also relatively high. These

all represent larger‐scale upstanding landforms (e.g., river terraces

and gravel islands). In contrast to this, the smaller‐scale features such

as palaeochannels (ROI 2a/2b and 4a/4b) and ridge and swale (6a/6b)

achieve lower separability scores, but the original DTM is by no

means the worst‐performing visualization analysed.

The best‐performing illumination technique is SVF, which provides

effective enhancement of the low‐lying palaeochannel at ROI 2a/2b and

the ridge and swale at 6a/6b. This is also the case for both the positive

and negative openness images, with OPP providing a slightly higher

score for 6a/6b. However, in general, all the illumination techniques

have performed poorly for ROIs located in the Lower Lugg Valley (ROI

3a/3b and 4a/4b), where the magnitude of features is low when

compared to the Middle Lugg and Wye Valleys.

Many of the topographic filtering methods have produced

comparable M‐statistic scores to the SVF and Openness images,

but the LD and SLRMs perform slightly better, providing a higher

feature contrast for the smaller‐scale features (e.g., ROI 2a/2b and

F IGURE 5 Detailed view of ROI pairs derived from the Lugg and Wye Valleys, with recorded superficial deposits and (unaltered)
colour‐constrained 1 m lidar DTM of each area. DTM, Digital Terrain Model; ROI, Regions of Interest.
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6a/6b). However, they also work relatively well for some larger‐scale

landforms, although these do not exceed those achieved by the

unaltered DTM.

The slope gradient image does not provide a visual enhancement

of most of the ROI pairs, and only the palaeochannel at ROI 2a/2b is

improved. In fact, it is less effective than many of the illumination

techniques, excluding hillshading.

The best‐performing technique of the topographic filters and

other visualization types is the REM images. REM produces high

separability scores for most of the ROI pairs, with 1a/1b and

5a/5b exceeding the (M > 1) threshold. Both of these relate to gravel

terraces with adjacent palaeochannels and are associated with large‐

scale but high‐magnitude changes in elevation. Interestingly, it does

not provide an improvement for ROI 3a/3b, most likely because the

gravel islands are slightly upstanding in comparison with their

surrounding topography. All of the smaller‐scale features (ROI

2a/2b, 4a/4b, and 6a/6b) also achieved higher separability scores than

the original DTM, suggesting that it provides an effective visualization

tool for a wide range of resources in alluvial environments.

Most of the images formed via blending methods are more

effective than those by illumination techniques but provide lower

M‐statistic scores than topographic filtering. The combination of both

positive and negative openness (I‐factor) provides a notably improved

contrast for smaller‐scale features such as ROI 2a/2b and 6a/6b.

Similar results were also encountered for the VAT image but in both

cases, larger‐scale landforms such as ROI 1a/1b, 3a/3b, and 5a/5b

are poorly represented.

None of the blending methods achieved M‐statistic scores over

the (M > 1) threshold, but the macro‐scale MSTP image for ROI 5a/5b

is very close (M = 0.92). The microscale MSTP image is one of the

worst‐performing images, but the meso‐ and macro‐scale images

provided an improved definition of the palaeochannels at ROI

2a/2b and 4a/4b. However, it is notable that when combined as a

composite image, many of the alluvial landforms are visually very high

in contrast (Figure 8).

Aside from REM and the original DTM, the most cumulatively

effective visualization across all of the ROI pairs was SLRM. This

topographic filtering method provides a clearer delineation of small‐

scale features but is closely comparable to the other visualization

techniques. The remainder of the cumulativeM‐statistic scores reiterate

the lower‐level effectiveness of illumination techniques within a flood

plain setting and also highlight the general poor performance of slope

gradient images and some of the MSTP images. This is because these

techniques are intended to operate at a wider landscape scale, where

there are multiple terrain types and more variable topographic profiles.

While these can be very effective in a more diverse landscape, they are

evidently less effective in a narrow, low‐relief flood plain setting

and may, therefore, offer limited benefits for the identification of

geoarchaeological resources. However, in scenarios where the flood

plain is less constrained, such as theMississippi (Chamberlain et al., 2020)

or Rhine‐Meuse Delta (van der Meulen et al., 2020; van Lanen &

Pierik, 2019), such multi‐scalar approaches may be more effective as

there is likely to be significant topographic variability.T
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6 | DISCUSSION

The comparison of lidar visualizations produced for the Lugg and Wye

Valleys has shown that an enhanced definition of geomorphological

landforms can be achieved using different visualization and transforma-

tion techniques. However, the analysis of the M‐statistic separability

tests has shown that only a small number provide a significant

improvement over the original, unaltered DTM for the geoarchaeological

analysis of alluvial flood plains. The REM image was the only technique

that achieved a higher cumulative M‐statistic score, but where

very subtle large‐scale landforms are present, the original DTM offered

slightly better results. In contrast to this, smaller‐scale landforms such as

F IGURE 6 Comparison of illumination techniques for each study area.
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palaeochannels and ridge and swale were better represented by other

visualization methods, particularly SLRM. To some extent, these results

are expected, as most of these visualization techniques were developed

for archaeological purposes to enhance small or low‐magnitude earth-

work features such as ditches, banks, and other structures (Bennett

et al., 2012; Štular et al., 2012). In addition, many of the topographic

filters also attempt to reduce the effect of broader topographic trends

to enhance localized relief variations (Guyot et al., 2018; Hesse,

2016, 2010). Thus, while this is indeed very effective for small‐scale

landforms, it has a negative effect on the identification of larger‐scale

features such as gravel terraces or islands, which are of significant

interest within a geoarchaeological context since they are often the

focus of settlement and other human activities.

