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Review Article 

INTRODUCTION 

Modernization, industrialization, and the increase in 

population worldwide create significant water scarcity, 

one of the century's most critical challenges. (Drioli et 

al., 2021; Konni et al., 2022). As stated by the world 

trade organization, by 2025, the universal population 

will suffer from water scarcity. It will worsen in develop-

ing nations and is estimated to increase by fifty per 

cent. In addition, the disposal of manufacturing waste 

without treatment into fresh waters is becoming a com-

mon concern (Chen et al., 2020). They deteriorate the 

quality of the water, causing environmental pollution 

and resulting in adverse effects on human health due to 

the consumption of this unhealthy water (Sikder et al., 

2019). Thus, there is a need for alternative low-cost 

sustainable methods for recycling and treating the wa-

ter (Rodríguez-Chueca et al., 2019). Due to this situa-

tion, many technologies are currently utilized to elimi-

nate the pollutants from water shown in Fig. 1. Never-

theless, numerous techniques have emerged rapidly to 

enhance these aspects, reduce costs, and improve 

sustainable methods. Several researchers are explor-

ing to produce potable water using eco-friendly and 

economically viable techniques to address these chal-

lenges. 

Membrane separation technologies have gained much 

prominence amongst other techniques owing to their 

efficiencies, safety and selectivity of water resources 

(Fane et al., 2015). These techniques are classified 

based on particle removal into reverse osmosis, mem-

brane filtration, membrane reactor, gas separation, 
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nanofiltration, ultrafiltration, membrane distillation etc. 

(Vara et al., 2020). Membrane distillation is a thermally 

driven process to treat water to eliminate the non-

volatile substance. The fabrication of the membranes 

was done using several techniques. Many researchers 

explored electrospinning, wet spinning, and phase in-

version to the separation membrane and found electro-

spinning techniques are more efficient and gained 

much prominence. Electrospun membranes produced 

by the electrospinning technique have a lesser thick-

ness, exhibit uniform dispersion, and have a high sur-

face area, enhancing hydrophobicity and reducing re-

sistance (Konni et al., 2022; Bölgen and Vaseashta, 

2021; Vara et al., 2020) . Moreover, based on the meth-

ods and synthesis for fabricating these membranes, 

these can be polymeric composites; the membranes' 

preparation procedures and compositions determine 

their properties (Ismail et al., 2020). The membranes 

prepared with the polymeric substances gained much 

prominence in the research due to their low cost, per-

formance and selectivity.  The electrospinning process 

for the fabrication of the nanofibers provided an entirely 

new direction to the research in energy, environmental 

and biomedical fields. These methods are versatile, and 

fabricated fibres range from micro to nanometres. Elec-

trospinning methods naturally incorporate polymers with 

various functional materials like enzymes, drugs, and 

semiconductor nanoparticles to produce nanofibers. 

Boudriot et al., (2006) stated that nanofiber structures 

and morphology are controlled by significant parame-

ters like the solution's concentration and viscosity; the 

nanofibers' thickness tends to increase with attention; 

however, it can be avoided by adjusting the redox po-

tentials (Boudriot et al., 2006). Fig. 2 depicts the elec-

trospinning process along with its components. Nano-

fibers fabricated by this method produce high surface 

areas with small pore sizes compared to the other ma-

terials. The electrospun nanofiber quality enables its 

usage more efficiently towards seniors (Yang et al., 

2020), biomedical applications (Lin et al., 2019), water 

and air quality (Konni et al., 2021), sensors (Bölgen 

and Vaseashta, 2021). 

Table 1 shows the significant parameters that affect the 

electrospun nanofiber membranes. Moreover, nano-

fiber dimensions depend on the polymer properties, 

polymeric solution and environmental conditions. Nano-

fibers produced by the electrospun technique exhibit 

significantly enhanced properties due to their surface/

mass ratio. Many researchers have proposed fluoropol-

ymers and hydrocarbons for the fabrication of mem-

branes by using electrospun techniques as they exhibit 

higher stability, entrapments of ions, minor pore block-

age, and lower operational costs (Konni et al., 2022; 

Bölgen and Vaseashta, 2021; Vara et al., 2020). Many 

researchers have researched polypropylene, polyvinyli-

dene difluoride, Creslan 61, polystyrene etc., in water 

applications (Elmarghany et al., 2020; Konni et al., 

2022). Recent investigations proved that incorporating 

nano additives enhances the filtration performance in 

removing the impurities as these additives strengthen 

the size of the pores, surface roughness and stabilities. 

