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As cost and throughput of second-generation sequencers continue to improve, even 

modestly resourced research laboratories can now perform DNA sequencing 

experiments that generate hundreds of billions of nucleotides of data, enough to cover 

the human genome dozens of times over, in about a week for a few thousand dollars. 

Such data are now being generated rapidly by research groups across the world, and 

large-scale analyses of these data appear often in high-profile publications such as 

Nature, Science, and The New England Journal of Medicine. But with these advances 

comes a serious problem: growth in per-sequencer throughput (currently about 4x per 

year) is drastically outpacing growth in computer speed (about 2x every 2 years). As 

the throughput gap widens over time, sequence analysis software is becoming a 

performance bottleneck, and the costs associated with building and maintaining the 

needed computing resources is burdensome for research laboratories. This thesis 

proposes two methods and describes four open source software tools that help to 



  

address these issues using novel algorithms and high-performance computing 

techniques. The proposed approaches build primarily on two insights. First, that the 

Burrows-Wheeler Transform and the FM Index, previously used for data compression 

and exact string matching, can be extended to facilitate fast and memory-efficient 

alignment of DNA sequences to long reference genomes such as the human genome. 

Second, that these algorithmic advances can be combined with MapReduce and cloud 

computing to solve comparative genomics problems in a manner that is scalable, fault 

tolerant, and usable even by small research groups. 
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Chapter 1: Motivation 

The technology 

DNA sequencing technology has made huge strides since the earliest 

breakthroughs made by Frederick Sanger and others in the 1970s. Commercial 

entities including Life Technologies, 454 Life Sciences, and Illumina now 

manufacture and sell sequencers that, given a prepared biological sample, 

automatically report vast numbers of “reads”, i.e. snippets of DNA, present in the 

sample [1]. Other work shows that modern DNA sequencers can do much more than 

sequence genomes; they can be used to measure other cellular phenomena such as 

abundance of messenger RNA molecules [2], DNA methylation status [3, 4], and 

transcription factor binding [5]. 

These advances have spurred changes in the life sciences in recent years. In 

the 1990s, large-scale DNA sequencing was more or less the exclusive domain of 

large, well-resourced consortia like the Human Genome Project or companies like 

Celera Corporation. Now DNA sequencing, especially “second-generation” 

approaches such as sequencing-by-synthesis and sequencing-by-ligation [1], is 

extremely common and accessible even to small research laboratories. While 

sequencing instruments are costly (the Illumina instrument costs about $700,000), it 

is increasingly common for institutions to build “core facilities” where many 

sequencers and related instruments are maintained and run side-by-side and can be 

allocated to researchers on demand. The cost of the chemicals and other materials 

needed to run a modern sequencer is on the order of a few thousand dollars per run, 



 

 2 
 

and a HiSeq 2000 sequencer, for example, generates on the order of a few hundred 

billion DNA characters (henceforth called “nucleotides” or abbreviated “nt”) over the 

course of a single ten-day run [6]. It is informative to contrast these numbers with the 

prevailing conditions at the time of the commercial human genome project completed 

in 2000 by Celera Genomics, which reportedly cost around $300M, took about 2-3 

years, and produced about 15 billion nucleotides of data [7]. The international Human 

Genome Project was yet more expensive and took more than a decade to complete 

[8]. 

The computational problem 

Using a DNA sequencer is both like and unlike using a microscope to look at 

a cell. Like a microscope, a sequencer is a tool for investigating the contents of the 

cell. But whereas a microscope reveals visible parts of the cell, DNA sequencing 

addresses specific questions about parts of the cell that are not visible, e.g., what the 

sequence of its genome is, what messenger RNA molecules are present and in what 

abundance, or which parts of the DNA are bound by transcription factor proteins. 

These phenomena are critical to our understanding of how cells work, ultimately 

revealing much about health, disease, and evolution.  

But another difference lies in how output is interpreted. When looking through 

a microscope, light photons bounce off the cell and travel through the microscope 

lens into the eye. Our brain receives the light signals and composes the image we see. 

Instead of producing photons, sequencers produce billions of “reads,” i.e. snippets of 

DNA that might be anywhere from a few dozen to several thousands of nucleotides 

(DNA characters) long. Each read is a copy of a snippet of DNA present in the cell. 
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Note that the sequencer does not simply report a completed “image,” i.e. an entire 

DNA molecule, such as a chromosome, from one end to the other. Though this would 

certainly be desirable, it is beyond the reach of current technology. Rather, to obtain a 

complete picture we must take a huge collection of relatively short sequencing reads 

and “glue” them together computationally. 

To use another analogy, composing reads into a completed genome is like 

assembling a jigsaw puzzle. Both tasks involve identifying similarities: two puzzle 

pieces probably fit together if the images on the pieces match up; likewise, two reads 

probably came from overlapping places in the genome if the last several nucleotides 

in one read are similar to the first several nucleotides in the other read. Composing a 

set of reads into a genome by finding overlaps between reads and fitting them 

together is called “de novo assembly” or “assembly.” This task is related to the classic 

Shortest Common Superstring problem in computer science. Because of its usefulness 

for interpreting sequencing data, de novo assembly has become an important subfield 

of computer science and bioinformatics, and many approaches have been proposed 

and many software tools invented for doing this accurately and efficiently [9, 10]. 

While de novo assembly is an important tool, it is a very common practice to 

bypass assembly and instead utilize a template or “reference” genome as a shortcut. A 

reference genome is a previously assembled genome of the same species as the 

organism being sequenced. Using a reference genome as a guide is analogous to using 

the picture of the completed jigsaw puzzle printed on the box lid as a guide. The 

success of this approach hinges on a fortuitous property of genetics: two individuals 

of the same species tend to have extremely similar genome sequences. For instance, 
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genomes of two unrelated humans are roughly 99.8 – 99.9% similar when measured 

as the fraction of aligned nucleotides that match when the two genomes are globally 

aligned [11]. 

This suggests a general approach to interpreting sequencing reads when a 

reference genome is available: for each read, determine the substring of the reference 

genome that is most similar to the read sequence. The place where this substring 

occurs constitutes our best guess as to where the read originated. The process of 

finding this reference substring is called “read alignment,” or, depending on the 

context, “short read alignment,” “read mapping,” or simply “alignment” or 

“mapping.” The general approach of using a reference genome to inform analysis is 

“comparative genomics.”  Thanks to the Human Genome Project and similar projects 

for other species (including model species like chimpanzee, mouse, rat, and yeast), 

many reference genomes are now available for use in comparative genomics projects. 

Comparative genomics is usually much less computationally expensive than de novo 

assembly. For this reason, comparative approaches are very popular, and de novo 

approaches are used chiefly to study species for which no reference genome yet 

exists. 

de novo and comparative approaches share a key trait: both involve solving a 

computationally expensive set of sequence similarity problems. de novo assemblers 

find similarity between reads to determine how they overlap. This is computationally 

expensive because it involves considering similarities between all pairs of reads. 

Comparative genomics approaches find similarity between each read and the 

reference genome. This is also expensive because the reference is often very long; the 
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human reference genome, for instance, is about 3 billion nucleotides long. In either 

case, naive approaches are far too slow. 

While both the de novo and comparative problems are computationally 

challenging and worthy of attention, this thesis focuses exclusively on problems in 

comparative genomics. This is an important research trust because comparative 

approaches are very common in practice. 

The growth problem 

Comparative genomics involves solving many computationally expensive 

sequence similarity problems. We might take some comfort in the fact that computers 

get faster over time. Moore’s Law is a rule of thumb stating (in one of its forms) that 

computer processor speed doubles about every eighteen months [12]. Thus Moore’s 

Law might also be said to describe the rate at which “computational throughput” 

increases over time1. 

Sequencers, on the other hand, are getting faster at a rate that far outpaces 

Moore’s Law. For instance, a series of press releases describing the Illumina Genome 

Analyzer sequencer and its successor, the HiSeq 2000, show a trend whereby per-

sequencer throughput grew at a rate close to 4x per year over 2009 and 2010 [13, 14]. 

A similar trend can be observed for the Life Technologies SOLiD sequencer. In 

addition, sequencing costs are rapidly decreasing [15], and the overall number of 

sequencers sold is increasing [16]. 

                                                 
1 There are other aspects of computer architecture besides processor speed that can 
impact analysis speed: input/output speed for example. In practice, comparative 
genomics is quite processor-intensive, so it is reasonable to use Moore’s Law as a 
stand-in for computational throughput here. 
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With these trends comes an urgent need for better computer science methods. 

More efficient software algorithms and high-performance implementations of those 

algorithms must be invented and made available to life science researchers. If such 

improvements are not forthcoming, sequencing-driven research pipelines will be 

forced to stall while slower analyses catch up with faster sequencers. This is the chief 

motivation behind the methods and software tools described in this thesis. 

Improvements to read alignment 

This thesis addresses the large and growing gap between sequencing 

throughput and computational throughput in two complementary ways. First, I 

propose a novel indexing strategy and novel alignment algorithms that enable very 

fast alignment of DNA sequencing reads to large genomes. The specific novel 

contributions in this thesis include: (a) the idea of using the FM Index [17] as a time- 

and space-efficient full-text index to aid biological sequence alignment, (b) the idea 

that inexact matching with the aid of a full-text index such as the FM Index can be 

framed as a search over the space of possible ways of mutating the query (read) string 

into a string that occurs in the text (reference), (c) a set of techniques for pruning the 

search space so that it can be explored efficiently, including reference pruning, policy 

pruning, and double indexing, and (d) the idea of supporting fast gapped read 

alignment by separating alignment into an initial full-text-assisted seed alignment 

phase followed by a hardware-accelerated dynamic-programming-based extension 

phase. 

Items (a), (b) and (c) were first implemented in Bowtie [18], an open source 

software tool for finding ungapped alignments of short DNA sequencing reads (about 
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25-50 nt long) to large genomes. Bowtie was released to the public in 2009. At that 

time, Bowtie outperformed competing approaches in terms both of speed and of 

memory efficiency. The methods underlying Bowtie will be discussed in Chapter 2, 

but additional details regarding the design of Bowtie, as well as performance results 

and comparisons to other tools, are presented in published papers including the 

original Bowtie paper [18], the protocol paper [19], and in surveys [20]. 

Items (a), (b) and (c) and (d) were implemented together in Bowtie 2. Bowtie 

2 is an open source software tool for finding gapped alignments for DNA sequencing 

reads up to about 10,000 characters long. Bowtie 2 addresses the most pressing 

shortcomings of Bowtie: its inability to find alignments with gaps and its poor 

performance when aligning longer reads. Bowtie 2 does this efficiently using a two-

phase approach whereby the FM Index is used to find ungapped seed alignments, then 

a hardware-accelerated dynamic programming algorithm is used to find full, gapped 

alignments. Bowtie 2 was released to the public in 2011 and the methods underlying 

Bowtie 2 are discussed in Chapter 3. 

Comparative genomics approaches for “big data” 

While Bowtie and Bowtie 2 represent an important step toward closing the 

gap between sequencer throughput and analysis throughput, we cannot in general 

depend on algorithmic improvements to close this gap now and in the future. Another 

option for increasing throughput is to run analyses on many processors at once. 

Parallel and high-performance computing approaches, both simple parallel 

approaches (e.g. straightforward use of multicore servers or Sun Grid Engine) and 

more elaborate parallel approaches [21-23] have been applied to genomics in the past. 
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However, when one considers the sheer size of the sequencing datasets generated 

today, and the rate at which sequencing throughput is likely to grow over time, 

parallelization is just one issue among many that come to the fore. For instance, 

consider an analysis of a very large sequencing dataset that takes several weeks to run 

on many hundreds of computers in parallel. A severe hardware or software failure on 

any one of those computers could cause the entire computation to fail, potentially 

invalidating hundreds or thousands of computer-hours of work. 

The terms “big data” and “data intensive computing” describe the set of issues 

that become crucial when datasets and computations become very large [24]. Key 

“big data” issues include (a) parallelization: the ability to divide a computation up 

into many small, independent pieces that can be executed simultaneously on different 

processors, (b) fault tolerance: the ability to recover from unexpected and severe 

failures, and (c) economy: the need to keep subtasks small so that they can execute on 

a variety of different types of computer without exceeding available resources or 

crowding out other subtasks. In the past, solutions to these problems have been put 

together in an ad hoc fashion, with pieces provided by software developers, users, and 

their system administrators. But as datasets continue to grow, and as the user 

community continues to widen to include more users with limited computational 

resources and savvy, it is increasingly critical for “big data” features to be built 

directly into everyday software tools. 

In Chapters 4 and 5 of this thesis, I describe two open source software tools 

that I developed in collaboration with colleagues at University of Maryland and Johns 

Hopkins University. These tools, Crossbow and Myrna, solve common comparative 
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genomics problems while also addressing “big data” issues. Crossbow and Myrna are 

notable primarily because they demonstrate how common comparative genomics 

tasks can be adapted to run in the restrictive MapReduce programming framework. 

The framework in turn provides a number of services, including redundant, 

distributed data storage and flexible, parallel execution of subtasks. 

Crossbow and Myrna are also notable because they can be run using 

computers rented from the Amazon Web Services [25] cloud computing service. 

Crossbow and Myrna tools were among the first examples of useful software tools 

(the first being CloudBurst [26]) designed to exploit the benefits of cloud computing 

– a model whereby computing resources and services are rented from large providers. 

In the future, cloud computing could be a useful paradigm for life science labs 

struggling to keep pace with sequencers because: (a) cloud computing allows users to 

rent large collections of computing resources over the Internet, potentially freeing 

researchers from the burdens of building and maintaining their own computing 

resources, (b) the MapReduce parallel programming model [27], which is well suited 

to run on clusters of computers rented from a cloud vendor, is also a good fit for 

many comparative genomics applications, and (c) cloud computing’s use of 

virtualized hardware and software makes it easier for researchers to agree on 

standards that promote usability and reproducibility of analysis software. See 

published surveys for more detailed arguments for and against cloud computing [15, 

28, 29]. 

 

 



 

 10 
 

Chapter 2: Alignment using the Burrows-Wheeler 
Transform and FM Index 
 

This Chapter introduces the read alignment problem, illustrates why a classic 

Smith-Waterman-style dynamic programming approach is too inefficient for this 

application, introduces indexing as a way of accelerating alignment, then introduces 

the Burrows-Wheeler Transform, the FM Index, and other indexing and search 

methods underlying Bowtie. I designed Bowtie, and the Bowtie software 

implementation is also primarily my work though Cole Trapnell helped with software 

implementation. Bowtie was originally published in 2009 [18], and a protocol paper 

was published in 2010 [19]. 

Local alignment and Smith-Waterman 

The chief computational problem underlying comparative genomics is read 

alignment: given a sequencing read, we would like to find the substring of the 

reference sequence that is most similar to the read. The location of this best match is 

our best theory for where the read originated with respect to the reference sequence. 

This problem is closely related to the classic local alignment problem: 

 

Given a string P (“pattern”) of length m and a string T (“text”) of length n, 

find substrings a and b of P and T respectively having maximal optimal global 

alignment score. 

 

“Global alignment score” is a similar to edit distance. The edit distance 

between two strings is the minimal number substitutions and gaps that must be 



 

 11 
 

introduced to transform one string into the other. A global alignment score 

additionally associates scores with matches, substitutions and gaps. Consider this 

example (from Gusfield [30], p. 230) where matches have a score of +2 each, 

mismatches a score of -2 each and gaps a score of -1 each: 

 

P = xyaxbacsll, T = pqraxabcstvq  

 

The optimal local alignment is: 

 

a:  a x – b a c s 

b:  a x a b – c s 

 

Where dash (“-“) represents a gap. The global alignment score of this local 

alignment is 8, since there are 5 matches (contributing +10), two gaps (contributing -

2), and no mismatches. 

A well studied algorithm for finding an optimal solution to the local alignment 

problem is Smith-Waterman [31], or the Smith-Waterman-Gotoh [32] variant thereof. 

Smith-Waterman proceeds by filling in a dynamic programming matrix where rows 

correspond to positions in P and columns correspond to positions in T. Each cell 

value is set to the global alignment score of the best local alignment of the prefixes of 

P and T corresponding to (i.e. up to and including) the cell’s row and column. 

This problem has optimal substructure; a given cell’s value depends only on 

the values of its neighboring cells above, to the left, and to the upper-left in the 
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matrix. Once the matrix is filled in completely, the best alignment is obtained via a 

backtrack procedure. The time complexity is O(mn), and the space complexity is also 

O(mn), though variants exist that achieve better space bounds. For more details, 

including a proof of optimality, see Gusfield [30], p. 230. 

Smith-Waterman is impractical 

Consider the performance of Smith-Waterman for the case where the input 

consists of 6 billion sequencing reads of length m = 100 and the reference sequence is 

the human reference genome, i.e. n = ~ 3 billion nucleotides. This situation 

corresponds to a typical run of the Illumina HiSeq 2000 sequencer. The total number 

of cell updates required to fill all dynamic programming tables for all reads is 6 

billion (reads) times 100 (nucleotides per read) times 3 billion (reference sequence 

nucleotides) = 18 x 1020 or about 2 x 1021. Say that we have 1,000 processors, each 

clocked at 6 gigahertz and capable of completing a single Smith-Waterman cell 

update every clock cycle. Such a collection of processors has an aggregate throughput 

of 6 x 1012 Smith-Waterman CUPS (Cell Updates Per Second) and requires about 3 x 

108 (18 x 1020 divided by 6 x 1012), seconds or about 9 years to complete the 

computation. 

