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INTRODUCTION 

The SARS-CoV-2 or COVID-19 pandemic has become 

a growing menace, with waves following waves hurting 

the human population. According to WHO, as of May 

25, 2021, coronavirus has infected over 167 million 

individuals and caused more than 3 million fatalities 

globally (https://covid19.who.int/). Due to the multiple 

waves of the COVID-19 pandemic, Indian cities are 

also facing significant issues, with the number of posi-

tive cases growing since the first case was found on 

January 27, 2020 (Andrews et al., 2020). The second 

wave of COVID-19, which began in March 2021 in In-

dia, witnessed a substantially larger increase in con-

firmed cases than the first wave. As of April 30 2021, 

India recorded more than 400,000 confirmed cases in a 

single day, the largest of any country (https://

en.wikipedia.org/wiki/COVID-19 pandemic in India). 

The capital city of Delhi similarly recorded surges and 

plateaus in the number of daily cases, with 175 cases 

reported on March 1 2021, 28,395 instances reported 

on April 20 2021, and 3,231 cases reported on May 20 

2021 (http://health.delhigovt.nic.in/wps/wcm/connect/

DoIT_Health/health/home/). The government of India 

and the city of Delhi are battling several waves of 

COVID-19 with tactics such as total lockdown, increas-
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ing the rate of virus discovery through quick testing, 

building confinement, and launching a rapid vaccination 

push. 

The ever-increasing air pollution and its health impacts 

are a huge concern to the global population; in 2016, 

4.2 million fatalities were documented globally as a re-

sult of ambient air pollution (WHO, 2016). Many cities 

have reported an increase in respiratory ailments due to 

a rise in particulate matter pollution, such as PM2.5 and 

PM10. Respiratory mortality rose by 0.58 % for every 10 

µg m-3 rise in particulate matter 10 m in diameter (PM10) 

concentration (Analitis et al., 2006). Some studies have 

shown that increasing the concentration of daily particu-

late matter 2.5 m in diameter (PM2.5) by 10 µg m-3 in-

creases the incidence of respiratory illness by 2.07 per-

cent, and hence the hospitalization rate by 8 %. Domini-

ci et al., 2006; Zanobetti et al., 2009). Similarly, addi-

tional research discovered that for every 10 µg m-3 rise 

in ambient particulate matter PM2.5 concentration, the 

cardiopulmonary mortality rate increases by 6% to 13%. 

(Beelen et al., 2008; Krewski et al., 2009). The annual 

PM10 (60 µg m-3) and PM2.5 (40 µg m-3) levels in many 

Indian cities, including Delhi, had surpassed the Nation-

al Ambient Air Quality Standard (NAAQS). In terms of 

airborne particle pollution, India is home to eight of the 

world's top 10 most polluted cities, with Delhi being 

among the most polluted megacities (WHO, 2018). 

PM2.5 is regarded as the most dangerous pollution, 

causing health concerns all over the world (Dutta and 

Jinsart, 2021 a). Similarly, the capital city of Delhi expe-

rienced PM2.5 and PM10 values of more than 250 µg m-3 

in 2019 (CPCB, 2019). 

Several studies have found that, in addition to particu-

late matter pollution, ozone (O3) is a major polluter in 

Delhi (Chen et al., 2020; Ghude et al., 2009). Prior to 

the COVID-19 era, rising O3 concentrations in Delhi 

raised worries, and the Central Pollution Control Board 

(CPCB) started formulating strategies to address the 

health issues. O3 levels increased as well during the 

COVID-19 shutdown. Due to the role that NOX plays in 

the synthesis of NO2, the creation of NOX from industrial 

activities and vehicular emissions may be what caused 

the increase in O3 during the lockdown period. When 

exposed to sunlight, NO2 degrades further to nitric ox-

ide (NO) and an oxygen atom (O), which combine with 

ambient oxygen, i.e., (O2), to generate ozone (O3). As a 

result, O3 and NO2 are related to this process (Han et 

al., 2011; Monks et al., 2015). Furthermore, there were 

limits on transportation movements, rubbish burning, 

industrial activity, and so on throughout the COVID-19 

lockdown period, making Volatile organic carbon (VOC) 

generation less predictable. An inverse link between 

ozone (O3) and nitrogen oxide (NO2) concentrations 

were discovered. Because Delhi had low NO2 levels 

and high ground-level ozone, there was less NO availa-

ble to react with ozone (O3) and produce oxygen (O2)  

(Chameides et al., 1992; Dutta and Jinsart, 2021 b). 

