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Planetary magma oceans are present throughout the Solar System in a variety of

forms. Over time, these oceans pass through various evolutionary stages, influencing

the dynamics of the planetary body in question. Magma ocean evolution is explored

here in greater detail through a case study of a cryomagma ocean beneath the surface

of Triton, Neptune’s icy satellite. Triton is hypothesized to have experienced extensive

tidal dissipation within its interior early during evolution. Given the influence of tidal

dissipation, this study evaluates ocean sustainability using a parametrized turbulent

convection model and a coupled crust-ocean evolution model. The latter model links

the thermal evolution of the crust, solved as a Stefan problem, with the crystallizing

multiphase ocean. Due to an evident ’tidal blanketing’ effect, these models indicate

that an ocean may survive around 1 billion years given Triton’s present day orbit, a

timescale that increases with increasing dissipation and orbital eccentricity.
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Background
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1.1 Magma Oceans

Magma oceans are partially or completely molten bodies, occupying large fractions

of planetary interiors. It has been hypothesized that magma oceans are likely to

have existed at one time or reoccurringly throughout the history of many of our

Solar System’s planetary bodies. Evolution of magma oceans arise from a number of

interrelated processes involving convective heat transfer, chemical composition, and

tidal heating. So how do we characterize or classify a magma ocean?

Typically, we distinguish magma oceans according to their rheology, duration, size

and shape, and composition. Rheologically, an ocean may be characterized through

it’s convective state. In general, an ocean’s evolution is comprised of three main con-

vective stages - “hard” turbulent convection stage, “soft” turbulent convection or soft

ocean stage, and hard ocean stage (Abe, 1997; Solomatov , 2000). “Hard” turbulent

convective stage occurs when the magma ocean has a very low viscosity, typically

corresponding to a relatively high temperature for the composition of the system,

and very vigorous convection associated with high Rayleigh numbers (Shraiman and

Siggia, 1990; Solomatov , 2000). In many ways, this can be thought of as the initial

stage of an ocean’s evolution, occurring in conjunction with ocean formation. The

convective vigor of this stage aids in removing excess heat from the ocean. The sec-

ond stage, termed “soft” turbulence or soft ocean, exhibits similar features to that of

“hard” turbulence in the sense that turbulent convection is still present due to the

high melt fraction and low viscosity of the system. However, this stage is distinct

from “hard” turbulence due to the reduced vigor of convection. Within a soft ocean,

crystallization of solid can occur depending on the thermal state of the ocean, but

it is unlikely to expect segregation of phases. Thus, solid particles are likely to re-

main suspended within the ocean, both phases having a distinct velocity (Abe, 1997;

Solomatov , 2000; Solomatov and Stevenson, 1993a,b).

During the earliest stages of ocean evolution, turbulence aids in convecting away
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a large amount of heat at the ocean’s surface. Evolution, however, may also be

influenced by the planetary body’s tidal activity. In the case of an ocean residing

beneath a crustal lid, it is possible that tidal heating can act to slow or counter

ocean cooling. The influence of tidal activity is more significant for bodies with

highly eccentric or inclined orbits. The stress induced during orbit contributes to a

dissipation of heat within planetary bodies. Roberts and Nimmo (2008) show that

the heating contributed from tidal deformation preferentially affects the ice shell as

it is strongly dependent upon the rheology of the layer. However, significant tidal

heating within the crust could aid in the formation of a new ocean, if not sustain

a pre-existing subsurface one. As observations from Voyager, Galileo, and Cassini

missions have shown evidence to suggest the presence of subsurface oceans in multiple

icy satellites orbiting the outer solar system, tidal dissipation is expected to be a

significant contribution to their presence (Hussmann and Spohn, 2004; Hussmann

et al., 2006; Tobie et al., 2005).

1.2 Triton’s Subsurface Icy Ocean

Overview

Triton is Neptune’s largest moon with a radius of approximately 1353 km. Obser-

vations of the icy satellite’s surface, shown in Figure 1.1, suggest evidence of recent

geologic activity (Prockter et al., 2005). The satellite’s topography is marred by ex-

tensive ridge systems and volcanic plains. The eruptions of geysers and plume activity

contribute to both the atmosphere and the landscape based on data collected from

Voyager mission observations as well (Brown and Kirk , 1994; McKinnon and Kirk ,

2007). The ages of many of the features documented remain unknown, however,

the surface age of Triton is approximated between 10 and 100 Myr old (Schenk and

Zahnle, 2007), which suggests relatively recent geologic activity. Internal heating of
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Triton as a result of tidal dissipation may provide an explanation for this geologic ac-

tivity at present. If substantial, Ross and Schubert (1990) show that tidal dissipation

could explain the formation of an ocean within Triton using a basic parameterized

coupled thermal-orbital evolution model. The presence of such a layer would be con-

sistent with many of the surface observations of geologic and volcanic activity. Is there

reason to suspect that an ocean might have been formed during Triton’s history? If

so, could the ocean have been sustained until present?

Geologic Activity on Triton

Knowledge of Triton is constrained by observations from the Voyager mission,

based on images covering only about 40% of the satellite’s surface. From this small

sampling of the surface, three types of terrains can be distinguished - volcanic plains,

polar caps, and dynamic “cantaloupe” terrain comprised of ellipsoidal depressions and

ridges (McKinnon and Kirk , 2007). Overall, the topographic relief is limited to 1 km,

though most features are significantly smaller (McKinnon and Kirk , 2007). Of the

volcanic plains covering its surface, most indicate the extrusion of a viscous volcanic

material, similar in nature to silicate flows, based on the extent of burial of the older

topography (Kargel , 1995). This material would likely be comprised of a relatively

ammonia-rich mix of an ammonia-water composition or a mix of ammonia, water,

and methanol (Kargel , 1995; McKinnon and Kirk , 2007). Small caldera-like features

are typically paired with the plains, likely serving as the origin for the cryovolcanic

flooding (Kargel , 1995; McKinnon and Kirk , 2007). These broad, smooth volcanic

plains represent one main variety of plains found on Triton.

Triton’s surface also exhibits a second variety of volcanic plains referred to as

walled and terraced plains (Kargel , 1995; McKinnon and Kirk , 2007). These plains

are marked by some of the flattest terrain on Triton, suggesting the presence of fluid.

More interesting is the relatively circular walls and terraces bounding the volcanism,
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Figure 1.1: Triton’s Terrain - These images of Triton were taken by the Voyager
2 spacecraft in 1989. The leftmost image shows the various terrains and geologic
features of Triton, but most prominent is the “cantaloupe” terrain, named for its
apparent similarity to a cantaloupe. This is best displayed in the top part of the
picture. The rightmost picture shows one of the volcanic plains of Triton. The small
circular depression in the center of the plain is thought to be a caldera. Images
courtesy of NASA/JPL.

which have the appearance of being eroded by either wind or fluid. Overall, these

plains represent the youngest terrain on Triton’s surface (McKinnon and Kirk , 2007).

The oldest terrain on Triton is the “cantaloupe” terrain, depicted in Figure 1.1.

The term “cantaloupe” is mainly attributed to the closely packed, 25-35 km ellipti-

cal depressions indicating diapiric activity likely due to compositional instability, or

density stratification, in the crust. Schenk and Jackson (1993) estimate that the in-

teraction between three layers of differing densities is necessary to explain the surface

observations. One of their hypotheses suggests that an underlying low density crust

could have been buried by volcanic deposits of increasingly denser substances. The

overlying dense layers are approximated to be 20 km thick given the spacing of the

depressions (McKinnon and Kirk , 2007; Schenk and Jackson, 1993). The terrain also

hosts an intricate system of ridges, some similar to those on Europa, indicating ex-

tension or strike-slip faulting (McKinnon and Kirk , 2007; Prockter et al., 2005). The

third terrain, or the polar caps, are thought to be younger than the “cantaloupe”
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terrain given partial burial of ridges around the pole regions. However, the coverage

at the poles is not assumed to be thick. As such, this layer may serve as more of a

glacier than true ice cap (McKinnon and Kirk , 2007).

