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Gene expression microarray data is used to answer a variety of scientific ques-

tions. For example, it can be used for gaining a better understanding of a drug,

segmenting a disease, and predicting an optimal therapeutic response. The amount

of gene expression data publicly available is extremely large and continues to grow

at an increasing rate. However, this rapid growth of gene expression data from labo-

ratories across the world has not fully achieved its potential impact on the scientific

community. This shortcoming is due to the fact that the majority of the data has

been gathered under varying conditions, and there is no principled way for combin-

ing and fully utilizing related data. Even within a closely controlled gene expression

experiment, there are confounding factors that may mask the true signatures when

analyzed with current methods. Therefore, we are interested in three core tasks that

we believe are important for improving the utilization of gene array data: similarity

search, signature detection, and confounder correction. We have developed novel

methods that address each of these tasks.



In this work, we first address the similarity search problem. More specifi-

cally, we propose methods which overcome experimental barriers in pariwise gene

expression similarity calculations. We introduce a method, which we refer to as

indirect similarity, which, unlike previous approaches, uses all of the information in

a database to better inform the similarity calculation of a pair of gene expression

profiles. We demonstrate that our method is more robust and better able to cope

with experimental barriers such as vehicle and batch effects. We evaluate the ability

of our method to retrieve compounds with similar therapeutic effects in two inde-

pendent datasets. We evaluate the recall ability of our approach and show that our

method results in an improvement of 97.03% and 49.44% respectively in the two

datasets over existing state of the art approaches.

The second problem we focus on is signature detection. Gene expression ex-

periments are performed to test a specific hypothesis. Generally, this hypothesis is

that there is some genetic signature common in a group of samples. Current meth-

ods try to find the differentially expressed genes within a group of samples using a

variety of methods, however, they all are parametric. We introduce a nonparamet-

ric approach to group profile creation which we refer to as the Weighted Influence

Model - Rank of Ranks method. For every probe on the microarray, the average

rank is calculated across all members of a group. These average ranks are then

re-ranked to form the group profile. We demonstrate the ability of our group profile

method to better understand a disease and the underlying mechanism common to its

treatments. Additionally, we demonstrate the predictive power of this group profile

to detect novel drugs that could treat a particular disease. This method leads the



detection of robust group signatures even with unknown confounding effects.

The final problem that we address is the challenge of removing known (anno-

tated) confounding effects from gene expression profiles. We propose an extension to

our non-parametric gene expression profile method to correct for observed confound-

ing effects. This correction is performed on ranked lists directly, and it provides a

robust alternative to parametric batch profile correction methods. We evaluate our

novel profile subtraction method on two real world datasets, comparing against sev-

eral state-of-the-art parametric methods. We demonstrate an improvement in group

signature detection using our method to remove confounding effects. Additionally,

we show that in a dataset with the true group assignments removed and only the

confounding effects labelled, our profile subtraction method allows for the discov-

ery of the true groups. We evaluate the robustness of our methods using a gene

expression profile generator that we developed.
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Foreword

Portions of this dissertation are derived from research and papers co-authored

by the candidate and published elsewhere. Chapter 2 is based on Indirect two-sided

relative ranking: a robust similarity measure for gene expression data [32]. Chapter

3 is based on A method for the detection of meaningful and reproducible group signa-

tures from gene expression profiles [33] and is the method used in Common effect of

antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol sup-

ports a key role of lipid homeostasis in schizophrenia [47]. The profile subtraction

method presented in Chapter 4 will be submitted for publication separately.
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Chapter 1

Introduction

Gene expression microarrays are used to answer a variety of scientific questions.

However, there still exist many challenges that current methods do not overcome.

This may lead to incorrect or missed scientific discoveries. In this thesis, I address

three core problems that I believe are important:

1. Similarity Search

2. Signature Detection

3. Confounder Correction

We develop new algorithms to address each of these: 1) Indirected Similarity,

2) Weighted Influence Model - Rank of Ranks, and 3) Profile Subtraction for Ranked

Lists. My hypothesis is that by using as much information from the database

while focusing on the development of nonparametric methods, we will overcome

the variability and noise introduced by confounding factors. This will lead to an

improvement in methods for similarity search, signature detection and confounder

correction.
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1.1 Background

There is a large amount of gene expression data, generated from microarray

experiments, that exists in the public domain. Gene expression microarrays attempt

to measure the amount of mRNA transcribed. This gives an estimate of the amount

of protein that is translated from this mRNA. Proteins are responsible for most

of the work in the cell, whether it is breaking down biomolecules or compounds ,

signaling other cells or pathways, or making up the infrastructure and machinery to

continue to transcribe DNA into mRNA. Gene expression profiling is often used to

understand the underlying mechanism of biological processes and pathways [12, 29],

to explain diseases and segment patients into subtypes of a disease [16, 44], and to

predict cancer prognosis [48, 60]. In addition, because it captures how the cell is

responding to each compound, gene expression data may be a excellent source for

investigating whether two drugs could have a similar therapeutic effect.

Unfortunately, gene expression data are inherently complex and difficult to

analyze and compare. There are many factors that complicate the process in-

cluding post-transcriptional modification (e.g., splicing), degradation of the mRNA,

changes in the translation rates from mRNA to polypeptide chains, as well as post-

translational modification (e.g., phosphorylation). In addition, the existing data

have been generated by many different laboratories across the world under a vari-

ety of experimental conditions. These experiments can be testing many different

hypotheses, such as the effect of a drug, i.e., pathways and genes affected by the

drug, or the cause of a disease, i.e., pathways and genes differentiated in affected

2



individuals. Furthermore, the gene expression profiles represent a complex response

to many unobserved factors in tandem beyond those being explicitly controlled in

the experiments. Lastly, the microarray technology itself introduces noise into the

results. All of these factors in combination result in confounding effects on the gene

expression profiles.

1.1.1 Similarity Search

Historically, when researchers compare gene expression profiles, they limit

themselves to data generated under similar experimental conditions. The ability

to compare gene expression profiles across experiments would substantially increase

both the questions that could be answered as well as the reliability of the results.

Recently, researchers at the Broad institute developed a new approach for detecting

gene expression similarity. Their tool, the Connectivity-Map (CMAP) [28], tackles

the problem of comparing gene expression profiles generated under diverse exper-

imental conditions. Unlike previous methods, they use a distribution statistic to

compare the ranked lists of expression probes. They show that this method is able

to overcome some of the experimental noise that can affect the gene expression

profile. This noise can arise from a wide range of confounding factors such as the

vehicle used to deliver the compound and the cell line used for the experiment. This

method is a substantial improvement over simple, hierarchical clustering which was

one of the previously preferred methods [21, 62]. We believe that the robustness of

this non-parametric method is largely driven by its dynamic use of ranked lists.

3



1.1.2 Signature Detection

The goal of gene expression experiments can vary widely but at the core they

have a common goal: the detection of a genetic signature in common within a group

of interest. This group may be a given treatment compared to controls, or a subtype

of a disease versus healthy individuals, or a profile of a patient who is more likely to

respond to a given treatment, or even relating to the prediction of the toxicity of a

compound versus safer alternatives to guide promotion into future human studies.

A gene expression experiment could be designed to evaluate any of these scientific

questions, but a method that generates more reliable and reproducible results (e.g.,

lists of DEGs) from this gene expression data is needed. Reproducibility has re-

mained low among these types of experiments, calling into doubt the validity of

the detected signatures. For example, using an identical set of RNA samples across

several different commercial platforms, Tan et al. [58] found only four common

(differentially expression genes) DEGs. Both Ramalho-Santos [50] and Ivanova [22]

independently found only six DEGs in common among approximately 200 identi-

fied in each study (even though they had a similar study design using the same

platform). In another study by Miller et al. [41], who compared the effect of vary-

ing platforms on the same samples, there were only 11 DEGs in common of 425

DEGs found by CodeLink and 138 DEGs found by the Affymetrix platform. These

are all examples of studies that exhibit how current methods are producing irre-

producible signatures. This lack of reproducible findings indicates the presence of

false positives, and that these methods may be overfitting the data. Furthermore,
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many methods are complex and only explain a group in a piecewise fashion (e.g., a

decision tree-type model). We believe that the ideal method does not require such

strict filtering that scientists in the field are used to and yet also remains simple and

robust.

1.1.3 Confounder Correction

Realizing that sometimes there are explicit, labelled confounding effects in a

gene expression dataset, methods for removing these confounded effects are of high

utility. This will lead to group profiles with increased robustness in the downstream

analysis. There have been a number of methods developed for dealing with the prob-

lem of detecting and removing confounding effects within gene expression profiles

[10, 25, 31, 35, 57]. Linear models are a commonly used approach and Limma [57] is

a popular package for R[49]. In addition to this method, other common methods in-

clude Combat[25] and SVA[31]. Additional methods include Geometric ratio-based

methods[38], Mean-centering methods[56], and Distance-weighted discrimination[5]

based on SVMs.

1.2 Our Proposed Solutions

We have identified the three main challenges that we see as being the biggest

barriers to knowledge discovery from gene expression data. Overall, we have focused

on developing methods that are robust to confounding effects. We believe that

by developing methods that use as much data as possible and by using this data
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in a way that remains nonparametric, our methods will not be as influenced by

confounding effects. These methods will therefore be able to make use of the large

amount of gene expression data in the public domain. We begin in Chapter 2 by

introducing a similarity measure that can be used to compare two gene expression

profiles. We have shown that this method is more robust to vehicle and batch effects.

Next, in Chapter 3, we focus on signature detection among a group of samples: one

of the core tasks of gene expression experiments. We focus on a nonparametric

approach that we believe leads to a method that is robust to experimental noise

and unlabeled confounding factors. We introduce our last method in Chapter 4 to

allow for confounder correction to be done efficiently when there are known, labelled

confounding effects. In order to remove these confounding effects we have created a

profile subtraction method that works on ranked lists.

1.2.1 Similarity Search

In Chapter 2, we describe the problem of overcoming experimental barriers in

pariwise gene expression similarity calculations. We introduce our new similarity

measure for comparing ranked lists. Current methods for this problem consider only

the information contained in the pair of gene expression profiles being compared.

Our approach is novel because it incorporates information in the rest of the database

to further refine our similarity calculation. Unlike the CMAP and other current

approaches, which performs a direct comparison of the gene expression profiles, our

approach captures the correlations in rankings between the target pair and the rest
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of the database. This results in a method which has empirically proven to be more

robust and. We show that our new method is able to better cope with experimental

barriers such as vehicle and batch effects. We evaluate the ability of this method to

retrieve compounds with similar therapeutic effects in two different datasets.

1.2.2 Signature Detection

Chapter 3 introduces and describes our rank of ranks method for group profile

creation. Our method is novel because it uses a nonparametric approach to detect

a robust but consistent signature of a group. This is different from the commonly

used parametric methods for detection signatures and finding differentially expressed

genes (DEGs). We evaluate the utility of this group analysis method using a pilot

study. Our evaluation consists of meta analysis methods for both understanding

the group profiles biologically as well as for demonstrating the ability to use a sig-

nature from these profiles as a predictive model of therapeutic use. We conclude

with a full analysis of the newer, and larger CMAP 2.0 dataset, including a sensi-

tivity evaluation of each group as well as the validation of the most robust profiles

within an independent dataset. In addition, another contribution of this work is the

independent validation of the published expression signature of antipsychotic drugs.

1.2.3 Confounder Correction

In Chapter 4 we provide an extension to our non-parametric gene expression

profile method to correct for observed confounding effects. This correction is per-
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formed on ranked lists directly and provides a robust alternative to parametric batch

profile correction methods. Our model is novel because it is non-parametric; most

other methods are parametric. We show that this method is more robust than all

of the parametric based methods that we have evaluated, which includes Limma,

Combat and SVA. We evaluate our method on two independent datasets and show

the improvement over alternative methods.

1.3 Contributions

The contributions of this thesis include a set of methods to improve knowledge

discovery from gene expression data. We have identified three main challenges that

are encountered when analyzing gene expression experiments: similarity search, sig-

nature detection, and confounder correction. We have introduced novel methods to

solve each of these challenges. For the task of similarity search, we have developed an

indirect similarity method, demonstrating the methods ability to overcome experi-

mental noise in finding the most similar gene expression profiles in a database. To

solve the signature detection problem we developed a robust group profile method,

referred to as our Weighted Influence Model, Rank of Ranks method. Again, we

demonstrated the ability of this method to overcome experimental noise and create

robust signatures of a group of profiles. We demonstrated the utility of these group

profiles for two key tasks: gaining biological insight into the underlying function

of a class of compounds, e.g., leading to a new hypothesis into the etiology of a

disease, and performing similarity search and classification to predict new mem-
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bers of a class. An additional contribution of this thesis is the analysis of over 200

therapeutic classes of compounds and the release of their profiles to our website,

GEPedia.org. This includes the validation of our previously published finding of the

common effect of antipsychotics on lipid homeostasis in schizophrenia. The last task

deals with known, labelled confounding factors and being able to successfully correct

for them. To solve this task we have developed a profile subtraction method which

is novel since it works on ranked lists. We have shown how this method can lead to

much more robust group profile detection. Another contribution of this thesis is the

creation of a group profile generator which has been used to more closely control

and evaluate the robustness of our methods.

1.4 Outline of Thesis

The roadmap for the chapter on similarity search is as follows. In Section 2.1

we define the problem of gene expression similarity detection as a comparison of

ranked profile lists. Next, we discuss the CMAP method and formalize how it works

(Section 2.2). In Section 2.3.1, we introduce and motivate a novel indirect two-sided

relative ranking method. The evaluation methodology is explained in Section 2.4,

results are presented in Section 2.5, and a brief discussion appears in Section 2.7. A

brief overview of related work for this area is presented in Section 2.6.

We then introduce our method to detect the signature of a group of samples

in Chapter 3. The motivation and description of the proposed group profile cre-

ation method are explained in Section 3.2. We evaluate the utility of this group
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analyses method in Section 3.3 where we focus on the antipsychotic group from the

Broad dataset (Section 3.3.1). The evaluation consists of both understanding the

group profiles biologically (Section 3.4) as well as demonstrating the ability to use

a signature of these profiles as a predictive model in Section 3.5. We analyze the

large dataset consisting of over 200 therapeutic classes (Section 3.3.1 and provide a

sensitivity analysis and independent validation in Section 3.6.2.

In Chapter 4 we propose an extension to our non-parametric gene expression

profile method to correct for observed confounding effects. This correction is per-

formed on ranked lists directly and provides a robust alternative to parametric batch

profile correction methods. Our profile subtraction method is described in Section 4.

We evaluate this method on two gene expression datasets (Section 4.3.1 and Sec-

tion 4.3.2). Additionally, we develop a gene expression profile generator which is

described in Section 4.4. Simulations from this gene expression profile generator are

allow us to make general assumptions on how our method is robust to varying the

tuning parameters of these newly introduced methods.

We conclude in Chapter 5 and discuss the contributions of this work. We

have introduced three core problems in working with gene expression data and have

presented our solutions to each of these problems. We have developed methods

that allow for better similarity search, signature detection, and confounder correc-

tion in the presence of noise in the data, which is know to be a large issue. We

have demonstrated how new scientific hypothesis can be generated from using these

improved methods, including among other topics, a new a hypothesis of how an-

tipsychotics work. We finish with a brief discussion on future research and examine
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the importance of continuing research in this field.
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Chapter 2

Similarity Search in Gene Expression Profiles

In this chapter, we introduce and motivate the problem of detecting pairwise

similarity among gene expression profiles. We formalize our definition of the problem

and present the current state of the art method. We then explain our novel indirect

similarity method and empirically demonstrate how it is more robust to experimental

noise that is a known issue in gene expression analysis. Specifically, we evaluate our

indirect method and show how it can achieve an improvement of 49.44% and 97.03%

in two independent datasets.

2.1 Problem Definition

Given a database D of treatments, i.e., drugs or other compounds, D =

t1, . . . , tn, suppose we are interested in querying the database with a selected query

treatment and returning other similar treatments. Typically we know the therapeu-

tic use or indication for the query, but may not have complete therapeutic informa-

tion for all the entries in the database. We may be trying to discover other drugs or

treatments, perhaps originally developed for a different therapeutic purpose, that

are likely to also share the same therapeutic properties as the query. These drugs

then are good candidates for further evaluation of a new use.

More specifically, for each treatment instance t in the database, there is both
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general information about the experimental conditions of the sample as well as the

actual experiment data from the microarray itself. The microarray data consists

of a collection of probe sets, probes(t). Each probe p ∈ probes(t) measures the

match to a particular genomic sequence. For each probe p, there is a raw expression

value EV (p) (calculated using MAS 5 algorithm [20]), as well as an amplitude A(p)

(the difference compared to control). The control is a reference baseline which is

the average expression value calculated from multiple untreated samples run within

the same vehicle and batch. Information specific to the treatment, i.e., the name

of the drug, the therapeutic class (class) and subclass (subclass) as defined by the

Physicians Desktop Reference (PDR) is also represented. There is also information

that describes the experimental conditions of the sample, specifically the molar

amount of substance (mol), the vehicle used for delivery of the drug (one of water,

EtOH, MeOH, DMSO) and the batch or round in which the sample was run.

We are interested in retrieving treatments t that are similar in some way

to a query treatment q. We measure similarity based on the probes of t and q.

Rather than measuring the absolute similarity in expression levels, we compare the

ranking of the probes. Using the ranks allows for a nonparametric comparison of the

gene expression profiles. Nonparametric methods have been shown to work well for

detecting differentially expressed genes in microarray data [59, 39, 40]. As mentioned

above, probes have both a raw expression value and an amplitude. This ranking can

be done based on either the raw value or the amplitude. The amplitude represents

the change in expression as compared to the control. We utilize the amplitude

because it measures the treatment effect. Amplitude a is defined as (t×c)/((t+c)/2),
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where t is the thresholded scaled average difference value (treatment) and c is the

thresholded average difference value (control). Control average difference values

were set to the arithmetic mean of the values from all matched controls. Average

difference values less than a given threshold value of 50 were set to that threshold

value. Any probes that yielded an amplitude change of 1 were re-evaluated with a

lower threshold of 5 and then these probes were sub-sorted within the overall ranked

list. These calculations follow what was done by Lamb et al. [28].

We use rank(p, probes(t)) to denote the rank of p in probes(t); i.e., if the

probes are sorted in order of their amplitude, then the rank is the position of p

in that ordering. We also introduce the uptags of t, Up(t) and the downtags of t,

Down(t). Up(t) is the set of k highest ranked probes in probes(t), i.e., the most

upexpressed as compared to control, and Down(t) is the set of k lowest ranked

probes in probes(t), i.e., the most downexpressed as compared to control.

2.2 Comparing Rankings

We are interested in finding drugs with similar therapeutic effect by com-

paring the rankings of probes in gene expression profiles of the drugs. The most

straightforward approaches to compare these ranked lists, for example calculating

the intersection of Up(q) and Up(t), quickly fail when there is any experimental

noise. More robust methods are needed to be able to combine and draw conclusions

from the large amount of gene expression data that has been created across many

laboratories.
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2.3 A Two-sided Approach

A more sophisticated approach to comparing the similarity of two rankings is

to compare both the uptags and downtags, and rather than looking simply at the

overlap in the sets of tags, take into account the relative ranking of the probe. We

will refer to this approach as the two-sided relative ranking approach. This type of

approach may be able to correctly weight both ends of the ranking and overcome

noise in the experimental data.

