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Chapter 1

Introduction

1.1 Overview

The main purpose of this work is to compare the precision of three direct

gradient estimation techniques in estimating performance measures of stochastic

activity networks (SANs) using Monte Carlo simulation. The approach relies mainly

on critical path method (CPM), program evaluation and review technique (PERT)

and gradient estimator approaches to implement algorithms. The variance of the

estimates is used as the comparison criterion. Therefore, the main focus of this

study is the precision of estimators and how that precision relates to certain SAN

characteristics.

When dealing with SANs, it is of interest to obtain sensitivities (gradients,

derivatives, or Hessians) along with the usual performance measures, such as the

expected completion time and activities criticality. These sensitivities are often re-

quired to perform sensitivity analysis and optimization. Because some practical

problems may arise when implementing direct gradient estimation techniques using

Monte Carlo simulation, practitioners usually prefer to conduct sensitivity analysis

using finite differences estimation instead. However, finite differences estimation

may be less accurate, more time consuming, and less computationally efficient, par-

ticularly in the case of high dimension estimates.
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It is necessary to clarify that when a closed-form expression is difficult to ob-

tain and other numerical methods are not applicable, Monte Carlo simulation pro-

vides an alternative way to estimate such performance measures and their gradients.

Because implementing direct gradient estimator techniques presents some practical

implementation challenges, this work aims to provide guidelines for the selection of

the most accurate gradient estimation technique depending on the characteristics of

a SAN.

The main objective of this endeavor is the assessment of how well each of

the direct gradient estimation methods developed in the last few decades estimate

SANs sensitivities in terms of the sample variance. The gradient estimator methods

which will be studied are infinitesimal perturbation analysis (IPA); score function

also known as likelihood ratio (SF/LR); and weak derivatives method, also know as

measure-valued differentiation based gradient estimation (WD or MVD).

We investigated the relationship between the accuracy of the estimator and

the SAN features encoded by the network complexity measures. In order to uncover

this relationship, theoretical analysis and experimental results from MC simulations

will be examined.

The results of this study indicate that WD based gradient estimation presents

a lower variance, but IPA and SF/LR may be more computationally efficient be-

cause the estimators require only a single simulation, whereas WD estimators require

multiple simulations. Therefore, it can be concluded that aside from other consider-

ations such as ease of implementation or the speed of the algorithms, WD gradient

estimation is superior in terms of precision.
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1.2 Statement of the problem

Because Monte Carlo simulation is a computationally costly method to imple-

ment, other techniques may be preferred, such as simpler computational methods

or obtaining closed-form expressions. However, when dealing with complex and/or

numerous interactions (most physical systems), closed-form expressions are almost

impossible to obtain, and less sophisticated computational methods are unable to

model such levels of complexity. In these cases, and particularly when dealing with

high dimension systems, Monte Carlo simulation constitutes an alternative method

of implementing and analyzing stochastic systems. This work focuses on stochastic

activity networks (SANs) and Monte Carlo simulation as tools to model complex

stochastic systems and obtain their performance measures. SANs have an ample

variety of applications, from project management to analysis of communication sys-

tems [12]. In these kinds of applications, analysts usually must compute certain

performance measures, such as expected completion time, task criticalities, prior-

ities, and total time delay, among others. Additionally, the derivatives of such

performance measures are also of interest to analysts, mainly to perform system op-

timization and sensitivity analysis. In the case of complex SANs, both performance

measures and their respective derivatives can be obtained using Monte Carlo simu-

lation. Despite the availability of direct gradient estimation methods that have been

developed in the past few decades, which are more efficient than indirect techniques

for estimating derivatives in stochastic simulation, some researchers still depend on

resimulation for gradient estimation. This approach, known as finite differences,

3



requires changing the input parameter of interest a small amount and looking the

deviation in the output performance measure. This makes Monte Carlo simulation

even more inefficient and cumbersome, especially when there is a need to obtain a

gradient with respect to various differentiation parameters. Unlike indirect gradi-

ent estimation methods, which do not require knowledge of the internal functioning

of a system and only estimate an approximation of the true gradient value [10],

direct gradient estimation techniques require some knowledge about the internal

dynamics of the system or the input distributions. As such, these estimators are

model-dependent [10]. The three main methods of estimating derivatives directly

are the family of perturbation analysis (IPA, SPA, PA, etc.), likelihood ratio (LR)

and weak derivatives (WD). perturbation analysis and likelihood ratio methods al-

low researchers to directly obtain (in the same simulation run) both performance

measures and their respective derivatives by exploiting the information gathered in

every repetition from the original system. WD may also require resimulation but

gives unbiased estimates. Because of the potential benefits of using these gradi-

ent estimation techniques, this work aims to provide researchers with some guiding

strategies to determine in which cases the use of a particular estimator may be more

effective and useful, depending on the types of networks and performance measures

being considered. This thesis implements and compares the performance of direct

gradient estimators using estimation precision as the main criterion for comparison

and assessment. Theoretical and experimental analyses will be conducted to investi-

gate possible relationships between the performance of the gradient estimators and

some particular characteristics of the SANs, such as the size, distributions and/or

4



shape of the activity networks.

1.3 Review of the literature

In this section, an examination will be presented of previous work that is

relevant to the problem setting on which this study focuses, i.e., stochastic activity

networks and gradient estimation using Monte Carlo, as well as the measurement

of network complexity from the graph theory point of view.

1.3.1 Stochastic activity networks and gradient

estimation using Monte Carlo simulation

Fu [8] provides a review of the different gradient estimation techniques, which

provides the main theoretical foundations for this study. Fu [8] classifies gradient

estimation techniques into two categories: direct and indirect methods. When using

indirect techniques (finite differences and simultaneous perturbations) the estimate

is indirectly obtained by computing the differences between the simulation outputs.

Although these techniques are easier to implement than direct gradient methods,

they are less efficient due to the high computational cost associated with the need

to perform multiple resimulations. Consequently, obtaining accurate estimations

may be very time consuming. In contrast, direct gradient techniques (perturba-

tion analysis (PA), score function/likelihood ratio (SF/LR), and weak derivatives

(WD)) may be more difficult to implement because an actual estimator needs to be

designed and analytically obtained for each specific problem setting before running

5



the simulation (off-line work). A direct estimator is used during the same simulation

run to obtain gradient estimates as well as estimates of other performance measures.

In other words, the simulation output of a single run (of numerous repetitions) in-

cludes both performance measure estimates and their gradient estimates. In [9],

Fu developed three direct gradient estimators specialized for critical path related

measurements in the particular context of stochastic activity networks (SANs). He

uses activity on the arc (AoA) SAN modeling and presents some examples with ex-

ponentially distributed activity times. The main contribution of this paper to this

present work is that it provides ready-to-use definitions of gradient estimators for

three different performance measures: 1) the derivative of the project completion

time with respect to the mean time of one or several activities of the network, 2)

the gradient of the probability that the critical path of a network will surpass a

threshold value, and 3) the derivative of the tail distribution with respect to the

lower limit of such distribution. Following paper suggestion of conducting further

theoretical and experimental analysis to compare the variance properties of the es-

timators he provides, this thesis builds on Fu’s work to expand the understanding

of the functioning of these estimators and how they behave in terms of their esti-

mation precision. Another work conducted by Fu is also relevant to this study. In

[10], the author summarizes the main direct gradient estimation techniques, refers

to the applications in which these estimators are generally used, and provides an

overview of some of the challenges that may arise when trying to implement these

different techniques using Monte Carlo simulation. This work sheds light on when

it is appropriate to use each and the precision of the estimates obtained with each

6



method. As such, this work constitutes a starting point for the present research.

In another study relevant to this thesis, Groër and Ryals [12] building on Fu’s

work [9], implemented two indirect techniques (finite differences with common ran-

dom numbers and with independent variates) and three direct gradient estimation

methods (PA, SF/LR, and WD) to estimate two performance measures related to

the longest path through a SAN and compared these techniques in relation to the

variance of the estimates. The authors found that IPA performed better than other

estimators and that the WD estimator with common random numbers (CRN) can

be as good as IPA/SPA. Groër and Ryals also proposed the use of a combination of

results from different methods to achieve variance reduction.

Heidergott et al.[13] also obtained direct gradient estimators. Unlike previ-

ous works conducted in this area, these authors derived the estimators for systems

with Gaussian input distributions. The authors proposed analytical expressions for

the variance of the estimator using a simplistic but mathematically manageable

approach in which the output is computed as a polynomial function of a single

stochastic input. They showed that the estimator based on weak derivatives out-

performs IPA. Then, they also empirically compared these three estimators using

a computational simulation, in a similar way to Groër and Ryals. Heidergott and

colleagues concluded that WD techniques with CRN favorably compare to IPA in

terms of the precision of the estimation. It is worth mentioning that the present

study draws from Heidergott et al.’s work to implement the algorithms to compute

the gradient estimators in Gaussian systems by means of Monte Carlo simulation.
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1.3.2 Complexity measures for graphs

During the last decades, there has been interest in the field of Graph Theory in

the characterization of the complexity of a graph. Many reasons have been given for

this interest, including the reduction of complexity, measurements of the capacity

to perform some task, description of a social network, potential use as a predictor of

the effort needed to analyze, to decompose or to construct some subsystem, among

others (e.g.[5]). Each of these reasons is relevant to different areas of study. The

concept of complexity, although almost natural in a loose context, is vague in general,

and it has been difficult to define and establish it in a formal and unique way.

There have been multiple attempts throughout the literature to tackle the

problem of defining a meaningful quantity for the measurements of complexity.

Also, complexity seems to have a different meaning in different scientific areas,

given the rise of several operational and/or abstract definitions; examples of this

include Kolmogorov complexity or Krohn-Rhodes complexity. Additionally, there is

no agreement on which properties this quantity should satisfy. For instance, if there

are two activity networks and they are to be connected in a serial fashion, should it

be expected that the total complexity of the new network must be the sum of the

individual ones? What if the networks are combined in parallel?

In the specific area of CPM/PERT, the first complexity measure proposition

was made by Pascoe [20] for use in resource allocation. The coefficient of network

complexity proposed by Pascoe (CNCp) is simply defined as the ratio of nodes over
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arcs.

CNCp = A/N (1.1)

.

This quantity takes the idea of normalization by the number of nodes, for far

comparison, i.e., more arcs per node is synonymous to greater complexity in this

approach. Although this idea seems sensible, its validity is debatable.

Similarly, Kaimann [14], proposed his own CNC. He wanted a quantity to

measure the degree of relationship between events (nodes), which needed to be

simple enough for simulation analysts to use and able to capture the non-linear

increase in processing time when complexity is increased. Consequently, Kaimann

defined CNC as follows:

CNCk = A2/N (1.2)

Obviously, the same advantages are present as in Pascoe’s CNC, such as simplicity;

it is easy to understand and compute. The same drawbacks are also present when

using this coefficient, such as shorter processing times for a network with a large

CNCk number.

The cyclomatic number (S) and the Davies [3] Coefficient of Complexity CC

(also know as CNCd) possess similar benefits of ease and elegance as well as similar

drawbacks of overly simplistic coefficient.

S = A−N + 1 (1.3)

This number counts the number of cycles of an undirected graph. In the case of

activity networks, Elmaghraby [7], presents a very interesting interpretation of this
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number. Elmaghraby suggests that it is the number of operations which must be

performed in order to find the critical path. For instance, in a purely serial network

there are exactly N−1 arcs, hence S = 0. That is correct since the single path is the

critical path, so no comparisons are necessary. But for each arc added, a comparison

must be made in order to find the critical path, i.e. A − (N − 1) operations. The

cyclomatic number has some interesting features. It depends on the topology of the

network, so it is not affected by the separation of joining series activities. Also, the

combination of networks in a chain results in the sum of cyclomatic numbers.

Th Davies CNC is a normalized quantity which takes values between 0 and

1.

CNCd =
A−N + 1

(N − 1) (N − 2)
(1.4)

Davies’ main objective in the definition of this number was to compare different sort-

ing criteria for resource allocation in various networks. CNCd and other quantities

were just part of a “computer-based experiment in the scheduling of multi-activity

projects with limited resources”.

The number of trees descriptor counts the number of trees rooted in the des-

tination node. Remember that a tree is a connected graph without cycles. The

computation of this number and the reason it is considered a complexity descriptor

were developed by Temperley [23]. The computation of this number involves the
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obtainment of the minor DNN , where D is the Laplacian matrix.

D =



∑
j 6=1 a1,j −a1,2 . . . −a1,N

−a2,1
∑

j 6=2 a2,j . . . −a2,N

...
...

. . .
...

−aN,1 −aN,2 . . .
∑

j 6=N aN,j


(1.5)

where A = [ai,j] is the adjacency matrix, i.e., the matrix listing the weighted con-

nection between nodes i and j.

The last descriptor considered for the present study is the restrictiveness es-

timator. Originally presented by Thesen [24], this index takes values in the range

[0, 1], where 0 means no restrictiveness. A true parallel network has RT = 0. On

the other hand, a pure series network is “fully restrictive”, and the measure is

RT = 1. This number is an estimator of the restrictiveness of a directed graph, a

number difficult to compute because it involves the enumeration of a large number

of permutations, hence a hard combinational problem. The formula is,

RT =

∑
i,j ri,j − 6 (N − 1)

(N − 2) (N − 3)
(1.6)

where R = [ri,j] is the reachability matrix, which is defined as ri,j = 1 if there exists

some path from node i to j, or ri,j = 0 otherwise.

There are multiple definitions of complexity indices not directly related to

CPM/PERT. As early as in Kaimann’s paper, the work of Mowshowitz is cited

regarding the extraction of the information content of a graph to be considered as

a complexity measure. After the seminal work of Mowshowitz [18], a whole branch

of information-theoretical-inspired measures has emerged. These indices basically
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consist of assigning weights to elements of a graph (to nodes, arcs or paths) according

to some criterion. After that, these weights are interpreted as forming a PMF. Then

the author is free to apply the entropy definition formula to obtain the desired index.

This way of obtaining complexity indices is used to characterize chemical reactions

or biological interactions. It is also used in the area of network physics. For a

thorough review of these information theoretical based methods, please refer to the

work of Dehmer, Mowshowitz and Emmert-Streib [4].

In this thesis, we wish to investigate the applicability of the various complexity

indices to our study.

1.4 Organization of the chapters

The rest of the thesis is organized as follows. Chapter 2 explains how the analy-

sis will be developed, presents some background relevant to the subsequent chapters,

and addresses some practical issues and steps followed to obtain the algorithms to

run the Monte Carlo simulation. Chapter 3 derives analytical expressions for the

variance of the estimators for some network structures. In Chapter 4, Monte Carlo

simulation (MCS) is used to empirically assess the precision of the estimates for each

technique. Chapter 5 discusses the main findings and suggests future directions for

further research.
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Chapter 2

Methodology

2.1 Overview

In order to understand the gradient estimator methods in SANs, it is useful to

first uncover relationships in some relatively simple and mathematically tractable

networks, and then check how reusable these discoveries are in more complex net-

works. This second step is performed by means of Monte Carlo simulation (MCS)

in MATLAB and C over a set of SANs specially created for this study. In this

step, complexity indices or measures were computed for every SAN to characterize

the “intricacy” of the network for comparison with respect to (w.r.t.) the gradient

estimation.

This chapter presents background information about graph theory and gradi-

ent estimation. Then it presents an explanation of how the programming code work

was performed to obtain the estimates and finally how the set of complex SANs was

generated.
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2.2 Theoretical and conceptual background

2.2.1 Stochastic activity networks (SANs)

A SAN is a directed graph with edge weights of random values [1]. There are

two ways of representing SANs. One approach is to assume the activity on the arc

(AoA) and the other is to consider the activity on the node (AoN) representation.

In this thesis, the focus will be on the AoA representation.

SANs are often conceptualized as a project in which nodes correspond to

milestones or events, arcs or edges represent tasks to be completed, and arc weights

denote the time required for task completion. The latter must obey a particular

precedence order to reach a final milestone. This presumes the presence of an

acyclic network as a necessary condition for a legitimate precedence order.

Another interpretation involves the consideration of the SAN as portraying

alternative ways or paths to transport materials and/or resources between different

geographical points. In this case, weights represent distances or costs of moving from

one point to the next, as in the traveling salesperson problem. Another common

interpretation involves the assumption that edges are routes for moving information

packets with corresponding delays in a communication network. Although most

of these interpretations are independent from the concepts discussed in here, for

the purpose of this work, SANs will be understood from a project management

standpoint.

Formally, let G = V (N ,A) be a directed acyclic graph, where N is the set

of nodes with finite cardinality N , and A is the set of ordered pairs (i, j) called

14



arcs with finite cardinality A. Ordered pairs are formed from a set N or a subset

of N . The first entry of each arc pair is an outgoing node and the second one is

the incoming node. In other words, for arc (i, j), i is the start node and j is the

end node. An example of the graphical rendering of this construction is portrayed

in Figure 2.1 (example taken from [1]).

1

Source

2

3

4 5

Sink

Ac
tiv
ity

1

Activity
2

A
ctiv

ity
3

Activity
4

Ac
tiv
ity

5

Activity 6

Figure 2.1: This figure depicts a most common graphical interpretation
of an Activity Network.

Now let us define a path. A path (denoted by character P ) is a sequence

of arcs and the corresponding sequence of nodes. The first node of the sequence is

called the source node and the last node is called the sink or destination node. If the

sequence of arcs (and corresponding nodes) has no repeated arcs (and nodes), then

the path is called a simple path. A cycle is defined as a path in which the source

and the sink nodes are the same. Since this thesis is focused on acyclic directed

graphs, the activity networks analyzed here will only include simple paths.

If a node can be reached from another node following a particular sequence of

arcs (a path), this means that the nodes are connected. The connectivity of a pair
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of nodes can be defined as the number of independent paths that connect them [1].

In the field of project management, performance measures of interest usually

consist of the expected completion time of the project and the probability that

the critical path will exceed a certain threshold value. The critical path is one of

the most relevant concepts derived from CPM/PERT techniques. When the activity

times are deterministic, the determination of the critical path is equivalent to finding

the longest path from the source to the sink node, because the precedence order and

completion of activities in the critical path constrain and determine the start of the

subsequent tasks in the network to complete the project.

However, if activity times are stochastic in nature, the previous definition of

criticality falls short, because in SANs almost every path has a non-zero probability

of being critical. Therefore, in these cases there is no single critical path; instead,

there is a degree of criticality, which is referred to as the criticality index. Criticality

index computation and estimator is a large and interesting topic by itself. Refer to

[6] for further discussion of this topic or [2] for a method that can be used to estimate

criticality indices.

2.2.2 Gradient estimation techniques

Consider a system in which a performance measure of interest Y (output) is

a function of a vector of inputs X. If X is a random vector, the output Y is also a

random variable. Hence, the expected value of Y or some other statistic of Y should

be of interest. From the “Law of unconscious statistician” [21]:
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E[Y ] =

∫
ydFY (y) =

∫
Y (x) dF (x) =

∫
Y (x) f (x) dx (2.1)

where FY (·) is the CDF of Y , F (·) and f (·) are the multivariate CDF and PDF

of X, respectively. Notice that just the first integral is scalar and the other two are

multiple integrals.

