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             Pit1, a pituitary-specific transcription factor, regulates differentiation of cells of 

the PIT1 lineage in the anterior pituitary. PIT1 also regulates the synthesis of peptide 

hormones from these cell types, including growth hormone (GH). A founding member of 

the POU-homeodomain family of transcription factors, PIT1 is characterized by a serine-

threonine rich N-terminal transactivation domain and a C-terminal POU-domain. 

Alternative forms of PIT1, differing from each other in the N-terminal domain have been 

reported in several species, but the functional implication of having multiple isoforms is 

not known. Several Pit1 isoform mRNAs exist in chickens which have not been 

characterized. The main aim of this study was to determine which, if any, of the chicken 



 

 

PIT1 isoforms regulated the chicken Gh (cGh) promoter. PIT1β2, a novel isoform of 

chicken PIT1 was discovered, and known and novel isoforms (PIT1α, PIT1β1, PIT1β2 

and PIT1γ) were characterized. A luciferase reporter construct containing 1775bp of the 

cGh promoter driving expression of firefly luciferase was used to determine the ability of 

the isoforms to regulate the target gene promoter activity in chicken LMH cells. We 

showed that three of the isoforms, PIT1α, PIT1β1 and PIT1β2, expressed from 

recombinant plasmids, regulated the cGh promoter, while PIT1γ did not. All the isoforms 

localized to the nucleus in both non-pituitary and pituitary cells. Results from gel-shift 

assays show that PIT1γ did not bind the proximal PIT1-binding site of the cGh promoter 

as well as the other isoforms, suggesting a possible mechanism behind the inactivity. Our 

result did not suggest a negative regulatory role for this isoform. In contrast, we found a 

functional advantage for having multiple isoforms. PIT1β1, the isoform that activated the 

promoter most strongly, when co-transfected with other activating isoforms, such as 

PIT1α and PIT1β2, induced significantly higher level of activation than one isoform 

alone. Whether this increased activation required, or was facilitated by, 

heterodimerization of two isoforms is not known. Nevertheless, identification of isoforms 

with specific functions will facilitate identification of their respective interacting partners, 

which are essential for GH gene expression. 
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Chapter 1: Literature Review 

 

Regulation of genes and metabolic pathways affecting production traits in agricultural 

animals have expectedly been an active area of research over several decades. The 

anterior pituitary gland is called a master regulator of homeostasis, because it regulates 

numerous physiological processes, several of which affect agricultural animal 

performance. A thorough understanding of the action of the genes involved in growth, 

lactation and reproductive performances will be a valuable tool to employ in agricultural 

biology to extract maximal performance with minimal input. 

 

Growth hormone (GH), a peptide hormone released from the anterior pituitary gland, is 

essential for embryonic and posthatch growth in domestic chickens. In sex-linked dwarf 

chickens, a mutation of the GH receptor (GHR) results in a dwarf phenotype due to lack 

of GH signaling (Burnside et al., 1991; Huang et al., 1993). GH regulates metabolic 

processes such as lipolysis and muscle accretion. These two processes directly affect the 

quality of meat in broiler chickens. Posthatch administration of GH has little or no effect 

on growth rate in chickens. However, in ovo administration of GH at embryonic day 13 

(e13) results in improved growth after hatch (Blumenthal et al., 1954), suggesting the 

establishment of a growth threshold during embryonic development. Hence, 

understanding the mechanisms that establish growth parameters in the embryo is essential 

for successful manipulation of this process to maximize agricultural yield.  
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Comparison of the regulation of Gh gene expression across vertebrate species has 

identified several common themes as well as differences, most of which will be addressed 

in this review. In the general theme, GH is synthesized and secreted from the 

somatotrophs (GH producing cells) of the anterior pituitary gland. Signaling pathways 

and transcription factors orchestrate the development of the pituitary gland and functional 

maturation of the hormone producing cells. Somatotroph differentiation and Gh gene 

expression are influenced by hypothalamic factors such as growth hormone-releasing 

hormone (GHRH) and somatostatin (SST) (Romero and Phelps, 1997), as well as 

hormones from peripheral glands (adrenal glucocorticoids and thyroid hormones). 

Several transcription factors, such as PIT1, Sp-1, AP-2 (activator protein-2), 

glucocorticoid receptor (GR), thyroid hormone receptor (TR) and cAMP (3’-5’-cyclic 

adenosine monophosphate) response element binding protein (CREB) coordinate to 

maintain the tissue-specific expression of the Gh gene. Absence of one or more key 

elements of this machinery leads to absence or significant reduction of GH synthesis and 

secretion. This review will provide background information on the key points mentioned 

above.  

Development of the pituitary gland 

Formation of Rathke’s pouch (RP), a finger-like projection from the roof of the oral 

cavity toward the ventral diencephalon (VD) is the first step in pituitary development 

(Dasen & Rosenfeld, 2001). At about the same time, an outgrowth from the ventral 

diencephalon, called the infundibulum, starts developing toward RP. These two 

structures, after a series of developmental changes, give rise to the pituitary gland, with 
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RP forming the anterior lobe of the pituitary (adenohypophysis) and the infundibulum 

giving rise to the posterior lobe (neurohypophysis) (Wagner and Thomas, 2007). Physical 

contact between the RP and the infundibulum is essential for proper development of the 

pituitary gland, as the ventral diencephalon and infundibulum promotes growth of the 

anterior pituitary and final differentiation of the endocrine cell types (Ferrand 1972; 

Daikoku et al. 1982; Watanabe 1982(a,b); Fedtsova & Barabanov 1990).  

 

The anterior pituitary differentiates into five distinct cell types: corticotrophs, 

gonadotrophs, somatotrophs, lactotrophs and thyrotrophs (Dasen & Rosenfeld, 2001). A 

number of signaling molecules play essential roles in pituitary development (Fig. 1). 

Development of RP at the very initial stage requires bone morphogenetic protein (BMP) 

4 (Ericson et al. 1998, Treier et al. 1998; Takuma et al. 1998), but involvement of signals 

originating from the notochord has also been suggested. Sonic hedgehog (Shh), a secreted 

factor produced in the notochord is important for cell type specification and proliferation 

(Chiang et al. 1996; Fedtsova et al. 2003; Hammerschmidt et al., 1997; Treier et al., 

1998). Members of the fibroblast growth factor (FGF) family, especially FGF8 and 

FGF10 are expressed in the VD. FGF10 is essential for cell survival, while FGF8 

maintains proliferation and blocks BMP2 (discussed below).  

 

Two members of the BMP family have documented roles in pituitary development. As 

mentioned previously, BMP4 is required at the beginning of RP formation. The other 

member, BMP2, is solely expressed in the VD (Ericson et al. 1998, Treier et al. 1998). 

Ventrally expressed BMP2 and dorsal FGF8 form an opposing gradient of transcription  
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Fig. 1. Developmental stages, signaling molecules and selected transcription factors required for anterior 

pituitary development. Developmental stages denoted are for mouse. Top panel shows signaling molecules 

and morphological changes during pituitary development. Bottom panel shows transcription factors 

involved in initiation of pituitary development, lineage commitment and terminal differentiation. (Zhu et 

al., 2007) 
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factors leading to specification of cell lineages, after which BMP2 is down-regulated to 

achieve terminal differentiation of the pituitary gland (Dasen and Rosenfeld, 2001). 

 

Notch signaling, required for early pituitary development, must be down-regulated during 

later phases to achieve terminal differentiation of cell lineages (Raetzman et al., 2006; 

Zhu et al., 2006). Constitutive expression of Notch leads to attenuated differentiation of 

all cell types of the anterior pituitary, as the factors Mash1 and Math3, both repressed by 

Notch, are critical for terminal differentiation (Raetzman et al., 2006; Zhu et al., 2006). 

The Wnt/β-catenin pathway is essential for terminal differentiation of cells of the PIT1 

lineage and overall pituitary gland growth. It is activated somewhat late during 

embryogenesis, and aberrant early activation causes premature down-regulation of 

transcription factor Hesx1, leading to failure of pituitary gland formation (Olson et al., 

2006). Among the Wnts, Wnt4 and Wnt5a have been shown to be directly involved in 

anterior pituitary formation (Cha et al., 2004; Treier et al., 1998).  

 

The list of transcription factors involved in pituitary development and differentiation is 

ever expanding but still far from complete. Some of them appear and act early, and may 

or may not need to be attenuated during further development. These early players usually 

show a more ubiquitous expression pattern throughout the developing embryo/fetus. 

Several members of the LIM Homeodomain proteins, for instance, Isl1, Lhx3 and Lhx4 

are expressed early in very specialized regions of the developing pituitary gland. Lhx3 is 

required for the formation of the definitive RP, but it also is needed later on for continued 

proliferation and prevention of apoptosis (Sheng et al., 1996). Isl1, another member of 
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the LIM group, is induced by BMP2 and opposed by FGF8, the classic target of the 

dorsal-ventral gradient necessary for pituitary differentiation (Ericson et al., 1998; 

Takuma et al., 1998). Hesx1, a paired-homeodomain transcription factor expressed in the 

RP and VD, is also essential for formation of the definitive pouch but later must be 

down-regulated (Dattani et al., 1998; Martinez-Barbera, 2000). Lhx3, Hesx1, and Pitx1 (a 

bicoid-related transcription factor) are induced initially to form the definitive pouch, 

following which Pitx2 is induced, Lhx3 is maintained, and Hesx1 is down-regulated to 

achieve terminal differentiation of the endocrine gland. Prop-1, another paired-like 

transcription factor, is the interaction partner of β-catenin in the complex that is 

responsible for the timely down-regulation of Hesx1 (Olsen et al. 2006; Sheng et al. 

1996; Sornson et al., 1996). 

 

After formation of the definitive pouch, a second set of transcription factors regulate 

further development, the most important being terminal differentiation of the hormone-

producing cells. In mammals, the corticotrophs are the first cell type to reach final 

differentiation, followed by the thyrotrophs, somatotrophs, lactotrophs and gonadotrophs, 

in their order of appearance (Japon et al., 1994; Simmons et al., 1990). Tbx19, a T-box 

transcription factor, is essential for terminal differentiation of corticotrophs and also for 

repression of alternate cell fates (Pulichino et al., 2003a, b). Three cell types, 

somatotrophs, lactotrophs, and thyrotrophs are characterized by the expression of one 

transcription factor, PIT1 (Cajiao et al., 2004; Dasen et al., 1999; Li et al., 1990), while 

gonadotrophs are characterized by the absence of it. The transcription factor unique to 

gonadotrophs is steroidogenic factor-1 (SF1) (Ingraham et al., 1994; Simmons et al., 
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1990). Thyrotrophs and gonadotrophs both express GATA2 (Charles et al., 2006), and it 

appears that the unique combination of PIT1 and GATA2 makes the cells thyrotrophs, 

and in the absence of PIT1, the cells adopt the fate of gonadotrophs. Conversely, 

gonadotrophs can be converted to thyrotrophs by the ectopic expression of PIT1 (Dasen 

et al., 1999; Gordon et al., 1997). These observations underline the importance and 

absolute requirements of these lineage-specifying transcription factors for proper 

pituitary development and function.  

 

The development of the pituitary in chicken shares many of the general developmental 

pathways and factors mentioned above, but differs from mammalian systems in some 

details. For instance, development of the infundibulum and from it, the posterior 

pituitary, is much less pronounced compared to mammals (Zhu et al., 2007). Expression 

of BMP4 differs between mouse and chicken: in chicken, it is expressed late, never in the 

RP, and never in levels comparable to that in mouse (Parkinson et al., 2010). The order of 

appearance of the different hormone-producing cell types also differs, with the 

corticotrophs and gonadotrophs being the first two types to appear almost simultaneously, 

followed by thyrotrophs, somatotrophs, and finally, the lactotrophs (Sasaki et al., 2003). 

Also, in mammals, somatotrophs and lactotrophs are thought to have originated from a 

common precursor, the somatomammotrophs (Asa et al., 1983), while in chickens, the 

origin of these two cell types are clearly different (Fu et al., 2004).   
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Functions of growth hormone in vertebrates 

Growth hormone is involved in regulating a number of physiological processes in 

vertebrates, including long bone growth, lipid, carbohydrate and protein metabolism 

(Davidson et al., 1987), immune function (Koojman et al., 1996; Hooghe-Peters and 

Hooghe, 1998) and carcinogenesis. The ―Somatomedin hypothesis,‖ put forward in 1957 

(Salmon and Daughaday, 1957), postulated that the effects of GH on its target organs are 

not direct, and that they involve one or more intermediate factors (termed somatomedins; 

later identified to be insulin-like growth factors or IGFs) (Van Wyk et al., 1974). 

Decades of research in this area have proved this hypothesis to be partially true, and the 

hypothesis has been modified, with its present form stating that some actions of GH are 

direct while others are indirect (Le Roith et al., 2001). For instance, the GH effect on 

long bone growth appears to be direct. It is generally seen that the anabolic effects of GH, 

such as those involving bone, cartilage and skeletal muscle growth are direct and in some 

of these IGFs act in concert with GH towards the same end, but the action of GH itself is 

IGF-independent. However, in certain catabolic processes, such as lipid and carbohydrate 

metabolism (gluconeogenesis and adipogenesis), IGFs and GH have opposite effects, and 

IGFs are thought to counteract the effects of GH, which would otherwise be harmful 

(Kaplan and Cohen, 2007).  

 

In mammals, GH is the primary regulator of post-natal growth. Transgenic mice 

overexpressing GH grew almost twice as big as control littermates (Palmiter et al., 1983). 

Exogenous administration of GH in swine results in increased average daily gain (ADG), 
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muscle accretion and lipolysis (Campbell et al., 1989). GH also increases lactation in 

dairy cattle (Falaki et al., 1997). Apart from its obvious effects on bone growth, GH is 

necessary for normal female reproductive function, steroid metabolism, tooth 

development and modulation of gut function.  

 

In fish, apart from regulating growth throughout adult life, GH functions include 

regulation of metabolism by lipolysis and protein synthesis (Foster et al., 1991; 

Leatherland  and Farbridge, 1992;  O’Connor et al., 1996; Fauconneau et al., 2000), 

reproduction, osmoregulation (Bolton et al., 1987; Sakamoto et al., 1991), and immune 

development (reviewed in Yada et al., 2007). Osmoregulation by GH is brought about by 

morphological changes in gill chloride cells and by increasing the number of ion 

transporters in these cells, and this effect is believed to be IGF-dependent. Other 

vertebrate classes where GH exerts control over growth are reptiles (Denver and Licht, 

1990) and amphibians (Huang and Brown, 2000).  

 

Contrary to all other vertebrates, exogenous GH administration has no effect on growth 

and body weight in early post hatch broiler chickens (Burke et al. 1987; Cogburn et al., 

1989; Cravener et al., 1989; Scanes et al. 1990). However, pulsatile infusion of GH after 

the decrease of endogenous levels did have positive effects on bone growth and other 

metabolic parameters such as weight gain and feed efficiency (Vasilatos-Younken, 1988; 

Leung et al., 1986). Also, unlike in mammals, GH does not promote gluconeogenesis in 

avian species, and effects on lipid metabolism can be lipogenic or lipolytic depending on 

the age and mode of administration of GH.   
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While the pleiotropic nature of GH function is evident from the discussion above, 

regulation of body growth and development appears to be the major function of GH. GH 

synthesis and secretion is under the control of several hypothalamic and other endocrine 

factors, and the actions of GH, as mentioned previously, are mediated by IGFs produced 

either locally or by the liver (and carried by blood to the site of action). Hypothalamic 

regulators, GH, and IGFs constitute the somatotropic axis essential for post-natal growth. 

Evidence of the essentiality of the components and targets of the somatotropic axis comes 

mainly from mutant dwarf phenotypes, many of which will be discussed in this review. 

Classical pituitary ablation/replacement experiments have demonstrated that growth 

cessation resulting from hypophysectomy can be reversed by exogenous GH in chickens 

(Thommes et al., 1992; Scanes et al., 1986). In addition, both transgenic mice (Palmiter 

et al., 1983) and fish (Houdebine and Chourrout, 1991) overexpressing the Gh gene show 

marked increases in growth when compared to control animals. Also, it is well known 

that in humans, GH hyposecretion leads to dwarfism and hypersecretion to gigantism 

(before puberty) or acromegaly (in the case of adult onset). 

Gh gene structure 

The Gh gene has been evolutionarily conserved from lower vertebrates to birds and 

mammals; however, the structural arrangement of the primate Gh gene is markedly 

different from other vertebrate species. In most mammals and all birds and fish, Gh is a 

single gene, but in primates GH is encoded by a cluster of 5 genes. Genes that comprise 

this cluster are thought to have arisen as a result of gene duplication. The cluster includes 

the normal and variant forms of GH, GH-N and GH-V, respectively, along with genes for 
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placental lactogens (also called chorionic somatomammotropins, or CS). Of the genes 

present in this cluster, only GH-N is expressed in the pituitary somatotrophs, while GH-V 

and the CSs are expressed in the syncytiotrophoblasts of the placenta (Chen et al., 1989). 

 

The mammalian Gh gene is made up of 5 exons and 4 introns within an approximately 

3kb region (Tuggle and Trenkle, 1996). In fish, it can be either the same as mammals or 

contain 6 exons and 5 introns depending on the species. The Gh gene in chicken is 

located on chromosome 27, and, similar to mammals, comprises 5 exons and four introns, 

but the introns are larger than their mammalian counterparts, making the entire gene 

about 3.5kb. Alternative splicing of the hGh gene yields proteins of 22kDa and 20kDa, 

with the 22kDa form being much more abundant.  Among post-translational 

modifications, acylation, deamidation and glycosylation are known, and the first two 

display similar bioactivity, while the bioactivity of the glycosylated form is not known. 

Glycosylated forms have been reported for human, rat and chicken GH. 

Neuroendocrine regulation of GH synthesis and secretion 

GH is synthesized and secreted in a ultradian pulsatile manner (Winer et al., 1990) from 

somatotrophs, one of the five cell types that make up the anterior pituitary. Somatotroph 

differentiation requires blood-borne signals from outside the pituitary in all species 

(Nogami et al., 1995; Porter et al., 1995). Somatotrophs are the third pituitary cell type to 

arise in most species, and they are one of the most numerous cell types in adults. Growth 

hormone-releasing hormone (GHRH) and somatostatin (SST) are two hypothalamic 

factors that regulate GH production, with GHRH stimulating the synthesis and secretion 
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of GH and SST inhibiting it. Both SST and GHRH are essential for maintaining the 

pulsatality of GH secretion (Wehrenberg et al.,1982, Cella et al.,1990, Katakami et 

al.,1988, Frohman et al.,1989) even though the exact mechanism behind the pulsatality 

remains unknown. SST, the inhibitor of GH release, probably negatively regulates GHRH 

to bring about the pulsatility. 

 

GHRH belongs to the family of brain-gut peptides along with vasoactive intestinal 

peptide (VIP), glucagon, glucagon-like peptide I (GLPI), pituitary adenylate cyclase-

activating peptide (PACAP) etc. (Campbell et al., 1991). Functions of GHRH include 

stimulation of somatotroph differentiation, Gh gene transcription, biosynthesis, and 

secretion (Mayo et al., 1995). GHRH is a peptide hormone produced in the arcuate 

nucleus of the hypothalamus (Bloch et al.,1983). The actions of GHRH are mediated 

through its receptor, GHRH-R, a seven transmembrane G-protein coupled receptor linked 

to a stimulatory G-protein (Gs) (Gaylinn et al.,1993, Lin et al.,1992, Narayanon et al. 

1989, Spada et al.,1984), which activates adenylate cyclase (Spada et al.,1984), leading 

to an increase in intracellular cAMP and Ca
2+ 

levels (Holl et al.,1988). The activated G-

protein interacts with ion channels, leading to secretion of GH, whereas the elevated 

cAMP levels activate the protein kinase A (PKA) pathway that leads to increased 

transcription of the GH gene, possibly by phosphorylation of transcription factors and 

activators involved in the process (Holl et al., 1988). Evidence of the essentiality of 

GHRH signaling in GH regulation comes from the GHRH-R mutant little mouse (lit/lit), 

with a mutation of a conserved aspartic acid residue (Asp60Gly) in the N-terminal ligand 

binding domain. This mutation changes the protein structure, and the mutant receptor is 
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incapable of increasing cellular cAMP levels (Lin et al., 1993). Among vertebrates, the 

function of GHRH as a potent regulator of Gh has been established in mammals, birds, 

reptiles and one teleost, the goldfish.  