The CMAP approach [28] is a recently introduced treatment retrieval method

that is an example of a two-sided relative ranking approach. Here we formalize the

CMAP method and ground it in our example domain. The following equations are

adapted from [28]. The CMAP method is based on a similarity measure which uses

a truncated Kolmogrov-Smirnov (KS) statistic applied to the up and down probes of

the treatments. The KS statistic measures the similarity between two distributions;

the truncated KS statistic focuses on the tail end of the distributions. Given a query

treatment q and target treatment t, the KS score is high if a) the probes in Up(q)

tend to also be highly ranked in t, b) the probes in Down(q) tend to have low ranks

in t, and finally c) the probes in Up(q) tend to be more highly ranked in t than the

probes in Down(q). This is similar to the truncated statistical approach seen in [2]

in the whole genome association study in search of genetic markers for continuous

traits.

The KS statistic of treatment instance t, given a query instance q, KS(t, q),

is computed using the uptags and downtags of the two treatments. KS(t, q), in
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turn, is computed from two separate statistics, KSu(t, q) and KSd(t, q), which are

calculated on the uptags and downtags respectively.

KSu(t, q) measures where the uptags of the query are located within the dis-

tribution of probes in a treatment instance t. It is a number between −1 and 1. If

it is close to 1, it tells us that the uptags of q are also highly ranked in t, or more

specifically that the probes that are most upexpressed in the query instance also

tend to be upexpressed in the treatment instance.

In order to compute KSu, based on the selected set of probes, Up(q), we define

Upt(q) to be the probes in Up(q) sorted according to their rank in t, rank(p, probes(t)).

Next we define the rank of p in this new sorted set of probes:

rank(p, Upt(q)) = the position of p in Upt(q) (2.1)

We introduce shorthand pi = rank(p, probes(t)) and pj = rank(p, Upt(q))

Now we have the required information to compare the probe distributions

between the query and each treatment. Let

a = max
p∈Up(q)

[pj
k
− pi

n

]
(2.2)

and

b = max
p∈Up(q)

[
pi
n
− pj − 1

k

]
(2.3)

KSu is computed as follows:

KSu(t, q) =


a if a > b

−b otherwise

(2.4)

KSd is calculated analogously using Down(q).
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Finally we can calculate the truncated KS statistic using the KSu and KSd

as follows:

KS(t, q) =


KSu(t, q)−KSd(t, q) if sgn(KSu(t, q)) 6= sgn(KSd(t, q))

0 otherwise

(2.5)

Referring back to our original description of the properties that we were looking

for in the KS statistic, we see that when the sign of KSu and KSd are the same,

whether both positive or both negative, then the KS score is set to zero. This

indicates that there is a significant overlap between the two distributions. No clear

separation means that the two distributions are randomly dispersed, and that this

ranked list is not statistically similar to the query sequence. In the case where the

sign of the two values is different then the final KS score represents the separation

between the two distributions. This is done by calculating the difference between

KSu and KSd.

The CMAP approach was developed as a query system that directly compares

the query to each treatment in the database. It does not take into account any

further information about how the treatment instances in the database relate to

each other. We refer to this as a direct approach.

2.3.1 Indirect Two-sided Similarity

Next, we introduce an indirect two-sided relative ranking method which com-

pares the similarity between the query and treatment instance by comparing their

corresponding similarity to all the other instances in the database. Ideally, by com-
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bining hundreds or even thousands of pairwise distances, a more robust similarity

measure can be obtained. This is similar in spirit to a vantage point method for

computing similarity in metric spaces, where the distance between a pair of points

is computed based on their distance to a collection of vantage points [9].

Our indirect two-sided relative ranking is calculated by comparing the cor-

relation between how two treatments compare to the rest of the database. There

are many correlation measures, including parametric statistics such as Pearson co-

efficient and nonparametric statistics such as Spearman rank correlation coefficient.

Since we do not know ahead of time if the gene expression data is normally dis-

tributed, it is safer to use a nonparametric correlation measure. While there are a

number of nonparametric correlation measures which could be used, we chose the

Spearman rank correlation coefficient because of its widespread acceptance and ease

of use.

We compute the Spearman rank correlation coefficient by measuring the dif-

ference between the KS statistics for the query q and target treatment t, for all the

treatments in the database D.

Let KSD(q) = {KS(q, t1), KS(q, t2), . . . , KS(q, tn)} and let

KSD(t) = {KS(t, t1), KS(t, t2), . . . , KS(t, tn)}. Then we define the indirect two-

sided relative ranking of a query q and a treatment t, I2R(t, q) to be:

I2R(t, q) = Spearman(KSD(q), KSD(t)) (2.6)

where Spearman is the Spearman correlation statistic, which we will formally define

here.
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If there are no tied ranks, then the Spearman correlation is calculated as

follows.

1− 6
∑n

i=1(KS(q, ti)−KS(t, ti))
2

n(n2 − 1)
(2.7)

Where n is the number of instances in the database. This score is calculated

using all of the pairwise KS scores from q and t to each other instance ti. This

is equivalent to taking the Pearson’s correlation over the ranks. In the case where

there are tied ranks, the full Pearson’s correlation over ranks must be calculated.

The indirect similarity score is therefore a calculation of how two instances

individually compare to the rest of the database. If they tend to be similar, or

dissimilar, to the same instances then they are more likely to be similar to each

other.

An advantage of this method is that it can build on any individual pair-wise

similarity available. Here we have taken what we believe to be the current best

method, the KS statistic from the CMAP approach, and used this as our source

of pairwise similarities. If other, possibly better, direct similarity measures for the

treatments become available, we can easily incorporate them. Another advantage of

this method is that as more treatments are added to the database, additional evi-

dence is available, which can further increase the accuracy of our indirect similarity

calculation.
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2.4 Evaluation

As mentioned at the outset, we are interested in finding similar treatments by

comparing the gene expression profiles of drugs. Specifically, our goal is to improve

the ability to detect similarity in the presence of experimental noise. We focus our

evaluation on the case where we have known experimental noise, e.g., when 1) the

samples are delivered in different vehicles, 2) they belong to different batches, or 3)

they differ in both vehicle and batch (which corresponds to the most experimental

noise). Though vehicle and batch are not the only sources of experimental noise

they can easily be evaluated as they are both annotated.

The ideal outcome of such a discovery program is the in vivo validation of a

drug predicted by gene expression similarity to be useful for an unknown, alternative

indication. To simulate this goal, we propose calculating the average recall at rank

k of drugs of the same PDR classification. We measure this recall of drugs which

are known to be used for the same indication across vehicles, across batches, and

across both vehicles and batches. We focus our analysis on the most populated

PDR classifications, where 10 or more drugs from each group have been profiled,

which leaves us with 14 different groups. This filtering of groups is done to avoid

unrepresentative results caused by a small sample size. For the evaluation, we select

recall at rank k = 10, but we also demonstrate that these results are not greatly

affected by variations in k.

We begin with a simple example of our evaluation method for the PDR group

Histamine Antagonists.
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Given the group Histamine Antagonists :

1. For each histamine antagonist, determine the 10 most similar compounds using

each method (direct vs indirect)

2. Count the number of compounds of the same class, i.e., Histamine Antagonist,

that are screened in a different vehicle and different batch

3. Improvement of indirect over direct is represented as:

([indirect]− [direct])/[direct]

where [indirect] and [direct] are the number of recalled treatments from the

top 10 of each method respectively.

4. When [direct] = 0, and [indirect] ≥ 0 then we make note of this improvement

as a special case. 1

Table 2.1: Histamine Antagonists

Number of results returned by direct 2

Number of results returned by indirect 3

Improvement of indirect over direct 50%

The results of our example of comparing the two similarity methods for recall

at rank 10 across both different vehicles and different batches for the Histamine
1As reporting percent improvement does not make sense when the baseline is 0, so we do not

include these in our overall improvement calculation, but we note them as they are important

special cases
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Antagonists are shown in Table 2.1. In this case, the direct method finds two results

while indirect finds three, which is an improvement of 50%. This example analysis

compares the ability to recall other histamine antagonists across both vehicles and

batches.

2.5 Results

Using the evaluation criteria presented above, we compare the ability of the two

methods (direct and indirect) to overcome experimental noise. We have the ability

to evaluate how these methods work on two completely separate datasets. The first

is a large, proprietary dataset (GEPedia) from Vanda Pharmaceuticals. This dataset

contains a large number of drugs that have been profiled. The second is a public

dataset from the Broad Institute2 which contains 453 profiles. It is important to

note that this second dataset includes a substantial amount of replicates for many

of the compounds.

2.5.1 Vanda GEPedia Dataset

We start by comparing the two methods, direct and indirect, using the Vanda

GEPedia dataset. The average recall at rank 10 for the 14 PDR groups is presented

in Table 2.2. The indirect method improves over the direct method and is able

to recall 71.44% more true positives when searching across different vehicles. This

improvement is increased when searching across batches (94.93%). When attempt-

2http://www.broad.mit.edu/cmap
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ing to detect similarity across both vehicles and batches, which represents the most

experimental noise in our setup, the indirect method has an improvement in recall

of 97.03% as compared to the direct method. The indirect similarity method re-

calls almost twice the amount of true positives (similar drugs) as the direct method.

This level of improvement brings the potential for important scientific discovery and

impact of such a system.

As mentioned earlier, the average percentage improvement does not capture

the important special case that occurs if one of the methods does not retrieve any

treatments. These special cases are further examples of the ability of the indirect

similarity method to detect similarity when the direct method cannot. These cases

are listed below for those found across different vehicles , across different batches,

and lastly across both different vehicles and different batches (Table 2.3).

Table 2.2: Percent improvement of indirect similarity recall over direct similarity

recall in different conditions

Across Different Vehicles 71.44%

Across Different Batches 94.93%

Across Different Vehicles & Batches 97.03%

We have shown how overall, the indirect method which uses the Spearman

rank correlation has a higher recall at rank 10 than the direct KS method.
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Table 2.3: Novel Improvements - Instances found in conditions where the direct

method had found none

PDR Classification Vehicle Batch Vehicle and Batch

Antibiotic 12 11 8

Anesthetic 1 1 1

Antihypertensive 1 1 0

Anticonvulsant 0 2 2

2.5.2 In Depth Analysis

Next we study the largest groups (the groups with the most compounds pro-

filed) in more detail (Antibiotic, Histamine Antagonist, and Analgesic), in order to

a) verify that this is not an artifact of using k = 10 and b) to further inspect the

differences in the results returned by each of the methods.

2.5.2.1 Antibiotics

The antibiotics group has the largest amount of compounds in the database

(n = 58). This group is in the PDR class Antiinfective and the PDR subclass

Antibiotic. An antibiotic drug is one that inhibits the growth of micro-organisms.

The indirect method is able to recall eight antibiotics when searching across both

vehicle and batch, compared to 0 recalled by the direct method. This result is not

driven by any single treatment, i.e., each of these 8 recalled treatments is not only

unique, but they are recalled by distinct query treatments.
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Next, we demonstrate that these results are not biased by our selection of

k = 10. Figure 2.1(a) shows the recall of the two methods across both different

vehicles and batches with values of k ranging from 10 to 100. The indirect method

is able to recall more true positives independent of k. We can also evaluate how the

methods compare when searching over vehicle or batch separately. Figure 2.1(b)

shows that when searching across different vehicles only, the same trend is seen

as in Figure 2.1(a). Similarly, evaluating the two methods when searching across

different batches (Figure 2.1(c)), a similar trend is seen in which the indirect method

outperforms the direct method regardless of k.

2.5.2.2 Histamine Antagonist

The Histamine Antagonist group contains the second largest number of com-

pounds profiled (n = 24). This group is made up of drugs in the PDR class Res-

piratory Agent and PDR subclass Histamine Antagonist. A histamine antagonist

inhibits the release or minimizes the action of histamine. There are several subtypes

of histamine antagonist based on their binding affinity to the different histamine re-

ceptors. The H1 receptor antagonist, sometimes referred to as antihistamines, are

clinically used to treat allergies. The other common subtype, the H2 receptor antag-

onist, are commonly used to control the secretion of gastric acid. There are other

subtypes, namely H3 and H4; however, they are not often used clinically. Once

again we do not distinguish between these subtypes for our analysis; we use the

PDR classification.
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For the histamine antagonists, the direct method is able to recall two antihis-

tamines at or below rank 10 while the indirect method is able to recall three. This

corresponds to an increase of 50%. More specifically, the indirect method recalls

the same two treatments as the direct method in addition to a third novel treat-

ment. Figure 2.2(a) shows the ability of each method to recall histamine antagonists

across both different vehicles and batches. The recall at rank 20 and at rank 30 is

the same for the two methods, and then as k increases the indirect method improves

in its ability to recall histamine antagonists as compared to the direct method. In

splitting up the vehicle (Figure 2.2(b)) and batch (Figure 2.2(c)) analysis, we see

that the direct method is outperforming the indirect method in the across vehicle

analysis for smaller k, while underperforming against the indirect method in the

across batch analysis, which contains more instances.

2.5.2.3 Analgesic

The last group that we individually analyze is the Analgesic group (n = 23).

This group is defined as drugs belonging to the PDR class Central Nervous System

Agent and PDR subclass Analgesic. An analgesic, more commonly known as a

painkiller, acts in various ways on the peripheral and central nervous system in

order to reduce pain. Searching across both vehicles and batches the direct method

is able to recall one analgesic. The indirect method recalls the same treatment

in addition to two other treatments. The indirect method is able to recall three

analgesics in total which corresponds to a 200% percent increase.
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Figure 2.3(a) shows that the indirect method has a higher recall rate at every

level of k when searching across both vehicle and batch. The same is true when

searching across just a different batch (see Figure 2.3(c)). We see in Figure 2.3(b)

that the indirect method also does better for low k across different vehicles. It is

more important for a method to do better for low k because in a drug discovery

system you will start validation on the most promising hits first. It quickly becomes

cost prohibitive to explore a large set of leads.

2.5.3 Broad Dataset

Next, we replicate our findings using the publicly available gene expression

dataset from the Broad Institute. This dataset consists of 453 samples and was

released with the Connectivity Map tool. To allow for easier reproducibility, we

make use of the annotations provided on the CMAP website as opposed to custom

matching to the PDR annotations. In terms of PDR indications we instead use

what is described as Therapeutic Uses in the ChemBank [54] record linked to each

CMAP instance. There is no information provided about the vehicles used for each

sample. However, each instance is associated with a batch, and so we will use this

information to segment our data. To remain consistent and in order to have more

confidence in the results, only groups (Therapeutic Uses) with 10 or more instances

are used. The groups, along with the number of instances in each group, are listed

in Table 2.4.

Similar to what was observed before, the indirect similarity measure recalls
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more compounds of the same class than using the direct similarity measure alone.

The improvement of the indirect method over the direct method is 49.44% on the

Broad dataset. Once again, the indirect method allows for the ability to recall more

true positives, and the improvement is substantial.

We now analyze the three largest therapeutic groups from the Broad dataset.

Note that for this set of data we explore a smaller size for k. Given that this is a

smaller database we want to guarantee that we are only evaluating the top pairs.

We begin our analysis with the Antiinflammatory group.

2.5.3.1 Antiinflammatory

To illustrate this improvement, let us look at the group with the most com-

pounds: the antiinflammatory group. An antiinflammatory drug is a substance that

reduces inflammation. Many analgesics are antiinflammatory agents, alleviating

pain by reducing inflammation. The direct approach is able to recall 16 compounds

labeled as antiinflammatory that have been profiled in a different batch (k = 10).

The indirect approach, however, is able to recall 28 compounds that also are clas-

sified with a therapeutic use of antiinflammatory. The improvement of the indirect

method over the direct method can be seen in Figure 2.4(a). We see that the indi-

rect method is always better than the direct method, and this holds even more true

with lower k values.
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Table 2.4: Broad Dataset

Therapeutic Use Number of instances

antiinflammatory 28

anticonvulsant 21

antipsychotic (neuroleptic) 19

antiproliferative 16

tranquilizer 16

antineoplastic 15

analgesic 13

immunosuppressive agent 13

cardiovascular agent 10
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2.5.3.2 Anticonvulsant

The second group that we will focus on in the Broad validation sample is

the anticonvulsant group. Anticonvulsant drugs are used in the prevention and

treatment of epileptic shock. The mechanism by which these drugs work is by

suppressing the rapid firing of neurons. At k = 10 the direct method has a recall of

17 while the indirect method is able to recall 20 other anticonvulsants (from different

batches). Figure 2.4(b) shows that this trend generally holds for this group as well,

with a slight dip at k = 20.

2.5.3.3 Antipsychotic

The last group that we will evaluate is the antipsychotic group, which has

the third highest number of instances in the Broad dataset. Antipsychotic drugs

are used to treat psychosis. Neither method in this group is able to recall as many

instances as in the previous two groups. The direct method recalls 9 antipsychotics

while the indirect method recalls 6 (k = 10). The indirect method is able to gain an

advantage at k = 30, however, then the methods switch back again (Figure 2.4(c)).

The recall of both methods is much lower for this antipsychotic group (in the Broad

dataset) than previous groups and this is a possible explanation for why we do

not see improvement. Other potential explanations include the possibility that the

antipsychotics could have different, and unique, biological mechanisms of action and

therefore similarity is not detected by gene expression similarity, or alternatively that

the common mechanism is below the threshold used for similarity, namely that we
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used the 500 top and bottom probes.

2.5.4 Evaluating the Statistical Significance of Improvement

We have demonstrated that our indirect method results in a large improvement

in the recall of similar compounds over the direct method in the face of vehicle and

batch effects. Specifically, we have shown an improvement of known true positives

at rank 10 across a number of therapeutic groups. We evaluate if the difference

in ranks of these true positives is statistically significant. Our indirect method

does statistically better than the direct (CMAP) approach in 33% of the groups

while remaining as accurate as the direct method on the remaining groups. This

analysis is performed for the groups listed in Table 2.4 as follows. For each set of

instances belonging to a particular therapeutic group we use both methods (direct

and indirect) to determine the top 100 similar instances per method. We avoid

cases where neither method recalls the true positives within the top 100 instances,

as differences this far down the result listing is of limited practical interest. However,

if one method recalls an instance within the top 100, we include the rank for the

other method even if it is outside of the top 100, because we want to give either

method credit for these cases. We perform a paired t-test between the two methods

for each of the therapeutic groups. The indirect method is statistically better in 3/9

of the therapeutic groups when evaluating the top 100 results and is statistically

equivalent (no statistical difference between the methods) in the other 6 groups. In

selecting 100 as the threshold we evaluate at several other thresholds as well. The
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indirect method is never statistically worse than the direct method across all 900

evaluations (9 groups X 10 rank thresholds) and is statistically better in 22 cases,

including being statistically better at all thresholds 20-100 for the anti-inflammatory

group, which is the biggest group with 28 instances. The results for this analysis at

a search threshold of 100 are show in Table 2.5 and the followup sensitivity analysis

is shown in Table 2.6.