Taking the derivative w.r.t. some implicit parameter θ, the following can be

obtained.

dE[Y ]

dθ
=

d

dθ

∫
Y (x) dF (x) =

∫
d

dθ
Y (x) dF (x) (2.2)

Certain conditions need to be met in order to interchange the order of the integral

and the derivative. These conditions are related to the concept of uniform integrabil-

ity and the dominated convergence theorem which establish sufficient conditions to

ensure that E [Zn] → E [Z] as n → ∞, where Zn and Z are RVs such that Zn →
n→∞

Z

with probability 1 (almost surely). In other words, the following interchange of

expectation and the limit is required:

E
[
lim
n→∞

Zn

]
= lim

n→∞
E [Zn] (2.3)

Determining whether the dominated convergence theorem conditions are met

is beyond the scope of this thesis. For more details, see [10].

If we consider that the derivative parameter θ is part of the sample vector X

by some functional dependency and that the interchange is valid, then we can write:

dE[Y ]

dθ
=

∫
∂Y (x)

∂x

dx

dθ
dF (x) (2.4)
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On the other hand, if we suppose that random vector X is generated by a

continuously differentiable family of CDFs, parametrized by θ, we can write:

dE[Y ]

dθ
=

∫
Y (x)

∂f(x)

∂θ
dx (2.5)

Notice that equation (2.4) can be used in the Monte Carlo simulation. It is

just necessary to obtain the derivative of the output Y w.r.t. X and the derivative

of the sample path X w.r.t. θ, which is application dependent.

For instance, consider the case in which Y = min (X1, X2). Also assume that

X1 and X2 are exponentially and independently distributed RV. Let us assume we

need to find the sensitivity w.r.t. the first arc mean, i.e. θ = β1. Therefore, we can

write:

X1 ∼ exp (β1), X2 ∼ exp (β2), Y = min(X1, X2) (2.6)

∂Y

∂β1

=
∂X1

∂β1

· 1 {X1 < X2} (2.7)

The derivative ∂X1/∂β1 is not only application dependent but also representa-

tion dependent, which means that the derivative depends on the way the distributed

variates are generated in the simulation (see more details in Fu & Hu [11], Chapter

1). In the particular case of exponential distribution, the most common solution

for generating the samples is the inverse transform method, in which the source of

randomness is a random number generator (RNG) of uniform distribution and by
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inversion of the CDF the random variates are obtained:

X1 = F−1(U ; β1), where U ∼ U(0, 1), F (x, β1) = 1− e−x/β1 (2.8)

⇒X1 = −β1 ln (1− U) (2.9)

⇒∂X1

∂β1

= − ln (1− U) =
X1

β1

(2.10)

In conclusion, for this construction we have:

∂Y

∂β1

=
X1

β1

· 1 {X1 < X2} = Z (2.11)

Hence, a normal MCS can be performed and the estimation of sensitivity w.r.t.

the mean of the first arc can be obtained at the same time. It is just necessary to

compute Z = X1/β1 in each replication where X1 < X2 and Z = 0 otherwise. Then

an estimate of the gradient can be obtained:

dE [Y ]

dβ1

= E [X] ≈
∑
i

Zi/N (2.12)

where Zi are computed in each repetition by means of equation (2.11) and N is the

number of replications performed.

The estimator Z = X1/β1 · 1 {X1 < X2} is known as the IPA estimator w.r.t.

β1 in this specific case.

Now consider a situation in which θ is in the distribution function (equa-

tion (2.5)), and for exposition reasons also assume that the multivariate PDF f (X)

is separable w.r.t. the θ dependence. For example, take X1 as the only RV with

dependence on θ. Consequently, f is separable and can be written as:

f (X) = fX1(x1)fX1−(X1−) (2.13)
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and equation (2.5) can be expressed as:

dE[Y ]

dθ
=

∫
Y (X)

∂fX1(x1, θ)

∂θ
f(X1−)dX

=

∫
Y (X)

1

fX1(x1)

∂fX1(x1, θ)

∂θ
fX1(x1)f(X1−)dX

=

∫
Y (X)

∂

∂θ
ln (fX1(x1, θ)) f(X)dX (2.14)

Equation (2.14) can now be used to estimate the gradient w.r.t. θ if we set:

Z = Y (x)
∂

∂θ
ln (fX1(X1, θ)) (2.15)

This type of estimator is called a SF/LR gradient estimator. For example, in the

stochastic system described before, let us find the SF/LR estimator w.r.t. β1. The

PDF is separable if we consider X1 and X2 independent RVs.

f(x) = fX1(x1)fX2(x2) (2.16)

where

fX1(x1) = e−x1/β1/β1 (2.17)

Hence, by differentiation we get:

∂f(x)

∂θ
=
∂fX1(x1)

∂β1

fX2(x2)

=
e−x1/β1

β1

1

β1

(
x1

β1

− 1

)
fX2(x2)

=
1

β1

(
x1

β1

− 1

)
f(x) (2.18)

Therefore, the SF/LR gradient estimator Z is equal to

Z =
Y (X)

β1

(
X1

β1

− 1

)
(2.19)
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i.e., the random vector realization X is generated in each simulation repetition

and Z is calculated each time using equation (2.19). Then the expected value is

approximated by:

∂E [Y ]

∂β1

≈
∑

i Zi

N
. (2.20)

Next we consider the weak derivatives method (WD). In equation (2.5), assume

that X1 is the only component in X that has dependence on θ. If we express the

density function derivative as follows

∂fX1(x1, θ)

∂β1

= c(θ)
(
f
(2)
X1

(x1, θ)− f
(1)
X1

(x1, θ)
)

(2.21)

where f
(1)
X1

and f
(2)
X1

are PDFs by themselves and are called the “phantoms” of fX1 ,

then the gradient w.r.t. θ can be written as:

dE[Y ]

dθ
=c(θ)(

∫
Y (x)f

(2)
X1

(x1)fX1−(x1−)dx

−
∫

Y (x)f
(2)
X1

(x1)fX1−(x1−)dx) (2.22)

obtaining the new gradient estimator:

c(θ)
(
Y (X

(2)
1 ,X1−)− Y (X

(1)
1 ,X1−)

)
(2.23)

where X
(1)
1 ∼ f

(1)
X1

, X
(2)
1 ∼ f

(2)
X1

and X1− ∼ fX1− .

Thus, weak derivative estimators require two runs for each gradient estimation

per parameter of interest, namely the one with the modified distribution f
(1)
X1

instead

of fX1 , and another one with f
(2)
X1

.

In the Y = min (X1, X2) example, notice that the derivative of the exponential
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distribution can be expressed as:

∂

∂β1

(
e−x1/β1

β1

)
=

1

β1

(
x1

β2
1

e−x1/β1 − e−x1/β1

β1

)
=

1

β1

(
f
(2)
X1

(x1)− fX1(x1)
)

(2.24)

in which the expression in parentheses is the difference of an Erlang PDF and an

exponential PDF, i.e., f
(2)
X1

∼ Erl(2, β1) and fX1 ∼ exp(β1). Because of the weak

derivative used here, f
(1)
X1

= fX1 , so the estimator is:

Zi =
(
min

(
X

(2)
1 , X2

)
−min (X1, X2)

)
/β1 (2.25)

and the gradient estimate can be approximated by:

∂E [Y ]

∂β1

≈
∑

i Zi

N
(2.26)

These are the fundamentals of the three methods employed in this work.

2.3 Algorithms and network representation

Algorithms were developed in MATLAB and C. The random number generator

(RNG) included by default in MATLAB, was used to obtain random variates needed

for Monte Carlo simulation. Since MATLAB version 7, the generator uses Mersenne

Twister (MT), a pseudo-random number generating algorithm developed by Makoto

Matsumoto and Takuji Nishimura [17]. The RNG routines of MATLAB also provide

tools for reseeding, resetting and creating multiple streams, in order to get more

control over simulations. For C programs, the RngStreams package was used, which

implements a combined multiple recursive RNG (CMR-RNG) proposed by L’Ecuyer
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in [16]. The code with implementations of the algorithms for gradient estimation is

included in the appendix.

Variate generation is mainly done by inverse transform. First, a single stream

is created and reset at the beginning of every Monte Carlo simulation. In special

cases involving the weak derivatives method (also known as measure-valued differ-

entiation), an additional and independent stream is created to generate the extra

“phantom” samples. In this way, it is possible to achieve a fair comparison by

obtaining synchronized estimates across different gradient estimation techniques.

Graphs are defined by their connection matrix. In this context, the connection

matrix is a N ×N sparse matrix type in which non-zero entries [aij] represent the

“weight” of the link between nodes i and j, and N represents the number of nodes.

For this implementation, the network definition routine fills the sparse con-

nection matrix inserting “1”s as needed, which correspond to an arc in the graph.

No weights are assigned at this point, meaning no activity times were yet speci-

fied. Activity times are set later in the MCS code since arc lengths are stochastic

quantities.

In the actual MCS code, activity times are generated by the RNG for every

edge (each non-zero entry in the connection matrix) in each repetition and trans-

formed into a variate of the desired distribution. Every time a variate is needed, the

rand() function is called. This function return a (pseudo)Random number drawn

from uniform U(0,1) distribution. Random variates are then generated using inverse

transform or acceptance-rejection (A-R) methods as needed, depending on the dis-

tribution of the activity times. For example, for Gaussian distributed activity times,
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the A-R approach was used, following the same ideas presented by Heidergott et

al.[13].

Once the activity times are realized, the SAN can be considered a deterministic

activity network and then the critical path needs to be determined. For this purpose,

MATLAB Bioinformatics Toolbox provides some useful graph theory functions. The

shortestpath function is extensively used in the implementations. Since we are

interested in the longest path, the shortestpath() function is called with negative

activity times and “acyclic” method type arguments in order to obtain the critical

path. This procedure is warranted if the network contains no cycles. Note also

that the shortestpath() algorithm will solve the original longest path problem in

polynomial time, which is beneficial for large networks.

Once the longest path is determined, the gradient estimate is calculated using

the formulas in Table 1 contained in [10]. The SF/LR estimator implementation

is very straightforward, whereas IPA is bit more complicated because of the need

to determine whether the activity of interest is in the critical path or not. On

the other hand, implementation of the WD estimator requires the generation of

additional activity times and the need to perform the longest path search for each

modified activity network. In the worst case, two realizations of activity networks

are needed for each sensitivity estimation desired (without counting the simulation

runs needed for the original or unmodified system).

Additional coding was necessary for the computation of network complexity

measures like Restrictiveness Index (RT) and Number of Trees (T). On the other

hand, coefficients of network complexity (CNCp and CNCk) and cyclomatic number
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(S) were calculated directly in the spreadsheet since they are very simple formulas.

Gradient estimation techniques were also implemented in C code for simple

networks, where enumeration of all paths from source to destination was used to

find the critical path. The C compiled code runs much faster which is particularly

important for creating some parametrized curves in Chapter 4.

Precision of gradient estimator comparisons were done for certain networks

selected using the following criteria.

• Very simple networks like 2 parallel arcs or serial arcs were selected for closed-

form analysis. These structures were considered every time they appeared to

shed some light on this study and when they are mathematically tractable.

• Networks that can be grown in a structured and easy way. Typical examples

include pure series or pure parallel SANs

• Layered networks with forwards connections, with or without random cancel-

lation of activities. These SANs were randomly selected/constructed while

maintaining the underlying structure of layers. This was the solution for test-

ing very complex and large networks generated semi-automatically.
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Chapter 3

Theoretical Analysis

3.1 Gradient estimator analysis and network topologies

Test networks were chosen to address the problem of determining the best

estimator and hypothesizing which effect it is reasonable to expect. The first network

to analyze is the simplest one: 2 nodes (source and sink) and a single activity. This

particular case is examined analytically in next sections. Next step is to consider a

serial interconnection of 2 or more activities. It will be shown that this structure

is just a simple extension of the single activity case. A more interesting case is the

parallel connection of 2 arcs, because the longest path changes depending on the

criticality index of each arc. Finally, a simple series-parallel network combination

will be analytically examined. Conclusions will be drawn from these simple networks

and we will hypothesize if the behavior can be extended to more complex network

structures.

3.2 Single activity and series configuration

Consider the following single arc network in Figure 3.1. We are going to focus

on the precision of the gradient estimator, specifically using the variance of gradient

of longest path. Let Y be the RV which represents the total longest path time. In
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this very simple case the longest path is the unique path of random length X.

1

Source

2

Sink

X

Figure 3.1: Single arc, two nodes stochastic activity network (SAN).

Arc exponentially distributed, sensitivity w.r.t. mean

In this specific network, the longest path is a random variable with time X ∼

exp (β) where β is the expected value or mean of activity time X. The gradient to

consider is computed with respect to the mean β. In other words, the parameter

θ = β and we want to obtain an estimator of the “real” sensitivity dE [Y ] /dθ =

dE [X] /dβ.

Since Y (total completion time) is just X, we should anticipate that an in-

finitesimal perturbation δβ in the expected value of X, results in a δβ variation in

the expected total completion time. In other words, the gradient w.r.t. β should be

equal to 1.

IPA estimator

For this implementation, inverse transform method was used to generate ex-

ponential distributed samples. Consider U ∼ U(0, 1) then,

dX

dβ
=

X

β
(3.1)
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From this expression, the variance of the estimator (a RV itself) can be calcu-

lated:

Var

(
X

β

)
=

1

β2
Var (X)

Var

(
X

β

)
=

1

β2
β2

Var

(
X

β

)
= 1

Var (IPA− SINGLEexp) = 1 (3.2)

Therefore, the exact variance of this estimator is fixed, i.e. independent of β,

the mean of X. For this simple case, let us check that the expected gradient really

equals to 1, i.e., it is unbiased.

E [IPA− SINGLEexp] = E

[
X

β

]
=

E [X]

β
=

β

β
= 1 (3.3)

SF/LR estimator

Differentiating the probability density function (PDF), the following can be

obtained:

d

dβ
fX(x) =

−1

β2
exp

(
−x

β

)
+

1

β
exp

(
−x

β

)
· x

β2

d

dβ
fX(x) =

1

β

(
x

β
− 1

)
1

β
exp

(
−x

β

)
, (3.4)

for SF/LR method we need to get d
dβ

ln (fX(x)) = ∂fX(x)
∂β

/fX(x), i.e., the score

function, therefore,

d

dβ
ln (fX(x)) =

1

β

(
x

β
− 1

)
(3.5)
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Because of Y = X in this network, the SF/LR gradient estimator for a single

arc network is:

X · 1
β

(
X

β
− 1

)
, (3.6)

and the variance of this gradient estimator is:

Var

(
X · 1

β

(
X

β
− 1

))
=

1

β2
Var

(
X2

β
−X

)
=

1

β2

(
1

β2
Var

(
X2
)
+Var (X)− 2

β
Cov

(
X2, X

))
(3.7)

The variance of X2 is:

Var
(
X2
)
= E

[
X4
]
− E

[
X2
]2

= 24β4 −
(
2β2
)2

= 20β4 (3.8)

On the other hand, variance of X is β2, and covariance of X2 and X is:

Cov
(
X2, X

)
= E

[
X3
]
− E

[
X2
]
· E [X] = 6β3 − 2β2 · β = 4β3 (3.9)

Plugging everything back to equation (3.7) :

Var

(
X · 1

β

(
X

β
− 1

))
=

1

β2

(
1

β2
· 20β4 + β2 − 2

β
· 4β3

)
Var (SF/LR− SINGLE) = (20 + 1− 8) = 13 (3.10)

Again, the variance of this estimator in the single activity network is fixed, i.e. inde-

pendent of the mean of X, but much larger than the variance of the IPA estimator.
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WD estimator

Starting from equation (3.4), we need to rewrite the derivative of the density

function as a difference of densities,

d

dβ
fX(x) =

1

β

 x

β2
exp

(
−x

β

)
︸ ︷︷ ︸

Erl(2,β)

− 1

β
exp

(
−x

β

)
︸ ︷︷ ︸

exp(β)

 (3.11)

This way to write the derivate is not unique. Variance of the WD estimator is easy

to write, since this is a extremely simple network,

Var

(
1

β

(
X(2) −X(1)

))
=

1

β2

(
Var

(
X(2)

)
+Var

(
X(1)

)
− 2Cov

(
X(2), X(1)

))
,

(3.12)

where X(2) ∼ Erl(2, β) and X(1) = X ∼ exp(β). Variance for this kind of distribu-

tions are known:

Var
(
X(2)

)
= 2β2,

Var
(
X(1)

)
= Var (X) = β2 (3.13)

The covariance term depends on the way variates X(2) and X are generated. Since

lower variance implies better precision of the estimator, X(2) and X are obtained

from common random numbers (CRN) to get positive covariance. In this study, the

Erlang variate X(2) is obtained by summing RV X and another independent expo-

nential distributed variate. Let X∗ be the other exponential distributed variable,
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independent of X, then

Cov
(
X(2), X(1)

)
= Cov (X +X∗, X)

= E [(X +X∗)X]− E [X +X∗]︸ ︷︷ ︸
2β

E [X]︸ ︷︷ ︸
β

= E
[
X2
]︸ ︷︷ ︸

2β2

+E [X∗X]− 2β2

= 2β2 + E [X∗] E [X]︸ ︷︷ ︸
β·β

−2β2

Cov
(
X(2), X(1)

)
= β2 (3.14)

Putting these results together in equation (3.12),

Var

(
1

β

(
X(2) −X(1)

))
=

1

β2

(
2β2 + β2 − 2β2

)
Var (WD − SINGLECRN) = 1 (3.15)

Please note that if Common Randon Numbers (CRN) are NOT used, i.e. X(2) is

independent of X then the variance of the WD estimator for this simple case is 3.

Var (WD − SINGLEINDEP ) = 3 (3.16)

Also note that the these values are fixed and do not depend on the “scaling” of the

RV X, i.e. it does not depends on β.

In summary, IPA and WD with CRN clearly outperform SF/LR estimator in

terms of precision for this simple network (see Table 3.1).
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Table 3.1: Comparison of gradient estimators for one arc exponentially distributed
network

Exponential Estimator variance
Distribution Sens. w.r.t. β

IPA 1
SF/LR 13

WD w/CRN 1
WD indep 3

Activity times Gaussian distributed, sensitivity w.r.t. mean

Now assume that the parameter of interest is the mean of a Gaussian distri-

bution.

IPA estimator

In this case IPA estimator is 1 (one), always (see [8], pag.16). Therefore the

variance is always zero.

Var (IPA− SINGLE) = 0 (3.17)

SF/LR estimator

Since ∂
∂σ

ln fX(x) =
(
x−µ
σ2

)
[8], we can compute the variance of the gradient

estimator:

Var

(
X

(
X − µ

σ2

))
=

1

σ4

(
Var

(
X2
)
+ µ2Var (X)− 2µCov

(
X2, X

))
=

1

σ4

(
2σ4 + 4µ4σ2 + µ2σ2 − 4µ2σ2

)
Var (SF/LR− SINGLE) = 2 +

µ2

σ2
(3.18)
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WD estimator

WD estimator is given by 1√
2πσ

(
X(2) −X(1)

)
, where X(2) ∼ µ+Wei (2, 1/2σ2)

and X(1) ∼ µ − Wei (2, 1/2σ2). Variance of WD-based gradient estimator can be

expressed as:

Var

(
1√
2πσ

(
X(2) −X(1)

))
=

1

2πσ2

(
Var

(
X(2)

)
+Var

(
X(1)

)
− 2Cov

(
X(2), X(1)

))
(3.19)

Assuming X(2) and X(1) are generated from the same Weibull distributed

random variate Xwei using CRN, the covariance term is not zero. Let us compute

the variance of the X(2) and X(1), which turns out to be the equal.