 

SST, the hypothalamic peptide hormone that inhibits GH synthesis (Brazeau et al.,1973), 

also acts through G-protein coupled receptors, of which there are six subtypes 

(Patel,1997). SST function has been conserved in vertebrates. In almost all species, SST 

does not decrease basal GH production at either RNA or protein levels; neither does it 

inhibit somatotroph proliferation, but rather it attenuates GHRH-induced GH expression 

(Barinaga et al.,1985, Billestrup et al.,1986, Fukata et al.,1985, Simard et al.,1986, 

Tanner et al.,1990). In chickens and teleosts, however, SST can affect both basal and 

GHRH-induced GH expression, while in reptiles and some amphibians, SST acts on 

thyrotropin releasing hormone (TRH)-stimulated GH expression (Hall and Chadwick, 

1984; Jeandel et al., 1998). SST possibly mediates its effect through decreasing 

intracellular cAMP levels and by affecting voltage-gated ion channels that lead to an 

increase in intracellular K
+
 levels and simultaneous decrease in Ca

2+
 levels, but the 

precise mechanism is still unclear (Epelbaum, 1992, Patel et al.,1995).  

 

Apart from these hypothalamic peptides, numerous growth hormone-releasing peptides, 

or GHRPs have been identified and characterized. GHRP-6 is the most potent peptide, 

being more potent than GHRH (Bowers, 1993; Bowers et al., 1990). The potency of it 

has been evaluated in monkeys, sheep, pigs, chickens, steers, rats and humans (Bowers et 

al.,1984, Croom et al.,1984, Doscher et al.,1984, Kraft et al.,1984, Malozowski et 
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al.,1991, Bowers et al.,1990, Ilson et al.,1989). GHRP-6 can increase the level of Gh 

mRNA independent of GHRH, and the two together lead to a synergistic activation of Gh 

mRNA (Cheng et al., 1989, Goth et al.,1992). Even though the precise mechanism of 

action of GHRPs is not known, it is postulated that GHRP binding to GHRP receptor 

leads to an increase in intracellular Ca
2+ 

(Akman et al.,1993; Sartor et al.,1985), no 

change in intracellular cAMP (Cheng et al.,1989, Wu et al.,1994) and a possible 

activation of the protein kinase C (PKC) pathway (Cheng et al., 1991; Cheng et al.,1993).  

 

Several other hypothalamic peptides participate in the regulation of Gh, some of them 

having dual functions depending on age, pathological state, site of action, etc. For 

instance, thyrotropin releasing hormone (TRH) is stimulatory in fetal and neonatal stages 

before the somatotropic axis is established or in pathologies such as acromegaly (Cocchi 

et al., 1983; Harvey, 1990), whereas it inhibits GH release by its action on the 

hypothalamus (Cocchi et al., 1983; Müller, 1987). CRH, corticotrophin releasing 

hormone, and neuropeptide Y (NPY) both have an inhibitory effect (Katakami, 1985, 

Ono et al., 1984; McDonald, 1985; Rettori et al., 1990), and both are most likely 

mediated by SST (Katakami, 1985). PACAP, another brain-gut peptide has a pronounced 

role in GH release in fish (Montero et al., 2000; Wong et al., 2000) and amphibians 

(Martinez-Fuentes et al., 1994), somewhat of a lesser effect in birds (Peeters et al., 1998), 

and possibly no effect in mammals (Miyata et al., 1989; Jarry et al., 1992; Sawangjaroen 

and Curlewis, 1994; Chiodera et al., 1996).  
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Among peripheral gland hormones, glucocorticoid (GC) regulation of Gh gene 

expression has been extensively studied in many vertebrate species. A part of the 

regulation is mediated through GC action on the hypothalamic regulators, GHRH (Seifert 

et al., 1984; Michel et al., 1984) and SST (Holl et al.,1988; Schonbrunn et al.,1982). 

However, GCs can also directly stimulate Gh gene transcription by acting through a 

ligand-dependent transcription factor (Thakore and Dinan,1994). These effects of GCs 

are true for physiologic doses. Physiological concentrations of thyroid hormones are also 

necessary for the maintenance of Gh gene expression (Giustina and Wehrenberg,1995). 

Thyroid hormones act in concert with GHRH by enhancing the effect of GHRH on 

somatotrophs (Martin et al., 1985; Korythko et al.,1997).  

 

Apart from the major regulators of Gh mentioned above, a host of other factors influence 

GH synthesis and secretion in vertebrates. Ghrelin, a stomach peptide hormone, has been 

shown to act as a stimulator of GH in all species. Neurotransmitters such as serotonin and  

norepinephrine, metabolic signals such as glucose and leptin, nonesterified fatty acids, 

nitric oxide, amino acids such as arginine, ornithine, lysine, and tryptophan, have all been 

shown to have specific roles in GH synthesis, secretion and feedback mechanisms, 

detailed explanations of which are beyond the scope of this review (Muller et al., 1999). 

It suffices to say that Gh regulation is a complex process involving numerous players, 

which act in concert with tissue specificity to maintain normal GH supply and function in 

complex physiological systems, many aspects of such regulation being still unknown. 
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Transcription factor regulation of Gh gene expression 

The regulatory regions of the Gh gene have been identified and characterized in several 

vertebrate species. In the species studied so far, PIT1 is undoubtedly the single most 

important transcription factor regulating Gh gene expression in the anterior pituitary 

somatotrophs. PIT1 is essential for terminal differentiation of cells of the PIT1 lineage 

(thyrotrophs, somatotrophs and lactotrophs) and for gene expression of the hormones 

secreted by these cells, β-subunit of thyroid-stimulating hormone (TSHβ), growth 

hormone (GH) and prolactin (Prl), respectively (Ingraham et al. 1988). Evidence of this 

essential role of PIT1 includes pituitary hypoplasia and lack of detectable levels of the 

hormones in Pit1 mutant mice (Li et al., 1990) and also clinical studies in humans 

(Radovick et al., 2000). However, although necessary, PIT1 is not sufficient to regulate 

somatotroph-specific Gh gene expression. PIT1 interacts with other transcription factors, 

both general and specific, as well as with co-activators to bring about this highly cell-type 

specific gene expression. Several of the cellular factors that bind to and regulate the Gh 

promoter have been identified. Steroid hormone receptors, such as the glucocorticoid 

receptor (GR) and more extensively the thyroid hormone receptor (TR), binding to the 

Gh promoter has been studied, and the results have shown that the regulation of Gh varies 

considerably across species. Other transcription factors, such as Ets-1 (Yang et al., 2010), 

Sp-1 (Melamed et al., 1998), NF-1 (Norquay et al., 2003), Ikaros (Ezzat et al., 2005) and 

Zn finger 15 (Zn-15) (Lipkin et al., 1993) are involved in tissue-specific transcription of 

Gh. The regulation of Gh expression in chickens will be discussed in subsequent sections, 
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and similarities and differences with mammalian species deemed noteworthy in the 

context of current work will be addressed.  

 

Promoter analysis of the Gh gene across species brings out some common features. 

General transcription regulatory sequences, such as the TATA box, are present in 

representative species of all classes (teleosts, amphibians, birds, primate and non-primate 

mammals). In general, the fish species show maximum inter-species variation. Similarly, 

PIT1 and at least one AP site(s) are present in all species examined so far. The 

mammalian and chicken promoters have some similarities in terms of the binding sites 

present, marked by the presence of Sp1 and AP-2 binding sites, cAMP- and vitamin D 

response elements, and thyroid hormone response elements; however, the copy numbers 

and relative locations of these sites vary widely (Chuzhanova et al., 2000).  

Somatotroph differentiation and Gh gene expression in the chicken 

Somatotroph differentiation takes place during the latter half of embryonic/fetal 

development in chickens and rats. In chickens, growth hormone-secreting cells are first 

detected on embryonic day 12 (e12) in the caudal portion of the pituitary gland, and they 

become a significant population around e16 (Porter et al., 1995). Concomitant with this 

increase in abundance, Gh mRNA and protein levels increase and serum GH levels 

become detectable (Harvey et al., 1979). Somatotroph differentiation is a highly 

regulated developmental process requiring the participation of signals emanating both 

from within and outside the pituitary gland (Fig. 2).  
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Fig. 2 Schematic representation of regulation of growth hormone in chickens by signals emanating from the 

hypothalamus as well as peripheral organs. (Porter, 2005)  
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A blood-borne signal is required for somatotroph differentiation. Anterior pituitary cells 

isolated from e12 to e16 chickens (prior to somatotroph differentiation) fail to 

differentiate into functional somatotrophs in culture in the absence of serum. Serum from 

e16 has the highest potency to induce somatotroph differentiation in cultured cells (Porter 

et al., 1995). Heat-inactivated, but not ether-extracted serum maintains the ability to 

induce differentiation, suggesting the blood-borne factor is a steroid. This signal was later 

found to be the adrenal glucocorticoid, corticosterone (CORT), the level of which is 

known to increase dramatically with the onset of somatotroph differentiation (Morpurgo 

et al., 1997; Jenkins and Porter, 2004). 

 

In both rats and chicks, endogenous thyroid hormone, especially triiodothyronine (T3), is 

necessary for somatotroph differentiation. However, unlike CORT, thyroid hormone is 

ineffective in increasing somatotroph abundance by itself and requires the presence of 

CORT (Liu et al., 2003; Nogami et al. 1997). Also, the effect of T3 is age-dependent, as 

at e20 T3 actually inhibits GH secretion (Liu and Porter, 2004; Jenkins et al., 2007). 

 

Role of Glucocorticoids in somatotroph differentiation 

 

Glucocorticoids (GCs) (cortisol in humans, CORT in rodents and birds) can induce 

premature differentiation of somatotrophs both in vitro and in vivo. Isolated chicken 

pituitary cells and whole rat pituitaries treated with GC show an increase in the number 

of somatotrophs, and these cells are characterized by increased Gh mRNA, protein and 

GH secretory capacity (Hemming et al., 1988;  Morpurgo et al., 1997; Nogami et al., 
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1997;  Dean and Porter, 1999; Liu et al., 2003). GCs show this effect only after the Pit1 

gene is expressed in the anterior pituitary and not before, suggesting the involvement of 

CORT in inducing the differentiation of cells already committed to become 

somatotrophs. GC induction of these committed cells cannot be blocked by a mitosis 

inhibitor, thus ruling out the possibility of CORT increasing the abundance of 

somatotrophs by acting as a mitogen and not a terminal signal (Porter et al., 1995).  

 

Treatment of pregnant rats with dexamethasone (dex), a synthetic glucocorticoid, results 

in premature appearance of GH cells in the corresponding fetuses on e17 and e18, before 

e19 when somatotrophs become a significant population (Nogami and Tachibana ,1993). 

Similarly, in chicken, treatment of e11 embryos with either e16 serum or CORT 

increased somatotroph abundance on e14 (Porter et al., 1995; Dean et al., 1999). 

 

 The mechanism of CORT induction of somatotroph differentiation and Gh gene 

expression is not known; however, the process appears to be indirect. In both rats and 

chickens, the ability of GC to induce somatotroph differentiation and increase Gh mRNA 

can be blocked by protein synthesis inhibitors (Nogami et al., 1997; Bossis and Porter, 

2003). This indicates the potential involvement of intermediary factors in the process. 

The transcription factor PIT1 was the first to be considered a likely candidate induced by 

GC. However, GCs do not increase the levels of Pit1 mRNA, protein or the number of 

PIT1 expressing cells, ruling out the possibility that this factor might be PIT1 (Fu and 

Porter, 2004). Another possible candidate was the GHRH receptor (GHRH-R). In rats, 

GHRH-R levels increase in response to GC in vitro (Nogami et al., 1999). However, the 
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following lines of evidence from chickens rule out the possibility of GHRH-R being 

involved in increasing Gh mRNA in response to CORT. GHRH treatment along with 

CORT stimulated Gh mRNA expression to a level above that obtained with CORT alone, 

but GHRH alone had no effect (Dean and Porter, 1999). GHRH-R stimulates GH 

synthesis and secretion by increasing cellular cAMP levels and by activating protein 

kinase A (PKA) (Anderson et al., 2004). Cells treated with forskolin (which increases 

cAMP levels) and 3-isobutyl-1-methylxanthin (IBMX) and CORT mimicked the levels of 

Gh mRNA achieved with co-treatment of CORT and GHRH (Bossis and Porter, 2003). 

Increased cAMP levels could not induce Gh mRNA in the absence of CORT. Therefore, 

activation of GHRH-R is not an essential step in GC induction of Gh mRNA expression. 

Involvement of PKA and PKC in GC stimulation of Gh gene expression was ruled out by 

use of inhibitors; H-89 and calphostin C, respectively. Blocking the PKA pathway with 

H-89 resulted in obliteration of the synergistic effect of CORT and GHRH, indicating 

that the chicken GHRH-R acts by stimulating PKA. However, H-89 did not block CORT 

induction of Gh (Bossis and Porter, 2003, Porter, 2005). In contrast, treatment of e11 

chicken pituitary cells with inhibitors of specific signaling pathways showed the 

involvement of MEK1/2, p38 MAPK, and Ras signaling pathways (Malkiewicz, 2003; 

Ellestad, 2010). Both Gh mRNA levels and the number of cells expressing GH protein 

were reduced in the presence of these inhibitors. The ability of CORT to activate Gh 

promoter activity in the presence of these inhibitors was also examined, and the results 

confirmed the involvement of MEK1/2, p38 MAPK and Ras signaling (Ellestad and 

Porter, unpublished results).  
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The glucocorticoid receptor 

The cellular actions of GCs are mostly mediated through the glucocorticoid receptor 

(GR), which is a ligand-dependent transcription factor. GR belongs to the family of 

nuclear receptors (NRs), more specifically to a subset of NRs called steroid hormone 

receptors. Other members of this family are the androgen receptor, the mineralocorticoid 

receptor, the estrogen receptor and the progesterone receptor (Mangelsdorf et al.,1995). 

GR is ubiquitously expressed, but the sensitivity of the receptor to its ligand is not 

uniform across organs (Lim-Tio et al., 1997). 

 

GR is characterized by a number of specific functional domains, those responsible for 

dimerization, transactivation, ligand binding and DNA binding (Wurtz et al. 1996, 

Weatherman, 1999). In the absence of ligand, GR is present in the cytoplasm in a 

complex with chaperone proteins. Upon hormonal stimulation, GR dissociates from the 

complex, dimerizes and translocates to the nucleus, where it activates genes by binding to 

glucocorticoid response elements (GREs) in the promoter elements of target genes 

(Dostert and Heinzel, 2004) or represses genes by either binding to negative GREs or by 

binding to other transcription factors (Martens et al., 2001). 

 

More than 1700bp of the 5’-flanking region of the chicken Gh gene has been analyzed 

and functionally characterized (Ip et al. 2004) (Fig. 3). The organization of the proximal 

promoter region of the chicken Gh gene differs from that of the mammalian Gh genes, 

thereby opening up the possibility that the regulation of Gh in chickens might be unique  
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Fig. 3 Schematic representation of the chicken growth hormone promoter. Shown here are the TATA box 

and putative binding sites for thyroid hormone receptor (TRE), PIT1. Note the absence of classical 

glucocorticoid response element (GRE) or cAMP-response element (CRE) (Ip et al., 2004) 
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in terms of activating and repressing factors employed. The promoter region of the 

chicken Gh gene has two PIT1 binding sites, a proximal site located at -113/-104 and a 

distal site at -541/-533, along with a putative thyroid hormone response element (TRE) at 

-137/-128. A TATA box is located at -24bp. Further functional characterization of the 

two PIT1 binding sites revealed the proximal site to be functional and able to bind PIT1, 

while the distal site was found to be either redundant or repressive, but only in the 

presence of the proximal site. Although no GRE was found, the region between -1727 

and -1467 was found to be GC responsive in induction of Gh (Ip et al., 2004). 

PIT1: A POU-homeodomain transcription factor 

Gh and Prl are two evolutionarily related genes, but they are expressed in phenotypically 

distinct cells within the same tissue. Experiments aimed to elucidate the mechanism 

behind such cell-type specific expression within the same organ identified a nuclear 

DNA-binding protein (initially named PIT1) as a transcription factor regulating both 

genes (Lefevre et al., 1987; Nelson et al., 1988). Promoter deletion analyses and DNase 

protection assays identified proximal and distal PIT1 binding sites as an imperfect 

palindrome with a core consensus A (A/T) (A/T) TATNCAT within the promoter of both 

genes.  The pituitary-restricted expression and the ability to specifically activate Gh and 

Prl made PIT1 a possible positive transcription factor for Gh and Prl gene transcription 

(Nelson et al., 1988; Cao et al., 1987).  

 

Purification of the factor(s) bound to proximal PIT1 binding sites in Prl and Gh 

promoters from rat pituitary G/C cells revealed a doublet of 31kDa and 33kDa (Nelson et 
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al., 1988). Soon after, the rat Pit1 coding sequence was determined to be 873 nucleotides 

long, giving rise to a protein of approx. 33kDa (Ingraham et al., 1988). The in vitro 

translated product also ran as a doublet of the same size as the endogenous protein, and 

they were found to be translated from multiple mature transcripts derived from the same 

gene. Structurally, the amino terminus of this transcription factor was found to be unique, 

but the carboxyl terminus had marked similarity to a homeodomain found in many 

Drosophila and vertebrate regulatory genes (Ingraham et al., 1988).  

 

At about the same time, three other transcriptional regulators, namely, a ubiquitously 

expressed octamer-binding protein Oct-1, a lymphoid tissue specific Oct-2, and a C. 

elegans developmental regulator unc-86 were identified and found to contain a similar 

carboxyl terminus. Due to this sequence similarity they were thought to belong to a 

related family of transcription factors which was thereafter named the ―POU family of 

transcription factors‖ (named after PIT1, Oct-1/2, unc-86) (Sturm et al., 1988).  

 

The POU proteins show remarkable sequence similarity over an approximately 160 

amino acid length of sequence. The POU domain that characterizes this family can be 

subdivided into two subdomains: a C-terminally located POU homeodomain and an N-

terminal POU-specific domain. The N-terminal domain (73-80 amino acids depending on 

species) is the transactivation domain required for transactivational properties of PIT1. 

The transactivation domain is characterized by a high percentage of serine and threonine 

residues but is otherwise not highly conserved (Theill et al., 1989). 
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The homeodomain shares sequence similarity with other homeodomain proteins; 

however, the extent of similarity between the members of this family is higher than that 

between a POU factor and other homeodomain factors. This POU homeodomain (POU-

HD) is about 60 amino acids in length, containing a tryptophan and a phenylalanine 

residue that are strictly conserved among all POU members and a cysteine that is not 

found in other homeodomain proteins except the POU proteins (Herr et al., 1988).  

 

Separated from the POU-HD by a linker of variable length and composition is the second 

POU sub-domain of about 80 amino acids. This domain is the most unique feature of this 

family of transcription factors and is referred to as the POU-specific domain (POU-S). 

Once again, there is high similarity between the members of this family in this domain. 

This domain can be further subdivided into two regions of sequence similarity that are 

higher than in any other region among the four members, with the exception of Oct-1: 

Oct-2 (Reviewed by Herr et al., 1988). The function of the hinge region is not known, but 

it may be non-functional, as deletion of the hinge region did not affect PIT1 activation of 

the TSHβ promoter (Gordon et al., 2002).  

 

Both the POU-HD and POU-S domains are involved in DNA binding. Low affinity 

binding of PIT1 to its target region can be achieved by POUHD, but the POUS is 

required for site recognition and high affinity binding by virtue of a predicted alpha-

helical structure within the region (Ingraham et al., 1990). Even though the N-terminal 

domain is primarily involved in transactivation of target genes, some residual 

transcriptional activation is also associated with the POUHD (Theill et al., 1989, 
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Ingraham et al., 1990). PIT1 is found in a monomeric state in solution, but usually binds 

DNA as a dimer. Protein-protein interactions with other transcription factors/coregulators 

are also mediated via the POUS domain (Theill et al., 1989). 