The researchers have used Metal-organic frameworks 

(MOFs) to fabricate the membranes as they have 

greater separation and adsorption properties (Li et al., 

2020). In addition, these nanofiber membranes support 

thin-film composites for forwarding osmosis and gained 

much prominence in water application. They show 

higher strengths and greater porosity with interconnect-

Fig. 1. Widely used techniques for the recycling and treatment of water 
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ed structures with minor blockage. Polymers with hy-

drophilicity have been utilized in some studies, and it 

found that these polymers outperform forward osmosis. 

Doping nanomaterial to these materials, like titanium 

dioxide, graphene oxide and zeolites, supported and 

enhanced the membrane's performances (Xiao et al., 

2020; Donato et al., 2020). 

Nanoscience and nanotechnology result in a distinctive 

and inventive medium for water desalination. Nano-

materials like carbon nanotubes, zeolites, nanofibers 

etc., have been used to improve the desalination pro-

cess, which includes distillation, adsorption and ion 

exchange owing to their higher stabilities and sieving 

abilities of the molecules in the saline solutions. The 

present review discussed nanofiber's usage in various 

water treatment applications, specifically desalination. 

Electrospun nanofiber applications in the separation of 

membranes are also critically discussed. The study 

proposed machine learning models and described their 

importance in water treatment. Further it is suggested 

that integration of the fuzzy logic methods along with 

the membrane technology in the future might be the 

best solution for water treatment.  

 

Electrospun membranes for the treatment of water 

Pressure-driven membrane in filtration 

This technology applies force to the fed waters and is 

the leading force for separating infused solution and 

filtrate. In recent years rapid advancements in technol-

ogies helped the usage of nanofibers in these technol-

ogies like micro-filtration, ultra-filtration, nano-filtration, 

and reverse osmosis; characteristics of these mem-

Fig. 2. Electrospun process for the nanofibers production (Konni et al., 2022) 

S. 

No 
Limitations Variables Effects References 

  

Polymer 

solution 

properties 

Molar mass enhancement. 

Surface tension and viscosity of 

the solution enhancement. 

Conductivity of the solution was 

enhanced. 

Solvent selection. 

Membrane stable performance. 

Enhancement of nanofiber diameter and 

pore size. 

A rise in membrane flux and a decrease 

in diameter. 

Nanofibre diameter affected. 

Liu et al., 2020 

  

Spinneret 

and collec-

tor design 

Bicomponent tri/co-axial spinner-

et 

Copper rings with polymer drop-

lets on spinneret. 

Liquid collector with a rectangu-

lar shape. 

Nanofibers with significant physical and 

chemical properties. 

Applicability in sensors. 

Fabrication of tubular membranes. 

Gao et al., 2019 

  
Practical 

reasons 

Voltage enhancement. 

A rise in flow rate. 

Distance enhancement between 

collector and spinneret. 

A rise in voltage decrease the diameter 

of the nanofiber. 

Nanofiber diameter size enhances pore 

size. 

 Hu et al., 2011 

  

Environ-

mental con-

ditions 

Increasing humidity. 

Increasing temperature. 

Nanofiber diameter decreases with a 

decrease in membrane flux. 
Yang et al., 2017 

Table 1. Significant properties affecting the nanofiber membranes fabricated by the electrospun technique  
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branes are given in Table 2. In general, the filtrate rep-

resents decontaminated water; concentrate means 

both solutes/suspended water which must be treated 

before its disposal according to Indian government 

norms. The suitability mainly depends on the pollutant 

type that must be eliminated from the feed. The efficacy 

of filtration, dropping of pressure, and adsorption effi-

ciencies of the electrospun membranes play a signifi-

cant role in water purification in pressure-driven tech-

nologies. In addition, the operating procedures and 

combination of the techniques also depend on the parti-

cle size, emulsions, microbes, organic/inorganic com-

pounds etc. Another widely used membrane technology 

includes forward osmosis, categorized under the os-

motically driven methods.  

