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Abstract

Background: Disturbed heart dynamics in depression seriously increases mortality risk. Heart rate variability (HRV) is a rich
source of information for studying this dynamics. This paper is a meta-analytic review with methodological commentary of the
application of nonlinear analysis of HRV and its possibility to address cardiovascular diseases in depression.

Objective: This paper aimed to appeal for the introduction of cardiological screening to patients with depression, because it is
still far from established practice. The other (main) objective of the paper was to show that nonlinear methods in HRV analysis
give better results than standard ones.

Methods: We systematically searched on the web for papers on nonlinear analyses of HRV in depression, in line with PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 framework recommendations. We scrutinized the
chosen publications and performed random-effects meta-analysis, using the esci module in jamovi software where standardized
effect sizes (ESs) are corrected to yield the proof of the practical utility of their results.

Results: In all, 26 publications on the connection of nonlinear HRV measures and depression meeting our inclusion criteria
were selected, examining a total of 1537 patients diagnosed with depression and 1041 healthy controls (N=2578). The overall
ES (unbiased) was 1.03 (95% CI 0.703-1.35; diamond ratio 3.60). We performed 3 more meta-analytic comparisons, demonstrating
the overall effectiveness of 3 groups of nonlinear analysis: detrended fluctuation analysis (overall ES 0.364, 95% CI 0.237-0.491),
entropy-based measures (overall ES 1.05, 95% CI 0.572-1.52), and all other nonlinear measures (overall ES 0.702, 95% CI
0.422-0.982). The effectiveness of the applied methods of electrocardiogram analysis was compared and discussed in the light
of detection and prevention of depression-related cardiovascular risk.

Conclusions: We compared the ESs of nonlinear and conventional time and spectral methods (found in the literature) and
demonstrated that those of the former are larger, which recommends their use for the early screening of cardiovascular abnormalities
in patients with depression to prevent possible deleterious events.

(JMIR Ment Health 2023;10:e40342) doi: 10.2196/40342
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Introduction

Cardiovascular diseases (CVDs) are the number one cause of
death globally according to the World Health Organization
[1,2]. Depression is the number one mental health–related
contributors to the global burden of disease [3]. When combined,
these 2 diseases can lead to increased mortality risk [4-6].
Recently, the European Society of Cardiology published a
position paper about the mechanisms linking depression and
CVD, based on abundant evidence from literature [7]. Although
this connection was discovered a long time ago [8-10], the CVD
screening of patients with depression is still far from routine.

In nearly 70% of patients with depression, somatic symptoms,
such as lack of energy, sleep disturbance, lack of appetite,
decreased sex drive, general pains, etc, dominate the clinical
picture [11]. These symptoms are due to autonomous nervous
system (ANS) dysfunction. Heart rate variability (HRV) is
regulated by the ANS, and its disturbance is a marker of CVD.
The relation between HRV and depression has been well
understood [7,12-15]. We registered at least 14 reviews that
meta-analytically compared conventional methods of analysis
of this relation [16-28].

Medical professionals interested in the detection of depression
may be uninformed of the knowledge and methods offering
additional insights into a patient’s condition, with the knowledge
coming from theoretical research—mathematical analysis,
complex systems dynamic theory, and information theory. These
methods can be used to extract information embedded in
electrophysiological signals, represented as time
series—electrocardiogram (ECG), electroencephalogram,
electromyogram, etc. Current view of what electrophysiological
signals can yield is quite obsolete and limited by a reductionist
approach established in clinical practice, because most devices
for recording physiological signals have built-in algorithms
based on Fourier analysis [29]. These standard (time and
frequency) methods of electrical signal analysis are designed
for (predictable) electro-mechanical systems and are not well
suited for (complex) physiological systems. A number of review
studies [16-27] offer very detailed comparative analyses of time
and frequency measures of HRV related to depression. They
rely on the assumption that the dynamics of the system may be
linearized, where valuable information is lost in the case of
electrophysiological signals.