Regulation of target genes by PIT1 

The well-studied targets of PIT1 include Gh, Prl, TSHβ and GhRH-R. These target genes 

contain one or more PIT1 binding sites in their promoter regions. The sequence of the 

PIT1 binding sites has been determined in mammals [(A/T)(A/T)(A/T)TATNCAT] 

(Nelson et al., 1988) and in avian/teleost species [(A/T)NCTNCAT] (Ohkubo et al., 

1996). However, given the redundancy of the PIT1 binding site, it is very likely that 

several other pituitary genes are regulated by PIT1 at the transcriptional level. Indeed, 

results from our lab have shown that Ras-DVA is a novel PIT1 regulated gene (Ellestad, 

2010). In addition, PIT1 autoregulates itself (Chen et al., 1990;  Rhodes et al., 1993).  

 

Multiple lines of evidence suggest a role of PIT1 in pituitary development and regulation 

of hormones secreted by cells of the PIT1 lineage. Pit1 mRNA and protein are expressed 

in the anterior pituitary before the differentiation of these cell types (Dolle et al., 1990; 

Simmons et al., 1990). Mutations in the Pit1 gene lead to severe pituitary hypoplasia, 

absence of the hormone producing cells, and complete lack of hormone gene 

transcription (Wilson and Wyatt, 1986; Radovick et al., 1992). Mice carrying mutations 

in the Pit1 gene show dwarfism and severely reduced somatotrophs, lactotrophs and 

thyrotrophs. The Jackson dwarf mice are characterized by a gross alteration of the Pit1 

gene resulting from an insertion or inversion of a >4kb piece of DNA. The Snell mutant 



28 

 

has a point mutation in the POUHD resulting in a substitution of the tryptophan residue at 

position 261 with cysteine (Li et al., 1990). Mutations in Prop-1, a paired-like 

homeodomain protein required for Pit1 gene activation and regulation also lead to 

dwarfism and absence of the cells of the PIT1 lineage (Sornson et al., 1996). In all the 

mutants, levels of PIT1 are nearly undetectable (Li et al., 1990; Sornson et al., 1996). 

Knocking down Pit-1 expression by antisense oligonucleotides blocks Gh and Prl 

transcription along with inhibition of proliferation of somatotroph and lactotroph cell 

lines (Castrillo et al., 1991). In teleosts, zebrafish Pit1 mutant lacking 55 amino acid 

residues due to an internal truncation resulting from alternative splice site-usage shows 

severe dwarfism and lack of the three pituitary cell types (Nica et al., 2004). 

 

The regulation of cell-type specific expression of target genes by PIT1 has always been a 

conundrum. PIT1 is expressed in 3 cell types of the anterior pituitary; however, even 

within the cells of PIT1 lineage, there is specificity of hormone production. This cell type 

specificity is not just because the chromatin conformation is not conducive to 

transcription, because both in corticotrophs and in non-pituitary cell lines (Ingraham et al, 

1988), where, for instance, the Gh promoter should be in closed conformation, 

transfected Pit1 brings about expression of Gh. However, in lactotrophs, Gh gene 

transcription does not take place even in the presence of PIT1. In the lactotroph-derived 

cell line 235-1 (Nelson et al., 1988), transfected Gh promoter is not activated by PIT1 

(Ingraham et al., 1992), suggesting the presence of factors that either occupy the PIT1 

binding site itself or the immediate vicinity, and/or modifies PIT1 in such a way that it is 

unable to bind Gh promoter PIT1 binding sites and/or recruit other essential transcription 
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factors, thus providing a negative regulation. An alternative mode of this regulation could 

be that factors otherwise ubiquitous are specifically absent from lactotrophs (Crenshaw et 

al., 1989).  

 

Regulation of GHRHR by PIT1 has been studied in mammals, but not in any other 

vertebrate class. The human and rat GHRHR gene promoters lack a TATA box, and have 

multiple PIT1 binding sites. Other transcription factor binding sites common between the 

two species are for estrogen receptor (ER) and CREB (Petersenn et al., 1998; Miller et 

al., 1998; Iguchi et al., 1999; McElvaine et al., 2007). Out of the multiple PIT1 binding 

sites present, usually a few are functional and even fewer contribute significantly to 

regulation of transcription. The purpose of having multiple sites is not known. In humans, 

GHRHR gene transcription is regulated by GCs, even though the 5’flanking region lacks 

a classical GRE. In rat, two GREs along with a PIT1 binding site and an internal silencer 

region make up the glucocorticoid response unit. It is hypothesized that PIT1 binding to 

its element leads to release of an unknown factor from the silencer, allowing GR to bind 

to the GRE (Nogami et al., 2005). 

 

TSHβ gene expression is regulated positively by TRH (Steinfelder et al., 1992) phorbol 

esters (Haugen et al., 1993) and forskolin (Kim et al., 1993), and negatively by thyroid 

hormones and estrogen (Steinfelder et al., 1992, Nagayama et al., 2008). The 5’flanking 

region of this PIT1 regulated gene has been characterized in mammalian species (human, 

mouse, rat) (Steinfelder et al., 1992; Haugen et al., 1993; Mason et al., 1993) and 

goldfish (Sohn et al., 1999), but information from other groups of vertebrates is lacking. 
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In humans, 128bp of the 5’-flanking region is sufficient for the TRH response. This 

region has multiple functional PIT1 binding sites (Steinfelder et al., 1992). TRH 

induction leads to increased cAMP, but the effects of cAMP are likely mediated through 

PIT1, as there is no cAMP response element (CRE) in this region. Also, the effect can be 

mimicked in non-pituitary cell lines only in the presence of transfected PIT1 (Steinfelder 

et al., 1992). In rat, PIT1 binds to the minimal promoter required for TRH responsiveness 

(Mason et al., 1993). In all species studied, PIT1 is necessary but not sufficient to 

facilitate thyrotroph-specific gene expression of TSHβ. While PIT1 binding to DNA is 

critical, there was evidence of the involvement of another factor, later identified to be 

GATA2 (Gordon et al., 1997). Both PIT1 and GATA2 bind to the TSHβ promoter. In 

mouse, 5’-PIT1 and 3’GATA2 binding sites along with 16bp of spacer make up a 

composite unit. The spacer contains additional putative overlapping PIT1 and GATA2 

binding sites, and the sequence of the spacer is functionally important. When only the 

spacer is mutated with the flanking PIT1 and GATA2 binding sites left intact, there is 

markedly reduced binding of both transcription factors and almost no formation of the 

ternary complex (Gordon et al., 2002). It is hypothesized that binding of one factor 

causes the DNA to bend and attain a conformation that permits and facilitates the binding 

of the other factor. Also, PIT1 and GATA2 physically interact with each other; the POU 

homeodomain of PIT1 interacts with the zinc finger domain of GATA2 (Gordon et al., 

2002). PIT1 also interacts with CREB binding protein (CBP) on the TSHβ promoter, but 

the functional implication of such interaction is not clear (Hashimoto et al., 2000). 

 



31 

 

Prl is a peptide hormone with diverse functions and expression in several tissues, 

including the lactotrophs of the anterior pituitary gland (reviewed by Bole-Feysot et al., 

1998). In humans, transcription of prolactin involves 2 independent promoters: proximal 

5kb involved in pituitary-specific expression and a more distal promoter for regulation in 

other tissues (Berwaer et al., 1991, 1994). Dopamine negatively regulates prolactin 

(McLeod, 1969; Elsholtz et al., 1991). Factors that stimulate Prl include TRH, oxytocin, 

VIP, epidermal growth factor (EGF), estradiol and phorbol esters (Day and Maurer, 

1989). Several of these pathways lead to increased cellular cAMP levels in both 

mammals and birds, and the cAMP effect is thought to be mediated by PIT1 if no CRE 

are found in the minimal promoter sufficient for activation of the Prl promoter in 

response to the stimulus (Peers et al., 1991). Also, PIT1 may or may not need to be 

phosphorylated to bring about the effect, suggesting the involvement of other factor(s) 

that interact with PIT1 in mediating the effect. The interacting factor(s) of PIT1 in 

regulating the Prl gene are several, including, but not limited to, Ets-1, GR, and Oct-1. A 

composite PIT1/Ets-1 binding site in the rat Prl promoter is required for mediating the 

induction of Prl by several stimulatory factors (Howard and Maurer, 1995; Bradford et 

al., 1997). PIT1 physically interacts with GR to inhibit human Prl transcription (Nalda et 

al., 1997), while PIT1 heterodimerizes with Oct-1to produce synergistic activation of the 

rat Prl promoter (Voss et al., 1991; Verrijzer et al., 1992).  

 

PIT1 is the major regulator of Gh gene expression by pituitary somatotrophs, but other 

nuclear factors are essential for the highly cell-type specific expression of GH. The Zn 

finger transcription factor Zn-15, binds to so-called ―Z boxes‖ in the rat Gh promoter and  
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in other species and regulates Gh transcription, and a mutation in the Zn-15 binding site 

leads to a notable reduction of GH synthesis (Lipkin et al., 1993). GC induction of Gh is 

a well-studied phenomenon, and in most species the effect is mediated through GR 

binding to GREs in the Gh promoter. In species where a canonical GRE is absent, GR is 

thought to mediate its effect by GR tethering to other protein(s) already present on the Gh 

gene promoter. GHRH induction of Gh is known to increase intracellular cAMP levels 

and activation of the PKA pathway. The exact target of PKA is not known, nor has the 

mechanism leading to increased Gh been elucidated. PIT1 is thought to be involved in the 

cAMP-induced response, whereby PKA phosphorylates PIT1, leading to an altered 

conformation and increased binding to the Gh promoter. However, evidence available 

showing the requirement for PIT1 phosphorylation has been conflicting. There are two 

hypotheses: in one scenario, increased cAMP leads to CREB phosphorylation and 

activation, CREB binding to CREs present in the promoter and activating transcription. 

In the absence of functional CREs, however, it is hypothesized that the mechanism is 

CREB-independent, and according to the alternative hypothesis, activated PKA instead 

leads to phosphorylation of CREB-binding protein (CBP), which can then act as a co-

factor of PIT1 (Cohen et al., 1999). PIT1 dependent negative regulation of Gh is 

mediated by activin by reducing PIT1 binding to Gh promoter (Struthers et al., 1992). 

Pit1 mutations as a cause of human pathologies 

A tightly regulated spatiotemporal pattern of transcription factor expression is essential 

for initiating and maintaining the ontogeny of the pituitary gland and maintaining the 

pituitary cells in their state of terminal differentiation. In general, factors expressed late 
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during pituitary development are more pituitary-specific than ubiquitous. Mutations of 

these late-expressed pituitary specific transcription factors, especially Prop1 and Pit1 are 

the most common causes of combined pituitary hormone deficiency (CPHD) (Cohen et 

al., 1996). Phenotypes of patients of Pit1 mutations are similar to those of dwarf mice. 

These mutations affect somatotroph differentiation, and as a result, dwarfism is the most 

common phenotype associated with Pit1 mutations (Pfäffle and Klammt, 2011). Patients 

with a mutation in Pit1 show complete lack of Gh and Prl, and a loss of TSH is common 

but not always found. This phenomenon can have 2 explanations; either the thyrotrophs 

arise independently of PIT1 expression, and/or since the PIT1 regulation of target genes 

is highly context dependent, it is possible that PIT1 might primarily affect Gh and Prl 

compared to TSHβ (Drolet et al., 1991; Lin et al., 1994).  

 

In humans, mutations of Pit1 have been found in 2 introns and all exons (except exon 2). 

Some of the dominant negative mutations are Ser179Arg, Lys216Glu and Arg271Trp 

(Cohen et al., 1999; Miyata et al., 2006; Radovick et al., 1992). Of these, the last two are 

sporadic in nature. Arg271Trp, although located in the homeodomain, does not interfere 

with DNA-binding, because it is immediately 3’ of the two alpha helices required for 

binding. However, even if it binds DNA just like the wild type, it does not transactivate 

the target gene promoters, but the mechanism behind the inactivity is not known 

(Radovick et al., 1992). In the case of dominant negative mutations, patients who are 

heterozygous carriers may or may not manifest CPHD, and the extent of manifestation 

seems to vary (Reynaud et al., 2004). Also, the lack of transactivation by the dominant 
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negative mutants is not always reproducible in vitro, thus making it an active area of 

clinical research (Pernasetti et al., 1998).  

Pit1 and production traits 

Since the well-studied PIT1 regulated genes, Gh, Prl and TSHβ, are all involved in 

metabolic functions such as energy balance and homeostasis, it was tempting to predict a 

role of PIT1 in production traits. Indeed, several studies have been done in agricultural 

animals to identify polymorphisms associated with agricultural performances. Single 

nucleotide polymorphisms of Pit1 have been identified as genetic markers for 

reproductive (fertilization) rate in cattle (Khatib et al., 2009). Agricultural traits such as 

body weight, wither height (Zhang et al., 2009), milk yield and duration of reproductive 

life (Huang et al., 2009) are a few others that are influenced by PIT1. Similarly, in pigs, 

birth weight (Song et al., 2007), fat thickness (Franco et al., 2005), growth, meat quality 

and carcass composition (Brunsch et al., 2002) are correlated with Pit1 polymorphisms 

which can be either in the introns or exons. Cashmere wool production in goats is 

determined by a polymorphism located at the 3’-UTR of Pit1 (Lan et al., 2009).  In 

chickens, growth traits such as growth rate, but not carcass composition or fat content are 

associated with Pit1 polymorphisms (Jiang et al., 2004; Nie et al., 2005). 

Alternative forms of Pit1 

Isoforms, by definition, are structurally and functionally similar proteins which differ 

from each other in their amino acid sequence. Isoforms may arise from the same gene or 

from different genes. When isoforms are derived from the same gene, they may be the 
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result of alternative transcription initiation sites, alternative translation initiation sites, 

alternative splicing or any combination thereof. All three mechanisms are well 

established modes of genome expansion. 

 

Alternative forms of Pit1 have been reported in almost all species where PIT1 expression 

has been studied (Voss et al., 1991; Morris et al., 1992; Theill et al., 1991; Haugen et al., 

1994; Kurima et al., 1998; Tanaka et al., 1999; Van as et al., 2000; Bastos et al., 1991). 

These isoforms arise as a result of alternative translation and/or alternative splicing. 

There is considerable variation in the number and types of isoforms reported across 

species, but it is entirely possible that not all isoforms from a particular species have been 

identified. 

 

As mentioned previously, PIT1 protein was seen to run in gels as a doublet of 33KDa and 

31KDa in extracts from both murine and human primary tissues. Pulse-chase experiments 

showed that there was no precursor-product relationship between the two, and the 

presence of downstream in-frame AUG start codons in the Pit1 sequence gave rise to the 

possibility that these two bands represented alternative forms of PIT1. Site-directed 

mutagenesis proved this hypothesis to be true. Both the isoforms could bind DNA 

sequences equally well, and both isoforms could transactivate the rat Prl promoter in CV-

1 (non-pituitary) cells, which was surprising because the shorter isoform was lacking 27 

amino acids from the transactivation domain. The relative levels of the 33- and 31KDa 

isoforms were roughly 2:1; however, how these levels are regulated in pituitary cells is 

not known (Voss et al., 1991; Ingraham et al., 1991). Soon afterwards, an alternatively 
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spliced isoform was discovered. This isoform differed from the original PIT1 in having a 

78-nucleotide exon present at position 142, immediately after exon 1. This alternative 

form was name PIT1a. This isoform differed considerably in both abundance and 

function; the transcript levels of this longer isoform were approximately 1/7
th

 of Pit1, and 

this isoform showed minimal to no transactivation of the Prl promoter in Chinese hamster 

ovary (CHO) cells, even though it bound equally well to PIT1 binding sites of this 

promoter as the shorter 33kDa form. However, the alternatively spliced protein product 

was not detected in CHO cells by overexpression, and only minimal detection was found 

in rat pituitary cells. Thus, this isoform was thought to be either translated less efficiently 

or degraded at a more rapid rate. The ability of this isoform to regulate the Gh promoter 

even more actively than PIT1 in both pituitary and non-pituitary cells has been reported 

by all groups except one (Morris et al., 1991; Theill et al., 1992; Konzak and Moore, 

1992).  

 

A thyrotroph-specific isoform, Pit1T, arising as an alternatively spliced form was 

detected in the mouse. This isoform has an additional 14 amino acids at the 5’-end of 

exon 2 and is required, along with PIT1, for activation of the TSHβ promoter in 

thyrotrophs (Haugen et al., 1993). Identification of PIT1T raised the number of isoforms 

in mouse to four. However, PIT1T was not detected in humans and rhesus monkey.  

Conclusion 

Somatotroph differentiation and Gh gene expression are tightly regulated processes 

requiring interaction among a large number of transcriptional regulators and signaling 
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pathways.  Adrenal glucocorticoids are essential for both processes, and act in concert 

with other peripheral hormones. PIT1, the transcription factor necessary for the 

processes, is involved in the differentiation of cells of the PIT1 lineage, and also regulates 

other pituitary hormones. However, PIT1, even though necessary, is not sufficient, and 

requires participation of other general and specific transcription factors. Alternative 

forms of Pit1 have been reported in numerous species, but the functional implications of 

having several isoforms with similar functions are not clear. Studies aimed at functional 

characterization of PIT1 isoforms in avian species are particularly lacking. The present 

study was aimed at characterizing the chicken PIT1 isoforms for their ability to regulate 

the cGh promoter, and elucidating the mechanism behind functional differences, if any.  
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Chapter 2: Regulation of chicken growth hormone by PIT1 isoforms 

Introduction 

Growth hormone (GH) is a peptide hormone produced in specialized cells called 

somatotrophs in the anterior pituitary gland. Even though GH has a diverse range of 

functions in essential physiological processes, regulation of bone and muscle growth and 

metabolism are the main functions associated with it. These particular functions make 

regulation of somatotroph differentiation and GH synthesis an active area of research in 

agriculture and human medicine.  

 

In broiler chickens, GH levels are high post-hatch. Exogenous GH administration when 

endogenous levels are high has no effect on chicken growth. However, in ovo 

administration of GH during embryonic development leads to increased growth post-

hatch (Blumenthal, 1954), suggesting establishment of a growth threshold in the egg. 

Current work in our laboratory focuses on elucidating how extrapituitary signals are 

involved in the regulation of somatotroph differentiation and GH synthesis in the 

embryonic chicken. Chickens have the dual advantage of being agriculturally important 

as well as model animals for biomedical research. In addition, chickens are an excellent 

model system for studies of embryonic development and endocrine regulation because i) 

it is relatively cheap to obtain a large number of samples for study; ii) the precise timing 

of development of a large number of embryos can be synchronised with relative ease; iii) 

eggs grow without maternal endocrine influence, and iv) embryos are easy to manipulate 

externally.  
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More than a decade of research by our laboratory and by others has contributed 

significantly to dissecting the mechanism of somatotroph differentiation and Gh gene 

expression in chickens. Somatotrophs first appear on embryonic day 12 (e12) during 

development, and become a significant population by e16 (Porter et al., 1995). A blood-

borne extra-pituitary signal is required for somatotroph differentiation and final 

maturation. The signal was identified to be the adrenal glucocorticoid corticosterone 

(CORT) (Morpurgo et al., 1997), which can induce premature differentiation of 

somatotrophs at e11 (Dean and Porter 1999; Jenkins et al., 2007). CORT induction of 

somatotroph differentiation involves both type I mineralocorticoid receptor (MR) and 

type II glucocorticoid receptor (GR) (Bossis and Porter, 2004).  

 

Mechanisms underlying CORT induction of Gh gene expression are largely unknown. 

However, the process seems to require ongoing protein synthesis, as suggested by the 

delay (~ 4hr) between CORT treatment and Gh induction and evidenced by inhibition of 

the process by cycloheximide (Bossis and Porter, 2003). Also, lack of functional GREs 

(glucocorticoid response elements) in 10kbp upstream and 5kbp downstream of the 

chicken Gh (cGh) gene suggests the CORT effect is indirect. Additional features of this 

pathway include involvement of ras and possibly MEK1/2 pathways (Ellestad, 2010) and 

chromatin remodeling at the cGh promoter (Narayana, 2011).  

 

The POU-homeodomain transcription factor PIT1 is essential for Gh gene expression. 

