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Weighting samples is important to reflect not only sample design decisions made 

at the planning stage, but also practical issues that arise during data collection and 

cleaning that necessitate weighting adjustments.  Adjustments to base weights are used to 

account for these planned and unplanned eventualities.  Often these adjustments lead to 

variations in the survey weights from the original selection weights (i.e., the weights 

based solely on the sample units’ probabilities of selection).  Large variation in survey 

weights can cause inferential problems for data users.  A few extremely large weights in a 

sample dataset can produce unreasonably large estimates of national- and domain-level 

estimates and their variances in particular samples, even when the estimators are 

unbiased over many samples.  Design-based and model-based methods have been 

developed to adjust such extreme weights; both approaches aim to trim weights such that 

the overall mean square error (MSE) is lowered by decreasing the variance more than 

increasing the square of the bias.  Design-based methods tend to be ad hoc, while 



 
 

Bayesian model-based methods account for population structure but can be 

computationally demanding.  I present three research papers that expand the current 

weight trimming approaches under the goal of developing a broader framework that 

connects gaps and improves the existing alternatives.  The first paper proposes more in-

depth investigations of and extensions to a newly developed method called generalized 

design-based inference, where we condition on the realized sample and model the survey 

weight as a function of the response variables.  This method has potential for reducing the 

MSE of a finite population total estimator in certain circumstances.  However, there may 

be instances where the approach is inappropriate, so this paper includes an in-depth 

examination of the related theory.  The second paper incorporates Bayesian prior 

assumptions into model-assisted penalized estimators to produce a more efficient yet 

robust calibration-type estimator.  I also evaluate existing variance estimators for the 

proposed estimator.  Comparisons to other estimators that are in the literature are also 

included. In the third paper, I develop summary- and unit-level diagnostic tools that 

measure the impact of variation of weights and of extreme individual weights on survey-

based inference.  I propose design effects to summarize the impact of variable weights 

produced under calibration weighting adjustments under single-stage and cluster 

sampling.  A new diagnostic for identifying influential, individual points is also 

introduced in the third paper.  
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Introduction 

 

Weighting samples is important to reflect not only sample design decisions made at the 

planning stage and use of auxiliary data to improve the efficiency of estimators, but also 

practical issues that arise during data collection and cleaning that necessitate weighting 

adjustments.  Planned and unplanned adjustments to survey weights are used to account 

for these practical issues.  Often these adjustments lead to variations in the survey 

weights that may be inefficient when making finite population estimates.   

The standard, theoretically-based methods for weighting are summarized by 

Kalton and Flores-Cervantes (2003).  However, when large variation in survey weights 

exists, it can potentially produce unreasonable point estimates of population means and 

totals and decrease the precision of these point estimates.  Survey practitioners commonly 

face this problem when producing weights for analysis datasets (Kish 1990; Liu et al. 

2004; Chowdhury et al. 2007).  Even when the estimators are unbiased, extreme weights 

can produce inefficient estimates.  Trimming or truncating large weights can reduce 

unreasonably large estimated totals and substantially reduce the variability due to the 

weights.  This reduces variance at the expense of introducing bias; if the variance 

reduction is larger than the squared bias increase, then the net result is an overall decrease 

in mean square error (MSE) of the estimate.  The various existing trimming methods use 

either design-based or model-based approaches to meet this MSE-reduction goal.   

 Variation in survey weights can arise at the sample design, data collection, and 

post-data collection stages of sampling.  First, intentional differential base weights, the 

inverse of the probability of selection, are created under different sampling designs.  For 

example, multiple survey analysis objectives may lead to disproportionate sampling of 



2 
 

population subgroups.  Issues that occur during data collection can also impact 

probabilities of selection, e.g., in area probability samples, new construction 

developments with a large number of housing units that were not originally listed may be 

discovered.  These are usually subsampled to reduce interviewer workloads, but this 

subsampling may create a subset of units with extremely large base weights.  Another 

example is subsampling cases for nonresponse follow up; subsequent weighted analysis 

incorporates subsampling adjustments.  Last, post-data collection adjustments to base 

survey weights are also commonly used to account for multistage sampling.  Examples 

include subsampling persons within households (Liu et al. 2004), adjusting for 

nonresponse to the survey (Oh and Scheuren 1983), calibrating to external population 

totals to control for nonresponse and coverage error (Holt and Smith 1979; Särndal et al. 

1992; Bethlehem 2002; Särndal and Lundström 2005), and combining information across 

multiple frames (such as telephone surveys collected from landline telephone and cell 

phone frames, e.g., Cochran 1967; Hartley 1962).   

 Often multiple adjustments are performed at each stage of sample design, 

selection, and data editing.  For example, the Bureau of Transportation Statistics (2002) 

used the following steps to produce weights in their National Transportation Availability 

and Use Survey, a complex sample using in-person household interviews to assess 

people’s access to public and private transportation in the U.S.: 

• Household-level weights: base weights for stratified, multistage cluster sampling; 
unknown residential status adjustment; screener nonresponse adjustment; 
subsampling households for persons with and without disabilities; multiple 
telephone adjustment; poststratification. 
 

• Person-level weights: the initial weight is the product of the household-level 
weight from above and a subsampling adjustment for persons within the 
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household; an extended interview nonresponse adjustment; trimming for disability 
status; raking; and a non-telephone adjustment. 

 

This example also illustrates that there can be a need for multiple weights based on the 

level of analysis (here household-level vs. person-level) that is desired from the sample 

data. 

 Next I provide some examples of various weighting adjustment methods that are 

performed in sample surveys.  This is not an all-encompassing list; refer to the post-data 

collection adjustment references and Chapters 4, 8, 16, and 25 in Pfeffermann and Rao 

(2009) for more detail. 

Example 0.1. Cell-based Nonresponse Adjustments.  These adjustments involve 
categorizing the sample dataset into cells using covariates available for both respondents 
and nonrespondents that are believed to be highly correlated with response propensity 
and key survey variables.  Assuming that nonresponse is constant within each cell 
(“missing at random;” age/race/sex are often used in household surveys), the reciprocal 
of the cell-based response rate is used to increase the weights of all units within the cell.  
Propensity models across all cells using the cell-based covariates can also be used to 
predict the response rate.  Other nonresponse weighting adjustments are discussed in 
Brick and Montaquila (2009). 
. 
 
Example 0.2. Dual Frame Adjustments.  For surveys that use multiple frames, e.g., 
telephone and area probability samples or landline and cell phone surveys, additional 
weighting adjustments may be used to account for units that are contained in more than 
one frame.  Often composite estimators, which are a weighted average of the separate 
frame estimates (Hartley 1962) are used, incorporating the known or estimated overlap of 
units on both frames.  These can be explicitly expressed as adjustments to each sample 
unit’s weight. 
. 
Example 0.3. Poststratification.  Here survey weights are adjusted such that they add up 
to external population counts by available domains.  This widely-used approach allows us 
to correct the imbalance than can occur between the sample design and sample 
completion, i.e., if the sample respondent distribution within the external categories 
differs from the population (which can occur if, e.g., more women respond than men; 
historically young black males contribute to undercoverage), as well as reduce potential 
bias in the sample-based estimates. Denoting the poststrata by 1, ,d D= … , the 
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poststratification estimator for a total involves adjusting the base-weighted domain totals 

( d̂T ) by the ratio of known ( dN ) to estimated ( ˆ
dN ) domain sizes: 1

ˆ ˆ
ˆ

D d
PS dd

d

NT T
N==∑ . 

. 
 
Example 0.4. Calibration Adjustments.  Case weights resulting from calibration on 
benchmark auxiliary variables can be defined with a global regression model for the 
survey variables (Huang and Fuller 1978; Bardsley and Chambers 1984; Bethlehem and 
Keller 1987; Särndal et al. 1992; Sverchkov and Pfeffermann 2004; Beaumont 2008; 
Kott 2009).  Deville and Särndal (1992) proposed a model-assisted calibration approach 
that involves minimizing a distance function between the base weights and final weights 
to obtain an optimal set of survey weights.  Here “optimal” means that the final weights 
produce totals that match external population totals for the auxiliary variables X  within a 
margin of error.  Specifying alternative distance functions produces alternative 
estimators; a linear distance function produces the general regression estimator (GREG) 

( )ˆ ˆ ˆ ˆT i i
GREG HT X XHT i s

i

g yT T
π∈= + − =∑B T T , where ˆ i

XHT i ii s i s
i

w
π∈ ∈= =∑ ∑ XT X  is 

the vector of Horvitz-Thompson totals for the auxiliary variables, 1
N

X ii==∑T X  is the 

corresponding vector of known totals, 1 1 1ˆ T T
s s ss s s
− − −=B A X V Π y , with  

1 1T
s s ss s s

− −=A X V Π X , T
sX  is the matrix of iX  values in the sample, ( )ss idiag v=V  is the 

diagonal of the variance matrix specified under the model, and ( )s idiag π=Π  is the 
diagonal matrix of the probabilities of selection for the sample units.  In the second 

expression for the GREG estimator, ( ) 1 1ˆ1
T

i X XHT s i ig v− −= + −T T A X  is called the “g-

weight.” 
 
The GREG estimator for a total is model-unbiased under the associated working model 
and is approximately design-unbiased when the sample size is large (Deville and Särndal 
1992).  When the model is correct, the GREG estimator achieves efficiency gains; if the 
model is incorrect, then the efficiency gains will be dampened (or nonexistent) but the 
approximate design-unbiased property still holds.  One disadvantage to the GREG 
approach is that the resulting weights can be negative or less than one.  Calibration can 
also introduce considerable variation in the survey weights.  To overcome the first 
problem, extensions to limit the range of calibration weights have been developed that 
involve either using a bounded distance function (Rao and Singh 1999; Singh and Mohl 
1996; Theberge 1999) or bounding the range of the weights using an optimization 
method (such as quadratic programming, Isaki et al. 1992).  Chambers (1996) proposed 
penalized calibration optimization function to produce non-negative weights and methods 
that impose additional constraints on the calibration equations. 
. 
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The effect of such weighting adjustments, when applied across the sample’s design strata 

and PSUs, is that the variability of the weights in increased (Kish 1965, 1992; Kalton and 

Kasprzyk 1986).  This problem, which the Bayesian weight trimming methods currently 

do not address, frequently increases the variances of the sample-based estimators, thereby 

decreasing precision.  A few very large weights can also be created such that the product 

i iw y  creates an unusually large estimate of the population total.   

To see why weight trimming may be needed, consider the following empirical 

example from the 2005-2006 National Health and Nutrition Examination (NHANES) 

public-use file dataset (NHANESa).  The interview-level weights for 10,348 people have 

post-stratification adjustments to control totals estimated from the Current Population 

Survey (NHANESb).  These weights range from 1,225 to 152,162 and are quite skewed: 

Figure 0.1. Histogram of NHANES 2005-2006 Adult Interview Survey Weights 
 

 
 

The weights in the tails of the distribution, such as the one shown in Figure 0.1, can lead 

to overly large totals with associated large variances, particularly when the weight is 

combined with a large survey response value.  This problem can increase for domain-

level estimates, particularly in establishment data, when variables of interest can also be 

highly skewed toward zero.  On the other hand, large weights for some subgroups of 

units may be necessary to produce estimators that are, in some sense, unbiased. 
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Beaumont and Rivest (2008) estimate establishment sample units that were assigned 

large design weights based on incorrect small measures of size accounted for 20-30% of 

an estimated domain total.  These outlying weights also drive variance estimates. 

 There is limited literature and theory on design-based weight trimming methods, 

most of which are not peer-reviewed publications and focus on issues specific to a single 

survey or estimator.  The most cited work is by Potter (1988; 1990), who presents an 

overview of alternative procedures and applies them in simulations.  Other studies 

involve a particular survey (e.g., Battaglia et al. 2004; Chowdhury et al. 2007; Griffin 

1995; Liu et al. 2004; Pedlow et al. 2003; Reynolds and Curtin 2009).  All design-based 

methods involve establishing an upper cutoff point for large weights, reducing weights 

larger than the cutoff to its value, then “redistributing” the weight above the cutoff to the 

non-trimmed cases.  This ensures that the weights before and after trimming sum to the 

same totals (Kalton and Flores-Cervantes 2003).  The methods vary by how the cutoff is 

chosen.  There are three general approaches: (1) ad hoc methods that do not use the 

survey response variables or an explicit model for the weight to determine the cutoff 

(e.g., trimming weights that exceed five times the median weight to this value); (2) Cox 

and McGrath’s (1981) method that uses the empirical MSE of a particular estimator and 

variable of interest; and (3) methods assuming that the right-tail of the weights follow 

some skewed parametric distribution, then use the cutoff associated with an arbitrarily 

small probability from the empirical distribution (Chowdhury et al. 2007; Potter 1988).  

 Alternatively, Bayesian methods that pool or group data together have been 

recently proposed for weight trimming.  There are two complementary approaches: 

“weight pooling” and “weight smoothing.”  While both use models that appear similar, 
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weight pooling is the Bayesian extension of design-based trimming and weight 

smoothing is the Bayesian extension of classical random effect smoothing.  In weight 

pooling models, cases are grouped into strata, some of which are collapsed into groups, 

and the group weight replaces the original weights.  In weight smoothing, a model that 

treats the group means as random effects smoothes the survey response values.  In this 

approach, the influence of large weights on the estimated mean and its variance is 

reduced under the smoothing model.  In both methods, Bayesian models are used to 

average the means across all possible trimming points, which are obtained by varying the 

smoothing cut point.  Both methods can produce variable-dependent weights.  In 

addition, these methods have been developed from a very theoretical framework, for 

specific inferences, and the model may be difficult to apply and validate in practice.  

 Other forms of inference produce indirect weighting adjustments using models.  

In particular, penalized (p-) spline estimators have been recently developed to produce 

more robust estimators of a total.  Zheng and Little (2003, 2005) used p-spline estimators 

to improve estimates of totals from probability-proportional-to-size (pps) samples.  Breidt 

et al. (2005) proposed and developed a model-assisted p-spline approach that produced a 

GREG) estimator that was more robust to misspecification of the linear model, resulting 

in minimum loss in efficiency compared to alternative GREGs.  In the model-prediction 

approach (Valliant et. al 2000), models are incorporated to improve estimators of totals.  

The p-spline estimators are a specific case of a robust prediction estimator.   

 All weight trimming methods have the potential to “distort” (reduce) the amount 

of information contained in weights related to the units’ analytic importance to data users 

(reflected in the inverse of the probabilities of selection), and nonresponse/undercoverage 
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assumptions.  Some weighting adjustment methods, such as nonresponse or calibration 

adjustments, are designed to reduce the bias and/or variances.  In some cases, variable 

weights can be more efficient and their beneficial bias/variance reductions could be 

needlessly removed through arbitrary trimming of large weights.  Thus, there is a need 

for diagnostic measures of the impact of weight trimming on survey inference that extend 

past the existing “design effect” type of summary measures, most of which do not 

incorporate the survey variable of interest.  The current methods do not quantify such 

“loss of information;” i.e., there is no indication of how various methods’ distortion of 

the original weight distribution potentially impacts sample-based inference.   

This proposal includes three separate but related papers that attempt to address some gaps 

in the area of weight trimming.  In particular, all three papers aim to provide a more in-

depth understanding of how different weighting adjustment and trimming methods 

impact survey-based inference.  First, I extend a newly developed approach of weight 

trimming in the areas of variance estimation, model sensitivity to different kinds of 

survey variables, and explore some robust methods to estimate the model parameters.  

Second, I propose extending the model-assisted p-spline estimation approach to use the 

Bayesian approach (following Zheng and Little 2003; 2005) and incorporate prior 

distributions and data-based estimators for the model components.  Third, I explore 

diagnostic measures to gauge the impact of alternative weighting adjustments on sample-

based inference.  Specifically, I propose design effect measures to gauge the impact of 

calibration weights under unit- and cluster-level sampling for different variables of 

interest.  I also apply a regression-based diagnostic to flag units within a given sample 

that are more or less influential when their weights are trimmed or non-trimmed. 
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Paper 1: Extending the Generalized Design-based Weight Trimming Approach for 
Estimating a Population Total 

 
Abstract: Here I propose three extensions to the generalized design-based inference 

approach to weight trimming: (1) develop an appropriate design-consistent and model-

robust variance estimator; (2) illustrate some of the limitations of the current method; and 

(3) use nonparametric methods to estimate the model parameters.  These methods are 

proposed to produce new generalized design-based estimators of totals with trimmed 

weights and their variances that also overcome weaknesses in the existing methods.   

 

1.1. Introduction, Research Plan, and Research Hypotheses 

1.1.1. Introduction 

In this paper, I extend a new method called generalized design-based inference to develop 

estimators with trimmed weights.  Under this approach, the survey response variables and 

weights are both treated as random variables.  Based on the data from the one sample at 

hand, the weights are replaced with their expected values under a model.  The model for 

predicting the weights is based on the survey response variables.  Preliminary theory and 

empirical evaluations have demonstrated this method can produce trimmed weights that 

reduce the mean square error (MSE) of an estimated total (Beaumont 2008; Beaumont 

and Alavi 2004; Beaumont and Rivest 2009; Sverchkov and Pfeffermann 2004; 2009).  

However, the proposed variance estimators have also not been fully evaluated and the 

model has only been proposed for element sampling designs.  The method’s dependence 

on an underlying model makes the smoothed weights, the estimated totals, and their 

variances susceptible to influential values. 
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First, Beaumont (2008) provides a general method for estimating the variance of the 

smoothed weight estimators of totals and proves that one variance estimator is design-

consistent for a simple model, but does not prove that the estimator always yields a 

positive variance estimate.  While he suggests using the replication-based Rao-Wu (1988) 

bootstrap variance estimator and a design-based MSE estimator, empirically I show that 

these methods did not perform well against model-based variance estimators.  I propose 

two variance estimators: a robust sandwich variance estimator and more appropriate 

variance estimator under the sample design and weights model.  I evaluate the robust 

variance estimator for Beaumont’s estimator under a general model against Beaumont’s 

and the Rao-Wu bootstrap variance estimators.  

 Second, since the generalized design-based method involves using the survey 

response variables to smooth the weights, I focus on illustrating how this method 

performs using different types of survey response variables.  I also consider a special 

form of survey response variable called zero-inflated variables.  These are variables with 

many observations having a value of zero, as well as positive values that appear to follow 

some particular distribution.  These variables typically are modeled using a two-part 

model that first predicts a zero/nonzero value (i.e., a binary response), then predicts the 

specific values for the observations predicted to have nonzero values.   

 Last, I address influential values since outliers in the survey response variables 

(the predictors), the weights (the dependent variable), or a combination of both can 

unduly influence the weights predicted from a generalized design-based model.  I 

propose to use methods developed in the nonparametric (NP) regression literature to 

protect the predicted weights from model misspecification caused by such influential 
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values.  The methods also relax the linearity assumption underlying the Beaumont (2008) 

approach.  I consider three specific NP methods: MM estimation, least median of squares, 

and least trimmed squares.  Nonparametric literature demonstrates that these particular 

methods, most of which use estimation criteria based on different versions of squared 

residuals, produce model coefficient estimates that are more robust to outliers than 

parametric alternatives like least squares and more efficient than other NP methods.  

However, one method has not yet been identified as “best” (uniformly superior) among 

them in the NP literature, so I consider these alternatives. I also demonstrate empirically 

that the NP totals can outperform the Beaumont estimators when nonresponse 

adjustments are applied to base weights such that a few outlying large weights are 

produced. 

 The generalized design-based approach has a strong limitation in that the model 

specified on the weights must be appropriate.  Since all weights are trimmed with the 

model, this method has potential for over-trimming the weights.  I demonstrate 

empirically in simulations how sensitive this approach is to model misspecification, both 

in producing biased estimates of totals and poor estimates of their variances.  In addition, 

I demonstrate the difficulty in identifying one model for different kinds of survey 

response variables. 

1.1.2. Research Plan and Hypotheses 

Theoretical properties of the generalized design-based estimator will be established with 

respect to both the sample design and the weights model; the current focus has been 

restricted to properties that hold only under the model.  I demonstrate theoretically that 

my proposed variance estimator is more robust to misspecification of the variance 
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component in the weights model.  I also use a result from Valliant et al. (2000) that this 

estimator is positively biased when the weights model does not hold.  However, in this 

circumstance, the variance estimator underestimates the MSE.  To evaluate the proposed 

robust variance estimator under a linear model for the weights, I will prove that both are 

design-consistent under a general working model. 

When fitting the generalized design-based models to zero-inflated variables, I 

expect models that ignore the “zero-inflation” aspect of these variables to produce biased 

results, since the zero values will attenuate the model coefficients and thus further over-

smooth the weights.  However, the proposed two-part weights model reduces this bias at 

the expense of increasing the variance of estimated totals.   

 To evaluate the proposed robust prediction methods, I first establish the 

theoretical properties of the NP smoothed estimators of finite population totals under 

generalized design-based models (by analogy of their properties established in the 

regression literature that prove the model parameter estimators are consistent and 

asymptotically unbiased).  I also evaluate the estimators in a simulation study 

investigating the impact of model misspecification and varying weights under single-

stage sample designs, and samples with simple nonresponse adjustments applied to the 

base weights. 

 Modeling the survey weights is a practical and simple method to implement under 

a wide variety of sample designs, variables of interest, and weighting adjustments.  These 

nonparametric methods should produce generalized design-based estimators with lower 

MSE than the design-based alternatives when there are outliers in the weights and/or the 

survey response variables, when the underlying model is nonlinear, and when the 
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correlation between the survey response variables and weight is high.  The existing 

Beaumont model-based methods do not account for these conditions.  There are design- 

and other model-based methods that attempt to account for these conditions by 

controlling on auxiliary variables, but they have not been fully compared and it may be 

possible to improve them. 

 Generally, I hypothesize that the proposed estimators will have lower efficiency 

(higher variance) than the parametric generalized design-based approaches when the 

model holds, but more robustness (i.e., have lower bias) when it does not hold or in data 

containing influential observations.  This allows me to evaluate the performance of the 

proposed estimators against alternative design- and model-based methods that have been 

proposed in the related literature.   

 

1.2. Literature Review 

This section mixes summaries of existing methods of estimation and examples of 

alternative weight trimming approaches proposed in the related design-based, generalized 

design-based, and nonparametric regression literature, respectively. 

1.2.1. Existing Design-based Approaches 

The most common sample-based inference for a finite population total involves the 

Horvitz-Thompson (HT, 1952) estimator.  This section briefly introduces the HT 

estimator and some examples of methods that trim the HT weights. 

 The Horvitz-Thompson Estimator 

For s  denoting a probability sample of size n  drawn from a population of N  units, the 

Horvitz-Thompson estimator (HT) for a finite population total of the variable of interest  
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y  is  

 
ˆ i
HT i ii s i s

i

yT w y
π∈ ∈= =∑ ∑ .       (1.1) 

Here the inverse of the probability of selection, ( )i P i sπ = ∈ , is used as the weight, 

1
i iw π−= .  It is established (e.g., Horvitz and Thompson 1952) that this estimator is 

unbiased for the finite population total in repeated π ps sampling, but can be quite 

inefficient due to variation in the selection probabilities if iπ  and iy  are not closely 

related.  The design-based variance of (1.1) is 

( ) ( )ˆ i j
HT ij i ji U j U

i j

y y
Var T π π π

π π∈ ∈= −∑ ∑ .     (1.2)  

where ijπ  is the joint selection probability of units  i and j in the population set U .  

Influential observations in estimating a population total using (1.1) and the variance 

estimator associated with the variance in (1.2) arise simply due to the combination of 

probabilities of selection and survey variable values.  Alternative sample designs, such as 

probability proportional to some available measure of size, introduce variable 

probabilities of selection in (1.1).  The variability in selection probabilities can increase 

under complex multistage sampling and multiple weighting adjustments.  Thus, the HT-

based estimates from one particular sample may be far from the true total value, 

particularly if the probabilities of selection are negatively correlated with the 

characteristic of interest (see discussion in Little 2004). 

Examples of existing design-based trimming methods are presented in the 

subsequent part of this section.  In all methods, outlier weights are flagged in the survey 

dataset, usually through data inspection, editing, and/or computation of domain-level 
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estimates, then trimmed to some arbitrary value.  The remaining portion of the weight, 

called the “excess weight,” is then “redistributed” to other survey units.  This increases 

the weights on non-trimmed cases; if the increase is slight, then the associated bias is 

small.  Redistributing the weight is done to ensure that the weights after trimming still 

add up to target population sizes.  The underlying assumption is that decreasing the 

variability caused by the outlying weights offsets the increase in bias incurred by units 

that absorb the excess weight.  The most extreme windsorized value for outlying weights 

is one; other possibilities include using weights within another stratum, adjacent 

weighting class, or some percentile value from an assumed weight distribution. 

 Examples of Design-Based Weight Trimming Methods 

The alternative design-based methods differ in how the cutoff boundary to identify 

outlying weights is chosen, but they can be grouped into ad hoc methods (Ex. 1.1 and 

1.2), methods that use the empirical MSE of the estimator of interest (Ex. 1.3), and 

methods that assume a specified parametric (skewed) distribution for the weight (Ex. 1.4 

and 1.5).  

 
Example 1.1. The NAEP method. To reduce extremely large HT-estimator weights in 

(1.1), Potter (1988) proposed trimming all weights 2
i ii sw c w n∈> ∑  to this cutoff 

value.  This method was used to trim weights in the 1986 National Association of 
Educational Progress sample (Johnson et al. 1987). The other sample units’ weights are 
adjusted to reproduce the original weighted sum in (1).  The value of c  is “arbitrary and 
is chosen empirically by looking at values of 2 2

i ii snw w∈∑ ” (p. 457 in Potter 1988).   
The sum of squared adjusted weights is computed iteratively until no weights exceed the 
cutoff value, then the windsorized weights replace iw  in (1.1) to estimate the total.  Potter 
(1990) claims this method outperformed other MSE-minimizing alternatives, despite the 
fact it does not incorporate the survey response variables of interest. 
. 
 
Example 1.2. The NIS method. Chowdhury et al. (2007) describe the weight trimming 
method used to estimate proportions in the U.S. National Immunization Survey (NIS).  
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The “current” (at the time of the article) cutoff value was ( ) ( )median 6i iw IQR w+ , 

where ( )iIQR w  denotes the inter-quartile range of the weights.  Versions of this cutoff 
(e.g., a constant times the median weight or other percentiles of the weights) have been 
used by other survey organizations (Battaglia et al. 2004; Pedlow et al. 2003; NCES 
2003; Appendix A in Reynolds and Curtin 2009). 
. 
 
Example 1.3. Cox and McGrath’s MSE Trimming Method. Cox and McGrath (1981) 
proposed using the empirical MSE for a sample mean estimated at various trimming 
levels: 

n ( ) ( ) m ( ) m ( )m ( )2 2 , 1, ,t t w t t wMSE y y y Var y Var y Var y t T= − + + = … , (1.3) 
 
where t  denotes the trimming level ranging from 1t =  for the unweighted sample mean 
estimator to t T=  denoting the fully-weighted sample estimator wy  (the sample-based 
estimate of the mean with no weights trimmed).  Assuming that wy  is the true population 
mean, expression (1.3) is calculated for possible values of t , which correspond to 
different weight trimming cutoffs, and the cutoff associated with the minimum MSE 
value in (1.3) is chosen as “optimal.”  Potter (1988) also used this approach, estimating 
the MSE for a few survey variables at twenty trimming levels.  He determined the 
“optimal” trimming by ranking the MSE (from 1 to 20) for each variable/trimming level 
combination, calculating the average rank across variables, and identifying the trimming 
level with the lowest average rank.  
. 
 
Example 1.4. Inverse Beta Distribution Method. Potter (1988) also considered a method 
that assumes the survey weights ( w ) follow an inverted Beta, ( ),IB α β , distribution: 

( )
( )

( ) ( )

1 11 11
1,

n
nw nwf w w

n

α β
α β

α β

+ −
⎛ ⎞ ⎛ ⎞− Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= ≤ ≤ ∞

Γ Γ
,                    (1.4) 

 
where ( )Γ i  denotes the gamma function.  The IB distribution was proposed since it is a 
right-tailed skewed distribution.  The mean and variance of the empirical IB distribution 
generated from the sample weights are used to estimate the IB model parameters.  The 
trimming level is then set according to some pre-specified level in the cumulative IB 
distribution and weights in the tail of the distribution are trimmed.   
. 
 
Example 1.5. Exponential Distribution Method.  Chowdhury et al. (2007) propose an 
alternative weight trimming method to the ad hoc method in Ex. 1.2.  They assume that 
the weights in the right-tail of the weight distribution follow an exponential distribution,

( )Exp λ ,   
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( )
11 , 0w wf w e e wλ μλ μ

−− − −= = ≤ ≤ ∞ ,     (1.5) 
 

where 1λ μ−=  and μ  is the mean of the weights within the right-tail of the weight 
distribution.  Using the ( )Exp λ  cumulative distribution function, for p  denoting an 

arbitrarily small probability, they obtain the trimming level ( )log pμ− .  In application to 
NIS data, they assume 0.01p = , using the cutoff 4.6μ .  They also try to account for 
“influential weights” (above the median) in estimating μ  by adjusting the trimming level 

to ( ) ( )log
i ii s

p
median w Z

n ∈+ ∑ , where ( )i i iZ w median w= − for weights exceeding the 

median weight and zero otherwise.  They also use Fuller’s (1991) minimum MSE 

estimator to estimate μ  to avoid extreme values influencing 1
ii s Z

n ∈∑  and derive the 

bias/MSE for children’s vaccination rates (proportions).  While they found the proposed 
method produced estimates with lower variance than the Ex. 1.2 method, the offset in the 
empirical MSE estimates was negligible. 
. 
 
 
Additional methods intended to bound the survey weights exist.  Two general approaches 

to bounding weights have been proposed in the calibration literature: bounding the range 

of the weights or bounding their change before and after calibration.  Deville and Sarndal 

(1992) describe a form of calibration that involves simply bounding the weighting 

adjustment factors.  Isaki et al. (1992) show that quadratic programming can easily 

accomplish this bounding of the calibration weights themselves, rather than bounding the 

adjustment factors.  These are illustrated next. 

Example 1.6. Bounding the Range of Weights.  One method proposed to bound the range 
of weights uses quadratic programming (Isaki et al. 1992).  Quadratic programming seeks 
the vector k  to minimize the function  
 

 1
2

′ ′Φ = −kΣk z k         (1.6) 

 
subject to the constraint  
 
 0c′ ≥c k ,         (1.7) 
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where Σ  is a symmetric matrix of constants and z  a vector of constants.  For 

( )1, , T
nd d=d …  and ( )1, , T

nw w=w …  denoting the set of input and final weights, 
respectively, calibration weights are produced when minimizing a distance function 
specified for (1.6) subject to the (1.7) constraints that the final weights reproduce 
population control totals but fall within specified bounds: i i xi s w∈ =∑ X T  and 

iL w U≤ ≤ .   
 The extent to which the constraints affect the input weights depends on which 
units are randomly sampled.  In addition, there is no developed theory that a consistent 
and asymptotically unbiased variance estimator is produced when the weights are 
constrained using quadratic programming.   
. 
 
Example 1.7. Bounding the Relative Change in Weights. Another weight bounding 
method is to constrain the adjustment factors by which weights are changed (see Singh 
and Mohl 1996 for a summary).  Folsom and Singh (2000) propose minimizing a 
constrained distance function using the generalized exponential model for 
poststratification.  For the unit-specified upper and lower bounds ,i iL U  and centering 
constant iC  such that i i iL C U< < , the bounded adjustment factor for the weights is 

 ( )
( ) ( ) ( )
( ) ( ) ( )

exp

exp

T
i i i i i i i i

i T
i i i i i i

L U C U C L A
a

U C C L A

− + −
=

− + −

X λ
λ

X λ
,    (1.8) 

where ( )( )
i i

i
i i i i

U LA
U C C L

−
=

− −
 can control the behavior of (1.8).  For example, as 

1, 2,i i iL C U→ → →∞ , ( ) ( )1 exp T
i ia → +λ X λ .  It can be shown that the resulting 

estimator with 1iC =  is asymptotically equivalent to the GREG estimator.  This method 
is incorporated in SUDAAN’s proc wtadjust (RTI 2010).  
. 
 

As Examples 1.1-1.7 illustrate, design-based weight trimming methods vary widely.  

Most are simple to understand (relative to the model-based approaches, see Paper 2) and 

implement in practice.  All methods aim to change the most extreme weight values to 

make the largest reduction in the variance such that the overall MSE of the estimator is 

reduced.  However, these methods are ad hoc, data-driven, and estimator-driven, so one 

method that works well in a particular sample may not work in other samples.  No one 

method appears in every application paper.  Redistribution also requires careful judgment 
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by the weight trimmer (Kish 1990).  The empirical MSE method is the most theoretical 

method – from a design-based perspective – but it is also variable-dependent.  To 

produce one set of weights for multiple variables in practice, some ad hoc compromise – 

like Potter’s average MSE across variables (Ex. 1.3) – must be used.  In addition, the 

sample at hand may not produce very accurate estimates of the MSE or the weights’ 

distribution function. 

1.2.2. The Generalized Design-based Approach 

A recently developed weight trimming approach uses a model to trim large weights on 

highly influential or outlier observations.  This method was first formulated in a Bayesian 

framework by Sverchkov and Pfeffermann (2004, 2009); independently Beaumont and 

Alavi (2004) propose a similar method by extending bounded calibration (e.g., Singh and 

Mohl 1996) to improve the efficiency and MSE of the general regression estimator.  

These articles separately examine specific examples of models; the general framework 

and theory for estimating finite population totals was developed later by Beaumont 

(2008).  For applications, Beaumont and Rivest (2008) use an analysis-of-variance model 

for “stratum jumpers,” units that received incorrect base weights due to incorrect 

information at the time of sample selection.  Beaumont and Rivest (2009) describe this 

method as a general approach for handling outliers in survey data. 

 Before introducing this method, I provide a general discussion on the approach 

and introduce the notation.  Generally, within a given observed sample, we fit a model 

between the weights and the survey response variables.  The weights predicted from the 

model then replace the weights and estimate the total.  The hope is that using regression 

predictions of the weights will eliminate extreme weights.  The underlying theory uses 
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the properties of the model with respect to the weights; this is very different from 

conventional “model-based” approaches (i.e., the Bayesian modeling and 

superpopulation modeling approaches), where the properties are with respect to a model 

fit to the survey variable.  Also, since this Paper aims at further understanding the 

method, much of the Beaumont theory is extended to incorporate the sample design as 

well as the weights model.  Thus the related Beaumont theory to do this extension, is 

detailed when necessary.  However, the extended theory is identified as such throughout 

this section and proposed methods are described in Sec. 1.3. 

 For the notation, denote M  as the model proposed for the weights, and π  the 

design used to select the sample.  The model M trims weights by removing variability in 

them.  This is different from the superpopulation model approach (see Valliant et. al 

2000), where a model describes the relationships between a survey response variable and 

a set of auxiliary variables.  In the generalized design-based approach, only one model is 

fit and one set of smoothed weights is produced for all variables.   

 Also, denote ( )1, , T
NI I=I …  as the vector of sample inclusion indicators, i.e., iI  

is the sample inclusion indicator (1 for units in the sample, 0 otherwise), and 

( )1, , T
NY Y=Y …  the values of the survey response variable y .  Generalized design-

based inference is defined as “any inference that is conditional on Y  but not I ” (p. 540 

in Beaumont 2008).  Noninformative probability sampling is assumed, such that 

( ) ( ),p p=I Z Y I Z .  For inferential purposes, we also consider ( )1, , T
NZ Z=Z … , the 

vector of design-variables, and ( )i i i=H H y , a vector of specified functions of different 

y -values for unit i .  Beaumont (2008) makes specific inferences (i.e., taking 
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expectations) with respect to the joint distribution of Z  and I , conditional on Y , 

denoted by ,FZ I Y .  Despite confusing notation, I  is thus the only random quantity (not 

Z ).  In order to evaluate the estimators with respect to both the sample design and the 

model for the weights, I denote such expectations by ( )F ME E Eπ⎡ ⎤= ⎣ ⎦i  or 

( )F ME E Eπ ⎡ ⎤= ⎣ ⎦i .  In the simple case of one design variable iz  and one response 

variable iy , we denote the smoothed weight by ( ), ,i M i i i iw E w I z y=� . 

 By definition, ˆ
HT i ii sT w y∈= ∑ , where 1

i iw π−= , is the HT estimator in (1.1).  

For particular single-stage sample designs, such as probability proportional to size 

sampling, this weight can vary considerably due to varying selection probabilities and 

result in a few extreme outliers.  The Beaumont (2008) estimator, proposed to reduce the 

variability in the iw ’s, replaces them with their expected value under the weights model: 

  

( )
( )

ˆ ,

,

B M HT

M i ii s

i ii s

T E T

E w y

w y
∈

∈

=

=

=

∑
∑

I Y

I Y

�

�

.      (1.9) 

Beaumont (2008) gave two examples for the model M , the linear and exponential model.  

Examples for our simple one-survey variable model (Beaumont provides equivalent 

expressions for multiple y -variables) are given next. 

Example 1.8. Linear model. ( ) 1 2, T
M i i iiE w v ε= +I Y H β , where iH  and 0iv >  are 

known functions of iy , the errors are ( )i.i.d. 2~ 0,iε σ , and 2,σβ  are unknown model 

parameters.  This model produces the smoothed weight ˆˆ T
i iw = H β , where β̂  is the 

generalized LS estimate of β . 
. 
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Example 1.9. Exponential model. ( ) ( )1 2, 1 exp T
M i i iiE w v ε= + +I Y H β , where iH , iv , 

iε , β , and 2σ  are given in Ex. 1.8.  The exponential model produces the smoothed 

weight ( ) ( )1 2 ˆexp
ˆˆ 1 exp

iiT
i i i s

v
w

n

ε
∈= + ∑H β , where ( )

1 2

ˆlog 1
ˆ

T
i i

i
i

w

v
ε

− −
=

H β
. 

. 
 
Since ( ),i M iw E w= I Y�  is unknown, we estimate it with ˆiw , found by fitting a model fit 

to the sample data.  The estimator for the finite population total is then 

 ˆ ˆB i ii sT w y∈=∑ .        (1.10) 

If our model for the weights is correct (see expressions (A.1) and (A.2) in Appendix 1 for 

details), then  

 

( ) ( )ˆ ˆM B M i ii s

i ii s

B

E T E w y

w y

T

∈

∈

=

=

=

∑
∑

Y Y

�
�

.      (1.11) 

Beaumont (2008) demonstrates that several properties hold under the generalized design-

based approach.  These properties are listed and detailed in Appendix 1.  First, (see (A.3) 

and (A.4)) the HT estimator is always unbiased across the weights model and sample 

designs, i.e., ( ) ( )ˆ ˆ ,F HT M HTE T E E T Tπ
⎡ ⎤= =⎢ ⎥⎣ ⎦

Y Z Y Y .  Also, if the model for the 

weights is correct, then the Beaumont estimator is also unbiased (A.6).  However, I show 

that the Beaumont estimator is biased when the weights model does not hold ((A.7), with 

examples under specific weights models in (A.9) and (A.10)).  Third, under relaxed 

assumptions, Beaumont also showed that these estimators are also consistent ((A.11)-

(A.16)). 
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Beaumont also derived some special properties of his estimator under a linear model for 

the weights.  These properties are detailed in Appendix 2, since this model is used in the 

Sec. 1.4.4 variance estimation evaluation.  Here, it is simpler to use matrix notation, 

which I also use for the variance estimator in Sec. 1.3.2.  Under the linear model, 

( ) 1/2, T
M i i iE w v= +I Y H β ε , again where ( )i i i=H H y  is a vector of specified functions 

of multiple y -values for unit i .  The predicted weights are ˆˆ T
i iw = H β , such that 

ˆ ˆ T
B sT = w y  is the vector of estimated totals,  where ( )1

ˆˆ ˆ ˆ TT
nw w= =w H β …  is the vector 

of predicted weights, ( )1
T

s n=y y y…  is the matrix of y -values for the sample units, and 

[ ]1 2
T

n=H H β H β H β"  is the n p×  matrix with rows of the 1p×  vector iH .  We 

then denote  

  ( ) 11 1

1 1

ˆ T T

T

−− −

− −

=

=

β H V H H V w

A H V w
.        (1.12) 

where ( )idiag v=V  is the variance matrix specified under the model for the weights. 

Under the model, β̂  is unbiased for the parameter β  and has variance ( ) 2 1ˆ
MVar σ −=β A , 

where 1T −=A H V H .  Under the linear model, Beaumont drops the term BVar Tπ ⎡ ⎤
⎣ ⎦Y�  

and derives that the variances of the HT (A.22) and Beaumont estimator (A.24) are 

 

( ) ( ) ( )
( )

2 2

2

ˆ ˆ , ,

ˆ ,

B HT M HT B

M HT

i ii s
T
s s

Var T E Var T Var T

Var T

v y

π π

σ

σ
∈

⎡ ⎤= +⎢ ⎥⎣ ⎦

=

=

=

∑

Y Z Y Y Z Y

Z Y

y Vy

�

,  (1.13) 
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where ( )idiag v=V , and 

( )
1

2

2

ˆ
T

Ti i
B B i i i ii s i s i s

i

T
s s

Var T y y
v

σ

σ

−

∈ ∈ ∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

=

∑ ∑ ∑H HY H H

y Dy

,   (1.14) 

 
where 1 T−=D HA H  has elements , 1, , , 1, ,ijD i n j n= =… … , 1T −=A H V H , and the 

subscript B denotes Beaumont’s expressions. It can be shown that under the model 

((A.27)–(A.29)), Beaumont’s estimator is always as efficient or more efficient than the 

HT estimator under the model, i.e., ( ) ( )ˆ ˆ, ,B HT B BVar T Var T≥Z Y Z Y .  For estimation 

purposes, Beaumont ignores the Eπ  expectation and considers the difference in the 

theoretical variances with respect only to the model under the one realized sample.  This 

is a severely limiting estimation approach. I extend this to incorporate the Eπ  

expectation and develop a variance estimator that accounts for the sample design and 

weights model.  That is, I derive the variances under both the weights models and sample 

design in (A.24) and (A.26).  Theoretically, if the weights model is correct, then 

( ) ( )ˆ ˆ, ,F HT F BVar T Var T≥Z Y Z Y  also holds (A.31). 

