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Graphene, a single atom thick plane of graphite, is a novel two-dimensional electron 

system in which the low-energy electrons behave as massless chiral Dirac fermions.  

This thesis explores the effects of disorder in graphene through controlled surface 

modification in ultra-high vacuum (UHV), coupled with in situ electronic transport 

experiments. Three different roles of adatom overlayers on graphene are investigated. 

First, the effects of charged impurity scattering are studied by introducing potassium 

ions on the graphene at low temperature in UHV. The theoretically expected 

magnitude and linear density-dependence of the conductivity due to long range 

Coulomb scattering is verified. Second, the effective dielectric constant of graphene 

is modified by adding ice overlayers at low temperature in UHV. The opposing 

effects of screening on scattering by long range (charged impurity) and short range 



 

 

impurities are observed as variations in conductivity, and the changes are in 

agreement with Boltzmann theory for graphene transport within the random phase 

approximation. The minimum conductivity of graphene is roughly independent of 

charged impurity density and dielectric constant, in agreement with the self-consistent 

theory of screened carrier density inhomogeneity (electron and hole puddles).  Taken 

together, the experimental results on charged impurity scattering and dielectric 

screening strongly support that long range Coulomb scattering is the dominant 

scattering mechanism in as-fabricated graphene on SiO2. In addition to the semi-

classical transport properties, quantum transport is also studied with cobalt decorated 

graphene. Strong localization is achieved in the disordered graphene through 

deposition of cobalt nanoclusters. In finite magnetic field a phase transition occurs 

from the localized state to the quantum Hall state. Scaling analysis confirms that the 

transition is a quantum phase transition which is similar to the localization - 

delocalization transitions in other two dimensional electron systems.       
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Chapter 1 : Introduction to graphene, a new type of two 

dimensional electron system 

Because of its fundamental simplicity as well as applications of metal-oxide-

semiconductor field effect transistor (MOSFET) devices in the silicon electronics 

industry, the research on electrons confined in two dimensions has become a leading 

edge of modern condensed matter physics. The studies of two dimensional electron 

systems (2DES) emerged from investigations of the semiconductor - oxide interface 

in MOSFETs. The quantum Hall effect in 2DESs [1] is a remarkable example of new 

physics which has enriched our understanding of the nature of 2D electrons in high 

magnetic fields. As semiconductor film growth techniques have improved, more 

advanced research on 2DESs has been enabled by making semiconductor hetero-

junctions and quantum wells [2,3]. 

Meanwhile there are naturally formed materials such as graphite which offer 

new possibilities for making 2DESs if they can be made thin enough.  Graphite is 

composed of covalently-bonded two-dimensional sheets of carbon arranged in a 

hexagonal lattice, called graphene, stacked upon each other and bonded through weak 

van der Waals forces to form a three-dimensional solid.  Due to the weak bonding 

between graphene sheets, graphite can be peeled apart or exfoliated to produce thin 

films. The isolation of a single sheet of graphite by this method has been a longtime 

goal for researchers [4,5]. In 2004 this concept became a reality when Novoselov et al. 

[6] reported astonishing experimental results of graphene field effect devices 
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fabricated by the exfoliation technique. Stimulated by the observation, a tremendous 

number of publications on graphene from researchers around the world soon followed, 

and the 2010 Nobel Prize was awarded to the Kostya Novoselov and Andre Geim as 

the pioneers of graphene discovery.     