Even though the intermediary factor involved in CORT-induction of cGh synthesis is not 

PIT1, this transcription factor is essential for pituitary specific GH expression in all 
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vertebrate species. PIT1 also regulates expression of other genes in the pituitary, namely 

prolactin (Prl), β-subunit of thyroid-stimulating hormone (TSHβ) and growth hormone-

releasing hormone receptor (GHRH-R).  

 

Pit1 gene structure and function have been conserved across vertebrate species. 

Mammalian Pit1 comprises 6 exons and 5 introns, and avian/teleost Pit1 has 7 introns 

due to the presence of a unique 38 amino acid exon (designated 2a for avian species) 

located between exon 2 and exon 3 (Van as et al., 2000). When compared with other 

avian species, chicken PIT1 shows 97% sequence similarity with turkey PIT1, 93% with 

mallard duck and 89% with zebra finch. Significant homology was also observed with 

non-avian species such as mouse (84%) and Carolina anole lizard (81%). The differences 

among species is mostly located in the N-terminal region, while the C-terminal POU 

domain shows maximum conservation. 

 

Variant forms of PIT1 have been identified in several species that arise by alternative 

transcription, translation and/or splicing. The first report of a variant form was in rat, 

where PIT1 was seen to migrate in a gel as a doublet of 33KDa and 31KDa. The shorter 

isoform arose by translation initiation at a downstream in-frame AUG codon and lacked 

the first 27 amino acid residues present in the 33KDa variant, but did not differ in its 

ability to activate the Prl promoter in CV-1 cells (Voss et al.; 1991). The second 

alternative form in mammals, identified in the same year (Morris et al.; 1991, Theill et 

al.; 1992) arose by alternative splicing and possessed a short exon of 26 amino acids 

inserted after exon 1 in the transactivation domain. This isoform was termed PIT1a by the 
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authors, and was shown to be unable to activate rat Prl promoter in CHO cells. Soon 

afterwards, this isoform was also reported by Theill et al., (1992) in rats and was unable 

to activate PIT1 and Prl, while retaining its ability to activate Gh. Later works (Konzak 

and Moore, 1992) showed PIT1a (subsequently named PIT1β) to be a dominant negative 

repressor of Prl in pituitary cells. However, PIT1β is a repressor of PIT1 function only in 

pituitary cells; in non-pituitary cells, it actually potentiates a greater activation of rPrl 

promoter by the PKA pathway (Diamond et al., 1999). Another mammalian species 

where multiple isoforms have been identified and characterized is the sheep (Bastos et 

al., 2006), and this is the only report of characterization of all known isoforms (PIT1α, 

PIT1β, PIT1γ, and PIT1δ) of PIT1 in an agricultural species for their ability to activate 

the rat Prl promoter in HeLa cells. A thyrotroph-specific isoform, PIT1T, reported only in 

a few mammalian species, is known to activate the TSH-β promoter both alone and 

synergistically with PIT1 in non-thyrotroph pituitary cells (Haugen et al., 1994). In 

general, the variants differ from each other in their N-terminal transactivation domain, 

while the C-terminal POU domain is conserved among the isoforms in most species.  

 

Among avian species, 3 turkey PIT1 variants were reported by Kurima et al. (1998). 

These authors designated the avian PIT1 as PIT1* to differentiate from mammalian PIT1. 

tPIT1beta* (turkey PIT1beta) was structurally similar to mammalian PIT1a in having 

arisen by alternative splicing and hence including a beta-specific exon encoding 28 amino 

acids (compared to 26 amino acids in mammals). The identification of tPIT1W* by these 

authors was the first report of a unique avian-specific isoform arising by use of a 

transcription start site in intron1 followed by inclusion of the beta-specific exon.  The 
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presence of PIT1 variants in chicken was first reported by Tanaka et al. (1999). However, 

this report showed only the PIT1* and PIT1W isoforms in layer chickens. Later, Van as 

et al. (2000) reported the presence of all three isoforms, ggPIT1* (Gallus gallus PIT1), 

ggPIT1beta, and ggPIT1W* from Hybro G broiler strains (Fig. 4). Their findings also 

matched the turkey isoforms in their relative abundance, with PIT1* being most 

abundant, PIT1W* of intermediate abundance and PIT1beta* being least abundant. They 

also adopted the nomenclature PIT1α for the canonical form, PIT1β for the derivative of 

PIT1α with the β-specific exon, and PIT1γ for the equivalent of PIT1W* of Kurima et al. 

(1998), and this nomenclature will be followed in this report.  

 

In fish, Pit1 has been cloned so far in chum salmon (Ono and Takayama, 1992), rainbow 

trout (Yamada et al., 1993), Chinook salmon (Majumdar et al., 1996), Atlantic salmon 

(Lorens et al., 1996), gilthead seabream (Martinez-Barbera et al., 1997), ayu (Chiu et al., 

2002) and goldfish (referenced in Ip et al., 2004). In all fish species for which Pit1 has 

been cloned, only one variant has been identified. Chiu et al. (2002) tested the ability of 

ayu PIT1 to activate the zebrafish Gh promoter, and it was found that PIT1 activated 

zebrafish Gh promoter in NIH3T3 cells.  

 

Even though multiple isoforms are found across many vertebrate species, the functional 

implications of having multiple isoforms are not yet fully known. Substantial research by 

the laboratory of Gutierrez-Hartmann in elucidating the function of the PIT1β in general 

and of the β-specific exon in particular in relation to the regulation of Prl has shown that 

the specific amino acid sequence of the β-specific domain is important for mediating the  
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Fig. 4 Chicken Pit1 gene and isoforms. (A) Chicken Pit1 comprises of 7 exons and 6 introns, shown in (A). 

Region in bold encode the transactivation domain. The avian specific exon is numbered 2a. (B) Chicken 

Pit1 isoform mRNAs. Alternative forms arise by using alternative transcription initiation and alternative 

splicing. β denotes 28amino acid insertion. Arrows denote the positions of primers used by authors in their 

study (Van As et al., 2000) 

  



44 

 

dominant negative repression of Prl in pituitary cells (Diamond and Gutierrez-Hartmann, 

1996). These same sequences make PIT1β a more potent PKA-mediated activator of Prl 

in non-pituitary cells (Diamond et al., 1999). The same group later showed that the 

repression of Prl in pituitary cells is brought about by chromatin modification 

(specifically, reduction of acetylated state of histone H4) by 5 hydrophobic residues 

present in the β-domain (Diamond and Gutierrez-Hartmann, 2000) and also by inhibiting 

CREB-binding protein (CBP) recruitment to the Prl promoter (Ferry et al., 2005).  

Genes regulated by PIT1 are characterized by the presence of one or more PIT1 binding 

site(s) in the proximal promoter. The cGh promoter has two avian-specific PIT1 binding 

sites at location -113/-104bp (proximal) and -541/-533bp (distal). Activation of this 

promoter was PIT1 dependent and of the two sites, only the proximal has been shown to 

be functional in PIT1 binding by mutational analysis (Ip et al., 2004). 

 

Even though a monomeric configuration is favored in solution, PIT1 is known to bind 

DNA as either a homodimer or a heterodimer. The bipartite structure of the PIT1 DNA-

binding region consisting of a POU-homeodomain and POU-specific domain (POU-HD 

and POU-S, respectively) separated by a linker gives POU proteins the flexibility to 

orient themselves in various configurations on DNA. This flexibility makes it possible for 

PIT1 to regulate target genes in conjunction with other regulatory factors in various cell 

types. X-ray diffraction studies show that PIT1 contacts very few base pairs of the DNA, 

and that the two components of a dimer can bind to perpendicular faces of DNA by 

altering the spacing between them. In this respect, PIT1 differs from Oct-1, in which the 

POU-HD and POU-S bind on opposite faces of the DNA element (Jacobson et al., 1996).  
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PIT1 was shown to bind as a monomer and dimer to Prl and GH binding sites, 

respectively (Holloway et al., 1992). However, this result is not in agreement with later 

work by Sporici et al., (2005). Apart from structural studies, PIT1 homo- and hetero-

dimerization has been demonstrated by GST- pull down assays and gel-shift assays with 

both wild type and dimerization-deficient mutants (Ingraham et al., 1990, Sporici et al., 

2005).  

 

The promoter of the Gh gene has been characterized in several species, including human, 

mouse, dog, cow, rat, chicken and several fish species, and the characteristic features that 

are similar or distinct among these vertebrates have been discussed in the literature 

review. One aspect of Gh regulation that will be reiterated here is that GH synthesis and 

secretion are regulated by signaling pathways leading to elevated intracellular cAMP 

levels. If the Gh promoter in question contains functional cAMP response element (CRE) 

motifs, the effect is most likely mediated via activated protein kinase A (PKA), which 

phosphorylates CREB (CRE-binding protein), leading to CREB binding to CRE and 

recruiting CREB-binding protein (CBP) (Chrivia et al., 1993; Arany et al., 1994; Kwok 

et al., 1994) . CBP regulates transcription by its histone acetyl transferase (HAT)-activity 

by interaction with the basal transcription machinery (Ozryzko et al., 1996; Kee et al., 

1996). However, in the absence of functional CRE motifs, as is the case of chicken Gh, 

rat Gh and several other cAMP-regulated promoters, the mechanism is thought to be 

CREB-independent, involving direct interaction of CBP to specific transcription factors 

(in the case of Gh, PIT1) (Gonzalez and Montminy, 1989; Chawla et al. 1998, Zanger et 
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al., 1999). Surprisingly, in spite of the presence of functional CREs, cAMP regulation of 

the human Gh promoter is CREB-independent (Cohen et al., 1999).  

 

Since almost all target genes of PIT1 are activated by signals that involve activation of 

kinases, a pertinent question to ask was if PIT1 is a target of phosphorylation. Initial 

investigations identified two threonine residues in the PIT1 homeodomain (Thr-219, Thr-

220) and a serine residue (Ser-115) of rat PIT1 as targets of phosphorylation (Kapiloff et 

al., 1991). Among these residues, Thr-220 was initially determined, and later confirmed, 

to be the predominant site (Howard and Maurer, 1994). Phosphorylation of PIT1 at Thr-

220 altered PIT1 binding to proximal and distal binding sites on the Gh and Prl 

promoters, as well as decreased dimerization of PIT1 on some of them. Altered binding 

and dimerization was attributed to altered conformation of PIT1, brought about by 

phosphorylation. Steinfelder et al. (1992) reported similar results for phosphorylation of 

PIT1 by TRH and cAMP for the activation of the human TSHβ promoter. In all cases, the 

signaling pathways involved were PKA and PKC, and sequences immediately upstream 

of the PIT1 binding sites were thought to dictate binding of phosphorylated PIT1. 

However, PIT1 phosphorylation mutants, in which all three phosphorylation sites were 

mutated to alanine, retained most of the transactivational properties of wild type PIT1 to 

activate the rat Prl and Gh promoters in HeLa cells (Fischberg et al., 1994). Similarly, it 

was shown that even though PIT1 was essential for activation of the Prl promoter by 

cAMP, PIT1 phosphorylation was not required (Okimura et al., 1994), suggesting that 

other phosphorylation-dependent components may be involved in the process. Caelles et 

al. (1995) suggested a mitosis-specific phosphorylation of PIT1 by a cell-cycle specific 
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kinase. Such specific phosphorylation is believed to be required for PIT1-dependent 

proliferation of cells of the PIT1 lineage. Subsequent identification of c-fos as a phospho-

PIT1 regulated gene (Gaiddon et al., 1999) lends traction to a role of PIT1 

phosphorylation in cell cycle regulation.  

 

While some body of knowledge exists regarding PIT1 isoform-specific regulation of the 

Prl promoter, not much is known about the Gh promoter. For instance, it is not even 

known what other general or specific factors interact with PIT1 to regulate cell-type 

specific expression of the Gh gene. Recent results from our laboratory have suggested the 

involvement of Ets-1 as a regulator of CORT-induced Gh gene expression (Knubel, 

2010). At the time this project was started, PIT1 isoforms had not been functionally 

characterized in any avian species. Therefore, we decided to characterize the chicken 

PIT1 isoforms for their ability to regulate the cGh promoter. Our specific objectives 

included:1) Define the transcription start site of all chicken Pit1 isoforms; 2) Demonstrate 

that all known isoform mRNAs can be translated into functional proteins; 3) Determine 

the sub-cellular localization of the isoforms; 4) Determine which, if any, of the known 

isoforms regulate the chicken Gh promoter; 5) Demonstrate PIT1 isoform protein binding 

to the cGh promoter; 6) Investigate the effects of simultaneous expression of multiple 

isoforms on activation of the cGh promoter; 7) Determine if the isoforms bind DNA as 

homo- or heterodimers; 8) Identify which, if any of the isoforms interact with CBP; and 

9) Determine if PIT1 is phosphorylated in response to CORT in chicken embryonic 

pituitary cells. Successful completion of this project will be the first report of PIT1 

isoform-specific regulation of a gene regulating agriculturally important traits in an 
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agriculturally important avian species and enrich our knowledge of regulation of Gh gene 

expression in broiler chickens.  
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Materials and methods 

Animal use 

Broiler (Ross x Ross) chicken eggs, when used, were obtained from Allen’s Hatchery 

(Seaford, DE). Embryonated eggs were incubated at 37.5°C in a humidified incubator 

(GQF Manufacturing, Savannah, GA) with rotation every hour. The day that the eggs 

were placed in the incubator, was designated e0, and eggs were removed on various 

stages of development during the 21 day incubation period according to experimental 

requirements. All animal use protocols were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the University of Maryland. For some experiments, cells 

from several embryos were pooled depending on the number of cells required. 

Cell Culture and Transfections 

The anterior pituitary gland of the embryos was removed using a dissecting microscope 

and dispersed to single cells using trypsin digestion and mechanical agitation as described 

(Porter et al., 1995). For endogenous total protein extraction, cells were allowed to attach 

to poly-L-lysine coated cell culture plates overnight. Treatments, if any, were applied 24 

hr after the cells were plated. For transient transfection experiments, cells were 

transfected following dispersion, plated on poly-L-lysine coated plates and allowed to 

express the transfected gene. Dispersed chicken embryonic pituitary cells were 

maintained at 37.5°C/5% CO2 atmosphere in Dulbecco’s modified Eagle’s 

medium:Ham’s nutrient mixture F12 (DMEM/F12) without serum, supplemented with 

0.1% BSA, 100U/ml penicillin, and 100μg/ml streptomycin, and 5μg/ml human insulin. 
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Leghorn Male hepatoma (LMH) cells [American Type Culture Collection (ATCC), 

Manassas, VA], a chicken carcinoma cell line, were maintained in Waymouth’s medium 

supplemented with 10% fetal bovine serum (FBS) with 100U/ml penicillin and 100μg/ml 

streptomycin in a humidified incubator at 37.5°C and 5% CO2 atmosphere. Cells were 

split by recovering with 0.25% trypsin/ 0.03% ethylenediamine tetraacetic acid (EDTA) 

when confluent and plated in cell culture flasks (Corning Life Sciences, Lowell, MA) 

coated with 0.1% gelatin (Sigma, St. Louis, MO). All cell culture media and media 

supplements were purchased from Invitrogen (Carlsbad, CA) unless otherwise noted.  

For transient transfection in cell lines, cells (LMH) were plated in either 6-well or 24-

well culture plates (Corning Life Sciences) coated with 0.1% gelatin (Sigma) and allowed 

to grow overnight to a confluence of 90-95%. Typically, 3.5x10
5
 cells were used for 24-

well plates and 1.0x10
6
 cells were used for 6-well plates. The following day, cells were 

transfected using Lipofectamine-2000 transfection reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol in OPTI-MEM for 6 hr, following which the 

medium was replaced with Waymouth’s medium with 0.01% BSA supplemented with 

penicillin and streptomycin. 

Cloning of untagged and tagged isoform constructs 

The primers used for cloning full-length Pit1 isoforms are listed in Table 1. All primers 

were obtained from Sigma-Aldrich (St. Louis, MO) unless mentioned otherwise. Chicken 

pituitary cDNA (e14) was amplified using Phusion Flash proof-reading polymerase 

(Finnzymes Inc., Woburn, MA), and the gel-extracted amplicon was digested with  
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Table 1. Primer names and sequences used for cloning 

Name Sequence 

Pit1_ab_HindIII_F CCCAAGCTTGGGGCCACCATGACTTGCCAAGCGTTTGCTTCATC 

Pit1_g_HindIII_F CCCAAGCTTGGGGCCACCATGTATCTTGAATCCTCATGCATTTTCTT

ACC 

Pit1_abg_HindIII_R CCCAAGCTTGGGTTACCGGCACTCGTGGTGCTC 

Pit1_b_28end_R ACACGTTTCCCGAAGTCATC 

HindIII-ATG-HA-PIT1a/b CCCAAGCTTGGGGCCACCATGTACCCATACGACGTCCCAGACTACG

CTATGACTTGCCAAGCGTTTGCTTCATC 

HindIII-ATG-myc-PIT1a/b CCCAAGCTTGGGGCCACCATGGAACAAAAACTTATTTCTGAAGAAG

ATCTGATGACTTGCCAAGCGTTTGCTTCATC 

HindIII-ATG-HA-PIT1Beta2 CCCAAGCTTGGGGCCACCATGTACCCATACGACGTCCCAGACTACG

CTATGCGACCAATGTTGTCTCCACAGAC 

HindIII-ATG-myc-PIT1Beta2 CCCAAGCTTGGGGCCACCATGGAACAAAAACTTATTTCTGAAGAAG

ATCTGATGCGACCAATGTTGTCTCCACAGAC 

HindIII-ATG-HA-PIT1g CCCAAGCTTGGGGCCACCATGTACCCATACGACGTCCCAGACTACG

CTATGTATCTTGAATCCTCATGCATTTTCTTACC 

HindIII-ATG-myc-PIT1g CCCAAGCTTGGGGCCACCATGGAACAAAAACTTATTTCTGAAGAAG

ATCTGATGTATCTTGAATCCTCATGCATTTTCTTACC 

cCBP-1674-2447-HindIII-F CCCAAGCTTGGGGCCACCATGTGGGAGTTCTCCTCGCTGCGC 

cCBP-1674-2447-myc-HindIII-R CCCAAGCTTGGGCTACAGATCTTCTTCAGAAATAAGTTTTTGTTCCA

AACCCTCCACAAATTTTTCTAACG 

cCBP-1674-2447-Test-F AGCTGCGATCTGATGGATG 

cCBP-1674-2447-Test-R ATAAAAGTGATGCTCCCATAATGC 
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HindIII (Invitrogen, Carlsbad, CA) at 37°C for 4 hr in appropriate buffer. DNA from the 

restriction digestion reactions was purified and quantified by comparing to the intensity 

of the band(s) of the DNA ladder I (Genesee Scientific, San Diego, CA). Different 

insert:vector ratios (typically 1:1 and 3:1) were ligated non-directionally into pCMV-

Sport6.1 mammalian expression vector. Successful ligation was determined by diagnostic 

PCR using vector specific M13-forward and M13-reverse primers, and 2μl of the ligation 

reaction was transformed into DH5α Max Efficiency chemically competent cells 

(Invitrogen). Plasmid DNA was extracted using Nucleobond PC-500 Plasmid DNA 

purification kit (Macherey-Nagel, Bethlehem, PA) from ampicillin-resistant bacterial 

colonies grown overnight in the presence of 100μg/ml ampicillin, screened for 

directionality by PCR, and sequenced at the University of Maryland Center for 

Biosystems Research. Each clone was sequenced in two directions in its entirety to 

ensure absence of mutations.  

For generating N-terminally hemagglutinin (HA)- and c-myc-tagged clones, forward 

primers were designed to contain a Hind-III site, a Kozak sequence, and the HA or c-myc 

sequence in that order. A single primer amplified Pit1α and Pit1β1, while two other 

primers were designed for Pit1β2 and Pit1γ. The forward primers were used in 

conjunction with a common anti-sense primer. For C-terminal tagging, a similar approach 

was used, but only one antisense primer was designed which contained the tag, a stop 

codon and a HindIII site. These tagging primers were used with isoform specific forward 

primers. For all tagging, the plasmid containing untagged isoform cDNA was used as 

template.  
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For cloning cDNA encoding C-terminal 784 amino acids of chicken CREB-binding 

protein (cCBP), primers were designed to amplify cDNA corresponding to the 3’-2402bp 

of the cCBP (Genbank Accession no. XM_414964). Chicken pituitary cDNA was 

amplified using these primers. The product of PCR was purified and further amplified 

with a forward primer encoding a HindIII site and Kozak sequence and a reverse primer 

encoding region a c-myc tag, stop codon and a HindIII site. Product obtained from the 

second round of PCR was purified and ligated into pSport6.1 expression vector and 

transformed into XL10B maximum efficiency competent cells. Plasmid DNA was 

isolated from positive clones, and the insert sequenced in its entirety in two directions.   

