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The spread of infectious diseases is a significant and ongoing problem in hu-

man populations. In hospitals, the cost of patients acquiring infections causes many

downstream effects, including longer lengths of stay for patients, higher costs, and

unexpected fatalities. Outbreaks in community populations cause more significant

problems because they stress the medical facilities that need to accommodate large

numbers of infected patients, and they can lead to the closing of schools and busi-

nesses. In addition, epidemics often require logistical considerations such as where to

locate clinics or how to optimize the distribution of vaccinations and food supplies.

Traditionally, mathematical modeling is used to explore transmission dynam-

ics and evaluate potential infection control measures. This methodology, although

simple to implement and computationally efficient, has several shortcomings that

prevent it from adequately representing some of the most critical aspects of disease

transmission. Specifically, mathematical modeling can only represent groups of in-



dividuals in a homogenous manner and cannot model how transmission is affected

by the behavior of individuals and the structure of their interactions.

Agent-based modeling and social network analysis are two increasingly popular

methods that are well-suited to modeling the spread of infectious diseases. Together,

they can be used to model individuals with unique characteristics, behavior, and

levels of interaction with other individuals. These advantages enable a more realis-

tic representation of transmission dynamics and a much greater ability to provide

insight to questions of interest for infection control practitioners.

This dissertation presents several agent-based models and network models of

the transmission of infectious diseases at scales ranging from hospitals to networks

of medical facilities and community populations. By employing these methods, we

can explore how the behavior of individual healthcare workers and the structure of a

network of patients or healthcare facilities can affect the rate and extent of hospital-

acquired infections. After the transmission dynamics are properly characterized, we

can then attempt to differentiate between different types of transmission and assess

the effectiveness of infection control measures.
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Chapter 1

Introduction

1.1 Pathogenic Transmission in Medical Facilities and Community

Populations

The spread of infectious diseases is a significant and ongoing problem in hu-

man populations. For centuries, societies have fallen victim to various diseases that

have spread throughout their population. Some of the most infamous epidemics are

the Black Death (14th century) and the Great Influenza Pandemic (1918). More

recently, HIV/AIDS, SARS, and multiple outbreaks of influenza have demonstrated

how vulnerable our increasingly connected world is to the transmission of infectious

diseases. In addition, the threat of bioterror attacks has grown, and the proper mea-

sures for differentiating attacks from naturally-occurring epidemics are currently not

in place. Outbreaks in community populations–whether due to an infectious disease

or a biotteror attack–cause significant problems because they stress the medical

facilities that need to accommodate large numbers of infected patients, and they

can lead to the closing of schools and businesses. In addition, epidemics often re-

quire logistical considerations such as where to locate clinics or how to optimize

the distribution of vaccinations and food supplies. Historically, the best defense for

combating disease outbreaks has been vaccination and quarantine. However, due to
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resource constraints and economical considerations, alternative non-pharmaceutical

solutions are desired.

The problem of preventing hospital-acquired infections is another well-publicized

problem and study of the best measures to control them has been extensive [24].

These types of infections cause many downstream effects in hospitals, including

longer lengths of stay for patients, higher costs, and unexpected fatalities on the

order of almost 100,000 deaths each year in the U.S. alone [74]. Hospitals have be-

come increasingly more vulnerable to various types of infection, most frequently to

methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Entero-

coccus (VRE), Clostridium difficile (C. diff), and Acinetobacter. These pathogens

are often carried asymptomatically by patients, which leads to undetected transmis-

sion to other patients through the transiently colonized hands of healthcare workers.

Computer modeling and simulation are decision-aiding tools that can be lever-

aged to assist infection control professionals in developing strategies for reducing or

preventing the transmission of infectious diseases [27]. Control measures are often

expensive in terms of time, money, and resources. Computational models can help

to alleviate some of the risk in implementing intervention strategies. Studies of this

problem have not focused on modeling the interactions between the critical actors

in a given scenario, whether it is patients, nurses, and physicians in a hospital,

individuals in a community, or medical facilities in a particular region.

This dissertation focuses on developing agent-based models that use interac-

tions at both the individual level and the facility level to better understand transmis-

sion dynamics and to evaluate strategies for intervention. By using these methods,
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we can explore how the behavior of individual healthcare workers and the struc-

ture of a network of patients or healthcare facilities can affect the rate and extent

of transmission. After the transmission dynamics are properly characterized, we

can attempt to differentiate between different types of transmission and assess the

effectiveness of infection control measures.

1.2 Agent-Based Modeling and Simulation

Historically, modeling the transmission of infectious diseases has focused on

results derived from systems dynamics (SD) and discrete event simulation (DES)

methods [30, 44, 51]. These techniques can provide valuable insight, and are ideally

suited for many problems. Both methods typically focus on system-level behavior,

but they differ in how the system is modeled and how time is simulated. SD models

typically represent entities as continuous variables whose states change continuously

with time, whereas DES models use individual components whose states only change

at discrete moments in time. In either case, the goal is to aggregate the system

behavior and draw conclusions on how the system evolves over time under internal

and external forces, such as a change of an internal policy or a surge in the demand

of a particular service.

Recently, a new modeling and simulation methodology has gained momentum

with respect to healthcare applications. The methodology is most commonly known

as agent-based, or individual-based, modeling (ABM). In contrast to SD and DES

methodologies, ABM focuses on modeling individuals, interactions between indi-

3



viduals, and, in some cases, interactions with a physical or influential surrounding

environment [53]. These activities can then be aggregated to simulate how a system

behaves over time. The focus on individual agents and their interactions makes

ABM an ideal tool for analyzing complex systems such as healthcare facilities and

community populations, because there are many components to these systems and

outcomes can be difficult to predict without adequate model representation. A

comparison between the three modeling frameworks is shown in Table 1.1.

Agents can interact with each other in many ways. Interactions may occur in

a spatial environment, which could be a simple one-dimensional circular network, a

two- or three-dimensional Cartesian grid, or a specific geographic location or region.

Interactions can also be aspatial and constrained by relational considerations, where

agents only interact if there is an explicit connection between them, such as being

a member of the same family, working together, or being cared for by the same

healthcare worker. For these cases, physical space has no effect on the outcome of the

interactions, and therefore it does not need to be modeled explicitly. Social network

analysis (SNA) is often paired with ABM for problems in which the structure of the

interaction network is not uniform, implying that each individual may interact with

only a specific subset of the population. For these types of problems, agents are

often represented by nodes in a network and interactions are represented by edges,

which can be weighted to represent the frequency or type of interactions.

There are several advantages of ABM over SD and DES. First, ABM is a more

realistic modeling approach for many problems, especially problems in which there

are multiple types of actors that interact in different ways. In these cases, it is very

4



Table 1.1: Comparison of systems dynamics (SD), discrete event simulation (DES),
and agent-based modeling (ABM) methodologies.

Attribute SD DES ABM

Model
System level System level Individual level

Perspective

Level of
Low Moderate High

Realism

Model
Low Moderate Very high

Flexibility

Time Domain Continuous Discrete Discrete

Run Times Very fast Moderate Slows with increasing
system size and com-
plexity

Model Inputs Rate parameters
and flow charac-
teristics

Entity types, arrival
times, queuing pa-
rameters, resource
scheduling, process
flows

Agent characteristics
and interactions, en-
vironment specifica-
tion

Model Dynamics, steady Wait times, resource Unlimited
Outputs state values, ana-

lytic expressions
utilization, through-
put

Software Spreadsheet (e.g.,
Microsoft Excel),
any programming
language, math-
ematical software
(e.g., MATLAB1,
Mathematica2

Object-oriented
programming lan-
guages (e.g., C++,
Python3, Java),
commercial simula-
tion packages (e.g.,
Arena4, AnyLogic5,
SIMUL86), math-
ematical software
(e.g., MATLAB,
Mathematica)

Object-oriented pro-
gramming language
(e.g., C++, Python,
Java), open source
ABM software (e.g.,
NetLogo7, Repast8,
MASON9, Swarm10)

1 http://www.mathworks.com/products/matlab/
2 http://www.wolfram.com/mathematica/
3 http://www.python.org
4 http://www.arenasimulation.com/
5 http://www.xjtek.com/
6 http://www.simul8.com/
7 http://ccl.northwestern.edu/netlogo/
8 http://repast.sourceforge.net/
9 http://cs.gmu.edu/ eclab/projects/mason/

10 http://www.swarm.org/index.php/Main Page
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straightforward to model these actors as agents that have distinct sets of behaviors

and characteristics without making assumptions as to how the system would be

affected by each type. Individuals are not represented in SD models. In DES models,

individuals are explicitly modeled, but their states are a function of their status in

some type of pre-defined system process. In addition, agent-based models facilitate

detailed analysis of both individual- and system-level behavior, because metrics at

each level can be updated with each interaction. Agent-based models are easier to

explain than most SD and DES models because of their direct correlation to reality,

which is an important factor in gaining the confidence of healthcare professionals

and ultimately having an impact. Oftentimes, SD models are mathematical models

that can become quite complicated. Usually, DES models are described by intricate

flow diagrams. These abstractions can cause difficulty in explaining model concepts

to healthcare professionals who are not trained in mathematical or computational

modeling.

As in all methodologies, there are disadvantages to ABM as well. These models

can become very complex when they begin to represent a high level of detail. When

this happens, it becomes difficult to separate the actual effect of each input parame-

ter in the model. In addition, agent-based models can become very computationally

expensive, which requires excessively long computer run times for simulations. This

problem has been alleviated to some degree by high-performance and parallel com-

puting techniques, but it demands additional developmental resources that are not

required by SD or DES models. Agent-based models face different challenges than

SD and DES model concerning the underlying assumptions. SD and DES models
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require assumptions about system-level parameters, whereas ABM requires assump-

tions about individual-level parameters and the nature of interactions. Some of these

requirements can be satisfied easily, by collaborating with experts who have expe-

rience working in these environments. Other requirements can be more difficult to

quantify. However, the advantage of ABM is that few assumptions need to be made

about the system as a whole, because the system response is determined by the

activities at the individual level.

Agents can have several characteristics that can be used to distinguish ABM

from SD or DES models. These characteristics and their definitions are summarized

in Table 1.2. There are other characteristics that are associated with agent-based

models, but the set described in Table 1.2 consists of the most prevalent features.

Agent-based models do not necessarily possess all of these characteristics, and, in

some cases, the distinction between ABM and DES can be difficult.

In the following section, we review and evaluate a selected body of research

that has applied agent-based modeling techniques to characterizing the transmission

of infectious diseases in medical facilities and community populations. We review

the agent-based modeling literature in this research area, briefly describe the core

methods, summarize the key results, and identify best practices. We highlight areas

where agent-based modeling and simulation fill a significant gap that has not been

addressed by other methods. Finally, we provide some new questions that may be

of interest to healthcare researchers and practictioners.
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Table 1.2: Agent characteristics and definitions

Characteristic Definition

Autonomy Agents act independently of other agents

Heterogeneity
Agent characteristics and evolution of state are sufficiently
different for all agents

Awareness
Agents can have varying levels of knowledge of the system
state, ranging from ignorance to omniscience

Memory
An agent can remember its state and/or the state of the
system at earlier points in time

Adaptation
Agents can change their behavior over time based on the
current state of the system or prior experience

Goal Oriented Agent actions are aimed at accomplishing an objective

Rationality Agent actions are aimed toward their best interests

Interactivity
Agents can exchange information or resources with other
agents

Reactivity
Agent state or behavior can change in reaction to the
environment or changes in the behavior of other agents

Mobility Agents can move within the environment
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1.3 Epidemiological Models

The field of epidemiology is concerned with how disease spreads in a pop-

ulation. Studies that model the transmission of infectious diseases can focus on

increasingly large scales, ranging from single units or wards to entire hospitals, com-

munities, cities, and global pandemic scales. Vector-borne diseases, or those that

are transmitted by way of an intermediate carrier, are the most commonly modeled

types. Airborne, waterborne, food-borne, respiratory, and sexually transmitted dis-

eases can be modeled as well. These diseases can be modeled with different degrees

of specificity to include incubation periods and periods where a colonized individual

is infectious but asymptomatic. Understanding how diseases are transmitted and

determining the best ways to control transmission are critical to preventing exces-

sive spread. Epidemic modeling is an ideal method for experimenting with various

control strategies.

Historically, epidemiological models are mathematical, or compartmental, mod-

els that predict how proportions of the population in each state evolve over time.

The susceptible-infected-recovered (SIR) model [48] is the most well-known of these

models, which forms the foundation for many other compartmental models [4, 5, 10,

11, 19, 54, 69, 76]. The SIR model equations are shown in Equations 1.1, 1.2, and

1.3, where S, I, and R represent proportions of the population that are in the sus-

ceptible, infected, and recovered states, respectively. β and γ are the transmission

and recovery rates. These equations can be integrated over time to generate popula-

tion transmission dynamics. They provide interesting results for both deterministic
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and stochastic scenarios. An important measure for this type of model is the basic

reproduction number, R0, which is the average number of secondary infections (i.e.,

transmissions) per primary case in an entirely susceptible population. R0 is a key

metric in predicting the extent to which an infection is likely to spread. If R0 > 1,

then an epidemic is likely to grow because, on average, each infected person trans-

mits the disease to more than one other person. If R0 < 1, then an epidemic is likely

to become extinct at some point in the future. Some models use R0 as an input

to drive transmission within a population, whereas other models use a transmission

rate or probability parameter and calculate the R0 value for the population based

on the number of primary and secondary infected individuals. These models have

provided significant insight into the effects of certain parameters on transmission

dynamics and the effectiveness of various infection control measures.

dS

dt
= −βSI (1.1)

dI

dt
= βSI − γI (1.2)

dR

dt
= γI (1.3)

Mathematical models have several assumptions and limitations that prevent

them from producing more valuable results. The first key assumption is that popula-

tions modeled by mathematical equations are well-mixed, meaning that all individ-

uals within the population interact with equal probability. For example, the SI term

in the SIR model equations (e.g., Equations 1.1 and 1.2) shows that transmission

is proportional to the interaction between all susceptible and infected individuals,

rather than a specific subset. All individuals within each compartment are assumed
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to be homogeneous, which prevents analysis of how mixed or extreme behavior,

such as individuals that are more likely to spread a disease (i.e., superspreaders)

or healthcare workers (HCWs) that are less likely to wash their hands, can affect

transmission dynamics. It can be difficult to implement time-varying or conditional

behavior in a mathematical model, and thus analysis of control measures is often

performed by simply varying input parameters without modeling the interactions

involved in a particular intervention. Some variables, such as handwashing probabil-

ities and screening test return times, can be approximated with simple parameters.

Others, such as isolation or the effect of staffing ratios are more difficult to model

using differential equations. Several advances in mathematical modeling have been

made in recent years to account for these limitations, but these results are only valid

for particular scenarios [6].

Agent-based, or computational, disease spread models have extended the re-

search established by mathematical models, and have addressed many of their lim-

itations. They have reinforced many conclusions from mathematical and discrete

event simulation models and have provided additional detail about the nature of

transmission. The key advantage of agent-based models is that they simulate the

interactions that serve as the primary mechanism for transmission and they are

capable of implementing many infection control measures explicitly. In addition,

agent-based models are more adept at simulating stochastic effects, which must be

captured when modeling heterogeneous populations. As a result, they have con-

tributed significantly to a better understanding of epidemics.

The articles reviewed in this section fall mainly into two categories: process-
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oriented models of transmission and network models of transmission. Process-

oriented models simulate agents that are moving through a series of stages before

being removed from the population, much like the movement in a DES model. Net-

work models simulate the spread of disease between individuals using relational

connections as the primary mechanism of transmission. Intermediate carriers such

as HCWs do not need to be modeled explicitly in this type of model because the

connections among individuals are explicit, unlike in a process-oriented model. Ex-

emplary methods and contributions for both types of models are summarized in the

following subsections.

1.3.1 Process-Oriented Models of Transmission

Process-oriented models of transmission are the most natural application of

ABM to epidemiology. A common example is a simulation of patient-to-patient

transmission in a hospital, in which patients are admitted, visited by HCWs, and

discharged (see Figure 1.1 for a sample patient flow diagram). What separates

process-oriented models from traditional DES models is that there are often mul-

tiple patient and HCW types, and their behavior is often dynamic. Transmission

typically occurs through HCWs, who spread an infection from one patient to an-

other because they fail to wash their hands adequately. These types of transmissions,

from an already infected (i.e., primary) patient to a newly infected (i.e., secondary)

patient, are known as hospital-acquired, or nosocomial, infections. Hospital inten-

sive care units (ICUs) are commonly modeled in an agent-based framework. ABM
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is ideally suited for this type of model because populations are small and diverse,

the patients are more susceptible to infection than in other hospital units, contacts

between patients and HCWs are frequent and intimate, and stochastic effects are of

considerable importance.

Within agent-based models, there is often an increased ability to track vari-

ous simulation data and provide additional insight into the transmission dynamics.

These models can evaluate the effectiveness of various infection control measures in

order to offer recommendations of which measure or bundle of measures should be

implemented. Typical control measures that are modeled include the hand washing

behavior of HCWs, diagnostic screening of patients, isolation of infected patients,

vaccination, and decolonization, in which colonized patients undergo a therapeutic

process that negates their ability to infect others.

There is a set of pathogens that are commonly modeled in these types of

simulations, and many of these are resistant to antibiotic treatments. MRSA and

VRE are the most common of the modeled pathogens. Patients are colonized with

MRSA and VRE prior to developing an infection. This scenario is particularly

difficult because colonized patients are often asymptomatic and, therefore, they can

only become identified by using active surveillance techniques such as diagnostic

screening. Consequently, these patients can spread the pathogen to HCWs and

ultimately other patients before any intervention is started. In addition, treatment

for these resistant organisms is often difficult, therefore protecting patients from

acquisition is the most effective approach for ensuring their safety.

The articles discussed in this section all follow a similar pattern for modeling
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Figure 1.1: Sample patient flow diagram of a disease spread model in
a hospital. Optional infection control measures are indicated by dashed
lines and dotted arrows.
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transmission of an infectious disease in a hospital. Many models incorporate resis-

tant pathogens and assess the potential effectiveness of specific control measures.

However, these models differ slightly in their specific sets of experimental param-

eters and the nature of their results. These differences are summarized in Table

1.3.

We begin with an agent-based model that highlights the specific level of detail

afforded by ABM that is not possible using SD or DES methods. Hotchkiss et al. [42]

tested the effects of several factors and infection control measures on transmission.

The authors were able to demonstrate that early detection and subsequent isolation

of infected patients, quick patient turnover, cohorting patients, and limiting the

frequency of physician visits could all reduce the likelihood of a significant outbreak.

In addition to evaluating infection control measures and determining the most

influential external factors, ABM can provide more realistic transmission dynamics

by introducing more model complexity. This additional detail not only increases the

relevancy and strength of simulation results, but it can be used to address the con-

cerns of healthcare professionals who are skeptical of the model validity. Ong et al.

[66] implemented a spatially explicit agent-based model of influenza transmission in

a hospital unit that represented several types of HCWs, including physicians, nurses,

health attendants, clerks, and cleaners. Ambulant and non-ambulant patients were

also modeled. Transmission of influenza is airborne, therefore, additional model

considerations must be taken into account because agents can transmit the disease

without coming into direct contact with each other. Results directly related to trans-

mission were limited, but the model generated a reasonable distribution of contacts
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Table 1.3: Summary of process-oriented model parameters

Model D’Agata Hotchkiss Meng Ong Temime

Software Plat-
form

MATLAB Mathematica AnyLogic PathoSim1 Java

Spatial represen-
tation

No Yes Yes Yes Yes

HCW Types 1 2 0 5 3

HCW shifts Yes Yes No Yes Yes

Variable hand
hygiene

∗ ∗ No No Yes

Hygiene efficacy ∗ ∗ No No Yes

Patient screen-
ing

No Yes Yes No No

Patient isolation No Yes Yes No No

Decolonization Yes No Yes No No

Variable staffing
ratios

No Yes No Yes Yes

Patient cohort-
ing

Yes Yes No No Yes

Variable trans-
missibility

No Yes Yes Yes Yes

Patients colo-
nized or infected
on admission

No Yes Yes No Yes

Variable # of
patient visits

Yes Yes No Yes Yes

Variable patient
lengths of stay

Yes Yes Yes No No

Bacterial load Yes No No No No

Antibiotic resis-
tance

Yes No No No No

Visitors No No No Yes No
1 http://www.ross-scientific.com/products.htm
∗ Variable hand hygiene and hygiene efficacy were not implemented explicitly, but transient

HCW colonization times were variable and followed an exponential distribution
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between all agents in the unit. This distribution could be used as a basis for mod-

eling transmission between any pair of agents in future work. The model by Meng

et al. [57] incorporated multiple routes of transmission and variable transmission

rates between patients, but it produced limited results related to actual dynamics.

Temime et al. [82] describe an agent-based model of pathogenic transmission in a

hospital, but the implications of these results are more appropriately addressed in

the following section on network models of transmission.

Agent-based models can be used to address questions related to antibiotic re-

sistance, which is an important issue in disease control. Several models address the

implications of antibiotic resistance at the microbiological level (they are not covered

in this dissertation). D’Agata et al. [25] focused on the effects of antibiotic resistance

on transmission and the competition between resistant pathogens in a hospital. Sin-

gle patient and HCW types were modeled explicitly, with each having eligible states

of being susceptible to or colonized with resistant and/or non-resistant pathogens.