Changing environmental conditions such as sun radia-

tion, temperature, and humidity can all impact O3 for-

mation and the movement of precursors for O3 creation 

(Lu et al., 2019). However, according to a study con-

ducted in Delhi, there was a reduction of 10% ,18% , 

31% , and 43% of CO, NO2, PM10  and PM2.5 in India, 

and unfavourable meteorological conditions may have 

a significant improvement in air quality if proper control 

plans are implemented, as PM2.5 increased by only 33 

% during the COVID-19 lockdown (Sharma et al., 

2020). 

The first wave (P1) of COVID-19 began in Delhi on 

March 4, 2020, with the discovery of the first COVID-19 

infected patient, and reached its peak on November 11, 

2020, with 8,593 daily infection cases. During the first 

wave of the COVID-19 pandemic, Lockdown proce-

dures enhanced Delhi's and other Indian cities' air qual-

ity, but with its enormous population, India could not 

give up on the goal of rapid economic progress (Dutta 

and Jinsart, 2021c; Dutta and Jinsart, 2021d; Dutta and 

Jinsart, 2022). Following that, new infection cases fell 

precipitously, and by December 31, just 574 new infect-

ed COVID-19 cases had been recorded, signalling the 

end of the first wave. In the time of COVID-19 second 

wave (P2), the escalating coronavirus infections in In-

dia and the state capital have presented significant is-

sues for both the national and state governments. Fol-

lowing the COVID-19 shutdown, Delhi's air quality has 

decreased once more, posing a health risk. This study 

aimed to examine Delhi's air quality and climatic char-

acteristics during two COVID-19 stages and also to 

examine the health risk of city people caused by PM2.5 

and PM10 inhalation. 

MATERIALS AND METHODS 

Study location  

According to the 2011 census, Delhi had a land area of 

1,483 km2 and a population of around 11 million peo-

ple. In terms of commerce, industry, medical care, and 

education, Delhi has grown to be one of the most sig-

nificant cities in the country. Delhi's five-season climate 

is classified as extreme by the Köppen climatic classifi-

cation system. (April–June) Summer is scorching, 

whereas winter is extremely frigid (December-January). 

In the summer, temperatures range from 25 to 45 de-

grees Celsius, while in the winter, they range from 22 to 

5 degrees Celsius. While autumn lasts from mid-

September to late November, spring lasts from Febru-

ary to March, and is the most pleasant season. The wet 

monsoon season, which starts in July, lasts roughly 

three months. The impact of climatic conditions causes 

seasonal fluctuations in air pollution. Delhi, the capital 

of India, is one of the most polluted cities in the world 

and has been the subject of most studies in India re-
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garding air pollution (Guttikunda et al., 2019). It is quite 

concerning that the second wave of COVID-19 has 

seen an increase in coronavirus disease cases in a 

heavily populated and polluted metropolis. 

 

Methodology 

The low ebb, COVID-19 first-wave infectivity peaked in 

Delhi in January and February 2021, with monthly aver-

age per day infected cases of 314 and 150, respective-

ly. However, in March and April 2021, the monthly aver-

age of new infections per day jumped to 746 and 

16,230 cases, respectively. Daily infected cases re-

duced somewhat in May 2021, yet there were still 

13,030 new cases registered between May 1 and May 

20, 2021. As a result, Delhi experienced a real high tide 

(P2) phase of COVID-19 second wave infectivity from 

March 1 to May 20 2021. This study examined Delhi's 

air quality over two periods: the first wave's "low ebb" 

and the second wave's "high tide," with variable COVID

-19 infectivity concentrations. The first phase (P1) of 

COVID-19 first wave infection in Delhi lasted 59 days, 

from January 1 to February 28, with an average of 236 

positive cases per day. COVID-19 cases grew from 

March 1 to May 20 2021 (81 days), with an average of 

over 9,500 reported cases; as a result, this period has 

been defined as the high tidal second phase (P2) of 

COVID-19's second wave (http://health.delhigovt.nic.in/

wps/wcm/connect/doit_health/Health/Home/Covid19/

Bulletin+May+2021). 

Daily data on air quality ambient concentrations of 

PM10, PM2.5, SO2, NO2, CO, and O3 (24-hour average 

data) and meteorological parameters (ambient temper-

ature (T), relative humidity (RH), and wind speed (WS) 

were collected for the city of Delhi (P1 and P2) Six Del-

hi monitoring sites were used to collect the data as part 

of the NAAQS program run by Central Pollution Control 

Board (CPCB, 2009). Main two factors for selection of 

these monitoring stations were considered: first, they 

were situated in both residential and commercial dis-

tricts, and second, they provided coverage for Delhi's 

four corners (North, South, East, West, and Central), 

as can be seen in Fig. 1. Relative humidity (RH) in (%), 

wind speed (WS) in, and temperature (T) in degrees 

Celsius (m s-1) were collected daily (24-hour average) 

from the above-mentioned monitoring sites for the city 

of Delhi for P1 and P2. 