Why was the realization of the graphene field effect device so exciting? And 

what makes it different from the other conventional 2DESs? One answer lies in 

graphene‟s unusual band structure, first calculated almost 60 years before the work of 

Novoselov and Geim [7-9].  The tight binding calculation taking into account up to 

second-nearest neighbor hopping term gives an approximate analytic equation (1.1) 

for graphene‟s conduction band (+) and valence band (-), 

 
' 2 2

2' 9 3
( ) 3 q sin(3 ) q ,

4 8
F q

t a ta
E q t  

 
    

 
                                (1.1) 

where t (t′) is the nearest (second nearest) neighbor hopping amplitude with  t ≈ 2.5 

eV >> t‟ ≈ 0.1 eV, a is the distance between carbon atoms (0.14 nm), q is the 2D 

wave vector measured from the K point of the Brillouin zone, and 

13 / 2, arctan [ / ]F q x yta q q    . Eqn. (1.1) is valid for small q << 2π/a. At low 

energy (keeping only linear-q terms), and defining the energy E (q = 0) = 0, we have 

the linear dispersion relation  

 2( ) ( / )FE q q O q k                                                                            (1.2) 
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As shown in figure 1.1, graphene has a linear dispersion relation, with 

conduction and valence band crossing at q = 0. Graphene is hence a zero band-gap 

semiconductor with linear long-wavelength dispersion for both carriers (electron, 

hole). The energy depends on the graphene Fermi velocity, νF ~10
8
 cm/s (1/300 of the 

velocity of light).  

 There is another peculiar property in graphene carrier dynamics due to the 

presence of sublattices A and B (two atoms per unit cell). Using the nearest neighbor 

tight binding Hamiltonian, in which Fourier transformed operators are expanded near 

K (K‟) point in the BZ, the resulting effective low energy Hamiltonian is 

 
0

q,
0

x y

F F

x y

q iq
H

q iq
  

 
  

 
                                                     (1.3) 

and the wavefunction satisfies the massless Dirac equation 

( ) ( )Fi r E r     ,                                                                           (1.4) 

Figure 1.1 Graphene band structure from tight binding calculation.  

 Adapted from ref.[10]. (a) Graphene band structure. (b) Enlargment of the band 

structure close to the K and K‟ points showing the Dirac cones. 
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where ( , )x y   is the 2D Pauli matrices and ( )r is a 2 component electron wave 

function. The Hamiltonian near the K‟ point is the complex conjugate of the 

Hamiltonian near the K point (equation (1.3)) [11]   In momentum space, 

eigenfunctions for the equation (1.4) can be written as 

 

/2

/2

1
(q,K)= ,

2

q

q

i

i

e

e






 
 
  

                                                                             (1.5 a) 

 

/2

/2

1
(q,K')= ,

2

q

q

i

i

e

e








 
 
  

                                                                           (1.5 b) 

where ± correspond to the eigenenergies FE v q  .  Under rotation of  θ, the 

change of the wave functions sign (phase change by π) indicates that the wave 

function is a 2D spinor, termed pseudospin, analogous to real electron spin. Because 

the helicity (chirality) is defined as the projection of the momentum operator along 

the direction of pseudospin, the wave functions are also eigenstates of the helicity 

operator, thus the chirality is well defined in graphene related to the pseudospin.                                                    

In addition to the quasi-relativistic physics of carriers, graphene has other 

properties that make it distinct from other 2DESs.  Graphene is a perfect two 

dimensional system with atomic thickness. The carriers are truly confined in a 2D 

plane and the outsides of the plane are exposed to the environment directly. In 

contrast, in the conventional semiconductor 2DESs, the confinement of electrons in a 

2D plane is obtained by tuning the electrical properties of outer layers of the 

heterostructures. Hence the conventional 2DES is embedded in a 3 dimensional 

material, and environmental control of the 2DESs is highly limited.  However in 
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graphene, unlike the other 2DES, modification of the surrounding properties can be 

achieved simply by depositing materials on graphene, or transferring graphene to 

different substrates. This opens the experimental possibility of tuning the properties 

of graphene through addition of adatoms or overlayers while measuring electrical 

transport of the massless Dirac fermions.  

