
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the
a. James clark school of engineering. It is a graduated national science

foundation engineering research center.

www.isr.umd.edu

Producing Reliable Full-System Simulation Results:
A Case Study of CMP with Very Large Caches

Mu-Tien Chang
Ishwar Bhati
Jim Stevens
Paul Tschirhart
Peter Enns
Daniel Gerzhoy
James Greensky
Shih-Lien Lu
Bruce Jacob

Isr TechnIcal rePorT 2012-07

gflasins
Cross-Out

Producing Reliable Full-System Simulation Results:

A Case Study of CMP with Very Large Caches

Mu-Tien Chang*, Ishwar Bhati*, Jim Stevens*, Paul Tschirhart*, Peter Enns*, Daniel Gerzhoy*

Zeshan Chishti†, James Greensky†, Shih-Lien Lu†, Bruce Jacob*

*University of Maryland, College Park
†Intel Corporation

Abstract—The greater detail and improved realism of full-
system architecture simulation makes it a valuable computer
architecture design tool. However, its unique characteristics
introduce new sources of simulation variability which could
make the results of such simulations less reliable. Meanwhile,
the demand for more levels of cache and larger caches has
increased to improve the system power and performance. This
paper presents techniques to produce reliable results in full-
system simulation of CMP computer systems with large caches.
Specifically, we propose the detailed emulation replay warmup
technique to deal with cold or incompletely warmed up large
caches. We also propose the region of interest synchronization
technique to prevent simulating non-representative phase when
running multi-program workloads. Furthermore, we quantify the
variation reduction one can achieve when using processor affinity
and checkpointing. Finally, we show that by applying all four of
these simulation techniques, the simulation variability is limited
to less than 1% and the simulation results are therefore more
reliable.

I. INTRODUCTION

Performance evaluation is fundamental to computer archi-

tecture design. Due to the complexity of modern computer

systems, architectural simulation has become the major per-

formance evaluation method since it is more accurate than

analytical models and at the same time is not as costly as

hardware development. In particular, full-system simulation is

capable of simulating an entire computer system, including

user-level application, operating system (OS), and hardware,

thus providing a more realistic framework.

Nevertheless, full-system simulation has limitations. One

problem is that since it simulates computer systems in detail,

it is slower than simpler models of simulations such as trace-

driven simulations [24] or Pin-based approaches [7]. The

consequence of trading off simulation speed for accuracy is

that users can only run truncated workloads (fewer numbers

of instructions) in order for a full-system simulation to com-

plete in a reasonable time. As a side effect of simulating

fewer instructions, full-system simulations can produce non-

representative results, which can be caused by different OS

scheduling decisions or non-coherent initial simulation states

[5]. This can lead to incorrect conclusions based on results

that are either inaccurate or exhibit large variations.

On the other hand, computer systems with more levels of

cache and larger cache capacities have emerged for better

performance and energy-efficiency. For instance, the IBM

Power7 [17] has a 32 MB L3 cache; Yun et. al [27] presented a

3D architecture with a 128 MB 3D-stacked L3 eDRAM-based

cache; Quereshi et. al [23] proposed a hybrid DRAM/PCM

memory system that uses a 1 GB DRAM cache for the

high-density PCM main memory. In this paper, we present

techniques to produce reliable full-system simulation results

in the context of CMP computer systems with large caches,

using a quad-core architecture with a 512 MB DRAM cache

for the hybrid main memory system as the case study. We

make the following main contributions:

• We identify four sources of simulation inaccuracy or non-

determinism: First, the cold cache problem occurs when a

simulation begins from a representative phase but ignores

the start-up period of the program. Traditionally, a cache

warm-up period is used as the solution to this problem,

but very large caches make warm-up inefficient and, in

some cases, ineffective. Second, the non-representative

phase problem in multi-program workloads happens if

only a subset of the programs switches to detailed

simulation at the region of interest (RoI), while other

programs switch to detailed simulation at random times.

This results in less reproducible experiments because

each program in the workload is not starting from a

known point and therefore each experiment is different.

Third, the workload imbalance problem happens as a side

effect of full-system simulation with an OS scheduler.