Physiological systems are complex. Complex systems are
composed of multiple subunits that interact in a nonlinear
fashion producing unpredictable behaviors [29,30]. Although
homeostasis is usually perceived as a still condition, “healthy
heartbeat displays highly complex, apparently unpredictable
fluctuations even under steady-state conditions” [29], whereas
heart failure, for example, shows “slow periodic oscillations
that correlate with Cheyne-Stokes breathing” [31]. The theory
of complex dynamic systems applies to such a system. Its
behavior can be predicted at best for short intervals, and it is
characterized by long-range correlations and organized
variability.

In information theory, the rate at which a system is producing
information is described by Shannon entropy (ShanEn)—a

quantity reflecting the number of possible states a system can
occur in, that is, the level of uncertainty (unpredictability).
Pincus et al [32,33] adapted the ShanEn for cardiology research
and devised the approximate entropy (ApEn) algorithm, a
statistic quantifying serial irregularity. Further, Richman and
Moorman [34] refined this measure into sample entropy
(SampEn), which was later improved by Costa et al [35],
proposing the multiscale entropy (MSE) algorithm that
calculates irregularity changes on multiple scales [35]. Costa
et al [36] performed a series of studies focusing on methods of
analysis of ECG, and their work was a significant step in the
acceptance of nonlinear methodology. Translated to signals,
the higher the entropy, the higher the irregularity of a signal,
which is most often interpreted as higher complexity. This
“awkward fact,” as Vargas et al [30] noted, is paradoxical as
complexity assumes a structure that is highly ordered. Glass
and Mackey [37] stated that “Random outputs result from
degraded control mechanisms and/or breakdown of the coupling
among them,” that is, from the loss of complexity. Nevertheless,
as much as this confusion makes the insights into control
mechanisms more difficult, the measures of complexity or
irregularity differ between health and disease rendering them
suitable for nonspecific markers of ill-health.

Neural control mechanisms, which demonstrate fractal
properties, generate “organized variability” (previously thought
to be the “noise” in the signal) characteristic of a healthy
physiological system [38]. Physiological systems are scale-free;
self-similar fluctuations are observed on different time scales.
From one moment to the next, the fluctuations detected in the
same signal are quite variable [31,32]. A system that is fractal
can demonstrate irregularity across a wide range of scales, but
the type of “disorder” or “roughness” on different scales is
statistically similar [39-41]. Goldberger et al [31] stated that
“organized variability is an inevitable consequence of fractal
self-organization.” According to the number of publications (in
cardiology), the most popular fractal-based methods in use for
analyzing HRV is detrended fluctuation analysis (DFA), which
is based on correlation properties and uses random walk [42].

In interpreting the results and choosing the measures to be used,
the physical meaning of the applied nonlinear analysis and the
physiological context of a particular disease have to be kept in
mind. Beside entropy- and fractal-based measures, there are
other families of nonlinear measures that are methodologically
very different. Poincaré plots are among the most accurate
measures applied in cardiology [43], and being a graphical
representation, they are very convenient for clinical application.
Largest Lyapunov exponents (LLE) [44], which were used often
in the beginning of the field, detect the level of chaos in a signal.
Lempel-Ziv complexity (coming from information theory)
quantifies the uncertainty contained in time-series data and is
still among the frequently used measures in physiology [45].
Several correlation-based measures also showed promising
results, but to describe even the basic methodology for all of
them is out of the scope of this manuscript.

The fundamental difference between irregularity statistics and
conventional variability measures is that the conventional
approach is focusing on tasks of quantifying the degree of spread
around the central value while the order of the input data is
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irrelevant; whereas in irregularity statistics, nonlinear measures
track changes from random to very regular and the order of
samples is essential to the algorithm [40]. Nonlinear measures
have been shown to be very effective in detecting the slightest
differences between healthy and ill heart dynamics—even when
time series of the compared states are varying around almost
the same mean values [29,41]. An impressive example of the
advantage of nonlinear methods is the case of detecting sudden
infant death syndrome based on entropy measures calculated
from ECG; the standard method was not able to detect any
difference between healthy and babies under a serious risk [41].

