
ABSTRACT

Title of thesis: AUTOMATIC SPEECH CODEC IDENTIFICATION
WITH APPLICATIONS TO TAMPERING
DETECTION OF SPEECH RECORDINGS

Jingting Zhou, Master of Engineering, 2012

Thesis directed by: Professor Carol Espy-Wilson
Department of Electrical and Computer Engineeing

In this work we investigated source-dependent techniques for speech media au-

thentication. In partcular, we developed algorithms to detect wheather the speech

was coded and, if so, which CELP-based codec was used. Finally, we demonstrated

that this knowledge can be used to determine if a speech utterance has been tam-

pered with.

AUTOMATIC SPEECH CODE IDENTIFICATION
WITH APPLICATION TO TAMPERING
DETECTION OF SPEECH RECORDINGS

by

Jingting Zhou

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Engineering

2012

Advisory Committee:
Professor Carol Espy-Wilson, Chair/Advisor
Professor Shihab Shamma
Professor Min Wu

Table of Contents

List of Figures iii

1 Introduction 1

2 CELP Family of Speech Codecs 4

3 Algorithm of the Codec Detector 8
3.1 Algorithm for Mode HR, EFR and AMR 8

3.1.1 Extract unvoiced part of speech 8
3.1.2 Linear prediction filtering to get the residual 9
3.1.3 Remove vadap from residual 9
3.1.4 Search for the best vector to fit vfixed 10
3.1.5 Get error measurement . 10

3.2 Algorithm for Mode SILK . 10
3.2.1 Preparation of sign pattern codebook 11
3.2.2 Search for the most likely sign pattern 13
3.2.3 Get error measurement . 13

3.3 Experiments of Codec Detector . 13

4 An Improved Algorithm for SILK 16
4.1 Training . 17
4.2 Testing . 18
4.3 Experiments of SILK codec detector 19

5 Application to Tampering Detection 21
5.1 Tampering Detection Algorithm . 21
5.2 Experiments on Real Cellphone Recordings 22
5.3 Tampering Experiments . 23

Bibliography 25

ii

List of Figures

2.1 Diagram of CELP decoder. 5
2.2 Some samples of vfixed from different codebooks. 6

3.1 Histogram of binary pattern of a SILK sentence. 12
3.2 Error Level for the whole 5 datasets. 14

4.1 Diagram of the improved algorithm. 17
4.2 Histogram of Vnon−peak for both SILK and non-SILK files. 18

5.1 Mean curve for one segment from cellular database. 23
5.2 Tampering experiment. 24

iii

Chapter 1

Introduction

The objective of speech media authentication (SMA) is to establish the validity

of a speech recording as a true ”acoustic representation” of an event that occurred

at a certain time and place. Particular applications of this process are embodied

in the answers to the following common questions: (i) is the recording original or a

copy; (ii) has the recording been edited or modified since its creation; (iii) does it

come from the alleged source; and (iv) is the content consistent with what is known

or alleged. The most general framework towards SMA is the blind-passive approach.

Algorithms based on this approach do not rely on the presence of a watermark or

extrinsic fingerprint, but on the traces left behind by the generating process and

signal modifications. Two different types of information can be targeted for SMA:

(i) source dependent, where the extracted information is directly tied to the intrinsic

fingerprint of the source; and (ii) source independent, where the information is not

directly related to the source (i.e., background noise, electric network interference,

etc). Once this information has been automatically extracted, a consistency test

or anomaly detection procedure can be used to extract evidence relevant for the

authentication task at hand.

For source dependent approaches, Garcia-Romero [1] explored the intrinsic

variability of recording devices and use a statistical model, contextualized by speech

1

content, to describe them. A universal background -Gaussian mixture model(UBM-

GMM) is trained and for each device, a GMM is adapted from the UBM. The means

of one GMM are appended together to construct a device ID. These dev-IDs are

found to be very discriminative. Scholz [2] developed an algorithm to detect a wide

range of state-of-the-art speech codecs. By subtracting the harmonic structure,

the noise spectrum was obtained and served as input to a support vector machine,

classifier to determine which of five different codecs was used. Yang [3] examined

the compression mechanism of mp3 files as a way of detecting forgery. When an

mp3 file is encoded, the audio samples are divided into frames and each frame has

its own frame offset after encoding. By examining the trace left by the quantization

process, the frame offset can be detected with high accuracy. Forgeries will break

the original frame grids, thus leave evidence of the manipulation.