In order to estimate the variance of the Beaumont estimator, we start with the 

Beaumont estimators to motivate the proposed variance estimator and theory in Sec. 1.4.1 

and 1.4.2, respectively.  For variance estimation, Beaumont makes the following 

assumption: ( ) ( )ˆ ,B B pE T T O N nπ = +I Y � .  From this, ( )ˆ ,M B BE T T≈I Y � , since 

( )B̂ pT T O N n− =  (see A.13).  This assumption only holds if sy  is bounded and 



 25

( ) ( )3 2ˆ ,M i i pE w w O N n= +I Y � , (not ( ) ( )1 2ˆ ,M i i p
NE w w o n
n

−= +I Y �  as in Beaumont 

2008) with equality holding under the linear weights model.  Also, after some algebra 

((A.31)–(A.34)), we can approximate ( )ˆ
F BVar T Y  in (1.14) with  

( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ, , ,F B M HT M B M HTVar T E Var T E Var T Var Tπ π
⎡ ⎤⎡ ⎤≈ + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Y Z Y Y I Y I Y Y  

           (1.15) 
 
To estimate the variance in (1.15), Beaumont proposes 

 

( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ, , ,B B HT M B M HTvar T var T var T var Tπ= + −Y Z Y I Y I Y ,    (1.16) 

 
where ( )ˆ ,HTvar Tπ Z Y  is a design-consistent variance estimator for ( )ˆ ,HTVar Tπ Z Y , 

and ( )ˆ ,M Bvar T I Y  and ( )ˆ ,M HTvar T I Y  are consistent variance estimators with respect 

to the model M  for the weights.  In the last component of Beaumont’s estimator (1.16), 

again the expectation with respect to the design is ignored; the estimators are conditional 

only on the weights model being correct.  Also, the component ( )ˆ ,HTvar Tπ Z Y  in (1.16) 

is not an accurate estimator of ( )ˆ ,M BE Var Tπ
⎡ ⎤
⎢ ⎥⎣ ⎦

Z Y Y  in (1.15). My proposed variance 

estimator in Sec. 1.3.1 is a more appropriate estimator, with respect to the sample design, 

of  (1.15) than (1.16). 

From the theoretical variance under the linear model (see (A.32)–(A.36)), the 

Beaumont variance estimator for the difference term in braces in (1.16) is 

( ) ( ) 2 ˆˆ ˆ ˆ, ,
T
i

M B M HT i i ii s
i

var T var T v y y
v

σ ∈

⎡ ⎤⎛ ⎞Ω
− = − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ HZ Y Z Y ,  (1.17) 



 26

where 
1

ˆ
T

T Ti i
i i i ii s i s i s

i
y y

v

−

∈ ∈ ∈

⎡ ⎤
Ω = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑H HH H  and 2σ̂  is a model-consistent 

estimator of 2σ .  I provide an alternative to this estimator in Sec. 1.3..  

To implement the variance estimators in practice, Beaumont proposes using 

design-based variance estimators for ( )ˆ ,HTvar Tπ Z Y  and the bootstrap approach for the 

other terms.  Note that if we were to use the variance estimator 

( )22 2
1

1ˆ ˆ ˆ
1

n
E i ii w w

n
σ σ == = −

− ∑ , then we can also consider (1.17) as a form of the 

sandwich variance estimator.   

Beaumont did not prove that his variance estimator is always positive, but the first 

component is ( )2O N n  while the second component is ( )O n , so the second component 

can be expected to be much smaller in magnitude.  Although not directly expressing the 

bias in his estimator, Beaumont acknowledges a presence of potential bias and also 

proposed considering the design-based mean square error (A.37) rather than the variance: 

( ) ( ) 2ˆ ˆ ,B M B MMSE T E Var T Bπ
⎡ ⎤= +⎢ ⎥⎣ ⎦

Y Z Y Y ,     (1.18) 

 
where ( )ˆ ,M M BB E T T⎡ ⎤= −⎢ ⎥⎣ ⎦

Z Y  is the model-based bias of the estimator B̂T .  Again, 

Beaumont proposes using a standard design-based method to estimate the variance 

( )ˆ ,M BVar T Z Y .  I used the bootstrap variance estimation in the Sec. 1.4.1 empirical 

evaluation.  While the design-based bias ˆ ˆ
B HTT T−  is an unbiased estimator of the bias 
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MB , ( )2ˆ ˆ
B HTT T−  is not an unbiased estimator of the squared bias.  Thus, to estimate 

(1.18), Beaumont proposes: 

( ) ( )
( ) ( ) ( )

2

2

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ, max 0, ,

B M B M

M B B HT B HT

mse T var T B

var T T T var T Tπ

= +

⎡ ⎤⎡ ⎤= + − − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Z Y Z Y

Z Y Z Y
 (1.19) 

 
where ( )ˆ ˆ ,B HTvar T Tπ

⎡ ⎤−⎢ ⎥⎣ ⎦
Z Y  is a design-consistent estimator of 

( )ˆ ˆ ,B HTVar T Tπ
⎡ ⎤−⎢ ⎥⎣ ⎦

Z Y .  To ensure that ( ) ( )ˆ ˆ, ,B M HTmse T var T≤Z Y Z Y  in (1.19), 

since ( ) ( )ˆ ˆ, ,M HT M BVar T Var T≥Z Y Z Y , Beaumont proposes the design-based MSE 

estimator 

 ( ) ( ) ( )ˆ ˆ ˆmin , , ,D B B M HTmse T mse T var T⎡ ⎤= ⎢ ⎥⎣ ⎦
Z Y Z Y .   (1.20) 

Since the Beaumont estimator can be model- and design-biased (see Appendices (A.7)-

(A.10)), it is reasonable to consider an MSE estimator instead of the variance.  However, 

in practice it is difficult to estimate the MSE.  I demonstrate in Sec. 4.4 that the bias 

component in estimator (1.19) may perform poorly, and can drive the estimates of (1.19).  

When this occurs, estimator (1.20) is equivalent to the model-based variance of the HT 

estimator.  In addition, both estimators (1.19) and (1.20) are ad hoc.  

The generalized design-based inference approach appears to have performed well 

as a weight trimming method in some preliminary simulations and case studies.  

Beaumont and Alavi (2004), Beaumont (2008), and Beaumont and Rivest (2009) use this 

approach to produce estimators with lower MSE’s than the untrimmed HT estimator.  

However, in a preliminary study of his proposed variance and MSE estimators, Beaumont 
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found that incorrect model specification produced a biased variance estimator and 

slightly biased MSE estimator.  This motivates my proposed “robust” model-based 

variance estimator in Sec. 1.3.1, which is robust to the specification of the weights model 

variance component.   

 In addition, Beaumont (2008) developed the models and theoretical properties for 

non-self-weighting element sampling designs; these models may not extend to complex 

sample designs like cluster sampling.  These models obviously cannot be fit to self-

weighting designs such as simple random sampling and stratified sampling with 

proportional allocation, since it is not possible to model a constant weight as a function of 

the survey response variables.  Weight trimming can be a concern in these designs if the 

product i iw y  produced an influential value and trimming the weight was desired instead 

of editing the iy  value.  Also, there is still dependence on an underlying model, which 

motivates the use of nonparametric methods to produce trimmed weights that are more 

robust to outliers.   

There are also several circumstances where a particular weights model may be 

severely inappropriate.  For a simple illustration, suppose we use a linear model (Ex. 1.8) 

when a probability proportional to size sample with respect to some auxiliary variable ix  

and i ix y∝ .  The Horvitz-Thompson selection probability here is i inx NXπ = , which 

means 1 1
i i iw xπ − −= ∝ .  Fitting a linear weights model between iw  and iy  corresponds to 

modeling 1
ix−  as a function of ix , which is clearly wrong.  However, in this case, 

1
i iH y−=  is a more appropriate model.  However, empirically I demonstrate in Sec. 1.4 

that this model can produce inefficient totals. 
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Since the underlying theory and my evaluation studies indicate the Beaumont estimator is 

very sensitive to specification of the weights model, there is thus a need to lay out 

guidelines of how to choose an appropriate model.  Last, Beaumont’s approach for 

weight trimming offers no guarantee of the “redistribution of weights” property that the 

sum of the trimmed weights equals the sum of the untrimmed weights; in all studies this 

empirically did not hold.  This design-based appealing property can be achieved using 

simple post-stratification adjustments.  This suggests that this method combined with 

design-based weight adjustment methods can be used for improved inference.  However, 

it also indicates that this method should not be the sole weight-adjustment method used, 

as it can easily over-trim HT weights (particularly when the weights model is incorrectly 

specified). 

1.2.3. Zero-Inflated Variables 

A special kind of survey variable of interest iy  is a zero-inflated variable.  This variable, 

when plotted in a histogram, has a spike of values at zero, but some distribution for 

positive (or negative) values.  This kind of variable is considered here to illustrate how 

sensitive the Beaumont method is to model failure for different types of survey variables.  

Some hypothetical examples are given in Figure 1.1. 

Figure 1.1. Examples of Zero-Inflated Distributions 
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This type of variable is often modeled using a two-part model: 

 
( ) ( ) ( )
( ) ( ) ( )

Pr 0 1 0

Pr 0 1
i

i i

y f

y f y

φ φ

φ

= = + −

> = −
,       (1.21) 

where 0 1φ< <  and ( )if y  is some specified statistical distribution.  Most commonly this 

model is applied to discrete data, but it can also be applied to continuous variables.  The 

means and variances are calculated using the nonzero values.  Two examples follow. 

Ex 1.10. Zero-inflated Poisson distribution. For ( )
ind

1, , ~ ,ny y ZIPoi φ λ… , the distribution 

is ( ) ( ) ( ) ( )Pr 0 1 ; Pr 0 1 !y
i iy e y e yλ λφ φ φ λ− −= = + − > = − , and the sample mean is 

( )1y φ λ= − . 
. 
 

Ex 1.11. Zero-inflated Binomial distribution. For ( )
ind

1, , ~ , ,ny y ZIB n pφ… , we have 

( ) ( )( ) ( ) ( ) ( )Pr 0 1 1 ; Pr 0 1 1n n yy
i i

n
y p y p p

y
φ φ φ −⎛ ⎞

= = + − − > = − −⎜ ⎟
⎝ ⎠

, and the sample 

mean is ( )1y φ μ= −  and variance ( )2 2 2Vφ μ φ μ+ − , where ,Vμ  are the mean and 

variance of the nonzero y -values. 
. 
 

Applying this model to data involves first predicting the proportion of zero/nonzero 

values, then fitting the model conditional on nonzero values (Thas and Rayner 2005).  

Here, if we were to fit a generalized design-based model and a particular iy  follows a 

model like (1.21), then we would introduce model misspecification error in both the 

estimated total and its estimated variance.  To illustrate, consider the following simple 

(hypothetical) example in Figure 1.2 on the following page.  Here the impact when 

including the cases with 0iy =  is the slope coefficient is attenuated, while the intercept 

is increased.  In this particular example, excluding the zero values and smoothing the HT 
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weights produced a total six percent lower than the total produced when including them 

(the 45-degree line is in red, the fitted line in black).  Section 1.4.2 is a simulation study 

to gauge the impact of this on estimating totals. 

Figure 1.2. Linear Regression of Zero and Nonzero y -values vs. HT Weights,  
45-Degree Line in Red, Fitted Line in Black 

 
 
 

1.2.4. Nonparametric Regression Methods 

Several “robust” methods have been developed for estimating linear models.  The first, 

and thus most-developed, method is M-estimation (Hampel et al. 1986; Huber 1981), 

which uses maximum likelihood estimation in models with relaxed parametric 

assumptions.  For regression models, the linearity assumption and Normal distribution 

assumption for the residuals can be relaxed (Hollander and Wolfe 1999; Rousseeuw and 

Leroy 1987).  The specific methods I propose to use are described in Sec. 3. 

 Nonparametric methods have been proposed in other areas of survey estimation, 

particularly outlier detection and correction (e.g., Zaslavsky et al. 2001), but not weight 

trimming.  Chambers (1996) uses M-estimation to predict the total of non-sample units 

under a superpopulation approach; while gains in MSE can be obtained, he noted that it is 
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difficult in practice to produce these estimates since they require choosing a loss function.  

Beaumont and Alavi (2004) and Beaumont and Rivest (2009) use various M-estimation 

methods to produce a more robust estimator of the generalized regression model 

parameters and found substantial reductions in MSE of estimated totals.   Beaumont 

(2008) uses a semi-parametric method, a penalized spline, and produced estimated totals 

with comparable MSE gains to other generalized design-based methods in simulations.  

Elliott and Little (2000) use a penalized spline to estimate Bayesian weight smoothing 

parameters that are more robust to general model misspecification (of the functional form 

of the model, not influential observations).  Zheng and Little also show that a penalized 

spline model with Bayesian priors on the unknown model parameters can produce more 

accurate estimates from pps samples.  This preliminary work indicates nonparametric 

methods offer robustness to generalized design-based models that could produce an 

improved weight trimming method.  My proposal extends these preliminary results and 

incorporates methods that the nonparametric regression literature has demonstrated 

perform better than penalized spline or M-estimators.  The methods I focus on here also 

can outperform parametric methods, like LS or Best Linear Unbiased Prediction (BLUP) 

when observations have values that influence these estimates (e.g., McKean 2004; 

Rousseeuw 1984; 1997; Rousseeuw and Van Driessen 1999). 

There are several examples of nonparametric regression methods being used for 

sample-based inference.  Kuo (1988) applied NP regression to sample data to estimate the 

finite population distribution function; Dorfman and Hall (1993) and Kuk (1993) further 

developed this theory and methods.  Dorfman (2000) applied NP regression to sample 

data to estimate a finite population total; Chambers et al. (1993) used NP calibration and 
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Chambers (1996) used multivariate NP regression calibration with ridge regression to 

accomplish the same goal.  Breidt and Opsomer (2000) estimated totals using local linear 

regression with design-based weights for the original model fit and residual adjustments 

in a method that paralleled the GREG estimator.  While these methods lead to various 

weight adjustments, none of these methods have addressed trimming weights. 

 

1.3. Proposed Methods 

1.3.1. Variance Estimation  

Here I propose variance estimation improvements to the theoretical variance given in 

(1.15).  A variance estimator using the expectation with respect to both the sample design 

and weights model is an improvement over Beaumont’s estimator in (1.16) and (1.29).  In 

particular, the first component in (1.16), ( )ˆ ,HTvar Tπ Z Y  , is not an unbiased estimator 

of the theoretical ( )ˆ ,M HTE Var Tπ
⎡ ⎤
⎢ ⎥⎣ ⎦

Z Y Y .  Here matrix-based notation is simpler.  

Under a general model ( ),sM y V , if the true model is ( ),sM y Ψ , then the proposed 

variance estimator is robust to using the working model ( ),sM y V . For 

ˆ T
B i i si sT w y∈= =∑ w y , ( )idiag v=V , denoting the matrix of the variance specified in 

our model ( ) T
ME =w H β , we can write ( ) 11 1ˆˆ T T T−− −= =w H β H H V H H V w .  For 

example (from A.24 and A.26), the theoretical variances of the HT and Beaumont 

estimators under the linear weights model and sample design are given on the following 

page. 
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( ) ( )

( )( )2

ˆ ˆ ,F HT M HT B

T
U U B

Var T E Var T Var T

diag Var T

π π

πσ

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤= + ⎣ ⎦

Y Z Y Y Y

y V Π y Y

�

�i
,   (1.22) 

 
( ) ( )

( )2

ˆ ˆ ,F B M B B

T
U U B

Var T E Var T Var T

Var T

π π

πσ

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤= + ⎣ ⎦

Y Z Y Y Y

y Π D y Y

�

�i
,   (1.23) 

where Π  is the N N× matrix of the selection probabilities (with diagonal elements being 

the first-order probabilities), i  denotes a Hadamard product; and 1 T−=D HA H .To 

estimate the variance of (1.15), we first rewrite expression (1.15) as  

( ) ( )
( )

2 2

2

B̂ i i Bi s

i i Bi s

Var T v y Var T

y Var T

π

π

σ

ψ

∈

∈

= +

= +

∑
∑

Y Y

Y

�

�
.       (1.24) 

To estimate (1.24), we can use  

( ) ( )2ˆ ˆB i i Bi svar T y Var Tπψ∈= +∑Y Y� ,       (1.25)  

where ˆiψ  is an estimator of the component iψ .  Estimation of the two (1.15) 

components are next examined separately, though similar estimators are proposed.   

First (1.15) Component Variance Estimation 

The first variance component for the linear weights model, from (1.22), is  

( ) ( )2

2

ˆ T
M HT U U

i i ii U

E Var T diag

y

π σ

π ψ∈

⎡ ⎤ =⎢ ⎥⎣ ⎦

=∑

Y y V Π y
 ,    (1.26) 

Expression (1.26) is still a finite population total.  Thus, we can estimate it with 

 
( ) ( ) ( ) 12

2

ˆ ˆ ˆ

ˆ

T
M HT s s

i ii s

E Var T diag diag

y

π σ

ψ

−

∈

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦

=∑

Y y V Π Π y
,   (1.27) 
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where ( )22ˆ ˆ 1i i iie hψ = − and ( ) ( )222 ˆˆ ˆ T
i i i i ie w w w= − = −H β .  Since this term also appears 

in the second model component, more details are given in the following section. 

Second (1.15) Component Variance Estimation 

Here I propose variance estimation improvements to the second component in estimator 

(1.15).  Here, a matrix-based notation is simpler.  Under a general model ( ),sM y V , if 

the true model is ( ),sM y Ψ , then the proposed variance estimator is robust to using the 

working model ( ),sM y V .  For ˆ T
B i i si sT w y∈= =∑ w y , ( )idiag v=V  denoting the 

matrix of the variance specified in our model, ( ) T
ME =w H β , we can write

( ) 11 1ˆˆ T T T−− −= =w H β H H V H H V w .  From this, it can be shown (A.21) that the 

variance of B̂T  under the model M  is 

 ( ) ( )
1 1 1

ˆ ˆ, T
M B M s

T T T

Var T Var

− − −

=

=

I Y w y

H A H V H A H
,     (1.28)

where 1
T

T i i
i s

iv
−

∈= =∑ H HA H V H  in Beaumont’s (2008) notation in the Ω̂  expression 

in (1.17).  If we assume that the variance parameter in V  is incorrectly specified, then an 

appropriate variance estimator is  

 ( ) 1 1 1ˆˆ , T T T
M B Evar T − − −=I Y H A H Ψ H A H ,     (1.29) 

where ( ) 2ˆ ˆE idiag e=Ψ  has elements that are the residuals under the model.  This 

“sandwich” variance estimator ˆ
EΨ  is approximately model-unbiased for V , and it is a 

natural “first-choice” estimator since ( )2 2ˆM i iE e ψ≈  in large samples (White 1980).  Note 
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that under the linear model for the weights, this sandwich estimator form of Beaumont’s 

estimator can be written similar to (1.17) as 

 ( ) ( )
2

2ˆ ˆ ˆˆ, i
M B HT E i ii s

i

Hvar T var T v y
vπ σ ∈

⎛ ⎞
= − − Ω⎜ ⎟

⎝ ⎠
∑Y Z Y .   (1.30) 

While îe  is a consistent estimator of iψ , it can underestimate iψ  in small or moderate 

sample sizes since ( ) ( )2ˆ 1M i i iiVar e v hσ= − , where the leverage of unit i , denoted iih , is 

the diagonal element of ( ) 1T T−
H H H H  and 0 1iih≤ ≤ .  It is well-established (White 

1980, Horn et al. 1975, Efron 1982; MacKinnon and White 1985) that the leverage 

contribution to the variance is not constant: a few units with larger leverages (and thus 

more “influence”) will contribute more to the variance underestimation in iψ  than units 

with small leverages.  Thus, the variance of îe  for large iih ’s tend to be smaller than the 

variance of îe  in observations with small iih  values. 

Several correction factors have been proposed to overcome this non-constant 

variance in ie  (e.g., see above references).  Of these, Efron (1982) and MacKinnon and 

White (1985) propose using ( )22ˆ 1i iie h− .  The resulting variance estimator has also been 

shown to be asymptotically equivalent to the jackknife replication variance estimator 

(Valliant et al. 2000 p. 141), which is a conventional design-based variance estimation 

method.  Adopting this here gives 

 ( ) 1 1 1
* *

ˆˆ , T T T
B B s E svar T − − −=I Y y A H Ψ H A y ,     (1.31) 

where ( ) ( ) ( )2 22
*

ˆ ˆ ˆ 1E i i i iidiag w w hψ= = − −Ψ .  If the model errors are misspecified, 

then (1.31) will still give an accurate estimate of the true variance component (1.28) in 
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expectation (see Sec. 1.3.2 for more detail).  Combining (1.31) with (1.27) gives the 

following total variance under the linear weights model as follows: 

( )
2

2
*

ˆˆ ˆ ˆ i
B B i i i ii s i s

i

Hvar T y y
v

ψ ψ∈ ∈

⎡ ⎤⎛ ⎞Ω⎢ ⎥= − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑Y ,    (1.32) 

where  ( ) ( )2 2ˆ ˆ 1i i i iiw w hψ = − − and iv  is from the working weights model.  The 

variance estimator in (1.32) estimates the components of (1.15) with respect to both the 

sample design and the weights model.  As a result, it is an improvement over Beaumont’s 

estimator in (1.16).  In particular, the first component in (1.16) ( )ˆ ,HTvar Tπ Z Y  is not an 

unbiased estimator of the theoretical ( )ˆ ,M HTE Var Tπ
⎡ ⎤
⎢ ⎥⎣ ⎦

Z Y Y .   

1.3.2. Additional Variance and MSE Theoretical Properties When the Weights Model 
Does Not Hold 
 
As noted earlier, when the weights model is incorrectly specified, the Beaumont 

estimator can be biased for the finite population total.  Under this circumstance, it is 

reasonable to consider MSE estimation, but this is difficult to achieve in practice.  The 

weights model also impacts variance estimation.  In particular, I show here that when the 

linear weights model is incorrect, the variance estimator in Sec. 1.3.1. is positively 

biased.  However, the variance estimator will still underestimate the MSE.  The theory 

presented here is largely borrowed from parallel results in Valliant et al. (2000, p.150-

151) and is detailed in Appendix 6. 

Suppose that the working weights model M  is used, when the true weights model is 

actually M� .  If the variance component specification in model M  is wrong, then we 

have 
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( ) ( )

( )

( ) ( )

22

22 2

22

ˆ ˆ

ˆ

ˆ ˆ

B B i i i iM Mi s

i i i i i i iMi s i s

B i i i iM Mi s

E var T v y E w w

v y v y E w w

Var T v y E w w

ψ

∈

∈ ∈

∈

⎡ ⎤⎡ ⎤ ≅ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤≅ + −⎣ ⎦

⎡ ⎤= + −⎣ ⎦

∑

∑ ∑
∑

Y

Y

� �

�

� �

.  (1.33) 

Both of the components in (1.33), the model-variance and the positive bias term, have the 

same order of magnitude, ( )2
pO N n .  This is the same order of magnitude as the 

variance component in the MSE (1.18).  However, the bias component (the second 

component in (1.18)) has order ( )2
pO N , which is higher than ( )2

pO N n .  This means 

that when the weights model does not hold, the variance estimator will be positively 

biased but will still underestimate the true MSE. 

1.3.3. Nonparametric Generalized Design-Based Weight Smoothing 

Here I propose new generalized design-based estimators of totals that are similar to the 

HT estimator in (1.1), but with different weights iw� : 

ˆ
NP i ii sT w y∈= ∑ � .        (1.34) 

To protect the estimator (1.34) from influential values in the weights and survey response 

variables, the smoothed weights iw�  are developed from NP models.  I focus on 

influential values in the survey response variable (the predictors), the weight (dependent 

variable), or both since they can influence the generalized design-based smoothed 

weights.  Different NP models can be used to fit the weights and therefore produce 

different sets of smoothed weights.  Specifically, iw�  is the weight predicted from the 

nonlinear model  η  in 

( )log , 1 T
iE wη⎡ ⎤ − =⎣ ⎦I Y H γ ,       (1.35) 
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where the log transformation in (1.35) is used to reduce the skewness in the survey 

weights (e.g., Fuller (1991) and Section 1.4 evalation studies).  From (1.35), the predicted 

weights are ( )ˆˆ 1 exp T
i iw = + H γ , which also avoids the problem of producing negative 

weights (Valliant 2004).  I propose to use three specific nonparametric (NP) alternatives 

to produce γ̂ , as summarized in Table 1.1.  The notation used in the table is discussed 

following the table. 

Table 1.1. Proposed Nonparametric Estimators 
Method γ -Estimator Additional Terms 

MM 1 21
log( 1)1ˆ arg min

ˆ
p

Tn i i
MM i

S

w
n

ρ
σ∈ =

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑γ
H γ

γ \  

( )2 2ˆ ˆarg min pS Sσ σ∈
⎡ ⎤= ⎣ ⎦γ γ\ , where 

we solve for ( )2ˆSσ γ  in 

( )0 21
log( 1)1

ˆ

Tn i i
i

S

w
b

n
ρ

σ=

⎛ ⎞− −⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑ H γ
γ

 

LMS 
2

ˆ arg min log( 1)p
T

LMS i imedian w∈
⎡ ⎤= − −⎣ ⎦γγ H γ\   (none) 

LTS ( )

2

1
ˆ arg min log( 1)p

q T
LTS i ii i

w∈ =
⎡ ⎤= − −⎣ ⎦∑γγ H γ\  1

2
n pq + +⎢ ⎥= ⎢ ⎥⎣ ⎦

 

 
The predicted weights are then less influenced by outliers in the weight and the survey 

response variables.  Each method has associated strengths and weaknesses, but all were 

developed to be more robust than the M-estimation method. While the tradeoff for such 

robustness can be lower efficiency (higher variance), the NP literature has demonstrated 

that these four robust estimators can be more efficient than alternatives.  This 

bias/efficiency tradeoff is quantified empirically in simulations (Sec. 1.4).  Note that the 

proposed methods do not have closed-form estimates for the γ -parameters, so iterative 

methods must be used to find solutions in practice.   
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Note that the Table 1.1 estimators are similar to the least squares (LS) estimator.  For LS, 

we find the argument (arg) γ  that minimizes the total squared residuals under model 

(1.35) over the p -dimensional space of real numbers ( p\ ), i.e., 

2
ˆ arg min log( 1)p

T
LS i ii s w∈ ∈

⎡ ⎤= − −⎣ ⎦∑γγ H γ\ .    (1.36)  

However, ˆ LSγ   is not robust to outliers.  The “degree of robustness” can be measured by 

the break-down point (Hampel 1971; Donoho 1982; Donoho and Huber 1983).  The finite 

sample break-down point measures the maximum fraction of outliers within a given 

sample that is allowed without the estimator going to infinity.  To solve this lack of 

robustness, Rousseeuw (1984) proposed the LTS and LMS estimators, which have high 

asymptotic break-down points (0.5).  M-estimators have a low break-down point (0), but 

Rousseeuw and Yohai (1984) proposed robust M-estimates of the residual scale, the S-

estimates. Yohai (1985) introduced the MM estimator to have a high break-down point 

(0.5 asymptotically for conventional choices of 0 1,ρ ρ ) and still be efficient under 

Normal errors. 

The first NP method in Table 1.1 is the MM estimator, which is a combination of 

its predecessors, the M- and S-estimators.  Huber (1981) introduced “maximum 

likelihood type” (M) estimation to conduct robust regression analysis for nonlinear 

equations.  In this, we assume to have n  independent observations from a location family 

with probability density function ( )f y μ−  for some function that is symmetric around 

μ  (the “location parameter” at the center of the distribution, not necessarily the mean).  

The function ρ  is designed to dampen the effect of extreme values in the residuals 

( ) ˆlog 1 T
i iw − − H γ .  M-estimators use ( )log f  as ρ , the MLE solves for μ  in 
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( ) ( )1 1min log minn n
i ii if y f yμ μμ ρ μ= =⎡ ⎤ ⎡ ⎤− − = −⎣ ⎦ ⎣ ⎦∑ ∑ .  If ρ′  exists, then the M-

estimator is obtained by solving ( )1 ˆ 0n
ii yρ μ=

′ − =∑  for μ̂ .  M-estimators are robust to 

outliers in the response variable, but are as sensitive to covariate outliers as the LS 

estimators.  This method also requires choosing the loss function (or “scaling factor”) ρ′ , 

which can be difficult in practice (Chambers 1986; Beaumont and Rivest 2009).   

 Alternatively, “scale” (S) estimation fits a line that minimizes a robust estimate of 

the scale (i.e., the unknown variance parameter) of the residuals.  This method was 

developed to improve the lack of covariate-robustness with M-estimation.  While S-

estimators are outlier-resistant, they can be inefficient (Rousseeuw and Leroy 1986, 

2003; Stromberg 1993).  

 MM estimation is a compromise of the M- and S-estimation methods, to 

overcome their problems and retain their benefits (Yohai 1987).  If we denote ( )0G H  

and ( )0F e  as the distributions of the sy -variables and errors, respectively, then the joint 

distribution of ,w H  is given by ( ) ( ) ( )0 0 0, TH G F= −w H H w H γ .  MM estimators use 

two loss functions, denoted by 0ρ  and 1ρ , which determine the estimator’s theoretical 

properties (the “breakdown point” and efficiency, respectively, Huber 1981).  First we 

obtain the S-estimate for the model variance of the errors, 2σ  as 

( )2 2ˆ ˆarg min pS Sσ σ∈
⎡ ⎤= ⎣ ⎦γ γ\ , where ( )2ˆ Sσ γ  is obtained by solving 

( )01 2
log( 1)1

ˆ

Tn i i
i

S

w b
n

ρ
σ=

⎛ ⎞− −
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

∑ H γ
γ

  and b  is a value that must be set in advance.  The 

loss function 0ρ  is assumed to be an even, continuous, and non-decreasing function on 



 42

[ )0,∞ , with the properties that ( )0 0 0ρ =  and ( )0sup 1ρ∈ =e e\ .  The recommended 

choice of ( )
0 0 1Fb E ρ ε⎡ ⎤= ⎣ ⎦  ensures that 2ˆSσ  is a consistent estimator (Salibian-Barrera 

2006). 

The MM estimator for the parameters in γ  is any local minimizer of a specified 

function ( )f γ  that maps from the p-dimension real space to the one-dimensional space 

of positive numbers, denoted by ( ) : pf +γ \ 6 \ .  This leads to the Table 1.1 estimator.  

MM estimators are more robust to outliers in the dependent variable and covariates and 

are more efficient than S- and M-estimators by themselves (Smyth and Hawkins 2000, 

Stromberg 1993, Tatsuoka and Tyler 2000; Yohai 1987).  However, they require careful 

choice of the loss functions 0ρ  in 2ˆSσ  and 1ρ  in the function ( )f γ .  This may be 

difficult to validate in practice, but conventional choices perform relatively well 

compared to the Beaumont estimators in my Sec. 1.4.1 evaluation study. 

 The second NP method I consider is the least median of squares (LMS) estimator, 

which minimizes the median of the squared residuals, as shown in Table 1.1.  Since the 

median is very robust against outliers, LMS estimators are the “highest breakdown” 

estimators.  This means they are the most robust estimators to outliers in both the 

dependent and covariate variables (Rousseeuw 1984, Rousseeuw and Van Driesen 1999, 

Rousseeuw and Leroy 2003; Rousseeuw and Ryan 1997, 2008).  The LMS estimator also 

transforms properly under certain transformations and has no rescaling factors like the 

MM estimator, so it is widely used in many applications (Rousseeuw 1984, 1997).  

However, it may not be the most efficient estimator (Ripley 2004) and is sensitive to data 

values that are close to the median (Davies 1993; Edelsbrunner and Souvaine 1990).   
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The last NP method is least-trimmed squares estimation, which was also developed as a 

more robust alternative to M-estimation.  It also produces faster convergence in the 

iterative methods used to obtain the parameter solutions for the MM and LMS estimators, 

which do not have closed-forms.  The least-trimmed squares (LTS) estimator is the LS 

estimator taken over the smallest ( 1) 2q n p= + +⎢ ⎥⎣ ⎦  squared residuals.  This method’s 

proponents argue that the LMS estimator is very robust to outliers in both the dependent 

and covariate variables, needs no rescaling, is more efficient than LMS estimators, and is 

just as resistant to outliers (Rousseeuw and Van Driesen 1999).  However, the NP 

literature and practitioners have not embraced this method as being the “best” overall 

alternative.  I use simulations and a case study (Sec. 1.4) to identify which methods seem 

most promising to estimate generalized design-based model parameters. 

 Based on the related literature, I summarize the expected performance of the 

proposed estimators against LS estimator, in Table 1.2.  Each method can be compared 

using outlier-robustness, efficiency, and how easily the method can be implemented in 

practice in terms of the estimators “breakdown point,” the fraction of the sample that is 

allowed to be outlying without the estimator being undefined.  The “Yes/No” rating 

means “Yes” under particular conditions and “No” in others.  It is apparent that there is 

no “one best” estimator clearly identified in the NP literature theory and applications.   

Table 1.2. Summary of Proposed Nonparametric Estimator Properties 
 Robust to Outliers Efficient Break-down Point

Estimator Survey Response Weights  (asymptotic) 
LS 

MM 
LMS 
LTS 

No 
Yes 
Yes 
Yes 

No 
Yes 
Yes 
Yes 

Yes 
Yes/No 

No 
Yes/No 

1n−  
0.5 
0.5 
0.5 
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Theoretically, for the NP methods, if ( )ˆ NPEη =γ γ , then under the nonlinear model η  

for the weights, the corresponding NP total is unbiased.  That is, if 

 

( ) ( )ˆ ˆT
NP i NPi s

T
i ii s

i ii s

B

E T E

y

w y

T

η η∈

∈

∈

=

=

=

=

∑
∑
∑

Y H γ Y

H γ

�
�

,      (1.37) 

then the same results from the Beaumont estimator applies here.  The MM (Yohai 1985, 

1987; Huber 1981), LTS (Čižek 2004; Andrew 1987, 1992; Arcones and Yu 1994; Yu 

1994), and LMS (Zinde-Walsh 2002; Gelfand and Vilenkin 1964) estimators have all 

been proven in the related literature to be asymptotically model-unbiased and consistent 

for γ .   

 
 
1.4. Evaluation Studies 
 
I conducted four evaluation studies, each related to an approach proposed in Section 1.3, 

so this section is divided into four such sections.  I focus on estimation of totals in the 

first three evaluations, then estimates of their variances in the fourth. First, I use the 

simulations designed by Beaumont to initially gauge the performance of the NP 

estimators proposed in 1.3.2. Second, I demonstrate how alternative weight models can 

estimate totals of zero-inflated survey variables.  Third, I demonstrate how the proposed 

NP estimators are improvements over the Beaumont estimators for weights that use 

nonresponse adjustments.  Last, I use simulations to empirically evaluate my proposed 

variance estimator against Beaumont’s variance and MSE estimators.   
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1.4.1. Extending Beaumont’s Study for Nonparametric Estimators 

Here I mimic Beaumont’s simulation study of alternative totals, which involved a pseudo 

population of 10,000 observations with four variables of interest: ( )~ exp 30 0.5iz + ,

1 130i iy ε= + , 2 230 0.1498i i iy z ε= + + , 3 330 2.9814i i iy z ε= + + , where 

( )
ind

1 2 3, , ~ 0, 2000i i i Nε ε ε .  The slope coefficients creating 1 2 3, ,i i iy y y  were chosen to 

vary their correlation with iz : ( ) ( )1 2, 0, , 0.1y z y zρ ρ= = , and ( )3, 0.8y zρ = .  Figure 

1.3 shows the scatterplots and histograms of the pseudopopulation values. 

Figure 1.3. Beaumont Simulated Population and Loess Lines 

 
 

Figure 1.3 demonstrates Beaumont’s unusual choice of simulation data; in particular, for 

the variable 3y , ( )pp z  sampling is not the most efficient choice (as the variance of 3y  

decreases with  z , however we select units with larger 3y  values with higher 

probabilities of selection).  There also seems to be no relationship between z  and 1y  or 

2y , so this may be a difficult pseudopopulation to find one weights model that is 

appropriate for all three variables of interest.  I illustrate this by calculating the 

probabilities of selection and HT weights for all units in the population, then conducting 
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a Box-Cox transformation for iw  using 1 2 3, ,y y y  and 1 1 1
1 2 3, ,y y y− − −  regressed separately 

and together on iw .  The likelihood plots for a sample of size 100 are in Figure 1.4.  

Figure 1.4. Population Box-Cox Transformation Plots for Modeling HT Weights as a 
Function of different y -variables, Beaumont Simulated Population 

 
 

These plots suggest that different functions of iw  should be used for different y -

variables.  For the linear model, the plots variables 1y  and 2y  having the likelihood 

function maximized at 0.2λ = − , corresponding to 0.2
iw− , suggests that a log function 

may be appropriate enough.  However, for 3y  and 1 2 3, ,y y y , 0.7λ = −  suggests that 

0.7
iw−  may be more appropriate.   For the function 1

i iH y−= , an intuitive choice for 

probability proportional to size sampling, separately 1 2 3, ,y y y  each suggest that a log 

transformation is appropriate, but together they imply 1.5
iw−  may be more appropriate.  

Based on these mixed results and a realistic scenario in which these underlying 

relationships are unknown in practice; a linear model (with no transformation on iw ) 
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model was fit with 1
i iH y−=  and an exponential weights model (i.e., ( )log 1iw − ) was fit 

to no transformation on 1 2 3, ,y y y . 

Two thousand samples of size 100 were drawn using Sampford’s ( )pps z  method (I 

used a smaller sample size than Beaumont’s 500 and fewer simulation iterations instead 

of his 10,000 to reduce simulation computation time).  The following estimators (using 

Beaumont’s naming convention in the “” below) were included: 

• HT: ˆ , 1, 2,3HT ki
k i s

i

yT k
π∈= =∑ , where 100i i ii Uz zπ ∈= ∑ ; 

• Hajék: 
ˆˆ
ˆ

HT
HJ k

k
NTT

N
= , where ˆ

ii sN w∈= ∑ ; 

• “SHT_U”: _ 0ˆ ˆSHT
i kik i sT w y∈=∑ , where iw  is predicted from an intercept-only 

model; 
• “SHT_1”: _1ˆ ˆSHT

i kik i sT w y∈=∑ , where iw  is predicted from a linear or exponential 
weights model; 

• “SHT_5”: _5ˆ ˆSHT
i kik i sT w y∈=∑ , where iw  is predicted from a fifth-order polynomial 

model using all 1 2 3, ,y y y  and stepwise variable selection to retain “only the most 
important predictors” (p. 547).  Beaumont did not indicate how the stepwise selection 
was done; I used backwards selection and the AIC measure to select the predictors.   

• The three proposed nonparametric estimators, denoted ˆMM
kT , ˆLMS

kT , and ˆLTS
kT  in 

(1.30), that use weights predicted from NP models fit to all 1 2 3, ,y y y .   
 

Three weight models were used: the multivariate equivalents to Ex. 2.7 (the “Linear 

Model”), Ex. 2.8 (the “Exponential Model”), and the heuristic choice of modeling the 

inverse of the weights described at the end of Sec. 1.2.2 (the “Inverse Model”).  For the 

linear and inverse models, which Beaumont omitted, I chose 1
i iH y−=  and i iH y= , 

respectively.  Like Beaumont, I use i iH y=  for the exponential model.  Figure 1.5 shows 

an example of how the various methods produce smoothed weights under these two 

models, compared to the HT weights prior to smoothing.     
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Figure 1.5. One-Sample Examples of Weights Before/After Smoothing: Beaumont Methods 
Linear Model: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1

i iH y−= , 1iv =  

 
Exponential Model:, ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + i iH y= , 1iv =  

 
Inverse Model: 1

0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

 
 
The pps sampling method produces a skewed HT weight distribution, as units with higher 

values of iz  are selected with higher probabilities of selection and thus have smaller HT 

weights.  The SHT_U weights are the most smoothed, as all weights are assigned the 

intercept value, the average of the HT weights.  The linear SHT_1 and polynomial 

regression SHT_5 models both reduced the variation in the weights, though for this 

example the linear weights model resembles the SHT_U weights.  Similar plots for the 

proposed NP methods are shown in Figure 1.6.  They produce similar weight 

distributions to SHT_1, with a smaller range of trimmed weights.   
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Figure 1.6. One-Sample Examples of Weights Before/After Smoothing: NP Methods 
Linear Model: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1

i iH y−= , 1iv =  

 
Exponential Model:, ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + i iH y= , 1iv =  

 
Inverse Model: 1

0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

 
 
To evaluate the estimated totals across the alternatives, for comparability, I use the same 

evaluation measures as Beaumont (2008): 

• Percentage Relative Bias: ( ) ( ) ( )20001
1

ˆ ˆ100 2000k k bk kbRelbias T T T T−
== −∑ , 
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220001
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•  Relative Root Mean Square Error: ( ) ( )
( )
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where b̂kT  is an estimate of the true total k kii UT y∈=∑  for variable ky  on simulation 

sample b ( 1, , 2000b = … ), 20001
1

ˆ ˆ2000bk bkbT T−
== ∑ , and 20001

1
ˆ ˆ2000HT HT
bk bkbT T−

== ∑  

(Note: Beaumont incorrectly labeled the percentage relative root mean square error as the 

relative efficiency).  These measures are shown in Table 1.3 on the following page, along 

with the associated estimates from Beaumont’s simulation results (who used the 

exponential model and the same simulation conditions except sample size and number of 

iterations, from Table 1 on p. 547 in Beaumont 2008). 