 In this thesis I present experimental observations of changes in electrical 

transport signals of graphene with three different types of materials on graphene. To 

minimize the effects from environmental contaminants other than the test materials, 

graphene devices are placed in an ultra-high vacuum chamber. Then electrical signals 

from the devices are measured in situ while I introduce materials of interests on the 

graphene in the UHV. For the high magnetic field measurements on highly disordered 

graphene with cobalt nanocluster decoration in Chapter 6, I measured the transport 

properties of graphene ex situ after the cobalt deposition in the UHV. Chapter 2 lays 

out the theoretical framework for understanding charge transport in graphene in the 

presence of disorder, which is used for analyses of the experimental results in the 

following chapters (Ch. 4 - 6), on impurity scattering and the localization-

delocalization transition in graphene. In chapter 3, I describe the experimental 

methods used in the work, including the fabrication of graphene field-effect devices, 

and the measurement of graphene transport in situ in ultra-high vacuum. Chapter 4 – 

6 of this thesis consists of independent research results. Chapter 4 is devoted to the 

effect of adsorbed potassium on graphene, which acts as a charged impurity [12]. 

Chapter 5 presents a study of the effect of modifying the dielectric environment of 

graphene using ice overlayers as a clean dielectric deposited in UHV [13]. Chapter 6 
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covers the insulator - quantum Hall transition in disordered graphene realized by 

decoration with Co particles. Finally, in the last chapter (chapter 7) I will summarize 

the thesis with brief introductions of  follow up (future) researches.  
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Chapter 2 : Theoretical Background 

In this chapter I review the theory of charge carrier transport in grpahene in 

the presence of charged impurity disorder and weak point disorder (delta-function 

correlated disorder) within semi-classical Boltzmann transport theory using the 

random phase approximation (RPA) for calculation of the screening properties of 

graphene.  Section 2.1 develops the theory of graphene‟s conductivity at high carrier 

density.  Section 2.2 describes the “self-consistent theory” for the minimum 

conductivity in graphene with charged impurity disorder.  For the transport beyond 

the semi-classical model, quantum Hall effect with magnetic field is discussed in 

section 2.3, and strong localization in graphene and the insulator-quantum Hall phase 

transition induced by magnetic field in 2DESs are discussed in section 2.4. 

2.1 Impurity scattering in graphene 

 In spite of the theoretical expectation of the carrier density-independent 

conductivity, σ (n) = constant, of graphene due to the linear dispersion relation [14], 

experiments reported that the conductivity of graphene depends linearly on carrier 

density n, i.e. σ (n) ∝ n [15-17]. A typical conductivity curve of graphene as a 

function of the back gate voltage, which is applied from a highly doped silicon 

substrate through SiO2 gate dielectric, is shown in figure 2.1. The carrier density is 

given by n = cg(Vg – Vg,CNP)/e, where cg = 1.15 x 10
-8
 F/cm

2
 is the gate capacitance per 

unit area for the 300 nm thick SiO2 gate dielectric, e the elementary charge, and 

Vg,CNP the gate voltage at charge neutrality.  Both positive and negative (electron and 
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hole) carrier densities can be tuned by the back gate voltages.  Figure 2.1 shows that 

the conductivity is ambipolar, symmetric for electrons and holes (as expected since 

graphene has electron-hole symmetry at low energy), and has roughly linear carrier 

density dependence. Near the charge neutral point, where the carrier changes from 

electron to hole, the conductivity does not vanish, rather saturates to a value called 

minimum conductivity (σmin). The transport curve can be considered as combination 

of two regions; roughly linear conductivity at high density and constant conductivity 

at low density. The intersection of the two different regions defines the width of the 

plateau (ΔVg). 

Figure 2.1 Gate voltage dependent conductivity of graphene device. 
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To explain the linear dependence of graphene‟s conductivity on charge carrier 

density, long-range disorder (Coulomb potential impurity) was proposed in many 

theoretical studies [18-24]. Adam et al. described the minimum conductivity of 

graphene as due to spatially-fluctuating carrier density (electron and hole “puddles”) 

induced by the random charged impurity potential [25]. The self-consistent screening 

of the impurity potential by the induced carrier density was then used to calculate 

graphene‟s minimum conductivity, and the results were able to explain the relative 

independence of the minimum conductivity on disorder strength.  Below I discuss 

these theories in more detail.   