This study is a random-effects meta-analysis of the most
important studies that used nonlinear methods to confirm the
connection between HRV (as a marker of CVD) and depression.
We calculated effect sizes (ESs) from these studies and
compared them with the ESs of standard (conventional) methods
found in the literature. The aim of this work was to help
convince clinicians to (1) introduce cardiological screening to
patients with depression, since depression is confirmed to bear
a risk for CVD [10,16,22,46-48] and (2) apply nonlinear
methods to HRV analysis for more accurate and reliable
screening results.

Methods

Overview
Since there are a considerable number of recently published
meta-analytic studies [16-27] regarding the classical (spectral
or conventional) approach to analyzing HRV, we decided to
include only those studies that performed any nonlinear method
of analysis or had mixed analytic approaches (applying both
standard and nonlinear methods of analysis of heart rhythm to
compare the effectiveness of analytics). This meta-analysis was
performed in agreement with PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analysis) guidelines
[49] with the main aim to present an integrated, realistic ES of
the nonlinear measures in distinguishing between major
depressive disorder (MDD) and controls, in comparison to
conventionally used measures reported in previously published
meta-analytic studies. Our work does not compare effects of
interventions; thus, it was not preregistered (ie, the review
protocol registration does not exist).

Only case-control studies or longitudinal studies that used ECG
recordings or measurements of heart rate or any automated ECG
diagnosis (for example, including early arrhythmia detection)
and successive nonlinear analyses were included in our pool.
Our query was kept as broad as possible to retrieve as many
relevant papers as possible. We searched web resources, such
as Springer, Wiley, Elsevier, IEEE, National Institute of Mental
Health, Frontiers, PlosOne, Hindawi, Web of Science, PubMed,
Cochrane Library, Scopus, and National Center for
Biotechnology Information, with sets of keywords:
(“depression” OR “Major depressive disorder” OR “bipolar
depression”) AND (“ECG” OR “electrocardiography” OR
“HRV” OR “heart rate variability”) AND (“Nonlinear analysis”
OR “Fractal analysis” OR “entropy”).

We then scrutinized the abstracts and full texts (in English) and
discarded those that were purely theoretical considerations of
the connection of HRV and depression without the quantification
of HRV measures (even when they included keywords from all
3 sets); papers on mood disorders without separate data on
depression; studies where samples comprised solely of healthy
subjects or subjects under the age of 18 years; studies without
age-matched controls; animal studies; and papers without peer
review.

Depression was diagnosed using the Diagnostic and Statistical
Manual of Mental Disorders (DSM; DSM-III-R, DSM-IV-TR,
and DSM-5), International Classification of Diseases 10th
Revision, Mini-International Neuropsychiatric Interview, Beck
Depression Inventory, or Montgomery-Åsberg Depression
Rating Scale. Some studies, found as references through hand
searching of citation lists in review papers, were downloaded
from the ResearchGate platform or were included even if
nonretrievable as full text. Papers with standard analyses of
ECG, added for comparison, were found in part via web-based
search, from reference lists of review papers, and from the
authors who were kind to send us full texts. The web search
was performed in February and March 2021. Our screening was
finalized in October 2021.

During the process (after removing the duplicates), we kept the
working sheet (updated by all authors) with the basic data
extracted from every paper included in the study (the first
author’s name and the year of publication as an identifier,
sample size, the mean and SD calculated for groups, the
measures used in the research, the effect detected, and specific
observations about the accuracies of applied analyses). Where
we were unable to extract the data, we used WebPlotDigitizer
software [50]. After coding all the data from the included papers,
ES estimates were transformed into the same metric to be
compared (Cohen’s ds was corrected, hence having the same
value as Hedges’ g). We used the esci module in jamovi
exploratory software (open-source statistical software written
in R) [50] to calculate overall ESs (correction of Cohen’s d)
and 95% CIs and to generate forest plots [51]. The forest plots
were used to visually display the individual and overall ESs.