This demonstrates that Smith-Waterman is not fast enough for second-

generation sequencing workloads. Improvements in efficiency over Smith-Waterman 

are mostly achieved by reducing the impact of either the m term or the n term in 

Smith-Waterman’s O(mn) time complexity. MAQ [33], for example, reduces the 

impact of the m term by bundling reads into sets, creating a hash table-based index 

over the set, then traversing the reference sequence only a handful of times for each 
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set. Bowtie [18], BWA [34], BWA-SW [35], SOAP [36], SOAP2 [37], and many 

other modern tools seek to reduce the impact of the n term using a pre-computed 

index of the reference genome. A common theme is the use of indexing to achieve 

better performance. 

Indexing 

An index summarizes a text in a way that (a) can be queried rapidly, and (b) 

allows us to narrow our focus to a small number of interesting candidate locations. 

This is analogous to the index of a book. A book index is a list of key terms extracted 

from the text of the book, where alongside each key term is a list of page numbers 

where the term is used. The index is sorted in alphabetical order to allow the reader to 

look up terms efficiently. 

While some tools choose to index batches of reads and leave the reference as-

is, tools that index the reference genome have often proven to be faster. While 

building the index takes a significant amount of time (6-8 hours to build an index for 

the human reference genome using Bowtie), this cost is usually ignored when 

discussing the performance of the algorithm because it is incurred once per reference 

genome. That cost is then amortized over every alignment job that uses that index. 

Many indexing and index querying schemes for alignment have been 

proposed, including schemes that employ keyword tables (also called “seed tables”), 

spaced-seed tables [33, 36, 38], q-gram filtering [39-41], suffix trees [42, 43] and 

suffix arrays [43-45]. When used to index reference genomes as long as 3 billion 

nucleotides, though, these approaches incur large memory footprints. A suffix array, 

for example, must store one integer per reference character, with each integer 
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occupying O(log(n)) bits. For the human genome, such an index occupies about 3 

billion (characters) times 4 bytes (one 32-bit offset per character) = 12 gigabytes. 

Suffix trees are typically even larger, on the order of a few dozen bytes per reference 

character, or about 20 bytes per character if optimized for space [46]. Tables such as 

spaced-seed tables could be small or large, but are often more than 10 gigabytes for 

the human genome in practice (e.g. about 13 gigabytes for SOAP [36]). One of the 

original goals for Bowtie was to fit within the memory budget of a typical desktop 

computer. 

The Burrows-Wheeler Transform 

The Burrows-Wheeler Transform (BWT) of a text is a reversible permutation 

of its characters. Originally developed for data compression [47], BWT-based 

indexing allows large texts to be searched efficiently and in a small memory footprint. 

Prior to Bowtie’s publication, the BWT and the related FM Index [17] had been 

applied previously to bioinformatics applications including oligomer counting (i.e. 

counting the number of times substrings of a certain length occur in a sequence) [48], 

whole-genome alignment [49], tiling microarray probe design [50], and Smith-

Waterman alignment to a large reference [51]. Since the publication of Bowtie, other 

read alignment tools based on the BWT have also been published, including BWA 

[34], BWA-SW [35] and SOAP2 [37]. 

The Burrows-Wheeler Transform of a text T, BWT(T), can be constructed as 

follows. The character $ is appended to T, where $ is a character not in T that is 

lexicographically less than all characters in T. The Burrows-Wheeler Matrix of T, 

BWM(T), is obtained by computing the matrix whose rows comprise all cyclic 
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rotations of T sorted lexicographically. BWT(T) is the sequence of characters in the 

rightmost column of BWM(T) (Figure 1). 

 

Figure 1: Computing BWT(T) from T. 

 

A Burrows-Wheeler matrix has a property called the Last First (“LF”) 

Mapping. The property is: the ith occurrence of character c in the last column of the 

matrix corresponds to the same text character as the ith occurrence of c in the first 

column. For instance, in Figure 1, the second A in the last column and the second A 

in the first column both correspond to the first A in T. Burrows and Wheeler prove 

the property as follows. Given a Burrows-Wheeler Matrix M, construct matrix M’ by 

cyclically rotating all rows of M to the right by one position. By construction, M’ is 

the matrix of all cyclic rotations of T sorted lexicographically and cyclically starting 

at their second (not first) character. Consider just the rows of M’ beginning with 

character c. These rows must appear in lexicographical order with respect to each 

other; they are “tied” with respect to their first character and sorted with respect to 

their second. For a character c, rows beginning with c in M appear in the same order 

as rows beginning with c in M’. Since the first column of M’ is the same as the last 

column of M, the LF Mapping property follows. 
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The LF mapping underlies key algorithms that use BWT(T) to navigate or 

search in T. The UNPERMUTE algorithm applies it repeatedly to re-create T from 

BWT(T). Consider a function LF(r) that, given row index r into the Burrows-Wheeler 

Matrix, returns the index of the corresponding row according to the LF mapping 

property. For instance, if the last character of row r is the jth occurrence of character c 

in the last column, LF(r) returns the index of the row containing the jth occurrence of 

c in the first column. Since the first character of row LF(r) corresponds to the same 

text character as the last character of row r, the last character of row LF(r) must 

correspond to the text character that cyclically precedes that character in the text. By 

applying r = LF(r) repeatedly starting in the row whose last character corresponds to 

the last character of T (i.e. the row beginning with $), we can follow the sequence of 

Burrows-Wheeler rows corresponding to consecutive text characters from right to 

left. We recreate T by performing this walk and aggregating the visited text characters 

in a buffer. 

LF(r) can be implemented in terms of an array C[c] and a function Occ(c, r) as 

shown in Figure 2. Elements of C are pre-calculated so that C[c] equals the total 

number of occurrences of all alphabet characters lexicographically less than character 

c in T. The Occ(c, r) function counts the number of occurrences of character c in a 

prefix of BWT(T) up to but not including the rth character. UNPERMUTE is 

implemented in terms of LF(r) as shown in Figure 3 below. Figure 4 illustrates how 

the UNPERMUTE algorithm reconstructs the original string ACAACG$ from the 

permuted string GC$AAAC. 
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LF(r): 
c ⇐ BWT[r] 
return C[c] + Occ(c, r) + 1 
 

Figure 2: LF algorithm. 
 

UNPERMUTE: 
r ⇐ 1 
T ⇐ empty string 
while BWT[r] ≠ $ do 
 prepend BWT[r] to T 
 r ⇐ LF(r) 
end while 
return T 

 

Figure 3: UNPERMUTE algorithm. 
 
 

 
 

Figure 4: Illustration of UNPERMUTE. 
 

EXACTMATCH and the FM Index 

Ferragina and Manzini observe that the Burrows-Wheeler Transform and the 

LF Mapping can also be used to perform exact matching of a query string P within 

the text T [17]. Because the rows of the Burrows-Wheeler Matrix are sorted 

lexicographically, all rows having P as a prefix must be consecutive. The 

EXACTMATCH algorithm (Figure 6) iteratively calculates ranges of Burrows-

Wheeler rows prefixed by successively longer suffixes of the query. At each step, the 

length of the suffix under consideration grows by one character and the size of the 
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range either shrinks or remains the same. Like UNPERMUTE, EXACTMATCH 

makes use of a helper function based on the LF mapping, called LFC. Unlike LF, 

LFC takes a second argument c, where c is a character drawn from the text alphabet. 

LFC performs the same calculation as LF, but as though the character in the last 

column of row r is c, which it may or may not be. LFC is shown in Figure 5. Figure 7 

illustrates of the steps taken by the EXACTMATCH algorithm to match the pattern 

AAC in the text ACAACG. The correctness of EXACTMATCH is established in 

appendix B of Ferragina and Manzini’s paper [17]. 

 

LFC(r, c): 
return C[c] + Occ(c, r) + 1 
 

Figure 5: LFC algorithm. 
 

EXACTMATCH(P[1, p]): 
c ⇐ P[p] 
sp ⇐ C[c] + 1 
ep ⇐ C[c + 1] + 1 
i ⇐ p - 1 
while sp < ep and i ≥ 1 do 
 c ⇐ P[i] 
 sp ⇐ LFC(c, sp) 
 ep ⇐ LFC(c, ep) 
 i ⇐ i - 1 
end while 
return sp, ep 

 

Figure 6: EXACTMATCH algorithm. 
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Figure 7: Illustration of EXACTMATCH. 
 
 

We have yet to establish whether UNPERMUTE and EXACTMATCH scale 

well to large texts. A problem is that each call to LF(r) or LFC(r, c) triggers a call to 

Occ(c, r), which, naively implemented, examines a number of characters proportional 

to the length of T in the worst case. Ferragina and Manzini [17] propose accelerating 

Occ(c, r) by pre-calculating and storing character occurrence counts for each 

character in the alphabet up to certain regular positions throughout BWT(T). If the 

pre-calculated positions (“checkpoints”) are chosen such that the space between 

consecutive checkpoints is bounded by a constant B, then an efficient implementation 

of Occ(c, r) need examine at most B characters of BWT(T) per call. Thus, Occ(c, r) 

can be made to operate in constant time at the cost of having to pre-calculate and 

store checkpoints that occupy space proportional to the length of T times the 

cardinality of the alphabet. Note that if Occ(c, r) is constant-time, the overall 

EXACTMATCH algorithm is linear-time in the length of the query P. 

The final output of the EXACTMATCH algorithm is a range of matrix rows 

beginning with a given query string P, i.e., the rows delimited by the sp and ep 

variables from Figure 6. Each row corresponds to an exact match of P somewhere in 

the text, but more work is required to determine, for a given row, which text offset it 
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corresponds to. One naive solution is: given row r, calculate r = LF(r) repeatedly zero 

or more times until r equals the row with $ in the last column. The original row’s 

offset into the reference text equals the number of times LF(r) was called before 

reaching that row. A simple example is shown in Figure 8. This approach is not time-

efficient, since calculating a row’s offset requires a number of calls to LF that is 

linear in the length of T. 

 

Figure 8: Illustration of a slow algorithm for resolving a reference offset. 

 

Another naive solution is to, at index building time, pre-compute and store an 

array parallel to BWT(T) containing the reference offsets of each row. This array is 

simply the suffix array of T. To resolve the reference offset of row r, we look up 

element r in the pre-calculated array (see Figure 9). This solution is not space-

efficient: if n is the length of T, storing the suffix array of T requires an amount of 

space proportional to O(n log(n)), which, for the 3-billion-nucleotide human genome 

reference sequence, requires about 12 gigabytes of storage. 
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Figure 9: Illustration of a memory-intensive algorithm for resolving a 

reference offset. 

 

Ferragina and Manzini [17] propose a hybrid scheme whereby a subset of the 

rows of the matrix are associated with pre-calculated text offsets. To retrieve a row 

r’s text offset, we first check if r is one of the rows with a pre-calculated offset. If so, 

we retrieve and report the offset. If not, we calculate r = LF(r) repeatedly until r does 

correspond to a row for which the offset was pre-calculated, at which point we 

retrieve and report the pre-calculated offset for r plus the number of times LF(r) was 

called before reaching r. Pre-calculating offsets for a larger fraction of rows allows 

text offsets to be calculated faster on average, but pre-calculating a smaller fraction 

reduces the overall size of the index. Bowtie adopts this scheme with a default (but 

configurable) policy of pre-calculating offsets for every 32nd row. Figure 10 

illustrates an example where LF(r) is called exactly once, causing the walk to enter a 

row with pre-calculated offset 1. 
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Figure 10: A hybrid algorithm for resolving a reference offset. 
 

Bowtie’s scheme of storing pre-calculated offsets every 32 rows does not 

provide a worst-case guarantee better than O(n) for the number of times LF must be 

called to calculate the offset for a given row. Ferragina and Manzini’s originally 

proposed scheme does provide such a guarantee by selecting pre-calculated rows 

according to a regular periodic sample of characters in T (as opposed to Bowtie’s 

scheme of regularly sampling characters in BWT(T)). Bowtie’s scheme was selected 

for its simplicity and because the average number of calls to LF (as opposed to the 

worst-case number) should still be comparable to Ferragina and Manzini’s scheme. 

It is also notable that, in a follow-up to their initial FM Index paper, Ferragina 

and Manzini propose a scheme that, like Bowtie’s, does not guarantee sublinear 

worst-case performance [52]. 

Adding inexactness to EXACTMATCH 

EXACTMATCH itself is not sufficient for aligning sequencing reads because 

the best alignment for a read may contain mismatches and gaps. Differences may be 

due to sequencing errors, actual genetic differences between reference and subject 

organisms, or a combination of the two. To allow for differences, we design an 
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algorithm that conducts a search through the space of possible alignments to quickly 

find those satisfying the desired alignment policy. Though a completely unpruned 

search space has size exponential in the length of the read, much pruning is possible 

in practice. My experiments indicate that this method is generally tractable for up to 

(at least) three mismatches in practice, yielding a very fast alignment algorithm for 

those cases. Though the technique can be made to deal with gaps as well as 

mismatches, the Bowtie implementation currently deals only with mismatches. 

Chapter 3 includes a detailed discussion of how support for gapped alignments can be 

added. 

The search process makes use of numeric quality values on the Phred scale 

[53], where, if the sequencer’s software predicts that the probability of a nucleotide 

having been miscalled is p, the Phred quality value of the nucleotide is reported as -10 

log10 p. Quality values are used to assess the likelihood of candidate alignments 

under a model where all differences are assumed to be due to sequencing error. 

Quality values direct the search to the positions that are most likely to be wrong first. 

Inexact search proceeds similarly to EXACTMATCH, calculating Burrows-

Wheeler ranges for successively longer query suffixes. If the search arrives at an 

empty Burrows-Wheeler range, this indicates the suffix does not occur in the text. In 

this case, the algorithm may select a previously examined query position and 

substitute a different nucleotide there. This introduces a hypothetical mismatch into 

the alignment, and we call this a “backtrack.” After executing a backtrack, the 

EXACTMATCH search resumes from just to the left of the substituted position. 
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The search performs only those backtracks that are consistent with the user-

configurable alignment policy. For example, if the alignment policy imposes a 

maximum of two mismatches in the entire alignment and the search procedure is at a 

position P in the search space where two mismatches have already been hypothesized 

along the path from the root to P, and an empty Burrows-Wheeler range is obtained at 

P, the search will not attempt to hypothesize a third mismatch as doing so would 

violate the alignment policy. This is called “policy pruning.” Also, the search will 

never backtrack to points in the search space that are already known to be associated 

with empty Burrows-Wheeler ranges. Doing so would be fruitless, since there is no 

substring of the reference possessing the appropriate characters. Pruning partial 

alignments in this way is called “reference pruning.” Figure 11 illustrates a simple 

example of how exact and 1-mismatch search strategies might proceed for a read with 

a 1-mismatch alignment to the reference. In this case, the query GGTA does not have 

an exact match in the text, but does have a 1-mismatch alignment where a G in the 

reference is substituted for A in the read. Pairs of numbers represent the sp, ep pairs 

calculated in an iteration of EXACTMATCH. Vertical sets of four pairs represent the 

pairs calculated for A, C, G and T (top to bottom). Blue numbers and letters represent 

hypothetical mismatches introduced as part of a backtrack. Empty ranges are shown 

in red if they trigger a backtrack, or in gray if they do not. Empty boxes correspond to 

ranges left uncalculated due to policy pruning. The final reported range is shown in 

green. In practice, maximizing the amount of pruning possible is critical to 

minimizing the running time of the search. 
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Figure 11: Example of how exact and 1-mismatch algorithms might proceed.  
 

Excessive backtracking 

The strategy described has the drawback that some inputs cause excessive 

backtracking. Excessive backtracking occurs when the two pruning strategies are not 

sufficient to prevent the aligner from performing enough backtracks to noticeably 

affect performance. Since short suffixes of the read (corresponding to the 

neighborhood around the root of the search space) are likely to occur in the reference 
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simply by chance, excessive backtracking is particularly prevalent in first several 

levels ( “ply”) of the search space. Consider an attempt to find an alignment with up 

to 2 mismatches for a 20-mer against a reference sequence containing every possible 

10-mer (e.g. the human genome [54]). If no such alignment exists, the search is 

forced to explore all combinations of 2 backtracks within that first ten ply of the 

search space. 

