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In large-scale assessments, such as the National Assessment of Educational 

Progress (NAEP), plausible values based on Multiple Imputations (MI) have been 

used to estimate population characteristics for latent constructs under complex sample 

designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect 

model in creating plausible values assuming a classical test theory model and a 

stratified student sample and proposed an analogous solution for a random-effects 

model to be applied with a two-stage student sample design. The research reported 

here extends the discussion of this random-effects model under the classical test 

theory framework. Under the simplified assumption of known population parameters, 

analytical solutions are provided for multiple imputations in the case of the classical 

test theory measurement model and two-stage sampling and their properties are 

verified in reconstructing population properties for the unobservable latent variables. 

With the more practical assumptions of unknown population and cluster means, this 

study empirically examines the reconstruction of population attributes. Next, 



 

 

properties of sample statistics are examined. Specifically, this research explores the 

impact of the variance components and sample sizes on the sampling variance of the 

MI-based estimate for the population mean. Findings include significant predictors 

and influential factors. Last, the relationships between the sampling variance of the 

estimate of the population mean based on the imputations and those based on 

observations of the true score and the observed score are discussed. The sampling 

variance based on the imputed score is expected to be the higher boundary of that 

based on the observed score, which is expected to be the higher boundary of that 

based on the true score. 
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Chapter 1 : Introduction 

1.1 Background 

In psychometrics, measurement models provide a platform for explaining 

theoretical latent constructs underlying observed item responses. Traditional 

measurement models are generally developed under the assumption of simple random 

sampling (SRS) of individuals, as the structures of interest concern (often complex) 

within-person patterns of response. However, in large-scale educational assessments, 

such as the National Assessment of Educational Progress (NAEP), data are collected 

under complex sample designs, which include the following three components: 

unequal weights, stratification, and clustering (Rust, Krenzke, Qian, & Johnson, 2001) 

. In addition, to reduce the test burden on respondents, students take only a subset of 

the test items.  The subsets are selected using the multiple-matrix item sampling 

method. This item sampling design is handled by applying an Item Response Theory 

(IRT) latent-variable model to estimate student proficiency or ability, and the analyst 

calculates and reports results on the scale of the latent variable.  However, an efficient 

IRT estimator of individuals’ proficiency can be seriously biased in estimating the 

population distribution of the proficiency scores (Lord, 1959; Mislevy, Beaton, 

Kaplan, & Sheehan, 1992).  To avoid the estimation of individual student latent-

variable parameters when estimating population characteristics, population 

characteristics can be calculated based on their conditional expectation in marginal 

analyses (Mislevy, 1984). In addition, this approach can jointly handle the latent 

variable model and complex student sampling.  

Because the closed-form solution for the conditional expectation is only 

available for special cases, an alternative called plausible values, based on Rubin’s 

http://nces.ed.gov/nationsreportcard/
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(1987). Multiple Imputation (MI), has been used to allow secondary researchers to 

estimate latent trait distributions in large-scale educational assessments. Although the 

methods have proven useful, they can be difficult to understand in applications 

involving both complex measurement models and sampling designs.  To provide 

intuition, Mislevy (1991) derived a closed-form analytic solution for a fixed-effect 

model for MI assuming a classical test theory model and a stratified student sample.  

The results provide insight into the elements and properties of the procedure, and 

ground intuition for more complex applications. In the same article Mislevy proposed 

an analogous solution for a random-effects model to be applied with a two-stage 

student sample design. However, no proof or further discussion was provided on the 

character of the solution, nor has one appeared in the subsequent literature. Research 

presented here fills in this gap, providing analytic derivations for the necessary 

components of the solution and demonstrating its properties in a range of 

circumstances with simulated data.  As such, we provide additional conceptual 

grounding for practitioners who develop and/or use plausible values. The study design 

of NAEP is discussed as a representative example in this study. 

1.2 Research Purposes and Questions 

Here, we derive formulas for multiple imputations in the case of the classical 

test theory (CTT) measurement model and two-stage sampling, verify their properties 

in reconstructing population properties for the unobservable latent variables, or  s, 

and empirically examine the reconstruction of population attributes and the properties 

of sample estimates with the more practical assumptions of unknown population and 

cluster means.  
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Specifically, the research consists of two parts: 

Under the simplified assumptions of known population parameters, analytic 

demonstration is provided for the construction of multiple imputations of   and 

derivations of desired properties of the imputations for the case of two-stage cluster 

sample design. 

Under the relaxed assumption of unknown population and cluster means, 

simulation-based demonstration is provided for the construction of multiple 

imputations of   and exploration of properties of the imputations for the case of two-

stage cluster sample design. 

1.3 Organization of the Chapters 

This study is presented in six chapters.  

Chapter two gives a review of the relevant literature. The first five sections  

briefly review aspects - test theory, multiple matrix sampling, clustered population 

and random-effect model, complex survey sampling, and randomization-based 

inference in survey sampling - provide the basis of the research framework for this 

study, which is illustrated in section 2.6 - Multiple Imputation for latent variables in 

complex sample surveys.  

Chapter three begins the first part of the research results with an analytic 

discussion of the Multiple Imputation approach for latent variables in two-stage 

samples. It derives the general form of the posterior distribution of MI and the 

specific case of classical test theory. 

Chapter four gives the analytical solution when the population parameters are 

known to show the reproduction of population characteristics within the MI dataset 

structure.  



4 

 

Chapter five presents the second part of the research, the simulation study of 

the situation where the population and cluster means are not known.  It consists of 

five subsections. The first discusses the three major research questions the simulation 

study is designed to explore.  The second section explains the construction of 

imputations for the case of unknown means. Next, the study method and data 

generation process, are described.  The fourth section analyzes the simulation results, 

and the fifth section presents the analysis results in terms of the three research 

questions posed at the outset of the simulation study.  

Chapter six discusses the importance of this study, summarizes the major 

findings, and addresses the limitations of the study, concluding with some suggestions 

for future research. 
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Chapter 2 : Literature Review 

2.1 Test Theory 

Educational test theory provides statistical and methodological tools to make 

inference about examinees' knowledge, skills, and accomplishments. Since the first 

text on test theory published by E. L. Thorndike in 1904, researchers have extended 

test theory from Classical Test Theory (CTT) to generalizability theory, item response 

theory (IRT) and the analysis of relationships among scores from different tests, 

including factor analysis, structural equations modeling, and multitrait-multimethod 

analysis (Mislevy, 1996). This research uses a straightforward measurement model, 

classical test theory (CTT), which yields closed-form solutions that support intuition 

for more complicated measurement models such as IRT. 

2.1.1 Classical Test Theory 

The foundation of CTT was laid by Spearman (1904a, 1904b, 1907, 1913). 

This model was extensively presented by Gulliksen (1950) and developed more 

rigorously by Lord and Novick (1968). As shown in Crocker and Algina (1986), the 

CTT model envisions an observed test score as the composite of two hypothetical 

components – a true score and a random error component – expressed in the form 

iii EX                                                    (2.1) 

where iX  represents the observed test score of the ith examinee; i , the individual’s 

true score; and iE , a random error component. Both iX  and iE  are random variables 

in terms of repeated observations for examinee i, and i  is a constant for examinee i.  

The assumptions of the CTT models are as below: 
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1) The mean of the random error is zero   0iEE . 

2) The correlation between true and error scores of a test for a population of 

examinees is zero  0E  

3) The correlation between error scores from two parallel tests is zero  0
21
EE  

Under assumption 2, the relationship of the variances of the three components 

in the CTT model can be shown to be  

222

EX                                                       (2.2) 

The reliability coefficient defined as the ratio of true score variance to observed score 

variance can be expressed as  

2

2

21

X

XX



                                                      (2.3)  

which shows the proportion of observed score variance explained by the true score 

variance. In CTT, scores are obtained over a large number of items and are treated as 

continuous. The reliability coefficient can be approximated by the estimates of the 

internal reliability across items (e.g., Cronbach’s alpha coefficient). 

CTT is a longstanding, satisfactory method used in the area of standardized testing. 

An advantage with CTT is that the model relies on weak assumptions that are easy to 

meet by standardized testing procedures. In addition, with its linear structure and the 

additional assumption of normally distributed errors, the CTT model is relatively 

simple and easy to interpret. We use this model in this study for simplicity and the 

intuition that the results provide.    

2.1.2 Item Response Theory 

Item Response Theory is essentially a mathematical model for the probability 

of a correct response to an item, given the person’s proficiency parameter and one or 



7 

 

more parameters for each item (Mislevy, 1989). Both the person’s proficiency and 

item difficulties are positioned on the same latent scales. A major advantage of IRT 

over CTT is the proficiency invariance interpretation with respect to selection of 

items. That is, the expected student proficiency score is independent of the set of 

items administered to him or her. This feature of the model allows IRT to handle the 

Multiple Matrix Sample described in the next section. Although this study focuses on 

a simpler test theory, IRT is the model that has actually been implemented in large-

scale assessments including NAEP and hence motivated the choice of exercising the 

Multiple Imputation discussed in section 2.6. 

2.2 Multiple Matrix Sampling 

Along with survey sampling of students, Multiple Matrix Sampling of test 

items is widely employed in educational assessment (Educational Testing Service & 

National Center for Education Statistics, 1999). In Multiple Matrix Sampling, random 

subsamples of students are administered subsets of the entire pool of assessment 

items. This design permits a satisfactory precision level in estimating population 

characteristics and a complete coverage of the assessment framework while 

minimizing the time burden for each student. Researchers have shown that population 

characteristics can be estimated accurately without precise measurement of individual 

students (Lord, 1962; Lord et al., 1968; Sirotnik & Wellington, 1977). In fact, the 

population item-score mean is estimated most efficiently when each student in the 

group is assigned one distinct item from each objective reporting area. Therefore, a 

highly detailed curricular evaluation with 30-50 objectives can be implemented by 

administering a test form of even fewer than 30 items for each student, as long as the 

students who receive items from a given objective are a representative sample. The 
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length of the test is still within a reasonable limit. These findings in the 1970s led to 

the use of multiple matrix sampling designs in educational assessment for efficiently 

estimating distributions of performance in the population (or subpopulations) in large-

scale assessments such as NAEP. 

The type of matrix sampling used by NAEP is called focused, balanced 

incomplete block (BIB) spiraling. The “focused” part of NAEP’s matrix sampling 

method requires each student to answer questions from only one subject area. The 

“BIB” part of the method ensures that students receive different interlocking sections 

of the assessment forms, enabling NAEP to check for any unusual interactions that 

may occur between different samples of students and different sets of assessment 

questions. “Spiraling” refers to the method by which test booklets are assigned to 

pupils, which ensures that any group of students will be assessed using approximately 

equal numbers of the different versions of the booklet (Educational Testing Service & 

National Center for Education Statistics, 1999). Because of BIB spiraling, NAEP can 

sample enough students to obtain precise results for each question while consuming 

an average of about an hour and a half of each student’s time. 

The original NAEP surveys in the 1970s focused on item-level results.  

Beginning in the assessment of 1984, however, it was desired to produce distributions 

of proficiency in populations and subpopulations of students.  An IRT model is 

desirable in estimating student proficiency based on data from multiple matrix item 

sampling. The number of items arranged for each student is too small to make an 

accurate estimate of the proficiency, which typically ranges between 5 and 15 items in 

a given reporting area. However population characteristics are estimated on IRT 

scales directly from survey responses through marginal estimation procedures, as 

discussed in section 2.6.1. The plausible values provided on public use data sets allow 
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secondary analysts to reproduce the official estimates and to carry out analyses of 

their choice on the NAEP IRT scales. 

2.3 Clustered Population and Random-Effect Model 

The population of students in educational assessments is clustered within 

naturally occurring organizational units, such as classes, schools, and districts. This 

study is concerned with the population parameters in a two-level clustered population.  

The traditional population in statistical studies assumes independence of observations. 

However, when students are clustered within natural units, the responses from the 

same cluster are correlated with each other in some degree. For example, students in 

one school may tend to achieve higher assessment scores than students in another 

school in general. Therefore, the scores of students are not independent to each other. 

Multilevel modeling allows researchers to model this nonindependence and views the 

population structure as of potential interest (Goldstein, 2010). While this study only 

deals with a simple case of multilevel modeling, the so-called random-effects model 

and mixed-effects model (Elston & Grizzle, 1962) or the random-intercept model 

(Raudenbush & Bryk, 2002), interest in applying more complex multilevel modeling 

in large-scale assessments has been increasing, e.g. Braun, Jenkins, & Grigg (2006). 

In the simple two-level model in this study, independence will be assumed at the 

cluster level and within each cluster. The assumptions made about the variances and 

covariances are stronger than a traditional analysis. 

This study considers a random-effects model with equal cluster size in the 

clustered population. The population variance structure is assumed to consist of 

between-cluster variance and within-cluster variance.  Measurement error will add a 

third level of variance within students. 
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If clusters are indexed by k and subjects within a cluster are indexed by i, the 

observed score ikX  in a CTT can be rewritten as: 

                  
ikikk

ikikik

E

EX








                                               (2.4) 

where ik  is the true score of the ith examinee within the kth cluster, ikE  is the 

measurement error of an individual person within cluster k, and ik  is the deviation of 

the individual’s true score from the cluster mean k . The variance of true score ik  in 

the population can be expressed in two components: between-cluster variance 2

b  and 

within-cluster variance 2

w , that is 222

wb   . Thus, variance of observed score 

ikX  in the population can be expressed in three components:  

2222

ewbX                                                 (2.5)  

The random-effects model that Mislevy (1991) proposed shows the distribution of the 

latent variable as follows: 

                 ),(~ 2

bk N                                                  (2.6) 

                                            and ),(~)(| 2

wkik Nkz                                          (2.7) 

where   is the overall population mean of the latent variable ik , 
k

  is the cluster 

mean when the cluster index z equals k, and 2

b  and 2

w  represent between-cluster 

variance and within-cluster variance for the population. Hence, the distribution of 

ik  is as follows: 

                 ),0(~)(| 2

wik Nkz                                           (2.8) 

These models show the mechanism for how student scores are modeled. As stated in 

the research purposes, this study explores the properties of multiple imputations (aka 

plausible values) in terms of reproducing the population statistics of the true score 
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shown above, which include population mean, cluster means and the variance 

components.  

2.4 Complex Survey Sampling  

As Bock (1982) indicated, survey sampling designs gained popularity in 

efficiently collecting social information during the 1960s. They had already been 

employed to collect information about educational aspirations and attitudes.  

When properly undertaken, a sample survey provides an objective, efficient, and valid 

method of obtaining the characteristics of an entire population from only a small part 

of that population (Frankel & Frankel, 1987). Complex sample designs feature at least 

one of three components: unequal probability of selection, stratification, and 

clustering e.g. Cochran (1977).  These designs are usually motivated by cost 

constraints and administrative reasons, as well as estimation accuracy for the 

population or sub-population.  

In the naturally clustered population in educational assessments, such as 

students in schools, treating schools as the first-level sampling unit in a (multi-stage) 

cluster sample of students saves administrative costs and traveling expenses by not 

going to a large number of schools which may only have a few sampled students each. 

Although a larger number of students will be needed to gain the same accuracy level 

as from a Simple Random Sample, a cluster design will reduce the number of schools 

one has to visit and therefore probably reduces the cost of data collection. As an 

example of multi-stage probability sampling design, the sample for the NAEP 1998 

national assessment was drawn via four stages of selection (Rust et al., 2001), treating 

geographic areas and schools, etc. as clusters:  1) the selection of Counties or groups 

of counties, Primary Sampling Units (PSUs); 2) the selection of elementary and 

http://www.metagora.org/training/encyclopedia/data.html
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secondary schools within PSUs; 3) the assignment of sessions by type and of sample 

types to sampled schools; and 4) selection of students within schools and their 

assignment to session types.  

2.5 Randomization-based Inference in Survey Sampling 

As pointed out by Cassel, Sarndal and Wretman (1977), two competing basic 

philosophies in the theory of inference for finite populations are design-based 

inference and model-based inference. The design-based inference sees the primary 

source of randomness is the probability ascribed by the sampling design to the various 

subsets of the finite population {1, ..., N}. On the contrary, in model-based theory of 

inference in survey sampling, the values           associated with the N units of the 

population units are viewed as the realized outcome of random variables           

having an N-dimensional joint distribution. 

Randomization-based inference is used for most of the work in this study.  It is 

the traditional and dominating mode of inference in survey sampling, following the 

milestones of literature starting with Neyman (1934) and subsequent work including 

Hansen, Hurwitz and Madow (1993), Mahalanobis (1946), Kish (1965) and Cochran 

(1977), etc. As discussed in Kalton (1983), with the large samples typical of most 

surveys, survey practitioners are reluctant to use model-based estimators of 

descriptive parameters because of the potential estimation bias resulting from any 

misspecifications of the model.  However, elements of the model-based approach are 

required to implement Rubin’s multiple imputation scheme for latent variables. 

For a finite population with N units, indexed by i, the values of a survey item 

can be denoted as ),,,( 11 Nyyy Y . To conduct randomization-based inference, iy ’s 

are treated as fixed but unknown values. The statistics of interest can be represented 
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as S ≡ S(Y, Z), where Z is the vector of design variables, which are known for all units 

before observation. Let IND = ( 1I , 2I ,…, NI ) represent the sample indicator, a vector 

of random variables, where iI
 
= 1 if unit i in the population is in the sample and iI  = 0 

if unit i is not in the sample. According to a sample design-based on the probability of 

IND, an unbiased sample statistics ),,( INDZYss sample  and an estimator of sampling 

variance U ≡ U( INDZYsample ,, ) can usually be constructed. Clustering in the sample 

design can be reflected by the linked probability of iI  for units in the sample cluster. 

Inferences from sample statistics s to the population statistics S are based on the 

distribution of s in repeated samples of sampleY  under an identical sample design. 

Randomization-based inferences are then based on the normal distribution from large-

sample approximations: )1,0(~ N
U

Ss 
. 

The pieces of the theories reviewed in sections 2.1-2.5 provide the basis of the 

research framework for this study to be illustrated in section 2.6. 

2.6 Multiple Imputation for Latent Variables in Complex Sample 

Surveys 

Mislevy (1991) illustrated the theoretical framework for the estimation of 

distributions of latent variables in finite populations, when the sample is drawn under 

a complex sampling design. Latent variables in a sample survey will be treated as 

survey variables with missing values for all respondents. By the nature of the latent 

variable model, the assumption of missing at random (MAR) is satisfied. Knowledge 

about the latent variable  can be fully reflected by a posterior distribution given the 

observed data, namely the design (sampling frame) variable Z, background survey 
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variables Y, and item responses X. To estimate a scalar              , a certain 

function of these four types of variables, three building blocks are needed.  

 2.6.1 The Sampling Model 

The first building block is called the sampling model, which makes a 

randomization based inference about the population characteristics S from the sample 

statistics                 . When   is known, the traditional randomization 

based inference in sampling statistics relies on the central limit theorem. When the 

sample size is large, the sample statistics, such as the sample mean, have the 

following distribution: 

)1,0(~
)(

N
sVar

Ss 
                                              (2.9) 

As s cannot be calculated when we don’t know  , the conditional expectation may 

possibly be calculated instead, based on the predictive (or posterior) distribution of 

the latent variable   (Rubin, 1977): 

 

                                                        (2.10) 

 

where all variables are fixed while Z is known and the value of X and Y will become 

known for sampled units based on a sample design. This approach makes it possible 

to estimate population characteristics of the latent variables, such as means and 

proportions of students above specified proficiency levels, directly from the observed 

responses, avoiding the steps of calculating scores for individual students.  