For source independent approaches, Farid [4] explored the continuity of natural

speech and assumes that a ”natural” speech signal has weak higher-order statistical

correlations in the frequency domain, and bispectral analysis would reveal ”un-

natural” forgery in speech. Grigoras [5] proposed electric network frequency(ENF)

information can be used to reveal the timestamp of the audio. ENF refers to the

magnitude of 50/60 Hz network frequency signal, captured by digital equipment

when the audio is recorded. The magnitude of network frequency signal is fluctuating

all the time, by comparing the fluctuation pattern with a reference pattern from the

electric company, the exact time of the recording can be verified.

The focus of this work is on source dependent techniques. In particular, we are

interested in performing speech media authentication following a two step process.

2

The first step involves detecting the type of speech codec used to generate the

signal. The second step uses known properties of the detected codec to perform

media authentication. Our focus will be on recordings of speech signals that have

been encoded with members of the CELP family of speech codecs [6,7,8,9].

Chap. 2 gives a brief introduction on speech codecs. Chap. 3 describes the

codec detection algorithm in detail. Chap. 4 gives an improved algorithm for speech

files from SILK, the speech codec for Skype calls. Chap. 5 introduces a tampering

detection algorithm based on a proposed codec detection algorithm.

3

Chapter 2

CELP Family of Speech Codecs

Spanias [10] presented a good summary on speech codecs. The Code Excited

Linear Prediction(CELP) codec is the most popular one in the cellphone network.

There are many versions of CELP.

Figure 2.1 shows a block diagram of the decoding process of a CELP codec.

vfixed is a vector from a fixed codebook stored in the memory of the decoder, and

it captures the aperiodic portion of the residual signal, so its energy is high in

unvoiced regions. vadap is a vector copied from an adaptive codebook which contains

previously reconstructed residuals, and it captures periodic portions of the speech

signal so the energy is high in voiced regions. The weighted sum of these two vectors,

the reconstructed residual r, is fed into the inverse LPC filter. The corresponding

weights for vadap and vfixed are aadap and afixed, respectively. The output of the

post-processor is the decoded speech.

Different versions of CELP have different codebooks, i.e. different kinds of

vfixed. Figure 2.2 shows some examples of vfixed from different codebooks. As

we can see, vfixed from EFR contains 10 pulses of the same magnitude, and for

vfixed from SILK, the ratio of the peak magnitude (around 800 as in the figure)

over the non-peak magnitude (around 200) is always 4. All the details of these

codebooks are described in the codec standards document or the implementation

4

reconstruced reisdual

post−processing

v
fixed

 v
adapt

encoded
bitstream

A(z)

a
adap

a
fixed

decoded
speech

Figure 2.1: Diagram of CELP decoder.

example. We want to take advantage of this difference to detect which CELP codec

has been used to process the speech signal. Thus, we need to inverse filter the

decoded speech signal and extract vfixed from the weighted sum and this requires

an estimate of vadap. During encoding, vadap is computed from the reconstructed

residual of previous frames, hence it is not easy to estimate it from the decoded

speech for two reasons:

1. It is difficult to accurately estimate the LPC coefficients, i.e. a1 to a10.

2. The post-processing is adaptive and we are not able to undo the process.

What the post-processing is doing is dependent on the codec, but the major

things are formant enhancement filtering and tilt compensation filtering. The

coefficients are dependent on the speech signal so we can not perfectly invert

the post-filtering.

So we chose to only use the unvoiced part of the speech signal, where the

energy of vfixed is much higher than that of vadap. A typical sentence will contain

5

0 10 20 30 40
−0.5

0

0.5

(a)

sample V
fixed

 from AMR

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

(b)

sample V
fixed

 from EFR

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

(c)

sample V
fixed

 from HR

0 10 20 30 40
−0.5

0

0.5

(d)

sample V
fixed

 from SILK

Figure 2.2: Some samples of vfixed from different codebooks.

some unvoiced regions due to the fricatives and stop consonants.