Bowtie mitigates excessive backtracking using “double indexing.” With 

double indexing, two Burrows-Wheeler indexes of the genome are created: one for 

the normal genome sequence, called the “forward index,” and a second for the reverse 

of that sequence (not the reverse complement), called the “mirror index.” To see how 

this helps, consider a matching policy that allows up to one mismatch in the 

alignment. A valid alignment falls into one of two cases according to which half of 

the alignment contains the mismatch; by convention, we lump the case where the 

alignment has no mismatches in with the first enumerated case. To identify 

alignments falling into case 1, where either there are no mismatches or the left half 

contains exactly one mismatch, we use the forward index and invoke the search 

routine with the constraint that it may not backtrack to any of the positions in the right 

half of the alignment. To identify alignments falling into case 2, where the right-hand 

side of the alignment contains exactly one mismatch, we use the mirror index and 

invoke the search routine on the read with its character sequence reversed, with the 

constraint that the aligner may not backtrack to positions in the right half of the 

alignment. Note that because the read sequence has been reversed, the right half of 

the alignment in case 2 corresponds to the left half in case 1. Figure 12 illustrates the 
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two cases. Numbers shown below the alignment segments indicate permitted numbers 

of substitutions in those segments. By forbidding backtracks to positions close to the 

right-hand side (i.e. the root) of the alignment, this strategy avoids a great deal of 

backtracking. 

 

 

Figure 12: Two cases considered by Bowtie searching for 1-mismatch 

alignments. 

 

Some excessive backtracking may still occur in the left half of the alignment, 

especially in those positions just to the left of the halfway mark. Still, results indicate 

double indexing performs well in practice. 

Phased 2-mismatch search 

Excessive backtracking becomes more problematic when the alignment policy 

permits 2 or more substitutions. This is because (a) even with double indexing, it is 

not possible to avoid allowing substitutions in the right half of the alignment in some 

cases, and (b) if two or more stretches of the alignment are permitted to contain a 

substitution and many substitutions are possible along two or more of those stretches, 
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the number of potential backtracks is related to their product in the worst case. This 

multiplicative effect can drastically reduce performance. 

Bowtie’s 2-mismatch search strategy is divided into three cases. Case 1 uses 

the forward index and constrains the right half of the alignment to contain no 

mismatches while the left half may contain up to 2 mismatches. Case 2 uses the 

mirror index (and the reversed read) and constrains the right half of the alignment to 

contain no mismatches while the left half may have either 1 or 2 mismatches. Case 3 

uses the forward index and constrains the right and left halves to contain exactly one 

mismatch each. Figure 13 illustrates these cases. A 2-mismatch alignment can be 

uniquely assigned to one of these three cases. 

 

Figure 13: Three cases considered by Bowtie searching for 2-mismatch 

alignments. 
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The 3-case approach of Figure 13 allows substantial pruning. However, case 3 

allows a mismatch in the right half of the alignment, and so is particularly vulnerable 

to excessive backtracking. In practice the overhead of excessive backtracking is 

onerous for some reads, but the overall running time of the search across many reads 

is good in practice. 

The 3-mismatch case is an extension of the 2-mismatch case; discussion of the 

3-mismatch case will be omitted here. 

MAQ-like search 

The search strategies described so far handle alignment policies where a few 

mismatches are permitted in the entire alignment and quality values are not 

considered. The family of alignment policies enforced by MAQ [33] is different in 

two ways. First, MAQ enforces a ceiling on the sum of the Phred [53] quality values 

at all mismatched positions. The default ceiling is 70. For example, an alignment with 

two mismatches, both at positions with Phred quality 30, is permissible by default. A 

similar alignment where both mismatched positions have Phred quality 40 is not 

permissible by default, since the sum, 80, exceeds the default ceiling of 70. Second, 

MAQ constrains the number of mismatches permitted, but only in the first several 

nucleotides of the read (the “seed”), not in the entire alignment. MAQ permits up to 

two mismatches in the first 28 nucleotides of the read by default. Any number of 

mismatches is permitted outside the seed, though the legality of the overall alignment 

is still subject to the quality ceiling. 

These differences require changes to Bowtie’s search strategy. First, Bowtie 

must keep track of the sum of the Phred quality values at positions where hypothetical 
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mismatches have been introduced so far. Policy pruning must be broadened to 

additionally prune paths that, if followed, would violate the quality ceiling. Bowtie 

must also treat the seed and non-seed portions of the alignment appropriately. Since 

the seed is more constrained, an efficient strategy is for Bowtie to align the seed 

portion first, then relax the mismatch ceiling and extend the alignment through the 

non-seed portion. In essence, this is a “seed and extend” strategy. 

The search strategies presented in previous sections, appropriately extended to 

handle the quality ceiling, suffice for aligning the seed portion. A complication arises 

when the index used to align the seed cannot be used to extend the seed. For example, 

if the seed portion of the read aligns to a single location on the reference and that 

alignment contains two mismatches in the left half of the seed, the 2-mismatch search 

strategy described previously will use the forward index to find the seed alignment 

(case 1), yielding a range of Burrows-Wheeler rows in the forward index. The non-

seed portion of the read is to the right of the seed, but EXACTMATCH can only be 

used to extend right-to-left. To translate a range of rows in the forward index into a 

corresponding range of rows in the mirror index (or vice versa), Bowtie simply re-

matches the string of characters that led to the initial range. Consider a situation 

where the read is the 9-character string TAACCCAGG, the seed length is 6, and 

aligning just the seed TAACCC yields a 1-mismatch alignment in the forward index 

where A in the reference is substituted for T in the seed. The range obtained by 

aligning the seed cannot be extended through the non-seed portion because the non-

seed portion lies to the right in the context of the forward index. Bowtie handles this 

by switching to the mirror index and re-matching the string CCCAAA, which is the 
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mirror image of the 6 seed characters including the substitution introduced during the 

seed alignment. Bowtie then relaxes the substitution limit and extends the alignment 

through the non-seed portion of the read in the usual way. Note that this scheme could 

be further improved by harnessing the “Bi-directional BWT” approach proposed by 

Lam et al. [55]. 

Backtracking limit 

Even with the above measures, excessive backtracking can have a significant 

adverse impact on performance when a read has many low-quality positions and does 

not align or aligns poorly to the reference. These cases can trigger many hundreds of 

backtracks per read. This cost is mitigated in Bowtie by enforcing a limit on the 

number of backtracks allowed before search is terminated (default: 125 in the depth-

first mode, 800 in best-first mode). The limit prevents some legitimate, low-quality 

alignments from being reported, but this tradeoff is desirable for most applications. 

The limit is only in effect when the alignment policy selected by the user is either the 

2-seed-mismatch MAQ-like or 3-seed-mismatch MAQ-like policy. 

Index construction 

The central problem of building a Bowtie index lies in calculating the 

Burrows Wheeler Transform of the reference genome sequence. This is closely 

related to the problem of building a suffix array. Each element of the BWT is 

derivable from the corresponding element of the suffix array according to a simple 

formula: 

 
(2.1) 
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A conceptually simple way of calculating BWT is to build a suffix array using 

a suffix-sorting technique (e.g. the approach of Manber and Myers [56] or Larsson 

and Sadakane [57]), then calculate the BWT through repeated applications of 

Formula 2.1 in a single pass over the suffix array. However, this incurs a very large 

memory footprint. Constructing the suffix array in memory uses at least about 12 

gigabytes for the human genome, for example. This may be acceptable for users with 

access to large-memory computers, but our goal is to facilitate research on typical 

workstations, so a more memory-efficient solution is desirable. 

Kärkkäinen [58] proposes a memory-conscious blockwise strategy. This 

method builds the suffix array and the BWT block-by-block and in tandem, 

discarding suffix-array blocks once the corresponding BWT block has been built. By 

setting a small block size relative to the length of the genome, the technique achieves 

a modest memory footprint. Also, the algorithm can trade flexibly between speed and 

peak memory usage by adjusting block size and other parameters. Bowtie's indexer 

adopts a form of Kärkkäinen's method and can build a full Bowtie index for the 

human genome in about 24 hours in less than 1.5 gigabytes of RAM. If 16 gigabytes 

of RAM or more is available, the indexer can exploit the additional RAM to produce 

the same index in about 4.5 hours. 
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Physical 
memory 

target 
(gigabytes) 

Actual peak 
memory 
footprint 

(gigabytes) 

# suffix 
array blocks 

Difference 
cover 
period 

Bit-packed 
reference? 

Wall clock 
time 

16 14.4 1 256 No 4h:36m 

8 5.84 6 1024 No 5h:05m 

4 3.39 34 4096 No 7h:40m 

2 1.39 34 4096 yes 21h:30m 

 

Table 1:  Index-building memory footprint and wall clock time when 

indexing the whole human genome under various parameters. 

 

Table 1 presents memory footprints and wall clock times for a human-genome 

run of the indexer under parameters selected to satisfy different physical memory 

constraints. These runs were performed on a server with a 2.4 GHz AMD Opteron 

processor and 32 gigabytes of RAM. “Number of blocks” indicates how many blocks 

the blockwise algorithm used. “Difference cover period” indicates the periodicity of 

the up-front difference-cover-based pre-sort. This pre-sort, proposed by Burkhardt 

and Kärkkäinen [59], is a technique whereby a subset of the suffixes are pre-sorted 

and then used to avoid quadratic runtimes in downstream stages of the indexer. 

Shorter periods require more up-front work to calculate the pre-sort and more 

memory to store it, but also yield shorter running times in downstream stages. “2-bit-

per-nucleotide references” indicates whether a bit-packed representation of the 

reference sequence was used. The bit-packed representation reduces memory 

footprint but increases running time. 
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Index components 

The largest single component of the Bowtie index is the BWT sequence, that 

is, the sequence of the Burrows-Wheeler-Transformed reference string. Bowtie stores 

the BWT in a 2-bit-per-nucleotide format. Inline character occurrence counts 

(“checkpoints”) occupy about 14% the space of the packed BWT, and text offsets for 

marked rows occupy about 50% the space of the packed BWT. With some other 

small structures, the overall Bowtie index for a given genome is about 65-70% larger 

than the packed BWT. A Bowtie index for the assembled human genome sequence is 

about 1.3 gigabytes. As mentioned, a full Bowtie index actually consists of pair of 

equal-size indexes, the forward and mirror indexes, for any given genome. Bowtie 

can be run such that only one of the two indexes is ever resident in memory at once 

(using the -z option), so the memory footprint of Bowtie under those circumstances 

remains about 1.3 gigabytes. Without the -z option, the human index has a memory 

footprint of about 2.2 gigabytes, and 2.2 gigabytes is needed to store the index on disk 

in either case. 

Performance results 

We evaluated the performance of Bowtie using reads from the 1,000 Genomes 

project pilot [60]. The reads are stored permanently in the National Center for 

Biotechnology Information Sequence Read Archive [61] (accession SRR001115). A 

total of 8.84 million reads, about one “lane” worth of data from an Illumina Genome 

Analyzer instrument, were trimmed to 35 nt and aligned to the human reference 

genome (NCBI build 36.3). Unless specified otherwise, read data are not filtered or 
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modified from how they appear in the archive, except in cases where the reads are 

trimmed prior to the experiment. 

All runs were performed on a single processor. Bowtie speedups were 

calculated as a ratio of wall-clock alignment times. Both wall-clock and CPU times 

are given to demonstrate that input/output load and competition for the CPU are not 

significant factors. The time required to build the Bowtie index was not included in 

the Bowtie running times, since the cost will usually be amortized over many runs, 

and we anticipate most users will simply download such indices from a public 

repository. Indices for human, chimp, mouse, dog, rat, and Arabidopsis thaliana 

genomes (and many others) can be downloaded from the Bowtie website [62]. 

Results were obtained on two hardware platforms: a desktop workstation with 

2.4 GHz Intel Core 2 processor and 2 gigabytes of memory; and a large-memory 

server with a four-core 2.4 GHz AMD Opteron processor and 32 gigabytes of 

memory. These are denoted “PC” and “server,” respectively. Both PC and server run 

Red Hat Enterprise Linux AS release 4. 

Comparison to SOAP and MAQ 

MAQ [33] is a popular aligner that, at the time of Bowtie’s release, was 

among the fastest competing open source tools for aligning millions of Illumina reads 

to the human genome. SOAP [36] is another open source tool that has been reported 

and used in short-read projects. MAQ and SOAP were the tools used in the very first 

set of projects that performed sequencing of entire human genomes using sequencing-

by-synthesis instruments [63-65]. 
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 CPU time Wall clock time 

Reads 
mapped 
per hour 

(millions) 

Peak virtual 
memory 
footprint 

(megabytes) 
Bowtie 
speedup 

Reads 
aligned 

(%) 

Bowtie -v 2 (server) 15m:07s 15m:41s 33.8 1,149 - 67.4 

SOAP (server) 91h:57m:35s 91h:47m:46s 0.10 13,619 351x 67.3 

Bowtie (PC) 16m:41s 17m:57s 29.5 1,353 - 71.9 

MAQ (PC) 17h:46m:35s 17h:53m:07s 0.49 804 59.8x 74.7 

Bowtie (server) 17m:58s 18m:26s 28.8 1,353 - 71.9 

MAQ (server) 32h:56m:53s 32h:58m:39s 0.27 804 107x 74.7 

 
Table 2: Performance results comparing Bowtie to SOAP and MAQ.  
 

Table 2 presents the performance and sensitivity of Bowtie v0.9.6, SOAP 

v1.10, and MAQ v0.6.6. SOAP could not be run on the PC because SOAP's memory 

footprint exceeds the PC's physical memory. Bowtie was invoked with the “-v 2” 

option, which instructs Bowtie to disregard quality values and allow up to 2 

mismatches in the alignment, in order to mimic SOAP's default matching policy. 

Bowtie was invoked with the “--maxns 5” option to mimic SOAP's default policy of 

filtering out reads with five or more no-confidence positions, where a no-confidence 

position is usually represented with the letter “N.” For the MAQ comparison Bowtie 

is run with its default policy, which mimics MAQ's default policy of allowing up to 

two mismatches in the first 28 nucleotides and enforcing an overall limit of 70 on the 

sum of the quality values at all mismatched read positions. To make Bowtie's 

memory footprint more comparable to MAQ's, Bowtie is invoked with the “-z” option 

in all experiments to ensure that only the forward or mirror index is resident in 

memory at one time. 
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SOAP (67.3%) and Bowtie -v 2 (67.4%) are comparable in terms of the 

fraction of reads aligned. Of the reads aligned by either SOAP or Bowtie, 99.7% were 

aligned by both, 0.2% were aligned by Bowtie but not SOAP, and 0.1% were aligned 

by SOAP but not Bowtie. MAQ (74.7%) and Bowtie (71.9%) also align roughly the 

same fraction of reads, although Bowtie lags by 2.8 percentage points. Of the reads 

aligned by either MAQ or Bowtie, 96.0% were aligned by both, 0.1% were aligned by 

Bowtie but not MAQ, and 3.9% were aligned by MAQ but not Bowtie. Of the reads 

mapped by MAQ but not Bowtie, almost all are due to a flexibility in MAQ's 

alignment algorithm that allows some alignments to have three mismatches in the 

seed. The remainder of the reads mapped by MAQ but not Bowtie are due to Bowtie's 

backtracking ceiling. 

 

 CPU time Wall clock time 

Reads 
mapped 
per hour 

(millions) 

Peak virtual 
memory 
footprint 

(megabytes) 
Bowtie 
speedup 

Reads 
aligned 

(%) 

Bowtie (PC) 16m:39s 17m:47s 29.8 1,353 - 74.9 

MAQ (PC) 11h:15m:58s 11h:22m:02s 0.78 804 38.4x 78.0 

Bowtie (server) 18m:20s 18m:46s 28.3 1,352 - 74.9 

MAQ (server) 18h:49m:07s 18h:50m:16s 0.47 804 60.2x 78.0 

 

Table 3: Performance results comparing Bowtie to MAQ with filtered reads. 
 

MAQ's documentation mentions that reads containing “poly-A artifacts” can 

impair MAQ's performance. Table 3 presents performance and sensitivity of Bowtie 

and MAQ when the read set is filtered using MAQ's “catfilter” command to eliminate 

poly-A artifacts. The filter eliminates 438,145 out of 8,839,010 reads. Other 
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experimental parameters are identical to those of the experiments in Table 2, and the 

same observations about the relative sensitivity of Bowtie and MAQ apply here. 

Read length and performance 

Length Program CPU time Wall clock time 

Peak virtual 
memory 
footprint 

(megabytes) 
Bowtie 
speedup 

Reads 
aligned (%) 

36 nt Bowtie 6m:15s 6m:21s 1,305 - 62.2 

 MAQ 3h:52m:26s 3h:52m:54s 804 36.7x 65.0 

 Bowtie –v 2 4m:55s 5m:00s 1,138 - 55.0 

 SOAP 16h:44m:03s 18h:01m:38s 13,619 216x 55.1 

50 nt Bowtie 7m:11s 7m:20s 1,310 - 67.5 

 MAQ 2h:39m:56s 2h:40m:09s 804 21.8x 67.9 

 Bowtie –v 2 5m:32s 5m:46s 1,138 - 56.2 

 SOAP 48h:42m:04s 66h:26m:53s 13,619 691x 56.2 

76 nt Bowtie 18m:58s 19m:06s 1,323 - 44.5 

 MAQ 0.7.1 4h:45m:07s 4h:45m:17s 1,155 14.9x 44.9 

 Bowtie –v 2 7m:35s 7m:40s 1,138 - 31.7 

 
Table 4: Performance results comparing Bowtie to SOAP and MAQ across  

read lengths. 