 

Microfiltration 

These membranes are sieve based and remove the 

particles with the size of 0.1-10 µm along with the bac-

teria and suspended particles (Hu et al., 2015). The 

membranes with the supra-micron size are used to pre-

filtrate the particles with larger sizes. Due to low energy 

consumption and higher production rates. Electrospun 

membranes showed higher performance than innate 

microfiltration membranes due to their uniformity in pol-

ymer dispersion (Aslan et al., 2016). In addition, a sig-

nificant disadvantage of the microfiltration membranes 

is organic content removal; as this content is more mi-

nor than membrane pore sizes, it is harder to remove 

and results in fouling, leading to higher losses of per-

meate; to avoid these drawbacks modification of the 

membranes are much needed and in the current sec-

tion modification of the membranes with the electro-

spun techniques for the water treatment are discussed 

(Konni et al., 2022; Bölgen and Vaseashta, 2021; Vara 

et al., 2020). 

Highly used electrospun nanofibers for the treatment of 

water are:  

Gopal et al. (2006) used poly (vinylidene fluoride) for 

microfiltration removed the polystyrene particles with 90 

% efficiency. 

Barhate et al. (2006) synthesized electrospun nano-

fibers of acrylonitrile homopolymer/polyethylene tereph-

thalate for microfiltration with high flux. 

Aussawasathien et al. (2008) Fabricated nylon nano-

fiber filters separate micron/sub-micron particles from 

the aqueous medium. 

 

Ultrafiltration 

Ultrafiltration is vital in filtering bacteria, viruses and 

biological cells (Shi et al., 2014; Konni et al., 2022). 

Ultrafiltration is also a pressure-driven filtration tech-

nique that removes the particulate matter from 10-3 to 

10-1µm. In this technique, membrane size is the factor 

liable for higher performance. In this method, solutes 

with smaller sizes pass over the membrane, and larger 

particles are eliminated. The primary applications of this 

technique are for pre-treatment before the reverse os-

mosis, reclamation and bioreactors. Nevertheless, the 

significant disadvantages of the ultrafiltration mem-

branes are lower output and sensitivity of the pollutants 

in the infiltration process, and the large closed pores do 

not conduct the diffusion of water, reducing their effi-

ciencies (Goh et al., 2015). Thus, there is a need to 

develop novel membranes with porous supports in ul-

trafiltration membranes (Dobosz et al., 2017; Okoji et 

al., 2022). The conventional polymeric ultrafiltration 

membranes are fabricated using the phase inversion 

method and have limitations like the lower flux and high 

fouling rate. An additional problem with this method for 

membrane fabrication is the more significant pore size 

discussed in, the earlier section, resulting in fouling and 

S.no Membrane Type 
Electrospun polymers 

used 
Properties Limitations References 

1.   Micro-Filtration 

Poly ether, Polyvinylidene 

difluoride, Poly Ethelene, 

Poly propylene etc. 

Greater pore 

size and connec-

tivity 

Highly prone to 

blockage of the 

pore 

Chen et al., 2020 

2.  Ultrafiltration 

Polyether ether ketone, 

Poly propylene, Poly eth-

ylene etc. 

Asymmetric pore 

structure high 

permeate flux 

Sensitive to pres-

sure and strenu-

ous process for 

cleaning 

Dobosz et al., 2017 

3.  Nanofiltration 
Polyhydroxyalkanoate, 

Polysulfones etc. 

Higher retention 

time enhances 

the desalination 

process 

Higher production 

cost, lower stabil-

ity 

Shen et al., 2019 

4.  Reverse Osmosis 
Creslan 61, Polyether sul-

fone etc. 