The authors demonstrated that initializing decolonization treatments on patients

quickly and for shorter durations can eliminate both resistant and non-resistant

strains from the population. The authors were able to develop a corresponding dif-

ferential equation model that facilitated model validation and additional analysis.

1.3.2 Network Models of Transmission

Network models of transmission provide a different perspective for analyzing

the spread of infectious diseases. They are an abstract representation of the physical
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interactions that can lead to transmission, in contrast with the direct correlation to

reality afforded by process-oriented transmission models. The edges, or connections,

between nodes in the network can represent a relationship between patients in a

hospital or between individuals in a community. The structure or distribution of

these connections has a significant effect on transmission dynamics [47, 71], and

different network structures can be designed to represent various scenarios. Whereas

process-oriented models can identify the best interventions, network models can

provide insight as to where those interventions should be directed, such as targeting

individuals for vaccinations or closing schools or hospital wards.

There are several common structures for interaction networks. They are char-

acterized by the frequency distribution of node connections in the network, also

known as the degree distribution [1]. Examples of each network type and the cor-

responding degree distributions are shown in Figure 1.2. Regular networks have all

nodes with the same degree. Edges can be structured (e.g., nodes are connected to

their nearest k neighbors) or randomly distributed to other nodes in the network.

Random networks are generated by assigning an equal probability to each potential

edge in the network. Each edge is then chosen at random based on the specified

probability, which forms a network in which the degree distribution follows a bi-

nomial model. Small-world networks [85] fall somewhere in between regular and

random networks by re-wiring (i.e., redirecting an edge from one node to another

at random) a certain proportion of edges in a structured, regular network. Nodes in

this type of network are still highly clustered, but disease could spread more quickly

because there are shortcuts to other, highly susceptible parts of the network. A
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random network is a special case of a small-world network that has re-wired all of

its edges. A special class of networks are exponential networks, whose degree distri-

bution follows a negative exponential trend. These networks have been found to be

the most realistic structure for social interaction networks [6]. Finally, a scale-free

network has a power law degree distribution, in that there are a few nodes with a

large number of connections and many nodes with a small number of connections.

These networks are called scale-free because the average distance between any two

nodes increases very slowly as the number of nodes increases. Disease transmission

through these types of networks is likely to find the highly connected nodes quickly.

However, transmission to the remaining population is likely to take much longer

because there are fewer paths to nodes on the periphery of the network.

Mathematical models inherently assume that populations are well-mixed, which

means each individual has an equal probability of interacting with all other indi-

viduals. In general, this assumption corresponds most closely to a regular network,

whether the connections are structured or random. For certain applications, this

configuration could be appropriate if each individual has approximately the same

number of social contacts (e.g., child daycare). In other cases, a small-world, expo-

nential, or scale-free network is a more accurate representation because there can

be individuals who have connections to several population subgroups. These highly

connected individuals often have the greatest effect on transmission. Neglecting to

model them explicitly can have a significant effect on the results that are ultimately

communicated to healthcare organizations.

The first set of models investigates how direct transmission can occur between
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Figure 1.2: Sample network instances for regular (degree = 4), small
world (initial degree = 4, re-wiring probability p = 0.5), random (edge
probability = 0.2105), exponential (mean degree = 4) and scale free
(generated using the Barabási-Albert model for preferential attachment
[1]) structures. Darker shaded nodes have a higher degree relative to the
other nodes and lighter shaded nodes have a relatively lower degree. The
bottom plot shows the mean degree distribution for each network type
with 20 nodes and approximately 40 edges, averaged over 100 samples.
The regular network degree distribution (not shown in the graph) has a
constant degree distribution, with all 20 nodes having a constant degree
of 4. As the network structure changes from regular to scale free, the de-
gree distribution becomes more skewed, with several nodes being highly
connected and the remaining nodes having relatively few connections.

20



individuals in a general population. These models typically consist of a homogeneous

population of agents with essentially no individual characteristics other than their

infection status. However, heterogeneity enters the model because the degree of each

node in the network is not constant. The goal of these models is to characterize

how the structure of the network affects the rate and extent of transmission, and to

further demonstrate the limitations of homogeneous models.

Bansal, Grenfell, and Meyers [6] presented strong evidence that homogeneous

mixing models such as the SIR model do not accurately predict epidemics for realistic

contact networks. The authors were able to demonstrate that several empirical

contact networks could all be approximated by computer-generated networks with

exponential degree distributions. Homogeneous mixing models, although reasonably

accurate for characterizing transmission dynamics on regular, random networks, did

not accurately predict epidemics on the more heterogeneous exponential and scale-

free networks.

Christley [17] focused on identifying the most susceptible individuals, or those

most likely to become infected in the event of an outbreak, in random and small-

world networks. This type of analysis is very useful because the results could be

used in developing strategies for targeting individuals for vaccination, isolation, or

quarantine. The author experimented with various measures of node centrality (i.e.,

measures of a node’s importance in a network), and determined that the degree

of a node was as good an indication of an individual’s risk of infection as more

complicated measures that would require more information to compute. Eubank

[28] proposed several local and global measures of network structure that could
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have significant implications for transmission of infectious diseases.

The next set of network models contain multiple types of agents that interact,

whether they are explicitly or implicitly represented in the model. These studies

focused on the structure of the network. In addition, they characterized how interac-

tions between different agent types affect transmission. The degree of heterogeneity

in these network models facilitates analysis of the relative effect of each type of

HCW. These models can account for HCW behavior as well, and bring considera-

tion to other potential aspects of transmission such as HCW-to-HCW transmission

and patient sharing. These types of interactions are not often considered, but can

lead to increased levels of transmission in certain circumstances.

Temime et al. [81] constructed a model of a hospital ICU with three types

of HCWs that visit patients. Two types of HCWs are assigned to specific groups,

or cohorts, of patients, whereas the third type visits all patients (see Figure 1.3).

The assigned HCWs represent nurses and physicians, and the third type (the peri-

patetic HCW), represents someone who could potentially come into contact with

any patient, such as a nursing assistant or respiratory therapist. The model demon-

strated the threat posed by the latter type, and presented results that a single,

non-compliant peripatetic HCW could cause the same level of transmission as if all

HCWs were moderately non-compliant (i.e., 19-23%). These effects become even

more significant when HCW-to-HCW transmission occurs.
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Figure 1.3: This figure shows the network of contacts in the ICU in the
Temime model. There are 18 patients and three types of HCWs: two
profiles of HCWs, corresponding to nurses and physicians, are assigned to
subgroups of patients and one peripatetic-type HCW visits every patient
once each day.
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1.3.3 Pandemic Models

Pandemic modeling is another research area in which agent-based modeling

has been used successfully. Diseases such as malaria, SARS, smallpox, and various

strains of influenza have been modeled. Control measures are most often concerned

with logistics, such as distributing vaccinations, locating community clinics, deliv-

ering emergency rations and medical supplies, and evaluating the effects of social

distancing (e.g., school closings). The initial work in applying agent-based model-

ing techniques to pandemic scenarios was done primarily by Carley et al. [15] and

Cummings et al. [23], which both demonstrated the value of agent-based models in

generating pandemic dynamics and evaluating response strategies. Since this initial

work, agent-based pandemic models have begun to incorporate massive data sets

that reflect detailed demographic, social, transportation, and even climate charac-

teristics of a particular geographic region. Although many of the characteristics

and advantages of these models are applicable to smaller scales, this research area

is beyond the scope of this dissertation. Therefore, we do not provide additional

coverage of this topic.

1.4 Outline of Dissertation

The next five chapters in this dissertation describe applications of agent-based

modeling and social network analysis to characterizing the spread of infectious dis-

eases in medical facilities and community populations. In Chapter 2, we present an

agent-based model of MRSA transmission in a hospital and use the model to explore
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the effects of infection control measures and healthcare worker behavior. In Chapter

3, we apply a full 2k factorial design to the output of the model developed in Chapter

2 to evaluate the effectiveness of the hand-hygiene compliance of healthcare work-

ers and hospital staffing ratios. In Chapter 4, we examine how patient movement

through a network of hospitals and long-term care facilities affects the long-term

MRSA prevalence levels in each type of facility. Chapter 5 explores how the struc-

ture of the patient network and healthcare worker behavior affects transmission in

a hospital. Chapter 6 compares the transmission dynamics for an epidemic to those

of a bioterror incident, and explores diagnostic methods for differentiating between

the two scenarios. Chapter 7 provides a brief conclusion to the dissertation.
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Chapter 2

MRSA Transmission Reduction using Agent-Based Modeling and

Simulation

2.1 Overview

Patients and healthcare workers (HCWs) frequently interact, creating the op-

portunity for the transmission of infectious diseases. If someone becomes colonized

with methicillin-resistant Staphylococcus aureus (MRSA) or another pathogen, the

bacteria could spread by way of HCWs to many others within the hospital popula-

tion. As a result, many patients fall victim to hospital-acquired infections because

a HCW carrying the bacteria made contact with a susceptible area of the patient’s

body. It is estimated by the Committee to Reduce Infection Deaths that infections

acquired in US hospitals lead to over 100,000 deaths per year and an additional

$30.5B in hospital costs [74]. Over 300,000 (of 2 million) infection cases involved

MRSA, with close to 20,000 of those cases resulting in fatalities.

Some experts agree that hospital-acquired infections are almost entirely pre-

ventable [55], given a committed and capable healthcare institution. However, stud-

ies have shown that such measures have proven difficult to implement and enforce,

due to both HCW non-compliance and cost considerations. These control measures

require money and resources in terms of materials, dedicated personnel, and addi-
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tional bed capacity. In some documented cases, they have proven to be cost-effective

when preventing even a small number of infections [69].

Typically, the first measure taken by hospitals is promoting awareness aimed

at improving hand-hygiene compliance of HCWs. Hospitals begin to enforce the use

of alcohol-based hand disinfectants, gloves, and gowns that increase the efficacy of

each hand-hygiene activity, as washing hands improperly may not remove a suffi-

cient amount of bacteria. The next effort usually involves active surveillance, where

patients are screened for MRSA, at admission and/or with some frequency during

their stay. This policy allows for the detection of colonized, but asymptomatic,

patients so that measures can be taken to prevent further transmission.

Among these additional measures are patient isolation, decolonization, and

improvement of HCW-to-patient ratios. Patient isolation confines a detected col-

onized or infected patient to a single room. The decolonization process involves

a regimen aimed at reducing or removing the presence of bacteria on the skin of

a patient, which is done typically through the use of antibiotics and chlorhexidine

bathing. This process reduces the probability that an HCW will acquire the bacteria

after a visit. Increasing HCW-to-patient ratios decreases the range of transmission,

as patients can only transmit the bacteria to others who share their caregivers.

There is some disagreement about whether hand washing is the ultimate solu-

tion to infection control. Some results have shown that compliance, if raised to high

enough levels, could prevent transmission almost entirely [88]. Others have shown

that hand washing is not a sufficient measure and that additional measures must

be taken to reduce transmission to acceptable levels [10]. There is also some uncer-
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tainty concerning the primary source of transmission. In certain scenarios, nurses

may be more likely to transmit MRSA to patients, whereas in others, physicians

may be the more likely source. Our research effort seeks to validate the most effec-

tive measures for minimizing MRSA transmission, and then explore novel questions

related to infection control. The aim of this chapter is to describe an agent-based

model and its use in studying MRSA transmission dynamics within a hospital.

2.2 Methodology

Historically, problems in epidemiology were solved by using case-control stud-

ies, cohort studies, and randomized controlled trials. In infection control, quasi-

experimental studies are carried out to determine the effectiveness of various in-

terventions, but unfortunately, only a few cluster randomized trials have been per-

formed [38]. An expansion in methodology led to the use of mathematical modeling

and simulation [4, 5, 10, 11, 18, 19, 48, 54, 69, 76] to investigate the spread of

MRSA within hospitals. These computational models allow researchers to evaluate

potential solutions in a virtual environment in order to help hospital administrators

determine the best infection control policy. However, these models have limitations,

as they are driven by the macroscopic behavior of the system. Even when prop-

erly calibrated, mathematical models lack realism because they fail to account for

the low-level interactions that drive the system. These interactions are naturally

represented by agent-based modeling [53], which we use to investigate this problem.

Agent-based modeling and simulation (ABMS) is a powerful technique that
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seeks to generate emergent characteristics from simple, rule-based individual ac-

tions. One goal of ABMS is to generate macroscopic trends that are not necessarily

anticipated from the definition of microscopic behavior. Building an agent-based

model involves specifying the characteristics and behavior of the agents. The agents

have a state, the ability to change that state with time, and the ability to interact

in some environment. Complexity can be added to agent-based models by intro-

ducing learning so that agents can change their behavior over time. We use ABMS

to define agents in a hospital, specifically patients, nurses, physicians, and visitors,

who interact with each other. The interactions between these agents are the mech-

anism by which transmission occurs in the hospital. There are few ABMS models

in this field. Temime et al. [81] have shown–albeit for a very specific scenario–that

ABMS is capable of providing insight to new and relevant questions. Our model

complements this work by focusing on the interactions between patients and HCWs

and seeks to provide a better understanding to MRSA transmission in a hospital

setting.

In order to account for different outcomes in a hospital, stochastic effects are

required. We use Monte Carlo methods in the design of our model. ABMS can

become computationally expensive quickly, as interactions among many agents is

simulated. Running many Monte Carlo replications take a long time to execute.

Consequently, an important capability of the model is to be able to execute serially

or in parallel, so that more demanding test cases can be simulated in a reasonable

amount of time.
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2.3 Conceptual Model

Each agent in the model is defined by its characteristics and behavior. This

type of modeling is supported best by object-oriented programming, in which object

classes are defined with inherent characteristics and functionality. The simulation

model is developed in Python, a dynamic object-oriented programming language

[68]. In addition to basic Python, the SimPy, Parallel Python, NumPy, and SciPy

modules are critical for building the model. SimPy has process oriented, discrete

event simulation classes and methods that are used to develop the simulation ar-

chitecture. Parallel Python is used to implement a capability so that Monte Carlo

simulation replications can be executed simultaneously on multi-processor machines.

NumPy provides a multi-dimensional array functionality that features many useful

operations similar to MATLAB. SciPy is a module used for scientific computation

tasks and provides random number generation functions.

The agents in the simulation are represented as processes, including patients,

HCWs, and visitors. The hospital has single and double rooms, a staff of HCWs,

and an infection control policy. The only modeled interactions are between patients

and HCWs, and patients and their visitors. Interactions between HCWs are not

modeled because there is insufficient data to support a significant contribution to

transmission from such interactions. Simulation parameters can be input directly

into the model or specified by spreadsheet. The primary transmission-related pa-

rameters are summarized in Table 2.1.

Agents in the simulation are generated by a source agent that varies in its
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Table 2.1: MRSA transmission factors.

Parameter Name

Performance Related
· Hand-hygiene compliance
· Hand-hygiene efficacy∗

· HCW-to-patient ratios
· Patient screening test return times
External Factors
· Transmissibility

- Patient to HCW
- HCW to patient
- Visitor to patient

· Length of stay
· Number of daily contacts
· Proportion of colonized patients admitted
· Proportion of high-risk patients admitted
· Number of visitors per day
∗ Defined as the probability of a hand-hygiene

event during which the HCW successfully
removes the bacteria

operation depending on the type of agent being generated. Patients are generated

continually and are housed in a waiting room to replace discharged patients so that

the hospital remains fully occupied. Patients can be admitted in a susceptible or

colonized state, depending on the admission rate of colonized patients. This partic-

ular parameter can be adjusted to reflect the proportion of colonized patients that

may be readmitted to the hospital or transferred from other hospitals. Colonized

patients carry MRSA on their skin, but they are asymptomatic and therefore re-

quire screening tests to be detected. Colonized patients can also develop infections

during their stay, but they can be detected visually and precautionary action can be

taken while the patients state is confirmed with a test. Both colonized and infected

patients can transmit MRSA to HCWs. HCWs are generated at the beginning of

31



Figure 2.1: Agent interactions and state transitions.

the simulation as specified by input parameters. Each HCW is initialized at the

uncolonized state. A fixed number of visitors are generated each day, each visiting a

single patient in the hospital at random. The colonized state of the visitors is deter-

mined by choosing a random number and comparing it to the parameter-specified

visitor colonization rate. Agent interactions and state transitions are summarized

in Figure 2.1.

When patients are admitted to the hospital, they can be screened for MRSA

if it is specified by the hospital infection control policy. Patient length of stay and

the required number of visits are specified by the user and are defined after the

patient is admitted. These parameters can be constant values for all patients or

they can be randomly generated and vary for each patient. Patients are visited each

day by nurse and physician agents, and sometimes visitor agents. Each HCW is

assigned a fixed-size cohort of patients at random as the patients enter the hospital.

The size of the cohort is specified by parameters that define the nurse-to-patient and

physician-to-patient ratios. Nurse and physician cohorts are assigned at random and,
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therefore, two patients that share a nurse do not necessarily also share a physician.

As patients are discharged from the hospital, HCWs acquire new patients for their

cohort. A ratio is defined to represent the proportion of visits by nurses. Physicians

perform the remainder of visits. For each patient visit, a random number is drawn

to determine whether the visit will be carried out by the assigned nurse or physician.

The transmission of MRSA can occur in three ways:

1. A colonized patient transmits the bacteria to a susceptible HCW,

2. A transiently colonized HCW transmits the bacteria to a susceptible patient,

3. A colonized visitor transmits the bacteria to a susceptible patient.

The transmission of MRSA between agents is determined stochastically, based

on the risk level of the patient and the behavior of the HCWs who visit the patient.

Patients who have previously been colonized are at a higher risk to acquire MRSA

again. Our model represents two risk levels (low and high) to account for this factor.

HCWs that visit high risk, colonized, or infected patients are also more likely to wash

their hands because they are aware of the state of the patient. Our model allows for

different handwashing probabilities based on the risk level of the patient. Nurses and

physicians have the opportunity to wash their hands after the visit. The probability

that HCWs move back to the uncolonized state is based on the probability that

they wash their hands and the efficacy of the act of handwashing.

A patient remains in the colonized state until the patient develops an infec-

tion or completes a decolonization regimen. A patient who clears MRSA through
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decolonization is no longer infectious, but is immediately susceptible to becoming

colonized again by a HCW or visitor. The colonized state of the patient can only

be determined by a screening test whereas the infected state is determined by a

physical examination and positive culture. If active surveillance is enforced, the pa-

tient may be screened periodically for colonization. Screening test return times can

be adjusted to reflect those in practice, such as traditional culture testing or more

advanced polymerase chain reaction testing, which is more accurate and yields test

results more quickly. The patient can begin the decolonization or treatment pro-

cess for an infection only after the test results are returned. If a patient develops

an infection, the patients stay is extended for treatment; otherwise, that patient is

released at the end of the original length of stay and another patient is allowed to

enter the hospital.

The decolonization process is modeled in a simple manner. A parameter de-

fines the MRSA clearance time for both colonization and infection. After this time

passes, the patient moves back to the susceptible state. While a patient agent is

undergoing the decolonization process, it can still transmit MRSA to the HCW,

unless the patient is isolated. A patient can only be isolated in a single room and,

as a consequence, there must be a single room in the hospital that does not contain

a colonized or infected patient. Susceptible patients who occupy a single room can

be swapped out to accommodate a patient who needs to be isolated. If there are

no single rooms available, the patient who needs to be isolated must wait until a

patient holding a single room is discharged or decolonized. HCWs who visit isolated

patients wear gloves and gowns so as to not acquire MRSA from the isolated patient.
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An isolated patient cannot transmit MRSA to other patients in the hospital.

2.4 Parallel Computing

Agent-based models can take substantial run times because of their explicit

representation of interactions. Consequently, executing many Monte Carlo repli-

cations can become computationally prohibitive, if done serially. However, each

replication is independent from the others, so it is advantageous to run as many

simulations as possible in parallel and aggregate the results. In order to assess the

effectiveness of parallel computing, two scenarios were tested: a small case with

many replications and a large case with a small number of replications. These two

scenarios were run on the Genome cluster at the University of Maryland. We used

32 processors and 128 GB RAM. The results of the comparison are given in Tables

2.2 and 2.3.

As shown in Tables 2.2 and 2.3, multiple processors provide the dramatic

speedup, by a factor almost equal to the number of processors for a smaller number

of processors. As the number of processors increases, there is some degradation

in speedup due to the extraction of results from a larger number of processors,

as indicated by the total job time, which is the sum of processing time across all

processors. However, even with this degradation, the run, or wall-clock, times are

faster with more processors, so an advantage remains.

For larger cases, it is clear that simulations are more difficult to run quickly,

as single replications are computationally expensive. The degradation in speedup is
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Table 2.2: Parameters and results of running a small case on Genome cluster.

Small Case N
Job Time Run Time

Speedup
(sec) (sec)

· 100 days, 250 replications 1 747 747 –
· 10 single, double rooms 2 752 377 1.98
· 10 nurses, 5 physicians 4 746 188 3.97
· 10-day length of stay 8 752 96 7.78
· 5 daily contacts 16 761 50 14.94
· No infection control measures 32 941 33 22.64

N : number of processors.

more apparent because each processor loses efficiency by running fewer replications.