5’RACE of Pit1isoforms 

Primers used for 5’-RACE are listed in Table 2. Total RNA was extracted from e11 

chicken pituitaries using the RNeasy mini kit (Qiagen, Valencia, CA) and quantified 

using Quant-iT Ribogreen RNA Quantitation Reagent (Invitrogen, Carlsbad, CA). Total 

RNA (1μg) was reverse transcribed with Superscript III Reverse Transcriptase 

(Invitrogen) in a 20μl reaction using the common reverse primer (GSP1) used for cloning 

Pit1 isoforms. A negative control containing no reverse transcriptase was performed 

alongside to ensure there was no genomic DNA contamination. Synthesized cDNA was 

purified with Wizard SV
®
 Gel and PCR Clean-Up System (Promega, Madison, WI). Half 

of the cDNA obtained was tailed with dCTP by Terminal Transferase (TdT) (New 

England Biolabs, Ipswich, MA), while the other half served as a control reaction without 

TdT. Five microliters of the tailed reaction was amplified with forward Abridged Anchor 

Primer (AAP) (Invitrogen) and GSP1 (reverse primer). The first round of PCR was  
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Table 2. Primers used for 5'RACE 

 

Name Sequence 

5'RACE_GSP1 TTACCGGCACTCGTGGTGCTC 

5'RACE_GSP2 GCTCAGCTGCAAGTTCTCAA 

5'RACE_GSP3-alpha GAGTAGTGTAGTCCTGTGGAGACAACA 

5'RACE_GSP4/5-Beta/gamma 

5’RACE_Diag_Beta2                                                                                 

GGCACAGAGTAGTGTAGTCCTGCTG 

GGAACATTTAGGAGTCTGTGGAGACAAC 
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followed by a second round of PCR in which AAP was replaced with Abridged Universal 

Anchor Primer (AUAP) (Invitrogen), while two different reverse primers were used as 

antisense: GSP3, annealing to a sequence present in Pit1α only, and GSP4/5, annealing to 

Pit1β1, Pit1β2 and Pit1γ. Specific Taq-amplified bands obtained in these amplification 

reactions were gel-purified and cloned into pGEM-T Easy Vector (Promega) by T/A 

cloning. Ligation reactions were transformed into JM109 cells and screened with 

blue/white screening. Colonies picked were grown overnight in TB broth with ampicillin 

in 96-well plates. After about 16 hr of growth, 100μl of the culture were transferred to a 

96-well plate and centrifuged at 1000xg for 5 min at 4°C. The supernatant was discarded, 

and the cells were resuspended in 50μl deionized water. The plates were sealed and cells 

were lysed in a thermocycler at 95°C for 5 min. These crude bacterial lysates were used 

as template in PCR with SP6/T7 primers to determine which clones contained an insert. 

Plasmid DNA was extracted from clones containing insert by the alkaline lysis method 

(Sambrook et al.) and sequenced as above.  

Immunocytochemistry 

Cells (LMH) were plated at 1x10
5
 per chamber in Lab-Tek II 2-chamber slides (Nalge 

Nunc International, Naperville, IL) and allowed to reach ~90% confluency. Cells were 

transfected with 2μg Pit1 isoform expression vector with Lipofectamine-2000. Empty 

expression vector was used as negative control. The following day, cells were washed 

twice with ice-cold PBS. For each wash, media in slides were decanted; PBS was added, 

and slides were rocked for 10 min at room temperature. Following washing, cells were 

fixed with freshly prepared 4% formaldehyde solution pH 7.5 (Thermo Scientific, 
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Rockford, IL) for 20 min. Slides were washed two more times, and permeablized in PBS 

with 0.1% Tween-20 and 0.1% Triton-X 100 for 8 min at room temperature. Chambers 

were removed, and the slides were washed 2 more times with PBS. Blocking was done 

for 1 hr at room temperature in PBS with 5% normal goat serum (NGS) (Jackson 

Immunoresearch Laboratories, Inc., West Grove, PA). Cells were washed twice with PBS 

and incubated with PIT1 antiserum (1:1000 dilution) at 4°C overnight in PBS/ 2% NGS. 

Primary antibody was excluded from one additional chamber transfected with Pit1α as a 

control.  The next day, cells were washed first in PBS then in PBS/0.1% Tween-20, and 

incubated with Rhodamine-conjugated goat anti-rabbit IgG (Jackson Immunoresearch) 

diluted 1:50 in PBS/0.025% Tween-20 with 2.5% NGS for 1 hr at room temperature in 

the dark. Following secondary antibody incubation, cells were washed with PBS and 

incubated with 5ng/ml 4',6-diamidino-2-phenylindole (DAPI) (Thermo Scientific) for 10 

min in the dark. Cells were then washed thoroughly, mounted in fluorescent-dye 

compatible mounting medium Fluoromount-G (Southern Biotech, Birmingham, AL) and 

stored in the dark. Cells were examined with a Zeiss AxioObserver.Z1 inverted 

microscope, and images were acquired using the Zeiss Axiovision Re1 4.6 software with 

the Zeiss Axiocam HRC camera. 

Western blot 

To determine expression of untagged and tagged constructs of  Pit1 and C-terminal c-

myc tagged cCBP fragment (1677-2442), LMH cells were plated at 1x10
5 
per well in 6-

well plates overnight until the cells were ~90% confluent. Cells were transfected with 

4µg expression plasmid using Lipofectamine 2000 (Invitrogen) according to 
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manufacturer’s instructions. Cells were allowed to express the transfected gene for 24 

hours, and then cells were lysed in100µl per well of lysis buffer [20mM Tris-HCl (pH 

7.5), 150mM NaCl, 1mM EDTA, 1mM ethylene glycol tetraacetic acid (EGTA), 1% 

Triton X-100)] containing 1mM phenylmethylsulfonyl fluoride (PMSF) and HALT™ 

Protease and Phosphatase inhibitor cocktail (Thermo Scientific) by rocking on ice for 15 

min. Plates were scraped, and all contents were transferred to microfuge tubes and 

incubated on ice for 15 min with vortexing every 3-4 min. Lysed cells were then 

centrifuged at 14000xg for 15 min at 4°C. Supernatants were transferred to a fresh tube 

and stored at -80°C. For total protein extraction from whole pituitaries, pooled (3-4) 

pituitaries were homogenized with a Dounce homogenizer in 200μl lysis buffer and 

centrifuged as above. Protein samples were quantified with Coomassie Plus (Bradford) 

Protein Assay kit (Thermo Fisher Scientific, Inc., Rockford, IL). Desired amounts of 

protein samples were diluted with 50mM Tris-HCl, pH 7.2, and then further diluted in an 

equal volume of Laemmli Sample Buffer (LSB) (BioRad, Hercules, CA) with 5% β-

mercaptoethanol and resolved in 10% (for PIT1) or 15% (for cCBP) polyacrylamide gels 

containing 0.1% sodium dodecyl sulphate (SDS) in Tris-glycine buffer (25mM Tris, 

192mM glycine, 0.1% SDS). Electrophoresed proteins were transferred onto Immobilon-

P polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA) using a Trans-

Blot SD Semi Dry Electrophoretic Transfer Cell (Bio Rad), blocked with 5% non-fat dry 

milk in Tris-buffered saline (TBS) with 0.1% Tween-20 (TBS/T) for 2 hr at room 

temperature or overnight at 4°C. Primary antibody incubation duration and dilutions were 

according to manufacturer’s instructions. The PIT1 antiserum used in all experiments was 

raised in rabbit against bacterially expressed full length rat PIT1 and was a kind gift from 
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Dr. Simon J. Rhodes of Indiana University School of Medicine, Indianapolis, Indiana. 

For over-expressed proteins, the PIT1 antibody was used at a dilution of 1:1000 overnight 

in TBS/T with 1% non-fat dry milk and 1% normal goat serum (NGS) (Jackson 

Immunoresearch) at 4°C. For endogenous PIT1 from chicken pituitary cells, a 1:500 

dilution was used. Rabbit anti-HA antibody (#H6908, Sigma) and mouse monoclonal 

anti-c-myc antibody (#A00704, Genscript, Piscataway, NJ) were both used at 1:1000 

dilution in TBS/T with 1% non-fat dry milk and 1% NGS. The next day, membranes 

were washed thoroughly in TBS/T with 1% milk and incubated with horse-radish 

peroxidase (HRP) conjugated secondary antibody (1:5000) in TBS/T with 1% non-fat dry 

milk for 2 hr at room temperature at the manufacturer’s recommended dilution. After 

extensive washing, blots were developed using Lumi-Glo enhanced chemiluminescent 

detection reagent (Cell Signaling Technologies, Danvers, MA). If required, blots were 

stripped in buffer containing 62mM Tris-HCl (pH 6.7), 100mM β-mercaptoethanol and 

2% SDS at 50°C for 30 min with occasional rocking. Membranes were washed in large 

volumes of TBS/T. Blocking and subsequent steps were performed as mentioned 

previously. 

Proteasome inhibitor assay 

For proteasome inhibitor assay, LMH cells were plated at 1x10
6
 per well in 6-well plates 

and allowed to attach overnight. Cells were transfected with 4μg Pit1 isoform expression 

vector or empty vector and allowed to express the transfected gene for 24 hours, 

following which cells were treated with 20μM MG-132 (Cayman Chemical, Ann Arbor, 

MI) for 0, 1.5 hr or 6 hr. At the end of incubation, cells were washed with ice-cold PBS 
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and lysed in cell lysis buffer, and total protein was extracted and quantified as mentioned 

previously. Equal amounts of total protein from each treatment were separated by 12% 

SDS-PAGE, transferred to PVDF membrane and blotted with PIT1 antiserum (1:1000). 

HRP-conjugated goat anti-rabbit IgG (1:5000; KPL Inc., Gaithersburg, MD) incubation 

was for 2 hr at room temperature in TBS/T with 1% non-fat dry milk. Detection of 

immunoreactive bands was performed as mentioned previously. 

Analysis of promoter activity 

For analysis of promoter activity, LMH cells were used. Cells were plated at 3x10
5 

per 

well in 24-well plates in Waymouth’s medium with 10% FBS and penicillin/streptomycin 

and allowed to attach for 6 hr in plates coated with 0.1% gelatin.  Cells were then visually 

inspected to ensure proper attachment. Medium was replaced with Opti-MEM, and cells 

were transfected with Lipofectamine-2000 according to the manufacturer’s instructions. 

Typically, each well received 3 plasmids: Pit1 isoform expression vector (or empty 

vector), cGh promoter reporter vector pGL3-1727 (or empty reporter vector, pGL3-basic) 

and normalization vector. Empty reporter plasmid and normalization plasmids were 

purchased from Promega. cGh promoter reporter vector was a kind gift from Dr. F.C. 

Leung (University of Hong Kong). Cells were transfected in Opti-MEM for 6 hr, after 

which transfection medium was replaced with serum-free Waymouth’s medium 

supplemented with BSA and Penicillin/Streptomycin. Cells were allowed to express 

transfected genes for 24 hr, after which cells were washed once with PBS and lysed in 

100μl passive lysis buffer (Promega) with rocking for 15 min. Cell lysates were collected 

in a fresh microfuge tube and stored at -20°C until assay. Samples were assayed for 
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firefly luciferase (reporter) and renilla luciferase (normalization) activity using the Dual-

Luciferase Reporter Assay Kit (Promega) according to the manufacturer’s instructions. 

For each sample, the ratio of firefly over renilla was determined and reported as such. 

Data are presented as mean + SEM of at least three replicate experiments., and p <0.05 

was considered significant.  

Electrophoretic mobility shift assay (EMSA) 

5’-infra-red labeled EMSA probes for the proximal chicken PIT1 binding site were 

obtained from Integrated DNA Technologies (Coralville, IA) and are listed in Table 3. 

Equal amounts of 20μM sense and anti-sense probe dilutions were annealed in a 

thermocycler (95°C 5 min, followed by slow cooling in thermocycler) to obtain 10μM 

double-stranded DNA stock solutions. Probe stocks were diluted 1:200 in TE buffer to 

make working dilutions (50nM). Total protein (5μg) from LMH cells transfected with 

titrated amounts of individual Pit1 isoform expression vectors to yield equal protein 

expression were used for EMSA. Protein samples were incubated in the dark with either 

labeled PIT1 probe, labeled PIT1 scrambled probe, or a labeled PIT1 probe with 100-fold 

excess of unlabeled probe in binding buffer for 30 min at room temperature (RT). 

Binding reactions contained buffer (10mM Tris, 50mM NaCl, 1 mM DTT, pH 7.5), 50ng 

sheared salmon sperm DNA, 5mM MgCl2, 2.5mM DTT, 0.25% Tween 20 and 0.2% NP-

40. At the end of incubation, 2μl of 10x Orange G loading dye (LI-COR Biosciences, 

Lincoln, NE) was added to each reaction, and the entire binding reaction was loaded onto 

6% non-denaturing polyacrylamide gels pre-run for 30 min in the cold room. 

Electrophoresis was performed at 70V at 4ᵒC in the dark, after which the gels were 
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Table 3. EMSA Probes 

 

Name Sequence 

PIT1_Proximal_S ATGGCGAACACATCTGCATTTATGCAAGGA 

PIT1_Proximal_AS TCCTTGCATAAATGCAGATGTGTTCGCCAT 

PIT1_Proximal_Scrambled_S ATGGCGAACAACCGAAGCCAGATGCAAGGA 

PIT1_Proximal_Scrambled_AS TCCTTGCATCTGGCTTCGGTTGTTCGCCAT 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

scanned by Odyssey infra-red scanner (LI-COR) at intensity 4. For statistical analysis, 

background-subtracted average intensity of 3 replicate experiments was subjected to 

ANOVA after blocking for gel.  

Co-immunoprecipitation 

For co-immunoprecipitation to detect interaction between isoforms, LMH cells were 

plated at 1x10
6
 cells per well in 6-well plates. Cells were transfected with 4μg of N-

terminally HA- or c-myc tagged Pit1 isoform expression vectors using Lipofectamine 

2000 according to manufacturer’s instructions. Twenty four hours after transfection, cells 

were washed twice with ice cold PBS with 1mM MgCl2, 0.1mM CaCl2 and lysed in lysis 

buffer (10mM HEPES, 150mM NaCl, 1mM EGTA, 0.1mM MgCl2) supplemented with 

PMSF and HALT™ Protease and phosphatase inhibitor cocktail (Thermo Scientific, 

Rockford, IL). Cells were rocked in lysis buffer for 30 min on ice, scraped and 

centrifuged at 14000xg for 15 min. The supernatant was transferred to a fresh 1.5mL 

tube, and an aliquot was quantified using Coomassie Plus™ protein assay reagent. For 

each transfection, equal amounts of fresh whole cell lysate (typically 300μg) were 

immunoprecipitated using either 1.0μg mouse monoclonal anti-c-myc antibody 

(Genscript) or normal mouse IgG (Jackson Immunoresearch). Lysates were incubated in 

500μl total volume for 1 hr at 4ᵒC with end-over-end turning.  Protein A/G agarose beads 

(Cell Signaling Technologies Inc.) (20μl per tube) were added, and the entire reaction 

was incubated at 4ᵒC overnight with turning. The beads were then washed four times in 

lysis buffer (composition as before, but with no protease and phosphatase inhibitor). 

Briefly, tubes were centrifuged at 1000xg for 5 min at 4°C, and the supernatant was 



63 

 

carefully aspirated out. Fresh lysis buffer (1ml) was added to each tube, and tubes were 

rotated at 4ᵒC for 10 min. At the end of the last wash, beads were resuspended in 20μl 

LSB with β-mercaptoethanol, boiled, and resolved by SDS-PAGE (10% gels). PVDF 

membranes containing the electrophoresed proteins were blocked with 5% non-fat dry 

milk in TBS/T overnight at 4ᵒC. The following day, membranes were washed in TBS/T 

and incubated with primary antibody [1:1000 rabbit anti-HA (Sigma)] overnight at 4ᵒC. 

After washing extensively with 1% non-fat dry milk in TBS/T, membranes were 

incubated with 1:5000 dilution of HRP-conjugated goat anti-rabbit IgG (KPL). 

Immunoreactive bands were detected as mentioned previously. Membranes were then 

stripped, and re-probed with anti-PIT1 anti-serum (1:1000) as described previously. 

 

Co-immunoprecipitation for detecting interaction of isoforms with cCBP(C-terminal 

myc-tagged C-784 amino acids) was done essentially the same way, except that 15% gels 

were used for electrophoresis. Lysates from cells transfected with empty vector, Pit1 

isoforms, C-terminal cCBP or both Pit1 isoforms and C-terminal cCBP were 

immunoprecipitated using c-myc antibody, and membranes were blotted with anti PIT1 

antiserum.  

Detection of phosphorylated PIT1 

Chicken pituitaries (e11, 120 per replicate) were dissected out and dispersed as described 

previously. The cells obtained were plated as 2 wells per treatment in a 6-well plate and 

cultured for 24 hr in DMEM/F12 supplemented with BSA, Penicillin/Streptomycin and 

insulin. The following day, cells were treated for 0, 1.5 or 6 hr with 10
-7

M CORT. At the 
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end of CORT treatment, cells were washed twice with ice-cold PBS/Ca/Mg and lysed in 

250μl lysis buffer [20mM Tris-HCl (pH 7.5), 150mM NaCl, 1mM EDTA, 1mM EGTA, 

1% Triton X-100)] containing 1mM PMSF and HALT™ Protease and Phosphatase 

inhibitor cocktail (Thermo Scientific) per well for 15 min on ice with rocking. Lysates 

were collected and centrifuged at 14000xg for 20 min at 4°C. The supernatant was 

transferred to a fresh tube and protein yield was quantified as mentioned previously.  

 

For antibody-bead crosslinking, 70μl of Protein A/G agarose (Cell Signaling 

Technologies, Inc.) beads were washed twice in PBS and incubated in the presence of 

20μl PIT1 antiserum diluted in 910μl PBS for 4 hr at 4°C with end-over-end turning. At 

the end of incubation, beads were washed once with ice-cold PBS to wash off unbound 

antibody. The antibody-bead mixture was crosslinked with 20mM Dimethyl pimelimidate 

dihydrochloride (DMP; Sigma) in 0.2M triethanolamine (Sigma) pH 8.7 for 30 min at 

room temperature with rotation. Beads were centrifuged at 1000xg for 5 min, and the 

cross-linking was repeated with fresh triethanolamine/DMP solution. The reaction was 

quenched with 0.2M ethanolamine pH8.0 (Santa Cruz Biotechnology) for 1 hr at room 

temperature with rotation. After quenching, beads were aliquoted into 3 tubes.  

 

Typically, 200μg of total protein was immunoprecipitated in IP buffer (composition same 

as lysis buffer except with 0.1% Triton X-100) with either PIT1 antiserum (cross-linked 

to beads) or normal rabbit serum in 500μl total volume at 4°C overnight with rotation. 

The next day, immunoprecipitates were washed 4 times with IP buffer. For each wash, 

reactions were centrifuged at 1000xg for 5 min at 4°C, the supernatant was aspirated off, 
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and beads were rotated for 10 min at 4°C in fresh buffer. At the end of the final wash, 

20μl of LSB was added to the beads and incubated at 37°C in a water bath for 30 min. 

For input, 10μg (5%) protein was diluted in LSB and incubated the same as IP reactions. 

Immunoprecipitated samples were separated in 10% polyacrylamide gels with SDS. 

Electrophoresed proteins were transferred to PVDF membranes and blocked with TBS/T 

with 2% normal goat serum. Blots were probed with 1:500 dilution of rabbit anti-

phospho-threonine antibody (Cell Signaling Technology) in TBS/T with 1% normal goat 

serum overnight at 4ᵒC. HRP-conjugated goat anti-rabbit secondary antibody (1:5000) 

treatment was in TBS/T+1% normal goat serum for 2 hr at room temperature. 