High efficiencies 

in separation 

Pressure-

sensitive and 

fouls faster 

Zhou et al., 2019 

Table 2. Membrane properties used in the pressure-driven membranes to separate impurities from water. 
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incomplete retention of the suspended particulate  

matter (Sagle and Freeman, 2007). Concurrently, there 

is a need for scaffolds of electrospun nanofibers with 

features like highly porous and hydrophilic. It is to be 

overserved that all three layers should be laminated to 

maintain stability and porosity. This electrospun  

ultrafiltration membrane is proven more efficient than 

conventional membranes by gaining higher flux and 

rejection rates (Yoon et al., 2006). Further research is 

needed to optimize the layers' thickness to enhance 

water permeability. 

 

Nanofiltration  

This process includes the lower portion of ultrafiltration 

and the upper part of reverse osmosis with a range of 

102-103 nm. Low et al. (2018) used the nanofiltration 

process is known for disinfection, removing dyes, sof-

tening water, and removing the organic content and 

divalent metal ions. The nanofiltration process has high 

trans membranes with more tremendous pressures and 

Membrane  

application 
Electrospun Polymer Contaminants removed References 

Desalination and 

removal of heavy 

metals. 

Aminated polyacrylonitrile nano-

fibers coated with carbon 

Lead, copper, cadmium and chro-

mium 
Sun et al., 2016 

Carboxylic functionalized polyacrylo-

nitrile nanofibers 
Lead and methylene blue Zhao et al., 2018 

Chitosan nanofibers doped with tita-

nium dioxide nanoparticles 
Copper and lead Razzaz et al., 2016 

Oxidized polyacrylonitrile nanofibers Lead and cadmium Lee et al., 2017 
Double layer MOF-88 doped with 

polyacrylonitrile at the top and poly-

vinylidene difluoride at bottom 

Lead Efome et al., 2018 

Polyacrylonitrile functionalized with 

the ethylene and ethylenediamine 
Zinc lead and copper Martín et al., 2018 

Cellulose modified with montmorillo-

nite 
Chromium Cai et al., 2017 

Chitosan doped with the titanium 

dioxide 
Congo red and methyl orange Habiba et al., 2019 

Chitosan grafted by glycidyl methac-

rylate/ polyaziridine. 
Cobalt, chromium and copper Yang et al., 2019 

Iron oxide/ multi-walled carbon 

nanotubes/ polyamide hybrid nano-

fibers 

Lead 
Bassyouni et al., 

2019 

polyacrylonitrile modified with eth-

ylenediamine 
Chromium Li et al., 2018 

polyacrylonitrile doped with thiol 

loaded with silver nanoparticles 
Rhodamine B and methylene blue Li et al., 2020 

Melanin extracted from Armillaria 

cepistipes 

Lead, nickel, cadmium and chro-

mium, 
Tran-Ly et al., 2020 

Oil separated from 

water 

Polylactide membranes Oil/ water Zhang et al., 2020 
Polyvinylidene difluoride doped with 

polystyrene and iron oxide. 
Sunflower/diesel/motor oils Jiang et al., 2015 

Poly Methyl Methacrylate 
Oil/water separation with greater 

flux after passing CO2 
Che et al., 2015 

Polysulfone fibres Hexane and soybean oil Obaid et al., 2018 
Poly (vinylene fluoride) tree-like 

membrane 

Oil/water separation and pH-

responsive 
Cheng et al., 2017 

Carbon nanofiber/polyvinyl alcohol/

graphene oxide nanofiber 
Engine/pump/soybean oil Xu et al., 2018 

Polylactic/chitosan mats Rhodamine B/oil/water separation Wang et al., 2018 

Bacterial-derived cellulose and poly-

hemiaminal 
Oil/ water Li et al., 2018 

Nylon/cellulose acetate/

polyacrylonitrile 
Oil in water Bae et al., 2018 

Janus nanofibers Oil/ water Jiang et al., 2017 
Polyacrylonitrile doped with titanium 

dioxide nanoparticles 

Oil/water separation/

photocatalysis 

Saleem and Zaidi, 

2020 

Polyamic acid 
Oil/ water separation by using a 

gravity separator 
Zhang et al., 2020 

Polyallylamine hydrochloride Oil/ water Guo et al., 2020 

Table 3. Electrospun membranes for the adsorption of impurities from water 
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exhibits electrostatic effects.  They showed the differ-

ence between the nanofiltration process and the re-

verse osmosis process is that a Nanofiltration process 

removes the monovalent atoms and rejects the divalent 

or trivalent atoms during the operation be attributed to 

the steric hindrance and Donnan repulsions. The nano-

fibrous ultrathin membranes must have high porosity 

for moderate pressure and the forces applied during 

the operation. Thin-film nanofiber composites exhibited 

higher performance in pollutant removal; Shen et al. 