Var
(
X(2)

)
= Var (µ+Xwei)

Var
(
X(2)

)
= Var (Xwei) = Var

(
X(1)

)
= 2

(
1− π

4

)
σ2 ≈ 0.4292σ2, (3.20)

where Xwei ∼ Wei (2, 1/2σ2).

Also note that covariance for CRN is given by:

Cov
(
X(2), X(1)

)
= E [(µ+Xwei) (µ−Xwei)]− E [µ+Xwei] E [µ−Xwei]

= E
[
µ2 −X2

wei

]
−
(
µ2 − E [Xwei]

2)
= E [Xwei]

2 − E
[
X2

wei

]
= −Var (Xwei) (3.21)

So, it is better to generate X(2) and X(1) independently. Plugging back results (3.20)
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and (3.21) in equation (3.19), we can obtain:

Var

(
1√
2πσ

(
X(2) −X(1)

))
=

1

2πσ2
· 4Var (Xwei)

Var (WD − SINGLECRN) =
4

π
− 1 ≈ 0.2732 (3.22)

Instead, if X(1) and X(2) are generated independently, then

Var

(
1√
2πσ

(
X(2) −X(1)

))
=

1

2πσ2
· 2Var (Xwei)

Var (WD − SINGLEINDEP ) =
2

π
− 1

2
≈ 0.1366 (3.23)

In this case, if CRN is used the result worsen, because the covariance is neg-

ative. Again the variance is constant, i.e., no dependency of distributional parame-

ters.

In conclusion, as summarized in Table 3.2, IPA estimator is the best estimator

in terms of variance vs. the particular WD estimator considered here, and SF/LR

is always greater than 2, hence the worse estimator:

Table 3.2: Comparison of gradient estimators for one arc normally distributed net-
work

Gaussian Estimator variance
Distribution Sens. w.r.t. µ

IPA 0
SF/LR 2 + µ2/σ2

WD w/CRN 4/π − 1 ≈ 0.273
WD Indep 2/π − 0.5 ≈ 0.137
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Activity times Gaussian distributed, sensitivity w.r.t. std. deviation

Now assume that the parameter of interest is the standard deviation of a

Gaussian distribution.

IPA estimator

In this case, the IPA estimator is given by
(
X−µ
σ

)
. Therefore, we can calculate

the variance in closed form.

Var

(
X − µ

σ

)
=

1

σ2
Var (X) =

σ2

σ2
= 1

Var (IPA− SINGLE) = 1 (3.24)

SF/LR estimator

Since ∂
∂σ

ln fX(x) =
1
σ

[(
x−µ
σ

)2 − 1
]
, we can compute the variance of the gra-

dient estimator:

Var

(
X

σ

[(
X − µ

σ

)2

− 1

])
=

1

σ6
Var

(
X3 − 2µX2 +

(
µ2 − σ2

)
X
)

Var (SL/LR− SINGLE) = 10 + 2
µ2

σ2
(3.25)

WD estimator

WD estimator is given by 1
σ

(
X(2) −X(1)

)
, where X(2) ∼ Mxw (µ, σ2) and

as before X = X(1) ∼ N (µ, σ2). Mxw (µ, σ2) represents a double-sided Maxwell

distribution with PDF f(x) = (x− µ)2/(
√
2πσ3) exp (−(x− µ)2/(2σ)).
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The variance of WD-based estimator can be expressed as:

Var

(
1

σ

(
X(2) −X

))
=

1

σ2

(
Var

(
X(2)

)
+Var (X)− 2Cov

(
X(2), X

))
=

1

σ2

(
3σ2 + σ2 − 2Cov

(
X(2), X

))
(3.26)

If X(2) and X are generated independently, the covariance term is zero. CRN can

be used to reduce the variance of the estimator (increasing the precision) by making

the covariance term positive.

Following the implementation in [13], let XStdMxw ∼ Mxw(0, 1) (known as

standard double-sided Maxwell). Samples from this distribution are obtained by

A-R method. Then Mwx(µ, σ2) and N (µ, σ2) distributed samples were generated

using the following identities:

XMxw = σXStdMxw + µ

XNorm = σXStdMxwXU + µ

⇒ XNorm = XMxwXU − µXU + µ (3.27)

where XU ∼ Unif(0, 1) and is independent of XStdMxw. Hence we have:

Cov
(
X(2), X(1)

)
= E

[
X(2)X(1)

]
− E

[
X(2)

]
E
[
X(1)

]
= E

[
X(2)

(
X(2)XU − µXU + µ

)]
− µ · µ

= E
[(
X(2)

)2]
E [XU ]− µE

[
X(2)

]
E [XU ] + µE

[
X(2)

]
− µ2

=
(
3σ2 + µ2

) 1
2
− µ21

2
+ µ2 − µ2 =

3σ2

2
(3.28)
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Plugging the covariance back to equation (3.26), next expression can be obtained:

Var

(
1

σ

(
X(2) −X

))
=

1

σ2

(
3σ2 + σ2 − 2

3σ2

2

)
= 1

∴ Var (WD − SINGLECRN) = 1 (3.29)

If no common random numbers are used, the covariance term is zero, and we get:

Var

(
1

σ

(
X(2) −X

))
=

1

σ2

(
3σ2 + σ2 − 2 · 0

)
= 4

∴ Var (WD − SINGLEINDEP ) = 4 (3.30)

Table 3.3: Comparison of gradient estimators for one arc normally distributed net-
work

Gaussian Estimator variance
Distribution Sens. wrt σ

IPA 1
SF/LR 10 + 2µ2/σ2

WD w/CRN 1
WD Indep 4

According to Table 3.3, the comparative behavior of estimators are similar to

previous instances, in where IPA and WD estimators outperform SF/LR, which in

the best case is close to 10.

Pure series

In pure series configuration, we have a single path. Hence, the critical path is

just the summation of arcs. Sensitivity will be calculated with respect to a change

in the first activity. If more activities are perturbed, the net result is the sum of the

individual perturbations.
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IPA estimator

Since the IPA estimator is derived considering the parameter dependency in

the samples, we need to differentiate the output RV Y =
∑

iXi with respect to a

parameter in the first activity, then,

∂

∂θ
Y =

∂

∂θ
X1 + 0 + . . .+ 0 =

∂X1

∂θ
(3.31)

In this method the distributions functions are untouched; thus IPA estimators for

this particular instance are exactly the same as the single arc IPA estimators. This

means that precision of the estimator is not degraded as the number of arcs in series

increases.

SF/LR estimator

If the arc times are distributed as Gaussian, the analysis becomes easier since

the sum of Gaussian RVs is also a Gaussian RV. Mathematically, if Xi ∼ N (µi, σ
2
i ),

then Y =
∑

iXi ∼ N (
∑

i µi,
∑

i σ
2
i ). Let µ =

∑
i µi and σ2 =

∑
i σ

2
i . Then we can

derive an expression for the variance of the sensitivity with respect to the first mean

µ1.

Var

(
Y · ∂ ln fY (y)

∂µ1

)
= Var

Y · ∂ ln fY (y)
∂µ

· ∂µ

∂µ1︸︷︷︸
=1


= 2 +

µ2

σ2
= 2 +

(
∑n

i=1 µi)
2∑n

i=1 σ
2
i

(3.32)

Equation (3.32) was obtained using equation (3.18) of previous section, considering

the series connection as a single arc. Now, if we take IID arcs, then the variance of
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the gradient with respect to the first arc is:

Var

(
∂Y

∂µ1

)
SF/LRIID

= 2 +
(nµ1)

2

nσ2
1

= 2 + n
µ2
1

σ2
1

(3.33)

According to the last equation the variance of this estimator grows linearly as the

number of activities n increases. However, this result is different to the system im-

plemented, since the former is just a single-arc equivalent which does not represent

the simulation estimator that degrades by adding variance from every arc. Although

single-arc equivalent estimator deduced here has better precision and it is unbiased,

in most networks and input distributions we are unable to get the equivalent distri-

bution of the whole SAN. In fact, there is no use doing simulation if it is possible

to get the distribution of the output in the first place.

On the other hand, if we consider the sensitivity with respect to the σ1 we

have.

Var

(
Y · ∂ ln fY (Y )

∂σ1

)
= Var

(
Y · ∂ ln fY (Y )

∂σ
· ∂σ

∂σ1

)
(3.34)

Since σ2 =
∑

σ2
i ⇒ σ =

√∑
σ2
i , we have,

∂σ

∂σ1

=
1

2
√
σ2

· 2σ1 =
σ1

σ
(3.35)

Plugging back this expression in equation (3.34) and using equation (3.25) we have:

Var

(
Y · ∂ ln fY (Y )

∂σ
· ∂σ

∂σ1

)
=
(σ1

σ

)2(
10 + 2

µ2

σ2

)
(3.36)

If we choose IID random variables Xi then the following is obtained:

Var

(
∂Y

∂σ1

)
SF/LRIID

=
σ2
1

nσ2
1

(
10 + 2

n2µ2
1

nσ2
1

)
=

10

n
+ 2

µ2
1

σ2
1

(3.37)
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This result tells us that the variance decreases as the number of arcs increases, which

seems to contradict simulation results obtained in the next chapter. The same

reasoning from previous paragraph explains this behavior: The SF/LR estimator

is different from the one obtained taking each arc individually as is done in the

simulation.

Hence, let us try to find a closed-form expression for the sensitivity w.r.t. the

mean in the pure series Gaussian distributed network without taking the equivalent

distribution of the sum of the arcs.

When we just have one arc, the variance of the SF/LR was already calculated.

Y = X1 ⇒

(
∂Ŷ

∂µ1

)
SF/LR

= 2 +
µ2

σ2
(3.38)

Now, consider a network of 2 arcs in series configuration:

Y = X1 +X2 ⇒

(
∂Ŷ

∂µ1

)
SF/LR

= Var

(
(X1 +X2)

X1 − µ1

σ2
1

)

= Var(X1
(X1 − µ1)

σ2
1︸ ︷︷ ︸

Z1

+X2
(X1 − µ1)

σ2
1︸ ︷︷ ︸

Z2

)

= Var (Z1) + Var (Z2) + 2Cov (Z1, Z2) (3.39)

Notice that Var (Z1) = 2 + µ2/σ2 (single arc case). For variance of Z2 we can use

the formula for the variance of a product of independent RVs.1

1The variance of multiplication of 2 independent RV can be deduced this way:

Var (UV ) = E
[
U2V 2

]
− E [UV ]

2
=

indep
E
[
U2
]
E
[
V 2
]
− E [U ]

2
E [V ]

2

= E
[
U2
]
(E
[
V 2
]
− E [V ]

2
) + E [V ]

2
(E
[
U2
]
− E [U ]

2
)

= (Var (U) + E [U ]
2
)Var (V ) + E [V ]

2
Var (U)

= Var (U)Var (V ) + E [U ]
2
Var (V ) + E [V ]

2
Var (U)

⇒ Var (UV ) = Var (U)Var (V ) + E [U ]
2
Var (V ) + E [V ]

2
Var (U)
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Var (Z2) = Var

(
X2

X1 − µ1

σ2
1

)
=

1

σ2
1

Var(X2
X1 − µ1

σ1︸ ︷︷ ︸
0−mean,var=1

)

=
1

σ2
1

(Var (X2) + E [X2]
2 + 0) =

σ2
2 + µ2

2

σ2
1

(3.40)

Let us concentrate on the covariance between Z1 and Z2.

Cov (Z1, Z2) = E

[
X1X2

(
X1 − µ1

σ2
1

)2
]
− E

[
X1

(X1 − µ1)

σ2
1

]
E

[
X2

(X1 − µ1)

σ2
1

]
︸ ︷︷ ︸

=0

= µ2E

[
X1

(
X1 − µ1

σ2
1

)2
]

=
µ2

σ4
1

(
E
[
X3

1

]
− 2µ1E

[
X2

1

]
+ µ2

1E [X1]
)

=
µ2

σ4
1

(
µ3
1 + 3µ1σ

2
1 − 2µ1(µ

2
1 + σ2

1) + µ2
1µ1

)
=

µ2

σ4
1

(
µ1σ

2
1

)
=

µ1µ2

σ2
1

(3.41)

Bringing back previous results together, we can write:(
∂Ŷ

∂µ1

)
SF/LR

= 2 +
µ2
1

σ2
1

+
µ2
2 + σ2

2

σ2
1

+ 2
µ1µ2

σ2
1

(3.42)

Now, let Y = X1 +X2 +X3:(
∂Ŷ

∂µ1

)
SF/LR

= Var

(
X1

X1 − µ1

σ2
1

+X2
X1 − µ1

σ2
1

+X3
X1 − µ1

σ2
1

)

= Var (Z1 + Z2 + Z3)

= Var (Z1) + Var (Z2) + Var (Z3) + 2Cov (Z1, Z2) + 2Cov (Z1, Z3) + 2Cov (Z2, Z3)

(3.43)
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Similarly, it can be concluded that:

Var (Z3) =
σ2
3 + µ2

3

σ2
1

Cov (Z1, Z3) =
µ1µ3

σ2
1

(3.44)

It is still needed to compute the covariance between Z2 and Z3:

Cov (Z2, Z3) = E

[
X2X3

(
X1 − µ1

σ2
1

)2
]
− 0

=
µ2µ3

σ2
1

E

[(
X1 − µ1

σ1

)2
]

=
µ2µ3

σ2
1

(1 + 0) =
µ2µ3

σ2
1

(3.45)

If we assume activity times IID, i.e. Xi ∼ N (µ, σ2) , i = 1, ..., n, then we can

express a condensed expression for the variance of this estimator:(
∂Ŷ

∂µ1

)
SF/LR−IID

=

(
2 +

µ2

σ2

)
+ 2

σ2 + µ2

σ2
+ 3 · 2µ

2

σ2
(3.46)

Now we are ready to present a general formula for Y = X1 + ...+Xn:(
∂Ŷ

∂µ1

)
SF/LR−IID

=

(
2 +

µ2

σ2

)
+ (n− 1)

σ2 + µ2

σ2
+

(
n

2

)
· 2µ

2

σ2
(3.47)

A plot of this last equation is presented in Figure 3.2, taking µ = 30 and

σ = 5.

We limited our analysis to normally distributed activity times, since even

simple networks like this pure series becomes intractable when other distributions

are considered. For example, if we use exponential distributions to generate the

activity times, the distribution of the longest (an unique) path is called Hypo-

Exponential. In other words, if Xi ∼ exp (βi) then
∑n

i Xi ∼ HypoExp (β1, . . . , βn).
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Figure 3.2: Variance of the SF/LR based estimator for a pure series
stochastic activity network. Activity times normally distributed and IID
with mean 30 and standard deviation 5, i.e. Xi ∼ N (µ = 30, σ = 5).

It turns out that it is not trivial to deduct the SF/LR gradient estimator for this

distribution mostly due its matrix representation.

Moreover, the previous example illustrate the problem of SF/LR under increas-

ing number of activities: the positive covariance terms plus the individual variance

terms sum up, degrading the estimation precision.

WD estimator

Remember that in the weak derivative gradient estimator, the parameter θ is

in the distribution function and the derivative is rewritten as a difference.

∂

∂θ
E [Y ] =

1

c

(
E
[
X

(2)
1 +X2 + . . .+Xn

]
− E

[
X

(1)
1 +X2 + . . .+Xn

])
=

1

c

(
E
[
X

(2)
1

]
− E

[
X

(1)
1

])
=

∂

∂θ
E [X1] (3.48)
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Hence, the WD estimator is the same as the single arc WD estimator. This implies

that there is no degradation in the precision as the number of activities n increases.

3.3 Two parallel activities

Let’s now consider the case of 2 parallel activities. An analysis of the variance

of the gradient estimator will be presented.

IPA estimator

The critical (longest) path in this case is given by Y = max(X1, X2), where

X1 ∼ exp (β1) and X2 ∼ exp (β2). Remember that the IPA estimator is dependent

on the sampling strategy, in this case the 2 independent activity times are generated

using the CDF inverse transform method, i.e., Y = max(−β1 lnU1,−β2 lnU2), where

U1, U2 ∼ Unif(0, 1). Hence, the derivative with respect to first mean β1 can be

written as:

Y ′ =
∂

∂β1

Y =


− lnU1 if − β1 lnU1 > −β2 lnU2

0 otherwise

(3.49)

Please note that the condition −β1 lnU1 > −β2 lnU2 is equivalent to U1 < U
β2/β1

2 .

Hence, the expected value and the expected value of the square can be calculated
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using double integrals.

E

[
∂Y

∂β1

]
=

∫ u2=1

u2=0

∫ u1=u
β2/β1
2

u1=0

(− lnu1)du1du2

=

∫ 1

0

u
β2/β1

2 du2 −
∫ 1

0

u
β2/β1

2 ln
(
u
β2/β1

2

)
du2

=
1

β2/β1 + 1
+

β2/β1

(β2/β1 + 1)2

=
1 + 2β2/β1

(β2/β1 + 1)2
(3.50)

Since we expect unbiased estimators, every gradient estimator method in this section

should have the same expected value of Equation (3.50). This equation is also

plotted in Figure 3.3.
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Figure 3.3: Relation between the criticality index and expected value of
the gradient for a SAN of two parallel exponentially distributed Arcs.
Critical path (maximum path) gradient sensitivity with respect to the
mean.
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E

[(
∂Y

∂β1

)2
]
=

∫ u2=1

u2=0

∫ u1=u
β2/β1
2

u1=0

ln2 u1du1du2

=

∫ 1

0

2u
β2/β1

2 du2 −
∫ 1

0

2u
β2/β1

2 ln
(
u
β2/β1

2

)
du2 +

∫ 1

0

u
β2/β1

2 ln2
(
u
β2/β1

2

)
du2

= 2

(
1

β2/β1 + 1
+

β2/β1

(β2/β1 + 1)2
+

(β2/β1)
2

(β2/β1 + 1)3

)
(3.51)

Now we can obtain the variance of this estimator using the equation Var (Z) =

E [Z2]− E [Z]2:

Var

(
∂Y

∂β1

)
IPA

=
6 (β2/β1)

3 + 8 (β2/β1)
2 + 4 (β2/β1) + 1

(β2/β1 + 1)4
(3.52)

This equation was plotted using logarithmic scale in the x-axis in Figure 3.4. Observe

in this figure that the variance does not depends on the scaling of the network, i.e.,

if β1 and β2 are increased or decreased keeping constant the ratio between them,

then the variance does not change.
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Figure 3.4: Relation between the means ratio and variance of the IPA
estimator for a SAN of two parallel exponentially distributed Arcs. Crit-
ical path (maximum path) sensitivity with respect to the mean.
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Plotting this same variance w.r.t. the criticality result in the curve showed in

Figure 3.5 with the maximum occurring at a criticality index value of 50%.
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Figure 3.5: Variance of the IPA estimator for a SAN of two parallel ex-
ponentially distributed arcs with respect to the criticality index. Critical
path (maximum path) sensitivity with respect to the mean.