Structure of Triton

From the data collected, the satellite is estimated to be approximately 1353 km in

radius with an average density of approximately 2000 kg m−3 (McKinnon and Kirk ,

2007). Models of the satellite’s internal structure indicate that the satellite likely has a

large silicate core, estimated to be approximately 1000 km radius, that is surrounded

by icy layers. From limited observations, it is difficult to ascertain the structure

of the icy portion of Triton. McKinnon and Kirk (2007) suggest that the satellite

is differentiated given surface features indicative of melting and the distribution of

various icy phases over the surface. Stratification is also likely given the evidence

for diapirism at Triton’s surface, suggesting that the outermost layer of Triton is

denser than the ice beneath it (McKinnon and Kirk , 2007). A study by Ruiz (2003)

suggests that the shell of Triton might only be approximately 20 km thick given the

structure of some of the troughs assumed to be grabens observed by Voyager 2. Ruiz

(2003) argues that depth of the trough should correspond to a discontinuity, which

may be the brittle-ductile transition of the ice layer. Assuming this transition, the

heat flow at the surface of Triton can be approximated for a purely conductive lid,

and from that, the depth to a possible subsurface ocean. Of course, this makes many

simplifying assumptions regarding heat flow, structure, and composition throughout

the shell.

A very thin atmosphere of N2 is also apparent from observations, including an

approximately 8 km troposphere for weather (Brown and Cruikshank , 1997; McK-

innon and Kirk , 2007). Plume activity is likely to contribute to the development

of the atmosphere. As material is expelled, it becomes entrained by the wind and
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transported across the surface (Brown and Cruikshank , 1997; McKinnon and Kirk ,

2007). The resulting process is evidenced by the appeareance of streaks through the

atmosphere extending a few 100 km in length and oriented east-west, and windtails

at the satellite’s surface. The appearance of these plumes is likely driven by solar

heating rather than internal heating (McKinnon and Kirk , 2007). Heating causes

sublimation of N2 in the south, resulting in geysers. The N2 is then transported and

deposited in the north. The process also indicates large scale volatile transport across

the satellite’s surface that may correspond to seasonal variations (Bauer et al., 2011;

McKinnon and Kirk , 2007).

Orbital History

Triton likely began as a Kuiper Belt object and is hypothesized to have been

captured into orbit about Neptune from an originally heliocentric orbit, likely prior

to 4 Gyr (Agnor and Hamilton, 2006; McKinnon and Kirk , 2007; McKinnon and

Leith, 1995). This hypothesis is based on the satellite’s current orbital configuration,

given its retrograde and inclined, circular orbit (Agnor and Hamilton, 2006). How the

satellite was captured is not entirely clear. One hypothesis suggests that Triton was

captured via binary-planet exchange, whereby Triton and a second body of similar size

formed a binary system with the Sun (Agnor and Hamilton, 2006). As the binary’s

orbit approached Neptune, Triton was captured while the other body was tossed out

of the system. Another, less favorable hypothesis suggests that the satellite may have

been captured during a close encounter with Neptune, or a series of close encounters,

causing a dissipation of orbital energy via gas drag (McKinnon and Leith, 1995).

Once captured, Triton’s orbit began to circularize from its highly elliptical state,

evolving to its present condition with an eccentricity of 0.000016. At each passage of

periapse, Neptune’s gravity raised tides at the satellite’s surface. The periodicity of

this process dissipated energy within the satellite, reducing the energy of Triton’s orbit
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(McKinnon and Kirk , 2007). Ross and Schubert (1990) show that this circularization

process occurred rapidly during the satellite’s evolution. Deformation incurred by

the satellite’s orbital evolution would have dissipated a large amount of heat within

Triton’s interior, melting the icy layer of the satellite into a global ocean. McKinnon

and Kirk (2007) approximate the dissipation of energy to be as much as 104 kJ kg−1,

enough to melt the satellite entirely.

Composition

Analysis of Voyager mission data has provided a glimpse of Triton’s chemical

constituents, but not a detailed analysis of its composition. Observations of surface

features and spectral analysis have indicated that the satellite is predominantly H2O

with trace amounts of volatiles: N2, CO, CO2, and CH4 (Brown and Cruikshank ,

1997). Based on surface observations alone, about half of Triton’s surface is composed

of N2 in solid solution with a minute amount of CO and CH4. The other half is

comprised of sections of either CO2 or H2O. These surface abundances, however,

are not representative proportions of the satellite’s interior (Schenk and Jackson,

1993). Models of presolar nebula chemical condensation lend an additional constraint

to satellite composition. There is some variation amongst models, however, recent

estimates suggest up to 15% ammonia within icy bodies in the outer Solar System

(Choukroun and Grasset , 2010). The presence of a substantial amount of volatiles is

significant in sustaining melt within an icy satellite as it decreases the temperature

at which water may remain fluid (Choukroun and Grasset , 2010; Croft et al., 1988;

Hogenboom et al., 1997). If an ocean on Triton formed approximately 4 Gyr ago,

the presence of volatiles may contribute significantly to whether or not the ocean can

have been sustained until present and influenced the structure of Triton’s interior as

well.
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1.3 Objectives

Could an ocean, formed early during Triton’s evolution, have been sustained until

present within Triton’s interior? To determine if an ocean has survived, it is nec-

essary to explore ocean evolution in greater depth. The purpose of this study is to

evaluate the crystallization of a cooling magma ocean and to understand the roles of

varying influences throughout evolution, including tidal dissipation, multiphase dy-

namics, and composition. To this end, a coupled crust-ocean evolution model and a

parametrized turbulent ocean evolution model are formulated to better understand

ocean crystallization.
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Chapter 2

Methodology
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2.1 Governing Equations

Triton’s thermal history can be studied in two steps. Shortly after binary capture

and widespread melting of Triton’s interior, the newly formed internal ocean of Triton

convects in a turbulent manner. As this turbulent ocean cools and crystallizes, the

average viscosity of its interior increases, while the inertial forces decline progressively.

The transition between these two phases of thermal evolution takes place as a rhe-

ologically critical crystal fraction is reached (Solomatov and Stevenson, 1993a). We

use a parametrized convection model for the turbulent regime and a two-phase flow

model for the viscous flow regime in the interior of Triton. The equations governing

each of these models are presented in the following subsections.

2.1.1 Parametrized Turbulent Convection

Thermal evolution of a convecting system is often described by parametrized con-

vection models (Schubert et al., 2000, Ch 13). In these models, the equation for

energy conservation is integrated over the volume of the convecting system, resulting

in an ordinary differential equation (ODE) in time for the average temperature Tav

of the system,

mcp
dTav
dt

= −Aq (2.1)

where m is mass of magma ocean, A is surface area, cp is specific heat capacity,

t is time, and q is the heat flux. The parametrization inherent to this group of

models arises from a scaling relation between dimensionless numbers. In models of

parametrized mantle convection, where inertial forces can be neglected, this scaling

relation is a function of the dimensionless Rayleigh (Ra) and Nusselt (Nu) numbers.

The dimensionless Rayleigh number, shown below, describes the convective vigor,

while the Nusselt number represents the ratio between convective and conductive

heat fluxes. For a turbulent system, however, the scaling involves the Prandtl (Pr)
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number, which is the ratio of viscous to thermal diffusion. Using a scaling relation

of Shraiman and Siggia (1990), the turbulent heat flux q through the ocean may be

evaluated as:

q = 0.22k

(
Tav − Ts

L

)(
Ra2

Prλ3

) 1
7

(2.2)

where k is thermal conductivity, Ts is surface temperature, λ is aspect ratio, and L is

thickness of the magma ocean. The nondimensional Prandtl and Rayleigh numbers

are defined by,

Ra =
αg(Tav − Ts)L3

κν
, (2.3)

Pr =
ν

κ
, (2.4)

where α is the coefficient of thermal expansion, g is gravity, ν is the kinematic vis-

cosity, and κ is the thermal diffusivity. Incorporating these equations for convective

heat flux, the cooling rate term may now be rewritten as:

dTav
dt

= −0.22Ak

Lmcp

(
Ra2

0

Pr∆T 2
0 λ

3

) 1
7

(Tav − Ts)9/7 , (2.5)

where ∆T0 is a constant, reference temperature drop and Ra0 is the Rayleigh number

corresponding to ∆T0. To track the evolution of the magma ocean’s average internal

temperature, we integrate the nonlinear ODE in equation (2.5) by using a fourth

order, adaptive step-size, Runge-Kutta method (Press et al., 1992).