ES is a quantitative description of the strength of evidence about
a phenomenon. Cohen’s d describes the standardized mean
difference of an effect [52-55]. In between 2 groups of
independent observations, Cohen’s ds is:

where M1 and M2 are the variable means of the 2 groups
(patients and controls); in the denominator, the pooled SD is
the Bessel correction for bias in the estimation of population
variance (based on the least squares estimator [54,55]); SD1 and
SD2 are the respective SDs; and n1 and n2 are the sample sizes
of the groups. Cohen’s ds is also directly related to the t test:
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where t is the t statistic, and n1 and n2 are as above. This is a
direct relation between the ES and statistical significance. Here,
statistical significance is expressed regardless of whether the
95% CI around Cohen’s ds includes 0 or not. Hedges and Olkin
[54] showed that the formula for Cohen’s d based on sample
averages gives a biased estimate of the population ES (especially
for smaller sample sizes, n<20). The Cohen’s d that we
calculated is actually Cohen’s ds, described in Lakens [55]
(where SDs are pooled as in the formula above, not a single
average of both SDs from samples 1 and 2). Thus, it is the
Cohen’s d of a sample, ds. Further to be corrected for biases,
according to Hedges and Olkin [54], it must be multiplied by
another Bessel correction (1 – 3 / 4(N1 + N2) – 9) [55]. After
calculating the corrected Cohen’s ds for all the included studies,
by applying pooled SD in the process, we confirmed that what
is calculated as a correction (for biases) in the esci module in
jamovi software is actually Hedges’ g. The authors of the
software also describe that the product of their calculation
(included in forest plot that the program is generating) is equal
to Hedges’ g [51,56]. In several studies that reported t values,
we calculated Cohen’s ds according to the second formula. This
interpretation was done based on previous literature [51-56].

Ethical Considerations
Since all the studies included in our review have already
received prior approvals from their local ethics committees, and
we did not use nor collect any additional data from the patients
and only reanalyzed already published data, we do not report
any ethic approval for this particular study.

Results

Our initial search (based on the logical formula given in
Methods) in the abovementioned web services yielded 867
papers. The elimination was performed through phases shown
in the flow chart (Figure 1) showing the identification, screening,
eligibility check, and inclusion of studies in accordance with
PRISMA 2020 [49]. The chosen 26 papers originated from the
following databases: Elsevier (n=10), PubMed (n=8), Frontiers
(n=2), Web of Science (n=4), Springer (n=1), and IEEE (n=1).
They encompassed a total of 1537 patients diagnosed with
depression and 1041 healthy controls. The studies included
those that used nonlinear analyses or both nonlinear and standard
analyses.

Direct quantitative comparisons could not have been made, as
studies varied in methodologies, as well as in research
questions—detecting biomarkers or predictors of depression,
CVD mortality risk estimation or risk analysis, effects of
different therapies, etc. Therapies included those exploring
medication effects or spillover on HRV and psychological or
psychiatric interventions; some examined inflammation or other
important physiological markers, but some also used historical
medical data (for example, from Medicare archives in the United
States, see [57-59]). As the effects of therapies are not the topic
of this paper, we compared the studies grouped by family of
measures used (in nonlinear analysis) and summarized their

results and conclusions concerning only the detection of the
relation between depression and CVD mortality risk.

Figure 2 shows the information about the studies’methodologies
(the majority [19/26, 73%] used more than one; only 7 [27%]
studies were based on one nonlinear measure) and their
conclusions. After initial random-effects meta-analysis of overall
ESs of all included studies, we identified 3 distinct
(methodological) groups of research and performed 3 additional
meta-analyses. The first group used DFA (8 studies) with
reported Cohen’s ds (corrected for biases) and 95% CIs. The
second group of studies used methods from the large family of
entropy measures: ApEn in 5 studies, SampEn in 5 studies,
MSE in 3 studies, and ShanEn, Renyi entropy and refined
composite multiscale entropy, and multilag tone-entropy, each
in one study. The third group comprised various nonlinear
analyses: Poincaré plots (n=4), LLE (n=2), symbolic measures
(n=2), Lempel-Ziv complexity (n=1), complex variability,
mutual information, autonomic information flow, beat decay
NN, logarithmic respiratory sinus arrhythmia, recurrence plot
analysis, Complex Correlation Measure, correlation dimension,
and Katz fractal dimension. This group also demonstrates a
historical order in which nonlinear measures entered cardiology,
and some of them are still very popular in health applications
(for example, LLE or Poincaré plots). Besides, this “historical”
group demonstrated an average ES more than 2 times higher
than any prior conventional approach, to the best of our
knowledge.