However, the benefit of parallelization is greater in this case, because running larger

numbers of replications in serial would take prohibitive amounts of time. Over-

all, parallelization is quite valuable. Even with the degradation in speedup as the

number of processors increases, the run times continue to decrease. In addition,

there is no penalty for parallelization because the replications are independent and,

therefore, no accuracy is lost.

Many of the experiments described in the following sections are similar to

the small case, in that single replications have relatively short execution times.

However, when parameter variation is introduced, in conjunction with the number

of replications required to produce stable results for each run, total job times begin

to grow quickly. Therefore, these experiments require parallel processing to complete

in reasonable amounts of time.
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Table 2.3: Parameters and results of running a large case on Genome cluster.

Large Case N
Job Time Run Time

Speedup
(min) (min)

· 500 days, 25 replications 1 136.9 136.9 –
· 50 single, 150 double rooms 2 138.4 71.84 1.91
· 50 nurses, 20 physicians 4 136.1 37.91 3.61
· 10-day length of stay 8 133.7 21.10 6.49
· 5 daily contacts 16 141.3 11.88 11.52
· All infection control measures 25 182.3 8.96 15.28

N : number of processors. Only 25 cases were run so that the serial case could run
relatively quickly

2.5 Results

2.5.1 Infection Control Measures

In order to evaluate the infection control measures, a baseline case was defined,

as specified in Table 2.4. Infection control measures were enforced separately from

the baseline case to assess their effectiveness. Isolation and decolonization depend

on patient screening to detect colonized patients, so in these cases these measures

were used in conjunction with patient screening. HCW-to-patient ratios were im-

proved without any additional control measure. The results of this experiment are

summarized in Table 2.5.

As expected, a HCW-to-patient ratio of one nearly eliminates transmission, as

colonized patients who are admitted are unable to transmit MRSA to other patients

by way of HCWs. Maintaining this level in practice, however, is unlikely, especially

outside of intensive care units. Even as the HCW-to-patient ratio decreases to

1:2, transmission increases dramatically. It turns out that HCW-to-patient ratios

less than 1:3 offer little improvement on transmission from the baseline case. It is
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Table 2.4: Baseline case parameters.

Baseline case

· 100 days, 250 replications
· 5 HCWs (Single type)
· 10 single, 10 double rooms
· 5% of patients admitted are colonized with MRSA
· 5 daily contacts per patient
· 5-day average patient length of stay
· 50% hand-hygiene compliance, 80% efficacy
· Proportion of high-risk patients admitted
· No interventions

Table 2.5: Summary of infection control measure performance.

Mean
Baseline Isolation Decolonization

HCW-to-Patient Ratio
statistic 1:1 1:2

Patients
colonized

51.46 39.56 45.42 34.79 40.65

Colonized
patients
admitted

36.50 34.48 34.76 33.85 33.89

Number of
secondary
cases

14.96 5.08 10.66 0.94 6.75

Colonized
patient
days (%)

6.49 5.66 5.72 5.14 5.64

Ratio of
primary to
secondary
cases

0.41 0.15 0.31 0.03 0.20

Bold numbers indicate best performance.
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evident that patient isolation is a better control measure than decolonization and

is likely the best overall measure due to the difficulty in achieving a 1:1 HCW-to-

patient ratio. Decolonization suffers greatly from the long time it actually takes for a

patient to clear colonization. Therefore, patients can still spread MRSA throughout

the hospital if they are not isolated. The performance of these infection control

measures appears consistent with the results reported in the literature.

2.5.2 Nurses vs. Physicians

Now that ABMS has demonstrated results consistent with the literature, sim-

ulation experiments can be performed to provide insight into questions relevant to

hospitals. For example, which type of HCW, nurse or physician, is responsible for the

most transmissions? This particular question has been difficult for epidemiologists

to address. What effect do nurses and physicians who practice poor hygiene have

on transmission? ABMS is well-suited to answer these questions, as it is straight-

forward to track the number of colonizations directly attributable to nurses and

physicians. Under what circumstances does a hospital that practices high hand-

hygiene compliance and additional infection control measures become susceptible to

an outbreak? Unless otherwise noted, each experiment was simulated for 100 days

and was repeated for 100 simulation replications.

The question of who is responsible for more transmissions is important because

hospitals want to focus educational programs where they would have the most sig-

nificant impact. Nurses and physicians have different degrees of interaction with
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patients and, therefore, would require a different approach to reduce transmission.

Typically, nurses see patients much more often, and the literature shows that they

are more likely to wash their hands. Physicians see many more patients, but less fre-

quently. These contrasting service patterns make it difficult to predict the primary

source of transmission.

2.5.2.1 General Ward Settings

Three experiments were conducted in a 50-patient hospital with 10 nurses

over a 100-day period. All experiments varied the proportion of patient visits from

nurses and measured the proportion of patients colonized by nurses. In the first

experiment, the number of physicians was varied from 1 to 5, with equal hand-

hygiene compliance among the different HCWs, to determine the effects of nurse-to-

physician ratios on transmissions. The results of this experiment are summarized

in Figure 2.2. In two additional experiments, we examined the effects of physician

hand-hygiene compliance on the proportion of colonizations by nurses. Physician

compliance was varied up to the compliance of nurses, which was 50% and 80% in

the second and third experiments, respectively.

In the first experiment, it is clear that the nurse-to-physician ratio does not

have a significant impact on the transition point where nurses colonize more patients

than physicians. For this scenario, whichever class receives the majority of patient

visits is likely to account for the majority of transmissions. In the second and

third experiments, the difference in hand-hygiene compliance greatly affects the
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Figure 2.2: Proportion of nurse colonizations in a general ward, varying
the number of physicians in a 50-patient hospital ward with 10 nurses.

transition point and shifts it further to the right as the difference grows, as shown

in Figures 2.3 and 2.4. In practice, nurses typically account for 80-90% of contacts

with patients. Therefore, our results indicate that nurses account for the majority

of colonizations in a general ward type setting. These results suggest that hospitals

should be aware of which HCW type sees patients more often and specifically target

education programs towards that group.

2.5.2.2 Intensive Care Unit Settings

Transmission dynamics could differ in this respect depending on the type of

unit where the patients and HCWs reside. To explore this concept, the previous

experiments were run in a simulated intensive care unit (ICU) that houses 20 patients
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Figure 2.3: Proportion of nurse colonizations in a general ward, varying
physician hand-hygiene compliance in a 50-patient hospital ward with
10 nurses—50% nurse hand-hygiene compliance.

in single rooms with 10 nurses and two physicians. In this scenario, nurses are much

more likely to transmit the pathogen to the two patients they visit, but are unable to

transfer to any other patients in the ICU. Physicians present a greater risk because

they are capable of transferring MRSA to as many as 10 patients, whereas each nurse

only directly affect 2 patients. The results of this experiment for low, moderate, and

high hand-hygiene compliance values for nurses are shown in Figures 2.5 and 2.6,

which differ in the proportion of visits to patients by nurses.

In general, the results in Figures 2.5 and 2.6 indicate that when physicians

practice good hand-hygiene, nurses become responsible for most of the colonizations.

Only at very low compliance (30% or less) do physicians colonize more patients.

However, these results are somewhat misleading because they imply that physicians
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Figure 2.4: Proportion of nurse colonizations in a general ward, varying
physician hand-hygiene compliance in a 50-patient hospital ward with
10 nurses—80% nurse hand-hygiene compliance.

do not pose as great a danger to patients in an ICU. In fact, physicians pose perhaps

a greater threat to patients because they can transfer MRSA from one patient cohort

to another whereas nurses can only colonize the remaining susceptible patients in

their respective cohorts. In this particular case, nurses simply colonized the patients

sooner than physicians because of the higher frequency of visits. To demonstrate

this observation, we simulated the same ICU with a 1:1 nurse-to-patient ratio, so

that only physicians could transmit MRSA to other patients. There is a small degree

of transmission by nurses, mainly due to nurses becoming transiently colonized by

their current patient and transmitting the bacteria to a new patient in the same

room. The results of this experiment are shown in Figure 2.7, which shows that

physicians account for almost all transmission in the ICU, except at extremely high
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Figure 2.5: Proportion of nurse colonizations in an intensive care unit
with a 1:2 nurse-to-patient ratio, as a function of physician hand-hygiene
compliance with nurses performing 80% of the visits.

values of hand-hygiene compliance. We point out that the number of colonizations

by physicians remained roughly the same between the two nurse-to-patient ratios

(1:2 versus 1:1), whereas nurse colonizations decreased dramatically. This trend

indicates that physicians, given enough time, are likely to transmit the bacteria to

patients regardless of nurse behavior.

In fact, physician colonizations in this type of setting are nearly indepen-

dent of nurse activity because physicians visit a larger number of patients, but less

frequently than nurses. Nurse colonizations are dependent on physician activity

because physicians have the capability of introducing MRSA into various patient

cohorts. In effect, there is positive feedback in the system each time a physician is

colonized by a patient in one cohort and spreads it to another cohort. These effects
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Figure 2.6: Proportion of nurse colonizations in an intensive care unit
with a 1:2 nurse-to-patient ratio, as a function of physician hand-hygiene
compliance with nurses performing 90% of the visits.

are shown in Figures 2.8 and 2.9, where there is little variation in the number of

colonizations by physicians for a specific physician hand-hygiene compliance, but

sizeable increases in nurse colonizations as the nurse-to-patient ratio decreases.

We have seen the effect of varying the behavior of nurses and physicians as

a whole, but it is also worthwhile to consider the effects of rogue HCWs. A rogue

HCW is less compliant with respect to handwashing than the rest of the medical

staff. In separate cases, the effect of a rogue behavior was examined for a nurse and

physician in an ICU where the rest of the staff practices 80% compliance. The results

of these two experiments are summarized in Figures 2.10 and 2.11. These figures

illustrate the threat that physicians pose to patients in an ICU setting, as rogue

physician behavior can lead to a sizeable increase in the number of colonizations.
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Figure 2.7: Proportion of nurse colonizations in an intensive care unit
with a 1:1 nurse-to-patient ratio, as a function of physician hand-hygiene
compliance with nurses performing 90% of the visits.

Rogue nurse behavior has minimal effect, even at the lowest compliance values, as

they are only able to colonize a small number of patients (two in this case) in their

respective cohorts. We see from these results that rogue behavior is an important

issue when the number of HCWs is small. However, in cases where the number of

HCWs is large, rogue effects are less evident.

Based on our results, hospital administrators may be interested in the relative

benefit of increasing HCW-to-patient ratios, especially when compared to the reduc-

tion in transmissions attributable to higher hand-hygiene compliance. This issue is

only relevant to nurses because physicians earn much higher salaries and typically

would not be hired only to reduce MRSA transmission rates. A comparison of these

benefits is shown for a similar ICU, where the HCWs all practice the same level of
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Figure 2.8: Colonizations by physicians in an intensive care unit, as
a function of physician hand-hygiene compliance and nurse-to-patient
ratios.

hand-hygiene compliance and nurses visit the patient 90% of the time. The results

of this experiment are summarized in Figure 12.

The key observation from Figure 12 is obtained by comparing the reduction

in the number of colonizations by nurses as a result of increasing the nurse-to-

patient ratio with the effect of increasing hand-hygiene compliance. Clearly, there is

great benefit in increasing the hand-hygiene compliance of nurses already on staff.

A comparable reduction in the nurse colonizations attributable to increasing the

hand-hygiene compliance of one nurse from 30% to 80% would require hiring an

additional 9 nurses at 30% compliance.
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Figure 2.9: Colonizations by nurses in an intensive care unit, as a func-
tion of physician hand-hygiene compliance and nurse-to-patient ratios.

Figure 2.10: Colonizations by nurses and physicians in an intensive care
unit, as a function of rogue nurse hand-hygiene compliance.
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Figure 2.11: Colonizations by nurses and physicians in an intensive care
unit, as a function of rogue physician hand-hygiene compliance.

Figure 2.12: Number of patients colonized by nurses in an intensive care
unit, as a function of nurse-to-patient ratio and healthcare worker hand-
hygiene compliance.
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2.5.2.3 Susceptibility of High-Performance Hospitals

Some hospitals have already made significant progress in reducing the inci-

dence of MRSA transmission. In order to investigate the degree of susceptibility of

these high-performance hospitals to MRSA outbreaks (ratio of secondary to primary

MRSA cases greater than 1), we consider a 100 patient hospital with 20 nurses and

10 physicians. The HCWs comply with hand washing 70% of the time, but practice

no additional infection control measures. Even with such a high compliance rate,

this hospital is susceptible to an outbreak in the following cases:

� 10 daily contacts or more between HCWs and each patient,

� 20 day or more average patient length of stay,

� Transmissibility greater than 0.15,

� Hand-hygiene efficacy less than 0.6,

� 200 or more visitors per day at 2% transmission rate.

Suppose we increase the performance of the hospital by employing patient

screening on admission with one-day test result return times, patient isolation, and

decolonization. It would appear that this hospital would not be susceptible to MRSA

outbreaks due to the effort put forth to prevent and control infection. For the most

part, this assessment is accurate. Moderate changes in several transmission factors,

such as hand-hygiene efficacy, number of daily contacts, proportion of colonized

admitted patients, screening test return times, and patient length of stay, do not

greatly affect transmission. Only two cases appear to lead the system to an outbreak:

50



(1) a highly transmissible pathogen (greater than 0.28 for this case) and (2) a high

visitor rate (greater than 200 per day at 2% transmission rate). In the first case, a

highly transmissible pathogen is able to transfer between patients and HCWs even

at high compliance values. The second case can lead to an outbreak due to the

small-world effect because visitor introductions create new pockets of colonization

that allow transmission to occur in different areas of the hospital.

2.5.2.4 Summary

We have presented the results from many experiments that examined the bal-

ance between nurse and physician colonizations as well as the performance of the

hospital as a system. We have seen that transmission dynamics vary between dif-

ferent hospital units and that nurses and physicians can have significantly different

effects on patients depending on their behavior. The greatest threat appears to be

from physicians. They have the capability of colonizing patients directly and they

can introduce MRSA into a nurse cohort that leaves the remaining patients sus-

ceptible to colonization. Hand-hygiene compliance is a critical factor for infection

control. In particular, increasing the compliance of the hospital can reduce trans-

mission much more effectively than hiring additional workers. At the same time,

hand-hygiene compliance is not the only solution to preventing MRSA transmission.

Outbreaks can still occur even when hospitals practice high compliance. Hospitals

need to be aware of this observation, and should pursue additional control measures.
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2.6 Conclusions

Agent-based modeling and simulation is a powerful tool for analyzing complex

systems. When applied to epidemiological problems, it is straightforward to repre-

sent individuals and the interactions among them to model the transmission dynam-

ics of diseases and the effectiveness of various infection control measures. Parallel

processing is a valuable capability, as agent-based models are typically computa-

tionally intensive, requiring a large number of computer cycles.

Reducing MRSA transmission in hospitals involves three key approaches, based

on our results:

1. Minimize the size of patient cohorts,

2. Screen for and isolate colonized and infected patients,

3. Decrease the likelihood of transmission between patients and HCWs by min-

imizing the number of visits and enforcing the use of gloves and gowns with

colonized and infected patients.

Frequent transmission occurs when the patient population is well-mixed, which

occurs when many patients share the same HCW and allows for transmission to

take place across the cohort. Isolating patients and maintaining favorable HCW-to-

patient ratios can serve to segment the patient population, so that colonized patients

are less likely to transfer the bacteria to others. HCWs can reduce the probability of

transmission by practicing proper hand-hygiene. Hospitals can help by minimizing

patient length of stay and the number of daily contacts.
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In future work, we would like to investigate the effects of modeling time-varying

hand-hygiene compliance on the transmission dynamics of MRSA in a hospital. All

experiments so far have assumed that the hand-hygiene compliance of HCWs is

fixed. This restriction implies that HCWs are not able to make adjustments to their

compliance based on the recent history of colonizations within the hospital. This

type of study would provide insight into the value of informing HCWs about MRSA

colonizations.
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Chapter 3

Comparing the Relative Effectiveness of Hospital Infection Control

Measures using Factorial Design

3.1 Overview

Infections with MRSA are a major problem among hospitalized patients [21,

60]. Interventions have been proposed to decrease the transmission of MRSA in

high-risk healthcare settings such as the intensive care unit [62, 86]. Two key factors

that have been identified as effective infection control measures are improving the

hand-hygiene compliance of healthcare workers and increasing the ratio of nurses to

patients in the hospital.

Hand-hygiene compliance is a cornerstone of infection control. Many studies

have attempted to demonstrate that improving hand-hygiene compliance leads to

fewer hospital-acquired infections. Pittet et al. [67] demonstrated that the intro-

duction of alcohol-based hand disinfectant, which likely caused an increase in hand-

hygiene compliance, reduced the incidence of MRSA infections. However, there are

no experimental studies that have assessed the effect of improving hand-hygiene

compliance on MRSA colonization acquisition rates.

Improving nurse-to-patient ratios has also been advocated as a potentially

effective intervention at reducing the transmission of antibiotic-resistant bacteria.
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This intervention should lead to fewer MRSA acquisitions by limiting the number of

contacts between nurses and patients, thereby decreasing the opportunity to spread

MRSA to multiple patients. Fridkin et al. [32] reported that the reduction of

the nursing staff below a critical level may contribute to an increase in catheter-

associated bloodstream infections. However, there are no experimental studies that

have assessed the effect of changing the nurse-to-patient ratio on MRSA acquisition

rates.

Hospitals and their resident epidemiologists often have limited resources and

must choose between several potentially viable interventions aimed at decreasing

patient-to-patient transmission of antibiotic-resistant bacteria such as MRSA. Math-

ematical modeling and simulation can be used to assess the potential benefits of

different interventions when experimental trials have not been performed or cannot

be performed due to ethical considerations [3, 32, 56]. There are several studies that

have used mathematical modeling and computer simulation to evaluate the effec-

tiveness of one or both of these factors in reducing the incidence of hospital-acquired

infections [4, 9, 10, 36, 69, 78]. These studies have compared the effectiveness of bun-

dled interventions on MRSA acquisition for a particular hospital configuration, but

have provided little or no consideration as to when, or in what cases, one interven-

tion is better than another. In addition, these studies have not fully characterized

how changing the level of one factor affects the effectiveness of the other factors.

These interaction effects are a strong determinant of how much transmission can be

reduced by improving a limited set of control measures. In this chapter, we compare

the relative effectiveness of increasing the hand-hygiene compliance of nurses and in-
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creasing the nurse-to-patient ratio in reducing the transmission of hospital-acquired

infections. This comparison should help inform hospitals and hospital epidemiolo-

gists that are considering these interventions.

3.2 Methodology

We use a stochastic, agent-based model developed by Barnes, Golden, and

Wasil [7] to simulate a 20-bed ICU and the transmission of MRSA among patients

through direct contact with healthcare workers. The agent-based formulation of

the model facilitates the separation of behavior among patients, nurses, and physi-

cians, so that their individual effects on the entire system can be evaluated. In

addition, within each agent class, each individual can have unique characteristics

and behavior, which provides more flexibility to analyze the system in detail.

3.2.1 Model Assumptions and Parameter Estimates

Our model simulates patients entering the ICU, occupying a single room, and

being discharged after their stays are completed. Each patient is visited a con-

stant total number of times each day, but the relative proportion of visits by nurses

and physicians can vary. During these visits, patients are susceptible to acquiring

MRSA from transiently colonized healthcare workers. After each visit to a patient,

a healthcare worker washes his or her hands with a given probability and a specified

efficacy of removing MRSA. A healthcare worker removes any MRSA bacteria that

may have been transiently acquired from a colonized patient if the handwashing
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event is successful, and he or she does not pose an immediate threat to transmitting

MRSA to other patients. If handwashing is omitted or the event is unsuccessful,

the healthcare worker can potentially transmit MRSA to other patients during sub-

sequent visits.

In order to assess the relative effectiveness of improving hand-hygiene compli-

ance among nurses and increasing the nurse-to-patient ratio, we assumed that both

the number of physicians and their hand-hygiene behavior was constant (i.e., only

parameters related to nurses were varied). Two physicians were responsible for 10

patients each in the ICU. Physician compliance was held constant at 65% through-

out the experiments. The other key parameters for our model are summarized in

Table 3.1. Given a set of input parameters, we simulate the interactions among

patients and healthcare workers over a specified time period, and produce statistics

on the number of transmissions to patients by nurses and physicians.

3.2.2 Factorial Design Methodology

A full 2k factorial design is applied to compare hand-hygiene compliance of

nurses and nurse-to-patient ratios in reducing MRSA transmission. A 2k factorial

design specifies two levels for each of the k factors used in the experiment: a plus-

level represents the factor value that has the better effect on the response and a

minus-level that has a less desirable effect. Simulations are then conducted using

the parameter values specified by each design point to generate a sample of the

system response at that level. A full design simulates all factor-level combinations,
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Table 3.1: Factorial design model parameters and values.