 

Bowtie, MAQ, and SOAP support reads of lengths up to 1,024, 63, and 60 nt, 

respectively, and MAQ versions 0.7.0 and later support read lengths up to 127 nt. 

Table 4 shows performance results when the three tools are each used to align three 

sets of 2 million untrimmed reads, a 36 nt set, a 50 nt set and a 76 nt set, to the human 

genome on the server platform. Each set of 2 million is randomly sampled from a 

larger set (from the NCBI Sequence Read Archive: accession SRR003084 for 36 nt, 
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accession SRR003092 for 50 nt, accession SRR003196 for 76 nt). Reads were 

sampled such that the three sets of 2 million have uniform per-nucleotide error rate, 

as calculated from per-nucleotide Phred qualities. All reads pass through MAQ's 

“catfilter.” 

Bowtie is run both in its MAQ-like default mode and in its SOAP-like “-v 2” 

mode. Bowtie is also given the “-z” option to ensure that only the forward or mirror 

index is resident in memory at one time. MAQ v0.7.1 was used instead of MAQ 

v0.6.6 for the 76 nt set because v0.6.6 cannot align reads longer than 63 nt. SOAP 

was not run on the 76 nt set because it does not support reads longer than 60 nt. 

The results show that MAQ's algorithm scales better overall to longer read 

lengths than Bowtie or SOAP. However, Bowtie in SOAP-like “-v 2” mode also 

scales very well. Bowtie in its default MAQ-like mode scales well from 36 nt to 50 nt 

reads but is substantially slower for 76 nt reads, although it is still more than an order 

of magnitude faster than MAQ. 

Parallel performance 

 CPU time Wall clock time 

Reads 
mapped per 

hour 
(millions) 

Peak virtual 
memory 
footprint 

(megabytes) Speedup 
Bowtie, 1 thread (server) 18m:19s 18m:46s 28.3 1,353 - 

Bowtie, 2 threads (server) 20m:34s 10m:35s 50.1 1,363 1.77x 

Bowtie, 4 threads (server) 23m:09s 6m:01s 88.1 1,384 3.12x 

 

Table 5: Performance results when running Bowtie with various numbers of 

alignment threads. 
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Alignment can be parallelized by distributing reads across concurrent search 

threads. Bowtie allows the user to specify a desired number of threads (option -p); 

Bowtie then launches the specified number of threads using the pthreads library. 

Bowtie threads synchronize with each other when fetching reads, outputting results, 

switching between indices, and performing various forms of global bookkeeping. 

Otherwise, threads are free to operate in parallel, substantially speeding up alignment 

on computers with multiple processor cores. The memory image of the index is 

shared by all threads, and so the footprint does not increase substantially when 

multiple threads are used. Table 5 shows performance results for running Bowtie 

v0.9.6 on the four-core server with one, two, and four threads. 

Bowtie software 

Bowtie is an ultrafast, memory-efficient aligner geared toward quickly 

aligning large sets of short DNA sequences, e.g. 25-75 nucleotides in length, to large 

genomes such as the human genome. It aligns 35-nucleotide reads to the human 

genome at a rate of about 25 million reads per hour on a typical workstation. Bowtie 

indexes the genome with an FM-Index-like structure, which keep sits memory 

footprint small: an index for the human reference genome fits in less than 3 gigabytes. 

Multiple processors can be used simultaneously to achieve greater alignment speed. 

Bowtie can also output alignments in the standard SAM alignment format [66], which 

allows Bowtie to effectively interoperate with many other tools that support SAM 

such as the SAMtools SNP caller [66]. Bowtie works best when aligning short reads 

to large genomes, though it supports arbitrarily small reference sequences (e.g. 

amplicons) and reads as long as 1024 nucleotides. Bowtie is designed to be extremely 
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fast for sets of short reads where (a) many of the reads have at least one good, valid 

alignment, (b) many of the reads are relatively high-quality, and (c) the number of 

alignments reported per read is small (close to 1). 

Because of its speed and memory-efficiency, Bowtie has also been used as a 

subcomponent in many other tools. Tools for RNA sequencing analysis that use 

Bowtie include TopHat [67], Cufflinks [68], Myrna [69], RNASEQR [70], and 

GENE-counter [71]. Tools for bisulfite sequencing analysis that use Bowtie include 

BSmooth [72], Bismark [73], MethylCoder [74] and BS-Seeker [75]. Tools for 

scaffolding of de novo assemblies that use Bowtie include Zorro [76] and SSPACE 

[77]. General-purpose bioinformatics workflow tools that integrate Bowtie include 

Galaxy [78] and Chipster [79]. 

Bowtie is free, open source software available from the Bowtie website at 

http://bowtie-bio.sf.net. 
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Chapter 3: Extending Bowtie to finding longer, gapped 

alignments 

This chapter begins by describing two of Bowtie’s most significant 

drawbacks: its poor handling of longer sequencing reads and its inability to find 

alignments containing gaps. I then describe Bowtie’s use of “multiseeding” to support 

longer reads. I explain why extending Bowtie’s search algorithm to hypothesize gaps 

in addition to mismatches is not an efficient way to support gapped alignment. I go on 

to describe the whole Bowtie 2 method: a two-stage method that uses the Bowtie 

index to efficiently find ungapped alignments for seed sequences, then extends seed 

alignments into full alignments using hardware-accelerated dynamic programming. I 

then show several performance results. 

The design and software implementation of Bowtie 2 are both entirely my 

work. 

Multiseeding: a better seed heuristic for longer reads 

While Bowtie (sometimes called “Bowtie 1” here) is an efficient and popular 

tool, changes in sequencing technology have made its drawbacks apparent. Whereas 

Bowtie was designed to be efficient and sensitive when aligning short reads (35-50 

nt), read lengths produced by second-generation sequencers have increased 

substantially since Bowtie’s release in 2009. Instruments such as Illumina’s HiSeq 

2000 and GA IIx now routinely produce reads of 100 and 150 nucleotides. Recall the 

MAQ-like alignment policy discussed in Chapter 2, for example. That policy enforces 

a stringent ceiling on the amount of dissimilarity permitted in a small “seed” region of 
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the alignment; by default, the seed is the first 28 nucleotides of the read. As reads 

grow longer, it makes less sense to impose a stringent ceiling on one small portion of 

the read. Consider a case where the “correct” alignment contains a cluster of edits all 

falling within the seed region, just barely exceeding the stringent dissimilarity ceiling. 

Bowtie will not find this alignment even though the overall alignment’s percent 

identity could still be quite high.  

Like Bowtie, Bowtie 2 begins the alignment process by imposing a stringent 

dissimilarity ceiling (e.g. allowing only 0 or 1 mismatches) and aligning a substring 

of the read (a “seed”) subject to that ceiling. Unlike Bowtie, however, Bowtie 2 

attempts to align many distinct seeds this way. The seeds are extracted at regular 

intervals along the read and its reverse complement. Seed strings are contiguous (i.e. 

they are not spaced seeds) and may or may not overlap each other. For instance, if 

Bowtie 2 extracts a 20 nt substring every 10 nt along the read, adjacent substrings will 

overlap by 10 nt. If Bowtie 2 extracts a 18 nt substring every 20 nt, then substrings 

will not overlap and there will be a gap of 2 nt between adjacent substrings. Figure 14 

illustrates how 16 nt seeds are extracted every 10 positions from a read of length 36. 

 

Figure 14: Example of how seeds are extracted in a multiseed scheme. 
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This is called “multiseeding,” and it is used in Bowtie 2 as a way of 

“smearing” the stringent dissimilarity ceiling over the entire read, rather than having 

the ceiling concentrated in one small portion of the read. This makes Bowtie 2 a more 

appropriate tool for aligning longer, modern sequencing reads. 

Support for gapped alignment 

Another criticism of Bowtie is that it does not find gapped alignments, i.e., 

alignments where characters in either the read or reference sequence are skipped over. 

Gaps in the reference are also called “insertions” and gaps in the read are also called 

“deletions” (see Figure 15). 

 

Figure 15: Examples of ungapped and gapped alignments, and gap types. 
 
 

Insertions and deletions are one common type of mutation observed when 

comparing two genomes of the same species. For example, a study comparing two 

finished human reference genomes, each about 3 billion nucleotides long, found on 

the order of hundreds of thousands of small (1-10 nucleotide) insertions and deletions 

[11]. As reads grow longer, the probability that a given read overlaps a gap increases, 

making it important for alignment tools to allow gaps. 
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Gaps confound pruning 

One way to allow gaps is to add the ability to hypothesize gaps directly into 

Bowtie’s usual search procedure. That is, whereas we previously permitted the search 

to hypothesize either a match or substitution at any given node in the search tree, we 

might additionally allow the search to hypothesize a gap in the read or a gap in the 

reference. This is essentially how BWA, a competing alignment tool, handles gaps 

(see Figure 3 from the BWA study [34]). This increases the number of distinct ways 

that we might exit a node in the search space from 4 to 9. Of the 9 ways of 

proceeding, 1 corresponds to a match, 3 correspond to mismatches, 1 corresponds to a 

reference gap, where a character from the read is placed opposite a gap in the 

alignment, and 4 correspond to read gaps, where a gap is placed opposite an A, C, G 

or T in the reference. Another way to state this distinction is that, for ungapped 

alignment, the maximum outdegree of any search node is 4, whereas in gapped 

alignment the maximum outdegree is 9. The difference is illustrated in Figure 16. 



 

 46 
 

 

Figure 16: Gaps increase the number of ways we can proceed from a search 

node. 

 

With the increased outdegree of gapped alignment search nodes, “policy 

pruning” becomes less effective. That is, there will be less total policy pruning when 

k edits (gaps or mismatches) are permitted versus when k mismatches are permitted. 

A subtler point is that allowing gaps also reduces the effectiveness of 

reference pruning deep in the search space. Consider an ungapped alignment search 

where the search has already descended, say, 30 ply down from the root of the search. 

Assuming the aligned portion of the read is unique, most mismatches we could 

hypothesize at this depth are pruned by reference pruning. In the case of gapped 
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alignment, however, many potential gaps are not eliminated by reference pruning. A 

reference gap (insertion), for instance, does not introduce any additional characters to 

the reference side of the alignment, and so reference pruning does not apply. A read 

gap (deletion) does introduce characters on the reference side of the alignment and 

therefore can be pruned by reference pruning, but it is always possible to construct a 

read gap that passes reference pruning by building the gap from characters occurring 

the left of the already-matched reference characters. 

On the whole, allowing gaps greatly reduces the effectiveness of Bowtie’s 

pruning strategies, both near and far from the root of the search space. The situation is 

worse when more and longer gaps are permitted, and therefore will also generally be 

worse when aligning longer reads. For these reason, Bowtie 2 chooses a different 

strategy for finding gapped alignments. 

A new division of labor 

Bowtie 1 uses an FM-Index-assisted search strategy to find ungapped read 

alignments. The strategy is efficient largely due to pruning, which eliminates a large 

fraction of the space. However, pruning becomes far less effective when gaps are 

permitted. Another gapped alignment strategy is to use dynamic programming, e.g. 

Needleman-Wunsch [80], Smith-Waterman [31], or extensions thereof [32]. Dynamic 

programming scales well with the number and length of gaps permitted. In fact, for a 

fixed-size dynamic programming matrix, allowing more gaps and longer gaps has no 

effect on the worst-case performance and little to no effect on average-case 

performance. However, as we have also seen, dynamic programming is extremely 

slow when used to align a read against an entire, long reference sequence. In 
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summary: while FM-Index-assisted search is quite efficient for finding short, 

ungapped alignments, it slows substantially when more and longer gaps are 

permitted; dynamic programming, on the other hand, is very slow when used to align 

to the whole genome, but very robust to increases in the number and length of gaps 

permitted. 

Bowtie 2 attempts to combine the strengths of these approaches while 

avoiding most of their weaknesses. In Bowtie 2, FM-Index-assisted search is used to 

find short, ungapped “seed alignments,” i.e. alignments for short substrings extracted 

from the read, rather than full alignments. Dynamic programming is then used to 

extend seed alignments into full, gapped alignments; it is not used to align to the 

entire reference genome. Bowtie 2 accelerates dynamic programming using Single 

Instruction Multiple Data (“SIMD”) instructions (also called “vector” or “streaming” 

instructions) available on all modern processors. This division of labor between FM-

Index-assisted ungapped alignment and SIMD-accelerated dynamic programming 

plays to strengths of both approaches and sidesteps their biggest weaknesses. 

Bowtie 2 workflow 

 When aligning an unpaired read, Bowtie 2 proceeds in four steps. In step 1, 

Bowtie 2 extracts substrings (“seed” strings) from the read and its reverse 

complement. In step 2, the seed strings are aligned to the genome in an ungapped 

fashion with the aid of the FM Index. In step 3, seed alignments are prioritized and 

their offsets with respect to the reference genome are determined. Step 4 takes 

prioritized, resolved alignments from step 3 and performs SIMD-accelerated dynamic 

programming alignment in the vicinity of each until all are examined, until a 



 

 49 
 

sufficient number of alignments were examined, or until another limit is reached. 

These steps are illustrated in Figure 17 and described in greater detail in the following 

subsections. 

 

Figure 17: Steps of the Bowtie 2 workflow 
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Seed extraction 

Substrings of the read (“seed strings”) are extracted at regular intervals along 

the read and its reverse complement, per the multiseeding policy discussed 

previously. Seed length is configured using Bowtie 2’s -L option. The -L option can 

take any value from 4 through 32. Values for this option that performed well in our 

experiments ranged from 20 to 25. When the input comprises reads of various lengths 

(e.g. for 454 or Ion Torrent data), it is advantageous to set vary interval length from 

read to length using a sublinear function of read length. For instance, the default 

function used in Bowtie 2 end-to-end mode is: 

 
(3.1) 

 

I is interval length as a function of the length of the read, x. For a 100 nt read, 

this causes seeds to start 12 nt apart, with the first seed starting at offset 0 from the 

left (5’) end, the second seed starting at offset 12, etc. The constant term (1 in this 

case), coefficient (1.15 in this case) and function used (square root in this case) are 

configurable via Bowtie 2’s -i option. Other functions that can be used include: a 

constant function (equivalent to specifying a coefficient of 0), a linear function of x, 

or log(x). In my experiments using data from a 454 sequencer, square root seemed to 

provide the most advantageous combination of speed and fraction of reads aligned. 

FM Index-assisted seed alignment 

Given seed strings, Bowtie 2 then uses FM Index-assisted alignment to find 

ungapped alignments for each seed. The alignment process makes use of the same 

reference pruning, policy pruning and double indexing approaches used in Bowtie 
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[18]. In addition, Bowtie 2 uses the bi-directional BWT [55] approach, which allows 

the aligner to efficiently switch between alignment in a right-to-left direction and 

alignment in a left-to-right direction. 

Seed strings can be aligned with up to 1 mismatch. The number of mismatches 

to permit is configurable. Option -N 1 allows seed alignments to have up to 1 

mismatch, whereas option -N 0 requires that seeds match exactly. 

Seed alignment prioritization 

The output from the seed alignment step is a set of zero or more Burrows-

Wheeler ranges per seed string. Such a range is called a “seed-hit range.” A seed-hit 

range describes a range of rows in the Burrows-Wheeler matrix that begin with a 

reference substring that is within 0 or 1 mismatches of the seed substring. A single 

seed string may be associated with multiple Burrows-Wheeler ranges, since a seed 

string may be within 1 mismatch of many distinct reference substrings. Each row of 

each seed-hit range corresponds to a location in the reference genome where we 

might search for a full alignment. Bowtie 2 assigns a weight to each Burrows-

Wheeler row equal to 1 / r2 where r is the total number of rows in the range. E.g. a 

row from a seed-hit range with 3 elements gets 1 / 9th the weight of a row from a 

seed-hit range with 1 element. 

In this step, Bowtie 2 proceeds by repeatedly selecting a row in a random 

weighted fashion using these weights. When a row is selected, its offset into the 

reference genome is resolved using the same hybrid approach as Bowtie. Each 

resolved offset is passed to the SIMD-accelerated dynamic programming algorithm 

along with information about which seed string gave rise to the hit. 



 

 52 
 

SIMD-accelerated dynamic programming 

For each resolved seed hit, Bowtie 2 extracts flanking characters from the 

reference and solves a rectangular dynamic programming problem to find high-

scoring full alignments in the vicinity of the seed hit. Dynamic programming 

alignment algorithms such as Needleman-Wunsch [81], Smith-Waterman [31], and 

extensions thereof [32], enable efficient computation of the optimal alignment 

between two sequences, even in the presence of many gaps and mismatches. 