2.5.5 Evaluation For Classification on Additional Datasets

We have demonstrated how this novel method can work in a large, gene ex-

pression based, drug discovery framework which has been our motivating problem

and focus. We now analyze our indirect method on three smaller (public) datasets.

We evaluate how our indirect method performs in distinguishing cancer types (acute

myeloid leukemia versus acute lymphoblastic leukemia) and in predicting drug sen-

sitivity/resistance. Additionally, we demonstrate the ability to use our indirect

method to distinguish three very similar and related cell types in a third dataset.

2.5.5.1 Molecular Classification of Cancer

Golub et al. [16] evaluated the use of gene expression signatures to clas-

sify acute leukemias. They created a database of expression profiles of both acute

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) samples and

demonstrated how gene signatures can help to classify these subtypes of acute

leukemia. This is an important task, as the appropriate treatment for an individual
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depends on understanding the tumor type. Maximizing efficacy and minimizing

adverse events and toxicity is the goal, and this is best achieved by prescribing

chemotherapies that target the correct pathogenetically distinct tumor types.

This dataset consists of 52 samples (24 ALL and 28 AML). Analogous to

searching for similar drugs we can search for samples of the same cancer class, e.g.,

searching with an ALL sample should yield other ALL samples. In order to perform

the classification we use the majority vote of the top k results. In this case, the

majority vote of the top 11 results (as opposed to 10 to avoid ties) recalled by a

given sample is used to classify the sample. In this example, the direct method

does extremely well, accurately classifying every sample correctly. The indirect

method also correctly classifies every sample correctly. However, this is a high level

comparison and we can understand and evaluate the results in more detail by looking

at the individual rankings upon which the voting relies.

We describe the average rank (of samples of the same class) across the two

methods. The average rank for ALL by the indirect method is 12.2 compared to 14.5

for the direct method. The AML class also demonstrates an improvement where the

average rank for the indirect method is 20.5 versus 21.6 for the direct method. While

this improvement is consistent across both groups, the small number of groups in

this dataset does not readily allow us to evaluate the statistical significance. For this

we instead evaluate the underlying ranks for each sample. The full results are listed

in Table 2.7 and Figure 2.5 shows the corresponding ROC curve. The AUC for the

0.829 for the indirect method and 0.727 for the direct method. This difference is

statistically significant using the method described by DeLong et al [11] (p=1.13e-
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32). Note that k is set to 250 to compensate for there being roughly half of the

probes as used in the previous datasets (12, 564). The average rank improvement of

recalling similar samples is 1.7 when using the indirect method as compared to the

direct method.

2.5.5.2 Predicting Drug Sensitivity/Resistance

The next dataset (from Wei et al. [63]) that we evaluate consists of ALL ex-

pression profiles of individuals that are known to be sensitive or resistant to glucocor-

ticoid treatment, specifically in regards to childhood ALL. This is an important task

because a poor prognosis is linked to resistance to glucocorticoid-induced apoptosis

of primary lymphoblastic leukemia cells in vitro [27, 45, 19, 26]. There are 13 gluco-

corticoid sensitive samples and 16 that are glucocorticoid resistant (total n=29). As

before, we use a paired t-test comparing the average rank of recalling samples from

the same class (i.e., sensitive or resistant). The indirect method improves upon the

direct method by 0.45 on average across all samples.There are 22, 283 probes used

in this dataset and k is set to 500. The full results are listed in Table 2.8 and the

ROC curve is shown in Figure 2.6. The AUC is 0.635 for the indirect method and

0.608 for the direct method (p=1.90e-06).

2.5.5.3 Classifying (Related) Cell Types

The final dataset that we use to evaluate our indirect method is from Lu et

al. [36]. It consists of megakaryocyte-erythrocyte progenitors (MEP) as well as
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the two cell types that MEPs can differentiate into, namely megakaryocytes and

erythrocytes. Megakaryocytes are bone marrow cells that are responsible for the

production of platelets while erythrocytes are red blood cells. We refer to this

dataset as the MEP dataset. The original focus of Lu et al. [36] was to better

understand the differentiation process and was not evaluating the classification of

these three cell types. There are 320 probes, and we set k = 10 in order to maintain

roughly the same ratio as before.

This is another example of how the indirect method can improve over the direct

method even with a small dataset. There are only 3 classes and 27 total samples of

which 9 are erythrocytes, 10 are megakaryocytes and 8 are MEPs. Analyzing the

results in the same fashion as before we find that the indirect method statistically

improves upon the direct method once again with an average improvement of 1.1.

The ROC curve is shown in Figure 2.7 with the full listing of results in Table 2.9.

The AUC for the indirect method is 0.670 compared with 0.633 for the direct method

(p=4.13e-13).

2.5.6 Computational Complexity

We have presented a comparison of our novel indirect similarity method to the

normal direct similarity method in terms of increased true positives recalled at a

given threshold. We have thus far ignored the practical challenges that may occur

in implementing either of these methods in a production system. The transition to

using an indirect method has implications on both the time needed for calculating
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the similarity, as well as the space needed to store the information required by the

system to work efficiently.

One important thing to note is that we are evaluating the difference between

the indirect and direct similarity methods in the context of a knowledge discovery

framework. In this situation, the system already performs all pairwise similarity

comparisons to detect novel insights. This is quite different than the initial goal

of the CMAP method, which was first developed as a real-time, query based tool

for the web. The actual running time for the direct analysis was ∼ 24 hours to

calculate the KS scores versus ∼ 3.6 hours for the indirect similarity calculation. A

fair amount of effort was spent optimizing the indirect calculation and the indirect

calculation additionally benefited from being run on a highly parallel SAS server

optimized for such statistical calculations. We feel that it is more important to eval-

uate the theoretical computational complexity which follows below. Additionally,

this theoretical analysis applies to any new direct method.

2.5.6.1 Time Complexity

We assume that all the data has been preprocessed and is stored as a rank-

ordered list, reflecting the difference as compared to control. For the purpose of

this analysis, we are interested in the relative complexity of our indirect method

as compared to the complexity of the underlying direct method. As our indirect

method can use any underlying direct method as its base, we focus on the relative

complexity for a general comparison. Let us assume that the computational cost
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of one individual pairwise comparison using a given direct method is c1. The com-

plexity of performing all pairwise comparisons using the direct method is shown in

Eq. (2.8).

T (n) =
c1n(n− 1)

2
= O(n2) (2.8)

The implementation of the indirect method similarity takes advantage of reusing

this full matrix of direct comparisons and does not naively recalculate any direct

similarities. Once again, assuming a small constant, c2 ,to calculate the Spearman

correlation for a given pair, the time complexity of our indirect similarity method is

given in Eq. (2.9). It should be noted that in our current experimental setup c2 < c1,

as the computational complexity of the KS statistic far outweighs the complexity

of the Spearman correlation.

T (n) =
c1n(n− 1)

2
+

c2n(n− 1)

2
= O(n2) (2.9)

We have managed to keep the time complexity of our indirect similarity

method in the same order of magnitude as what is required by the underlying

direct similarity method. We next determine the impact that we have on the space

complexity of moving to an indirect approach.

2.5.6.2 Space Complexity

The data that needs to be stored is that of the individual ranked lists rep-

resenting the treatments as compared to their respective control. For our given
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application, this works out to be m · n, where m is the size of each ranked list

(in our case 22, 283) and n is the number of treatment instances. We ignore the

negligible space requirement needed for one individual direct comparison since this

intermediary is not retained. The space complexity is then once again O(n2) and

the direct similarities are stored as a n× n matrix. Analogously, the indirect simi-

larities are also maintained in an n×n matrix requiring O(n2) space as well. In the

current implementation, both of these space requirements are overshadowed by the

large space requirements of the initial dataset itself.

2.6 Related Work

The underlying idea of indirect similarity can be observed within other areas of

computer science research. For instance, examples of related approaches of indirect

similarity appear within the domains of collaborative filtering and entity resolution.

Work on item-based collaborative filtering, i.e. selecting items to recommend based

on similarity to other items, has been represented as an item-item correlation [52, 34].

Additionally, the general task of predicting the similarity of two drugs can be

seen as an extension of the entity resolution problem. The goal of entity resolution

is to reconcile database references corresponding to the same real-world entities.

However, as opposed to attempting to find identical items, we are interested in a

less strict threshold of similarity. Recent research in the area of entity resolution has

focused on the use of additional relational information between database references

to improve resolution accuracy [7, 6]. This improvement is made possible by resolv-
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ing related references or records jointly rather than independently. One example of

resolving similar entities by their joint similarity to the rest of the entities can be

seen in D-Dupe, a visual inspection tool for entity resolution, which has been shown

to work well for the entity resolution problem[8].

Many specifics of our method distinguish it from this other work, the most

obvious being that our similarity method is applied to complete, rather than par-

tially, ranked lists. Additionally, our indirect similarity does not require labeled

relationships but rather treats pair-wise similarities as the relationship.

2.7 Discussion

We have proposed a method for similarity search in gene expression data and

an evaluation method based on recall at rank k. Additionally, we have focused on

the ability to detect similarity despite known experimental biases, e.g., different

vehicles, different batches, or both different vehicles and batches. The importance

of improvements in recall are not confined to solely help to overcome such explained

experimental effects, but they are in fact representative of the larger set of unknown

environmental effects. It can thus be assumed that the indirect similarity measure

will be able to overcome unknown changes in gene expression experiments, and is

therefore well suited for comparing gene expression data from vastly different data

sources, as these data sources can be viewed as being separate batches.

Furthermore, we have shown that in a large, proprietary dataset, this indirect

method is able to overcome the experimental noise better and is able to recall a
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larger number of drugs that are similar to the query drug. More specifically, the

indirect method was able to increase the amount of known similar drugs recalled by

97.03% over the direct method. These results have also been validated on a public

dataset (Broad), for which the improvement in recall was 49.44%. The difference in

improvement is representative of the fact that the Broad dataset is both smaller and

less complex, i.e., contains more replicates. The benefit of the indirect method comes

from the information in the rest of the database and therefore the improvement is

expected to increase as the size and complexity of the database grows.

The ability to recall 50%-100% more compounds that are similar (similar based

on the annotations), gives a researcher an advantage in his/her analysis. In one

scenario, using the indirect method may decrease the amount of candidates that

might have to be followed up in an experiment or drug discovery system, thereby

saving time and effort by not chasing false negatives. This in turns allows more

confidence in the results generated by such a system. More importantly, it also

brings the community an additional step closer to being able to pull together and

learn from the large amount of data that exists in the public domain, which continues

to grow every day.

However, it is important to acknowledge that there are many potentially av-

enues for improvement and further research for this problem. One of the nice prop-

erties of the indirect approach is that it can be built upon any direct similarity

method. If better direct methods are developed in the future then the indirect

method can be adapted to use such methods. The work presented in this section

has dealt with the task of adapting to and overcoming experimental bias in gene
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expression data, specifically for the task of comparing two samples directly. Other

potential paths of future research could include more complex comparisons, e.g.,

analyzing groups of compounds together, as well as a more thorough evaluation of

selecting the optimal size of k for a given dataset.

Table 2.5: Statistical Analysis of the Improvement in Rank

Therapeutic Use N Mean Improvement StdDev tValue P

analgesic 29 90.43 117.55 4.14 0.0003

anti-inflammatory 160 30.12 115.04 3.31 0.0011

anti-psychotic (neurole 69 25.57 73.36 2.90 0.0051

immunosuppressive agent 67 7.96 40.42 1.61 0.1120

tranquilizer 68 14.43 73.95 1.61 0.1124

cardiovascular agent 22 10.82 69.37 0.73 0.4726

anti-neoplastic 54 10.33 114.65 0.66 0.5106

anti-convulsant 144 -4.50 92.09 -0.59 0.5585

anti-proliferative 86 -1.86 77.86 -0.22 0.8252
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Table 2.6: Statistical Analysis of the Improvement in Rank - Sensitivity Analysis

Search Size: 10 20 30 40 50 60 70 80 90

Therapuetic Use

analgesic 0.136 0.087 0.041 0.020 0.001 2.0E-04 0.004 0.001 0.002

anti-convulsant 0.811 0.529 0.932 0.636 0.918 0.856 0.478 0.481 0.512

anti-inflammatory 0.151 0.040 0.034 0.033 0.002 0.001 0.003 0.002 0.004

anti-neoplastic 0.412 0.842 0.943 0.928 0.577 0.804 0.919 0.909 0.779

anti-proliferative 0.148 0.553 0.778 0.659 0.987 0.881 0.942 0.837 0.837

anti-psychotic (neurole 0.905 0.852 0.686 0.674 0.529 0.129 0.063 0.024 0.006

cardiovascular agent 0.647 0.267 0.496 0.496 0.540 0.795 0.984 0.801 0.687

immunosuppressive agent 0.047 0.664 0.642 0.550 0.525 0.525 0.554 0.323 0.323

tranquilizer 1.000 0.580 0.579 0.921 0.665 0.619 0.413 0.290 0.159
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(a)

(b)

(c)

Figure 2.1: Antibiotic recall at rank k (a) across both different vehicles and batches,

(b) different vehicles, and (c) different batches. There are n = 56 antibiotic instances

in this dataset.
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(a)

(b)

(c)

Figure 2.2: Histamine Antagonist recall at rank k across (a) both different vehicles

and batches, (b) different vehicles, and (c) different batches. There are n = 24

Histamine Antagonist instances in this dataset.
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(a)

(b)

(c)

Figure 2.3: Analgesic recall at rank k across (a) both different vehicles and batches,

(b) different vehicles, and (c) different batches. There are n = 23 antibiotic instances

in this dataset.
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(a)

(b)

(c)

Figure 2.4: Broad validation results with varying k on top 3 groups: a) AntiInflam-

matory (n = 28) b) Anticonvulsant (n = 21), and c) Antipsychotic (n = 19).
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Figure 2.5: ROC curve showing the difference in sensitivity and specificity between

the direct and indirect method for the task of predicting subtypes of cancer (AML

versus ALL). The indirect method (shown in blue) performs better than the direct

method (shown in red). The difference is statistically significant (p=0.0001 for the

paired t-test on the underlying ranks).
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Figure 2.6: ROC curve showing the difference in sensitivity and specificity between

the direct and indirect method for the task of predicting sensitivity or resistance

to glucocorticoids. The indirect method (shown in blue) improves upon the direct

method (shown in red). The difference is statistically significant (p=0.0156 for the

paired t-test on the underlying ranks).
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Figure 2.7: ROC curve showing the difference in sensitivity and specificity between

the direct and indirect method for the task of classifying cell types (megakaryocyte,

erythrocyte, and their corresponding progenitors, i.e., megakaryocyte-erythrocyte

progenitors). The indirect method (shown in blue) outperforms the direct method

(shown in red). The difference is statistically significant (p=0.0035 for the paired

t-test on the underlying ranks).
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Table 2.7: AML vs ALL Average Rank

Sample Class Indirect Direct

ALL 1 ALL 12.0 13.3

ALL 2 ALL 12.0 14.1

ALL 3 ALL 12.1 19.2

ALL 4 ALL 12.0 14.3

ALL 5 ALL 12.0 15.4

ALL 6 ALL 12.0 12.7

ALL 7 ALL 12.0 12.1

ALL 8 ALL 12.0 16.0

ALL 9 ALL 12.0 12.3

ALL 10 ALL 12.0 12.3

ALL 11 ALL 12.0 14.1

ALL 12 ALL 12.0 12.0

ALL 13 ALL 12.2 16.4

ALL 14 ALL 12.0 13.0

ALL 15 ALL 12.0 13.0

ALL 16 ALL 12.0 16.9

ALL 17 ALL 12.1 14.8

ALL 18 ALL 12.0 13.1

ALL 19 ALL 12.0 14.1

ALL 20 ALL 17.0 21.3

ALL 21 ALL 12.0 13.5

ALL 22 ALL 12.0 13.3

ALL 23 ALL 12.0 14.1

ALL 24 ALL 12.0 17.4

AML 1 AML 18.5 20.7

AML 2 AML 18.3 19.5

AML 3 AML 18.3 19.9

AML 4 AML 18.3 19.2

AML 5 AML 18.6 21.7

AML 6 AML 18.4 20.3

AML 7 AML 18.3 19.3

AML 8 AML 18.4 20.7

AML 9 AML 18.3 19.6

AML 10 AML 18.4 21.4

AML 11 AML 20.4 25.9

AML 12 AML 18.3 19.7

AML 13 AML 18.4 20.7

AML 14 AML 18.2 19.1

AML 15 AML 18.5 20.8

AML 16 AML 18.2 19.4

AML 17 AML 18.5 20.7

AML 18 AML 18.4 20.3

AML 19 AML 18.2 19.9

AML 20 AML 18.3 19.9

AML 21 AML 18.3 19.8

AML 22 AML 18.4 20.3

AML 23 AML 18.3 19.6

AML 24 AML 34.3 28.1

AML 25 AML 34.3 28.5

AML 26 AML 33.9 28.3

AML 27 AML 34.3 30.4

AML 28 AML 14.0 22.4
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Table 2.8: Glucocorticoid Sensitivity / Resistance Average Rank

Sample Class Indirect Direct

DT2004021428-738 S 10.1 12.6

DT2004021429-976 S 9.8 10.5

DT2004021430-1047 S 10.0 10.6

DT2004021431-1219 S 13.6 12.8

DT2004021432-1241 S 13.3 12.1

DT2004021433-1299 S 9.0 9.6

DT2004021434-1307 S 7.9 8.7

DT2004021435-1477 S 7.3 7.8

DT2004021436-1533 S 12.5 12.2

DT2004021437-1553 S 12.4 13.1

DT2004021438-1657 S 14.7 14.0

DT2004021439-1684 S 10.2 9.5

DT2004021440-1696 S 12.1 13.2

DT2004021441-329 R 11.0 12.1

DT2004021442-557 R 9.8 10.7

DT2004021443-685 R 16.8 15.7

DT2004021444-789 R 12.1 12.7

DT2004021446-865 R 20.3 19.2

DT2004021448-1466 R 13.3 13.9

DT2004021449-1652 R 13.3 14.8

DT2004021451-1755 R 11.9 12.7

DT2004021452-2078 R 11.9 13.3

DT2004021453-2200 R 16.5 15.7

DT2004021454-2209 R 14.1 14.5

DT2004021455-vu8978 R 12.0 13.3

DT2004021456-vu9023 R 10.2 11.8

DT2004021457-vu9573 R 10.5 10.7

DT2004021458-vu9728 R 12.0 13.3

DT2004021459-vu9951 R 13.9 14.6
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Table 2.9: MEPs (Megakaryocyte-Erythrocyte Progenitors Average Rank

Sample Class Indirect Direct

ERY1-1 ERY 10.3 13.1

ERY1-2 ERY 9.5 8.8

ERY1-3 ERY 14.0 16.4

ERY1-4 ERY 10.3 14.9

ERY2-1 ERY 16.4 16.4

ERY2-2 ERY 15.8 18.1

ERY2-3 ERY 12.8 13.6

ERY3-1 ERY 18.6 18.4

ERY3-2 ERY 18.6 17.5

MEGA1-1 MEGA 7.3 7.3

MEGA1-2 MEGA 6.9 5.8

MEGA1-3 MEGA 13.7 11.3

MEGA1-4 MEGA 12.1 14.9

MEGA2-1 MEGA 8.2 7.7

MEGA2-2 MEGA 7.0 8.6

MEGA2-3 MEGA 7.3 7.1

MEGA2-4 MEGA 7.4 7.1

MEGA2-5 MEGA 8.7 8.7

MEGA2-6 MEGA 7.4 7.6

MEP-1 MEP 6.1 9.1

MEP-2 MEP 6.0 7.0

MEP-3 MEP 6.3 8.7

MEP-4 MEP 6.1 7.0

MEP-5 MEP 6.1 8.4

MEP-6 MEP 6.3 8.7

MEP-7 MEP 4.7 8.1

MEP-8 MEP 6.1 8.1
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Chapter 3

Signature Detection

In the previous chapter, we tackled the problem of detecting pairwise similarity

in gene expression data. We showed how the use of additional knowledge in the

database can lead to more informed decisions by making use of our proposed indirect

similarity method. However, there are many limitations of a pairwise similarity. The

most important such limitation is understanding what is driving the similarity. In

our example domain of detecting drugs with the same therapeutic use, let us assume

that we detect a high similarity between two drugs, an antipsychotic drug and an

antibiotic drug. We do not know why they are similar, or more formally: is the

antibiotic drug acting like an antipsychotic drug, or vice versa? In terms of the

hypothesis of a drug discovery system: should the antipsychotic drug be tested as

an antibiotic drug? Or should the antibiotic drug be tested as an antipsychotic

drug? Could it even be something completely different, maybe a side effect that

they share in common? These are all questions that we cannot begin to answer

when restricted to using solely a pairwise similarity.