For graphene, semi-classical diffusive conductivity is given by  

22
.Fe E

h


                                                                                          (2.1.1) 

21

2 2

2

0

41 ( )
1 ,

( )

FE V
d


 

   
                                                            (2.1.2) 

where e is the elementary charge, h is Planck‟s constant, EF is the Fermi energy, 1  

is the Fermi velocity, V (η) is impurity scattering potential, the momentum transfer 

' 2 Fq k k k    , and ε(η) is the static RPA dielectric function [26] and is given by 

 
2 22

( ) 1 ( ),
8

s vg g e e 
  

 

                                                         (2.1.3) 

where gs, and gv are the spin and valley degeneracies, Π
+ 

is the intraband polarizability, 

and κ is the background lattice dielectric constant. Note that the screening decreases 

as κ increases.  



10 

 

  Using scattering potential for long range impurity, 

2

( )
impL

F

n e
V

k




 
 , 

conductivity due to long range disorder is obtained as 

 

2

2
2

2 2

2 1
,

(2 )

( ) 3 arccos[1/ ]
3 (3 2) ,

4 2 1

L

imp l s

l

e n

h n F r

F x x x
x x x

x x



 

 
   

 

    


                             (2.1.3) 

where rs = e
2
/κħυF is the effective fine structure constant of graphene which has no 

carrier density dependence. For graphene on SiO2, the effective dielectric constant  κ 

= 2.5 (average of dielectric constants of SiO2 and vacuum), F1(2rs) = 0.1 and the 

conductivity is 
















impn

n

h

e
σ

2

20  .                                       (2.1.4) 

From the results, the dependence of mobility on the impurity density and the 

dielectric constant of the environments is predicted; testing these predictions 

experimentally is the subject of chapters 4 and 5. 

Even though it is believed that the Coulomb scattering has the dominant effect 

on charge transport in graphene, there are still additional scattering mechanisms. 

Especially for short range disorder, such as point defects or dislocations in the carbon 

lattice, the conductivity calculation is straightforward with scattering potential 

0( )S

impV n V  ,  where V0 is a constant short range potential strength. [27] The 

calculated conductivity due to short range disorder is  
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2 2

2

0 2

3 2 4 2 3

2
2

4 1
,

(2 )

16 arccos[1/ ]
( ) 40 6 20 8 (5 4 )

2 3 1

S

imp s

e

h n V F r

x x
F x x x x x x x

x

 



 



      


      (2.1.5) 

The result indicates that the conductivity due to short range scattering has no carrier 

density dependence even when including screening, but the conductivity could be 

changed by tuning the dielectric constant of the environment. A combination of short- 

and long-range scattering in graphene will lead to a sublinear σ(n) which is generally 

experimentally observed (see Fig. 2.1).  This hypothesis is verified in chapter 5, 

where the effects of dielectric constant change on the conductivity (due to long- and 

short-range scattering) are experimentally verified with ice deposition on graphene. 

2.2 Minimum conductivity of graphene 

 The minimum conductivity of graphene, the saturation of the linear in density 

conductivity at low carrier density, is another interesting issue which has been 

extensively studied by theorists. If an ideally clean graphene is considered, a 

universal minimum conductivity, ~4e
2
/πh, is calculated based on the Kubo and 

Landauer formulas  [28]. However, experimental results showed that the observed 

minimum conductivities are not universal rather vary around the range, 4-8 e
2
/h, 

which is larger than the theoretical value [12,17,29]. In the presence of Coulomb 

disorder, graphene is never undoped, and the Fermi energy cannot lie uniformly at the 

Dirac point over a macroscopic sample.  The random Coulomb potential produces 

electron and hole puddles.  Recently both analytical and numerical results 
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successfully explained the magnitude and disorder dependence of the minimum 

conductivity by considering the effects of electron and hole puddles.[25,30,31]  

 Using a self-consistent approximation, where the puddle density is calculated 

by considering the potential of the charged impurities screened self-consistently by 

the puddle carrier density, a theory was developed by Adam et al. [25] to relate the 

impurity density and the minimum conductivity. A calculation within RPA gives the 

rms carrier density in the puddles n* as  

 