SF/LR estimator

Since the output random variable Y = max (X1, X2) is simple enough, we can

get a closed-form expression for the variance of this gradient estimator. Var (Z) =

E [Z2]− E [Z]2, where Z, in this case, is the SF/LR gradient estimator, given by,

Z = max (X1, X2) ·
1

β1

(
X1

β1

− 1

)
(3.53)
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Let’s begin finding an expression for the expected value.

E

[
max (X1, X2) ·

1

β1

(
X1

β1

− 1

)]
=

∫ ∞
x1=0

∫ x1

x2=0

x1

β1

(
x1

β1

− 1

)
fX1fX2dx2dx1

+

∫ ∞
x1=0

∫ ∞
x2=x1

x2

β1

(
x1

β1

− 1

)
fX1fX2dx2dx1

=
β1

β1 + β2
2

(β1 + 2β2)

=
1 + 2β2/β1

(1 + β2/β1)
2 (3.54)

Same expected value as IPA estimator which is correct if we assume both estimators

are unbiased. Now the expected value of the square.

E

[(
max (X1, X2) ·

1

β1

(
X1

β1

− 1

))2
]

=

∫ ∞
x1=0

∫ x1

x2=0

(
x1

1

β1

(
x1

β1

− 1

))2

fX1fX2dx2dx1

+

∫ ∞
x1=0

∫ ∞
x2=x1

(
x2

1

β1

(
x1

β1

− 1

))2

fX1fX2dx2dx1

=
2 (7β6

1 + 28β5
1β2 + 42β4

1β
2
2 + 30β3

1β
3
2 + 6β2

1β
4
2 + 4β1β

5
2 + β6

2)

β2
1(β1 + β2)4

(3.55)

The closed-form equation for the variance is:

Var

(
max (X1, X2) ·

1

β1

(
X1

β1

− 1

))
=

13β6
1 + 52β5

1β2 + 80β4
1β

2
2 + 60β3

1β
3
2 + 12β2

1β
4
2 + 8β1β

5
2 + 2β6

2

β2
1(β1 + β2)4

13 + 52 (β2/β1) + 80 (β2/β1)
2 + 60 (β2/β1)

3 + 12 (β2/β1)
4 + 8 (β2/β1)

5 + 2 (β2/β1)
6

(1 + β2/β1)
4

(3.56)

Notice in Figure 3.6 that curve has an asymptote at variance=13 (the limiting

case of single arc), and decreasing the criticality of the first arc just worsens the

variance of the estimator very quickly. This behavior differs w.r.t the behavior of

the IPA estimator.
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Figure 3.6: Relation between the ratio of means and variance of the
SF/LR estimator for a SAN of two parallel exponentially distributed
arcs. Critical path (maximum path) sensitivity with respect to the mean
of the first arc.

WD estimator

The variance of the weak derivative based gradient estimator from [8], in this

case is:

Var

(
∂Y

∂β1

)
WD

=
1

β2
1

(
Var

(
Y (2)

)
+Var

(
Y (1)

)
− 2Cov

(
Y (2), Y (1)

))
(3.57)

where Y (2) and Y (1) are given by:

Y (2) = max
(
X(2), X2)

)
(3.58)

Y (1) = max
(
X(1), X2)

)
(3.59)

The variance of the WD estimator depends on the ‘coupling’ used to generate

the phantom samples. In this case, it is assumed that the random Erlang variates

X(2) ∼ Erl (2, β1) were generated summing two independent exponential variates:

X1 andX3, whereX1, X3 ∼ exp (β1). On the other hand, X2 is still an exponentially
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distributed variable, i.e. X2 ∼ exp (β2). Finally X(1) is just X1. Using these

assumptions, we have that:

Y (2) = max
(
X(2), X2)

)
= max (X1 +X3, X2) (3.60)

Y (1) = max
(
X(1), X2)

)
= max (X1, X2) (3.61)

Note that we can know the variance of Y (1) by definition using the joint distri-

bution. Because we assumed independent RVs, we can write the joint distribution

as the product of the marginal ones.

E
[
Y (1)

]
=

∫ ∞
x2=0

∫ x2

x1=0

x2fX1fX2dx1dx2 +

∫ ∞
x2=0

∫ ∞
x1=x2

x1fX1fX2dx1dx2

E
[
Y (1)

]
= β2 +

β2
1

β1 + β2

(3.62)

E
[(
Y (1)

)2]
=

∫ ∞
x2=0

∫ x2

x1=0

x2
2fX1fX2dx1dx2 +

∫ ∞
x2=0

∫ ∞
x1=x2

x2
1fX1fX2dx1dx2

E
[(
Y (1)

)2]
= 2

(
β2
2 + β3

1

β1 + 2β2

(β1 + β2)
2

)
Var

(
Y (1)

)
=

(β2
1 − β1β2 + β2

2) (β
2
1 + 3β1β2 + β2

2)

(β1 + β2)
2 (3.63)

Now, consider the variance of Y (2). Notice that the expectation integral can

be decomposed in three parts depending on the relative magnitudes of X1, X2 and

X3.
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E
[
Y (2)

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2−x1

x3=0

x2fX1fX2fX3dx3dx2dx1

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2−x1

(x1 + x3) fX1fX2fX3dx3dx2dx1

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

(x1 + x2) fX1fX2fX3dx3dx2dx1

E
[
Y (2)

]
= β2 +

β1

(β1 + β2)
2 (2β1 + 3β2) (3.64)

E
[
(Y (2))2

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2−x1

x3=0

x2
2fX1fX2fX3dx3dx2dx1

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2−x1

(x1 + x3)
2 fX1fX2fX3dx3dx2dx1

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

(x1 + x2)
2 fX1fX2fX3dx3dx2dx1

E
[
(Y (2))2

]
= 2

(
β2
2 + β3

1

3β2
1 + 9β1β2 + 8β2

2

(β1 + β2)
3

)
(3.65)

(3.66)

With these results we can give an expression for the variance of Y (2).

Var
(
Y (2)

)
= E

[(
Y (2)

)2]− E
[
Y (2)

]2
=

2β6
1 + 8β5

1β2 + 12β4
1β

2
2 + 4β3

1β
3
2 + 4β1β

5
2 + β6

2

(β1 + β2)
4 (3.67)

Now we need to give an expression for the covariance between Y (2) and Y (1).

Let us follow the definition of covariance:

Cov
(
Y (2), Y (1)

)
= E

[
Y (2)Y (1)

]
− E

[
Y (2)

]
E
[
Y (1)

]
= E [max (X1 +X3, X2) ·max (X1, X2)]

−E [max (X1 +X3, X2)] E [max (X1, X2)] (3.68)
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First, the expected vale of the product can be calculated using the same inte-

gration technique presented above.

E
[
Y (2)Y (1)

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2−x1

x3=0

x2 · x2fX1fX2fX3dx3dx1dx2

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2−x1

(x1 + x3) · x2fX1fX2fX3dx3dx1dx2

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

(x1 + x3) · x1fX1fX2fX3dx3dx1dx2

E
[
Y (2)Y (1)

]
= 2β2

2 + β3
1

3β2
1 + 9β1β2 + 8β2

2

(β1 + β2)
3 (3.69)

Hence, the covariance between Y (2) and Y (1) is:

Cov
(
Y (2), Y (1)

)
=

β5
1 + 3β4

1β2 + 2β3
1β

2
2 − β2

1β
3
2 + 3β1β

4
2 + β5

2

(β1 + β2)
3 (3.70)

Now the variance of the WD estimator can be written as:

Var

(
∂Y

∂β1

)
WD

=
1

β2
1

(
Var

(
Y (2)

)
+Var

(
Y (1)

)
− 2Cov

(
Y (2), Y (1)

))
Var

(
∂Y

∂β1

)
WD

= (1 + 2β2/β1)
1 + 2β2/β1 + 2 (β2/β1)

2

(1 + β2/β1)
4 (3.71)

Figure 3.7 shows a logarithmic graph in the horizontal axis, where we assigned

the ratio of the means (β2/β1).

Based on the variance of these three gradient estimators, it can be concluded

that WD estimator outperforms IPA and SF/LR estimator for every criticality level

in this particular network setup (see Figure 3.8).
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Figure 3.7: Relation between the means ratio and variance of the WD-
based estimator for a SAN of two parallel exponentially distributed arcs.
Critical path sensitivity with respect to mean of the first activity.
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Figure 3.8: Comparison of estimator precision among IPA, SF/LR and
WD methods (less is better). Two parallel activities, exponentially dis-
tributed. Critical (longest) path gradient with respect to mean of the
first activity β1. (a) IPA and WD are much more precise than SF/LR (b)
Detail between IPA and WD estimators, WD outperform IPA at every
criticality level
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3.4 Two parallel activities, shortest path

Let’s now consider the case of the shortest path in a network of two parallel

activities. Analysis of the variance of the gradient estimator will be presented in

next sub-sections. We are departing slightly from our original focus on the critical

path. However, the idea is to drawn useful conclusions from this special case that

are applicable to the critical path problem.

IPA estimator

The shortest path in this case is given by Y = min(X1, X2), where X1 ∼

exp (β1) and X2 ∼ exp (β2). Remember that the IPA estimator is dependent on the

random variate generation strategy. Just like in the previous section, two indepen-

dent activity times are generated using the CDF inverse method, i.e.,

Y = min(−β1 lnU1,−β2 lnU2) (3.72)

where U1, U2 are U(0, 1) IID RVs, and β1, β2 are the means of exponentially dis-

tributed RVs respectively. Hence, the derivative with respect to first mean β1 can

be written as:

Y ′ =
∂

∂β1

Y =


− lnU1 if − β1 lnU1 < −β2 lnU2

0 otherwise

(3.73)
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The condition −β1 lnU1 < −β2 lnU2 is equivalent to U1 > U
β2/β1

2 . Hence, expected

value and variance can be calculated using the following double integrals.

E

[
∂Y

∂β1

]
=

∫ 1

u2=0

∫ 1

u1=u
β2/β1
2

(− lnu1)du1du2

=

(
β2/β1

1 + β2/β1

)2

(3.74)

E

[(
∂Y

∂β1

)2
]
=

∫ 1

u2=0

∫ u
β2/β1
2

u1=0

(− lnu1)
2 du1du2

= 2

(
β2/β1

1 + β2/β1

)3

(3.75)

∴ Var

(
∂Y

∂β1

)
IPA

= E

[(
∂Y

∂β1

)2
]
−E

[
∂Y

∂β1

]2
Var

(
∂Y

∂β1

)
IPA

=
2 + β2/β1

(1 + β2/β1)
4 (β2/β1)

3

This equation was plotted putting the ratio β2/β1 in the horizontal axis using a

logarithmic scale. Observe in Figure 3.9 that the variance is close to zero for small

values of β1/β2 and it is still small when β1/β2 = 1 (means of the two arcs are the

same). This behavior is totally different to the critical (maximum) path behavior.

Also note that the variance does not depends on the scaling of the network, i.e., if

β1 and β2 are increased or decreased keeping the ratio between them constant, the

variance does not change.

SF/LR estimator

Taking Y = min(X1, X2), whereX1 ∼ exp (β1) andX2 ∼ exp (β2), the shortest

path distribution for this particular setup is:
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Figure 3.9: Relation between the means ratio and variance of the IPA
estimator for a SAN of two parallel, minimum path and exponentially
distributed arcs.

FY (y) = P (min(X1, X2) < y) = 1− P (min(X1, X2) > y)

= 1− P (X1 > y)P (X2 > y)

= 1− exp (−y/β1) exp (−y/β2)]

= 1− exp (−y/β) (3.76)

Hence, Y is also a exponentially distributed RV, with mean β = β1β2/(β1+β2).

Now, the SF/LR estimator is given by:

Y · ∂

∂β1

ln fY (Y ) = Y · 1
β

(
Y

β
− 1

)
· dβ

dβ1

= Y
1

β

(
Y

β
− 1

)
·
(

β2/β1

1 + β2/β1

)2

(3.77)

Therefore, the problem has been reduced to the single arc with exponentially

distributed time, weighted by a factor. The factor is constant for given β1 and β2.
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In conclusion, the variance of the SF/LR estimator is known from previous section:

Var

(
∂Y

∂β1

)
SF/LR

= 13

(
β2/β1

1 + β2/β1

)4

(3.78)

This equation is plotted in Figure 3.10 using the ratio (β2/β1).
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Figure 3.10: Relation between the means ratio and variance of the
SF/LR estimator for a SAN of two parallel, minimum path and ex-
ponentially distributed arcs.

WD estimator

The variance of the weak derivative based gradient estimator is:

Var

(
∂Y

∂β1

)
WD

=
1

β2
1

(
Var

(
Y (2)

)
+Var

(
Y (1)

)
− 2Cov

(
Y (2), Y (1)

))
(3.79)

It is needed to take into account the ‘coupling’ used to generate the phantom

samples. In this case again it is assumed that the random Erlang variates X(2) were

generated summing two independent exponential variates: X1 and X3, where X1,

X3 ∼ exp (β1). On the other hand, X2 is still an exponentially distributed variable,
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i.e. X2 ∼ exp (β2), and X(1) is X1. Using these assumptions, we have that:

Y (2) = min
(
X(2), X2)

)
= min (X1 +X3, X2) (3.80)

Y (1) = min
(
X(1), X2)

)
= min (X1, X2) (3.81)

Note that given Y (1) definition, we already know that Y (1) ∼ exp (β), where

β = β1β2/ (β1 + β2). Hence, we can write:

E
[
Y (1)

]
=

β1β2

β1 + β2

(3.82)

Var
(
Y (1)

)
=

(
β1β2

β1 + β2

)2

(3.83)

Now, let’s compute some expectations of Y (2), needed for variance calculation.

Notice that the expectation integral can be decomposed in three parts depending

on the relative magnitudes of X1, X2 and X3.

E
[
Y (2)

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2/x3

x3=0

(x1 + x2) fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2/x3

x2fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

x2fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

E
[
Y (2)

]
= 2

β1β
3
2

(β1 + β2)3
+ 2

β2
1β

2
2

(β1 + β2)3
+

β2
1β2

(β1 + β2)2

=
β1β2

(β1 + β2)2
(β1 + 2β2) (3.84)
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E
[
(Y (2))2

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2/x3

x3=0

(x1 + x2)
2 fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2/x3

x2
2fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

x2
2fX1(x1)fX2(x2)fX3(x3)dx3dx2dx1

E
[
(Y (2))2

]
= 6

β2
1β

4
2

(β1 + β2)
4 + 6

β3
1β

3
2

(β1 + β2)
4 + 2

β3
1β

2
2

(β1 + β2)
3

= 2
β2
1β

2
2

(β1 + β2)
3 (β1 + 3β2)

(3.85)

With these results we can give an expression for the variance of Y (2).

Var
(
Y (2)

)
= E

[(
Y (2)

)2]− E
[
Y (2)

]2
=

β2
1β

2
2

(β1 + β2)
4

(
β2
1 + 4β1β2 + 2β2

2

)
(3.86)

Now we need to give an expression for the Covariance between Y (2) and Y (1).

Let us follow the covariance definition:

Cov
(
Y (2), Y (1)

)
= E

[
Y (2)Y (1)

]
− E

[
Y (2)

]
E
[
Y (1)

]
= E [min (X1 +X3, X2) ·min (X1, X2)]

−E [min (X1 +X3, X2)] E [min (X1, X2)] (3.87)

First, the expected value of the product can be calculated using the same
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integration technique presented above.

E
[
Y (2)Y (1)

]
=

∫ ∞
x2=0

∫ x2

x1=0

∫ x2−x1

x3=0

(x1 + x3) x1fX1(x1)fX2(x2)fX3(x3)dx3dx1dx2

+

∫ ∞
x2=0

∫ x2

x1=0

∫ ∞
x3=x2−x1

x2x1fX1(x1)fX2(x2)fX3(x3)dx3dx1dx2

+

∫ ∞
x2=0

∫ ∞
x1=x2

∫ ∞
x3=0

x2x2fX1(x1)fX2(x2)fX3(x3)dx3dx1dx2

E
[
Y (2)Y (1)

]
= 3

β2
1β

4
2

(β1 + β2)
4 + 3

β3
1β

3
2

(β1 + β2)
4 + 2

β3
1β

2
2

(β1 + β2)
3

E
[
Y (2)Y (1)

]
= 3

β2
1β

3
2

(β1 + β2)
4 (2β1 + β2)

(3.88)

Hence, the covariance between Y (2) and Y (1) is:

Cov
(
Y (2), Y (1)

)
= 3

β2
1β

3
2

(β1 + β2)
4 (2β1 + β2)−

β1β2

(β1 + β2)2
(β1 + 2β2) ·

β1β2

β1 + β2

=

(
β1β2

β1 + β2

)2

= β2 (3.89)

Now the variance of the WD estimator can be written as:

∴ Var

(
∂Y

∂β1

)
WD

=
1

β2
1

(
β2
1β

2
2

(β1 + β2)
4

(
β2
1 + 4β1β2 + 2β2

2

)
+ β2 − 2β2

)
= (β2/β1)

3 2 + β2/β1

(1 + β2/β1)
4 (3.90)

Figure 3.11 shows a logarithmic graph in the horizontal axis, where we put

the ratio of the means (β2/β1) and in the vertical axis is the variance of the WD

estimator.
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Figure 3.11: Relation between the ratio of means and variance of the
weak derivative based estimator for a SAN of two parallel, minimum
path and exponentially distributed arcs.

3.5 Series-parallel combination

For this section just consider the IPA estimator of the network shown in Fig-

ure 3.12. It will allow us to study the effect of the criticality and relative weight of

an arc with respect to the rest of the network. The IPA estimator is mathematically

tractable by computing the variance using multiple integrals to obtain the expected

value of the estimator and the expected value of the square of the estimator.

1

Source

3

Sink

2

β1 β3

β2

Figure 3.12: Series-parallel network configuration.
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Thus, using the following definition of variance, we have:

Var (Z) = E
[
Z2
]
− E [Z]2 , (3.91)

where Z is the IPA estimator with respect to activity 1 of Y = max (X1 +X3, X2).

Z is a RV by itself and it is given by:

Z =


− lnU1 if − β1 lnU1 − β3 lnU3 > −β2 lnU2

0 otherwise

(3.92)

The last expression considers that X1, X2 and X3 where generated using the

inverse method, where U1, U2 and U3 are all Unif(0,1) IID variables.

From here we can compute the expected value of the IPA estimator Z by

integration, taking into account the ranges of U1, U2 and U3 for which X1+X3 > X2.

E [Z] =

∫ 1

0

∫ 1

0

∫ 1

0

Zdu1du2du3

=

∫ 1

u2=0

∫ u
β2/β1
2

u1=0

∫ 1

u3=0

− lnU1du3du1du2

+

∫ 1

u2=0

∫ 1

u1=u
β2/β1
2

∫ u
β2/β3
2 /u

β1/β3
1

u3=0

− lnU1du3du1du2

= 1− β3
2

(β1 + β2)
2 (β3 + β2)

(3.93)

Same procedure is followed for the expectation of Z squared.