The forest plot (and the table with Cohen’s ds corrected and
95% CIs) is used to visualize those meta-analytic comparisons
of the ESs. Figure 2 represents the overall meta-analytic
comparison of the best ESs of the 26 included studies. Figure
3 represents meta-analysis of the DFA group (with 8 studies
compared, with an overall ES of 0.364, 95% CI 0.237-0.491).
Figure 4 represents meta-analysis of the entropy group (15
studies compared, with an overall strong ES of 1.05, 95% CI
0.572-1.52). Figure 5 represents all other nonlinear methods
used in the examined studies (13 studies compared, with an
overall ES of 0.702, 95% CI 0.422-0.982). All mentioned
comparisons yielded P<.01 (as shown the tables in all the
figures). As the majority of studies applied several types of
nonlinear analysis, we did multiple comparisons of corrected
ESs that we separately calculated for each method. The best ES
(ds=7.7, 95% CI 6.4193-8.997) was obtained for the study [60]
that used 4 entropy algorithms (ApEn, SampEn, ShanEn, and
fuzzy entropy). When calculating ESs for each entropy method
separately, ShanEn performed the best, and fuzzy entropy did
not yield a significant result.

From overall meta-analytic comparison of ESs, out of 26 studies
included, 11 were shown to be statistically insignificant [59-70],
and one paper [71] had the lower CI touching the zero line,
implying border significance. Thus, 15 (58%) out of 26 studies
were statistically significant, with the overall ES of corrected
Cohen’s ds=1.03 (elsewhere also reported as Hedges’ g), which
is a large ES [52] and can be translated to more than 1 SD [55].
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Figure 1. Flow chart representing the procedure of choosing 26 studies included for this review. ECG: electrocardiogram; HC: healthy controls; HRV:
heart rate variability.
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Figure 2. Forest plot and the table of random-effects meta-analysis showing the corrected effect size and CIs, as well as both sample sizes (N1: patients
diagnosed with depression; N2: controls). For each study performing more than one method of nonlinear HRV analysis, we presented the largest effect
size. Both table and forest plot are generated by the esci module in jamovi software. In all, 15 (58%) out of 26 included studies were shown to have
statistically significant results. The overall effect size (unbiased/corrected) is 1.03 (diamond ratio 3.60). HRV: heart rate variability. [14,44,45,57-79].

Figure 3. Forest plot (and table) showing the random-effects meta-analysis of a group of selected papers (8 publications [45,58,59,64,73,74,77,79])
that used detrended fluctuation analysis generated by the esci module in jamovi software. In all, 4 out of 8 studies were shown to have statistically
nonsignificant results, with the overall effect size (biases corrected) being 0.364 (between small and medium effect, closer to medium, according to
Cohen [52]), and the diamond ratio is 1.
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Figure 4. Forest plot (and table) showing the random-effects meta-analysis of a group of selected papers (15 publications
[45,57,60,63-67,69,70,72,73,77-79]) that used entropy measures: approximate entropy (ApEn), logarithmic ApEn, sample entropy, fuzzy entropy,
Shannon entropy, cross entropy, Renyi entropy, multiscale entropy, and improved refined composite multiscale entropy, generated by the esci module
in jamovi software. The overall effect size for this group is 1.05 (which is very large, according to Cohen [52]). In all, 10 out of 18 studies were shown
to have statistically nonsignificant results. Interestingly, Byun et al [60] calculated 4 entropy measures and demonstrated that only Shannon entropy
yielded a highly useful effect size of 7.7 (which is the best result detected in this entire pool of publications, followed by Khandoker et al [72] with a
corrected effect size of 7.3).
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Figure 5. Forest plot (and table) showing the random-effects meta-analysis of group of selected papers that used a number of different nonlinear analyses
of HRV in depression, excluding entropy and detrended fluctuation analysis measures. Those are Poincaré plots (SD1 and SD2), largest Lyapunov
exponents, symbolic measures, Katz fractal dimension, correlation dimension, Complex Correlated Measure, mutual information, logarithmic respiratory
sinus arrhythmia, heart rate turbulence, Lempel-Ziv complexity, recurrence plot analysis (determinism and recurrent rate are the most prominent result
in Greco et al [73], ds=3.5), autonomic information flow, and beat decay NN. The plot and table are generated by the esci module in jamovi software.
The overall effect size of studies included in this group is 0.7 (diamond ratio 2.3), which is considered large. Eight studies from this group were shown
to have practically meaningful results: Kemp et al [74], Yeragani, Rao et al [44], Byun et al [70], Iverson et al [75], Jelinek et al [59], Bob et al [76],
and Greco et al [73] (2 out of the 3 applied measures included and represented in this group). [44,45,59,61,62,65,68,70,71,73-76].