Spearman's non-parametric correlation coefficient was 

employed to understand correlation between air con-

taminants, climatic data, and COVID-19 instances 

since variables could not be assumed to be normally 

distributed. The coefficient of correlation was calculat-

ed using SPSS 25. With a p-value of less than .01, the 

correlation coefficients were statistically acceptable 

(Hara et al., 2013). Equation 1 below demonstrates 

how to get Spearman's correlation coefficient:

Eq. 1 

where  is variation in the ranks of the associated 

variables, where n is the number of observations. 

The relative significance of contaminants and environ-

mental conditions in the spread of COVID-19 in Delhi 

throughout the two phases analyzed was determined 

Fig. 1. Locations of the monitoring stations at Delhi MT1- Jahangirpuri (North), MT2- Patparganj (East), MT3 and MT6- 

Jawahar Lal Nehru Stadium and Major Dhyan Chand National Stadium (Central), MT4- Siri fort (South), MT5- Punjabi 

Bagh (West)     
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using the multilayer perceptron (MLP), a well-known 

feed-forward neural network design of the Artificial 

Neural Network (ANN). 

In this study, the health risk assessment (HRA) was 

calculated using Delhi city's hazard quotient (HQ) on 

the basis of ambient particulate matter concentrations 

(PM2.5 and PM10) inhalation at non-cancer endpoints; 

USEPA, 2016). The inhalation exposure values (ECinh) 

for P1 and P2 were calculated using the reference con-

centrations (RfC) of particulate matter (PM) reported in 

Table 1. 

The concentration of inhaled exposure (ECinh) was 

measured in accordance with Equation (2).

                Eq. 2 

Equation (2) calculates the actual and projected values 

for the ambient PM2.5 concentrations; ET stands for 

exposure time (for non-carcinogenic substances), 

which is 24 hours per day; EF for exposure frequency, 

which is 350 days per year; ED for exposure duration 

(for non-carcinogenic substances), which is 30 years; 

and AT for average time (for non-carcinogenic sub-

stances);

.  

A quantified hazard quotient was used to characterize 

risk in the non-carcinogenic risk assessment (HQ). 

Equation 3 depicts the computation. 

                                                        Eq. 3                                                                                                

A risk analysis would anticipate unfavourable health 

impacts if the HQs were larger than one (HQs>1), and 

If the HQs were less than one, there were no substan-

tial negative health impacts (HQs1). The WHO estab-

lished the HQ values for assessing the danger to hu-

man health for vulnerable populations, including the 

elderly, children, and those who are unwell. Additional-

ly, NAAQS derived the HQs values of the Pollution 

Control Board (PCB) were used to calculate the health 

risk for demographics of regular citizens, such as 

adults. 

The hazard index (HI) is the summation of HQ,  

                                                   Eq. 4 

The total risk of non-carcinogenic problems brought on 

by various substances is estimated using HI. There is 

little risk of non-carcinogenic repercussions if the HI is 

less than one. If HI is more than one, non-carcinogenic 

repercussions should be possible, with the likelihood 

increasing as HI value rises (USEPA, 2013). 

RESULTS  

COVID-19 cases during P1 and P2 

During P1, the per day average case number of COVID

-19 was 236; during P2, the number increased to 9,514 

cases per day. The largest number of instances record-

ed per day during P1 occurred on January 6, 2021, 

when 654 cases were reported. The largest number of 

cases per day reported during P2 occurred on April 20, 

2021, with 28,395 instances, as shown in Table S1 and 

Fig.2. 

 

Air pollution during P1 and P2  across Delhi 

During P1 (Jan-Feb 2021) and P2 (March-May 2021) 

the mean PM2.5 concentrations seen from all monitoring 

stations were 186.92 µg m-3 and 78.91 µg m-3, corre-

spondingly, whereas mean PM10 concentrations detect-

ed were 297.84 µg m-3 and 206.91 µg m-3. Table 2 

shows that the mean PM2.5 and PM10 concentrations 

were greater at the time of P1  than the time of P2 . 

According to ARAI-TERI, vehicles and industry were 

the largest sources of ambient PM2.5 (33%) and PM10 

(28%) in Delhi, followed by building activities 15% and 

31%, respectively, reported by ARAI-TERI (2018). The 

mean PM2.5 concentration at MT1 (north) was signifi-

cantly higher (241.18 µg m-3) than at the other Delhi 

monitoring sites included in the research. The much 

higher PM2.5 content in the air at MT1 (north) might be 

attributed to big industrial sites located (northwest) with-

in 10 kilometers of this monitoring station. The mean 

concentration of PM2.5 in MT1 (north) was 241.18 µg m-3 

and 99.88 µg m-3 for P2. The mean PM10 concentration 

at MT1 (north) was also greater than at other monitor-

ing sites in Delhi chosen for the study. According to 

Table S2 and the boxplot in Fig. 3, the mean concentra-

tion of PM10 of MT1 (north) was 376.07 µg m-3 and 

262.30 µg m-3, respectively. Significantly lower PM con-

centrations during P2 than P1 might be attributed to the 

partial lockdown enforced by the Delhi government in 

response to growing COVID-19 cases, which encom-

passes all industrial, vehicular, and commercial activity 

(e.g., restaurants) in Delhi. 