E
[
Z2
]
=

∫ 1

0

∫ 1

0

∫ 1

0

Zdu1du2du3

=

∫ 1

u2=0

∫ u
β2/β1
2

u1=0

∫ 1

u3=0

(lnU1)
2 du3du1du2

+

∫ 1

u2=0

∫ 1

u1=u
β2/β1
2

∫ u
β2/β3
2 /u

β1/β3
1

u3=0

(lnU1)
2 du3du1du2

= 2− 2β4
2

(β1 + β2)
3 (β3 + β2)

(3.94)
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Integrating and combining these intermediate results we can get the closed-

form expression of the variance of the IPA gradient estimator for this particular

SAN of exponentially distributed arc times.

Var (Z) = 1 +
β3
2 (2β1 (β1 + β2) (β3 + β2)− β3

2)

(β1 + β2)
4 (β3 + β2)

2 (3.95)

This expression is not as simple as the previous ones, but it is still useful to

analyze. In this part, we are interested in observe how the criticality of the first

branch affects the precision of the IPA estimator. In order to achieve this objective,

we need the closed-form expression for the criticality index of the first activity given

the means of the three activities β1, β2 and β3. The criticality index is the probability

that the upper path (Y1 = X1 +X3) is longer than the lower one (X2).

P (Y1 > X2) =

∫ ∞
y1=0

P (X2 < Y1|Y1 = y1)fY1(y1)dy1

=

∫ ∞
y1=0

FX2(y1)fY1(y1)dy1 =

∫ ∞
y1=0

∫ y1

x2=0

fX2(x2)dx2fY1(y1)dy1

=

∫ ∞
y1=0

∫ y1

x2=0

fX2(x2)fY1(y1)dx2dy1 (3.96)

The distribution of Y1 and X2 are needed to calculate this last expression. As

it was mentioned before, the distribution of a sum of exponentially distributed RVs

is called Hypoexponential. If the means of the the two activities are exactly the

same, we obtained a Erlang distribution instead.

Let’s first consider the case of different means, i.e. β1 6= β3.

Y1 ∼ HypoExp(β1, β3) ⇐⇒ fY1(y) = −αeyΘΘ1 (3.97)
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, where

α = (1, 0) ,Θ =

 −β−11 β−11

0 −β−13

 , 1 = (1, 1)T

Hence, we get:

fY1(y) =
e−y/β1 − e−y/β3

β1 − β3

(3.98)

On the other hand, for X2 we already know that its PDF is:

fX2(x) =
e−x/β2

β2

(3.99)

Plugging back these results in equation (3.96) we obtain:

P (Y1 > X2) =

∫ ∞
y1=0

∫ y1

x2=0

e−x2/β2

β2

e−y1/β1 − e−y1/β3

β1 − β3

dx2dy1

P (Y1 > X2) = 1− β2
2

(β1 + β2) (β3 + β2)
(3.100)

Hence, we obtain a closed-form expression for the criticality as a function of the

activity times means.

To check that this last expression is valid in the case of β1 = β3, we repeat the

previous steps but using Erlang distribution for Y1 = X1 +X3 in equation (3.96):

P (Y1 > X2) =

∫ ∞
y1=0

∫ y1

x2=0

e−x2/β2

β2

y1e
−y1/β1

β2
1

dx2dy1

P (Y1 > X2) =
β2
1 + 2β1β2

(β1 + β2)
2

P (Y1 > X2) = 1− β2
2

(β1 + β2)
2 (3.101)

This expression is in accordance with equation (3.100) when β1 = β3.
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Now we need to relate these closed-form equations with the concepts of critical-

ity and relative weight. First notice that scaling (multiplying every mean parameter

β by the same factor) does not alter the variance of the gradient estimator in this

exponentially distributed instance. Then we can conveniently choose β1, β2 and

β3 to get the desired relative weight w and criticality c from the multiples ways to

select β1, β2 and β3. Also remember that β1, β2 and β3 are greater than zero.

Hence, given the relative weight w, we fixed the relative magnitude of β1 and

β3, because:

w =
β1

β1 + β3

(3.102)

Now, because of the invariant scale property, arbitrarily assume β1 + β3 = 1, then

β1 is the relative weight and β3 = 1− β1.

Second, given a target criticality and with β1 and β3 fixed from the previous

step, we can write a quadratic equation in β2.

c = 1− β2
2

(β1 + β2) (β3 + β2)

(β1 + β2) (β3 + β2) (1− c) = β2
2

cβ2
2 − (β1 + β3) (1− c) β2 − β1β3 (1− c) = 0

⇒ β2 =
(β1 + β3) (1− c)±

√
(β1 + β3)

2 (1− c)2 + 4cβ1β3 (1− c)

2c
(3.103)

Notice that the minus sign always yields negative β2 because 4cβ1β3 (1− c) >

0. Thus, the plus sign must be used to obtain valid values of β2.
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Putting these last results together, we have:

β1 = w (3.104)

β3 = 1− w (3.105)

β2 =
(1− c) +

√
(1− c)2 + 4c · w (1− w) (1− c)

2c
(3.106)

Figure 3.13 shows how the precision of the estimator varies with criticality of

the first activity, as the relative weight is maintained constant.
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Figure 3.13: Variance curves for IPA estimator for series-parallel network
configuration.

On the other hand, Figure 3.14 shows how variance varies with the relative

weight as the criticality is kept constant.

Another observation is that the precision of the IPA estimator does not change

if criticality and relative weight are fixed, even though the expected times of the
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Figure 3.14: IPA estimator variance curves for series-parallel network
and fixed criticality (a) 1% <crit< 50%, (b) 50% <crit< 99%.

activities were altered. This observation means that the IPA estimator is invariant

with respect to the scale factor of the network. That is a behavior common to many

networks analyzed so far.

One interesting conjecture to explore is: does the IPA estimator change if

criticality and relative weight are kept constant in the path of interest but we change

the complexity of the rest of the network?

It is also interesting that the curves are not monotone, as they have a max-

imum between the 50% and 100% of criticality, depending on the relative weight.

This behavior suggest that at the maximum point,the variability of the total com-

pletion time is maximum since it is exists the maximum uncertainty about which

path is going to be the optimum (longest) one at each realization. Accordingly, we

propose to describe this uncertainty using Entropy, an information-theoretic mea-

sure introduced by Shannon [22]. Then we will find out how it compares to the

variance.
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3.5.1 Criticality-Weight influence in distinct SANs

This section is devoted to obtain the IPA estimator variance vs. criticality

for two different SANs. This exercise is of interest because we want to know if the

precision of IPA estimators is independent of the network structure for a particular

and fixed combination of criticality and relative weight of the arc.

1

2

3

β1 β2

β3

β4

Figure 3.15: Three parallel paths Stochastic activity network, one 2
series arc path. Exponentially distributed activity times with means βi

Let us obtain the IPA estimator variance for a SAN of 3 parallel paths and

the first one consisting in two serial activities as is shown in Figure 3.15. This

new network will be compared with the one used in Section 3.5 and exponentially

distributed times will be considered.

Let Z be the IPA estimator (a RV by itself), defined in the following way:

Z =


X1

β1
if X1 +X2 > max (X3, X4)

0 otherwise

(3.107)
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Then we can get the expected value by integration for the exponential PDFs.

E [Z] =

∫ ∞
x1=0

∫ ∞
x2=0

∫ x1+x2

x3=0

∫ x1+x2

x4=0

x1

β1

fX4(x4)fX3(x3)fX2(x2)fX1(x1)dx4dx3dx2dx1

=

∫ ∞
x1=0

∫ ∞
x2=0

x1

β1

(
1− e

−x1+x2
β3

)(
1− e

−x1+x2
β4

)
fX2(x2)fX1(x1)dx2dx1

= 1− β3
4

(β1 + β4)
2 (β2 + β4)

+β3
3

(
β3
4

(β3β4 + β1 (β3 + β4))
2 (β3β4 + β2 (β3 + β4))

− 1

(β1 + β3)
2 (β2 + β3)

)
(3.108)

E
[
Z2
]
=

∫ ∞
x1=0

∫ ∞
x2=0

∫ x1+x2

x3=0

∫ x1+x2

x4=0

x2
1

β2
1

fX4(x4)fX3(x3)fX2(x2)fX1(x1)dx4dx3dx2dx1

=

∫ ∞
x1=0

∫ ∞
x2=0

x2
1

β2
1

(
1− e

−x1+x2
β3

)(
1− e

−x1+x2
β4

)
fX2(x2)fX1(x1)dx2dx1

= 2− 2β4
4

(β1 + β4)
3 (β2 + β4)

+β4
3

(
2β4

4

(β3β4 + β1 (β3 + β4))
3 (β3β4 + β2 (β3 + β4))

− 2

(β1 + β3)
3 (β2 + β3)

)
(3.109)

Thus, we can obtain the variance of the IPA estimator using Equation (3.91).

An expression for the relative weight in this network is just w = β1/ (β1 + β2),

but a closed-form expression for the criticality index is needed.

CI = P (X1 +X2 > max (X3, X4)) =

∫ ∞
x1=0

∫ ∞
x2=0

∫ x1+x2

x3=0

∫ x1+x2

x4=0

fX4(x4)fX3(x3)fX2(x2)fX1(x1)dx4dx3dx2dx1

= 1− β3
4

(β1 + β4)
2 (β2 + β4)

+β3
3

(
β3
4

(β3β4 + β1 (β3 + β4))
2 (β3β4 + β2 (β3 + β4))

− 1

(β1 + β3)
2 (β2 + β3)

)
(3.110)
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Choosing β1, β2, β3 and β4 conveniently, implies apply some restrictions to get

criticality and relative weight. Hence, we have:

β1 = w

β2 = 1− w

β3 = β4 (3.111)

where β4 satisfies the following equation:

cβ4
4 + 3cβ3

4 −
(
2− 2c− 2w − 5cw + 2w2 + 5cw2

)
β2
4 − 6

(
w − cw − w2 + cw2

)
β4

= 4w2 − 4cw2 − 8w3 + 8cw3 + 4w4 − 4cw4 (3.112)
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Figure 3.16: IPA estimator variance curves for different complexity net-
works (a) w = 80%, (b) w = 5%.

Now we can plot the variance curve of this SAN together with the variance

obtained in Section 3.5 in page 66 to compare both results. Figure 3.16 present

curves two relative weights. Note how curves approximate when relative is weight

is very small. In the limit, when relative weight goes to zero, we have the case of a
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Bernoulli mixture of continuous RVs, in which the Bernoulli trial is independent of

the continuous RVs.

In the limiting case in which the relative weight of the arc of interest is very

small, we can approximate the IPA estimator Z by:

Z =
X1

β1

· 1 {S = 1} (3.113)

where S ∼ Bern(c) i.e., a Bernoulli RV of parameter c and independent of X1 which

is exponentially distributed. Then we can write:

Var (Z) = Var (E [Z|S]) + E [Var (Z|S)]

= Var (Bern(c)) + E [Bern(c)] = c(1− c) + c = 2c− c2 (3.114)

This last expression is independent of the structure of the network and it only

depends on the criticality index of the first arc.

3.5.2 IPA estimator entropy of two parallel SAN and series-parallel

combination SAN

In this section, let us analyze the uncertainty of the IPA estimator distribution,

by the means of the entropy and differential entropy. The idea is to identify how

the entropy of the estimator relates with the input distributions and the shape of

the network.

Using definitions taken from work of Nair et.al. [19], the entropy of a mixed

RV X can be obtained.

H(X) = −
∑
i

p(xi) log (p(xi))−
∫
A

f(ξ) log (f(ξ)) dξ (3.115)
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where X takes the discrete values xi w.p. p(xi) or takes values from some interval

A ∈ R w.p. P (X ∈ B ⊆ A) =
∫
B
f(ξ)dξ and

∑
i

p(xi) +

∫
A

f(ξ)dξ = 1 (3.116)

In this particular case, our mixed RV Z is the IPA estimator for the two parallel

arcs, defined in the following way:

Z =


X1

β1
if X1 > X2

0 otherwise

(3.117)

Let us start getting the distribution of Z:

P (Z < z) = P (Z = 0) + P (0 < Z < z)

= (1− c) + P (Z < z|X1 > X2)P (X1 > X2)

= (1− c) + P (X1 < zβ1, X1 > X2)

= (1− c) +

∫ zβ1

x2=0

∫ zβ1

x1=x2

fX1(x1)dx1fX2(x2)dx2

= (1− c) +
β1 (1− e−z) + β2

(
e
−β1+β2

β2
z − e−z

)
β1 + β2

= (1− c) + c
(
1− e−z

)
+ (1− c)

(
1− e−z −

(
1− e

−z
1−c

))
= Fβ=1(z) + (1− c)

(
1− Fβ=(1−c)(z)

)
(3.118)

where c = β1/(β1 + β2) and Fβ(x) = 1− e−x/β.

Hence, Z has PMF p(Z = 0) = 1− c and PDF:

fZ(z) = fβ=1(z)− (1− c)fβ=1−c(z) = e−z − e
−z
1−c = e−z

(
1− e−

c
1−c

z
)

(3.119)
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The entropy can be computed from this last result.

H(Z) =− (1− c) log (1− c)

−
∫ ∞
0

e−ξ
(
1− e−

c
1−c

ξ
)
log
(
e−ξ
(
1− e−

c
1−c

ξ
))

dξ

H(Z) =− (1− c) log (1− c) + c

(
1

1− c
+H(1/c)−2

)
(3.120)

where Hn =
∑n

i=1 1/i.

Figure 3.17 shows a plot of this last function. It is important to observe that

the maximum is reached at a criticality index value of 68% approximately, unlike

the variance, which reaches the maximum at 50%.
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Figure 3.17: Entropy of IPA estimator for a Two parallel arc SAN.

Let us compute a closed-form expression for the entropy of the IPA gradi-

ent estimator of series-parallel combination network of 3 arcs presented in Sec-
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tion 3.5(Figure 3.12).

P (Z < z) = P (Z = 0) + P (0 < Z < z)

=(1− c) + P (0 < Z < z|X1 +X2 > X3)P (X1 +X2 > X3)

=(1− c) + P (X1 < zβ1, X1 > X3 −X2)

=(1− c) +

∫ zβ1

x3=0

∫ x3

x2=0

P (x3 − x2 < X1 < zβ1)fX2(x2)fX3(x3)dx2dx3

+

∫ zβ1

x3=0

∫ ∞
x2=x3

P (0 < X1 < zβ1)fX2(x2)fX3(x3)dx2dx3

+

∫ ∞
x3=zβ1

∫ x3

x2=x3−zβ1

P (x3 − x2 < X1 < zβ1)fX2(x2)fX3(x3)dx2dx3

+

∫ ∞
x3=zβ1

∫ ∞
x2=x3

P (0 < X1 < zβ1)fX2(x2)fX3(x3)dx2dx3

=(1− c) +
β1β2 + β1β3 + β2β3

(β1 + β3) (β2 + β3)

(
1− e−z

)
− β2

3

(β1 + β3) (β2 + β3)

(
e−z − e

−β1+β3
β3

z
)

=(1− c) + c
(
1− e−z

)
+ (1− c)

(
1− e−z −

(
1− e

−β1+β3
β3

z
))

=(1− c) +
(
1− e−z

)
− (1− c)

(
1− e

−β1+β3
β3

z
)

=(1− c) + Fβ=1(z)− (1− c)F
β=

β3
β3+β1

(z) (3.121)

where in this case criticality is c = 1−β2
3/ (β1 + β3) (β2 + β3) and Fβ(z) = 1−e−z/β,

i.e. Fβ(z) is again the CDF of an exponentially distributed RV.

Therefore, the IPA estimator Z for this particular network is a RV with a

probability mass of (1− c) at z = 0. Also, by differentiation we obtain the PDF2 of

2Remember that the above mentioned PDF does not add to 1 since part of the probability mass

is already at z=0. Thus, the integral of the this PDF sums up to c (see equation (3.116)).
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Z as follows:

fZ(z) =fβ=1(z)− (1− c)f
β=

β3
β3+β1

(z)

=e−z − (1− c)

(
β3 + β1

β3

e
−β3+β1

β3
z

)
=e−z

(
1− (1− c)

(
1 +

β1

β3

)
e
−β1

β3
z

)
(3.122)

where fβ(z) is the PDF of an exponentially distributed RV.
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Figure 3.18: Curve of entropy of IPA estimator vs. criticality for 3 fixed
relative weights. Series-parallel network with exponentially distributed
activities

Now, let us use the formula for entropy for mixed RVs, in the previously

deduced distribution.

H(Z) = −(1− c) log (1− c)

−
∫ ∞
0

e−ξ
(
1− (1− c)

(
1 +

β1

β3

)
e
−β1

β3
ξ

)
log

(
e−ξ
(
1− (1− c)

(
1 +

β1

β3

)
e
−β1

β3
ξ

))
dξ
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H(Z) =
(
β1β3 (β1 + β3) +

(
β2
1 + β1β3 + β2

3

)
β2

− β2
1 (β2 + β3) 2F1 (1, β3/β1, (β1 + β3)/β1, β3/(β2 + β3))

− 2β3
3 log (β3)− β3 (β1β3 + (β1 + β3) β2) log (β2/(β2 + β3))

+β3
3 log ((β1 + β3) (β2 + β3))

)
/ (β3 (β1 + β3) (β2 + β3)) (3.123)

where 2F1 is the so called Hypergeometric function, defined by the following

hypergeometric series:

2F1(a, b, c, x) = 1+
ab

c

x

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)

z3

3!
+. . .

(3.124)

Figure 3.18 shows the entropies curves for different relative weights.
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Chapter 4

Experimental Results

4.1 Overview

This section shows the result of experiments conducted to reveal how the

structure, size, distributions and parameters of the SAN affects the precision of the

computed gradient derivatives.

First, this study explored the effect of the number of activities in a very simple

serial structured network taking into account the 3 main methods of direct gradient

estimation. We will also check with this experiment the influence of scaling of the

network in the precision of the results.

Second, a network with just 2 nodes and different number of parallel arcs was

used. Different distributions of activity times with independent random variables

are considered to check the influence of criticality. This test continued adding more

and more arcs in parallel.

As we expected, the criticality of arcs with respect to other arcs affects the

final result, we explore the influence in the variance of this criticality index. It is

also studied the effect of the relative ‘length’ of the arc with respect to the total

length of the path.

Finally, a set of networks was tested w.r.t. several complexity index proposed

in the graph theory literature. These indices try to measure how intricate the SAN
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is. In the present study, we try to relate this intricacy with the precision of a given

estimator. The following complexity indexes were considered for the this work:

• Number of arcs

• Coefficient of network complexity (CNCk) proposed by Kaimann

• Coefficient of network complexity (CNCp) proposed by Pascoe

• Cyclomatic number (S)

• Restrictiveness estimator (RT)

• Number of trees in a graph (T)

4.2 Pure serial configuration

Let us start analyzing the behavior of several direct gradient estimators in two

simple configurations: Serial and Parallel.