To obtain the predictive distribution            using Bayes Theorem, the other two 

building blocks are needed, the population model and the latent variable model.  
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2.6.2 The Population Model 

The population model assumes that the distribution of  , given the survey 

collateral variable Y and the design variable Z, is of the form           , where the 

unknown parameter of the distribution is represented by  .  

For example, Mislevy (1991) thoroughly discussed the fixed effect model in 

the presence of collateral survey variables. (In modeling practice the stratification 

design variables can be treated as collateral survey variables.) The conditional 

distribution for the fixed effect population model is defined as 

              
                                              (2.11) 

where   represents the regression parameters of Y on   and 

     
                                                     (2.12)  

with    showing the proportion of variance of   explained by Y. 

In this study, the population model follows the distribution of the two-level clustered 

population discussed in section 2.3. Its parameters ( ) are the population mean, the 

cluster means, and variance at each level.  

2.6.3 The Latent Variable Model 

The latent variable model assumes that the distribution of the item response X, 

given the latent variable , is of the form         , where the unknown parameter of 

the distribution is represented by  .  

As discussed in section 2.1.1, this study uses a CTT model as the latent 

variable model. The unknown parameter is the variance of the error term.  

Using Bayes theorem, the posterior distribution of ,           , can be expressed 

as a function of the population model and the latent variable model, following 

Mislevy (1991): 
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                                                        (2.13) 

where the constant                    depends on   and  , but not  . That is, 

the posterior distribution can be derived from the normalized product of 1) the 

likelihood function of  , which is the conditional probability of X given  , from the 

latent variable model and 2) the conditional distribution for   given the background 

and design variables, from the population model. That is,  

                                             

                                                   (2.14) 

Under the fixed effect model, given the same CTT latent variable model and the fixed 

effect population model, the posterior distribution is 

                
                                          (2.15) 

where, as in Kelley (1923),                          
   and  

     
                       

              , with   , the “conditional 

reliability” of X given Y, as    
    

 

    
    

 . 

2.6.4 Assumption for Imputation - Missing at Random 

Under the framework of MI, to estimate characteristics of latent variables in a 

sample survey, the latent variables are treated as survey variables with missing values 

for all respondents.  

Most MI methods require the assumption of missing at random (MAR) 

(Rubin, 1977). That is, the probability that the observation is missing does not depend 

on the value of the missing observation, given the values of the observed values and 

the value of any background variables. When treating latent variables as missing, this 

assumption holds by nature, as the latent variables are missing no matter what their 
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values are. Thus, all knowledge about subjects’ latent variables are conveyed by the 

predictive distribution               , upon which the imputation will be based. 

2.6.5 The construction of Multiple Imputations for Latent Variables  

Based on the framework described in the previous section, the population 

characteristics are estimated using the conditional expectation in the sampling model. 

However, closed-form solutions for the integral equations can only be calculated for 

special cases (Mislevy, Johnson, & Muraki, 1992). For example, the closed form of 

the posterior distribution is not available for data analysis when the latent variable 

model is an IRT measurement model, which is used in NAEP and other educational 

assessments. As an alternative method, stochastic, or Monte Carlo, integration based 

on random draws from posterior distributions of each sampled student is employed in 

estimating the conditional expectation in educational assessments.   

Although the development of Markov chain Monte Carlo (MCMC) methods 

seem to overcome the computational difficulties described above to a large extent 

(Rao, 2003), we choose to develop the posterior distribution in a closed form in a case 

in which this is possible, to add insight to the MI process. 

Also known as Multiple Imputations, random draws from posterior 

distributions are carried out several times to form sets of “plausible values.” 

Additionally, MI or the plausible values provides “complete” data sets that the 

standard statistical methods can be applied to by secondary researchers. With the 

multiply-imputed data sets, each of the imputed complete data sets is analyzed by 

standard methods—including randomization-based estimates of population statistics 

and accompanying sampling variances. Inferences about statistics of interest will be 

made based on the combination of estimates of within-imputation and between-

imputation variances.  
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Specifically, Rubin’s estimates for a statistic and its sampling variance calculated 

using MI is carried out as follows, for the latent variable situation modeled 

as                     . 

1. Estimate the posterior distribution of the parameters   of the latent variable 

model and   of the population model, or             .  

2. Create M imputed datasets           .  

a. Randomly draw a value          for the m-th data set from 

            . 

b. For each respondent i in the m-th data set, draw a value from the 

predictive distribution                             . The resulting 

      values are the imputed values. 

3. Using the multiple imputed data, calculate the point estimate and variance of 

the statistics S. 

 

Rubin’s formulation of the variance of a statistic based on m pseudo datasets 

starts with the within-imputation sampling distribution of the statistic, 
),( )()( mm UsN

, 

where )(ms
 is the point estimate of some statistic of interest calculated on imputation 

set m and )(mU
 is the estimate of sampling variance, treating the imputations as if 

there were known true values. The following statistics can be calculated: mean of the 

estimates )(ms
 and within imputation estimate of sampling variance )(mU

, as averages 

over pseudo data sets, between imputation variance MB  , and total variance MV , 

where 
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The development of the form of the imputation for this study is provided in 

chapter 3. 
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Chapter 3 : Multiple Imputation Approach for Latent Variables 

in Two-Stage Samples 

Mislevy (1991) proposed the multiple imputation method along with the two-stage 

random-effect model, which was suggested to reproduce population variance 

components of the true score. As no detailed discussion was provided about how this 

imputation was formed, this chapter discusses this issue explicitly. 

3.1 General Form 

For the two-stage sample, the population model can be written as two levels: 

1) The cluster level model: 

         
         

                                            (3.1) 

2) The examinee level model:  

          
          

                                          (3.2) 

 

For a given form of the latent variable model               , we can construct 

the posterior distribution               , from which the multiple imputations will 

be drawn. 

3.2 The Case of Classical Test Theory 

As this study employs the CTT model and the clustered population, the 

posterior distribution of ik  can be built in two stages: 1) the posterior distribution of 

the cluster mean of the true score conditioning on the individual observed scores in 

cluster k and higher level parameters, including  , 2

b , 2

w  and 2

e ; and 2) the 

posterior distribution of the true score of individual person conditioning on the cluster 
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mean, all individual observed data and higher level parameters including   , 2

w
  and 

2

e
 .  

Given the latent variable model expressed as below 

           
           

                                          (3.3) 

and           
    

        
  

    
 

 
                                    (3.4) 

where I is the sample size of the cluster, and the population model shown in section 

3.1, normal posterior distributions can be derived. Within clusters, the posterior 

distribution is  

               
                

             
                        (3.5) 

and between clusters  

             
    

    
              

    
           

                   (3.6) 

Given the normal assumption of the population model and the latent variable 

model at both stages, the posterior distributions are resolved to be, for the true score 

of individual person within clusters, 

              
                         

                      (3.7) 

where   
  

 

  
    

  is the within-cluster, examinee-level reliability coefficient; and for 

the cluster mean of the true score, 

                
    

    
                        

            (3.8) 

where   
  

 

  
     

    
    

 is the cluster-level reliability coefficient and I  is the number 

of subjects in a cluster.  

Basically, the posterior mean at both the individual level and the cluster level 

is a weighted average of the population mean and the mean of the appropriate 

observed data.  
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An imputation for the cluster mean k  is kk gx   )1(
, where kg

 is a 

random draw from
))1(,0( 2

bN 
 and an imputation for the latent variable ik

 is  

ikkkik fgxx  ])1()[1( 
                             (3.9)  

where ikf
 is drawn from 

))1(,0( 2

wN 
. Random terms kg

 and ikf
 are 

drawn from normal distributions with variances equal to the posterior variances of k  

and ik
, respectively. By adding these two terms, the variances of the imputations for 

cluster means and for individual scores are unbiased. These two terms are referred to 

as variance reconstruction terms in the rest of the thesis. The next chapter derives 

formulas to show the unbiasedness of estimates based on the imputation. That is, the 

expected values of imputations so constructed, when population parameters are 

known, correctly reproduce the population latent-variable characteristics. 
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Chapter 4 : Analytical Solution with Known Population 

Parameters 

At the first stage of work, we construct imputations with the higher level 

parameters   and 2 ’s treated as known, in order to demonstrate the reproduction of 

population characteristics within the MI dataset structure.  

Mislevy (1991) demonstrated that the use of either maximum likelihood or 

Bayesian estimates for individuals’ θs produced biased results for population variance 

components.  The same paper proposed an approach to generating multiple 

imputations in the two-stage random-effects model, which were suggested to 

reproduce variance components, but no proof has ever been shown in the literature. 

The research in this dissertation provides results for the random-effects model that are 

analogous to Mislevy’s analysis results for the fixed effects model.  

This chapter shows that the within cluster estimator k
~  and population 

estimator ik
~

 used in the imputation are unbiased when the population parameters  , 

2

b , 2

w  and 2

e  are known. 

The posterior distribution of  given the observed scores and known 

parameters is derived analytically.  The resulting equations illustrate the desirable 

properties of the imputations for the case of a two-stage cluster sample design. The 

result can provide intuitive understandings for more complex cases. 
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4.1 Derivation of Expectation and Variance of Imputed Cluster 

Means 

The proof in this section shows that the expected value and variance of the 

imputed cluster mean (
k

~ ) are unbiased estimates of population mean and between-

cluster variance.    


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(4.2) 

 

The derivation of the variance of the imputed cluster mean ( k
~ ) also shows how 

the variance components are reflected in this statistic. The cluster level reliability 

coefficient ( ) represents the shrinkage of the cluster mean estimates based on the 

posterior estimates,  )1( kx , toward the population mean and the level of 



25 

 

shrinkage of the variance. By construction, the variance of the random component kg

is the posterior variance, which is equal to the portion of the variance shrunk. More 

shrinkage toward the population mean corresponds to a relatively larger proportion of 

between-cluster variance from the random added term. According to the definition 

of   (  
  

 

  
     

    
    

), relatively larger variance within clusters and measurement 

error variance correspond to a larger proportion of between-cluster variance from the 

random component kg , hence a larger sampling variance of the cluster mean based on 

Rubin’s MI estimates.   

The within-cluster sample size I is another factor in this formula – a larger 

cluster size makes   larger, hence the proportion of variance from the random 

component kg smaller. 

4.2 Derivation of Variance of Within-Cluster Imputations  

Within cluster population can be treated as a population without clustering. 

The within-cluster variance calculated as follows proves that the within-cluster 

variance of imputations is an unbiased estimate of the population within-cluster 

variance 2
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(4.3) 

The derivation of the variance of the imputed individual scores within a cluster 

 '|
~

kkik   also shows how the variance components are reflected in this statistics. 
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The within-cluster reliability coefficient (  ) represents the shrinkage of the estimate 

of individual scores based on the posterior estimates, kikx  )1(  , toward the 

population cluster mean and the level of shrinkage of the variance. By construction, 

the variance of the random component ikf  is the posterior variance, which is equal to 

the portion of the variance shrunk. More shrinkage toward the population cluster 

mean corresponds to greater proportion of within-cluster variance from the random 

added term. According to the definition of   (  
  

 

  
    

 ), relatively larger 

measurement error variance correspond to larger proportion of within-cluster variance 

from the random component ikf , hence a larger sampling variance for the individual 

scores within clusters based on Rubin’s MI estimates.   

4.3 Derivation of Mean and Variance of the Imputations for the 

Clustered Population 

This proof shows that the expected value and variance of the imputations are 

unbiased estimates of the mean and variance of the population with a clustered 

structure.  
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and 
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(4.5) 

 

As shown above, the derivation of the variance of the imputed individual 

scores in a clustered population combines the results from sections 4.1 and 4.2.  The 

reliability coefficients from each stage (  and  ) represent the shrinkage at the stage. 

More shrinkage corresponds to a higher proportion of variance from the random 

added term at the corresponding stage. In the next chapters, we will further study the 

impact of the variance components to the sampling variance of the mean of the 

imputation in a more complex case, imputation with unknown population mean and 

cluster means. In this more complex case the analytic results were too unwieldy to 

derive directly, so a simulation study was conducted.  
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Chapter 5 : Imputation with Unknown Population Mean and 

Cluster Means 

To achieve the goal of this study, a simulation study was designed and carried out, 

which not only allowed perfect control of factors under consideration in the 

estimation procedure, but also made it possible to compare the estimates to the true 

population values.  This chapter describes the methodological framework and the 

application process of the simulation study in five sections.  The first section states 

the three research questions explicitly.  The second section extends the construction of 

multiple imputations to the case in which neither   nor k s are known.  This 

amounts to adding stages of Bayesian estimation for these higher-level parameters, 

and drawing random values from the posterior distribution, in the construction of each 

MI data set.  In section 5.3 the generation of multiple data sets of imputed θs under a 

cluster sample design with equal cluster size using MI is described in detail, including 

discussions of the manipulated factors, the fixed population and the actual generation 

of simulated data.  Section 5.4 specifies an analysis method based on the simulated 

data. Finally, Section 5 presents analysis results to address the three research 

questions.  The data generation and analyses were carried out using the R language 

and Microsoft Excel. 

5.1 Research Questions of the Simulation Study 

The purpose of the simulation study is to examine the properties of estimates of 

population characteristics obtained from MI in the case of unknown population mean 

and cluster means. The statistics of interest include the point estimates of the 

population mean, cluster means, overall population variance, and between-cluster and 
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pooled-within-cluster variances based on the plausible values for true scores. The 

study addresses the following research questions: 

1. How are different amounts of variance reconstruction terms incorporated to 

construct each set of plausible values to recreate the population properties of 

the true score? 

2. How do the variance components and sample sizes impact the sampling 

variance of the MI-based estimate for the population mean? 

3. What are the relationships between the sampling variance of the estimate of 

the population mean based on the imputations and those based on observations 

of the true score and the observed score? 

 

5.2 Construction of Imputations for the Case of Unknown Means 

In chapter 4, the population parameters  , 
2

b , 
2

w  and 
2

e  were assumed to 

be known for the imputation generated in the random-effects model with 

measurement errors. These simplifying assumptions allowed us to derive closed forms 

of the estimates that illustrated the properties of the imputations.  The relationships 

illustrated in these calculations add insight to the structure and meaning of the 

elements used in the construction of imputations. However, these population-level 

parameters are always unknown in practice, although they may be estimated from the 

information in previous research and current data. To investigate the model with 

unknown population parameters, a Bayesian method was applied in a simulation 

study. In this part of the research, we took into account that the location parameters, 

namely the population mean   and the cluster means k , are not known, while still 
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keeping 
2

b , 
2

w  and 
2

e  known. (In practical applications, these variance 

components will need to be estimated concurrently or from previous research. 

Analyses with unknown variance components remain a topic for future study.)  

Simple closed-form derivations are no longer available, but by using well-chosen 

simulations we can further demonstrate additional properties of the imputations, and 

add additional insight for potential users for the CTT case as well as for cases that are 

more complex and less transparent, such as item response theory models. 

In investigating the model with unknown population location parameters, a 

Bayesian procedure with non-informative prior distribution on these parameters was 

considered. As Gelman et al. (2004) indicated, by using noninformative prior 

distributions, inferences are not affected by information external to the current data. 

This method can be approximated by estimating population parameters based on the 

observed data.  

Specifically, the population mean   was estimated with a sample mean from 

the simulated data and the variance of the sample mean was calculated, where the 

estimate of   is denoted by ̂  and the variance of the estimate by  xV̂
ˆ .  Then, 

plausible values for   were constructed by drawing a value from this posterior 

distribution for the sample mean in a normal approximation for each pseudo dataset of 

plausible values. That is, for each pseudo dataset m, a random number  m~  from 

  xVN  ˆ
ˆ,ˆ  was drawn.  By doing this, the MI procedure built the appropriate amount 

of uncertainty in estimating the unknown   into the construction of the plausible 

values.   
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5.3 Data Generation 

The simulation study created imputed data sets for a variety of contrasting 

conditions, with notably different sizes of variance components and sample sizes at 

different levels of the design. In particular, the following variables were created 

sequentially by randomly drawing from corresponding distributions: to generate a 

data set of sampled X, we created cluster means of true scores k
 , individual true 

scores ik , and individual observed scores ikX ;  to produce sets of imputations based 

on each data set of X, for each of m pseudo data sets of plausible values, we created 

imputed cluster means of individual scores )(
~

mk , and imputed individual scores )(

~
mik

, where the subscripts  indicate the m
th

 imputed score for the i
th

 simulee in cluster k.  

The entire process described above was repeated a large number of times to create 

repeated samples by using different random seeds in the random draw at each step of 

selection. As a result, for each repeated sample, a set of k
 , ik , ikX , )(

~
mk  and )(

~
mik  

were created and m data sets of plausible values were saved in m data sets. 

5.3.1 Manipulated Factors 

When generating simulation data to reflect contrasting conditions in the study, 

the manipulated factors include four groups: variance components, sample sizes, the 

number of imputations, and the number of repeated samples. The values of these 

factors are summarized in the table below. Combinations of variance components and 

sample sizes are used for each of the three research questions. The number of 

imputations and number of repeated samples are selected among the conditions to 

effectively address each research question. Note that the full cross-classification of the 
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factors mentioned above is not used for each research question. The chosen conditions 

are discussed in more detail in the corresponding sections. 

Table 5.1 Manipulated Factors 

Factors 
# of 

Conditions 
Description 

Variance components 15 ),,( 222

ewb  =  

(1, 1, 1),(100, 1, 1), (1, 100, 1),  

(1, 1, 100), (100, 100, 1), (100, 1, 100), 

 (1, 100, 100), (100, 100, 100), 

(4, 1, 1), (1, 4, 1), (1, 1, 4),  

(4, 4, 1), (4, 1, 4), (1, 4, 4), (4, 4, 4) 

Sample sizes   

    Number of clusters (K) 4 5, 30, 100, 300 

    Cluster size (I) 4 5, 30, 100, 300 

# of imputations 2 10, 100 

# of repeated samples 3 1000, 5000, 25000 

 

5.3.1.1 Population Variance Components 

A wide range of ratios between variance components was selected for the 

simulation study. This range more than covers commonly observed ratios in social 

research, by addressing a wide numeric range of the ratio. The ratios are reflected by 

the values of the components, as the baseline condition sets all three variance 

components to be equal to one, which is represented by ),,( 222

ewb  = (1, 1, 1).  

Other conditions show inflation of certain component(s), which are represented by 

),,( 222

ewb  = (100, 1, 1), (1, 100, 1), (1, 1, 100), (100, 100, 1), (100, 1, 100) and (1, 

100, 100). The implications of these very different structures for the elements of 

imputation will be pointed out.   

In addition to the extreme values of the ratios shown above, to represent 

situations commonly seen in practice, the simulation also used a set of moderate 

values, where the ratio of the variance components is 4. Specifically, the three 
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variance components are set to ),,( 222

ewb  = (4, 1, 1), (1, 4, 1), (1, 1, 4), (4, 4, 1), (4, 

1, 4) and (1, 4, 4). 

All the combinations of variance components were used in the investigation of 

all three research questions. In examining research question two, this wide range of 

variance ratios was used to fully evaluate the effect of the relative size of the variance 

components in the population on Rubin’s MI-based estimate of the variance of the 

population mean estimates. For other research questions, these ratios represent a 

sufficient coverage of possible situations. 