Microarray experiments, whether they set out to discover biomarkers for a

particular disease or to characterize a group of similar tissue samples, tend to have

the same outcome: the signature detection of a list of differentially expressed genes

(DEGs). We propose the creation of a group profile that will serve as the rep-

53



resentative profile for a given group of interest. A gene expression profile is the

representation of the activity of thousands of genes at once for a given sample. In

our motivating examples these profiles each correspond to one microarray experi-

ment, but the method is general and can extend to other input data types. A group

profile represents the shared activity of these thousands of genes across all of the

member samples belonging to the group. For example, we can create a group profile

consisting of all available antipsychotic drugs; we refer to this as an antipsychotic

profile. Traditionally, researchers attempt to find probes or genes that form the

signature for a group by evaluating probes above a certain fold-change threshold.

Fold-change refers to the ratio of change between Treated, t, and Control, c, such

that the fold-change of treatment compared to control would be t/c. These meth-

ods will detect the signature common to the group in the rare case that the shared

effect is incredibly strong (and there are no large experimental biases between the

expression profiles). However, the majority of the time, the true signal is missed

because it is not significantly up- or down-expressed in every one of the instances

that make up a group (we refer to this as the full group). These methods prefer-

entially detect very big changes within a subgroup of samples and then merge all

of these differentially expressed genes with a combination function. Unfortunately,

this approach does not find true signatures common to the full group and allows the

method to overfit the data. Our method differs from most other methods by focus-

ing on detecting signatures common to the full group, signatures that are normally

overlooked by other methods, e.g., decision trees and support vector machines[46],

linear models[57], etc., which can explain a group as a combination of rules defining
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unknown subgroups.

The representation of a group profile is a ranked list of all probesets on the

microarray. A benefit of our approach is that this is the same representation as a

single profile. This representation allows any current and future methods for non-

parametric gene expression data to be used with our group profiles. We can focus

on the most up- and down-expressed probesets from the profile, which we refer

to as the signature of the group (separately they are the up and down signatures

respectively). For example, we can make use of methods developed by others (e.g.,

Connectivity Map (CMAP) [28]) to use this antipsychotic group profile to search a

database for drugs sharing the same signature. Alternatively, we can use still other

methods (e.g., the L2L Microarray Analysis Tool [43]) to evaluate if any particular

biological process is overrepresented within this signature, an approach that would

provide additional insight into the common mechanism of antipsychotic therapies.

In this chapter, we introduce and describe our rank of ranks method for group

profile creation. We evaluate the utility of this group analysis method using a

pilot study in which we focus on the antipsychotic group from the original CMAP

build 01 dataset. Our evaluation consists of both understanding the group profiles

biologically and demonstrating the ability to use a signature from these profiles as a

predictive model of therapeutic use. We conclude with a full analysis of the newer,

and larger CMAP build 02 dataset, including a sensitivity evaluation of each group

as well as the validation of the most robust profiles within an independent dataset.

In addition, another contribution of this work is the independent validation of the

published expression signature of antipsychotic drugs. All the results are available
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at GEPedia.org.

3.1 Problem Definition

Given a database D of treatments (i.e., drugs or other compounds), D = X1,...,

Xn, we are interested in creating a set of group profiles. A group can be defined as

a set of instances (e.g., cells treated with a particular drug) that share something

of interest in common (e.g., the same therapeutic use, mechanism of action, side

effect, chemical structure). We are interested in understanding what is biologically

common for a given group profile as well as evaluating the ability to query the

database with the group profile to predict new members of the group. Our goal is

to discover other drugs or treatments, perhaps originally developed for a different

therapeutic purpose, which are likely to also share the same therapeutic properties

as the query group. These therapeutic agents are thus good candidates for which

new uses can then be evaluated.

For each treatment instance X in the database, there is both general informa-

tion about the experimental conditions of the sample as well as the actual experi-

ment data from the microarray itself. The gene expression profile is represented as

a ranked list (amplitude of the treatment as compared to the control). Amplitude

a is defined as follows: a = (t− c)/((t+ c)/2)[28]. Information specific to the treat-

ment (i.e., the name of the drug, the therapeutic class [class] and subclass [subclass]

as defined by the chemicals Anatomical Therapeutic Chemical [ATC] code) is rep-

resented. There is also information that describes the experimental conditions of
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the sample, specifically the molar amount of substance (mol), the vehicle used for

delivery of the drug (e.g., water, EtOH, MeOH, DMSO), and the batch or round in

which the sample was run. A group, and therefore a group profile, can be created

from any of these meta-labels associated with the samples.

3.2 Group Profile Creation (Weighted Influence Model - Rank of

Ranks Method)

Previous methods have demonstrated that weighted distribution-based statis-

tics can be more robust in detecting similarity in the pairwise comparison of gene

expression data [28]; therefore, we propose a method for determining what is com-

mon among a group by also using a weighted method. This dynamic weighting of

probes allows us to avoid strictly filtering any probes as is done with a fold-change

threshold approach. We calculate the average rank of each probe across the members

of the group and then re-rank the probes based on this average rank. We refer to

this as the Weighted Influence Model, Rank of Ranks (WIMRR) method. The rank

of each probe within each treatment X is known: rank(p, X). Let us assume we have

a binary membership function, member(X, G), that returns 1 if treatment instance

X is a member of group G and returns 0 otherwise. The size of the group is equal to

the number of treatment instances that are members of the group (Equation 3.1).

size(G) =
n∑

i=1

member(X,G) (3.1)

The average rank across all of the members of a given group for each probe is
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then calculated as described in Equation 3.2.

avgRank(p,G) =

∑n
i=1 rank(p,Xi)×member(Xi, G)

sizeG
(3.2)

Given this set of average ranks across the members of a particular group,

the probes are now re-ranked according to how consistently they are up- or down-

expressed across the group. We define Profile(G) as the probes in probes(G) sorted

by their average rank across all members of the group (Equation 3.3).

Profile(G) = {(p1, avgRank(p1, G)), (p2, avgRank(p2, G)), . . . , (pm, avgRank(pm, G))}

(3.3)

3.3 Group Profile Evaluation - A Pilot Study

We make use of the original CMAP dataset (build 01) from the Broad Institute

to evaluate our group profile method as part of a pilot study. We refer to this as the

CMAP 1.0 dataset. We use this smaller, simpler dataset to characterize our method.

Later, we analyze the newer CMAP build 02 dataset (CMAP 2.0), which contains

many more treatments. For each treatment instance in the CMAP dataset, probe

sets are first ranked based on their level of expression relative to the vehicle control

in a fashion similar to the method described by Lamb et al. [28]. A group profile

is then created for each therapeutic use according to the ChemBank annotation for

the instances using our novel WIMRR method. The signature of each group profile

is created by selecting the top and bottom k probes. For this evaluation, we set k
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= 50.

3.3.1 Antipsychotics from Pilot Study

We focus on the antipsychotic profile from the CMAP 1.0 dataset as an exam-

ple by which to analyze the WIMRR group profile creation method. The antipsy-

chotic group is selected as the example because it includes a large number of unique

drugs. The instances from the CMAP 1.0 dataset that are labeled as antipsychotic

agents according to ChemBank are used to create this group. The antipsychotics

profiled in this dataset include chlorpromazine, clozapine, haloperidol, thioridazine,

and trifluoperazine. There are 19 profiles total for this group, consisting of replicates

across different concentrations. The group profile is created and the top and bottom

50 probes are selected to serve as the signature for this group (shown in Table 1).

The top and bottom probes can both provide valuable insight. We focus on

the top 50 probes, but the same analysis can be performed with the bottom 50

probes in an analogous way. The amplitude value for the top 50 probes across

all antipsychotics is shown in Figure 1. The amplitude value for the top probe

(Affymetrix probe id 201170 s at) is shown in Fig. 2A. This probe, which corre-

sponds to the basic helix-loop-helix domain containing, class B, 2 (BHLHB2) gene,

is almost exclusively up-expressed in all of the antipsychotic instances. We evaluate

the specificity of this probe by determining how this probe behaves across the whole

database (Fig. 3). All but one of the antipsychotic instances (pink dots in first col-

umn) show a clear increase in expression levels. The next set of groups all contain

59



Figure 3.1: Amplitude values for top 50 probes of antipsychotic profile within each

of the antipsychotic instances within the Broad dataset. Replicates are designated

by different colors.

drugs that are known to also act as antipsychotics; this is expected if this probe is

predictive of antipsychotic activity. The second group is the tranquilizers (includes

prochlorperazine, fluphenazine, and trifluoperazine), the third group is antiemetics

(includes prochlorpromazine and trifluoperazine), and the fourth group is the anti-

neoplastics (includes prochlorpromazine). There is a clear pattern of antipsychotic

activity related to the up-expression of this probe across the database.

We now compare what we have seen with the top probe from our method with

a probe selected using more conventional methods. A potential alternative method

for selecting probes (and genes) of interest that has been used extensively in the
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Table 3.1: The top 50 probes of the up- and down-expressed signature from group

profile created from the antipsychotic instances in the CMAP 1.0 dataset.

Up Rank Probe Gene Avg Rank

1 201170 s at BHLHB2 2192.3684

2 212276 at LPIN1 2431.2105

3 201627 s at INSIG1 2681

4 221577 x at GDF15 2710.3684

5 202672 s at ATF3 2833.3158

6 202769 at CCNG2 2844.9474

7 208962 s at FADS1 3100.9474

8 209146 at SC4MOL 3405.4211

9 208647 at FDFT1 3427.7895

10 214326 x at JUND 3495

11 208933 s at — 3504.7895

12 210512 s at VEGFA 3556.7895

13 33304 at ISG20 3594.3158

14 201626 at INSIG1 3609.1053

15 208786 s at MAP1LC3B 3751.5789

16 209218 at SQLE 3795.4211

17 207156 at HIST1H2AG 3804.6842

18 202842 s at DNAJB9 3849.2105

19 204014 at DUSP4 3896.2632

20 200779 at ATF4 3970.2105

21 203751 x at JUND 4034.4737

22 216038 x at DAXX 4034.7895

23 212286 at ANKRD12 4061.3158

24 201625 s at INSIG1 4081.8421

25 211559 s at CCNG2 4088.3158

26 202540 s at HMGCR 4104.4211

27 201631 s at IER3 4128

28 201465 s at JUN 4231.1579

29 211162 x at SCD 4292.3684

30 211979 at GPR107 4308.3158

31 213877 x at TCEB2 4366.0526

32 221750 at HMGCS1 4420.6842

33 200831 s at SCD 4496.8947

34 217996 at PHLDA1 4505

35 203752 s at JUND 4525.9474

36 218041 x at SLC38A2 4548.8421

37 202419 at FVT1 4575.5263

38 206648 at ZNF571 4587.5789

39 202820 at AHR 4610

40 202558 s at STCH 4610.2105

41 203665 at HMOX1 4635.5789

42 203726 s at LAMA3 4637.1053

43 218412 s at GTF2IRD1 4658.7368

44 208961 s at KLF6 4673.8947

45 205047 s at ASNS 4698.8947

46 217310 s at FOXJ3 4708.1579

47 207601 at SULT1B1 4708.5263

48 219527 at MOSC2 4753.2632

49 220219 s at LRRC37A 4753.5263

50 212274 at LPIN1 4773.6842

Down Rank Probe Gene Avg Rank

1 218918 at MAN1C1 19454.9474

2 204039 at CEBPA 18929.1579

3 202613 at CTPS 18600.4737

4 203699 s at DIO2 18516.0526

5 200768 s at MAT2A 18492.2105

6 219800 s at — 18461.3158

7 220771 at LOC51152 18347.7895

8 208502 s at PITX1 18346.7895

9 214266 s at PDLIM7 18293.9474

10 201667 at GJA1 18242.5263

11 204553 x at INPP4A 18220.6842

12 218944 at PYCRL 18143.7895

13 90265 at CENTA1 18125.8947

14 217759 at TRIM44 18059.8947

15 203122 at TTC15 17967

16 208080 at AURKA 17862.4211

17 205613 at SYT17 17858.2105

18 204307 at KIAA0329 17840

19 219200 at FASTKD3 17798.6316

20 212797 at SORT1 17795

21 222028 at ZNF45 17711.5789

22 201565 s at ID2 17695.0526

23 221552 at ABHD6 17648.7895

24 205136 s at NUFIP1 17615.3158

25 218653 at SLC25A15 17614.1053

26 221440 s at RBBP9 17561.8947

27 205966 at TAF13 17544.5789

28 208885 at LCP1 17536

29 206832 s at SEMA3F 17512.8421

30 215629 s at DLEU2L 17499.7368

31 204544 at HPS5 17472.5789

32 204284 at PPP1R3C 17458.5789

33 209515 s at RAB27A 17443.5263

34 203078 at CUL2 17418.6316

35 218544 s at RCL1 17400.5263

36 218489 s at ALAD 17367.1053

37 205652 s at TTLL1 17365.1579

38 207458 at C8orf51 17354.8421

39 205034 at CCNE2 17353.4211

40 202818 s at TCEB3 17327.5789

41 209187 at DR1 17305.5789

42 201436 at EIF4E 17284.4211

43 214113 s at RBM8A 17263.8947

44 219031 s at NIP7 17259.8421

45 210007 s at GPD2 17250.2105

46 212753 at PCGF3 17241.3684

47 205185 at SPINK5 17224.3158

48 218707 at ZNF444 17217.6316

49 213132 s at MCAT 17192.7895

50 210932 s at RNF6 17191.8421
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Figure 3.2: The amplitude values for a) the top probe found by the group profile

method is from the BHLHB2 gene and b) the top probe by the fold-change method

that is greater than 2. The lines correspond to a fold-change of 2 and 3, respectively.

Colors represent compounds such that the first four pink dots correspond to the 4

chlorpromazine replicates, the next 2 are the clozapine replicates, etc. See Fig. 1

for order of compounds.

field has been to select probes that are commonly up-, or down-, expressed above

a particular threshold. The most common thresholds used in the literature are

fold-changes greater than or equal to either 2 or 3, which correspond to amplitude

values of 0.67 and 1.0, respectively. We select the best probe from this alternative

method, determining the probe that exhibits a fold-change greater than 2 in the

most antipsychotic instances. The best probe found by this method was for the

SEMA3B gene. The amplitude values across all of the antipsychotics for this probe

are shown in Fig. 2B. Note that even though some of the individual instances have

a very high amplitude value, roughly one-third of the instances have the opposite
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effect. Again, we determine the specificity of this probe to the antipsychotics by

evaluating how it behaves across the rest of the database (Fig. 4). Visually, we

can see that this probe is not specific to the antipsychotics at all, i.e., it up/down

regulation is randomly distributed among all groups and not just those related to

the antipsychotics.

As validation of our group profile method, we examine BDNF. BDNF (Brain-

Derived Neurotrophic Factor) has long been a candidate gene for both schizophrenia

and bipolar disorder [17, 14, 64]. Jiang et al. demonstrate that BHLHB2 regulates

the BDNF transcription [23]. BHLHB2 has also recently been associated with bipo-

lar disorder susceptibility [55]. These publications demonstrates how this method

can give insight into the etiology of the disease that these drugs treat. While in

this case the research community has already discovered and published this biolog-

ical connection, there also will be other novel connections/signatures that will be

found. It also demonstrates how the method extends beyond solely learning about

the mechanism of action of drugs. More specifically, we have used the gene ex-

pression profile of antipsychotic drugs to learn of a mechanism that they share in

common (regulating BHLHB2), which in turn has already been to be shown play

a role in the underlying disease that these drugs are used to treat. Turning back

to the best result from the alternative (fold-change threshold) method, there is no

known link between SEMA3B and antipsychotics, schizophrenia, bipolar disorder or

other topics expected to be related to antipsychotic agents and so we would treat

this as a false positive without further evidence.
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3.4 Understanding Group Signatures

As mentioned earlier, one of the major benefits of our group profile method

is that we can easily plug our group profile results into many algorithms and tools

developed to analyze (individual) gene expression data. The probe sets in the group

profile signatures can be evaluated for significant overrepresentation of gene ontology

(GO) terms, e.g., GO Biological Processes, using the L2L analysis tool [43]. Given

a list of probe sets, e.g., DEGS, and a list to match them to, e.g. GO:BiolProc, L2L

calculates the expected number of matches given the probes found on the microarray.

From the actual and expected matches, an enrichment score and the corresponding

P value for each GO term is then calculated [3]. Additional lists of published probe

sets are also evaluated, including GO Cellular Component, GO Molecular Function,

reactome protein-protein interactions [61], predicted human MicroRNA targets [24],

and cancer gene expression modules [53].

We use the L2L method to evaluate the example group profile of the antipsy-

chotics. The top 50 probes are evaluated for significant overrepresentation of GO

Biological Process terms. The most significant terms are all related to lipid home-

ostasis (Table 2). There are five genes involved in the sterol biosynthetic process

(GO:0016126) within the top 50 probes. Out of over 22,000 probes, only 41 are an-

notated as belonging to this GO term, so 0.11 probes for this term are expected by

chance. This GO term, along with the next three in Table 2, pass Bonferroni correc-

tion for multiple testing (p ≤ 1.11E-05 after correction for all four GO terms). The

amplitude values for the five genes that are involved in this pathway are shown in
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Table 3.2: The most significantly overrepresented GO Biological Process terms from

the up-expressed antipsychotic signature.