Some general comments can be made from Table 1.3.  First, as expected, the HT 

estimator is nearly unbiased across the 2,000 samples, but has a large variance relative to 

some of the model-based alternatives.  Both the Beaumont and proposed NP estimators 

have nonzero biases, but the magnitude of the bias in the NP estimators is generally equal 

or less than the corresponding Beaumont estimators.  This implies that if the weights 

model is incorrectly specified, then both the Beaumont and NP methods can over- or 

under-trim the weights, producing a bias in the estimated totals in some cases (e.g., 

linear, exponential, and inverse models for 1y ).  In other cases, the Beaumont and NP 

methods give seriously biased estimates of the total (e.g., linear and inverse models for 

3y  and exponential model for 3y  with any NP method).  For the NP methods, the 

presence of influential observations with unusually large weights would lead the NP 

weights models to “pull back” the regression line, resulting in smaller regression 

coefficients and thus more smoothed weights.  This over-smoothing also increases in 

both models as the relationship between the weight and variable of interest is stronger 

(shown by the larger biases in 3y ). 
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Table 1.3. Beaumont Simulation Results 
 

Percentage Relative Bias Measures 
 

 My Results Beaumont Results* 
Design-based 

Estimators 1y  2y  3y  1y  2y  3y  
HT 
Hajék 

0.1 
0.8 

-0.4 
0.5 

0.2 
-0.7 

0.0 0.2 -0.1 

 My Results Beaumont Results* 
Model-based  
Estimators Linear Model Exponential Model Inverse Model Exponential Model 

 1y  2y  3y  1y  2y  3y  1y  2y  3y  1y  2y  3y  
SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

1.5 
1.6 
-0.3 
-7.0 
-8.6 
-8.2 

14.2 
13.9 
11.2 
-2.6 
-4.2 
-3.2 

70.6 
69.2 
66.3 
-11.1 
-15.2 
-16.0 

1.5 
-8.0 
-5.3 
-8.9 
-8.9 
-8.7 

14.2 
-5.1 
-4.5 
-6.0 
-5.3 
-5.2 

70.6 
-7.4 
-0.1 
-9.4 
-12.8 
-13.0 

-47.6 
-1.2 

-18.8 
-0.5 
-1.8 
-3.2 

-41.1 
-4.5 

-18.8 
-3.5 
-2.0 
-3.4 

-12.1 
-11.5 
-13.3 
-11.0 
-8.0 
-8.1 

-0.8 
-9.1 
-6.1 

12.1 
-5.7 
-4.4 

73.3 
8.3 
0.2 

 

Variance Ratio Measures 
 

 My Results Beaumont Results* 
Design-based 

Estimators 1y  2y  3y  1y  2y  3y  
HT 
Hajék 

1.00 
0.67 

1.00 
0.69 

1.00 
2.77 

1.00 1.00 1.00 

 My Results Beaumont Results* 
Model-based  
Estimators Linear Model Exponential Model Inverse Model Exponential Model 

 1y  2y  3y  1y  2y  3y  1y  2y  3y  1y  2y  3y  
SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

0.46 
0.48 
0.52 

863.58 
872.22 
927.79 

0.59 
0.60 
0.63 

58.00 
59.99 
62.87 

9.52 
9.22 
9.17 
4.24 
5.07 
2.14 

0.46 
0.39 
0.51 
0.36 
0.45 
0.44 

0.59 
0.41 
0.52 
0.35 
0.51 
0.48 

9.52 
1.18 
0.79 
1.64 
2.81 
2.43 

0.07 
2.10 
0.93 
2.30 
2.81 
2.62 

0.06 
1.84 
0.55 
2.11 
2.76 
2.52 

0.62 
0.46 
0.36 
0.58 
3.08 
3.22 

0.45 
0.77 
0.64 

1.43 
0.59 
0.58 

4.33 
1.69 
0.84 

  * Beaumont used 10,000 Samford samples of size n=500 drawn from a population of 50,000. 
 
As shown in Table 1.3, the model-based estimators, despite the nonzero biases, have 

smaller variances than the HT estimator, with the exception of the NP methods being 

very inefficient under the linear weights model.  They are also very inefficient, by a 

lesser extent, under the inverse weights model.  The NP estimators are also as efficient or 

more so (as measured by the variance) than the Beaumont estimators under the 

exponential and linear weights models for the variable 3y  (though not as efficient at the 

HT estimator).  The NP estimators are very inefficient under the linear weights model for 
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estimating the totals for 1y  and 2y ; the population plot in Figure 1.16 shows that there is 

a very weak relationship between these variables to iz , which is inversely related to the 

HT weights.  The Beaumont estimators’ efficiency is not impacted by this. 

 Table 1.4 contains the relative RMSE’s, a more comprehensive summary 

measure, from my simulation (Beaumont did not report this result). 

Table 1.4. Relative Root Mean Square Errors, My Simulation Results 
Design-based Estimators 1y  2y  3y  
HT 
Hajék 

1.00 
0.67 

1.00 
0.70 

1.00 
2.84 

Model-based Estimators Linear Model Exponential Model Inverse Model
 1y  2y  3y  1y  2y  3y  1y  2y  3y  

SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

0.47 
0.48 
0.52 

863.41 
872.07 
927.62 

0.84 
0.84 
0.79 

58.00 
60.00 
62.87 

0.47 
0.46 
0.54 
0.44 
0.53 
0.52 

0.84 
0.44 
0.55 
0.40 
0.55 
0.51 

80.83 
1.97 
0.79 
3.07 
5.44 
5.16 

80.83 
77.57 
72.06 
6.23 
8.78 
6.09 

2.36 
2.10 
0.92 
2.29 
2.82 
2.63 

2.18 
1.87 
0.99 
2.12 
2.76 
2.53 

2.14 
2.33 
2.89 
2.54 
4.11 
4.29 

 
The RMSE’s provide more insight into the magnitude of the total errors of these 

estimators, both bias and variance.  While the Beaumont estimators are more biased 

under the linear model than the NP estimators, the variances of the NP estimators drive 

their large relative RMSE’s in Table 1.4 for 1y  and 2y .  Since the relationship of the 

weights and 1y  and 2y  is weaker, the Exponential model produced totals with lower 

RMSE’s.  However, the inverse weights model is inefficient for all estimators, with the 

exception of SHT_5 for 1y  and 2y .  These inefficiencies drove the RMSE’s.  Here also 

the NP method results are comparable to the Beaumont estimators.  For the variable 3y , 

which has a stronger relationship to the weights, the only estimator with lower RMSE 

than the HT estimator is the fifth-order polynomial regression-based SHT_5 estimator 

under the Exponential weights model, but the RMSE under the Beaumont estimators and 
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linear model are very high for 3y .  Generally, the SHT_5 had the lowest RMSE’s across 

the variables and weights model, with the exception of 3y  under the exponential model.  

Figures 1.7 through 1.9 at the end of this section show the boxplots of the 2,000 

estimated totals for each variable.  In each plot, the true population total is represented by 

a horizontal line.  It is clear how the bias shifts the distribution of the totals, while 

inefficiency “stretches” them out.  From Figure 1.7, it is obvious that the inefficiency in 

the MM, LMS, and LTS estimators is caused by a few outlying totals (fewer than the HT 

estimator).  Further investigation showed that in these particular samples, the iterative 

algorithms did not converge within 50 iterations; further research could establish the 

conditions under which this happened and produce some guidelines when applying the 

NP methods in practice.  If this occurs within one sample in practice, an unreasonably 

large total can be identified by comparing the NP estimator to the HT estimator with 

unadjusted weights.  The same problem caused a few outlying totals, and thus larger 

sampling variance, for these estimators for 2y  in Figure 1.8.  This did not occur for the 

MM estimator for 3y , but did occur for the LMS and LTS estimators.  For 2y , the NP 

methods with the linear weights model over-smoothes the weights.  While the bias is 

reduced in the exponential model, a few outlying totals contributed to the large Table 1.3 

variance ratios for the LMS and LTS estimators.  The inverse weights model again is 

most inefficient.  For 3y , the estimator SHT_U was positively biased.  While the NP 

methods are negatively biased under both models, their range of totals is much smaller.  

Again, a few outlying totals lead to the increased variance ratios for the LMS and LTS 

estimators.  Thus, while it seems that the NP estimators generally had lower bias than the 

Beaumont estimators, a few outlying totals made these estimators inefficient across the 
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simulation samples.  In addition, biases in the totals were produced in particular cases, 

(e.g., using a linear model).  In these cases, a “safer” design-based estimatoris the Hajék.  

This estimator is not only easier to produce, but also here performed as well or better in 

terms of the RMSE of the estimated totals across the variables.  

 
Figure 1.7. Side-by-Side Boxplots of Bias in Estimated Totals: 1y  

         Design-based               Linear Model              Exponential Model          Inverse Model
 

 
                        HT  Hajék SHT_USHT_1 SHT_5MM  LMS  LTS SHT_U SHT_1 SHT_5MM LMS  LTS SHT_U SHT_1 SHT_5MM LMS  LTS 
 

 
Figure 1.8. Side-by-Side Boxplots of Bias in Estimated Totals: 2y   

          Design-based               Linear Model              Exponential Model          Inverse Model
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Figure 1.9. Side-by-Side Boxplots of Bias in Estimated Totals: 3y  
         Design-based               Linear Model              Exponential Model          Inverse Model
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1.4.2. The Impact of Model Specification: Accounting for Zero-Inflated Variables 

This simulation study aims to gain an initial understanding of how sensitive the 

generalized design-based models are to zero-inflated survey variables.  This kind of 

variable is considered since it differs from the continuous variables produced in Sec. 

1.4.1 and can illustrate how particular weights models fit to different kinds of survey 

variables, i.e., continuous or categorical.  Since the focus here is on the functional form of 

the weights models, and in Sec. 1.4.1 it was found that the NP methods did not produce 

superior estimators of totals over the Beaumont estimators when the weights model was 

misspecified, the NP methods are not examined here. 

I select 1,000 ( )ips zπ  samples of size 500n =  from the pseudopopulation 

{ }1 1 2 3, , ,i i i iz y y y  of size N = 10,000, where 1 1 1i i iy zβ ε= + , 1 10β = , ( )1 ~ 3,4iz Gamma , 

2iy  is a zero-inflated Exponential variable: 
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where 1 0.1φ =  and 1
ii U z

N
λ ∈= ∑ , and 3iy  is a zero-inflated Poisson variable: 

 
( ) ( )

( ) ( )
3

3 2 2

3 2
3

Pr 0 1

Pr 0 1
!

i

i
y

i
i

y e

ey
y

λ

λ

φ φ

λφ

−

−

= = + −

> = −
, 

where 2 0.4φ =  and 1
ii U z

N
λ ∈= ∑ . That is, ten percent of the 2y -values and forty 

percent of the 3y -values in the population are zero.  Ninety and sixty percent follow the 

specified Exponential and Poisson models, respectively.  The errors follow the same, but 

separate, Normal distributions: ( )
ind

1 2 3, , ~ 0, 50i i i Nε ε ε .  Figure 1.10 shows the 

pseudopopulation scatterplots and histograms. In Figure 1.10, we can see how the 

variables 2y  and 3y  have a concentrated mass of values at zero, then the nonzero values 

follow the separate distribution.  To see the potential relationship between 1 2 3, ,y y y  and 

the HT weights produced from a ( )pp z  sample of size 500, I calculated the associated 

probabilities of selection for all 10,000 population units.   

Figure 1.10. Simulated Zero-Inflated Population Values and Loess Lines 
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Figure 1.11 shows these HT weights and various transformations of them vs. 1 2 3, ,y y y  

and 1 1 1
1 2 3, ,y y y− − − : 

Figure 1.11. Transformations of Simulated Population Values vs. Transformations of 
Population HT Weights 

 
 

The variables 2y  and 3y  have a weak relationship with the variable z  in Figure 1.10 and 

there is a very weak relationship with these variables to the HT weights in Figure 1.11.  

Also, the strongest relationship is between the inverse of the HT weights vs. 1y .  From 

this, I include both “incorrectly” specified models and a “correct” model, as well as one 

that accounts for the zeroes in the 2 3,y y  values.   

The predicted weights are produced when ignoring the zero-inflation and using the 

linear (M1), exponential (M2), and inverse (M3) weights model, and fitting the inverse 

weights model to just the nonzero values of 2 3,y y .  This leads to four weight models: 

• M1-Linear: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1, 1,2,3ki kiH y k−= = , 1i iv y=  
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• M2-Exponential: ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + , ki kiH y= , 1i iv y=  

• M3-Inverse: 1
0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + , ki kiH y= , 1i iv y=  

• M4-Z-inverse: model M3 fit to the data with 2 30, 0y y> > , 
 
where all the β -coefficients were estimated using WLS (and the weights 11 y ), the M2 

and M3 coefficients are estimated from the non-zero values.  The zero-values of 2 3,y y  

had to be treated differently for different weights models: for the linear model, zero 

values were replaced with a value of one, while zeroes retain their value for the 

exponential and inverse weights models.  Note that I include an intercept 0β̂  while the 

true population model does not have an intercept between the y -variables and z .  The 

intercept is included to capture any undue relationship caused by sampling or simulation 

error.  The model-independent HT estimator is also included for comparison.   

Figure 1.12 shows boxplots of the weights produced under the models, while plots 

of the weights before and after smoothing for one particular sample are in Figure 1.13. 

 
Figure 1.12. One-Sample Boxplot Distributions of Weights Under Different Models, One-

Sample Example 
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Figure 1.13. One-Sample Weights Before and After Smoothing, One-Sample Example  

 
 

Here we see that the Exponential weights model leads to the most severe smoothing of 

the HT weights in this example; smaller weights are actually increased more and larger 

weights are severely decreased. For this particular sample, there is also negligible 

difference between the weights produced using all (in M3) vs. the nonzero (M4) 2y  and 

3y  values.   

 To evaluate the totals estimated under the different methods, I use the percentage 

relative bias, the ratio of the empirical variance to that of the HT estimator, and the 

empirical mean square error (RMSE) relative to the HT estimator’s RMSE across the 

2,000 simulation samples: 

• ( ) ( ) ( )20001
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∑

∑
,  

where b̂kT  is an estimate of the true total k kii UT y∈=∑  for variable ky  in simulation 

sample b  ( 1, , 2000b = … ), 1, 2,3k =  is the variable index, 20001
1

ˆ ˆ2000k bkbT T−
== ∑  and  
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20001
1

ˆ ˆ2000HT HT
k bkbT T−

== ∑ .   

In addition to the four model-based totals, evaluation measures were computed for 

the HT and Hajék estimators, where ˆ ˆ ˆ
HJ HTT NT N= , where ˆ

ii sN w∈= ∑ .  The Hajék 

estimator is included since the relationship between z  and 2 3,y y  is weaker (Valliant et 

al., 2000).  The Hajék estimator is also recommended in the design-based literature as 

providing some protection against the effects of extreme weights.  Results are shown in 

Table 1.5 on the following page. 

The Table 1.5 results for 1y  suggest that using a zero-inflated adjustment model 

produces less efficient estimates for non-zero inflated variables (with model M3 being an 

exception).  The bias in estimating 1y  is largest in the Beaumont estimator with an 

incorrectly specified weights model (the M2 Exponential).  For this variable, despite 

lower biases, it also appears that the proposed Z-inverse estimator can be less efficient 

than the HT estimator and Beaumont estimators.  Among the Beaumont estimators, the 

one using the inverse weights model was generally the least biased.  The Beaumont 

estimator with the exponential model was the most efficient for 2y  and 3y  among the 

Beaumont estimators, but worse than the Hajék.  These large variances produced larger 

RMSE’s than the Beaumont models for all three variables, but in general though, the 

zero-inflated models seem to produce comparable results.  If the M4-Z-Inverse 

estimator’s efficiency could be improved, then the RMSE results would be lower than the 

alternatives.  As expected from the relationship shown in Figure 1.9, the Hajék estimator 

performed well for 2y  and 3y , but not 1y .   
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Table 1.5. Zero-Inflated Variables Simulation Results 
 Bias Variance Ratio RelRMSE 

Estimator 1y  2y  3y  1y  2y  3y  1y  2y  3y  
Design-based: 
   HT  
   Hajék 

 
0.01 
0.18 

 
-0.06 
0.03 

 
-0.09 
0.03 

 
1.00 

81.70 

 
1.00 
0.21 

 
1.00 
0.43 

 
1.00 

82.00 

 
1.00 
0.21 

 
1.00 
0.43 

Beaumont*: 
   M1-Linear 
   M2-Exponential 
   M3-Inverse 
   M4-Z-inverse 

 
4.97 
3.08 
-0.24 
0.16 

 
-0.08 
-3.08 
0.61 
0.62 

 
-0.15 
-3.18 
-0.34 
0.21 

 
335.23 
3.03 
0.84 

32.02 

 
0.99 
0.67 
1.17 
2.71 

 
0.99 
0.63 
1.16 
1.90 

 
559.87 
3.03 
1.34 

32.23 

 
0.99 
1.45 
1.20 
2.92 

 
0.99 
1.12 
1.17 
1.97 

* Models: M1 Linear: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1
i iH y−= , 1i iv y= ;  

                 M2 Exponential: ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + , i iH y= , 1i iv y= ; 

                 M3 Inverse:, 1
0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + i iH y= , 1i iv y= ; 

                 M4 Z-inverse: model M3 fit to the data with 2 30, 0y y> > . 
 
 
This evaluation study also indicates that the generalized design-based totals can be 

sensitive to the weights model fit to different types of survey response variables.  We can 

easily see this in looking at the sampling distribution of the estimated totals across the 

simulation samples; Figures 1.14 shows the boxplots for 1 2 3, ,y y y  (note a difference in 

scale).  The true population total is shown as a horizontal line over each histogram.   

Figure 1.14. Boxplot Sampling Distributions of 1 2 3, ,y y y  Totals 
        1y  Totals           2y  Totals             3y  Totals 
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The plots for all three variables in Figure 1.14 show the same general patterns: the linear 

model M1 produces totals with the largest sampling variance and the exponential model 

is not centered around the true population total (illustrating the bias).  The HT estimator 

and M3 Inverse model have the sampling distributions centered close to the true 

population total, with the smallest sampling variance.  The Z-inverse M4 estimator is the 

least biased, but its inefficiency is shown in the plots.  For 2y  and 3y , the sampling 

variance is caused by a few outlying totals; identifying these cases is a first step towards 

improving the efficiency in this estimator for these variables. 

 To see how similar or dissimilar the totals estimated from each simulation sample 

are, Figures 1.15 through 1.17 on the following page show the pairwise scatterplots of the 

six alternative totals for the 2,000 samples for all three variables (note a scale difference).  

These show how the alternative Beaumont models adjust the HT weights for 1y  such that 

there is almost no discernible pattern between the totals before and after the adjustments, 

but the totals are much closer for 2y  and 3y . 



 63

Figure 1.15. Pairwise Scatterplots of 1y  Totals    Figure 1.16. Pairwise Scatterplots of 2y  Totals      

 
 

Figure 1.17. Pairwise Scatterplots of 3y  Totals 

 
 

1.4.3. Performance of Beaumont and NP Estimators with Outlying Weights 

In this simulation, a population similar to Beaumont’s in Sec. 1.4.1 was created.  

However, here the variable z  was created using two chi-square distributions, ( )2 23χ  for 
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9,500 units and ( )2 40χ  for 500.  This was done to intentionally vary the probabilities of 

selection, and thus the HT weights, further than those obtained in the Sec. 1.4.1 study.  

The variables 1 2 3, ,y y y  were then created similar to how they were in Sec. 1.4.1, i.e.,  

1 130i iy ε= + , 2 230 0.1498i i iy z ε= + + , but here ( )
ind

1 2 3, , ~ 0, 200i i i Nε ε ε .  Figure 1.18 

shows the pseudopopulation plot of these revised variables of interest:  

Figure 1.18. Revised Beaumont Simulation Population and Loess Lines

 
Again, two thousand Sampford’s ( )pps z  samples of size 100 were drawn.  The Sec. 

1.4.1 simulation was also extended by perturbing some of the largest HT weights to 

mimic nonresponse adjustments that produce more varied weights.  To do this, first all 

sample units with the largest HT weights (defined by weights exceeding the 95th 

percentile in the empirical weight distribution) were regarded as nonrespondents, and 

thus dropped from each sample.  This is done to mimic methods used in establishment 

studies, where nonrespondents with the highest probabilities of selection are contacted 

more extensively to collect their responses, while smaller unit nonrespondents are 

adjusted with weights or imputation.  Then a propensity model using the variable 3y  (the 
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variable most correlated with z , thus mimicking a variable that is correlated with the 

response propensity) was used to adjust the HT weights.  These nonresponse weights 

were then rescaled using an overall adjustment to force the weights to sum to N (see Ex. 

0.3), resulting in a more skewed weight distribution.  Figure 1.19 shows boxplots of these 

perturbed weights (labeled “NR/PS-adj. wts”) compared to the original HT weights for 

all sample units (“R’s, NR’s HT wts”) and the HT weights after a simple overall response 

rate adjustment (“simple NR-adj. wts”) is applied. 

Figure 1.19. HT Weights Before/After Adjustments, One-Sample Example 

 
 

The following estimators were included: 

• HT with simple NR-adjustment: ˆ , 1, 2,3HT ki
k i s

i

yT k
rπ∈= =∑ , where 

100i i ii Uz zπ ∈= ∑
 
is the selection probability for respondent i  and 0.77r ≈  is the 

overall response rate.  These weights are labeled “simple NR-adj. wts” in Figure 1.19.  
• Hajék: ˆ ˆ ˆHJ HT

k kT NT N= , where ( ) 1ˆ
ii sN rπ −

∈= ∑ uses the simple NR-adjusted 
weights, labeled “NR/PS-adj. wts” in Figure 1.19; 

• “SHT_U”: _ 0ˆ ˆSHT
i kik i sT w y∈=∑ , where the nonresponse/PS weight iw  is predicted 

from an intercept-only model; 
• “SHT_1”: _1ˆ ˆSHT

i kik i sT w y∈=∑ ; 

• “SHT_5”: _5ˆ ˆSHT
i kik i sT w y∈=∑ , where iw  is predicted from a fifth-order 

polynomial model with 1 2 3, ,y y y  and backwards selection with the AIC measure;  

• The three NP estimators ˆMM
kT , ˆLMS

kT , and ˆLTS
kT . 
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The same three weight models, linear, exponential, and inverse, were used.  Here the 

estimators SHT_U, SHT_1, SHT_5, and the NP estimators used the weights labeled 

“NR/PS-adj. wts” in Figure 1.19.  For the linear and inverse models, I chose 1
i iH y−=  

and i iH y=  for the exponential model.  Figure 1.20 shows the one-sample examples of 

the various weights before and after smoothing; the NP examples are in Figure 1.21.   

 Figure 1.20. Beaumont Weights Before/After Smoothing, One-Sample Example 
Linear Model: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1

i iH y−= , 1iv =  

 
Exponential Model: ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

 
Inverse Model: 1

0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

 
 

Again, the SHT_U weights are smoothed to the same common weight value, as are the 

linear and inverse model in SHT_1.  The polynomial regression SHT_5 reduces the 
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variation in the weights, while the NP methods are similar to the Beaumont methods’ 

weights, with a smaller range of trimmed weights.  The linear model induces more 

trimming than the exponential model, particularly in larger HT weights. 

Figure 1.21. NP Weights Before/After Smoothing, One-Sample Example 
Linear Model: 0 1 1 2 2 3 3i i i iw H H Hβ β β β= + + + , 1

i iH y−= , 1iv =  

Exponential Model: ( ) 0 1 1 2 2 3 3log 1i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

Inverse Model: 1
0 1 1 2 2 3 3i i i iw H H Hβ β β β− = + + + , i iH y= , 1iv =  

 
 
I use the same evaluation measures as in Sec. 1.4.1 to evaluate the estimated totals: 

• ( ) ( ) ( )20001
1

ˆ ˆ100 2000k k bk kbRelbias T T T T−
== −∑ , 
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• ( ) ( )
( )

220001
1

220001
1

ˆˆ2000
ˆ

ˆˆ2000

bk bkb
k

HT HT
bk bkb

T T
VarRatio T

T T

−
=

−
=

−
=

−

∑

∑
, 

• ( ) ( )
( )

22000
1

22000
1

ˆ
ˆ

ˆ

bk kb
k

HT
bk kb

T T
RelRMSE T

T T

=

=

−
=

−

∑

∑
, 

where b̂kT  is an estimate of the true total k kii UT y∈=∑  for variable ky  on simulation 

sample b ( 1, , 2000b = … ), 20001
1

ˆ ˆ2000bk bkbT T−
== ∑ , and 20001

1
ˆ ˆ2000HT HT
bk bkbT T−

== ∑ .   

 These measures are shown in Table 1.6.  Some general comments can be made 

from these results.  The HT estimator with the simple nonresponse adjustment and Hajék 

estimators are nearly unbiased across the 2,000 samples.  Both the Beaumont and 

proposed NP estimators have nonzero biases.  In other cases, the model-based methods 

give seriously biased estimates of the total (e.g., linear and inverse models).  The 

unusually large weights are less influential in the NP weights models, which results in 

generally lower biases in the estimated totals, particularly with the exponential model.  

However, the NP methods are still susceptible to “pulling back” the regression line in the 

present of influential observations, resulting in smaller regression coefficients and thus 

smaller smoothed weights.  This increases as the relationship between the weight and 

variable of interest is stronger (shown by large negative biases, particularly in the linear 

model). None of the model-based alternatives produce unbiased estimates of the total for 

3y , which was the variable used to produce the nonresponse weights. 

Again, the model-based estimators can have smaller variances than the HT 

estimator, with the exception of the NP methods being very inefficient under the linear 

weights model.  All of the model-based methods are most inefficient for the variable 3y .  
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The MM estimator is as efficient or more so (as measured by the lower variance ratios) 

than the Beaumont and HT estimators under the exponential and inverse weights models 

for the variables 1y  and 2y .  The NP estimators are very inefficient under the linear 

weights model for estimating the totals for 2y  and 3y . 

The RMSE’s describe the magnitude of the total errors of these estimators.  

Again, we see that the bias does not contribute as much to the MSE as the variances.  

Specifically, while the Beaumont estimators are generally more biased than the NP 

estimators, their variances drive their large relative RMSE’s under the linear model.  The 

same occurred for the Beaumont estimators under the inverse weights model.  Since the 

relationship of the weights and 1y  and 2y  is weaker, the Exponential model produced 

totals with lower RMSE’s.  In particular, the RMSE’s of the NP estimators here are 

lowest.  However, the inverse weights model is inefficient for all estimators, with the 

exception of SHT_5 for 1y  and 2y .  Here also the NP method results are comparable to 

the Beaumont estimators.  For the variable 3y , which has a stronger relationship to the 

weights, the only estimator with lower RMSE than the HT estimator is the fifth-order 

polynomial regression-based SHT_5 estimator under the Exponential weights model, but 

the RMSE under the Beaumont estimators and linear model are very high for 3y .  

Generally, the inverse model had the lowest RMSE’s for this variable, but all of the 

RMSE’s across the models were at least double the RMSE of the HT estimator.  
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Table 1.6. Outlying Weights Simulation Results 
 

Percentage Relative Bias Measures 
 

Design-based Estimators 1y  2y  3y  
HT 
Hajék 

-0.6 
-0.5 

-0.4 
0.4 

-0.1 
0.1 

Model-based  
Estimators Linear Model Exponential Model Inverse Model 

 1y  2y  3y  1y  2y  3y  1y  2y  3y  
SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

-0.5 
-5.5 
-8.7 
-34.8 
-52.5 
-53.5 

2.2 
4.9 
6.1 

-32.6 
-52.5 
-54.5 

25.1 
54.5 
92.5 
-13.2 
-38.1 
-41.2 

0.4 
-7.7 
-4.4 
1.1 

11.8 
13.4 

3.1 
7.8 

13.3 
4.0 

15.6 
17.1 

26.2 
98.4 
112.2 
35.2 
50.3 
52.2 

-79.7 
-78.5 
-45.6 
-35.1 
1.5 
4.5 

-79.2 
-77.8 
-43.0 
-33.1 
4.5 
8.0 

-74.7 
-73.1 
-9.7 

-14.1 
35.0 
39.8 

 

Variance Ratio Measures 
 

Design-based Estimators 1y  2y  3y  
HT 
Hajék 

1.00 
0.15 

1.00 
0.14 

1.00 
0.15 

Model-based Estimators Linear Model Exponential Model Inverse Model
 1y  2y  3y  1y  2y  3y  1y  2y  3y  

SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

0.10 
1.89 
2.21 
3.14 
3.33 
3.24 

0.10 
0.38 
0.91 

11.66 
17.47 
15.10 

0.13 
6.52 

11.70 
29.38 
47.46 
42.04 

0.10 
3.66 
3.03 
0.22 
1.73 
2.00 

0.10 
4.13 
2.62 
0.23 
1.93 
2.12 

0.13 
38.97 
32.05 
0.59 
5.85 
7.02 

1.20 
1.36 
4.43 
0.39 
4.48 
4.75 

1.26 
1.35 
4.54 
0.43 
4.51 
4.92 

2.22 
2.28 

15.15 
1.39 
9.74 

10.77 
 

Relative RMSE Measures 
 

Design-based Estimators 1y  2y  3y  
HT 
Hajék 

1.00 
0.15 

1.00 
0.14 

1.00 
0.34 

Model-based Estimators Linear Model Exponential Model Inverse Model
 1y  2y  3y  1y  2y  3y  1y  2y  3y  

SHT_U 
SHT_1 
SHT_5 
MM 
LMS 
LTS 

0.10 
2.02 
2.54 
8.86 
16.35 
16.87 

0.12 
0.48 
1.07 

16.73 
30.67 
29.30 

2.76 
17.82 
45.62 
23.98 
44.27 
41.12 

0.10 
3.92 
3.11 
0.23 
2.38 
2.84 

0.14 
4.39 
3.38 
0.30 
3.09 
3.52 

3.02 
72.23 
79.02 
6.28 
16.48 
18.32 

28.69 
28.04 
13.39 
6.20 
4.49 
4.84 

28.39 
27.50 
12.52 
5.68 
4.60 
5.22 

25.43 
24.45 
12.55 
2.03 
13.43 
15.94 

   
 
Figures 1.22 through 1.24 at the end of this section show the boxplots of the 2,000 

estimated totals for each variable.  The true population total is represented by a horizontal 

reference line.  The bias shifts the boxplot distributions away from the reference line, 

while the inefficiency “stretches” them out.  From Figure 1.22, like the corresponding 
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Figure 1.7 in Sec. 1.4.1, the inefficiency in the MM, LMS, and LTS estimators is caused 

by a few outlying totals.  This caused larger variances for these estimators in Table 1.6.  

This did not occur for the MM estimator for 3y , but did occur for the LMS and LTS 

estimators.  These are also reflected in Figures 1.23 and 1.24.  For 2y , we see in Figure 

1.23 that the NP methods with the linear weights model produces very biased estimates.  

The bias is reduced in the exponential model, although a few outlying totals contributed 

to the large Table 1.6 variance ratios for the LMS and LTS estimators.  And the inverse 

weights model again is most inefficient.  For 3y , the overall smoothed weight estimator 

SHT_U was positively biased; neither of these estimators depend on the weights model.  

While the NP methods are negatively biased under both models, their range of totals is 

much smaller.  Their inter-quartile ranges are also comparable to that of the HT 

estimator.  Again, we see that a few outlying totals lead to the increased variance ratios 

for the LMS and LTS estimators for the exponential weights model and the inefficiency 

in the inverse model. 

Figure 1.22. Side-by-Side Boxplots of Bias in Estimated Totals: 1y  
 
            Design-based            Linear Model              Exponential Model             Inverse Model
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Figure 1.23. Side-by-Side Boxplots of Bias in Estimated Totals: 2y   
 
            Design-based            Linear Model              Exponential Model             Inverse Model

 

 

 
                             HT  Hajék SHT_U SHT_1 SHT_5MM  LMS LTS  SHT_U SHT_1 SHT_5MM  LMS  LTS  SHT_U SHT_1 SHT_5 MM   LMS   LTS 

 
 

Figure 1.24. Side-by-Side Boxplots of Bias in Estimated Totals: 3y  
 
              Design-based            Linear Model              Exponential Model             Inverse Model

 

 
                             HT  Hajék SHT_U SHT_1 SHT_5MM  LMS LTS  SHT_U SHT_1 SHT_5MM  LMS  LTS  SHT_U SHT_1 SHT_5 MM   LMS   LTS 
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The goal of this simulation is to compare the proposed robust variance estimator against 

Beaumont’s proposed variance and MSE estimators for a simple model for the weights.  

To test their performance, I select 10,000 ( )ps zπ  samples of size 100,500,n =  and 
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population described in Hansen et al. (1983), which follows a superpopulation with the 

following structure: 

 2
0 1( | ) , ( | )M i i i M i i iE y z z Var y z zβ β σ= + = .    (1.38) 

The population plot is given in Figure 1.25 below. 

Figure 1.25. Simulated Population and Loess Lines for Variance Estimation Evaluation  

 
 

From the plot, we see that iy  is linearly related to iz  and its variance increases with the 

size of iz .  I calculated the probabilities of selection for a ( )pp z  sample of size 500.  

The population-level plot of the associated HT weights and various transformation of 

them vs. 1 2 3, ,y y y  and 1 1 1
1 2 3, ,y y y− − −  are shown in Figure 1.26 (note a scale difference). 

 
Figure 1.26. Simulated Population Values vs. Population HT Weights for a ppswor Sample 

of Size 500 
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Since the variance estimator theory depends on the functional form of the weights model 

being correct, the “correct model” based on the population plot in Figure 1.26 involves 

the inverse transformation of the weight modeled as a function of the untransformed iy -

values.  However, since Beaumont’s variance estimator depends on the model residuals, I 

focus on the simple inverse weights model (linear under the inverse transformation) with 

i iH y=  (the “correct” model under this pps sampling) and vary the error specification: 

 M1: 1
0 1i i iw Hβ β ε− = + + , 

 M2: 1
0 1i i i iw H yβ β ε− = + + , 

 M3: 1 2
0 1i i i iw H yβ β ε− = + + . 

 
Thus, of these three models, given the pseudopopulation model(1.38), models M1 and 

M3 are misspecfied in the error component and M2 is correctly specified.  These three 

models lead to Beaumont estimators of the total ii UT y∈=∑  denoted by 1 2 3
ˆ ˆ ˆ, ,B B BT T T , 

respectively.  To see how these models smooth the weights, Figure 1.27 shows examples 

of the weights before and after smoothing under each model for one particular sample. 

Figure 1.27. Alternative Weights Before and After Smoothing, One-Sample Example 
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Five variance estimators are compared: 

• Rao-Wu (1988) bootstrap (labeled “boot” in Figure 1.29): 

( ) ( ) ( )21
ˆ ˆ ˆ

1
B

BOOT B b Bb
nvar T T T

n B == −
− ∑ , where using b̂T  is a realized estimate from 

bootstrap sample b  and B̂T  is a Beaumont estimator.  I used 100 bootstrap samples 
(with-replacement simple random samples of the same size as the original sample, 
100, 500, or 1000); 
 

• sandwich Beaumont variance (“sand” in Figure 1.29):  

Bvar = ( )
2

2ˆ ˆˆ, i
HT E i ii s

i

Hvar T v H
vπ σ ∈

⎛ ⎞
− − Ω⎜ ⎟

⎝ ⎠
∑Z Y , where 2 21ˆ

1E ii s e
n

σ ∈=
− ∑ , 

12
2ˆ i
ii s i s

i

H H
v

−

∈ ∈

⎛ ⎞
Ω = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ , i iH y= , and 21, ,i i iv y y= , 

 
• proposed robust variance estimator (“rob” in Figure 1.29):   

*Bvar = ( )
2

2 2
* *

ˆˆ ˆ ˆ i
B B i i E i ii s i s

i

Hvar T y v y
v

ψ σ∈ ∈

⎡ ⎤⎛ ⎞Ω⎢ ⎥= − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑Y , where 

2
* 1

1 ˆˆ
1

n
E iin

σ ψ==
− ∑  and ( ) ( )2 2ˆ ˆ 1i i i iiw w hψ = − − ; 

 
• Beaumont MSE (“mse”): 

( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆ ˆ ˆ, , max 0, ,B M B B HT B HTmse T var T T T var T Tπ
⎡ ⎤⎡ ⎤= + − − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Z Y Z Y Z Y , 

where ( )ˆ ˆ ,B HTvar T Tπ
⎡ ⎤−⎢ ⎥⎣ ⎦

Z Y  is calculated using the Rao-Wu bootstrap; 

 
• Design MSE (“Dmse”): ( ) ( ) ( )ˆ ˆ ˆmin , ,D B B HTmse T mse T var Tπ

⎡ ⎤= ⎢ ⎥⎣ ⎦
Z Y .  

 
The design MSE I use is a more conservative estimate than Beaumont’s design-MSE 

measure (in expression (1.20)); I use the measure here since Beaumont’s MSE has more 

complicated terms (in particular the one involving BT� , which cannot be calculated).  

However, the Beaumont mse is far larger than Dmse, as will be illustrated below. 
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I use the following five evaluation measures to compare the above alternatives produced 

for 10,000B =  simulation samples:  

• Relative bias: the average distance between the variance estimator ( )ˆ
b Bvar T  and 

empirical variance of B̂T , denoted ( ) ( )21 1
1 1

ˆ ˆ ˆB B
B B Bb bv T B T B T− −

= == −∑ ∑ : 

  ( )( ) ( ) ( )( ) ( )1
1

ˆ ˆ ˆ ˆB
B b B B BbRB var T B var T v T v T−

=
⎡ ⎤= −⎢ ⎥⎣ ⎦∑ ,  

 
• Empirical CV: the standard error of the variance estimator, expressed as a percentage 

of the empirical variance: 

( )( ) ( ) ( )( ) ( )
21 1

1 1
ˆ ˆ ˆ ˆB B
B b B b B Bb bCV var T B var T B var T v T− −

= == −∑ ∑ ; 

 
• Empirical RelRMSE: the mean square error of the variance estimator, expressed as a 

percentage of the empirical variance:  

  ( )( ) ( ) ( )( ) ( )21
1

ˆ ˆ ˆ ˆB
B b B B BbRelRMSE var T B var T v T v T−

== −∑ ; 

 
• 95% CI Coverage rate: the percentage of the B  simulated confidence intervals that 

contain the true population total: ( ) 2
ˆ ˆ 1.96B BT T var T zα− ≤ = ; 

 
• Average CI width: the average width of the 95% confidence intervals: 

( )1
2 ˆ1.96B

Bb var T
B =∑ . 

 
Table 1.7 at the end of this section shows results from the 10,000 simulated samples for 

each sample size.  Here, the most noticeable –and unexpected– result is how poorly the 

bootstrap variance estimator performs, particularly for 100n = , in terms of large biases 

and large empirical CVs, both of which produce larger RMSE’s.  For larger sample sizes, 

the bootstrap is more comparable to the other results.  The bootstrap is also very sensitive 

to extreme outliers, which occurred in the 500n =  case.  For example, the relative bias in 

the median of the bootstrap variance estimates for the 100n =  sample size and models 

M1, M2, M3 were 0.40%, 0.89%, and -0.75%, respectively.  The corresponding bias 
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using the means across the 10,000 samples, which are in Table 1.7, were 210.2%, 

1,551.4%, and 3,095.6%. 

For estimation of the totals, in terms of repeated sample-based inference, the 95% 

confidence interval coverage rates and average CI widths indicate that the model-based 

alternatives perform poorly compared to the alternatives.  Despite the “correct” weights 

model used (correct in the functional component) in producing Bvar  and *Bvar  most of 

the Table 1.7 confidence interval coverage rates were close to zero.  To see why this 

happened, Figure 1.28 shows boxplots of the alternative totals. Here we see that the 

Beaumont estimators produced biased totals, which produced the poorer CI results, not 

the variance estimates.  As the sample size increases, the variance of the Beaumont 

estimators decreases while the bias becomes nearly constant.  In such a case, confidence 

interval coverage is asymptotically zero.  It is also notable that six of the 10,000 

simulation samples contained a negative estimate for the total produced using model M3 

due to negative weights; these were omitted to avoid skewing the M3 results.   

Figure 1.28. Boxplot Sampling Distributions of Estimated Totals 
            n=100                   n=500             n=1000 
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For the alternative variance estimators, the model-based variance estimators appear to be 

the most efficient, as they generally had the lowest empirical CV’s, relatively low biases, 

and the lowest RMSEs under model M2, the correct model.  As a result, the model-based 

alternatives appear to be better alternatives at estimating the variance.  To see why the 

Beaumont MSE estimator performed poorly, Figure 1.29 contains boxplots of the 

sampling distributions of the variance estimators for the samples using weights model M2 

(the M1 and M3 plots were similar).  The empirical variances of each associated 

estimator are shown as horizontal reference line segments.  All of the variance estimators 

are very skewed.  In addition, Beaumont’s MSE estimator (“mse”) is very biased due to 

the bias in the totals.  The design-MSE estimator (“Dmse”) did not have this problem, 

since this is bounded above by the HT estimator’s design-variance.  Here this minimum 

( )ĤTvar Tπ  was always used. 