The scaling relationship can vary depending on the degree and nature of viscous

and thermal dissipation within the system, which is evaluated through the Prandtl

and Rayleigh numbers. The Nusselt number is typically dependent upon the Rayleigh

number such that:
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Nu ∼ Raγ (2.6)

However, the γ coefficient for large Ra values in turbulent convection is not well

defined. Shraiman and Siggia (1990) explored high Rayleigh number, hard turbulent

convective systems in comparison to early experimental work on Helium and derived

the scaling relationship to be:

Nu ∼ 0.22Ra
2
7Pr−

1
7 (2.7)

where γ is approximately 0.29. A more recent study by Grossmann and Lohse (2000)

suggested a larger γ coefficient of approximately 0.43 or 0.33 depending on the char-

acteristics of the system. The authors developed a general theory of 4 main regimes,

divided based on relative Ra and Pr numbers. Given their classifications, two regimes

are identified that could apply to Triton’s turbulent ocean:

for large Pr : Nu ∼ 0.00343Ra
3
7Pr−

1
7 (2.8)

for large Ra : Nu ∼ 0.038Ra
1
3 (2.9)

Grossmann and Lohse (2011) further develop this unifying theory by focusing

specifically on turbulent systems of Ra ≥ 1011, termed the ultimate regime. Exper-

imental studies for Rayleigh values larger than 1011 yield a variety of γ coefficient

values, most around 0.31, which is not unlike the coefficients supplied by Shraiman

and Siggia (1990) or Grossmann and Lohse (2000). However, other experiments yield

values around 0.38 or 0.25, which are vastly different (Grossmann and Lohse, 2011).

Grossmann and Lohse (2011) suggest the variation depends upon the heat transport

through the boundary layer and provide 3 possible scenarios to describe experimental

values: plume thermal transport in a laminar boundary layer, background thermal

13



transport in a laminar boundary layer, or thermal transport in a turbulent boundary

layer. The scaling relationship for the third scenario provides a substantially larger

γ coefficient than what has been shown so far:

Nu ∼ Ra
1
2Pr

1
2 (2.10)

A comparison of these scaling relationships is plotted in Figure 2.1. The relation-

ships from Shraiman and Siggia (1990) and Grossmann and Lohse (2000) for large

Ra appear to be the most comparable of the four shown. Aside from the regimes

mentioned, Grossmann and Lohse (2011) emphasize that a combination of regimes

can occur within a turbulent system as well. In that case, without greater under-

standing of the physical distinctions between each regime, any γ coefficient in the

range of 0.14 to 0.39 could be feasible (Grossmann and Lohse, 2011). Because high

Ra number scaling relationships remain uncertain, this model relies on equation (2.7)

in the turbulent heat flux derivation for simplification (Shraiman and Siggia, 1990;

Solomatov , 2007).

2.1.2 Coupled Crust-Ocean model

As Triton’s ocean cools beyond the critical rheological transition, convective vigor

diminishes to a viscous flow. Secular cooling of the satellite leads to continual freezing

of the ocean and propagation of the icy crust from the surface towards the ocean-core

boundary. Determination of the thermal structure in Triton’s crust belongs to a class

of problems, called the Stefan problems, that deal with describing the thermal profile

within the frozen zone and calculating the freeze rate.. The schematic diagram in

Figure 2.2 outlines the fundamental energy balance under this condition.

Consider the incremental growth of the crust over a small time period δt. As the

ocean freezes to add the incremental layer, energy is released via the loss of latent heat

of crystallization. Conservation of energy requires the latent heat of crystallization,

14



lo
g
(N
u
)

log(Ra)

Figure 2.1: Nu-Ra Scaling Relationships - Four different scaling relationships
are compared here for a turbulently convecting system. The dark and light blue
lines represent two regimes described by Grossmann and Lohse (2000); green line
represents the regime described by Shraiman and Siggia (1990); red line represents
the scaling relationship of Grossmann and Lohse (2011). The dashed red line marks
the approximate Ra value calculated for Tritons turbulent ocean within this model.

depicted as Q in the diagram, to be transported away from the freezing front by

conduction. The efficiency of heat transport, therefore, limits the rate at which the

freezing front propagates. Besides the conductivity of ice, latent heat and the presence

of an additional heat source, such as tidal dissipation, is also likely to contribute to

the rate of propagation of the freezing front. The following subsections outline the

equations governing heat transfer within the advancing crust and the multiphase

ocean.

Thermal evolution of the crust

In this section, we discuss the equation for energy conservation within the crust

and the equation governing the thickness of the crust. As discussed above, we cast

the problem as a Stefan problem with two unknowns, the crustal temperature Tc(z, t),

and the crustal thickness, h(t). Conservation of energy within the crust leads to,
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dh
dt

δtQ =ρ L dh
dt

δt

Q =k 
∂T
∂z

  δt(  )
z=h
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Figure 2.2: Stefan Problem - A schematic outline demonstrating the heat transfer in
a crystallizing ocean, the Stefan problem. The freezing front advances by the amount(

dh
dt

)
δt, over a small increment of time δt. The latent heat released by freezing must

be conducted through the crust. The instantaneous position of the front is given by
h(t).

∂Tc
∂t

=
k

ρccp

∂2Tc
∂z2

+
Ψc

ρccp
, (2.11)

where Tc is temperature of the crust, t is time, 0 ≤ z ≤ h(t) is depth, ρc is the density,

cp is the specific heat capacity, k is the thermal conductivity, and Ψc is the volumetric

tidal dissipation within the crust. All values for the constants can be found in Table

2.1. We assume that the crust is solid, implying a melt fraction of 0 throughout the

entire layer.

We need an additional equation to solve for the unknown crustal thickness h(t).

This ordinary differential equation (ODE) arises from the balance between latent heat

of crystallization and heat flux within the freezing front, as depicted in Figure 2.2,

given by,

dh

dt
=

k

ρc∆H

(
∂Tc
∂z

)
z=h

. (2.12)

The numerical solution building technique for this coupled system is discussed in
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section 2.4.

Tidal dissipation throughout the crust is determined based upon the orbital state

of the satellite and the rheological structure of Triton’s interior. The formulations

for tidal dissipation make use of the model presented by Roberts and Nimmo (2008).

Subdividing Triton’s interior into multiple layers distributed throughout the crust,

ocean, and core, the spherical harmonic equations of motion governing displacement,

stress, and potential (Alterman et al., 1959) are solved using a propagator matrix

method (Sabadini and Vermeersen, 2004) to determine a radial profile for tidal dissi-

pation (Roberts and Nimmo, 2008; Tobie et al., 2005). The equations and techniques

governing the tidal dissipation parameter are better detailed in Roberts and Nimmo

(2008).

Thermal and structural evolution of the multiphase ocean

The thermal evolution of the crust is coupled with the thermal evolution of a

crystallizing ammonia dihydrate ocean layer. Though there are multiple processes to

be explored within an ocean layer, here emphasis is placed on the influence from con-

duction, crystallization, and advection. Two-phase fluid dynamics are incorporated

within this model to observe the effects of density variation between fluid and ma-

trix phases and the role of crystallization throughout the layer. The equations used

to describe this layer are derived from the mass, momentum, and energy equations

following the model of Sramek et al. (2007).

As two phases - melt and matrix - are present, their masses are linked by melting

and advection, given by the coupled partial differential equations,

∂φ

∂t
+
∂(φvf )

∂z
=

Γ

ρf
, (2.13)

and

∂(1− φ)

∂t
+
∂ ((1− φ)vm)

∂z
= − Γ

ρm
, (2.14)
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Constants (SI units)
α Thermal Expansion Coefficient 5.0 × 10−5

γ Dimensionless Clapeyron Slope −∆S
cp

Γ Melting Rate −ρmV
H

Γ∗ Dimensionless Melting Rate 1.0
κ Thermal Diffusivity k

ρcp

λ Aspect Ratio 1
ρc Ice Shell Density - H2O 917
ρf Fluid Density 946
ρm Matrix Density - H2O 917
A Surface Area 4 π R2

c Permeability Coefficient 1 × 1010

cp Specific Heat Capacity 2096.7
g Gravitational Acceleration 0.8
H Length Scale 3.36 × 105

∆ H Enthalpy of Fusion 1.32 × 105

k Thermal Conductivity 2.0
L Turbulent Ocean Thickness 3.36 × 105

m Mass of Turbulent Ocean 4
3
πH3ρf

R Radius 1.353 × 106

∆ S Entropy of Fusion ∆H
Tfus

t0 Nondimensionalizing Time 5 × 1010

T0 Nondimensionalizing Temperature 240
Tav0 Nondimensionalizing Temperature 273
Tfus Fusion Temperature 176
Ts Surface Temperature 38
V Nondimensionalizing Velocity k

ρmcpH

Table 2.1: Table of Constants - This table incorporates all constants and terms
necessary to model Triton’s interior.
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Here, φ is the melt volume fraction, ρi and vi are the density and velocity of each

phase (for the melt i = f and for the matrix i = m), and Γ is melting rate. Equations

(2.13) and (2.14) represent the conservation of mass for the melt and the matrix,

respectively. Since the densities of the two phases are different, the velocities of the

melt and the matrix are also coupled by a momentum equation arising from the

balance between buoyancy forces and percolation,

vm − vf = −φ(1− φ)
(ρm − ρf )g

c
, (2.15)

where c is the frictional resistance to percolation. Notice that the work of Sramek

et al. (2007) incorporates terms arising from matrix compaction in their coupled

momentum conservation equations. Compaction of the matrix is crucial in expelling

melt due to viscous deformation of matrix over characteristic length scales, termed

compaction length. Typically, compaction length in a multiphase system is O(
√
µ/c),

where µ is the viscosity of the matrix. For the values c = 1×1010 Pasm−2 and µ = 1014

Pas, this length is ∼ 100m, much smaller than the characteristic length scale of our

problem. Therefore, we can avoid these negligible, second order terms for the current

problem. Neglecting the compaction related terms also reduces the governing PDEs

to first order in velocities and melt fraction.

