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INTRODUCTION 

 

With the huge rise in wastewater toxic and recalcitrant 

chemicals, there is growing concern about developing 

new advanced, effective remediation and environmen-

tally sustainable technologies to tackle water contami-

nation. Industrial wastewater discharges, such as petro-

chemical, tannery, coke wastewater, pulp and paper 

contain high phenolic concentrations (Villegas et al., 

2016). Phenol, a protoplasmic toxin causes cell mem-

brane destruction, protein denaturation, and cytoplas-

mic coagulation leading to cell death and necrosis 

(Downs and Wills, 2020). It has been shown to affect 

the metabolism, survival, and reproductive ability of 

fish, while sub-lethal doses of phenol interact with vari-

ous enzyme activities (Al-Khalid and El-Naas, 2012).  

It is reported that phenol has a low level of persistence 

in air, water, and soil has a low bioaccumulation poten-

tial and is moderately harmful to aquatic species 

(Bingham and Coherssen, 2012). However, phenol 
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contamination of underground water has been reported 

to persist for several years. Phenol toxicity may disrupt 

the aquatic food web and affect higher food chains, 

such as humans, by affecting the organs, especially the 

nervous system (Duan et al., 2018). Several environ-

mental bodies around the world, such as the World 

Health Organization (WHO), Environmental Protection 

Agency (EPA), USA and the European Union (EU), 

have listed phenol as a priority pollutant. A high con-

centration of phenol, as high as 3000 mgL-1 in industrial 

effluents, is reported (Hussain et al., 2015). In India, 

0.001 mgL-1 of phenolic compounds is acceptable in 

drinking water, and 0.002 mgL-1 is the permissible limit 

as per BIS: 10500 (1991). Therefore, the concentration 

of phenolic pollutants in wastewater must be brought 

within acceptable limits through pre-treatment process-

es before release into the environment. 

Various separation technologies, such as nano-

filtration, distillation, absorption, extraction, etc. and 

destruction technologies such as oxidation, ozonolysis, 

electrochemical and photocatalytic oxidation, etc. have 

been practiced removing phenol. However, these ap-

proaches have many drawbacks, such as the complexi-

ty of the process, toxic by-product production, inability 

to degrade low concentrations of phenol, high operating 

costs, and high energy consumption. Contrary to it, bio-

logical degradation of phenol has been considered an 

alternative method with complete mineralization poten-

tial, no toxic by-product formation, and can be operated 

relatively cheaply.  

Many microorganisms are capable of using phenol as 

the primary source of carbon and energy and several 

efficient strains were isolated from high-phenolic pollut-

ed environments, such as Psuedomonas (Wasi et al., 

2013), Acinetobacter (Liu et al., 2016) and Candida 

tropicalis (e Silva et al., 2019). The literature review 

suggests that Acinetobacter species can degrade high 

concentrations of phenol~ as 2000 mgL-1 (Yadzir et al., 

2016). The behaviour of high-strength phenol degrader 

under low phenol micro pollution conditions is less well 

understood.  

Aerobic degradation is typically achieved via ortho or 

meta pathways, leading to the formation of cis, cis-

muconic acid/ or 2-hydroxymuconic semialdehyde (2-

HMSA), respectively, which are further metabolized in 

the tricarboxylic acid cycle (TCA). The biochemical deg-

radation pathways and kinetic mechanisms may differ 

under a low/or high phenolic environment. With the 

change of phenol concentration from low to high, 

change in the degradation pathway as well as biodegra-

dation kinetics has been reported (Lim et al., 2013). To 

date, little information is available in the literature on the 

kinetic response of high phenol degraders such as Aci-

netobacter baumannii. Therefore, the present study 

focused on investigating the kinetic behaviour of growth 

and phenol degradation of A. baumannii W29.  

MATERIALS AND METHODS 

Media 

The minimal salt media (MSM) with constituents 

KH2PO4 0.5 g, K2HPO4 0.5 g, CaCl2 0.1 g, NaCl 0.2 g, 

MgSO4.7 H2O 0.5 g, MnSO4.7 H2O 0.01 g, FeSO4.7 

H2O 0.01 g, NH4NO3 1.0 g per liter and pH 7.2 was 

used for the preparation of liquid medium. The 15 g 

agar was added to the medium to obtain a semi-solid 

MSM medium. 