Since the OS scheduler state is unknown when full-

system simulation begins and the scheduler makes de-

cisions every few milliseconds [28], task switching can

have a significant effect on the reproducibility of short

period simulations. Finally, non-deterministic simulation

starting state leads to increased simulation variability. For

example, under normal operation the OS will introduce

variability in the memory locations of data. Therefore,

each experiment will start from a different system state

resulting in unreproducible experiments.

• We propose the detailed emulation replay warmup tech-

nique to deal with cold or incompletely warmed up large

caches. This technique works by capturing a trace of the

cache accesses that occur from the boot of the simulated

system to the RoI in fast emulation mode and then

replaying them through the cache sub-simulation only to

1

quickly warm up the entire cache.

• We propose region of interest synchronization by using

interprocess communication to create a barrier, which

guarantees each program of a multi-program workload

switches to detailed simulation mode at its RoI.

• We quantify the simulation variation reduction when

using processor affinity and checkpointing. Processor

affinity forces tasks to be balanced among processors.

Checkpointing ensures each simulation has the same

simulation starting state.

• We show that by applying these techniques to our case

study, a multi-core system with a large DRAM cache, the

variability of the full-system simulation is reduced to less

than 1%.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the non-deterministic simulation problems.

Section 3 presents our full-system simulation framework and

multi-program workloads. In section 4, we elaborate upon our

simulation techniques and demonstrate their effects. Section 5

describes related work. Finally, we conclude this paper in

section 6.

II. SIMULATION NON-DETERMINISM

In this section, we describe four sources of simulation

inaccuracy or non-determinism when simulating a full-system

multi-core architecture with large caches. They are:

1) The large cold memory problem, which happens when

ignoring warmup or using traditional warmup methods.

Ignoring warmup results in simulation inaccuracy. On

the other hand, traditional warmup techniques are inef-

ficient because they require long simulation periods.

2) The non-representative phase problem in multi-program

workloads happens when any of the programs switch

to detailed simulation when other programs are at an

unknow point. The consequence of this problem is that

the simulation results become less representative and

less reproducible.

3) The task imbalance problem happens when the OS

scheduler is involved when running simulations. Time

spent on rebalancing a multi-program workload can be a

major portion of the total simulation time. Consequently,

the relative percentage of user-kernel cycles becomes

non-deterministic.

4) Starting simulation from a potentially non-deterministic

state results in higher simulation variation because each

experiment starts from a different system state.

A. Cold Large Caches

To reduce the run time of simulations, a common practice

is to truncate detailed execution of the workload. One method

is to use a tool such as SimPoint [14] to get the RoI of a

benchmark. Once the RoI is defined, we can fast-forward sim-

ulation until the starting point of the RoI is reached. Detailed

simulation starts only after reaching the RoI, and then a certain

number of instructions are executed, usually a few hundred

million or few billion instructions. One problem with this

simulation strategy is that, after fast-forwarding, the processor

and memory states are still cold (invalid). The solution to

this problem is to warm up the states before starting detailed

simulation. For example, we can fast-forward X instructions,

then run detailed simulation for Y + Z instructions but only

track simulation statistics for Z instructions. Y in this case is

the warmup period. When the cache is small, this method

works since a few ten or hundred million instructions are

sufficient to warm up the cache [28]. However, when the cache

is large, such as the case of hybrid main memory architectures

with a 1 GB DRAM cache [23], the number of instructions

required for warmup would be prohibitive. For instance, as

shown in Figure 1(a) where we compare the miss ratio of a

512 MB DRAM cache with and without warmup, we can see

that even simulating 8 billion instructions, the cache miss ratio

is still incorrectly inflated.

In addition to the cache miss ratio, we introduce the

uninitialized read rate as another indicator of the degree to

which the system has been warmed up. An uninitialized read

refers to reading a memory page before the memory page is

initialized by a write. In a real system, uninitialized read can

only happen when the cache reads in a line from the backing

store during the first write operation to that line since system

boot. In general, the uninitialized read rate is low when the

running application has reached its RoI. For instance, as shown

in Figure 1(b) where we compare the uninitialized read rate of

a 8 GB hybrid memory (a 512 MB DRAM cache and an 8 GB

PCM main memory), the uninitialized read rate is over 40%

even simulating 8 billion instructions after reaching the RoI.