It is challenging to select a single visualization technique that

enhances the visibility of every resource that might be present within

alluvial environments. This is consistent with previous empirical

assessments (e.g., Bennett et al., 2012; Challis, Forlin, et al., 2011;

Devereux et al., 2008; Štular et al., 2012; Thompson, 2020) and

objective evaluations (Guyot et al., 2021; Mayoral et al., 2017), which

have considered a range of terrain types. However, within specific low‐

lying flood plain settings, with minimal relief, it is possible to make more

specific recommendations on which image enhancement techniques

produce optimal definitions of geoarchaeological resources, which are

summarized in Table 3.

The results of the M‐statistic separability tests indicate that a

combination of REM and SLRM provides the most robust

F IGURE 7 Comparison of topographic filtering techniques.
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combination of visualization techniques. As REMs are tools specifi-

cally intended to enhance the investigation of geomorphological and

hydrographic aspects of river systems (Notebaert et al., 2009; Olson

et al., 2014) and SLRM has been previously found to perform well in

low‐relief areas, (Kokalj, Zakšek, Oštir, Pehani, et al., 2019; Mayoral

et al., 2017), these are very appropriate for geoarchaeological

research. Consequently, it is feasible to create a new blending

technique, capitalizing on the merits of both REM and SLRM,

whereby each transformation could be distinguished by colour and

luminosity. Such an approach would enable a single image to be

interpreted; however, there are advantages in using each image in a

separate but complementary manner, as there is more certainty

regarding what is being displayed.

Examples of the most effective visualization methods are shown

in Figure 11, which highlight the location of the ROI studied here.

These data can then be used to create a deposit model for the Lugg

and Wye Valleys, where lower‐lying (wetter) areas and palaeochan-

nels are more likely to contain palaeoenvironmental resources (e.g.

plant macrofossils, pollen, and other ecofactual material), whereas

higher (drier) zones, relating to upstanding gravel terraces or islands,

will unlikely contain such natural waterlogged remains, but were

more attractive for a range of past human activities. These relatively

simple statements can also guide the application of subsequent

geoarchaeological procedures and/or archaeological mitigation strat-

egies by defining areas where standard archaeological field tech-

niques (e.g., field walking, shallow geophysical methods, and trial

trenching) will be ineffective. Moreover, they may also be useful in

determining techniques that have the greatest applicability at the

prefieldwork, desk‐based planning stage of any project such as

establishing areas where the efficacy of aerial photographic analysis

will be effective. Thus, the integration of lidar data can provide

significant insights into the distribution of archaeological resources

and can also provide a vital baseline data set from which to

investigate the subsurface. However, in terms of integrating these

lidar visualizations within the framework of deposit modelling, other

factors must also be considered.

Geoarchaeological deposit models provide a visual representa-

tion of the spatial and stratigraphic relationships between subsurface

sediments, archaeological features, and palaeoenvironmental remains

(Carey et al., 2018). Whilst they vary in their form and presentation,

they fundamentally aim to improve the understanding of subsurface

sediment architectures and depositional environments that can,

in turn, be used to make predictions regarding archaeological

potential (Brown et al., 2005; Carey et al., 2017; Chapman et al., 2009;

F IGURE 8 Comparison of blending methods.
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F IGURE 9 Cumulative M‐statistic scores
ranked from best to worst visualization
technique.

F IGURE 10 Grouped bar chart showing the M‐statistic calculated for each Regions of Interest (ROI) pair for every visualization technique.
Threshold = 1.0, indicated by a solid black line.
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Howard et al., 2008). Lidar is somewhat restricted in its capability in

this context as it is a ‘surface’ technique. It does not provide any

specific information regarding the subsurface and, therefore, only

describes features that are expressed topographically. This is

significant as some landforms may not be apparent on the surface

due to the deposition of thick alluvial sediments or removal through

subsequent erosion and intensive anthropogenic activity (e.g., deep

ploughing). Consequently, it is essential that at least some intrusive

TABLE 3 Summary of optimal lidar visualization techniques for the definition of geoarchaeological resources in alluvial environments at
different scales.