 

Sample collection and isolation 

Wastewater samples were collected from the Bindal 

river, Dehradun, Uttarakhand (India). The samples 

were taken by completely inverting the sample contain-

er over and immersing it 0.3 m under the water's sur-

face.A total of 2L of wastewater was collected from the 

Bindal river, Dehradun (Uttarakhand) in a pre-sterile 

glass bottle. Then, samples were transported to the 

laboratory on ice packs within 1 h of collection. The 

viable count of the bacteria in the collected sample was 

~105 CFU/ml. Isolation of bacteria from the wastewater 

sample was done by filtering water through the mem-

brane filter paper as per Hamner et al. (2007) proce-

dure with some modifications. Firstly, the wastewater 

was filtered under vacuum through Whatman number 1 

filter paper. The filtrate was then passed into a 0.45μm 

pore membrane filter at the top of the 0.2μm mem-

brane. 

 

Screening phenol-tolerant bacterial strain 

After membrane filtration as above, the bacteria con-

tained on the membrane filter were cut into pieces, 

which were then immersed in the liquid MSM medium 

with phenol (5mgL-1), then agitated in a rotary shaker at 

100 rpm at 300C. The culture, showing signs of growth, 

as seen from turbidity, was again inoculated into freshly 

prepared MSM medium with phenol to acclimatize the 

strain to grow in the presence of phenol. After 21 days 

of acclimatization, the culture was inoculated to fresh 

MSM medium with phenol. The pure strain was isolated 

by performing serial dilution, pouring onto MSM agar, 

and picking up single colonies distinctly differing in mor-

phology. The single colony was repeatedly streaked on 

an agar plate to isolate the pure strain and was grown 

in MSM medium with only phenol (100-1000 mgL-1) as 

an energy source. The phenol degrading ability of 

strains was selected based on efficient phenol utiliza-

tion capacity that was determined by measuring the 

remaining phenol in the medium. The most efficient 

phenol degrading strain was designated as W29. 

 

Morpho-biochemical identification of strain 

The phenol degrading strain was examined by Gram 

staining and characterized by shape. Different bio-

chemical tests were conducted to identify the selected 
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phenol-degrading strain W29 according to Bergey's 

Manual (Holt et al., 1994). 

 

Molecular characterization of strain 

Molecular identification of strain W29 was performed by 

partial amplification of specific parts of 16S rDNA using 

universal bacterial primers (27F and 1492R). A fast 

DNA isolation kit from Q Biogene was used for gDNA. 

The PCR reaction mixture (30 μl) consisted of primers, 

27F and 1492R universal bacterial primers (1μl each of 

10 pmolμl-1), gDNA (2.5μl), Taq polymerase (0.4 μl of 

5Uμl-1), dNTPs (0.6μl of 10 mM ) and MgCl2 (1.8 μl of 

25 mM), 3μl of 10X buffer and 19.7μl of distilled water. 

The amplified product was separated by agarose gel 

electrophoresis, gel previously cast with ethidium bro-

mide (5μgml-1). DNA band was visualized in UV light. 

The amplification product was sequenced using Big 

Dye Terminator. The sequence was submitted to Na-

tional Center for Biotechnology Information (NCBI), and 

accession number\ was assigned to the isolated strain 

Acinetobacter baumannii W29 by Gene Bank as 

KF686823. The Basic Local Alignment Search Tool-

nucleotides(BLASTn) program was used to align the 

partial rRNA of our strain to rRNA sequences in the 

NCBI database. The neighbour-joining method was 

used for building phylogenetic trees (Saitou and Nei, 

1987). 

 

Batch culture and biomass growth 

An aliquot of 1ml of suspension culture (absorbance 

A600 nm 0.03-0.05) of phenol tolerant strain, A. bau-

mannii W29 was inoculated in 100 ml of MSM medium 

containing phenol (100 mgL-1to 800 mgL-1) as an only 

energy source. The biomass concentration was meas-

ured at regular intervals by centrifuging 1 ml of suspen-

sion culture at 5000 rpm for 10 min, collecting and dry-

ing the pellet. Then, a calibration plot was made by 

plotting the dry mass of cells versus absorbance A600 

nm. The specific growth (μ) and substrate utilization (q) 

rates were determined.  

 

Determination of phenol degradation 

For phenol concentration measurement, 2 ml suspen-

sion culture aliquots were removed from each batch 

culture at regular intervals and centrifuged at 6000 rpm 

for 10 min. The residual concentration of phenol in the 

supernatant was then determined using a 4- aminoanti-

pyrine at 510 nm (APHA, 2017). 