Table 2 shows that the mean NO2 concentrations ob-

served during P1(Jan-Feb 2021) and P2(March-May 

2021) from all monitoring sites were 57.35 µg m-3 and 

Pollutants Hourly average (µg m-3) Annual average (µg m-3) 

  WHO (2018) NAAQS WHO (2018) NAAQS 

PM10 50 100 20 60 

PM2.5 25 60 10 40 

Table 1. Particulate matter reference concentrations (RfC) 
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36.95 µg m-3, in that order. Mean NO2 content at MT5 

(west) was significantly higher than at the other Delhi 

monitoring sites included for the research. Table S2 

and the boxplot from Fig. 3 reveal that the mean NO2 

content of MT5 (west) was 73.63 µg m-3 for P1 and 

50.34 µg m-3 for P2. This shows that there may have 

been some local sources of NO2 pollution near the MT5 

(West) monitoring station during P1, which may have 

resulted in considerably higher NO2 readings in the 

area compared to all other Delhi monitoring stations. 

Table 2 shows that the mean SO2 concentration record-

ed was 12.35 µg m-3 and 13.52 µg m-3, respectively. 

The mean SO2 concentration of MT3 (central) 19.46 µg 

m-3 was greater than other monitoring stations during 

P1 considered for the study in Delhi, according to Table 

S2 and the boxplot in Fig. 3. For P2, the mean SO2 

concentration at MT5 (west) was 24.94 µg m-3, which 

was higher than at other monitoring stations. 

The average CO content at MT5 (west) was much 

greater than at the other Delhi monitoring sites included 

for the research. According to Table 2, the mean CO 

content was 1.90 µg m-3 and 0.96 µg m-3. According to 

Table S2 and the boxplot in Fig. 3, the mean concen-

tration of CO in MT5 (west) was 2.48 µg m-3 for P1 and 

1.37 µg m-3 for P2. 

As shown in Table 2, the mean concentration of O3 

measured was 29.59 µg m-3 and 43.84 µg m-3. The 

mean O3 concentration of MT4 (south) was significantly 

greater than that of the other monitoring stations used 

for the study in Delhi. According to Table S2 and the 

boxplot in Fig. 3, the mean concentration of O3 of MT4 

(south) was 52.14 µg m-3 for P1 and 72.67 µg m-3 for 

P2. MT4 (South) was placed in the city's downwind 

direction (Fig. 1). Precursor pollutants for O3 generation 

may have been delivered down to MT4 (South) from 

upwind city areas, contributing to a large rise in ambi-

ent O3 concentration at this location. 

 

Meteorological factors during P1 and P2 across 

Delhi 

Table S3 and boxplots of Fig. 4 indicate the recorded 

average temperature (°C), relative humidity (RH%), and 

wind speed (WS ms-1) for both the phases of P1 and 

P2. During P1 i.e., from January to February 2021, the 

average temperature recorded was 18±2.80 °C, phase 

P1was under the influence of the winter and spring 

seasons. For phase P2 i.e., from March to May 20 

2021, the average temperature recorded was 28±2.64 °

C, phase P2 was under the influence of spring and 

summer seasons. The average RH recorded during 

Fig. 2. Cases per day during the low ebb (P1-Jan-Feb 2021) and high tide (P2-March- May 2021) period 

Statistics PM2.5 PM10 NO2 SO2 CO O3 

  P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

No. of obser-
vations 

59 81 59 81 59 81 59 81 59 81 59 81 

Mean 186.92 78.91 297.84 206.91 57.35 36.95 12.35 13.52 1.90 0.96 29.59 43.84 

Variance (n) 6698.54 1038.70 9372.63 5603.41 238.96 126.26 4.68 13.30 0.46 0.15 42.33 129.21 

Standard 
deviation (n) 

81.84 32.23 96.81 74.86 15.46 11.24 2.16 3.65 0.68 0.39 6.51 11.37 

Table 2. Mean values of ambient concentrations of all the stations in Delhi  

P1: Jan-Feb 2021; P2:  March- May 2021            
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Kolmogorov-Smirnova Shapiro-Wilk 

 P1  P2 P1 P2 

Statistic df Sig. Statistic df Sig. Statistic Df Sig. Statistic df Sig. 
No. of 
cases 
per day 