GO Term GO ID Probes Expected Actual Enrichment P Value

sterol biosynthetic process GO:0016126 41 0.11 5 44.73 1.04E-07*

steroid biosynthetic process GO:0006694 88 0.24 5 20.84 4.89E-06*

alcohol metabolic process GO:0006066 371 1.01 8 7.91 1.05E-05*

sterol metabolic process GO:0016125 104 0.28 5 17.63 1.11E-05*

steroid metabolic process GO:0008202 211 0.58 6 10.43 2.91E-05

cholesterol biosynthetic process GO:0006695 31 0.08 3 35.50 8.60E-05

lipid biosynthetic process GO:0008610 281 0.77 6 7.83 1.40E-04

Fig. 5. There is an obvious trend that the expression of these probes is increased in

almost every antipsychotic instance in our database. However, even though they are

always up-expressed, the amplitude value is normally below the common threshold

used by other researchers (fold-change of 2 or 3). This is a good example of how the

group profile method is able to detect consistent, and therefore more robust, signals

in gene expression data; signals that are normally overlooked by current methods.

Support for these GO Biological Process findings comes from the work of other

researchers aimed at understanding the molecular origin of the known metabolic

side effects of antipsychotics that include increased weight gain and propensity to

adiposity and insulin resistance [42]. Our observation is consistent with literature

reports of an antipsychotic drug effect on the same or overlapping sets of genes

involved in lipid homeostasis. Interestingly, a genome-wide screen of Saccharomyces

cerevisiae heterozygotes had previously revealed that the antipsychotics haloperidol,

chlorpromazine, and trifluoperazine had a strong effect on genes involved in yeast
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fatty acid biosynthesis (OLE1, the ortholog of the human SCD), sterol biosynthesis

or phospholipid transport [37].

3.5 Querying with Group Signatures

The WIMRR method is able to create a specific representative profile for a

group of gene expression profiles. We have demonstrated the ability to gain insight

into the mechanism of action of a drug class (as well as the disease that it is used to

treat) using WIMRR group profiles. Now we utilize the strength of a group profile

to detect and predict the therapeutic use of a drug based on an individual gene

expression profile.

We use the truncated KS statistics described previously for pairwise (instance-

to-instance) similarity calculations [28] to detect instances that are similar to a group

profile of interest (instance-to-group). Using the same antipsychotic group profile,

we query the database of instances using k = 50 (i.e., the signature shown in Table

1). The instances most similar to this group profile are shown in Table 3, along with

their KS score. The last column in Table 3 represents membership in the group of

interest, i.e., if a given treatment is a member of the antipsychotic group used in cre-

ating the profile. Scanning the list, we see that prochlorperazine (Instance ID = 995)

is the most similar non-antipsychotic drug. It turns out that prochlorperazine is in

fact a phenothiazine antipsychotic; however, it is more commonly used for the treat-

ment of nausea and vertigo. Prochlorperazine is a highly potent neuroleptic, which

is considered a typical antipsychotic. The next non-antipsychotic is fluphenazine,
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for which two replicates show up as extremely similar to the antipsychotic profile.

Fluphenazine is a typical antipsychotic drug used for the treatment of psychosis,

e.g., schizophrenia and bipolar disorder. Fluphenazine is also an extremely potent

phenothiazine. The next novel compound is calmidazolium, which is a calmodulin

inhibitor. Though it is not used as an antipsychotic, it is validated because many

of the antipsychotic drugs are potent inhibitors of calmodulin [13].

In fact, it turns out that many of the most significant results are already

used as an antipsychotic agent even though they are not labeled in ChemBank as

such. These examples are a validation of our method and increase the confidence

in the other results that are not already supported by the literature, as these are

potentially the important and still unknown alternative uses for these therapeutic

agents.

3.6 Analysis of CMAP V2.0

We have introduced our method for creating group profiles from gene expres-

sion data. For this, we have used the original version of the CMAP dataset as our

motivating example. We have seen how we can gain biological insight from these

profiles as well as how to predict new members by querying the group signature.

Here we present our analysis of the newly released CMAP 2.0 dataset with our

method and describe the results. Groups are defined according to the compounds

ATC code. We have analyzed all the groups at ATC level 3 and level 4. ATC

level 3 defines the therapeutic/pharmacological subgroup, e.g., N05A = Antipsy-

67



Table 3.3: The database was queried with the antipsychotic signature (up and down

together) and the most similar

Rank Instance ID Name KS Score Antipsychotic Member

1 1010 thioridazine[INN] 1.58 X

2 1068 thioridazine[INN] 1.483 X

3 1004 trifluoperazine[INN] 1.469 X

4 995 prochlorperazine[INN] 1.435

5 910 trifluoperazine[INN] 1.408 X

6 417 thioridazine[INN] 1.387 X

7 983 haloperidol[INN] 1.352 X

8 1024 haloperidol[INN] 1.346 X

9 1017 fluphenazine[INN] 1.317

10 1075 fluphenazine[INN] 1.293

11 421 trifluoperazine[INN] 1.256 X

12 906 calmidazolium 1.223

13 870 pyrvinium 1.209

14 1053 prochlorperazine[INN] 1.201

15 418 haloperidol[INN] 1.167 X

16 1009 clozapine[INN] 1.162 X

17 419 chlorpromazine[INN] 1.138 X

18 1003 nordihydroguaiareticacid 1.1

19 416 clozapine[INN] 1.09 X

20 1105 monensin[INN] 1.077

21 978 pyrvinium 1.065

22 893 pararosaniline 1.051

23 882 ionomycin 1.027

24 941 rottlerin 1.023

25 1012 troglitazone[INN] 1.018

26 1082 haloperidol[INN] 1.009 X

27 1055 chlorpromazine[INN] 0.997 X

28 1041 haloperidol[INN] 0.992 X

29 997 chlorpromazine[INN] 0.99 X
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chotics. ATC level 4 further defines a subgroup based on chemical properties, e.g.,

N05AE = Indole Derivative Antipsychotics. We focus on groups with three or more

compounds, resulting in 117 ATC level 3 groups and 148 level 4 groups.

3.6.1 GEPedia.org

We have compiled all of the results from our analysis of CMAP 2.0 and have

made them available online at GEPedia.org. In this chapter, we focus on evaluating

our group profile method and only highlight a few interesting results from this

analysis. We assume that there are many undiscovered biological insights within

this dataset. We are releasing all of the data allowing researchers to examine the

results for further discoveries and to compare with their own datasets.

Currently, the organization of GEPedia.org is based around the analysis pre-

sented in this chapter. We include the output of the complete analysis of all groups.

For every group, i.e., for all ATC groups, we have made available a) the profile

itself, including the up- and down-expressed signatures, b) the analysis of the pro-

file according to the L2L tool, c) the sensitivity analysis of the profile, and d) the

results of searching across the database with the signature. In the future, we plan

to modify the website to allow more interactive analysis of the data in addition to

allowing scientists to upload, analyze, and share their own gene expression data.
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3.6.2 Sensitivity Analysis and Independent Validation

A sensitivity analysis is performed in order to prioritize the evaluation of the

most promising group profiles. This sensitivity analysis also serves to demonstrate

the robustness of the model to off target effects, i.e, changes in the gene expression

profile due to factors that are not the focus of study, e.g., vehicle and batch effects,

toxicology signatures, etc. Additionally, we can perform a similar sensitivity analysis

using alternative methods and compare the results to obtain a better understanding

of the robustness of our method across these off target effects compared to other

methods that are currently used.

To perform the sensitivity analysis, we randomly divide the group into two

equal-sized subgroups: a training group that contains half of the treatment instances

from the group and a test group composed of the remainder of the group. A group

profile is created for both subgroups, and the top (up-tags) and bottom (down-

tags) 100 probes are selected. The number of probes in common between the two

subgroups is calculated for both the up- and down-tags respectively. The treatment

instances are re-randomized and this process is repeated for a total of 10 iterations.

The average number of probes in common across the 10 iterations is calculated for

the up- and down-tags. The higher the average number of probes in common (for

the up-tags, down-tags, or both up- and down-tags), the more robust we consider

the group profile. From this value, i.e., the average number of probes in common,

we estimate the probability assuming a binomial distribution.

The most robust ATC level 3 (therapeutic/pharmacological) group profiles are
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shown in Table 4 for both the up and down signatures together (full results in Sup-

plemental Table 1 and Supplemental Table 2 for the up and down signatures, respec-

tively). The full results for the level 4 ATC (chemical/therapeutic/pharmacological)

group profiles for the up and down signatures are shown in Supplemental Table 3

and Supplemental Table 4, respectively. The associated probability for each of these

profiles is also listed. The observed probabilities indicate that some of these profiles

are not random. Corrections for multiple testing are performed, and the Bonferroni-

corrected P values are also included in each of the tables.

At the onset of this chapter, we mention that we are interested in creating a

gene expression profile for groups sharing a therapeutic use, and so we focus our

analysis on the ATC level 3 groups. There are 36 groups with significant (Bonferroni-

corrected P* < 0.05) up-expressed signatures and 28 for the down-expressed signa-

tures. Out of these groups, 25 groups are robust for both up- and down-expressed

signatures. While a robust up- or down-expressed signature can independently give

novel insight into the underlying shared biological function of a group, we focus on

groups that are significant for both because we also want to use these profiles to

help predict novel uses of the drugs in our database. The similarity metric that

we have adopted requires both the up and down signatures to be used together.

We now present a deeper analysis of the most robust profiles. The larger the set of

unique drugs that compose a group, the more evidence we have that the therapeutic

mechanism is what is being detected in the profile. For this reason, we focus on the

significant groups with the largest number of unique drugs. We compare our results

to those from an independent dataset using the same method (Table 5).
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Table 3.4: The most robust group profiles across the whole database are presented

here.

Group Drugs Up P Up* Down P Down* Label

N05A 28 70.6 3.09E-139 49.4 9.59E-86 Antipsychotics

R06A 27 23.7 1.07E-31 12 5.70E-12 Antihistamines for Systemic Use

N06A 25 29.6 5.70E-43 12.1 4.04E-12 Antidepressants

D07A 19 49.8 1.11E-86 19.7 1.64E-24 Corticosteroids, Plain

G01A 18 12.1 4.04E-12 6.5 1.98E-04 Antiinfectives and Antiseptics

D01A 16 10.2 2.42E-09 11.7 1.59E-11 Antifungals for Topical Use

S01B 16 7.9 3.36E-06 8.9 1.56E-07 Antiinflammatory Agents

N03A 11 13.1 1.22E-13 17.8 3.01E-21 Antiepileptics

H02A 11 18.5 1.94E-22 5.2 6.72E-03 Corticosteroids for Systemic Use

R03B 10 15.6 1.35E-17 4.6 3.09E-02 Drugs for Obstructive Airway Diseases, Inhalents

D10A 9 18.7 8.80E-23 6.5 1.98E-04 Anti-Acne Preparations (Topical)

L04A 8 39.9 2.46E-64 31.4 1.47E-46 Immunosuppressants

D07X 8 25.3 1.12E-34 6.7 1.13E-04 Corticosteroids, (Dermatologicals)

G03D 8 11.1 1.22E-10 4.7 2.41E-02 Progestogens

L01X 7 19.9 7.31E-25 11.5 3.16E-11 Other Antineoplastic Agents

L02B 6 19.3 8.12E-24 13.5 2.93E-14 Hormone Antagonists (and related)

R03A 6 9.8 8.89E-09 5.3 5.17E-03 Adrenergics, Inhalents

C08C 6 5.6 2.34E-03 4.5 3.95E-02 Selective Calcium Channel Blockers

G03C 5 30.5 9.35E-45 10.1 3.36E-09 Estrogens

S01C 5 10.3 1.74E-09 5.3 5.17E-03 Anti-inflammatory -infective (Combo)

C08E 4 11.7 1.59E-11 7.3 1.99E-05 Non-selective Calcium Channel Blockers

C01A 3 61.1 2.94E-114 62.2 4.60E-117 Cardiac Glycosides

L01D 3 6.4 2.62E-04 22.9 3.16E-30 Cytotoxic Antibiotics (and related

L01B 3 7.9 3.36E-06 19.8 1.09E-24 Antimetabolites
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3.6.3 Antipsychotic Group (N05A)

We start our analysis with the largest group that meets our significance thresh-

old: the antipsychotic group with 28 unique drugs. The ATC level 3 code for this

group is N05A. The antipsychotic profile is the most robust result from the ATC

level 3 groups when evaluating the up-expressed signature (Bonferroni-corrected P

value: P*=3.10E-139). This corresponds to an average of 70.6 probes that are

shared between the top 100 probes of two random subgroups. Interestingly, this

same group is the second most significant when evaluating the robustness of the

down-expressed signature (P*=9.59E-86; Average probes in common = 49.4). In an

attempt to discover what the underlying shared biological process is within these

antipsychotic agents, we turn to the L2L analysis. The most overrepresented GO

Biological Process term is Sterol Biosynthetic Process (GO:0016126; P*=6.45E-20).

This is the same term that was found over-expressed within the smaller pilot study

and demonstrates that our group profile method can detect the true signature with

a small set of samples.

We have the ability to compare this profile with the antipsychotic profile re-

cently published by Polymeropoulos et al. [47]. It is important to note that these two

profiles were created by two independent laboratories, with different cell lines and

with a different, but overlapping, set of antipsychotics. These two profiles are very

similar, and they share 34 probes in common among their top 100 probes (P=6.42E-

54). The most significant GO Biological Process term from the Polymeropoulos et

al. antipsychotic group profile is Lipid Biosynthesis. Given the significant overlap

73



of the profiles, it is not surprising that this term is actually a grandparent of Sterol

Biosynthetic Process (connected through the GO term Steroid Biosynthetic Pro-

cess). The GO term Lipid Biosynthesis is also highly significant within the CMAP

v2.0 antipsychotic group (P*=2.70E-13).

The down-expressed signatures also share several probes in common (Probes=6;

P=6.79E-06). The GO Biological Process analysis points to a significant down-

regulation of the DNA regulation process (GO:0006260; P*=3.61E-07). Barochovsky

et al. have demonstrated in vivo that compounds acting on the central nervous sys-

tem, specifically those that affect noradrenergic, dopaminergic, and serotoninergic

neurotransmitters, reduce brain cell replication [4]. This observation of compounds

acting on the CNS was a dose-dependent effect and was seen for both agonists and

antagonists. This down-expressed signature, like the up-expressed signature, is well

supported by the literature. The antipsychotic profile that we have discovered is

robust, both in and across datasets. Furthermore, we have demonstrated the ability

of our group profile method to give biological insights into the potentially unknown

shared biological process exhibited by a group of drugs.

In an attempt to put these results into perspective we also set out to analyze

this same data with one of the more common methods for detecting expressed genes.

The LIMMA package (Linear Models for Microarray Data), is an R package that

is part of Bioconductor[57]. We followed the standard processing and linear model

fitting provided in the examples of the LIMMA documentation. To do this we were

forced to only analyze one array type at a time, so we selected the most common

array type (HT-HG-U133A) that was used in the CMAP dataset. We performed the
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Table 3.5: The most robust profiles were evaluated against an independent dataset

(Polymeropoulos et al).

Group Polymeropoulos et al., PDR Group Probes In Common P

N05A CNS:Antipsychotics 34 6.42E-54

R06A Resipiratory Agent:Histamine Antagonist 4 1.13E-03

N06A CNS:Antidepressants 15 1.07E-18

D07A Dermatological:Corticosteroids 30 7.88E-46

same sensitivity analysis in which we randomly sample the group into two subgroups

and determine the number of probes that overlap in the top 100 results. As before,

this process is repeated 10 times. The average number of probes in common is 53.6

(compared to 70.6 for our WIMRR method). A t-test shows that this difference

is statistically significant (P=5.57E-7). Interestingly, the L2L analysis performed

on these top 100 probes points to the same Sterol Biosynthetic Process signature

that was demonstrated before as being the most representative, but at much lower

confidence (P*=0.0002 compared to P*=6.45E-20 for WIMRR).

3.6.4 Antihistamine Group (R06A)

The second-largest group that meets our significance criteria is the antihis-

tamines (full annotation: Antihistamines for Systemic Use; ATC Code: R06A).

This group contains 27 unique drugs. The sensitivity analysis reveals 23.7 probes

on average shared within the up-expressed signature and 12 for the down-expressed

(P*=1.07E-31 and P*=5.70E-12, respectively). The up-expressed signature exhibits

a common underlying theme related to negative regulation of I-kappaB kinase / NF-
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kappaB cascade (GO:0043124; P=6.08E-05). This GO signature is not as strong as

some of the other profiles and is not significant when corrected for multiple test-

ing. However, it is interesting to note that this signature is consistent with the

known effect of antihistamines on NF-kappaB. Roumestan et al. have shown that

antihistamines inhibit NF-kappaB through both H1 receptor-dependent and inde-

pendent mechanisms [51]. This profile does not replicate when compared to the

equivalent group (Respiratory Agent: Histamine Antagonist) from the dataset pre-

sented by Polymeropoulos et al., though a similar trend is seen. The average number

of probes in common is four and one respectively, for the up- and down-expressed

signatures (P = 1.13E-03 and P = 3.60E-01).

3.6.5 Antidepressant Group (N06A)

Next, we discuss the third-largest group: the antidepressants (ATC Code:

N06A). There are 25 unique drugs within this group. The sensitivity analysis results

in an average of 29.6 and 12.1 probes in common for the up- and down-expressed sig-

natures (P*=5.70E-43 and P*=4.04E-12, respectively). Evaluating the up-expressed

signature, the most overrepresented GO Biological Process term is Sterol Biosyn-

thetic Process (GO:0016126; P*=1.19E-09). This is the same core mechanism seen

within the antipsychotic group, but this signature is seen on a smaller scale. Poly-

meropoulos et al. demonstrated the same relationship between the expression profile

of antipsychotic and antidepressant drugs [47]. When we compare our antidepres-

sant profile to the antidepressant profile from the dataset from Polymeropoulos et

76



al., we find 15 probes in common (P=1.07E-18). The down-expressed signature does

not reproduce within the Polymeropoulos et. al. dataset, sharing only one probe in

common.

3.6.6 Corticosteroid Group (D07A)

The last group that we evaluate in depth is the corticosteroids (N=19; ATC

Code: D07A). This profile is also robust according to the sensitivity analysis.

The average number of probes in common for the up-expressed signature is 49.8

(P*=1.11E-86). The down-expressed signature has an average of 19.7 probes in

common (P*=1.64E-24). Individually, the up- and down-expressed signatures do

not exhibit a significant result for any GO Biological Process, but evaluated to-

gether they demonstrate an effect on the regulation of the interleukin-6 biosynthetic

process (P*=1.38E-02). Corticosteroids are involved in a wide range of physiological

systems such as stress response, immune response and regulation of inflammation.