Parameter Value References

Number of physicians 2 (1:10 ratio)

Physician hand-hygiene compliance 0.65 [22, 26]

Hand hygiene efficacy 0.95 (low) [34, 65]

Proportion of admitted
0.10 [41, 75, 83]

patients positive with MRSA

Transmission probability
0.20

from patient to healthcare worker

Transmission probability
0.05

from healthcare worker to patient

Patient length of stay logN(0.693,1.1646)∗ [45, 2]

Visits per day per patient 48 [70, 49]

Proportion of visits by nurses 0.90
∗ logN(α, β) represents the lognormal distribution with scale parameter α and shift

parameter β. The parameters α and β were determined to generate a distribution
with a mean length of stay of 3.94 days and a median length of stay of 2 days.

Table 3.2: Sample factorial design.

Design
Factor A Factor B Response

Point

1 - - R1

2 - + R2

3 + - R3

4 + + R4

whereas a partial design would use only a subset of the design points to evaluate

the effects of the various factors. The two input factors for this study are the hand-

hygiene compliance of nurses and the nurse-to-patient ratio in the ICU. The system

response is the number of MRSA acquisitions in the ICU over the simulation period.

A sample factorial design is shown in Table 3.2.

There are two primary results derived from a factorial experiment. The first

result is the set of main effects, each of which represents the average effect on the
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response by increasing one factor from its minus-level to its plus-level. Main effects,

denoted by ek for some factor k, can have positive or negative values, which represent

increasing or decreasing the response of the system as the factor level changes from

minus to plus. Main effects that are close to zero suggest the factor has little to no

effect on the system. The second result is the set of interaction effects between all

unique subsets of two or more factors. Interaction effects, denoted by ek1k2 for factors

k1 and k2, characterize how changing one factor affects the ability of the other factors

in the chosen subset to influence the response. Small interaction effects imply that

improving multiple factors has nearly the same effect as adding together the benefits

of improving each factor by itself, which is the maximum potential improvement.

When interaction effects are large, other factors are less likely to have a significant

effect on the response when one factor is at its plus-level. Interaction effects can be

difficult to interpret, because they only provide a relative measure for how dependent

one factor is on other factors. Equations to calculate the main effect of two factors

(A and B) and the interaction effect between them are shown in Equations 3.1, 3.2,

and 3.3.

eA =
−R1 −R2 +R3 +R4

2
(3.1)

eB =
−R1 +R2 −R3 +R4

2
(3.2)

eAB =
R1 −R2 −R3 +R4

2
(3.3)
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We examine whether increasing the hand-hygiene compliance of nurses from

0% to 100% in various increments causes a larger reduction in MRSA acquisition

rates than increasing the nurse-to-patient ratio from 1:4 to 1:1 in various increments.

Rather than determine a single measure of effectiveness for each measure, we iter-

atively apply a 2× 2 factorial design across the entire parameter space. Beginning

at 0% compliance and a nurse-to-patient ratio of 1:4, we compute the mean main

effects and mean interaction effect across 25 Monte Carlo replications over selected

factor-level combinations, using the number of MRSA acquisitions as the response.

We use increments of 5%, 10%, 15%, 20%, and 25% between the plus- and minus-

levels for the hand-hygiene compliance of nurses and increases of one (e.g., 1:4 to

1:3) and two levels (e.g., 1:4 to 1:2) for the nurse-to-patient ratio. By computing

the main and interaction effects across all selected factor-level combinations, we are

able to gain a better understanding of where in the parameter space each factor has

an advantage.

There is one issue that arises when comparing interaction effects across the

entire set of iterative factorial experiments. Normally, interaction effects are com-

puted over a set of k factors in a single experimental design. In this case, interaction

effects between all subsets of factors are comparable because they are computed us-

ing the same set of system responses, and therefore, are relative to the same scale.

However, when system responses are generated over a range of parameter values,

interaction effects are computed on different scales, which undermines the compar-

isons. This issue does not affect main effects, which are absolute measures of the

effects of factors on the response and can be compared across the parameter space
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with no loss of generality.

In order to address this issue concerning interaction effects and facilitate com-

parisons across the entire parameter space, we introduce the concept of the max-

imum interaction effect. The maximum interaction effect represents the largest

possible interaction effect for a given set of factors which, for a 2× 2 design, occurs

when improving one factor has the same benefit as improving the other factor or

both factors. In terms of the sample design in Table 2, the maximum interaction

effect occurs when R2 = R3 = R4. We can insert this expression into Equation 3.3

and then normalize all interaction effects using the maximum interaction effect for

each case to facilitate meaningful comparisons. These two expressions are shown in

Equation 3.4 and Equation 3.5.

emaxAB =
R1 −R2 −R3 +R4

2
=
R1 −R4

2
(3.4)

êAB =
eAB
emaxAB

=
R1 −R2 −R3 +R4

R1 −R4

(3.5)

3.3 Results

The results of the factorial design experiments are summarized in Figures 3.1

to 3.5. Figure 3.1 gives the response values at each factor-level combination, shown

as data series for each nurse-to-patient ratio level. Figures 3.2 to 3.5 compare the

relative effectiveness of the two factors for four different changes in the nurse-to-

patient ratio and highlight the interaction between the two factors. There is one
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Figure 3.1: Summary of response values at all factor-level combinations
of hand-hygiene compliance and nurse-to-patient ratio.

figure for each of the investigated changes in nurse-to-patient ratio, that is, from

1:4 to 1:3 (Figure 3.2), 1:3 to 1:2 (Figure 3.3), 1:2 to 1:1 (Figure 3.4), and 1:4

to 1:2 (Figure 3.5). Each series of data points in the figures on the left contains

values that represent the difference between the mean main effect of increasing the

hand hygiene of nurses and the mean main effect of the corresponding change in the

nurse-to-patient ratio. A positive value indicates that the improvement in nurse-to-

patient ratio resulted in more prevented MRSA acquisitions than the corresponding

increase in hand-hygiene compliance. A negative value indicates the improvement in

hand hygiene led to a better result. A line is drawn at zero to separate cases where

nurse-to-patient ratio performed better from cases when hand-hygiene compliance

resulted in more effective infection control.
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Each series contains these difference values for a specified increment in hand-

hygiene compliance. For example, each series labeled 5% contains difference values

that use the x axis compliance as the minus-level and a hand-hygiene compliance

level 5% higher as the plus-level to compute the main effect. Series labeled 25% use

the x axis compliance as the minus-level and a compliance that is 25% higher as

the plus-level. Each series only extends to a compliance value that has 100% as its

maximum plus-level (i.e., 5% terminates at 95%, 10% at 90%, etc.).

Each data series in the figures on the right represents the set of normalized

interaction effects over the entire range of compliance values for a particular in-

crease in the nurse-to-patient ratio. Similar to the difference value figures, each

data point represents the normalized interaction effect computed using the baseline

compliance level indicated by the x axis, a plus-level specified by the series compli-

ance increment, and the increase in nurse-to-patient ratio for that particular figure.

Normalized interaction effects have a maximum value of one, which represents the

case where the interaction effect is actually maximized. This value is not likely to

occur in any experiment, unless one factor has no effect on the response. Interaction

effects can also be negative, which represents cases in which improving one factor

actually improves the effect of the other factor on the response. However, these

cases only occur when compliance increases from very low levels.

A two-sided, two-sample t-test with unequal and unknown variances was ap-

plied to each main effect difference value. A two-sided, single-sample t-test with

unknown variance was applied to each normalized interaction effect. We conducted

these tests at the α = 0.05 level. Equations for the test statistics and degrees of
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Table 3.3: Statistical test equations.

Experimental Output Test Statistic∗ Degrees of Freedom

Main Effect Difference Value T = ēA−ēB√
s2A/n+s2B/n

ν = (s2A/n+s2B/n)2

(s2
A
/n)

2

n−1
+

(s2
B
/n)

2

n−1

Normalized Interaction Effect
T =

¯̂eAB√
(ŝ2

AB
/n)

2

n−1

ν = n− 1

∗ Parameters denoted with a bar above represent sample means. Parameters of the
form s2 represent sample variances. n is the number of samples (i.e., simulation
replications).

Figure 3.2: Summary of difference values between hand-hygiene compliance main
effects and the main effect of increasing the nurse-to-patient ratio from 1:4 to 1:3
(left) and the corresponding normalized interaction effects (right). Non-significant
results are shaded in gray (α = 0.05).

freedom are summarized in Table 3.3. Non-significant difference values cannot dif-

ferentiate between the impact of hand-hygiene compliance and the nurse-to-patient

ratio. Non-significant interaction effects suggest that improving both factors can

achieve the maximum possible benefit. Statistical significance is reflected in Figure

3.2 through Figure 3.5, in the form of shaded values. Significant results are shaded

in black, whereas non-significant results are shaded in gray and typically fall close

to zero.

64



Figure 3.3: Summary of difference values between hand-hygiene compliance main
effects and the main effect of increasing the nurse-to-patient ratio from 1:3 to 1:2
(left) and the corresponding normalized interaction effects (right). Non-significant
results are shaded in gray (α = 0.05).

Figure 3.4: Summary of difference values between hand-hygiene compliance main
effects and the main effect of increasing the nurse-to-patient ratio from 1:2 to 1:1
(left) and the corresponding normalized interaction effects (right). Non-significant
results are shaded in gray (α = 0.05).
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Figure 3.5: Summary of difference values between hand-hygiene compliance main
effects and the main effect of increasing the nurse-to-patient ratio from 1:4 to 1:2
(left) and the corresponding normalized interaction effects (right). Non-significant
results are shaded in gray (α = 0.05).

As shown in Figure 3.4, increasing the nurse-to-patient ratio from 1:2 to 1:1

outperforms all other improvements in hand-hygiene compliance. These results are

statistically significant, which suggests this implementation would almost certainly

minimize transmission in an ICU setting. We do not provide figures that summarize

improvements to a 1:1 ratio from ratios such as 1:3 or 1:4, as these changes are likely

to demonstrate an even larger discrepancy between the effects of the two factors.

In addition, improvements in hand-hygiene compliance from 0% to higher levels

resulted in larger reductions in transmission than any associated change in nurse-

to-patient ratio. However, it is unlikely that healthcare workers have a baseline

compliance of 0%, so this aspect of the figures will not be discussed in additional

detail.

In general, the figures show that increasing the nurse-to-patient ratio outper-

formed small improvements (i.e., those less than 10%) in hand-hygiene compliance,

unless the baseline compliance level was extremely high. The benefit of increasing
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the nurse-to-patient ratio appears to reach a maximum at lower hand-hygiene com-

pliance levels, before tapering off and being overtaken by increases in hand-hygiene

compliance from higher baseline levels. Larger increases in hand-hygiene compli-

ance can prevent more MRSA acquisitions at lower baseline compliance levels when

nurse-to-patient ratios are relatively low (i.e., 1:3 or 1:4).

The interaction effect plots in Figures 3.2 to 3.5 highlight some important

trends when considering multiple infection control measures. These figures show

that interaction effects increase as the baseline hand-hygiene compliance level be-

comes higher, which indicates that there is a diminishing return associated with

combining increases in nurse-to-patient ratios with improvements in hand hygiene

from high baseline levels. These trends support the conclusions from the main effect

figures that hospitals that have been successful at improving hand-hygiene compli-

ance can continue to reduce the incidence of MRSA transmission more effectively by

further increasing the compliance of healthcare workers. At lower baseline compli-

ance levels, interaction effects are much smaller, which indicates that improvements

in compliance can be combined with increases in the nurse-to-patient ratio without

losing a significant amount of the potential benefit. Interaction effects for increases

to a 1:1 nurse-to-patient ratio are large for any improvement in compliance, and be-

come very large for improvements from high baseline compliance levels. This trend

suggests that if a 1:1 nurse-to-patient ratio is achieved, then hand-hygiene compli-

ance becomes a less critical factor with respect to spreading MRSA among patients,

assuming productive interactions (i.e., those that result in MRSA transmission)

between healthcare workers are minimal.
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3.4 Conclusions

We compared the relative effectiveness of improving the hand-hygiene compli-

ance of nurses and increasing the nurse-to-patient ratio by applying a full 2k factorial

design to the output of an agent-based simulation. Our results showed that when

baseline hand-hygiene compliance is low, it may be more effective to hire additional

nurses than to rely on improvements in hand hygiene, unless those improvements

are very large and are achieved very quickly. At high baseline levels of compliance, it

may be more effective to continue focusing on improving compliance than to increase

staffing levels.

Previous studies have not quantified the differences between the interventions

in detail. This deficiency is addressed by the results in Figures 3.2 to 3.5, which

compared the performance of the two factors across a wide range of performance

levels. In addition, we have provided some indication as to how large an improvement

in hand hygiene from a given baseline level is required to outperform a change in

the nurse-to-patient ratio.

By applying factorial design methods iteratively over a wide range of param-

eter values, we demonstrated the effectiveness of this methodology for evaluating

infection control measures. Main effects have a straightforward application, because

they represent the effectiveness of various control measures in reducing MRSA ac-

quisition rates. Interaction effects are also important, because they provide insight

with respect to the efficiency of improving multiple control measures simultaneously.

Some infection control strategies may seek to maximize effectiveness, whereas others
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may require more efficiency, and these metrics help to differentiate between the two

strategies. Ideally, with unlimited resources, hospitals would be able to institute

multiple interventions aimed at reducing the incidence of hospital-acquired infec-

tions. However, hospitals and resident epidemiologists often face limited budgets

and thus need to make choices among different interventions.

Our results did not include an analysis of the relative costs associated with

each intervention, but this type of analysis could be performed in future studies. At

first glance, it would seem less expensive to improve hand-hygiene compliance than

to hire additional nurses. The average cost of an ICU nurse in the United States

is approximately $62,733 [77]. However, improving hand hygiene and achieving a

sustained increase in compliance has proven to be a difficult task, and there is little

data to support how much improvement can be attained for a given investment.

Many interventions have led to transient increases in hand-hygiene compliance, but

few studies have been able to demonstrate sustained improvement, which brings into

question whether it is possible to achieve a sustained increase in the hand-hygiene

compliance of healthcare workers [12].

Our results reinforce the importance of basing decisions concerning infection

control strategies on individual hospital circumstances, which may assist hospitals in

reducing MRSA acquisition rates by taking into account their baseline hand-hygiene

compliance rates and staffing ratios. There are situations when improving multiple

factors is necessary, such as an outbreak, and other situations when improving one

factor can reduce MRSA acquisition sufficiently well. Understanding the interaction

effects between infection control measures can help determine the best approach. In
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future work, we may investigate the relative effectiveness of a larger set of infection

control measures, which would likely require a more robust experimental design

methodology to account for non-linearities in multiple dimensions.
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Chapter 4

Contribution of Inter-Facility Patient Movement to Overall MRSA

Prevalence Levels

4.1 Overview

We investigate the effects of patient movement between hospitals and long-

term care facilities (LTCFs) on the long-term prevalence of methicillin-resistant

Staphylococcus aureus (MRSA). Typically, hospitals contain many interconnected

units, and the length of stay for patients is usually short. Prevalence of MRSA varies

widely between hospital units, but there are a number of infection control measures

such as promoting hand hygiene for healthcare workers, active surveillance, and

contact precautions that can be implemented to minimize transmission [33]. LTCFs

house elder patients who are typically more susceptible to acquiring MRSA and are

more likely to remain colonized due to both internal and external factors [35]. In

addition, there is an objective to preserve the quality of life for residents in the

facility. Thus, there are trade-offs when considering options for infection control

[80].

Patients are frequently transferred between these two types of facilities. There-

fore, it is important for infection control practitioners to recognize the impact of

this movement on MRSA prevalence in both types of facilities [14]. Lesosky et al.
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implemented a Monte Carlo simulation model of a healthcare facility network to

explore the effects of patient transfers on MRSA prevalence levels [52]. However,

our results focus on the effects on individual facilities, whereas the Lesosky model

examined the effects of patient transfers at the system level. Smith et al. examined

a similar problem using a mathematical model, but focused mostly on transmission

dynamics between healthcare facilities and the community [79]. This work did not

compare how a change in the transmission level of one facility affected the long-term

prevalence of other healthcare facilities.

In this chapter, we address the following questions:

1. Can patient movement from a hospital affect the prevalence of MRSA in a

LTCF?

2. Can patients from a LTCF increase the prevalence of MRSA in a hospital if

they are sent to various units?

3. Can patients from a LTCF cause an increase in the prevalence level of MRSA

in a particular hospital unit?

4.2 Methodology

We develop a hybrid model of a healthcare system using NetLogo (v4.1.1) [64],

an open-source, agent-based modeling tool, that employs a mathematical model to

simulate patient movement between hospitals and LTCFs. Transmission within each

facility is modeled using a modified version of the susceptible-infected-recovered

(SIR) equations (see Figure 4.1) [4]. We use these equations to simulate proportions
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Figure 4.1: Susceptible-Infected-Recovered (SIR) and modified SIR
Model Equations.

of uncolonized patients (U), persistently colonized patients (P ), and transiently colo-

nized patients (T ) in each facility. The uncolonized patients in our model correspond

to the susceptible patient state in the original model, whereas the persistently and

transiently colonized patients are variations of the infected state. Infected patients

are included within the respective colonized patient states, because there is limited

data suggesting they are more likely to spread MRSA to others than colonized pa-

tients. There is no recovered state in this model, as patients who clear colonization

become immediately susceptible to re-colonization.

The modified equations consist of admission and discharge (µ), transmission

(β), and recovery (γ) rate terms. Positive terms represent an increase in the propor-

tion of patients for the corresponding patient state, while negative terms represent a

decrease. Patients can be admitted in any one of the three patient states. The pro-
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portions of patients admitted into each state are represented by the terms u, p, and

r, respectively. The transmission term (β) represents the rate at which uncolonized

(i.e., susceptible) patients enter a colonized state. The terms p and r also represent

the proportions of newly colonized patients who enter each respective state. Recov-

ery rates for persistently and transiently colonized patients are represented by γl

and γs, respectively, with γl � γs.

Each facility is modeled as an agent in a network of healthcare facilities, and

has a unique state that consists of proportions of the three patient types. This agent-

based formulation allows us to analyze various network configurations to determine

the effect of patient movement on MRSA prevalence rates in each facility. Each

scenario is configured as a network of facilities with directed links that represent

patient movement from one facility to another (see Figure 4.2). The links have

associated weights (mij) which, in conjunction with the facility size (N), determine

the number of patients who move from one facility to another each time step. When

patients are transferred from one facility to another, the number of patients in each

state is representative of the relative proportions in the source facility. For example,

if proportions of patients in the source facility are U = 0.80, P = 0.05, and T = 0.15,

and 20 patients are transferred, then 16 patients will be uncolonized, one patient

will be persistently colonized, and three patients will be transiently colonized.

The agent-based modeling framework enables the comparison of infection con-

trol strategies at one or more facilities that may be at risk of increased prevalence

levels due to an influx of received colonized patients. One option for healthcare

facilities is to start these patients on a decolonization regimen, which reduces the
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Figure 4.2: Example of an Inter-Facility Model.

number of colonized patients who will ultimately interact with susceptible patients.

The regimen would likely consist of a mupirocin application to the nasal cavity,

chlorhexidine bathing, or both [59, 84]. This control measure could be implemented

in one of three ways. The first approach is to start all patients on the decolonization

regimen immediately upon their arrival to the facility. These patients would not

be isolated from the general population, and the benefits of decolonization would

not be realized until the patients complete the process successfully, which takes

two cycles of five-day treatments on average [13]. This approach, although simple

to implement, would put a significant number of uncolonized patients through the

decolonization process unnecessarily and could lead to increased resistance to the

decolonization process.

The other two approaches screen arriving patients to determine their colo-

nization status, so that only colonized patients undergo the decolonization process.
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Culture-based screening can take up to three days for results, whereas polymerase

chain reaction (PCR) testing can return results within a day. Culture-based screen-

ing is less expensive, but there may be an increased risk of secondary transmissions

if the patient continues to interact with other patients or healthcare workers with-

out control measures in place. A PCR test is more sensitive and allows for control

measures to be implemented sooner, but it is more expensive [31].

For the first approach, all patients returning to the LTCF from the hospital

begin a decolonization regimen immediately. This process returns them to the un-

colonized state in 10 days. For the second approach, patients who arrive at the

LTCF undergo a basic culture screening. If a positive test result is produced three

days later, the patient starts a decolonization regimen and recovers in an additional

10 days. Uncolonized patients remain in the susceptible state. Finally, for the PCR

case, all patients receive their test results in one day, and the colonized patients

then start the decolonization process.

4.3 Results

Simulation experiments were conducted to address the three questions posed

in the Overview. Parameters for the generic hospital, LTCF, and hospital unit

are summarized in Table 4.1. These parameters apply to each agent facility in the

model. These parameters were not based on specific healthcare facilities, but were

chosen to represent relative sizes, admission and discharge rates, and transmission

levels for typical hospitals and LTCFs in the United States [37, 61, 63]. Facilities are
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Table 4.1: Long-term care facility model parameters.

Parameter Hospital LTCF Hospital Unit

N 300 100 20

µ 0.2 0.002 0.2 (high), 0.05 (low)

β
0.15 (low) 0.05 (low) 0.15 (low)

0.25 (medium) 0.075 (medium) 0.25 (medium)
0.35 (high) 0.1 (high) 0.35 (high)

u 0.9 0.9 0.9

p 0 0.6 0

r 1.0 0.4 1.0

initialized with an entirely susceptible population, and recovery rates for persistently

and transiently colonized patients were held constant at 0.02 and 0.2, respectively.