Figure 1.29. Boxplot Sampling Distributions of Variance Estimates, HT and Beaumont M2 
Totals 

           n=100                       n=500             n=1000 
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For the other Table 1.7 results, the RMSE’s of the alternative estimators decreased as the 

sample sizes increased.  The Beaumont variance estimators had the lowest RMSE’s when 

using the correct model M2, but not the other models (whose RMSE’s were larger than 

that of the HT estimator).  As expected, the average width of the 95% confidence 

intervals decreases from 100n =  to 500n =  to 1000n =  for the HT variance and the 

model-based variance estimators Bvar , *Bvar , and ˆ( )Bmse T .  Generally, across the 

alternative weights models, model M2 with the “correct” error specification among the 

three alternatives had the best performance.  While the results are closer than models that 

use an incorrect specification for the weights (Sec. 1.4.1 and 1.4.2), the variance 

estimators are sensitive to the choice of the model. 

 In evaluating the proposed robust variance estimator that uses leverage-based 

adjustments, the results are similar to the Beaumont sandwich variance estimator.  Both 

variance estimators are positively biased, which is apparent as the sample size increases, 

with the robust variance estimator’s bias being lower (particularly when the incorrect 

models M1 and M3 are used).  This occurred since these variance estimators do not have 

finite population correction factors (fpc’s) like the HT and bootstrap variances.  Thus, 

while the variance of the variance decreases with the sample size – shown by lower CVs 

and smaller CI widths – the bias of the model-based variance estimators increase.  

However, the overall impact is that the RMSE’s of the model-based variance estimators 

are lower for the smaller sample size 100n =  using the correct model M2.  However, the 

bootstrap and Beaumont’s design MSE, both of which have fpc’s, have the smallest 

RMSE’s for the larger sample size 1000n = . 

  .   
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Table 1.7. Variance Estimation Simulation Results: Relative Bias, Empirical CV, Relative RMSE, 95% CI Coverage, and Average CI Width 
 

n=100 
 

 
 

Relative Bias (%) 
 

Empirical CV (%) RMSE 95% CI Coverage Average CI Width 
HT Variance 1.0 80.1 504.1 95.9 2540.2 
Model-based 
Estimators M1* M2** M3*** M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Bootstrap 
Sandwich 
Prop. Robust  
MSE 
Design MSE 

210.2 
0.6 
0.1 
8.9 
0.6 

1551.4 
-0.1 
2.2 
3.6 
-0.1 

3095.6 
-1.0 
-0.5 
-0.9 
-1.0 

1.4x106

112.1 
22.7 
430.5 
112.1 

8.0x106 
60.1 
82.1 

376.0 
60.1 

1.4x107 
1.3 

18.7 
45.3 
1.3 

1.5x104 
665.2 
125.6 
5162.0 
665.2 

5.7x107 
441.9 
1685.9 
3701.6 
441.9 

6.8x108 
4720.1 
2590.4 
4840.2 
4720.1 

31.0 
32.5 
20.8 
98.2 
32.5 

67.4 
37.6 
89.2 
88.0 
37.6 

86.0 
32.8 
98.9 
67.4 
32.8 

3133.3 
2450.3 
2118.3 
6319.5 
2540.2 

1.2x104

2540.5 
4983.4 
5432.8 
2540.2 

8.0x104 

2540.5 
4983.4 
5432.8 
2540.2 

 

n=500 
 

 
 

Relative Bias (%) 
 

Empirical CV (%) RMSE 95% CI Coverage Average CI Width 

HT Variance 0.3 42.1 129.3 96.9 1129.3 
Model-based 
Estimators M1* M2** M3*** M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Bootstrap 
Sandwich 
Prop. Robust 
MSE 
Design MSE 

0.0 
0.5 
0.6 

38.9 
0.3 

0.6 
0.1 
0.2 

22.3 
-0.3 

1.8x106 

-0.4 
-0.4 
6.7 
-0.8 

15.8 
43.5 
47.2 

750.2 
43.6 

192.4 
23.1 
25.5 

850.1 
23.1 

1.7x106

7.3 
8.7 

663.1 
7.1 

40.0 
171.6 
196.6 

8.0x104 

136.5 

6674.3 
93.5 

109.7 
8258.4 
131.0 

1.1x109

239.1 
231.6 
5905.0 
494.9 

0.0 
0.0 
0.0 

100.0 
0.0 

2.0 
0.0 
0.0 

100.0 
0.0 

53.2 
3.8 
3.8 

84.8 
0.1 

988.0 
1214.5 
1252.2 
6232.5 
1129.3 

1590.2 
1445.6 
1475.2 
6443.2 
1129.4 

9556.1 
1943.2 
1965.7 
6066.5 
1129.7 

 

n=1000 
 

 
 

Relative Bias (%) 
 

Empirical CV (%) RMSE 95% CI Coverage Average CI Width 

HT Variance 0.4 29.4 86.7 99.4 779.3 
Model-based 
Estimators M1* M2** M3*** M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Bootstrap 
Sandwich 
Prop. Robust 
MSE 
Design MSE 

0.2 
8.8 
6.4 

107.0 
0.6 

0.7 
17.9 
15.3 
75.4 
-0.1 

9.7 
19.2 
17.1 
42.5 
-0.7 

18.2 
46.5 
32.0 
11.0 
32.8 

35.5 
74.2 
66.8 

114.8 
17.5 

4.9x104

84.3 
78.8 

989.3 
6.3 

48.3 
1399.4 
1023.1 
1.7x104 

107.0 

170.1 
3868.8 
3320.0 
1.7x104 

49.6 

1.8x105

6938.9 
6188.5 
1.6x105 

251.1 

0.0 
0.0 
0.0 

100.0 
0.0 

0.0 
76.0 
54.5 

100.0 
0.0 

11.2 
100.0 
100.0 
100.0 

0.0 

690.1 
1944.1 
1693.3 
6436.4 
779.5 

1100.8 
3683.5 
3427.5 
7394.5 
780.1 

2396.7 
6365.2 
6028.8 
9285.1 
784.4 

 * M1: 1
0 1i i iw yβ β ε− = + + , **M2: 1

0 1i i i iw y yβ β ε− = + + , ***M3: 1 2
0 1i i i iw y yβ β ε− = + + . 
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1.5. Discussion and Limitations 

In general, the evaluation study results indicate that the model-based weight trimming 

method is very sensitive to specification of the weights model.  It also appears very 

difficult to obtain a weights model that works for “all,” or different kinds, of survey 

variables, as shown in Sec. 1.4.1, 1.4.2, and 1.4.3.  This method also involves smoothing 

all of the HT weights; typically in a design-based setting a small set of unusually large 

and influential weights is trimmed, with minimal impact on the weights of non-trimmed 

cases.  Future work could consider if this is a beneficial weight trimming method when 

combined with calibration to population totals to ensure better design-based properties.  

This is the conventional approach in SUDAAN’s weighting and trimming procedures, 

where trimming is done prior to calibration adjustments (RTI 2010).  Another extension 

would be to consider applying this approach to other estimators (like means or model 

parameter estimates), or other sample designs like cluster sampling. 

Also, while it appears that the NP methods are comparable to Beaumont’s, further 

steps would include whether or not a more formal bias correction factor needs to be 

developed.  The gains in the NP methods were minimal in the replication of Beaumont’s 

simulation study.  However, as expected, the NP estimators produce totals with lower 

bias in the presence of outlying weights, such as those that mimic differential 

nonresponse adjustments in Sec. 1.4.3.  However, in Sec. 1.4.1 the NP estimators did not 

consistently outperform the Beaumont estimators in all scenarios; the inefficiency in 

these estimators also drove the RMSE measures. 

 In Sec. 1.4.4, I demonstrate empirically that the Beaumont-proposed variance and 

MSE estimators also depend heavily on the extent to which the weights model holds.  
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And the model misspecification bias does not decrease as the sample size increases since 

there is no finite population correction factor in this variance.  In Sec. 1.3.1, I propose a 

more robust variance estimator than Beaumont’s model-based variance estimator and 

evaluate it empirically in Sec. 1.4.4.  While the proposed variance estimator performed 

similar to the Beaumont and other alternative estimators, inferential results related to 

confidence intervals are sensitive to the bias in the estimated totals. A variance estimator 

that is robust to misspecification of the variance component in the weights model will not 

overcome this bias. 

Generally, in the Beaumont replicated simulation in Sec. 1.4.1, the fifth-order 

polynomial term with stepwise selection had the lowest RMSE’s across the variables and 

weights model, with the exception of 3y  under the exponential model.  This suggests that 

some type of robust polynomial model, such as a penalized spline (e.g., Breidt et al. 

2005), may be an appropriate extension to this method.  Another potential extension is to 

consider modeling weights that have additional adjustments, such as nonresponse and 

poststratification.  For example, in Sec. 1.4.3, a pps sample was selected so that weights 

vary, then a nonresponse adjustment is made to subsets of units.  This evaluation study 

suggests that the NP methods with an Exponential weights model are more appropriate 

for modeling weights obtained using a propensity-model based weight with a PS 

adjustment, but more explicit models to account for other types of nonresponse 

adjustments can be developed. 

 In other (omitted) results, it was found empirically that using Beaumont’s 

pseudopopulation with y  being linearly related to z , selecting a sampled with 

probabilities proportional to z , and fitting an inverse weights model leads to a Beaumont 
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estimator that is exactly equal to the HT.  This is another scenario in which this method 

does not apply.  Other situations where this method does not apply, e.g., self-weighting 

designs, simple random sampling, etc., were discussed earlier, at the end of Sec. 1.2.2.  

Last, a practical implication is that the linear and inverse weights models can potentially 

produce negative weights.  For the linear model, small weights can be predicted as 

negative.  However, with the inverse model, units with small iπ  can be predicted to be 

negative and close to zero, which produces very large negative weights.  If this occurs for 

a particular sample, it can lead to seriously biased estimates of totals if the iπ  estimated 

from the model is not bounded below by zero. 
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Paper 2: Using Bayesian Priors in Model-Assisted Penalized Spline Estimators 
 

Abstract: Penalized (p-) spline models have been used to produce more robust estimators 

of the population total.  Breidt et al. (2005) use a calibration approach to produce a 

model-assisted p-spline estimator that shares many properties with the generalized 

regression estimator.  I propose extending the Breidt et al. model using prior distributions 

for the unknown model parameters, such as those used in Zheng and Little (2003).  In this 

paper, I evaluate the proposed total against conventional alternatives using linear and 

nonlinear data, and compare model-based, Taylor series approximation, and jackknife 

replication variance estimators for it.  Results indicate that the proposed estimator can 

produce totals with lower mean square errors, but they are sensitive to the number of 

terms used in the model. 

 

2.1. Introduction, Research Plan, and Research Hypotheses 

2.1.1. Introduction 

Alternative to the existing design-based weight trimming methods described in Sec. 

1.1.1, model-based methods to adjust survey weights have also been developed.  In one 

approach, Bayesian methods that pool or group data together have been recently 

proposed for weight trimming.  Unlike the design-based methods, the Bayesian methods 

involve “smoothing over” large varying weights rather than truncating them and 

redistributing the value.  There are two complementary approaches: “weight pooling” and 

“weight smoothing.”  While both use models that appear similar, weight pooling is the 

Bayesian extension of design-based trimming and weight smoothing is the Bayesian 

extension of classical random effect smoothing.  In weight pooling models, cases are 
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grouped into strata, some of which are collapsed into groups, and the group weight 

replaces the original weights.  The strata here can be defined by the size of the original 

weight (based on the probability of selection) such that weights are closest in value 

within each stratum.  In weight smoothing, a model that treats the group means as 

random effects smoothes the survey response values.  The strata here can be defined by 

the size of the original base weight or the weight after adjustments for nonresponse and 

poststratification.  In this approach, the survey response variable means are smoothed, not 

the weights, but the influence of large weights on the estimated mean and its variance is 

reduced under the smoothing model.  In both weight trimming and weight smoothing, 

Bayesian models are used to average the means across all possible trimming points, 

which are obtained by varying the cut point for smoothing.  This makes it possible for 

both methods to produce variable-dependent weights.  In addition, these methods have 

been developed from a very theoretical framework, for specific inferences, and may be 

difficult to apply and validate in practice.  These methods has also been primarily applied 

to non-informative sampling designs, which limits its application to complex surveys.  

For example, once the weights are used to determine the cutpoint stratum, they are not 

used further in estimation.  However, the related literature has demonstrated that they are 

capable of producing estimators with overall lower mean square errors and that particular 

choices of priors can make the models robust to misspecification. 

The other model-based approach, the superpopulation model approach, 

involves using the sample-based information and external auxiliary information to predict 

the total of units in the population but not in the sample.  The related theory (e.g., 

Valliant et. al 2000) has shown that, when the model is correct, the Best Linear Unbiased 
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Predictor (BLUP) is the best estimator for the finite population total.  Several options 

have also been proposed to adjust the BLUP estimator of the total for model 

misspecification using various robust regression methods including the p-spline 

estimator.  Most of these estimators use a form of the BLUP plus some residual-based 

adjustment.  There exist underlying case weights associated with these estimators, even if 

they are only implicitly defined.  I cite several examples of these and show that the 

model-assisted p-spline estimator was derived from a model-based difference estimator. 

Breidt et al. (2005), Claeskens et al. (2009), and Breidt and Opsomer (2000) use a 

local polynomial penalized (p)-spline calibration model to produce a model-assisted p-

spline estimator that shares many properties with the generalized regression estimator 

(Särndal et al. 1992).   They demonstrate theoretically and empirically that their p-spline 

model produces a more robust GREG estimator (robust to model misspecification) than 

one obtained under a linear model, without much loss of efficiency.  Breidt et al. (2005) 

also proposed using survey weighted least squares and restricted maximum likelihood 

(REML) methods to estimate the unknown variance component parameters of the 

models.  I propose extending their model using prior distributions for the unknown model 

parameters.  In particular, using conventional priors (Gelman 2006) for the unknown 

variance components can guarantee avoidance of the negative estimates that can occur 

when using REML-based methods in practice. 

2.1.2. Research Plan and Hypotheses 

My goal is to produce an estimator for the finite population total with lower mean square 

errors and evaluate it against the separate weight pooling, weight smoothing, and p-spline 

model-based estimators, and some conventional design-based alternatives.  To do this, I 
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first propose a relatively simple version of the model, develop it theoretically, and 

evaluate it in a simulation.  I also develop a design-based resampling variance estimator 

for this total by extending the approach in Zheng and Little (2005).  I then evaluate the 

proposed estimator against existing alternative methods in a simulation of single-stage 

sample designs in Sec. 2.4.  Since the proposed method is computer-intensive, I explore 

replicate group-based variance estimation methods, rather than “delete-a-unit” 

approaches.  Then I use a simulation study to gauge the variance estimators’ 

performance.  

 Generally, the proposed estimators can potentially have higher efficiency (lower 

variance) and are more robust (i.e., have lower bias) than the existing alternative 

methods.  This produces estimators of totals with overall smaller MSE’s.  They are 

expected to have higher efficiency than the design-based estimators, but will incur a bias 

when the model does not hold.  However, since the model-based estimators can be 

viewed as calibration estimators and are thus asymptotically design-unbiased when the 

model does not hold (Breidt et. al 2005), I expect that they will have a small amount of 

bias and not much loss in efficiency.  Producing non-negative variance component 

estimates should also improve the MSE of the estimated totals by eliminating the 

possibility of egregious results.  

 

2.2. Literature Review 

This section mixes summaries of existing methods of estimation and examples of the 

approaches proposed in the related Bayesian, the alternative BLUP and robust 

superpopulation model-based estimators, and penalized spline modeling literature.  After 
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introducing the model prediction approach, I provide some simple BLUP-based examples 

and existing robust methods proposed to estimate a total, including the penalized spline 

estimator. 

2.2.1. Bayesian Methods  

While Bayesian inference for finite populations is not new (e.g., Basu 1971; Ericsson 

1969, 1988; Ghosh and Meeden 1997; Rubin 1983, 1987; Scott 1977), Bayesian model-

based approaches related to weight trimming have been recently developed.  The general 

Bayesian inference approach first specifies a model for the population values Y  as a 

function of some unknown parameter θ , denoted ( )p Y θ .  We denote X  as the matrix 

of covariates and I  as the vector of sample inclusion indicators.  To make all inferences 

for the finite population quantities, we use the posterior predictive distribution 

( ),r sp y y I , where ry  are the N n−  non-sampled units of Y  and sy  the n  sampled 

values (Little 2004).  The distribution ( )p Y θ  is combined with a prior for θ , denoted 

by ( )p θ , to produce the posterior distribution.  From Bayes’ theorem, the posterior 

predictive distribution of ry  is 

 ( ) ( ) ( ),r s r s sp p p d∝ ∫y y y y θ θ y θ .     (2.1) 

where ( ) ( )
( )

( ) ( )
( )

, ss
s

s s

p pp
p

p p
= =

θ y θθ y
θ y

y y
 is the posterior distribution of the model 

parameters, ( )sp y θ  the likelihood (as a function of θ ), and ( )sp y  a normalizing 

constant.  The distribution in (2.1) is used to make all inferences about the non-sampled 
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population values ry .  To make inference to the population total 1
N

iiT y== ∑ , we use the 

posterior distribution ( )sp T y . 

 Elliott and Little (2000) and Lazzeroni and Little (1993, 1998) propose using the 

Bayesian model-based framework to pool or collapse strata when estimating finite 

population means under post-stratification adjustments applied within strata.  They first 

establish that a model is assumed under various methods that pool data at either the 

weight trimming (related to weight pooling) or estimation (weight smoothing) stages.  In 

both the weight pooling and weight smoothing approaches, strata are first created using 

the size of the weights. These strata may either be formal strata from a disproportional 

stratified sample design (“inclusion strata”) or “pseudo-strata” based on collapsed/pooled 

weights created from the selection probabilities, poststratification, and/or nonresponse 

adjustments. These inclusion strata are ordered by the inverse of the probability of 

selection, the strata above a predetermined boundary (the “cutoff” or “cutpoint stratum”) 

are identified, and data above the cutpoint are smoothed.   

To obtain the final estimate of the finite population mean in both approaches, 

estimates of means are calculated for each possible smoothing scenario; the key 

distinction is that weights are smoothed in weight pooling while the means are smoothed 

in weight smoothing.  The final estimate is a weighted average across the means for all 

possible pooling scenarios, where each mean estimate produced under a trimming 

scenario is “weighted” by the probability that the associated trimming scenario is 

“correct.”  Since the probability that the trimming scenario is correct is calculated using 

the posterior probability of each smoothing cut point, conditional on the observed data 

and proposed Bayesian model, this method becomes variable-dependent.  Although the 
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Bayesian models look similar, the two approaches are different and their technical details 

are discussed separately.   

Weight Pooling Details 

After dividing the sample into “strata,” as defined above, and sorting the strata by size of 

weights hw , the untrimmed (or “fully weighted”) sample-based estimate for a mean 

under stratified simple random sampling is given by 

 1
1

1

H
h hi Hh i h h h

w hH
hh i h

w y N yy
Nw

= ∈
=

= ∈

= =
∑ ∑ ∑
∑ ∑

,      (2.2) 

where h h hw N n= .  Elliott and Little (2000) show that when the weights for all units 

within a set of strata (separated by a “cut point,” denoted by l ) are trimmed to the 

predetermined cutoff 0w , estimate (2.8) can be written as 

 
*1 0

1
l Hh h h

t h h l
N y w n yy
N N

γ−
= == +∑ ∑ ,       (2.3) 

where 0
1
1

H
hh l

l
hh

N w n

N
γ =

−
=

−
=

∑
∑

 is the amount of “excess weight” (the weight above the 

cutpoint) absorbed into the non-trimmed cases and *
1
1

H
h hh l

l
hh

n y
y

n
=
−
=

=
∑
∑

.  They also show 

that choosing 0
H H

h hh l h lw N n= == ∑ ∑ , which gives 1γ = , makes the trimmed estimator 

(2.3) correspond to a model-based estimator from a model that assumes distinct stratum 

means ( hμ ) for smaller weight strata and a common mean ( lμ ) for larger weight strata: 
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( )
( )

ind 2

ind 2

~ , ,

~ , ,

, constant

hi i h

hi h l

h l

y N h l

y N h l

μ μ σ

μ μ σ

μ μ

<

≥

∝

.       (2.4) 

They extend model (2.4) to include a noninformative prior for the weight pooling 

stratum, denoted ( ) 1P L l H −= = , and recognize that this model is a special case of a 

Bayesian variable selection problem (see their references):  ( )ind2, , ~ ,T
l l ll Nσ Σy β Z β , 

where T
lZ  is a n l×  matrix with an intercept and dummy variables for each of the first 

1l −  strata, the parameters 1 0 0 1, , l lμ β μ β β −= = +…  in lβ  are the model parameters 

associated with each smoothing scenario, and Σ  is 2σ  times an identity matrix.  That is, 

each smoothing scenario corresponds to a dummy variable parameter (1 for smoothing 

the weights within all strata above the cut point l  under the pooling scenario, 0 for not 

smoothing) in T
lZ .  Elliott and Little (2000) incorporate additional priors for the 

unknown parameters 2σ  and lβ  from the Bayesian variable selection literature and 

propose  

 

( )
( )

( )

( ) ( )

( ) ( )

ind 2

ind 2

1

1 22

2

~ , ,

~ , ,

, 2

hi i h

hi h l

l

l
l

y N h l

y N h l

P L l H

P L l

P L l

μ μ σ

μ μ σ

σ σ

σ π

−

− +

−

<

≥

= =

= ∝

= ∝β

,       (2.5) 
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where 1 0 0 1, , l lμ β μ β β −= = +… . Since the probability that the trimming scenario is 

correct is calculated using the posterior probability of each cut point l , conditional on the 

observed data and the hierarchical Bayesian model (2.5), this method becomes variable-

dependent.  That is, pooling scenarios that are identified as the “most correct” for one 

variable may not be for others.  Also, assuming the prior (2.5) produces a posterior 

distribution that does not have a closed-form estimate like (2.4); while the model is more 

flexible, Elliott and Little found it can be susceptible to “over-pooling.”  Elliott (2008) 

used Bayesian analytic methods, such as data-based priors (Bayes Factors) and pooling 

conterminous strata, which improved robustness of the model and reduced the over-

pooling. 

 Weight Smoothing Details 

For their weight smoothing model, Lazzeroni and Little (1993, 1998) assume that both 

the survey response variables and their strata means follow Normal distributions: 

 
( )
( )

ind 2

ind

~ ,

~ ,

hi h h

T
H

Y N

N

μ μ σ

μ x β D
,       (2.6) 

where μ  is the vector of stratum means, β  is a vector of unknown parameters, D a 

covariance matrix, and H  the total number of strata.  Under model (2.6), each data value 

is normally distributed around the true stratum mean hμ  with constant variance 2σ .  

Since each hμ  is unknown, the model assumes each stratum mean follows a Normal 

distribution with a mean that is a linear combination of a vector of known covariates x  

and jointly follow an H-multivariate Normal distribution.  They use this model to predict 
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post-strata means.   For ry , observations not in the sample, hiY  is estimated by ˆhμ , the 

expected value of hiY  given the data.  The estimated finite population mean is the mean 

of the posterior distribution obtained assuming prior (2.6).  It can be written as:  

 ( )1
1 ˆH

wt h h h h hhy n y N n
N

μ= ⎡ ⎤= + −⎣ ⎦∑ .     (2.7) 

The ˆhμ  term in (2.7) is an estimate of hy  that is smoothed toward Tx β .  The (2.7) mean 

has a lower variance than the fully weighted poststratified mean (in (2.2), with no 

trimming) and the weights have less influence since we borrow information from ˆhμ , the 

means that are predicted using Tx β .  In large samples, estimator (2.7) behaves like 

estimator (2.2) (as the ˆhμ  term in (2.7) tends to hy ), but it smoothes stratum means 

toward Tx β  when the sample size is small.   

Lazzeroni and Little (1998) use linear and exchangeable random effects models to 

estimate the parameter β .  They also consider the groups (“strata”) used for establishing 

trimming levels (denoted by h ) as being fixed.  Elliott and Little (2000) extend model 

(2.7) and relax the assumption that h  is fixed.  They create the strata under particular 

fixed pooling patterns and use non-informative priors (in model (2.6)) for the unknown 

model (2.7) parameters.  Estimates of smoothed means are calculated for each possible 

smoothing scenario.  Like the weight pooling method, the final estimate is a weighted 

average across means for all possible pooling scenarios, where each mean estimate is 

“weighted” by the probability than the smoothing scenario is “correct.”  Using their 

proposed prior produces a posterior distribution that does not have a closed-form estimate 

like (2.7), but the model is more flexible.  Elliott (2007) extends weight smoothing 
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models to estimate the parameters in linear and generalized linear models.  Elliott (2008) 

extends model (2.5) for linear regression, allows pooling all conterminous strata (which 

extends model-robustness and prevents over-pooling), and uses a fractional Bayes factor 

prior to compare two weight smoothing models (which increases efficiency).  Elliott 

(2009) extends this method, using Laplace approximations to draw from the posterior 

distribution and estimate generalized linear model parameters.  Elliott and Little (2000) 

also show that a semi-parametric penalized spline produces estimators of means that are 

more robust under model misspecification related to the necessity of pooling.  

2.2.2. Superpopulation Model Prediction Approaches 

Here I describe the other model-based approach in survey inference, other than the 

Bayesian approach described in Sec. 2.2.1.  This approach involves assuming that the 

population survey response variables Y  are a random sample from a larger (“super”) 

population and assigned a probability distribution ( )P Y θ  with parameters θ .  Typically 

the Best Linear Unbiased Prediction (BLUP, e.g., Royall 1976) method is used to 

estimate the model parameters.  The theoretical justification for this is described next. 

The BLUP Estimator and Associated Case Weights 

Here, for observation i , we assume that the population values of Y  follow the model 

 ( ) ( ) 2,T
M i i i M i i iE Var Dσ= =Y x x β Y x ,     (2.8) 

where ix  denotes a p -vector  of benchmark auxiliary variables for unit i , which is 

known for all population units.  A full model-based approach uses the BLUP method to 

estimate the parameter β  (Royall 1976).  The BLUP-based estimator of a finite 

population total is the sum of the observed sample units’ total plus the sum of predicted 

values for the non-sample units, denoted by r : 
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ˆˆ T
BLUP i ii s i rT y∈ ∈= +∑ ∑ x β .      (2.9) 

Valliant et al. (2000) demonstrate that, when the corresponding model holds, estimator 

(2.9) is the best estimator of the total.  However, when the model does not hold, model-

misspecification related bias is introduced.  Note that estimator (2.9) is also variable-

specific; a separate model must be formulated for each y -variable of interest.  In 

addition, the resulting BLUP-based weights for a particular sample unit can be negative 

or less than one, which is undesirable from a design-based perspective.   

When ix  is a scalar, every design- and model-based estimator can be written in a form 

resembling (3.11) using the following expression (p. 26 in Valliant et al. 2000): 

ˆ
ˆ ii s

i ii s i r
ii r

T y
T y x

x
∈

∈ ∈
∈

⎡ ⎤−
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑∑ ∑∑
.     (2.10) 

Alternatively, we can write (2.10) as 

( )

ˆ ˆ

1
i ii s i r

i i ii s i s

T y y

y w y
∈ ∈

∈ ∈

= +

= + −

∑ ∑
∑ ∑

,      (2.11) 

where the component ( )1i ii s w y∈ −∑  is an estimator of the term ii r y∈∑ .  All 

subsequent estimators can be written in these forms.  Both (2.10) and (2.11) can be used 

to explicitly define the associated case weights.  In general, for ( )1, , T
Ny y=Y …  

denoting the vector of population y -values, since the total is a linear combination of Y , 

we can write TT = γ Y , where 1iγ = .  We partition both components into the sample and 

non-sample values, ( ),T T
s r=Y y y  and ( ),T T

s r=γ γ γ .  The population total is then 
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T T
s s r rT = +γ y γ y .  If we denote the linear estimator as ˆ T

s sT = g y , where ( )1, , T
ng g=g …  

is a n -vector of coefficients,  the estimator error in T̂  is 

 
( )ˆ T T T

s s s s r r

T T
s r r

T T− = − +

= −

g y γ y γ y

a y γ y
,      (2.12) 

where s s=a g γ .  The term T
sa y  in (2.12) is known from the sample, but T

r rγ y  must be 

predicted using the model parameters estimated from the sample and the x -values in the 

population that are not in the sample.  Thus, we similarly partition the population 

covariates s

r

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

X
x

X
, where sX  is the n p×  matrix and rX  is ( )N n p− × , and variances 

ss sr

rs rr

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

V V
V

V V
, where ssV  is n n× , rrV  is ( ) ( )N n N n− × − , srV  is ( )n N n× − , and 

T
rs sr=V V .  Then, under the general prediction theorem (Thm. 2.2.1 in Valliant et al. 

2000), the optimal estimator of a total is 

 ( )( )1ˆ ˆˆ T T T T
opt s s r r rs ss s sT −= + + −γ y γ X β V V y X β ,    (2.13) 

where ( ) 11 1ˆ T T
s ss s s ss s

−− −=β X V X X V y .  Using Lagrange multipliers, Valliant et al. (2000) 

obtain the optimal value of a  as  

 ( )1 1 1T T
opt ss sr s s r s ss sr r

− − −⎡ ⎤= + −⎢ ⎥⎣ ⎦
a V V X A X X V V γ ,    (2.14) 

where 1T
s s ss s

−=A X V X .  This leads to the optimal vector of BLUP coefficients 

s opt s= +g a γ , where the i th component is the “weight” on sample unit i  (Valliant et. al 

2000; Valliant 2009).  This weight depends on the regression component of the model 
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( )ME Y , the variance ( )MVar Y , and how the sample and non-sample units are 

designated.  In general, the case weights for a total are 

( )1 1 1T T
s ss sr s s r s ss sr r s

− − −⎡ ⎤= + − +⎢ ⎥⎣ ⎦
g V V X A X X V V 1 1 ,    (2.15) 

where ,s r1 1  are 1n×  and ( ) 1N n− ×  vectors of units with elements that are all 1’s, 

respectively.  For the total under the general linear model with constant variance, (2.15)

reduces to 

 ( ) 1T T
s s s s r r s

−
= +g X X X X 1 1 .      (2.16) 

 In the remainder of this section, I provide examples of simple BLUP-based estimators of 

totals and the associated case weights, as well as more robust alternatives that have been 

proposed in the related literature. 

Simple Model-based Weight Examples 

Example 2.1. HT Estimator, simple random sampling.  In simple random sampling, 

where iw N n=  and the model is ( )ind 2, ~ 0,i i i iy X e eμ σ= + , 

( )ĤT i si sT y N n y∈= + −∑ .  In this case, every unit in the population but not in the 

sample is predicted with the same value, the sample mean 1
s ii sy y

n ∈= ∑ .  We also see 

how the HT estimator does not incorporate any auxiliary information when formulated 
this way, which corresponds to a very simple model. 
. 
 
Example 2.2. Ratio Estimator, simple random sampling. For a single auxiliary variable 

iX , suppose the true model is the ratio model, ( )2, ~ 0,i i i i i iy X X e e Xβ σ= + , or a 

regression through the origin with a variance proportional to iX .  The optimal estimator 

associated with this model is the ratio estimator R̂
NyXT

x
=  for ,y x  denoting the sample 

means and X  the population mean.  The ratio estimator has the equivalent form to (2.11) 
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as ˆˆ i ii U i s U s
R i ii s i r

i si s

X y NX yT y X
X X

β ∈ ∈
∈ ∈

∈

= + = =
∑ ∑∑ ∑ ∑

, where 1
s ii sX X

n ∈= ∑ , 

1
U ii UX X

N ∈= ∑ , and the weights are the same for all units, i.e., i U sw NX nX= . 

. 
 
Example 2.3. Simple Linear Regression Estimator, simple random sampling. Here the 

model for the regression estimator is ( )ind 2
0 1 , ~ 0,i i i i iy X X e eβ β σ= + + , 

( )1̂R̂EG i U si sT y N X Xβ∈= + −∑ , where

( )( ) ( )21̂ i s i s i si s i sy y X X X Xβ ∈ ∈= − − −∑ ∑ . The weights here are equivalent to 

(2.16), where [ ]s s sX=X 1 , s1  is a 1n×  vector of 1’s, ( )1, , T
s nX X X= … , 

[ ]r r rX=X 1 , r1  is a ( ) 1N n− ×  vector of 1’s, and ( )1, , T
r N nX X X −= … . 

. 
 

Robust Model-based Weight Examples 

Since the efficiency of the simple methods in Ex. 2.1-2.3 depend on how well the 

associated model holds, these methods can be susceptible to model misspecification.  

When comparing a set of candidate weights to a preferable set of weights, the difference 

in the estimated totals under the “preferable” model attributed to model misspecifcation is 

a measure of design-based inefficiency or model bias.  To overcome the bias, the 

superpopulation literature has developed a few robust alternatives, with examples given 

here.  Generally, each approach involves using the preferable alternative model to 

produce an adjustment factor that is added to the BLUP. 

Example 2.4. Dorfman’s Kernel Regression Method.  Dorfman (2000) proposed outlier-
robust estimation of  β  in the BLUP estimator in (2.13) using kernel regression 
smoothing.  Suppose that the true model is ( )i i i i iy x m x v e= + , where ( )im x  is a smooth 

and (at least) twice-differentiable function.  For j r∈ , he proposed estimating ( )jm x  

with ( )ˆ j ij ii sm x w y∈=∑ , where 1iji s w∈ =∑  and larger ijw ’s imply that ,ix i s∈  is 

closer to ,jx j r∈ .  He proposed to use kernel regression smoothing to produce the 
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weights 
( )

( )
b i j

ij
b i ji s

K x x
w

K x x∈

−
=

−∑
, where ( )K u  denotes a density function that is 

symmetric around zero, from which a family of densities is produced from using the scale 
transformation ( ) ( )1

bK u b K u b−= , and the scale b  is referred to as a “bandwidth.”  His 
nonparametric estimator for the finite population total is thus given by  
 

( )

( )

ˆ ˆ

1

D i ii s i r

i ij ii s i s j r

i ii s

T y m x

y w y

w y

∈ ∈

∈ ∈ ∈

+∈

= +

= +

= +

∑ ∑
∑ ∑ ∑
∑

,      (2.17) 

 
where i ijj rw w+ ∈=∑ . Here the case weights are 1i iw w+= + .  While Dorfman found 

this estimator can produce totals with lower MSE’s, it was sensitive to the choice of 
bandwidth.  When ix  is categorical, this method is not appropriate since there is not a 

range of ix  over which to smooth. 
. 
 
Example 2.5. Chambers et al.’s NP Calibration Method.  Chambers et al. (1993) 
proposed an alternative to Dorfman’s kernel regression approach (Ex. 2.4) that applies a 
model-bias correction factor to linear regression case weights.  This bias correction factor 
is produced using a nonparametric smoothing of the linear model residuals against frame 
variables known for all population units is applied to the BLUP estimator (2.13).  
Suppose that the true model is ( )i i i i iy m v e= +x x , with working model variance 

( ) 2
i i iVar y Dσ=x , where iD  is a measure of size for population unit i .  If the BLUP 

estimator (2.13) was used to estimate the finite population total, then the model bias in 
the total is ( ) ( )ˆ

M BLUP ii rE T T δ∈− =∑ x , where ( ) ( ) ( )ˆT
i i M iE mδ = −x x β x .  Since the 

residual ˆˆ T
i i ie y= − x β  is an unbiased estimator of ( )iδ− X , they used sample-based 

residuals to estimate the nonsample ( )iδ x  values.  This produced the nonparametric 
calibration estimator for the finite population, given by  
 

( )
1

ˆˆ ˆ

ˆˆ

T
C i i ii s i r i s

BLUP ii s

T y e

T δ
∈ ∈ ∈

∈

= + −

= +

∑ ∑ ∑
∑

x β

x
,      (2.18) 

Here, the associated case weights are ( ) 1T T
s s s s r r s s

−
= + +g X X X X 1 1 m , where sm  

contains the residual-based estimates of ( )iδ x . 
. 
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Example 2.6. Chambers’ Ridge Regression Method.  Chambers (1996) proposed an 
alternative outlier-robust estimation of  β  in the BLUP estimator in (2.13) using a 
GREG-type approach.  He proposes to find the sets of weights w  that minimize a λ -
scaled, cost-ridged loss function 

 ( ) ( ) ( )
2 2

1
1 ˆ, ,

j j

pi i
i j x xi s j

i

w g
Q c

gλ λ∈ =

⎛ ⎞−⎜ ⎟= Ω + −
⎜ ⎟
⎝ ⎠

∑ ∑ wΩ g c T T ,  (2.19)  

where iΩ  and ig  are both pre-specified constants (e.g., i iDΩ =  and 1ig =  for the 

BLUP), iw  is the original weight,  and ( ) , 1, ,jdiag c j p= =c …  is a vector of 

prespecified non-negative constants representing the cost of the case weighted estimator 
not satisfying the calibration constraint ˆ

j jx x−wT T , where ˆ
jx i iji s w x∈=∑wT , 

ˆ
jx iji U x∈=∑T  is the population total of variable j , and λ  is a user-specified scale 

function.  Minimizing (2.19) produces the ridge-regression weights: 
 

 ( ) ( )11 1 1 ˆ
j j

T
s s s s s s x xλ λ

−− − −= + + −ww g A X c X A X T T ,   (2.20) 

where xT  is the vector of population totals, sX  is the vector of sample totals, and sA  is 

the diagonal variance matrix with i th diagonal element 1
i ig−Ω  (e.g., ( )s idiag D=A  for 

Chambers’ BLUP).  Chambers showed how 0λ =  reduces expression (2.20) to the 
calibration weights and 0λ >  produces weights that produce estimators that are biased, 
but have lower variance.  The population total is estimated by 
 

2
ˆˆ T

C i ii s i rT y λ∈ ∈= +∑ ∑ x β ,       (2.21) 
 
where ˆ

λβ  is the ridge-weighted estimator of β  using the weights (2.20) and the linear 

model ( ) T
ME =Y x β . 

. 
 
Example 2.7. Chambers’ NP Bias Correction Ridge Regression Method.  Chambers 
(1996) also proposed a nonparametric approach to obtaining the ridge regression weights.  
His NP version of the weights (2.22) is 
 

 ( ) ( )11 1 1
,

T T T
m s s s s s s s x s s s sλ λ

−− − −= + + + − −w 1 m A X c X A X T X 1 X m , (2.23) 

 
where s1  is a vector of 1’s of length n  and sm  the NP-corrected weights (e.g., the 
kernel-smoothing weights in Ex. 2.4).  The (2.23) weights depend on the choice of λ  and 
choices related to how the NP weights are constructed.  For example, using the kernel 
smoothing-based weights (Ex. 2.4), the weights in (2.23) depend on the bandwidths of 
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the kernel smoother, which is a separate choice from determining λ .  He also 
recommends choosing λ  such that all weights , 1mλ ≥w .  Assuming that the ridge 
estimator model is correct, but the BLUP model was used to estimate the total, he 
incorporates a bias correction factor into his ridge estimator:  
 

( )
( )

3

2

ˆ ˆˆ

ˆˆ

T T
C i i i i ii s i r i s

T
C i i ii s

T y m y

T m y

λ λ

λ

∈ ∈ ∈

∈

= + + −

= + −

∑ ∑ ∑

∑

x β x β

x β
,    (2.24) 

 
where ˆ

λβ  is the ridge-weighted estimator β  (estimated using the weights (2.23) and 

linear model T=Y x β ) and ( )ˆT
i i im y λ− x β  are the nonparametric predicted weights 

obtained by summing the contributions of unit i  to the NP prediction of the linear model 
residual, calculated for all N n−  units in r .  The case weights applied to each iy  are 
(2.23). 
. 
 
Example 2.8. Firth and Bennett’s Method.  Firth and Bennett (1998) produce a similar 
bias-correction factor to Chambers et al. (1993, see Ex. 3.5) for a difference estimator 
(Cassell et al. 1976) as follows: 
 

( )( )ˆˆ ˆ 1 T
D BLUP i i ii sT T w y∈= + − −∑ x β .     (2.25) 

 
The associated weights are ( )1 1 1T T

s ss sr s s r s ss sr r s s
− − −⎡ ⎤= + − + +⎢ ⎥⎣ ⎦

g V V X A X X V V 1 1 m , 

where sm  contains the residual-based estimates of ( )( )ˆ1 T
i i iw y− − x β , and iw  are the 

original BLUP weights.  Firth and Bennett also define the internal bias calibration 

property to hold when ( )ˆ 0T
i i ii s w y∈ − =∑ x β , for all s  under the given sample design.  

They also provide examples of when this property holds, e.g., using generalized linear 
models with a canonical link function to predict ˆT

ix β  and incorporating the survey 
weights in the estimating equations for the model parameters or the regression model. 
. 
 
As shown in the preceding examples, the superpopulation inference approach can 

indirectly induce weight trimming by producing estimators that take advantage of an 

underlying model relationship, but they have not been directly developed specifically for 

this purpose.  The main advantage to the model-based approach is that when the 
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underlying superpopulation model holds, estimators of totals have a lower MSE due to a 

decrease in variance and no bias.  Examples 2.4 through 2.8 illustrate solutions to 

problems of model misspecification and robustness to extreme values.  However, this has 

not been developed for weight trimming models.  When the assumed underlying model 

does not hold, the bias of the estimates increases and can offset the MSE gains achieved 

by having lower variances.  It is also necessary to postulate and validate a model for each 

variable of interest, which leads to variable-specific estimators.  This can be practically 

inconvenient when analyzing many variables. 