*
2 *

1

2

2

1 1

2 ( , 4 ),

24 ( )
( , ) 1

(2 ) 1 2

(1 2 ) ( [2 ] [ (1 2 )]),s

RPA

s o s

imp

a
RPA s
o s

s s

r a

s s s

n
r C r a d n

n

e rE a
C r a

r r

r a e E r a E a r







 

   
 

   

                             (2.2.1) 

where d is the impurity distance to graphene, and 1

1( ) t

z

E z t e dt



   is the exponential 

integral function. From the determination of n
*
, the pinned carrier density which leads 

to the minimum constant conductivity, the minimum conductivity value and plateau 

width ΔVg may be calculated [25].  The minimum conductivity is given by  

*

min .n e                                                                                          (2.2.2)  

,where μ is field effect mobility. The plateau width in gate voltage ΔVg = 2n*e/cg [25].  

The predicted dependence of the minimum conductivity on impurity density and 

dielectric constant are studied in chapters 4 and 5 respectively.    
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2.3 Quantum Hall effects in grahpene; disorder effects 

 One of the most striking phenomena stemming from the Dirac nature of the 

massless fermions in graphene is the unique quantum Hall effect (QHE). In the 

presence of magnetic field perpendicular to the 2D plane, quantized energy levels 

(Landau levels, LL) can be calculated by solving the Dirac equation in magnetic field 

[32-35]. The result is  

sgn( ) , 0, 1, 2,...n cE n n with n                                               (2.3.1) 

where 2 / ( )c Fv eB c   is a „cyclotron frequency‟, and νF is the fermion velocity. 

Differently from the conventional (semiconductor) 2DES, there is a LL at zero energy. 

Moreover the quantization for the Hall conductivity, σxy, has the unconventional form 

as depicted in Figure 2.2 (a), 

h

e
n

h

e
νσ xy

22

2

1
4 








 , n = 0, ±1, ±2, …                     (2.3.2) 

where ν = nФ0/B is the LL filling factor, Ф0 is the flux quantum, and B is the 

magnetic field strength. The ½-shift to the conventional integer quantum Hall effect 

(IQHE) can be understood as the factor induced by the additional Berry phase which 

the electrons acquire when completing a closed orbit due to their chiral nature [36,37]. 

 According to the scaling theory of localization, in the absence of magnetic 

field there are only localized states in a non-interacting 2 dimensional electron system 

(2DES) at low temperature for any amount of disorder in the system [38]. When a 

strong magnetic field applied perpendicular to the 2DES, LL quantization becomes 

important and it is possible to observe QHE which indicates the existence of extended 
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states.  In understanding the underlying physics of the QHE phenomena and the 

associated phase transition (localization-delocalization), the topological character and 

disorder effects are essential factors, and the same statements could be applied to the 

unconventional QHE in graphene. Recently D. N. Sheng et al. [39] carried out a 

numerical study using a tight binding model with random disorder and established the 

phase diagram of the system (Figure 2.2 (b)) As shown in the figure, the following 

properties are predicted for QHE of disordered graphene: (1) the quantum Hall 

plateaus can be destroyed with strong disorder (or weak magnetic field), (2) the ν=2 

QH state is the most robust to the disorder strength, and  (3) an insulating region 

emerges at zero energy with relatively weak disorder.  

 Using as-fabricated graphene on SiO2, which is weakly disordered with the 

dominant disorder thought to be long-wavelength charged impurity scattering which 

does not produce localization, many groups have reported the phase transitions in 

magnetic field, such as the plateau-plateau transition (e.g., arrow D in figure 2.2 

(b))[40], and the plateau to N = 0 insulator transition (arrow A in figure 2.2 

(b))[41,42]. Yet the transitions from insulator to higher order LL quantum Hall states 

(e.g., arrow F in figure 2.2 (b)) have not been observed experimentally due to a lack 

of insulating states in normal graphene [40-42]. 
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2.4 Magnetic field induced delocalization in 2D system 

 To explain the connection between the extended states at finite B and the 

localized state at B = 0, Khmelnitskii [44] and Laughlin [45] developed a scaling 

argument. In the argument, the extended states could float up in energy as magnetic 

Figure 2.2 QHE in graphene. 