First, consider a network with N nodes with only one arc connecting each

node in a serial fashion as is shown in Figure 4.1. Also, consider IID activity times

as well as exponential distributed random variables with mean equal to 1.

1

Source

2 3 n

Sink

Activity 1 Activity 2 Activity n-1

Figure 4.1: Series configuration of stochastic activity network (SAN).
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4.2.1 Single activity

We started the experiment with just two nodes and a single arc and increased

it up to 100 activities. The gradient is computed with respect to the first activity.

Therefore, we expect to obtain a gradient equal to 1 in every configuration.

Let us first compare the gradient values and variance of IPA, SF/LR and WD

estimates for the first iteration (two nodes and one arc).

Table 4.1: Comparison of gradient estimator for one arc network Exp(β = 1)

Method Estimate Variance Conf. Interval

IPA 1.0033 1.0066 (0.995, 1.012)
SF/LR 1.0099 13.2631 (0.978, 1.042)
WD 1.0003 0.9990 (0.992, 1.009)

From Table 4.1 we can see in the second column that every method yields

the correct (unbiased) value for the gradient, but precision differs greatly between

estimators (see third column).

The score function/likelihood ratio (SF/LR) method is the clearly the worst.

These results are in complete agreement with the findings of the previous chapter.

Since SF/LR estimates explicitly make use of the length of longest path, the

experiment was repeated with a different scaling to check if the variance is affected

by this change. We modified the mean in every arc. Table 4.2 shows the results for

mean activity times β = 0.01 and β = 100.

There were no changes in the results, which is expected since this was already

proved theoretically in the previous chapter.
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Table 4.2: Comparison of gradient estimator for one arc network, exponential dist.,
β = 0.01 and β = 100

Method Variance Conf. Interval

IPA 1.0066 (0.995, 1.012)
SF/LR 13.2631 (0.978, 1.042)
WD 0.9990 (0.992, 1.009)

Method Variance Conf. Interval

IPA 1.0066 (0.995, 1.012)
SF/LR 13.2631 (0.978, 1.042)
WD 0.9990 (0.992, 1.009)

(a) Arc times mean β = 0.01 (b) Arc times mean β = 100

4.2.2 Multiple activities in series

If we increase the number of arcs to observe its effect, we obtained the results

that are presented in Figure 4.2. IID Gaussian distribution was used to generate

the activity times for comparison with the theoretical results, i.e., Xi ∼ N (µ, σ2),

µ = 30, σ = 5 and considering the gradient w.r.t. the standard deviation of the

first arc. Please note how SF/LR estimates degrade when the series network grows

in contrast with IPA and WD estimates. This result makes sense if we carefully

observe the way SF/LR estimator works: taking into account every arc to build up

the final solution, increasing the variance as a consequence.

The experiment was repeated using exponential distribution for every arcs, i.e.

Xi ∼ exp (βi), βi = 1.
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4.3 Pure parallel configuration

4.3.1 Two parallel arcs

Let us first consider a simple network of just two nodes and 2 activities in

parallel (Figure 4.4).

1

Source

2

Sink

Activity 1

Activity 2

Figure 4.4: Parallel configuration of Stochastic Activity Network (SAN).

We want to know which gradient estimation scheme are more precise and

how the criticality index of the first arc and distributions impact each estimator.

For exponentially distributed arcs, we change the mean activity time β2. The

activity 1 criticality index in this particular network is given by crit= P (X1 >

X2) = β1/(β1+β2). The relationship between these quantities was already obtained

in closed form for exponential case (see Figures 3.4, 3.6 and 3.7).

Consider Table 4.3 as a crosscheck. It shows the results obtained by Monte

Carlo Simulation (MCS). As before, it can be observed that SF/LR estimator is

the worst, but it improves slightly as the criticality index increases. IPA and WD

gradient estimators variance are very close, but WD estimator is beaten by IPA

estimator as criticality increases.
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Table 4.3: Comparison of gradient estimator for two arcs parallel network, expo-
nential dist.

MethodMean Variance Conf. Interval

IPA 0.7520 1.1833 (0.7370,0.7671)
SF/LR 0.7513 14.124 (0.6992,0.0834)
WD 0.7536 0.9510 (0.7401,0.7671)

Mean=1.5055, Var=1.2455, Crit=50%

MethodMean Variance Conf. Interval

IPA 0.8933 1.1294 (0.8786,0.9081)
SF/LR 0.8878 13.286 (0.8373,0.9383)
WD 0.8931 1.0075 (0.8792,0.9070)

Mean=1.1712, Var=0.9095, Crit=67%

(a) Arc Means: β1 = 1 and β2 = 1 (b) Arc Means: β1 = 1 and β2 = 0.5

MethodMean Variance Conf. Interval

IPA 0.9783 1.0374 (0.9641,0.9924)
SF/LR 0.9702 13.019 (0.9202,1.0202)
WD 0.9748 1.0201 (0.9608,0.9888)

Mean=1.0386, Var=0.9491, Crit=84%

MethodMean Variance Conf. Interval

IPA 1.0052 0.9929 (0.9914,1.0190)
SF/LR 0.9979 12.949 (0.9481,1.0478)
WD 1.0027 1.0203 (0.9807,1.0167)

Mean=1.0054, Var=0.9926, Crit=99%

(c) Arc Means: β1 = 1 and β2 = 0.2 (d) Arc Means: β1 = 1 and β2 = 0.01

Figure 4.5 shows the curves obtained by MCS for the case of exponentially

distributed arcs. In the first row x-axes are assigned to criticality whereas in the

second row x-axes are logarithmic and they represent the ratio of the means of the

arcs 1 and 2. Also in Figure 4.6 IPA and WD estimator variance are plotted together

for easy comparison.
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Figure 4.6: Two parallel arcs SAN, variance of IPA and WD comparison
for exponentially distributed arcs .

Consider now Gaussian distributions and sensitivity w.r.t. the standard de-

viation (σ) of the first arc distribution. The MCS was performed with 30000 repe-

titions and the Gaussian and Weibull samples by A-R method as it is explained in

[13]. Table 4.4 shows very interesting results based of networks with X̄1 = X̄2 = µ

and Var (X1) = Var (X2) = σ2.

Just like the single arc network (equations (3.24), (3.25) and (3.29)), the pure

parallel network shows that the precision of the gradient estimator is independent of

the parameters of the Gaussian distribution. The exception is the SF/LR estimator

that depends on the ratio µ/σ.

The previous experiment was performed using the same mean in both activ-

ities. We can change the relative relation between means to observe the criticality

index effect in the gradient estimation variance. Figure 4.7 was obtained varying

the means to obtain criticality indices ranging from zero to one.
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Table 4.4: Gradient estimators for two arc parallel Gaussian network.

Parameters Mean IPA Mean SF/LR Mean WD
of Distrib. Var. IPA Var. SF/LR Var. WD

µ = 100 0.292 0.319 0.286
σ = 100 0.428 12.30 0.378

µ = 100 0.292 0.454 0.286
σ = 10 0.428 253.7 0.378

µ = 100 0.292 1.798 0.286
σ = 1 0.428 20996 0.378

µ = 10 0.292 0.454 0.286
σ = 1 0.428 253.7 0.378

µ = 1 0.292 0.319 0.286
σ = 1 0.428 12.30 0.378

µ = 0.1 0.292 0.306 0.286
σ = 1 0.428 6.478 0.378

The same independence of the parameters than in the Gaussian case can be

detected whenUniformly distributed arcs are used. Table 4.5 exhibit this behavior.

Notice, that SF/LR estimator does not exist for uniform distribution. The Uniform

distributions used in this case are of the type U(0, θ), and X̄1 = X̄2 = θ/2.

Table 4.5: Gradient estimators for two arc parallel uniform dist. network.

Parameters Mean IPA Mean WD
of Distrib. Var. IPA Var. WD

θ = 1 0.331 0.334
0.138 0.056

θ = 2 0.331 0.334
0.138 0.056

θ = 200 0.331 0.334
0.138 0.056
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Figure 4.7: Precision of gradient estimators for parallel SAN, Gaussian
distributions (a) IPA, (b) SF/LR and (c) WD

If we change the criticality index in this uniformly distributed network, then

Figure 4.8 is obtained by MCS. What it is interesting about this figure is the shape

of the IPA curve. Notice that the worst precision is obtained when criticality index

is 50%. This same shape pattern was obtained for Figure 3.4. Again we have found

similarities between U(0, θ) and Exp(β) distribution. These similarities seem related

with the fact that the sensitivities were computed w.r.t. scale parameters in both

cases (IPA estimators are of the form X/θ).
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Figure 4.8: Precision of gradient estimators for parallel SAN, activities
distributed Unif(0, 2θ) (a) IPA and (b) WD

4.3.2 Multiple parallel arcs

The next experiment is another way to control the criticality of the first arc.

It consists in adding more and more parallel arcs between the initial and final nodes

as it is shown in Figure 4.9. The results are presented in Figure 4.10, which was

obtained repeating the simulation and adding and extra arc every time up to 50

parallel arcs.

1

Source

2

Sink

Activity 1

Activity 2

Activity i

Activity n

Figure 4.9: Parallel configuration of SAN

From this experiment we can conclude that both the number of arcs and the

89



criticality have influence on the precision of the estimators. Also, we can appreciate

how the form of estimator expression influence the results: a similar form makes

the curves and behavior of the variance similar too. For example, uniform U(0, θ) is

similar to exponential Exp(θ). Additionally, we can see how the scaling factor of the

network does not affect the precision of the gradient estimator in every distribution

tested here.

The next set of experiments were designed to try to isolate the effect of criti-

cality in the variance of the gradient estimators.
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4.4 Relative weight and criticality

The relative importance of the change of a parameter with respect to rest of the

network is expected to have a relevancy in the variance of the gradient estimator.

From this point of view, the following network tests were used to examine the

behavior of gradient estimators,first in a simple series-parallel network and then in

more complex structures.

4.4.1 Series-parallel combination network

Gradient estimates were computed with respect to the first arc. The SAN has

exponentially distributed arcs. Nine different combination where tested changing

the relative weight of arc 1 w.r.t. the total expected path length (see Figure 4.11)

and criticality index of the path containing arc 1.

Monte Carlo simulation was used to get gradient estimates by IPA, SF/LR and

WD methods. Note from Table 4.6 the behavior of the SF/LR estimator: best case

is obtained when the first arc has both high criticality and weight (best precision i.e.

low variance is marked with a star). Conversely, IPA and WD estimator behaves

better when the arc 1 has low criticality and low weight. Something similar was

observed in the two parallel network analyzed in the previous chapter, however in

this experiment we have added the relative weight behavior.

Plots are displayed in Figure 4.12 and show the curves relating the precision of

the gradient estimates w.r.t. and the criticality for exponentially distributed arcs.

Again, we can find a lot of similarities between this plots and the ones obtained for
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Figure 4.11: Networks used to compare criticality and relative impor-
tance of arc 1. Numerical values shown are the mean of exponentially
distributed activity times.

the more simple network of two parallel arcs. It can be said that the relative weight

does affect the shape of the criticality vs. variance curve, but it does not affect the

behavior in general.

4.4.2 Complex SANs with constant relative weight

The next experiment was designed to discover how the rest of the network

affects the precision results when criticality and relative weight is kept constant in

the first activity. In other words, we are interested in compute the gradient w.r.t. the

first arc, in very different network structures. But these networks have in common

the criticality index and relative weight of arc 1 (activity of interest).

From results in Section 3.5.1 on page 68 (specifically Figure 3.16 in page 70), it
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Table 4.6: Comparison of gradient estimators for two paths network varying criti-
cality and relative weight.

Method Grad.Variance

IPA 1.006
SF/LR 286.8
WD 0.940

weight=0.1, crit.=66.7%

Method Grad.Variance

IPA 1.128
SF/LR 21.84
WD 1.009

weight=1, crit.=66.7%

Method Grad.Variance

IPA 1.134
SF/LR 14.74 ?
WD 1.016

weight=10, crit.=66.7%

Method Grad.Variance

IPA 0.864
SF/LR 437.0
WD 0.786

weight=0.1, crit.=50.0%

Method Grad.Variance

IPA 1.161
SF/LR 23.87
WD 0.922

weight=1, crit.=50.0%

Method Grad.Variance

IPA 1.201
SF/LR 15.61
WD 0.964

weight=10, crit.=50.0%

Method Grad.Variance

IPA 0.606 ?
SF/LR 1139
WD 0.566 ?

weight=0.1, crit.=33.3%

Method Grad.Variance

IPA 0.906
SF/LR 37.23
WD 0.662

weight=1, crit.=33.3%

Method Grad.Variance

IPA 1.100
SF/LR 20.22
WD 0.800

weight=10, crit.=33.3%

is known that for exponential networks IPA gradient estimation precision IS affected

by the rest of the network which does not include the path which arc 1 belongs to.

Despite this fact, for low relative weight activity times, the gradient RV tends to

behave as a generalized Bernoulli RV in which the criticality is almost independent

of the actual realization times. When this is the case, precision of the IPA estimation

is independent of the rest of the subnetwork if the criticality of the arc of interest is

kept fixed and relative weight is low. This was observed for exponential arcs in the

previous chapter (see Figure 3.16).
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Figure 4.12: Precision of gradient estimators for Series-parallel combi-
nation SAN. (a) IPA, (b) SF/LR and (c) WD

Other distributions will be checked in this subsection. The idea is to perform

verification of similar behavior of IPA gradient estimator.

Uniformly distributed arcs, Xi ∼ U(0, 2θ)

Consider Uniform distributed activity times, relative weight of 50% were used

for the experiment and sensitivity w.r.t. mean θ1. Network structures to consider

are the familiar series-parallel network and the two series plus two parallel network

(see Figure 4.13).

Now let us repeat the simulation with relative weight w = 1%, which should
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θ1 θ2

θ3

(a) Series-parallel network

1

Source

2

3

Sink

θ1 θ2

θ3

θ4

(b) Two series two parallel

Figure 4.13: This two networks are analyze by MCS. In each simulation
relative weight and criticality index of arc 1 is kept fixed.

be a realistic value for very large networks.

Figure 4.14 confirms the intuition concerning the uniformly and exponentially

distributed networks will behave likewise since they share similar derivatives formu-

las: X/θ.

Weibull distributed arcs, Xi ∼ Wei(α, θ)

This experiment was included to check whether the behavior of the IPA esti-

mator variance of exponentially distributed arcs is similar or not to the one obtained

after a change in the activity times distributions. Figure 4.14 (c) and (d) show the

criticality vs. variance of IPA estimator for Weibull distributed activity times.

96



3 arcs
4 arcs

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Criticality arc X1

V
ar
ia
n
ce

of
IP
A

E
st
im

a
to
r

3 arcs 4 arcs

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

Criticality arc X1

V
ar
ia
n
ce

of
IP
A

E
st
im

a
to
r

(a) (b)

3 arcs

4 arcs

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Criticality arc X1

V
ar
ia
n
ce

of
IP
A

E
st
im

at
or

3 arcs
4 arcs

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Criticality arc X1

V
ar
ia
n
ce

of
IP
A

E
st
im

at
or

(c) (d)

Figure 4.14: Comparison of IPA gradient estimates variances for dif-
ferent network structures and distributions. Uniform distributed arcs.
(a)Relative weight 50%, uniform distribution. (b)Relative weight 5%,
uniform distribution. (c)Relative weight 5%, Weibull distribution.
(d)Relative weight 5%, Weibull distribution

4.5 Complexity coefficients

This section is intended to prove the hypothesis that more complex activity

network implies more degradation in the precision of every estimator. The complex-

ity is measured using several complexity indices found in the CPM/PERT literature.

Several studies have shown how simplistic and inappropriate some of this measures

are and how they fail to capture the feeling of complexity of a network. This is
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particularly clear in CNC measures, where it is easy to give examples of networks

with different complexity but with the same CNC.

According to Elmaghraby [7], a complexity index must be defined according to

the use this number is given. This way the index measures the complexity w.r.t. the

operations to be applied to the graph. For example, the cyclomatic number counts

the number of cycles in an undirected graph, or the number of binary decisions in a

directed one, which can be a meaningful metric of complexity in the field of software

testing, but it has no meaning if the graph represents a road system.

The first set of networks is very simple. It consists of networks with constant

number of trees and cyclomatic number, but increasing number of nodes and arcs

(see Figure 4.15).

Figure 4.15: Set of small SANs for complexity measures comparison.

Then, more complex SANs were generated partially random. They main-

tain the layered structure presented in the original Kaimann’s paper [14] and used
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again in the review of complexity measures by Latva-Koivisto [15]. These SANs

are characterized by a layered structure with forward only connections and a skele-

ton substructure presented in Figure 4.16. The random part are the “inter-branch”

connections represented by dashed lines. Different number of layers and nodes per

layer were selected to create the SAN test set. Another parameter of constraint in

the random inter-branch connections was maximum layer distance. In other words,

how long the inter-branch are allowed to be.

Source Sink

Figure 4.16: Typical structure of Stochastic Activity Networks test set.
Filled lines represent fixed or skeleton activities and dashed lines are
inter-branch connections added for increasing complexity.

4.5.1 Manually created set of SANs

Starting with manually created more simple network, we can notice that for a

given cyclomatic number, the SF/LR estimator can have large variabilities of values.

This responds to the way the network set were created: please notice in Figure 4.15

that each row features SANs with the same cyclomatic number (for example in the

third row every SAN has S = 3). Figure 4.17 highlights the deficiencies of the
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(a) (b)

Figure 4.17: Variance of gradient estimators vs. cyclomatic number.
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.

cyclomatic number for our particular purposes, namely, to explain the variability of

the precision via this index.

Figure 4.18 shows the dependency of the variance w.r.t. the number of arcs.

It can be observed that IPA and WD estimators present some variability but it

(a) (b)

Figure 4.18: Variance of gradient estimators vs. number of arcs. (a)The
three estimators are displayed. (b)The IPA and WD estimator are
shown.

cannot be due to the number of activities.
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(a) (b)

Figure 4.19: Variance of gradient estimators vs. CNCk. (a)The three
estimators are displayed. (b)The IPA and WD estimator are shown.

4.5.2 Complex semi-random SANs

For this section we generate networks, limiting certain features. In this in-

stance, we first restrict the networks to be complete skeletons, the number of nodes

per layer and the number of layers were changed. Figure 4.23 shows a couple of

SANs that belong to the first group.

Second, included in the set are full-connected between layers networks. The

arcs among layers are allowed to connect contiguous layers only. See Figure 4.24 for

examples of this kind of networks. Then networks are form of arcs that are allow

to jump and move forward without passing for every layer. For jump of length 2

and 3 see Figure 4.25.

Finally, inter-branch connections are selected according to a Bernoulli RV. See

Figure 4.26.

Next Figures 4.27 to 4.32 show the variance of gradient estimators w.r.t. the

complexity measures. In addition, variances were also plotted vs. the index of
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(a) (b)

Figure 4.20: Variance of gradient estimators vs. restrictiveness estimator
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.

dispersion (Var/Mean), to try to compensate for the effect of the size of the estimate

(E [Y (X)]). Those plots are displayed in Figures 4.33 to 4.38.
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(a) (b)

Figure 4.21: Variance of gradient estimators vs. CNCp. (a)The three
estimators are displayed. (b)The IPA and WD estimator are shown.