5.3.1.2 Sample Sizes 

Following the same scheme as for the variance components, sample sizes in 

the simulation study were selected to represent a large range of values covering more 

than normally observed in social research. For example, smaller sample sizes could 

appear in practice, especially when analyzing sub-domains of the population.  To 

reflect such cases, the minimum sample size is set to 5 at both sampling stages.  As 

this study assumes normal distribution at both levels of the clustered population, 

sampling distribution with small sample sizes is also normal. 

This study used the combinations of sample sizes with 5, 30, 100 and 300 at 

each sampling stage; that is, K = 5 and I = 5; K = 5 and I = 30; …; K = 30 and I = 

5;…; K = 300 and I = 300, where K is the number of clusters and I is the number of 

observations within each cluster.  

These combinations of sample sizes were used for all three research questions. 

These settings impact the reliability of cluster means and the precision of sample 

estimates. 
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5.3.1.3 Number of Imputations 

To determine the number of imputations needed for applications, Rubin (1987, 

p.114) illustrated the relationship between the number of imputations and relative 

efficiency (RE) of the estimator from MI as follows:  

   

 
  
  
  
  
 

  
)(s  )(

~
ik       

  
)(ms  )(

~
mik       

    
  

 
 

 
 

 
                                   (5.1) 

Defined as the efficiency when using a finite number of proper imputations, m, 

rather than an infinite number, RE can be expressed as a function of the expected 

fraction of missing information     , and the number of imputations (m). 

  
)(s  )(

~
ik        represents the conditional variance of point estimates based on 

an infinite number of imputations of ik
 given the observed ikx  and 

   
)(ms  )(

~
mik          represents the conditional variance based on m imputations.  

For point estimates in a large sample, the REs achieved for various values of m 

and rates of missing information are shown in Table 5.2 (Rubin, 1987, p.114).  

 

Table 5.2 Large-sample relative efficiency (in %) in units of standard deviations when 

using a finite number of proper imputations, m, rather than an infinite number, as a 

function of the fraction of missing information, 0 .  

      0        

m 0.1 0.3 0.5 0.7 0.9 1.0 

3 0.98 0.95 0.93 0.90 0.88 0.87 

5 0.99 0.97 0.95 0.94 0.92 0.91 

10 1.00 0.99 0.98 0.97 0.96 0.95 
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In the CTT case, where measurement error is the issue, the concept of the 

fraction of missing information ( 0 ) could be generalized and calculated as the 

complement of the reliability of the true score versus observed score. The proof is 

provided in the ETS research memorandum by Robert Mislevy (in press) . In the case 

of a clustered population,   
  

    
 

  
    

    
 . In the most extreme case in this study, where 

),,( 222

ewb  = (1, 1, 100), the proportion of missing information is close to 1. To gain 

a RE value over 0.95 for all conditions in the imputation, 10 imputations are needed. 

This study used 10 imputations for all the research questions, except the case in the 

next paragraph. 

Although Table 5.2 shows that 10 imputations are sufficient for point 

estimates, more imputations may be needed to estimate the sampling variance of these 

point estimates for the imputations. To examine the impact of the number of 

imputations to the estimation of sampling variance of means, for research question 

three, 100 imputation data sets were created for a selective set of simulations when 

ratios of variance components were 100 and the number of repeated samples was 5K. 

The variation of the sampling variance was compared to simulations with 10 

imputation data sets. 

5.3.1.4 Number of Repeated Samples 

To gain an appropriate precision level in the study or compute empirical 

variance estimates of sample statistics, statistics were computed from samples 

repeatedly selected from the populations of  , X and the imputed scores. In the 

interest of limiting the program running time, the number of repetitions went beyond 

1000 only when necessary. For research question one, 1000 repetitions were run, 

while 5000 were run for research question two. For research question three, different 
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numbers of repeated samples including 1000, 5000, to 25000 were created to examine 

the convergence of the statistics of interest to the expected patterns in terms of 

number of repetitions. 

5.3.2 Fixed Factor - Population  

This simulation study generated the sample data from an infinite population, 

which approximated the population of interest in this study - a finite population with 

large population size. The concept of "Superpopulation" can be used to represent this 

hypothetical infinite population from which the finite population is a sample (Deming 

& Stephan, 1941). The validation of this approximation to the finite population is 

discussed by Skinner, Holt, and Smith (1989), who wrote “super-population 

parameters may often be preferred to finite population parameters as targets of 

inference in analytic surveys. However, if n is large, there will often be little 

numerical difference between the two.”  As the sample was selected in two stages, the 

large population size is assumed for both the number of clusters and the number of 

observations within each cluster.  

5.3.3 Data Generation 

For each combination of all the factors discussed above, the simulation study 

took two steps in creating the imputation data sets to be used for analysis. First, the 

observed test score data, Xs, were created according to the measurement model and 

the population model as discussed in sections 2.1.1 and 2.3. Then multiple data sets of 

imputed true score θs were constructed based on the simulated observed data using 

MI as discussed in section 2.6.4. Step one was carried out with a targeted number of 

repeated samples.  For each such repetition, step two was repeated multiple times to 
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create multiple sets of imputed data sets for a given sample of Xs, using different 

random seeds in creating random components.  

5.3.3.1 Create Simulated Data on Observed Test Score X 

To reflect the clustering feature of the sample and the measurement error of 

the observed score in the classical test theory, the simulated test score X was 

generated in three steps. In the first step, cluster means of the k
th 

cluster, k , where k 

= 1 to K,  were randomly drawn from the normal distribution  2,0 bN  .  Then, the true 

score ik  of ith student in cluster k, where i = 1 to I, was constructed by adding a 

randomly selected value from the normal distribution  2,0 wN   to k . Finally, the 

observed score ikX  was formed by adding a random number drawn from the normal 

distribution  2,0 eN   to ik .  As shown in Table 5.1, the sample sizes at the two 

sampling stages, K and I, both took the same set of values 5, 30, 100 and 300. 

The variance components of the population, 2

b , 2

w  and 2

e , represent 

between-cluster variance, within-cluster variance, and error variance, respectively. To 

examine a variety of relative size of variance components in the analysis, a baseline 

simulation data set was created by setting the combination of 2

b , 2

w  and 2

e  to (1, 1, 

1).  Then, data sets were generated based on the other combinations under 

consideration: ),,( 222

ewb  = (100, 1, 1), (1, 100, 1), (1, 1, 100), (100, 100, 1) , (100, 

1, 100), (1, 100, 100), (4, 1, 1), (1, 4, 1), (1, 1, 4), (4, 4, 1) , (4, 1, 4), and (1, 4, 4), 

where 100 and 4 represent ratios of certain variance components. 

5.3.3.2 Generate Imputations Based on Observed Values  

We then generated m sets of imputations of true scores, )(

~
mik , also known as 

plausible values, for each simulated data set of observed test score ikX  corresponding 
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to the combinations of variance components, where m was set to 10 for most parts of 

the study. This imputation was constructed using a two-level extension of Kelly’s 

formula, as shown in Chapter 3, 
)()()( ]~)1()[1( mikmkmkik fgxx   , where 

)(

~
m

 , )(mk
g  and )(mki

f  are random variables across the m data sets. Specifically, )(

~
m

  

was randomly drawn from the distribution of the sample mean of the observed x’s 

  xVN  ˆ
ˆ,ˆ , )(mk

g  was drawn from ))1(,0( 2

bN  , and )(mki
f  was drawn from 

))1(,0( 2

w
N  . The sample cluster mean of cluster k is denoted as kx . As described in 

Chapter 3, )/( 222

eww    and ]/)(/[ 2222 Iewbb   .  

The value of m was extended to 100 when the ratio of variance components 

was 100 and the number of repeated samples was 5,000, to examine the impact of a 

larger number of imputations on the estimation of sampling variance. 

5.3.3.3 Repeated Samples 

By repeating the steps in sections 5.4.3.1 and 5.4.3.2, samples were repeatedly 

drawn from the same population distribution in creating repeated samples of the true 

score ik  , the observed score ikX  and the multiple imputed score )(

~
mik . Different 

seeds were used in the creation of the random components of each repeated sample. 

5.3.3.4 Random Seeds 

To generate independent random variables in the simulation study, a different 

seed value was used for each random component in each repeated sample in the R 

code. All random variables were selected from normal distributions with the means 

and variances specified above. 
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5.4 Analysis 

5.4.1 Study Method 

The simulation study intends to investigate the three research questions in the 

following manner. 

First, the study demonstrated and discussed how the variance reconstruction 

terms were reflected in the construction of imputations to recreate the population 

properties of the true score. Based on the simulation factors in each condition, as 

described in section 5.3, reliability coefficients,   and  , were computed to show the 

contribution of the observed score to the imputed score.   Then variances of random 

terms kg  and ikf , also called variance reconstruction terms, were presented to show 

the contribution to the variance of the imputed scores. By adding these terms to the 

creation of imputed scores, it was empirically demonstrated that population 

characteristics were recovered from the imputed score for these substantially different 

population structures of the observed scores. To show the unbiasedness of sample 

statistics based on the imputed score )(

~
mik , the empirical distribution of the sample 

statistics for each simulation condition was constructed by randomly generating the 

imputed data repeatedly 1000 times, that is, producing 1000 observed data sets X. Let 

S generically denote a population characteristic of ik .  We empirically calculated the 

mean of the sample estimates of S across the 10 plausible values generated for each X, 

Ms , and the corresponding sampling variance across the 1000 repeated samples as  

1000/ MM ss
                                             

 (5.2) 

and 

 
 

11000

2





 MM

M

ss
sVar

                                      
 (5.3) 
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respectively. Z-values can be calculated as the standardized score for Ms , as shown in 

the formula below: 

  1000/M

M

sVar

Ss
valuez




                                    
 (5.4) 

This z-value represents the distance in standard errors between the sample 

estimates and the population value. To demonstrate the unbiased characteristics of the 

sample estimates, we calculated z-values for the following statistics: the overall 

sample mean, the cluster sample mean, the overall sample variance, the between-

cluster variance, and the pooled within-cluster variance.  

Similarly, the same set of z-values were computed based on the true score θ’s 

and the observed x’s in the sample. The estimate based on the true score θ was treated 

as the gold standard, which is the best estimate one can get from a sample if the 

individual true score can be observed. The estimates based on the observed score X is 

the Maximum Likelihood estimate, which is an unbiased and efficient estimator for an 

individual person’s true score, but not necessarily for the population distribution. The 

z-values based on imputed scores and the observed X’s were evaluated by comparing 

them to the estimates based on the true score θ’s.  

Second, this study demonstrates empirically the impact of variance 

components and sample sizes on the sampling variance of the mean estimate based on 

Rubin’s formula for MI, which includes within-imputation variance MU , between 

imputation variance MB  and total variance MV . Because clear relationships among 

these estimates can only be detected at a certain precision level of the estimation 

process, which may not be met with the sample size settings in the simulation 

conditions, the statistics were estimated for repeated samples to increase the precision 

of the sample estimates. For each sample, sampling variances of the sample mean 



41 

 

were estimated based on theoretical formulas, and then averaged over 5,000 repeated 

samples. Patterns of the relationship were first explored by comparing the estimates of 

MV , MU , and MB  across the simulation conditions. Graphs were generated for the 

purpose of illustration. Then, the relationship was further investigated using 

regression models on MV , MU , MB and the ratio of MU  over MV , where the 

simulation factors were treated as independent variables. Main effects, interaction 

terms and terms in higher order were studied. 

Finally, this study demonstrated empirically the property of the sampling 

variance of the mean estimate based on imputed scores in terms of the relationship to 

the sampling variance of the estimates based on the true score θ and the observed 

score X. The three sampling variances were compared to each other according to the 

simulation conditions.  As in studying research question two, to show the 

relationships of these estimates clearly, sampling variances were averaged across the 

estimates of the 5,000 repeated samples for each simulation condition. To present the 

convergence to the expected relationship among sampling variances of statistics in 

terms of the number of repeated samples, the same analysis was also done with 

different numbers of repeated samples, 1,000 and 25,000, and then the result was 

compared to that of the 5,000 repeated samples. In addition, we increased the number 

of imputations from 10 to 100 for the case with 5,000 repeated samples to show the 

impact on the estimated sampling variance based on imputed scores. In addition, we 

applied regression models to examine the relationships between the simulation factors 

and the ratio of the sampling variance of the true score θ to that of the imputed score, 

which were used as outcome variables in the model.  The simulation factors were 

treated as independent variables. Main effects, interaction terms and other high order 

terms were studied. 
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5.4.2 Estimation 

As discussed in section 2.6, inferences are made about population 

characteristics using the multiple imputed data sets from the simulation following 

Rubin’s formulation. Inferences based on m imputation datasets start with the 

calculation of the sample estimates for each dataset, approximated by ),( )()( mm UsN , 

where 
)(ms  is the point estimate of the statistic of interest calculated based on 

imputation data set m and 
)(mU  is the sampling variance of the point estimate treating 

the imputed values as observed. Then 
)(ms  and 

)(mU  are averaged across the M 

estimates to obtain Ms  and MU . Across the three research questions in this study, the 

statistics of interest include the population mean and variance for a two-stage cluster 

sample, where the putatively unbiased estimators are the mean and variance of the 

imputed data in the sample, denoted as Ms .  

Research question one studies a set of sample statistics Ms , which are 

expected to be unbiased estimators of population statistics S. For comparison 

purposes, parallel estimators based on the true score ik  and the observed score ikx  

were also examined. Table 5.3 presents the formulas in calculating these 
)(ms  and the 

corresponding estimators based on the true score ik  and the observed score ikx . 

The within-cluster variance was estimated with the pooled within-cluster 

variance based on the imputed score, the true score and the observed score of the 

sample. The unbiased estimator of the sampling variance of the cluster mean based on 

the true score was developed as below (Cochran, 1977, p278): 
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(5.5) 

where 
2

1s  is the estimated between-cluster element variance and 
2

2s  is the estimated 

within-cluster element variance. The estimator based on the imputed score and the 

observed score were developed in the same way. Finally, the estimator for the total 

variance was the summation of the two estimators above.  

The bias of the point estimates was calculated to show the unbiased character 

of the sample estimates, where the bias is the difference between the sample estimates 

and the true population value, SsBias M  .
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Table 5.3 Population statistics and corresponding estimators based on the imputed scores, the true score and the observed scores 

Population 

statistics (S) 

Sample estimator (
)(ms ) based on  

the imputed score ( )(

~
mik ) 

Sample estimator based on 

the true score ( ik ) 

Sample estimator based on 

the observed score ( ikX ) 
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Note: K is the number of clusters in the sample and I is the sample size within cluster  
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For research questions two and three, the sampling variance 
)(mU  of the 

sample mean of the imputed score was estimated for each imputed data set. Treating 

the )(

~
mik values as if they were values of )(mik  observed directly from a 

corresponding population, the estimator of the sampling variance of the sample mean 

for imputation m is )
~

( )(mVar   , which can also be denoted as 
)(mU ,  

2

2
212

1
1

)(

)1(1
)

~
( s

IK

ff
s

K

f
Var m







 ,  

where 1f  and 2f  are finite population correction factors at the two sampling stages.  

Using the notation in this study, the formula can be re-written as:  
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where K represents the number of sampled clusters among the Κ  clusters in the 

population, I is the number of sampled persons among the Ι  persons in the cluster in 

the population. In the case of this study, since Κ  and Ι  are both infinite numbers, the 

formula is simplified as 
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

                 (5.6) 

where 
)(

~
mk is the cluster mean for the imputation data set m and )(

~
m  is the population 

mean of that imputation data set. 

The statistics computed from the m imputed data sets were combined to gain 

the multiple imputation inference, as shown in formula (2.16).  The following 

statistics can be calculated: the overall estimate of the population statistics of interest  
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Ms , the average within imputation sampling variance MU  of the estimate, the between 

imputation variance MB  and the total variance MV . 

The sampling variance for the true score and the observed score can be 

denoted as  

)1(
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
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Var k

k 

  and 
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, 

where 
k is the mean of cluster k for the true score and    is the overall mean of the 

true score, while kx  is the mean of cluster k for the observed score and x  is the 

overall mean of the observed score. )(xVar  is expected to be no less than )(Var  

since  
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(5.7) 

and )(eVar  is larger than or equal to zero. The relationship between MV  and )(xVar  

is not clear and will be explored in the simulation study. 

In addition, as shown below, according to Cochran (1977, p.278), both 

)(Var  and MU have the expected value of 
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5.5 Results 

5.5.1 Research Question 1: How are different amounts of variance reconstruction 

terms incorporated in the plausible values to recreate the population properties 

of the true score? 

This section starts with illustrating intuitively how the variance reconstruction 

terms are reflected in the imputation statistics using the simulation data, which is 

theoretically discussed in Chapter 4. Then, it will be shown that, by incorporating the 

variance reconstruction terms, each set of plausible values recreates the population 

means and variances under a two-stage sample design. 

The posterior mean of ik , ]~)1()[1( )(mkik xx   , shrinks towards 

the population mean at the cluster level and shrinks towards the cluster mean at the 

individual level. The variance of the posterior mean then becomes lower than the 

variance of the mean of the true score.  For each set of plausible values,

)()()( ]~)1()[1( mikmkmkik fgxx   , where m = 1, …, 10, the random 

variance reconstruction terms 
)(mkg  and 

)(mikf  are included to inflate the variance of 

the imputed score back to the variance of the true score while keeping the mean 

estimates unbiased, where 
)(mkg  reflects the posterior variance of the cluster mean 

estimate and 
)(mikf  reflects the posterior variance of the individual score estimate.  

Given that 2)1()( bkgVar   and 2)1()( wikfVar  , where the reliability 

coefficients   and   are defined as below, 
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and 
)( 22

2
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the posterior variance can be expressed as  
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For a better understanding of the contribution of the variance reconstruction 

term, we calculated the relative amount of variance accounted for by the variance 

reconstruction terms, that is, the proportion of the posterior variance over the variance 

of the imputed score, denoted as )(_ kgVarR  and )(_ ikfVarR , and calculated as 

follows:  
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(5.13) 

The simulation results are presented for two groups of simulation conditions 

where the relative sizes of the variance components are 100 and 4, respectively. Table 

5.4 and Table 5.5 present the simulation factors: the variance components and sample 

sizes, reliability coefficients, variances of the reconstruction terms, and the relative 

variances. These statistics come directly from the settings of the simulation factors 

and reflect the population characteristics. Since the sample in the simulation study 

was drawn from a normal distribution with the population variance for these terms, 

the expected variance of the sample is equal to the population statistics. Note that the 
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number of clusters as a simulation factor is not shown in the table as it does not affect 

any of the statistics in the table. 

 As shown in Table 5.4, for the case with extreme ratios of variance 

components (100), larger values of the posterior variance )( kgVar  correspond to 

larger values of any of the three variance components, between-cluster variance ( 2

b ), 

within-cluster variance ( 2

w ) and measurement error variance ( 2

e ). Larger values of 

2

w  and 2

e  correspond to smaller values of   and larger proportions of 2

b  added 

from the random component kg  to the variance of the imputed score. The relative 

variance  kgVarR _  is larger when 2

e  is larger, and when 2

w  is smaller, 

controlling other factors constant, with one exception – a larger  kgVarR _
 
is 

obtained when 2

w  is larger for the cases with 2

b  = 100 and 2

e   = 1.  In addition, a 

larger  kgVarR _
 
is obtained when 2

b  is smaller for the cases with 2

w  = 1. On the 

other hand, a larger  kgVarR _
 
is obtained when 2

b  is larger for the cases with 2

w  

= 100, except when the cluster size is extremely large (300). Among all the 

combinations of the variance components, the combination ( 2

b , 2

w , 2

e )= (1,1,100) 

corresponds to the largest values of  kgVarR _
 
and the combination ( 2

b , 2

w , 2

e ) = 

(100,1,1) corresponds to the smallest values, given the cluster size.  