0.186 59 0.000 0.186 81 0.000 0.840 59 0.000 0.840 81 0.000 

aLilliefors Significance Correction; P1: Jan-Feb 2021; P2:  March- May 2021           

Table 3. Results from the normality test 

Variables Phase PM2.5 PM10 NO2 SO2 CO Ozone 
Tem-
peratur
e °C 

Humid-
ity (%) 

Wind 
speed 
(ms-1) 

No. of 
cases 
per day 

PM2.5 (µg m-3)  
P1 1.00 0.87** 0.17 0.11 0.58** -0.04 -0.54** 0.19 -0.12 0.02 
P2 1.00 0.80** 0.49** 0.65** 0.68** -0.21 -0.15 0.22* -0.03 -0.27* 

PM10 (µg m-3)  
P1 0.87** 1.00 0.40** 0.19 0.74** 0.06 -0.23 -0.17 -0.27* -0.15 

P2 0.80** 1.00 0.38** 0.64** 0.57** -0.13 -0.08 -0.07 0.08 -0.29** 

NO2 (µg m-3)  
P1 0.17 0.40** 1.00 -0.09 0.63** 0.22 0.45** -0.57** -0.52** -0.67** 

P2 0.49** 0.38** 1.00 0.52** 0.67** -0.36** -0.31** 0.20 -0.22* -0.41** 

SO2 (µg m-3)  
P1 0.11 0.19 -0.09 1.00 0.12 -0.03 -0.14 -0.07 0.02 0.28* 

P2 0.65** 0.64** 0.52** 1.00 0.70** 0.00 -0.32** -0.08 0.11 -0.35** 

CO (µg m-3)  
P1 0.58** 0.74** 0.63** 0.12 1.00 0.09 0.07 -0.29* -0.38** -0.36** 

P2 0.68** 0.57** 0.67** 0.70** 1.00 -0.17 -0.27* 0.11 -0.08 -0.45** 

Ozone O3 (µg 
m-3)  

P1 -0.04 0.06 0.22 -0.03 0.09 1.00 0.22 -0.38** -0.12 -0.27* 

P2 -0.21 -0.13 -0.36** 0.00 -0.17 1.00 0.44** -0.60** -0.07 0.47** 

Temperature °
C 

P1 
-
0.54** 

-0.23 0.45** -0.14 0.07 0.22 1.00 -0.66** -0.38** -0.47** 

P2 -0.15 -0.08 -0.31** -0.32** -0.27* 0.44** 1.00 -0.57** -0.51** 0.68** 

Humidity (%) 
P1 0.19 -0.17 -0.57** -0.07 -0.29* -0.38** -0.66** 1.00 0.30* 0.52** 

P2 0.22** -0.07 0.20 -0.08 0.11 -0.60** -0.57** 1.00 0.12 -0.49** 

Wind speed 
(m s-1) 

P1 -0.12 -0.27* -0.52** 0.02 -0.38** -0.12 -0.38** 0.30* 1.00 0.41** 

P2 -0.03 0.08 -0.22* 0.11 -0.08 -0.07 -0.51** 0.12 1.00 -0.34** 

No of cases 
per day 

P1 0.02 -0.15 -0.67** 0.28* -0.36** -0.27* -0.47** 0.52** 0.41** 1.00 

P2 -0.27* -0.29** -0.41** -0.35** -0.45** 0.47** 0.68** -0.49** -0.34** 1.00 

**. Correlation is significant at the 0.01 level (2-tailed); *. Correlation is significant at the 0.05 level (2-tailed). 

Note: P1: Jan-Feb 2021; P2:  March- May 2021           

Table 4. Spearman correlation test results for P1 (N=59) and P2 (N=81) 

Fig. 4. Box plots of temperature (°C), humidity (%), and wind speed (ms-1) during P1 and P2 
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phases P1 and P2 were 73.52±9.16 % and 

45.96±10.51 %, respectively. This shows that the aver-

age RH decreased considerably during phase P2. The 

average WS recorded during phases P1 and P2 were 

1.14±0.62 (m s-1) and 1.11±0.33 (m s-1), respectively. 

This shows that the average WS was marginally higher 

during phase P1 than P2.  

 

Correlation of air pollutants and meteorological 

variables during P1 and P2  

The assumption of a normal distribution of daily con-

firmed COVID-19 cases during P1 and P2 was untrue, 

as shown by the normality test results in Table 3. Kol-

mogorov-Smirnov normality test p-values were 0.000, 

less than 0.05, and Shapiro-Wilk p-values were also 

0.000, less than 0.05. In order to examine and establish 

the associations between air quality data, climatic vari-

ables, and COVID-19 validated instances during P1 

(Jan-Feb 2021) and P2 (March- 20 May 2021) the 

Spearman correlation test, a non-parametric correlation 

estimation approach, was used. 