(a) (b)

Figure 4.22: Variance of gradient estimators vs. Log(T). (a)The three
estimators are displayed. (b)The IPA and WD estimator are shown.
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Figure 4.23: Network examples for complexity index experiments.
(a)Skeletal 2x2. (b)Skeletal 3x9.
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Figure 4.24: Network examples for complexity index experiments.
(a)Full 2x3. (b)Full 3x2.
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Figure 4.25: Full network example with jumps of length 2 and 3.
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Figure 4.26: Network example with random inter-brach arcs.

105



(a) (b)

Figure 4.27: Variance of gradient estimators vs. number of arcs(N).
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.

(a) (b)

Figure 4.28: Variance of gradient estimators vs. CNCp. (a)The three
estimators are displayed. (b)The IPA and WD estimator are shown.
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(a) (b)

Figure 4.29: Variance of gradient estimators vs. CNCk. (a)The three
estimators are displayed. (b)The IPA and WD estimator are shown.

(a) (b)

Figure 4.30: Variance of gradient estimators vs. cyclomatic number (S).
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.
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(a) (b)

Figure 4.31: Variance of gradient estimators vs. Log(# Trees). (a)The
three estimators are displayed. (b)The IPA and WD estimator are
shown.

(a) (b)

Figure 4.32: Variance of gradient estimators vs. restrictiveness estima-
tor (RT). (a)The three estimators are displayed. (b)The IPA and WD
estimator are shown.
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(a) (b)

Figure 4.33: Coefficient of dispersion of gradient estimators vs. number
of arcs (N). (a)The three estimators are displayed. (b)The IPA and WD
estimator are shown.

(a) (b)

Figure 4.34: Coefficient of dispersion of gradient estimators vs. CNCp.
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.
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(a) (b)

Figure 4.35: Coefficient of dispersion of gradient estimators vs. CNCk.
(a)The three estimators are displayed. (b)The IPA and WD estimator
are shown.

(a) (b)

Figure 4.36: Coefficient of dispersion of gradient estimators vs. cyclo-
matic number (S). (a)The three estimators are displayed. (b)The IPA
and WD estimator are shown.
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(a) (b)

Figure 4.37: Coefficient of dispersion of gradient estimators vs. Log(#
Trees). (a)The three estimators are displayed. (b)The IPA and WD
estimator are shown.

(a) (b)

Figure 4.38: Coefficient of dispersion of gradient estimators vs. restric-
tiveness estimator (RT). (a)The three estimators are displayed. (b)The
IPA and WD estimator are shown.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

It is evident throughout this work that the gradient estimators based on weak

derivatives (WD) presented in this thesis (with CRN) outperform IPA estimation in

nearly every SAN in terms of precision. At the same time, WD and IPA estimators

display lower variance than crude SF/LR methods by a very large margin. This

phenomenon is true for both the simplest network (single arc with exponential arc

times) where IPA and WD presented variance of 1 vs. SF/LR variance of 13, and for

the very intricate networks discussed in chapter 4, where charts need to be displayed

with two different Y-axis scales to present the results. WD gradient estimation is

not free of disadvantages. Algorithm implementation is more difficult, it consumes

more simulation time and it is decomposition dependent (which is not unique), but

if precision is the main issue in a particular application, WD gradient estimation is

the best option according to the evidence presented here.

Looking in detail at the closed-form expressions obtained in chapter 3, it can

be observed (for example, in the single path, pure series SAN) that IPA estimator

variance is mostly due to the variance of activity time of the arc of interest. In

contrast, SF/LR estimator variance consists of a combination of the variances and

covariances of the whole SAN. Specifically, the main contribution to the variance is

112



the high degree terms of the input activitity times. High degree terms come from

the multiplication of critical path (a sum of activity times) and the input activity

time of interest. It seems plausible that some specific dependency between arcs may

positively affect the precision of this estimator if the inter-activity time covariances

are negative.

These high degree terms do not appear in the WD estimation. This fact plus

a careful generation of the variates to achieve positive covariance between phantom

activity times makes this method the most precise. In the single arc case, as much as

two thirds of the original variance was reduced by using common random numbers.

An interesting counterintuitive result that was discovered is that SF/LR esti-

mation in Gaussian distributed SANs can be improved by increasing the variance

of individual activity times. In contrast, IPA and WD estimators do not show de-

pendency with respect to the distributional parameters when activity times follow

Gaussian distributions.

Another important behavior is the dependence of SF/LR estimator variance

on the size of the network. The importance of this effect on the variance can be

observed in the experiment with multiple arcs in series. In that case, the variance

of the estimator quickly increases as the number of arcs increases (see Figure 3.2 on

page 43).

In more complex networks, similar behavior can be observed. For example,

notice that the number of arcs is one the best indices capturing the variation of the

SF/LR estimator variance (Figure 4.33). This is particularly true when the index

of dispersion (σ2/µ) is considerer to assess the precision. For the SF/LR estimator,
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the number of arcs is even better than more sophisticated complexity indices at

capturing the differences in accuracy.

On the other hand, two techniques (IPA and WD) do not show a clear link

to the number of arcs or any other complexity index. The better indices are the

Pascoe CNC and the restrictiveness index (RT). The restrictiveness index shows

some prospective patterns which could be a subject of future research about this

complexity measure. But in general, the complexity indices did not appear to cap-

ture relevant information from the structure of the SAN related to the precision of

the gradient estimators.

The IPA estimators are mainly affected by the number of times that the arc

of interest is part of the critical path. In other words, IPA should be affected by

the criticality index (P (Arc ∈ P ?)). In order to uncover this relationship, math-

ematical expressions were deduced for the case of exponential distribution. The

curve obtained for the IPA estimator variance equation is very interesting since the

criticality vs. variance curve is not monotone and it presents a maximum at 50%

criticality.

TheWD variance curve for the estimator used in this thesis is more predictable;

it is a smooth and monotone curve from 0 at zero criticality to 1 when the longest

path is always the first arc. The SF/LR curve shows a totally different shape, since

precision degrades when criticality decreases and approaches zero.

From the numerical experiments, we can conclude that the IPA estimation

variance does depend on the rest of the network structure not included in the path

of the arc of interest. When the relative weight of the arc of interest is low, the IPA
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estimator can be approximated by a generalized Bernoulli mixed random variable,

in which the Bernoulli RV and the continuous RV are independent.

The entropy of the SAN of two parallel arcs and the tree arcs series-parallel

were computed in a “brute force” fashion, which did not result in a convenient

closed-form expression. It is difficult to recognize any characteristic parameter of

the network in such a convoluted expression (equation (3.123)). The original idea

was to use the closed-form expression of the entropy of the simple network to ob-

tain an understanding of how parameters of the SANs should appear in the entropy

expression. This way it would be possible to propose a scheme to assign probabil-

ity mass to the nodes or paths of the SAN and define an information theoretical

complexity index.

5.2 Conclusions

The most important conclusions of this study are:

• The WD estimator with CRN used in this thesis outperforms IPA and SF/LR

method in almost every network, but it involves an additional computational

burden, which increases when the parameter of interest is in many arcs.

• SF/LR estimator performed the worst in every topology considered.

• SF/LR estimator variance grows when the network grows.

• Criticality index is the main aspect that determines the variance of the gradient

estimator in the case of IPA.
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• Common complexity measures used in the CPM/PERT literature for SANs

were not able to capture the characteristics of gradient estimation variance.

5.3 Future research

The clustering observed in the charts of large network in Chapter 4 (com-

plex networks section) suggests that some underlying descriptor of the SAN should

account for the variation across family of networks. This is most evident in the

restrictiveness estimator (RT) chart. Further research is needed to find such a de-

scriptor.

Similarly, an information-theoretic index or descriptor could be defined to

accomplish the objective of capturing the information embedded in the network in

terms useful to the CPM/PERT field of study (for example, in the effort needed to

find the critical path or the precision of a gradient estimator).

Future research could also involve an investigation of the influence of non-

independent arcs in the variance of the gradient estimators. It might be possible to

reduce variance by smart coupling of the arcs or through other variance reduction

technique, such as importance sampling.
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Appendix A

Code

A.1 MATLAB Code

A.1.1 IPA exp(θ)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: IPA exponential

% Date: 02/10/2011

% By: Mauricio Manterola

% Desc:

% Monte Carlo Simulation of Stoch. Activity Networks in Matlab

% Compute IPA Gradient Estimation of a SAN wrt a var iation

% in the mean of the Exponential distributions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Init Random Generator

s1=RandStream(’mt19937ar ’);

RandStream.setDefaultStream(s1);

s2=RandStream(’mt19937ar ’);

%reset(s);

%Init some constants and arrays

NumRep = 20000; %Number of repetitions

LongPathTime = zeros(NumRep ,1); %Crit.Path storage for ea.rep.

Gradient = zeros(NumRep ,1); %Grad. storage for each rep.

Contador = 0;

for Rep=1: NumRep

%Generate random arc times

UnifDist=rand(NumArcs ,1); %Generate unif. distr. var iate

ArcTimes=-MeanArcTimes .*log(UnifDist); %Inverse transform method for exp

%Overwrite determistic arcs

ArcTimes =( DetermMask .*( DetermMask ~= MagicNumber)+( ArcTimes .*( DetermMask ==←↩
MagicNumber)));

%Find longest path

[dist , path , pred]=graphshortestpath(AN , SrcNode , DstNode , ’Directed ’, ’true’←↩
, ’Method ’, ’Acyclic ’,’Weights ’, -ArcTimes);

%Store time longest path

LongPathTime(Rep)=-dist;

%GRADIENT COMPUTATION

%%%%%%%% %%%%%%%%%%%

%Find if arcs SensiArcs are in the longest path

for i=1: NumSensiArcs

Arcindex=SensiArc(i);

Check1=find(path==Pairs(Arcindex ,1));

Check2=find(path==Pairs(Arcindex ,2));

if(Check2 -Check1 ==1) %Check if arc_i is in the crit.path

Xi=ArcTimes(Arcindex);
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XiMean=MeanArcTimes(Arcindex);

Grad=Xi/XiMean; %Gradient estimator

Gradient(Rep)=Gradient(Rep)+Grad;

Contador=Contador +1; %Counter for Crit.Index

end;

end;

end;

%Display results and compute results

Aver=mean(LongPathTime) %Expected

Vari=var(LongPathTime) %Variance

AverGrad=mean(Gradient) %Expected sensitivity

VariGrad=var(Gradient) %Variance of sensitivity

%hist(Gradient , 40); %Histogram

HalfLength =1.960* sqrt(VariGrad/NumRep); %Compute H.F.

IntervBegin=AverGrad -HalfLength %CI for sensitivity

IntervBegin=AverGrad+HalfLength %CI for sensitivity

Criticality=Contador/NumRep %Criticality index

Listing A.1: ipaexp.m IPA estimator for exponential distribution

A.1.2 SF/LR N(µ, θ)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: SF/LR Gaussian

% Date: 03/15/2011

% By: Mauricio Manterola

% Desc:

% Monte Carlo Simulation of Stoch. Activity Networks in Matlab

% Compute SF/LR Gradient Estimation of a SAN wrt a var iation

% in the Std. deviation of Gaussian distributions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Init Random Generator

s=RandStream(’mt19937ar ’);

RandStream.setDefaultStream(s);

reset(s);

%Init some constants

NumRep = 35000; %Number of repetitions

LongPathTime = zeros(NumRep ,1); %Crit.Path storage for ea.rep.

Gradient = zeros(NumRep ,1); %Grad. storage for each rep.

for Rep=1: NumRep

%Generate random arc times (one at a tie for A-R Method)

for j=1: NumArcs

MeanValue=MeanArcTimes(j);

MwlNormGenerator;

ArcTimes(j,1)=NormalVar;

end;

%Overwrite determistic arcs

ArcTimes =( DetermMask .*( DetermMask ~= MagicNumber)+( ArcTimes .*( DetermMask ==←↩
MagicNumber)));

%Find longest path

[dist , path , pred]=graphshortestpath(AN , SrcNode , DstNode , ’Directed ’, ’true’←↩
, ’Method ’, ’Acyclic ’,’Weights ’, -ArcTimes);

%Store time longest path

LongPathTime(Rep)=-dist;

%GRADIENT COMPUTATION

%%%%%%%% %%%%%%%%%%%
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%Not need to find if arcs SensiArcs are in the longest path

for i=1: NumSensiArcs

Arcindex=SensiArc(i);

Xi=ArcTimes(Arcindex);

XiMean=MeanArcTimes(Arcindex);

Zetai =(Xi-XiMean)/StdDev;

Grad =(( Zetai*Zetai) -1)/StdDev;

Gradient(Rep)=Gradient(Rep)+Grad;

end;

Gradient(Rep)=Gradient(Rep)*LongPathTime(Rep);

end;

%Display results and compute results

Aver=mean(LongPathTime) %Expected

Vari=var(LongPathTime) %Variance

AverGrad=mean(Gradient) %Expected sensitivity

VariGrad=var(Gradient) %Variance of sensitivity

%hist(Gradient , 40); %Histogram

HalfLength =1.960* sqrt(VariGrad/NumRep); %Compute H.F.

IntervBegin=AverGrad -HalfLength %CI for sensitivity

IntervBegin=AverGrad+HalfLength %CI for sensitivity

Criticality=Contador/NumRep %Criticality index

Listing A.2: sflrgauss.m SF/LR estimator for Gaussian distribution

A.1.3 WD exp(θ)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: WD exponential

% Date: 02/10/2011

% By: Mauricio Manterola

% Desc:

% Monte Carlo Simulation of Stoch. Activity Networks in Matlab

% Compute WD Gradient Estimation of a SAN wrt a var iation

% in the mean of the Exponential distributions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Init Random Generator

s1=RandStream(’mt19937ar ’);

s2=RandStream(’mt19937ar ’);

%RandStream.setDefaultStream(s);

reset(s1);

reset(s2);

%Pedestrian way to move forward 2nd stream (1191 is a magic no.)

for jj =1:1191

dummy=rand(s2 ,1,1);

end;

%Init some constants

NumRep = 20000; %Number of repetitions

LongPathTime = zeros(NumRep ,1); %Crit.Path storage for ea.rep.

Gradient = zeros(NumRep ,1); %Grad. storage for each rep.

%Set aditional var iables for Weak Derivatives

ArcTimesWd = zeros(NumArcs ,NumSensiArcs); %Arc times from mod ’ed distr.

distWd = zeros(NumSensiArcs ,1); %Array 4 longest path times of mod. distr.

for Rep=1: NumRep

%Generate random arc times

UnifDist=rand(s1,NumArcs ,1); %Generate unif. distr. var iate

ArcTimes=-MeanArcTimes .*log(UnifDist); %Inverse transform method for exp
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%Generate random arc times for Gradient Estimation

for i=1: NumSensiArcs

ArcTimesWd (:,i)=ArcTimes; %First just copy same times ←↩
generated previously

UnifDist2=rand(s2 ,1,1); %Generate second unif. ←↩
distributed var iate

ArcIndex=SensiArc(i); %Get arc index to be modified (←↩
sensiarc)

ModArcTime=-MeanArcTimes(ArcIndex)*log(UnifDist(ArcIndex)*UnifDist2); %←↩
Compute modified random "var iate" with CRN

ArcTimesWd(ArcIndex ,i)=ModArcTime; %Store Arc time modified in the ←↩
correct position in the matrix

end;

%Overwrite Deterministic Arc times (useful for zero duration arcs)

ArcTimes =( DetermMask .*( DetermMask ~= MagicNumber)+( ArcTimes .*( DetermMask ==←↩
MagicNumber)));

for i=1: NumSensiArcs

ArcTimesWd (:,i)=( DetermMask .*( DetermMask ~= MagicNumber)+( ArcTimesWd (:,i)←↩
.*( DetermMask == MagicNumber)));

end;

%Find longest path

[dist , path , pred]=graphshortestpath(AN , SrcNode , DstNode , ’Directed ’, ’true’←↩
, ’Method ’, ’Acyclic ’,’Weights ’, -ArcTimes);

%Find longest path with modified distributions

for i=1: NumSensiArcs

[distWd(i), pathWd , pred]=graphshortestpath(AN, SrcNode , DstNode , ’←↩
Directed ’, ’true’, ’Method ’, ’Acyclic ’,’Weights ’, -ArcTimesWd (:,i));

end;

distWd=-distWd;

%Store time longest path

LongPathTime(Rep)=-dist;

%GRADIENT COMPUTATION

%%%%%%%%% %%%%%%%%%%%

for i=1: NumSensiArcs

ArcIndex=SensiArc(i);

XiMean=MeanArcTimes(ArcIndex);

Grad=( distWd(i)-LongPathTime(Rep))/XiMean;

Gradient(Rep)=Gradient(Rep)+Grad;

end;

end;

%Display results and compute results

Aver=mean(LongPathTime) %Expected

Vari=var(LongPathTime) %Variance

AverGrad=mean(Gradient) %Expected sensitivity

VariGrad=var(Gradient) %Variance of sensitivity

%hist(Gradient , 40); %Histogram

HalfLength =1.960* sqrt(VariGrad/NumRep); %Compute H.F.

IntervBegin=AverGrad -HalfLength %CI for sensitivity

IntervBegin=AverGrad+HalfLength %CI for sensitivity

Listing A.3: wdexp.m WD estimator for exponential distribution
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A.1.4 SAN definition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: Two parallel arcs description Network generator

% Date: 03/22/2011

% By: Mauricio Manterola

% Desc:

% Monte Carlo Simulation of Stoch. Activity Networks in Matlab

% Defines a SAN of two parallel arcs. Then it performs a scan thru

% different means to change the means ratio beta2/beta1 and it calls

% the ipa , sflr or wd procedure for gradient estimation.