Interleukin-6 acts as both a pro-inflammatory and anti-inflammatory cytokine that

can be secreted to stimulate response to trauma [18]. There is a significant overlap

between this profile and the corresponding profile (Dermatological: Corticosteroids)

from Polymeropoulos et al. The up-expressed signatures share 30 probes in com-

mon while the down-expressed share nine probes, corresponding to probabilities of

P=7.88E-46 and 9.72E-10, respectively.
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3.7 Discussion

We have introduced and evaluated our method for creating group profiles

from gene expression data. The ability to have reproducible sets of differentially

expressed genes from microarray experiments has been a big challenge, and we have

demonstrated how our method is able to overcome this obstacle. Furthermore, we

have illustrated how to gain biological insight from such group profiles as well as the

ability to use them as a signature to query a database. In our example domain of a

drug discovery system, this biological insight allows researchers to potentially learn

about the etiology of the disease that these compounds are being used to treat and

gives them a predictive tool to find novel uses for other drugs.

Though a major focus of this work has been to introduce our method and

validate it across independent datasets, we are also releasing all group profiles from

the full CMAP 2.0. This includes all corresponding meta-analysis that has been

performed: L2L analysis, similarity searching results, etc. We feel that this resource

contains a lot of hidden biological insight into many groups of drugs and their target

diseases, and we are releasing it for further in-depth research. Another contribution

of this work is the independent validation of the common effect of antipsychotics on

the biosynthesis and regulation of fatty acids and cholesterol, which supports a key

role of lipid homeostasis in schizophrenia.

There are many possible avenues of further improvements and research. Thus

far, we have assumed that explicit groups are given a priori. Our sensitivity analysis

validates how coherent a group is; however, it does not dictate what to do if the
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outcome is not positive. For example, a leave-one-out analysis can be done to

exclude members that do not fit well within a group. Lastly, it is important to note

that our method is focused on determining a reproducible genetic profile for a group

of samples; in this case, drugs of a particular class. We provide no guarantee as

to the uniqueness of such profiles and instead claim that these profiles can be used

to compare groups. We have kept the full ranked list as the profile, and so it is

straightforward for extensions to this method to be developed to further refine and

learn what genetic components make up a more unique signature if that was the end

goal. In keeping the full profile, i.e., the re-ranked list of probesets, we allow further

research methods, which are developed for individual expression profiles, e.g., the

L2L method, to also be applicable to our group profiles.
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Figure 3.3: Specificity of top probe, BHLHB2, from the group profile method. Each

vertical set of points corresponds to a different group in the database. Here we only

describe the most similar, and point out that they share some drugs in common:

from left to right, the first group is the antipsychotics, the second is the tranquilizers

(includes prochlorperazine, fluphenazine, and trifluoperazine), the third group is

antiemetics (includes prochlorpromazine and trifluoperazine), and the fourth group

is the antineoplastics (includes prochlorpromazine). This probe is specific to the

antipsychotic and similar groups, i.e. high amplitude on in antipsychotic and groups

sharing properties with antipsychotic agents, and lowe amplitude in other groups.
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Figure 3.4: The top probe from the fold-change greater than 2 method is not specific

to antipsychotics. There is nothing in common among the first couple of groups

(sorted by the average score of the group). The first group is the antipsychotics, the

second is anti-inflammatory, the third is antineoplastics and the fourth is analgesics.

The amplitude values are scattered and show no consistent pattern.
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Figure 3.5: The amplitude values for the probes in the most significantly up-

expressed GO term for the antipsychotic group: sterol biosynthetic process. The

probes correspond to the a) HMGCR, b) HMGCS1, c) FDFT1, d) SC4MOL, and

e) SQLE genes. Replicates are designated by the same color.
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Chapter 4

Confounder Correction by Profile Subtraction

Since the onset of this work we have been focused on gaining biological insight

from gene expression data. In Chapter 2, we focused on the challenge of dealing

with off-target effects, e.g., vehicle and batch effects. We concentrated on this

challenge applied to calculating reliable and accurate pairwise similarity among gene

expression profiles. While pairwise similarity metrics are useful the information

gained is somewhat limited. In Chapter 3, the focus was understanding the core

gene expression signature shared among a group of profiles. While we demonstrated

that our novel method for group profile creation yields informative and reproducible

results, we know from past experience that we can improve upon this further by

directly tackling the challenge of dealing with confounding effects in this new context

of group profiles.

Controlling and correcting batch and other confounding effects is of utmost

importance for robust inferences and interpretation of high throughput experiments,

including gene expression microarrays [30]. A number of methods have been pro-

posed to do this, and are, for the most part, based on the linear modeling of gene

expression as a function of observed biological and technical effects [10, 25, 31, 35].

However, recent work has shown the power of non-parametric methods that esti-

mate gene expression profiles as two-sided ranked lists, including our previously
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introduced method to estimate profiles that are representative of differential expres-

sion in an experimental group of interest (e.g., treatment vs. control, or disease vs.

non-diseased). Here we propose an extension to our non-parametric gene expression

profile method to correct for observed confounding effects, we refer to our method

as profile subtraction. This correction is performed on ranked lists directly and

provides a robust alternative to parametric batch profile correction methods.

In this chapter we introduce the concept of confounding groups and we describe

our method to remove/subtract out confounding group effects. We compare our ap-

proach to linear models. We present an illustrative example of subtraction/removal

of confounding group profiles on a small dataset. We evaluate our profile subtrac-

tion method on two real world datasets: an Arabidopsis Hormone dataset as well

as a dataset consisting of Acute myeloid leukemia (AML) and Acute lympboblas-

tic leukemia (ALL) samples. We compare our proposed method with our uncor-

rected group profile method and to other current methods including Limma[57],

Combat[25] and surrogate variable analysis (SVA)[31]. We show that our profile

subtraction method yields more specific and robust group profiles as compared to

other these methods. Additionally, we create a group profile generator which has

been used to more closely control and evaluate the robustness of our methods.

4.1 Confounding Group Profiles

The goal of gene expression experiments can vary widely but at the core they

have a common goal: the detection of a genetic signature in common within a group
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of interest. This group may be a given treatment compared to controls, a subtype

of a disease that has a poor prognosis or not, infected versus healthy individuals,

or a profile of a patient who is more likely to respond to a given treatment. A gene

expression experiment is designed to evaluate any of these scientific questions, and

the labels for the different target groups that we are interested in studying would

be known.

However, we recognize that there are often other confounding groupings present

in the data. Some of these confounding groups are dictated by the experimental

setup and are annotated in the dataset, e.g., vehicle and batch effects. Others possi-

ble confounding groups may not be annotated and relate to the samples themselves,

e.g., a shared mechanism of action or side effect profile of a drug that is not di-

rectly correlated with the therapeutic indication. These confounding groups are

non-orthogonal to the target groups of interest and they are not independent.

If the gene expression profiles are not corrected for these confounding groups

then the target group profiles that are created are at risk of being incorrect and

misleading. Each confounding group contributes to the overall noise in the data

resulting in less confidence in the genetic signature discovered. In this chapter, we

propose a method to remove the effects of a confounding group from a given gene

expression profile.
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4.2 Profile Subtraction Method

The goal of our profile subtraction method is to remove the effects of confound-

ing groups. This is a problem that has been the focus of a lot of work and there

are several methods that have been developed that have aimed to deal with this

task, including using linear models (Limma[57]) and an empirical Bayes framework

(Combat[25]). Our goal is to develop a method that can remove confounding effects

from nonparametric ranked lists, as compared to these methods that are designed to

work on actual expression values. We now introduce our profile subtraction method.

In the next section we will provide a comparison of our profile subtraction method

to linear models.

Assume we have n gene expression experiments (samples) X1,X2,. . . ,Xn. For

each of the n profiles in the database, there is general information about the exper-

imental conditions of the sample encoded by membership in one or more of groups

G1,G2,. . . ,Gg. We use a binary function, member(X, G), that returns 1 if profile

X is a member of group G and returns 0 otherwise to indicate group membership.

For each experiment we denote expression data from the microarray itself as fol-

lows: each microarray X consists of a collection of probe sets, probes(X); for each

probe p in probes(X), there is an absolute expression value EV(p), as well as an

amplitude Amp(p) (the difference in expression relative to a control). The control

is a reference baseline that is the average expression value calculated from multiple

untreated samples run within the same experiment conditions, e.g., the same vehicle

and batch.
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Rather than measuring the absolute similarity in expression levels, we compare

the ranking of the probes. We use rank(p, probes(X)), or rank(p,X) for short, to

denote the rank of probe p in profile X. The size of the group is equal to the number

of samples that are members of the group (Equation 4.1). To define a group profile,

we rank each probe p in probes(G) by its average rank across all members of the

group G (Equation 4.2):

size(G) =
n∑

i=1

member(X,G) (4.1)

avgRank(p,G) =

∑n
i=1 rank(p,Xi)×member(Xi, G)

sizeG
(4.2)

Given this set of average ranks across the members of a particular group,

the probes are now re-ranked according to how consistently they are up- or down-

expressed across the group. We define Profile(G) as the probes in probes(G) sorted

by their average rank across all members of the group (Equation 4.3).

Profile(G) = {(p1, avgRank(p1, G)), (p2, avgRank(p2, G)), . . . , (pm, avgRank(pm, G))}

(4.3)

In the confounder correction setting we assume there are c confounding groups

Z1, Z2,. . . ,Zc. Our goal is to subtract the effect of each of the confounding groups

from rank(p,X) for experimental groups of interest. The main idea is to use an

important property of the two-sided ranked lists to subtract out these confounding

effects by inverting probe ranks in each sample according to the confounding group

87



ranking. We define an inverted rank as described in Equation 4.4. Our profile

subtraction method for ranked lists is then defined by Equation 4.5, which describes

how to calculate the corrected average ranks.

invRank(p, Z) = maxRank(Z)− rank(p, Z) + 1 (4.4)

avgRank(p,X∗) =[1−member(X,Z)] ∗ rank(p,X))

+ member(X,Z)× (ωG × rank(p,X)) + [(1− ωg)× invRank(p, Z)]

2

(4.5)

Profile(X∗) = {(p1, avgRank(p1, X
∗)), (p2, avgRank(p2, X

∗)), . . . , (pm, avgRank(pm, X
∗))}

(4.6)

For each individual expression profile, the effects of each confounding group of

which the individual is a member of are removed. This results in corrected profiles

for each X, that we denote X∗. The corrected datasets can now be used to create

the target group profiles that we are interested in studying. Rank inversion forces

probes in the corrected profile to the middle (uninformative portion) of the ranked

list that behave the same in a given profile as they are expected to behave based

on its membership in a confounding group. Probes that behave differently than

expected are forced to move up/down and become more significantly represented

in the profile. We have also introduced a weighting term, ωG, that allows for a

weight to be assigned to the original profile when removing the confounding effect
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(the confounding effects therefore get a weight of (1 − ωG). This weighting can be

selected from a combination of domain knowledge and by parameter tuning based

on labeled data.

4.2.1 Comparison to Linear Models

Linear models are the most commonly used statistical tool to determine dif-

ferential expression in experimental groups of interest. Here the outcome (y) is

modeled as the relationship between a set of fixed effects (x) and a set of learned

coefficients (b1). Additionally an intercept (b0) and error (e) is also modeled to com-

plete the equation (Equation 4.7). In the case of microarray data, a linear model is

fit for each probe on the microarray and a design matrix is used in place of x. The

design matrix encodes the classes that each microarray belongs to with each row

corresponding to a microarray and each column to the coefficients to be estimated.

y = b0 + b1x + e (4.7)

A t-statistic can be constructed from the mean effect (b1) and its standard error

estimated by the linear model described above and used as a measure of differential

expression. However, standard error estimates in microarray data can be unreliable

and empirical Bayes methods are commonly used in order to provide more robust

results. It uses a hierarchical model to provide robust variance estimates, pooling

measurements across genes/probes to construct a moderated t-statistic from the

posterior variance estimated. The hope is that empirical Bayes methods can have
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better estimates by borrowing information across genes and experimental conditions.

(Johnson et al.). Frequently, lists of differentially expressed genes are ranked by this

moderated t-statistic.

Observed confounding effects can be included directly in the linear model

above. The design matrix can be expanded to reveal the relationship between how a

probe behaves in a given target group (b1) and how it behaves in a given confounding

group (b2) (Equation 4.8)). More specifically, if a probe is consistently upregulated

in a particular confounding group(therefore having a large b2) then the coefficient

modeled for the target group will not be increased, as this would otherwise lead to

an overestimate of y.

y = b0 + b1x1 + b2x2 + e (4.8)

Building on the notion of better estimates of how genes behave by using em-

pirical Bayes methods, Johnson et al., developed Combat to attempt to remove

batch/confounding effects in microarray experiments. Unlike the generic linear

models/Limma approach, Combat uses empirical Bayes to specifically remove batch

effects prior to modeling any target group effects. After the direct removal of these

confounding group effects is performed, the signatures of the target groups are dis-

covered by again using a linear model approach.

At a high level our profile subtraction method (Equation 4.5) also has a linear

form. Referring back to Equation 4.8, the premise of modeling target groups and

confounding groups at once is that the effects among these two groups is additive. In
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other words, if a confounding group fully explains the final outcome variable of how

a probe behaves, then the weight of that probe in the target group profile should

be minimal. Similarly, if a probe in a given sample is behaving in the opposite

direction than expected based on the confounding groups that it is a member of,

then we would like to model an even larger effect based on the target group to

counter this. Again, this is analogous to what happens in the linear model but

unlike linear models we do not have actual values to just add or subtract, instead

we have developed a method to work with the ranked list of probes.

As described earlier, we make use of an important property of the two-sided

relative ranked lists that are being used to represent our gene expression profiles.

Specifically, that the opposite sides of the ranked list have opposite meanings and

that the middle of the list is considered uninformative. Combining the goal that we

wish to use the prior information of how a probe/gene may behave in a confounding

group with the fact that we are dealing with two-sided relative ranked lists, we are

left with a simple solution. We can model the relationship of the ranks with the

same general form of the equation from Equation 4.8, but instead using ranks and

adding in a weighting factor (Equation 4.9). We can also remove the intercept value,

as it is meaningless when dealing with nonparametric ranks.

rank(y) = w1rank(b1)x1 + w2rank(b2)x2 (4.9)

As opposed to estimating the theoretical rankings of our target and confound-

ing groups that best fit our data, we instead directly calculate the most likely ranks
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based on our data.

4.2.2 Example Profile Subtraction Method

We present a simple example to demonstrate how our profile subtraction

method works. Let us assume that there is a gene expression profile of a diabetes

drug and that it was run in batch 1. In order to determine what, if any, biases may

be introduced by batch 1, we create a group profile of all of the gene expression

profiles from batch 1. Any probes that are significantly up-expressed in batch 1 will

appear at the top of the list. The stronger and more consistent this signature is

across all batch 1 samples, the higher up the list it well be. Analogously, any probes

that are significantly down-expressed in batch 1 would be present in the bottom of

the ranked list. Probes that remain unchanged are in the middle (non-informative

section) of the ranked list.

Referring back to the original diabetes sample that we are interested in study-

ing: in order to determine if a given probe that is highly ranked (up-expressed) may

be caused by an anti-diabetic signature we compare the rank in the sample profile

to what was expected based on our prior knowledge that this sample is from batch

1. If this probe was also highly ranked in the batch 1 group profile then it is be-

having exactly as expected and is not being shifted by the anti-diabetic properties.

The probe should then be shifted down towards the middle (uninformative section)

of the ranked list. If the probe was unchanged (middle of the list) in the batch 1

group profile then we do not want to make any significant change to the probe in
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the individual profile. Alternatively, if this probe that is highly up-expressed in the

individual profile was actually down-expressed (bottom of the list) in the batch 1

group profile then the probe being unregulated should be treated as being even more

substantial than the previous change. The exact mechanism by which the ranks in

the individual sample are updated to reflect where they were expected to rank based

on the confounding profiles is done as described in the prior section. This profile

can now be passed onto further downstream analysis without worrying about the

batch effects masking the true signature of the target groups of interest.

4.2.3 Profile Subtraction in Simple Dataset

In order to clearly illustrate the concept of profile subtraction we make use

of a simple hypothetical dataset and present a visual summary of the method. A

graphical summary of this example gene expression dataset is shown in Figure 4.1.

There are two overlapping sets of groups identified by the colors at the bottom of

the figure. There are three groups of interest (Y:yellow, B:blue and G:green) and

also three confounding groups (1:white, 2:gray, 3:black). The confounding groups

are potentially masking the true signature of the groups of interest. Let us assume

that we are interested in finding a genetic signature of drugs used to treat diabetes,

and that these drugs are represented as the yellow group. Our goal is to remove the

effects of the three labelled, confounding groups such that the discovered diabetes

group signature is more robust and is more likely to be the true signature.

Referring back to Figure 4.1, in this example dataset, the sample names at the
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top identify the group membership, e.g., sample Y1 belongs to the yellow group as

well as to the white confounding group. Each vertical, gray rectangle represents the

full ranked listed created from the gene expression profile of a given sample. The

top of the rectangle corresponds to the low ranks (most up-expressed probes), the

bottom section corresponds to the highest ranks (most down-expressed probes), and

the middle corresponds to the probes without a substantial change in either direction

(no or minimal change in expression as compared to control). For simplicity, we

focus on a small subset of probes (the colored lines within each rectangle) from the

microarray experiment. The location of these different colors represent that probes

ranks in the individual gene expression profiles.

Figure 4.1: Example with target groups of interest (Yellow, Green, Blue) and over-

lapping confounding groups (White, Gray, Black).

Creating a group profile with WIMRR, introduced in Chapter 3, yields a group

profile with the characteristics shown in Figure 4.2. In Figure 4.1 we notice that the
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Figure 4.2: Group profile created without correcting for the confounding group

effects.

conclusion drawn from some of the probes in this uncorrected group profile method

could be biased based on how they behave in other (confounding) groups as well

as across the dataset as a whole. For example, a simple correction that our ideal

profile subtraction method should make is that since the red probe is consistently at

the bottom of all of the individual gene expression profiles so its movement to this

same position in the yellow group is not informative. Another interesting case is the

black probe. The black probe appears up-expressed in the yellow group, except in

Y3 (Y=Yellow:3=Black) in which it appears down-expressed. However, the black

probe is consistently down-expressed within all members of the black confounding

group. With this prior information about how the probes in the black confounding

group behave, we correct the conclusion of how these probes are behaving within

Y3. Even though the black probe in Y3 appears down-expressed without any prior
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information, it is in fact up-expressed when compared to the expected behavior

based on the confounding effects.

The creation of the white, gray and black confounding profiles is shown in

Figure 4.3. As explained in Section 4.2, the white profile is inverted and we refer to

this inverted profile as the white’ profile (rank(p,X∗) = invRank(p,X)), the gray

profile is inverted and becomes the gray’ profile, and the black profile is inverted

and becomes the black’ profile. In order to discover the true signature of the yellow

group, we remove the masking effects of the three confounding group profiles. These

confounding group profile effects are removed by calculating the average rank of each

probe between the original profiles Y1 and white’, Y2 with gray’ and Y3 with black’

which, when the probes are ordered by their average rank scores yields Y1*, Y2*,and

Y3* (the profiles of Y1,Y2, and Y3 after removing the confounding group effects)

Figure 4.4. From this set of clean profiles Y1*, Y2*,and Y3*, the yellow* group

profile is then created (the yellow group profile after removing confounding group

effects). The difference between this yellow* profile and the original yellow group

profile created without first removing the confounding effects is shown in Figure 4.5.