Immunoblot detection was performed as before. Blots were stripped and blotted for PIT1 

as mentioned previously, except a 1:500 dilution of primary antibody was used.  

 

Statistical analysis 

For luciferase reporter assays, the ratio of firefly to renilla luciferase was subjected to 2-

way analysis of variance (ANOVA) using the MIXED procedure in the Statistical 

Analysis System (SAS; SAS Institute, Cary, NC). For determining significant differences 

between band intensities in EMSA, mean average intensities from 3 replicate experiments 

were subjected  to 1-way ANOVA after blocking for gel. For both analyses, differences 

in Least Squares Means (LSM) between treatments were determined by option PDIFF in 

SAS (version 9), and p<0.05 was considered statistically significant. 
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Results 

Cloning of Pit1 isoform cDNAs into expression vectors: Identification of a novel isoform 

mRNA 

At the start of this project, three Pit1 isoform mRNAs had been identified in chickens 

(Van As et al., 2000). However, translation of these isoform mRNAs to stable and 

functional proteins had not been demonstrated. To demonstrate translation of chicken 

Pit1 mRNAs into full length proteins, the isoforms were cloned into expression vectors. 

Chicken Pit1 isoforms Pit1α and Pit1β were amplified from chicken pituitary cDNA 

(e14) using forward and reverse primers (Table 1), and the amplicons were cloned into 

the p-CMV-Sport6.1 mammalian expression vector. Reverse primer binding to the 84-bp 

β-specific exon was used to differentiate between Pit1α and Pit1β. A different forward 

primer was used, along with the common reverse primer, to amplify Pit1γ. Since the 

same primer pair amplified the Pit1α and Pit1β isoforms (Fig. 5), it is possible to predict 

Pit1α mRNA to be present in e14 chicken pituitaries at a level substantially higher than 

Pit1β1. In fact, out of a total of 215 colonies screened, only 2 were found to contain the 

Pit1β1 clones. Recombinant plasmid constructs for each isoform were sequenced in both 

directions to confirm sequence integrity. Sequence comparison of Pit1 isoform cDNAs 

amplified from Ross broiler strain cDNA revealed few points of difference when 

compared with the sequence available at Ensembl, which is from Red Jungle Fowl.  
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Fig. 5. Pit1 gene structure. Exons are represented as boxes, and introns are represented as lines. Exons and 

introns not to scale. Line arrows denote forward and reverse primer for isoforms Pit1α and Pit1β. Filled 

arrow denotes forward primer for Pit1γ. Chevron denotes β-specific reverse primer used for identification 

of β-clones. β-specific exon is in yellow. Unique exon 1 of Pit1γ is in black. White represents region of 

gene encoding POU domain. (Adapted from Van As et al., 2000)  
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Sequencing results also revealed the presence of an isoform that lacked the first 26bp of 

the β-specific exon (Fig. 6). We predict this is a yet unidentified and novel isoform. To 

confirm that this was not a cloning artifact, we sequenced several other chicken pituitary 

mRNA samples of different ages (e11, e17, d32) which also showed the presence of this 

isoform. Initiation of translation of this novel isoform from the same site as Pit1α and 

Pit1β1would result in a completely different protein product that would not have amino 

acid sequence related to the reported PIT1 isoforms, except at the very N-terminal region 

up to the middle of the β-specific exon. However, if this isoform used a different ATG 

codon, it is possible to yield a protein product with a POU-domain similar in sequence as 

the other isoforms. Scrutiny of the cDNA sequence revealed only one such downstream 

ATG codon in the +2 frame which, if used, and if the transcript had been alternatively 

spliced, would result in a novel isoform of 315 amino acids, making this isoform the 

shortest of all known chicken PIT1 isoforms. This isoform is thus predicted to result from 

a combination of using an alternative translation start site as well as alternative splicing. 

A comparison of the mRNA structure of the isoforms is shown in Fig. 7.  

Determination of transcription start site of the isoforms by 5’RACE. 

It has been reported by Van As et al., 2004 that the Pit1 gene is transcribed as a single 

mRNA which then undergoes alternative splicing to derive isoforms Pit1α and Pit1β1, 

while a different mRNA, derived by alternative transcription start site (TSS) usage, leads 

to the Pit1γ isoform. To determine the TSS of the novel Pit1β2 isoform, and also to 

confirm if the TSS for the other isoforms is the same in Ross broiler strains as the Hybro 

G strain used by Van As et al., (2000), 5’ RACE was performed. Chicken pituitary e11  



69 

 

 

 

 

 

 
 

 

 

 

 

Fig. 6. Sequence alignment of Pit1β1 and Pit1β2. Pit1 gene structure is shown on top. Sequences were 

aligned using CLUSTALW. Dashed line in Pit1β2 denotes portion of β-specific exon not present in Pit1β2. 

Only relevant portion showing difference is represented. Exon 1 is in red. Green shading represents 

beginning of portion of gene common to all isoforms. 
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Fig. 7. Comparative structure of Pit1 isoforms. For each isoform, the gene is represented in the form of 

introns (lines) and exons (boxes) along with transcription start site (TSS), 5’-untranslated region and mode 

of splicing, if present. Coding sequence is shown for all isoforms as exons (boxes). White boxes represents 

portion of gene encoding the POU-domain. ATG shows the position of translation start site. 
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total RNA was reverse transcribed with reverse primer annealing to a common sequence 

located at the 3’-end. After tailing, cDNAs were amplified with two sets of primers to 

separate out Pit1α from Pit1β1, Pit1β2 and Pit1γ. These two sets of reactions were 

cloned into pGEM vector and multiple clones obtained and sequenced. Any insert not 

aligning to chromosome 1 in BLAST was not pursued further. Correct inserts were 

aligned with the Pit1 gene in Ensembl and the TSS determined.  We found the TSS of the 

mRNA giving rise to Pit1α and Pit1β1 to be 78base pairs upstream of the site previously 

reported, while our findings for Pit1γ showed the TSS to be 8base upstream from the site 

previously reported (Fig. 8). No clones containing Pit1β2, the novel isoform we 

discovered, were found in this screen. We derived cDNA from total pituitary RNA by 

reverse transcription with a primer that annealed to an exon-exon junction found only in 

Pit1β2 (Primer 5’RACE_Diag_Beta2, table 3). This cDNA was tailed, amplified with 

AAP/PIT1beta2-rev and sequenced. We found Pit1β2 also to be processed from the same 

TSS as Pit1α and Pit1β1, and we predict this isoform arises as a result of an alternative 

translation start site usage, from an mRNA that has been alternatively spliced 

downstream of the new start site (Fig. 8).  

PIT1 isoform protein expression in LMH cells 

To determine whether or not all isoform mRNAs identified can be translated into 

proteins, recombinant plasmids expressing cPIT1 isoforms were transfected into LMH 

cells. While this report was under preparation, expression of PIT1α and PIT1γ in non-

pituitary cells was reported by Murase et al., 2011. We demonstrated expression of all 
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Fig. 8. 5’Rapid Amplification of cDNA Ends (RACE) of Pit1 isoforms. (A) Alignment of 5’RACE  

products of Pit1α, Pit1β1 and Pit1β2 with genomic sequence.. (B) Alignment of 5’RACE product of Pit1γ 

and genomic sequence. Transcription start site predicted from our results is denoted with arrow.Yellow 

denotes 5-untranslated region, green denotes translated sequence. Red box denotes translation start site 

(ATG). 

  



73 

 

four isoforms by Western blot with rabbit PIT1 antiserum, as shown in Fig. 9. However, 

we found differences in the levels of expression between the isoforms in both HEK-293 

(Fig. 9A) and LMH (Fig. 9B) cells. There were robust expression levels for isoforms 

alpha and beta2, while isoforms beta1 and gamma showed reduced levels with equal 

amounts of plasmid DNA transfected. In fact, we failed to detect PIT1γ expression in 

HEK293 cells (Fig. 9A). To address the possibility that one or more isoforms were 

subjected to proteosomal degradation, we conducted a proteasome inhibitor assay. LMH 

cells transfected with PIT1 isoform expression plasmids were allowed to express the 

transfected gene for 24 hours, following which cells were treated with MG-132 (20μM) 

for 0, 1.5 and 6 hr. However, we found no difference in expression after 6 hr of 20μM 

MG-132 treatment (Fig. 10). It should be mentioned that we tried using longer incubation 

periods (12 hr, and 24 hr) in the presence of MG-132, but these led to massive cell death 

at the concentration used.  

Also, we detected multiple bands, especially for PIT1α and PIT1β1 using the PIT1 

antiserum. These can be shorter isoforms resulting from premature translation 

termination, alternative downstream translation initiation site usage, shorter cleavage 

products derived from a full-length precursor, or products of partial degradation. To 

determine whether these were shorter peptides arising from the use of downstream 

translation start sites or whether they were degradation products, we used N- and C-

terminally HA tagged isoform constructs. As seen in Fig. 11B & C, multiple bands were 

not detected when an N-terminally tagged construct was used, but present when the tags 

were placed at the C-terminus (Fig. 11D & E), thus suggesting these were protein 



74 

 

 

 

 

 

 

 

 

 

 

Fig. 9. PIT1 isoform protein expression in HEK-293 (A) and LMH (B) cells. For each cell type, PIT1 

isoform expression vector or empty vector (4μg) were transfected  using Lipofectamine-2000. Total protein 

was extracted, resolved by SDS-PAGE and blotted with anti PIT1 antiserum. Images are representative of 3 

separate experiments. 
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Fig. 10. Proteasome inhibitor assay. LMH cells were plated at 1x10
6
 per well in 6-well plates and 

transfected with 4μg Pit1 isoform expression vector or empty vector and allowed to express the transfected 

gene for 24hours, following which cells were treated with 20μM MG-132 for 0, 1.5 hr or 6 hr. Equal 

amount of total protein from each treatment was resolved by SDS-PAGE, and blotted with PIT1 antiserum. 

Results shown are representative of two separate experiments. 
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Fig. 11. Expression of N-terminal and C-terminal HA and c-myc tagged PIT1 isoforms in LMH cells. LMH 

cells were transfected with N-terminal HA- and c-myc tagged PIT1 isoform expression vectors. Total 

protein was isolated, separated by SDS-PAGE, and blotted with anti-PIT1 antiserum (A), rabbit anti-HA 

antibody (1:1000) (B & D) and mouse anti-c-myc antibody (1:1000) (C & E).  
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products resulting from the use of a downstream in-frame translational start site. We 

examined the sequences of the isoforms to look for such ATG codons with Open Reading 

Frame Finder (ORF Finder, www.ncbi.nlm.nih.gov/projects/gorf/) and found several 

present. However, the possibility that these bands represent degradation products cannot 

be ruled out.  

An interesting observation was that an N-terminal tag on PIT1γ was not detectable by 

antibody directed against the tag. As a comparision of Fig. 11A vs. Fig. 11B & C reveals, 

even though detectable amounts of the PIT1γ isoform are present when blotted with the 

PIT1 antiserum, blotting with either anti-HA or anti-c-myc antibody failed to detect N-

terminally tagged PIT1γ. This suggests that the N-terminally located tag is either cleaved 

off or the N-terminus of the PIT1γ isoform is folded such that the tag is masked. 

Detection of endogenous PIT1 in chicken embryonic pituitary cells 

Even though all reported Pit1 isoform mRNAs are detectable in chicken embryonic 

pituitary cells by quantitative real-time PCR (Ellestad et al., 2011), whether or not all 

yield functional proteins is not known. Unfortunately, no antibodies are available that 

detect only one isoform but not others, making it impossible to answer this question. 

Hence, we took an alternate approach and resolved LMH whole cell extracts transfected 

with single PIT1 isoform expression vectors alongside e17 whole pituitary extracts by 

SDS-PAGE. The results can be seen in Fig. 12. From the results, it is difficult to conclude 

which isoforms are expressed. Endogenous PIT1α, the isoform most readily detected is 

resolved at the same position of the gel as overexpressed PIT1α, and the isoform slightly 

heavier than PIT1α in molecular mass is most likely PIT1β1; however, we cannot  

http://www.ncbi.nlm.nih.gov/projects/gorf/
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Fig. 12. Endogenous PIT1 from embryonic day 11 chicken pituitary cells. Whole cell lysates from e11 

primary cells were electrophoresed on the same gel with lysates from LMH cells transfected with either 

empty vector or a single PIT1 isoform. Anti-PIT1 antiserum (1:500) was used for immunoblotting. (N.S. 

denotes non-specific bands). 
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conclude whether the shorter bands represent isoforms β2 and γ or they are shorter 

products arising from downstream ATG codons. Some of the higher molecular weight 

bands possibly represent homo- and heterodimers between endogenous PIT1 isoforms. It 

is also possible that the endogenous expression level of one or more isoform is below the 

level of detection without overexpression. 

PIT1 isoform protein localization in LMH cells 

So far, only one study has looked at nuclear localization abilities of wild type and mutant 

human PIT1 (Kishimoto et al., 2002). A cluster of 6 basic residues in the POU domain of 

Oct-1 is known to determine nuclear localization. This cluster (RKRKRR) is conserved 

in all isoforms of PIT1 and is considered to be the putative nuclear localization signal 

(NLS). However, sub-cellular localization of none of the PIT1 isoforms had been 

demonstrated empirically in chicken at the time this experiment was planned and 

performed. Recently, Murase et al., 2011 reported the localization of PIT1α and PIT1γ to 

the nucleus in Cos-7 cells, and their data are in agreement with our results, which show 

localization of all the isoforms to the nucleus in LMH cells (Fig. 13).  

PIT1 isoform protein (C-terminal HA tagged) localization in chicken embryonic pituitary 

cells 

To determine the sub-cellular localization of PIT1 isoforms in chicken pituitary cells, 

plasmid constructs expressing epitope-tagged isoforms were used. Cells were transfected 

with C-terminal HA tagged PIT1 isoforms along with expression plasmid for golgi-

directed green fluorescent protein (GFP). Due to the low transfection efficiency of  
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Fig. 13. Sub-cellular localization of PIT1 isoforms in LMH cells. Cells were plated in  2-chamber slides 

and transfected with 2μg Pit1 isoform expression vector. Cells were fixed, permeablized, incubated with 

PIT1 antiserum (1:1000 dilution) at 4ᵒC overnight in PBS/ 2% NGS. Following secondary antibody 

(Rhodamine-conjugated goat anti-rabbit IgG) incubation, cells were incubated with DAPI, mounted in 

Fluoromount-G and visualized with a Zeiss fluorescent microscope using Axiovision LE software version 

4.7. Results shown are representative of two separate experiments. 

  



81 

 

primary chicken pituitary cells, transfection was performed in suspension. High cell 

numbers, close to 2x10
6
 cells per chamber in 8-chambered slides were used to get high 

cell density. GFP expression was observed as punctuate green staining outside the 

nucleus. Cell nuclei were stained with DAPI. Localization of tagged PIT1 isoforms in 

e19 chicken pituitary cells was also predominantly in the nucleus (Fig. 14). We also 

examined if CORT had an effect on the localization. Transfected cells were treated with 

CORT (10
-7

M) 24 hr after transfection, but CORT had no effect on localization of the 

isoforms in chicken embryonic pituitary cells (data not shown). It should be noted that 

even though almost all PIT1 expression in both chicken pituitary cells and when over-

expressed in LMH cells was nuclear, isoform proteins were readily detectable in whole 

cell lysate.   

Activation of the chicken Gh promoter by PIT1 isoforms in LMH cells 

To determine which, if any, of the PIT1 isoforms can activate the chicken Gh promoter, 

we performed a dual-luciferase reporter assay with a pGL3-1727 reporter vector in which 

the firefly luciferase gene is driven by -1727 to +48bp of the cGh promoter. This region 

of 1774bp of the cGh 5’flanking region has been shown to be sufficient for mediating 

glucocorticoid activation of cGh gene expression both in rat pituitary GH4C1 cells by 

dexamethasone (Ip et al., 2004) and chicken pituitary primary cells by CORT (Knubel, 

2010). However, for our purposes it was essential to perform the experiments in a 

situation where only one isoform of PIT1 would be present. We could not use a rat or 

mouse pituitary cell line as the cGh reporter has been shown to be activated in 

mammalian GH4C1 cells without added chicken PIT1. Non-pituitary chicken LMH cells  
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Fig. 14. Sub-cellular localization of PIT1 isoforms in chicken pituitary cells. Cells were plated in 8-

chamber slides and transfected with 2μg C-terminal HA-tagged Pit1 isoform expression vector. Cells were 

fixed, permeablized incubated with anti-HA antibody (1:1000 dilution) at 4ᵒC overnight in PBS/ 2% NGS. 

Following secondary antibody (Rhodamine-conjugated goat anti-rabbit IgG) incubation, cells were 

incubated with DAPI, mounted in Fluoromount-G and visualized with Zeiss fluorescent microscope using 

Axiovision LE software version 4.7. Images shown are representative of two separate experiments. 
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were plated (3x10
5 

per well in 24-well plates) on gelatin-coated plates. Cells were 

transfected with 1μg of either empty reporter vector backbone (pGL3-Basic) or the cGh 

reporter vector (pGL3-1727) along with specified amounts of Pit1 isoform expression 

vector and 20ng pRL-SV40 renilla luciferase normalization vector. The amount of 

expression vector transfected was kept constant (2μg) with empty expression vector 

(pCMV-Sport6.1). Initially, a dose-response study was conducted with 1ng, 10ng, 100ng 

and 1000ng of expression vector. Ratios obtained by dividing the firefly luciferase 

activity by renilla luciferase activity are shown in Fig. 15. Different letters denote 

significant differences of Least Squared Means between treatment groups (n=4, p<0.05). 

The isoforms PIT1α, PIT1β1 and Pit-β2 showed a dose-dependent activation of the cGh 

promoter, while PIT1γ did not activate the promoter even at the highest dose. The three 

activating isoforms showed lower activation at a dose of 100ng. However, no significant 

activation was seen at 10ng or below. In a pilot study, similar luciferase reporter assays 

(using 1000ng expression vector) were conducted in presence and absence of 10
-7

M 

CORT for 24 hr. We saw no difference in the activation of cGh promoter in presence of 

CORT, regardless of which PIT1 isoform was tested (data not shown).  

 

Since we had previously detected differences in the level of isoform protein expression 

from recombinant plasmid in LMH cells, we transfected additional wells with identical 

amounts of reporter, expression and normalization vectors and extracted total protein at 

the same time the other wells were lysed to obtain samples for reporter assays. Samples 

were resolved by SDS-PAGE and blotted with PIT1 antibody. As seen previously, 

amount of PIT1 protein expressed with same amount of plasmid transfected varied  
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 Fig. 15. Activation of the chicken Gh promoter by PIT1 isoforms in LMH cells. Figure shows dose-

dependent activation of the cGh promoter by PIT1 isoforms. For each dose, specified amount of expression 

plasmid was transfected along with either 1μg pGL3-Basic or pGL3-1727 along with 20ng pSV-40 renilla.  

Different letters denote significant differences of Least Squared Means between treatment groups Data 

shown are mean±SEM of 4 replicate experiments. 
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widely among the isoforms (Fig. 16). Blots were stripped and reprobed with mouse anti-

α-tubulin antibody (1:1000; sc-32293; Santa Cruz Biotechnology, Santa Cruz, CA) which 

confirmed that equivalent amounts of total protein were loaded.   

 

Since a difference in level of expression of PIT1 proteins was apparent, we titrated the 

amount of DNA transfected to obtain equal levels of PIT1 protein expression (Fig. 17). 