 

Holding the values of all the variance components constant, a larger cluster 

size corresponds to a smaller variance of the random component kg  and a smaller 

relative variance. When the cluster size is 5 and ( 2

b , 2

w , 2

e ) = (1,1,100), 

 kgVarR _  has the largest value (47.6%) in the table. Among all cases, )( kgVar  
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accounts for more than 5% of the overall variance only in rare cases, either when ( 2

b

, 2

w , 2

e ) = (1,1,100) or when cluster size is 5. 

In constructing individual scores, a larger variance of ikf  is associated with 

larger values of 2

e  
and 2

w . A larger values of 2

e corresponds to a smaller value of 

  and a larger proportion of 2

w  added from the random component ikf to the variance 

of the imputed score. A larger relative variance  ikfVarR _  is associated with a 

larger value of 2

e  
and a smaller value of 2

b .  When 2

b  = 1 and 2

e   = 1, a larger 

relative variance is obtained when 2

w  decreases from 100 to 1. When 2

b  = 100 and 

2

e   = 100, the opposite relationship is observed – a larger relative variance is 

obtained when 2

w  increases from 1 to 100. For other combinations of 2

b  and 2

e , 

2

w  has little impact on relative variance.  

 ikfVar  accounts for a large percentage of the overall variance for the 

following cases: 25% when 2

b = 2

w = 2

e  and 49.5% when 2

b  = 1 and 2

e   = 100. 

The smallest percentage is 0.5% when 2

b  = 100 and 2

e   = 1. 
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Table 5.4 The variance of the variance reconstruction terms by simulation factors 

when the ratio of the variance components is 100. 

Simulation Factors 
Derived 

Statistics  

Variance of  

 Variance Reconstruction Terms 

2

b
 

2

w
 

2

e  
Cluster 

Size (I) 
    Var(gk) Var(fik) 

Expected 

Var( ik
~

) 
R_Var(gk) 

R_Var 

(fik) 

1 1 1 5 0.71 0.50 0.29 0.50 2 0.143 0.250 

1 1 1 30 0.94 0.50 0.06 0.50 2 0.031 0.250 

1 1 1 100 0.98 0.50 0.02 0.50 2 0.010 0.250 

1 1 1 300 0.99 0.50 0.01 0.50 2 0.003 0.250 

1 1 100 5 0.05 0.01 0.95 0.99 2 0.476 0.495 

1 1 100 30 0.23 0.01 0.77 0.99 2 0.385 0.495 

1 1 100 100 0.50 0.01 0.50 0.99 2 0.251 0.495 

1 1 100 300 0.75 0.01 0.25 0.99 2 0.126 0.495 

1 100 1 5 0.05 0.99 0.95 0.99 101 0.009 0.010 

1 100 1 30 0.23 0.99 0.77 0.99 101 0.008 0.010 

1 100 1 100 0.50 0.99 0.50 0.99 101 0.00498 0.010 

1 100 1 300 0.75 0.99 0.25 0.99 101 0.00249 0.010 

1 100 100 5 0.02 0.50 0.98 50 101 0.010 0.495 

1 100 100 30 0.13 0.50 0.87 50 101 0.009 0.495 

1 100 100 100 0.33 0.50 0.67 50 101 0.007 0.495 

1 100 100 300 0.60 0.50 0.40 50 101 0.004 0.495 

100 1 1 5 0.996 0.50 0.40 0.50 101 0.004 0.005 

100 1 1 30 0.999 0.50 0.07 0.50 101 0.001 0.005 

100 1 1 100 0.9998 0.50 0.02 0.50 101 0.0002 0.005 

100 1 1 300 0.9999 0.50 0.01 0.50 101 0.0001 0.005 

100 1 100 5 0.83 0.01 16.81 0.99 101 0.166 0.010 

100 1 100 30 0.97 0.01 3.26 0.99 101 0.032 0.010 

100 1 100 100 0.99 0.01 1.00 0.99 101 0.00990 0.010 

100 1 100 300 0.997 0.01 0.34 0.99 101 0.00332 0.010 

100 100 1 5 0.83 0.99 16.81 0.99 200 0.084 0.005 

100 100 1 30 0.97 0.99 3.26 0.99 200 0.016 0.005 

100 100 1 100 0.99 0.99 1.00 0.99 200 0.00500 0.005 

100 100 1 300 0.997 0.99 0.34 0.99 200 0.00168 0.005 

100 100 100 5 0.71 0.5 28.57 50 200 0.143 0.250 

100 100 100 30 0.94 0.5 6.25 50 200 0.031 0.250 

100 100 100 100 0.98 0.5 1.96 50 200 0.00980 0.250 

100 100 100 300 0.99 0.5 0.66 50 200 0.00331 0.250 

 

Table 5.5 presents the case with moderate ratios of variance components (4). 

The table illustrates similar patterns to table 5.4 except a few cases – the relative 

variance  kgVarR _
 
decreases when 2

b  increases for more cases, where 2

w  = 4 

and the cluster size is 30, 100 or 300.  



52 

 

When the cluster size is 5 and ( 2

b , 2

w , 2

e )= (1,1,4),  kgVarR _  has the 

largest value (25.0%) in the table. )( kgVar  accounts for more than 5% of the overall 

variance only in rare cases, either when ( 2

b , 2

w , 2

e ) = (1,1,4) and cluster size is 30 

or when cluster size is 5. 

 ikfVar  accounts for a large percentage of the overall variance for the 

following cases: 25% when 2

b = 2

w = 2

e  and 40.0% when 2

b  = 1 and 2

e   = 4. 

The smallest percentage is 10% when 2

b  = 4 and 2

e   = 1. 
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Table 5.5 The variance of the variance reconstruction terms by simulation factors 

when the ratio of the variance components is 4. 

Simulation Factors 
Derived 

Statistics  

Vrariance of  

 Variance Reconstruction Terms 

2

b
 

2

w
 

2

e
 

Cluster 

Size (I) 
    Var(gk) Var(fik) 

Expected 

Var( ik
~

) 
R_Var(gk) R_Var(fik) 

1 1 1 5 0.71 0.5 0.29 0.5 2 0.143 0.25 

1 1 1 30 0.94 0.5 0.06 0.5 2 0.031 0.25 

1 1 1 100 0.98 0.5 0.02 0.5 2 0.010 0.25 

1 1 1 300 0.99 0.5 0.01 0.5 2 0.003 0.25 

1 1 4 5 0.50 0.2 0.50 0.8 2 0.250 0.40 

1 1 4 30 0.86 0.2 0.14 0.8 2 0.071 0.40 

1 1 4 100 0.95 0.2 0.05 0.8 2 0.024 0.40 

1 1 4 300 0.98 0.2 0.02 0.8 2 0.008 0.40 

1 4 1 5 0.50 0.8 0.50 0.8 5 0.100 0.16 

1 4 1 30 0.86 0.8 0.14 0.8 5 0.029 0.16 

1 4 1 100 0.95 0.8 0.05 0.8 5 0.010 0.16 

1 4 1 300 0.98 0.8 0.02 0.8 5 0.003 0.16 

1 4 4 5 0.38 0.5 0.62 2 5 0.123 0.40 

1 4 4 30 0.79 0.5 0.21 2 5 0.042 0.40 

1 4 4 100 0.93 0.5 0.07 2 5 0.015 0.40 

1 4 4 300 0.97 0.5 0.03 2 5 0.005 0.40 

4 1 1 5 0.91 0.5 0.36 0.5 5 0.073 0.10 

4 1 1 30 0.98 0.5 0.07 0.5 5 0.013 0.10 

4 1 1 100 1.00 0.5 0.02 0.5 5 0.0040 0.10 

4 1 1 300 1.00 0.5 0.01 0.5 5 0.0013 0.10 

4 1 4 5 0.80 0.2 0.80 0.8 5 0.160 0.16 

4 1 4 30 0.96 0.2 0.16 0.8 5 0.032 0.16 

4 1 4 100 0.99 0.2 0.05 0.8 5 0.010 0.16 

4 1 4 300 1.00 0.2 0.02 0.8 5 0.003 0.16 

4 4 1 5 0.80 0.8 0.80 0.8 8 0.100 0.10 

4 4 1 30 0.96 0.8 0.16 0.8 8 0.020 0.10 

4 4 1 100 0.99 0.8 0.05 0.8 8 0.006 0.10 

4 4 1 300 1.00 0.8 0.02 0.8 8 0.002 0.10 

4 4 4 5 0.71 0.5 1.14 2 8 0.143 0.25 

4 4 4 30 0.94 0.5 0.25 2 8 0.031 0.25 

4 4 4 100 0.98 0.5 0.08 2 8 0.010 0.25 

4 4 4 300 0.99 0.5 0.03 2 8 0.003 0.25 
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After incorporating the variance reconstruction terms, the point estimates of 

population means and variances based on the imputations are unbiased. Sampling 

variances of these point estimates were calculated empirically across the 1,000 

repeated samples based on the imputations. Z-values of the point estimates were then 

derived for the means over the 1000 repetitions using formula (5.10) shown in section 

5.4.1 and presented in Table 5.6. Considering the combination of the factors 2

b , 2

w ,

2

e , the number of clusters (K), and the cluster size (I), as presented in table 5.1, the 

calculation was carried out for the 128 combinations and summarized for each 

population statistic and ratio of variance components.  The minimum values, means 

and maximum values of the z-values across the 128 combinations are presented. 

In general, Table 5.6 shows similar patterns for the cases with ratios of the 

variance components equal to 100 and the cases with the ratios equal to 4.  

For all the statistics, the z-values calculated based on the imputed data are 

close to zero, specifically, between -3.17 and 2.98. The means of the z-values across 

the 128 combinations range between -0.18 and 0.12 for all population statistics and 

ratios of variance components.  

The z-values based on the true score ik
 
represent the best sample estimates 

that one can get in the case that the student’s true score can be observed. The range of 

the z-values for ik  (from -3.31 to 2.90) and the range of the mean of z-values across 

the 128 combinations (from -0.20 to 0.15) are on the same scale as those based on the 

imputed data, which demonstrates the unbiased character of the estimators based on 

the imputed data. Even with extreme conditions, the underlying rationale of plausible 

values with random-effects models still produces the unbiased estimates of population 

characteristics. 
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The z-values were also calculated based on the maximum likelihood estimates 

of individual scores, the observed score ikX . As shown in Table 5.6, the estimates of 

the overall mean and the cluster means are unbiased, while the estimates of the 

within-cluster variance and the total variance could be severely overestimated. This 

bias may be ignorable in special cases, when the error variance is much smaller than 

the variance of the true score. Table 5.7 shows the cases where the z-value is between 

-4 and 4 and the bias may be ignored. Interestingly, the estimates of the variance of 

cluster means are close to the population statistics for all the factor settings, even 

when the ratio of the variance components is extremely high.  

In summary, the z-values show that the sample estimator based on the imputed 

score is unbiased in estimating the population mean, cluster means, total variance, 

within-cluster variance and between-cluster variance. In contrast, the sample 

estimator based on the observed score is positively biased in estimating total variance 

and within-cluster variance, while the bias may be ignorable in rare cases.  
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Table 5.6 Range and mean of the z-value of the point estimates based on the imputed 

score, the true score and the observed score, across the 128 combinations of 

simulation factors 

Population 

statistics (S) 

Statistics from 

1000 repeated 

samples 

Sample estimator  

( Ms ) based on  

imputed score ( ik
~

) 

Sample estimator 

based on 

true score ( ik ) 

Sample estimator 

based on 

observed score 

 ( ikX ) 

Ratio of 

variance 

components 

 100 4 100 4 100 4 

Overall 

mean 

Minimum -2.22 -2.41 -2.00 -2.47 -2.16 -2.46 

Maximum 2.75 2.25 2.52 2.25 2.66 2.16 

Mean -0.01 0.06 -0.03 0.05 -0.01 0.06 

Cluster 

means 

Minimum -2.16 -2.55 -2.63 -2.96 -2.28 -2.86 

Maximum 2.52 1.95 2.47 2.90 2.29 2.42 

Mean 0.05 -0.10 -0.20 0.09 -0.11 0.08 

Total 

variance 

Minimum -2.09 -2.74 -1.97 -3.17 0.18 7.19 

Maximum 2.13 2.56 2.33 2.55 6320.75 1464.75 

Mean -0.005 -0.11 0.08 -0.15 382.64 219.25 

Variance of 

cluster 

means 

Minimum -2.37 -2.62 -2.01 -2.75 -2.01 -2.67 

Maximum 2.11 2.59 2.38 2.55 2.14 2.57 

Mean -0.06 -0.06 -0.003 -0.10 -0.08 -0.07 

Within-

cluster 

variance 

Minimum -2.96 -3.17 -2.27 -3.31 0.24 19.08 

Maximum 2.64 2.98 2.25 2.61 6746.69 5350.80 

Mean 0.12 -0.18 0.15 -0.17 850.37 849.93 
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Table 5.7 List of z-values of the estimates where the bias of the estimates based on the 

observed score may be negligible (z-values between -4 and 4) 

2

b  2

w  2

e  
# of Clusters  

(K) 

Cluster Size 

(I) 

Total variance  

of ikX  

Within-cluster 

variance of ikX  

100 100 1 30 300 0.18 22.04 

100 1 1 30 5 0.22 121.55 

100 1 1 5 300 0.23 422.34 

100 1 1 30 300 0.44 1089.05 

100 100 1 30 5 0.53 1.67 

100 100 1 5 30 0.60 4.77 

100 100 1 5 100 0.70 5.69 

100 100 1 5 300 0.72 8.40 

100 100 1 30 100 0.73 10.65 

100 1 1 30 100 0.93 606.42 

100 100 1 5 5 1.00 0.75 

100 1 1 5 30 1.01 133.55 

1 100 1 5 5 1.07 0.24 

100 1 1 5 5 1.50 50.43 

100 1 1 100 5 1.52 230.72 

100 100 1 30 30 1.67 7.16 

100 1 1 5 100 1.70 248.91 

100 1 1 100 30 1.76 598.81 

100 100 1 100 300 1.79 36.44 

100 100 1 300 5 1.85 8.55 

100 100 1 100 30 1.94 11.92 

100 100 1 300 300 2.30 66.72 

100 1 1 100 300 2.87 1939.86 

100 100 1 100 5 3.04 5.54 

1 100 1 30 5 3.17 3.27 

100 100 1 100 100 3.24 21.39 

100 1 1 30 30 3.26 344.53 

100 1 1 300 30 3.43 1090.70 

100 100 1 300 30 3.49 20.98 

100 1 1 300 100 3.57 1889.23 

100 1 1 100 100 3.78 1100.39 

100 1 1 300 300 3.89 3312.67 

1 100 1 5 100 3.99 4.35 

 

5.5.2 Research Question 2:  How do the variance components and sample sizes 

impact the estimation error of the MI-based estimate for the population mean? 

When examining the sampling variances, we focus on the estimator of the 

population mean. Using Rubin’s formula as shown in formula (2.16), for each 
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combination of simulation factors, we calculated the estimates of sampling variances of 

statistics from the multiple imputed data, which include the within imputation 

variance   , the between imputation variance    and the total variance   , and 

investigated their relationships to each of the simulation factors, that is, variance 

components and sample sizes at both sampling stages. The sampling variances were 

computed for each repeated sample and then averaged across 5,000 repeated samples.  

The analysis results are discussed as follows for two simulation settings, 

where the ratio of the variance components is 100 and 4, respectively.  

5.5.2.1 The ratio of the variance components is 100 

In the analysis in this section, the variance components ( 2

b , 2

w
 
and 2

e ) take 

values 1 or 100.  

Tabulation of sampling variances by simulation factors 

Tables 5.8 – 5.10 present the statistics   ,    and   , respectively, by the 

simulation factors, where the row variables are the combination of the number of 

clusters and the cluster size and the column variables are the combination of the three 

variance components. According to table 5.8,    increases when the sample size 

decreases, including both the cluster size I and the number of clusters K, and when 

either of the variance components increases. Table 5.9 shows similar general patterns 

for the relationship between    and the simulation factors, except that 2

e  doesn’t 

seem to have any impact on   . Table 5.10 also shows similar general patterns for the 

relationship between    and the simulation factors except that 2

b  and 2

w  don’t 

seem to have any impact on   .  Some violations of the general patterns are due to 

sample variation.   
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Table 5.8 MV  for the plausible values by the simulation factors. 

Sample Size Variance Components 
2

b /
2

w /
2

e  

K I 1/1/1 1/1/100 1/100/1 1/100/100 100/1/1 100/1/100 100/100/1 100/100/100 

5 5 0.279 4.717 4.251 8.576 19.857 24.629 24.417 28.427 

5 30 0.213 0.945 0.863 1.605 20.178 20.724 20.993 21.509 

5 100 0.203 0.419 0.402 0.623 19.654 19.981 20.409 20.424 

5 300 0.201 0.273 0.269 0.342 19.933 20.476 20.017 20.229 

30 5 0.047 0.78 0.71 1.42 3.343 4.088 3.998 4.738 

30 30 0.036 0.16 0.15 0.26 3.331 3.462 3.457 3.549 

30 100 0.034 0.071 0.067 0.104 3.329 3.377 3.354 3.403 

30 300 0.033 0.045 0.045 0.057 3.344 3.346 3.340 3.368 

100 5 0.014 0.232 0.212 0.429 1.002 1.220 1.198 1.420 

100 30 0.0107 0.047 0.044 0.081 0.998 1.036 1.033 1.066 

100 100 0.0102 0.021 0.020 0.031 1.004 1.009 1.009 1.021 

100 300 0.0101 0.014 0.013 0.017 0.999 1.001 1.005 1.011 

300 5 0.0047 0.077 0.071 0.144 0.335 0.407 0.402 0.473 

300 30 0.0036 0.016 0.015 0.027 0.33336 0.3457 0.3450 0.3564 

300 100 0.0034 0.0070 0.0067 0.0103 0.33285 0.3371 0.3371 0.3400 

300 300 0.0033 0.0046 0.0045 0.0057 0.33341 0.3343 0.3341 0.3362 

 

Table 5.9 MU  for the plausible values by the simulation factors. 

Sample Size Variance Components 
2

b /
2

w /
2

e  

K I 1/1/1 1/1/100 1/100/1 1/100/100 100/1/1 100/1/100 100/100/1 100/100/100 

5 5 0.2361 0.2393 4.2062 4.1794 19.8134 20.1793 24.3729 23.9974 

5 30 0.2058 0.2065 0.8555 0.8707 20.1705 19.9956 20.9852 20.7686 

5 100 0.2004 0.2019 0.3997 0.4005 19.6521 19.7594 20.4070 20.2056 

5 300 0.2006 0.1998 0.2679 0.2681 19.9325 20.4029 20.0165 20.1555 

30 5 0.04013 0.04004 0.70186 0.69926 3.33569 3.34817 3.99055 4.00649 

30 30 0.03443 0.03445 0.14401 0.14405 3.33020 3.33919 3.45586 3.42571 

30 100 0.03371 0.03380 0.06677 0.06682 3.32828 3.34015 3.35325 3.36661 

30 300 0.03337 0.03328 0.04457 0.04443 3.34372 3.33369 3.33992 3.35534 

100 5 0.01201 0.01200 0.20943 0.20964 0.99932 0.99867 1.19535 1.19884 

100 30 0.01033 0.01035 0.04337 0.04341 0.99722 0.99929 1.03283 1.02938 

100 100 0.01010 0.01010 0.02006 0.02002 1.00339 0.99829 1.00934 1.00976 

100 300 0.01004 0.01003 0.01334 0.01334 0.99872 0.99754 1.00479 1.00715 

300 5 0.00400 0.00400 0.07004 0.06996 0.33378 0.33388 0.40092 0.39975 

300 30 0.00344 0.00344 0.01441 0.01446 0.33324 0.33351 0.34485 0.34424 

300 100 0.00337 0.00337 0.00666 0.00667 0.33281 0.33350 0.33706 0.33632 

300 300 0.00334 0.00334 0.00444 0.00445 0.33340 0.33308 0.33410 0.33498 
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Table 5.10 MB  for the plausible values by the simulation factors. 