Finally, the temperature distribution within the ocean is given by the multiphase

adiabatic gradient

dTm
dz

=
α′gTm
c′p

(2.16)

where c′p is the effective heat capacity, g is gravity, and α′ is the effective coefficient of

thermal expansion. The effective quantities can be determined from the end member
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compositions using the relations,

α′ = α +
∆ρ

ρ(Tliq − Tsol)
, (2.17)

c′p = cp +
∆H

ρ(Tliq − Tsol)
, (2.18)

where ∆H is the enthalpy of fusion (Solomatov , 2007). Once the thickness of the crust

is calculated, we calculate the thermal profile within the ocean using the adiabatic

gradient given in equation (2.16).

2.2 Nondimensionalization

2.2.1 Parametrized Turbulent Convection

The parametrized turbulent convection model is nondimensionalized by:

Tav = T ∗avTav0

t = t∗t0

Using this nondimensionalization scheme, but dropping the * notation, the governing

equation becomes:

dTav
dt

= −0.22Akt0
Lmcp

(
Ra2

0T
2
av0

Pr∆T 2
0 λ

3

) 1
7
(
Tav −

Ts
Tav0

)9/7

, (2.19)

As the cooling rate of Triton’s turbulent ocean, equation 2.19 evaluates the evolu-

tion of the average temperature of the satellite assuming rapid, turbulent convection

of heat lost at the surface of the satellite, from a global ocean extending the depth

to Triton’s core. As the turbulent ocean cools, it is expected that crystallization

begins as temperature drops below the liquidus of the system. Turbulent convection
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continues, however, until a critical rheological transition is attained. This transition

is associated with a drastic increase in viscosity, which ultimately prevents turbulent

convection from continuing due to the large crystal fraction within the ocean. This

marks the transition to the icy ocean’s viscous flow stage, and the transition to the

coupled crust-ocean evolution model.

2.2.2 Coupled Crust-Ocean Evolution

As the equations describing the multiphase ocean’s evolution are mainly based on

the work of Sramek et al. (2007), the nondimensionalization of this model is derived

similarly. All terms containing an * are the nondimensional form of those without.

Ideally, temperature provides the scaling for this system, ranging from 0 to 1, where

1 is the equivalent to the liquidus of the system and 0 is approximating surface

temperature. Based on this scaling

T = T ∗T0

z = z∗H

vi = v∗i
k

ρmcpH

Γ = Γ∗
ρmV

H

Ψc =
kT0

H2
Ψ∗

dropping asterisks from the dimensionless variables, the final dimensionless governing

equations become:
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∂Tc
∂t

=
∂2Tc
∂z2

+ Ψc (2.20)

dh

dt
= St

(
∂Tc
∂z

)
z=h

(2.21)

∂φ

∂t
= Γ +

∂ ((1− φ)vm)

∂z
, (2.22)

∂

∂z
(φvf + (1− φ)vm) =

Γ(ρm − ρf )
ρf

, (2.23)

vm − vf = −βφ(1− φ), (2.24)

We obtain equation (2.23) by eliminating the time derivative between the two

mass conservation equations. The system of five coupled equations (2.20) - (2.24),

are solved for the five unknown variables: Tc, vm, vf , φ and h. Three nondimensional

quantities govern the behavior of the system. The first quantity, the Stefan number,

given by

St =
T0cp
∆H

, (2.25)

signifies the ratio between the efficiency of heat transfer by conduction and heat

generation by freezing. As seen from equation (2.21), the freeze rate dh/dt is directly

proportional to St. Using the values listed in table 2.1, we obtain St = 2.79, which

was used in our numerical simulations. The next dimensionless number β is given by

the ratio between buoyancy and frictional resistance to percolation,

β =

(
(ρm − ρf ) g

c

)(
ρmcpH

k

)
, (2.26)

where the second quantity within parentheses on the right hand side is the inverse

velocity scale for the problem. This velocity scaling arises from the ratio between the

characteristic length scale and thermal diffusive time. Using the values considered in

this work, we obtain β = −749.38. Finally, the third dimensionless quantity γ is the
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dimensionless Clapeyron slope of melting, given by,

γ =
∆s

cp
. (2.27)

Based on the constants listed in Table 2.1, we use γ = 0.36.

2.3 Initial and Boundary Conditions

2.3.1 Parametrized Turbulent Convection

The parametrized turbulent convection model evaluates Triton’s early evolution

using a turbulent convective cooling rate that assumes cooling from an initial su-

perliquidus temperature. The initial temperature prescribed for this study is approx-

imately 273 K. The solved cooling history prescribed by this parametrized model, in

turn, translates to the upper boundary condition required to evaluate an evolving

adiabat within a crystallizing turbulent ocean.

2.3.2 Coupled Crust-Ocean Evolution

The coupled crust-ocean evolution is governed by the system of five equations

described by (2.20)-(2.24). The energy equation is second order in z and first order

in t. Thus, we need to specify two boundary conditions and an initial condition for

the temperature field. The relevant boundary conditions are displayed in Figure 2.3.

These boundary conditions are given below,

Tc(0, t) = Tsurf (2.28)

Tc(h(t), t) = Tsol (2.29)

Tc(z, 0) = 0 (2.30)
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The initial condition for crustal thickness h is given by,

h(0) = 0. (2.31)

We require an initial condition and a boundary condition for the melt fraction

and one boundary condition for each velocity, given by,

φ(z, 0) =
Tm(z, 0)− Tsol
Tliq − Tsol

, (2.32)

φ(0, t) = 0, (2.33)

vm(0, t) = 0, (2.34)

vf (0, t) = 0. (2.35)

The schematic diagram in Figure 2.3 outlines some of these boundary conditions with

respect to Triton’s interior.

2.4 Numerical Techniques

In this model, thickness of the conductive crust grows with time, while the ocean

shrinks by freezing. The nature of the moving boundary in the problem requires

special attention to a few details. First, the moving boundary leads to adaptive

remeshing in order to keep the model resolution reasonable. Secondly, the freeze rate

in equation (2.21) becomes near zero if the initial crustal thickness and initial crustal

heat flux are both small or near zero (Mitchell and Vynnycky , 2009). To address both

of these issues, we employed the Boundary Immobilization Method (BIM) (Caldwell

and Kwan, 2004; Mitchell and Vynnycky , 2009). In the adaptive BIM, we make the

substitution,
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Figure 2.3: Boundary Conditions - Boundary conditions for the temperatures,
melt fractions, and velocities in Triton’s interior. In the dimensionless scheme, we set
Tsurf = 0, and Tsol = 0.73.

z′ =
z

h
, (2.36)

to solve equations (2.20) and (2.21). After making the substitution, equations (2.20)

and (2.21) can be rewritten in terms of a new function f(t) = h2,

f
∂Tc
∂t

=
z′

2

df

dt

∂Tc
∂z′

+
∂2Tc
∂z′2

+ fψ (2.37)

df

dt
= 2α

(
∂Tc
∂z′

)
z′=1

. (2.38)

Following the technique outlined by Mitchell and Vynnycky (2009), we discretize

equations (2.37) and (2.38) implicitly in temperature and explicitly in crustal thick-

ness. The discretized equations can be written as,
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fn (T ni + ψni ) = − ∆t

∆z2

[
∆z

4
z′
(

df

dt

)n
+ 1

]
T n+1
i+1

∆t

∆z2

[
∆z

4
z′
(

df

dt

)n
− 1

]
T n+1
i−1 +

[
2∆t

∆z2
+ fn

]
T n+1
i (2.39)

fn+1 = fn +
α∆t

∆z

[
3T nM − 4T nM−1 + T nM−2

]
. (2.40)

The first discretized equation leads to a tridiagonal system of linear equations, which

was solved using subroutines from LAPACK library implemented via the intel Math

Kernel Library. We also tested the sample problem of freezing of a planar inter-

face discussed by Mitchell and Vynnycky (2009) and Caldwell and Kwan (2004) to

benchmark our results. The results for this benchmark are provided in the appendix.
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Chapter 3

Results
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3.1 Triton’s Subsurface Icy Ocean

Ultimately, the objective of this study is to ascertain whether an ocean may still

be present within Triton today. To address this goal, it is necessary to evaluate the

combined duration of both the turbulent and multiphase ocean stages of Triton’s

evolution.