2.2.3. Penalized Spline Estimation 
 
Recent survey methodology research has focused on a class of estimators based on 

penalized (p-) spline regression to estimate finite population parameters (Zheng and Little 

2003, 2005, Breidt et al. 2005; Krivobokova et al. 2008; Claeskens et. al 2009).  

Separately, Eilers and Marx (1996) introduced penalized spline estimators; Ruppert et al. 

(2003), Ruppert and Carroll (2000), and Wand (2003) developed them further 

theoretically.  Breidt et al. (2005) develop a model-assisted p-spline estimator similar to 

the GREG estimator.  In application, they showed their p-spline estimator is more 

efficient than parametric GREG estimators when the parametric model is misspecified, 

but the p-spline estimator is approximately as efficient when the parametric specification 

is correct.  However, this method applies for quantitative covariates. 

 Breidt et al. (2005) convert the Ruppert et al. (2003) model into finite population 

sampling by assuming that quantitative auxiliary variables ix  are available and known for 

all population units.  The details related to Ex. 3.10 are described here.  They propose the 

following superpopulation regression model: 
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 ( ) ( )( )
ind

, ~ 0,i i i i iy m x N v xε ε= + .      (2.26) 

Treating ( ){ }, :i ix y i U∈  as one realization from model (2.26), the p-spline function 

using a linear combination of truncated polynomials is 

 ( ) ( )0 1 1, , 1, ,
pQp

p q p qqm x x x x i Nβ β β β κ+= +
= + + + − =∑β " … ,  (2.27) 

where the constants 1 Lκ κ< <…  are fixed “knots,” and the term ( )p pu u+ =  if 0u >  and 

zero, otherwise, p  is the degree of the spline, and ( )0 , ,
T

p Qβ β +=β …  is the coefficient 

vector.  The splines here are piecewise polynomial functions that are smooth to a certain 

degree, and can be expressed as a linear combination of a set of basis functions defined 

with respect to the number of knots.  The truncated polynomial version shown in (2.27) is 

often chosen for its simplicity over other alternatives (e.g., B-splines, as used in Eilers 

and Marx 1996).  Zheng and Little (2003) adjusted the superpopulation model (2.26) to 

produce a p-spline estimator that accounts for the effect of non-ignorable design weights: 

 ( ) ( )ind 2 2, , ~ 0, k
i i i i iy m Nπ ε ε π σ= +β ,     (2.28) 

where the constant 0k ≥  reflects knowledge of the error variance heteroskedasticity and 

 ( ) ( )0 1 1, , 1, ,
pp Qj

i j q p i qij qm i Nπ β β π β π κ+= = +
= + + − =∑ ∑β …   (2.29) 

is the spline function.  Ruppert (2002) and Ruppert et al. (2003) recommend using a 

relative large number of knots (15 to 30) at pre-specified locations, such that the 

smoothing is achieved by treating the parameters 1, ,p p Qβ β+ +…  as random effects 

centered at zero.  Otherwise, using a least-squares approach to estimate 1, ,p p Qβ β+ +…  

can result in over-fitting the model.   
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While knot selection methods exist (Friedman and Silverman 1989; Friedman 1991; 

Green 1995; Stone et al. 1997; Denison et al. 1998), in penalized (p)-spline regression 

the number of knots is large, but their influence is bounded using a constraint on the Q  

spline coefficients.  One such constraint with the truncated polynomial model is to bound 

2
1

Q
q pq β +=∑  by some constant, while leaving the polynomial coefficients 0 , , pβ β…  

unconstrained.  This smoothes the 1, ,p p Qβ β+ +…  estimates toward zero.  Adding the 

constraint as a Lagrange multiplier, denoted by α , in the least squares equation gives 

 ( )( )2 2
1

ˆ arg min , Q
i i q pi U qy m α β +∈ == − +∑ ∑ββ x β     (2.30) 

for a fixed constant 0α ≥ .  The smoothing of the resulting fit depends on α ; larger 

values produce smoother fits.  Zheng and Little (2003) recognized that treating the 

1, ,p p Qβ β+ +…  as random effects, given the penalty 2
1

Q
q pqα β +=∑ , is equivalent to using 

a multivariate normal prior ( )2, , ~ 0,p q p Q L QNβ β τ+ + I… , where 2 2τ σ α=   is an 

additional parameter estimated from the data and QI  is a Q Q×  identity matrix.  For 

( ), ,i i Um m i U= ∈x β  denoting the p-spline fit obtained from the hypothetical population 

fit at ix ,  Breidt et al. (2005) incorporate im  into survey estimation by using a difference 

estimator 

 i i
ii U i s

i

y mm
π∈ ∈
−

+∑ ∑ .       (2.31) 

Given a sample, im  in (2.31) can be estimated using a sample-based estimator ˆim .  For 

( )1 ,idiag i Uπ= ∈W  and ( )1 ,s idiag i sπ= ∈W  as the matrices of the HT weights in 
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the population and sample, for fixed α , the π -weighted estimator for the p-spline model 

coefficients is 

 ( ) 1ˆ T T
s s s s s s

s

π α

α

−
= +

=

β x W x D x W y

G y ,

      (2.32) 

such that ( )ˆˆ ,i im m π= x β .  The model-assisted estimator for the finite population total is  

 

*

ˆˆ ˆ

1 1

i i
mpsp ii U i s

i

j T
j i ii s j U

i j

i ii s

y mT m

I
e y

w y

α

π

π π

∈ ∈

∈ ∈

∈

−
= +

⎡ ⎤⎛ ⎞
⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

∑ ∑

∑ ∑

∑

x G� ,    (2.33) 

where 1jI =  if j s∈  and zero otherwise and  ˆT
i i ie y π= − x β . From (2.33), their p-spline 

estimator is a linear estimator. The case weights here are *
iw  in (2.33).  Chambers’ ridge 

regression estimator in (2.21) has a similar form, with ridge matrix ( )1, , pdiag α α… , 

where 0iα =  for covariates corresponding to the calibration constraints that must be met. 
Breidt et. al (2005) also showed that this estimator shares many of the desirable 

properties of the GREG estimator.  However, since it uses a more flexible model, the p-

spline estimator (2.33) had improved efficiency over the GREG when the linear model 

did not hold. 

 An appealing property of the penalized spline estimator is that it can be rewritten 

into a mixed-model format.  For example, the Zheng and Little model in (2.28) and (2.29) 

can be rewritten as: 

 1 2s = + +y xB zB ε ,        (2.34) 

where ( )1, , T
s ny y=y … , ( )1 1, ,

T
pβ β=B … , ( ) ( )2

2 1, , ~ 0,
T

p p Q Q QNβ β τ+ +=B I… ,  
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( ) ( )( )ind 2 2 2
1 1, , ~ 0, , ,T k k

n n nN diagε ε σ π π=ε … … , 

1 1

2 2

1

1

1

p

p

p
n n

π π

π π

π π

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

x

"

"
# # % #

"

, 

( ) ( )

( ) ( )

1 1 1

1

pp
Q

pp
n n Q

π κ π κ

π κ π κ

+ +

+ +

⎛ ⎞− −⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

z

"

# % #

"

, and 1, ,q Q= …  

For 0k ≠  and Normal errors, the maximum likelihood estimator of ( )0, ,
T

p Qβ β +=B …  

is 

 
12 2 T T

ML s s sαα σ τ
−

⎡ ⎤= = +⎣ ⎦B Π V Π D Π V y ,    (2.35) 

where the i th row of the matrix Π  is ( ) ( )11, , , , , ,
ppp

i i i i Qiπ π π κ π κ+ +
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

Π … … ; αD  

is a diagonal matrix with the first 1p +  elements being zero and remaining Q  elements 

all equal to the penalty 2 2α σ τ= , the value chosen to maximize the likelihood of the 

GLM model; and ( )2 2 2
1 2, , ,k k k

s ndiag π π π=V …  denotes the variance-covariance matrix 

specified under the model. 

If the component α̂  is fixed, then the p-spline estimator is equivalent to 

Chambers’ ridge regression estimator (ex. 2.6).  However, since the variance components 

2σ  and 2τ  are unknown, Breidt et al. (2005) propose using Ruppert and Carroll’s (2000) 

“data-driven” penalty obtained using the GLM formulation of the model and REML 

(Patterson and Thompson 1971; Harville 1977; Searle et al. 1992) to estimate αD  with 

ˆ
αD , whose last Q  elements are all 2 2ˆ ˆ ˆREML REML REMLα σ τ= .  However, in many 

applications (e.g., Milliken and Johnson 1992), REML-based estimators can produce 
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negative estimates of variance components. Often conventional software will truncate the 

variance estimate to zero; here this corresponds to an estimate of either ˆ 0REMLα =  or 

ˆREMLα =∞ . If ˆ 0REMLα =  (i.e., if 2ˆ 0REMLσ = ), then the spline coefficients 

1, ,p p Qβ β+ +…
 
are all exactly zero.  However, if ˆREMLα =∞  (i.e., if 2ˆ 0REMLτ = ), then 

they are all undefined. 

Accounting for the sample design features, such as stratification, clustering, and 

weighting, can increase model robustness.  Zheng and Little’s (2003) p-spline model 

produced estimates of the finite population total that had negligible bias and improved 

efficiency over the HT and GREG estimators.  In addition to proposing new estimators, I 

compare design-based, Bayesian model-based, and model-assisted estimators against the 

proposed alternative estimators in single-stage sample designs in Sec. 2.4.1 

Zheng and Little (2005) extended their approach to use model-based, jackknife, 

and balanced repeated replicate variance estimation methods for the p-spline estimators.  

This improved inferential results, such as confidence interval coverage.  In Sec. 2.3.2, I 

adopt variance estimators proposed in the related literature for the estimator in Sec. 2.3.1. 

2.2.4. Summary 

The Bayesian trimming procedures are a theoretical breakthrough for weight trimming.  

They lay the foundation for particular forms of estimation.  They account for effects in 

the realized survey response variable values by taking posterior distribution estimates that 

are conditional on the observed sample data.  Their main advantage here is that, when the 

underlying model holds, the resulting trimmed weights produce point estimates with 

lower MSE due to a decrease in variance that is larger than the increase in squared bias 

(Little 2004).  Elliott and Little (2000) and Elliott (2007, 2008, 2009) demonstrate 
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empirically with simulations and case studies that their methods can potentially increase 

efficiency and decrease the MSE.  The use of p-spline estimation has also produced 

results that are more robust when the Bayesian model does not hold, without much loss of 

efficiency. 

One drawback to the Bayesian method is that the smoothing occurs for a 

particular set of circumstances: weighting adjustments performed within design strata, 

under noninformative and equal probability sampling, and for one estimation purpose 

(e.g., means, regression coefficients, etc.) of a small number of (often one) variables of 

interest.  Also, for both model-based methods, it also is necessary to propose and validate 

a model for each variable of interest, which may then lead to variable-specific sets of 

weights.  Although these model-based approaches may be appealing from the viewpoint 

of statistical efficiency, they may be practically inconvenient when there are many 

variables of interest.  The presence of variable-dependent weights on a public use file is 

potentially confusing to data users, particularly when they conduct multivariate analyses 

on the data.  However, the MSE-minimization benefit of the Bayesian method may 

outweigh these practical limitations.  The simplicity and flexibility of penalized splines 

can improve the model robustness and may reduce the need for variable-dependent 

weights.  This method also requires the availability of quantitative auxiliary information; 

methods for categorical and binary covariates have not been examined. 

 

2.3. Proposed Model and Estimation Methods  

2.3.1. Using Priors in the Breidt et al. Model 

Here, I propose a p-spline model that is a modification of Breidt et al.’s model (2.27): 
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 ( ) ( )ind 2, , ~ 0, k
i i i i iy m N xε ε σ= +x β ,      (2.36) 

where β  is the slope coefficient vector, ix  is a matrix of unit-level covariates (e.g., 

design variables, auxiliary frame variables, or variables used to create the weights, like 

those used in poststratification or nonresponse adjustments) and 2σ  is a variance 

component.  In (2.36), the estimate of iy  is the ˆim , the estimated value of iy  under the 

model and conditional on the data.  From (2.36), the following spline function is fit: 

 
( ) ( )0 ( )1 1

0 ( )1 1

, ,
pp Qj

i j l q i qij q
p Qj

j l q iij q

m x x

x z

π β β β κ

β β β

+= = +

+= =

= + + −

= + +

∑ ∑

∑ ∑

β
   (2.37) 

where ( ) ( )p p
i i q i qz x xκ κ

+
= − = −  if  0i qx κ− > , and zero otherwise.  Model (2.36)  can 

be rewritten in the GLM form as follows: 

 1 2
T T= + +y x B z B e ,        (2.38) 

where ( )1, , T
ny y=y … , ( )1 1, ,

T
pβ β=B … , ( )2 ( 1) ( ), ,

T
p p Qβ β+ +=B … , 

( ) ( )ind 2
1, , ~ 0,T

n n ee e N σ=e V… , ( )2 2
1 , ,k k

e ndiag x x=V … , p  is the degree of the 

truncated polynomial (the number of fixed effects, including the  intercept), Q  is the total 

number of knots (and the number of random effects), x  is a ( 1)n p× +  vector, where the 

i  row is 1 p
i ix x⎡ ⎤

⎣ ⎦" , and z  is a n Q×  vector, where the i  row is 

( ) ( )1
pp

i i Qx xκ κ+ +
⎡ ⎤− −⎢ ⎥⎣ ⎦

" .  One choice for knot qκ  is the sample quantile of ix  

corresponding to probability 
1

q

Q
κ
+

.   
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The following conventional priors can be used for the additional unknown parameters 

(Crainiceau et al. 2004; Gelman 2006): 

 

( ) ( )

( ) ( )

( ) ( ) ( )

ind ind
1 1

ind ind2 2
2 2

ind ind2 2 2
3

~ 0, , ~ 0,

~ 0, , ~ 0,

~ 0, , , ~ 0,

Q Q

k
n e e i

N A A Uniform U

N Uniform U

N diag Uniform U

τ τ

σ σ=

B

B I

e V V x

,   (2.39) 

where 1 2 3, ,U U U  are appropriate upper boundaries for the variance components (Gelman 

2006)  The p-spline estimator for the finite population total is 

 

( ) ( )

( ) ( )

1 2
1 2

1 2

ˆˆ ˆ

ˆˆ

ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

i i
psp ii U i s

i

i i
ii s i U i s

i i
T T

i iT T
HT i ii U i s

i
T T

HT HT HT

y mT m

y mm

T

T T T T T

π

π π

π

∈ ∈

∈ ∈ ∈

∈ ∈

−
= +

= + −

+
= + + −

≡ + − + −

∑ ∑

∑ ∑ ∑

∑ ∑

X X Z Z

B x B z
B x B z

B B

,   (2.40) 

where r  denotes the N n−  units in the population but not the sample, ĤTT  is the total 

estimated using the base (HT) weights, ( )ĤTT T−X X , ( )ĤTT T−Z Z  are the differences in 

the known population totals of the polynomial and spline components in ,x z  and the 

estimated totals using the base weights, and 1 2
ˆ ˆ,B B  are the estimates of the model 

parameters.  A conventional approach like weighted least squares could be used to 

estimate 1 2,B B  and residual maximum likelihood (REML) could be used to obtain an 

estimate of the model variances components.  For example, if the model variances are 

fixed, then the posterior distribution of 1 2,B B  (Krivobokova et al. 2008) is   
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 [ ] ( ) ( )1 12
1 2 1~ ,T T T

Q p sMVN α ασ
− −

+ +
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

B B c c D c y c c D ,  (2.41) 

where [ ]=c x z , ( )2 2 2 20, ,0, , ,diagα σ τ σ τ=D … …  is a diagonal matrix with 1p +  

rows of zeroes and Q  rows with the penalty 2 2α σ τ= .  A more sophisticated approach 

is to incorporate the priors such as those in (2.39).  The posterior distributions of the 

variance component τ  conditional on the data, flat Normal priors for 1 2,B B , and 

( )0.001,0.001IG  and uniform priors for 2τ  are (using analogous results for the Zheng 

and Little estimator in Appendix b of Chen et al. 2010) 

 
2

2
1 2, ~ 0.001 ,0.001

2 2
QIGτ

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

B
B B ,     (2.42) 

and 

 
2

2
1 2

1, ~ ,
2 2

QIGτ
⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

B
B B ,      (2.43) 

respectively. 

 In summary, I propose extending the Breidt et al. model by incorporating priors 

for the unknown model parameters.  I propose this to produce a more efficient yet robust 

estimator of the finite population total.   Incorporating the covariates and HT weights in 

model (2.39) should produce improved estimates of the total.  Either prior distributions or 

a REML-type approach can be used to estimate the unknown parameters in (2.39).  

However, following Zheng and Little (2003), incorporating priors can guarantee non-

negative variance component estimates.  Here I propose simple priors in (2.39), focus on 

the simple model, and evaluate its potential performance in a simulation study against the 

corresponding simple (but separate) weight smoothing and weight pooling models.   
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2.3.2. Variance Estimation 

 The GREG AV (Linearization Variance Estimator) 

Since the model-assisted p-spline estimator falls into the general class of calibration 

estimators, the anticipated variance of the GREG estimator can be used to approximate 

the variance (Särndal et al. 1992).  A linearization of the GREG estimator (Exp. 6.6.9 

in Särndal et al. 1999) for the proposed p-spline estimator is 

 

( ) ( )
( )

1 2

1 2
1 2

1 2

1 2

ˆ ˆ ˆ ˆT T
GREG HT HT HT

T T
i iT Ti

i s i s
i i

T T i
i s

i
T T

U

T T

y

e

e

π π

π

∈ ∈

∈

+ − + −

+
= + + −

= + +

= + +

∑ ∑

∑

X X Z Z

X Z

X Z

X Z

T T B T T B

x B z B
T B T B

T B T B

T B T B

�

�

  

 (2.44) 

where ,X ZT T  is the known population totals of x  and z ,  ˆ ˆ,HT HTX ZT T  are the vector of 

HT estimators, 1 2,B B  is the population coefficients, 1 2
T T

i i i ie y= − −x B z B  is the 

residual, ,T T
i ix z  are row vectors of the (fixed) polynomial and (random) spline 

components, respectively, i
U i s

i

ee
π∈=∑�  is the sum of the weighted unit-level residuals, 

and iπ  
is the probability of selection.  The last (2.44) component has design-expectation 

 

( )1 i ii
i s i U

i i

ii U

U

E eeE
n

e

E

π
π

δ
π π∈ ∈

∈

⎛ ⎞
=⎜ ⎟

⎝ ⎠
=

=

∑ ∑

∑ ,      (2.45) 

where U ii UE e∈= ∑ .  From (2.44), 2
ˆ T T i
GREG U i s

i

eT
π∈− − ∑X ZT B T B � , with design-

variance (Exp. 6.6.3 in Särndal et. al 1992) 
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( )2

ˆ T T i
GREG U i s

i

i j ij i j
i U j U

i j i j

eVar T Var

e e

π π π

π π π
π π π π

∈

∈ ∈

⎛ ⎞
− − = ⎜ ⎟

⎝ ⎠
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑

X ZT B T B

.  (2.46) 

For the p-spline estimator, the linearization-based GREG AV uses the residual 

( )1 2
ˆ ˆT T

i i i ie y= − +x B z B  in (2.46). We estimate (2.46) with 

 ( )2
ˆ i j ij j jT T i i
GREG U i s j s

i j i j

g eg evar Tπ
π π π
π π π π∈ ∈

⎛ ⎞⎛ ⎞−
− − = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑X ZT B T B , (2.47) 

where the “g-weight” is 1 1 j T
i j ij U

i j

I
g eαπ π∈

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ x G . 

 Alternatively, we can estimate the GREG AV (2.46) with 

 ( )
2 2

2
ˆ 1T T i i
GREG U i s

i

g envar T
Nπ π∈

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

∑X ZT B T B � .   (2.48) 

The variance estimator (2.48) uses a with-replacement variance and a finite population 

correction adjustment factor 1 n
N

−
 
to approximately account for without-replacement 

sampling (see, e.g., Valliant 2002). 

The Delete-a-Group Jackknife Variance Estimator 

As introduced in Quenoulle (1949; 1956), the jackknife method has been used in both 

finite and infinite population inference (Shao and Wu 1989).  In the “delete-a-group” 

jackknife, the data are first grouped in some way.  The most common method of 

assigning group membership of the n  to the G  groups is completely random.  The group 

jackknife has also been shown to perform best (i.e., have minimum bias) when the groups 

have equal size (Valliant et. al 2008).  When all units within a particular group g  are 
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“dropped,” their weights are set equal to zero, then the weights for all the other units 

within the same stratum are adjusted.  Weights within the groups are unchanged and the 

sample-based estimate is computed, denoted ( ) ( )
ˆ ˆ ˆ1g gT GT G T= + − , where ( )

ˆ
gT  is the 

total computed from the sample of reduced ( )1n G
G
−

 units.  This process is continued 

through all of the groups and G  estimates are obtained.  One version of the jackknife 

variance estimator (Rust 1985) is the variance of the replicate group totals across groups: 

 ( ) ( )2( )1
ˆ ˆ ˆ

1
G

J gg
GVar T T T

G == −
− ∑ .      (2.49)    

For the p-spline estimator, Zheng and Little (2005) advocate not estimating the parameter 

α  within each replicate, but using the full-sample based estimate and replicate-based 

estimates of the other model parameters.  If viewing the component α̂  as fixed, as 

described earlier, then the p-spline estimator is equivalent to Chambers’ ridge regression 

estimator (Ex. 2.6).  Specifically, they advocate not computing ˆ ( )gαD  for each replicate 

if this is “burdensome,” provided that the overall sample size is very large and the portion 

of units being omitted is not large.  In this case, the full-sample estimate α̂D  can be used, 

which does not greatly impact the jackknife consistency theory.   

Zheng and Little (2005) also prove that the delete-one-unit jackknife variance 

estimation method is appropriate for the p-spline regression whenever the jackknife 

variance estimator is appropriate for simple linear regression of splines.  If the p-spline is 

a low-dimensional smoother, then the dimension of the design matrix 1 2W X  is small 

relative to the sample size; under these conditions, they show that the delete-one-unit 

jackknife variance estimator for estimating the variance of the p-spline regression 
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estimator has asymptotic properties that are close to the jackknife variance estimator for a 

linear spline regression estimator.   

Here, related theory (Lemma 4.3.3, p.166 in Wolter 2007) states that the delete-

one-group jackknife variance estimator is consistent in pps samples when equal-sized 

groups are used.  This is used in the variance estimation evaluation in Sec. 2.4.3.  For 

stratified sampling, Wolter (2007) also provides the theory and necessary conditions for 

the jackknife to be consistent in infinite (Thm. 4.2.2) and unbiased in finite (p. 176) 

populations, as well as general results for nonlinear estimators (Sec. 4.4).  This is relevant 

since the model-assisted p-spline estimators fall under the general class of nonlinear 

estimators.  Related theory for the jackknife can be found in Rao and Wu (1988) and 

Krewski and Rao (1981). 

 Model-based Variance Estimator  

The model (2.36) can be used to estimate the variance of the total  (2.40) .  Following 

Zheng and Little (2005), the Empirical Bayes (EB) posterior variance of [ ]1 2=B B B  

conditional on 2σ̂  and 2 2ˆ ˆ ˆα σ τ= , is given by 

( ) ( ) 12 ˆˆ ˆ, , , T
s sVar αα σ

−
= +B x z y c c D ,     (2.50) 

where [ ]s s s=c x z  contains the values of x  and z  in the sample and 2σ̂  is the 

posterior estimate of 2σ .   

 To estimate the variance of the total, following the linearization approach for the 

GREG AV from (2.44) and using the variance of the model parameters in (2.50), we have  
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Therefore, 
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.  (2.52) 

If we rewrite the model coefficient estimator 1 2
ˆ ˆ ˆ⎡ ⎤= ⎣ ⎦B B B  in (2.32) as 

 ( ) 1

1

ˆ ˆT T
s s s s

T
s s s

α
−

−

= +

=

B c c D c y

A c y
,       (2.53) 

where ˆT
s s s α= +A c c D , then the estimated total can be written as 

 ( )1ˆ T T
psp s s sT −= +d A c y ,       (2.54) 

where ( )1 1
1 , ,T

nπ π− −=d … .  The variance of the total is then 

( ) ( ) ( )( )1 1ˆ T T
M psp s s M s s sVar T Var− −= + +d A c y d c A ,     (2.55) 

We can estimate the variance (2.55) with 

( ) ( ) ( )( )
( ) ( )

1 1

1 1

ˆ T T
M psp s s M s s s

T T T
s s s s

var T var− −

− −

= + +

= + +

d A c y d c A

d A c ee d c A
,     (2.56) 
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where  ( ) ( )1 1 1 1 1 2 1 2
ˆ ˆ ˆ ˆˆ ˆ, , , ,

TT T T T T
n n n ne e y y= = − − − −e x B z B x B z B… …

 
are the residuals.  

Since the EB posterior variance does not account for variability incurred due to using 

estimates of 2σ  and 2 2α σ τ= , it can underestimate the variance of ˆ
pspT .  However, 

Ruppert and Carroll (2000) demonstrate that this does not seriously bias the variance 

estimation. 

 

2.4. Evaluation Studies 

2.4.1. Alternative Estimators of Totals 

This section contains a simulation study to illustrate how the proposed p-spline 

smoothing model performs against some design-based and model-assisted alternatives, as 

well as Zheng and Little’s and Breidt et. al’s model. 

This simulation study has three factors, the covariate structure in the pseudo population 

(with two levels), the design used to select the sample and create the weighting strata 

(two), and estimator of the total (seven).  First, data generated for this simulation study is 

a smaller version of that done by Elliott and Little (2000).  Here, a population of 8,300 

units (with ( )800,1000,1500, 2000,3000hN = ) is generated from the model 

hi hi iy X eα β= + + , where ( )
ind
~ 0,10hie N  and the hiX ’s follow one of two patterns: 

• Uniform within strata: ( )
ind

1 ~ 20, 40 , 1, ,800iX Unif i = … ; 

( )
ind

2 ~ 19,39 , 1, ,1000iX Unif i = … ; ( )
ind

3 ~ 15,19 , 1, ,1500iX Unif i = … ; 

( )
ind

4 ~ 10,15 , 1, , 2000iX Unif i = … ; ( )
ind

5 ~ 5,10 , 1, ,3000iX Unif i = … . 
 

• Common gamma distribution across strata: ( )
ind
~ 3, 4 , 1, ,5hiX Gamma h = … . 
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The first population corresponds to a situation when trimming the weights is sensible, 

while the second corresponds to a situation when it is not as necessary.  The population 

plots are given in Figure 2.1. 

 
Figure 2.1. Population Plots and Loess Lines for Simulation Comparing Alternative Totals  

 
                     Uniformly Distributed Covariates             Gamma Distributed Covariates 

 
 

Two hundred samples of size 350were drawn without replacement and the alternative 

models to estimate the means were applied for each of the possible pooling patterns.  For 

the sample design factor, two types of samples are drawn from each pseudopopulation.  

First, stratified simple random sampling with five fixed strata is used with 

( )90,80,70,60,50hn =  and the weight pooling cutpoint being fixed at the upper two 

strata.  Second, probability proportional to X  sampling is used, and an adhoc design-

based trimming method (where weights exceeding the 95th quantile of the weights are 

trimmed to this value). In both sample designs, the excess weight is redistributed equally 

to the non-trimmed weights.  For the third factor, seven alternative estimators of the finite 

population total are compared: 

• The un-trimmed Horvitz-Thompson (HT) estimator: ĤT i ii sT w y∈=∑ , where 

i h hw N n=  for stratified simple random sampling and i i ii Uw x nx∈= ∑  for pps; 
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• The fully-trimmed estimator: F̂T ii s
NT y
n ∈= ∑ ; 

 
• A design-based trimming estimator (i.e., the weight pooled estimator with fixed 

cutpoint stratum): ˆ
h h

WP i i ih l i s h l i sT w y w y< ∈ ≥ ∈= +∑ ∑ ∑ ∑ , where  

( ) ( )1 1l l l lw N N n n+ += + + is the combined stratum weight in the upper two weight 
strata for stratified sampling and the 95th weight quantile for pps sampling (in both 
designs, the weight above the cutoff was redistributed to non-trimmed weights); 
 

• The calibration estimator with a common linear, quadratic, and cubic polynomial 
model fit across all strata; 
 

• The Breidt et al. model-assisted estimator, with quadratic and cubic (second- and 
third-degree) p-splines, 5,10,15Q =  knots as the appropriate sample quantiles of hix .  
The estimated total has components given in (2.33),  is ; 
 

• Zheng and Little’s estimator (2.40), with quadratic and cubic (second- and third-
degree) p-splines, 5,10,15Q =  knots as the appropriate sample quantiles of iπ ., and 
the following priors for the unknown model parameters: 

 

( )

( ) ( )

( ) ( )

ind
1

ind ind2 2
2

ind ind2 2

~ ,

~ 0, , ~ 0,100000

~ 0, , ~ 0,100000

Q Q

n

flat

N Unif

N Unif

τ τ

σ σ

B

B I

e I

,     (2.57) 

 
where flat( ) denotes a noninformative uniform prior.  I experimented with also using the 
inverse gamma (IG) prior for the variance components in (2.57).  However, the IG prior 
results were omitted due to convergence-related problems in the MCMC samples.  The 
total is then 1 2

ˆ ˆ ˆT T
ZL i r ri sT y∈= + +∑ x B z B , where rx  and rz  are the non-sample 

components of x  and z  in (2.34); 
 
• The proposed p-spline estimator with quadratic (second-degree), with 5,10,15Q =  

knots being the sample quantiles of ix , and the same priors as those given in (2.57).  
The model simplifies to 

 

 ( )22
0 1 2 (2 )1

Q
hi hi hi q hi q hiqy x x x eβ β β β κ+= +
= + + + − +∑ .   (2.58) 
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The estimated total is ( ) ( )1 2
ˆ ˆ ˆ ˆ ˆ ˆT T
psp HT HT HTT T T T T T= + − + −X X Z ZB B , where the 

components are given in (2.40).  I also experimented with the cubic p-spline version of 

(2.58) using the model ( )32 3
0 1 2 3 (3 )1

Q
hi hi hi hi q hi q hiqy x x x x eβ β β β β κ+= +
= + + + + − +∑ .  

However, some of the results were unstable, and thus were also omitted.  Despite this, the 

simulation evaluation here is a reasonable comparison of existing alternatives against the 

proposed estimator. 

For the pps and stratified samples, one model is fit to all the data for all 

alternatives.  For the Zheng and Little estimators, 250 samples using 200 MCMC samples 

for each estimator were drawn, with the first fifty samples being the burn-in, and thus 

disregarded in estimation of the model parameters.  For the proposed estimators, fifty 

samples using 10,500 MCMC samples for each estimator were drawn, with the first 500 

samples for the burn-in.  The model convergence of three MCMC chains was assessed by 

examining plots of the generated posterior distribution data.  For example, Figure 2.2 

(below and on the following page) shows an example of the first sample results for the 

2τ  and 2σ  variance components of the three chains for the proposed quadratic model 

with 10 knots, respectively. 

Figure 2.2. One-Sample Model Convergence for 2τ and 2σ -Parameter, Proposed 
Quadratic Model, 10 Knots: Posterior Density Plots 
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Figure 2.2. One-Sample Model Convergence for 2τ and 2σ -Parameter, Proposed Quadratic Model, 10 Knots, cont’d:  
AutoCorrelation Plots 
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From Figure 2.2, we see first that from the posterior density plots, both estimates of the 

variance components (the means of the densities) are positive.  In this particular sample,  

2ˆ 0.011σ =  and 2ˆ 47,550τ = , such that the penalty applied to the knots is very large (

2 2 7ˆ ˆ ˆ 2.36 10α σ τ −= ≈ × is small in magnitude, but this value means there is a lot of 

smoothing on the spline component coefficients).  The shape of the 2τ  posterior 

distribution more closely resembles a uniform distribution, the prior assumed for this 

parameter, while the posterior for 2σ  is more symmetric.  This suggests that more data is 

required to estimate 2τ .  For the autocorrelation plots, we should see low 

autocorrelations as the number of lags increases for each chain, i.e., autocorrelations that 

fall within the dotted 95% confidence lines.  This occurs more quickly for 2σ  than 2τ , 

where the autocorrelations fall between the boundaries after 20 lags. 

 I use five summary measures to compare the alternative totals: 

• Relative bias: the percentage of the average distance between b̂T , an alternative 
estimator for the total of y  obtained on iteration 1, ,b B= … 50 or 200B = , and 

population total T , relative to the total: ( ) ( ) ( )1
1

ˆ ˆ100 B
bbRelBias T BT T T−

== × −∑ ,  

 
• Variance Ratio: the ratio of the empirical variance of an alternative total to that of the 

untrimmed HT estimator: ( ) ( )
( )

2

1
2

1

ˆˆ
ˆ

ˆˆ

B
bb

B
HTb HTb

T T
VarRatio T

T T

=

=

−
=

−

∑

∑
, for 1

1
ˆ ˆB

bbT B T−
== ∑  

and 1
1

ˆ ˆB
HT HTbbT B T== ∑ . 

 
• Empirical RMSE: the mean square error of the alternative estimator, relative to that of 

the fully weighted estimator: ( ) ( )
( )

2
1

2
1

ˆ
ˆ

ˆ

B
bb

B
HTbb

T T
RelRMSE T

T T

=

=

−
=

−

∑
∑

. 
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• 95% CI Coverage rate: the percentage of the 200 simulated confidence intervals that 

contain the true population total: ( )21
21

ˆˆ ˆ 1.96B
bbT T B T T zα

−
=− − ≤ =∑ .  Note 

that this uses the empirical variance across the simulations in the denominator, not an 
estimate from each sample. 
 

• Average CI width: the average width of the 95% CI’s (note this also uses the 

empirical variance, not a variance estimator): ( )21 1
1 1

ˆˆ2(1.96) B B
bb bB B T T− −

= = −∑ ∑ . 

 
The evaluation measures are summarized for each sample design and estimator 

combination for the population with covariates that are uniformly distributed within each 

stratum in Tables 2.1 and 2.2.   

Table 2.1. Simulation Results for Population with Uniformly Distributed Covariates, 
Stratified SRS Samples ( 2,609,793T = ) 
Design-based Estimators (200 samples)

Estimator Relative Bias 
(%)

Variance 
Ratio RelRMSE CI 

Coverage
Ave. CI
Width

Fully weighted (HT) 
Fully smoothed (FS) 
Trimmed/Weight pooling (WP) 

-0.05 
36.72 
2.78 

1.00 
2.00 
0.98 

1.00 
1,409.24 

9.02 

95.5 
0.0 

16.5 

99,982 
141,564 

99,101 
Model-Assisted Estimators (200 samples)

Calibration 
     Linear (CalL) 
     Quadratic (CalQ) 
     Cubic (CalC) 
Breidt et al. model (REML) 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
0.04 
0.04 
0.03 

 
0.03 
0.04 
0.04 
0.03 
0.03 
0.04 

 
0.42 
0.42 
0.42 

 
0.43 
0.44 
0.44 
0.43 
0.44 
0.45 

 
0.42 
0.42 
0.42 

 
0.43 
0.44 
0.44 
0.43 
0.44 
0.45 

 
95.5 
95.5 
95.5 

 
95.0 
95.0 
95.0 
95.5 
95.5 
94.5 

 
71,656 
71,888 
71,571 

 
72,043 
72,897 
73,563 
72,423 
73,180 
73,922 

Zheng and Little Estimators (200 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
-1.66 
-0.84 
-1.35 
-0.18 
0.49 
0.98 

 
0.95 
1.00 
0.90 
3.73 
2.30 
8.17 

 
3.84 
1.73 
2.80 
3.75 
2.54 
9.15 

 
60.5 
88.0 
72.5 
96.0 
93.5 
93.5 

 
97,366 
99,870 
94,714 

193,014 
151,589 
285,801 

Proposed P-spline Estimators (50 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 

 
-0.94 
0.00 
0.09 

 
81.10 
0.43 
0.42 

 
80.43 
0.42 
0.42 

 
94.0 
98.0 
92.0 

 
942,556 

68,413 
68,136 
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Table 2.2. Simulation Results for Population with Uniformly Distributed Covariates, ppswor 
Samples ( 2,609,793T = ) 

Design-based Estimators (200 samples)

Estimator Relative Bias 
(%)

Variance 
Ratio RelRMSE CI 

Coverage
Ave. CI
Width

Fully weighted (HT) 
Fully smoothed (FS) 
Trimmed/Weight pooling (WP) 

-0.02 
32.37 
1.62 

1.00 
4.70 
1.32 

1.00 
2,855.19 

8.92 

95.5 
0.0 

32.5 

62,020 
134,471 

71,343 
Model-Assisted Estimators (200 samples)

Calibration 
     Linear (CalL) 
     Quadratic (CalQ) 
     Cubic (CalC) 
Breidt et al. model (REML) 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
-0.00 
-0.00 
-0.00 

 
0.00 

-0.01 
0.00 
0.00 

-0.01 
0.00 

 
1.00 
0.97 
0.98 

 
0.99 
0.98 
0.99 
0.99 
0.97 
0.99 

 
1.00 
0.97 
0.98 

 
0.99 
0.98 
0.99 
0.99 
0.97 
0.99 

 
95.0 
95.0 
95.0 

 
95.5 
95.5 
95.0 
95.5 
95.0 
94.5 

 
64,521 
63,724 
63,960 

 
64,145 
63,802 
64,283 
64,117 
63,748 
64,179 

Zheng and Little Estimators (200 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
-0.15 
0.04 

-0.09 
-0.10 
0.10 
0.30 

 
0.95 
0.96 
0.92 
1.69 
1.19 
2.37 

 
1.01 
0.97 
0.94 
1.72 
1.21 
2.61 

 
93.0 
96.0 
93.5 
96.0 
95.5 
95.5 

 
60,397 
60,881 
59,459 
80,705 
67,545 
95,508 

Proposed P-spline Estimators (50 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 

 
-1.44 
0.19 
0.09 

 
580.22 

2.11 
2.84 

 
583.79 

2.24 
2.85 

 
90.0 
96.7 
96.7 

 
1,229,573 

74,161 
86,078 

 

For the population with ix -values that are uniformly distributed with different means 

across strata, the untrimmed HT estimator is unbiased across the 200 samples and has 

nominal 95 percent coverage.  The fully smoothed estimator, where all sample units are 

given the common weight 8,300/350, is severely positively biased, which drives the root 

mean square error to be among the largest among the alternative estimators.  The 

trimmed weight estimator is biased, but more efficient than the untrimmed HT.  For the 

model-assisted estimators, the calibration estimators are essentially unbiased and have the 

lowest empirical variance, producing significantly lower –by more than half– the 
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RMSE’s relative to the HT estimator.  The proposed p-spline estimator with uniform 

priors also performed relatively well, very comparable to the model-assisted estimators. 

The estimator with 10 and 15 knots were among the estimators with the lowest RMSE’s 

in the stratified samples.  Generally, estimators with larger bias have lower (including 

zero) confidence interval coverage, while the more inefficient estimators produced 

confidence intervals with larger average width.   

However, while the proposed estimators are comparable to the other alternatives, 

they appear to be sensitive to the number of model components.  In results that are not 

shown, we fitted p-spline models with cubic polynomials and fit all of the proposed 

models within strata.  The bias and variances increased dramatically as the number of 

model terms –both number of knots and polynomial degree– increased.  The Zheng and 

Little estimator using the probabilities of selection as covariates did not suffer as much 

from this “curse of dimensionality.”  I hypothesize this did not occur since the Zheng and 

Little model covariates, the probabilities of selection, are bounded within (0,1).  This 

bounding leads to generally more stable knot components in the models.  However, the 

slight inefficiency in the Zheng-Little cubic model totals in Tables 2.1 and 2.2 may be 

caused by the smaller number of MCMC samples (200).   

 Results for the population with ix -values following a common Gamma 

distribution across strata are shown in Tables 2.3 and 2.4.  For these results, again the 

untrimmed HT estimator is unbiased across the 200 samples and has nominal 95 percent 

coverage.  The fully smoothed estimator is still biased, but here it is negative biased.  The 

trimmed weight estimator is also biased but more efficient than the untrimmed HT.  The 

model-assisted calibration estimators performed the best, while the model-assisted p-
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splines with lower ordered models performed adequately.  The quadratic Zheng and Little 

estimators are slightly more biased, but slightly more efficient than the HT estimator; the 

cubic model totals are less biased but more inefficient.  The calibration model-assisted 

estimators here also generally performed the best, but the proposed p-spline estimator 

again is very comparable.  In this data, here there is less of a difference between the 

alternatives.  As in the first population, biased estimators have lower confidence interval 

coverage, while inefficient estimators had larger average CI width. 