(2016) identified that these membranes are used for 

commercial operations and made up of polyamide ma-

terials doped with the polyacrylonitrile thin-film nano-

fibers, and these membranes exhibited two times high-

er flux retention with higher rejection rates (Shen et al., 

2016). Decisively, electrospun techniques are one of 

the most favourable techniques for uniform membrane 

fabrication with interconnected pore structures for water 

and wastewater treatment. 

Nevertheless, owing to its fragile nature, a substrate is 

necessary. These nanofiber membranes were used for 

pressure-driven application in water/oil separation, 

heavy metal adsorption, filtration of microbes and de-

salination. The widely modified electrospun nanofibers 

for removing the contaminants are tabulated in Table 3. 

 

Desalination 

The desalination technique is potent and reliable for 

potable water production for the people residing in the 

coastal areas by treating the seawater. Among these 

processes, reverse osmosis, nanofiltration, ultrafiltra-

tion, electrodialysis, reverse osmosis and membrane 

distillation are efficient in terms of thermal and electrical 

energy usage (Konni et al., 2022). Nanofiltration and 

ultrafiltration are widely used pressure-driven tech-

niques consisting of hallo and sheet-like nanofibers. 

Many researchers have much-researched cellulose 

acetate and polymeric materials and their combinations 

(Konni et al., 2022; Vara et al., 2020). Electrolysis and 

reversal electrodialysis techniques utilize DC currents 

bypassing the ions via membranes with oppositely 

charged materials and found that the ions' rate of flow 

and concentrations is a deciding factor for filtration effi-

ciencies. Forward osmosis techniques are new and 

have the potential for commercialization for the process 

of desalination of saltwater. The higher osmotic pres-

sures of the membranes draw the clean water from the 

feed and don't require external forces. Membrane de-

salination techniques have limitations in commercial 

applications in the desalination process, and this pro-

cess is a hybrid of desalination and reverse osmosis 

techniques. The membrane desalination process has 

synthetic membranes, exhibits hydrophobicity, and al-

lows water vapour to pass through. The pressure acts 

as a powerful force for the flow of liquid in the mem-

brane distillation process (Basile and Curcio, 2018). 

The most potential application of this membrane is test-

ed with the membranes distillation procedure for ex-

tracting the potable water from the feed water. These 

membranes showed stable performance in the desali-

nation process continuously for eight hours. Conclu-

sively the desalination process's future application has 

been tabulated in Table 4. 

 

Machine Learning for the Prediction of the 

Wastewater Quality                 

The concept of thinking of machines on the conver-

gence concepts gained prominence in the early 1950s. 

During recent neurology studies, the brain discovered 

an electrical network of neurons for conducting pulses 

(Srivastava and Handa, 2022; Hameed et al., 2021). 

Alan Turing's computational theories revealed that any 

form of computation could be expressed digitally. There 

is a close interrelationship between computational con-

cepts and the electronic pulses of the brain. These con-

cepts have become a pioneer study for the Machine 

Learning (MLS) we use today. Even though several 

machine learning and computational works are related, 

they only generate predictions, and not all the machine 

learning works might be applicable in real-time applica-

tions. Mathematical modelling studies for optimizing the 

process parameters might be the best domain for ma-

chine learning. Thus, implementing the MLS can mimic 

the human brain operations that the data combination 

with neural networks can operate, termed predictive 

analytics, used for commercial purposes. The term 

fuzzy represents ambiguity; in the current world, for real

-time applications to face situations using the senses, it 

is impossible to tell whether a decision is true or false. 