This indicates that the memory is incompletely warmed up.

As a result, effective warmup is an important simulation step

that is needed to ensure representative results. Furthermore,

traditional approaches which consisted of executing a number

of instructions prior to the RoI are not fully effective for

architectures which incorporate a very large cache.

B. Non-representative Phase in Multi-Program Workloads

Evaluating multi-program workloads is more complicated

than single program experiments, but multi-program simula-

tions are essential for the exploration of currently ubiquitous

multi-core architectures. There are studies which examine

the methodologies for constructing workloads from program

samples which subsequently simulate only those samples

instead of simulating the complete program [16]. In a full-

system simulation with multi-program workloads, one problem

is where to start detailed simulation such that each individual

program executes in its representative phase. In some setups,

switching to detailed simulation happens at the RoI of the

program that has the earliest RoI starting point. This is a

problem because the other programs may still be in the initial-

ization phase or in other non-representative phases. Figure 2

illustrates that each of the four constituent programs of the

workload could potentially have their RoI at different points

in time, and therefore starting detailed simulation from either

the RoI of the first program or the RoI of the last program

would not be representative. For instance, the simulation

2

 0

 0.5

 1

 1.5

 2

1 2 3 4 5 6 7 8

IP
C

Number of Instructions (B)

mix1

Without replay-warmup
With replay-warmup

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

IP
C

Number of Instructions (B)

mix2

Without replay-warmup
With replay-warmup

(b)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8

IP
C

Number of Instructions (B)

mix3

Without replay-warmup
With replay-warmup

(c)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8
IP

C

Number of Instructions (B)

mix4

Without replay-warmup
With replay-warmup

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6

IP
C

Number of Instructions (B)

lbmx4

Without replay-warmup
With replay-warmup

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8

IP
C

Number of Instructions (B)

milcx4

Without replay-warmup
With replay-warmup

(f)

Fig. 6. Replay warmup IPC results. (a) mix1. (b) mix2. (c) mix3. (d) mix4. (e) lbmx4. (f) milcx4.

NVM state. We refer to this technique as detailed emulation

replay warmup. The whole process of replay warmup takes

around 2 hours for a typical workload. Since this process

is accompanied by saving a checkpoint, the hybrid memory

replay warmup state can be restored later with the checkpoint.

This process is equivalent to a full simulation of all accesses

from system boot to the RoI from the perspective of the hybrid

main memory system. Figure 5 illustrates the flowchart of the

replay warmup process.

We compare results with replay warmup and without

warmup. The other techniques in this paper are also applied for

both cases. In particular, Figure 6 compares the IPC, Figure 7

compares the DRAM cache miss ratio, and Figure 8 compares

the uninitialized read rate. The IPC values without warmup

are larger than with replay warmup because the uninitialized

reads in the NVM complete immediately. This is because no

mapping exists for that page to a specific physical page in

the NVM. We chose to return uninitialized reads immediately

rather than fake the latency of the access as if it were mapped.

We have run the simulations from 1 billion to 8 billion

instructions and shown that if we do traditional warmup, the

warmup period could take more than 8 billion instructions

for some of our workloads. It is also shown in Figure 8 that

with replay warmup, uninitialized read rates are zero for most

cases, while without warmup, uninitialized read rates never

drop below 20% even when running 8 billion instructions.

In general, although we observe IPC and the DRAM cache

miss ratio tend to converge when we run for a large number

of instructions, a typical run of 8 billion instructions requires

around 24 hours to complete. Thus, warming up for a few

billion instructions creates a lot of overhead when running

large numbers of experiments. Moreover, if we warm up for

5

0 %

0.5 %

1 %

1.5 %

2 %

1 2 3 4 5 6 7 8

D
R

A
M

 C
a

c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

mix1

Without replay-warmup
With replay-warmup

(a)

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1 2 3 4 5 6 7 8

D
R

A
M

 C
a

c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

mix2

Without replay-warmup
With replay-warmup

(b)

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1.2 %

1.4 %

1 2 3 4 5 6 7 8

D
R

A
M

 C
a

c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

mix3

Without replay-warmup
With replay-warmup

(c)