Landform type Scale of landform Optimal visualization method(s)

Palaeochannels, Meander loops,
Ridge and swale

Small (5–30m) Simple Local Relief Model (SLRM), Local Dominance (LD),
Sky‐view factor (SVF)

Higher/lower topographic
zones, Gravel island, Gravel
terrace

Moderate to large
(50–250m+)

Relative Elevation Model (REM), colour‐constrained
(unaltered) Digital Terrain Model (DTM)

Note: The methods in bold represent those that were the best performing in this analysis; the other techniques listed were also highly effective.

F IGURE 11 Presentation of the most effective lidar visualization techniques together with a simple colour‐constrained DTM. DTM, Digital
Terrain Models; ROI, Regions of Interest.
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works are undertaken (e.g., hand augering, mechanical boreholes, or

test‐pitting/trial‐trenching), which can be further complemented by

existing Historic Environment Records (HERs), British Geological

Survey (BGS) mapping, other remote sensing data sets (Crabb

et al., 2022) and geophysical surveys (Bates & Bates, 2016; Verhegge

et al., 2016, 2021).

To facilitate the effective integration of multiple, disparate data

sets into deposit models, it can be useful to use consistent

projections and datum values. As this can be achieved by simply

using unaltered DTM lidar data sets, there is a strong case for

incorporating more simplistic visualizations, particularly given that

the unaltered DTM achieved very good M‐statistic separability

scores. However, it is possible that landforms can be missed if they

are extremely subtle, as significant cross‐ and down‐slope elevation

changes may obscure their visualization. Moreover, for these reasons,

unaltered DTMs can also be difficult to utilize over wider areas,

and other techniques that account for the influence of general

topographic trends (e.g., REM and SLRM) may be more reliable,

particularly when studying larger alluvial flood plains.

While this study has focused on alluvial environments, it has

implications for the application of lidar data where archaeological

resources do not lie immediately below the modern ground surface

but are buried beneath accumulated sediments (e.g., colluvial,

aeolian, coastal, estuarine, and lacustrine deposits). Lidar has been

used extensively in geoarchaeological research to study a wide

range of different environments (e.g., Bowen et al., 2018; Carlson &

Baichtal, 2015; Gregory et al., 2021; Lausanne et al., 2021) and

many of these investigations would benefit from the integration

of lidar within a deposit modelling framework to define surface

evidence for any variations within these complex depositional

zones. As such, it would be beneficial to expand this study to

evaluate a larger number of landforms and a wider range of

environments. However, the results of this research suggest that

such an approach provides a robust baseline from which to

investigate the subsurface and future research should, therefore,

be directed toward ensuring its integration within a more diverse

range of settings. However, currently, this is inconsistently

implemented, and alternative visualizations beyond the simple

display of DEM are rarely considered.

The focused literature search and review provided at the outset

of this paper showed that for applications of lidar in geoarchaeolo-

gical investigations of alluvial environments, approximately half

included an interpretation analogous to a deposit model. In each of

these cases, lidar data were integrated into the analysis to some

extent, but only 18% use visualization techniques to enhance the

visibility of resources. Although some visualizations may not always

be appropriate or necessary, as this research has shown, they can

help to better define a wide range of features and landforms.

Moreover, while there has been a barrier in terms of the technologi-

cal expertise required to produce visualizations, there is now a wide

range of open‐source toolboxes and plugins available, which improve

their accessibility (Hesse, 2013; Kokalj, Zakšek, Oštir, Pehani,

et al., 2013; Qiusheng, 2022). Consequently, given the increasingly

widespread and open‐access nature of data sets, lidar data processed

through the suggested methodologies presented here should form

part of a standard approach to geoarchaeological deposit modelling,

which has landscape evolution at its core.

7 | CONCLUSION

This paper has provided an overview of a range of commonly used

lidar image visualization techniques in archaeological and geo-

morphological research. It highlights their relative advantages and

disadvantages within a flood plain setting and provides examples of

each of these techniques presented for case studies derived from the

River Lugg and Wye Valleys, Herefordshire, UK. Through a quantita-

tive evaluation of their capability, it has been possible to identify a

smaller number of the most appropriate methods. This suggests that

a combination of REM combined with SLRM offers an optimal

approach. However, the original, unaltered DTMs were also very

effective and may enable better integration with deposit models as

their values are more consistent with other data sets (e.g., intrusive

methods, HER records, and geological mapping), especially when

depths below ground level are required. However, lidar visualizations

can help to better define the distribution of buried deposits of

geoarchaeological interest across a site or landscape, which can then

be interpreted and further investigated in terms of their archaeologi-

cal and palaeoenvironmental potential.

As alluvial environments offer the unique challenge of combining

rich, well‐preserved archaeological and palaeocological records with

conditions where archaeological prospection methods are ineffective,

appropriate visualization of lidar data has significant potential to aid

their investigation. Consequently, it is argued that these techniques

should become a standard part of geoarchaeological deposit

modelling and future research should aim to apply these methods

more widely within river flood plains and other complex depositional

zones.
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