Dynamic programming algorithms can be visualized as acting on a matrix 

with rows corresponding to characters in the read and columns corresponding to 

characters in the reference. The algorithm calculates (“fills”) all elements in the 

matrix moving from the upper left corner to the lower right corner, with each element 

(i, j) set to the alignment score that results from aligning the length-i prefix of the 

read to the length-j prefix of the reference. Because a given cell (i, j) can be 

calculated by considering only values in the cells above (i-1, j), to the left (i, j-1) and 

to the upper-left (i-1, j-1), dynamic programming can be parallelized. For instance, 

consider a matrix for which all the elements in the first N anti-diagonals have already 

been calculated. All of the elements in the N+1th anti-diagonal can be calculated 

simultaneously in parallel. That is, the inputs for anti-diagonal N are available in 

previous anti-diagonals and none of the calculations for anti-diagonal N depend on 

each other. Figure 18 shows an example where the first 5 anti-diagonals have already 

been calculated, and all the elements in the 6th anti-diagonal, highlighted in read, can 

be calculated in parallel. 
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 C G T T T A C 

C 1 0 0 0 0   

G 0 2 0 0    

T 0 1 3     

T 0 0      

A 0       

C        
 

Figure 18: Highlighted cells can be filled in parallel. 

 

Many approaches for accelerating dynamic programming have been proposed, 

including implementations that use single-instruction multiple-data (SIMD) 

instructions (also called “vector” or “streaming” instructions) available on general 

purpose CPUs. SIMD instructions are similar to normal processor instructions, in that 

they perform simple arithmetic and logical functions such as addition, multiplication, 

maximum, logical AND, etc. However, instead of operating on two operands (A+B), 

SIMD instructions operate on many operands in parallel (A+B and C+D and E+F, 

etc.). The operands are packed into long SIMD machine words and the operations are 

carried out using a special SIMD arithmetic unit. On modern processors, these are 

called SSE (“Streaming SIMD Extensions”) instructions. Certain standard sets of SSE 

instructions have been supported on both Intel and AMD processors for many years 

now. 
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Bowtie 2 chiefly makes use of SSE2 instructions, which include a standard set 

of arithmetic and logic functions operating over 128-bit words. In Bowtie 2, two 

different ways of “packing” values into 128-bit words are used: either 16 unsigned 8-

bit values are packed into a single word, or 8 16-bit signed values are packed into a 

single word. Figure 19 Illustrates an example where two 128-words with 8 16-bit 

values packed into each are added together element-wise. 

 

Figure 19: SIMD addition of two vectors of 8 16-bit values each 
 

 

One of the first approaches for accelerating dynamic programming using 

SIMD instructions was proposed by Wozniak [82] in 1996. The approach builds on 

the insight illustrated in Figure 18, namely that cells on an anti-diagonal are 

independent and can be computed in parallel provided that previous anti-diagonals 

have already been calculated. Since then, a series of publications, including by 

Rognes and Seeberg [83], Farrar [84], and Rognes [85], showed other ways of 

parallelizing the problem, including approaches that fill the matrix using horizontal or 

vertical blocks. 
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Bowtie 2 builds on the approach used by the swsse2 tool, published by Farrar 

[84], in which the matrix is filled in one striped, vertical chunk at a time. Because the 

chunks are oriented vertically, the read can be preprocessed into a “query profile,” 

and diagonal score contributions can be calculated using a lookup table. Because the 

lookup table depends only on the read, it can be reused across dynamic programming 

problems involving the read. Because the chunks are “striped” along the read, the 

work required to propagate vertical contributions is reduced compared to non-striped 

approaches. 

While the swsse2 tool is geared toward scoring protein alignments, Bowtie 2 

adapts and extends the approach for read alignment. Specifically, Bowtie 2’s 

approach (a) works for end-to-end alignment in addition to local alignment, (b) 

implements a restriction on which positions may contain gaps, (c) implements 

separately configurable read and reference gap penalties, (d) permits scoring 

functions that account for quality values, and (e) implements a backtrack procedure 

so that alignments can be derived directly from the algorithm’s output. 

Performance comparison on real data 

To assess how Bowtie 2 performs on real-world data, Bowtie 2 v2.0.0-beta4 

was compared to three other FM-Index-based read aligners: BWA 0.5.9-r16 [34], 

BWA-SW 0.5.9-r16 [35], and SOAP2 2.21 [37]. In all experiments, the reference 

used was the GRCh37 major build of the human genome [86], including sex 

chromosomes, mitochondrial genome and “non-chromosomal” sequences. An 

illustrative plot of all the results in this subsection is shown in Figure 20 and full 

results are found in Table 6. 
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A random subset of 2 million pairs was extracted from a collection of 100-by-

100 nt paired-end HiSeq 2000 reads from a human DNA sequencing study [87] 

(accession ERR037900). BWA, SOAP2 and Bowtie 2 were used to align one end 

(labeled “1”) from the subset in an unpaired fashion. To illustrate parameter tradeoffs, 

each tool was tool with a variety of parameter settings (Figure 20a, Table 6a). Note 

that SOAP2 does not permit gapped alignment of unpaired reads. Bowtie 2’s default 

mode (labeled 3 in Figure 20a) is faster than all BWA modes tried and more than 2.5 

times faster than BWA’s default mode (labeled 7 in Figure 20a). All Bowtie 2 modes 

yielded a greater number of reads aligned than did either of the other tools. Bowtie 

2’s peak virtual memory footprint (3.24 gigabytes) was between BWA’s (2.39 

gigabytes) and SOAP2’s (5.34 gigabytes). 

BWA, SOAP2 and Bowtie 2 were also used to align reads from this dataset in 

a paired-end fashion, using various alignment parameters (Figure 20b, Table 6b). 

Bowtie 2’s default mode (labeled 3 in Figure 20b) is faster than all BWA modes tried 

and more than 3 times faster than BWA’s default mode (labeled 7 in Figure 20b). All 

Bowtie 2 modes yielded a greater number of reads aligned than did either of the other 

tools. Bowtie 2’s peak virtual memory footprint (3.26 gigabytes) was similar to 

BWA’s (3.20 gigabytes) and less than SOAP2’s (5.34 gigabytes). 

To assess Bowtie 2’s performance on longer reads, a random subset of 1 

million reads were extracted from both (a) a collection of 454 reads from the 1000 

Genomes Project Pilot [60] (accession SRR003161), and (b) a collection of Ion 

Torrent reads from the G. Moore DNA sequencing project [88] (accession 

ERR039480). The subset was aligned with BWA-SW and Bowtie 2. Bowtie 2 was 
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configured to perform local alignment, which is also BWA-SW’s behavior. Both 

tools were run with various parameter settings. For the 454 data (Figure 20c, Table 

6c), Bowtie 2’s default local-alignment mode (labeled 3 in Figure 20c) was faster and 

aligned more reads than any of the BWA-SW modes tried. In the case of the Ion 

Torrent data (Figure 20d, Table 6d), Bowtie 2’s default local-alignment mode 

(labeled 3 in Figure 20d) was more than twice as fast as BWA-SW’s default mode 

(labeled 7 in Figure 20d), and aligns more reads. For both the 454 and Ion Torrent 

datasets, Bowtie 2’s peak virtual memory footprint (3.39 gigabytes) was smaller than 

BWA-SW’s (3.66 gigabytes). 
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Figure 20: Speed and percent reads aligned for Bowtie 2 versus others. 
 
 

Aligner Options 

Label in 
Figur
e 20 

Running 
time 

% reads 
aligned 

(of 2 
million) 

Peak virtual 
memory 
footprint 

(gigabytes) 

(a) Unpaired 100 nt HiSeq 2000 data 
Bowtie 2 -D 5 -R 1 -N 0 -L 22 -i S,0,2.50 (--very-fast) 1 6m:02s 94.62% 3.24 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,0,2.50 (--fast) 2 8m:08s 95.32% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.50  9m:15s 95.49% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.20  9m:23s 95.52% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.65  10m:36s 95.80% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.15 (--sensitive) 3 11m:32s 95.92% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 21 -i S,1,1.00  12m:59s 96.03% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.75  16m:01s 96.07% 3.24 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.50  17m:43s 96.11% 3.24 

Bowtie 2 -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 (--very-sensitive) 4 23m:44s 96.26% 3.24 

Bowtie 2 -D 25 -R 4 -N 0 -L 20 -i S,1,0.50  30m:20s 96.34% 3.24 
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BWA -k 1 -l 32 -o 1 5 11m:42s 91.36% 2.39 

BWA -k 1 -l 32 -o 2  13m:05s 91.40% 2.44 

BWA -k 1 -l 28 -o 1  13m:55s 91.47% 2.40 

BWA -k 1 -l 32 -o 3  14m:41s 91.40% 2.52 

BWA -k 1 -l 28 -o 2  15m:48s 91.51% 2.48 

BWA -k 1 -l 24 -o 1 6 16m:50s 91.57% 2.41 

BWA -k 1 -l 28 -o 3  17m:25s 91.51% 2.56 

BWA -k 1 -l 24 -o 2  20m:42s 91.61% 2.51 

BWA -k 1 -l 24 -o 3  21m:17s 91.61% 2.59 

BWA -k 2 -l 32 -o 1 7 31m:24s 91.80% 2.41 

BWA -k 2 -l 28 -o 1  36m:01s 91.83% 2.41 

BWA -k 2 -l 32 -o 2  36m:43s 91.84% 2.51 

BWA -k 2 -l 32 -o 3  38m:25s 91.84% 2.59 

BWA -k 2 -l 28 -o 2  43m:13s 91.87% 2.52 

BWA -k 2 -l 24 -o 1  43m:17s 91.85% 2.42 

BWA -k 2 -l 28 -o 3  43m:44s 91.87% 2.59 

BWA -k 2 -l 24 -o 2  47m:52s 91.89% 2.53 

BWA -k 2 -l 24 -o 3  50m:09s 91.89% 2.63 

SOAP2 -l 256 -v 3 -g 0  5m:20s 84.43% 5.34 

SOAP2 -l 256 -v 5 -g 0 8 5m:23s 84.43% 5.34 

SOAP2 -l 256 -v 7 -g 0  5m:30s 84.43% 5.34 

SOAP2 -l 75 -v 5 -g 0  6m:20s 89.47% 5.34 

SOAP2 -l 75 -v 7 -g 0 9 6m:22s 89.78% 5.34 

SOAP2 -l 75 -v 3 -g 0  6m:33s 88.62% 5.34 

SOAP2 -l 40 -v 7 -g 0 10 8m:44s 92.40% 5.34 

SOAP2 -l 40 -v 5 -g 0  9m:15s 91.29% 5.34 

SOAP2 -l 40 -v 3 -g 0  11m:34s 88.84% 5.34 

  (b) Paired-end 100 x 100 nt HiSeq 2000 data 
Bowtie 2 -D 5 -R 1 -N 0 -L 22 -i S,0,2.50 (--very-fast) 1 16m:09s 94.80% 3.25 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,0,2.50 (--fast) 2 17m:51s 95.04% 3.25 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.50  20m:08s 95.16% 3.25 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.20  20m:09s 95.20% 3.25 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.65  22m:43s 95.61% 3.26 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.15 (--sensitive) 3 25m:52s 95.90% 3.26 

Bowtie 2 -D 15 -R 2 -N 0 -L 21 -i S,1,1.00  27m:16s 95.92% 3.26 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.75  30m:28s 95.98% 3.26 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.50  33m:16s 96.00% 3.26 

Bowtie 2 -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 (--very-sensitive) 4 44m:09s 96.19% 3.26 

Bowtie 2 -D 25 -R 4 -N 0 -L 20 -i S,1,0.50  48m:24s 96.27% 3.26 

BWA -k 1 -l 32 -o 1 5 26m:23s 93.38% 3.20 

BWA -k 1 -l 32 -o 2  31m:39s 93.41% 3.20 

BWA -k 1 -l 28 -o 1  31m:40s 93.45% 3.20 

BWA -k 1 -l 32 -o 3  35m:17s 93.41% 3.20 

BWA -k 1 -l 28 -o 2  38m:03s 93.47% 3.20 

BWA -k 1 -l 24 -o 1 6 39m:11s 93.51% 3.20 
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BWA -k 1 -l 28 -o 3  41m:40s 93.47% 3.20 

BWA -k 1 -l 24 -o 2  47m:02s 93.53% 3.20 

BWA -k 1 -l 24 -o 3  50m:53s 93.53% 3.20 

BWA -k 2 -l 32 -o 1 7 83m:58s 93.63% 3.20 

BWA -k 2 -l 32 -o 2  95m:28s 93.65% 3.20 

BWA -k 2 -l 28 -o 1  95m:35s 93.65% 3.20 

BWA -k 2 -l 32 -o 3  97m:04s 93.66% 3.20 

BWA -k 2 -l 24 -o 1  108m:30s 93.66% 3.20 

BWA -k 2 -l 28 -o 2  109m:31s 93.67% 3.20 

BWA -k 2 -l 28 -o 3  114m:09s 93.67% 3.20 

BWA -k 2 -l 24 -o 2  127m:20s 93.68% 3.20 

BWA -k 2 -l 24 -o 3  131m:48s 93.68% 3.20 

SOAP2 -l 256 -v 3 -g 0 -m 250 -x 500  11m:10s 78.28% 5.34 

SOAP2 -l 256 -v 5 -g 0 -m 250 -x 500 8 11m:10s 78.28% 5.34 

SOAP2 -l 256 -v 7 -g 0 -m 250 -x 500  11m:14s 78.28% 5.34 

SOAP2 -l 75 -v 7 -g 0 -m 250 -x 500  12m:55s 86.97% 5.35 

SOAP2 -l 75 -v 5 -g 0 -m 250 -x 500  12m:56s 86.20% 5.35 

SOAP2 -l 75 -v 3 -g 0 -m 250 -x 500  13m:34s 84.27% 5.35 

SOAP2 -l 75 -v 7 -g 3 -m 250 -x 500 9 16m:48s 90.63% 5.35 

SOAP2 -l 75 -v 5 -g 3 -m 250 -x 500  17m:15s 89.23% 5.35 

SOAP2 -l 256 -v 7 -g 3 -m 250 -x 500  17m:50s 87.76% 5.35 

SOAP2 -l 256 -v 5 -g 3 -m 250 -x 500  17m:51s 86.26% 5.35 

SOAP2 -l 75 -v 3 -g 3 -m 250 -x 500  17m:54s 85.97% 5.35 

SOAP2 -l 256 -v 3 -g 3 -m 250 -x 500  18m:01s 81.19% 5.36 

SOAP2 -l 40 -v 7 -g 0 -m 250 -x 500  21m:20s 89.11% 5.35 

SOAP2 -l 40 -v 5 -g 0 -m 250 -x 500  22m:38s 87.45% 5.35 

SOAP2 -l 40 -v 3 -g 0 -m 250 -x 500  25m:57s 84.29% 5.35 

SOAP2 -l 40 -v 7 -g 3 -m 250 -x 500 10 26m:43s 92.08% 5.35 

SOAP2 -l 40 -v 5 -g 3 -m 250 -x 500  27m:53s 90.07% 5.35 

SOAP2 -l 40 -v 3 -g 3 -m 250 -x 500  30m:02s 86.04% 5.35 

  (c) 454 data 
Bowtie 2 -D 5 -R 1 -N 0 -L 25 -i S,1,2.0 --bwa-sw-like 1 58m:41s 98.29% 3.27 

Bowtie 2 -D 5 -R 1 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  61m:12s 98.40% 3.27 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  63m:28s 98.51% 3.27 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,1,1.75 --bwa-sw-like 2 65m:05s 98.80% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  65m:25s 98.54% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.20 --bwa-sw-like  65m:59s 98.66% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.65 --bwa-sw-like  67m:09s 98.85% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.15 --bwa-sw-like  70m:08s 99.02% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 21 -i S,1,1.00 --bwa-sw-like  75m:28s 99.13% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.75 --bwa-sw-like 3 82m:14s 99.23% 3.27 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like  88m:06s 99.28% 3.28 

Bowtie 2 -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like 4 93m:55s 99.29% 3.28 

Bowtie 2 -D 25 -R 4 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like  110m:39s 99.30% 3.28 

BWA-SW -c 5.5 -z 1 -s 1 5 83m:41s 98.12% 3.66 
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BWA-SW -c 5.5 -z 1 -s 2  112m:26s 98.12% 3.66 

BWA-SW -c 5.5 -z 2 -s 1 6 124m:28s 98.74% 3.68 

BWA-SW -c 5.5 -z 1 -s 3 7 141m:00s 98.12% 3.66 

BWA-SW -c 5.5 -z 3 -s 1 8 161m:21s 98.82% 3.69 

BWA-SW -c 5.5 -z 2 -s 2  169m:20s 98.74% 3.68 

BWA-SW -c 5.5 -z 2 -s 3  213m:47s 98.74% 3.68 

BWA-SW -c 5.5 -z 3 -s 2  220m:01s 98.83% 3.69 

BWA-SW -c 5.5 -z 3 -s 3  276m:22s 98.82% 3.69 

(d) Ion Torrent data 
Bowtie 2 -D 5 -R 1 -N 0 -L 25 -i S,1,2.0 --bwa-sw-like 1 3m:52s 49.51% 3.37 

Bowtie 2 -D 5 -R 1 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  4m:10s 49.64% 3.37 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  4m:55s 50.00% 3.37 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.50 --bwa-sw-like  5m:26s 50.09% 3.37 

Bowtie 2 -D 10 -R 2 -N 0 -L 22 -i S,1,1.75 --bwa-sw-like 2 5m:30s 51.72% 3.37 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,2.20 --bwa-sw-like  5m:40s 50.74% 3.37 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.65 --bwa-sw-like  6m:20s 52.05% 3.37 

Bowtie 2 -D 15 -R 2 -N 0 -L 22 -i S,1,1.15 --bwa-sw-like  7m:09s 53.11% 3.37 

Bowtie 2 -D 15 -R 2 -N 0 -L 21 -i S,1,1.00 --bwa-sw-like  8m:13s 53.82% 3.38 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.75 --bwa-sw-like 3 10m:00s 54.71% 3.38 

Bowtie 2 -D 15 -R 2 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like  11m:48s 55.19% 3.39 

Bowtie 2 -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like 4 14m:20s 55.32% 3.39 

Bowtie 2 -D 25 -R 4 -N 0 -L 20 -i S,1,0.50 --bwa-sw-like  17m:11s 55.38% 3.39 

BWA-SW -c 5.5 -z 1 -s 1 5 22m:16s 47.80% 3.66 

BWA-SW -c 5.5 -z 1 -s 2  23m:23s 47.80% 3.66 

BWA-SW -c 5.5 -z 1 -s 3 7 24m:26s 47.80% 3.66 

BWA-SW -c 5.5 -z 2 -s 1 6 37m:34s 51.58% 3.67 

BWA-SW -c 5.5 -z 2 -s 2  39m:19s 51.58% 3.67 

BWA-SW -c 5.5 -z 2 -s 3  40m:58s 51.58% 3.67 

BWA-SW -c 5.5 -z 3 -s 1 8 47m:14s 52.01% 3.67 

BWA-SW -c 5.5 -z 3 -s 2  49m:27s 52.01% 3.67 

BWA-SW -c 5.5 -z 3 -s 3  51m:30s 52.01% 3.67 

 
Table 6: Speed and percent reads aligned for Bowtie 2 versus others: full 

results. 