In the simple example above we assume that groups of interest and the con-

founding groups have the same expression strength. In the actual implementation

we introduced the ability to assign a weighting factor to remove confounding group

signatures with varying strengths from the dataset where ωg is the weight of the

group. The optimal weight can be discovered by analyzing the dataset if the group

memberships are fully labelled group as in the case of our mock dataset. If the full

group memberships are not know, then the weight could be defined by a domain
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expert or estimated based on the data in the case of either partially or fully missing

group labels.

Figure 4.3: Creation of group profiles for the confounding groups (White, Gray,

Black).

Figure 4.4: Removal of the confounding group effects from each of the members of

the yellow group.
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Figure 4.5: Comparison of the yellow group profile (Yellow Group) and the yellow

group profile created after removing the confounding group effects (Yellow* Group).

4.3 Evaluation of Profile Subtraction Method

We evaluate our method on two independent datasets. The first dataset con-

sists of gene expression profiles from Arabidopsis treated with different hormones

[15]. This dataset is well suited to evaluate our novel profile subtraction method as

it contains two clearly annotated sets of overlapping group labels. These correspond

to a) the hormone class of a sample and b) the time when the sample was collected.

To demonstrate that our profile subtraction method has utility in the absence of

a second set of annotated groups we next evaluate a dataset consisting of acute

myeloid leukemia (AML) and acute lympboblastic leukemia (ALL) samples[16].

4.3.1 Arabidopsis Hormone Evaluation

The first dataset that we evaluate consists of gene expression profiles from the

Arabidopsis Hormone dataset [15]. This dataset contains eight hormone groups.
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We are interested in detecting a group signature for each of these hormone groups.

The hormone groups are abscisic acid (ABA), aminocyclopropane carboxylic acid

(ACC), brassinolide wildtype (BS wt), brassinolide mutant )(BS mt), cytokinins

(CYT), indoleacetic acid (IAA), methyl jasmonate (MJ), and zeatin (Z). Each group

contains three individual samples corresponding to three different collection times

(30 min, 1 hour, and 3 hours). One exception to this is that all three samples from

the CYT group are from the same time point (3 hours). These samples were left in

for the analysis to study how this may or may not change the results.

Our goal in this chapter is to improve upon our group profile method intro-

duced in Chapter 3, while introducing our profile subtraction method that will serve

as a nonparametric equivalent to linear models. We compare the group profiles cre-

ated after using our profile subtraction method to subtract out any time effects to

both a) our original group profile method (naive to time) as well as b) group profiles

created using linear models. For the linear models analysis we use Limma with both

group and time effects together in the model. We also evaluate the group profiles

after removing the time effects using Combat as well as after removing the batch

effects using SVA.

In order to evaluate the group profiles created by each of the methods we

compared the measured recall of the individual group members. A group profile

was made for each hormone group and each of these group profiles was then used to

query the full database of sample profiles resulting in pairwise KS scores (similarity

scores for two sided ranked lists first used by [28]). These results represent the ability

to use the group profiles created to recall members of the group. The KS scores are
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Figure 4.6: Uncorrected - Pairwise similarity (KS scores) between uncorrected group

profiles for each hormone class and every individual sample in the dataset.

shown in the tables in Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10, .

As can be seen in Figure 4.6, our original group profile method performs adequately.

The highest similarity matches for a given group is consistent with true members

of that group (shown along the diagonal). It is worth noting that some positive

similarities are seen with other samples, so there is room for improvement on the

specificity of this method, especially given that we have the knowledge of the group

effects. Figure 4.7 contains the results of performing the same analysis with the

group profiles created by Limma (with both the hormone group and time in the

model). Overall, the similarities are not as strong as our original group profile

method but the false positives appear reduced. Normally the best matches are with

true member of the group, but with much lower similarity scores. However, the
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Figure 4.7: Limma - Pairwise similarity (KS scores) between Limma group profiles

for each hormone class and every individual sample in the dataset. Note that these

profiles are time corrected by including time in the linear model.

amount of true positives recalled is poor, even though this method appears more

sensitive and less likely to produce false positives. An alternative to modeling the

hormone group and time in the model concurrently, we can remove the time effects

ahead of time with Combat and then create the group profiles( Figure 4.8). These

results are very similar to those obtained with Limma. This may be because the

confounding effects being removed are equally balanced across the target groups.

Both of these methods explicitly model and attempt to remove the confounding

effects. An alternative is surrogate variable analysis (SVA[31]). SVA does not

require labelled confounders a priori but rather it attempts to discover and remove

unlabeled batch effects. The results from first cleaning the dataset with SVA and
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Figure 4.8: Combat - Pairwise similarity (KS scores) between Limma group profiles

for each hormone class and every individual sample in the dataset after time effects

were removed using Combat.

then using linear models to create the group profiles are shown in Figure 4.9. SVA

does not perform as well as the other methods, however, it does do well considering

it does not use the confounding group labels. It is therefore a viable alternative to

consider when the confounding groups are unknown – similar to how our original

group profile method works. The last table (Figure 4.10) contains the results from

hormone group profiles created after using our profile subtraction method to remove

the confounding time effects. The results are an improvement on the original group

profile method. The biggest difference is the reduction in possible false positives.

These results also demonstrate an improvement over the results obtained with other

methods, i.e., Limma, Combat and SVA.
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Figure 4.9: SVA - Pairwise similarity (KS scores) between Limma group profiles

for each hormone class and every individual sample in the dataset after removing

unlabeled batch effects using SVA

This analysis demonstrates how in a dataset with confounding effects, our

profile subtraction method can lead to improvements over other methods. However,

the nature of this analysis is somewhat biased. Any of these methods will in fact

be able to learn across the off-target signatures, e.g., the time effects in this case,

when they are specifically trained on samples across such barriers as we have done.

Specifically, by creating a hormone group profile consisting of one sample from each

time point, the method is forced to learn what is common across the time points.

This may be how such a method will be used sometimes in real life, but we recognize

that at other times the dataset will not be so balanced. The true grouping may in

fact not even be known a priori. To further compare and test these methods we
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Figure 4.10: Profile Subtraction - Pairwise similarity (KS scores) between time

corrected (time group profiles subtracted out) group profiles for each hormone class

and every individual sample in the dataset.

explore the task of rediscovering the true hormone groups from a dataset with only

the times labelled.

For this comparison, we implement a custom hierarchical clustering based on

our group profile method. The similarity score at each level of the clustering is

the pairwise KS statistic. The two closest profiles are merged by creating a new

group profile from the two profiles. As in any agglomerative clustering, this process

is repeated until one large cluster is left. In order to evaluate the accuracy of

each of the three methods (group profile, linear models using Limma, group profiles

after removal of time effects), we count clustering mistakes after performing the

hierarchical group clustering. A clustering mistake is defined as the clustering that

104



merges two or more different groups before each of the individual groups are fully

clustered separately. In other words, if we had three profiles from group A and three

from group B, the only way for there to be no clustering mistakes is for one cluster

to be created that includes all three A’s and a second cluster to be created that

includes all three B’s before these two clusters could be joined together. If a cluster

of three A’s was iteratively joined with each of the individual B profiles then this

would result in 3 clustering mistakes.
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Figure 4.11: Hierarchical group profile based clustering of uncorrected individual

Arabidopsis Hormone profiles.

The group profile based hierarchical clustering of the uncorrected profiles is

shown in Figure 4.11. Certain hormone groups cluster correctly, e.g., the mutant

strain that we expect to be very different from others (BS mt), the CYT group that

has no time effects modeled, as well as the MJ group. It is interesting to note that
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certain other clusters are based on the time effects. For example, three of the 30

minute samples cluster perfectly together first (ABA 0.5 hours, ACC 0.5 hours, and

BS wt 0.5 hours). Two of the 1 hour samples also cluster together (again ACC and

BS-wt). After all of these are merged the IAA and Z 0.5 hour profiles are added into

the hierarchical grouping, which in turn bring in their 1 hour counterparts. The MJ

cluster is clustered next, which consisting of all 3 hour samples it next brings in all

of the rest of the 3 hour samples.

In Figure 4.12 we present the group profile based hierarchical clustering of

the Arabidopsis Hormone dataset using the time corrected profiles from Limma.

Interestingly this method appears to over compensate for the time effects and the

clusters align more with the time the samples were collected. The only hormone

group that clusters correctly is the CYT group which is all collected at the same

time point (3 hours).
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Figure 4.12: Hierarchical group profile based clustering of individual Arabidopsis

Hormone profiles after correcting for time effects as modeled by Limma.
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Figure 4.13: Hierarchical group profile based clustering of individual Arabidopsis

Hormone profiles after subtracting out time group profiles.

Lastly, the hierarchical clustering of the profiles for which the profile sub-

traction method was used to remove the time effects is shown in Figure 4.13. No

clustering mistakes are made. All of the hormone groups are clustered together

before being joined with any other hormone group. The underlying patterns and

observations seen previously still hold, namely that the mutant strain and the CYT

group are distant from the other groups. However, the results are clear and the

hormone groups have been rediscovered without mistake. If this dataset contained

unknown groups we have demonstrated that in order to make important discoveries

you must first remove all the know, labelled confounding group effects, e.g., time,

vehicle, and batch effects.

One could argue that this evaluation is still slightly biased in that we used our

custom group profile based agglomerative clustering method. We believe that this

approach is meaningful and in itself is a useful contribution in dealing with novel

group detection in gene expression experiments. However, in order to provide an
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unbiased demonstration of how our method works we include a full off-the-shelf hier-

archical clustering of the uncorrected (Figure 4.14) and time effect profile subtracted

(Figure 4.15) profiles respectively (done using Spotfire[1]).

Figure 4.14: Hierarchical clustering of uncorrected individual Arabidopsis Hormone

profiles. The full ranked list is used for this clustering.

4.3.2 Acute Leukemia Prediction

In the previous section we have demonstrated how our profile subtraction

method improves on both our group profile method and a linear models approach

(as implemented in Limma). The dataset for this was one that was optimally suited

for this comparison in that it contained two sets of overlapping groups: hormone

groups and time groups. Our method can be useful even when this second set

of groups is not as obvious. We evaluate a gene expression dataset consisting of
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Figure 4.15: Hierarchical clustering of individual Arabidopsis Hormone profiles after

subtracting out time group profiles. The full ranked list is used for this clustering.

two subtypes of acute leukemia, namely acute myeloid leukemia (AML) and acute

lymphoblastic leukemia (ALL)[16].

The task that we are interested in is to see if we can rediscover the two sub-

types of leukemia and correctly segment the dataset correctly. To do this we again

use our group profile based hierarchical clustering method. The results of the clus-

tering based on the uncorrected gene expression profiles is shown in Figure 4.16. To

improve on this we again use our profile subtraction method, but unlike before there

are no specific, annotated confounding groups. All of the samples are very similar

and have large pairwise KS scores across the dataset because they all are leukemia

samples and this large generic leukemia signature is masking out the subtype sig-

natures. We therefore create a super leukemia group containing all of the samples
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and remove this generic leukemia profile from all of the profiles. After removing

the generic leukemia signature from the individual profiles we then rediscover the

two subtypes of leukemia Figure 4.17. These subtypes of leukemia are perfectly

clustered without any further knowledge needed.

4.4 Gene Expression Profile Generator

We have demonstrated how our group profile subtraction method can work on

real world datasets. We have shown how this method is an improvement over both

our original group profile method and linear models. For these methods there are

two main parameters to deal with, the weight to assign to the confounding group

profile to remove and the tagsize. The tagsize is only used for the hierarchical clus-

tering and not for the profile subtraction itself. Assuming that we had fully labelled

group and confounding group memberships there is not much issue in exploring

varying these weights and evaluating the impact on the results. Even if the dataset

is partially labelled we can take this approach and evaluate correct assignment of

groups to minimize the mistakes. If the labels are missing a domain expert could

help estimate how these parameters should be set. We acknowledge that sometimes

there may be no labels or domain expert to help tune these parameters so in order

to better understand the tradeoff of tuning these two variables we have created a

gene expression profile generator. The goal of doing this is to be able to understand

the relationship between groups of interest and confounding groups in a completely

controlled fashion. More specifically to we are interested in three main topics: un-
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derstanding the impact of different weights of signatures, the selection of the optimal

weight factor in the profile subtraction implementation, and to evaluate the impact

on differing probe sizes used in all of the calculations (up/down tagsizes).

4.4.1 Creation of groups and confounding groups

There are several parameters that can be set in the gene expression profile gen-

erator including: Number of group profiles selected (NG), Number of confounding

(side effect) profiles selected(NSE), and Number of individual profiles selected.

For each group (and confounding group) a random set of GO terms is selected

to be up-expressed. For each of these GO terms a weight is randomly selected

using the following Gaussian distribution f(x) = ae−
(x−ω)2

2c2 . Analogously a random

set of GO terms is selected to be down-expressed and a weight is assigned from

f(x) = ae−
(x+ω)2

2c2 .

4.4.2 Creation of individual profiles

For each individual profile s to be created, an initial random profile is gen-

erated. To do this each probe is randomly selected from Gaussian distribution

(variance = 0.52) f(x) = ae
− x2

2×0.52 . Then for each group/confounding group that

this individual is a member of and for each probe that is linked to a gene in the

GO id for this group, we average together the original random expression value with

the GO term weighted expression. This gives us the effect that probes belonging

to genes in our GO terms selected as being part of the up (or down) expressed sig-
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natures are more likely to be up (or down) expressed, but they do not necessarily

have to be. This is repeated for all the groups that this individual is a member with

and this causes the effects to be cumulative (if a individual belong to two groups

with the same GO term as either both up- or down-expressed) or diminishing (if

the individual belongs to two groups with the same GO term in opposite signatures

– up- and down-expressed).

For our evaluation we keep the group weight constant at 1.0. Confounding

weights are evaluated over the range between 0.5 and 1.5 in increments of 0.1.

We fix the number of groups (NG) to 3, and the number of confounding groups

(NSE) to 3. In order to guarantee a group worth evaluating we additionally fix the

minimum number of GO terms to 10. The number of individual profiles created

for each group/confounding group is set to 3 (total n=27). The Up/Down tagsizes

are evaluated across several values of t in the set (25,50,100,250,500). For modeling

purposed c is held constant at 0.2. Additionally, we evaluate profile subtraction

weights, ωg , from 50 to 100 in increments of 5.

In order to evaluate the accuracy of each of these simulations, we again perform

hierarchical group clustering and count clustering mistakes. For each of these sim-

ulations we also create confounding group profiles (from our designated side effect

profiles) and calculate pairwise KS scores with each individual profile in the dataset.

From this we can evaluate the relationship between these scores and optimal weights

Figure 4.18 demonstrates that for a normal tagsize of 100, there are confound-

ing group weightings that result in perfect clustering regardless of the modeled

confounding profile weight. The results for varying tagsizes is shown in Figure 4.19
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by showing the results broken down by the confounding group size modeled. These

results clearly demonstrated that when the confounding group effects are less than

the target group effects (first panel), the tagsize chosen has no impact on the results.

The tagsize becomes more important as the modeled confounding group effects in-

creases (relative to the group of interest), but it never becomes a driving force in

the accuracy of the method. We therefore should expect a tagsize in the 100 range

to perform reasonable well. As previously stated, a domain expert could help de-

cide this or this weighting could be more accurately selected in the presence of any

labelled group membership annotations.

4.5 Discussion

In this chapter we have introduced our gene expression profile subtraction

method. The goal of this work was to extend our original group profile method in a

way such that we would be able to solve the problem of removing confounding group

effects as these confounding effects may mask the true signatures of the groups being

studied. We created a method tangential to what one can do with linear models, but

for ranked lists, and more specifically two-sided relative ranked lists. We introduced

an extension to our non-parametric gene expression profile method to correct for

observed confounding effects. This correction is performed on ranked lists directly

and provides a robust alternative to parametric batch profile correction methods.

We have evaluated our profile subtraction method and demonstrated how it

improves on our original group profile method in two different datasets when dealing
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with confounding effects. We further have provided a comparison to alternative

methods including Limma, Combat, and SVA. The results from our method exhibits

a high level of true positive recall similar to our group profile method in addition to

a reduction in false positives similar to a linear model type of approach.

For this work we have focused on the ability to rediscover known groups of

interest as our comparison metric, however, the outcome of all of this work is the

actual group profiles being created. The accuracy obtained in the clustering gives

us confidence that the signatures obtained are in fact meaningful. We can now

use these signatures to both find new members of a given group as well as to gain

biological insight into the shared genetic signature of our groups as was demonstrated

in Chapter 3.
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Figure 4.16: Hierarchical group profile based clustering of uncorrected individual

AML (blue) and ALL (red) profiles.
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Figure 4.17: Hierarchical group profile based clustering of individual AML (blue)

and ALL (red) profiles after subtracting out an overarching cancer group profile.
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Figure 4.18: Evaluation of the impact of the profile subtraction weighting factor on

clustering accuracy across varying modeled true confounding group profile strengths

(corresponding to different colors). Here we show the results using a tagsize of 100.
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Figure 4.19: Negligible impact of varying the tagsize on the clustering accuracy

across varying modeled true confounding group profile strengths. Each subgraph

contains the results from a given modeled true confounding weight and each line

corresponds to a given tagsize (25,50,100,250,500). Each line represents a different

tagsize.
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Chapter 5

Conclusions and Future Work

Gene expression microarrays are used to answer a variety of scientific ques-

tions. These questions include gaining a better understanding of a drug, segmenting

a disease, and predicting an optimal therapeutic response. The amount of gene ex-

pression data publicly available is extremely large and continues to grow at an

increasing rate. However, this rapid growth of gene expression data from laborato-

ries across the world has not had the full impact on the scientific community that

it is capable of achieving. This shortcoming is because a lot of the data cannot be

combined and used all at once. Even within a closely controlled gene expression

experiment there are confounding factors that may mask the true signatures when

analyzed with current methods. We are interested in three core tasks that we be-

lieve are important, namely similarity search, signature detection, and confounder

correction. We have developed novel methods that address each of these tasks.

In Chapter 2, we focus on similarity search within gene expression data. More

specifically, we are interested in methods for similarity search that overcome con-

founding effects, e.g., vehicle and batch effects. We introduce this topic through the

recent work from Lamb et al. [28] in which they present their tool, the Connectivity-

Map (CMAP) which tackles the problem of comparing gene expression profiles gen-

erated under diverse experimental conditions. They use a distribution statistic to
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compare the rankings of the probes and they ignore the raw expression values which

is a deviation from previous methods. Overall, the CMAP approach is robust and

provides good similarity measures. However, as it only evaluates a subset of probes,

it can fail when faced with severe vehicle and batch effects. In order to improve upon

this method we introduce the notion of an indirect similarity measure. The indirect

similarity measure uses the combined knowledge from throughout the database to

improve on the pairwise similarity calculation similar to how GPS works. This is

done to minimize the error bounds of a single estimate. We presented an evaluation

of this new indirect similarity method on a large proprietary dataset. Through this

evaluation we showed that this new method is able to overcome experimental noise

by obtaining a 97.03% improvement in recall of similar drugs over the direct CMAP

approach. In addition, we validated the robustness of this method on the publicly

available CMAP dataset, with an improvement in recall of 49.44%.