The codebooks used for vfixed in AMR, EFR and HR are described in [6], [7]

and [8], respectively. For SILK, when operating in its low bit rate mode, vfixed is

obtained by using a pseudo-randomization algorithm algorithm whose input is a se-

quence of pulses similar to that shown for vfixed in mode EFR (Fig 2.2b). As can be

seen, by comparing vfixed for SILK vs for EFR, the randomization results in a vfixed

with fewer zeros, thus making vfixed richer. This process adds some small perturba-

tion to the pulse sequence, and the some perturbation of constant magnitude. The

sign of the perturbation is determined by the overflow-based pseudo-randomization

mechanism. This process gives rise to some properties of vfixed that we can take

advantage of.

6

1. Due to the constant magnitude of the perturbation, the shape of vfixed is quite

restricted. The magnitude of the peaks versus the non-peaks is always 4 or 10

(see Fig 2.2d).

2. Due to the overflow based pseudo-random mechanism, some sign patterns of

vfixed appear frequently.

The improved SILK codec detection algorithm we proposed is based on these

two observations.

7

Chapter 3

Algorithm of the Codec Detector

The codec detector can work in 4 modes: HR, EFR, AMR, and SILK. For

modes HR, EFR and AMR, the framework is similar, but some part of the algorithm

should be tailored to the particular codec at hand. Since mode SILK is different

from the other three modes, it will be discussed in a separate subsection.

3.1 Algorithm for Mode HR, EFR and AMR

The algorithm I developed consists of the following steps.

• extract unvoiced part of speech

• linear prediction filtering of the unvoiced part of speech signal to get the

residual r

• remove vadap from residual

• search for the best vector to fit vfixed

• get error measurement

3.1.1 Extract unvoiced part of speech

The unvoiced part of speech needs to be extracted and the same VAD algo-

rithm is used as in the HR standard. This VAD searches for the best lag in the past

8

speech signal, and get the ratio between the energy in the current frame and the

energy in the best-lag signal. Since it is important that we do not recognize a voiced

frame as unvoiced, we use a stricter requirement on the threshold of the ratio.

3.1.2 Linear prediction filtering to get the residual

We use a 10th order linear prediction analysis, specifically the autocorrelation

method, to inverse filter the unvoiced speech signal.

3.1.3 Remove vadap from residual

In mode HR, for the unvoiced part of speech, the residual is the sum of two

vectors both from vfixed . Thus, we don’t have to remove vadap . In both the EFR

and AMR modes, removal of vadap is an optional step. In the unvoiced part of

speech, the energy of vadap is already very small. As such, it may not be necessary

to remove this part. In fact, our experiments in the AMR mode showed that removal

of vadap degraded performance. Thus, we only performed this step in the EFR mode

only.

We followed the procedure in [2] and [3] to get vadap. In the standards, the

adaptive code book is the reconstructed residual of previous frames, but here we

don’t have these reconstructed residuals, so we use the final post-processed speech,

inverse filtered with A(z), as the adaptive codebook. Vadap is obtained by searching

for the best fractional lag in the adaptive code book. Even though exactly the same

search algorithm and interpolation method is used as in [2] and [3], the adaptive

9

codebook is not very accurate. This inaccuracy doesn’t affect vfixed very much since

vfixed = r− a× vadap (3.1)

in which the scaler a is often very small in the unvoiced region.

3.1.4 Search for the best vector to fit vfixed

Now that we have ˆvfixed, obtained by subtracting vadap from the residual (as

in EFR), or obtained without the subtraction (as in other modes), and the fixed

codebook, we are ready to search for the best vector in the codebook. For every

vector v in the codebook, we find a scaler a to minimize ∥ ˆvfixed − a × v∥2 , so we

get

a = ˆvfixed
T (vTv)−1v (3.2)

which is equivalent to find a v∗, such that,

v∗ = argminv(I − v(vTv)−1vT) ˆvfixed (3.3)

3.1.5 Get error measurement

The objective function in the fitting part is normalized as our error measure.

err =
∥ ˆvfixed − v ∗ ∥2

∥r∥2
(3.4)

3.2 Algorithm for Mode SILK

The algorithm developed for mode SILK consists of the following steps.