 

Substrate utilization rate 

The substrate utilization (q) rates were determined fol-

lowing the procedure of Dey and Mukherjee (2010).  

 

Kinetic modelling 

Kinetic studies on substrate growth inhibition were con-

ducted on A. baumannii W29 with phenol as the only 

energy source. Specific growth rate (μ) data at different 

substrate concentrations were fitted with classical ki-

netic models, namely Monod, Haldane, Aiba, Teisser, 

and Webb model. The nonlinear regression analysis 

was performed using a nonlinear curve fitting tool of 

MATLAB 7.0 software to determine the various kinetic 

parameters. The high value of the correlation coeffi-

cient (R2) and the low value of the root mean square 

error  (RMSE) indicated a better fit. 

RESULTS AND DISCUSSION 

A potential strain that effectively degrades toxic/ or xe-

nobiotic compounds ata rapid rate is required in a mi-

crobial treatment of domestic / or wastewater. Some 

investigators have used a direct isolation method con-

taining phenol to screen phenol degrading bacteria 

(Filipowicz et al., 2017). However, some microorgan-

isms can not adapt and survive a high phenol concen-

tration in the direct screening method.Therefore, it is 

necessary to adapt the bacteria in the presence of phe-

nol to facilitate the induction of phenol-degradative en-

zymes.The adapted bacteria can degrade phenol at 

concentrations higher than their natural environment 

(Stoilova et al., 2017) due to the inducible synthesis of 

phenol-degrading enzymes. However, the phenol en-

richment method has been typically used to isolate 

phenol degrading bacteria (Gu et al., 2016). Similarly, 

the enrichment and acclimatization method was used 

for the isolation of phenol-degrading bacteria. Through-

out the present study, the screening of degrading phe-

nol bacteria was performed by calculating biomass 

growth and phenol utilization rate when the strain was 

fed on phenol as the only energy source. The strain 

W29 exhibited efficient biomass growth and phenol 

utilization capacity.  

The 16S rRNA gene is a molecular marker for the iden-

tification of bacterial species (Srinivasan et al., 2015). 

The strain was identified with the polyphasic approach, 

including partial sequencing of 16S rDNA and phyloge-

netic and morpho-biochemical analysis. The strain ap-

peared to be Gram-negative coccobacilli, non-motile, 

aerobic, non-fermentative, xylose fermentative with 

acid production, catalase positive, and oxidase nega-

tive, which was presumptively classified as Acinetobac-

ter sp. The 16S rRNA gene amplification by polymer-

ase chain reaction resulted in a 1.5 kb amplicon 

(Fig.1). The partial 16SrDNA gene sequence of the 

strain W29 was deposited in NCBI and obtained acces-

sion number KF686823. BLASTn analyses partial 16S 

rDNA gene sequence showed a strong homology (99% 

sequence identity) with A. baumannii in the NCBI data-

base. Henceforth, the strain was designated as A. bau-

mannii W29. Phylogenetic analysis was carried out 

using the corrected distance model from Jukes-Cantor 

and the phylogenetic trees was generated using NJ 
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(Neighbor-Joining) method (Fig. 2.) 

High phenol tolerance shown by different microorgan-

isms is shown in Table1 for comparison with the strain 

under study, A. baumanii W29, which could completely 

degrade phenol 800 mgL-1 in 20 h. The growth of mi-

croorganisms corresponds to the degradation 

(consumption) of the substrate (Agarry et al., 2010). 

The phenol utilization rate was 9.06-19.79, 16.82-

25.96, 18.06-24.05, and 13.65-20.18 mg h-1, respec-

tively, at an initial phenol concentration of 200, 400, 

600 and 800 mgL-1, respectively (Fig. 3). It is clear that 

the rate of phenol utilization decreased as the initial 

concentrations of phenol increased. A similar observa-

tion was reported in Acinetobacter species (Adav et al., 

2007; Viggor et al., 2020) and a mixed culture of P. 