Prevalence is measured as the sum of proportions of transiently and persistently

colonized patients, which implicitly includes infected patients. As a baseline, hos-

pitals and LTCFs exchange nine patients at each time step, whereas hospital units

and LTCFs exchange two patients, so that the size of each facility remains constant

throughout the simulation period. Relaxing this assumption of equal exchange rates

increased the variability of the transient prevalence (i.e., at each time step), however

even large net patient flows had little effect on the steady-state prevalences in either

facility type.

Can patient movement from a hospital affect the prevalence level of a LTCF?

The first set of experiments paired one hospital with one LTCF. All parameters

were held constant except for the transmission rate parameter (β), which was varied

for both facilities until all unique transmission level pairs were simulated. The

results are summarized in Figure 4.3, which shows MRSA prevalence for both facility
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Figure 4.3: Comparison of steady-state prevalence levels for a hospital
and a LTCF. Hospital-D and LTCF-D represent the scenario in which
the LTCF has implemented a decolonization policy. The labels on the
x -axis are expressed in pairs of hospital/LTCF transmission levels.

types for nine hospital-LTCF transmission level combinations. The transmission

level of the hospital and LTCF specify each configuration. For example, the +/0

configuration means a hospital with a high transmission rate was exchanging patients

with a LTCF that had a medium transmission rate. The −/+ configuration means

a hospital with a low transmission rate was paired with a LTCF that had a high

transmission rate. Transmission rate parameters differed for hospitals and LTCFs

because each facility type had a different rate of patient turnover, which affected

the steady state prevalence level.
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Figure 4.3 shows that the steady-state prevalence of both facilities is strongly

correlated to the transmission rate in the hospital. As a baseline, consider the

first three cases (−/−, 0/−, +/−) where a LTCF with a low transmission rate is

receiving patients from a hospital with increasingly higher transmission rates. There

is an increase in the steady-state prevalence of the LTCF from 3.4% to 4.7% to 6.9%

as the transmission level of the hospital increases within the series. At higher LTCF

prevalence levels, the increase in steady-state prevalence grows at a faster rate (e.g.,

transmission for the high prevalence LTCF increases from 6.9% to 9.4% to 13.8%).

This trend suggests that LTCFs with higher transmission rates are more susceptible

to outbreaks when receiving patients from high prevalence hospitals.

There are two key factors that explain how hospitals can cause increased preva-

lence levels in LTCFs. The first factor is the relative size difference between the two

facility types. Hospitals are typically larger than LTCFs. Therefore, when patients

are exchanged, the number of colonized patients sent from the hospital to the smaller

LTCF represents a larger proportion than they did in the hospital, which creates

an increased level of colonization pressure. The second key factor is the turnover

rate. Patients in LTCFs are likely to reside in the facility for longer periods of time.

Consequently, when a hospital sends patients to a LTCF, those patients are ulti-

mately more susceptible to colonization because they spend more time in the facility.

In addition, transmission continues to build momentum because the population is

relatively stable.

LTCFs have some ability to protect themselves from colonized patients who are

either newly admitted or returning from an acute-care hospital. We compared three
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LTCF decolonization strategies for the same nine cases to determine their effect

on steady-state prevalence of both facility types. The results of these experiments

are given in Figure 4.3. The outcomes for all three decolonization strategies were

approximately the same. Therefore, the results are summarized as a single data

set. The similarity between these results is mostly attributable to the regularity

with which patients move between facilities and start the decolonization process.

After the first group of arriving patients successfully completes the decolonization

process, a new group of patients will complete the process the next day, and so

on, regardless of the screening test return time or the recovery period, which are

both held constant for all patients. As a result, the long-term LTCF prevalences

are approximately equal, because each scenario differs only in the initial time frame

before patients start to become decolonized.

The key result from these experiments is that any decolonization strategy can

significantly decrease the risk of increased prevalence levels for LTCFs receiving pa-

tients from hospitals. Under decolonization, the LTCF can identify patients who

acquired MRSA in a hospital or returning patients who were already colonized. Hos-

pital prevalence levels also showed marginal improvement under the LTCF decolo-

nization program. Our model does not account for the cost of the various approaches

in terms of the number of screening tests and decolonization supplies or the effect

of each approach on a resident’s quality of life. Decolonizing all patients has no

cost with respect to screening, but requires more supplies for the regimen and may

reduce the quality of care for patients who have adverse reactions to the process.

The screening strategies reduce the number of patients who undergo decolonization,
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which improves quality, but both have associated costs due to the testing procedures.

Can patients from a LTCF increase the prevalence of a hospital if they are sent to

various units?

The answer to this question is derived from the results in Figure 4.3. It is clear

from this figure that the steady-state prevalence of the hospital only changes sig-

nificantly with its own transmission level. For example, comparing the first (−/−),

fourth (−/0), and seventh (−/+) cases shows a negligible change in the prevalence

of the hospital as the transmission level of the LTCF increases. Even changes at

higher transmission levels (cases 2, 5, and 8; cases 3, 6, and 9) lead to only small

changes in steady-state prevalence. Therefore, changes in the transmission level of

the LTCF have little to no effect on MRSA prevalence in the hospital when patients

are sent to multiple units.

Facility size and patient turnover also explain why LTCFs have little effect on

the prevalence level of hospitals as a whole. Hospitals are typically large in size, so

a few additional colonized patients in the population will have little effect on the

relative proportions of patient state. Colonization pressure will essentially remain

unchanged. In addition, hospitals admit and discharge patients more frequently

than LTCFs. Therefore, the hospital population is changing rapidly and the trans-

mission process is continually interrupted.

Can patients from a LTCF cause an increase in the prevalence level of a particular

hospital unit?
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In some cases, patients from a LTCF are sent to the same unit within a hospital

on a consistent basis. This situation can occur in intensive care units or on geriatric

floors, which usually receive patients who reside in LTCFs. For these cases, the

population size is the size of the hospital unit, which is much smaller than the

hospital and usually smaller than the LTCF. The turnover rates can vary in these

types of units. Therefore, we conducted experiments using a high turnover rate and

a low turnover rate (see Table 1). These experiments were conducted simultaneously,

with a single LTCF exchanging patients with one low, one medium, and one high

prevalence hospital unit. The results are summarized in Figure 4.4.

The data from the high turnover case in Figure 4.4 shows that a LTCF can have

a noticeable effect on the prevalence within a specific hospital unit. In these types

of units, the addition of one or two additional colonized patients may be sufficient

to cause a significant outbreak. The low turnover case in Figure 4.4 presents a

different outcome, as patients remain in the hospital unit for longer lengths of stay

and, therefore, have an increased exposure to colonization. In all three cases of

hospital transmission levels, there is a significant increase in the unit prevalence. In

addition, there is a reciprocal effect that increases the LTCF prevalence to higher

levels than in the high turnover case.

4.4 Conclusions

Our results suggest there are two primary factors that lead to sustained in-

creases in MRSA prevalence when healthcare facilities are exchanging patients. The
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Figure 4.4: Comparison of steady-state prevalence levels for three hospi-
tal units with low, medium, and high transmission levels that exchange
patients with one LTCF with low, medium, and high transmission levels.
High (top) and low (bottom) turnover rates were investigated.
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patient departure rate, which incorporates the discharge and transfer of patients,

plays the most significant role in whether or not a facility is susceptible to exter-

nal influence. When patients have longer lengths of stay, they are visited more by

healthcare workers who may have become transiently colonized. Thus, the risk to

the facility is minimized when patients are discharged sooner. The facility size is also

critical, because colonized patients represent larger proportions in smaller facilities

and, therefore, contribute more to colonization pressure per capita. Consequently,

small populations or facilities with low turnover rates are especially susceptible to

increased prevalence levels. These facilities become more at risk when they receive

patients from larger, high-prevalence facilities. These types of facilities can protect

themselves by implementing control measures, such as bundling active surveillance

with decolonization, which ultimately limit the interactions between susceptible and

colonized individuals.

There are several limitations to our model and the simulation experiments we

performed. The mathematical model is sensitive to the admission and discharge,

transmission, and movement terms. The effect of the transmission parameter de-

pends on the values of the other two parameters. When patients leave the facility

at a high rate, transmission is less likely to occur than if the patient population

was more stable. A more extensive study would explore wider ranges of these pa-

rameters to assess their relative effects on long-term prevalence levels. In addition,

patient admissions and transfers occurred on a regular, periodic schedule in blocks

of fixed sizes. In practice, these patient flows are less regular and probably impact

the long-term effects of facility interactions and control measures.
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Aside from the limitations, our model provides a unique perspective on explor-

ing the effects of patient movement on long-term MRSA prevalence in hospitals and

LTCFs. Combining agent-based and mathematical modeling techniques allowed us

to adequately represent transmission dynamics and analyze the interconnectivity

of multiple healthcare facilities that exchange patients. Future work may focus on

developing an agent-based model for the transmission dynamics within each facility,

which would not be limited by the restrictions of mathematical models and could

begin to explore the effects of individual contact networks. In addition, we could

explore actual networks of healthcare facilities that regularly exchange patients.
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Chapter 5

Exploring the Effects of Network Structure and Healthcare Worker

Behavior on the Transmission of Hospital-Acquired Infections

5.1 Overview

The problem of hospital-acquired infections has been well publicized, and in-

fection control measures have been studied extensively [24]. However, research on

this problem has not focused on the interactions among patients, nurses, and physi-

cians. In general, we would like to have high ratios between the number of healthcare

workers (HCWs) and patients in a specific unit. The underlying network of connec-

tions among patients, nurses, and physicians and the nature of those interactions

are also important factors. This chapter, building on earlier work [8], investigates

how network structure in a hospital unit can affect patient-to-patient transmission

of infectious diseases.

With this network model, we hope to accomplish three key objectives. First,

we model a network of patients in a hospital unit and the transmission of an in-

fectious disease that passes among patients through the HCWs who care for them.

The network structure plays an important role in transmission, and there may be

observable trends related to the structure that are important to understand [47, 71].

Second, we investigate the effect of the behavior of HCWs, who may cover each
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other’s patients temporarily or transmit the disease among each other. The practice

of sharing patients is common in hospitals, but it is not well understood how it

can change the dynamics of transmission. Also, HCW-to-HCW transmission has

not been studied extensively, because many diseases are not likely to spread among

HCWs who have only casual contact with one another. Third, we move from a

model with a stable population to one with patient turnover, and examine the ef-

fects on network structure, patient sharing, and HCW-to-HCW transmission. By

focusing on these objectives, we hope to gain a better understanding of network

structure, HCW behavior, and patient turnover, and then we can offer strategies to

healthcare organizations that are likely to minimize transmission.

5.2 Methodology

Agent-based modeling and simulation (ABMS) is a methodology that focuses

on the interactions among individuals and then aggregates that behavior into a sys-

tem that can be analyzed [53]. Each individual agent can have different character-

istics and behavior, which is an advantage of ABMS not afforded by equation-based

modeling. We developed our patient network model using NetLogo 4.1.1, an open

source agent-based modeling development platform (http://ccl.northwestern.edu/netlogo/),

and conducted experiments to explore the effect of network structure and HCW be-

havior on transmission.
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5.2.1 Baseline Conceptual Model

We begin with a model of a single hospital unit with a static patient population

and two HCW types. We explicitly define only patients as agents, with a single state

that indicates whether or not the patient is infected or colonized with some type

of pathogen. There are two HCW types-nurses and physicians-and we model them

implicitly through the transmission mechanism. Each patient has a primary nurse

and a primary physician who provide care during his or her stay. We control the

proportion of visits performed by each HCW type because, in practice, nurses are

likely to visit patients more frequently. At each time step, a random number is

drawn to determine whether nurses or doctors will visit patients. All HCWs of the

selected type then visit a single patient in their respective cohorts at random.

Because HCWs care for multiple patients, there is an underlying network that

connects patients who share nurses and a separate network for patients who share

physicians. Figure 5.1 highlights the difference between a dense network-one that

has few HCWs and many connections between patients-and a sparse network that

has few connections. The patient network diagrams in Figure 5.1 show 20 patients

in a hospital unit with two physicians whose patients are indicated by the black and

gray colors of the agents, respectively. The dense case on the left of Figure 5.1 shows

how many connections exist in the nurse network when there are only two nurses.

In this case, there are 10 patients in each nurse cohort who are all connected. The

sparse case shows that the number of connections between patients can be reduced

significantly when there are 10 nurses. The same reduction could be realized with
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Figure 5.1: A dense patient network (left) and a sparse patient network
(right). Patients who share a nurse are connected by a link whereas pa-
tients who share a physician are shaded with the same color. The dense
network represents a hospital unit with two nurses and two physicians.
Ten nurses and two physicians care for patients in the sparse network.

additional physicians, but hospitals are less likely to hire physicians for infection

control purposes due to their high salaries.

Patients can become infected only if there is a source patient who shares a nurse

or physician. Consequently, susceptibility implies that there is a non-infected patient

who has at least one connection to an infected patient at some point in time. Patients

who are connected by both a nurse and a physician have an increased likelihood of

transmission if either HCW becomes infected. Each simulation is initialized with a

single infected patient, and the simulation runs until all susceptible patients become

infected. There is a single model parameter that defines the probability of an infected

individual (i.e., a patient or a HCW) transmitting the pathogen to a susceptible

individual (we call this parameter virulence). Virulence takes several factors into

account, including the probability of transmission between susceptible and infected
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agents, the probability that a HCW washes his or her hands, and the probability

that the hand washing successfully removes the pathogen. This parameter can be

adjusted to represent changes in any of these factors.

Patients can also be visited by secondary HCWs who may be covering the pa-

tient temporarily for the primary HCW. This type of sharing can occur in practice

when HCWs are on a break or attending a meeting. Sharing also occurs more often

in academic medical centers where HCWs are collaborating in the care of patients.

Patient sharing modifies the nurse and physician patient networks and creates tem-

porary paths for transmission to spread to the rest of the unit. We investigate

several configurations of sharing to determine how transmission can be minimized

under these circumstances. In our model, we specify nurse and physician sharing

rates that control how often the secondary HCW visits the patient. This mechanism

creates a dynamic patient network that contains connections that were not in the

initial network. Our goal is to understand how these temporary connections affect

the extent and rate of transmission in the unit.

We investigate the four configurations of patient sharing shown in Figure 5.2.

Each configuration shows four cohorts of three patients. Within each cohort, all

patients are connected because they share the same HCW. When HCWs share

patients, temporary connections enter the network between patients in different

cohorts, depending on the sharing configuration. In the first configuration there is no

patient sharing. These cohort connections are bidirectional, because the secondary

HCW can either introduce transmission into the shared cohort or acquire the disease

from the shared cohort and bring it back to his or her primary patients. The second
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Figure 5.2: Patient sharing configurations (from left to right: none,
random, revolving, and paired).

configuration is random sharing. For this case, any HCW other than the primary

HCW is selected at random to visit the patient in need of care. This configuration

creates a small-world effect [85] where transmission can occur between patients who

did not initially share a connection. The third configuration is revolving sharing.

This configuration creates a circular network in which each HCW covers all patients

of one HCW and his or her patients are covered by a different HCW (e.g., HCW

A covers for HCW B who covers for HCW C who covers for HCW A). In the

fourth configuration, paired sharing matches two HCWs together who each serve as

the secondary caregiver for the partner’s primary patients. Paired sharing creates

additional links in the network. However, this configuration tries to keep the network

as disconnected as possible in order to limit transmission.

5.2.2 Initial Results

The first set of experiments focuses on the structure of the patient network.

We restrict our experiments to a model of a 20-patient hospital intensive care unit

(ICU). Each simulation is run until all susceptible patients have become infected.
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Monte Carlo replications are conducted to account for the stochastic effects. The

simulation time, in number of ticks (an arbitrary NetLogo unit of time), and the

number of transmissions are recorded. In our model, ticks essentially equate to the

amount of time between HCW visits to an individual patient, which depends on the

number of patients, number of HCWs, number of visits each day, and the proportion

of visits by nurses and physicians.

Our primary metric for these experiments is the ratio of the total number of

ticks to the total number of transmissions, which we call the mean time to trans-

mission. This metric is a better indicator of transmission than simply the number

of ticks, because it adjusts for cases in which some patients are not connected to an

infected patient. Obviously, it is in the best interest of the patient for hospitals to

implement control measures that increase the mean time to transmission as much as

possible. ABMS allows us to track the number of transmissions due to each HCW

type, so that we can gain an understanding of the threat each poses to patients.

Given the number of patients and HCWs, we can compute the density of the

nurse and physician networks as the ratio of connections between pairs of patients

to the number of links in the complete network in which all patients are connected.

For example, the sparse network in Figure 5.1 depicts an ICU with 20 patients, 10

nurses, and two physicians would have 10 nurse cohorts of two patients each and

two physician cohorts with 10 patients each. The nurse network has 10 cohorts

of two patients who are connected. The physician network has two cohorts of 10

patients who are all connected. The total number of connections in each physician

cohort is
(

10
2

)
= 45 because each patient is connected to nine neighbors. The total
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number of connections is
(

20
2

)
= 190. Thus, the nurse network has a density of

10/190 = 0.0526 and the physician network has a density of 90/190 = 0.474. The nurse

network density in the dense network scenario with only two nurses, shown in Figure

5.1, is also 0.474. In general, density (d) for a unit with n total patients, k cohorts,

and ik patients in each cohort is given by

d =

∑
k

(
ik
2

)
(
n
2

) (5.1)

The HCW network density varies according to the trend shown in Figure 5.3.

This trend shows a diminishing marginal effect as the number of HCWs increases.

This effect translates to a reduction in transmission, in both the number of patients

susceptible to infection and the rate at which that transmission occurs. In addition,

network density offers a normalized metric that can be used to compare hospital

units with different sizes and configurations. These types of comparisons are not

as easy to make using absolute parameters (e.g., HCW-to-patient ratios), and they

become more difficult when comparing units that have different cohort sizes.

We performed experiments in which we varied the nurse and physician network

densities to determine the effect on transmission. Assuming that nurses visit patients

more often than physicians, we configured the model to have nurses perform 80% of

the visits, while physicians performed 20% of visits. The effect of network density

on our system is summarized in the form of contour plots that shade areas from

light to dark as the value of the response increases. In Figure 5.4, we show the

effect of network density on the mean time to transmission using a contour plot.
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Figure 5.3: Density of the HCW network as a function of the number of
HCWs in a 20-patient ICU.

For example, at point A, the nurse and physician network densities are both equal

to 0.474, which corresponds to two nurses and two physicians in our 20-patient

ICU. At this point, the system responded with a mean time to transmission of

approximately 822 ticks, which is represented in the plot with a light gray color. At

point B, we have a nurse network density of 0.126 and a physician network density

of 0.158, which corresponds to a much sparser network. As a result, the mean time

to transmission nearly doubles to approximately 1600 ticks, which is represented on

the plot by a darker shade. Highly dense nurse networks–with density values of 0.3

and higher–allow transmission to reach the entire unit quicker. Even in moderately

dense nurse networks–densities ranging from 0.1 to 0.3–we only observe a moderate

increase in the mean time to transmission. In order to maximize the average time

between transmissions, a nurse network density of 0.1 or less is required for our

20-patient ICU.
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Figure 5.4: Mean time to transmission as a function of nurse and physi-
cian network densities.

Figure 5.5: Transmissions due to nurses (left) and physicians (right) as
a function of nurse and physician network densities
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5.2.3 Cohort Alignment

In Figure 5.5, we show contours for the number of transmissions due to nurses

and physicians. This figure shows that transmission is strongly related to nurse

network density, but it is not affected significantly by physician network density.

Despite the lower proportion of transmissions due to physicians, physicians still

pose a significant threat in several ways. As shown in Figure 5.5, physician trans-

missions reach a maximum when the nurse network becomes very sparse. At low

nurse network densities, physicians infect more patients because nurses do not infect

patients as quickly. Physicians also pose a threat because each physician’s network

can overlap multiple nurse networks. Therefore, they can transmit the infection

to multiple nurse cohorts, which is only possible when there is a HCW that visits

many patients [81]. When the infection reaches a new cohort, nurses can spread the

infection to the remaining patients. In effect, one physician transmission could lead

to many additional transmissions by nurses. Due to the important roles that both

nurses and physicians play in transmission, maximizing the mean time to transmis-

sion requires keeping both the nurse and physician network densities at their lowest

possible levels.

In nearly all cases of network densities, every patient in the ICU eventually

became infected due to the overlap of the nurse and physician networks. In an ICU

with no physicians and a single index patient, we expect that only the patients

who are cared for by the same nurse will become infected. Therefore, if we assign a

specific number of nurses to a single physician who cares for all patients in the union

96



Figure 5.6: Mean time to transmission (left) and mean number of trans-
missions (right) as a function of nurse network density with cohort align-
ment.

of the nurse networks, then we are essentially segmenting the patient population in

the unit. This control measure minimizes the potential of physicians-who typically

are fewer in number and, therefore, see more patients-to spread an infection to

patients in different nurse cohorts.