Accuracy and sensitivity comparison on simulated data 

To assess accuracy and sensitivity of Bowtie 2, a series of studies were 

conducted using simulated sequencing reads. Mason [89] was used to simulate sets of 

100,000 Illumina-like reads 100 nt long and 150 nt long from the genome. Similarly, 

Mason was used to simulated datasets of 100,000 paired-end reads of lengths 100 x 
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100 nt and 150 x 150 nt. Bowtie 2, BWA, and SOAP2 were run with their default 

arguments on each dataset. For each run, the number of reads aligned correctly and 

incorrectly were counted. An alignment was considered correct if the strand was 

correct, and if the leftmost position covered by the alignment was within 50 nt of the 

leftmost position chosen by the simulator. Otherwise the alignment was considered 

incorrect. For each aligner and each dataset, correct and incorrect alignments were 

tallied, stratified by mapping quality. Mapping quality is defined as -10 log10(p) 

rounded to the nearest integer where p is the aligner’s estimate of the probability that 

the read was aligned incorrectly. The cumulative number of correct and incorrect 

alignments were counted and accumulated from high to low mapping quality. Figure 

21a, Figure 21b show a plot of cumulative correct alignments on the vertical axis and 

cumulative incorrect alignments on the horizontal axis for each dataset and aligner. In 

all cases, Bowtie 2 and BWA report more correct alignments than SOAP2. For the 

unpaired Illumina-like reads, Bowtie 2’s plotted curve is above BWA’s, indicating 

Bowtie 2 reports more correct alignments and fewer incorrect alignments over a range 

of mapping quality cutoffs. For paired-end reads, the difference is smaller but Bowtie 

2’s curve lies mostly above BWA’s. Note that, in its paired-end mode, BWA 

performs local alignment to recover one of the two ends of the paired-end read in 

some situations, which Bowtie 2 does not. In the 150 nt comparison, for instance, 

BWA trims 2,991 reads in this way. 

The Mason simulator was also used to generate two collections of 100,000 

454-like reads with average lengths 250 and 400 respectively. Bowtie 2 and BWA-

SW were run on these datasets (Figure 21c). Bowtie 2’s curve is generally above 
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BWA-SWs, especially for the dataset with average length 250. BWA-SW also trims 

in more cases. For the dataset with average length 250, for example, BWA-SW trims 

53,486 reads while Bowtie 2 trims 51,051. 

 

Figure 21: Alignment ROC curves for Bowtie 2 and other tools 
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Comparison of Bowtie 1 and Bowtie 2 

To see how Bowtie 1 and Bowtie 2 compare in terms of speed and fraction of 

reads aligned, Bowtie 2 and Bowtie 1 were run on the same set of 100 x 100 nt reads 

used in the comparison illustrated in Figure 20. Bowtie 1 was designed to align 

relatively short reads (i.e. shorter than 100 nt), so here Bowtie 1 and 2 are compared 

for both unpaired (Figure 22, Table 7) and paired-end reads (Figure 23, Table 8) of 

length 40, 60, 80 and 100 nt. The 40, 60, and 80 nt datasets were constructed by 

trimming bases from the right (3’) end of the 100 nt dataset. 

The minimum and maximum insert lengths were set to 0 and 500 for both 

tools. Bowtie 2 was run in its default mode. Bowtie 1’s reporting options were set to 

be as comparable as possible to Bowtie 2’s defaults (“-M 1 --best”). Bowtie 1 was run 

in “-v 2” mode, which allows up to 2 mismatches in the entire alignment. Bowtie 1 

was also run in “-l 28 -n 2” mode, which uses the first 28 nt of the read as a “seed” 

and allows at most 2 mismatches in that portion. The “-e” option sets a ceiling on the 

sum of the quality scores at mismatched positions, where quality scores are rounded 

to the nearest 10 and scores greater than 30 are rounded to 30. Two settings for “-e” 

were used: 100, and 250. 

Note that Bowtie 2 will attempt to find and report alignments for each end 

separately if the ends cannot be aligned concordantly as a pair. Bowtie 1, on the other 

hand, reports no alignment for either end in this case. Thus, the paired-end 

comparison (Figure 23, Table 8) lends a small speed advantage to Bowtie 1 and a 

sensitivity advantage to Bowtie 2. 
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Figure 22: Comparison of Bowtie 1 and Bowtie 2 on unpaired reads. 
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Aligner Options Running 
time 

% reads 
aligned 
(out of 2 
million) 

Peak virtual 
memory 
footprint 

(gigabytes) 

Length: 40 nt 

Bowtie 2 (defaults) 4m:27s 96.40% 3.35 
Bowtie 1 -v 2 -M 1 --best 11m:00s 95.81% 2.34 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best 22m:02s 96.39% 2.34 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best 20m:48s 96.95% 2.34 

Length: 60 nt 

Bowtie 2 (defaults) 6m:09s 96.55% 3.24 
Bowtie 1 -v 2 -M 1 --best 13m:16s 93.49% 2.34 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best 26m:36s 94.66% 2.34 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best 23m:33s 96.10% 2.34 

Length: 80 nt 

Bowtie 2 (defaults) 9m:11s 96.21% 3.24 
Bowtie 1 -v 2 -M 1 --best 14m:16s 89.05% 2.34 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best 29m:41s 93.57% 2.34 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best 26m:36s 95.07% 2.34 

Length: 100 nt 

Bowtie 2 (defaults) 11m:56s 95.92% 3.24 
Bowtie 1 -v 2 -M 1 --best 14m:37s 83.50% 2.34 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best 31m:48s 92.86% 2.34 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best 28m:50s 94.20% 2.34 

 
Table 7: Comparison of Bowtie 1 and Bowtie 2 on unpaired reads: full 

results. 
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Figure 23: Comparison of Bowtie 1 and Bowtie 2 on paired-end reads. 
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Aligner Options Running 
time 

% reads 
aligned 
(out of 2 
million) 

Peak virtual 
memory 
footprint 

(gigabytes) 

Length: 40 x 40 nt 

Bowtie 2 --sensitive -I 0 -X 500 17m:11s 96.26% 3.34 
Bowtie 1 -v 2 -M 1 --best -I 0 -X 500 21m:55s 91.23% 3.01 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best -I 0 -X 500 35m:25s 92.63% 3.01 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best -I 0 -X 500 34m:50s 93.46% 3.01 

Length: 60 x 60 nt 

Bowtie 2 --sensitive -I 0 -X 500 17m:02s 96.12% 3.28 
Bowtie 1 -v 2 -M 1 --best -I 0 -X 500 19m:43s 88.60% 3.01 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best -I 0 -X 500 40m:13s 91.96% 3.01 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best -I 0 -X 500 38m:20s 93.40% 3.01 

Length: 80 x 80 nt 

Bowtie 2 --sensitive -I 0 -X 500 18m:06s 95.84% 3.26 
Bowtie 1 -v 2 -M 1 --best -I 0 -X 500 19m:06s 80.72% 3.01 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best -I 0 -X 500 42m:20s 91.06% 3.01 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best -I 0 -X 500 39m:55s 92.47% 3.01 

Length: 100 x 100 nt 

Bowtie 2 --sensitive -I 0 -X 500 21m:56s 95.60% 3.26 
Bowtie 1 -v 2 -M 1 --best -I 0 -X 500 18m:57s 65.06% 3.01 
Bowtie 1 -l 28 -n 2 -e 100 -M 1 --best -I 0 -X 500 43m:51s 90.40% 3.01 
Bowtie 1 -l 28 -n 2 -e 250 -M 1 --best -I 0 -X 500 41m:05s 91.80% 3.01 
 

Table 8: Comparison of Bowtie 1 and Bowtie 2 on paired-end reads: full 

results. 

 

Comparison to additional tools 

To assess the fraction of reads aligned by Bowtie 2 versus other tools, Bowtie 

2, BWA [34], SOAP2 [37], GSNAP [90], MOSAIK [91], and SHRiMP 2 [92] were 

used to align a subset of 200,000 reads from the unpaired HiSeq 2000 dataset 

examined in Figure 20. The results are presented in Table 9. Default options for all 

tools except MOSAIK, where the recommended options for reads of around 100 nt 

were used. Not all tools are being run in comparable reporting modes; e.g. Bowtie 2, 
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BWA and SOAP2 report one representative alignment for each input read by default, 

but GSNAP, SHRiMP, and MOSAIK report many alignments per read by default. 

Also, a substantial fraction of running time for MOSAIK and SHRiMP 2 is spent 

building the reference index, a cost that can be amortized in practice by aligning large 

collections of reads at once. For these reasons, and because only one set of parameters 

is tried for each tool, these results should not be considered to be a comprehensive 

comparison of these tools. But the results do convey a rough impression of how the 

tools compare in terms speed and fraction of reads aligned. 

This experiment was run on a single Intel Xeon X5550 Nehalem 2.66GHz 

processor of a High-Memory Quadruple Extra Large Instance (m2.4xlarge) rented 

from Amazon’s Elastic Compute Cloud (EC2) service [93]. The instance had 68.4 

gigabytes of physical memory and was running the Basic 64-bit Amazon Linux AMI 

2011.02.1 Beta. 

Aligner Options Running 
time 

% reads 
aligned 
(out of 

200,000) 

Peak 
virtual 

memory 
footprint 

(gigabytes) 
Bowtie 2 (defaults) 39s 95.89% 3.24 
BWA (defaults) 1m:42s 91.81% 2.32 
SOAP2 (defaults) 31s 84.45% 5.32 
GSNAP (defaults) 20m:56s 93.99% 4.91 
MOSAIK -mm 15 -act 35 -bw 35 -mhp 100 30m:27s 95.64% 61.70 
SHRiMP2 (defaults) 251m:38s 97.67% 36.90 
 

Table 9: Comparison of Bowtie 2 with various other tools. 
 

Conclusions 

Full-text genome indexing using the FM Index, pioneered in Bowtie, is now 

an increasingly common tool for aligning sequencing reads. Extending this method to 
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perform sensitive gapped alignment and alignment of long reads without incurring 

serious computational penalties is a major technical challenge. Bowtie 2 is a new 

method that combines the advantages of the FM Index and SIMD dynamic 

programming, achieving very fast and memory-efficient gapped alignment of 

sequencing reads. Bowtie 2 improves on the previous Bowtie method in terms of 

speed and fraction of reads aligned (Figure 22 and Figure 23), beats other FM-Index-

based tools on speed, sensitivity and accuracy (Figure 20 and Figure 21), and is 

significantly faster than non-FM-Index-based approaches while aligning a 

comparable fraction of reads (Table 9). Bowtie 2 is free, open source software 

available from the Bowtie 2 website at http://bowtie-bio.sf.net/bowtie2. 
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Chapter 4: Crossbow, a “big data” approach to alignment 
and variant calling 

 

This chapter motivates the need for a parallel, “big data” approach to 

alignment and variant calling, which are common tasks in the field of comparative 

genomics. This chapter also describes the Crossbow software tool, which exemplifies 

how comparative genomics pipelines can be adapted to run in an efficient and 

scalable fashion atop the MapReduce programming framework and on commercial 

cloud computing services such as Amazon Web Services. I wrote the Crossbow 

software in collaboration with Michael Schatz, and a manuscript describing this work 

was published in 2010 [94]. 

A “big data” approach to comparative genomics 

Modern sequencing datasets are very large and, thanks to improvements in 

sequencing throughput and cost, only getting larger. The pilot phase of the 1000 

Genomes Project, for instance, generated about 4.9 trillion total nucleotides of data 

[60]. With larger datasets comes a new set of software design issues. The most 

obvious issue is the need for parallel software. Because computers are not getting 

faster at nearly the same rate as sequencers, software that runs on a single computer 

or a fixed number of computers will be unable to keep up. Instead, software must be 

made to run over many processors at once. Software must also tolerate severe 

hardware and software failures; when software runs on many computers over long 

periods of time, it can be unacceptably costly to have to abandon an analysis 

midstream because of the failure of a single computer. Finally, there is a need for 
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computations to run under relatively stringent hardware constraints. Computations 

that make economical use of memory and processing power can be run in more 

contexts and are less likely to “starve” each other when running together on a single 

computer. 

Crossbow represents an important step toward moving common comparative 

genomics analysis pipelines into the “big data” era. Crossbow is a software tool built 

atop the Apache Hadoop [24, 95] implementation of the MapReduce [27] 

programming model. MapReduce and Hadoop were designed to tackle problems 

caused by very large datasets, including the need for parallelism, fault tolerance, and 

economical use of resources. Hadoop facilitates parallel programming by forcing 

programmers to adhere to a simple but constrained programming model, described 

further below. Hadoop provides fault tolerance by storing permanent files and 

intermediate results in a redundant, distributed file system called the Hadoop 

Distributed File System (HDFS). And while Hadoop does not explicitly force 

programmers to write economical software, the MapReduce programming model 

encourages economical use of memory and processing power. 

Crossbow implements a pipeline for identifying Single Nucloetide 

Polymorphisms (“SNP”), also known as Single Nucleotide Variants or SNVs. The 

pipeline’s goal is to (a) align reads to a reference genome, then (b) analyze the 

aligned reads to determine instances where the sequenced genome differs from the 

reference genome sequence by one nucleotide. For instance, there might be a position 

where the reference genome sequence has a C but the sequenced genome appears to 

have an A, as in Figure 24. SNPs are a commonly studied type of DNA variant with 
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potentially significant implications. Some Mendelian diseases such as Sickle cell 

anemia, Systic fibrosis, and Tay-Sachs disease, are caused by SNP mutations. 

 

Figure 24: Illustration of a “C to A” SNP 
 

The Crossbow SNP calling pipeline combines Bowtie’s [18] speed and 

memory-efficiency with the accuracy of the SNP caller SOAPsnp [96] to perform 

alignment and SNP calling for multiple whole-human datasets per day. In our 

experiments, for instance, Crossbow was able to align and call SNPs from 38-fold 

coverage2 of a Han Chinese male genome [65] in as little as 3 hours (4 hours 30 

minutes including transfer time) using a 320-core cluster rented from the Amazon 

Web Services [25] commercial cloud computing service. Crossbow can be run on any 

cluster with appropriate versions of Hadoop, Bowtie, and SOAPsnp installed. 

Crossbow is distributed with scripts that allow it to run on a single computer 

(exploiting multiple processors and processor cores where possible), on a Hadoop 

cluster, or on a cluster rented from Amazon’s Elastic MapReduce [97] service. 

                                                 
2 The “coverage” is the average depth, i.e., the average number of reads covering a 
given position in the genome. 
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MapReduce 

Broadly speaking, the MapReduce programming model requires that a 

program be expressed as an alternating series of “Compute” and “Aggregate” steps3. 

Each Compute step operates on a bin of “tuples,” where a tuple is simply an ordered 

collection of data with one or more “key” fields. A Compute step can only examine 

one bin at a time; it cannot combine data across bins or load multiple bins into 

memory at once. This is how MapReduce encourages parallelism; imposing these 

constraints on the programmer maximizes MapReduce’s freedom to schedule the per-

bin computations to run simultaneously in parallel. The output from a Compute step 

is a stream of zero or more tuples. 