3.1.1 Thermal Evolution of Turbulent Ocean

The parametrized turbulent ocean model considers the evolution of Triton’s ocean

throughout the earliest stage of cooling after ocean formation, when the ocean is en-

tirely molten and beginning to crystallize. As shown in figure 3.1, this stage of

crystallization occurs very rapidly. In less than 1000 yrs, the ocean has already

transitioned from turbulent ocean dynamics to multiphase ocean dynamics. It is im-

portant to note, however, that the parameters influencing this model remain constant

with time. The thermodynamic parameters used to calculate this cooling rate exhibit

no change as crystallization occurs.
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Figure 3.1: Cooling Rate for Turbulent Global Ocean - The cooling rate shown
here is the evolution of the average temperature of the ocean. Temperature cools
rapidly due to turbulent convection.
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Figure 3.2: Evolution of Turbulent Ocean Adiabats - Plot of a series of adiabatic
thermal profiles within the turbulent magma ocean. The solidus (Hogenboom et al.,
1997) and liquidus (Choukroun and Grasset , 2007) temperatures, drawn in broken
curve, are displayed in the plot. Annotations on the adiabatic temperature profiles
indicate the number of years since the beginning of the simulation.

The interior of the ocean exhibits a steep adiabatic temperature gradient. Con-

sequently, the entire ocean cools evenly with the rapid drop in the potential temper-

ature. The series of plots in Figure 3.2 displays the evolution of the ocean’s interior

during this period. The numbers on the plot indicate number of years since the com-

mencement of the cooling, roughly coincident with the end of Triton’s circularization.

As the plots indicate, Triton’s turbulent cooling phase likely lasted for only a few

decades. Notice that early in the history of turbulent cooling, the adiabat intersects

the liquidus near the top of the ocean, marking the site of the first crystallization.

3.1.2 Coupled Crust-Ocean Model

As the rapid turbulent cooling of Triton leads to the crust formation, a number of

factors begin influencing the rate of cooling. The two most important factors during

this phase are tidal dissipation within the crust and conductive heat loss through the

crust. The following subsections outline the results from our simulations illustrating
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the nature of interplay between these coupled processes.

Tidal Dissipation Within the Crust

As the high viscosity crust forms atop the magma ocean, tidal dissipation within

the crust increases the temperature. Two important features of the tidal dissipation

are displayed in the plots in Figure 3.3. First, the profile in Figure 3.3, demonstrates

the vertical distribution of tidal heating within the crust. In this plot, the crust is

168 km thick. As the plot indicates, tidal dissipation within the ocean is negligible

compared to the dissipation within the crust. The ocean decouples the crust from

the core, concentrating heating near the base of the crust. Since tidal dissipation

preferentially warms the bottom of the crust, freezing and crust growth at the crust-

ocean boundary is impeded.

Second, the magnitude of tidal dissipation near the bottom increases nonlinearly

with an increase in the eccentricity. The series of thermal profiles in Figure 3.3(b)

demonstrate this effect. By increasing the orbital eccentricity by a factor of 3, tidal

heating has been increased by over an order of magnitude. Taken together, these two

factors prevent the ocean within a satellite in an eccentric orbit from losing heat by a

blanketing effect. The importance of this effect becomes clear when we consider the

interplay between tidal heating and crust propagation, discussed next.

Thermal and Structural Evolution

In this section, we present the evolution of Triton’s thermal and structural profile

for a series of different orbital eccentricities. The plots in Figure 3.4 depict the thermal

profile and tidal heating at three different time steps. The plots in Figure 3.4(a) and

(c) correspond to an orbital eccentricity of 1 × 10−2 and 6 × 10−3 respectively. The

legends on the curves indicate time in million years since the crystallization of the

crust started. In a sharp contrast to the turbulent cooling phase, large parts of the
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Figure 3.3: Crustal Heating Profile - (a)This is a sample plot of a typical crustal
heating profile for a given depth. Within the crust, maximum dissipation occurs
at the base. Within the ocean, heating is negligible. Heating output is in W/m3.
(b)Tidal dissipation profiles are plotted for three different eccentricities according to
how Triton’s orbit evolves within this model. Dissipation is shown to increase with
increasing eccentricity.

satellite’s interior remain molten even after 3.4 billion years. The relatively high

eccentricity in these test cases are higher than Triton’s current eccentricity, but such

eccentric orbits must have existed in Triton’s past assuming a capture origin. The

steep adiabatic gradient within the ocean, to the right of the broken vertical line,

indicates that the temperature of the nearly isothermal ocean is not substantially

higher than the solidus. With the passage of time, the maximum amount of tidal

heating near the bottom of the crust remains the same for both cases.

Secular cooling and growth of the crust are more pronounced at lower orbital

eccentricities. A similar series of plots in Figure 3.5, compare the thermal and tidal

dissipation profile at three different time steps for orbital eccentricities of 1 × 10−5

and 2 × 10−3, respectively. In both of these cases, the crust grew to almost 250 km

thickness. The time required for the crustal growth, over 1 billion years, is markedly
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different from the turbulent cooling phase. The slow, sustained growth of the crust

is impeded by a weak, yet effective tidal warming.

Numerical solutions to the Stefan problem allow us to calculate the growth and

growth rate of Triton’s crust as a function of time for different eccentricities. The

results from these simulations are plotted in Figures 3.6(a) and (b). The plot in

Figure 3.6(a) also overlays the current estimate of the depth to Triton’s core. The

legends on the plots indicate orbital eccentricity. Of the range of orbital eccentricities

explored in this work, the current orbital eccentricity of 1 × 10−5 is able to prevent

complete freezing of Triton’s interior for over a period of 1.5 billion years. For orbital

eccentricities higher than 2×10−3, part of the interior of the satellite remains melted.

The plots in Figure 3.6(b) also indicate that within the first 500 million years, the

freeze rate dh/dt, reduces to less than half the original value. The freeze rate falls

more sharply for higher orbital eccentricities.

From the numerical simulations we evaluate the surface heat flux and the heat flux

at the base of the crust as a function of time for various values of orbital eccentricity

in Figure 3.7. Comparison between these two plots, and different curves within each

plots demonstrate the tidal blanket effect. First, the heat flux near the surface is

higher than the basal heat flux. Moreover, the basal heat flux decreases faster with

time for higher eccentricity orbits. As demonstrated in Figure 3.3 and the series of

heating profiles in Figures 3.4 and 3.5, the base of the crust is preferentially warmed

by tidal heating, while the surface is kept at a low temperature, leading to a lower

basal heat flux. Secondly, the magnitude of tidal blanketing increases with higher

eccentricity orbits, reducing the basal heat flux. As evidenced from equation (2.21),

the growth rate of the crust is directly proportional to the basal heat flux. Thus,

reducing the basal heat flux by concentrating tidal heating near the bottom slows

down the rate of crustal growth.
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Figure 3.4: Crust-Ocean Evolution for Larger Eccentricities - Profiles of crustal
temperature (a,c) and heating as a function of depth (b,d). The legends on the curves
indicate time in million years. The vertical broken line indicates the near surface
solidus temperature.
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Chapter 4

Discussion

37



Figure 4.1: Tidal Blanket Effect - A schematic diagram outlining the tidal blan-
keting effect in the crystallizing crust. Lengths of the upward pointing red and green
arrows correspond to the magnitudes of basal heat flux arising from the tidal dissipa-
tion. Similarly, lengths of the downward pointing blue arrows represnt the magnitudes
of crustal growth for the two cases. As indicated in the cartoon, higher tidal dissi-
pation corresponds to lower basal heat flux and a reduced rate of crustal growth.