 
Table 2.3. Simulation Results for Population with Gamma Distributed Covariates, 

Stratified SRS Samples ( 303,439T = ) 
Design-based Estimators (200 samples)

Estimator Relative Bias 
(%)

Variance 
Ratio RelRMSE CI 

Coverage
Ave. CI 
Width

Fully weighted (HT) 
Fully smoothed (FS) 
Trimmed/Weight pooling (WP) 

-0.22 
-20.61 
-4.03 

1.00 
0.30 
0.70 

1.00 
100.00 

4.51 

95.0 
0.0 

34.5 

24,520 
13,366 
20,504 

Model-Assisted Estimators (200 samples)
Calibration 
     Linear (CalL) 
     Quadratic (CalQ) 
     Cubic (CalC) 
Breidt et al. model (REML) 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
-0.04 
-0.03 
0.01 

 
0.06 
0.06 
0.14 
0.06 
0.07 
0.16 

 
0.48 
0.47 
0.48 

 
0.53 
0.63 
0.87 
0.53 
0.67 
0.97 

 
0.48 
0.47 
0.48 

 
0.53 
0.64 
0.87 
0.53 
0.67 
0.97 

 
94.5 
93.5 
94.5 

 
94.5 
94.5 
95.5 
94.5 
95.5 
95.5 

 
19,221 
18,991 
19,169 

 
20,166 
22,111 
25,875 
20,193 
22,706 
27,276 

Zheng and Little Estimators (200 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)            
                                10 knots (C10) 
                                15 knots (C15) 

 
-2.00 
-1.33 
-1.75 
-0.71 
-0.14 
0.17 

 
0.86 
0.88 
0.86 
1.33 
1.17 
1.70 

 
1.79 
1.28 
1.57 
1.44 
1.16 
1.69 

 
81.0 
90.0 
87.5 
95.5 
95.5 
93.5 

 
22,767 
22,960 
22,750 
28,310 
22,558 
31,967 

Proposed P-spline Estimators (50 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 

 
-0.02 
-0.02 
-0.02 

 
0.48 
0.48 
0.48 

 
0.48 
0.48 
0.48 

 
96.0 
96.0 
96.0 

 
17,303 
17,301 
17,309 

 
 
 



127 
 

Table 2.4. Simulation Results for Population with Gamma Distributed Covariates, ppswor 
Samples ( 303,439T = ) 

Design-based Estimators (200 samples)

Estimator Relative Bias 
(%)

Variance 
Ratio RelRMSE CI 

Coverage 
Ave. CI 
Width

Fully weighted (HT) 
Fully smoothed (FS) 
Trimmed/Weight pooling (WP) 

-0.01 
18.59 
2.85 

1.00 
1.20 
1.30 

1.00 
220.15 

6.43 

95.5 
0.0 

49.5 

15,015 
16,548 
17,129 

Model-Assisted Estimators (200 samples)
Calibration 
     Linear (CalL) 
     Quadratic (CalQ) 
     Cubic (CalC) 
Breidt et al. model (REML) 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)             
                                10 knots (C10) 
                                15 knots (C15) 

 
0.11 
0.11 
0.10 

 
0.11 
0.12 
0.11 
0.10 
0.11 
0.12 

 
0.99 
0.99 
0.98 

 
0.98 
0.96 
0.99 
0.96 
1.00 
1.00 

 
0.99 
0.99 
0.98 

 
0.98 
0.96 
0.99 
0.96 
1.00 
1.01 

 
95.0 
95.0 
95.0 

 
95.0 
95.0 
95.0 
95.0 
94.5 
95.0 

 
14,707 
14,695 
14,642 

 
14,622 
14,280 
14,706 
14,495 
14,789 
14,817 

Zheng and Little Estimators (200 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 
     Cubic model:        5 knots(C5)             
                                10 knots (C10) 
                                15 knots (C15) 

 
-0.52 
0.16 

-0.27 
-0.28 
0.16 
0.76 

 
1.06 
1.08 
1.07 
1.09 
1.09 
1.64 

 
1.23 
1.09 
1.11 
1.14 
1.10 
2.00 

 
94.0 
94.0 
94.5 
93.5 
94.0 
90.5 

 
15,473 
15,576 
15,496 
15,699 
15,660 
19,207 

Proposed P-spline Estimators (50 samples)
Uniform prior on variance components 
     Quadratic model: 5 knots (Q5) 
                                10 knots (Q10) 
                                15 knots (Q15) 

 
0.04 
0.04 
0.04 

 
0.96 
0.96 
0.98 

 
0.97 
0.96 
0.96 

 
96.0 
96.0 
96.0 

 
15,997 
15,992 
15,980 

 

Figures 2.3 through 2.6 show boxplot distributions of the alternative totals estimated from 

the stratified and pps samples drawn from each population.  In each plot, the true 

population total is shown with a vertical line.  In the figures, we see how the fully 

smoothed and weight smoothing totals are biased, while the proposed estimators with 

five knots have larger variances (note: the cubic Breidt et. al model results are omitted).  

Generally, all of the estimators have lower bias and variance for the population with the 

Gamma distributed covariates. 
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Figure 2.3. Boxplots of Estimated Totals, Population with Uniformly Distributed 
Covariates, Stratified Samples 
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Figure 2.4. Boxplots of Estimated Totals, Population with Uniformly Distributed 
Covariates, ppswor Samples
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Figure 2.5. Boxplots of Estimated Totals, Population with Gamma Distributed Covariates, 
Stratified Samples 

 

 

 

 

  

W
P

FS
H

T

E
st

im
at

or
s

Design-Based Estimators

Q
15

Q
10

Q
5

C
al

L
C

al
Q

C
al

C

P
-s

pl
in

e 
   

   
   

   
 C

al
ib

ra
tio

n

Model-Assisted Estimators

C
15

C
10

C
5

Q
15

Q
10

Q
5

C
ub

ic
 M

od
el

s 
   

Q
ua

dr
at

ic
 M

od
el

s

Zheng/Little P-spline Estimators, Uniform Prior

Q
15

Q
10

Q
5

250000 300000 350000

Q
ua

dr
at

ic
 M

od
el

s Proposed Estimators, Uniform Prior



131 
 

Figure 2.6. Boxplots of Estimated Totals, Population with Gamma Distributed Covariates, 
ppswor Samples 

 

 

 

 
 

2.4.2. One-Sample Illustration of P-spline Models in Nonlinear Data 

While the Sec. 2.4.1 simulations demonstrated that the Breidt et. al and proposed p-spline 

estimators produced comparable totals to the GREG estimators, the underlying 

population data followed linear patterns.  Here the p-spline estimators are applied to 

nonlinear data, to demonstrate their potentially superior performance.  The 

pseudopopulation data in Sec. 2.4.1 is altered to fit the following mixed model: 
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( )~ 0,10ie N , 1, ,8300i = … .  The pseudopopulation plot is shown in Figure 2.7. 

Figure 2.7. Population Plots and Loess Lines for One-Sample Example of P-spline Models 

 

One sample of size 250 was drawn from this population using probability proportional to 

size of X .  The sample data, along with the prediction lines produced from several 

alternative models, are shown in Figure 2.8 below and on the following pages. 

Figure 2.8. Sample Plots of P-spline Model Examples, ppswor Sample 
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Figure 2.8. Sample Plots of P-spline Model Examples, ppswor Sample, cont’d 
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Figure 2.8. Sample Plots of P-spline Model Examples, ppswor Sample, cont’d. 
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From Figure 2.8, we first see that, for this nonlinear data, the linear model between ,i iy x  

is not appropriate.  For smaller values of ix , predicted values of iy  are too large, while 

larger ,i iy x  values have ,i iy x  predictions that are too small.  The model fitting 2, ,i i iy x x  

does not perform much better; smaller and larger values of ix  have predicted iy ’s that 

are too small.  The cubic model has a better fit, with the exception of larger ix  values due 

to a heteroscedastic variance.  The regression spline models (the p-spline models with no 

penalty on the knots, titled “unpenalized quad/cubic reg models” in Figure 2.8) have a 

better fit to the data, although the models with 10 knots contribute more “wigglyness” to 

the prediction line than 5 knots.  In contrast, the REML-based penalized model and the 

proposed model using the Uniform prior for the variance components (that determines the 

penalty) fit the data well but are much smoother.  For this sample data, the models with 

10 knots fit the data more appropriately than the models using 5 knots.  Generally, this 

example illustrates that the p-spline estimators, including the proposed estimator using 

the Bayesian priors for unknown model parameters, have a better fit to the nonlinear data.  

This should extend to superior performance in estimation of totals, moreso than the 

benefits noted in the Sec. 2.4.1 evaluation. 

2.4.3. Variance Estimators 
 
This section contains an evaluation study related to estimating the variance of some p-

spline estimators examined in Sec. 2.4.1.  This simulation study uses the 

pseudopopulation from Sec. 2.4.1 with the gamma-distributed covariates, and has two 

factors.  Here however, the population size was increased to 10,000 units and only the 

ppswor sampling was used to select four hundred samples of size 250n =  from the 

population.  The population plots are given in Figure 2.9 on the following page. 
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Figure 2.9. Population Plots and Loess Lines for Simulation Comparing Alternative 
Variances 

 
 

Only one version of the proposed estimator of the total is used: using the uniform prior on 

the variance components, with a quadratic (second-degree) polynomial model and 

10Q =  knots from the estimators examined in Sec. 2.4.1.  This estimator is used here 

since it had one of the lowest relative bias and the lowest RMSE for the ppswor samples 

drawn from this population (see Table 2.4).  The only simulation factor here is the 

variance estimator; five alternatives (including three versions of the grouped jackknife) 

are compared: 

• The with-replacement Taylor series-based variance estimator from the GREG AV: 

( )
2 2

ˆ 1T i i
GREG x U i s

i

g envar T
Nπ π∈

⎛ ⎞− −⎜ ⎟
⎝ ⎠

∑T B � ; 

• The model-based variance: ( ) ( ) ( )1 1ˆ T T T
M psp s s s svar T − −= + +d A c ee d c A . 

• The delete-one-group jackknife variance estimator, using 10, 25, and 50 equal-sized 

groups: ( ) ( )2( )1
1ˆ ˆ ˆG

J gg
Gvar T T T

G =
−

= −∑ . 

I use five evaluation measures to compare the above alternatives produced for 400B =  

simulation samples:  
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• Relative bias: the average distance between the variance estimator ( )ˆ
b pspvar T  and 

empirical variance of ˆ
pspT , denoted ( ) ( )21 1

1 1
ˆ ˆ ˆB B
psp psp pspb bv T B T B T− −

= == −∑ ∑ : 

  ( )( ) ( ) ( )( ) ( )1
1

ˆ ˆ ˆ ˆB
psp b psp psp pspbRB var T B var T v T v T−

=
⎡ ⎤= −⎢ ⎥⎣ ⎦∑ ,  

 
• Empirical CV: the standard error of the variance estimator, expressed as a percentage 

of the empirical variance: 

( )( ) ( ) ( )( ) ( )
21 1

1 1
ˆ ˆ ˆ ˆB B
psp b psp b psp pspb bCV var T B var T B var T v T− −

= == −∑ ∑ ; 

 
• Empirical RelRMSE: the mean square error of the variance estimator, expressed as a 

percentage of the empirical variance:  

  ( )( ) ( ) ( )( ) ( )21
1

ˆ ˆ ˆ ˆB
psp b psp psp pspbRelRMSE var T B var T v T v T−

== −∑ ; 

 
• 95% CI Coverage rate: the percentage of the 400 simulated confidence intervals that 

contain the true population total: ( ) 2
ˆ ˆ 1.96psp pspT T var T zα− ≤ = ; 

 
• Average CI width: the average width of the 95% confidence intervals: 

( )1
1

ˆ2 1.96B
b pspbB var T−

=∑ . 

 
 

The evaluation measures are summarized for each variance estimator in Table 2.5. 

Table 2.5. Variance Estimation Simulation Results for Population with Gamma Distributed 
Covariates, ppswor Samples, and Estimator with Uniform Prior, 10 Knots ( 365,862T = ) 

Variance Estimator Relative 
Bias (%)

Empirical 
CV (%) RelRMSE 95% CI  

coverage 
Ave. 95% 
CI Width

Model-based 
Taylor series/GREG AV 
Delete-one-group jackknife 
     10 groups 
     25 groups 
     50 groups 

2.54 
-1.39 

 
-1.28 
-0.79 
-0.70 

6.08 
3.06 

 
2.91 
1.71 
0.32 

9.08 
4.36 

 
3.35 
1.88 
0.59 

98.4 
90.7 

 
92.0 
94.0 
95.5 

43,377.82 
3,977.06 

 
7,352.16 
4,353.03 
3,029.28 

 

From Table 2.5, we see that all of the alternative variance estimators for ˆ
pspT  have a low 

amount of bias; the largest at 2.5 percent is the model-based variance estimator.  The 

other alternatives were slightly negatively biased, with the bias in the jackknife variance 
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estimators decreasing as the number of replicate groups increased.  Despite only using 

400B = samples, the empirical CV’s of the variance estimators are all less than ten 

percent, with the model-based variance being the highest.  From these, the model-based 

variance has the highest root mean square error relative to the empirical variance.  All of 

the relative RMSE’s exceeded one except the jackknife with fifty replicate groups, by 

varying degrees.  The 95 percent CI coverage rates and average CI widths allow me to 

evaluate how well the alternative variance estimators perform inferentially with respect to 

ˆ
pspT ;  the coverage is closest to the nominal rate and the average CI width was smallest 

for the jackknife variance with 50 replicate groups. 

Figure 2.9 contains the boxplot distributions of the alternative variance estimates 

across the 400 simulation samples.  The horizontal line in the variance plot is the 

empirical variance of the proposed p-spline total. 

Figure 2.9. Boxplots of Estimated Variances, Population with Gamma Distributed 
Covariates, ppswor Samples 
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decreases as the number of groups increases.  The model-based variance also had some 

extreme outliers, which contributed to its slight positive bias, large variance, and large CI 

width in Table 2.5. 

 
2.5. Discussion and Limitations 
 
In this paper, I propose a modification of the Breidt et al. model-assisted penalized spline 

estimator.  I also compare the proposed estimator against design-based, Bayesian model-

based, and model-assisted estimators in a simulation evaluation.  The proposed estimator 

performed well against the other methods in the Sec. 2.4 evaluation studies, as long as a 

sufficient number of knots were used in the p-spline. In particular, the proposed estimator 

had one of the lowest root mean square errors within the stratified samples. While the 

gains in precision and MSE for the proposed estimators were also comparable in the 

ppswor samples, generally the gains in all alternative estimators were not as large here 

compared to the stratified sample results.  In both sample designs, totals estimated using 

the quadratic model with 10 and 15 knots were more efficient than using the same model 

with 5 knots.  Unlike the quadratic model, in results not presented here, the cubic model 

for the proposed estimator generated an extreme range of totals, including negative ones.  

Further investigation as to why this occurred is needed. 

In this paper, I also compare some alternative variance estimators for the 

proposed total.  I demonstrate that the resampling-type jackknife variance estimator is 

accurate for estimating the variance of the proposed total.  In my empirical application, 

the model-based variance estimator was overly conservative. 

 One of the main limitations of my proposed method is one central to both the 

model-based and model-assisted approaches: we must have good auxiliary information 
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related to our survey variable of interest to produce an improved estimator of the finite 

population total.  This information must be available for every unit in the population.  

This is not restrictive in some surveys, e.g., establishment surveys, where unit-level 

frame variables are available.  If such information is available, then the p-spline model 

has potential to be more robust and efficient than alternative weight trimming and 

smoothing approaches. 

 Practically, it is noteworthy that both the Zheng and Little and proposed estimator 

are very computer-intensive.  This problem increased for smaller sample sizes, e.g., the 

omitted results when fitting the models within strata.  Also, the estimated totals can be 

sensitive to the number of model terms, i.e. the polynomial degree and the number of 

knots used.    

 



141 
 

Paper 3: Diagnostic Measures for Changes in Survey Weights 

Abstract: Here I propose two different diagnostic measures to gauge the impact of 

various adjustments on weights: (1) a model-based extension of the design-effect 

measures for a summary-level diagnostic for different variables of interest, in single-stage 

and cluster sampling and under calibration weight adjustments; and (2) unit-level 

diagnostics to flag individual cases within a given sample that are more or less influential 

after their weights are adjusted. The proposed methods are illustrated using complex 

sample case studies. 

 

3.1. Introduction and Research Plan 

There are several approaches to adjusting weights, trimming weights, and bounding 

weights, as discussed and illustrated in Papers 1 and 2.  Different approaches have also 

been developed to summarize the impact of differential weighting.  The most popular 

measure is Kish’s (1965, 1992) design-based design effect.  Gabler et al. (1999) showed 

that, for cluster sampling, this estimator is a special form of a design effect produced 

using variances from random effects models, with and without intra-class correlations.  

Spencer (2000) proposed a simple model-based approach that depends on a single 

covariate to estimate the impact on variance of using variable weights.   

However, currently these approaches do not provide a summary measure of the 

impact of weighting changes and adjustments on sample-based inference.  While Kish-

based design effects attempt to measure the impact of variable weights, they hold only 

under special circumstances, do not account for alternative variables of interest, and can 

incorrectly measure the impact of differential weighting in some circumstances.  
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Spencer’s approach holds for a very simple estimator of the total, that uses base weights 

with no adjustments under with-replacement single-stage sampling.  

More specifically, the Kish and Spencer measures may not accurately produce 

design effects for unequal weighting induced by calibration adjustments, which are often 

applied to reduce variances and correct for undercoverage and/or nonresponse (e.g., 

Särndal and Lundström 2005).  When the calibration covariates are correlated with the 

coverage/response mechanism, calibration weights can improve the MSE of an estimator.  

However, in many applications, calibration produces weights that are more variable than 

the base weights or category-based nonresponse or postratification adjustments, since 

calibration involves unit-level adjustments.  Thus, an ideal measure of the impact of 

calibration weights also incorporates not only the correlation between y  and the weights, 

but also y  and the calibration covariates x .   

 I propose extending these existing design effect approaches as follows: 

• Produce new variable-specific design-effect measures that summarize the impact of 
calibration weight adjustments before and after they are applied to survey weights.  
Specifically, I propose a new summary measure that incorporates the survey variable 
like Spencer’s model that uses a generalized regression variance to incorporate 
multiple calibration covariates.   
 

• Develop the estimators for the proposed design effect for single-stage and cluster 
sampling. 
 

• Apply the estimators in case studies involving complex survey data and demonstrate 
empirically how the proposed estimator outperforms the existing methods in the 
presence of calibration weights. 

 
 
In addition, there is limited research and methods to identify particular sample units’ 

weights that have undue influence on the sample based estimator.  On this topic, I 

propose to accomplish the following: 
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• Assess the influence of alternative case weights when estimating a total.  I use 
statistical distance-based functions from related statistical literature to identify 
particular sample units with weights that are more or less influential on the sample-
based total.  The goal is to identify practical metrics to assist survey methodologists 
in determining whether or not a particular weight should be trimmed.   
 

• Illustrate the adopted methods on a case study of complex survey data. 
 

Both of these extensions lead toward the general goal of producing practical metrics that 

quantify and gauge the impact of weights on sample-based estimation.  The proposed 

design effects account for unequal weight adjustments in the larger class of calibration 

estimators used in single-stage and cluster samples.  The case-level influence measures 

identify particular sample units whose weights drive a particular survey’s estimates. 

 

3.2. Literature Review: Design Effect Measures for Differential Weighting Effects 

This section describes existing design-effect measures for differential weights.   

3.2.1. Kish’s “Haphazard-Sampling” Design-Effect Measure for Single-Stage Samples 

Kish (1965, 1990) proposed the “design effect due to weighting” as a measure to quantify 

the variability within a given set of weights.  For ( )1, , T
nw w=w … , in simple random 

sampling, this measure is 

 

( ) ( )

( )

2

2

2

2

2

1 2

2

1

11

K

i
i s

ii s

ii s

ii s

deff CV

w w
n w

n w

w

n w

w

∈

∈

∈
−

∈

⎡ ⎤= + ⎣ ⎦

−
= +

=
⎡ ⎤
⎣ ⎦

=

∑

∑
∑
∑

w w

,      (3.1) 
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where 1
ii sw n w−

∈= ∑ .  This is the most commonly used measure of an unequal 

weighting effect.   Expression (3.1) is actually the ratio of the variance of the weighted 

survey mean under disproportionate stratified sampling to the variance under 

proportionate stratified sampling when all stratum unit variances are equal (Kish 1992).   

3.2.2. Design Effect Measures for Cluster Sampling 

Kish (1987) proposed a similar measure for cluster sampling.  Some alternative notation 

is first needed.  We consider that a finite population of M  elements is partitioned into N  

clusters, each of size iM , and denoted by ( ){ }, : 1, , , 1, , iU i j i N j M= = =… … .  We 

select an equal-probability sample s′  of n  clusters using two-stage sampling from U  

and obtain a set of ( ){ }, : 1, , , 1, , is i j i n j m= = =… …  respondents.  Further, assume that 

there are G  unique weights in s  such that the igm  elements within each cluster i have 

the same weight, denoted by ig gw w=  for 1, ,g G= … , gm  is the number of elements 

within weighting class g  and 1
G

ggm m==∑  is the total number of elements in the 

sample.  We estimate the population mean Y T M=  using the weighted sample mean 

1 1 1 1
ˆ ˆ i in m n m

w HT HT ij ij iji j i jy T M w y w= = = == =∑ ∑ ∑ ∑ .  Kish’s (1987) decomposition 

model for wy  assumes that the G  weighting classes are randomly (“haphazardly”) 

formed with respect to ijy , assuming that the ijy  have with a common variance and that 

s′  is an epsem sample in which the variation among the im ’s within s  is not significant.  

The resulting design effect is 
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( ) ( ) ( )

( )
2

1
2

1

1 1

w w w c w
G

g gg
c

G
g gg

deff y deff y deff y

m w m
m

w m
ρ=

=

= ×

⎡ ⎤≡ × + −⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∑

,    (3.2) 

where 1
1 n

iim m
n == ∑  is the average cluster size and cρ  is the measure of  intra-cluster 

homogeneity.  The first component in (3.2) is the cluster-sample equivalent of (3.1), and 

can be written in a similar form to (3.1), using the squared CV of the weights.  The 

second (3.2) component is the standard design effect due to the cluster sampling (e.g., 

Kish 1965).  Expression (3.2) may not hold if there is variation in the igm  across clusters 

(Park 2004) or moderate correlation between the survey characteristic and weights (Park 

and Lee 2004). 

 Gabler et al. (1999) used a model to justify measure (3.2) that assumes ijy  is a 

realization from a one-way random effects model (i.e., a one-way ANOVA-type model 

with only a random cluster-level intercept term plus an error) that assumes the following 

covariance structure: 

 ( )
2

2
1

,

, ,
0

M ij i j e

i i j j

Cov y y i i j j
i i

σ

ρ σ′ ′

⎧ ′ ′= =
⎪⎪ ′= = ≠⎨
⎪ ′≠⎪⎩

.     (3.3) 

If the units are uncorrelated, then (3.3) reduces to ( ) 2
2 ,M ij i jCov y y σ′ ′ =  for ,i i j j′ ′= =  

and 0 otherwise.  More general models can be found in Rao and Kleffe (1988, p. 62).  

Under this model, Gabler et al. (1999) take the ratio of the  model-based variance of the 

weighted survey mean under model M1 with covariance structure (3.3) to the variance 

under the uncorrelated errors version in model M2 and derive  
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( ) ( ) ( )

( )

1

1

2
1

2

1

1 1

w w w g w

G
g gg

g e
G

g gg

deff y deff y deff y

m w m
m
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=

= ×
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where 
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1

2

1 1
2

1
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g igi g
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=

=
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∑
. They also established an upper bound for (3.4): 
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1

1 1

w w w g w
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g e
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2

2
1 1

2
1 1

n G
i g igi g

g n G
g igi g

m w m
m

w m
= =

= =

=
∑ ∑
∑ ∑

 is a weighted average of cluster sizes.  Note that here 

eρ  is actually a model parameter (see Ch. 8 in Valliant et al. 2000).  It can be estimated 

using an analysis of variance (ANOVA) estimator 

 
( )

ˆ
1ANOVA

MSB MSW
MSB K MSW

ρ −
=

+ −
,      (3.6) 

where ( )21
1

1
n

i iiMSB m y y
n == −
− ∑  is the “between-cluster” mean square error, 

( )21 1
1 iI m

ij ii jMSW y y
n I = == −
− ∑ ∑  is the “within-cluster” mean square error, I  is the 

number of clusters, and 
2

1
1

1

n
iin m

nK
n

=−
=

−

∑
.  With this estimator, ( ) 1ˆ 1ANOVA Mρ −

≥ − − , 

where 1
1 N

iiM M
N == ∑  is the average cluster size.  Park (2004) further extends this 

approach to three-stage sampling, assuming that a systematic sampling is used in the first 
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stage to select the clusters.  Gabler et al. (2005) provide examples of special cases of 

(3.4), such as equal sampling/coverage/response rates across domains.  More 

sophisticated ways, like REML (e.g., Searle 1977), have also been developed for 

estimating the MSE components. 

3.2.3. Spencer’s Model-based Measure for PPSWR Sampling 

Spencer (2000) derives a design-effect measure to more fully account for inefficiency in 

variable weights that are correlated with the survey variable of interest.  Suppose that ip  

is the one-draw probability of selecting unit i, which is correlated with iy  and that a 

linear model holds for iy : i i iy A Bp e= + + , where ie  is not a model error; it is defined to 

be i i ie y A Bp= − − .  A particular case of this would be i ip x∝  , where ix   is a measure 

of size associated with unit i.  If the entire finite population were available, then the 

ordinary least squares model fit is i i iy p eα β= + + .  The estimates of ,α β  are 

Y Pα β= −  and 
( )( )

( )2
i ii U

ii U

y Y p P

p P
β ∈

∈

− −
=

−

∑
∑

, where ,Y P  are the finite population 

means for iy  and ip .  The finite population variance is 

( ) ( ) ( )
2

22 2 2
1

1
yp

e i yp yi U y Y
N

ρ
σ ρ σ∈

−
= − = −∑ , where ypρ  is the finite population 

correlation between iy  and ip .  The weight under this ppswr sampling is ( ) 1
i iw np −= .  

The estimated total is ˆ
pwr i ii sT w y∈=∑ , with design-variance 

( )
2

1ˆ i
pwr ii U

i

yVar T p T
n p∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

 
in single-stage sampling.  Spencer substituted the 
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model-based values for iy  into the variance and took its ratio to the variance of the 

estimated total using simple random sampling to produce the following design effect for 

unequal weighting (see Appendix 8 for derivation): 
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( ) 2 22
2

2 2 2

ˆ
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ρ σ σ α ρ σ σα ρ
σ σ σ

=

⎛ ⎞
= − + − + +⎜ ⎟

⎝ ⎠

. (3.7) 

Assuming that the correlations in the last two terms of (3.7) are negligible, Spencer 

approximates (3.7) with 

 ( )
2

21 1S yp
y

nW nWdeff
N N

αρ
σ

⎛ ⎞ ⎛ ⎞
≈ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

,     (3.8) 

where 1 1 1
ii U i U

i
W w

N nN p∈ ∈= =∑ ∑  is the average weight in the population (see 

Appendix 8 for derivation).  Spencer proposed estimating measure (3.7) with 
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ˆ
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⎝ ⎠

w w

w w

,   (3.9) 

where 2 ˆ,ypR α  are the R-squared and estimated intercept from fitting the model 

i i iy p eα β= + +  with survey weighted least squares, and 
( )22ˆ i i wi s

y
ii s

w y y
w

σ ∈

∈

−
=
∑

∑
 is the 

estimated population unit variance (see Appendix 8).  When ypρ  is zero and yσ  is large, 

measure (3.9) is approximately equivalent to Kish’s measure (3.1).  However, Spencer’s 



149 
 

method incorporates the survey variable iy , unlike (3.1), and implicitly reflects the 

dependence of iy  on the selection probabilities ip .  We can explicitly see this by noting 

when N  is large, 1Y N Yα β −= − ≈ , and (3.8) can be written as 

 
( )

( )

2
2

2
2

1 1

11 1

S yp
y
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nW Y nWdeff
N N

nW nW
N NCV

ρ
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ρ

⎛ ⎞ ⎛ ⎞
≈ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

,     (3.10) 

where 2
YCV  is the population-level unit coefficient of variation. We estimate (3.10) with 

 n ( ) ( )
m

( )2 22
2

11 1
w

ypS
y

deff R CV CV
CV

⎡ ⎤⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
w w ,   (3.11) 

where m
2 2 2ˆˆwy y wCV yσ=  (not the standard CV estimate produced in conventional survey 

software).   

3.2.4. Summary 

In general, the design effect measures currently provide the best comprehensive measures 

to summarize the impact of variable weights within a given survey.  While the measures 

are generally proposed for a survey mean, they can often also be used for totals (see Exp. 

8.7.7 in Särndal et. al 1992).  However, each existing measure has associated limitations, 

and there is a lack of empirical applications in the literature proposing the methods, e.g., 

when particular approximations hold empirically and when they do not.  These 

limitations are discussed in the remainder of this section. 

 The Kish summary measure is the most widely used summary measure to gauge 

the impact of variable weights.  It requires only the values of the survey weights, thus is 

very simple to compute from a given sample.  However, measure (3.1)  can easily be 
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misinterpreted as the measure of the increase in the variance of an estimator due to 

unequal weights, but clearly it does not involve a survey variable of interest.  The weights 

iw  as well as the product i iw y  can both contribute to increased variability; Kish’s 

measure does not account for the latter.  Kish (1992) also indicates that differential 

weights can be much more efficient than equal weights in particular cases, such as 

establishment surveys, where the variances differ across strata, household surveys with 

oversampled subgroups to meet target sample sizes, or samples that have differential 

nonresponse across subgroups, such that the nonresponse adjustments produce variable 

weights.  Measure (3.1) could produce misleading results if used to measure variability in 

the weights in these circumstances.  These examples are not cases of the “haphazardly” 

formed weighting class cells that Kish’s design effect (3.1) is designed to measure the 

impact of. 

 The Kish design effect, and Gabler et. al model-based equivalent, for cluster 

sampling is more restrictive than the equivalent measure for single-stage sampling.  It 

only holds under a particular form of weighting adjustments, where the survey data are 

grouped into the G  groups and each unit within a group is assigned a common weight.  

This design effect only holds under special cases of cell-based weighting adjustments, 

like poststratification, and not other weighting adjustments where the individual units are 

allowed to have differing weights.  It is not clear how the existing design effect would be 

modified to account for variability in weights under different adjustments; application of 

this design effect under other types of weighting adjustments would be ad hoc at best.  

 Spencer’s design effect addresses a limitation in the Kish measure by 

incorporating a correlation between the survey variable of interest and the weights.  
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However it only holds for estimating a total under the particular combination of single-

stage, with-replacement probability-proportional to size sampling, and the PWR 

estimator.  Spencer also does not provide any theoretical recommendations or empirical 

evidence that the correlation terms in (3.7) are negligible, in which case the 

approximation in (3.8) is appropriate. 

To address some weaknesses in the existing design-effect measures, Section 3.3.1 

describes my proposed method to extend Spencer’s measure to the calibration  estimator 

in single-stage sampling.  This accounts for measuring the variation in single-stage 

sample weights that fall under the general category of calibration.  This incorporates 

more forms of commonly used weighting adjustment methods.  Section 3.3.2 extends this 

measure to cluster sampling.  In Sec. 3.3.3, I use a heuristic approach by proposing to use 

some nonparametric measures proposed in the statistical literature, and apply them in an 

empirical case study in Sec. 3.4.3. 

 

3.3. Proposed Methods 

3.3.1. Design-Effect Measure for Single-Stage Sampling  

Here I propose to extend Spencer’s (2000) approach in single-stage sampling to produce 

a new weighting design effect measure for a calibration estimator.  Spencer’s approach 

produces a variable-level design-effect measure that incorporates auxiliary information 

only in ip .  However, here the proposed design effect estimates the joint effect of the 

sample design and calibration estimator weights, which covers a range of more 

commonly used estimators, including poststratification, raking, and the GREG estimator.  

While Spencer’s model assumed i i iy A Bp e= + + , here the assumed model is 
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T T
i i i i U iy e eα= + + = +x β x B� , where [ ]1i i=x x�  and [ ]U α=B β .  Again, the term 

T T
i i i i U iy e eα= + + = +x β x B�  is not a model error, just a term that is equivalent to 

T T
i i i i i Ue y yα= − + = −x β x B� . I reformulate the model as T

i i iy eα− = +x β  to simplify 

the results and implicitly account for a number of correlations in the model components, 

namely between y  and x .  Note that using the model T
i i i iy A Cp e= + + +x B , which 

might seem to be the natural extension of Spencer’s formulation, will produce non-

estimable parameters (due to singular matrices). 

 A linearization of the GREG estimator (Exp. 6.6.9 in Särndal et al. 1992) is 
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    (3.12) 

where xT  is the known population total of x , ˆ
HTxT  is the vector of HT estimators, UB  is 

the population coefficients, T
i i i Ue y= −x B�  is the calibration residual, T

ix�  is a row vector 

including the intercept, i
U i s

i

ee
π∈=∑�  is the sum of the weighted unit-level residuals, and 

iπ  
is the overall probability of selection.  If we assume that with-replacement sampling 

was used, then i inpπ =  and (3.12) becomes 
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 1ˆ T i
GREG x U i s

i

eT
n p∈+ ∑T B� .      (3.13) 

The second component in (3.13) has design-expectation 
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where U ii UE e∈= ∑ .  From (3.13), 1ˆ T i
GREG x U i s

i

eT
n p∈− ∑T B � , with design-variance 
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We can follow Spencer’s approach and use a model-based plug-in to variance (3.15) to 

formulate a design-effect measure.  However, here we substitute in the model-based 

equivalent to ie , not iy  as Spencer does.  This measure captures the combined effect of 

unequal weighting from the sample design and calibration weights, since the variance 

(3.15) can be used for all calibration estimators (Särndal et. al 1992).  Substituting the 

GREG-based residuals into the variance and taking its ratio to the variance of the pwr-

estimator in simple random sampling with replacement, ( )
2 2

ˆ y
srs pwr

N
Var T

n
σ

= , where 

( )22
1

1 N
y ii y Y

N
σ == −∑ , produces the approximate design effect due to unequal 

calibration weighting.   
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We can simplify things greatly by reformulating our model as i iu eα= + , where 

T
i i iu y= − x β .  The resulting design effect (see Appendix 9) is  
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where 1U Nα γ −= − , ( )1 1
1 1N N T

i i ii iU u y
N N= == = −∑ ∑ x β , ( )22

1
1 N

u ii u U
N

σ == −∑ , and 

( )22
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y ii y Y

N
σ == −∑ .  Under our model i iu A e= + , Uα =  and (3.16) becomes 
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To estimate (3.17), we use the following (Appendix 9):  
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where the model parameter estimate α̂  is obtained using survey-weighted least squares,  
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and ˆˆ T
i i iu y= − x β .   

Following Spencer, if the correlations in (3.17) are negligible, then expression 

(3.17) is the following: 
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which we estimate with  

 n ( )( )2 2
* 2

ˆ
1

ˆ
u

S
y

deff CVσ
σ

⎡ ⎤≈ + ⎣ ⎦w .      (3.20) 

Note that without calibration, we have ˆˆ T
i i i iu y y= − ≈x β , and 2 2

u yσ σ≈ , in which case 

the design effect approximation in (3.19) becomes *S
nWdeff
N

≈ , which we estimate with 

Kish’s measure n ( ) 21Kdeff CV⎡ ⎤≈ + ⎣ ⎦w .  However, when the relationship between the 

calibration covariates x  and y  is stronger, we should expect the variance 2
uσ  to be 

smaller than 2
yσ .  In this case, measure (3.20) is smaller than Kish’s estimate using only 

the weights.  Variable weights produced from calibration adjustments are thus not as 

“penalized” (shown by overly high design effects) as they would be using the Kish and 

Spencer measures.  However, if we have “ineffective” calibration, or a weak relationship 

between  x  and y , then 2
uσ   can be greater than 2

yσ , producing a design effect greater 

than one.  The Spencer measure only accounts for an indirect relationship between x  and 

y  if there was only one x  and it was used to produce ip .  This is illustrated in the Sec. 

3.4.1 case study that mimics establishment-type data.  On a practical note, calibration 

weights fit within the models should all be positive. 

3.3.2. Design-Effect Measure for Cluster Sampling 

Here, the method used in Sec. 3.3.1 is extended to cluster sampling.  A two-stage sample 

of clusters and units within clusters is assumed.  For cluster sampling, we start with N  

clusters in the population, with iM  elements within cluster i .  For 1ij ij⎡ ⎤= ⎣ ⎦x x� , 
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( )TU Uα=B β , and T T
ij ij i ij ij ij Ue y yα= − − = −x β x B� .  The GREG estimator here is 

given by 
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where xT  is the known population total of x , ˆ
HTxT  is the vector of HT estimators, UB  is 

the population coefficients, T
ij ij ije y= −x β  is the “within-cluster” residual, T

ijx  is a row 

vector, and the overall probability of selection is the product of the first- and second-

stage selection probabilities: |ij i j iπ π π= .  From (3.21), 

ˆ
i

ijT
GREG x U i s j s

ij

e
T

π∈ ∈− ∑ ∑T B � .  Assuming that we have probability-with-replacement 

(pwr) sampling of clusters, the probability of selection for clusters is approximately 

( )1 1 n
i i ip npπ = − − �  (if ip  is not too large), where ip  is the one-draw selection 

probability.  Suppose that simple random sampling is used to select elements within each 

cluster, such that the second-stage selection probability is i
j i

i

m
M

π =  for element j  in 

cluster i .  Then the overall selection probability is approximately 
 

i i
ij i j i

i

np m
M

π π π= �  

and expression (3.21)  becomes 
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where ( ) 1
i iw np −=  and ˆ

i

i
ei ijj s
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MT e
m ∈= ∑ .  The first component in (3.22) has design-

expectation 
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where 
i

U iji U j UE e∈ ∈=∑ ∑  and 
i

i ijj UE e+ ∈=∑ . Expression (3.22) has the 

approximate design-variance 
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where 1
1 i

i

M
U ijj

i
e e

M == ∑ , 1
i

i

M
U ijje e==∑ , and 1

N
U ijiE e+ == ∑ .  Suppose that the second-

stage sampling fraction is negligible, i.e., 0i

i

m
M

≈ .  We can follow the approach used in 

Sec. 3.3.1 and use variance (3.24) to formulate a design-effect measure to capture the 
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effect of unequal weighting from the calibration weight adjustments used in cluster 

sampling.  To match the theoretical variance formulation in (3.24), we fit the model 

T
ij ij ijy A e= + +x B , where ,A B  are the finite population model parameters.  In the 

ordinary least squares fit, T
ij U ij ijy eα= + +x β , where T

U U UYα = − x β , where 

i
U ij ii U j U i UY Y M∈ ∈ ∈=∑ ∑ ∑ .     

Similar to 3.3.1, we reformulate the model as T
ij ij iju y= −x β , such that 

ij ij Ue u α= −  and incorporate i iMα α=  as the cluster-level (random) intercept.  The 

model with only the intercept iα  and error term is equivalent to Gabler et. al’s (1999) 

random effects model described in Sec. 1.3.  Substituting the GREG-based residuals into 

the two (3.24) variance components and taking its ratio to the pwr-variance under simple 

random sampling, assuming that the iM  are large enough such that 1
1

i

i

M
M

≈
−

 and the 

within-cluster sampling fractions are negligible, we obtain the following approximate 

design effect (see Appendix 10 for details):  
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which we estimate with 
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where the model parameter estimates ˆiα  are obtained using survey-weighted least 

squares, 
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Assuming that the correlations in (3.25) are negligible or the clusters were 

selected with equal probabilities, the design effect is approximately 
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which we estimate with 
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Assuming that iM  are close enough such that iM M≈  and i iM Mα α α= �  and 

2
2 0α ασ σ= = , then (3.25) becomes  
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Measure (3.29) can be estimated using 
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(3.30) 

The Kish measure is also a special case of (3.30), when there are no cluster-level effects.  

That is, if iα α=  for all i and we have no auxiliary information in x� , and no cluster 

sampling, i.e., 2
2 2 2, , 0u yU Y αασ σ σ σ
+

≈ ≈ = = , and N  is large such that M Yα α= ≈ , 

then (3.27) reduces to C
nWdeff
N

≈ . In other words, with no correlations, large N , no 
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calibration, and no cluster-level effects, we derive Kish’s measure for unit-level 

sampling. 

3.3.3. One Example of Unit-Level Diagnostics: Cook’s Distance Measure 

The model-based approach described in Sec. 2.2.2 can also be used to express the case 

weights associated with the estimators in Ex. 3.1-3.13 in a general form.  This leads to 

developing distance-based functions to identify particular sample units who have more or 

less influence on the sample-based total.  I borrow one method proposed in the statistical 

regression diagnostics literature (Cook 1977; 1979) to develop a practical metric to assist 

survey methodologists in determining whether or not a particular case weight should be 

trimmed, or at least examined carefully. 

Cook’s distance (Cook 1977; 1979) measures the influence of a particular unit i 

on estimating the regression coefficient β : 

 ( ) ( ) ( )1
( ) ( )

ˆ ˆ ˆ ˆ ˆT
i i iCD Varβ β β β β

−
⎡ ⎤= − −⎣ ⎦ ,     (3.31) 

where β̂  is the estimate of β  from the full sample, ( )
ˆ

iβ  is the estimate of β  when 

deleting unit i, and ( )ˆVar β  is the appropriate variance-covariance matrix of β̂ .  The 

idea is to form a confidence ellipsoid for β  and identify any individual points that move 

β̂  closer towards the edge of the ellipse, as shown in Figure 3.1. 