In these situations, fuzzy logic provides a suitable solu-

tion with high probability and greater flexibility for good 

results (Srivastava and Handa, 2022). Thus, in recent 

Fig. 3. Three-layer ALN back propagation age for water 

treatment (Hameed et al., 2021) 
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Methods Short time frame (< 10 years) Extended time frame (< 20 years) 

Microfiltration/

Ultrafiltration 

Reduction in cost 

An increase in the usage of a membrane made up of 

ceramic 

Development in instrument modules 

Pretreatment enhancements in reaverse osmosis 

Developments in vibratory and responsive membrane 

systems 

Enhancement in telemetric 

Availability of technologies in the remote areas 

Availability of the isoporous mem-

branes 

Uniformity in system modules 

Microfiltration/ultrafiltration as stand-

ard pretreatment reverse osmosis 

Worldwide utilization 

  

Reverse osmosis/ 

Nanofiltration 

Enhancement of permeability 

Reduction of cost 

Robust membrane production at a larger scale 

Development of spiral modules 

Development of closed-circuit desalination 

Introduction of fouling sensor system 

Increase of hybrid system combinations like nanofiltra-

tion/reverse osmosis, forward osmosis/reverse osmo-

sis 

Switching to hallow membranes 

Switching of hollo membranes to ultra

-permeable membranes 

Negligible biofouling 

Potable equipment 

Integration of reverse osmosis plant 

with the reclamation plant 

Table 4. Future possibility of membranes in treating water and wastewater (Konni et al., 2022) 

Fig. 4. Fuzzy system (FS) for water treatment ( ). 

Fig. 5. ANLN and FS integrated model for water treatment (Okoji et al., 2022) 
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years many researchers (Srivastava and Handa, 2022; 

Hameed et al., 2021; consid-

ered MLS to avoid the uncertainties that might occur 

during accounting in any situation. Artificial neural net-

works (ANLN) are one of the MLS acting as a founda-

tion for deep learning approaches (DLPs). The ANLN 

designs are inspired by the brain of humans relating to 

the neurons and how they communicate with each oth-

er. Node layers (NL) are generally used for the ANLN 

Construction, and there are three levels NLs, i.e., input, 

hidden and output layers. Each node has a specific 

weight and maximum value for linking the networks. 

These models help determine the production parame-

ters of each processing unit. Thus, these predictions 

can help analyze the treatment required for the effluent 

that comes out from each unit which prevents the mem-

branes of the units. For instance, if the projection 

shows that the effluent is becoming more acidic, then 

the water industries can apply the neutralization tech-

niques and vice versa. These methods might be the 

best solution for the future as they reduce the damage 

costs of the equipment. MLS has a wide variety of ap-

plications in the water industry, gaining prominence in 

the past few years in treating wastewater. Even though 

many MLS are available, the ANLN, Fuzzy interface 

systems, and Adaptive-Neuro Fuzzy (ANF) gained 

much prominence in predicting the effluent parameters 

based on the influents in the treatment plants using 

historical data sets.  

 

ANLN 

The current design methods motivate the human brain 

network connected with neurons. ANLNS are computa-

tional models consisting of different mechanisms that 

accept the inputs and provide results based on the be-

ginning functions. Every element in this MLS is analo-

gous to the brain system and consists of algorithms 

and mathematical modelling that mimic the brain's func-

tions. The influent physicochemical parameters are 

generally used for analyzing the network of the influent 

and effluent quality of the treatment plants. The NL hid-

den layers are defined according to the dataset, and 

the accuracy of the water was determined using an 

array for analyzing the model with the results obtained 

(Fig. 3). However, these methods have certain limita-

tions and can't be considered accurate for treating wa-

ter and wastewater (Srivastava and Handa, 2022). 

 

Fuzzy analysis 

This analysis is used to implement the knowledge to 

gain control over the analytical instruments used in the 

treatment units. Like other MLS that is binary true or 

false, the current methods use the degree of truth that 

can be accurate and considered a subset of the multi-

ple-valued logic. The present analysis has high preci-

sion and accuracy and is widely employed in the water 

industry (Srivastava and Handa, 2022). The functional 

models (membership) used in the water industries are 

shown in Fig. 4. The fuzzy consists of if-then state-

ments with defined variables in the data set. 

of the 

influent and out fluent using the Fuzzy analysis and 

proved to be significant with less variance than the la-

boratory results. Further, they proposed that using 

these techniques in predicting water quality is accurate. 