Table 4 shows the results of a Spearman correlation 

test correlation study between COVID-19 verified cases 

and environmental and meteorological variables. Fig. 5 

presents the correlation test results for the periods P1 

(N=59) and P2 (N=81) to better understand the correla-

P1 
P2 

Fig. 5.  R program was used to produce the P1 (January to February 2021) and P2 (March to May 20 2021) Spearman 

correlation matrices. Positive correlations are denoted by the color blue, whereas negative correlations are denoted by 

the color red. The R program was used to produce the P1 (January to February 2021) and P2 (March to May 20 2021) 

Spearman correlation matrices. Positive correlations are denoted by the color blue, whereas negative correlations are 

CPD- No. of cases per day; WS- Wind speed (ms-1); RH- Relative Humidity (%); Temp- Temperature °C; PM2.5, PM10, NO2, SO2, CO, O3 

(in µg m-3)   

Independent Variable Importance (P1) 

  Importance 
Normalized Im-
portance 

PM2.5 0.146 98.6% 

PM10 0.112 75.6% 

NO2 0.149 100.0% 

SO2 0.086 58.1% 

CO 0.110 74.1% 

O3 0.066 44.5% 

Temp °C 0.070 46.9% 

R H (%) 0.130 87.3% 

W S (mph) 0.131 88.2% 

Independent Variable Importance (P2) 

  Importance 
Normalized Im-
portance 

PM2.5 0.166 100.0% 

PM10 0.087 52.3% 

NO2 0.078 47.3% 

SO2 0.109 65.6% 

CO 0.118 71.3% 

O3 0.135 81.4% 

Temp °C 0.096 58.2% 

R H (%) 0.101 61.1% 

W S (mph) 0.109 65.9% 

Table 5. Importance of the independent variables of P1 (N=59) and P2 (N=81) 

P1: Jan-Feb 2021; P2:  March- May 2021 
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tion between different variables plotted with R software. 

According to Table 4 and Fig. 5, the number of con-

firmed cases per day during P1 exhibited a significant 

positive association with SO2, Humidity, and Wind 

speed and a significant negative correlation with NO2, 

O3, and temperature. During P2, the number of verified 

cases per day correlated significantly with O3, while 

temperature correlated significantly negatively with 

PM2.5, PM10, NO2, SO2, CO, humidity, and wind speed. 

 

Important variables influencing COVID-19 spread 

during (P1) and  (P2)        

Multilayer perceptron (MLP) 

The best model, with R2 = 77.18% for the P1 phase 

and R2 = 63.29% for the P2 phase of COVID-19 trans-

mission, was created using the MLP approach with 10 

hidden neurons, with 70% of the data utilized for train-

ing and 30% for testing (Fig. 6). Table 5 also shows the 

normalized significance of the independent variable. 

The findings show that for phase P1, NO2, PM2.5, RH, 

and WS are the most important factors for COVID-19 

infection rate (above 80%), and for phase P2, PM2.5 and 

O3 are also important factors for COVID-19 contamina-

tion rate (above 80%), with O3 and temperature being 

the least significant factors for P1 and NO2, and PM10 

being the least significant factors for P2.  

 

Health risk assessment due to PM2.5 and PM10 dur-

ing P1 and P2  

Evaluation of the health risks associated with expo-

sure to PM2.5 and PM10 

Table 6 shows ambient PM2.5 and PM10 levels meas-

ured at Delhi's MT1 (north), MT2 (east), MT3 and MT6 

(centre), MT4 (south), and MT5 (west) monitoring sites. 

Furthermore, compared to the NAAQS standard, all 

monitoring stations throughout phases P1 and P2 ex-

hibit high PM2.5 and PM10 average concentrations. Table 

shows the HQs of PM2.5 and PM10 exposure. The HQs 

values are calculated using the Indian NAAQS stand-

ard for calculating health risk for Delhi inhabitants and 

the WHO air quality criteria for determining health risk 

for sensitive citizen cases. 

Table 7 shows that the HQ values for health risk as-

sessment for Delhi inhabitants were not below the per-

mitted limit in all regions since the HQs were more than 

one (HQs>1). Furthermore, PM2.5 and PM10 levels rec-

orded at Delhi MT1 (north), MT2 (east), MT3 and MT6 

(central), MT4 (south), and MT5 (west) indicate HQs 

greater than one (HQs>1) throughout both phases of 

P1 and P2. This means that city people in Delhi were 

exposed to a high level of potential risk at all these 

sites. Fine particle matter exposure might endanger 

sensitive populations such as youngsters, the elderly, 

and the sick. During high PM2.5 and PM10 concentration 

occurrences, the affected people should wear personal 

protective equipment or avoid high-risk regions. 