An “Aggregate” step takes tuples emitted from one or more previous Compute 

steps and bins and sorts them a according to primary and secondary keys respectively. 

All binning and sorting is performed in a parallel, distributed fashion, and the Hadoop 

MapReduce implementation is quite efficient for this [98]. The programmer need not 

be concerned with the mechanics of binning and sorting. As long as the programmer 

properly specifies which fields contain primary and secondary keys, the MapReduce 

software handles the rest. The output from an Aggregate step is a collection of sorted 

bins of data, which then become the input for the following Compute step. 

Steps in the Crossbow pipeline 

The chief insight behind Crossbow is that a pipeline consisting of alignment 

followed by SNP calling can be framed as a short series of parallel Compute and 

                                                 
3 “Compute” steps actually consist of Reduce and Map steps, but the distinction 
between Map and Reduce is unimportant here. MapReduce uses the name 
“Shuffle/Sort” for name the “Aggregate” step. 
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Aggregate steps. The first Compute step consists of running the Bowtie read aligner. 

In this phase, input tuples represent reads and output tuples represent alignments. This 

step is “parallel by read,” that is, if we have read A and read B, we can safely align A 

and B simultaneously on two different processors. Put another way: the result of 

aligning read A does not depend on the result of aligning read B, or vice versa.  

Bowtie is run via Hadoop’s “streaming” mode, whereby any command line 

program or script can play the role of a Compute step, and the Hadoop infrastructure 

exchanges input and output tuples with the program via the “standard in” and 

“standard out” filehandles. Bowtie’s relatively small genome index is an asset here, 

since this makes it easier for Hadoop to run multiple Bowtie processes on the same 

computer. See below for further details on how Bowtie adapted to run in Hadoop’s 

streaming mode using modest hardware resources. 

In the Aggregate step following the alignment step, alignments are binned 

according to the genomic region (“partition”) aligned to. Partitions are simply non-

overlapping windows of the reference genome. Alignments spanning more than one 

partition are copied into both spanned partitions, such that each bin receives all the 

evidence that might have a bearing on the SNP calls made in the partition. The 

Aggregate step also sorts alignments along the forward strand of the reference 

genome in preparation for SNP calling. 

The final Compute phase takes a sorted bin as input. As mentioned, the 

alignments in each bin are sorted along the forward strand of the reference genome; 

for instance, an alignment whose leftmost position is at genome offset 100 will appear 

before an alignment whose leftmost position is at genome offset 101. A sorted list of 
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alignments like this is sometimes called a “pileup” and it is a useful way to represent 

alignment data because many subsequent analyses, including SNP calling, can 

proceed by walking along the genome from position to position and examining 

evidence from all the alignments overlapping that position. By sorting the alignments, 

we ensure that alignments overlapping a given position are close to each other in the 

list. See Figure 25 for an example bin. 

For each bin, the Compute step runs the SOAPsnp [96] SNP caller on the 

bin’s alignments. Output from this step is a collection of tuples corresponding to all 

the positions where the subject genome nucleotide differed from the reference 

genome nucleotide. 

 

Figure 25: A sorted Crossbow bin ready for SNP calling 

Modifications to existing software 

Several new features were added to Bowtie to allow it to operate more 

smoothly as a Hadoop Compute step. First, Bowtie was extended to optionally use 

“memory-mapped files” or “shared memory” when loading the reference index into 

memory. This allows many independent Bowtie processes to run in parallel on a 

single multi-processor computer while sharing a single in-memory image of the 
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reference index. This is much more memory-efficient than storing a separate copy of 

the index per Bowtie process. Also, modifications were made to allow Bowtie and 

SOAPsnp to interoperate with Hadoop (via standard in and standard out) and with 

each other (via properly formatted tuples). 

Cloud support 

Crossbow is distributed with scripts that allow it to run on a single multi-

processor computer, on a Hadoop cluster, or on a cluster rented from Amazon’s 

Elastic MapReduce [97] service. When running Crossbow on Amazon’s Elastic 

MapReduce service, only the script for launching the job is run locally; all other 

computation is executed remotely on computers rented from Amazon’s Elastic 

Compute Cloud [93] service. See Figure 26 for an illustration of how Crossbow runs 

using cloud resources. 
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Figure 26: Illustration of how Crossbow is run using cloud resources. 
 

Performance results using simulated data 

Real sequencing datasets are generated by sequencing instruments and derived 

from biological samples; “simulated” sequencing datasets, on the other hand, are 

generated in silico by software, and are derived directly from a reference genome 

sequence. Simulated reads might also be modified to reflect synthetic variants 

between individuals and sequencing errors. Though simulated data lack some of the 

key properties possessed by real data, simulations allow us to perform controlled 

experiments where certain outcomes, such as the set of “true” SNPs, are known 

beforehand. 
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To measure Crossbow's accuracy with respect to a known set of  “true” SNPs, 

we conducted two experiments using simulated paired-end read data from human 

chromosomes 22 and X. Results are shown in Table 10. For both experiments, 40-

fold coverage of 35 nt paired-end reads were simulated from the human reference 

sequence (NCBI build 36.3). Quality values and insert lengths were simulated based 

on empirically observed qualities and inserts in the Wang et al. dataset [65]. 

Experimental Parameters 

Reference chromosome Chromosome 22 Chromosome X 
Reference base pairs 49.7 million 155 million 
Chromosome copy number Diploid Haploid 
HapMap SNPs introduced 36,096 71,976 

Heterozygous 24,761 0 
Homozygous 11,335 71,976 

Novel SNPs introduced 10,490 30,243 
Heterozygous 6,967 0 
Homozygous 3,523 30,243 

Simulated coverage 40-fold 40-fold 
Read type 35 nt paired 35 nt paired 

SNP Calling True # 
sites 

Crossbow 
sensitivity 

Crossbow 
precision 

True # 
sites 

Crossbow 
sensitivity 

Crossbow 
precision 

All SNP sites 46,586 99.0% 99.1% 102,219 99.0% 99.6% 
       

only HapMap SNP sites 36,096 99.8% 99.9% 71,976 99.9% 99.9% 
only novel SNP sites 10,490 96.3% 96.3% 30,243 96.8% 98.8% 
       

only homozygous 14,858 98.7% 99.9% N/A N/A N/A 
only heterozygous 31,728 99.2% 98.8% N/A N/A N/A 
       

only novel het 6,967 96.6% 94.6% N/A N/A N/A 
all other 39,619 99.4% 99.9% N/A N/A N/A 

 

Table 10: Experimental parameters for Crossbow experiments using 

simulated reads from human chromosomes 22 and X. 

 

SOAPsnp can exploit user-supplied information about known SNP loci and 

allele frequencies to refine its prior probabilities and improve accuracy. Therefore, 

the read simulator was designed to simulate both known HapMap [99] SNPs and 
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novel SNPs. This mimics resequencing experiments where many SNPs are known but 

some are novel. Known SNPs were selected at random from actual HapMap alleles 

for human chromosomes 22 and X. Positions and allele frequencies for known SNPs 

were calculated according to the same HapMap SNP data used to simulate SNPs. 

For these simulated data, Crossbow agrees substantially with the true calls, 

with greater than 99% precision and sensitivity overall for chromosome 22. 

Performance for HapMap SNPs is noticeably better than for novel SNPs, owing to 

SOAPsnp's ability to adjust SNP-calling priors according to known allele frequencies. 

Performance is similar for homozygous and heterozygous SNPs overall, but novel 

heterozygous SNPs yielded the worst performance of any other subset studied, with 

96.6% sensitivity and 94.6% specificity on chromosome 22. This is as expected, since 

novel SNPs do not benefit from prior knowledge, and heterozygous SNPs are more 

difficult than homozygous SNPs to distinguish from the background of sequencing 

errors. 

Results using whole-genome human resequencing data 

To demonstrate performance on real-world data, we used Crossbow to align 

and call SNPs from the set of 2.7 billion reads and paired-end reads sequenced from a 

Han Chinese male by Wang et al. [65]. Previous work demonstrated that SNPs called 

from this dataset using a combination of SOAP [36] and SOAPsnp [96] are highly 

concordant with genotypes called by an Illumina 1 M BeadChip genotyping assay of 

the same individual [96]. Since Crossbow uses SOAPsnp as its SNP caller, we 

expected Crossbow to yield very similar, but not identical, output. Differences may 

occur because: Crossbow uses Bowtie whereas the previous study used SOAP to 
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align the reads; the Crossbow version of SOAPsnp has been modified somewhat to 

operate within a MapReduce context; in this study, alignments are binned into non-

overlapping 2 million nt partitions rather than into chromosomes prior to being given 

to SOAPsnp; and the SOAPsnp study used additional filters to remove some 

additional low confidence SNPs. Despite these differences, Crossbow achieves 

comparable agreement with the BeadChip assay. 

We downloaded 2.66 billion reads from a mirror of the YanHuang website 

[100]. These reads cover the assembled human genome sequence to 38-fold coverage. 

They consist of 2.02 billion unpaired reads with sizes ranging from 25 to 44 nt, and 

658 million paired-end reads. The most common unpaired read lengths are 35 and 40 

nt, comprising 73.0% and 17.4% of unpaired reads, respectively. The most common 

paired-end read length is 35 nt, comprising 88.8% of all paired-end reads. The 

distribution of paired-end separation distances is bimodal with peaks in the 120 to 

150 nt and 420 to 460 nt ranges. 

Table 11 shows a comparison of SNPs called by either of the sequencing-

based assays – Crossbow labeled “CB” and SOAP+SOAPsnp labeled “SS” – against 

SNPs obtained with the Illumina 1 M BeadChip assay from the SOAPsnp study [96]. 

The “sites covered” column reports the proportion of BeadChip sites covered by a 

sufficient number of sequencing reads. Sufficient coverage is roughly four reads for 

diploid chromosomes and two reads for haploid chromosomes. The “Agreed” column 

shows the proportion of covered BeadChip sites where the BeadChip call equaled the 

SOAPsnp or Crossbow call. The “Missed allele” column shows the proportion of 

covered sites where SOAPsnp or Crossbow called a position as homozygous for one 
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of two heterozygous alleles called by BeadChip at that position. The “Other 

disagreement” column shows the proportion of covered sites where the BeadChip call 

differed from the SOAPsnp/Crossbow in any other way. Definitions of the “Missed 

allele” and “Other disagreement” columns correspond to the definitions of “false 

negatives” and “false positives,” respectively, in the SOAPsnp study. 

 

Missed 
allele 

Other 
disagree-

ment 

Missed 
allele 

Other 
disagree-

ment 

Illumina 1M 
genotype 

Sites Sites 
covered 
(SS) 

Sites 
covered 
(CB) 

Agreed 
(SS) 

Agreed 
(CB) 

(SS) (CB) 
Chr X          
  HOM reference 27,196 98.65% 99.83% 99.99% 99.99% N/A .004% N/A .011% 
  HOM mutant 10,737 98.49% 99.19% 99.89% 99.85% N/A .113% N/A .150% 
  Total 37,933 98.61% 99.65% 99.97% 99.95% N/A .035% N/A .050% 
Autosomal          
  HOM reference 540,878 99.11% 99.88% 99.96% 99.92% N/A .044% N/A .078% 
  HOM mutant 208,436 98.79% 99.28% 99.81% 99.70% N/A .194% N/A .296% 
  HET 250,667 94.81% 99.64% 99.61% 99.75% .374% .017% .236% .014% 
  Total 999,981 97.97% 99.70% 99.84% 99.83% .091% .069% .059% .108% 

 

Table 11: Comparison of Crossbow and SOAP/SOAPsnp to Illumina 1M 

genotyping assay. 

 
Both Crossbow and SOAP+SOAPsnp exhibit a very high level of agreement 

with the BeadChip genotype calls. The small differences in number of covered sites 

(<2% higher for Crossbow) and in percentage agreement (<0.1% lower for 

Crossbow) are likely due to the SOAPsnp study's use of additional filters to remove 

some SNPs prior to the agreement calculation, and to differences in alignment 

policies between SOAP and Bowtie. After filtering, Crossbow reports a total of 

3,738,786 SNPs across all autosomal chromosomes and chromosome X, whereas the 

SNP GFF file available from the YanHaung site [100] reports a total of 3,072,564 
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SNPs across those chromosomes. This difference is also likely due to the SOAPsnp 

study's more stringent filtering. 

Crossbow performance using cloud clusters 

The above results were computed on a Hadoop 0.20 cluster with 10 worker 

nodes located in our laboratory, where it required about 1 day of wall clock time to 

run. Each node is a four-core 3.2 GHz Intel Xeon (40 cores total) running 64-bit 

Redhat Enterprise Linux Server 5.3 with 4 gigabytes of physical memory and 366 

gigabytes of local storage available for the Hadoop Distributed Filesystem (HDFS). 

We also performed this computation using Amazon's EC2 [93] service on clusters of 

10, 20 and 40 nodes (80, 160, and 320 cores) running Hadoop 0.20. In each case, the 

Crossbow pipeline was executed end-to-end using scripts distributed with the 

Crossbow package. In the 10-, 20- and 40-node experiments, each individual node 

was an EC2 Extra Large High CPU Instance, that is, a virtualized 64-bit computer 

with 7 gigabytes of memory and the equivalent of 8 processor cores clocked at 

approximately 2.5 to 2.8 Ghz. At the time of this writing, the cost of such nodes was 

$0.68 per node per hour. 

Before running Crossbow, the read data must be stored on a filesystem the 

Hadoop cluster can access. When the Hadoop cluster is rented from Amazon's EC2 

service, users will typically upload input data to Amazon's Simple Storage Service 

(S3) [101], a service for storing large datasets over the Internet. For small datasets, 

data transfers are typically quick, but for large datasets (for example, more than 100 

gigabytes of compressed read data), transfer time can be significant. An efficient 

method to copy large datasets to S3 is to first allocate an EC2 cluster of many nodes 
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and have each node transfer a subset of the data from the source to S3 in parallel. 

Crossbow is distributed with a Hadoop program and driver scripts for performing 

these bulk parallel copies while also preprocessing the reads into the form required by 

Crossbow. We used this software to copy 103 gigabytes of compressed read data 

from a public FTP server located at the European Bioinformatics Institute in the UK 

to an S3 repository located in the US in about 1 hour 15 minutes (an effective transfer 

rate of about 187 megabits per second). The transfer cost approximately $28: about 

$3.50 in cluster rental fees and about $24 in transfer fees. 

Transfer time depends heavily on both the size of the data and the speed of the 

Internet uplink at the source. Public archives like NCBI and the European 

Bioinformatics Institute have very high-bandwidth uplinks to network backbones, as 

do many academic institutions. However, even at these institutions, the bandwidth 

available for a given server or workstation can be considerably less (commonly 100 

megabits per second or less). Delays due to slow uplinks can be mitigated by 

transferring large datasets in stages as reads are generated by the sequencer, rather 

than all at once. 

To measure how the whole-genome Crossbow computation scales, separate 

experiments were performed using 10, 20 and 40 EC2 Extra Large High CPU nodes. 

Table 12 presents the wall clock running time and approximate cost for each 

experiment. The results show that Crossbow is capable of calling SNPs from 38-fold 

coverage of the human genome in under 3 hours of wall clock time and for about $85. 

 

Whole Genome Genotyping  Runtime and Costs 

EC2 Nodes 1 master, 10 1 master, 20 1 master, 40 
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workers workers workers 
Worker CPU cores 80 160 320 
Wall clock time 6h:30m 4h:33m 2h:53m 

Approx. cluster setup time 18m 18m 21m 
Approx. Crossbow time 6h:12m 4h:15m 2h:32m 

Approximate cost (US/Europe) $52.36/ $60.06 $71.40/$81.90 $83.64/$95.94 
 

Table 12: Timing and cost for Crossbow experiments using reads from the 

Wang et al. study. 

 

Figure 27 illustrates scalability of the computation as a function of the number 

of processor cores allocated. Units on the vertical axis are the reciprocal of the wall 

clock time. Whereas wall clock time measures elapsed time, its reciprocal measures 

throughput, i.e., experiments per hour. The straight diagonal line extending from the 

80-core point represents hypothetical linear speedup, that is, extrapolated throughput 

under the assumption that doubling the number of processors also doubles 

throughput. In practice, parallel algorithms usually exhibit worse-than-linear speedup 

because portions of the computation are not fully parallel. In the case of Crossbow, 

deviation from linear speedup is primarily due to load imbalance among processors in 

the map and reduce phases, which can cause a handful of work-intensive “straggler” 

tasks to delay progress. The reduce phase can also experience imbalance due to, for 

example, variation in coverage. However, the fact that Crossbow achieves 

appreciable speedup even in the 100s-of-processors range is a positive result. 
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Figure 27: Crossbow speedup versus number of processor cores allocated. 
 