We conducted additional experiments using this alignment strategy. For sim-

plicity, the results in Figure 5.6 are averaged over all physician network density

values and are shown as only a function of nurse network density. With the excep-

tion of a fully connected nurse network (i.e., one nurse covering the entire unit),

cohort alignment reduces the number of infected patients in the unit by approxi-

mately half on average, which equates to the number of patients under the care of a

single physician. Depending on the nurse network density, this strategy reduces the

number of transmissions from 19 to approximately nine. This reduction is likely to

be larger in units with more than two physicians. As the mean number of transmis-

sions stabilizes, we continue to see an improvement in the mean time to transmission

as the nurse network density decreases.
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5.2.4 Patient Sharing

The next experiments focus on the effect of patient sharing among HCWs in

an ICU environment. These experiments use both HCW types, but only nurses

share patients. In practice, nurses are more likely to cover each other’s patients

than physicians. Typically, there are a small number of physicians in each unit and

there are limited options for sharing.

We simulated a 20-patient ICU with 10 nurses and two physicians using the

four sharing configurations for nurses and sharing rates of 10%, 20%, and 30% of

patient visits. These results are shown on the left side of Figure 5.7. It is clear from

these results that no sharing is the ideal configuration, producing the longest mean

times to infection and the fewest number of transmissions due to nurses, which

is a good metric for transmission because nurses visit patients more often than

physicians. Consequently, cases in which we see higher transmission numbers for

physicians suggest that transmission is not occurring as quickly. Random sharing is

the worst configuration, with the lowest mean times to transmission and the largest

number of transmissions by nurses, especially at higher sharing rates. Random

sharing allows transmission to occur between multiple cohorts that would otherwise

be disconnected in terms of the HCWs who care for those patients. Transmission

occurs very quickly in this case, because the disease can reach multiple cohorts easily

and spread concurrently to other cohorts in the unit.

The revolving and paired sharing configurations perform much better than

random sharing, although it is not entirely clear which of the two is better. Re-
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volving sharing tries to maximize the time for infection to spread to the entire unit,

whereas paired sharing tries to restrict transmission to the two cohorts that share

nurses. However, physicians negate the intended effects of both strategies because

they can spread the infection to other nurse cohorts as well. It appears that at

low sharing rates (10% or less), revolving sharing is better than paired sharing, be-

cause transmission must pass through successive nurse cohorts to reach the entire

unit. However, at higher patient sharing rates (20% or greater), the disease spreads

through the network more quickly with revolving sharing. As a result, paired sharing

becomes a better strategy, because the only path for infection to spread throughout

the unit is through physicians.

The trends concerning patient sharing are more pronounced when the ICU

is simulated without physicians. These results are presented on the right side of

Figure 5.7, and they confirm that no sharing is the best configuration–only one

patient who shares a nurse with the index patient becomes infected. The upward

trend in the mean time to transmission for the case with no sharing is not related to

the nurse sharing rate as it appears in the figure. Instead, this trend is attributable

to the variability in the number of ticks for one patient to become infected. The

results also confirm that random sharing is the worst configuration. It allows all

patients in the ICU to eventually become infected at a significantly faster rate

than the other three configurations. The revolving configuration produces higher

mean times to transmission at low sharing rates, while paired sharing performs

better at high sharing rates. Without physicians, paired sharing has an advantage.

There is transmission to only two nurse cohorts, and there are high mean times to
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Figure 5.7: Mean time to transmission and mean number of transmis-
sions as a function of sharing configuration and rate, with both nurses
and physicians (left) and with nurses only (right).

transmission.

5.3 Healthcare Worker Transmission

Our experiments so far show that the risk of patient-to-patient transmission

of an infectious disease-by way of HCWs who become transiently infected-can be

reduced by minimizing the densities of the nurse and physician networks. However,

achieving this goal requires more HCWs, who become significantly more likely to

interact with each other. Some diseases are not likely to spread among HCWs be-

cause direct contact is needed (e.g., antibiotic-resistant bacteria), but other diseases

may spread more easily (e.g., airborne diseases such as influenza).
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5.3.1 Model Implementation

We expanded our patient network model to incorporate HCW-to-HCW trans-

mission and investigated its effect relative to the effect of minimizing nurse and

physician network densities. Each HCW is equally likely to interact with every

other HCW, which corresponds to a complete network with equally weighted links.

Modeling HCW interactions in this way represents the worst-case scenario for HCW-

to-HCW transmission. We expect the effects of HCW-to-HCW transmission would

be less significant for sparse interaction networks.

We define several parameters that are used to determine the number of HCW-

to-HCW transmissions at each time step (see Table 5.1). The value of each pa-

rameter is calculated at each time step with the exception of the HCW-to-HCW

transmission probability (pt), which is the only user-defined parameter and is fixed

at a constant value throughout the simulation. We define the concept of a rele-

vant contact, which is a contact between one infected HCW and one uninfected

HCW; this is the only type of contact that can potentially result in transmission. In

contrast, contacts between two infected or two uninfected HCWs are not relevant.

At each time step, we allow every pair of HCWs to interact at most one time.

We use the number of infected and uninfected HCWs to determine the number of

HCW-to-HCW transmissions. Equations for determining the number of HCW-to-

HCW transmissions are given in Table 5.2. In our model, we start by calculating the

maximum number of relevant contacts (cm) that would occur if every infected HCW

interacted with every uninfected HCW. The probability of one relevant contact (pc)
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Table 5.1: Healthcare worker transmission parameters and variables.

Notation Definition

n Number of patients

m Number of healthcare workers

mu, mc Number of uninfected and infected healthcare workers

cm Maximum number of relevant contacts, given mu and mc

pc Relevant contact probability

pt Healthcare worker transmission probability

X
Random variable representing the number of relevant
contacts

Y
Random variable representing the number of healthcare
worker transmissions

is calculated as the ratio of the maximum number of relevant contacts to the total

number of all contacts among HCWs. After cm and pc are calculated, we determine

the number of relevant contacts (X) and the number of HCW-to-HCW transmissions

(Y ). X and Y are modeled as binomial random variables (X ∼ binomial(cm, pc),

Y ∼ binomial(X, pt)), and their probability density functions are given in Table 5.2.

After the number of HCW-to-HCW transmissions (y) is determined at a particular

time step, y uninfected HCWs are selected at random to become infected. During

their next and potentially subsequent visits to patients, the infected HCWs will be

at risk for transmitting the disease.

First, we demonstrate how our model of HCW-to-HCW transmission behaves

for a dense network and a sparse network. Second, we explore how this extension

affects patient-to-patient transmission in our 20-patient ICU setting. The dense

network has four nurses (d = 0.2105) and two physicians (d = 0.4737). The sparse

network has 10 nurses (d = 0.0526) and five physicians (d = 0.1579). Both networks
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Table 5.2: Equations for determining the number of HCW-to-HCW transmis-
sions and their impact.

Variable Equation

Maximum Number of
Relevant Contacts

cm = mu ×mc

Relevant Contact
Probability

pc = cm
(
m
2

)−1

Number of Relevant
Contacts

P (X = x) =
(
cm
x

)
pxc (1− pc)cm−x;x = 0, 1, 2 . . . cm

Number of HCW
Transmissions

P (Y = y) =
(
x
y

)
pyt (1− pt)x−y; y = 0, 1, 2 . . . x

100(1-α)% Wilson
Score Interval

(pc,α/2, pc,1−α/2) =
pc+

1
2cm

z2
1−α/2±z1−α/2

√
pc(1−pc)

cm
+
z2
1−α/2
4c2m

1+ 1
cm

z2
1−α/2

are used for comparison purposes in the remaining experiments.

Given the total number of HCWs, we examine how the number of relevant con-

tacts changes with different mixes of infected and uninfected HCWs. In Figure 5.8,

we see that the relevant contact probability and the maximum number of relevant

contacts are maximized when mc = m/2 for m even and mc = (m− 1)/2 = (m+ 1)/2

for m odd. We also see a significant increase in the potential for HCW-to-HCW

transmission when there are more HCWs. In our example, there can be at most

nine relevant contacts at each time step when there are six HCWs, but as many as

56 relevant contacts when there are 15 HCWs.

We can predict the probability of the number of relevant contacts (X) using

our binomial probability model. The specific behavior changes with each time step,

depending on values of cm and pc. We show the best and worst case scenarios in

Figure 5.9. In this figure, we plot probability and cumulative density functions for

X, based on minimum (non-zero) and maximum values for cm and pc. Clearly,
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there is a much higher risk for HCW-to-HCW transmission when there are more

HCWs. There is minimal risk with six HCWs, even for the maximum potential

case. However, with 15 HCWs, the distribution is centered at approximately 30

relevant contacts per time step.

We compute an approximate confidence interval for X using the Wilson score

interval [87]. The expression for computing the Wilson Score Interval (WSI) is given

in Table 5.2, where cm and pc replace the standard binomial parameters n and p.

The WSI can then be scaled by cm to compute an interval for the expected value of

the number of relevant contacts, E[X] (where E[X] = cm× pc for X ∼ binomial(cm,

pc)). The intervals for the four cases in Figure 5.9 are given in Table 5.3 and show

the range of values for E[X] that we expect for 95% of the simulation time steps.

These intervals show the minimal risk for relevant contacts with few HCWs and the

much larger risk for relevant contacts when there are many HCWs serving the same

unit. The minimum potential for either case occurs when there is one or m − 1

colonized HCWs, which poses a similar risk regardless of the number of HCWs.

The maximum potential for relevant contacts is much higher when there are many

HCWs. For our sparse network with 15 HCWs, we expect approximately 30 relevant

contacts (E[X] = 29.87) during each time step when there are an equal number of

colonized and uncolonized HCWs. This risk is much higher than the five (E[X] =

5.4) relevant contacts we expect on average for the worst-case scenario in the dense

network.
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Figure 5.8: The relevant contact probability (pc) and the maximum num-
ber of relevant contacts (cm) are shown as functions of the number of
infected HCWs (mc) for a dense network (left) and a sparse network
(right).

5.3.2 Simulation Results with HCW-to-HCW Transmission

In the remaining experiments, we explore how HCW-to-HCW transmission af-

fects patient-to-patient transmission in the ICU. In Figure 5.10, we compare trans-

mission dynamics with and without HCW-to-HCW transmission in our dense and

sparse networks. Without HCW-to-HCW transmission, the dynamics follow the

typical ’S-curve’ pattern for disease-spread models, in which transmission is slow

in the initial period, speeds up in the middle period, and slows again while the re-

maining patients become infected. This pattern holds for the dense and sparse cases

with patients in the dense case becoming infected more quickly. Transmission for

the cases with HCW-to-HCW transmission occurs at a much faster rate, with many

patients becoming infected within a short period of time. These sharp increases
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Figure 5.9: Minimum (top) and maximum (bottom) potential for the
number of relevant contacts (X) for a dense network (left) and a sparse
network (right), shown in the form of probability and cumulative density
functions.

in transmission coincide with spikes in the number of HCW-to-HCW transmissions,

indicating they are probably the cause for the outbreak. We also observe that trans-

mission occurs more quickly in the sparse network, which is a result of the increased

risk for relevant contacts with more HCWs. In both networks, transmission occurs

much more quickly than in the cases without HCW-to-HCW transmission.

We introduced HCW-to-HCW transmission into our model and repeated our

experiments with nurse and physician network densities. The results of these exper-

iments are given in Figure 5.11 for three HCW-to-HCW transmission probabilities.
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Table 5.3: 95% Wilson score intervals for the expected value of X (E[X]).

Minimum Potential Maximum Potential
m cm = 1 or cm = m− 1 cm = m2/4 for m even

(Number of HCWs) cm = (m− 1)2/4 for m odd
E[X] 95% WSI E[X] 95% WSI

6 1.67 (-0.44, 2.76) 5.40 (1.51, 6.36)

15 1.87 (-0.90, 4.04) 29.87 (20.90, 35.06)

In addition to mean time to transmission, we show contour plots of the HCW-to-

HCW transmission rates for each case. These plots show that the frequency for

HCW-to-HCW transmission is maximized when both nurse and physician densities

are small, which correspond to the cases with the most HCWs. These plots also

show that the frequency of transmission increases with higher HCW transmission

probabilities.

Based on these experiments, we observe that the best-case scenarios for all

cases are much worse-in terms of mean time to transmission-than in the original

experiments. At low HCW-to-HCW transmission probabilities, there appears to be

an optimal combination of nurse and physician network densities where the mean

time to transmission is maximized. This optimal configuration appears to occur in

the region that combines low nurse network density with high physician network

density. This result seems reasonable because, for nurses-who visit patients most

often-network density still needs to be low to prevent transmissions, regardless of the

increased risk for transmission between HCWs. Physicians contribute more to in-

creasing the risk of HCW-to-HCW transmission than to reducing the risk of infecting

patients directly, which explains the location of the optimal configuration. However,
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as the HCW-to-HCW transmission probability increases, we begin to see a change

in the overall response of the system. Two key trends emerge that demonstrate how

HCW-to-HCW transmission dominates the benefits of sparse patient networks. In

the first trend, the contours become symmetric about the axis of equal densities

(i.e., nurse network density equals physician network density), which suggests that

the nurse and physician densities no longer have a significant impact on transmis-

sion in the ICU. In the second trend, maximizing the mean time to transmission

requires fewer HCWs, because the risk of HCW-to-HCW transmission is high. We

do not suggest that hospitals should move towards reducing their staffing ratios to

extremely low levels. Instead, for scenarios in which HCW-to-HCW transmission

is a significant risk, hospitals need to take additional precautions such as providing

masks or vaccinations for HCWs.

5.4 Patient Turnover

We extend the baseline model by incorporating patient admission and patient

discharge (patient turnover). The baseline, static-population model provided a good

indication of how network structure and HCW behavior affect transmission. How-

ever, in practice, patients are constantly moving in and out of various units. We

accounted for this movement using two parameters: a patient turnover rate and

an admission prevalence rate. The patient turnover rate was used at each tick to

determine whether or not one patient, selected at random, would be replaced with

a new patient. The admission prevalence rate was then used to determine whether
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Figure 5.10: Transmission dynamics histories in a 20-patient intensive
care unit for a dense network (left) and a sparse network (right) without
(top) and with (bottom) HCW-to-HCW transmission. The HCW-to-
HCW transmission probability (pt) was held constant at 0.1. The num-
ber of HCW transmissions per time step is shown for the scenarios with
HCW-to-HCW transmission.
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Figure 5.11: Contour plots for the mean time to transmission (left) and
HCW transmission rate (right) as a function of nurse and physician
network densities. HCW transmission rates are expressed as the number
of HCW transmissions per tick. Results are shown for three values of
the HCW transmission probability: pt = 0.01 (top), pt = 0.05 (middle),
and pt = 0.1 (bottom).

110



or not the new patient would already be infected.

5.4.1 Modified Transmission Dynamics

Introducing patient turnover changes the feasible outcomes for transmission

dynamics. In the baseline model, the only possible outcomes occur when all pa-

tients become infected (we call this saturation) or when transmission stalls and

the disease cannot reach other segments of the patient population. With patient

turnover, transmission in the hospital can reach an endemic (steady) state in which

a balance is established between infected patients entering and leaving the hospital.

For our purposes, steady state is reached when a simulation runs 100,000 ticks or

more without ending in saturation or extinction. Extinction can also occur. In this

new outcome, all infected patients are discharged and transmission can no longer

occur unless newly admitted patients are infected. In practice, extinction cases are

more likely to look like endemicity, but we separate the two cases to highlight net-

work configurations that are more effective at reducing transmission. Transmission

dynamics outcomes are shown in Figure 5.12.

5.4.2 Simulation Results with Patient Turnover

We experiment first with patient turnover on the dense and sparse networks

from Section 5.3, and then introduce patient sharing and HCW-to-HCW transmis-

sion to determine how transmission dynamics are affected. The patient turnover rate

was set at values of 0 (no turnover), 0.01 (low turnover) and 0.1 (high turnover),
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Figure 5.12: Feasible transmission dynamics with and without patient
turnover.

while the admission prevalence for cases with turnover was set at 0.1 (low) and 0.5

(high). The results for the first experiment are given in Figure 5.13. The histograms

show how the transmission dynamics change with increasing levels of turnover. For

dense and sparse networks, the dynamics change from saturation to extinction as

the patient turnover rate increases. Sparse networks lead to better outcomes in all

cases (i.e., slower saturation times and faster extinction times). These trends sup-

port the general conclusion that shorter lengths of stay for patients can decrease the

likelihood that they will acquire an infection at some point during their stay.

In the second experiment, we introduce patient sharing into the ICU used in

Section 5.2.4 with turnover. The results are given in Figure 5.14, which shows an ar-

ray of 12 stem-scatter plots for four sharing configurations and three patient turnover
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Figure 5.13: Transmission dynamics outcomes for a dense network (left)
and a sparse network (right) with no turnover (top), low turnover (mid-
dle, rate = 0.01), and high turnover (bottom, rate = 0.1). Results are
reported for 50 replications as histograms that show the frequency of
simulations terminating at a specific number of ticks. The transmission
dynamics outcome is noted for each plot (saturation, extinction).
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levels. For these experiments, the results did not always lead to the same outcome

as they did for the results in Figure 5.13 (i.e., saturation or extinction). Therefore,

we show the number of ticks, plotted on the left-axis as stem plot values, and the

number of infected patients, plotted on the right-axis as scatter plot values, to spec-

ify the outcome for each simulation replication. These results generally reflect the

trends from the original experiments. For example, the four plots with no turnover

(left column) show the saturation outcome in every case, with all 20 patients in

the unit becoming infected within relatively short simulation times. However, with

patient turnover introduced, the revolving and paired sharing configurations appear

to perform as effectively as the case with no sharing. These three configurations

result in a mix of endemic and extinction outcomes with low turnover, but lead to

only extinction when the patient turnover rate increases. Random sharing results

in an endemic state even for high turnover rates and is the worst configuration.

In the third experiment, we explore the effects of patient turnover in our dense

and sparse network examples combined with HCW-to-HCW transmission, which

was the dominant factor in the experiments with network density from Section 5.3.

The results, given in Figure 5.15, show similar trends for the sparse network and

the dense network. For the case with no turnover, both networks saturate for all

simulation replications. The sparse network leads to faster rates due to the higher

number of HCWs. With low turnover, there is a mix of saturation and endemic

outcomes, which suggests that the effects of patient turnover and HCW-to-HCW

transmission are approximately equal at this level. For the sparse network, there is

a higher frequency of endemic outcomes, and even the saturation cases appear to
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Figure 5.14: Summary of patient turnover effects on four configurations
of patient sharing (none, random, revolving, and shared) for cases of no
turnover (left), low turnover (middle, rate = 0.01), and high turnover
(right, rate = 0.1). The patient sharing rate was held constant at 0.1.
Each plot shows the number of ticks (stem plot values, left axis) and
the number of infected patients (scatter plot values, right axis) at the
end of each simulation replication, which indicate whether the transmis-
sion dynamics outcome was saturation (number of infected patients =
20), endemicity (number of ticks = 100,000), or extinction (number of
infected patients = 0).
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Figure 5.15: Summary of patient turnover effects on HCW-to-HCW
transmission for a dense network (left) and a sparse network (right),
for cases of no turnover (top), low turnover (middle, rate = 0.01), and
high turnover (bottom, rate = 0.1). The HCW-to-HCW transmission
probability (pt) was held constant at 0.1. Each plot shows the number
of ticks (stem plot values, left axis) and the number of infected patients
(scatter plot values, right axis) at the end of each simulation replication,
which indicate whether the transmission dynamics outcome was satura-
tion (number of infected patients = 20), endemicity (number of ticks =
100,000), or extinction (number of infected patients = 0).

occur quickly, as if the index patient was discharged before there was sufficient time

for the disease to spread. Clearly, high turnover negates the effect of HCW-to-HCW

transmission, leading to extinction very quickly.

For all experiments with patient turnover, we used an admission prevalence of

10%, that is, on average, 10% of newly admitted patients are infected. We repeated

the patient turnover experiments with an admission prevalence of 50%. This level

could represent an ongoing outbreak of a particular disease. Whereas higher rates of

turnover lead to a higher probability of extinction, higher admission prevalence rates

shift the outcome balance towards an endemic state or saturation, so that extinction
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becomes very difficult. The balance between these two outcomes depends on several

factors including network density, rates of turnover and admission prevalence, and

the presence or absence of patient sharing and HCW-to-HCW transmission. The

results of the experiments with patient turnover are given in Table 5.4. In most

cases, an endemic state is the most likely outcome when newly admitted patients

are more likely to be infected on admission. However, there are some scenarios for

which there is a high probability of saturation. Units that combine low turnover

with either dense networks–such as in the baseline model (42% of outcomes) or with

patient sharing (from 30% to 62% of outcomes)–or HCW-to-HCW transmission

(38% of cases for a dense network, 86% of cases for a sparse network) are especially

susceptible to saturation. All units with high turnover are essentially protected from

saturation outcomes.

5.5 Conclusions

Agent-based modeling provides a convenient framework for simulating the

transmission of an infectious disease in a hospital. The results from this type of

modeling effort can provide valuable insights to professionals in infection control.

We used an agent-based model to simulate the effect of network density, HCW be-

havior, and patient turnover on transmission in an ICU. By examining the densities

of the nurse and physician networks, we gained a new perspective on the effect of

the implicit connections among patients who share a HCW. Our results showed that

nurses and physicians pose significant threats to patients in terms of infection, but
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Table 5.4: Results for network density (top), patient sharing (middle), and HCW-
to-HCW transmission (bottom) with patient turnover and high admission preva-
lence (rate = 0.5).