Sample Size Variance Components 
2

b /
2

w /
2

e
 

K I 1/1/1 1/1/100 1/100/1 1/100/100 100/1/1 100/1/100 100/100/1 100/100/100 

5 5 0.03944 4.0706 0.04031 3.99660 0.03980 4.04525 0.03990 4.02707 

5 30 0.00657 0.6713 0.00671 0.66739 0.00661 0.66205 0.00666 0.67323 

5 100 0.00200 0.1974 0.00199 0.20210 0.00199 0.20178 0.00202 0.19864 

5 300 0.00067 0.0667 0.00067 0.06701 0.00067 0.06618 0.00067 0.06680 

30 5 0.00664 0.6682 0.00664 0.65891 0.00668 0.67238 0.00660 0.66534 

30 30 0.00111 0.1107 0.00111 0.10935 0.00111 0.11202 0.00111 0.11189 

30 100 0.00033 0.0337 0.00033 0.03350 0.00033 0.03375 0.00033 0.03285 

30 300 0.00011 0.0111 0.00011 0.01116 0.00011 0.01113 0.00011 0.01115 

100 5 0.00200 0.1997 0.00200 0.19964 0.00199 0.20084 0.00200 0.20102 

100 30 0.00033 0.0335 0.00033 0.03374 0.00033 0.03317 0.00034 0.03301 

100 100 0.00010 0.0100 0.00010 0.01002 0.00010 0.00997 0.00010 0.01003 

100 300 0.00003 0.0033 0.00003 0.00335 0.00003 0.00333 0.00003 0.00333 

300 5 0.00066 0.0664 0.00067 0.06712 0.00068 0.06634 0.00066 0.06670 

300 30 0.00011 0.0112 0.00011 0.01109 0.00011 0.01112 0.00011 0.01108 

300 100 0.00003 0.0033 0.00003 0.00334 0.00003 0.00331 0.00003 0.00331 

300 300 0.00001 0.0011 0.00001 0.00112 0.00001 0.00111 0.00001 0.00110 

 

Results for sampling variances based on graphs 

To illustrate more detailed patterns,   ,    and     were plotted against 

sample sizes K and I, by the variance components 2

b , 2

w  and 2

e . Two graphs were 

created for   , where Figure 5.1 represents the cases with 2

b  = 1 and Figure 5.2 

represents the cases with 2

b  = 100, using    as the vertical axis and combinations of 

K and I as the horizontal axis.  Four lines were generated in each graph to represent 

   values by 2

w  and 2

e  . In the same format, Figures 5.3 and 5.4 were created for 

   and Figures 5.3 and 5.4 were created for   . Note that all the graphs in this study 

were created in this format, but the vertical scales may be different among graphs.   

Besides the general patterns discussed based on the tabulation, these graphs 

show the level of impact from each simulation factor. For example, Figure 5.1 shows 

the    value at each level of sample sizes of the two sampling stages when 12 b
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and the purple line with square markers in it represents the case with 1002 w  and 

1002 e , etc. Figure 5.2 shows the parallel cases when 1002 b . Every set of four 

points on the horizontal scale represent one level of the number of clusters (K) and, 

within the set, every point represent a level of cluster size (I). In both graphs, the 

overlap of the purple line with square markers with the green line with dot markers, 

and the red line with circle markers with the blue line with triangle markers, shows 

that 2

e  has no impact on   . By comparing the scale of the vertical axis of the two 

graphs, we can see that the positive impact from 2

b  to     is dominant, much larger 

than the positive impact from 2

w , which is shown by the differences between the 

green line with dot markers and red line with circle markers and between the purple 

line with square markers and blue line with triangle markers. According to the trend 

of each line, the sample sizes K and I have a negative impact on   . The difference of 

the shapes of the two graphs illustrates a large interaction effect between the number 

of clusters K and 2

b . That is, the negative effect of K on    is much larger when 

1002 b  than when 12 b . 

Figures 5.3 and 5.4 for    tell a different story. The overlap of the red line 

with the green line, and of the purple line with the blue line, shows that 2

w  has no 

impact on   . The same shape and scale of the two graphs show that 2

b  has no 

impact on   . The differences between the green line and purple line and between the 

red line and blue line show the positive impact of 2

e on   .  

Figures 5.5 and 5.6 are for   , which is the summation of    and       . 

Thus, the impact from the simulation factors on    includes impacts from both 

sources.  2

b  still has the largest positive impact among the variance components, 



62 

 

while the impact from 2

w  and 
2

e  are at similar levels. The negative impact from the 

sample sizes on    is almost twice of the impact on    or   . Similar to the impact 

on   , the negative effect of K on    is much larger when 1002 b  than when 

12 b . 

 

Figure 5.1 : MU vs. sample sizes K and I by 2

w  and 
2

e  (where 12 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Figure 5.2 : MU vs. sample sizes K and I by 2

w  and 
2

e  (where 1002 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Figure 5.3 : MB vs. sample sizes K and I by 2

w  and 
2

e  (where 12 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Figure 5.4: MB  vs. sample sizes K and I by 2

w  and 
2

e  (where 1002 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 

 

 

 

  

B
M

           0

           1

           2

           3

           4

           5

k, i

0
0
5
,
0
0
5

0
0
5
,
0
3
0

0
0
5
,
1
0
0

0
0
5
,
3
0
0

0
3
0
,
0
0
5

0
3
0
,
0
3
0

0
3
0
,
1
0
0

0
3
0
,
3
0
0

1
0
0
,
0
0
5

1
0
0
,
0
3
0

1
0
0
,
1
0
0

1
0
0
,
3
0
0

3
0
0
,
0
0
5

3
0
0
,
0
3
0

3
0
0
,
1
0
0

3
0
0
,
3
0
0

sigmaw2_sigmae2 001_001 001_100
100_001 100_100



66 

 

 

Figure 5.5: MV  vs. sample sizes K and I by 2

w  and 
2

e  (where 12 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Figure 5.6: MV  vs. sample sizes K and I by 2

w  and 
2

e  (where 1002 b ,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Regression analyses on sampling variances 

To quantify the effect of the simulation factors on the sampling variance of the 

plausible values, regression analyses were carried out for both simulation settings, the 

ratio of the variance components equal to 100 and 4. The model was fit for each of the 

outcome variables   ,    and    .  Moreover, the characteristic of    is illustrated 

by modeling the ratio of    over   .  

Independent variables include 2

b , 2

w , 2

e , K, I and all the two-way 

interactions between these terms. As suggested by the shape of the graphs, the sample 

size variables in the quadratic form and their interactions with the variance 

components were added to the model. To improve the model fit, the cubic terms of 

the sample sizes and their interaction terms with the variance components were tested 

in the model and were kept when significant at the 0.05 level. The resulting model 

includes the following added terms: the quadratic terms of K and I and their 

interactions to the variance components, the cubic terms of K and I and the interaction 

between the terms for K and the between-cluster variance. Note that the baseline level 

of K and I were set to five and the baseline level for the variance components were 

zero. K and I were treated as continuous variables and the variance component 

variables were treated as binary variables. 

Residual analysis for these models showed non-normal residuals with non-

constant variance.  Transformations in the forms of log, reciprocal, square root, had 

been considered and tested.  However, transformations changed the relationship 

between the independent variables and the outcome variables dramatically, compared 

to the relationship shown in the graph. Although no transformation was implemented 

in these models, the models were still expected to make relatively sound inferences 

from the F test. As Lindman (1974) shows, the F statistic is quite robust against 
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deviation from normal distribution and homogeneity of variances. Especially when 

the R
2
 ‘s for the    and    are very close to 1, the impact of the non-normality in the 

distributions of residuals on the model statistics is limited, and is negligible on 

estimates of effects, which is the primary concern here. However, as a conservative 

approach, the P-values for the F-tests in the regression model should be considered as 

indicators of relative size of effects rather than taken at face.  

The result of the residual analysis for cases with the ratio of the variance 

components equal to 100 is documented in Table 5.11, showing outlying residuals, 

skewness, and kurtosis for each model. 

 

Table 5.11 Outlying residuals, skewness and kurtosis in the regression analysis, when 

variance components take values 1 and 100. 

Outcome  Predictor Distribution statistics 

 

2

b  
2

w  
2

e  K I 
Residual 

outliers  
Skewness Kurtosis 

   

  

  

  

  

  

1 100 100 5 5 4.360 
2.21 

  

  

  

  

  

9.07 

  

  

  

  

  

100 100 100 5 5 4.314 

100 1 100 5 5 2.077 

1 1 100 5 5 2.021 

100 100 1 5 5 1.959 

1 100 1 5 5 1.684 

   

  

  

  

100 100 1 5 5 2.348 
2.36 

  

  

  

8.82 

  

  

  

1 100 100 5 5 2.076 

1 100 1 5 5 2.071 

100 100 100 5 5 1.999 

   

  

  

  

1 1 100 5 5 2.141 
2.44 

  

  

  

9.12 

  

  

  

100 1 100 5 5 2.116 

100 100 100 5 5 2.105 

1 100 100 5 5 2.077 

      None 0.27 -0.39 

 

Table 5.12 shows parameter estimates, P-values for the F-test and 

(semipartial)     values for each term, when the ratio of the variance components is 

100. The (semipartial)    statistic is defined as the proportion of total variation 

attributable to the predictor, partialling out other predictors from the total nonerror 
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variation for each predictor in the model, and provides a standard measure of the 

strength of the association between a predictor and the outcome variable. All variables 

including non-significant ones were kept in the model to show the importance of each 

predictor. Terms that are significant at the 0.1 level are in bold font in the table. 

Terms that explain larger variances of the outcome variables are highlighted. 

 The result of the regression analysis provides more detailed information about 

the relationship between the simulation factors and the sampling variances of the 

imputed scores. As discussed previously, the positive impact on    from 2

b  and 2

w  

comes through   , while the positive impact from 2

e  comes through   . The 

parameter estimates show that the    estimate is larger by 19.85 (0.1985* 100), for 

the cases with 1002 b  than for the cases with 12 b , at the baseline level of all 

other factors, that is, K=5, I=5, 12 w  and 12 e . The impacts from 2

w  are 2

e are 

much smaller – the    estimate increases by 1.57 when 2

w
 
changes from 1 to 100 

and increases by 1.70 when 2

e  changes from 1 to 100. The negative significant 

interaction terms 2

b *
2

w  and 2

b *
2

e show that the impact from 2

b  is less when 2

w  

or 2

e  is 100.  

According to the graph, the impacts from the sample sizes are in a curved 

shape, which is confirmed by the parameter estimates in the model and characterized 

by the main effect, the quadratic term and the cubic term of K and I. In specific, the 

parameter estimates of the main effects shows, in average, both K and I have negative 

impacts on   , as well as on    and   . Significant positive quadratic terms and 

smaller negative coefficients for the cubic terms for K and I illustrate that the slope of 

the curve gets flatter for larger sample sizes. In addition, the positive significant 
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interaction terms between K and I show that the (negative) impact from K (or I) on 

  ,    and    is smaller when I (or K) is higher.  

In terms of the significance of the interaction terms between the variance 

components and the sample sizes, similar patterns are shown as those of the 

corresponding main effect terms for the variance components and the sample sizes. 

For 2

b , the interaction terms with K, K
2
,K

3
 are significant in making inferences on 

both    and   ; for 2

w
, 
the interaction terms with K, K

2
, I and I

2
 are significant for 

both    and   ; and for 2

e , the interaction terms with K, K
2
, I and I

2
 are significant 

in making inferences on both    and   . The signs of these interaction terms are the 

same as the corresponding main effect terms for the sample sizes, K, K
2
,K

3
, I and I

2
, 

showing that the impact from the sample sizes on the sampling variance is larger 

when the variance components are larger (100). Note that 2

b  does not have a 

significant interaction with I. 

No interactions between the variance components are significant. 

Table 5.12 reports     based on the Type III sum of square (SS). By examining 

this statistic, we can identify predictors with major impact on the outcome variables, 

after partialling out the effect from other predictors. For    and   , 2

b  has the 

largest impact (over 26% of the total variance), and along with its interactions with K, 

over 60% of the variance explained by the model (R
2
=0.9848 or 0.9946) or the total 

variance is accounted for.
 
For   , 2

e  has the largest impact (over 17% of the total 

variance), and along with its interactions with K and I, over 70% of the variance 

explained by the model (R
2
=0.5356) or over 38% of the total variance is accounted 

for.  
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Table 5.12 Parameter estimates, P-values of F-tests and semipartial 
2̂ ’s for the 

regression models on  MU , MB  and MV , when the ratio of the variance components is 

100 

Outcome 

Variables    (R
2
=0.9848)    (R

2
=0.9946)    (R

2
=0.5356) 

Parameter Estimate 

P-

value     Estimate 

P-

value     Estimate 

P-

value     

2

b  
0.19851 <0.001 0.2613 0.19852 <0.001 0.2812 -6.45E-06 0.998 <0.0001 

2

w  
0.01569 0.001 0.0019 0.01576 <0.001 0.0021 -6.59E-05 0.979 <0.0001 

2

e  
0.01698 <0.001 0.0022 0.00014 0.956 <0.0001 0.01531 <0.001 0.1740 

K -0.05323 0.009 0.0011 -0.02953 0.012 0.0004 0.059 0.0167 0.059 

K
2
 0.00066 0.010 0.0010 0.00036 0.014 0.0003 0.057 0.0171 0.057 

K
3
 -1.68E-06 0.010 0.0010 -9.12E-07 0.015 0.0003 0.056 0.0172 0.056 

I -0.04407 0.004 0.0013 -0.02044 0.020 0.0003 0.013 0.0296 0.013 

I
2
 0.00056 0.002 0.0015 0.00026 0.014 0.0003 0.008 0.0338 0.008 

I
3
 -1.42E-06 0.002 0.0015 -6.57E-07 0.013 0.0003 0.008 0.0342 0.008 

K*I 0.00002 0.003 0.0014 9.12E-06 0.014 0.0003 9.22E-06 0.012 0.0304 

2

b * K 
-0.00880 <0.001 0.1562 -0.00880 <0.001 0.1681 4.51E-07 0.998 <0.0001 

2

b * K
2
 

0.00009 <0.001 0.1026 0.00009 <0.001 0.1104 -6.32E-09 0.997 <0.0001 

2

b * K
3
 

-2.21E-07 <0.001 0.0895 -2.21E-07 <0.001 0.0963 1.62E-11 0.997 <0.0001 

2

b * I 
-7.65E-06 0.914 <0.0001 -7.51E-06 0.854 <0.0001 -1.32E-07 0.997 <0.0001 

2

b * I
2
 

2.49E-08 0.912 <0.0001 2.45E-08 0.850 <0.0001 3.54E-10 0.998 <0.0001 

2

w * K 
-0.00015 0.031 0.0007 -0.00015 <0.001 0.0008 6.54E-07 0.987 <0.0001 

2

w * K
2
 

4.11E-07 0.069 0.0005 4.13E-07 0.002 0.0006 -1.74E-09 0.989 <0.0001 

2

w * I 
-0.00014 0.050 0.0006 -0.00014 0.001 0.0006 8.13E-07 0.984 <0.0001 

2

w * I
2
 

3.65E-07 0.105 0.0004 3.67E-07 0.005 0.0004 -2.23E-09 0.986 <0.0001 

2

e * K 
-0.00016 0.023 0.0008 -9.03E-07 0.982 <0.0001 -0.00015 <0.001 0.0623 

2

e * K
2
 

4.32E-07 0.056 0.0006 2.39E-09 0.985 <0.0001 3.90E-07 0.003 0.0439 

2

e * I 
-0.00016 0.024 0.0008 -7.31E-07 0.986 <0.0001 -0.00015 <0.001 0.0622 

2

e * I
2
 

4.37E-07 0.053 0.0006 8.06E-09 0.950 <0.0001 3.90E-07 0.003 0.0439 

2

b *
2

w  
4.04E-06 0.906 <0.0001 3.82E-06 0.846 <0.0001 2.02E-07 0.992 <0.0001 

2

b *
2

e  
5.51E-07 0.987 <0.0001 4.93E-07 0.980 <0.0001 5.23E-08 0.998 <0.0001 

2

w *
2

e  
-4.86E-06 0.887 <0.0001 -4.51E-06 0.818 <0.0001 -3.16E-07 0.987 <0.0001 
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Analysis of ratio variables – graphs and regression 

To fully examine the characteristics of sampling variance of the imputed score 

based on MI, the ratios of the within imputation variance    to the total sampling 

variance    were derived and their relationship to the simulation variables were 

analyzed. This ratio shows the proportion of the sampling variance accounted for by 

single imputation rather than multiple imputation and the supplement of this ratio 

reflects what proportion of the missing information is due to not observing the true 

score directly.  

Graphs were generated by plotting the ratio of    to    against sample sizes 

K and I, by the variance components 2

b , 2

w  and 2

e . Two graphs were created, 

where 2

b  =1 in the first graph and 2

b  =100 in the second, using       as the 

vertical axis and combinations of K and I as the horizontal axis.  Four lines were 

generated to represent combinations of 2

w  and 2

e   According to the first graph, the 

ratio is positively related to cluster size I and 2

w  and negatively related to 2

e . The 

number of clusters K has no impact on the ratio. Compared to the second graph, the 

plots in the first graph change within a larger range as seen in the scale of the vertical 

axis. Thus, 2

b  has a negative impact to the ratio. Moreover, the slope of the lines for 

each set of K values at the same level of I is different among all combinations of 

variance components. This illustrates the interaction between K and the variance 

components. The discussion of the regression analysis in the next paragraph includes 

more details. 

 

 

 



74 

 

 

Figure 5.7: MM VU / vs. sample size K and I by 2

w  and 2

e  (where 2

b  =1,
 

2

w  = 1 or 

100, and 
2

e = 1 or 100) 
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Figure 5.8: MM VU /  vs. sample size K and I by 2

w  and 2

e  (where 2

b  =100,
 

2

w  = 1 

or 100, and 
2

e = 1 or 100) 

 

Regression analyses were carried out for the ratio variable and the results are 

shown in table 5.13. Terms that are significant at the 0.1 level are in bold font in the 

table. Terms that explain larger variances of the outcome variables are highlighted. 
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All three main effects of the variance component variables and their interactions with 

each other are significant for the ratio variable. For example, when 2

b
 
or 2

w  are 

larger or when 2

e  is smaller, holding other variables at the baseline level, the ratio 

variable has higher values.   The significant interaction terms between variance 

components show that the effect of one variance component is different when the 

other components are not at the baseline level. In other words, when both factors 

change from 1 to 100, besides the main effects, there is a further change on the 

outcome variable. For example, when both 2

b  and 2

e  change from 1 to 100, the 

estimated ratio of    to    changes by 0.0000425*100, besides the positive main 

effect (0.0018440*100) from 2

b  and the negative main effect (-0.0065681 *100) 

from 2

e .  