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1 2 3 4 5 6 7 8
D

R
A

M
 C

a
c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

mix4

Without replay-warmup
With replay-warmup

(d)

0 %

0.2 %

0.4 %

0.6 %

0.8 %

1 %

1 2 3 4 5 6

D
R

A
M

 C
a

c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

lbmx4

Without replay-warmup
With replay-warmup

(e)

0 %

2 %

4 %

6 %

8 %

10 %

1 2 3 4 5 6 7 8

D
R

A
M

 C
a

c
h

e
 M

is
s
 R

a
ti
o

Number of Instructions (B)

milcx4

Without replay-warmup
With replay-warmup

(f)

Fig. 7. Replay warmup DRAM cache miss ratio results. (a) mix1. (b) mix2. (c) mix3. (d) mix4. (e) lbmx4. (f) milcx4.

too long, then the statistics we capture no longer correspond to

the representative RoI phase. For example, the mix1 workload

shows a sudden decrease in IPC after 6 billion instructions

complete because one of the benchmarks in the mix1 workload

has changed its phase.

B. Non-representative Phase in Multi-Program Workloads

In multi-program workloads, capturing the simulation be-

havior of each program’s representative phase is crucial.

Therefore, one should make sure that when detailed simulation

begins, each program starts from its RoI. To implement the

RoI synchronization (RoI-sync) mechanism, we use System

V interprocess communication semaphores [1] to communi-

cate between different programs in a workload. The master

process creates a semaphore with a unique key and sets the

count of that semaphore to the number of programs in the

workload. Then the master process forks a script into child

processes which is comprised of specific commands to start

the workload. Only this script needs to be changed when a

different workload is used. Each individual program accesses

the semaphore created by the master process at its RoI and uses

the unique key to decrement the semaphore value by one. After

decrementing the semaphore, each process then waits until

the semaphore value reaches zero. In this way, the detailed

simulation of all of the programs starts at the same time after

all of the programs have reached their RoI.

Figure 9 shows the effects of using RoI-sync as opposed

to starting detailed simulation when the first RoI is reached.

Replay warmup and processor affinity are also utilized for

both cases. We ran each experiment 20 times with 1 billion

instructions per run. When not using the RoI-sync, the differ-

ence between the maximum and the minimum IPC normalized

to the average IPC (which we refer to as the normalized max-

6

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8

U
n

in
it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

mix1

Without replay-warmup
With replay-warmup

(a)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8

U
n

in
it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

mix2

Without replay-warmup
With replay-warmup

(b)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8

U
n

in
it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

mix3

Without replay-warmup
With replay-warmup

(c)

0 %

20 %

40 %

60 %

80 %

100 %

1 2 3 4 5 6 7 8
U

n
in

it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

mix4

Without replay-warmup
With replay-warmup

(d)

0 %

20 %

40 %

60 %

80 %

100 %

1 2 3 4 5 6

U
n

in
it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

lbmx4

Without replay-warmup
With replay-warmup

(e)

0 %

20 %

40 %

60 %

80 %

100 %

1 2 3 4 5 6 7 8

U
n

in
it
ia

liz
e

d
 R

e
a

d
 R

a
te

Number of Instructions (B)

milcx4

Without replay-warmup
With replay-warmup

(f)

Fig. 8. Replay warmup uninitialized read rate results. (a) mix1. (b) mix2. (c) mix3. (d) mix4. (e) lbmx4. (f) milcx4.

imum variation of IPC) ranges from 30% to 183%. However,

when RoI-sync is used, this value is between 5% to 14%.

We observe more variability when running without RoI-Sync

because when the earliest RoI is reached, the other programs

in the workload are executing at non-deterministic locations

which can vary from run to run. Note that even for the lbmx4

and milcx4 workloads, which consist of identical benchmarks

and the same RoI, not synchronizing the starting point still

results in larger variation. By using RoI-sync, it is ensured

that each program starts from a deterministic simulation point

and its representative phase is captured.

C. Workload Imbalance

The key to avoiding the workload imbalance problem

is to make sure the workload is balanced before running

detailed simulations, as opposed to allowing rebalancing of

the workload during the detailed simulation period. Setting

processor affinity is one possible method to achieve this.