• preparation of sign pattern book

10

• extract unvoiced part of speech

• linear prediction filtering to get the residual

• search for the most likely sign pattern

• get error measurement

3.2.1 Preparation of sign pattern codebook

As mentioned in Chap. 2, the sign pattern of vfixed is very limited in SILK

and we want to use this sparsity to detect if SILK was used. The first step in this

process is to build a representative and efficient sign pattern codebook. To do an

exhaustive search over all possible sign patterns is impractical and we can reduce

the search space by answering the following two questions.

1. Do we need the length of sign pattern to be the frame length?

2. What are the most frequent sign patterns? Every pulse sequence p may have

a different vfixed sign pattern, and the number of pulses in one frame is not

fixed, even in the low bitrate mode of SILK. Thus, when we construct the sign

pattern book, enumerating all possible sign patterns can be inefficient.

To help us answer these 2 questions, let’s define a binary pattern BP, for 10

consecutive samples from vfixed ,

BP =
10∑
p=1

2p−1s(p) (3.5)

11

s(p) =

1 : if pth sample is positive

0 : if pth sample is negative

(3.6)

BP is just a way to describe a sign pattern using a number. Figure 3.1 shows

the histogram of BP for a SILK compressed speech sentence. We can see several

peaks in the histogram of the first 10 samples of each frame. There are fewer and

smaller peaks with the second and third histograms. Finally, the fourth histogram

is almost flat. As it goes along the sequence, the sign pattern becomes more and

more random. In our sign pattern codebook, the first 30 samples of a frame are

included. Thus our first question is answered.

0 200 400 600 800 1000
0

5

10

15
binary pattern of the first set of 10 samples

binary pattern
0 200 400 600 800 1000

0

5

10

15
binary pattern of the second set of 10 samples

binary pattern

0 200 400 600 800 1000
0

5

10

15
binary pattern of the third set of 10 samples

binary pattern
0 200 400 600 800 1000

0

5

10

15
binary pattern of the fourth set of 10 samples

binary pattern

Figure 3.1: Histogram of binary pattern of a SILK sentence.

Another observation is, for every 10 positions in a frame, the number of nonzero

pulses is less than 3 most of the time. So the sign pattern book is designed to include

12

just the sign patterns generated by these pulses. This is the answer to our second

question.

3.2.2 Search for the most likely sign pattern

Denote vshort as a vector containing the first 30 samples of vfixed . For every

sign pattern s in the codebook, we search for the ŝ which maximizes the correlation,

corr = sTvshort/(∥s∥∥vshort∥) (3.7)

3.2.3 Get error measurement

The error is defined as the number of inconsistent signs between vshort and ŝ.

err =
30∑
i=1

sign(i) (3.8)

sign(i) =

1 : if vshort(i)× ŝ(i) < 0

0 : if vshort(i)× ŝ(i) ≥ 0

(3.9)

3.3 Experiments of Codec Detector

We took 100 sentences from the TIMIT database that were recorded using 10

different microphones. The sentences contain speech from both male and female

speakers. For every sentence, we encoded and decoded using GSM-HR, GSM-EFR,

GSM-AMR(5.9kb mode) and SILK. This process resulted in 5 datasets, dataorigin,

dataAMR, dataEFR, dataHR, and dataSILK . A total of 81480 frames (16296 frames

in 100 sentences × (4 modes + original)) are used, about 27 minutes, of which

approximately one third are unvoiced. We ran the detector in its 4 modes on every

13

dataset. Thus each time the detector is asked if the frame is previously compressed

by, for example, HR, and it tells us the result for all the sentences in the 5 datasets.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

error level for mode AMR

er
r

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

er
r

error level for mode EFR

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
dataset

er
r

error level for mode HR

0

10

20

30

1 2 3 4 5
dataset

er
r

error level for mode SILK

Figure 3.2: dataset 1 is for AMR coded speech, dataset 2 is EFR coded,
dataset 3 is HR coded, dataset 4 is for the original speech, and dataset
5 is SILK encoded.

Figure 3.2 shows the error distribution for the detectors. Every plot corre-

sponds to one of the 4 modes, and in each plot, every box represents one of the 5

datasets. The lines at the center of the box are the mean normalized error, the edges

of the box are the 25th and 75th percentiles, and the red crosses are outliers. As

we can see from Figure 3.2, for a specific mode, the error is the lowest for the data

using that codec. Now we are ready to answer the question that, given a speech file,

14

which codec is used to generate it.