In terms of the effect of the sample size, the main effect, the quadratic term, 

and the cubic term of cluster size I are significant, as are the interaction terms with 

variance components 2

b *I, 2

w *I, 2

w *I
2
, 2

e *I, and 2

e *I
2
. Note that no term 

involving the number of clusters K is significant.  

Semipartial     in the table shows that the major impact to the ratio is from 2

e

(27.36%) and 2

b *
2

e  (19.19%). 

 

 

 

  



77 

 

 

Table 5.13 Parameter estimates, P-values of F-tests and semipartial 
2̂ ’s for the 

regression model on the ratio variable MM VU /  when the ratio of the variance 

components is 100. 

Outcome 

Variables        (R
2
=0.9579) 

Parameter Estimate P-value     
2

b  1.84E-03 <0.001 0.0184 
2

w  1.58E-03 <0.001 0.0158 
2

e  -6.57E-03 <0.001 0.2736 

K 2.81E-05 0.981 <0.0001 

K
2
 -3.95E-07 0.979 <0.0001 

K
3
 1.03E-09 0.978 <0.0001 

I 0.00403 <0.001 0.0089 

I
2
 -3.33E-05 0.002 0.0043 

I
3
 7.51E-08 0.005 0.0034 

K*I -1.69E-10 1.000 <0.0001 
2

b * K -2.41E-07 0.988 <0.0001 
2

b * K
2
 3.64E-09 0.986 <0.0001 

2

b * K
3
 -9.56E-12 0.986 <0.0001 

2

b * I -1.32E-05 0.002 0.0043 
2

b * I
2
 2.09E-08 0.111 0.0011 

2

w * K -1.80E-10 1.000 <0.0001 
2

w * K
2
 -4.62E-11 0.997 <0.0001 

2

w * I -1.40E-05 0.001 0.0048 
2

w * I
2
 3.30E-08 0.013 0.0027 

2

e * K -4.32E-08 0.992 <0.0001 
2

e * K
2
 1.35E-10 0.992 <0.0001 

2

e * I 2.35E-05 <0.001 0.0138 
2

e * I
2
 -4.87E-08 <0.001 0.0058 

2

b *
2

w  -1.41E-05 <0.001 0.0210 
2

b *
2

e  4.25E-05 <0.001 0.1919 
2

w *
2

e  1.03E-05 <0.001 0.0113 
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5.5.2.2 The ratio of the variance components is 4 

In the analysis in this section, the variance components ( 2

b , 2

w
 
and 2

e ) take 

values 1 and 4. The structure of this section is similar to the previous section 5.5.2.1. 

Tabulation of sampling variances by simulation factors  

Tables 5.14 – 5.16 are parallel to tables 5.8 – 5.10, showing statistics   ,    

and   , respectively, by the simulation factors. Except that the sampling variances 

are in a smaller scale, similar patterns are found in these tables.   

 

Table 5.14 MV  for the plausible values by the simulation factors. 

Sample size Variance Components 
2

b /
2

w /
2

e
 

K I 1/1/1 1/1/4 1/4/1 1/4/4 4/1/1 4/1/4 4/4/1 4/4/4 

5 5 0.284 0.419 0.407 0.531 0.881 1.008 1.006 1.135 

5 30 0.212 0.236 0.233 0.256 0.817 0.831 0.830 0.859 

5 100 0.206 0.212 0.208 0.218 0.805 0.805 0.807 0.811 

5 300 0.204 0.204 0.204 0.207 0.792 0.799 0.806 0.808 

30 5 0.048 0.069 0.067 0.089 0.147 0.169 0.167 0.189 

30 30 0.036 0.039 0.039 0.043 0.136 0.140 0.140 0.143 

30 100 0.034 0.035 0.035 0.036 0.134 0.135 0.136 0.136 

30 300 0.033 0.034 0.034 0.034 0.134 0.134 0.135 0.134 

100 5 0.014 0.021 0.020 0.027 0.044 0.051 0.050 0.057 

100 30 0.011 0.012 0.012 0.013 0.041 0.042 0.042 0.043 

100 100 0.010 0.011 0.010 0.011 0.040 0.041 0.041 0.041 

100 300 0.010 0.010 0.010 0.010 0.040 0.040 0.040 0.040 

300 5 0.005 0.007 0.007 0.009 0.015 0.017 0.017 0.019 

300 30 0.004 0.004 0.004 0.004 0.014 0.014 0.014 0.014 

300 100 0.003 0.004 0.004 0.004 0.013 0.014 0.013 0.014 

300 300 0.003 0.003 0.003 0.003 0.013 0.013 0.013 0.013 
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Table 5.15 MU  for the plausible values by the simulation factors. 

Sample size Variance components 
2

b /
2

w /
2

e
 

K I 1/1/1 1/1/4 1/4/1 1/4/4 4/1/1 4/1/4 4/4/1 4/4/4 

5 5 0.241 0.243 0.363 0.357 0.838 0.832 0.962 0.959 

5 30 0.205 0.207 0.226 0.227 0.810 0.802 0.822 0.830 

5 100 0.204 0.203 0.206 0.209 0.803 0.797 0.805 0.802 

5 300 0.203 0.201 0.203 0.204 0.791 0.796 0.806 0.805 

30 5 0.040 0.040 0.060 0.060 0.140 0.140 0.159 0.159 

30 30 0.035 0.034 0.037 0.038 0.135 0.135 0.138 0.138 

30 100 0.034 0.034 0.035 0.035 0.134 0.133 0.135 0.135 

30 300 0.033 0.034 0.034 0.034 0.134 0.134 0.135 0.133 

100 5 0.012 0.012 0.018 0.018 0.042 0.042 0.048 0.048 

100 30 0.010 0.010 0.011 0.011 0.040 0.040 0.041 0.041 

100 100 0.010 0.010 0.010 0.010 0.040 0.040 0.040 0.040 

100 300 0.010 0.010 0.010 0.010 0.040 0.040 0.040 0.040 

300 5 0.004 0.004 0.006 0.006 0.014 0.014 0.016 0.016 

300 30 0.003 0.003 0.004 0.004 0.013 0.013 0.014 0.014 

300 100 0.003 0.003 0.003 0.003 0.013 0.013 0.013 0.013 

300 300 0.003 0.003 0.003 0.003 0.013 0.013 0.013 0.013 

 

Table 5.16 MB  for the plausible values by the simulation factors. 

Sample size Variance components 
2

b /
2

w /
2

e
 

K I 1/1/1 1/1/4 1/4/1 1/4/4 4/1/1 4/1/4 4/4/1 4/4/4 

5 5 0.03953 0.16049 0.04000 0.15853 0.03967 0.16043 0.03976 0.16006 

5 30 0.00668 0.02674 0.00670 0.02689 0.00665 0.02676 0.00673 0.02654 

5 100 0.00200 0.00816 0.00198 0.00804 0.00200 0.00805 0.00200 0.00798 

5 300 0.00067 0.00267 0.00067 0.00269 0.00067 0.00267 0.00068 0.00269 

30 5 0.00671 0.02661 0.00664 0.02651 0.00669 0.02654 0.00665 0.02678 

30 30 0.00112 0.00447 0.00111 0.00445 0.00110 0.00442 0.00111 0.00445 

30 100 0.00033 0.00132 0.00033 0.00133 0.00034 0.00134 0.00033 0.00134 

30 300 0.00011 0.00045 0.00011 0.00045 0.00011 0.00044 0.00011 0.00045 

100 5 0.00198 0.00796 0.00201 0.00806 0.00202 0.00809 0.00197 0.00808 

100 30 0.00033 0.00134 0.00033 0.00133 0.00033 0.00133 0.00034 0.00134 

100 100 0.00010 0.00040 0.00010 0.00040 0.00010 0.00040 0.00010 0.00040 

100 300 0.00003 0.00013 0.00003 0.00013 0.00003 0.00013 0.00003 0.00013 

300 5 0.00067 0.00268 0.00067 0.00266 0.00067 0.00268 0.00067 0.00267 

300 30 0.00011 0.00044 0.00011 0.00045 0.00011 0.00044 0.00011 0.00045 

300 100 0.00003 0.00013 0.00003 0.00013 0.00003 0.00013 0.00003 0.00013 

300 300 0.00001 0.00005 0.00001 0.00004 0.00001 0.00004 0.00001 0.00004 
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Results for sampling variances based on graphs 

The shapes of the figures are similar to the figures where the ratio of the 

variance components is 100. The patterns discovered and discussed previously are 

also observed in this set of figures. Detailed examination is included in the regression 

analysis. 

 
Figure 5.9: MU  vs. sample size K and I by 2

w  and 2

e  (where 2

b =1,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.10: MU  vs. sample size K and I by 2

w  and 2

e  (where 2

b =4,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.11: MB  vs. sample size K and I by 2

w  and 2

e  (where 2

b =1,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.12: MB  vs. sample size K and I by 2

w  and 2

e  (where 2

b =4,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.13: MV  vs. sample size K and I by 2

w  and 2

e  (where 2

b =1,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.14: MV  vs. sample size K and I by 2

w  and 2

e  (where 2

b =4,
 

2

w  = 1 or 4, 

and 
2

e = 1 or 4) 
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Figure 5.15: MM VU /  vs. sample size K and I by 2

w  and 2

e  (where 2

b =1,
 

2

w  = 1 

or 4, and 
2

e = 1 or 4) 
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Figure 5.16: MM VU /  vs. sample size K and I by 2

w  and 2

e  (where 2

b =4,
 

2

w  = 1 

or 4, and 
2

e = 1 or 4) 

 

Regression analyses on sampling variances 

Residual analysis of the regression models indicated the existence of outliers, 

non-normal residual distribution and non-constant residual variance. Table 5.17 
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summarized the distribution of the residuals. The inference from the regression model 

is based on the fact that the F statistic is robust against deviation from normal 

distribution and homogeneity of variances. 

 

Table 5.17 Outlying residuals, skewness and kurtosis in the regression analysis, when 

the variance components take values 1 and 4 

Outcome Predictor Distribution statistics 

 

2

b  
2

w  
2

e  K I 
Residual 

outliers Skewness Kurtosis 

   

4 4 4 5 5 0.169 

1.86 6.40 

1 4 4 5 5 0.163 

1 1 4 5 5 0.097 

4 1 4 5 5 0.090 

4 4 1 5 5 0.089 

1 4 1 5 5 0.089 

   

4 4 1 5 5 0.083 

2.21 8.10 
1 4 1 5 5 0.082 

4 4 4 5 5 0.081 

1 4 4 5 5 0.076 

   

1 1 4 5 5 0.080 

2.22 8.07 
4 1 4 5 5 0.080 

4 4 4 5 5 0.080 

1 4 4 5 5 0.079 

      

1 1 4 5 5 -0.069 

-0.77 1.53 
1 1 4 100 5 -0.069 

1 1 4 30 5 -0.070 

1 1 4 300 5 -0.071 

 

When the variance components takes the value of 4, rather than 100, most 

relationships between the outcome variables and the simulation factors still holds in 

terms of whether they are significant or not. A few parameter estimates changed from 

significant to non-significant and are shown in italic font and underlined in the table. 

Specifically, they are the predictors for   : 2

w * K, 2

w * K
2
, 2

w * I, 2

w * I
2
, 2

e * K
2
, 

and 2

e * I
2
.  

By examining semipartial    , we can identify predictors having major impact 

on the outcome variables, after partialling out other predictors. For    and   , 2

b  
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has the largest impact (about 15% of the total variance), and along with its 

interactions with K, over 34% of the variance explained by the model (R
2
=0.9834 or 

0.9948) or the total variance is accounted for.
 
For   , 2

e  has the largest impact 

(9.8% of the total variance), and along with its interactions with K and I, over 46% of 

the variance explained by the model (R
2
=0.5664) or around 26% of the total variance 

is accounted for.  
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Table 5.18 Parameter estimates, P-values of F-tests and semipartial 
2̂ ’s for the 

regression models on  MU , MB  and MV , when the ratio of the variance components is 

4 

Outcome 

Variables    (R
2
=0.9834)    (R

2
=0.9948)    (R

2
=0.5664) 

Parameter Estimate 

P-

value     Estimate 

P-

value     Estimate 

P-

value     
2

b  
0.1494 <0.001 0.148 0.1493 <0.001 0.164 1.58E-05 0.995 <0.001 

2

w  
0.0115 0.014 0.001 0.0116 <0.001 0.001 -2.59E-05 0.991 <0.001 

2

e  
0.0125 0.008 0.001 -2.01E-04 0.935 <0.001 0.0115 <0.001 0.098 

K -0.0114 <0.001 0.031 -0.0101 <0.001 0.027 -0.0012 0.008 0.032 

K
2
 1.23E-04 <0.001 0.022 1.07E-04 <0.001 0.019 1.38E-05 0.014 0.027 

K
3
 -2.95E-07 <0.001 0.020 -2.57E-07 <0.001 0.017 -3.42E-08 0.017 0.025 

I -0.0025 <0.001 0.003 -0.0012 0.001 0.001 -0.0012 <0.001 0.056 

I
2
 2.88E-05 <0.001 0.002 1.36E-05 0.001 0.001 1.38E-05 0.001 0.053 

I
3
 -7.15E-08 <0.001 0.002 -3.39E-08 0.001 0.001 -3.42E-08 0.001 0.051 

K*I 9.48E-07 0.001 0.002 4.50E-07 0.002 0.001 4.52E-07 0.002 0.045 
2

b * K 
-0.0066 <0.001 0.088 -0.0066 <0.001 0.098 -6.36E-07 0.997 <0.001 

2

b * K
2
 

6.96E-05 <0.001 0.058 6.96E-05 <0.001 0.064 7.02E-09 0.997 <0.001 

2

b * K
3
 

-1.66E-07 <0.001 0.050 -1.66E-07 <0.001 0.056 -1.70E-11 0.997 <0.001 

2

b * I -1.42E-06 0.985 <0.001 -1.04E-06 0.979 <0.001 -3.47E-07 0.993 <0.001 

2

b * I
2
 3.79E-09 0.987 <0.001 2.70E-09 0.983 <0.001 9.89E-10 0.994 <0.001 

2

w * K -1.13E-04 0.126 <0.001 -1.14E-04 0.004 <0.001 3.88E-07 0.992 <0.001 

2

w * K
2
 3.03E-07 0.198 <0.001 3.04E-07 0.016 <0.001 -1.08E-09 0.993 <0.001 

2

w * I -1.13E-04 0.126 <0.001 -1.14E-04 0.004 <0.001 2.71E-07 0.994 <0.001 

2

w * I
2
 3.07E-07 0.191 <0.001 3.08E-07 0.015 <0.001 -7.07E-10 0.995 <0.001 

2

e * K -1.18E-04 0.110 <0.001 2.83E-06 0.942 <0.001 -1.10E-04 0.005 0.035 
2

e * K
2
 3.15E-07 0.179 <0.001 -7.63E-09 0.951 <0.001 2.94E-07 0.018 0.025 

2

e * I -1.21E-04 0.104 <0.001 4.32E-07 0.991 <0.001 -1.10E-04 0.005 0.035 
2

e * I
2
 3.23E-07 0.169 <0.001 2.94E-10 0.998 <0.001 2.93E-07 0.018 0.025 

2

b *
2

w  6.73E-05 0.940 <0.001 6.45E-05 0.891 <0.001 2.48E-06 0.996 <0.001 

2

b *
2

e  -3.41E-05 0.969 <0.001 -3.71E-05 0.937 <0.001 2.74E-06 0.995 <0.001 

2

w *
2

e  1.89E-05 0.983 <0.001 2.50E-05 0.958 <0.001 -5.51E-06 0.991 <0.001 

 

Regression analyses were carried out for the ratio variable of    over   . 

None of the predictors involving K are significant, while all other predicators are 

significant except 2

b *
2

w  and
 

2

w *
2

e . The difference to the cases with the extreme 
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ratio of the variance components is that the variance components play a less important 

role in explaining the ratio variable and the cluster size becomes more important - 2

b

*
2

w  and 2

w *
2

e  become non-significant, 2

b *
2

e  explains less variation of the 

ratio, 2

b * I
2
 become significant, and the terms I, I

2
 and I

3
 become major predictors. 

Semipartial     in the table shows that the major impact to the ratio is from 2

e

(0.134), I (0.168), I
2
 (0.121), and I

3
(0.104),. 
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Table 5.19 Parameter estimates, P-values of F-tests and semipartial 
2̂ ’s for the 

regression model on the ratio variables MM VU / , when the ratio of the variance 

components is 4 

Outcome 
Variables       (R2=0.9433) 
Parameter Estimates P-value     

2

b  0.0266 0.000 0.039 
2

w  0.0086 0.004 0.005 
2

e  -0.0454 0.000 0.134 
K -3.95E-07 0.999 0.000 

K2 -4.91E-09 0.999 0.000 

K3 6.99E-12 1.000 0.000 
I 0.0069 0.000 0.168 

I2 -7.00E-05 0.000 0.121 

I3 1.65E-07 0.000 0.104 

K*I 2.18E-09 0.990 0.000 
2

b * K 1.91E-06 0.992 0.000 
2

b * K2 -2.11E-08 0.993 0.000 
2

b * K3 5.15E-11 0.993 0.000 
2

b * I -4.11E-04 0.000 0.043 
2

b * I2 1.06E-06 0.000 0.028 
2

w * K -8.40E-07 0.986 0.000 
2

w * K2 3.41E-09 0.982 0.000 
2

w * I -1.27E-04 0.008 0.004 
2

w * I2 3.43E-07 0.023 0.003 
2

e * K -5.55E-07 0.991 0.000 
2

e * K2 2.21E-09 0.988 0.000 
2

e * I 5.13E-04 0.000 0.067 
2

e * I2 -1.33E-06 0.000 0.045 
2

b * 2

w  -0.0010 0.078 0.002 
2

b * 2

e  0.0034 0.000 0.020 
2

w * 2

e  5.45E-04 0.338 0.001 
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5.5.3 Research Question 3: What are the relationships between the sampling 

variance of the imputations and those of the true score and the observed score? 

Using the same set of 5,000 repeated samples just used to examine research 

question 2, we compared the sampling variance of mean estimates based on the 

imputed score and those of the true score and the observed score.  