In Chapter 3, we dealt with the challenge of determining a robust genetic sig-

nature to represent a group of gene expression profiles. We motivated and described

our weighted influence model rank of ranks (WIMRR) method for group profile cre-

ation. We demonstrated how to gain biological insight into the underlying function

of a group of compounds by evaluating overrepresentation of GO terms within the

top/bottom of the group signature. As we showed, this in turn can potentially lead

to a new hypothesis into the etiology of the disease that they treat. We explained

how to perform similarity searching with these group profiles and showed how such

a profile can be used for classification, e.g., classifying subtypes of a disease. A

case study of the antipsychotic group was presented to demonstrate the power of

120



this group profile method. A sensitivity analysis and independent validation of the

group profile method was performed demonstrating scientifically meaningful results.

We concluded this chapter with an analysis of a large dataset consisting of over 200

therapeutic classes. We have created a website (GEPedia.org) that hosts all of these

group profiles. This website also includes all of the downstream analysis for each

group profile, including both an evaluation of the biological signatures as well as the

similarity score of each compound in the database.

In Chapter 4, we addressed the issue of confounding effects in gene expression

experiments. At a high level, our goal was to develop a method that will behave

similar to the parametric methods that are currently employed in this field, e.g.,

Limma, Combat, SVA, etc. We have proposed an extension to our non-parametric

gene expression profile method to correct for observed confounding effects. This

correction is performed on ranked lists directly and provides a robust alternative

to parametric batch profile correction methods. The premise of modeling target

groups and confounding groups at once is that the effects among these two groups

is additive. In order to remove the effects of a confounding group profile we first

identify all of the members of the group and create the group profile of our confound-

ing group. Given the unique properties of our two-sided ranked lists, in order to

subtract the confounding profile from each of the samples we first invert the ranked

list. Then to complete the subtraction of this confounding groups effects the original

profile (rank(y) values) and the ranks of this inverted ranked lists representing our

confounders can just be averaged together. We are left with the individual gene

expression profiles after having the confounding effects removed. We evaluated our
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novel profile subtraction method on an Arabidopsis dataset that contained a set of

hormone samples treated for different times. We successfully were able to remove

the confounding time effects and improve on the results observed with other meth-

ods when creating the hormone group profiles. We also were able to rediscover the

hormone groups perfectly. We provided an additional evaluation on an independent

dataset consisting of AML and ALL samples, for which we also were able to cluster

the two subtypes of leukemia correctly. We concluded this work with the creation of

a gene expression profile generator and a discussion on the robustness of the method

to the tuning parameters.

5.1 Future Work

We have introduced methods to deal with the three tasks that are important

when analyzing gene expression experiments. However, it is important to note that

unlike many methods for dealing with similarity search within gene expression data,

our methods works regardless of the data representation. For the first method

dealing with indirect similarity, any pairwise distance metric can be swapped in in

place of the KS statistic that we evaluated. The only requirement of the group profile

and profile subtraction methods is that the data can be represented as two-sided

relatively ranked lists. We believe that these methods would prove useful if evaluated

on other datasets, especially datasets with a large number of observations that can

be ranked. This includes any system whose state can be represented by a large

set of sensors/probes. For example, a sensor network containing tens of thousands
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of sensors could be represented as a two-sided ranked lists by first normalizing

everything as changes from one state to another, and then ranking these in the

same way that was done for the gene expression profiles.

We have briefly demonstrated that these methods are robust to the parameter

tuning but further work could be done to automate the optimal selection of some of

these parameters, e.g., the tag size (number of probes) used for the search, weight

of a confounding effect to remove, etc. We have shown how our methods work well

when a dataset contains two sets of overlapping groups (target groups and confound-

ing groups) that are known and correctly annotated. We have also demonstrated

that when only the confounding groups are known, the groups of interest can be

discovered. Another interesting task would be the collective discovery of both sets

of overlapping groups, assuming both the target groups and confounding groups are

unknown. A simple step in this direction would be to deal with a partially labelled

set of group memberships or a set of group labels that contains errors. An updated

version of these methods could attempt to automatically correct these issues. Al-

ternatively, an active learning approach could be employed in which the algorithm

could present the user with classifications for which there are questions.

We discussed at the onset of this work that one of our motivations is to be

able to use more of the information available in the public domain to drive new

scientific discovery. We believe that the methods introduced in this work allow for

the combination of gene expression data from multiple sources as they are robust to

vehicle, batch, and other confounding effects. However, we have assumed that the

data is all from similar microarrays. There is some work on mapping one microarray
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technology to another, as well as mapping the results of gene expression data from

one organism to another (through GO terms and other mechanisms). It would

be worthwhile to explore the ability of our methods to work across these barriers

and to evaluate what changes would be required to have them perform optimally

across such large barriers. Combining all of these possible avenues of future research

would lead to discovery of novel scientific information from data that has already

been generated and that sits undiscovered in the public domain. The possibilities

to gain a better understanding of diseases and of new potential therapies to treat

them serves as a motivation to continue developing and refining these methods.
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[9] E Chávez, G Navarro, R Baeza-Yates, and J Marroqúın. Searching in metric
spaces. ACM Computing Surveys (CSUR, 33(3), Sep 2001.

[10] C Chen, K Grennan, J Badner, D Zhang, E Gershon, Li Jin, and C Liu.
Removing batch effects in analysis of expression microarray data: an evaluation
of six batch adjustment methods. PLoS ONE, 6(2):e17238, Jan 2011.

[11] ER DeLong, DM DeLong, and DL Clarke-Pearson. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, 44(3):837–45, Sep 1988.

125



[12] JL DeRisi, VR Iyer, and PO Brown. Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science, 278(5338):680–6, Oct
1997.

[13] DR Donohoe, EJ Aamodt, E Osborn, and FS Dwyer. Antipsychotic drugs dis-
rupt normal development in caenorhabditis elegans via additional mechanisms
besides dopamine and serotonin receptors. Pharmacol Res, 54(5):361–72, Nov
2006.

[14] S Gerard. Reviewing medications for bipolar disorder: understanding the mech-
anisms of action. The Journal of clinical psychiatry, 70(1):e02, Jan 2009.

[15] H Goda, E Sasaki, K Akiyama, A Maruyama-Nakashita, K Nakabayashi, W Li,
M Ogawa, Y Yamauchi, J Preston, K Aoki, T Kiba, S Takatsuto, S Fu-
jioka, T Asami, T Nakano, H Kato, T Mizuno, H Sakakibara, S Yamaguchi,
E Nambara, Y Kamiya, H Takahashi, M Yokota Hirai, T Sakurai, K Shinozaki,
K Saito, S Yoshida, and Y Shimada. The atgenexpress hormone and chemical
treatment data set: experimental design, data evaluation, model data analysis
and data access. Plant J, 55(3):526–42, Aug 2008.

[16] TR Golub, DK Slonim, PTamayo, C Huard, M Gaasenbeek, JP Mesirov,
H Coller, ML Loh, JR Downing, MA Caligiuri, CD Bloomfield, and ES Lander.
Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286(5439):531–7, Oct 1999.

[17] M Gupta, C Chauhan, P Bhatnagar, S Gupta, S Grover, PK Singh, M Pu-
rushottam, O Mukherjee, S Jain, SK Brahmachari, and R Kukreti. Genetic
susceptibility to schizophrenia: role of dopaminergic pathway gene polymor-
phisms. Pharmacogenomics, 10(2):277–91, Feb 2009.

[18] PC Heinrich, I Behrmann, S Haan, HM Hermanns, G Müller-Newen, and
F Schaper. Principles of interleukin (il)-6-type cytokine signalling and its reg-
ulation. Biochem J, 374(Pt 1):1–20, Aug 2003.

[19] T Hongo, S Yajima, M Sakurai, Y Horikoshi, and R Hanada. In vitro drug
sensitivity testing can predict induction failure and early relapse of childhood
acute lymphoblastic leukemia. Blood, 89(8):2959–65, Apr 1997.

[20] E Hubbell, W Liu, and R Mei. Robust estimators for expression analysis.
Bioinformatics, 18(12):1585–92, Dec 2002.

[21] T R Hughes, M J Marton, A R Jones, C J Roberts, R Stoughton, C D Ar-
mour, H A Bennett, E Coffey, H Dai, Y D He, M J Kidd, A M King, M R
Meyer, D Slade, P Y Lum, S B Stepaniants, D D Shoemaker, D Gachotte,
K Chakraburtty, J Simon, M Bard, and S H Friend. Functional discovery via
a compendium of expression profiles. Cell, 102(1):109–26, Jul 2000.

126



[22] NB Ivanova, JT Dimos, C Schaniel, JA Hackney, KA Moore, and IR Lemischka.
A stem cell molecular signature. Science, 298(5593):601–4, Oct 2002.

[23] X Jiang, F Tian, Y Du, NG Copeland, NA Jenkins, L Tessarollo, X Wu, H Pan,
XZ Hu, K Xu, H Kenney, SE Egan, H Turley, AL Harris, AM Marini, and
RH Lipsky. Bhlhb2 controls bdnf promoter 4 activity and neuronal excitability.
J Neurosci, 28(5):1118–30, Jan 2008.

[24] B John, AJ Enright, A Aravin, T Tuschl, C Sander, and DS Marks. Human
microrna targets. PLoS Biol, 2(11):e363, Nov 2004.

[25] WE Johnson, C Li, and A Rabinovic. Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics, 8(1):118–27, Jan
2007.

[26] GJ Kaspers, R Pieters, CH Van Zantwijk, ER Van Wering, A Van Der Does-
Van Den Berg, and AJ Veerman. Prednisolone resistance in childhood acute
lymphoblastic leukemia: vitro-vivo correlations and cross-resistance to other
drugs. Blood, 92(1):259–66, Jul 1998.

[27] GJ Kaspers, AJ Veerman, R Pieters, CH Van Zantwijk, LA Smets, ER Van
Wering, and A Van Der Does-Van Den Berg. In vitro cellular drug resistance
and prognosis in newly diagnosed childhood acute lymphoblastic leukemia.
Blood, 90(7):2723–9, Oct 1997.

[28] J Lamb, ED Crawford, D Peck, JW Modell, IC Blat, MJ Wrobel, J Lerner,
J Brunet, A Subramanian, KN Ross, M Reich, H Hieronymus, G Wei, SA Arm-
strong, SJ Haggarty, PA Clemons, R Wei, S A Carr, ES Lander, and TR Golub.
The connectivity map: using gene-expression signatures to connect small
molecules, genes, and disease. Science, 313(5795):1929–35, Sep 2006.

[29] J Lamb, S Ramaswamy, H Ford, and B Contreras. A mechanism of cyclin d1
action encoded in the patterns of gene expression in human cancer. Cell, Jan
2003.

[30] JT Leek, RB Scharpf, HC Bravo, D Simcha, B Langmead, WE Johnson, D Ge-
man, K Baggerly, and RA Irizarry. Tackling the widespread and critical impact
of batch effects in high-throughput data. Nat Rev Genet, 11(10):733–9, Oct
2010.

[31] JT Leek and JD Storey. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet, 3(9):1724–35, Sep 2007.

[32] L Licamele and L Getoor. Indirect two-sided relative ranking: a robust sim-
ilarity measure for gene expression data. BMC Bioinformatics, 11:137, Jan
2010.

127



[33] L Licamele and L Getoor. A method for the detection of meaningful and repro-
ducible group signatures from gene expression profiles. J Bioinform Comput
Biol, 9(3):431–51, Jun 2011.

[34] G Linden, B Smith, and J York. Amazon. com recommendations: item-to-item
collaborative filtering. Internet Computing, Jan 2003.

[35] J Listgarten, C Kadie, EE Schadt, and D Heckerman. Correction for hidden
confounders in the genetic analysis of gene expression. Proc Natl Acad Sci USA,
107(38):16465–70, Sep 2010.

[36] J Lu, S Guo, BL Ebert, H Zhang, X Peng, J Bosco, J Pretz, R Schlanger,
JY Wang, RH Mak, DM Dombkowski, FI Preffer, DT Scadden, and TR Golub.
Microrna-mediated control of cell fate in megakaryocyte-erythrocyte progeni-
tors. Dev Cell, 14(6):843–53, Jun 2008.

[37] PY Lum, CD Armour, SB Stepaniants, G Cavet, MK Wolf, JS Butler, JC Hin-
shaw, P Garnier, GD Prestwich, A Leonardson, P Garrett-Engele, CM Rush,
M Bard, G Schimmack, JW Phillips, CJ Roberts, and DD Shoemaker. Discov-
ering modes of action for therapeutic compounds using a genome-wide screen
of yeast heterozygotes. Cell, 116(1):121–37, Jan 2004.

[38] J Luo, M Schumacher, A Scherer, D Sanoudou, D Megherbi, T Davison, T Shi,
W Tong, L Shi, H Hong, C Zhao, F Elloumi, W Shi, R Thomas, S Lin, G Till-
inghast, G Liu, Y Zhou, D Herman, Y Li, Y Deng, H Fang, P Bushel, M Woods,
and J Zhang. A comparison of batch effect removal methods for enhancement of
prediction performance using maqc-ii microarray gene expression data. Phar-
macogenomics J, 10(4):278–91, Aug 2010.

[39] W m Liu, R Mei, X Di, T B Ryder, E Hubbell, S Dee, TA Webster, CA Har-
rington, M h Ho, J Baid, and SP Smeekens. Analysis of high density expression
microarrays with signed-rank call algorithms. Bioinformatics, 18(12):1593–9,
Dec 2002.

[40] DE Martin, P Demougin, MN Hall, and M Bellis. Rank difference analysis
of microarrays (rdam), a novel approach to statistical analysis of microarray
expression profiling data. BMC Bioinformatics, 5:148, Oct 2004.

[41] RM Miller, LM Callahan, C Casaceli, L Chen, GL Kiser, B Chui, TM Kaysser-
Kranich, TJ Sendera, C Palaniappan, and HJ Federoff. Dysregulation of gene
expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse
substantia nigra. J Neurosci, 24(34):7445–54, Aug 2004.

[42] JW Newcomer and MJ Sernyak. Identifying metabolic risks with antipsychotics
and monitoring and management strategies. The Journal of clinical psychiatry,
68(7):e17, Jul 2007.

128



[43] JC Newman and AM Weiner. L2l: a simple tool for discovering the hidden
significance in microarray expression data. Genome Biol, 6(9):R81, Jan 2005.

[44] CM Perou, T Sørlie, MB Eisen, M van de Rijn, SS Jeffrey, CA Rees, JR Pollack,
DT Ross, H Johnsen, LA Akslen, O Fluge, A Pergamenschikov, C Williams,
SX Zhu, PE Lønning, AL Børresen-Dale, PO Brown, and D Botstein. Molecular
portraits of human breast tumours. Nature, 406(6797):747–52, Aug 2000.

[45] R Pieters, DR Huismans, AH Loonen, KHählen, A Van Der Does-Van Den
Berg, ER Van Wering, and AJ Veerman. Relation of cellular drug resistance to
long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet,
338(8764):399–403, Aug 1991.

[46] M Pirooznia, JY Yang, M Qu Yang, and Y Deng. A comparative study of
different machine learning methods on microarray gene expression data. BMC
Genomics, 9 Suppl 1:S13, Jan 2008.

[47] MH Polymeropoulos, L Licamele, S Volpi, K Mack, SN Mitkus, ED Carstea,
L Getoor, A Thompson, and C Lavedan. Common effect of antipsychotics on
the biosynthesis and regulation of fatty acids and cholesterol supports a key
role of lipid homeostasis in schizophrenia. Schizophr Res, 108(1-3):134–42, Mar
2009.

[48] SL Pomeroy, P Tamayo, M Gaasenbeek, LM Sturla, M Angelo, ME McLaugh-
lin, JYH Kim, LC Goumnerova, PM Black, C Lau, JC Allen, D Zagzag, JM Ol-
son, T Curran, C Wetmore, JA Biegel, T Poggio, S Mukherjee, R Rifkin,
A Califano, G Stolovitzky, DN Louis, JP Mesirov, ES Lander, and TR Golub.
Prediction of central nervous system embryonal tumour outcome based on gene
expression. Nature, 415(6870):436–42, Jan 2002.

[49] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[50] M Ramalho-Santos, S Yoon, Y Matsuzaki, RC Mulligan, and DA Melton.
”stemness”: transcriptional profiling of embryonic and adult stem cells. Sci-
ence, 298(5593):597–600, Oct 2002.

[51] C Roumestan, C Henriquet, C Gougat, A Michel, F Bichon, K Portet, D Jaf-
fuel, and M Mathieu. Histamine h1-receptor antagonists inhibit nuclear factor-
kappab and activator protein-1 activities via h1-receptor-dependent and -
independent mechanisms. Clin Exp Allergy, 38(6):947–56, Jun 2008.

[52] B Sarwar, G Karypis, J Konstan, and J Reidl. Item-based collaborative filtering
recommendation algorithms. WWW ’01: Proceedings of the 10th international
conference on World Wide Web, Apr 2001.

129



[53] E Segal, N Friedman, D Koller, and A Regev. A module map showing condi-
tional activity of expression modules in cancer. Nat Genet, 36(10):1090–8, Oct
2004.

[54] KP Seiler, GA George, MP Happ, NE Bodycombe, HA Carrinski, S Nor-
ton, S Brudz, JP Sullivan, J Muhlich, M Serrano, P Ferraiolo, NJ Tolli-
day, SL Schreiber, and PA Clemons. Chembank: a small-molecule screen-
ing and cheminformatics resource database. Nucleic Acids Res, 36(Database
issue):D351–9, Jan 2008.

[55] J Shi, JK Wittke-Thompson, JA Badner, E Hattori, JB Potash, VL Willour,
FJ McMahon, RS Gershon, and C Liu. Clock genes may influence bipolar
disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet
B Neuropsychiatr Genet, 147B(7):1047–55, Oct 2008.

[56] AH Sims, GJ Smethurst, Y Hey, MJ Okoniewski, SD Pepper, A Howell,
CJ Miller, and RB Clarke. The removal of multiplicative, systematic bias allows
integration of breast cancer gene expression datasets - improving meta-analysis
and prediction of prognosis. BMC Med Genomics, 1:42, Jan 2008.

[57] GK Smyth. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol, 3:Article3,
Jan 2004.

[58] PK Tan, TJ Downey, EL Spitznagel, P Xu, D Fu, DS Dimitrov, RA Lempicki,
BM Raaka, and MC Cam. Evaluation of gene expression measurements from
commercial microarray platforms. Nucleic Acids Res, 31(19):5676–84, Oct 2003.

[59] OG Troyanskaya, ME Garber, PO Brown, D Botstein, and Russ B Altman.
Nonparametric methods for identifying differentially expressed genes in mi-
croarray data. Bioinformatics, 18(11):1454–61, Nov 2002.

[60] LJ van ’t Veer, H Dai, MJ van de Vijver, YD He, AAM Hart, M Mao,
Hans L Peterse, Karin van der Kooy, Matthew J Marton, Anke T Witteveen,
George J Schreiber, RM Kerkhoven, C Roberts, PS Linsley, René Bernards,
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