Conclusions 

It is increasingly critical to design software that can deal with all the 

implications of “big data.” Crossbow represents an important initial step in this 

direction. It is the first end-to-end comparative genomics pipeline implemented using 

the MapReduce programming model, and one of the first examples of a genomics 

tools designed to run on a commercial cloud computing service. The relative 

simplicity of Crossbow’s design is an indication that similar comparative genomics 

analysis pipelines could also be adapted to run using the MapReduce programming 

model. Also, the fact that Crossbow’s achieves appreciable speedup even in the 100s-

of-processors range is an indication that other pipelines can make profitable use of 

100s of processors. Crossbow is free, open source software available from the 

Crossbow website at http://bowtie-bio.sf.net/crossbow. 
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Chapter 5: Myrna: a “big data” approach to differential 
gene expression 
 

This chapter motivates a “big data” approach to messenger RNA sequencing 

data analysis, which is perhaps the single most commonly performed task in the field 

of comparative genomics. I will also describe Myrna, a software pipeline for 

detecting differential gene expression that runs in an efficient and scalable fashion 

atop the MapReduce programming framework and on commercial cloud computing 

services such as Amazon Web Services. I am the primary author of the Myrna 

software. Jeffrey Leek and Kasper Hansen developed and helped with the 

implementation of the statistical approaches, which are not discussed in depth here. A 

manuscript describing this work, including the statistical aspects, was published in 

2010 [69]. 

RNA-seq 

Sequencing of messenger RNAs (often abbreviated “mRNA-seq” or “RNA-

seq”) yields reads derived from messenger RNA molecules (“mRNAs”) present in 

one or more biological samples. An mRNA is a “transcribed” copy of a gene in the 

genome. The mRNA molecule (or “transcript”) is an intermediate product between a 

gene and the protein that the gene encodes. Each time we observe a particular mRNA 

in a sample, this constitutes evidence that the gene from which the mRNA was 

transcribed is “expressed” in the sample. Thus, whereas DNA sequencing is 

concerned with what DNA variants are present in the genome, RNA sequencing is 

concerned with which genes are turned on or off, and to what degree.  
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Subsequent discussion in this chapter will refer to “differential gene 

expression.” For the purpose of this discussion, we will assume that the differential 

expression analysis takes place at the granularity of genes. This is not always the unit 

of interest; some projects may be more interested in differential expression of exons 

(smaller portions of genes that combine to form transcripts) or of transcripts 

themselves (which have a many-to-one relationship with genes). Much of the 

discussion in this chapter apply equally well to exons and genes. For discussion of 

trasnscript-level analysis, see the Cufflinks publication [68]. 

Variability in RNA-seq 

The degree to which genes are expressed in a sample (i.e. its “gene expression 

profile”) is partly a property of the cell type being studied. In the human body, for 

example, a liver cell has one gene expression profile and a blood cell has a distinct 

gene expression profile. A critical question that emerges in many life science projects 

is: given two groups of samples, which genes are “differentially expressed” between 

the two? That is, which genes are turned on in one group and off in the other? 

Answering such questions allows us to better understand the relationship between 

gene expression and other phenomena of interest, such as disease. 

When studying gene expression, variability is a key consideration. Say that we 

are interested in studying differences in gene expression between livers and brains. 

We are encumbered by the fact that (a) given the same inputs, not every run of the 

sequencing machine produces the exact same results, and (b) not all livers are exactly 

alike and not all brains are exactly alike. Put another way, we have to contend with 

(a) technical variability and (b) biological variability. 
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If we take the same biological sample and use RNA-seq to sequence it twice, 

we will get somewhat different gene expression measurements. This is owing to 

“technical variability” introduced by the sequencer. Statistical techniques can be used 

to characterize and remove technical variability provided that we have “technical 

replicates” – i.e. many sequencing datasets using separate runs of the sequencer. 

Biological variability consists of all the “natural” variability between 

individuals. For instance, if we use RNA-seq to sequence the livers of individuals A 

and B and the spleens of individuals A and B, some of the observed gene expression 

differences between livers and spleens will be due to “liverness” versus “spleenness,” 

but some will be due to other apects of “individual A-ness” versus “individual B-

ness.” We can use statistical techniques to distinguish between the two as long as we 

have “biological replicates” – i.e. many sequencing datasets derived from different 

individuals but involving the same groups of interest (liver and spleen in this case). 

Taking biological variability into account is a critical need in modern comparative 

genomics research [102]. 

The need to take technical and biological variability into account necessitates 

sequencing of many replicates, which in turn yields larger datasets. It is interesting to 

note that, in this case, dataset size is driven not just by the capabilities of the 

sequencer, but is also by the need for accuracy and the difficulty of the scientific 

question being posed.  

Design of Myrna 

RNA-seq yields a collection of sequence reads per input sample. Each read is 

derived from mRNA molecule, which in turn is derived from a gene in the genome. 
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For differential expression, samples are divided into two or more “groups,” e.g. 

“liver” and “spleen.” To account for variability, there are generally many samples per 

group. 

Given these reads, differential-expression analysis often proceeds in three 

stages. First, reads are computationally categorized according to the gene from which 

each likely originated. This categorization step could be conducted comparatively 

with respect to a reference genome [103, 104], via de novo assembly [105, 106], or 

via a combination of both [67, 68, 107]. After reads are categorized, a normalized 

count of the number of reads assigned to each gene is calculated. This count is a 

proxy for the gene’s abundance in the sample. The count is also normalized in order 

to eliminate effects due to technical variability. Finally, a statistical test is applied 

with respect to each gene in order to determine whether the gene is differentially 

expressed between groups. 

Myrna is a “big data”-ready software pipeline for differential expression 

analysis of RNA-seq datasets. Myrna can be run in one of three modes: “Cloud 

mode” using Amazon Elastic MapReduce; “Hadoop mode” using a Hadoop cluster; 

or “Singleton mode” using a single computer. Cloud mode does not require any 

special software installation; the appropriate software is either pre-installed or 

automatically installed on the rented Amazon EC2 computers before Myrna is run. 

Singleton mode is also parallelized and can exploit a user-specified number of 

processors. Myrna is designed with the Apache Hadoop [95] open source 

implementation of the MapReduce [27] programming model in mind.  
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Steps in the Myrna pipeline 

Myrna's pipeline is depicted in Figure 28. Each stage exploits a different type 

of parallelism with the aim of maximizing scalability. The first stage (“Preprocess”) 

takes a list of files containing input reads and deposits a “preprocessed” version of the 

input to a filesystem visible to the cluster. When preprocessed, reads are converted to 

a one-pair-per-line format and are annotated with metadata, including the read's 

sample ID and the name of the file where it originated. The sample name might be of 

the form “Normal-1-1,” indicating that the sample is from the first technical replicate 

of the first biological replicate of the “Normal” group. The sample name “Cancer-3-

2” would indicate that the sample is from the the second technical replicate of the 

third biological replicate of the “Cancer” group. The Preprocess stage is parallel 

across input files. That is, input files is downloaded and preprocessed simultaneously 

and in parallel with other input files wherever possible. 
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Figure 28: Illustration of the steps in the Myrna pipeline. 
 
 

The second stage (“Align,” Figure 28a) aligns reads to a reference genome 

using Bowtie [18]. As discussed previously, Bowtie employs a compact index of the 

reference genome and requires about a few gigabytes of memory to store an index of 

the human genome. The user may specify options to be passed to Bowtie in this stage; 

the default is “-m 1”, which discards alignments for reads that align multiple places. 
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The alignment stage is parallel across reads; that is, reads are aligned simultaneously 

in parallel where possible. 

The third stage (“Overlap,” Figure 28b) calculates overlaps between 

alignments from the Align stage and a pre-defined collection of “gene interval sets.” 

In each instance where the rightmost (3'-most) nucleotide of an alignment overlaps 

any nucleotide of a gene interval set, an overlap record associating the (labeled) 

alignment with the gene is output. A gene interval set is the minimal set of intervals 

such that all contained nucleotides are covered by all transcripts annotated for the 

gene. Intervals where two or more genes overlap are omitted from all gene interval 

sets. Thus, Myrna essentially implements the “union intersection” model proposed 

previously [103]. The Overlap stage is parallel across alignments; that is, overlaps for 

distinct alignments are calculated simultaneously and in parallel where possible. 

The fourth stage (“Normalize,” Figure 28c) constructs a sorted vector of per-

gene overlap counts for each sample. A normalization factor is then calculated for 

each sample, typically by extracting a quantile from, or otherwise summarizing, the 

sample-specific gene count distribution. By default, Myrna extracts the the 75th 

percentile of the distribution of non-zero gene counts, as suggested previously [103]. 

Alternatively, the user may specify that Myrna use a different quantile or value, such 

as the median or total, as the normalization factor. The Normalize stage is parallel 

across samples. 

The fifth stage (“Statistics,” Figure 28d) examines counts for each gene and 

calculates and outputs a P-value describing the probability that differences in counts 

observed between groups are due to chance. The basic approach is to fit a generalized 



 

 94 
 

linear model relating the counts to the group from which the count was derived. 

Further details of the statistical approach, which is chiefly the work of colleagues 

Jeffrey Leek and Kasper Hansen, can be found in the Myrna publication [69]. The 

Statistics stage is parallel across genes. 

The sixth stage (“Summarize,” Figure 28e) examines a sorted list of all P-

values generated in the Statistics stage and compiles a list of the top N genes ranked 

by false discovery rate, where the parameter N is set by the user. In addition to the 

global significance results, more detailed statistical results and figures are returned for 

the top N genes. Since there is not much parallelism inherent in this task, Myrna 

performs the Summarize stage serially (on a single processor). The lack of parallelism 

is mitigated by the fact that this stage typically does not take very long. 

In the seventh stage (“Postprocess”), Myrna outputs a series of output files, 

including: (a) files listing all overlaps for each top gene, including alignment 

information that might indicate the presence of sequence variants, such as SNPs; (b) a 

table with estimated “Reads Per Kilobase of model per Million mapped reads” 

(“RPKM”) values for each gene in the annotation; (c) a sorted table of all P-values for 

all genes, along with a histogram plot; and (d) a series of plots showing the coverage 

for each of the top N genes, broken down by replicate and by group. These results are 

compressed and stored in the user-specified output directory. 

Using MapReduce for permutation testing 

One notable aspect of the differential gene expression test in the Statistics step 

(Figure 28d) is that P-values can be assigned either parametrically or non-

parametrically, depending on options specified by the user. When the non-parametric 
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approach is used, Myrna performs a computationally intensive permutation 

procedure. Here, Myrna calculates a large number of “null statistics” by repeatedly 

shuffling the sample labels and re-calculating the test statistic. At the end of this 

process, for each gene, Myrna has calculated one “observed statistic” using the 

original sample labels and a potentially large collection of null statistics using 

shuffled labels. For each gene, Myrna then assigns a P-value by calculating the 

observed statistic’s quantile with respect to the distribution of null statistics. I.e. if the 

gene’s observed statistic is greater than half the null statistics, its P-value is 0.5. If the 

observed statistic is greater than 95% of the null statistics, its P-Value is 0.05. 

The most computationally intensive aspect of this calculation is the 

construction of the null distribution, which boils down to sorting the list of all 

observed and null statistics. Hadoop’s facilities for efficient, distributed binning and 

sorting come in handy here; specifically, we can rapidly situate all the observed 

statistics within the larger null distribution by simply sorting all the observed and null 

statistics in one large bin, then scanning the bin. 

Cloud computing performance 

We demonstrate Myrna's performance and scalability using a large 

population-based RNA-seq experiment [108]. This experiment sequenced 69 

lymphoblastoid cell lines derived from unrelated Nigerian individuals studied by the 

HapMap project [99], the largest publicly available RNA-seq experiment at the time 

the Myrna manuscript was prepared. Each sample was sequenced at two separate labs 

(Argonne and Yale) on Illumina Genome Analyzer II instruments. For each sample, 

both labs contributed at least one lane of unpaired reads. In cases where a lab 
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contributed more than one lane, we excluded data from all lanes beyond the first. The 

total input consisted of 1.1 billion reads; one sequencing center generated 35 nt 

unpaired reads and the other 46 nt unpaired reads. All reads were truncated to 35 nt 

prior to alignment. For each gene, a minimal set of genomic intervals was calculated 

such that all nucleotides covered by the interval set were covered by all annotated 

gene transcripts. Where intervals for two or more genes overlapped, the overlapping 

subinterval was excluded from all sets. The result is one non-overlapping interval set 

per gene encoding the portions of the gene that are “constitutive” (included in all 

transcripts) according to the annotation, and unique to that gene. 

We ran the entire Myrna pipeline on this dataset using Amazon Elastic 

MapReduce [97] clusters of 10, 20 and 40 worker nodes (80, 160, and 320 cores). In 

each case, the Myrna pipeline was executed end-to-end using scripts distributed with 

the Myrna package. The nodes used were EC2 Extra Large High CPU Instances, that 

is, virtualized 64-bit computers with 7 GB of memory and the equivalent of 8 

processor cores clocked at approximately 2.5 to 2.8 Ghz. At the time of this writing, 

the cost of such nodes was $0.68 per node per hour, with an Elastic MapReduce 

surcharge of $0.12 per node per hour. 

Before running Myrna, the input read data must be stored on a file system 

accessible to the cluster. Users will typically upload and preprocess the input data to 

Amazon's Simple Storage Service (S3) [101] before running the rest of the Myrna 

pipeline. An efficient method to move data into S3 is to first allocate an Elastic 

MapReduce [97] cluster of many nodes and have each node transfer a subset of the 

data from the source to S3 in parallel. The first stage of the Myrna pipeline performs 
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such a bulk copy while also preprocessing the reads into the form required by later 

stages of the Myrna pipeline. This software was used to copy 43 gigabytes of 

compressed read data from a public HTTP server located at the University of Chicago 

to an S3 repository located in the US in about 1 hour 15 minutes (approximately 82 

megabits per second effective transfer rate). The transfer cost approximately $11: 

about $6.40 in cluster rental fees and about $4.30 in data transfer fees. 

Transfer time depends heavily on both the size of the data and the speed of the 

Internet uplink at the source. Public archives like National Center for Biotechnology 

Information and the European Bioinformatics Institute as well as many universities 

have very high bandwidth uplinks to Internet backbones, making it efficient to copy 

data between those institutions and S3. However, depending on the uplink speed at 

the point of origin of the sequencing data, it may be more desirable to run Myrna on a 

local computer or cluster rather than on a commercial cloud service. 

To measure scalability, separate experiments were performed using 10, 20 and 

40 EC2 Extra Large High CPU worker nodes (plus one master node). Table 13 

presents the wall clock running time and approximate cost for each experiment. The 

experiment was performed once for each cluster size. The results show that Myrna is 

capable of calculating differential expression from 1.1 billion RNA-seq reads in less 

than 2 hours of wall clock time for about $66. Figure 29 illustrates scalability as a 

function of the number of processor cores allocated. Units on the vertical axis are the 

reciprocal of the wall clock time. Whereas wall clock time measures elapsed hours 

per experiment, its reciprocal measures experiments per hour. The straight line 

extending from the 80-core point represents hypothetical linear speedup, extrapolated 
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assuming that doubling the number of processors also doubles throughput. In 

practice, parallel algorithms usually exhibit worse-than-linear speedup because 

portions of the computation are not fully parallel. For Myrna, deviation from linear 

speedup is primarily due to load imbalance among processors in the Align stage, but 

also due to a deficit of parallelism in some downstream stages (for example, 

Normalize and Postprocess). However, as was the case with Crossbow, the fact that 

Myrna achieves appreciable speedup even in the 100s-of-processors range is a 

positive result. 

 

Myrna Runtime, Cost for 1.1 billion reads from Pickrell et al. study 
EC2 Nodes 1 master, 10 

workers 
1 master, 20 
workers 

1 master, 40 
workers 

Worker processor cores 80 160 320 
Wall clock time 4h:20m 2h:32m 1h:38m 

Cluster setup 4m 4m 3m 
Align 2h:56m 1h:31m 54m 
Overlap 52m 31m 16m 
Normalize 6m 7m 6m 
Statistics 9m 6m 6m 
Summarize & Postprocess 13m 14m 13m 

Approximate cost (depends on 
location) 

$44.00/$49.50 $50.40/$56.70 $65.60/$73.80 

 

Table 13: Timing and cost for Myrna experiments using reads from the 

Pickrell et al. study. 
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Figure 29: Myrna speedup versus number of processor cores allocated. 
 

Conclusions 

Myrna brings a very common comparative genomics analysis pipeline – 

RNA-seq differential gene expression analysis – into the era of data intensive 

computing by adapting it to work in the MapReduce framework. Myrna is notable 

because the pipeline is substantially more complex than Crossbow, for example. Like 

Crossbow, Myrna performs alignment, followed by a step (“Overlap”) that is parallel 

be genome partition. After there, however, the pipelines diverge and Myrna goes on 

to perform computations parallel by sample (“Normalize”) and by gene (“Statistics”). 

Myrna’s use of Hadoop’s facilities for distributed sorting to facilitate non-parametric 

significance testing is particularly notable. Despite its complexity, Myrna is still able 

to process a very large RNA-seq dataset in a few hours for less than $100. This 

indicates that more comparative genomics pipelines, including complex pipelines, can 

be profitably adapted to the MapReduce framework in the future. 
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Myrna is free, open source software available from the Myrna website at 

http://bowtie-bio.sf.net/myrna. 
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