5.5.3.1 The ratio of the variance components is 100 

Table 5.20 shows the ratio of the sampling variance based on the observed 

score over that of the true score, when the variance components take values 1 and 

100. As shown analytically in formula (5.13) in section 5.4.2, the sampling variance 

based on the observed score is expected to be larger than that of the true score. For the 

128 combinations in the table, the ratios are larger than one, with only one exception, 

as shown in italic font and underlined in the table. The exceptional case is due to the 

sampling error of the estimate. The ratio is very close to 1 when the error variance is 

much smaller than other variance components. 
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Table 5.20 The ratio of the sampling variance based on the observed score over that of 

the true score, when the variance components take values 1 and 100 

K I 1/1/1 1/1/100 1/100/1 1/100/100 100/1/1 100/1/100 100/100/1 100/100/100 

5 5 1.1709 17.7765 1.0111 1.9453 1.0019 1.2040 1.0027 1.1602 

5 30 1.0330 4.1887 1.0087 1.7522 1.0008 1.0319 1.0008 1.0298 

5 100 1.0097 1.9791 1.0035 1.4853 1.0001 1.0094 0.999998 1.0087 

5 300 1.0036 1.3308 1.0025 1.2604 1.0001 1.0020 1.0002 1.0037 

30 5 1.1677 17.6783 1.0095 1.9561 1.0017 1.2002 1.0017 1.1701 

30 30 1.0320 4.2128 1.0076 1.7617 1.0004 1.0335 1.0003 1.0319 

30 100 1.0100 1.9940 1.0049 1.5109 1.0002 1.0102 1.0002 1.0106 

30 300 1.0036 1.3330 1.0024 1.2473 1.0000 1.0036 1.00003 1.0032 

100 5 1.1647 17.6996 1.0102 1.9533 1.0020 1.1982 1.0015 1.1663 

100 30 1.0327 4.2439 1.0079 1.7743 1.0004 1.0330 1.0003 1.0317 

100 100 1.0102 1.9933 1.0048 1.5039 1.0001 1.0095 1.0001 1.0099 

100 300 1.0033 1.3295 1.0026 1.2507 1.0000 1.0034 1.00004 1.0033 

300 5 1.1664 17.6748 1.0094 1.9526 1.0020 1.1989 1.0016 1.1663 

300 30 1.0318 4.2274 1.0078 1.7706 1.0003 1.0331 1.0003 1.0324 

300 100 1.0100 1.9856 1.0051 1.5007 1.0001 1.0099 1.0001 1.0100 

300 300 1.0032 1.3326 1.0025 1.2500 1.00003 1.0033 1.00003 1.0033 

 

Table 5.21 shows the ratio of the sampling variance based on the imputed data 

   over that of the observed score, when the variance components take values 1 and 

100. For the 128 combinations, the ratios are larger than one, with eight exceptions. 

This result suggests that the sampling variance based on the imputed score is expected 

to be larger than the observed score. The exceptional cases are suspected to be due to 

the sampling error of the estimate. In the following paragraphs, we will explore this 

point by examining the trend of the number of exceptional cases after changing the 

number of repeated samples. The ratio is very close to 1 when the error variance is 

much smaller than other variance components. 
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Table 5.21 The ratio of the sampling variance based on the imputed data over that of 

the observed score, when the variance components take values 1 and 100 

K I 1/1/1 1/1/100 1/100/1 1/100/100 100/1/1 100/1/100 100/100/1 100/100/100 

5 5 1.0155 1.0986 1.0007 1.0528 1.00005 1.0179 0.9998 1.0173 

5 30 1.0019 1.0852 1.0007 1.0418 1.00003 1.0035 1.00001 1.0034 

5 100 1.0012 1.0540 1.0003 1.0396 1.00002 1.0005 0.99999 1.0008 

5 300 0.9998 1.0296 1.0001 1.0183 0.99999 0.9997 0.99998 1.0002 

30 5 1.0133 1.0943 1.0006 1.0420 1.0003 1.0176 1.0002 1.0142 

30 30 1.0030 1.0734 1.0006 1.0406 1.0001 1.0033 1.0001 1.0041 

30 100 1.0008 1.0502 1.0007 1.0331 1.00002 1.0011 0.99998 1.0007 

30 300 1.0004 1.0248 1.0003 1.0207 1.00001 1.0004 1.00001 1.0003 

100 5 1.0135 1.0913 1.0010 1.0496 1.0002 1.0181 1.0002 1.0151 

100 30 1.0030 1.0788 1.0008 1.0489 1.00003 1.0033 1.00004 1.0030 

100 100 1.0010 1.0504 1.0004 1.0350 1.00001 1.0010 1.00001 1.0009 

100 300 1.0003 1.0264 1.0003 1.0202 0.999998 1.0003 1.000002 1.0003 

300 5 1.0132 1.0898 1.0009 1.0531 1.0002 1.0159 1.0002 1.0145 

300 30 1.0028 1.0811 1.0008 1.0412 1.00003 1.0033 1.00003 1.0032 

300 100 1.0010 1.0469 1.0005 1.0345 1.00001 1.0009 1.00001 1.0010 

300 300 1.0003 1.0249 1.0002 1.0214 1.000002 1.0004 1.00001 1.0003 

 

To show that the ratio statistics in table 5.20 and 5.21 converge to the 

observed pattern in terms of the number of repeated samples, the simulation study was 

carried out using 1,000, 5000, and 25,000 repeated samples. The tables 5.22 and 5.23 

list simulation conditions for the exceptional cases for the 5 sets of simulations with 

1,000 repeated samples, for the 5 sets of simulations with 5,000 repeated samples, and 

for the 25,000 repeated samples, which  are the combination of the 5 sets of 5,000 

repeated samples. The counts of the exceptional cases are shown at the bottom of the 

tables. As shown in table 5.22, for the ratio of the sampling variance based on the 

observed score over that of the true score, when there are 1000 repeated samples, the 

number of exceptional cases ranges between 3 and 7 among the 5 sets of repeated 

samples; when there are 5,000 repeated samples, the number ranges between 1 and 3 

among the 5 sets of repeated samples; and when there are 25,000 repeated samples, 

there is 0 exceptional case. In table 5.23, for the ratio of the sampling variance based 

on the imputed data over that of the observed score, when there are 1,000 repeated 
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samples, the number of exceptional cases ranges between 9 and 15 among the 5 sets 

of repeated samples; when there are 5,000 repeated samples, the number of 

exceptional cases ranges between 2 and 9 among the 5 sets of repeated samples; and 

when there are 25,000 repeated samples, there is 1 exceptional case. Note that the 5 

sets of 5,000 repeated samples have exceptional cases in different combination of 

factors and no exceptional case happens for all five sets of repeated samples. The 

reduction of the number of the exceptional cases and the lack of pattern of these cases 

suggest that the observed pattern converges in terms of the number of repeated 

samples, and hence the exceptional cases are due to the sampling error. Further, the 

exceptional cases are concentrated in the conditions with lower error variance and/or 

larger cluster size.  

Table 5.22 The simulation conditions with the ratio of the sampling variance based on 

the observed score over that of the true score lower than 1 for the data with 1,000 

repeated samples, 5,000 repeated samples and 25,000 repeated samples, when the 

variance components take values 1 and 100. 

2

b
 

2

w

 

2

e  K I 
5 sets of 1,000 

repeated samples 

25,000 Repeated samples 
(5 sets of 5,000  
and combined) 

  
    

1 2 3 4 5 1 2 3 4 5  Combined 

100 1 1 5 5 X       X 

      100 100 1 5 5           

  

X 

   100 1 1 5 30   X     X 

  

X 

   100 100 1 5 30   X   X   X 

  

X 

  100 1 1 5 100 X   X   X 

 

X 

  

X 

 100 100 1 5 100     X X X X 

     100 1 1 5 300 X X     X 

    

X 

 100 100 1 5 300           X 

     100 1 1 30 100   X       

      100 1 1 30 300         X 

  

X 

   100 100 1 30 300   X X   X 

      100 1 1 100 100     X     

      100 1 1 100 300 X     X   

      100 100 1 100 300   X       

      Count 4 6 4 3 7 3 1 3 1 2 0 
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Table 5.23 The simulation conditions with the ratio of the sampling variance based on 

the imputation over that of observed scores lower than 1 for the data with 1,000, 5,000 

and 25,000 repeated samples, when the variance components take values 1 and 100. 

2

b  2

w  2

e  K I 
5 sets of 1,000 

repeated samples 
25,000 Repeated samples  

(5 sets of 5,000 and combined) 

          1 2 3 4 5 1 2 3 4 5 Combined 

1 100 1 5 5 

   

X 

       100 1 1 5 5 X X X X X X 

   

X 

 100 100 1 5 5 

       

X X 

  100 100 100 5 5 

   

X 

       1 1 1 5 30 

   

X 

       1 100 1 5 30 

  

X 

        100 1 1 5 30 X X 

 

X 

 

X 

   

X 

 100 100 1 5 30 X 

  

X 

       100 100 100 5 30 

 

X 

         1 1 1 5 100 

   

X 

       1 100 1 5 100 

   

X 

       100 1 1 5 100 X 

 

X 

 

X 

    

X 

 100 1 100 5 100 

 

X X 

 

X 

 

X 

    100 100 1 5 100 

  

X 

 

X 

 

X 

 

X X 

 1 1 1 5 300 

  

X 

 

X 

      1 100 1 5 300 

   

X 

 

X 

  

X 

  100 1 1 5 300 X X X X 

 

X X 

  

X 

 100 1 100 5 300 

 

X 

         100 100 1 5 300 X X 

   

X 

 

X X X X 

100 100 100 5 300 

 

X X 

 

X 

      100 1 1 30 5 

   

X X 

      100 100 1 30 5 

 

X X X 

     

X 

 100 1 1 30 30 

        

X 

  100 1 1 30 100 

  

X X 

  

X 

 

X 

  100 100 1 30 100 

        

X 

  1 1 1 30 300 X 

          1 100 1 30 300 

    

X 

      100 1 1 30 300 

  

X 

      

X 

 100 100 1 30 300 

   

X 

 

X 

  

X 

  100 1 1 100 30 

     

X 

     100 1 1 100 100 X 

    

X X 

    100 100 1 100 100 

 

X 

 

X X X 

     100 1 1 100 300 

 

X X 

      

X 

 100 100 1 100 300 

      

X 

 

X 

  100 100 1 300 100 

    

X 

      100 1 1 300 300 X 

 

X 

        100 100 1 300 300 

 

X 

         
          9 12 13 15 10 9 6 2 9 9 1 
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Next, the number of imputations in MI needed for precise estimation of 

sampling variance was explored by increasing the number of imputations. As we have 

just seen, when the number of imputations is 10 and the number of repeated samples 

is 1000, we observed 9 to 15 exceptional cases. When the number of imputations was 

increased to 100, the number of exceptional cases was reduced to 5. This result 

provides evidence for the following point: by increasing the number of imputations, 

the precision of estimation can be improved, and hence the number of the exceptional 

cases can be reduced.  

To further examine the characteristics of the sampling variance of the mean 

based on the imputed scores, we created the ratio of the sampling variance of the 

mean based on the true score to that based on the imputed score   , which represents 

the proportion of   that is from the true score variance. As it was shown analytically 

in formula (5.14) and (5.15) in section 5.4.2 that          and    have the same 

expected value, we expect the analysis results for            is the same as       

This ratio variable             was plotted against sample sizes K and I, by 

the variance components 2

b , 2

w  and 2

e . As expected, the shape of the graphs is 

almost identical to graphs 5.7 and 5.8 for the ratio      . 

Regression analyses were carried out for the ratio variable and the results are 

shown in table 5.24. The same set of independent variables were used as the analysis 

for the ratio      . The results for the two ratio variables are almost identical. All 

three main effects of the variance component variables and their interactions with 

each other are significant.  Details can be seen in the discussion for the ratio      . 
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Table 5.24 Parameter estimates, P-values of F-tests and semipartial 
2̂ ’s for the ratio 

variables MVVar /)( , when the ratio of the variance components is 100 

Outcome 

Variables            ((R
2
=0.9580) 

Parameter Estimate P-value     
2

b  0.00184 <0.001 0.018 
2

w  0.00159 <0.001 0.016 
2

e  -0.00656 <0.001 0.273 

K 4.18E-05 0.971 <0.001 

K
2
 -4.56E-07 0.975 <0.001 

K
3
 1.10E-09 0.976 <0.001 

I 0.00405 <0.001 0.009 

I
2
 -3.36E-05 0.002 0.004 

I
3
 7.58E-08 0.005 0.003 

K*I 2.13E-09 0.995 <0.001 
2

b * K -5.70E-07 0.971 <0.001 
2

b * K
2
 8.38E-09 0.968 <0.001 

2

b * K
3
 -2.20E-11 0.967 <0.001 

2

b * I -1.31E-05 0.002 0.004 
2

b * I
2
 2.09E-08 0.111 0.001 

2

w * K -1.80E-07 0.965 <0.001 
2

w * K
2
 4.72E-10 0.971 <0.001 

2

w * I -1.40E-05 0.001 0.005 
2

w * I
2
 3.30E-08 0.013 0.003 

2

e * K -1.85E-07 0.964 <0.001 
2

e * K
2
 5.48E-10 0.966 <0.001 

2

e * I 2.35E-05 <0.001 0.014 
2

e * I
2
 -4.85E-08 <0.001 0.006 

2

b *
2

w  -1.41E-05 <0.001 0.021 
2

b *
2

e  4.25E-05 <0.001 0.192 
2

w *
2

e  1.03E-05 <0.001 0.011 

 

5.5.3.2 The ratio of the variance components is 4 

This section presents the analysis results when the ratio of the variance 

components is 4. Tables 5.25 presents the ratio of the sampling variance based on the 

observed score over that of the true score and table 5.26 presents the ratio of the 

sampling variance based on the imputed data over that of the observed score. With 
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fewer exceptional cases, the tables show the same pattern as observed when ratio of 

the variance components is 100: the sampling variance based on the imputed score is 

larger than that of the observed score, which is larger than that of the true score. There 

is no exceptional case in table 5.25 and 1 case in table 5.26. 

 

Table 5.25 The ratio of the sampling variance based on the observed score over that of 

the true score, when the variance components take values 1 and 4 

K I 1/1/1 1/1/4 1/4/1 1/4/4 4/1/1 4/1/4 4/4/1 4/4/4 

5 5 1.16414 1.68143 1.11429 1.43831 1.04286 1.18798 1.04165 1.15848 

5 30 1.03107 1.13092 1.02882 1.11378 1.00863 1.03677 1.00723 1.03522 

5 100 1.01230 1.03915 1.00996 1.04053 1.00253 1.00972 1.00339 1.00869 

5 300 1.00296 1.01190 1.00326 1.01479 1.00055 1.00483 1.00085 1.00500 

30 5 1.16462 1.67529 1.11060 1.44657 1.04814 1.19353 1.04050 1.16779 

30 30 1.03218 1.13346 1.02941 1.12091 1.00907 1.03198 1.00839 1.03168 

30 100 1.00998 1.03956 1.01000 1.03865 1.00269 1.00980 1.00232 1.01048 

30 300 1.00310 1.01400 1.00358 1.01267 1.00113 1.00384 1.00084 1.00406 

100 5 1.16445 1.66617 1.10987 1.44539 1.04665 1.18993 1.04259 1.16701 

100 30 1.03227 1.12835 1.02969 1.11809 1.00818 1.03388 1.00764 1.03268 

100 100 1.00975 1.03970 1.00948 1.03803 1.00281 1.00991 1.00253 1.01002 

100 300 1.00344 1.01348 1.00322 1.01264 1.00072 1.00341 1.00081 1.00340 

300 5 1.16660 1.66174 1.11162 1.44535 1.04758 1.19145 1.04148 1.16636 

300 30 1.03199 1.12941 1.02946 1.11696 1.00827 1.03287 1.00795 1.03236 

300 100 1.00969 1.03938 1.00986 1.03849 1.00270 1.01035 1.00230 1.01002 

300 300 1.00341 1.01312 1.00331 1.01299 1.00086 1.00317 1.00092 1.00353 
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Table 5.26 The ratio of the sampling variance based on the imputed data over that of 

the observed score, when the variance components take values 1 and 4 

K I 1/1/1 1/1/4 1/4/1 1/4/4 4/1/1 4/1/4 4/4/1 4/4/4 

5 5 1.01244 1.02965 1.00885 1.03332 1.00421 1.01581 1.00408 1.01463 

5 30 1.00263 1.01377 1.00390 1.01013 1.00074 1.00241 1.00089 1.00200 

5 100 1.00029 1.00428 1.00080 1.00332 1.00064 1.00137 1.00002 1.00107 

5 300 1.00082 1.00143 1.00022 1.00125 1.00009 1.00054 1.00020 1.00054 

30 5 1.01402 1.03807 1.01069 1.02632 1.00447 1.01405 1.00401 1.01704 

30 30 1.00331 1.01231 1.00401 1.00952 1.00049 1.00306 1.00084 1.00319 

30 100 1.00111 1.00281 1.00072 1.00381 1.00015 1.00131 1.00015 1.00117 

30 300 1.00043 1.00121 1.00037 1.00175 1.00006 1.00034 0.99998 1.00048 

100 5 1.01329 1.04030 1.01144 1.03421 1.00502 1.01843 1.00325 1.01581 

100 30 1.00310 1.01198 1.00304 1.01057 1.00087 1.00283 1.00084 1.00328 

100 100 1.00076 1.00338 1.00110 1.00378 1.00024 1.00075 1.00024 1.00116 

100 300 1.00037 1.00138 1.00015 1.00128 1.00008 1.00036 1.00007 1.00029 

300 5 1.01469 1.04119 1.00986 1.02922 1.00466 1.01691 1.00415 1.01434 

300 30 1.00366 1.01109 1.00275 1.01050 1.00088 1.00272 1.00090 1.00330 

300 100 1.00101 1.00372 1.00084 1.00350 1.00028 1.00108 1.00021 1.00094 

300 300 1.00028 1.00127 1.00026 1.00133 1.00010 1.00035 1.00009 1.00027 
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Table 5.27 presents the parameter estimates, P-values and semipartial 
2̂  for the ratio 

variables MVVar /)(  when the variance components take values 1 and 4. 

Outcome 

Variables            (R
2
=0.9432) 

Parameter Estimate P-Value     
2

b  0.02682 <0.001 0.040 
2

w  0.00851 0.005 0.005 
2

e  -0.04558 <0.001 0.136 

K -2.14E-05 0.968 <0.001 

K
2
 3.26E-07 0.961 <0.001 

K
3
 -8.79E-10 0.959 <0.001 

I 0.00688 <0.001 0.167 

I
2
 -6.96E-05 <0.001 0.120 

I
3
 1.64E-07 <0.001 0.103 

K*I 8.69E-09 0.959 <0.001 
2

b * K -1.39E-06 0.994 <0.001 
2

b * K
2
 9.13E-10 1.000 <0.001 

2

b * K
3
 8.27E-12 0.999 <0.001 

2

b * I -0.00041 <0.001 0.044 
2

b * I
2
 1.06E-06 <0.001 0.028 

2

w * K -1.50E-06 0.975 <0.001 
2

w * K
2
 5.21E-09 0.972 <0.001 

2

w * I -0.00013 0.009 0.004 
2

w * I
2
 3.40E-07 0.025 0.003 

2

e * K -1.10E-06 0.981 <0.001 
2

e * K
2
 5.29E-09 0.972 <0.001 

2

e * I 0.00052 <0.001 0.068 
2

e * I
2
 -1.34E-06 <0.001 0.045 

2

b *
2

w  -0.00100 0.081 0.002 
2

b *
2

e  0.00339 <0.001 0.020 
2

w *
2

e  0.00058 0.306 0.001 
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Chapter 6 : Conclusion  

6.1 Importance of the Study 

Rubin’s MI methodology for handling latent variables in analyzing survey 

data is widely used in large-scale educational assessments, such as NAEP.  This 

research fills in an important gap in the backing for these procedures, namely the 

demonstration of properties for imputed latent variables in a random-effects model for 

two-stage cluster sample designs. Random effects are characteristics of common 

evaluation scenarios where there is multistage sampling. Large-scale assessments 

including NAEP use the fixed-effects model in developing plausible values for 

complex samples. This study provides a framework for including random-effects in 

the production of plausible values.  

The analytic portion of the research provides derivations of expectations of 

key population parameters in the simple case of known population parameters.  The 

empirical portion extends the construction of imputations to the case of unknown 

means, and examines the performance of the resulting imputed data sets with 

simulations.  This work provides the two-stage sampling case with the backing that 

was provided for the fixed-effects covariates case given in Mislevy (1991).   