We model every box (one dataset for each mode) in Figure 3.2 as a Gaussian,

and get the likelihood ratio for every mode. For example, in mode AMR, we model

errAMR as AMR Gaussian and errEFR, errHR, errSILK and errorigin together as non-

AMR Gaussian. For an unknown speech sentence s, we run the algorithm in mode

AMR, get the log likelihood ratio using AMR Gaussian and non-AMR Gaussian. We

have 4 modes so we’ll have 4 likelihood ratios, llrAMR, llrEFR, llrHR, llrSILK . Using

these 4 as the input for a logistic regression classifier, we get our final classification

result.

We used 80% sentences in the dataset to get the Gaussian parameters and we

used the rest to do the test.

Table 3.1 confusion matrix for codec detector on TIMIT dataset

classified as AMR EFR HR SILK origin

AMR 89.89% 0.48% 0.06% 5.00% 4.58%

EFR 0.18% 91.27% 0.60% 0.00% 7.95%

HR 0.06% 1.81% 96.51% 0.06% 1.57%

SILK 7.89% 0.60% 0.12% 73.99% 17.40%

ORIGIN 1.81% 3.55% 0.42% 6.44% 87.78%

15

Chapter 4

An Improved Algorithm for SILK

As shown in the previous chapter, the frame level detection rate for SILK is

around 70% while the others are around 90%. There are two shortcomings of the

previous algorithm. First, it doesn’t take into account the magnitude pattern of

vfixed from SILK, as mentioned in Chap. 2 (page 5). Second, the sign pattern of

the residual r may not behave the same as the standard describes, due to

1. The post-process in the SILK decoder.

2. The voiced/unvoiced decision may not be the same as in the first encoding

process.

3. The linear predictive coefficients are not exactly the same as in the first en-

coding process, even though that the same LP analysis is used.

To overcome these shortcomings, we built a new codebook that accounts for

these artifacts. Since we already have the SILK codec, we encode and decode a

training datasetorigin to get datasetSILK , and perform our voiced/unvoiced decision

and linear prediction analysis on datasetSILK . Then we use all of the residuals to

build the new codebook. Thus, our new algorithm is partly knowledge-based and

partly data-driven as will be described in detail in the next section.

16

4.1 Training

Figure 4.1 shows a diagram for the improved algorithm. In the training step,

we take a large amount of speech sentences, encode and decode them using SILK,

do the voiced/unvoiced decision and LP analysis to get all the normalized residuals

r. We keep the first 30 samples of all the residuals r to construct a codebook, cbshort,

plus 3 distributions based on the 2 observations mentioned in Chap. 2 (page 5).

voice and
unvoice
decision

voice and
unvoice
decision

1/A(z)

1/A(z)

residual r

residual r feature
extraction

SILK/non−SILK
decision

codebook cb
short

BP distribution
likelihood function f

SILK
likelihood function f

non−SILK

SILK
and
non−SILK
testing files

SILK
and
non−SILK
training files

Figure 4.1: diagram of the improved algorithm.

The first distribution for BP, which describes the sign patterns and we model

it as multinomially distributed.

The second and the third distributions are based on the observation 1 on page

5. The magnitude of the peaks versus the non-peaks is always 4 or 10 (see Fig

2.2d). So if the peaks are removed, we expect the variance of the rest signal to be

very small. For a given normalized residual r, we remove all the peaks to get r′,

so the length of r′ is less than r. We define the non-peak variance, Vnon−peak(r),

as the variance of r′. We have two training datasets, training datasetSILK and

17

training datasetnon−SILK . We partition Vnon−peak into 460 bins and model Vnon−peak

for each dataset as multinomially distributed. We didn’t model it as normally

distributed since we observed that the Vnon−peak for training datasetnon−SILK is

highly unbalanced, or heavy tailed, as shown in Figure 4.2.

0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

90

100

histogram of V
non−peak

 of SILK training set

0.01 0.02 0.03 0.04 0.05 0.06
0

20

40

60

80

100

120

140

160

180

200

histogram of V
non−peak

 of non−SILK training set

Figure 4.2: histogram of Vnon−peak for both SILK and non-SILK files.