Processor affinity is a feature of the scheduling algorithm in a

symmetric multiprocessing OS. Each process or thread has a

tag indicating its preferred processors. At allocation time, each

process or thread is scheduled to its preferred processors. On

Linux, the CPU affinity of a process can be set or retrieved by

the taskset program [19]. The CPU affinity is represented by a

bitmask, in which the lowest order bit corresponds to the first

logical processor and the highest order bit corresponds to the

last logical processor. For example, assuming we are running

four programs, programs 1 – 4 on a quad core architecture

with processors 1 – 4, we can assign program 1 to processor 1,

program 2 to processor 2, etc. as shown in Listing 1. Utilizing

processor affinity can be a limitation when investigating OS

scheduling. However, this technique effectively reduces non-

determinism when targeting architectural research using full-

system simulations.

7

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s
mix1

IPC
% user cycles

(a)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s

mix2

IPC
% user cycles

(b)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s

mix3

IPC
% user cycles

(c)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s

mix4

IPC
% user cycles

(d)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s

lbmx4

IPC
% user cycles

(e)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

wo taskset wi taskset
0 %

20 %

40 %

60 %

80 %

100 %

IP
C

%
 u

s
e

r
c
y
c
le

s

milcx4

IPC
% user cycles

(f)

Fig. 10. The effect of using taskset. (a) mix1. (b) mix2. (c) mix3. (d) mix4.
(e) lbmx4. (f) milcx4.

both cases. We ran 20 samples for each experiment with 1

billion instructions per sample. When not using checkpoints,

the normalized maximum variation of IPC ranges from 3%

(mix1) to 25% (mix4). But when using checkpoints, the

normalized maximum variation of IPC for all workloads is

less than 1%. It is thus shown that simulation variations can

be effectively controlled by using checkpoints.

V. RELATED WORK

Simulation has been the major performance evaluation

method for computer architecture research. Eeckhout [13]

provides an overview of the current state of computer archi-

tecture performance evaluation methods. In particular, chapter

4 presents multi-program workloads as a performance met-

ric, chapter 5 reviews full-system simulation, and chapter

6 presents techniques on how to initialize architecture state

when using sampled simulation. Yi and Lilja [29] also give

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

wo checkpoint wi checkpoint

IP
C

mix1

(a)

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

wo checkpoint wi checkpoint

IP
C

mix2

(b)

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

wo checkpoint wi checkpoint

IP
C

mix3

(c)

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

wo checkpoint wi checkpoint

IP
C

mix4

(d)

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

wo checkpoint wi checkpoint

IP
C

lbmx4

(e)

 2.1

 2.12

 2.14

 2.16

 2.18

 2.2

 2.22

 2.24

 2.26

 2.28

wo checkpoint wi checkpoint
IP

C

milcx4

(f)

Fig. 11. The effect of using checkpoint. (a) mix1. (b) mix2. (c) mix3. (d)
mix4. (e) lbmx4. (f) milcx4.

a summary of simulation of computer architectures. In addi-

tion, simulation variability has been studied in the literature.

Alameldeen and Wood [5] present the variability phenomenon

in architecture simulations of multi-threaded workloads and

how it can lead to wrong conclusions. Their work builds on

[4] which identified commercial workload variability. They

also demonstrate that, due to non-deterministic multi-threaded

simulations, IPC as a performance indicator can be misleading

[6]. Heirman et al. [15] specifically characterize and analyze

variability in scientific parallel applications. Mytkowicz et

al. [21] describes measurement bias in computer architecture

research, where small changes in experimental setup can result

in overstated or incorrect conclusions. Burugula and Skadron

[12] proposed profiling user applications offline to get the

memory reference reuse latency. The memory reference reuse

latency further facilitates fast warmup for sampled microar-

chitecture simulations.

9

This paper focuses on producing reliable and repeatable re-

sults in full-system simulation of CMP computer systems with

large caches. Systems with large caches have become more

common. However, none of the existing works demonstrate

techniques that warmup large caches efficiently. Moreover, to

the best of our knowledge, none of the existing works show

the use of interprocess communication for forming RoI syn-

chronized multi-program workloads. In addition, we show the

effectiveness of using processor affinity, and checkpointing,

where the simulation variability is greatly reduced in a multi-

core full-system simulation environment.