Baseline % of Outcomes (50 Replications)
Density Case Extinction Endemicity Saturation

Dense network with low turnover 8 50 42

Dense network with high turnover 8 90 2

Sparse network with low turnover 6 86 8

Sparse network with high turnover 0 98 2

Sharing Turnover % of Outcomes (50 Replications)
Configuration Level Extinction Endemicity Saturation

None Low/High 0/12 38/86 62/2

Random Low/High 0/0 50/100 50/0

Revolving Low/High 6/2 60/98 34/0

Paired Low/High 6/6 64/90 30/4

% of Outcomes (50 Replications)
HCW-to-HCW Transmission Case Extinction Endemicity Saturation

Dense network with low turnover 10 52 38

Dense network with high turnover 6 88 6

Sparse network with low turnover 6 8 86

Sparse network with high turnover 8 86 6
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they do so in different ways. Nurses can spread infection to patients quickly within

their cohorts, but they are limited in their ability to spread infection to the entire

unit. Physicians spread infection much more slowly than nurses. However, their in-

fections can accelerate transmission in the unit because they can spread the disease

to multiple nurse cohorts.

Our model enabled us to investigate the effects of HCW behavior. Patient

sharing is often overlooked in epidemiological modeling and it tends to promote

transmission. Revolving and paired sharing configurations offer better alternatives

than random sharing, which is most likely how sharing occurs in practice. Physicians

can negate the intended benefits of these configurations because their networks ex-

tend across multiple nurse networks, but structured sharing (i.e., revolving or paired

sharing) between nurses can reduce the rate of transmission. Transmission between

HCWs poses a significant threat as well, and can offset the benefits of high HCW-

to-patient ratios. This type of transmission is probably relevant only for highly

transmissible diseases, and would require additional precautions such as the use

of masks and gloves. In future work, the effects of less uniform HCW interaction

network configurations could be explored.

Finally, we compared how patient turnover affects transmission dynamics in a

hospital unit. Our experiments showed that shorter lengths of stay could reduce the

threat of hospital-acquired infections. However, random patient sharing, HCW-to-

HCW transmission, and high admission prevalence rates all showed the capability

to offset the benefit of patient turnover. Hospitals can alleviate these risks to some

degree, by implementing structured sharing configurations, protecting HCWs from
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infection by providing masks and vaccinations (when available), and isolating newly

admitted, patients who are infected.
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Chapter 6

Early Detection of Bioterrorism: A Combined Social and Spatial

Network Analysis

6.1 Overview

Bioterrorism refers to the intentional release of viruses, bacteria, or other toxic

biological agents, to cause illness or death in people, animals, or plants. Biological

agents can be spread through the air, through water, or by food. The U.S. Centers

for Disease Control and Prevention (CDC) list anthrax, botulism, plague, small-

pox, tularemia, and viral hemorrhagic fever as Class A bioterror threats, which are

currently known biological diseases that are likely to do the most damage [16].

Bioterrorism is considered a significant threat to the United States. According

to Congress, the U.S. is more vulnerable to biological weapons than more traditional

means of warfare. The Office of Emergency Preparedness estimates that 40 million

Americans could die if a terrorist released smallpox into the American population.

Anthrax could kill 10 million. New forms of deadly biological weapons could also

kill millions [20].

From a public health perspective, early detection of a potential bioterrorism

incident is vital, as it allows timely communication with epidemiologic investigators,

health providers, laboratories, and other critical organizations that will attempt to
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limit the damage. In addition, it improves the likelihood that an adequate supply

of antimicrobial drugs, antitoxins, or vaccines will be available.

One of the main challenges in detecting bioterrorism incidents is that many

candidate diseases present symptoms in a similar manner as the common cold or

flu (e.g., anthrax, viral hemorrhagic fever). In all likelihood, health providers who

are accustomed to dealing with everyday cases will not attribute patient symptoms

to an unknown bioterror incident, but rather diagnose the condition as a common

illness. The disease is then likely to continue spreading until the first unexpected

deaths occur.

In this chapter, we propose two techniques for quickly differentiating between

a bioterrorism incident and a seasonal flu epidemic according to their transmis-

sion patterns. Specifically, we construct a multilayered network that includes social

and spatial components, and then compare the temporal diffusion of the disease

throughout the population for each scenario. We assume that seasonal flu is only

transmitted through human-to-human interactions, whereas transmission during a

bioterrorism incident occurs exclusively because of a person’s proximity to the lo-

cation where the attack occurred. This assumption follows the common spread of

currently known bioterror agents such as anthrax, hemorrhagic fever, and tularemia

that are not highly transmissible between humans. We try to identify the best

measures–those that provide an early detection time of a bioterror attack–that can

be used as diagnostic metrics in practice, using results from simulating the disease

transmission through the multilayered network.
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6.2 Methodology

The simulation model has two major phases. The first phase involves the

generation of the multilayered network. The second phase simulates an epidemic or

bioterror scenario through the generated network. We discuss both phases in the

sections that follow.

6.2.1 Multilayered Network Generation

We present a multilayered network of NH humans and NL locations. We

use H = {H1, H2, . . . , Hn} to represent the set of human nodes with PHiHj as the

probability of interaction (i.e., contact probability) between nodes Hi and Hj. The

set L = {L1, L2, . . . , Lm} is used to represent all locations, with dLiLj designating

the distance between locations Li and Lj. Finally, each human node Hi is assigned

a probability PHiLj of visiting each location Lj, which we refer to as the human-

location probability. A schematic representation of the multilayered network is given

in Figure 6.1.

There are several simplifying assumptions that we use in the generation of

the multilayered networks. First, we model a closed population, so there are no

individuals that enter or depart the network once it is formed. We use the Barabási-

Albert (BA) algorithm for generating the human social network [1]. There are four

steps in the BA algorithm.

1. Let m denote the number of nodes that each successive node connects to in

the network.
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Figure 6.1: Schematic representation of the multilayered network. The
human social network (depicted on the left) shows human nodes that
interact with probabilities PHiHj . The location network (depicted on the
right) shows location nodes separated by distances dLiLj . The human-
location network has edges that connect human nodes to location nodes
with probabilities PHjLi .

2. Initialize the network with m+ 1 nodes that are all connected to each other.

3. Add a new node to the network and choose m nodes at random to connect

to the node being inserted, where the likelihood of each node being chosen

is proportional to its current degree (i.e., pi = deg(i)∑
j
deg(j)

where deg(i) is the

degree of node i).

4. Repeat Step 3 until the network has NH nodes.

In Figure 6.2, we show an unweighted human social network for NH = 10

agents and different values of the BA algorithm density parameter (m). The BA

algorithm generates a scale-free social network with a power-law degree distribution

in which there are few human nodes with many contacts and many human nodes

with only a few contacts. This algorithm has been used in other research as an

appropriate model for human social networks [6].

The edges in the human social network are generated using the BA algorithm,

but we need a model to determine how frequently each pair of humans interacts. We
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Figure 6.2: Barabási-Albert (BA) network examples, with the BA algo-
rithm density parameter (m) ranging from 1 to 5 to 10 from left to right.

generate contact probabilities PHiHj between human nodes Hi and Hj for each edge

using an exponential distribution with rate λ = 10, scaled between 0.1 and 1. The

lower bound on the scaling ensures that the network remains fully connected. The

exponential distribution generates a lot of edges with low contact probabilities (e.g.,

less than 0.2), which represent rare or occasional contact. The distribution also

generates some edges with more frequent contact. These higher probability edges

represent the frequency of contact we expect between family members, coworkers,

and classmates. We set the initial contact probability to P init
HiHj

∼ exp(10) and then

scale the result according to

PHiHj =

[
P init
HiHj

max{P init}
× 10

9

]
+ 0.1. (6.1)

Once generated, the edges in the human social network and their contact

probability weights are fixed (i.e., PHiHj is constant for all time t). The distribution

of the human contact probability is given in Figure 6.3 and a sample human social
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Figure 6.3: Contact probability distribution for a human social network
with a BA algorithm density parameter equal to one. The frequency
(i.e., likelihood) is shown for each contact probability bin plotted on the
x-axis.

network instance with 40 human nodes is given in Figure 6.4.

The location nodes are arranged in a 2-dimensional Cartesian grid with width

w and length l and a unit distance between adjacent nodes. This model was chosen

to represent a geographic region where each location in the network contains the

same size area. A sample location network with nine locations (i.e., w = l = 3) is

shown in Figure 6.4.

The human-location agent probability is simulated from a multivariate mixed

gamma distribution of the form

P init
HiLk

∼


Γ(kH = 10, θH = 0.5; Σ) , pH = 0.1

Γ(kL = 1, kL = 1; Σ) , pL = 0.9

(6.2)
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Figure 6.4: Sample multilayered network instance. In (a), we show a
sample human social network instance with NH = 40. The nodes are
shaded according to the sum of weighted edges incident to each node,
with darker nodes representing nodes that have more frequent contact
with other nodes in the network. Edges are shaded according to their
contact probability values, with darker edges representing higher contact
probabilities. In (b), we show a sample location network instance for a
2-dimensional grid defined by w = l = 3. In (c), we show a sample
human-location network instance as a bipartite graph. The location and
human nodes are shaded (on separate scales) according the the sum of
incident weighted edges and the edges are shaded according to their
contact probability values.
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with the covariance matrix Σ given by

Σ = ρ× P+
H (6.3)

where ρ is the correlation coefficient between social (i.e., human-human) and human-

location contacts and P+
H is the nearest positive definite matrix to the contact prob-

ability matrix PH . We calculate Σ using the algorithm developed by Higham [40].

The probability is then scaled in the range [0,1] to ensure that each human Hi visits

a single location at any time t,

PHiLk ←
PHiLk∑
Ll P

init
HiLl

(6.4)

The human-location agent probability distribution is given in Figure 6.5, which

shows that there are many edges in the human-location network that represent

rare or occasional travel to a particular location. In contrast to the social contact

probability distribution, this distribution has a second peak that represents locations

where people travel to relatively frequently, such as home, work, or school. A sample

human-location network instance is given in Figure 6.4.

To illustrate the effect of the correlation coefficient ρ, in Figures 6.6 and 6.7, we

plot realizations of the human-location network probabilities for different correlation

coefficients (ρ = 0 and ρ = 1). We examine the location interaction probabilities

of three human nodes, using the human contact probability matrix PH in Equation

6.5. It is clear from 6.6 that when ρ = 0, we observe no correlation between the

locations visited by any pair of nodes. However, when ρ = 1, there is a strong
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Figure 6.5: Distribution of the human-location contact probability for a
multilayered network with a human-location density equal to 0.8. The
entire distribution is shown on the left and a zoomed view of the higher
location probabilities is shown on the right.

positive correlation between the locations visited by Agent 1 and Agent 2, which is

represented by the large value in PH (i.e., 0.9). There is still no correlation between

Agent 1 and Agent 3 or between Agent 2 and Agent 3 because these pairs of human

nodes have small correlation values in PH .

PH =



1.0 0.9 0.1

0.9 1.0 0.1

0.1 0.1 1.0


(6.5)
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Figure 6.6: Example of human-location probability correlation with cor-
relation coefficient ρ = 0. Each scatter plot shows the correlation be-
tween the human-location contact probabilities for a given pair of human
nodes.
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Figure 6.7: Example of human-location probability correlation with cor-
relation coefficient ρ = 1. Each scatter plot shows the correlation be-
tween the human-location contact probabilities for a given pair of human
nodes.
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Table 6.1: Network simulation input parameters

Parameter Description Value
NH Number of human nodes 500
NL Number of location nodes 25
m Barabási-Albert algorithm density parameter 1, 5, 10
w Location grid width 5
l Location grid length 5
d Human-location network density parameter 0.5, 0.8, 1.0
ρ Interaction probability correlation coefficient 0.0, 0.5, 1.0
pHt Human transmission probability 0.1
pLt Location transmission probability 0.01

6.2.2 Network Simulation Model

The network simulation model was implemented using Python1, a dynamic

object-oriented programming language, SimPy2, a discrete-event simulation pack-

age, and NetworkX3, a package that facilitates the creation and manipulation of

networks. The simulation can be executed for an epidemic or bioterror scenario

through a given network. Each disease scenario has different transmission dynam-

ics, but simulations for both scenarios are run until the entire human population

is infected. Table 6.1 summarizes the input parameters and the values used in the

simulation.

In the epidemic scenario, we select dpHt × NH
NL
e humans to be initially infected,

where pHt is the transmission probability between human nodes. This formula for

initially infected humans was chosen so that the initial susceptible population would

be approximately the same size as the initial susceptible population in the bioter-

1www.python.org
2http://simpy.sourceforge.net/
3http://networkx.lanl.gov/
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ror scenario, thereby creating a similar basis for comparison. The disease spreads

randomly between human nodes, using the human contact probability and human

transmission probability to determine whether transmission occurs. At each time

t, every susceptible human node Hi has a probability of 1 − ∑Hk∈H p
H
t · PHiHk of

getting infected by one of its neighbors.

In the bioterror scenario, the attack occurs at a single location Li and spreads

to adjacent locations with probability pLt at each time step. Human nodes can only

be infected at locations to which they travel. Human-to-human transmission does

not occur in the bioterror scenario. Similar to the formulation used in the epidemic

scenario, each human node Hi has a probability of 1 −∑Lk∈L p
H
t · PHiLk of getting

infected at one of the locations.

Computational efficiency is a critical issue for simulating these scenarios, as the

number of edges increases substantially for multilayered networks with many nodes.

For both scenarios, we only iterate through the relevant edges in the network, that is,

those edges that connect susceptible and infected nodes. The list of all relevant edges

is updated at the end of each time step, and is shuffled prior to iterating so that the

edges are not evaluated for transmission in the same order. In addition, we filter the

multilayered network for each scenario so that we only iterate through the relevant

sections of the network. Thus, we only iterate through the human social network

in the epidemic scenario and through the location and human-location networks in

the bioterror scenario.

When human nodes become infected, we track the time of infection and the

source of the transmission, whether by a human node in the epidemic scenario or a
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location node in the bioterror scenario. These data allow us to track the number of

instantaneous infections and compute the cumulative number of infections at any

point in time. By tracking the source of infection, we can construct an additional

network with this information that will be used in the analysis of the simulation

output.

6.3 Results

We performed simulation experiments on six parameterized networks using

the parameters given in Table 6.1, which provides three human social network den-

sity cases for the epidemic scenario and three human-location density cases for the

bioterror scenario. Ten instances of each parameterized network were generated.

We performed 100 simulation replications of each scenario on each relevant network

instance. The dynamics across all 100 simulation replications for one instance of

each parameterized network are characterized in Figures ?? and ??. Dynamics for

the other network instances were similar except for some differences in the extreme

(i.e., maximum and/or minimum) cases.

As shown in the dynamics plots in Figures ?? and ??, there are some distinctive

trends between the two scenarios. In both scenarios, it is clear that the infection

spreads faster through networks that are more dense, although the trends are more

significant in the epidemic scenario. The epidemic transmission dynamics follow

the behavior defined by a mathematical model such as the susceptible-infected-

recovered (SIR) model [48]. The cumulative number of transmissions in this case is
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Figure 6.8: Transmission dynamics summaries for three parameterized
epidemic network instances. Barabási-Albert algorithm density parame-
ters (m) of 1, 5, and 10 were used to generate the human social networks.
In the top plots, the median path (solid line) shows the typical transmis-
sion path for the epidemic on a given network instance, and the extreme
cases (maximum and minimum, dashed lines) show the fastest and slow-
est dynamics observed in the batch of replications. The bottom plots
show series of box-and-whisker plots that summarize the distribution
of the number of newly infected humans at each time step, aggregated
across all replications.
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Figure 6.9: Transmission dynamics summaries for three parameterized
bioterror network instances. Human-location network density parame-
ters (d) of 0.5, 0.8, and 1 (top to bottom) were used to generate each
instance. In the top plot, the median path (solid line) shows the typ-
ical transmission path for the outbreak on a given network instance,
and the extreme cases (maximum and minimum, dashed lines) show the
fastest and slowest dynamics observed in the batch of replications. The
bottom plots show series of box-and-whisker plots that summarize the
distribution of the number of newly infected humans at each time step,
aggregated across all replications.
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defined by an S-curve that begins with a slow rate of infection, transitions to a very

fast infection rate during the middle period, then slows again while the remaining

humans eventually become infected. These changes in the infection rate are reflected

in the bottom plots in Figure ??, in which the instantaneous number of infections

are initially small, grow fairly large, and then become small again.

With the exception of the sparse case (i.e., BA density parameter equal to

1), we observe minimal variation with respect to the transmission curves in the

epidemic scenario. The variation that does exist only relates to the time when the

epidemic begins to accelerate throughout the population, not the peak transmission

rate (i.e., maximum slope of the cumulative infection curve). This trend suggests

that for a given population, there is a limit as to how quickly a disease can spread in

an epidemic scenario. Surveillance efforts can then focus on monitoring the number

of reported cases and trigger a response if a threshold infection rate is surpassed,

because the infection rate will continue to increase in an uncontrolled population

until the susceptible pool is sufficiently depleted.

The transmission dynamics in the bioterror scenario are quite different. Trans-

mission in this scenario begins immediately, and continues to occur at a nearly

constant rate until the susceptible population becomes very small. Detecting an

outbreak in this scenario is more difficult because the transmission rate may never

cross the type of threshold that would be appropriate for an epidemic. There is

much more variation in the transmission dynamics than in the epidemic case. This

variation suggests that control measures would have to be robust enough to prevent

transmission that occurs very quickly or spreads quite gradually over a prolonged
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period of time.

Differentiating the transmission dynamics in these two scenario is fairly easy

by analyzing Figures ?? and ??. In practice, these data would not be available. We

would observe only one instance of a transmission dynamics curve as the outbreak

was occurring. We examine two approaches for addressing this issue under different

levels of certainty regarding the structure of the multilayered network.

6.3.1 Detection Under Social Network Certainty

We begin our analysis with the assumption that we know the underlying hu-

man social network. This assumption, although unrealistic for large populations,

may have some applications for small, isolated settings such as in schools or within

business or community organizations. In addition, there are techniques for estimat-

ing the structure of larger social networks using a combination of contact tracing and

survey data [6]. We can explore how the disease spreads throughout these smaller or

estimated networks, which may provide some insight as to how to detect a bioterror

attack in larger populations.

We construct a secondary network for each simulation instance under the

assumption that the disease spreads through the human population in an epidemic

manner (i.e., by direct human-to-human transmission). Each secondary network is

initialized as an empty network, and nodes (including initially infected nodes) are

added to the network as they become infected during the simulation. This structure

creates a spanning tree over all nodes. Each node added to the secondary network
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must connect to a node that has already been added, and this node is chosen so

that the distance between the two nodes in the original network is minimized. For

example, if two nodes are directly connected in the original network, they are one

degree removed from each other. Each node that sits on the shortest path between

two nodes creates an additional degree removed. We denote the inserted node and

its selection as a most likely pair.

With this construction, we calculate the shortest paths between all pairs of

human nodes in the network and use these distances to generate the secondary

network. We set the distance of each edge in the secondary network equal to the

square of the number of degrees removed between each most likely pair. This model

imitates a gravitational model in which the force between two masses decreases

with the square of the distance between them. The secondary network is being

rewarded with a low cost (in the form of small distances) for adding nodes in a

way that is consistent with an epidemic outbreak. However, if a bioterror attack is

being modeled by the secondary network, edges with longer distances will be added

because successively infected nodes will not necessarily be close to each other in the

original network. A sample secondary network is shown in Figure 6.10.

This construction assumes that we know the structure of the human social

network in terms of the human nodes and interaction edges, but not necessarily the

interaction probabilities. We are not likely to know all of this information during an

actual outbreak, but this unweighted version of the human social network is easier

to approximate. We can investigate how the structure of these networks evolves over

time, which may provide insight as to how we can determine whether a bioterror
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Figure 6.10: Sample secondary network instance for a multilayered net-
work with 40 human nodes. Nodes are shaded according to their respec-
tive infection times, with darker nodes becoming infected at later times.

attack has occurred.

We explore how the structure of the secondary network evolves over time.

We compute a very simple metric, the total secondary network length, to try to

differentiate between the two scenarios. This metric is calculated by summing the

edge distances as nodes are added to the secondary network. It requires minimal

computational effort. It describes the state of the entire network, in contrast to

closeness centrality or other node-specific metrics.

We begin our analysis with a baseline network using a BA algorithm density

parameter equal to 5, a human-location density of 1.0, and a correlation coefficient

equal to zero. We explore the dynamics of the secondary network when the human

social network density changes. Figure 6.11 shows a comparison for each scenario of

how the total secondary network length evolves for 100 simulation replications on a
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single network instance with BA algorithm density parameters of 1, 5, and 10.

As we can see from Figure 6.11, total secondary network length is an excellent

metric for differentiating between the two scenarios. The total secondary network

length distinguishes between the two scenarios with high reliability when less than

5% of the population is infected. Other metrics may be as useful, but they would

likely require significantly more computation. There is a clear separation between

the two scenarios for all BA algorithm density values. The separation is most sig-

nificant for the sparse human social network (i.e., BA algorithm density equal to

1), but the separation becomes smaller as the human social network becomes more

dense. However, even in the most dense case, the total secondary network length

grows much faster in the early stages of the outbreak for the bioterror scenario.