Equation 4 was used to determine the hazard indices 

(HI). The HI values are presented in Fig.7 using heat 

maps for P1 and P2. For phase P1, the HI of PM2.5 and 

PM10 was larger than one at all measured sites, and the 

HI of MT1 was substantially higher than at other moni-

tored locations. In phase P2, HI was more than 1 at all 

measured sites for both PM2.5 and PM10, however the 

HI values were lower when compared to P1. Further-

more, for the P2, MT1 had greater HI values than the 

other monitored locations. Different sizes of HI values 

of PM2.5 and PM10 were used to identify danger loca-

tions, as illustrated in Fig. 7. 

DISCUSSION 

COVID-19 is a respiratory ailment, and airborne trans-

mission is the primary mode of transmission across 

various populations, particularly in congested areas 

(Zhang et al., 2020). If individuals take precautions, the 

spread of coronavirus illness is likely to be reduced 

Fig. 6. Regression plot for the MLP model during P1  and P2 ) showing predicted values against cases per day 
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(Lahiri et al., 2020). The second wave of COVID-19 

had an influence on several countries (Cacciapaglia et 

al., 2020; Cousins, 2020; Looi, 2020; Tayech et al., 

2020; Vaid et al., 2020; Xu and Li, 2020). Air pollution 

may be one of the elements driving COVID-19 distribu-

tion; however, the variables influencing COVID-19 

spread are not restricted to the air pollution mentioned 

in this work. Lung inflammation caused by persistent 

NO2, O3, and PM exposure causes a variety of respira-

tory problems. Air pollution, according to published re-

search, acts as a means for viral transmission in loca-

tions where individuals have been exposed to severely 

polluted air for an extended length of time, significantly 

exacerbating the COVID-19 outbreak and its spread in 

Europe and the United States (Ali and Islam, 2020; 

Bashir et al., 2020; Berman and Ebisu, 2020; Fattorini 

and Regoli, 2020). COVID-19 has a greater negative 

impact on urban areas in India than on rural ones. In 

this regard, Delhi has been severely afflicted. The diffi-

culties that Delhi is having with COVID-19 administra-

tion are quite worrying. Because Delhi typically has low 

to very bad and dangerous air quality, it is critical to 

conduct studies to learn how air pollution influences the 

spread of COVID-19 and its mortality. Policymakers 

should also develop plans and measures to prevent 

pollution from worsening and thereby reduce health 

concerns (Meo et al., 2022). 

The main public health problem is caused by a number 

of air pollutants, including ozone (O3), nitrogen dioxide 

(NO2), sulfur dioxide (SO2), particulate matter with an 

aerodynamic width of less than 2.5 µm (PM2.5) or less 

than 10 µm (PM10), and carbon monoxide (CO) 

(Cheong et al., 2019; Brunekreef et al., 2002). The pre-

sent looked at the correlations between air quality and 

COVID-19. It was discovered that SO2 for four stations 

and O3 were favourably related to the occurrence of 

health problems. 

According to the World Health Organization, low- and 

middle-income nations incur a disproportionately large 

load, and the Pacific and South-East Asia areas are 

especially sensitive to the detrimental impacts of air 

pollution on human health. According to the Global Bur-

 January 2021 - February 2021 (P1) March 2021- May 2021 (P2) 

 Stations EC µg m-3 EC µg m-3 

  PM2.5 PM10 PM2.5 PM10 

MT1- (North) 241.18 376.07 99.88 262.3 

MT2- (East) 201.94 288.35 81.93 187.87 

MT3- (Central) 170.93 271.8 66.13 194.19 

MT6- (Central) 168.66 278.07 66.67 193.17 

MT4- (South) 171.47 290.76 70.16 216.06 

MT5- (West) 167.33 281.97 88.69 187.89 

Table 6. PM2.5 and PM10 average ambient concentrations in (µg m-3) 

 
January 2021 - February 2021 (P1) March 2021- 20th May 2021 (P2) 

  HQ (P1)   HQ (P2) 

 Stations EC µg m-3 
NAAQ
S 

WHO 
NAAQ
S 

WHO EC µg m-3 
NAAQ
S 

WHO 
NAAQ
S 

WHO 

  PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 

MT1- (North) 241.18 376.07 3.85 9.25 3.61 7.21 99.88 262.3 1.60 3.83 2.52 5.03 

MT2- (East) 201.94 288.35 3.23 7.75 2.77 5.53 81.93 187.87 1.31 3.14 1.80 3.60 

MT3- (Central) 170.93 271.8 2.73 6.56 2.61 5.21 66.13 194.19 1.06 2.54 1.86 3.72 

MT6- (Central) 168.66 278.07 2.70 6.47 2.67 5.33 66.67 193.17 1.07 2.56 1.85 3.70 