VI. CONCLUSIONS

In this paper, we present techniques to produce reliable

results in full-system simulation of CMP with large caches. We

propose two techniques: detailed emulation replay warmup,

which prevents simulation inaccuracies due to large cold

caches, and RoI synchronization, which prevents simulating

non-representative phase when running multi-program work-

loads. Additionally, we quantify the use of processor affinity

and checkpointing. By utilizing all of these techniques, it is

shown that simulation variability is effectively controlled and

simulation results become more reliable and consistent. These

simulation techniques will help prevent designers using full-

system simulators from drawing incorrect conclusions.

REFERENCES

[1] Beej’s Guide to Unix IPC.

[2] NAS Parallel Benchmarks.

[3] SPEC CPU 2006.

[4] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. Martin, D. J.
Sorin, M. D. Hill, and D. A. Wood. Evaluating Non-deterministic
Multi-threaded Commercial Workloads. In Proc. Workshop on Computer

Architecture Evaluation Using Commercial Workloads, 2002.

[5] A. R. Alameldeen and D. A. Wood. Variability in Architectural
Simulations of Multi-threaded Workloads. In Proc. HPCA, 2003.

[6] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful for
Multiprocessor Workloads. IEEE Micro, 26(4):8–17, Jul.-Aug. 2006.

[7] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-
wood, A. Jaleel, Chi-Keung Luk, G. Lyons, H. Patil, and A. Tal.
Analyzing Parallel Programs with Pin. IEEE Computer, 43(3):34–41,
Mar. 2010.

[8] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proc.

ATEC, 2005.

[9] S. M. Bellovin.

[10] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, Jan. 2011.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems.
IEEE Micro, 26(4):52–60, Jul.-Aug. 2006.

[12] R. S. Burugula and K. Skadron. Memory reference reuse latency:
Accelerated warmup for sampled microarchitecture simulation. In
ISPASS, 2003.

[13] L. Eeckhout. Computer Architecture Performance Evaluation Methods.
Morgan & Claypool, 2010.

[14] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster
and More Flexible Program Analysis. In Proc. Workshop on Modeling,

Benchmarking and Simulation, 2005.

[15] W. Heirman, J. Dambre, D. Stroobandt, and J. Van Campenhout. Run-
time Variability in Scientific Parallel Applications. In Proc. Workshop

on Modeling, Benchmarking and Simulation, 2008.

[16] A. Hilton, N. Eswaran, and A. Roth. FIESTA: A Sample-Balanced
Multi-Program Workload Methodology. In Proc. Workshop on Modeling,

Benchmarking and Simulation, 2009.

[17] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s
Next-Generation Server Processor. IEEE Micro, 30(2):7–15, Mar.-Apr.
2010.

[18] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory as a Scalable DRAM Alternative. In Proc. ISCA, 2009.

[19] R. M. Love. Linux users manual.
[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full
System Simulation Platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[21] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
Wrong Data Without Doing Anything Obviously Wrong! In Proc.

ASPLOS, 2009.
[22] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A Full System

Simulator for x86 CPUs. In Proc. DAC, 2011.
[23] M. K. Qureshi, V. Srinivasan, and J. Rivers. Scalable High Performance

Main Memory System Using Phase-Change Memory Technology. In
Proc. ISCA, 2009.

[24] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero.
Trace-Driven Simulation of Multithreaded Applications. In Proc. IS-

PASS, 2011.
[25] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle

Accurate Memory System Simulator. Computer Architecture Letters,
10(1):16–19, Jan. 2011.

[26] Micron Technology. DDR3 SDRAM, 2010.
[27] Yun W, K. Kang, and C.-M. Kyung. Thermal-Aware Energy Minimiza-

tion of 3D-Stacked L3 Cache with Error Rate Limitation. In ISCAS,
2011.

[28] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins.
Characterizing and Comparing Prevailing Simulation Techniques. In
Proc. HPCA, 2005.

[29] J. J. Yi and D. J. Lilja. Simulation of Computer Architectures:
Simulators, Benchmarks, Methodologies, and Recommendations. IEEE

Trans. Computers, (3):268–280, Mar. 2006.

10