The secondary network was designed to make this trend apparent, and the results

confirm the intentions.

Early in the simulation of a bioterror attack, the secondary network is small

(i.e., few humans have been infected) and each additional human that becomes

infected will likely incur a penalty when they are inserted into the secondary network.

As a result, longer edges are added to the secondary network when only a small

proportion of the population has become infected. As the simulation progresses, the

secondary network will grow larger, and most of the remaining susceptible human

nodes will have an immediate neighbor from the original network to connect to

when they become infected. This trend becomes apparent once the slope of the

total secondary network length becomes equal to one. This behavior occurs for all

of the epidemic simulations because, by definition, each newly infected node was
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Figure 6.11: Total secondary network length comparison for different hu-
man social networks. Barabási-Albert algorithm density parameters of
1, 5, and 10 (top to bottom) were used to generate the human social net-
works from which the secondary networks were constructed. Epidemic
results for 100 simulation replications are plotted in gray for a single
network instance. Bioterror results for 100 simulation replications are
plotted in black.
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Figure 6.12: Total secondary network length comparison for different
correlation coefficients. Correlation coefficients of ρ = 0.5 and 1.0 were
used to generate the human-location networks. Epidemic results for 100
simulation replications are plotted in gray for a single network instance.
Bioterror results for 100 simulation replications are plotted in black.
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Figure 6.13: Total secondary network length comparison for a human-
location network density of 0.5. Epidemic results for 100 simulation
replications are plotted in gray for a single network instance. Bioterror
results for 100 simulation replications are plotted in black.

infected by another node that was already added to the secondary network. The

only penalized edges (i.e., those with distance greater than one) that are added to

the secondary network in the epidemic scenario are between initially infected human

nodes (i.e., index nodes). When an epidemic spreads through a larger population,

there would likely be many more than two index nodes (which is what we used

for our simulations). However, secondary network edges would be longer as well

because distances between non-neighboring nodes would be longer. In this case, the

total secondary network length curves for each scenario would likely shift up and

the separation would be at least as large.

We explored the effect of the correlation coefficient and the human-location

network density on our ability to differentiate between the two scenarios. Figure

6.12 shows the comparison for correlation coefficient values ρ = 0.5 and ρ = 1.0. As

apparent from the figures, the correlation coefficient has little effect on the results
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compared to the baseline case. Figure 6.13 shows the results for when the human-

location density is decreased to 0.5, which, from Figure ??, increases the amount

of time for the entire population to become infected from a bioterror attack. How-

ever, changing this parameter has little effect on the effectiveness of our methods

compared to the baseline case.

6.3.2 Detection Under Social Network Uncertainty

In Section 6.3.1, we assumed that the human social network is known. In prac-

tice, this information is not available to healthcare providers. Whereas the size of

the social network and its density can be estimated using scale-free approximations,

the contacts between people and the locations they visit are difficult to determine

for the entire population. In this section, we develop a methodology to distinguish

between the disease source that relies only on readily available information. This

information includes network size (i.e., human population size and number of loca-

tions) and the cumulative number of infected humans, which could be computed by

monitoring arrivals to physician’s offices and emergency departments.

The cumulative infection curves output from the simulation model (see Fig-

ures ?? and ??) provide information that is not available to healthcare providers

and depends on the simulation model. We preprocess the curves to remove this in-

formation. Although the outbreak starts at time t = 0 in the simulation, healthcare

providers can only potentially detect an outbreak upon the arrival of the first in-

fected human to a physician’s office or emergency department. We trim the process
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Figure 6.14: Schematic illustration of infection curve preprocessing.

to start at the first infection and end when the entire population has been infected.

Second, the actual simulation time (counted as ticks) is a function of the infection

probability. Transforming the simulation time to actual time (e.g., hours or days)

requires a priori knowledge of this probability. Different infection probabilities pro-

duce curves with similar shapes, but on a different scale. We re-scale the simulation

time to the interval [0,1], which denotes the fractional time between the onset of the

disease and the time when the entire population is infected (herein denoted time

fractions). An illustration of the preprocess step is given in Figure 6.14.

Now, we can compare the preprocessed infection curves of epidemic outbreaks

to those of bioterror outbreaks and examine the differences in the transmission dy-

namics. As discussed in the beginning of Section 6.3, there are some clear distinctive

trends between the two scenarios. In Figure 6.14, we show that the same trends are

preserved even after preprocessing the curves. We quantify these differences and

show that these differences are statistically significant between the two scenarios.

We use Functional Data Analysis (FDA) to distinguish between the epidemic

145



and bioterror scenarios. FDA is a set of flexible techniques to capture the dynamics

in curves, surfaces, or images [72]. One of the most commonly used FDA methods

is an adaptation of classical Principal Component Analysis (PCA) known as Func-

tional PCA (fPCA). fPCA demonstrates the way in which a set of functional data

varies from its mean. It quantifies the difference from the mean of each individual

functional datum [50]. We apply fPCA to the observed, preprocessed, cumulative

infection curves to capture differences between the two disease scenarios.

fPCA is similar in nature to classical PCA. However, rather than operating

on data vectors, it operates on functional objects, which in our context corresponds

to cumulative infection curves. Classical PCA is a mathematical procedure that

projects a set of data vectors X = {X1, . . . , Xn} (Xi = {xi1, . . . , xip}) onto a new

space Y ({Y1, . . . , Yn} and Yi = {yi1, . . . , yip}) that maximizes the variance along

each component in the new space. At the same time, it renders the individual

components of the new space orthogonal to each another. The result is a new

coordinate system such that the greatest variance lies on the first coordinate (i.e., the

first principal component), the second greatest variance lies on the second coordinate

(i.e., second principal component), and so on. Formally, the new space Y is computed

as follows:

Y T = (XT − X̄)W (6.6)

where W is the matrix of eigenvectors of XXT . Common practice is to choose only

those eigenvectors that correspond to the largest eigenvalues, that is, those that
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capture most of the information (variation) in the observed data.

The functional version of PCA is similar in nature, except that it operates on

a set of continuous curves rather than discrete vectors. Consequently, summations

are replaced by integrals, and eigenvectors by eigenfunctions

Y T =
∫
t
(X(t)T − X̄)W (t) (6.7)

.

The continuous curves are approximated by a fine discrete grid, such that each

time point on the curve becomes a component in the observed data vector. In other

words, data vectors X = {Xt1 , ..., Xtn}, where ti is the curve level time i (in our

context, time fraction at time i), are used as a proxy to X(t). Then, classical PCA

is carried out on the discrete curve [43, 73].

We apply the discrete version of fPCA to the preprocessed cumulative infection

curves. We find that the first three eigenvectors capture nearly 99% of the variation

in the data, and they have a meaningful interpretation in our context. In Figure 6.15,

we plot these components. Each figure depicts the loads of the infection curves on

each principal component at each time fraction, that is, how much of its information

is captured by each component. The first principal component captures the speed

or the rate at which the population gets infected, relative to the average infection

curve. It exhibits a high load in the middle time fractions and a low load at the

low and high time fractions. In terms of the simulation, we observe small loads in

the first component at the beginning of the outbreak, during which few individuals
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get infected. Then the outbreak accelerates and humans get infected at a high rate,

which is represented by the peak load at a time fraction of approximately 0.35.

Finally, as the number of susceptible humans decreases, the rate of infection slows

and the load of the first component decreases back to zero.

The second and third principal components capture the velocity and acceler-

ation of the infection curves, respectively. Velocity is the slope of the curve (i.e.,

first derivative), which becomes largest halfway between the initial infections and

when the infection rate is maximum (in Figure 6.15, the largest load is at fractional

time 0.2). Acceleration is the rate of change of the velocity component (i.e., second

derivative).

To analyze the effectiveness of fPCA in differentiating between disease scenar-

ios, we consider a subset of the networks defined in Table 6.1, beginning with five

network instances defined by the BA algorithm and human-location density param-

eters being equal to one. We use the remainder of the networks to evaluate the

performance of our methods and to examine its robustness to changes in the popu-

lation (e.g., human social network density). Our analysis in this section consists of

three steps:

1. Perform a visual comparison of PCA results from the two scenarios.

2. Perform formal analysis to quantify the properties (i.e., speed, velocity, and

acceleration) of each scenario.

3. Perform evaluation and robustness tests.
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Figure 6.15: Infection curve loads for the first three principal compo-
nents. The first principal component is representative of the speed (i.e.,
rate) of the infection. The second principal component is representa-
tive of the velocity of the infection. The third principal component is
representative of the acceleration of the infection.
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Figure 6.16: Principal component score distributions for the epidemic
and bioterror scenarios.

To visually compare the properties of the curves, we examine the distribution

of the first three principal component scores of each curve, that is, their projection on

the new coordinate system. In Figure 6.16, we plot this distribution for each disease

scenario. Although the scenarios do not differ by speed, they differ significantly

by velocity and acceleration. The epidemic scenario generates cumulative infection

curves with a higher average velocity when compared to the bioterror case. In

contrast, the bioterror curve has higher velocity and acceleration variability.

We use ordinary logistic regression analysis to quantify the effect of using PCA

to differentiate between the two disease scenarios. The predictive model is a function

of the first three principal components, as follows:
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ˆScenario =
1

1 + exp−(β0+β1PCS1+β2PCS2+β3PCS3+ε)
(6.8)

The estimated model is given in Table 6.2. As expected, the coefficient of

the first principal component score (β1) is close to zero because both scenarios have

approximately equal loads in this component. However, the coefficients of the second

(β2) and third principal component scores (β3) are an order of magnitude larger,

which implies that these components are more important in differentiating between

the two scenarios.

The performance of the model on the training set is outlined in the confusion

matrix in Table 6.3, which summarizes the number of correctly and incorrectly

predicted outcomes for each disease scenario. The accuracy of the model is greater

than 95%. The error rate distributes evenly between negative and positive rates. To

evaluate the model, we examine its performance on a validation set of five networks

with the same density parameters as those in the training set. For each replication

of a network in the training set, we compute the first three principal components

scores according to the loadings in Figure 6.15 and then predict the scenario using

the model in Equation 6.8. We summarize the performance in Table 6.3. The

overall accuracy is greater than 95%, and the positive and negative error rates are

statistically equal.

In practice, the multilayered network parameters can be estimated, but are

essentially unknown. Therefore, it is important to see how our model performs when

the estimates are inaccurate. We examine the robustness of the model to changes
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Table 6.2: Estimated parameters of the logistic model

Parameter Estimate Standard Deviation p value

β0 0.7309185 0.1147268 1.88e-10
β1 0.0020193 0.0001709 < 2e-16
β2 -0.0272249 0.0008508 < 2e-16
β3 -0.0279236 0.0014694 < 2e-16

Table 6.3: Performance of the logistic model on training
and validation data sets

Training Validation

Response Response

Prediction Epidemic Bioterror Epidemic Bioterror

Epidemic 956 40 473 24
Bioterror 44 960 27 476

in the network parameters. Specifically, we decrease the density of the human

social network and the human-location network. The performance of the model

is evaluated on these new networks without recomputing the principal component

loadings or the logistic model parameters. Table 6.4 summarizes the performance.

In Table 6.4, we observe that the model does not perform well for sparse human

social networks. When the BA density parameter decreases from 10 to 5, we observe

only a slight increase in the false negative rate (i.e., identifying epidemic outbreaks as

bioterror attacks). However, the false negative rate increases significantly when the

BA algorithm density parameter decreases to 1. In this case, the model predicts that

nearly 78% of the outbreaks are bioterror attacks. These predictions occur because

infectious agents in the epidemic scenario can only infect a few contacts at most,

which results in a gradual infection curve that is more representative of bioterror

transmission dynamics (refer to the similar transmission dynamics between the top
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Table 6.4: Robustness of the logistic model to changes in
human social and human-location network densities

m = 1 m = 5

Response Response

Prediction Epidemic Bioterror Epidemic Bioterror

Epidemic 82 6 188 7
Bioterror 118 194 12 193

d = 0.5 d = 0.8

Response Response

Prediction Epidemic Bioterror Epidemic Bioterror

Epidemic 190 13 190 6
Bioterror 10 187 10 194

plot in Figure ?? and all plots in Figure ??). The model is much less sensitive to

changes in the density of the human-location network. We observe a slight increase

in the false positive rate (i.e., identifying a bioterror attack as an epidemic) when

the density decreases from 1 to 0.5.

We have demonstrated how FDA can capture the dynamics in the cumulative

infection curves and distinguish between the disease scenarios reliably. However,

early detection of the outbreak sources is the critical factor in preventing diffusion

of the disease to the entire population. We pose the question of how early we can

detect the infection source, or more specifically: What proportion of the population

will get infected before we can accurately differentiate between the two scenarios?

What is the level of confidence for this differentiation?

To answer these questions, we examine the cumulative infection curves up to

the time when NH × f of the population becomes infected, for different fractions
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f ∈ (0, 1]. An example of the cumulative infection curve comparison for f = 0.1

is given in Figure 6.17, which shows that the infection curves for the two scenarios

are very distinguishable. We find that when f ≥ 0.07, that is 7% of the population

is infected, the model predicts at least 95% of the disease scenarios accurately.

When f = 0.05, detection performance only decreases to 93%. Finally, when only

2% of the population is infected (i.e., f = 0.02), the model accuracy is still 83%.

Overall, this method can be employed when very small proportions of the population

have become infected and provides extremely reliable predictions. In addition, this

method requires no information about the structure of the multilayered network.
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Figure 6.17: Comparison of cumulative infection curves after 10% of the
population is infected. Epidemic simulations are plotted in gray and
bioterror simulations are plotted in black.
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6.4 Conclusions

Early detection of a bioterror attack can facilitate the isolation of the source

location, which will prevent large numbers of people from becoming infected, reduce

the demands on the healthcare system to provide care, and minimize the impact

on schools and businesses. If a bioterror attack is incorrectly identified as an epi-

demic, control measures aimed at preventing human-to-human transmission will not

necessarily protect people from getting infected at a compromised location. These

misdirected efforts will drain resources that will be needed to address the attack

once it is identified. We have provided two techniques that may assist healthcare

providers in distinguishing bioterror attacks from epidemics. In addition, these

methods could be used to identify other types of infections that spread from a single

location, such as food poisoning or an infected water source.

When information is available about the structure of the human social net-

work, we can construct secondary networks and monitor how the structure evolves

with time. Our results showed that we can differentiate between the disease sce-

narios under these circumstances when very small proportions of the population

are infected (i.e., less than 5%). Secondary networks for bioterror attacks will have

longer total lengths because newly infected humans may not have any significant in-

teraction with others that have already been infected. In epidemic scenarios, newly

infected humans will always have contact with at least one other human that has

already been infected and, therefore, secondary network lengths will be smaller. For

cases when less information is known about the social network (e.g., larger popula-
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tions), we may be able to estimate the structure of the network, but by doing so we

lose accuracy in differentiating between the two scenarios. Future work may explore

how this uncertainty affects the detection capability of these methods.

In most cases, we will have little or no information about the human social

network, and we have to rely on the information available about the number of

people infected each day. Functional data analysis can provide detailed information

about the particular behavior of a given transmission curve. By using historical data,

we can generate a series of benchmark epidemic infection curves and then monitor

the principal components of an ongoing outbreak to identify bioterror attacks.

Both techniques demonstrated extremely high accuracy in differentiating be-

tween the two scenarios for several parameterized multilayered networks. The social

network method was most effective for sparse human social networks, which would

be easier to characterize. On the other hand, functional data analysis was effective

for sufficiently dense human social networks. These types of networks are repre-

sentative of urban populations that are most likely to be targeted by a bioterror

attack. In addition, both methods were able to identify bioterror attacks when only

a small proportion of the population became infected (f < 10%), which is a critical

capability for implementing effective infection control measures. These techniques

would be fairly easy to implement in practice, depending on the available infor-

mation, and could be incorporated into syndromic surveillance systems to monitor

infections in real time [39]. These measures would ensure that appropriate infection

control measures are taken as soon as possible.
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Chapter 7

Conclusions

Building on the foundation established by systems dynamics and discrete event

simulation, agent-based modeling has provided new insight to epidemiological prob-

lems by modeling individuals and the interactions between them. This perspective

has facilitated analysis at both the individual and system levels, which is not typi-

cally possible using other methods. The greatest value of agent-based models is that

they can be used as virtual environments to evaluate policy alternatives, some of

which would be infeasible or unethical to experiment with in practice. This capabil-

ity can help healthcare organizations make better decisions, which can potentially

lead to a higher quality of care for patients and extensive cost savings.

Overall, agent-based models are exceptionally well-suited for testing potential

infection control measures and can provide some indication of success before imple-

menting any particular strategy. Process-oriented models have a more established

record of contribution, and they have produced relatively widely accepted results

concerning the effectiveness of common infection control measures. The foundation

has been established for network models of transmission, but there are still many

areas to explore, particularly in determining which network measures are the most

effective in predicting an outbreak and differentiating between different types of

transmission. Both static and dynamic network measures may be useful, but the
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ease of calculation is a critical issue that will determine whether these techniques are

used in practice. However, the benefit of modeling the explicit connections between

individuals has been demonstrated in the unique results from these types of models.

There are several key results that agent-based models have reinforced and

several more that are unique to this methodology. The hand-hygiene compliance of

HCWs is critical to preventing outbreaks of infectious diseases, but in most cases,

handwashing is not sufficient to control transmission. Additional measures such as

active surveillance, patient isolation, or higher staffing ratios become necessary. To

the extent possible, minimizing patient lengths of stay and HCW visits to patients

can also reduce the risk of secondary infections, as susceptible patients are exposed

less to potential infections and infected patients have fewer opportunities to infect

HCWs.

Agent-based models have also provided insight into the relative threats posed

by HCWs that care for patients in a hospital. Nurses and other HCWs that visit

patients frequently are at a high risk of becoming at least transiently colonized or

infected, and can quickly spread disease to other patients in their care. Physicians

and other HCWs that visit many patients can potentially create multiple pockets

of infection that could lead to an entire unit becoming infected. Maintaining high

staff-to-patient ratios and assigning patients to HCWs in a structured way can

offset these dangers. Future studies may be able to suggest methods for identifying

individuals at a high risk of infection because of their location in a network, and

appropriate measures could be taken to prevent that person from becoming infected

before isolation or quarantine measures become necessary.
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As with the other modeling methodologies, the challenge in developing agent-

based models is first generating realistic dynamics for a particular scenario, and

then analyzing those patterns to identify the best strategies for intervention. De-

termining the appropriate level of detail for an agent-based model can be a difficult

challenge. Extremely detailed models require many parameters, and it is difficult to

determine accurate values for these parameters from empirical data and the research

literature. Parameters are often set at reasonable values and sensitivity analyses are

performed to address any shortcomings associated with poor selection, but these

analyses can become very time consuming if model run times are large. Models

with few parameters mostly avoid this problem, but are sometimes challenged due

to their lack of detail and complexity. One solution to this issue is to use hybrid

models, which incorporate systems dynamics and agent-based methods. In Chapter

4, we modeled a network of healthcare facilities whose states were affected by both

their interaction with other facilities and an internal differential equations model.

These models take advantage of the strengths of each methodology, most impor-

tantly the lower computational demands of systems dynamics and the heterogeneity

afforded by agent-based modeling. For all levels of complexity, agent-based models

can incorporate and generate large quantities of data. As a consequence, statistical

rigor, efficient data analysis techniques, and visualization are all critical to producing

insightful results and communicating those findings to healthcare professionals.

The other major challenge with agent-based models is related to validation.

The level of validation required for a particular agent-based model is primarily driven

by its ultimate purpose. Models that are intended to produce accurate quantitative
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(i.e., predictive) results may require extensive validation, whereas more qualitative

(i.e., illustrative) models have less stringent requirements. Validation is difficult for

some applications because they lack empirical data as a baseline for comparison.

Therefore, it is not always possible to know what simulation outcomes should look

like.

When empirical data are available, there are several approaches for using them

to validate a model [29]. The best of these approaches primarily involves incorpo-

rating empirical data, historical perspective, and subject matter expertise in the

selection of the best possible set of model assumptions, parameter settings, and

initial conditions. By combining these data sources, agent-based models are more

likely to use appropriate values for input parameters and generate reasonable system

responses. However, validation is more difficult when the underlying dynamics are

not as well-understood or there is no historical reference, as is generally the case

for epidemic and bioterror scenarios. For these cases, an agent-based model has

more value in demonstrating relative trends or generating alternative outcomes for

comparison, and less value as a predictive model. For any validation approach, it

is always necessary to perform sensitivity analyses to identify any parameters that

cause non-proportional changes in the system.

Moving forward, new and existing agent-based models should continue to build

on the most relevant achievements of other models, including those from other fields

that have taken advantage of the methodology. Making these models widely avail-

able is a practice that can help to accelerate progress. This evolutionary process is

another advantage of agent-based modeling, as system dynamics and discrete event
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simulations are more difficult to augment with additional complexity. Each individ-

ual model may have limitations, but as the research grows, many of those limitations

can eventually be eliminated, thereby increasing the acceptance of these methods

by healthcare organizations.
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