MT4- (South) 171.47 290.76 2.74 6.58 2.79 5.58 70.16 216.06 1.12 2.69 2.07 4.14 

MT5- (West) 167.33 281.97 2.67 6.42 2.70 5.41 88.69 187.89 1.42 3.40 1.80 3.60 

Table 7. Comparison of headquarters is based on the WHO and India NAAQS air quality criteria for Delhi's six ambient 

monitoring stations 

P1: Jan-Feb 2021; P2:  March- May 2021 
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den of Disease Study, ambient air pollution considera-

bly influences ischemic heart illness, cerebrovascular 

disease, and the associated loss of years of life owing 

to disability (Cohen et al., 2017). COVID-19 patients' 

circumstances worsen when the patient's heart is al-

ready compromised by another illness. The majority of 

them need ICU services. However, in an emergency 

circumstance like the covid-19 epidemic, the ICU is 

insufficient in Delhi. The majority of the patients are 

unable to live. As a result, the area AQI is an issue in 

this sort of circumstance, such as COVID-19. This com-

ponent also influences the number of crucial instances. 

Different substances are to blame for various ailments. 

Despite the fact that only pollutants such as SO2 and 

O3 have an increasing effect, the air quality in Delhi is 

detrimental, and it is a passive approach that progres-

sively impacts human health in the long run. It was not-

ed that the O3 and SO2 levels have not decreased de-

spite the lockdown, which is concerning for Delhi resi-

dents. Many countries are striving to solve the problem 

of air pollution, which severely impacts the health of 

billions of people globally. In addition to mitigating 

measures, patients with pre-existing risk factors for 

cardiovascular disease may be persuaded to explore 

initiatives to minimize air pollution emissions. As air 

pollution concentrations grow, doctors and patients who 

are more vulnerable should be more aware of early 

warning signs of health hazards. Tertiary healthcare 

institutions may organize their resource distribution 

around predicted periodic peaks in CO and O3 concen-

tration levels. 

Strengths and limitations 

Delhi is a sprawling city with consistent land use, a 

dense population, and fluctuating air quality. The physi-

cal characteristics of the area, as well as rigorous ambi-

ent air quality monitoring, provide the most up-to-date 

real-world data for investigating how air pollution im-

pacts people's health. If public hospitals are included in 

this research, the findings will be generalizable to the 

whole community. The present study could not ascer-

tain the precise health risk each participant experi-

enced because the COVID-19 exposure and outcome 

components were analyzed at the population level ra-

ther than the individual level. 

Conclusion 

The study found that the per day average case number 

of COVID-19 during the second wave (P2) was much 

higher than during the first wave (P1) in Delhi. The 

mean PM2.5, PM10, NO2 and CO concentrations were 

greater at the time of P1 than at the time of P2. Howev-

er, SO2 and O3 mean concentrations were greater at 

the time of P2 than that of P1. Both SO2 and NO2 con-

centrations in western Delhi were found to be higher 

due to contributions from local sources while O3 con-

centrations in south Delhi also remained on the higher 

side. Precursor pollutants for O3 generation went down 

drastically during P2 leading to a large rise in ambient 

O3 concentration (72.67 µg m-3 mean) in south Delhi. 

Owing to chemical coupling, across all six monitoring 

stations, O3 maintained an inverse relationship with 

Fig. 7. Hazard indices during the 2 phases P1 and P2, of the study 
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NO2 but in a nonlinear way. P1 was unleased in Delhi 

at a comparatively low temperature (17.99 °C) and high 

humid (75.32%) season than P2 (27.54°C, 45.3%). 

Spearman correlation test indicated that COVID-19 

cases maintained a significant positive correlation with 

the high temperature of P2 and high humidity of P1 in 

line with the accepted notion that COVID-19 transmit-

ted favourably in hot and humid climates. The Multi-

layer perceptron (MLP) model indicated that COVID-19 

spread was supported by air pollutants and climate 

variables like PM2.5, NO2, RH, and WS in P1 and PM2.5 

and O3 in P2.  The total health risk (non-carcinogenic), 

assessed for P1 and P2, due to the higher presence of 

PM pollution in the ambient air highlighted an important 

understanding for the policymakers. Apart from COVID 

-19, the city dwellers were also at health risk due to PM 

pollution at varying degrees across the six monitoring 

stations covered in this study of Delhi. However, both 

during P1 and P2, the health risk was much higher for 

people living in MT1 covered area i.e., the northern part 

of Delhi. Therefore, the priority is to gain control over 

PM pollution in the city so that a pandemic like COVID-

19 cannot intensify human health problems.    
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