4.1 Tidal blanketing

Tidal dissipation in the growing crust insulates the underlying, crystallizing ocean,

reducing the basal heat flux and delaying crustal growth. The overall effect of a

highly dissipative crust is to provide a thermal blanket atop the ocean. We term

this the ‘tidal blanketing’ effect. The cartoon in Figure 4.1 summarizes some of the

key processes associated with tidal blanketing. First, we notice that tidal dissipa-

tion is typically concentrated near the base of the crust. The concentration of tidal

heating near the base arises from mechanical decoupling between the crust and the

ocean. Next, we notice that the growth rate of the crust, derived from the Stefan

problem, is proportional to the basal heat flux. Since the base of the crust is fixed at

the solidus temperature, warming of the lower part by tidal dissipation reduces the
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thermal gradient and thus the basal heat flux. Consequently, the growth of crust by

crystallization is impedded. Since high eccentricity of the orbit leads to larger tidal

dissipation, the tidal blanketing effect is stronger at higher eccentricites.

4.2 Compositional complexities

Composition of the satellite is necessarily simplified to an NH3-H2O system in

many icy satellite studies. Here, this system is further simplified through our thermo-

dynamic model, which ignores the depth dependence of thermodynamic parameters.

The solidus is taken to be constant with depth, which is shown in Figure 3.2 to be

a reasonable approximation. The liquidus temperature, however, does change with

depth and may not necessarily correspond to the H2O solidus as assumed here. It

would be interesting to incorporate this depth dependence within this evolutionary

model.

Overall, the liquidus of this system depresses with increasing pressure. This trend

reverses at pressures of 300 MPa (Hogenboom et al., 1997). As Hogenboom et al.

(1997) discuss, the density of NH3-H2O liquid remains lighter than that of solid am-

monia dihydrate I up until 160 MPa. Between 160 and 300 MPa, the liquid becomes

denser than the solid phase. Beyond 300 MPa, the system no longer crystallizes

ammonia dihydrate I, but switches to ammonia dihydrate II, corresponding to the

reversal in the liquidus depression trend (Hogenboom et al., 1997). Within Triton,

the base of this NH3-H2O layer should extend well into the pressure range for the

denser liquid. In fact, this dynamic may provide one possible method of obtaining

a basal ocean (Fortes et al., 2003; Hogenboom et al., 1997). Keeping in mind that

tidal dissipation is most influential within a crust decoupled from a core (Roberts and

Nimmo, 2008), it would be interesting to add this transition to this model. These

effects may have several implications for ocean life extension and volcanism on icy
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indicate the composition of a magma in equilibrium with an H2O-ice phase at deep
and shallow levels, respectively.

satellites as well.

The other compositional simplification we make, related to the previous, is that

bulk fluid composition and density remain constant over time as crystallization occurs.

Depending on the dynamics of the system, if grains crystallizing from the initial fluid

are concentrated in one particular component and then segregated out of the system,

the fluid density should evolve correspondingly, altering the liquidus and solidus of

the system. This may have an impact on the sustainability of the ocean.

4.3 Composition of Magma Oceans

One consequence of crystallization of the magma ocean is progressive change in the

composition of the magma. As illustrated in the cartoon in Figure 4.2, the concentra-

tion of ammonia within the magma ocean increases with progressive crystallization.

Since the crust of Triton is predominantly composed of water-ice, it is likely that the

bulk composition lies on the H2O side of the eutectic curve in Figure 4.2. As the

ocean cools and crystallization progresses, composition of the liquid evolves along the
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liquidus curves, in the direction indicated by the arrows in the diagram. One impor-

tant consequence of such progressive enrichment of the ocean in NH3 is that the liquid

becomes denser than the crystallizing H2O-ice (Hogenboom et al., 1997). Progressive

enrichment of the liquid in NH3 also reduces its viscosity (Hogenboom et al., 1997),

enhancing gravitational drainage of trapped pore fluid within the freezing front. As

a consequence, a thin layer of NH3-rich magma can be rendered dynamically stable

beneath the ice shell. Although the liquidus is shifted towards the H2O end of the

phase diagram at higher pressures, the trend of compositional enrichment still exists.

Thus with sufficient tidal blanketing, it is possible to create an NH3-rich magma layer

at the base of the crust.
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Chapter 5

Conclusion

This simplified coupled crust-ocean model provides a first look at the interplay

between various icy satellite dynamics, which can greatly alter the evolution of a

satellite’s interior and possibly exterior. Though simplified, it suggests that an ocean

may exist at present due to the large influence tidal dissipation may have within the

crust, namely this ’tidal blanketing’ effect. It is worth evaluating the scenario further

to gain a better approximation for the duration of an ocean as well as the extent and

characteristics of the ocean to determine whether it may be contributing to surface

activity at present and by what means. Further evaluation and analysis of some of

the assumptions made here may aid in explaining volcanism and tectonic activity

on several icy satellites throughout the solar system. Likewise, this model may be

applied to the evolution of silicate bodies as well. Future studies should consider the

role of composition, tidal dynamics, and two phase flow dynamics more extensively

for a better approximation of ocean endurance.
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Appendix A

Coupled Crust-Ocean Model
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A.1 Steady State Analytical Solution

Equations (2.13) and (2.14) can be used to derive a steady state analytical solution

for the velocities of each phase in the multiphase ocean model. Motion of each phase

results from the variation in density between melt and crystals. The percolation of

melt through the matrix influences the advection of heat throughout the multiphase

layer. To determine the velocity of each phase, we can begin by subtracting equation

(2.14) from equation (2.13):

− 1

ρm − ρf

(
∂φ

∂z
vm −

∂vm
∂z

+
∂vm
∂z

φ− ∂φ

∂z
vf − φ

∂vf
∂z

)
− Γ

ρfρm
= 0, (A.1)

This equation can then be integrated with respect to z. We impose a boundary

condition on the velocities such that (1 - φ)vm + φvf = 0 at z = 0. Thus, the average

velocity of the system is 0 at z=0. Equation (A.1) becomes

0 =
1

ρm − ρf
((1− φ)vm + φvf )−

Γz

ρfρm
, (A.2)

The Action-Reaction equation (2.15) and (A.2) can be solved together to find expres-

sions for both velocities.

vm = −(ρm − ρf )
c

φ2(1− φ)g + Γ
(ρm − ρf )
ρmρf

z, (A.3)

vf =
(ρm − ρf )

c
φ(1− φ)2g + Γ

(ρm − ρf )
ρmρf

z, (A.4)
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A.2 Benchmarking the Coupled Crust-Ocean Model

Benchmarking of this model occurs in two steps. The model presented here is

a moving boundary problem coupling both crustal and multiphase ocean dynamics.

Thus, the first step is benchmarking the model of Triton’s crust. The second step

focuses on benchmarking a multiphase ocean.

A.2.1 A Purely Conductive Lid

Within this model, the crust experiences one main additional source of heating

- tidal dissipation. For the purpose of benchmarking, this heat source is eliminated

such that the crust becomes a purely conductive lid. As with the original model, it

is assumed that Triton’s crust is entirely solid. The evolution of the conductive lid is

evaluated over a time scale of 4.5 Gyr and assumes no ocean exists within Triton’s

interior. Therefore, the base of the solid crust is assumed to extend to the depth

of the core. The temperature at the base of the crust is held at a reference solidus

temperature for an ammonia-water system (’reference’ implies atmospheric pressure)

for simplification.

Transient and Steady State Thermal Boundary Layers

If we assume the crust to be a purely conductive thermal boundary layer, approx-

imately spanning the depth to Triton’s core hc, then we would expect the crust to

cool according to the energy conservation equation such that:

ρcp
∂Tc
∂t

= k
∂2Tc
∂z2

(A.5)

where Tc is the potential temperature of the crust, t is time, ρ is density of the crust,

cp is specific heat, k is thermal conductivity, and z is depth.

If we assume steady state conditions, then we can simplify equation (A.5) to
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0 =
d2Tc
dz2

(A.6)

The surface temperature Tsurf of Triton is approximately 38 K (at z = 0 km).

If we approximate the temperature at the base of the crust, at a depth hc, to be

equivalent to the solidus temperature Tsol of a simple ammonia-water system, then a

steady state thermal profile of Triton’s interior can be prescribed by

Tc =

(
Tsol − Tsurf

hc

)
z + Tsurf (A.7)
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Figure A.1: Crust Benchmark: Analytical Solution - (a) The thermal state of
Triton’s crust is modeled given steady state conditions. (b) The thermal state of Tri-
ton’s crust is modeled by evaluating Triton’s thermal boundary layer as a semi-infinite
half space. Each curve represents a geotherm at one instant of Triton’s evolution:
black is earlier ( 4.5 Myr), blue is about 63 Myr, and red is Triton at 148.6 Myr.