Even though these methods are proper, these methods 

are replaced by the adaptive neuro-fuzzy systems, 

which are more accurate. Javadian et al. (2018) pre-

dicted the characteristics of the influent and out fluent 

using the Fuzzy analysis and proved to be significant 

with less variance than the laboratory results. Further, 

they proposed that using these techniques in predicting 

water quality is accurate. Even though these methods 

are proper, these methods are replaced by the adaptive 

neuro-fuzzy systems, which are more accurate.

 

Fuzzy analysis 

This analysis is used to implement the knowledge to 

gain control over the analytical instruments used in the 

treatment units. Like other MLS that is binary true or 

false, the current methods use the degree of truth that 

can be accurate and considered a subset of the multi-

ple-valued logic. The present analysis has high preci-

sion and accuracy and is widely employed in the water 

industry (Srivastava and Handa, 2022). The functional 

models (membership) used in the water industries are 

shown in Fig. 4. The fuzzy consists of if-then state-

ments with defined variables in the data set. 

of the 

influent and out fluent using the Fuzzy analysis and 

proved to be significant with less variance than the la-

boratory results. Further, they proposed that using 

these techniques in predicting water quality is accurate. 

Even though these methods are proper, these methods 

are replaced by the adaptive neuro-fuzzy systems, 

which are more accurate. Javadian et al. (2018) pre-

dicted the characteristics of the influent and out fluent 

using the Fuzzy analysis and proved to be significant 

with less variance than the laboratory results. Further, 

they proposed that using these techniques in predicting 

water quality is accurate. Even though these methods 

are proper, these methods are replaced by the adaptive 

neuro-fuzzy systems, which are more accurate.

 

ANLN-FS 

This method is a combination of ANLN and FS (Fig. 5). 

This system can analyze even nonlinear applications, 

and in recent years, this stent has acted as a universal 

estimator. The data input was accepted by the primary 

layers of the network and associated with the other 

functions. The secondary layer is used for locating the 

base rules, the third is for converting data, and the 
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fourth is for accepting the processed values. Finally, 

the fifth layer is used for the defuzzied of the data to 

provide accurate output. The current method is highly 

reliable for the identification of the characteristics of 

effluent.   Okoji et al. (2022) used this model for the 

prediction and the removal of the trihalomethanes and 

removed successfully from the influent. Mullai et al. 

(2022) used similar methods for modelling the sludge 

blanket reactor to treat the industrial effluents.  Sri-

vastava and Handa (2022) proposed this method for 

treating industrial wastewater and stated that the cur-

rent process is efficient compared to the other meth-

ods. More research on fuzzy analysis integrating the 

ANLN and FS is required for the membrane techniques 

for removing the pollutant by using electro-spun nano-

fibers as the current methods are not entirely imple-

mented in this sector, which might enhance the perfor-

mance of the water treatment.  

Conclusion  

The availability of potable water is becoming a signifi-

cant concern worldwide. Novel methods are developed 

to meet the needs of the increasing population and es-

sential drinking water standards. Nanofibers are proven 

efficient and potent in these lines by providing a new 

dimension in the water industry for water purification. 

These membranes consist of beneficial features like 

larger surface areas and pore sizes. Electrospinning 

techniques are convenient in fabricating the nanofibers 

by providing a viable method for tuning the nanofiber's 

aperture size. Utilization of these membranes in the 

water treatment gives good results. Machine learning 

languages and statistical procedures like fuzzy logic 

integration with these new technologies might be help-

ful for the water industries as they help to predict the 

effluent and influent qualities. These predictions will 

reduce the costs associated with the treatments and 

prevent membrane blockages and fouling. Even though 

very few studies are available in water treatment using 

fuzzy, the proposed methods in the review and their 

application in electrospun nanofibers pressurized mem-

brane technologies are gaining prominence recently. 

Applying these integrated methods in the future might 

help the water industry's prospects. Several challenges 

should be overcome and possible only by collaborating 

with institutional and industrial research. Researchers 

must concentrate on the current areas as it is entirely 

new, and this helps to develop affordable engineering-

scale units and highly effectual electrospun membranes 

for water treatment. 
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