% The scan is performed with logarithmic steps , in order to achieve

% proper plotting with logarithmic x-axis scale.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DEFINITION OF THE ACTIVITY NETWORK

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

%Init Random Generator

s1=RandStream(’mt19937ar ’);

RandStream.setDefaultStream(s1);

%reset(s);

%Init some constants and arrays

NumRep = 20000; %Number of repetitions

LongPathTime = zeros(NumRep ,1);

MagicNumber =24.1174;

NumNodes =3;

%Set Src and Dest nodes

SrcNode =1;

DstNode =3;

%Set Network Activities

Pairs=[ 1 2; %1-perturbed

1 3; %2

2 3]; %3

%Number of Activities

[NumArcs , dummy]=size(Pairs);

%Parameters of the scan

slices =30;

inic =0.01;

final =10;

salto =( final/inic)^(1/ slices)

%Aux

contad =0; %aux counter

done =0; %flag to exit loop

%Create array to store gradient var iances

Varis = zeros(slices ,2);

%Define non -random (deterministic) arcs

DetermArcs=[3]’;

%Number of deterministic activities

[NumDetermArcs , dummy]=size(DetermArcs);

%Set Arcs wrt compute derivatives

SensiArc=[1]’;

%Number of activities perturbated

[NumSensiArcs , dummy]=size(SensiArc);

%Define the connection matrix using from the arcs defined previously
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AN=sparse(Pairs (:,1),Pairs (:,2),ones(NumArcs ,1), NumNodes , NumNodes)

%Loop to scan thru the ratios

while (~done)

%Write to screen current step

contad

%Compute mean

MeanComptd=inic*(salto^contad)

%Parameters for activities distributions

MeanArcTimes=[1 MeanComptd 0]’;

%Clear gradient array from previous iteration

Gradient=zeros(NumRep ,1);

%Construct mask to overwrite deterministic arcs

DetermMask=MagicNumber*ones(NumArcs ,1);

%Overwrite deterministic arcs

for i=1: NumDetermArcs

indexdummy=DetermArcs(i,1);

DetermMask(indexdummy ,1)=MeanArcTimes(indexdummy ,1);

end; %endfor

%Call routine to perform MCS

ipa2parallelrep;

%sflrparallelrep;

%wdparallelrep;

%Update counter

contad=contad +1;

%Store results from current iteration

Varis(contad ,1)=MeanComptd %Ratio=MeanComptd /1

Varis(contad ,2)=VariGrad

%Update done: TRUE if counter reach number of ’slices ’

done=( contad == slices);

end; %endwhile

Listing A.4: nwdef 2par scan.m SAN definition code and scan for variable ratio of
means (β2/β1)

A.1.5 Number of trees computation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: NTRESS PROCEDURE

% Date: 11/01/2011

% By: Mauricio Manterola

% Desc:

% This procedure computes the number of trees rooted in the

% destination node. This number can be used as complexity

% measure of activity networks.

% This procedure takes the sparse type connection

% matrix (AN3) and computes the number of trees.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Obtain the size of the connection matrix

[dime ,dummy]=size(AN3);

% Convert the sparse type AN3 in a regular matrix BN
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BN=full(AN3);

% Construct the Laplacian matrix

D=diag(sum(BN ’))-BN;

% Obtain the the minor matrix D_NN

D(dime ,:)=[];

D(:,dime)=[];

% Compute the determinant of the minor

Numtrees=det(D)

Numtreeslog=log(Numtrees)

Listing A.5: ntrees3.m Compute the number of trees rooted in the destination node

A.1.6 Restrictiveness estimator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Title: RESTRICTIVENESS PROCEDURE

% Date: 11/01/2011

% By: Mauricio Manterola

% Desc:

% This procedure computes the Restrictiveness estimator (RT)

% of a network. This number can be used as complexity

% measure of activity networks.

% This procedure takes the sparse type connection

% matrix (AN3) and computes the RT number.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Obtain the size of the connection matrix

[dime ,dummy]=size(AN3);

% Copy input matrix AN3

RMatriz=AN3;

%Scan the matrix looking for ’1’s

for i=1: dime

for j=1: dime

if (RMatriz(i,j)==1)

RMatriz(i,:)=or(RMatriz(i,:),RMatriz(j,:));

end;

end;

end;

%Construct modified matrix

RMMod=RMatriz+diag(ones(dime ,1))

%Restrictiveness estimator formula

RTIndex =(2* sum(sum(RMMod)) -6*(dime -1))/((dime -2)*(dime -3))

Listing A.6: rtindex.m Compute the restrictiveness index estimator
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A.2 C code

A.2.1 IPA U(0, 2θ) two parallel arcs

/* ************************************************************** */

/* Title: IPA Uniform (0,2* theta) */

/* Date: 06/22/2011 */

/* By: Mauricio Manterola */

/* Desc: */

/* Monte Carlo Simulation of Stoch. Activity Networks in C */

/* Compute IPA Gradient Estimates for a two parallel arc SAN */

/* wrt a var iation in the mean of the first arc. */

/* It also perform an scan from INIMEAN to FINMEAN to account */

/* for a var iation in the criticality. An plain text (columns */

/* separated by tabs) is generated to be used in Metapost. */

/* ************************************************************** */

/* ********************** */

/* Includes */

/* ********************** */

#include "RngStream.h"

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* ********************** */

/* Macros */

/* ********************** */

#define NUMREP 32000

#define SLICES 600

#define MEANA2 10.0f

#define INIMEAN 0.01f

#define FINMEAN 190.0f

/* ********************** */

/* Global Variables */

/* ********************** */

RngStream RandomGen;

float Mean1;

float Mean2;

float Critical;

float GradiMean;

float GradiVar;

/* ********************** */

/* Declarations */

/* ********************** */

float UnifRNG(float MeanValue);

void IPAGrad(void);

/* ********************** */

/* Main Function */

/* ********************** */

int main(void)

{

// Variables

int k;

float jumps;

float Critlity[SLICES]; //Crit.index storage

float Varis[SLICES]; // Variaces storage

FILE* Datad; //File pointer

//Info to output (screen)
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printf("MCS Gradient Estimation\n");

printf("IPA Estimator , two parallel arcs , Unif (0,2* theta)\n");

printf("Performs scan from INIMEAN to FINMEAN\n\n");

// Create Random Stream

RandomGen=RngStream_CreateStream("a");

// Create report file

Datad = fopen("dipa2parunif.d", "w");

if (Datad==NULL)

{

printf("Error: Could not create file dataipa2parunif.d\n");

return (1);

}

// Compute jump

jumps=(FINMEAN -INIMEAN)/( SLICES);

// Prepare some var iables for iterations

Mean2 = MEANA2;

for (k=0;k<SLICES;k++)

{

// Compute mean for Arc 1

Mean1=INIMEAN +(jumps*k);

//Call IPA computation function

IPAGrad ();

//Save output of IPA for later

Critlity[k]=Critical;

Varis[k]=GradiVar;

}

//Save Criticality and Gradient Variances to output file

for (k=0;k<SLICES;k++)

fprintf(Datad , "%10.4f %10.4f\n",Critlity[k],Varis[k]);

//Exit nicely

return (0);

}

/* ********************** */

/* IPA Comp. Function */

/* ********************** */

void IPAGrad(void)

{

int Rep; // Repetion

int conta; // Counter 4 crit. computation

float ArcTime1; //1st arc time

float ArcTime2; //2nd arc time

float meanaux; //Aux. var for mean

float var aux; //Aux. var for var iance

float Gradi; //Aux. var for gradient

// Reset vars

conta =0;

meanaux =0.0f;

varaux =0.0f;

// Iteration for MCS

for (Rep =0; Rep <NUMREP; Rep++)

{

// Generate ArcTime1 and ArcTime2 unif. distributed

ArcTime1=UnifRNG(Mean1);

ArcTime2=UnifRNG(Mean2);

// Obtain longest path
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if (ArcTime1 >ArcTime2)

{

conta ++; // Increm. counter for crit.

Gradi=( ArcTime1/Mean1); // Sensitivity sample

}

else

{

Gradi =0.0f; // Sensitivity sample

}

meanaux = meanaux+Gradi; // Accum. 4 mean

var aux = varaux+(Gradi*Gradi); // Accumm. 4 var

}

// Compute Mean and Variance

GradiMean = meanaux/NUMREP; // Gradient expected val.

varaux = var aux/NUMREP;

GradiVar = varaux -( GradiMean*GradiMean); // Gradient var iance

// Compute Criticality

Critical = (( float)conta)/(( float)NUMREP);

}

/* ********************** */

/* Unif(0,theta) RNG */

/* ********************** */

float UnifRNG(float MeanValue)

{

float UnifDist1;

float UnifTheta;

// Generate unif distrib.var iates in (0,1)

UnifDist1=RngStream_RandU01(RandomGen);

// Compute Unif(0,theta)

UnifTheta=UnifDist1 *2* MeanValue;

return UnifTheta;

}

Listing A.7: ipaparallelunif.c: IPA estimator for uniform distribution

A.2.2 SF/LR Gaussian pure series SANs

/* ************************************************************** */

/* Title: SF/LR Gaussian incremental pure series */

/* Date: 08/23/2011 */

/* By: Mauricio Manterola */

/* Desc: */

/* Monte Carlo Simulation of Stoch. Activity Networks in C */

/* Computes SF/LR Gradient Estimates for pure series Gaussian */

/* SANs wrt a var iation in the mean of the first arc. */

/* It add a new arc at the end of the network still MAXARCS is */

/* reached. A plain text (columns separated by tabs) is */

/* generated to be used in Metapost. */

/* ************************************************************** */

/* ********************** */

/* Includes */

/* ********************** */

#include "RngStream.h"

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
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/* ********************** */

/* Macros */

/* ********************** */

#define NUMREP 30000

#define MAXARCS 50

#define STD_DEV 5.0f

#define MEAN_VAL 30.0f

/* ********************** */

/* Global Variables */

/* ********************** */

RngStream RandomGen;

float Mean1; //Mean for every arc

float StaDev1; // Standard deviation

int NumArcs; //No. of arcs

float GradiMean; // Sensitivity mean (expd. val.)

float GradiVar; // Sensitivity var iance

/* ********************** */

/* Declarations */

/* ********************** */

float GaussRNG(float MeanValue , float StdDev);

void SFLRGrad(void);

/* ********************** */

/* Main Function */

/* ********************** */

int main(void)

{

// Variables

int k;

float Varis[MAXARCS]; // Storage of var iances for each SAN

FILE* Datad; //Ptr. to file

//Info to output (screen)

printf("MCS Gradient Estimation\n");

printf("SF/LR Estimator , pure series arcs\n\n");

// Create Random Stream

RandomGen=RngStream_CreateStream("a");

// Create report file

Datad = fopen("datasflrpureseriesgauss.d", "w");

if (Datad==NULL)

{

printf("Error: Could not create file datasflrpureseriesgauss.d\n");

return (1);

}

// Prepare some var iables for iterations

StaDev1 = STD_DEV;

Mean1 = MEAN_VAL;

for (k=0;k<MAXARCS;k++)

{

//Add a new arc

NumArcs=k+1;

//Call IPA computation function

SFLRGrad ();

//Save output of IPA for later

Varis[k]=GradiVar;

}

//Save no. of arcs and var iance of sensitivity
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for (k=0; k<MAXARCS; k++)

fprintf(Datad , "%d %10.4f\n",(k+1),Varis[k]);

//Exit nicely

return (0);

}

/* ********************** */

/* SF/LR Comp. Function */

/* two parallel arcs */

/* N(theta ,sigma) distr.*/

/* ********************** */

void SFLRGrad(void)

{

int i; //aux index for array

int Rep; //Index for repetitions

float* ArcTime; //Ptr to array of arc times

float meanaux; //Aux for mean

float var aux; //Aux for var iance

float Gradi; //Estim. val at each rep.

float Longpath; //Total completion time

// Reset vars

meanaux =0.0f;

varaux =0.0f;

// Allocate memory for arc times.

ArcTime =( float*) malloc(NumArcs*sizeof(float));

// Iteration for MCS

for (Rep =0; Rep <NUMREP; Rep++)

{

// Generate ArcTimes Gaussian distributed

for (i=0; i<NumArcs; i++)

ArcTime[i]=GaussRNG(Mean1 , StaDev1);

// Obtain longest path

Longpath =0.0f;

for (i=0; i<NumArcs; i++)

Longpath=Longpath +( ArcTime[i]); //Just sum of arcs

// Obtain Grad Estim sample

Gradi=Longpath *((( ArcTime[0]-Mean1)/StaDev1)*(( ArcTime[0]-Mean1)/StaDev1)←↩
-1)/StaDev1;

// Accumulate samples for mean and var computation

meanaux = meanaux+Gradi;

var aux = varaux+(Gradi*Gradi);

}

// Computes Mean and Variance

GradiMean = meanaux/NUMREP;

varaux = var aux/NUMREP;

GradiVar = varaux -( GradiMean*GradiMean);

// Frees allocated memory

free(ArcTime);

}

/* ********************** */

/* Gauss RNG Function */

/* ********************** */

float GaussRNG(float MeanValue , float StdDev)

{

char notDone; //Flag for A-R method

float NormalVar; // Normal RV

float MaxwellVar; // Maxwell RV

float UnifDist1; //Unif RV
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float UnifDist2; //Unif RV

float UnifDist3; //Unif RV

float UnifDist4; //Unif RV

float WeiVar; // Weibull RV

//Init vars

notDone =1;

// Generate Weibull number by Accept -Reject method

while(notDone)

{

// Generate two unif distrib.var iates in (0,1)

UnifDist1=RngStream_RandU01(RandomGen);

UnifDist2=RngStream_RandU01(RandomGen);

// Compute Weibull dist. Variable

WeiVar=sqrt (-3.0*log(UnifDist1));

// Accept of Reject

notDone =( UnifDist2 >(0.951889669* WeiVar*sqrt(UnifDist1)) );

}

// Generate more unif distrib.var iates in (0,1) for Maxwell and Gaussian

UnifDist3=RngStream_RandU01(RandomGen);

UnifDist4=RngStream_RandU01(RandomGen);

// Generate double size Maxwell and Gaussian Variates

if ( UnifDist3 > 0.5) // Right size RV

{

MaxwellVar = MeanValue +( WeiVar*StdDev);

NormalVar = MeanValue +( WeiVar*UnifDist4*StdDev);

}

else //Left size RV

{

MaxwellVar = MeanValue -( WeiVar*StdDev);

NormalVar = MeanValue -( WeiVar*UnifDist4*StdDev);

}

return NormalVar;

}

Listing A.8: sflrpureseriesgaussian.c: SF/LR estimator for Gaussian distribution

A.2.3 WD exponential combo SAN

/* ************************************************************** */

/* Title: WD exponential(theta) */

/* Date: 08/24/2011 */

/* By: Mauricio Manterola */

/* Desc: */

/* Monte Carlo Simulation of Stoch. Activity Networks in C */

/* Compute WD Gradient Estimates for a combination SANs */

/* wrt a var iation in the mean of the first arc. */

/* It also perform an scan from INIMEAN to FINMEAN to account */

/* for a var iation in the criticality (from 0 to 1). A plain */

/* text (columns separated by tabs) is generated to be used in */

/* Metapost. */

/* ************************************************************** */

/* ********************** */

/* Includes */

/* ********************** */

#include "RngStream.h"

#include <stdio.h>
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#include <stdlib.h>

#include <math.h>

/* ********************** */

/* Macros */

/* ********************** */

#define NUMREP 32000

#define SLICES 500

#define INICRIT 0.01f

#define FINCRIT 0.99f

#define WEIG 0.99f

/* ********************** */

/* Global Variables */

/* ********************** */

RngStream RandomGen; // Lecuyer RNG

float Mean1; //Mean arc 1

float Mean2; //Mean arc 2

float Mean3; //Mean arc 3

float Critical; //Crit.index

float GradiMean; // Sensitivity mean (expd. val.)

float GradiVar; // Sensitivity var iance

float ExpTheta; // Exponential(theta) RV

float ErlTheta; // Erlang(2,theta) RV

/* ********************** */

/* Declarations */

/* ********************** */

void ExpRNG(float MeanValue);

void WDGrad(void);

/* ********************** */

/* Main Function */

/* ********************** */

int main(void)

{

// Variables

int k; //For scan thru criticalities

float jumps; //Step size

float Critlity[SLICES]; //Crit.index storage

float Varis[SLICES]; // Variance storage

float CritTgt; //Crit.index target

FILE* Datad; //Ptr to output file

//Info to output (screen)

printf("MCS Gradient Estimation\n");

printf("WD Estimator , Combo network , Exp(theta)\n\n");

// Create Random Stream

RandomGen=RngStream_CreateStream("a");

// Create report file

Datad = fopen("datawdcomboexp.d", "w");

if (Datad==NULL)

{

printf("Error: Could not create file datawdcomboexp.d\n");

return (1);

}

// Compute jump

jumps=(FINCRIT -INICRIT)/( SLICES);

// Prepare some var iables for iterations

Mean1=WEIG;

Mean3=1-(WEIG);

for (k=0;k<SLICES;k++)
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{

// Compute target criticality

CritTgt=INICRIT +(jumps*k);

// Compute mean for Arc 2 accordingly

Mean2 =((1- CritTgt)+sqrt (((1- CritTgt)*(1- CritTgt))+(4* CritTgt *(1- CritTgt)*←↩
Mean1*Mean3)))/(2* CritTgt);

//Call WD computation function

WDGrad ();

//Save output from WD for later

Critlity[k]=Critical;

Varis[k]=GradiVar;

}

//Save arrays of crit.index and grad. var iance to output file

for (k=0;k<SLICES;k++)

fprintf(Datad , "%10.4f %10.4f\n",Critlity[k],Varis[k]);

//Exit nicely

return (0);

}

/* ********************** */

/* IPA Comp. Function */

/* ********************** */

void WDGrad(void)

{

int Rep; //Index for repetitions

int conta; // Counter for crit.

float ArcTime1; // Realization 1st arc

float ArcTime2; // Realization 2nd arc

float ArcTime3; // Realization 3rd arc

float meanaux; //Aux for mean computation

float var aux; //Aux for vatiance computation

float Gradi; // Gradient sample

float Longpath; // Completion time sample

float ArcTime1WD; // Realization arc1 modified dist.

float LongpathWD; // Completion time w/mod.distr.

// Reset vars

conta =0;

meanaux =0.0f;

varaux =0.0f;

// Iteration for MCS

for (Rep =0; Rep <NUMREP; Rep++)

{

// Generate ArcTime1 , ArcTime2 , ArcTime3 exponentially

// distributed and ArcTime1WD Erl(2,theta) 4 WD

ExpRNG(Mean1);

ArcTime1=ExpTheta;

ArcTime1WD=ErlTheta;

ExpRNG(Mean2);

ArcTime2=ExpTheta;

ExpRNG(Mean3);

ArcTime3=ExpTheta;

// Obtain longest path

if (( ArcTime1+ArcTime3)>ArcTime2)

{

conta ++;

Longpath=ArcTime1+ArcTime3;

}

else
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{

Longpath=ArcTime2;

}

// Obtain longest path modified distrib (erlang)

if (( ArcTime1WD+ArcTime3)>ArcTime2)

{

LongpathWD=ArcTime1WD+ArcTime3;

}

else

{

LongpathWD=ArcTime2;

}

// Compute Gradient

Gradi =( LongpathWD -Longpath)/Mean1;

//Accum. 4 mean and var iance computation

meanaux = meanaux+Gradi;

var aux = varaux+(Gradi*Gradi);

}

// Compute Mean and Variance

GradiMean = meanaux/NUMREP;

varaux = var aux/NUMREP;

GradiVar = varaux -( GradiMean*GradiMean);

// Compute Criticality

Critical = (( float)conta)/(( float)NUMREP);

}

/* ********************** */

/* Exp(theta) RNG */

/* ********************** */

void ExpRNG(float MeanValue)

{

float UnifDist1;

float UnifDist2;

// Generate unif distrib.var iates in (0,1)

UnifDist1=RngStream_RandU01(RandomGen);

UnifDist2=RngStream_RandU01(RandomGen);

// Compute Exp(theta)

ExpTheta=-log(UnifDist1)*MeanValue;

// Compute Erl(theta)

ErlTheta=-log(UnifDist2*UnifDist1)*MeanValue;

}

Listing A.9: wdcomboexpo.c: WD estimator for exponential distribution
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