Figure 3.1. Cook’s Distance Illustration 

β̂

( )
ˆ

iβ ⇒influential i

( )
ˆ

iβ ⇒non-influential i  
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Extending this to weight trimming, we can form the Cook’s distance as follows: 

 ( ) ( ) ( ) ( )1
( ) ( )ˆ ˆ ˆ ˆ ˆ ˆT

i i iCD t t t Var t t t
−

⎡ ⎤= − −⎣ ⎦ ,     (3.32) 

where t̂  is the estimate of the finite population from the full sample before adjusting the 

weights (e.g., trimming and redistributing the weight), ( )ˆ it  is the estimate of T  when 

removing unit i from the sample and adjusting the other sample units’ weights to 

compensate for its absence, and ( )ˆVar t  is an appropriate variance-covariance matrix.    

3.4. Evaluation Case Studies 

3.4.1. Single-Stage Design Effects Using Establishment Data 

Here a sample dataset of tax return data is used to mimic an establishment survey setup.  

The data come from the Tax Year 2007 SOI Form 990 Exempt Organization (EO) 

sample.  This is a stratified Bernoulli sample of 22,430 EO tax returns selected from 

428,719 filed to and processed by the IRS between December 2007 and November 2010.  

This sample dataset, along with the population frame data, is free and electronically 

available online (Statistics of Income 2011).  These data make a candidate 

“establishment-type” example dataset for estimating design effects.  Since the means and 

variances of the variables are different across strata, Kish’s design effect may not apply.   

 The SOI EO sample dataset is used here as a pseudopopulation for illustration 

purposes.  Four variables of interest are used: Total Assets, Total Liabilities, Total 

Revenue, and Total Expenses.  Returns that were sampled with certainty and having 

“very small” assets (defined by having Total Assets less than $1,000,000, including zero) 

were removed.  This resulted in a pseudopopulation of 8,914 units.   
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Figure 3.2 shows a pairwise plot of the pseudpopulation, including plots of the variable 

values against each other in the lower left panels, histograms on the diagonal panels, and 

the correlations among the variables in the upper right panels.  This plot mimics 

establishment-type data patterns.  First, from the diagonal panels, we see that the 

variables of interest are all highly skewed.  Second, from the lower left panels, there 

exists a range of different relationships among them.  The Total Assets variable is less 

related to Total Revenue, and Total Expenses (despite relatively high correlations of 

0.46-0.48), while Total Revenue and Total Expenses are highly correlated.   

Figure 3.2. Pseudopopulation Values and Loess Lines for Single-Stage Design Effect 
Evaluation 

 

Three ppswr samples were selected ( 100;500;1000n = ) from the pseudopopulation using 

the square root of Total Assets.  The HT weights were then calibrated using the “Linear” 

method in the calibrate function in the survey package for R (corresponding to a GREG 

estimator, Lumley 2010) to match the totals of Total Assets and Total Revenue. The 

analysis variables are thus Total Liabilities and Total Expenses.  Figures 3.3 and 3.4 
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show boxplots and plots of the sample weights before (labeled “HT wt” in Fig. 3.3) and 

after (“cal wt”) these adjustments. 

Figure 3.3. Boxplots of ppswr Sample Weights Before and After Calibration Adjustments 

 
 

Figure 3.4. Plots of ppswr Sample Weights Before and After Calibration Adjustments 

 

 

Seven estimates of the design effects are considered, with results shown in Table 3.1: 

• The Kish measure (3.1); 
 
• Three Spencer measures: the exact measure that estimates (3.7), the approximation 

(3.9) assuming zero correlation terms, the large-population approximation (3.11) 
 
• Two proposed measures: the exact proposed single-stage design effect (3.18) and the 

zero-correlation approximation (3.20).   
 

HT w t cal w t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
n=100

HT w t cal w t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

n=500

HT w t cal w t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

n=1000

0 100 200 300 400 500 600 700

0
10

0
30

0
50

0
70

0

HT w eight

ca
lib

ra
tio

n 
w

ei
gh

t

n=100

0 100 200 300 400 500 600 700

0
10

0
30

0
50

0
70

0

HT w eight

ca
lib

ra
tio

n 
w

ei
gh

t

n=500

0 100 200 300 400 500 600 700

0
10

0
30

0
50

0
70

0

HT w eight

ca
lib

ra
tio

n 
w

ei
gh

t

n=1000



165 
 

Table 3.1. Single-Stage Sample Design Effect Estimates of ppswr Samples Drawn from the 
SOI 2007 Pseudopopulation EO Data 

 Variable of Interest 
 Total Liabilities 

(weakly correlated with x ) 
Total Expenses 

(strongly correlated with x ) 
Design Effect Estimates 100n = 500n = 1000n = 100n =  500n =  1000n =
Standard design effects   
     Before calibration* 
     After calibration** 
Kish 
Spencer 
     Exact 
     Zero-corr. approx.  
     Large-N approx. 
Proposed 
     Exact  
     Zero-corr. approx. 

 
1.31 
0.56 
2.99 

 
0.63 
2.54 
3.10 

 
0.48 
1.86 

 
0.88 
0.61 
2.66 

 
0.37 
1.81 
2.34 

 
0.57 
2.07 

 
1.19 
0.82 
2.49 

 
0.52 
1.76 
2.25 

 
0.70 
2.04 

 
0.92 
0.03 
2.99 

 
0.47 
2.64 
3.05 

 
0.03 
0.12 

 
1.08 
0.01 
2.66 

 
0.66 
2.29 
2.78 

 
0.01 
0.05 

 
1.24 
0.02 
2.49 

 
0.64 
2.06 
2.52 

 
0.02 
0.06 

 * ( ) ( )ˆ ˆ
srsVar T Var Tπ π π ; ** ( ) ( )ˆ ˆ

GREG srsVar T Var Tπ π ; both measures calculated with R’s svytotal function. 

 

Several results are clear from Table 3.1.  For this pseudopopulation and ppswr samples, 

the Kish measure is consistently above one for all sample sizes.  This measure also does 

not depend on the variable of interest, and the estimates exceeding two implies the ppswr 

sample design and calibration weighting is inefficient.  However, the standard design 

effects were all well less than one and both Total Liabilities and Total Expenses are 

positively correlated with the calibration variable Total Revenue (see Fig. 3.2).  This 

conflicts with the Kish measure implications.  For both variables, the Spencer measures 

are all lower than the Kish measures, since they take into account the moderate 

correlation with the Total Assets variable (which was used to select the ppswr samples).  

However, the exact Spencer design effect estimates that account for the correlations in 

the weights and errors are all less than one, while the approximations are greater than 

one.  This indicates for this ppswr sampling and calibration weighting, the Spencer 

correlations are not negligible.  The same pattern occurred for the proposed design effect 

for Total Liabilities; the exact measure here was much smaller, and less than one, for all 
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sample sizes.  This occurred since this variable had approximately the same correlation 

(0.48) with the calibration variable Total Revenue (approximately 0.47).  However, Total 

Expenses is highly correlated with the second calibration variable Total Revenue (0.99, 

see Fig. 3.2), so the proposed design effects are much smaller and closer to each other in 

value.  This implies that the zero-approximation design effect is appropriate when the 

correlation between the survey and auxiliary variables is extremely strong; otherwise the 

exact estimate should be used.  Figures 3.5 and 3.6 show boxplots of iu  and iy  for each 

variable and sample size. 

 
Figure 3.5. Boxplots of iy  and iu -values from ppswr Samples from the 2007 SOI EO Data, 

Total Liabilities Variable 

 

Figure 3.6. Boxplots of iy  and iu -values from ppswr Samples from the 2007 SOI EO Data, 
Total Expenses Variable 

 
 

We see that, particularly for the Total Expenses variable, the iu -values have lower ranges 

of values and less variation than iy .  This occurs since the Total Expenses variable is 
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highly correlated with the calibration variable Total Revenue (see Figure 3.2).  This is 

why the proposed design effect measures are so much smaller for Total Expenses. 

3.4.2. Cluster Sampling Design Effects Using California Education Academic 
Performance Indicator Data 

To illustrate the design effect measures proposed in Sec. 3.2.1, a two-stage sample of 

children selected within schools from the California Academic Performance Index (API) 

dataset is used.  This dataset is well-documented for the R survey procedures (e.g., 

Lumley 2010), including the procedures for calibrating two-stage cluster sample weights 

for schools selected within school districts.  Three variables are used: student enrollment 

and the school’s API score for 1999 and 2000.  Five-hundred and eighty-nine 

observations in R’s apipop dataset were removed due to missing enrollment values and 

one outlier district (with 552 schools, creating a dataset with 741 districts and 5,605 

schools).  To avoid variance estimation complications, for the 182 districts with only one 

school, one school from another district was randomly sampled using with-replacement 

simple random sampling and placed within each one-school district.  This increased the 

pseduopopulation dataset to 741 districts (clusters) and 5,787 schools (elements).  Forty 

clusters were selected from the apipop dataset using probability proportional to the 

number of schools within each district, then two schools were selected from each cluster 

using simple random sampling without replacement.  This resulted in a sample of forty 

clusters and eighty elements.   

Figure 3.7 on the following page shows plots of the API population and two-stage 

cluster sample values.  There are two analysis variables: the API score in 2000 and 

number of students enrolled; the API score in 1999 is used as the calibration covariate.  
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From Figure 3.7, we see that API99 is highly correlated with API00 in both the 

population and sample, while enrollment is not. 

Figure 3.7. API-Population and Two-stage Cluster Sample Values and Loess Lines for 
Cluster-Level Design Effect Evaluation 

     API Population Values            Two-stage Cluster Sample Values 

  
                
After the sample was drawn, the two-stage cluster base weights were calibrated to match 

the population total number of schools and total API score from 1999.  Figure 3.8 shows 

plots of the weights before (labeled “HTwt”) and after (“cal wt”) these adjustments.   

Figure 3.8. API Two-stage Cluster Sample Weights Before and After Calibration 
Adjustments 

 
First we see that base weights did not vary much due to the two-stage cluster sample 

selection method used; the calibration weights are much more varied.  The estimated 

population totals using the cluster-level ppswr sample weights for the population size 

HT wt cal wt

0
50

10
0

15
0

20
0

25
0

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

HT weight

ca
lib

ra
tio

n 
w

ei
gh

t



169 
 

(6,025) was relatively close to the actual population size (5,787).  The base-weighted 

estimate of total API99 (3,718,984) was very close to actual total (3,718,033), but the 

varying API99 amounts across the schools produced calibration weights that were more 

variable than the base weights.   

 Five estimates of the design effects are considered: the Kish measure (3.1) 

ignoring the clustering, an ad hoc version of the Kish design effect (3.2) using the Kish 

measure (3.1) for the first component (since cell-based weighting adjustments were not 

used), and the three proposed design effect measures--the exact formulation estimate 

from (3.26), the zero-correlation approximation from (3.28), and approximation when the 

cluster effects are negligible (3.30).  These design effect results are shown in Table 3.2 

for each variable of interest. 

Table 3.2. Cluster Sample Design Effect Estimates from a Two-Stage Cluster Sample 
Drawn from the 1999-2000 California Educational Performance Index Data 

 Variable of Interest 
Design Effect Estimates School Enrollment Size 2000 API Test Score 
Standard design effects  
     Before calibration* 
     After calibration** 
Kish Methods 
     No cluster approx. 
     Ad hoc approx. 
Proposed Methods 
     Exact  
     Zero-corr. approx. 
     Equal cluster size approx. 

 
2.90 
3.11 

 
3.51  
10.92 

 
1.95 
1.95 

290.46 

 
3.07 
0.45 

 
3.51 
1.60 

 
0.12 
0.12 

17.07 
              * ( ) ( )ˆ ˆ

srsVar T Var Tπ π π ; ** ( ) ( )ˆ ˆ
GREG srsVar T Var Tπ π ; both measures calculated with R’s svytotal function. 

 
From Table 3.2, we see that the clustering has an effect on the sample-based totals, with 

standard design effects before calibration exceeding two for both variables.  However, 

calibrating the weights to the total number of schools and total API99 drastically reduces 

the sample design effect only for the API 2000 score variable (from 3.07 to 0.45). This is 

expected due to its high correlation with API99 (0.97, see Fig. 3.7). However, the 
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calibration weights do not have this effect for school enrollment, which is weakly 

correlated with API99 (0.14 in the population).  As a result, the standard design effect 

after calibration is higher than one. 

 When the Kish approximation methods were applied to the calibration weights, 

the unit-level sampling measure, labeled “No cluster approx.” in Table 3.2, also exceeds 

one.  This implies that the combination of the cluster sampling and calibration weighting 

increases the variance of both variables.  However, the ad hoc Kish approximation (equal 

to the product of the “No cluster approx” and the “standard design effect after 

calibration” design effects) indicates that this sample strategy is not optimal for 

estimating the total number of student enrollment, but decreases by more than half for the 

API00 score.  The Kish design effects are misleading when compared to the standard 

(directly computed) ones, which imply the calibration weight adjustment improves the 

API00 estimate.  

 For the proposed measures, the exact and zero-correlation design effects are both 

less than one for API00.  However, the equal cluster-size approximation is unusually 

large.  This discrepancy indicates that the variation in cluster sizes cannot be ignored.  

The proposed design effects for student enrollment also mirror the standard design effects 

for this variable in that all exceed one.  Again, here the equal cluster-size approximation 

produces an unreasonably large design effect measure.  The empirical correlation 

components in the exact proposed measure are zero for both variables within two decimal 

points, making the proposed zero-correlation appear exactly equal to the exact 

formulation for this sample.   

Figure 3.9 on shows boxplots of the ijy  and iju -values for each variable. 
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Figure 3.9. Boxplots of ijy  and iju -values from Two-Stage Cluster Sample from the 1999-
2000 California Educational Performance Index Data, by Variable 

 

         Student Enrollment Size          2000 API Test Score 

 
 

Like the single-stage design effect evaluation, here when ijy  and ijx  are strongly 

correlated (in API 2000), the îju  values are small and less variable than ijy .  However, 

when the relationship between the survey and calibration variables is weaker (student 

enrollment), the îju  values are smaller but not less variable than ijy .  This produced 

mean and variance components related to îju
 
that are larger for student enrollment than 

API00, and thus larger design effect estimates.  This also holds at the cluster-level; Figure 

3.10 shows boxplots of the ijy  values against ˆiu + and ˆ ˆi iMα α= . 

Figure 3.10. Plots of iM  and Boxplots of ijy , iu + , and ˆiα -values from Two-Stage Cluster 
Sample from the 1999-2000 California Educational Performance Index Data, by Variable 

 iM , Population Cluster Size     Student Enrollment Size         2000 API Test Score 
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In Figure 3.10, we see that the iM  vary, which means that the ˆiα ’s also vary.  For this 

sample, the equal-cluster size approximation for both variables is not appropriate.  Again, 

the ˆiu +  and ˆiα  values are much larger and more variable than ijy  for the student 

enrollment variable than API00.  This produced mean and variance components related to  

ˆiu +  and ˆiα  being higher, producing larger proposed design effects than those for the 

API00 variable.  However, this is reasonable since the standard design effects after the 

calibration weight adjustments were applied indicate that the calibration was more 

effective for API00 than student enrollment. 

3.4.3. Cook’s Distance Measure Example 

Here the examples provided in Section 3.3.3 are illustrated using the 2007 SOI tax-

exempt data used in Sec 3.4.1.  In this evaluation, the Cook’s Distance measure (3.32) is 

used to flag particular sample units with values that have the most influence on the 

estimated totals of the Total Liabilities and Total Expenses variables.  This measure is 

produced for weight-trimming and redistribution adjustments performed on two types of 

weights: base survey weights and calibration weights (calibrating to the population size 

and sum of Total Revenue).  Samples of 100n =  and 500  units were drawn from the 

pseudopopulation data using probability proportional to the size of the square root of 

Total Assets.  Each unit was omitted from the sample, its weight was equally 

redistributed to the other sample units’ weights, the total ( )ˆ it  was estimated, then the 

Cook’s D measure was calculated.   

Figure 3.11 on the following page shows the boxplot distributions of the Cook’s 

D measures (note a difference in scale between the sample sizes).   
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Figure 3.11. Boxplots of Cook’s Distance Measures for HT and Calibration Weights, ppswr 
Samples from the 2007 SOI EO Data  

 

n = 100 

 
n = 500 

 
   
Since larger values of Cook’s D measures indicate that trimming a particular sample 

unit’s weight has greater impact on the estimated total, cases with the largest absolute 

values of the Cook’s D measures are the most likely candidates for data edit and review. 

Thus, seeing how skewed this measure is in Fig. 3.11, examining the largest values is a 

sensible approach.  A univariate measure was calculated for Total Expenses.  The sample 

data and largest Cook’s D measures are shown in Tables 3.3 and 3.4 (five values for  

100n =  and ten for 500n = ). 

 
Table 3.3. Sample Data with Largest Five Values of Cook’s D Measures for Total Expenses, 

ppswr Samples from the 2007 SOI EO Data, n=100 
Base Weights Calibration Weights 

Case ID Weight iy -Value Cook’s D Case ID Weight iy -Value Cook’s D 
2330 
3203 

19225 
6155 
2080 

877.17 
504.75 
39.09 

113.06 
310.56 

422,895 
1,140,408 

219,296,760 
58,715,572 

25,140 

1.14 
0.35 
0.33 
0.16 
0.15 

2330 
3203 
2080 
3604 
6155 

1,013.34 
581.76 
358.71 
396.34 
137.70 

422,895 
1,140,408 

25,140 
1,906,734 

58,715,572 

28.89 
8.72 
3.79 
3.67 
3.18 
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Table 3.4. Sample Data with Largest Ten Values of Cook’s D Measures for Total Expenses, 
ppswr Samples from the 2007 SOI EO Data, n=500 

Base Weights Calibration Weights 
Case ID Weight iy -Value Cook’s D Case ID Weight iy -Value Cook’s D 
10543 
886 
7574 
8317 

14391 
12883 
10127 
12152 
9630 
9114 

208.11 
165.04 
163.19 
145.36 
146.00 
166.67 
120.88 
47.70 

112.08 
118.53 

2,427,593 
926,507 
938,631 
450,943 
946,091 

3,843,079 
295,769 

45,559,752 
569,976 

1,348,550 

0.20 
0.17 
0.17 
0.14 
0.14 
0.10 
0.10 
0.10 
0.08 
0.08 

10543 
886 
7574 
8317 

14391 
12883 
10127 
12152 
9630 
9114 

197.64 
156.61 
154.83 
137.88 
138.50 
158.36 
114.66 
46.51 

106.33 
112.52 

2,427,593 
926,507 
938,631 
450,943 
642,091 

3,843,079 
295,769 

45,559,752 
569,976 

1,348,550 

11.84 
9.60 
9.38 
8.02 
7.86 
5.77 
5.68 
5.61 
4.95 
4.68 

 

Within each sample, we see that many of the same cases are flagged as being the most 

influential units when trimming their weights and estimating the sample-based total.  

Cases are identified as “influential” by having a large combination of the survey value 

and the weight, which includes values with large weights and moderate iy -values (such 

as cases 2330 and 2080).  Interestingly, for the sample of size 100, the calibration 

weighting has controlled one of the influential observations (case ID 19225), but makes 

another observation influential that was not influential when combined with its base 

weights (case ID 3604).  The first observation has a larger Cook D measure since the 

weight is increased and the calibration variance was lower than that of the HT estimator.  

For the sample of size 500, while we see that the calibration weights are smaller than the 

base weights, the same set of sample cases remain the most influential for both sets of 

weights (and in the same order).  However, all of these observations have higher Cook’s 

D measures using the calibration weights since the variance of the total was lower than 

the HT estimator variance. 

 When large Cook’s D measures are produced, this can indicate that the associated 

case is influential on estimating the total due to a large weight (e.g., case 2330 in Table 
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3.3), large survey value (case 19335 in Table 3.3), or a large combination of both (case 

10463 in Table 3.4).  Thus, large Cook’s D values are indicators for further investigation 

into particular cases to determine what caused the measure to be large.  If the survey 

value is large, then data editing techniques are more applicable; if the weight or the 

product of the weight and the survey variable are large, then trimming the weights may 

be a more appropriate solution.  Note that these effects can vary by each survey variable; 

a multivariate extension may be simpler than producing several univariate measures to 

investigate independently. 

 

3.5. Discussion and Limitations 

For this paper, I propose new diagnostic measures that attempt to gauge the impact of 

weighting adjustments on a sample-based total in both single-stage and cluster sampling.  

In the design effect evaluations, the existing Kish design effect measures produced 

misleading results of design effects that were too high, particularly for the single-stage 

case study in Sec. 3.4.1.  The empirical results also demonstrate that the correlation 

components in Spencer’s design effect were not always negligible for the data examined.   

However, the proposed design effect gauges the impact of variable calibration 

weights by using the GREG AV variance approximation for the class of calibration 

estimators.  As demonstrated empirically in Sec. 3.4.1 and 3.4.2, the proposed design 

effects do not penalize unequal weights when the relationship between the survey 

variable and calibration covariate is strong.    However, high correlations between survey 

and auxiliary variables may be unattainable for some surveys that lack auxiliary 

information further than population counts to use in poststratification (e.g., many 

household surveys).   



176 
 

The proposed design effects also do not incorporate additional weighting 

adjustments beyond calibration, such as trimming outlying weights.  Additional 

modifications would incorporate a mean square error rather than a variance, which is 

more difficult to estimate from one given sample.  It is also noteworthy that both the 

Spencer and exact design effect estimates can be negative due to negative correlations; in 

these cases the large- N  or zero-correlation approximations should be considered.  In 

addition, calibration weights that are negative should be bounded in order to produce the 

design effect estimates; several methods (see Sec. 1.1 for examples) to do this exist. 

 The case study evaluation in Sec. 3.4.3 demonstrates that the proposed unit-level 

diagnostic measures have promise for use in samples.  They “successfully” identified pre-

identified influential observations in the sample, produced by large weights, large survey 

values, or a combination of both.  However, the most severe limitation with the proposed 

case-level measures is absence of theoretical properties under finite population sampling.   
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Future Work  

 

Since the approaches in Papers 1 and 2 are model-based, they share similar extensions for 

future consideration.  While the weight smoothing methods examined in Paper 1 have 

serious defects, there may exist certain circumstances in which this method is 

appropriate.  Future work could include researching these circumstances.  Once they are 

established, more complex models, such as those for cluster sampling, can be developed.  

Extensions to the model-assisted p-spline approach are also somewhat limited in that this 

method is limited to survey designs in which quantitative calibration covariates are 

readily available, excluding common household surveys; however the models proposed 

here can also be extended to cluster sampling. 

Future considerations for the proposed design effect measures include extending 

the cluster-level measures to some sample selection method other than simple random 

sampling within a cluster.  This would produce a more complicated form of the second 

variance component. However, the current design effect can be used for equal and 

unequal sampling of the PSU’s; the “exact” estimator holds for unequal probability 

sampling, while the “zero-correlation” approximation can be used in equal probability 

sampling of the clusters. 

Also, there are additional unit-level diagnostics that can be considered.  For 

example, we can extend the Cook’s Distance idea.  If we identify a particular set of 

weights *
iw  that is “preferable” to the original, unadjusted weights iw , then we can form 

 ( ) ( ) ( ) ( )1
1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,

T
iCD T T T T Var T T T T

−
⎡ ⎤= − − −⎣ ⎦ ,   (1) 
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where *
1 2
ˆ ˆ,i i i ii s i sT w y T w y∈ ∈= =∑ ∑  are vectors of the estimated totals using the 

unadjusted and adjusted weights, respectively.  In (1), it will be important to incorporate 

the covariance between 1̂T  and 2̂T , since this is expected to be high due to common iy .  

This could also be treated as a hypothesis test (e.g., Pfeffermann 1993), since we can 

write ( )*
1 2
ˆ ˆ

i i ii sT T w w y∈− = −∑ .  Under certain properties, 1 2
ˆ ˆT T−  is asymptotically 

normal, even if the weights are complex (e.g., if the weights are the product of separate 

adjustment factors like nonresponse or poststratification). 

It is also possible to borrow other methods proposed in the statistical literature to 

develop practical metrics to assist survey methodologists in determining whether or not a 

particular case weight should be trimmed, or at least examined carefully.  Examples 

include distributional-based summary measures like the Kolmogorov-Smirnov test, the 

Cramér-von Mises test, and the Anderson-Darling Test.  Each is described next. 

The Kolmogorov-Smirnov (KS; Kolmogorov 1933; Smirnov 1948) statistic is a 

nonparametric method developed to find a confidence band for the distribution of a 

continuous random variable.  The sign test and rank sum tests can be used for discrete 

variables (Mann and Whitney 1947; Dixon and Massey 1966).  There is a one- and two-

sample version of KS test.  The one-sample test involves gauging whether a particular set 

of weights follows a prescribed statistical distribution.  This can gauge the usefulness of 

ad hoc weight trimming methods that use statistical distribution values for cutoffs 

(described in Sec. 1.2.1).  The two-sample test involves testing whether two sets of 

weights follow a common distribution.  This test can be used as a summary measure to 
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gauge the impact of weighting adjustments before and after they are applied, or compare 

a candidate weights against a more “preferable” set of weights. 

 For the one-sample KS statistic, if the weights 1 2, , ,T T T
nw w w…  are viewed as a 

random sample from the population with cumulative distribution function ( )F w  and 

1 2, , , nw w w…  denote the ordered sample weights.  The ordered weights are used to 

construct upper and lower step functions, where ( )F w  is contained between them with a 

specified probability.  The sample distribution function is the following step function: 

 ( )
1

1

0, if

, if

1, if

n k k

n

w w
kS w w w w
n

w w

+

<⎧
⎪⎪= ≤ ≤⎨
⎪

≥⎪⎩

.      (2) 

If the function ( )F w  is known, then it is possible to calculate ( ) ( )nF w S w−  for any 

desired value of w .  It is also possible to calculate  

( ) ( )maxn w nD F w S w= − ,       (3) 

the maximum vertical distance between ( )F w  and ( )nS w  over the range of possible w -

values.  Since ( )nS w  varies by sample, nD  is a random variable.  However, since the 

distribution of nD  does not depend on ( )F w , nD  can be used as a nonparametric 

variable for constructing a confidence band for ( )F w .   Combinatorial methods can be 

used to find the distribution of nD  for a particular n  (Pollard 2002).  Examples of 

critical values from this distribution for particular values of α  are given in Hoel (Table 
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VIII 1962).  In general, denote nDα as the α -level critical value, i.e., satisfying 

( ) 1n nP D Dα α≤ = − .  From this, the following equalities hold: 

 

( )
( ) ( ){ }

( ) ( ){ }
( ) ( ) ( ){ }

1

max

for all

for all

n n

w n n

n n

n n n n

P D D

P F w S w D

P F w S w D w

P S w D F w S w D w

α

α

α

α α

α≤ = −

= − ≤

= − ≤

= − ≤ ≤ +

.  (3) 

The last equality in (3) shows how the two step functions, ( )n nS w Dα−  and ( )n nS w Dα+ , 

produce a 1 α−  level confidence interval for the unknown distribution ( )F w .   

The two-sample KS test is a variation of the one-sample and a generalization of 

the two-sample t-test.  Instead of comparing the empirical weights distribution function to 

some theoretical distribution function, we compare between two empirical distribution 

functions and formally test whether or not the samples come from a common distribution.  

This test is more appropriate in gauging the impact of weighting adjustments before and 

after they are applied to a particular set of weights.   

 For two sets of n  weights, denoted 1w  and 2w , the two-sample KS statistic is 

( ) ( )1 2maxnD F w F w= − ,       (4) 

where ( )1F w  and ( )2F w  are the empirical distribution functions of the two sets of 

weights.   Again, critical values for nD  can be obtained in tables or conventional 

software (e.g., R).  This test can also be used to compare between alternative case 

weights.  Here 1w  is a “preferable” set of weights, such as the Breidt et. al (2005) robust 

calibration weights, while  ( )2F w  is the distribution of some candidate weights, e.g., 
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some other nonresponse-adjusted calibrated set of weights that are simpler to produce.  

One approach would be to compare the distributions of the weights before and after 

calibration adjustments and use a formal hypothesis test of whether or not the 

distributions of the two sets of weights are similar, rejecting a null hypothesis of 

similarity at level α  if the test statistic 
2

2 n
n D

n
 (Stephens 1979; Marsaglia et al. 2003), 

exceeds the associated critical value of the nD  distribution. The values of 

( ) ( )1 2F w F w−
 
 can also be viewed simply as descriptive statistics for comparing two 

sets of weights. 

 Another potential diagnostic to gauge the impact of weighting adjustments is the 

Cramér-von-Mises test.  Anderson (1962) generalized this test for two samples.  Here, for 

1 2, , , nw w w…  and * * *
1 2, , , nw w w…  denoting two sets of ordered weights, and 1 2, , , nr r r…  

the ranks of the weights 1 2, , , nw w w…  when combined and 1 2, , , ns s s…  the ranks of the 

weights * * *
1 2, , , nw w w…  when combined.  To test the hypothesis that 1 2, , , nw w w…  and 

* * *
1 2, , , nw w w…  are equivalent, Anderson (1962) developed the test statistic 

 
( ) ( )22 2

1 1
3

4 1
122

n n
i ji in r i n s j nT

nn
= =− + − −

= −
∑ ∑

,    (5) 

which is compared to a predetermined critical value from an ( ),F n n  distribution.  

Expression (5) assumes that there are no ties in the ranks, but alternative methods (e.g., 

using “mid-ranks,” e.g., Ruymgaart 1980; Stephens 1986) have been developed.   

The Cramér-von-Mises test is a special case of the Anderson-Darling test statistic 

(Anderson 1962; Darling 1952).  The two-sample test statistic is 
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( ) ( )( )
( ) ( )( ) ( )

22
1 2

2 1
F w F wnA dF w

n F w F w
∞

−∞

−
=

−∫ ,     (6) 

where ( ) ( ) ( )1 2
2

F w F w
F w

+
=  is the empirical distribution function of the pooled 

samples.  For two samples, measure (6) can be used to test the hypothesis of the weights 

following the same distribution without actually specifying the common distribution 

(Scholz and Stephens 1987). 

 For all of these tests, for two sets of candidate weights, it would also be sensible 

to compare the weighted empirical distribution functions for different survey variables 

and compare differences between them.  This type of comparison has some promise in 

identifying whether two sets of weights lead to noticeably different estimates of extreme 

quantiles. 
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Appendices 

 

Appendix 1: HT and Beaumont Estimator Expectation and Consistency Properties 

Beaumont (2008) derived some of the theory contained in this Appendix.  However, it is 

detailed here to illustrate how the theory differs from a conventional model-based 

approach (i.e., one that posits a model for the survey response variable, not the weights).  

Additional theory that is developed and presented here that Beaumont did not derive is 

also identified as such. 

By definition, ĤT i ii sT w y∈=∑ , where 1
i iw π −= , is the HT estimator.  An 

estimator proposed to reduce the variability in the iw ’s replaces them with their 

conditional expected value (conditional on the sample and a model for the weights): 

 

( )
( )

( )
( )

ˆ ,

,

,

,

B M HT

M i ii s

M i ii s

M i ii s

i ii s

T E T

E w y

E w y

E w y

w y

∈

∈

∈

∈

=

=

=

=

=

∑
∑
∑
∑

I Y

I Y

I Y

I Y

�

�

,       (A.1)  

where ( )1, , T
NI I=I …  is the vector of sample inclusion indicators and ( )1, , T

NY Y=Y …  

are the values of the survey response variable iy .  Since ( ),i M iw E w= I Y�  is unknown, 

we estimate it with ˆiw .  The estimator for the finite population total is then 

ˆ ˆB i ii sT w y∈=∑ . If our model for the weights, denoted by M , is correct, then we have 
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( ) ( )
( )
( )

ˆ ˆ

ˆ

ˆ

M B M i ii s

M i ii s

M i ii s

i ii s

B

E T E w y

E w y

E w y

w y

T

∈

∈

∈

∈

=

=

=

=

=

∑
∑
∑
∑

Y Y

Y

Y

�
�

.      (A.2)  

Generalized design-based inference is defined as “any inference that is conditional on Y  

but not I .”  Probability sampling is assumed, such that ( ) ( ),p p=I Z Y I Z .  For 

inferential purposes, we also consider ( )1, , T
NZ Z=Z … , the vector of design-variables.  

Beaumont (2008) takes expectations with respect to the joint distribution of Z  and I , 

conditional on Y , denoted by ,FZ I Y .  Estimators are evaluated with respect to the 

sample design and the model for the weights, denoted by ( )F ME E Eπ⎡ ⎤= ⎣ ⎦i  or 

( )F F ME E E⎡ ⎤= ⎣ ⎦i .  Under this approach, several properties hold. 

Property 1: The HT estimator is always unbiased across the model and designs 

Assuming that 1
i iE I wπ

−⎡ ⎤ =⎣ ⎦Y , we have 

 

( ) ( )
( )

( )

ˆ ˆ ,

,

,

F HT M HT

M i ii s

M i ii s

i ii s

E T E E T

E E w y

E E w y

E w y

T

π

π

π

π

∈

∈

∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

∑

∑
∑

Z Y Y

Z Y Y

Z Y Y

Y

     (A.3) 

This property holds in “both directions” of expectation: 
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( ) ( )
( )

( )

ˆ , ,

,

M HT M i ii s

M i i ii U

M i i ii U

M ii U

E E T E E w y

E E I w y

E w y

E y

T

π π

π

π

∈

∈

∈

∈

⎡ ⎤⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

=

∑

∑
∑

∑

Z Y Y Z Y Y

Z Y Y

Y

Y

.  (A.4) 

Property 2: If the model for the weights is right, then the smoothed HT estimator is 
unbiased 

Similar to the HT estimator proofs, for ˆ ˆB i ii sT w y∈= ∑ , we have 

 

( ) ( )
( )

( )

ˆ ˆ ,

ˆ ,

if is correct

, by definition of

,

,

F B M B

M i ii s

i ii s

M i i Bi s

M i ii s

M

E T E E T

E E w y

E w y M

E E w y T

E E w y

E T

T

π

π

π

π

π

∈

∈

∈

∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

∑

∑

∑

∑

Z Y Y

Z Y Y

Y

Z Y Y

Y Z Y

Z Y

�

�   (A.5) 

The result is a consequence of the fact that, under the model for the weights, 

( )M i iE w w=� .We can also reach this result as follows (as Beaumont does, in a 

convoluted sort of way): 
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( ) ( )
( )

( ) ( )

( ) ( )

( )

1 0

ˆ , if is correct

, by definition of

, ,

, 0

,

i i

M B M B

M i i Bi s

M i i i M i i ii s i r
I I

M i ii s

M i ii s

E E T E E T M

E E w y T

E E w y I E w y I

E E w y

E E w y

π π

π

π

π

π

∈

∈ ∈
= =

∈

∈

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤= +⎣ ⎦
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∑ ∑

∑
∑
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I Y Y
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ĤTE T

T
π

⎦
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=

Y

    (A.6) 

Property 3: If the model for the weights does not hold, then the Beaumont estimator is not 
unbiased 

While Beaumont presented the unbiasedness proof, he did not indicate that when the 

model is wrong, his estimator is not unbiased.  That proof, as well as two examples under 

specific models for the weights, is detailed here. Similar to the Property 2 proof, for 

ˆ ˆB i ii sT w y∈= ∑ , we have 

 

( ) ( )
( )

( )
( ) ( )
( )

ˆ ˆ ,

ˆ ,

ˆ , if is wrong

ˆ ,

ˆ ,

F B M B

M i ii s

M i ii s

M i i ii U

M i i ii U

ii U

E T E E T

E E w y

E E w y M

E w y E I

E w y

y

T

π

π

π

π

π

∈

∈

∈

∈

∈

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
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=

=

≠

=

∑

∑
∑
∑
∑

Z Y Y

Z Y Y

Z Y Y

Z Y Y

Z Y

   (A.7) 
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The extent to the bias in (A.7) depends on how far the expected value  ( )ˆ ,M iE w Z Y  is 

from 1
i iw π −= : 

 

( ) ( )
( )

( )

ˆ ˆ ,

ˆ ,

1

F B M i i i ii U i U

M i i i ii U

i i ii U

E T T E w y y

E w w y

w y

π

π

π

∈ ∈

∈

∈

− = −

⎡ ⎤= −⎣ ⎦
= −

∑ ∑
∑
∑

Z Y

Z Y

�

 .   (A.8)  

Since the Beaumont estimator involves replacing weights with their predicted means, 

(A.8) can be derived for special circumstances.  Beaumont did not derive this theoretical 

result.  Two examples follow. 

Ex. A1. Suppose that the exponential weights model is correct, but the linear model is 

used. Then the bias in the Beaumont estimator is 

 

( ) ( )

( )( )
( )( )

ˆ ˆ ˆ ,

ˆ 1 exp

ˆ 1 exp

F B B i i i M i i ii U i U

T T
i i i i i ii U i U

T T
i i i ii U

E T T w y E w y

y y

y

π π

π π

π

∈ ∈

∈ ∈

∈

− = −

= − +

= − −

∑ ∑
∑ ∑

∑

Z Y

H β H β

H β H β

�

 . (A.9) 

If the exponential can be approximated by the first two terms in a MacLaurin series, i.e., 

( )exp 1T T
i i+H β H β� , then B̂T  is approximately unbiased. 

Ex. A2. Suppose that the inverse weights model is correct, but the linear model is used. 

Then the bias in the Beaumont estimator is 
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 .  (A.10) 

Property 4: Consistency of the HT Estimator 

Beaumont (2008) provided the theory that the HT and Beaumont estimators are 

consistent.  However, it is not clear until examining the details of the theory that the latter 

holds only if the weights model is correct.  This section thus contains the details of booth 

proofs. 

In order to establish the consistency of the HT estimator under the weights model 

and the sample design, we need to make the following assumption: 

 Assumption 1.  ( ) ( )2ˆ ,M HTE Var T O N nπ
⎡ ⎤ =⎢ ⎥⎣ ⎦

Z Y Y . 

Assumption 1 thus implicitly implies that, for totals we have ( )1 ˆ 0HTN T T− − → as 

n → ∞ , which implies ( ) ( )ˆ ,M HTE Var T O Nπ
⎡ ⎤ =⎢ ⎥⎣ ⎦

Z Y Y .  Under Assumption 1, we 

have 

 

( ) ( ) ( )
( )

( )2

ˆ ˆ ˆ, ,

ˆ ,

under Assumption 1

F HT M HT M HT

M HT B

Var T E Var T Var E T

E Var T Var T

O N n

π π

π π

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦

=

Y Z Y Y Z Y Y

Z Y Y Y� . (A.11) 
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Note: result (A.11) only holds assuming that BVar Tπ ⎡ ⎤
⎣ ⎦Y�  is also ( )2O N n .  Since ĤTT  

was proved to be unbiased in (A.3) and (A.4), using the bounded variance theorem (e.g., 

Thm. 6.2.1 in Wolter 1985), we have 

 
( )

ĤT HT

p

T T N y Y

O N n

⎡ ⎤− = −⎣ ⎦

=
.       (A.12) 

Property 5: Consistency of the Beaumont Estimator When the Model is Right 

It was shown in (A.5) and (A.6)and (A6) that ( )F BE T T=Y� .  From this,  
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( )2
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E Var T Var T

O N n

π π

π π

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎣ ⎦

=

Y Z Y Y Z Y Y

Z Y Y Y

� � �

� .  (A.13) 

Similarly, 

 ( )B pT T O N n− =� .        (A.14) 

For totals, assuming that T N  converges to some constant, result (A.14) implies 

( )1 0p
B n

T T
N →∞

− ⎯⎯⎯→� , i.e., BT�  is consistent for T .  By Beaumont (p. 544) “In practice, 

we expect that [ B̂T ] inherits properties of [ BT� ].”  However, if the model for the weights 

is wrong, there is no guarantee that this happens.  Assuming that the weights model is 

correct, then properties (A.11) and (A.12) also hold: 
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 ( ) ( )2ˆ
F BVar T O N n=Y .       (A.15) 

and 

 ( )B̂ pT T O N n− = .        (A.16) 

 

Appendix 2: Additional Properties of Beaumont Estimator Under Linear Weights 
Model  

Property 6: Properties of β  under the Model 

Beaumont (2008) provided additional theory had holds under a linear model for the 

weights.  Since this model is posited for the proposed variance estimators, the details of 

(A.13) under Model 1 are given here.  It is simpler to use matrix notation.  Under Model 

1, ( ) 1/2, T
i i iE w v= +I Y H β ε , where ( )i i i=H H y  is a vector of the specified function of 

different y -values for unit i and ( )2~ 0,σε  are independent.  The predicted weights are 

ˆˆ T
i iw = H β , such that ˆ ˆ T

B sT =w y , where ( )1
ˆˆ ˆ ˆ TT

nw w= =w H β …  is the vector of predicted 

weights, and 1 2
TT T T

n⎡ ⎤= ⎣ ⎦H H β H β H β"  is the n p×  matrix with rows of the vector 

iH .  We then denote  

 ( ) 11 1

1 1

ˆ T T

T

−− −

− −

=

=

β H V H H V w

A H V w
.         (A.17) 

where ( )idiag v=V  is the variance matrix specified under the model for the weights. 

Under the model, β̂  is the generalized least squares estimator of β  and is thus unbiased. 
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The estimator β̂  has variance 

 ( ) 2 1ˆ
MVar σ −=β A ,        (A.18) 

where 1T −=A H V H . 