  (a) Illustration of the unconventional QHE in graphene. Adapted from Ref. [43]. 

(b) Phase diagram for the unconventional QHE with disorders. W/t is the 

normalized disorder strength. Arrows are examples of the possible phase 

transitions. Adapted from ref. [39]. 
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field decreases, and eventually energies of all the extended states could be higher than 

the Fermi level (i.e. the system becomes an insulator). Using the float up scenario, the 

global phase diagram (GPD) of integer QHE was constructed later by Kivelson et al. 

[46]. The only possible phase transition from the insulator to the υ=1 QH state, 

predicted by the GPD, has been observed experimentally in many 2DEGs [47-53] 

(one of the examples is presented in figure 2.3). 

 

Figure 2.3 I-QH transition in GaAs/AlGaAs heterostructure.  

(a) magnetoresistance curves for the sample. Transition from insulating (left) to 

metallic (right) is separated by the critical magnetic field Bc (b) Scaling analysis 

with ρxx against |B-Bc|/T
κ
 (dimensionless scaling variable). The collapsed data 

verifies phase transition of the system. Figures are adapted from ref.[51]  
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In addition to the float up scenario, a new picture with destruction of the 

extended state by increasing disorder (or decreasing B) was proposed [54,55] to 

explain the experimental observations of a transition from insulator to QH state with 

filling factor higher than 1, which is forbidden in GPD [49,56,57]. In the phase 

diagram constructed by numerical simulations with the tight binding model, the direct 

transitions from insulating state to QH state with arbitrary filling factors are possible 

(see figure 2.4). 

 

 

 

 

Figure 2.4 Phase diagrams of the integer quantum Hall effect (IQHE). 

(a) global phase diagram of the IQHE. Adapted from ref. [46] (b) An 

example of phase diagram of the IQHE from numerical calculation. 

Adapted from ref. [58] For both graphs, x axis is the magnetic field and y 

axis is the disorder strength. 
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To study the insulator-quantum Hall phase transition discussed above in 

graphene, realization of strong localization is essential. However, localization of 

charges in graphene is somewhat different from other 2DESs with massive electrons 

because of the chiral Dirac fermions in two valleys at K and K‟ points of the first BZ, 

exhibiting Berry phase π. Weak localization results from the constructive interference 

of wavefunctions traveling in opposite directions around closed loop scattering paths. 

When the chiral charge travels around phase coherent closed loops, it acquires a 

phase difference π, which gives rise to destructive interference and weak anti-

localization. In a perfect massless Dirac system this weak-antilocalization (WAL), 

suppression of the back scattering behavior is expected and the system should remain 

metallic to T = 0. The WL can be restored if inter-valley scattering is considered, 

which mix pseudospins of different valleys (break the chirality). Higher-order terms 

in the Hamiltonian also do not conserve chirality. Upon further enhancement of the 

inter-valley scattering, when the localization length is comparable to phase coherence 

length, it is expected to induce strong localization (Anderson insulating state) in 

graphene [59]. Inter-valley scattering can be increased by introducing short range 

impurities which break sublattice symmetry. In chapter 6, insulating graphene is 

achieved by chemisorption of Co clusters on graphene, and the transition from 

insulator into the ν = 2 QH state with magnetic field is studied. 