For each isoform, a lower and a higher dose was selected and protein expression 

determined by Western blot (Fig. 17B). The amounts of plasmids obtained from titrations 

that yielded equivalent amounts of PIT1 protein, were transfected into LMH cells and the 

promoter activity measured the same way as before. The total amount of plasmid DNA 

transfected was kept constant with empty pCMV-Sport6.1 vector. Once again, PIT1γ 

failed to activate the cGh promoter, even when the amount of PIT1 protein present was 

comparable to the other isoforms (Fig. 17A). A significant effect was seen when 

PIT1γ(3000ng)/pGL3-1727 is compared to pSport6.1/pGL3-1727, but we believe this 

result is due to an effect that the large amount of transfected PIT1γ has on renilla 

luciferase, as we saw a significant decrease of renilla activity at this dose. PIT1β1 gave 

the maximum activation of approximately 15-fold over empty expression vector. The 

amounts of PIT1α transfected were 10ng and 50ng, and neither of these doses activated 

the cGh promoter similar to the result seen in the dose-response experiment. Only the 

higher dose of PIT1β2 activated the cGh promoter. Taken together, these results indicate 

that all known isoforms of PIT1 except PIT1γ can activate the cGh promoter in non-

pituitary chicken hepatoma cells. 
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Fig. 16. Protein expression of PIT1 isoforms transfected with 1ng, 10ng, 100ng and 1000ng Pit1 

expression vector. PIT1 antiserum (1:1000) was used for immunoblotting. Blots were then stripped and 

reprobed with antibody against alpha tubulin (1:1000) which served as a loading control.  
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Fig. 17. Activation of the chicken Gh promoter by PIT1 isoforms in LMH cells. (A) shows activation of the 

cGh promoter by PIT1 isoforms when comparable amount of protein is expressed. The amount of PIT1 

isoform expressed was determined by Western blot (B). Alpha tubulin was used as a loading control. For 

each dose, specified amount of expression plasmid was transfected along with either 1μg pGL3-Basic or 

pGL3-1727 along with 20ng pSV-40 renilla. Asterisk denotes significant difference from cells transfected 

with empty expression vector. Dagger (†) denotes significant difference from cells transfected with 

expression vector along with empty reporter vector. Data shown is mean±SEM of 3 replicate experiments. 
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Isoform protein binding to the proximal PIT1 binding site on the cGh promoter 

Since we detected no activation of the cGh promoter by PIT1γ, we hypothesized that this 

inactivity may be due to the fact that PIT1γ cannot bind to the proximal PIT1 binding 

site. There are two putative PIT1 binding sites within 1kb of the cGh promoter. The 

proximal site is located at -104/-113 bp, and the distal site is located further upstream at -

533/-541bp. Of the two PIT1 binding sites present, we decided to test for binding of the 

isoforms to the proximal site, because that is the site which is known to be functionally 

important (Ip et al., 2004). Mutations in either both or only the proximal site abolish 

promoter activation in rat pituitary GH4C1 cells. Also, GH4C1 cell extracts bound only 

to the proximal site in vitro. DNA probes were designed spanning the proximal PIT1 

binding site and incubated with total protein lysates of LMH cells transfected with single 

Pit1 isoform expression vectors. The amount of expression vector transfected varied 

according to isoform to obtain comparable PIT1 protein expression levels. In our 

experiments, we found specific significant binding of all isoforms except PIT1γ to the 

proximal PIT1 binding site (Fig. 18A). The binding showed by PIT1γ was less than 

others that was not statistically significant. This binding was successfully competed off 

using a 100-fold molar excess of unlabeled probe. A labeled mutant probe, with the 

proximal PIT1 binding sequence and neighboring bases mutated to a GC-rich sequence as 

opposed to the AT-rich sequence recognized by PIT1, showed no specific binding. The 

same mutation has been shown to result in no binding by rat PIT1 to the proximal site of 

the cGh promoter (Ip et al., 2004). Whole cell extract from cells transfected with empty 

expression vector showed some binding which was not competed off with excess 

unlabeled probe, confirming non-specific binding. The experiment was replicated 3  
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Fig. 18. Isoform protein binding to the proximal PIT1 binding site on the cGh promoter. (A)EMSA 

showing PIT1 isoform protein binding to the proximal PIT1 binding site on the cGh promoter (Top: Pit1-α 

and PIT1β1; Bottom: PIT1β2 and PIT1γ). Infra-red labelled DNA probes were designed spanning the 

proximal PIT1 binding site and incubated with total protein lysates of LMH cells transfected with single 

PIT1 isoforms expression vectors.  DNA-Protein complexes were resolved in 6% non-denaturing 

polyacrylamide gels. Boxes denote specific bands for each PIT1 isoforms. (B) Quantitation of PIT1 

isoform binding to cGh promoter. Means of background-subtracted average intensity of 3 replicate 

experiments were subjected to ANOVA after blocking for gel (p<0.05). The amount of expression vector 

transfected varied according to isoform to obtain comparable protein expression levels. (C) Western blot 

showing level of protein expression obtained with specifed amount of plasmid DNA transfected in samples 

used for EMSA. Alpha-tubulin was used as loading control.   
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times, and average binding for each isoform was quantified and compared with binding 

by pSport6.1-transfected LMH cell extract (Fig. 18B).  Since comparable amounts of all 

the isoform proteins were present in the cell lysates (Fig. 18C), we conclude that PIT1γ, 

in spite of possessing the POU-homeodomain and POU-specific domain identical to the 

other isoforms, lacks the ability to bind to the proximal PIT1 binding site of the cGh 

promoter. 

Effect of co-transfection of an isoform on the activity of another 

Expression of multiple protein products from a single gene by alternative transcription, 

translation and/or splicing is a mode of expansion of the genome. However, one would 

expect a functional aspect to this. Based on what our results showed so far, we found that 

isoforms PIT1α, PIT1β1 and PIT1β2 can activate the cGh promoter, while PIT1γ cannot. 

Among those isoforms that had an activating role, PIT1β1 seems to activate the promoter 

to a higher level when the amount of isoform protein present is equal for all isoforms. 

Arbitrarily classifying the isoforms as most activating (PIT1β1), activating (PIT1α and 

PIT1β2) and not activating (PIT1γ), we intended to see what effect the isoforms might 

have on the activity of each other.  

There are very few studies done looking at the effect of co-transfection of PIT1 isoforms 

on promoter activation. In sheep, two isoforms PIT1γ and PIT1δ, which lack exon 3 and 

exons 3, 4 and 5, respectively, act as dominant negative inhibitors of PIT1wt in 

regulation of the rat Prl promoter in HeLa cells (Bastos et al., 2006). Based on our results 

showing inability of PIT1γ to activate the cGh promoter, PIT1γ was hypothesized instead 

to have a negative and/or regulatory role. There are two possible mechanisms by which 
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that could be employed: i) PIT1γ occupies the PIT1 binding site, thus preventing 

activating isoforms from binding and ii) PIT1γ heterodimerizes with activating isoforms, 

thus preventing them from binding to the promoter. Our EMSA results showed that 

PIT1γ does not bind the cGh promoter, thus eliminating the first possibility. To test if 

PIT1γ sequesters an activating isoform, we co-transfected PIT1β1 and PIT1γ in LMH 

cells and evaluated cGh promoter activation. The amount of expression vector transfected 

for each isoform was such that they yielded comparable protein expression, and also the 

co-transfection had as much DNA transfected as the individual transfections.  As seen in 

Fig. 19A, the presence of PIT1γ did not affect the ability of PIT1β1 to activate the cGh 

promoter. The level of activation achieved by PIT1β1 in the presence of PIT1γ was 

comparable to that by PIT1β1 alone (n=3, p<0.05). Thus, PIT1γ does not negatively 

regulate activation of the cGh promoter by PIT1β1 in LMH cells. 

As mentioned previously, both PIT1α and PIT1β2 activate the cGh promoter. However, 

the level of activation achieved by these two isoforms is less than that of PIT1β1 if 

comparisons are made when comparable amounts of isoform protein are expressed. We 

asked the question if expressing them together leads to an additive or synergistic 

activation of the promoter. The amount of plasmid DNA transfected was determined 

from the results of titration experiments (Fig. 17A & B) to yield equal protein expression. 

As seen in the results presented in Fig. 19B, co-expressing PIT1α and PIT1β2 did not 

have an additive effect on cGh promoter activation. Another combination of activating 

isoforms, PIT1β1 and PIT1β2, was tested. In this experiment, like the others, amounts of 

plasmid DNA transfected were such that the doses activated the cGh promoter as well as 

gave comparable amounts of PIT1 protein expression. Results (presented in Fig. 19C)  
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Fig.19. Effect of co-transfection of an isoform on the activity of another. Two isoforms at a time were co-

transfected in LMH cells and cGh promoter activation was evaluated. The combinations tested were (A) 

PIT1β1 and PIT1γ; (B) PIT1α and PIT1β2; (C) PIT1β1 and PIT1β2; and (D) PIT1α and PIT1β2. The 

amount of expression vector transfected for each isoform was such that they yielded comparable protein 

expression, and also the co-transfection had as much DNA transfected as the individual transfections. For 

each dose, specified amount of expression plasmid was transfected along with either 1μg pGL3-Basic or 

pGL3-1727 along with 20ng pSV-40 renilla. Data shown is mean±SEM of 3 replicate experiments. 
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show an additive and possibly synergistic activation of the cGh promoter in the presence 

of both isoforms. The level of activation achieved by either 1000ng of Pit1β1 or 1000ng 

of Pit1β2 is significantly less than that obtained when 400ng of Pit1β2 and 600ng of 

Pit1β1 are simultaneously transfected (p<0.05, n=3). A fourth possible combination was 

tested in which Pit1β1 was transfected along with Pit1α (Fig. 19D). With this 

combination, significantly higher activation of the promoter was obtained with 600ng 

Pit1β1 transfected with 400ng Pit1α than with 1000ng of either isoform transfected alone 

(p<0.05, n=3). Taken together, these results suggest that PIT1β1, if expressed along with 

either PIT1α or PIT1β2, leads to an increased activation of the cGh promoter than either 

isoform expressed alone. In contrast, co-expression of PIT1α and PIT1β2, showed no 

additive or synergistic activation of the cGh promoter.  

Physical interaction between PIT1 isoforms co-expressed in LMH cells 

Even though PIT1 exists predominantly as a monomer in solution, it has been suggested 

that PIT1 binds DNA as a dimer, either as a homodimer or a heterodimer. Encouraged by 

our results showing increased activation of the cGh promoter by isoform combinations 

over isoforms expressed alone, we sought to determine if this was brought about by 

physical protein-protein interactions between the isoforms. LMH cells were transfected 

with expression vectors encoding N-terminal c-myc tagged PIT1β1 alone and in 

combination with N-terminal HA-tagged PIT1α or PIT1β2. Cells transfected with empty 

expression vector, HA-tagged Pit1α and HA-tagged Pit1β2 were also included in the 

experiment. Fresh lysates from each transfection were divided into two parts and 

immunoprecipitated with either mouse anti-c-myc antibody or normal mouse serum 
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(NMS). Immunoprecipitated samples were resolved by SDS-PAGE, blotted onto PVDF 

membrane and probed with rabbit anti-HA antibody. We performed this experiment in 

the presence and absence of DNA containing the PIT1 binding site(s). Employing this 

strategy, we were not able to demonstrate any protein-protein interaction between the 

isoforms by co-immunoprecipitation (Fig. 20). While individual isoforms were 

immunoprecipitated by antibodies directed against the tag, the potential dimerization 

partners were not co-immunoprecipitated.  We have also performed this experiment in rat 

pituitary GH4C1 cells, with the same result. However, in the absence of a positive 

control, we cannot conclude if the isoforms do not interact or if the interaction is transient 

and does not withstand the manipulation of protein extraction and immunoprecipitation.  

Physical interaction between PIT1 isoforms and chicken CREB-binding protein (cCBP) 

cAMP-mediated gene regulation can be either CREB-dependent or CREB-independent, 

and regulation of Gh in humans, despite the presence of functional CREs on the hGh 

promoter, appears to belong to the latter category (Cohen et al., 1999). The mechanism of 

CREB-independent activation postulated involves interaction of CREB-binding protein 

(CBP) with a gene-specific transcription factor bound to the promoter. CBP, by its 

intrinsic histone acetyltransferase (HAT) activity, remodels the local chromatin and also 

interacts with the general transcriptional machinery. Both rat and chicken Gh promoters 

lack a classical CRE core motif, but cAMP is involved in regulation of Gh in both 

species, and in rats the cAMP response is no longer present if the PIT1 binding sites are 

mutated (Treacy et al., 1991). This information pointed strongly towards a mechanism 
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Fig. 20. Assays for physical interaction between co-transfected isoforms. LMH cells were transfected with 

N-terminal c-myc tagged Pit-α alone and in combination with N-terminal HA-tagged PIT1β2. Cells 

transfected with empty expression vector, and HA-tagged PIT1β1 were also included in the experiment. 

Fresh lysates from each transfection were divided into two parts and immunoprecipitated with either mouse 

anti-c-myc antibody or normal mouse serum (NMS). Immunoprecipitated samples were resolved by SDS-

PAGE, blotted into PVDF membrane and probed with rabbit anti-HA antibody. Large arrow indicates the 

location of where PIT1α and PIT1β1 should be located. Blot on extreme left shows 5% input blotted with 

anti-PIT1 antiserum. Results shown are representative of 3 trials.  
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involving an interaction of PIT1 with CBP, a known interaction partner of several other 

transcriptional regulators and a target of phosphorylation by protein kinase A (PKA) and 

protein kinase C (PKC). We hypothesized that PIT1 regulation of cGh will involve 

interaction of PIT1 with CBP, and that the most activating isoform (PIT1β1) will show a 

higher level of interaction than either PIT1α or PIT1β2. The region of CBP essential for 

regulating Gh has been shown to be located at the C-terminus and contain a functionally 

active Histidine rich domain (C/H3). We cloned this domain of the chicken CBP into 

pCMV-Sport6.1 mammalian expression vector with a C-terminal c-myc tag. The 

translation product obtained from this vector should lack the CREB-binding domain of 

CBP, and any interaction seen in the presence of cGh promoter DNA, then, must be 

mediated by PIT1. We transfected LMH cells with c-myc-cCBP (1677-2442), and a band 

of the correct size (90KDa) was detected using anti-c-myc antibody (data not shown). For 

co-immunoprecipitation, LMH cells were transfected with empty vector, PIT1, cCBP 

(1677-2442), and PIT1/cCBP(1677-2442) with pGL3-1727 reporter vector. Lysates were 

immunoprecipitated with anti-c-myc antibody, run onto SDS-PAGE gel and blotted with 

anti-PIT1 antibody. Despite several attempts, we were not able to demonstrate interaction 

between PIT1 isoform(s) and cCBP (data not shown). 

Detection of phosphorylation of PIT1 

Phosphorylation of PIT1 appears to modulate its ability to bind cognate sequences in 

promoter regions of target genes. There is evidence of PIT1 phosphorylation in regulation 

of Prl and TSHβ expression (Steinfelder et al., 1992; Howard & Maurer, 1994). 
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However, there are conflicting reports about the requirement of PIT1 phosphorylation in 

Prl gene regulation.  

Unpublished results from our lab (Malkiewicz, 2003; Ellestad, 2010) have shown the 

involvement of p38 MAPK and MEK1/2 pathways in glucocorticoid (GC) induction of 

somatotroph differentiation and Gh gene expression. PIT1 is a known target of Ras, PKA 

and PKC pathways in mammals. Based on these results, we predicted an involvement of 

these signaling pathways in CORT-induced Gh expression. We hypothesize that the GC 

activates PIT1 protein by phosphorylation at a threonine residue, conserved in all chicken 

PIT1 isoforms (Thr263 in PIT1α; Thr291 in PIT1β; Thr242 in PIT1β2 and Thr255 in 

PIT1γ), as well as in PIT1 found in other mammalian species and in the related 

transcription factor Oct-1. To test this hypothesis, we sought to determine if CORT 

induces phosphorylation of PIT1. Chicken pituitary cells (e11, 1x10
7
 per treatment) were 

cultured in the presence of CORT (10
-7

M) for 0 (basal), 1.5 and 6 hr. These time points 

were chosen as previous results from our laboratory have shown that activation of 

signaling pathways and Gh expression begins at 1.5 hr and continues up to 6 hr. Total 

protein extracted from these cells was immunoprecipitated using anti-PIT1 anti-serum or 

normal rabbit serum. Immunoprecipitated proteins were washed and resolved by SDS-

PAGE. Proteins were transferred onto PVDF membrane and probed with rabbit 

polyclonal anti-P-Thr antibody. Membranes were stripped and probed with anti PIT1 

antiserum to show the presence of immunoprecipitated PIT1. This experiment was 

replicated 4 times, and even though we could detect phosphorylated PIT1 in one 

experiment after 6 hr CORT treatment, we could not detect this effect consistently (Fig. 

21).  
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Fig. 21. Assay for phosphorylation of PIT1 in response to corticosterone (CORT). Pituitary cells (e 11) 

cells were plated (1x10
7 
per well) in 6-well plates and treated with CORT (10

-7
 M) for 0, 1.5 or 6 hr. Total 

protein extracted from these cells was immunoprecipitated using anti-PIT1 anti-serum or normal rabbit 

serum. Immunoprecipitated proteins were washed and resolved by SDS-PAGE. Proteins were transferred 

onto PVDF membrane and probed with rabbit polyclonal anti-P-Thr antibody. Membranes were stripped 

and probed with anti PIT1 antiserum to show the presence of immunoprecipitated PIT1. This experiment 

was replicated 4 times. 

 

 



101 

 

Discussion 

The overall objective of this study was to characterize chicken Pituitary Specific 

Transcription Factor I (cPIT1) isoforms for their ability to regulate cGh gene expression. 

PIT1 has been shown to be essential for differentiation of somatotrophs and other anterior 

pituitary cells of the PIT1 lineage, as well as for spatial and temporal regulation of Gh 

gene expression. Multiple PIT1 isoform proteins are known to co-exist in anterior 

pituitary somatotrophs, lactotrophs and thyrotrophs, but the significance of having 

multiple isoforms is not known.  

 

The presence of three Pit1 isoform mRNAs in chicken was reported by Van As, et al. 

(2000). At the time this project was started, verification of chicken PIT1 isoform protein 

expression and functional characterization had not been done. Recently, Murase, et al. 

(2011) reported cloning and partial characterization of two PIT1 isoforms, PIT1α and 

PIT1γ for their ability to transactivate the cGh gene. However, our work is the first to 

report expression, functional characterization and investigation of the mechanism leading 

to differences in activation potential of the cGh promoter for all the known isoforms. We 

hypothesized that PIT1γ, due to a grossly different N-terminal transactivation domain 

completely lacking exon 1, will not transactivate the cGh promoter.  

 

The results reported here, with two exceptions, are from experiments performed in a non-

pituitary chicken cell line. Since multiple isoforms of PIT1 are present in cells of the 

PIT1 lineage, it was imperative to perform the experiments in cells that do not express 



102 

 

PIT1 endogenously. Gonadotrophs and corticotrophs are known to express Pit1 mRNA, 

which is suppressed at the level of translation (Simmons et al., 1990; Asa et al., 1996), 

thus making them unsuitable for our studies. Use of a chicken cell line was necessary, as 

initial trial experiments in a human cell line (HEK-293) showed suppression of protein 

expression of one of the isoforms (PIT1γ). A luciferase reporter gene driven by 1774bp 

of the cGh promoter was used to evaluate transactivation properties of the cPIT1 

isoforms. This reporter construct gave specific dose-dependent activation of the cGh 

promoter in the presence of over-expressed PIT1. Thus, we conclude this to be an 

appropriate system for our studies.  

 

In our attempt to clone full-length isoform cDNAs into an expression vector, we 

identified a novel isoform (PIT1β2) that lacks 26bp at the 5’-end of the β-specific 84bp 

exon present in PIT1β1 and PIT1γ. We predict that this isoform is translated from an 

initiation codon located in exon 1 downstream of the start site used by Pit1α and Pit1β1 

from an mRNA that is alternatively spliced (Fig. 7). This isoform, which we named 

Pit1β2, differs from the other known isoforms in the N-terminal transactivation domain, 

while the C-terminal POU-domain is conserved, and PIT1β2 is the shortest of all PIT1 

isoforms, comprising 315 amino acids.  

 

5’RACE was performed to identify the TSS of the isoforms.  PIT1 isoforms α, β1 and β2 

were found to have a common TSS. Thus, these three isoforms were transcribed as a 

single mRNA, which was then alternatively spliced and translated from alternate Met 

codons to give rise to the isoforms mentioned. However, our results indicate this TSS to 
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be located 128bp upstream of the translation start site. The TSS of the avian-specific 

isoform Pit1γ is different, and our findings for the TSS of Pit1γ show the initiation of 

transcription within introns 1, 90bp upstream of translation start site.  