4.2 Testing

For a given normalized residual r from the test dataset, we extract three

features feature(r).

• feature1(r) = Pr(BP (r)).

• feature2(r) = the number of inconsistent signs between r(1:30) and r’, where

r’ is the value in cbshort that has the highest correlation with r(1:30).

18

• feature3(r) = log
fSILK(Vnon−peak(r))

fnon−SILK(Vnon−peak(r))
is the log likelihood ratio.

We classify the frame as non-SILK only when feature1(r) = 0 and feature2(r) <

threshold1 and feature3(r) < threshold2, where threshold1 and threshold2 are op-

timized using the training set.

4.3 Experiments of SILK codec detector

We took 100 sentences from TIMIT, with gender balanced, and one third of the

frames classified as unvoiced. The sampling frequency is 16kHz. We encoded and

decoded these 100 sentences using SILK, and the target bitrate was 10kbps. This is

our training datasetSILK . For training datasetnon−SILK , we encode these same 100

sentences using AMR-WB[11], and the target bitrate is 12.65kbps, together with

the original timit files. So training datasetnon−SILK is twice as large as training

datasetSILK . The test set contains another 100 sentences from timit database,

processed in the same way.

We also did a MFCC-GMM, fully data-driven baseline for comparison. To

obtain the MFCCs, the window size was 20ms, and we added both delta and delta-

delta coefficients, so a total of 39 cepstral coefficients for each 20 ms, with no overlap.

We used the EM algorithm to train two GMM, each with 256 Gaussians, one for

SILK and the other for non-SILK. We used the log-likelihood ratio to make the

decision. Table 4.1 shows the frame-level result.

Table 4.1 results for proposed algorithm and MFCC-GMM baseline

19

detection rate false alarm

proposed algorithm 81.50% 18.50%

MFCC-GMM baseline 69.98% 36.64%

In Table 4.2, we give results that show the robustness to high-pass and low-

passing filtering of the proposed algorithm.

Table 4.2 experiments of robustness under various filtering

HP Fstop = 100Hz HP Fstop = 200Hz

detection rate 63.09% 59.40%

LP Fstop = 7900Hz LP Fstop = 7800Hz

detection rate 60.21% 58.30%

20

Chapter 5

Application to Tampering Detection

5.1 Tampering Detection Algorithm

Here we propose a tampering detection algorithm based on the codec detector.

For a speech file that has already been encoded and decoded by a specific codec, our

goal is to tell if someone else has deleted or inserted anything after its generation.

We observed during our experiment that the proposed algorithm is very sensitive

to shifting. The basic idea is to shift the frame by throwing away samples in the

beginning. In the case where we throw away correct number of samples, the frame

grid will be the same as in the encoding process, and as a result, we should see

certain property as will be described later.

For a speech sentence we extract all the unvoiced parts. Say we have a total of

N unvoiced frames, then we divide them into M segments, so every speech segment

has k = N
M

unvoiced frames, and k is defined as the unit size. For every segment, we

detect the subframe offset, so if two consecutive segments have inconsistent offsets,

we claim that the later segment has been tampered. We want the unit length to

be as small as possible since we can locate the tampering more accurately. Next we

introduce how to detect the subframe offset for a segment.

for i = 1 : framelength do

throw away first i− 1 samples and run the algorithm in mode m for k frames,

21

so we have k errors, err1:k.

m(i) = mean(err(1 : k))

end for

offset for this segment is the index of the first dip in m.

The tampering detection algorithm here is only for the codec detector in Chap.

3 for clarity. For the improved SILK detector, we need to get feature1(1 : k) instead

of err1:k, and to claim that the offset is the index of the first peak in m.

5.2 Experiments on Real Cellphone Recordings

We tested the algorithm on a cellular dataset. This dataset consists of record-

ings directly from cellphone conversations, where they may undergo channel distor-

tion and a cellphone enhancement process. We know nothing about what coding

standard was used, except that it’s within the GSM family. The beginning parts of

the speech signals were chopped.