Discussion

Our results show that the overall standardized ES of nonlinear
measures of HRV in depression overperforms the ESs of
conventional measures of HRV reported in the literature.
Although the overall ES in our comparison (all 26 studies) was
1.03, the best entropy-based group ES was 1.05, the DFA group
ES was 0.36, and the third, miscellaneous group yielded an ES
of 0.70. In the latest standard HRV measures-based study [28]
(which is very similar to ours by the number of included
studies), the ESs of several conventional measures varied up to
0.46. The meta-analysis by Rottenberg [13] reports a small ES
(d~0.2), which explains only about 2% of the overall variance
for conventional measures. Many of the published papers
reported nonsignificant and mild-to-moderate ESs, whereas we
found much larger effects: for example, the best ES in our
research reached the value of 7.7 [60], and several others
demonstrated higher ESs than those reported in conventional
analyses (eg, the ES in Khandoker et al [72] was 7.3, which is
very large according to Cohen [52]; in Greco et al [73], the ES
was 3.5; and several others reached an ES around 1).

As commented in Results, almost half of the included studies
did not have a significant effect in discriminating patients with
depression from controls. This might be because not all patients
with depression have disturbed heart function and because of
the modest sample sizes. Indeed, the majority of those authors

concluded that their initial results were promising but required
replication. Later studies (2010 onward) show that researchers
started using larger data sets or at least existing databases [58].
In the last 10 years, studies not only started using nonlinear
measures but also combining them with some forms of machine
learning to discern MDD [60,72,73,77,81,82]. We consider this
methodological combination promising, especially since our
previous work based on depression detection from
electroencephalogram yielded good results [83-86].

Through the list of nonlinear methods presented in Results, we
can follow the evolution of the understanding of how to interpret
the results of nonlinear analysis. First, it was LLE, but since
Lyapunov exponents mainly serve to detect chaos in signals,
they can hardly be used for the precise delineation of groups.
Then, in several papers, symbolic methods were used and
reported as being successful, but again, their interpretation was
problematic for which they were practically abandoned. The
most promising family of nonlinear measures is the one based
on entropy, in particular, ShanEn, then SampEn and ApEn
(maybe also logarithmic ApEn); MSE seems a little more
difficult to interpret. Irregular signals have higher entropies.
Increased irregularity can point to a degradation of internal
control mechanisms, or as Goldberger [29] puts it,
decomplexification that is characteristic of aging and disease.
Additionally, DFA, as a fractal method (as well as several other
methods of calculating fractal dimension and correlation
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dimension) makes sense, since neural control mechanisms are
shown to have a fractal nature. In fact, all spectral measures
calculated from ECG are a function of RR intervals length and
are correlated; they do decrease with aging, but in disease that
change is much more pronounced, and the function is lost
[87-89]. In that sense, DFA is accurately detecting short- and
long-term correlation that are important for healthy heart
dynamics but also its synchronization with breathing [82,90].
Among other measures, the Complex Correlated Measure
applied by Jelinek et al [59] performed quite well. Some
recurrence plot analyses (Poincaré plot analysis and generalized
Poincaré analysis) that quantify self-similarity in the processes
were also used with good results [91]. In the reviewed literature,
there are also combinations and alterations of the mentioned
methods of analysis, such as combining the Poincaré analysis
with DFA, applying Pearson coefficients on prior Poincaré
analysis, or choosing the most prominent coefficients from
several analyses and combining them as successful features for
classification.