Figure A.1a shows the steady state thermal profile anticipated given these as-

sumptions. For a transient conductive lid, however, we can model equation (A.5) as

a semi infinite half space and assume instantaneous cooling. In this case, we assume

that the temperature within the lid is initially equivalent to Tsol. A thermal profile

can then be evaluated by
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Tc = Tsol + (Tsurf − Tsol)

1− erf

 z

2
(
kt
ρcp

)0.5


 (A.8)

Figure A.1b demonstrates a geotherm evaluated for 3 different scenarios. The

first scenario occurs at an earlier stage of Triton’s evolution, approximately 4.50 Myr.

The second scenario represents a profile at 63.06 Myr. The final scenario represents

Triton’s profile after 148.6 Myr.

Finite Volume Discretization of a Purely Conductive Lid

For comparison to the previous solution, here we evaluate the equation for a purely

conductive lid using finite volume discretization. Equation (A.5) is discretized to the

form:

T n+1
i = T ni +

k

ρcp

T ni+1 − 2T ni + T ni−1

dz2
(A.9)

where n denotes time iteration and i denotes spatial distribution.

After altering the pre-existing coupled crust-multiphase ocean code so that it fo-

cuses solely on the thermal evolution of a crust of constant thickness without any

input from a multiphase ocean, we can use equation (A.9) to describe the crust’s evo-

lution. For comparison to the semi infinite half space model, we prescribe the initial

condition such that the temperature of the lid is equal to the solidus temperature at

t = 0. At z = 0, for t > 0, temperature is held at 0, which is an approximation of

Triton’s surface temperature. At the base of Triton’s crust, the temperature is held

at the solidus temperature.

The governing equation can be nondimensionalized using the following scheme:

47



T = T ∗T0

t = t∗
H

V

v = v∗V

z = z∗H

H =
ρfTo∆S

2

∆ρgcp
l (A.10)

v is dimensional velocity, whereas V is nondimensional velocity. ρf is the fluid density

within an ocean layer, ∆S is the change in entropy, ∆ρ is the difference in density

between solid and liquid phases, and l is a scale factor to ensure that the lengthscale

is comparable to the depth of Triton’s icy layer. Using this scheme and dropping the

nondimensional asterisk notation, Equation (A.9) becomes

T n+1
i = T ni +

k

ρcpV H

T ni+1 − 2T ni + T ni−1

dz2
(A.11)

Figure A.2 shows the evolution of the crust’s thermal profile calculated using this finite

volume model in comparison to the analytical solution supplied by the transient semi

infinite half space model.

Error Analysis

For comparison we show a closer look at the Transient Half Space Model solution

relative to the Finite Volume Model solution in figure A.2, with depth ranging up

to the thickness of Triton’s lid. Each pair of curves are calculated given the same

amount of elapsed time during Triton’s history. We can calculate the difference, or

error, between the numerical solution, Tnum, and the exact solution, Texact, simply by:

Tnum − Texact = ε (A.12)
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Figure A.2: Finite Volume Discretization of Crust - (a) The thermal state of
Triton’s crust is modeled by evaluating Triton’s crust as a purely conductive lid and
using finite volume discretization. Each curve represents a geotherm at one instant
of Triton’s evolution ranging from earlier (black) to later (red).(b) Here, we show a
comparison of the exact solution determined by the half space cooling model (green)
and the numerical solution determined using finite volume discretization (blue). Each
pair is determined for the same time interval: 16.65 Myr, 49.98 Myr, 83.03 Myr.
Each model uses a grid of 150 points. (c) Here, we show the difference between the
exact solution and the numerical solution for each of the three pairs shown in (b)
as a function of depth. Each curve represents one of the three time intervals: 16.65
Myr(black), 49.98 Myr (blue), 83.03 Myr (green).
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Figure A.3: Minimizing Error - (a)-(c)Here, we show the difference between the
exact solution and the numerical solution for various grid sizes as a function of depth.
Each pair shows results given a different grid size: 10, 150, and 1000. Grid sizes larger
than 50 or 100 show very similar results. (d) Here, we show the difference between
the exact solution and the numerical solution for various grid sizes as a function of
depth. Each curve represents a different grid size: 10, 50, 100, 150, 1000. Error
between solution is minimal amongst the largest grid sizes shown. (e) The average
error between solutions can be shown to decrease as we increase the number of points
distributed throughout the crust.

Figure A.2 shows the difference between the two solutions at each time interval,

which appears to be minimal. Thus far, these solutions have been shown given a grid

size comprising 150 points throughout the length of the crust. If we refine the grid by

increasing the number of point, we may ultimately decrease error between solutions.

Figure A.3 shows solutions for various grid sizes. The numerical solution appears to
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become more similar to the exact solution with increasing grad size. However, the

difference in error is minimal amongst the largest grid sizes shown. In Figure A.3,

we see the error between solutions plotted for varying grid sizes, ranging from 10 to

1000 points over the entire crust. We can calculate the average error through:

|ε̄| =
∑N

i=1 |ε̄|
N

(A.13)

From Figure A.3, we can see that this error does decrease with grid size refinement.

Error within solution may also result from time stepping. Within the models

shown here so far, we rely on a constant time step dt of 10−4. If we rely on some

form of adaptive time stepping, we can add constraints on the error within these

calculations. In this model, we rely on the Courant Stability Criterion to determine

appropriate time steps for constraining error. Figure A.4 shows a comparison between

the exact solution for a grid size of 150 and the numerical solution for the same grid

size, but incorporating an adaptive time step, reducing dt to the order of 10−5. In

figure A.4, it becomes apparent that the magnitude of error does not vary much given

this change.

A.2.2 Multiphase Ocean Dynamics

The second step in benchmarking this model focuses on the multiphase ocean.

Triton’s subsurface ocean comprises two phases - fluid and solid - the composition

of which are not well known. The coupled finite volume model evaluates tempera-

ture, melt distribution, and motion of phases as crystallization proceeds. The crust

benchmark indicates that the model can evaluate thermal evolution, but how can

the multiphase ocean model be further evaluated? Testing the validity of the model

with regards to calculations of velocities of phases independent of temperature and

variable melt fraction provides a second benchmark for the ocean model.

A study by Ricard et al. (2001), formulating a model intended to evaluate simple
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Figure A.4: Comparison: Varying dt in FVM -(a) Here, we show a compar-
ison of the exact solution determined by the half space cooling model (green) and
the numerical solution determined using finite volume discretization (blue) for given
adaptive time stepping. Each model uses a grid of 150 points. (b) Here, we show
the difference between the exact solution and the numerical solution as a function of
depth for a FVM model using a constant dt of 10−4 (black) and a FVM model using
adaptive time-stepping (blue).
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compaction, is used to evaluate the velocities of both liquid and solid phases within

a 1-D melting column. Within their model, the authors consider a layer of given

thickness l0 with a constant melt fraction φ0 with depth. They assume that a piston

resides at the top of the layer such that, when compressed, the solid matrix undergoes

compaction while melt is expelled through the top of the piston.

From the conservation equation, a relationship between melt and matrix may be

described by

φvf + (1− φ)vm = 0 (A.14)

where φ is melt fraction, vf is fluid velocity, and vm is matrix velocity. The action-

reaction equation is derived as:

−φ(1− φ)[∇∆P + ∆ρgz] +∇ · [φ(1− φ)∆τ ]− τ̄ · ∇φ− c∆v = 0 (A.15)

where ∆P is change in pressure between phases, ∆ρ is change in matrix and melt

density, g is gravitational acceleration, z is depth, ∆τ is difference in stress, τ̄ is

average stress, c is the interaction coefficient, and ∆v is the difference in velocities.

From Navier-Stokes equations, the pressure jump within the system is then derived

as:

∆P + σ
dα

dφ
= −K0

(µm + µf )

φ(1− φ)
∇ · [φ(1− φ)(vm − vf )] (A.16)

where σ is surface tension between the phases, α is area of interface per volume, K0

is a constant regarding surface of the interface, and µm and µf are matrix and melt

viscosities respectively.