aeruginosa and P. fluorescence (Agarry et al., 2008). In 

bacterial growth, the lag phase was a period of adapta-

tion required for bacterial cells to begin to exploit new 

environmental conditions. Fig. 3 indicates that phenol 

degradation and biomass growth were initiated with a 

lag phase. The lag phase corresponding to 200 mgL-1 

phenol was 7 h and increased to 18 h and 20 h at 600 

and 800 mgL-1 of phenol concentration. The lag phase 

was observed to increase with an increase in phenol 

concentration. The result agrees with reports of Bakh-

shi et al. (2011) in P. putida, and Dey and Mukherjee 

(2010) in microbial sludge batch culture. Conversely, 

there are claims that cell growth occurred in the pres-

ence of phenol without any lag phase (Lin and Cheng, 

2020). The lack of lag step is a positive sign suggesting 

that cells are adapted to phenol and are capable of rap-

idly degrading phenol. The total degradation time at the 

initial phenol concentrations of 200, 400, 600 and 800 

mgL-1 was 15 h, 21 h, 34 h, and 51 h and the corre-

sponding biomass growth rate during this period was 

4.57-20.64, 5.51-22.77, 11.56-40.52 and 14.73-46.70 

mg h-1 (Fig. 3). The experimentally observed specific 

growth rate (μ) increases with an increase in the phenol 

concentration until the maximum specific growth rate of 

0.26 h-1 was observed at 400 mgL-1 of initial phenol 

concentration (Fig. 4). Similar results were reported in 

several species, such as Psuedomonas putida (Bakhi 

et al., 2011), immobilized Pseudomonas sp.NBM 11 

(Mohanty and Jena, 2015) and Pseudomonas and Ba-

cillus sp. (Hasan and Jabeen, 2015). This decline in 

specific growth rate may occur due to cell damage, pro-

tein denaturation, and disruption of membrane integrity 

at higher phenol concentrations and may result in reac-

tive oxygen species (ROS) accumulation, damaging the 

mitochondrial and the endoplasmic reticulum (Wang et 

al., 2020). However, bacterial survival at higher phenol 

concentrations as the only energy source represents a 

synthesis of phenol degrading enzymes (Chakraborty et 

al., 2015). Microbial phenol degradation under aerobic 

conditions can occur via either ortho or meta pathways 

(Sridevi et al., 2012). Acinetobacter sp. AQ5NOL1 phe-

nol degradation is reported via the meta-pathway 

(Ahmad et al., 2017). Analysis of transcriptome in Aci-

netobacter sp. DW-1 has shown that phenol biodegra-

dation occurred mainly via an ortho pathway through 

induction of phenol hydroxylase and catechol-1,2- diox-

ygenase (Gu et al., 2017).  

Experimental data on the specific growth rate at each 

phenol concentration was used to fit classical kinetic 

models using the MATLAB 7.0 curve fitting tool. The 

lower value of RMSE is indicative of a better fit. The 

results of the kinetic analysis for specific growth rate 

versus substrate concentration indicated that Teisser, 

Haldane, and Webb models have a close fit to the ex-

perimental values (Table 1 & Fig.4a). However,the spe-

cific cell growth rate does not fit well with Aiba model, 

and (b) Monod, and Webb models (Table 1 and Fig.4b). 

The results of the present study that the Haldane model 

is the best, have also been corroborated by observa-

tions of the other investigators (Sathya et al., 2015; 

Peng et al., 2018). In the present study, as predicted by 

the Haldane model, the kinetic growth parameters of 

the phenol degrading strain, A, baumannii W29 are 

maximum specific growth rate (μm) 0.96 h-1, saturation 

constant (Ks) 468.6 mgL-1 and inhibition constant (Ki) 

239.5 mgL-1. The value of the maximum specific growth 

rate (μm 0.96 h-1) obtained from this study was close to 

that reported by other investigators (Szczyrba et al., 

2016; Nandi et al., 2020). The high value of the specific 

Fig. 1. PCR amplification of16S rDNA of Acinetobacter sp. 

W29 
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growth rate indicated that the strain degraded the sub-

strate more rapidly. The study showed high substrate-

affinity constant (Ks 468.6 mgL-1) indicating that the 

strain only responds to high phenol concentrations, but 

has low affinity for the phenol (Table 1) which is com-

parable to the high Ks value reported in P. putida 

(MTCC 1194) by Banerjee et al. (2001) and in activated 

sludge culture. A larger Ki value indicates that the cul-

ture is less sensitive to substrate inhibition (Onysko et 

al., 2000). High Ki showed that the strain was resistant 

to substrate inhibition and has shown lower phenol tox-

icity (Table 1).  