Property 7: Variance of ĤTT  and B̂T  under the Model 

The corresponding versions of (A.11) and (A.13) are: 

 

( ) ( )
( )

2 2

ˆ ˆ ,

,

F HT M HT B

M i i Bi s

i i Bi s

Var T E Var T Var T

E Var w y Var T

E v y Var T

π π

π π

π πσ

∈

∈

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎣ ⎦

∑

∑

Y Z Y Y Y

Z Y Y Y

Y Y

�

�

�

.  (A.19) 

and 

( ) ( )
( )
( )

1
2

2

ˆ ˆ ,

ˆ ,

ˆ ,

F B M B B

M i i Bi s

M i i Bi s

T
Ti i

i i i i Bi s i s i s
i

T
i i

i i

Var T E Var T Var T

E Var w y Var T

E Var y Var T

E y y Var T
v

y
v

π π

π π

π π

π πσ

σ

∈

∈

−

∈ ∈ ∈

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤⎢ ⎥ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

=

∑

∑

∑ ∑ ∑

Y Z Y Y Y

Z Y Y Y

H βZ Y Y Y

H HH H Y Y

H HH

�

�

�

�

1
T
i i Bi s i s i s

i
y Var Tπ

−

∈ ∈ ∈

⎡ ⎤
⎡ ⎤+⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∑ H Y�

. (A.20)  

Expressions (A.19) and (A.20) can more easily be derived using matrix notation, which 

Beaumont (2008) does not use. Since this notation is used for the proposed variance 
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estimator, I prove the preceding results using the more flexible matrix notation.  First, 

Beaumont drops the BVar Tπ ⎡ ⎤
⎣ ⎦Y�  term and obtains 

 

( ) ( )
( )

( )
( )2

2

ˆ ˆ ,

,

,

B HT M HT

T
M s

T
s M s

T
s s

T
s s

Var T Var T

Var

Var

σ

σ

=

=

=

=

=

Y Z Y

w y Z Y

y w Z Y y

y V y

y Vy

.     (A.21) 

Since 2 2 2T
s s i ii s v yσ σ ∈= ∑y Vy , we get expression (A.19).  From (A.21), the equivalent 

proof using my notation is 

 

( ) ( )

( )

( )( )

2

2 2

2 2

2

ˆ ˆ ,F HT M HT B

T
s s B

i i i Bi U

i i i Bi U
T
U U B

Var T E Var T Var T

E Var T

v E I y Var T

v y Var T

diag Var T

π π

π π

π π

π

π

σ

σ

σ π

σ

∈

∈

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤= + ⎣ ⎦
⎡ ⎤= + ⎣ ⎦

⎡ ⎤= + ⎣ ⎦

∑
∑

Y Z Y Y Y

y Vy Y Y

Y

Y

y V Π y Y

�

�

�

�

�i

,   (A.22) 

where  ( )ijπ=Π  is the N N×  matrix of the selection probabilities (with diagonal 

elements the first-order probabilities) and i  denotes a Hadamard product.  Second, for 

(A.20), here the proof is 
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( ) ( )
( )
( )

( )2 1

2

2

ˆ ˆ, ,

ˆ ,

ˆ ,

T
M B M s

T T
s M s

T T
s M s

T T
s s

T
s s

ij i ji s j s

Var T Var

Var

Var

D y y

σ

σ

σ

−

∈ ∈

=

=

=

=

=

= ∑ ∑

Z Y w y Z Y

y H β Z Y y

y H β Z Y H y

y H A H y

y Dy

,     (A.23) 

where 1 T−=D HA H  has elements , 1, , , 1, ,ijD i n j n= =… … .  From (A.22), we have 

 

( ) ( )

( )

( )

2

2

2

2

ˆ ˆ ,F B M B B

ij i j Bi s j s

ij ij i j Bi U j U

ij ij i j Bi U j U
T
U U B

Var T E Var T Var T

E D y y Var T

E I D y y Var T

D y y Var T

Var T

π π

π π

π π

π

π

σ

σ

σ π

σ

∈ ∈

∈ ∈

∈ ∈

⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤= + ⎣ ⎦

⎡ ⎤= + ⎣ ⎦

⎡ ⎤= + ⎣ ⎦

∑ ∑
∑ ∑
∑ ∑

Y Z Y Y Y

Y

Y

Y

y Π D y Y

�

�

�

�

�i

  (A.24) 

where Π  is the N N×  matrix of the selection probabilities, defined above, and i  denotes 

a Hadamard product.   

Property 8: Conditional on the Weights Model, Beaumont’s Estimator is always as 
efficient or more efficient than the HT estimator under the model 

Beaumont (2008) proved that, under a linear weights model, the variance of the HT 

estimator is an upper bound for the variance of his estimator.  However, this proof is 

dependent upon the fact that the weights model is correctly specified.  In order to 

demonstrate the bias of the variance estimator under a weights model whose variance 

component is misspecified, I first detail Beaumont’s result under a correct model. 
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From (A.19) and (A.20), we have

( ) ( ) 2 2

1
2 2

2

2
2

ˆ ˆ, ,

ˆ

ˆ

M HT M B i i Bi s

T
T Ti i

i i i i i ii s i s i s i s
i

T
i

i i ii s
i

T
i

i ii s
i

Var T Var T v y Var T

v y y y
v

v y y
v

v y
v

πσ

σ

σ

σ

∈

−

∈ ∈ ∈ ∈

∈

∈

⎡ ⎤− = + ⎣ ⎦

⎡ ⎤⎡ ⎤⎢ ⎥= − ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞Ω

= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞Ω⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑ ∑ ∑ ∑

∑

∑

Z Y Z Y Y

H HH H

H

H

�

           (A.25)

where 
1

ˆ
T

Ti i
i ii s i s

i
y

v

−

∈ ∈

⎡ ⎤
Ω = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑H H H

.

. The last line above holds since 
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2

2

ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ

ˆ ˆ
ˆ

ˆ

T T T T
i i i i

i i i i i ii s i si i i i

T T
Ti i

i i i ii s i i

T T
T Ti i

i i i ii s i si i

T
i

i i
i

v y y v y y
v v v v

v y y
v v

v y y
v v

v y
v

∈ ∈

∈

∈ ∈

⎛ ⎞ ⎛ ⎞⎛ ⎞Ω Ω Ω Ω
− = − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞Ω Ω
= − + Ω −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞Ω Ω
= − + Ω −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞Ω
= −⎜⎜

⎝

∑ ∑

∑

∑ ∑

H H H H

H H
H

H H
H

H

( )

( )

2

2

1 1

2

ˆ ˆ ˆ

ˆ
ˆ

ˆ
ˆ

T
T T i i

i ii s i s i s i

T
Ti

i i i ii s i si

T T T
i i i i i i

i i i ii s i s i s i s i si i i

T
Ti

i i i i i ii s i s i si

y
v

v y y
v

y y
v v v

v y y y
v

∈ ∈ ∈

∈ ∈

− −

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

+Ω −Ω Ω⎟⎟
⎠

⎛ ⎞Ω
= − +Ω⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞Ω
= − +Ω −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

H H
H

H
H

H H H H H H
H H

H
H H

( )

1

2

2

ˆ
ˆ ˆ

ˆ

T
i i

i ii s i si

T
Ti

i i i i i ii s i s i si

T
i

i ii s i

y
v

v y y y
v

v y
v

−

∈ ∈

∈ ∈ ∈

∈

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞Ω
= − +Ω − Ω⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞Ω
= −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑

∑

H H
H

H
H H

H

(A.26) 

It is also relatively simple to prove that, under the linear model, the HT theoretical 

variance is an upper bound for the Beaumont estimator variance (with respect to the 

model).  While all the terms in (A.25) are positive, unlike Beaumont, I demonstrate here 

that again the Property 7 proof is simpler to do via matrix notation and utilize a known 

theorem for positive definite matrices to prove that the conditional variance of the HT 

estimator under the weights model is an upper bound for the conditional variance of the 

Beaumont estimator.  I then extend this theory for the “total variances,” i.e., the variances 

with respect to both the sample design and the weights model under Property 8. 
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Since we can write 

 
( ) ( )

( )

2 2

2

ˆ ˆ, , T T
M HT M B s s s s

T
s s

Var T Var T σ σ

σ

− = −

= −

Z Y Z Y y Vy y Dy

y V D y
,  (A.27) 

we thus have ( ) ( )ˆ ˆ, ,M HT M BVar T Var T≥Z Y Z Y  if ( )T
s s− ≥y V D y 0 .  Since 

( )T
s s− ≥y V D y 0  is a quadratic form, if −V D  is invertible, then ( )T

s s−y V D y  is a 

positive definite quadratic form and thus ( )T
s s− ≥y V D y 0 .  To prove this, we can use 

the formula for the inverse of the sums of matrices (Theorem 9.5.16 on p. 315 of Valliant 

et al. 2000) to rewrite ( ) 1−−V D :  

Theorem 1.   For matrices , , ,B C D E , ( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +B DCE B B D C EB D EB . 

For 1 1, , , ,T T− −= = = = − =A H V H B V C A D H E H , we have 

 

( ) ( )
( ) ( )

( )
( )

11 1

111 1 1 1 1

11 1 1 1

11 1 1

1

T

T T

T T

T

−− −

−−− − − − −

−− − − −

−− − −

−

− = −

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

= − −

= − −

=

V D V HA H

V V H A H V H H V

V V H A H V H H V

V V H A A H V

V

  (A.28) 

Since 1−V  is obviously invertible, then ( ) 1−−V D  exists, ( )T
s s− ≥y V D y 0 , and 

( ) ( )ˆ ˆ, ,M HT M BVar T Var T≥Z Y Z Y . 
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Property 9: Beaumont’s Estimator is always as efficient or more efficient than the HT 
estimator under the model and sample design 

Again, for (A.19) and (A.20), Beaumont seems to be ignoring the Eπ  expectation and 

considers the difference in the theoretical variances with respect only to the model under 

the one realized sample.  However, unlike Beaumont’s approach of comparing the 

variances conditional on the weights model, it is more comprehensive to consider a 

similar comparison between expressions (A.22)and(A.24): 

( ) ( ) ( ) ( )
( )( ) ( )

( )
( )

2 2

2

2

ˆ ˆ ˆ ˆ, ,F HT F B M HT M B

T T
U U U U
T
U U
T
U U

Var T Var T E Var T E Var T

diag

π π

σ σ

σ

σ

⎡ ⎤ ⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −

= −

= −

Y Y Z Y Y Z Y Y

y Π V y y Π D y

y Π V Π D y

y Π V D y

i i

i i

i
(A.29) 

A similar comparison to that used in (A.28) can verify here that 

( ) ( )ˆ ˆ
F HT F BVar T Var T≥Y Y .  Intuitively this should hold since by (A.28), the HT 

estimator has a conditional variance that is lower than that of the Beaumont estimator, 

which we should expect to hold when averaged across all possible samples.  By the 

properties of Hadamard products, ( ) ( )1 1− −⎡ ⎤− = −⎣ ⎦Π V D Π V D�i , where Π�  is an n n×  

matrix with elements 1 ijπ .  Thus, ( )−Π V Di is positive definite and expression (A.29) 

is positive.  
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Appendix 3: Approximate Theoretical Variance of Beaumont Estimator, When the 
Weights Model Holds 

For Beaumont’s proposed variance estimation, we start with the following assumption: 

Assumption 2. ( ) ( )ˆ ,B B pE T T o N nπ = +I Y � .    (A.30) 

Under Assumption 2, ( )ˆ ,M B BE T T≈I Y � , since ( )B̂ pT T O N n− = .  Note that 

Assumption 2 only holds if sy  is bounded and ( ) ( )3 2ˆ ,M i i pE w w O N n= +I Y �  (not 

( )1 2
p

N o n
n

−  as in Beaumont 2008).  Equality holds under the linear model, i.e., 

( )ˆ ,M i iE w w=I Y � .  Also, since ( )ˆ ,M B BVar E T Var Tπ π
⎡ ⎤ ⎡ ⎤≈ ⎣ ⎦⎢ ⎥⎣ ⎦

I Y Y Y� , we approximate 

( )ˆ
F BVar T Y  with  

( ) ( ) ( )
( )

ˆ ˆ ˆ, ,

ˆ ,

F B M B M B

M B B

Var T E Var T Var E T

E Var T Var T

π π

π π

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤≈ + ⎣ ⎦⎢ ⎥⎣ ⎦

Y Z Y Y Z Y Y

I Y Y Y�
.  (A.31) 

We obtain a formula for F BVar T⎡ ⎤
⎣ ⎦Y�  as follows.  From (A.11) we have 

( ) ( )ˆ ˆ ,F HT F B M HTVar T Var T E Var Tπ
⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎢ ⎥⎣ ⎦

Y Y I Y Y� . (A.32) 

Using the conditional variance formula, is it also true that  
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( ) ( ) ( )
( )

ˆ ˆ ˆ, ,

ˆ ,

F HT M HT M HT

M HT

Var T E Var T Var E T

E Var T

π π

π

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

Y Z Y Y Z Y Y

Z Y Y
, (A.32)

where the last line follows from the fact that ( )ˆ , 0M HTVar E Tπ
⎡ ⎤ =⎢ ⎥⎣ ⎦

Z Y Y .  From (A.32) 

and (A.32), we have  

( ) ( )ˆ ˆ, ,F B M HT M HTVar T E Var T E Var Tπ π
⎡ ⎤ ⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Y Z Y Y I Y Y� . (A.33) 

Consequently, we can approximate ( )ˆ
F BVar T Y  in (A.31) with 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , ,

F B M B M HT M HT

M HT M B M HT

Var T E Var T E Var T E Var T

E Var T E Var T Var T

π π π

π π

⎡ ⎤ ⎡ ⎤ ⎡ ⎤≈ + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤= + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Y I Y Y Z Y Y I Y Y

Z Y Y I Y I Y Y

           (A.34) 

 

Appendix 4: Beaumont Proposed Variance Estimators of Beaumont Estimator 
When the Weights Model Holds 

To estimate the variance in (A.34), Beaumont proposes 

( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ, , ,B B HT M B M HTvar T var T var T var Tπ= + −Y Z Y I Y I Y , (A.35) 

where ( )ˆ ,HTvar Tπ Z Y  is a design-consistent variance estimator for ( )ˆ ,HTVar Tπ Z Y , 

but ( )ˆ ,M Bvar T I Y  and ( )ˆ ,M HTvar T I Y  are consistent variance estimators with respect 

to the model M  for the weights.  In the last component of estimator (A.35), again the 
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expectation with respect to the design is ignored; the estimators are conditional only on 

the model.  For example, from the theoretical variance (A.25) under the linear model, 

(A.35) becomes 

( ) ( ) 2 ˆˆ ˆ ˆ, ,
T
i

M B M HT i i ii s
i

var T var T v y y
v

σ ∈

⎡ ⎤⎛ ⎞Ω
− = − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ HZ Y Z Y , (A.36)

where 
1

ˆ
T

Ti i
i ii s i s

i
y

v

−

∈ ∈

⎡ ⎤
Ω = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑H H H  and 2σ̂  is a model-consistent estimator of 2σ .  

In particular, the first (A.35) component, ( )ˆ ,HTvar Tπ Z Y , is not an appropriate estimator 

for ( )ˆ ,M HTE Var Tπ
⎡ ⎤
⎢ ⎥⎣ ⎦

Z Y Y .   A more appropriate estimator, which is described in Sec. 

1.3.1, corresponds to the first component of (A.22). Beaumont did not prove that his 

general proposed variance estimator is always positive, but the first (A.35) component is 

( )2O N n  while the second component is ( )O n , so the second component is much 

smaller in magnitude.  Thus, for any weights model, the Beaumont variance estimator 

should be positive in large samples. 

 

Appendix 5: Theoretical MSE of the Beaumont Estimator and Beaumont MSE 
Estimators When the Weights Model Does Not Hold 

When the weights model does not hold, since the Beaumont estimator of the total is 

biased across repeated samples (see (A.7)-(A.10)) the total mean square error should be 

considered rather than a variance estimator: 
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( ) ( )

( )

2

2

ˆ ˆ

ˆ ,

B F B

M B M

MSE T E T T

E Var T Bπ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

Y Y

Z Y Y
.     (A.37) 

 where ( ) ( )( )ˆ ˆ, ,M B M BB T T E E T Tπ
⎡ ⎤⎡ ⎤− = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Z Y Z Y Y
 
is the bias of the estimator B̂T . 

Beaumont MSE Estimators 

Again, Beaumont proposes using a standard design-based method to estimate the 

variance ( )ˆ ,M BVar T Z Y .  While the design-based ˆ ˆ
B HTT T−  is an unbiased estimator of 

the bias MB , ( )2ˆ ˆ
B HTT T−  is not an unbiased estimator of the squared bias.  Thus, 

Beaumont proposes: 

 ( ) ( ) ( )22ˆ ˆ ˆ ˆ ˆ ˆ, max 0, ,M B B HT B HTB T T T var T Tπ
⎡ ⎤⎡ ⎤= − − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Z Y Z Y ,  (A.38) 

where ( )ˆ ˆ ,B HTvar T Tπ
⎡ ⎤−⎢ ⎥⎣ ⎦

Z Y  is a design-consistent estimator of 

( )ˆ ˆ ,B HTVar T Tπ
⎡ ⎤−⎢ ⎥⎣ ⎦

Z Y .  The resulting MSE estimator is given by 

( ) ( )
( ) ( ) ( )

2

2

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ, max 0, ,

B M B M

M B B HT B HT

mse T var T B

var T T T var T Tπ

= +

⎡ ⎤⎡ ⎤= + − − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Z Y Z Y

Z Y Z Y
. 

(A.39) 

To ensure that ( ) ( )ˆ ˆ, ,B M HTmse T var T≥Z Y Z Y  in (A.39) (since theoretically in (A.25)  
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it was shown that ( ) ( )ˆ ˆ, ,M HT M BVar T Var T≥Z Y Z Y ), Beaumont proposes the design-

based MSE estimator 

( ) ( ) ( )ˆ ˆ ˆmin , , ,D B B M HTmse T mse T var T⎡ ⎤= ⎢ ⎥⎣ ⎦
Z Y Z Y .    (A.40) 

  

Appendix 6: Positive Bias of the Variance Estimator and Under-Estimation of the 
MSE When the Weights Model Does Not Hold 

When the weights model does not hold, we need to consider the bias in the Beaumont 

model-based variance estimator.  Beaumont does not incorporate this theory.  Suppose 

that the working weights model M  is used, when the true weights model is actually M� , 

with ( )i iMVar w ψ=�  denoting the model variance component.   If the model M  is 

wrong, then we have 

 

( ) ( )

( )

( ) ( )

22

22 2

22

ˆ ˆ

ˆ

ˆ ˆ

B B i i i iM Mi s

i i i i i i iMi s i s

B i i i iM Mi s

E var T v y E w w

v y v y E w w

Var T v y E w w

ψ

∈

∈ ∈

∈

⎡ ⎤⎡ ⎤ ≅ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤≅ + −⎣ ⎦

⎡ ⎤= + −⎣ ⎦

∑

∑ ∑
∑

Y

Y

� �

�

� �

.  (A.41) 

Both of the components in (A.41), the model-variance and the positive bias term, have 

the same order of magnitude, ( )2
pO N n .  This is the same order of magnitude as the 

variance component in the MSE (A.37).  However, the bias component in the MSE (the 

second component in (A.37)) has order ( )2
pO N , which is higher than ( )2

pO N n .  

This means that when the weights model is wrong the variance estimator is positively 

biased but still underestimates the true MSE. 
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Appendix 7: Special Case of Beaumont’s Estimator Being Equivalent to the HT 
Estimator Under PPS Sampling 

The Beaumont estimator has the property that, when the survey variable is linearly 

related to the auxiliary variable used to draw the pps sample and an inverse weights 

model 2 2, ~T
i i i i iw e e σ= +H β H  is used, it is equivalent to the HT estimator, i.e., 

ˆ ˆ
B HTT T≡ .  Suppose for simplicity that we have one variable, i.e., 1

i iy−=H .  That is, 

 

( ) 11 1

2
2

ˆ

1 1
1

1

1

T T

i ii s
ii ii s

i

i
i s

i

i ii s

w

w
n

w y
n

−− −

∈

∈

∈

∈

=

=

=

=

∑
∑

∑

∑

β H V H H V w

H
HH H

H

H

      (A.42) 

From (A.42), the Beaumont estimator is 

 

ˆ ˆ

ˆ

1 ˆ

ˆ

1

ˆ

B i ii s
T
i ii s

ii s
i

i ii s

HT

T w y

y

y
y

n

n w y
n

T

∈

∈

∈

∈

=

=

=

=

=

=

∑
∑

∑

∑

H β

β

β
        (A.43)

In other words, the predicted weights under these circumstances are exactly equal to the 

HT weights, or that the inverse weights model in this situation produces the HT estimator 

exactly. 
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Appendix 8: Derivation of Spencer’s Design Effect 

Let iy  denote the measurement of interest, ip  the one-draw probability of selection for a 

sample of size n , and ( ) 1
i iw np −=  is the base weight for unit i  in a population of size 

N .  Observe that the average population probability is 1
1 1N

iiP p
N N== =∑ .  Consider 

an underlying population model defined as i i iy A Bp ε= + + .  If the entire finite 

population were available, the least-squares population regression line would be 

i i iy p eα β= + + ,        (A.44) 

where 1Y Nα β −= − , ( )( ) ( )21 1
N N

i i ii iy Y p P p Pβ = == − − −∑ ∑ , and 1
1 N

iiY y
N == ∑  

the population mean.  Denote the population variances of the y ’s, e ’s 2e , and weights 

as 2
2 2 2 2, , ,y e weσ σ σ σ , e.g., ( )22

1
1 N

y ii y Y
N

σ == −∑ , and the finite population correlations 

between y  and P  by ypρ , e  and w  by ewρ , and 2e  and w  by 2e wρ .  For example, 

( )( ) ( ) ( )2 2
1 1 1

N N N
yp i i i ii i iy Y p P y Y p Pρ = = == − − − −∑ ∑ ∑ .  From LS regression, 

1 1
1 0N N

i i ii ie p e
N= == =∑ ∑  and ( )2 2 21e yp yσ ρ σ= − . 

 Let 1
ˆ n

i iiT w y==∑  denote the sample-based estimate of the population total.  Its 

variance in within-replacement sampling is given by 

 
( )

2

1

2
2

1

1ˆ

1

N i
ii

i

N i
i

i

yVar T p T
n p

y T
n p

=

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
.       (A.45) 
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Using the model in(A.44), we can rewrite the variance in (A.45). To do this involves 

several steps.  First, we rewrite the population total as 

 ( )
1

1

1

N
ii

N
i ii

N
ii

T y

p e

N p

N

α β

α β

α β

=

=

=

=

= + +

= +

= +

∑
∑

∑
,       (A.46) 

such that 

 
( )

( )

22

2 2 2

T N

N N

α β

α β αβ

= +

= + +
.       (A.47) 

Second, we rewrite the component 
2

1
N i
i

i

y
p=∑  in (A.45) as

( )

( )

2
2

1 1

2 2 2 2
1

2
2 2

1 1 1 1 1

2
2 2

1 1 1

1

1 2 2 2

1 2 2 2

1 2 2

N Ni
i ii i

i i

N
i i i i i ii

i

N N N N Ni i
i ii i i i i

i i i

N N Ni i
i i i

i i i

y p e
p p

p e p e p e
p

e ep N e
p p p

e eN
p p p

α β

α β αβ α β

α β αβ α β

α β αβ α

= =

=

= = = = =

= = =

= + +

= + + + + +

= + + + + +

= + + + +

∑ ∑

∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 
(A.48) 

 
Plugging in ( ) 1

i iw np −= , or ( ) 1
i ip nw −=  lets us rewrite (A.48) as 

 
( ) ( ) ( )

2 2
2 2

1 1 1 1

2
2 2

1 1 11 1 1

2 2 2
1 1 1

1 2 2

1 2 2

2 2

N N N Ni i i
i i i i

i i i i

N N Ni i
i i i

i i i
N N N

i i i i ii i i

y e eN
p p p p

e eN
nw nw nw

n w n w e N n w e

α β αβ α

α β αβ α

α β αβ α

= = = =

= = =− − −

= = =

= + + + +

= + + + +

= + + + +

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑  
(A.49) 
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Subtracting (A.47) from (A.49) gives 

  ( )

( )

2
2 2 2 2

1 1 1 1

2 2

22 2
1 1 1

2 2

2

2

N N N Ni
i i i i ii i i i

i

N N N
i i i i ii i i

y T n w n w e N n w e
p

N N

n w n w e n w e N

α β αβ α

α β αβ

α α α

= = = =

= = =

− = + + + +

⎡ ⎤− + +⎢ ⎥⎣ ⎦

= + + −

∑ ∑ ∑ ∑

∑ ∑ ∑

 (A.50) 

Dividing (A.50) by n  gives 

2 2
2 2 2

1 1 1 1
1 2N N N Ni

i i i i ii i i i
i

y NT w w e w e
n p n

α α= = = =

⎛ ⎞ ⎛ ⎞
− = − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑
 

(A.51) 

From the definition of covariance between 2e  and w , we have 

( ) ( )( )

2 2

2 2 2
1

2 2
1

, N
i ii

N
i ii

wwe e

NCov w e w W e e

w e NW e

Nρ σ σ

=

=

= − −

= −

=

∑

∑ ,     (A.52) 

where 2 2
1

1 N
iie e

N == ∑  which implies 2 2
2 2

1
N

i i we w ei w e N NW eρ σ σ= = +∑ . Similarly, 

since 2 2
e eσ = , we have 

( ) ( )( )1

1

1

, N
i ii

N
i ii

N
i ii

we w e

NCov w e w W e e

w e NWe

w e

Nρ σ σ

=

=

=

= − −

= −

=

=

∑
∑
∑

,     (A.53) 

which implies 1
N

i i ew e wi w e Nρ σ σ= =∑ .  These two results means that the third and fourth 

terms in (A.51) can be rewritten as 
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( )

( )

2 2

2 2

2 2

2 2 2
1

2

2 21

N
i i w ee w ei

w ee w e

w yp ye w e

w e N NW e

N NW

N NW

ρ σ σ σ

ρ σ σ σ

ρ σ σ ρ σ

= = + +

= +

= + −

∑
    (A.54) 

and 

 1
N

i i ew e wi w e Nρ σ σ= =∑ .       (A.55) 

Plugging these back into the variance (A.45) gives 

 

( ) ( )

( )

2 2

2 2

2
2 2 2

1

2
2 2 2

ˆ 1 2

1 2

N
i w yp y ew e we w ei

w yp y w e we w e

NVar T w N NW N
n

NN W N NW N
n ε

α ρ σ σ ρ σ α ρ σ σ

α ρ σ σ ρ σ α ρ σ σ

=

⎛ ⎞
= − + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + + − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑
. 

      (A.56) 
 
 

The variance (A.45) under simple random sampling with replacement, where i
Nw
n

= , 

reduces down to 

 

( )

( )

2

1

2
1

2
2

1ˆ N i
srs i

N
ii

y

NynVar T T
n N n
N y Y
n
N
n
σ

=

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

=

∑

∑ .       (A.57) 

Taking the ratio of (A.56) to (A.57) gives the design effect 



208 
 

( )
( )

( )

( )

( )

2 2

2 2

2 2

2 2 2

2
2

2
2

2 2 2

2
2

2 2 2

ˆ

ˆ

1 2

21

21 1

S
srs

w yp y ew e we w e

y

we w e ew e w
yp

y y y

we w e ew e w
yp

y y y

Var T
deff

Var T

NN W N NW N
n

N
n

n nn N nWW
n NN N N

n nnW nW
N N N N

α ρ σ σ ρ σ α ρ σ σ

σ

ρ σ σ α ρ σ σα ρ
σ σ σ
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=
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(A.58) 

 

Spencer argues that if the correlations in the last two components of (A.58) are 

negligible, then (A.58) can be approximated by 

 ( )
2

2
2 1 1S yp
y

nW nWdeff
N N

α ρ
σ

⎛ ⎞
≈ − + −⎜ ⎟

⎝ ⎠
.     (A.59) 

To estimate (A.59), we first start by noting from (3.1) that 

 ( )
1 2

2
21 ii sn w

CV
w

−
∈⎡ ⎤+ =⎣ ⎦

∑w ,      (A.60) 

where 1
1 n

iiw w
n == ∑  is the average weight.  The design-expectation of the numerator in 

(A.60) is 

 

( )

( )

1 2 1 2

1 2

1

i i ii s i U

i ii U

ii U

E n w n E w

n np w

n w

NW
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π π δ− −
∈ ∈

−
∈

−
∈
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=

=

=

∑ ∑
∑
∑

.     (A.61) 
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For the denominator, note that the design-expectation of 1
ii sw w

n ∈= ∑  is

 

( )

( )

1 1

1

i i ii s i U

i ii U

E w E w
n n

np w
n
N
n

π π δ∈ ∈

∈

⎡ ⎤ =⎢ ⎥⎣ ⎦

=

=

∑ ∑

∑ .     (A.62) 

Thus, Spencer proposes to use 2w  to estimate 
2N

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  To see why this is reasonable, 

note that 

 ( ) ( ) ( ) 22E w Var w E wπ π π⎡ ⎤= + ⎣ ⎦ .      (A.63) 

The first (A.63) term has order of magnitude ( )2O N n , while the second component has 

order ( )2 2O N n .  The relative order is N , so in large populations the second (A.63) 

component will dominate.  Thus, Spencer’s approximation, which he does not discuss, is 

reasonable when the population size is large.  However, the theory is loose; since 2w
 

depends on the sample and population sizes, asymptotically it is not a constant. Dividing 

(A.61) by 
2N

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 gives 
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2

NW
n NWn
N nN

n
nW
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

=

.        (A.64) 
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Therefore, ( ) 21 CV⎡ ⎤+ ⎣ ⎦w

 

approximately estimates 
nW
N

.  Using these and the R-squared 

value 2
ypR  from the model fit to estimate the correlation ˆypρ , we have 

 n ( ) ( ) ( )
2

2 22 ˆ
1 1

ˆypS
y

deff R CV CVα
σ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤= − + + ⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
w w .   (A.65) 

Note that when N  is large, 1Y N Yα β −= − ≈ , and (A.59) can be written as 

 ( )
2

21 1S yp
y

nW Y nWdeff
N N

ρ
σ

⎛ ⎞ ⎛ ⎞
≈ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

,     (A.66) 

which we estimate with 

 n ( ) ( ) ( )
12 22 21 1yp ySdeff R CV CV CV
−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

w w ,   (A.67) 

where 2 2 2
y yCV Yσ=  is the unit-level population coefficient of variation squared. 

 

Appendix 9: Proposed Design Effect in Single-Stage Sampling 

Let iy  denote the measurement of interest, ix  a vector of auxiliary variables, ip  the one-

draw probability of selection for a sample of size n , and ( ) 1
i iw np −=  is the base weight 

for unit i  in a population of size N .  Again, the average population probability is 

1
1 1N

iiP p
N N== =∑ .  Consider the model T

i i iy A ε= + +x B .  If the full finite population 

were available, the least-squares population regression line would be 

T
i i iy eα= + +x β ,        (A.68)  
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where α  and β  are the values found by fitting an ordinary least squares regression line 

in the full finite population.  That is, Yα = −βX , ( ) 1T T−
=β X X X y , where X  is the 

N p×  population matrix of auxiliary variables, and 1
1 N

iiY y
N == ∑  is the population 

mean.  The ie ’s are defined as the finite population residuals, T
i i ie y α= − − x β , and are 

not superpopulation model errors.  Denote the population variance of the y ’s, e ’s, 2e , 

and weights as 2
2 2 2 2, , ,y e weσ σ σ σ , e.g., ( )22

1
1 N

y ii y Y
N

σ == −∑ , and the finite population 

correlations between the variables in the subscripts as ypρ , ewρ , and 2e wρ .   The GREG 

theoretical design-variance in with-replacement sampling is 
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,     (A.69) 

where 1
N

U iiE e==∑ .  Using the model in (A.68) explicitly produces a design effect with 

several complex terms, many of which contain correlations that cannot be dropped as in 

Spencer’s approximation.  The design effect can be simplified using an alternative model 

formulation: i iu eα= + , where T
i i iu y= − x β .  First, we rewrite the population total of 

the ie ’s as 
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N
U ii

N
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E e
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α

=
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= −

= −

∑
∑ ,        (A.70) 
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where 1
1 N

iiU u
N == ∑ .  From (A.70) , it follows that 
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Second, we rewrite the component 
2

1
N i
i

i

e
p=∑   as
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(A.72)

 
Plugging in ( ) 1

i iw np −= , or ( ) 1
i ip nw −=  lets us rewrite (A.72) as 
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Subtracting (A.71) from (A.73) gives  
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(A.74) 

 
Dividing (A.74) by n  gives 
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(A.75) 

Note that, following Spencer’s approach using the covariances in (A.54) and (A.55), the 

first and fifth terms in (A.75) can be rewritten as 

 ( )2 2
2 2 2

1
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i i w uu w ui wu N NW Uρ σ σ σ= = + +∑      (A.76) 

and 

 1
N

i i uw u wi w u N NWUρ σ σ= = +∑ .      (A.77) 

Plugging these back into the variance (A.75) gives 
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(A.78) 
 

The variance of the pwr-estimator (A.69) under simple random sampling with 

replacement, where 1
ip N −= , reduces down to 
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Taking the ratio of (A.78) to (A.79) gives the following design effect: 
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Note that under our model ,i iu e Uα α= + = , and (A.80) becomes 
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We estimate measure (A.81) with 

 n ( )( ) 2 2

22
* 2 2

ˆ ˆ ˆ ˆ ˆˆ ˆ1 2
ˆ ˆ
u w

S uw uu w u
y y

ndeff CV
N

σ σ
ρ σ αρ σ

σ σ
⎡ ⎤⎡ ⎤≈ + + −⎣ ⎦ ⎣ ⎦w

   

(A.82) 

where the model parameter estimates are obtained using survey-weighted least squares,  
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and ˆˆ T
i i iu y= − x β , where ( ) 1ˆ T T−

=β x x x y
.
  Similar to Spencer’s approach, if the 

correlations in the last component of (A.80) are negligible, then (A.80) can be 

approximated by 
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Since U α= , measure (A.83) can be estimated using 
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Note that without calibration, we have ˆˆ T
i i i iu y y= − ≈x β , and 2 2

u yσ σ≈ . In that case, the 

design effect approximation in (A.84) becomes *S
nWdeff
N

≈ , which we estimate with 

Kish’s measure n ( ) 21Kdeff CV⎡ ⎤≈ + ⎣ ⎦w .   
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Appendix 10: Proposed Design Effect in Cluster Sampling 

For cluster sampling, we start with N  clusters in the population, with iM  elements 

within cluster i .  Consider the model T
ij U ij ijy A e= + +x B , where ,A B  are the finite 

population model parameters and T T
ij ij U ij ij ije y A y= − − = −x B x B� .  If the full finite 

population were in hand, then we could fit the model by ordinary least squares to obtain 

T T
ij U ij ij ij U ijy e eα= + + = +x β x B� , where 1ij ij⎡ ⎤= ⎣ ⎦x x� , ( )TU Uα=B β , 

T T
ij ij U ij ij ij Ue y yα= − − = −x β x B� , Yα = −βX , ( ) 1T T−

=β X X X y , X  is the N p×  

population matrix of auxiliary variables, and 
i

U ij ii U j U i UY Y M∈ ∈ ∈=∑ ∑ ∑  is the 

population mean.  The GREG estimator here is given by 
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From (A.85), ˆ
i

ijT
GREG x U i s j s

ij

e
T

π∈ ∈− ∑ ∑T B � .  Assuming that we have probability-

with-replacement (pwr) sampling of clusters, the probability of selection for clusters is 

approximately ( )1 1 n
i i ip npπ = − − �  (if ip  is not too large), where ip  is the one-drawn 

selection probability.  Suppose that simple random sampling is used within each cluster, 
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such that the second-stage selection probability is i
j i

i

m
M

π =  for element j  in cluster i .  

Then the overall selection probability is approximately i i
ij i j i
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M

π π π= �  and 

expression (A.85) becomes 
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where ( ) 1
i iw np −=  and ˆ

i

i
ei ijj s
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MT e
m ∈= ∑ .  The approximate theoretical variance is: 

( ) ( )
2 2 2

1 1 1

2 2
2 2

1 1

1 1ˆ 1
1

1 1

i
i

ei

N N MUi i i
GREG i U ij Ui i j

i i i i i

N NUi i i
U Ui i

i i i i

e M mVar T p E e e
n p np m M M

e M mE S
n p np m M

+
+= = =

+
+= =

⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑
 

    (A.87) 
 

where 1
1 i

i

M
U ijj

i
e e

M == ∑ , 1
i

i

M
U ijje e==∑ , 1

N
U ijiE e+ == ∑ , and 
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1
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i
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M
U ij Uij

i
S e e

M == −
− ∑ .   

Suppose that the second-stage sampling fraction is negligible, i.e., 0i

i

m
M

≈ .  As 

with the single-stage design effect, to simplify notation here we reformulate the model 

T
ij U ij ijy eα= + +x β using T

ij ij iju y= − x β , such that ij ij Ue u α= − .  Estimation of the two 

components in (A.87) is examined separately, then put together to produce the design 

effect. 

 First Variance Component Derivation 
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To derive the design effect using the variance in (A.87), we examine the separate 

components with respect to the model.  First, for the cluster-level component, we define  
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where i iMα α= .  We rewrite the population total as 
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where 1
1 N

iiU u
N +== ∑ , 1

1 N
i Ui M

N
α α α== =∑ , with 1

1 N
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N == ∑  and 
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We then rewrite the component 
2

1
N Ui
i

i

e
p
+

=∑  in (A.87) as 
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Plugging in ( ) 1
i iw np −= , or ( ) 1

i ip nw −=  lets us rewrite (A.92) as 

 ( ) ( ) ( )

2 2 2

1 1 1 11 1 1

2 2
1 1 1

2

2

N N N NUi i i i i
i i i i

i i i i
N N N

i i i i i i ii i i

e u u
p nw nw nw

n w u n w n w u

α α

α α

+ + +
= = = =− − −

+ += = =

= + −

= + −

∑ ∑ ∑ ∑

∑ ∑ ∑
.  (A.93) 

 

Subtracting (A.91) from (A.93) gives  
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Dividing (A.94) by n  gives 
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First, we write the covariance as 
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where 1
1 N

i iiU u
N

α α+== ∑ .  By definition ( ) ,,i i i u w u wCov w u α αα ρ σ σ
+ ++ ≡ , where 

,u wαρ
+

 is the unweighted correlation of i iu α+  and iw .  From this and expression (A.96), 

we have 
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the first, third, and sixth terms in (A.95) can be rewritten as 

 
( )

2 2

2 2

2 2
1

2 2

N
i i wu w ui

w uu w u

w u N NWU

N NW U

ρ σ σ

ρ σ σ σ

+ +

++ +

+= = +

= + +

∑
    (A.98) 

and 
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Plugging (A.97), (A.98), and (A.99) into the variance (A.95) gives 
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 Second Variance Component Derivation 

For the second component in the variance (A.87), for T
ij ij iju y= − x β , 

T
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From this, ( )22 2 2 2Ui i U i U i Ue u u uα α α= − = + −  and  

iij U ij U i U
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e e u u

u u

α α− = − − +

= −
,       (A.102) 

where i
i

i

uu
M
+=  is the mean of iju  within cluster i .  Then we have 
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From this, the variance component is 
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Note that, since simple random sampling within each cluster was assumed, (A.104) does 

not contain any differential within-cluster weights or correlations.  If an alternative 

design was used to select units within clusters, then (A.104) will include additional 

related terms (such as the correlations in (A.100)). 

Design Effect Derivations 

Taking the ratio of (A.100) to the SRSWR variance of the PWR estimator gives the first 

design effect component as 
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Taking the ratio of (A.104) to the SRSWR variance of the PWR estimator and assuming 

that the within-cluster sampling fractions are negligible gives the second design effect 

component as 
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The total design effect is thus  
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Measure (A.107) can be estimated using 
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where the model parameter estimates ˆiα  are obtained using survey-weighted least 

squares, 
( )22

ˆˆ
ˆ i i wi s

ii s

w

wα
α α

σ ∈

∈

−
=
∑

∑
, 

ˆ
ˆ i ii s
w

ii s

w
w
α

α ∈

∈

=
∑
∑

, 
( )22

ˆˆ
ˆ i i wi s
u

ii s

w u u

w
σ

+
∈

∈

−
=
∑

∑
,  

( )22
ˆˆ

ˆ
1

i
ui

ij ij s
U

i

u u
S

m
∈ −

=
−

∑
, n 1

1

ˆˆn
i i ii

w w n
ii

w u
u

w

α
α +=

=

=
∑
∑

, 
ˆ

ˆ i ii s
w

ii s

w u
u

w
+∈

∈

=
∑
∑

,



225 
 

( )22
ˆ

ˆ i

i

ij ij wi s j s
y

iji s j s

w y y

w
σ ∈ ∈

∈ ∈

−
=
∑ ∑

∑ ∑
,  ˆ i

i

ij iji s j s
w

iji s j s

w y
y

w
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

, 

( )ˆ ˆˆ ˆ
i i

T T
i i i ij ij ijj s j su y u y+ + + ∈ ∈= − = = −∑ ∑x β x β , and 1ˆ ˆ

i
i ijj s

i
u u

m ∈= ∑ .   

 Assuming that the three correlations in (A.107) are negligible gives: 
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The approximate design effect measure (A.109) can be estimated using 
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Assuming that iM  are close enough such that iM M≈  and i iM Mα α α= �  and 
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From (A.112)  and (A.113), expression (A.107) is approximately 
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Measure (A.109) can be estimated using 
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When there are no correlations, no calibration (i.e., no auxiliary information in x� ) and no 

cluster sampling, i.e., 2 2, u yU Y σ σ
+

≈ ≈ , and when N  is large, M Yα α= ≈ , we have 
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which we estimate with Kish’s measure. 
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