Within their study, Ricard et al. (2001) make the following simplifying assump-

tions: g = 0 and ρm = ρf to avoid buoyancy effects; σ = 0 such that surface tension
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can be ignored as well; µf � µm to eliminate viscous stress. Combining Equations

(A.14) through (A.16), finds

φ2δ2
m

(
κ

(1− φ)

φ
+ (1− φ)

)
∂2vm
∂z2

− vm = 0 (A.17)

where δm is the compaction length equivalent to
√

4µm

3c
, and κ = 3K0/4. If we assume

κ = 1, we may further simplify Equation (A.17) to the form

δ2
mφ(1− φ2)

∂2vm
∂z2

− vm = 0 (A.18)

The velocity of each phase within the layer is solved given two boundary condi-

tions. At the top of the layer, z = l0, vm is kept constant at −v0, the rate at which

the piston compresses. The base of the layer, at z = 0, is considered an impermeable

boundary, thus vm is held at 0.

Nondimensionalization

Equation (A.18) can be nondimensionalized by velocity and depth as shown

vm = v0v
′
m

vf = v0v
′
f

z = δm

√
φ0(1− φ2

0)z′ (A.19)

Using Equation (A.19), Equation (A.18) can be rewritten as

∂2v′m
∂z′2

− v′m = 0 (A.20)
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Analytical Solution

As a standard linear ODE, the general solution to Equation (A.20) becomes

v′m = c1 cosh z′ + c2 sinh z′ (A.21)

We may determine the coefficients within the solution using the given boundary con-

ditions. The dimensionless boundary conditions at the bottom and top boundaries,

respectively, are

z′ = 0

v′m = 0 (A.22)

and

z′ =
l0

δm(φ(1− φ2))1/2

v′m = −1 (A.23)

Thus, Equation (A.21) becomes

v′m = −sinh(z′)

sinh( l0
h

)
(A.24)

where

h = δm(φ(1− φ2))1/2 (A.25)

We can determine the melt velocity given Equation (A.14).

v′f =
(1− φ)

φ

sinh(z′)

sinh( l0
h

)
(A.26)
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We first evaluate this solution given the parameters found within Ricard et al.

(2001) for consistency. Within their study, µf = 10Pa s, µm = 1018Pa s, k0 =

5×10−10m2, and φ0 between 0.01 and 0.05. An estimate for l0 is found provided that

( l0
δmφ0

)2 = 0.1 or 10. Therefore, l0 is assumed to be approximately 130 m for a ratio

equivalent to 0.1 and 1300 m for a ratio equivalent to 10. Figures A.5 (a) and (b) show

the solutions consistent with their model. Reapplying this model towards Triton’s

ocean, it is necessary to alter some of these parameters. If we consider µf = 0.1Pa

s, µm = 1013Pa s, k0 = 5 × 10−10m2, and φ0 between 0.01 and 0.05, using their

constraints, we find the thickness of the layer l0 to be approximately 4.1 m or 41 m

respectively, several orders of magnitude smaller than an ocean on Triton. However,

if we rely on the relationship used by Ricard et al. (2001) to constrain layer thickness,

the solutions become identical with that of Figures A.5 (a) and (b). As depth and

velocity are normalized to l0 and vm, identical solutions are ideal. As φ0 increases,

this relationship shows a decrease in the maximum melt velocity, indicated in Figures

A.5 (e) and (f).

Numerical Solution

For comparison to the analytical solution, we can substitute the new equations

describing our ocean layer into the main finite volume model. To do so, we must first

discretize Equation (A.18) using a finite differencing scheme.

1

∆z′2
[v′i−1
m − 2v′im + v′i+1

m ]− v′im = 0 (A.27)

where i denotes spatial variation. We can rewrite this equation in preparation for

tridiagonalization:

v′i−1
m −

(
2 + ∆z′2

)
v′im + v′i+1

m = 0 (A.28)
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Figure A.5: Variation of Velocity with Depth - (a)-(b) Using the same method
prescribed by Ricard et al. (2001), here we evaluate the normalized matrix velocity
given parameters for Triton. Both velocity and depth are normalized by v0 and l0.
Plot a: ( l0

δmφ0
) = 0.1; Plot b: ( l0

δmφ0
) = 10. (c)-(d) Melt velocity here has been

determined relative to matrix velocity. Each color represents a distinct φ0, with black
representing the smallest melt fraction. Melt fraction increases from right to left.
Both velocity and depth are normalized by v0 and l0. Plot c: ( l0

δmφ0
) = 0.1; Plot d:

( l0
δmφ0

) = 10 (e)-(f) Here, the maximum melt velocity is plotted as a function of φ0.

Plot e: ( l0
δmφ0

) = 0.1; Plot f: ( l0
δmφ0

) = 10
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Claiming each coefficient as constant ai, bi, or ci in order, we can now solve the

system of equations as

Avm = r

where A is the tridiagonal matrix of coefficients, vm is the matrix velocity array to

be solved, and r is an array of zeros given homogeneity of the solution.

A =



b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

... ... ...

an bn


(A.29)

vm =



v1
m

v2
m

v3
m

v4
m

...

vnm


(A.30)

r =



r1

r2

r3

r4

...

rn


(A.31)

Using a form of Gauss elimination we can solve for matrix velocity. Figure A.6
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illustrates a comparison between the analytical and numerical solutions determined

here for matrix velocity. In this model, φ0 is set to 0.1 and l0 is determined to be

approximately 8.164966 m in order to keep ( l0
δmφ0

) = 0.1. We can see the error between

these solutions plotted within Figure A.6, as determined using similar methods to

the crust benchmarking. Figure A.6 illustrates the comparison between melt velocity

solutions as well.
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Figure A.6: Analytical v. Numerical Vm - (a) This plot illustrates a comparison
between the analytical solution for vm and the numerical solution for vm for an initial
melt fraction constant with depth - φ0 = 0.1. (b)The error between solutions shown
in (a) is plotted as a function of depth. Error is relatively small. (c) Additionally, a
comparison between the analytical solution for vf and the numerical solution for vf
for φ0 = 0.1 is computed as well.

We further evaluate error between solutions by adjusting grid size, as performed

with prior crust benchmarking calculations. Error ε between analytical and numerical

solutions are determined using

vnum − vexact = ε (A.32)

We evaluate matrix and melt velocity for grids spanning 10, 50, 100, 150, 250, 500,

and 1000 nodes. The results are displayed within Figures A.7 (a) and (b). The error

between the numerical and analytical matrix velocity solutions is displayed more
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clearly within Figure A.7 (c). Average error is determined using Equation (A.13).

The average error within the solutions decreases with increasing grid size, as shown

in Figure A.7 (d).

A.2.3 Benchmarking the Stefan Problem

This section provides some numerical benchmarks for a standard example of the

Stefan problem. The governing nondimensional equations are

∂T

∂t
=
∂2T

∂z2
, 0 ≤ z ≤ h(t), t ≥ 0, (A.33)

subject to the boundary conditions,

T (z = 0, t) = 1, T (z = h(t), t) = 0, (A.34)

and the initial condition

T (z, 0) = 0. (A.35)

Also,

dh

dt
= −St

(
∂T

∂z

)
z=h

, (A.36)

subject to the initial condition h(0) = 0. Notice the difference in sign between (A.36)

and (2.21) arising from the change in the prescription of the boundary conditions. In

this work, we follow the BIM-based technique suggested by Mitchell and Vynnycky

(2009). The following table contains comparison between our results, analytical val-

ues, and BIM values obtained by Caldwell and Kwan (2004). The exact solution to

this problem is given by,

T (z, t) = 1−
erf
(
z/(2
√
t)
)

erf(λ)
, (A.37)
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Time This work Exact Caldwell and Kwan (2004)

0.5 0.43837 0.43334 0.43375
1.0 0.62024 0.61284 0.61318
1.5 0.75976 0.75057 0.75088
2.0 0.87736 0.86669 0.86697

Table A.1: Numerical Benchmark for the Stefan problem

where λ is a solution to the transcendental equation,

√
πλ exp

(
λ2
)
erf(λ) = St. (A.38)

We benchmark our solutions for St = 0.2 (corresponding to λ = 0.32), for a grid size

of 100 and time step ∆t = 0.001, against this analytical solution and the results of

Caldwell and Kwan (2004). The comparative results are presented in Table A.1.
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Figure A.7: Vm Error: Varying Grid Size - (a) Here, we show the error between vm
solutions for several grid sizes. The green line represents the analytical solution; blue
lines represent numerical solutions. (b)Here, we show the error between vf solutions
for several grid sizes. The green line represents the analytical solution; blue lines
represent numerical solutions. (c)Plot of the error between vm solutions as a function
of depth. Each color curve represents a different grid size. Node size increases right to
left. (d) Average error for each grid size is shown, emphasizing the decrease in error
with increasing grid size. However, grid sizes larger than 150 show minimal variation.
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