Figure 5.1 shows the mean curve for a segment from cellular and as a reference,

a segment from a microphone recording that did not undergone any speech coding

process. We can observe in the line marked with circles a dip every 40 samples,

which is the subframe length. The subframe offset is 20, since the first dip appears

at offset 20.

Then we did some experiments on 50 sentences from the cellular database,

each of them was about 5 minutes long, yielding a total of 250 minutes. We ran the

tampering detection algorithm to get the mean curves for all the unvoiced subframes.

22

0 20 40 60 80 100 120 140 160
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

offset, in terms of number of samples

er
ro

r
le

ve
l

results of cellular data, mode EFR

microphone mean
cellphone mean

Figure 5.1: Mean curve for one segment from cellular database.

For each of them, we used a convex hull to locate all the dips and if the distance

between all the dips are within some tolerance range, we claim the first dip location

as the offset for the segment, otherwise we claim no offset can be detected. We

detected 5813 offsets for 11797 unvoiced segments. Note here the cellphones may

not operate in mode EFR all the time and we don’t know the ground truth.

5.3 Tampering Experiments

We also did an experiment on tampering detection. We took a timit sentence

t1 ”They had come not to admire but to observe”, encoded and decoded using SILK

to get t2, then we did tampering on t2, deleting the word ”not”, to get sentence t3.

We ran the proposed tampering detection algorithm on t3 to get the offset track, as

23

shown in Figure 5.2.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1

0

1
x 10

4 waveform "They had come not to admire but to observe"

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1

0

1
x 10

4 tamerped waveform "They had come to admire but to observe"

0 20 40 60 80 100 120
0

200

offset track for tampered file

16th frame 70th frame

tampering in this region,
20 unvoiced frames

deleted

Figure 5.2: top: waveform of a SILK encoded sentence. middle: tam-
pered waveform from the top. bottom: offset track for the tampered
waveform.

The offset is zero for voiced frames and the maximum value in this case is

320 since the length of a 20ms frame in 16kHz is 320, different from the length in

the cellular database. We can see there is an inconsistency in the offset track, i.e.,

drops from 316 to 156 at the 16th frame. around the tampering spot. This offset

corresponds to the tampering spot since the offset is assigned for each segment and

each segment is 20 unvoiced frames. Taking these facts into considertion, we claim

the tampering occurs between 16th frame and 70th frame, which is between 5121th

sample and 22400th sample.

24

Bibliography

[1] D. Garcia-Romero and C. Y. Espy-Wilson, “Automatic Acquisition Device
Identification from Speech Recordings”, in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Dallas, TX, USA, 2010.

[2] Scholz,K.,Leutelt,L.,Heute,U., “Speech-Codec Detection by Spectral Harmonic-
Plus-Noise Decomposition”, Systems and Computers, 2295 - 2299 Vol.2 2004.

[3] Yang,R.,Qu,Z.,Huang,J.,“Detecting Digital Audio Forgeries by Checking Frame
Offsets”, MM and Sec08,September 22C23, 2008, Oxford, United Kingdom.

[4] H. Farid,“Detecting Digital Forgeries Using Bispectral Analysis”,MIT AI Memo
AIM-1657, MIT,1999.

[5] C. Grigoras,“Digital Audio Recording Analysis: The Electric Network Fre-
quency (ENF) Criterion.”, The International Journal of Speech Language and
the Law, vol.12, no.1, pp.63-76, 2005.

[6] “ETSI GSM 06.90 Digital cellular telecommunications system (Phase 2+);
Adaptive Multi-Rate (AMR) speech transcoding”, 2000.

[7] ”ETSI GSM 06.60 Digital cellular telecommunications system (Phase 2+); En-
hanced Full Rate (EFR) speech transcoding”, 1999.

[8] ”ETSI GSM 06.20 Digital cellular telecommunications system (Phase 2+); Half
Rate (HR) speech; Part 2: Half rate speech transcoding”, 1998.

[9] SILK Speech Codec draft-vos-silk-02, www.ietf.org/id/draft-vos-silk-02.txt

[10] Spanias,A., “Speech coding: a tutorial review”, Proceedings of the IEEE, vol-
ume 82 issue 10 pp 1541 - 1582, 1994.

[11] “Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate
Wideband (AMR-WB)”, 2008

25