 

 6.2 Major findings 

In the case of known population parameters, the imputation based on 

observations with measurement errors was constructed under the MI framework for a 

two-stage cluster sample design so as to re-express key characteristics of the latent 

true score variable.  The analytical solution shows that the estimator constructed 



104 

 

based on the imputation reproduces these population parameters. This latent variable 

is assumed to be normally distributed at each of the two levels in the population 

model, the cluster level and the individual level, and the measurement error is 

normally distributed. The known parameters include the population mean, cluster 

means, the within-cluster variance, the between-cluster variance and the variance of 

the measurement error.  

In the case of unknown population and cluster means, a simulation study was 

carried out to demonstrate properties of the plausible values constructed under the MI 

framework for a two-stage cluster sample design. A Bayesian procedure with a 

noninformative prior on population and cluster means was approximated by 

estimating these population parameters based on the observed data. The simulation 

study findings are summarized below: 

Research Question 1: 

According to the empirical study based on the simulated data, the 

sample estimator based on imputed scores is unbiased in estimating the 

population mean, cluster means, total variance, within-cluster variance and 

between-cluster variance. In contrast, the sample estimator based on the 

observed score is positively biased in estimating total variance and within-

cluster variance, while the bias may be ignorable in rare cases. However, the 

estimate of the population mean, cluster means, and the variance of cluster 

means based on the observed score doesn’t appear to be biased.  

To obtain unbiased point estimates, the variance reconstruction terms 

were incorporated into the imputed score. The variance of the variance 

reconstruction terms are defined as 2)1()( bkgVar   and 

2)1()( wikfVar 
 
and can be shown as  
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Larger values of the posterior variance at the cluster level )( kgVar  

correspond to larger values of any of the three variance components, between-

cluster variance ( 2

b ), within-cluster cluster variance ( 2

w ) and measurement 

error variance ( 2

e ). Larger values of 2

w  and 2

e  correspond to smaller 

values of   and larger proportions of 2

b  added from the random component 

kg  to the variance of the imputed score. The proportion of this added variance 

over the variance of the imputed score has a complex relationship to these 

variance components.  Nevertheless, )( kgVar  accounts for more than 5% of 

the overall variance only in a few cases, either when ( 2

b , 2

w , 2

e ) = 

(1,1,100), when ( 2

b , 2

w , 2

e ) = (1,1,4) and the cluster size is 30, or when the 

cluster size is 5. 

In constructing individual scores, a larger values of 2

e corresponds to 

a smaller value of   and a larger proportion of 2

w  added from the random 

component ikf to the variance of the imputed score. A larger variance of ikf  is 

associated with larger values of 2

e
 
and 2

w , while a larger relative variance 

 ikfVarR _  is associated with larger values of 2

e
 
and smaller values of 2

b

.   ikfVar  accounts for a large percentage of the overall variance for the 
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following cases: 25% when 2

b = 2

w = 2

e  and 49.5% when 2

b  = 1and 2

e   

= 100. The smallest percentage is 0.5% when 2

b  = 100 and 2

e   = 1.  When 

the ratio of the variance components is 4,  ikfVar  accounts for 25% of the 

overall variance when 2

b = 2

w = 2

e , 40.0% when 2

b  = 1 and 2

e   = 4, and 

10% as the smallest percentage when 2

b  = 4 and 2

e   = 1. 

A larger cluster size corresponds to a larger  , hence a smaller variance 

of the random component kg  and a smaller relative variance. However, the 

variance of ikf  is not affected by sample sizes. 

 

Research Question 2: 

The relationship between the sampling variance of the mean of the 

imputed score and the simulation factors were evaluated through tables, 

graphs and regression analyses. 

Simulation results were examined separately for the two simulated 

cases where the ratio of the variance components was 100 or 4, and the 

general patterns appeared to be similar. It was shown that the positive impact 

on    from 2

b  and 2

w  comes through   , while the positive impact from 

2

e  comes through   . The impact from 2

b  on    is much larger than that of 

2

w  or 2

e .  

The relationships between the sample sizes and the sampling variance 

of the imputed score are in a curved shape, as shown in the graphs. The shapes 

are illustrated by significant negative main effects, positive quadratic terms 

and negative cubic terms for the number of clusters (K) and the cluster size (I) 
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in the regression model on   ,    and   . In addition, the interaction term 

K*I shows that the impact from K (or I) on   ,    and    is larger when I (or 

K) is higher.   

According to the interaction between the variance components and the 

sample sizes, the impact from the sample sizes on the sampling variance is 

larger when the variance components are larger.
 

2

b  has no significant 

interaction effect with I. 

The variance components have no significant interaction effect with 

each other. 

We have identified predictors with major impact to the sampling 

variance, after partialling out the effect from other predictors. For outcome 

variables    and   , 2

b  has the largest impact, explaining over 26% of the 

total variance of the outcome variable when the ratio of the variance 

components is 100 and around 15% when the ratio is 4. Along with its 

interactions with K, over 60% of the variance is accounted for when the ratio 

is 100 and over 34% when the ratio is 4. For   , 2

e  has the largest impact, 

explaining over 17% of the total variance of the outcome variable when the 

ratio is 100 and 9.8% when the ratio is 4. Along with its interactions with K 

and I, over 38% of this variance is accounted for when the ratio is 100 and 

around 26% when the ratio is 4.  

The relationship between the ratio of    over    and the simulation 

factors were examined. This ratio shows the proportion of the sampling 

variance accounted for by single imputation rather than multiple imputation 

and the supplement of this ratio reflects the proportion of the missing 

information due to not observing the true score directly. The variance 
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components 2

b
 
and 2

w  have positive effects on the ratio, while 2

e  has a 

negative effect. The interaction effect of 2

b * 2

w  is negative and the 

interaction effects of 2

b * 2

e  and
 

2

w * 2

e  are positive. These interaction 

effects become weak when the ratio of the variance components is 4, rather 

than 100.  

The effect of the cluster size is a curved shape, described by the 

positive main effect, the negative quadratic term, and the positive cubic term. 

The interaction between the cluster size and the variance components shows 

that the effect from the cluster size is weaker when the variance components 

are at a higher level (100 or 4). The number of clusters has no impact on the 

ratio.  

According to the proportion of total variance explained by the factor of 

interest, the major impact on the ratio is from 2

e (27.36%) and 2

b *
2

e  

(19.19%) when the ratio of the variance components is 100, and is from 2

e

(13.4%), I (16.8%), I
2
 (12.1%), and I

3
(10.4%) when the ratio is 4. 

 

Research Question 3: 

The sampling variance based on the observed score is expected to be 

the upper boundary of that based on the true score.  The cases that violate this 

expectation are empirically shown to be due to sampling error – the number of 

cases in violation decreases when the number of repeated samples increases. 

The sampling variance based on the imputed score is expected to be 

the upper boundary of that based on the observed score. It is also empirically 

shown that violations to this expectation are due to sampling error –again the 
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number of cases in violation decreases when the number of repeated samples 

increases. In addition, when the number of imputations used in MI increases, 

fewer cases violate the expectation. The ratio of the sampling variance of the 

mean based on the true score to that based on the imputed score    represents 

the proportion of   that comes from the true score variation. The true score 

sampling variance and    are shown to have the same expected value. The 

analysis on the ratio has almost identical result as      . 

6.3 Limitations and Future Research 

The simulation study above assumes unknown population mean, but known 

variance components,
 

2

b , 2

w  and 2

e . However, in practice, the variance 

components must be estimated from previous research and current data. The proposed 

research can be extended to the case where the variance components are unknown, 

and must be estimated.  

This study uses a straightforward measurement model – CTT.  Simulation 

study could be extended to more complex models, such as IRT or latent class model, 

to provide more direct linkage to large-scale assessments. Using the framework 

provided in this study, which includes random-effects in the production of plausible 

values, one can investigate biases that may occur in the fixed-effects PVs for various 

statistics in secondary analyses, including hierarchical analyses, and determine 

whether incorporating random effects into production models is merited to mitigate 

them.  

A normal distribution is assumed for each random component in this study, 

and this assumption does in fact accord with the way the data were generated in the 

simulations. This assumption can be evaluated in practice and simulation study could 
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be extended to other generating distributions for the error variance and the true score 

variances at different stages, in order to examine robustness of inference to 

misspecification of distributions.  

A combined model with both stratification (fixed effects) and multiple levels 

of sampling (random effects) could be developed as well.  More ambitiously, one 

could consider the challenge of creating plausible values for multi-level models with 

predictors at multiple levels. 

Another component of complex sampling, unequal weights, could also be 

investigated in the sampling model.  When sampling weights are relevant, the issue of 

whether to include them in the estimation of the population model and the 

measurement model can be investigated. 

Another interesting extension would be a study of the analytical solution of the 

sampling variance for simplified cases and the estimates of empirical sampling 

variance for more complex cases. 

There are close connections between plausible values and the augmented-data 

draws for latent variables in Markov Chain Monte Carlo (MCMC) Bayesian 

estimation models.  Working out these relationships explicitly would be of interest. 
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Glossary 

Symbol Label 

  Population mean 

k
  Population mean for cluster k 

ik  Individual true score for person i in cluster k 

ikX  Individual observed score for person i in cluster k 

2

b
  

Population between-cluster variance 

2

w
  

Population within-cluster variance 

2

e
  

Population error variance 

K Number of clusters 

I Cluster size 

̂  Sample mean  

 xV  Variance of the sample mean 

 m~  
Imputed overall mean for the imputed pseudo dataset m, a random 

number drawn from   xVN ,ˆ  

)(
~

mk  
Imputed cluster mean for cluster k for the imputed pseudo dataset m 

)(

~
mik

 

Imputed individual score for person i in cluster k for the imputed 

pseudo dataset m 

RE 
The efficiency when using a finite number of proper imputations, m, 

rather than an infinite number 

)(mk
g

 

Variance reconstruction term at the cluster mean level, drawn from 

))1(,0( 2

bN    

)(mki
f

 

Variance reconstruction term at the individual level within clusters, 

drawn from ))1(,0( 2

w
N   

kx
 

The sample mean of cluster k 


 Reliability coefficient at the individual level, )/( 222

eww    


 

Reliability coefficient at the cluster level, 

]/)(/[ 2222 Iewbb    

S The population characteristics 

)(ms  The point estimates calculated based on imputation data set m 

Ms
 

The point estimates averaged across the all imputed pseudo data sets, 

M

s
s

m

M




)(
 

Ms
 Average of Ms

 across 1000 repeated samples 

 MsVar
 Variance of Ms

 across 1000 repeated samples 

valuez 
 

The standardized score for the mean of Ms
 across 1000 repeated 

samples, 
  1000/M

M

sVar

Ss
valuez


  
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)(

~
m

 

Estimator of population mean based on the imputed score ( )(

~
mik ) in 

the imputed pseudo dataset m, 
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~
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the imputed pseudo dataset m 

)( ikVar 
 

Variance of individual scores based on the true score ( ik ) 

)( ikxVar
 

Variance of individual scores based on the true score ( ikX ) 

)(mU  

The sampling variance of the point estimate using the plausible values 

treating the imputed values as observed, calculated based on 

imputation data set m 
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Within imputation variance of the point estimates using the plausible 

values from multiple imputations, averaged across the all imputed 

pseudo data sets, M

U
U
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
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multiple imputations, MMM BMUV )/11(   
2

1s
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Appendix A. 

An example of R code – this set of R code was used to create data and conduct 

analysis for research question 1. The code for research Question 2 and 3 used similar 

algorithm, with limited revisions. 

 

rm(list=ls()) 

setwd("C:\\Tiandong\\Dissertation\\Simulation\\R\\08_01_11\\V100_Rep1K") 

table.final=c(); 

j=0; 

for (k in c(5,30,100,300))     { 

for (i in c(5,30,100,300))     { 

for (sigma2.b in c(1,100)) { 

for (sigma2.w in c(1,100)) { 

for (sigma2.e in c(1,100)) { 

table.mean=c(); 

j=j+1; 

roh=sigma2.w/(sigma2.w+sigma2.e) 

lambda=sigma2.b/(sigma2.b+(sigma2.w+sigma2.e)/i) 

for (rep_time in 1:1000)   {   

#Create true score theta 

set.seed(rep_time*10+1+j*100000+400000000) 

nu=rnorm(k, mean = 0, sd = sqrt(sigma2.b)) 

nu.ik=matrix(rep(nu,i),byrow=TRUE,nrow=i,ncol=k) 

set.seed(rep_time*10+2+j*100000+400000000) 

r2=matrix(rnorm(i*k, mean=0,sd=sqrt(sigma2.w)),nrow=i,ncol=k) 

theta=nu.ik+r2 

theta.mean=mean(theta) 

theta.cluster.mean=colMeans(theta) 
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theta.Svar=var(theta.cluster.mean)/k 

theta.cluster.var=sapply(1:k, function(y) var(theta[,y])) 

theta.cluster.var.mean=mean(theta.cluster.var) 

theta.cluster.mean.var=var(theta.cluster.mean) 

theta.var=theta.cluster.mean.var+theta.cluster.var.mean 

#Create observed score X 

set.seed(rep_time*10+3+j*100000+400000000) 

e=matrix(rnorm(i*k,mean=0,sd=sqrt(sigma2.e)),nrow=i,ncol=k) 

e.cluster.mean=colMeans(e) 

x=theta+e 

e.mean=mean(e) 

e.mean.var=var(e.cluster.mean)/k 

e.var=var(as.numeric(e)) 

x.mean=mean(x) 

x.cluster.mean=colMeans(x) 

x.se=sqrt(var(x.cluster.mean)/k) 

x.Svar=var(x.cluster.mean)/k 

x.cluster.var=sapply(1:k, function(y) var(x[,y])) 

x.cluster.var.mean=mean(x.cluster.var) 

x.cluster.mean.var=var(x.cluster.mean) 

x.var=x.cluster.mean.var+x.cluster.var.mean 

set.seed(rep_time*10+0+j*100000+400000000) 

h=rnorm(10,mean=0,sd=sqrt(x.Svar)) 

h.mean=mean(h) 

h.var=var(h) 

cor=cor(as.numeric(theta.cluster.mean), as.numeric(e.cluster.mean)) 

#Create imputation data sets 
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#Create random pick from empirial distribution of mu tilda 

mu.tilda=x.mean+h 

mu.tilda.mean=mean(mu.tilda) 

set.seed(rep_time*10+4+j*100000+400000000) 

g=matrix(rnorm(k*10,mean=0,sd=sqrt((1-lambda)*sigma2.b)),nrow=10,ncol=k) 

g.mean=mean(g) 

x.ikm=rep(x,10) 

dim(x.ikm)=c(i,k,10) 

nu.tilda.ikm=rep(0,i*k*10) 

dim(nu.tilda.ikm)=c(i,k,10) 

 

for (y in 1:10){ 

a=matrix(rep(g[y,],i),byrow=TRUE,nrow=i,ncol=k); 

b=matrix(rep(lambda*x.cluster.mean,i),byrow=TRUE,nrow=i,ncol=k); 

c=matrix(rep((1-lambda)*mu.tilda[y],i*k),nrow=i,ncol=k); 

nu.tilda.ikm[,,y]=a+b+c; 

} 

nu.tilda.ikm.mean=mean(nu.tilda.ikm) 

set.seed(rep_time*10+5+j*100000+400000000) 

f.ikm=rnorm(i*k*10,mean=0,sd=sqrt((1-roh)*sigma2.w)) 

f.ikm.mean=mean(f.ikm) 

dim(f.ikm)=c(i,k,10) 

theta.tilda=roh*x.ikm+(1-roh)*nu.tilda.ikm+f.ikm 

 

theta.tilda.mean=rep(0,10) 

theta.tilda.cluster.mean=matrix(rep(0,k*10),nrow=10,ncol=k) 

theta.tilda.Svar=rep(0,10) 
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theta.tilda.cluster.mean.var=rep(0,10) 

theta.tilda.cluster.var=matrix(rep(0,k*10),nrow=10,ncol=k) 

theta.tilda.cluster.var.mean=rep(0,10) 

theta.tilda.cluster.mean.var=rep(0,10) 

theta.tilda.var=rep(0,10) 

for (y in 1:10) { 

theta.tilda.mean[y]=mean(theta.tilda[,,y]) 

theta.tilda.cluster.mean[y,]=colMeans(theta.tilda[,,y]) 

theta.tilda.Svar[y]=var(theta.tilda.cluster.mean[y,])/k 

theta.tilda.cluster.var[y,]=sapply(1:k,function(q) var(theta.tilda[,q,y])) 

theta.tilda.cluster.var.mean[y]=mean(theta.tilda.cluster.var[y,]) 

theta.tilda.cluster.mean.var[y]=var(theta.tilda.cluster.mean[y,]) 

theta.tilda.var[y]=theta.tilda.cluster.var.mean[y]+theta.tilda.cluster.mean.var[y] 

} 

theta.tilda.SM=mean(theta.tilda.mean) 

theta.tilda.UM=mean(theta.tilda.Svar) 

theta.tilda.BM=var(theta.tilda.mean) 

theta.tilda.VM=theta.tilda.UM+1.1*theta.tilda.BM 

theta.tilda.var.mean=mean(theta.tilda.var) 

table.mean=rbind(table.mean,t(c( 

j,  

sigma2.b, 

sigma2.w, 

sigma2.e, 

k, 

i, 

theta.mean, 
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x.mean, 

theta.tilda.SM, 

g.mean, 

nu.tilda.ikm.mean, 

f.ikm.mean, 

h.mean, 

mu.tilda.mean, 

h.var, 

theta.var, 

theta.cluster.mean.var, 

theta.cluster.var.mean, 

x.var, 

x.cluster.mean.var, 

x.cluster.var.mean, 

theta.tilda.var.mean, 

theta.Svar, 

x.Svar, 

theta.tilda.VM, 

theta.tilda.UM, 

theta.tilda.BM 

))) 

} # end of rep_time 

colnames(table.mean)=c( 

"j", 

"sigma2.b", 

"sigma2.w", 

"sigma2.e", 



119 

 

"k", 

"i", 

"theta.mean", 

"x.mean", 

"theta.tilda.SM", 

"g.mean", 

"nu.tilda.ikm.mean", 

"f.ikm.mean", 

"h.mean", 

"mu.tilda.mean", 

"h.var", 

"theta.var", 

"theta.cluster.mean.var", 

"theta.cluster.var.mean", 

"x.var", 

"x.cluster.mean.var", 

"x.cluster.var.mean", 

"theta.tilda.var.mean", 

"theta.Svar", 

"x.Svar", 

"theta.tilda.VM", 

"theta.tilda.UM", 

"theta.tilda.BM" 

) 

 

write.csv(table.mean,file= 
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paste(paste("seed",j,"cluster",sigma2.b,sigma2.w,sigma2.e,"k",k,"i",i,sep="_"),"csv",s

ep="."), 

row.names=FALSE) 

theta.mth2.Svar=var(as.data.frame(table.mean)$theta.mean) 

x.mth2.Svar=var(as.data.frame(table.mean)$x.mean) 

SM.mth2.Svar=var(as.data.frame(table.mean)$theta.tilda.SM) 

res=c( 

colMeans(table.mean), 

theta.mth2.Svar, 

x.mth2.Svar, 

SM.mth2.Svar) 

table.final=rbind(table.final,res) 

}#end of sigma2.e 

}#end of sigma2.w 

}#end of sigma2.b 

}#end of i 

}#end of k 

colnames(table.final)=c(colnames(table.mean),"theta.mth2.Svar","x.mth2.Svar","SM.

mth2.Svar") 

write.csv(table.final,file="table_final_v100.csv",row.names=FALSE)  
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