The Ki value (239.5 mgL-1) obtained from this study is 

comparable to that reported for the aerobic cultures, 

such as in P. putida (ATCC 49451) (Ki 284.3 mgL-1) 

(Wang and Loh,1999) and P. putida BCRC 14365, Ki 

255.0 mgL-1) (Lin and Cheng, 2020). The difference in 

kinetic parameters may be explained due to different 

sources of inoculum and media and the physical varia-

bles during the culture. Meta-analysis of High tolerance 

to phenol exhibited by various microbes, such as Aci-

netobacter calcoaceticus PA which can tolerate  1700 

mg∙L−1 phenolic wastewater (Liu et al., 2016) ; Acineto-

bacter EMY strain with ability to treat 2.1g/L of phenol 

over 86 (Kuc et al. 2022);and other potential phenol 

degrader, such as Rhodococcus aetherivorans (Nogina 

et al., 2020); Sulfobacillus acidophilus TPY (Zhou et al., 

2016) and Pseudomonas putida  (Mohanty and Jena, 

2017) and  immobilized Acinetobacter  for phenol deg-

radation (Abd El- Haleem et al. 2003) etc. (Table 2). 

The yield coefficient is the biomass formed by the unit 

mass of the chemical consumed during degradation. 

The yield coefficient was 0.70 (mg cell mg-1 phenol) 

(Fig.5), which is in close agreement with the reports of 

Adav et al. (2007) on Acinetobacter species. However, 

the yield coefficient of phenol 0.244 (mg cell mg-1 phe-

nol) is reported in Pseudomonas putida (Acharya et al., 

2019). Similarly, a linear relationship between the rate 

of degradation of the substrate and the rate of cell 

growthis is reported by Wang et al. (2008). 

Fig. 2. Phylogenetic tree of Acinetobacter baumanni W29 
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In the present study, A. baumannii W29, isolated from 

wastewater, can utilize phenol as the sole source of 

carbon and energy. The screening criteria were based 

on phenol enrichment method and acclimatization, and 

efficiency of phenol utilization strain W29 with efficient 

phenol degradation capacity. Further, it is characterized 

by 16S rDNA sequencing and sequence alignment. 

The results of the study showed that the specific growth 

rate increased with an increase in phenol concentra-

tions in the range of 100-400 mgL-1 with a maximum 

specific growth rate at 400 mgL-1 of phenol. 

Experimental data specific growth rate at 100–800 mg 

L−1 phenol was fitted to conventional growth models. 

The results showed that the Haldane equation was the 

best model for predicting experimental data. The high 

value of Ks indicates that the strain responds well to a 

high phenol concentration. The high value of Ki and the 

large μmax value indicates that the strain can degrade a 

high phenol concentration. The future scope of the 

study was to use the strain in the mixed consortium of 

bacteria that may further reduce the substrate inhibition 

effect of phenol. The experimental method and the ki-

netic model developed in this study may be further 

used in the immobilized cell/bioreactor for large-scale 

removal of phenol from wastewater in different indus-

tries. 

Conclusion 

The present study showed that isolated strain A. bau-

Fig. 3. Biomass growth and utilization of phenol by Acinetobacter baumannii W29 

Model Equation µm Ks Ki R2 RMSE 

Teisser µ= um*(exp (-S/Ki) - exp(-S/Ks)) 0.356 132.9 1372 0.972 0.01444 

Haldane µ= (um*S)/(Ks+S+S^2/Ki) 0.963 468.6 239.5 0.9755 0.0135 

Aiba µ= (um*S)* exp (-S/Ki)/(Ks+S) 0.596 226.7 936.6 0.9669 0.01569 

Monod µ= um*S/(Ks+S) 0.228 20.64   0.8191 0.03429 

Webb µ= (um*S)*(1+S/Ki)/(Ks+S+S^2/Ki) 0.216 18.43 21.2 0.8078 0.03779 

Table 1. Kinetic parameters of the specific growth rate of culture growth by Acinetobacter baumannii W29 
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mannii W29 has a high capacity for phenol degrada-

tion. The strain uses phenol as source carbon and en-

ergy for its growth. The higher values of Ks, Ki, and μm 

indicated that the strain could respond well to high phe-

nol concentrations. In the study, Haldane, Teisser, and 

Aiba were the most suitable kinetic models for the bio-

degradation of phenol. Because of above study, it is 

concluded that A. baumannii W29 can be successfully 

used to treat wastewater containing phenol. 
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