Nonlinear HRV analysis might be used as an aid in differential
diagnosing or in indicating comorbidities [14,20,43,92]. For
example, Chang et al [82] succeeded in distinguishing between
bipolar II depression and unipolar depression, based on SampEn
analysis of the HRV of 707 subjects. Kemp et al [14] found that
anxiety disorders comorbid to MDD, most of all generalized
anxiety disorder, contributed to the reduction of HRV. They
elaborated on how nonvagal components of heart rate might
further distinguish between subtypes of the disorder [20,43,92].

Cardiac vagal control (CVC) is associated with both physical
and mental health. Low CVC is considered to be an indicator
of risk of cardiac disease, including myocardial infarction and
congestive heart failure [10,93]. Since variability in heart rate
that is gated by the respiratory cycle [13,43] reflects the extent
of CVC, it is logical to analyze its nonlinear dynamics and its
aberrations to detect and treat depression. It could be a link
between the polyvagal theory of Porges [94] and the
physiological complexity (decomplexification and stereotypy
of disease) of Goldberger [95]. In parallel to the polyvagal
theory, there is also the neurovisceral integration model [96],
both emphasizing the importance of taking into account ANS
aberrations, along with the existing need to improve psychiatric
nosology.

Important insights about healthy heart dynamics and how it
changes with aging and disease were published in the 90s and
served well the detection of several pathological entities
[41,90,97]. We have learned that the mechanisms of neural
control are fractal in nature (scale-free) and that they generate
the so-called complex variability (once believed to be a
background noise to the signal), which is a characteristic of
healthy heart dynamics. In pathological states, one can observe

a characteristic loss of complexity (decomplexification) that
leads to recognizable oscillatory (predictable) behavior of a
complex system, reduced to a single scale or frequency. The
aberrated dynamics can be precisely quantified by fractal and
nonlinear measures. The standard idea of comparison of healthy
and ill organism pertains to the calculation of traditional mean
values, SDs and the like, from electrophysiological signal (here
ECG). When one compares the recording of a healthy heart with
one of a patient diagnosed with congestive heart failure, their
calculated means are within the same SD. However, it can be
seen even with a naked eye that those signals are different (in
dynamics and structure). Traditional methods do not show a
significant difference here. The stereotypy of disease, as
Goldberger explained [31], is connected with the
decomplexification of a dynamical system’s output, observed
in early complexity studies. Complexity analysis can
complement this clinical heuristic with adequate mathematical
tools to quantify the changes in a patient’s state.

Too aggressive preprocessing of the data can contribute to
misleading results due to the loss of the exact order of samples.
The history of the system is important in knowing its dynamics:
earlier samples—the values of a physical phenomenon we
measure (here in microvolts)—affect the later values, and if you
shuffle the order, you lose the internal nonlinear structure that
is contained in the sequence of those samples; this is called the
historicity of data. Thus, it is necessary to analyze raw sequences
of the records (broadband signal is the most information rich).
This might be the reason why the nonlinear methods are superior
to conventional ones.

The data can be easily obtained by novel portable ECG
monitoring devices that are approved as medical-grade signal
quality equivalent to a Holter monitor but are much more
practical and comfortable to use by the patient herself or himself,
taking only a couple of minutes. The data can then be processed
by a combination of nonlinear analytics and advanced statistical
procedures (to control, for example, for comorbidities and other
confounding factors or for feature selection for further machine
learning). Even better, the analysis can be empowered by
machine learning applications that are widely in use due to the
high power of computation and cloud computing [83-86,97].

To conclude, the ESs of nonlinear methods are larger than those
of standard methods in HRV analysis. Measuring ECG and
applying nonlinear analysis of HRV should enter the routine
clinical practice for patients with depression. Although Porges
[94] states that psychiatrists and psychologists seem not to be
sufficiently interested in the use of objective biomarkers in their
daily diagnostic work with patients with depression, the real
question here is how ethical it is to keep this status quo and
apply trial and error protocols in depression treatment without
prior objective screening for CVD risks.
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