 

Protein expression of chicken PIT1 isoforms from recombinant plasmid revealed certain 

interesting points. PIT1γ protein was either not expressed or very unstable in non-chicken 

cell lines. Even when detectable in a chicken cell line, the level of expression was lower 

than other isoforms when the same amount of plasmid was transfected. Based on our 

results, it does not appear likely that this isoform is subjected to proteosomal degradation, 

and the impaired translation is not due to an imperfect Kozak sequence, because 

expression was also lower than the other isoforms when the endogenous sequence was 

replaced by a perfect Kozak sequence. A possible mechanism behind such regulated 

expression might be phosphorylation of PIT1γ, a modification that unmasks a hidden 

degradation signal. However, in absence of isoforom specific antibody this could not be 

tested empirically. Also, post-translational modifications of this isoform appear to be 

different than the others, as demonstrated by either masking or cleavage of an epitope tag 

placed at the N-terminal end of the protein. It should be mentioned that the level of 

expression of PIT1β1 was also lower than that observed for PIT1α and PIT1β2 in our 

transient transfection experiments. 

 

A consistent feature of over-expression of PIT1 isoforms in LMH cells was the presence 

of multiple bands detected when blotted with the PIT1 antiserum. The identities of these 

peptides are not known. The presence of multiple in-frame start codons in the PIT1 
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protein sequence gives rise to the possibility that these are stable, shorter peptides which 

differ from each other in their N-terminus. While the possibility that these are products of 

proteolytic degradation exists, results from Western blots for N- and C-terminally 

epitope-tagged proteins strongly indicate otherwise. As shown in Fig. 11, we detected 

single bands when N-terminally tagged isoforms were probed with antibody against the 

tag, but multiple bands were detected when the same lysates were probed with the PIT1 

antiserum. Multiple bands were also detected when the tag was placed at the C-terminus. 

If an endopeptidase was involved, we would expect to see multiple bands with N-

terminally tagged constructs with antibody directed against the tag. We detected these 

shorter products in both fresh and freeze-thawed lysates, thus suggesting these are not 

degradation products arising after denaturation of protease inhibitors used in protein 

extraction. Protein sequencing (N-terminal sequencing) might be used as a tool to 

determine the identity of these bands. 

 

The functional significance of these shorter proteins is not known. In mammals, a 

functional isoform arises from using a downstream in-frame Met codon that activates the 

Prl promoter just like PIT1, while it has no effect on Gh promoter activation (Voss et al., 

1991). Future studies are warranted to find out whether these shorter proteins in chicken 

are functional and can be designated as novel isoforms. However, we are not certain if 

these shorter isoforms are stable in pituitary somatotrophs. 

 

Luciferase reporter assays with a construct containing -1727/+48 of the cGh promoter 

driving expression of a reporter gene showed that cells expressing any PIT1 isoform 
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activated the cGh promoter significantly over cells  expressing no PIT1. The response 

was found to be specific and dose-dependent. For the highest dose transfected, the 

isoforms PIT1α, PIT1β1 and PIT1β2 gave a 10-fold activation of the cGh promoter over 

cells expressing empty vector, while for PIT1γ the activation was about 3-fold. These 

results are in agreement with comparable work done with PIT1α and PIT1γ by Murase et 

al. (2011) in CHO-K1 cells. However, even though the activation caused by PIT1γ is 

statistically significant compared to that caused by empty expression vector, it is not 

significant when compared with that achieved with an empty reporter vector. This may 

indicate that the activation is non-specific and thus, we should exercise caution in 

interpreting it. At a lower dose of 100ng, PIT1γ lost its ability to transactivate the cGh 

promoter, while the other isoforms still exhibited more than 5-fold activation of the 

promoter.  

 

Due to the lower abundance of PIT1γ protein in transfected cells, we wanted to ensure 

expression of comparable levels of proteins when promoter activities were tested. In such 

titration experiments, we had to transfect very low amounts of PIT1α and PIT1β2 to 

obtain protein expression comparable to that obtained with much more Pit1β1 and Pit1γ 

expression vectors. At such doses, PIT1γ (3000ng) resulted in a 3-fold activation of the 

promoter, but this was not significantly different than when an empty reporter vector was 

used. We compared these two results, because expressing 3000ng of PIT1γ had resulted 

in a suppression of the renilla luciferase. Similar suppression was not seen with the doses 

of other isoforms transfected. When comparable protein expression was obtained, PIT1β2 

resulted in a 20-fold activation of the promoter, significantly higher than those by PIT1α 
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and PIT1β2, while the last two were not significantly different from each other. Overall, 

our results indicate that PIT1γ is not as capable of transactivating the cGh promoter as the 

other isoforms. This is actually what we hypothesized based on the fact that the structure 

of the N-terminal transactivation domain of PIT1γ is markedly different from the other 

isoforms. A limited activation is possible because even though the N-terminal domain is 

primarily involved in transactivation of target genes, some residual transcriptional 

activation is also associated with the POUHD (Theill et al., 1989; Ingraham et al., 1990). 

However, in our experiments, activation of the cGh promoter by PIT1γ was comparable 

to the effect of PIT1γ on an empty reporter construct. Thus, the activity of PIT1γ, if any, 

on the Gh promoter is questionable.  

 

All the isoform proteins were found to localize to the nucleus in both LMH and 

embryonic chicken pituitary cells. Localization of PIT1 to the nucleus has been shown in 

turkey (Weatherly et al., 2001), and recently, Murase et al. (2011) demonstrated nuclear 

localization of PIT1α and PIT1γ in Cos-7 cells. We demonstrated nuclear localization of 

all known chicken PIT1 isoforms to the nucleus of LMH cells and chicken embryonic 

pituitary cells. Thus, inability to localize to the nucleus is not responsible for the lack of 

activation of cGh promoter by PIT1γ. 

 

The current model of PIT1 regulated gene transcription involves PIT1 binding, via the 

POU-domain, to AT-rich sequences in the target gene promoter, followed by recruitment 

of other factors to facilitate transcription. Therefore, we decided to test if all PIT1 

isoforms bind to the functional, proximal PIT1 binding site to determine if reduced 
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activation by PIT1γ is due to lack of binding to the cGh promoter. The proximal PIT1 

binding site (ATCTGCAT) (Ohkubo et al., 1996) located at -104/-113 of the cGh 

promoter is the functional site (Ip et al., 2004, Murase et al., 2011). Previous results from 

our laboratory have shown that PIT1 binds the proximal site with increased affinity after 

1.5 hr of CORT treatment (i.e., before the initiation of Gh gene expression) and this 

decreases at 6 hr (Narayana and Porter, unpublished). However, these experiments were 

done with endogenous PIT1 in chicken pituitary cells, and since the PIT1 antibody 

recognizes all the isoforms, the results are not isoform-specific. Results of EMSA with 

whole cell extracts of LMH cells transfected with individual PIT1 isoforms showed 

robust binding of PIT1α, PIT1β1 and PIT1β2 to the proximal PIT1 binding site contained 

within an infra-red labeled probe. This binding was specific, as no binding was detected 

with a scrambled probe, and the specific binding was competed off with 100-fold molar 

excess of unlabeled probe. Surprisingly, PIT1γ exhibited significantly reduced binding 

even when the level of protein expression was comparable among the isoforms. This 

result was contrary to our hypothesis, which was based on the fact that DNA-binding is 

mediated by the POU-homeodomain which is perfectly conserved among all the 

isoforms. Thus, it appears that the reduced activation of the cGh promoter by PIT1γ is 

due, at least in part,  to reduced binding of the same to the proximal PIT1 binding site.   

 

Since multiple PIT1 isoforms (PIT1α, PIT1β1 and PIT1β2) activated the cGh promoter 

but to different levels (PIT1β1>PIT1α/Pit-β2>PIT1γ), we wanted to see if any isoform 

had a regulatory effect on another. Very few studies have looked at the effects of the 

presence of one isoform on the other(s) in regulating target genes (Sporici et al., 2005), a 
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condition that is encountered in the PIT1 expressing cells of the anterior pituitary. 

Specifically, we were interested in a possible negative regulatory role of PIT1γ on one of 

the activating isoforms. In a previous report, Bastos et al. (2006) have shown that ovine 

PIT1γ and PIT1δ, which showed no activation of the rat Prl promoter in HeLa cells, 

functioned as dominant negative repressors of PIT1 (wild type) when expressed together. 

To this end, we co-expressed PIT1β1 and PIT1γ in LMH cells to investigate a possible 

effect on cGh promoter activity. According to our results, co-transfection of PIT1γ did 

not have an effect on the transactivation potential of PIT1β1. The two other activating 

isoforms, PIT1α and Pit-β2, were also co-expressed individually with Pit-β1 to see if the 

combination leads to a synergistic activation of the cGh promoter. As seen from our 

results, co-expressing either PIT1α or PIT1β2 with PIT1β1 led to stimulation of the cGh 

promoter to a level significantly higher than that achieved with either isoform transfected 

alone. In these experiments, the doses were chosen such that they activated the cGh 

promoter and at the same time led to comparable levels of protein expression. For the 

combination PIT1α with PIT1β1, there is a possibly synergistic activation of the Gh 

promoter, while for PIT1β1 and PIT1β2, the combined effect is likely additive. Our 

results are the first to demonstrate such effects of co-transfection of PIT1 isoforms in 

chicken for any PIT1 regulated gene. 

 

Since PIT1 is known to bind DNA as a dimer (Holloway et al., 1995; Jacobson et al., 

1997), we wanted to test if the additive or synergistic effects shown by isoform co-

transfection are results of physical protein-protein interactions between the isoforms. We 

employed co-immunoprecipitation to detect PIT1β1/PIT1β2 and PIT1β1/PIT1α 
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heterodimerization. Co-immunoprecipitations in our conditions failed to capture any such 

physical interaction between the isoforms. However, in the absence of a positive control 

for known protein-protein interactions, we are reluctant to conclude that the isoforms do 

not form a heterodimer. It is entirely possible that the interaction may not be strong 

enough to withstand the physical stress of cell lysis and subsequent immunoprecipitation. 

Other reports of heterodimerization (Sporici et al., 2005) have employed bacterially 

expressed PIT1 protein with GST tags. In these experiments, in vitro translated PIT1 

proteins were purified and incubated with their dimerization partners that were obtained 

in a similar manner. These conditions provide highly enriched proteins and are not 

physiologically similar to conditions in vivo.  

 

Involvement of cAMP in GH synthesis has been shown in several species (Copp and 

Samuels, 1989; Tansey et al. 1993; Shepard et al. 1994, Argenton et al. 1996, Wong et 

al. 1996), and for promoters lacking a core CRE motif, the cAMP effect is thought to be 

mediated by PIT1 through phosphorylation and recruitment of CBP to the transcription 

complex (Xu et al., 1998, Zanger et al., 1999; Cohen et al., 1999). As seen from our 

results, PIT1β1 resulted in significantly higher activation as compared to PIT1α and 

PIT1β2. We hypothesized that enhanced interaction of PIT1 with CBP, resulting in faster 

recruitment of the same to the transcription initiation complex, is the mechanism 

responsible for the effect. To test this, we transfected c-myc-tagged C-terminal 773 aa of 

cCBP (cCBP773) along with PIT1β1 into LMH cells, but once again we failed to detect 

protein-protein interaction between PIT1 and cCBP by co-immunoprecipitation. Thus, 

our co-immunoprecipitation results were inconclusive. 
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The phosphorylation status of PIT1 response to CORT in e11 chicken pituitary cells was 

investigated using an anti-P-threonine antibody. PIT1 is a target of phosphorylation by 

PKA and PKC pathways in mammals. Previous (Bossis and Porter, 2003) and 

unpublished results from our lab have shown that GC induction of chicken somatotroph 

differentiation and Gh gene expression requires the involvement of p38 MAPK and 

MEK1/2 pathways (Malkiewicz, 2003; Ellestad, 2010). PIT1 is known to be 

phosphorylated at a conserved Thr residue located in the POU-domain that is conserved 

across isoforms. Also, CORT induces increased binding of PIT1 to the proximal Pit-

binding site of the cGh promoter (Narayana and Porter, unpublished), which can be a 

result of phosphorylation-induced conformational change. However, the requirement of 

phosphorylation seems to vary according to the gene being regulated and the species 

being tested. No report of PIT1 phosphorylation exists for any avian species. 

Unfortunately, we were not able to consistently detect phosphorylation of endogenous 

PIT1 from e11 chicken pituitary cells, either under basal or CORT-stimulated conditions. 

 

 

This project began with the hypothesis that the PIT1 isoforms will differ in their ability to 

activate the cGh promoter, and that this difference will be due to structural variations in 

the N-terminal transactivation domain. The first part of the hypothesis was supported, as 

three isoforms exhibited significant activation of the promoter, while PIT1γ showed 

minimal activation, if any. Even though we initially thought the isoforms will not differ 

in their ability to bind to the cGh promoter proximal PIT1 binding site, we were proven 
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wrong. PIT1γ showed no binding to this site, thus providing a possible explanation as to 

why it may not function as the other isoforms. Co-expression of PIT1γ did not lead to 

suppression of activation by PIT1β1, while co-expression of either PIT1α or PIT1β2 with 

PIT1β1 led to increased activation of the cGh promoter. The mechanism leading to this 

increased activation is not known. In conclusion, in this study we have identified a novel 

isoform of chicken PIT1 (PIT1β2) and have provided a comparative account of the 

transactivational properties of chicken PIT1 isoforms to regulate the cGh promoter. We 

have also postulated a possible mechanism behind the difference noted, and speculated 

on the purpose of having multiple isoforms of the same protein in the same cell type 

involved in the regulation of a single gene. 
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Chapter 3: Conclusion and future directions 

Conclusion 

PIT1 is a POU-homeodomain transcription factor essential for pituitary-specific growth 

hormone (Gh) gene expression. Several PIT1 isoform mRNAs exist in chickens which 

have not been characterized. The main aim of this study was to determine which, if any, 

of the chicken PIT1 isoforms regulated the Gh promoter. Our study is the first to report a 

comparative functional characterization of all known PIT1 isoforms in an avian species. 

We showed that three of the isoforms, PIT1α, PIT1β1 and PIT1β2 regulated the cGh 

promoter, while PIT1γ did not. Results from gel-shift assays show that PIT1γ did not 

bind the proximal PIT1-binding site of the cGh promoter as well as the other isoforms, 

suggesting a possible mechanism behind the inactivity. Our results, did not suggest a 

negative regulatory role for this isoform. In contrast, there seemed to be a functional 

advantage for having multiple isoforms expressed simultaneously. PIT1β1, the isoform 

that activated the promoter to the greatest extent, when co-transfected with another 

activating isoform (PIT1α or PIT1β2) brought about a significantly higher level of 

activation than any isoform alone. Whether this increased activation required or was 

facilitated by heterodimerization of two isoforms is not known.  However, identification 

of isoforms with specific functions will facilitate identification of their interacting 

partners essential for Gh gene expression. 
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Future directions 

Our study aimed to determine the ability of the chicken PIT1 isoforms to regulate the 

cGh promoter. Since chicken pituitary cells express all known isoforms, and possibly 

unknown ones, it was essential to perform the experiments in a non-pituitary cell line. 

After performing trial experiments in mammalian and chicken cell lines, LMH cells (a 

chicken liver carcinoma cell line) were deemed to be suitable for our purposes. However, 

this is not the native environment of PIT1. Hence, even though we obtained specific 

activation of the Gh promoter using our reporter construct, our findings need to be 

confirmed in pituitary cells. We have weighed in on the option of using a rat pituitary cell 

line. However, previous work from our laboratory has shown that the cGh promoter can 

be activated in the rat pituitary GH4C1 cell line in absence of transfected chicken PIT1 

expression construct. Moreover, our trial experiments have shown significant 

downregulation of PIT1β1 protein expression from transfected plasmid in GH4C1 cells. 

Pituitary cells, in both mammals and birds, normally have about 10-fold less abundance 

of PIT1β mRNA and protein (Morris et al., 1991; Kurima et al., 1999; Van As et al., 

2000), and it seems that such comparative levels are regulated in a pituitary-specific 

manner.  

 

Testing the effect of individual isoforms in cells of pituitary lineage will involve selective 

knockout of the others. Given the fact that the isoforms are encoded from a single gene, 

knockout of the entire gene is not a possible solution. Short hairpin RNA (shRNA)-

mediated gene silencing appears to be the most attractive way to achieve this. However, 
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there are two main impediments that could make achieving this goal difficult. Normally, 

multiple shRNAs are tested, and often used simultaneously, to obtain substantial 

silencing of a gene. Since the differences between the isoforms encompass relatively 

short regions and all are located toward the 5’end, designing sufficiently unique shRNAs 

will prove to be a challenge. Furthermore, shRNAs against multiple isoforms will need to 

be delivered into chicken pituitary cells, which have very low (5-10%) transfection 

efficiency. No chicken pituitary cell line exists. A way around this problem might be the 

use of adenoviral constructs encoding the short RNAs or some other mechanism of direct 

delivery of the shRNA into pituitary cells in culture. 

 

Binding of endogenous PIT1 to the endogenous Gh promoter in chickens under both 

basal and CORT-stimulated conditions has been demonstrated by our laboratory 

(Narayana, 2010). However, isoform-specific binding has been demonstrated by us only 

with PIT1 isoforms over-expressed in a heterologous system. Isoform-specific 

monoclonal antibodies will be required to demonstrate endogenous PIT1 binding, and 

producing such antibodies, while not impossible, will be difficult, as they would need to 

be designed against minimal N-terminal differences among the isoforms, reducing the 

number of unique sequences that can serve as epitopes.  

 

Since the main area of research by our group is regulation of Gh, we have not tested the 

ability of the isoforms to regulate other PIT1 regulated genes, such as prolactin, thyroid-

stimulating hormone β-subunit, or growth hormone-releasing hormone receptor. Testing 
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activational abilities of PIT1 isoforms for these promoters will provide an estimate of the 

specificity of isoform function.  

 

It will also be of interest to know which isoform mRNA and proteins are expressed in 

which cells of the PIT1 lineage. Co-localization experiments using antibodies against 

hormones unique to cell types would have been a simple approach but for the fact that 

isoform-specific antibodies are not available. We are currently working on determining 

cell-type specific isoform mRNA expression. The approach involves FACS sorting of 

pituitary cells based on fluorescence emitted by antibodies directed against pituitary 

hormones to obtain homogeneous populations of pituitary cell types. RNA extracted from 

these populations will be reverse transcribed, and the presence of PIT1 isoform cDNAs 

will be determined using quantitative real-time PCR.  However, experiments 

demonstrating the presence of mRNA should always be supplemented by those showing 

protein expression.  

 

Our results have shown an additive or possibly synergistic effect of co-transfection of 

two isoforms. Since PIT1 is known to bind DNA as a dimer, we tested if two activating 

isoforms bound as a dimer. Also, while investigating a possible mechanism underlying 

high activation by PIT1β1 compared to others, we tried to determine if PIT1β1 showed 

increased and tighter interaction with CREB-binding protein (CBP). However, we could 

not detect any interaction between the isoforms or between PIT1 and CBP by co-

immunoprecipitation. Previous reports of dimerization of PIT1 have all employed 

purified in vitro translated proteins, conditions that do not represent the actual cellular 
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environment (Ingraham et al., 1990; Holloway et al., 1995; Sporici et al., 2005). Reports 

of interactions of PIT1 with other transcription factors or transcriptional activators, with 

one exception of PIT1 interaction with GATA2 (Gordon et al., 1997), have all employed 

in vitro translated purified protein as well (Voss et al., 1991; Verrijzer et al., 1992; Nalda 

et al., 1997) . We do not know if the isoforms do not dimerize, or if the interaction is 

dynamic, and therefore, transient. It will be a sensible approach to first test dimerization 

in vitro by other methods such as FRET or surface plasmon resonance, and then use a 

functional assay such as a two-hybrid system to detect interactions in vivo. 

 

In conclusion, while our work made a significant contribution in elucidating the fine 

details of regulation of Gh by chicken PIT1 isoforms, much remains to be known about 

the process. Future advancements in technology will hopefully aid in circumventing the 

problems that are faced currently and help elucidate the mechanism of regulation of Gh 

gene expression in detail. 
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