 It is argued that the plateau-plateau transition of 2DES can be described with 

the universal temperature scaling exponent (ξ = 0.42) in certain conditions (low 

temperature, short range scattering dominant limit) [60,61]. But in graphene, through 

the numerical calculations [62,63], it is unlikely that the argument of universality of 
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the scaling exponent holds due to the nature of relativistic 2D fermions. The 

theoretical study of the lowest LL in graphene [63], by considering tight binding 

Hamiltonian with disorder, shows that the localization length exponent can be varied 

as the system is tuned from weak to strong disorder. The similar results, new class of 

universality compared to the conventional 2DESs, are also obtained employing a 

Supersymmetric technique with disorders which give rise to inter-valley scattering 

[62]. 
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Chapter 3 : Experimental Methods 

In this chapter, experimental techniques used in the subsequent chapters are 

presented. Section 3.1 describes fabrication methods of graphene field effect devices 

which are used for the electrical transport studies of graphene covered in chapters 4-6.  

In section 3.2, the Helitran ultra-high vacuum (UHV) compatible open cycle cryostat 

is presented. Section 3.3 covers the electrical transport measurements in UHV with 

schemes of experimental setup. The measurements methods described in section 3.3 

are used in the rest of the thesis (Ch. 4-6). The last section, section 3.4, consists of 

three different adatom deposition methods for potassium (Ch.4), water or ice (Ch.5), 

and cobalt (Ch.6).  

3.1 Fabrication of Graphene Field Effect Device 

In order to get graphene devices which will be used in the experiments of 

subsequent chapters, the mechanical exfoliation [6] method was used by starting from 

either Kish graphite or natural graphite. The graphite flakes are exfoliated on highly 

doped silicon wafers with 300 nm SiO2 over layer. The low resistivity silicon layer 

can be used as back gate electrode and the oxide layer operates as the gate dielectric 

material. The 300 nm oxide layer also gives good color contrast at visible 

wavelengths for single layer graphene on the wafer, which makes it easier to find 

graphene under the optical microscope. 

 Figure 3.1 shows a typical optical micrograph of a graphite flake after the 

exfoliation. Single-layer regions can be identified by optical contrast alone, but the 
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number of layers in the flake is confirmed from Raman spectra obtained by using the 

Horiba Jobin-Yvon LabRAM HR-VIS micro-Raman system (with 633nm laser). As 

shown in the Figure 3.2, single layer graphene can be identified by the unique single 

Lorentzian 2D peak in the spectrum [64].  

 

 

 

 

 

 

Figure 3.1 Optical microscope image of an exfoliated flake containing 

graphene on 300nm SiO2/Si substrate.  

 The number of graphene layers can be distinguished from contrasts of the flake 

area. 
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The exact positioning of the etching mask and electrode patterns on the 

graphene flake is achieved using the alignment function provided in the Nanometer 

Pattern Generation System (NPGS). For the process, alignment marks (consists of 

square gold pads) are deposited near the graphene flake through the same metal lift 

off process. The alignment pattern works as a reference to the graphene flake position 

in all the subsequent patterns. When the shape of the graphene is not convenient for 

connecting electrical contacts, the flake is patterned into a Hall bar shape by oxygen 

plasma etching [65] with reactive ion etcher. A mask for the etching is prepared by 

electron-beam lithography (using an FEI corporation XL-30 SEM, and NPGS) using 

poly(methyl methacrylate) resist (950 PMMA A4, MicroChem Corp.) spun at 

6000rpm for 1 minute over the graphene followed by developing in the developer 

liquid (IPA/MIBK 3:1) for 1 minute. Electrodes for the device are also 

Figure 3.2 Micro-Raman spectroscopy of a single layer graphene. 

 The single Lorentzian 2D band at approximately 2650 cm
-1

 verifies the single layer 

graphene. 
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lithographically defined by electron beam lithography similar to the etching mask 

fabrication, except that a bilayer resist of MMA/MAA copolymer (MMA EL11, 

MicroChem Corp., spun at 4000 rpm for 1 minute and 950 PMMA A4 (6000 rpm for 

1 minute)) are used.  The double layer resist is used to get a good undercut profile 

after electron beam exposure and development which is required for the metal lift off 

process. Final metal contacts are made after thermal evaporation of 3 nm chromium 

(as an adhesion layer) and 80 nm gold followed by the lift off in acetone. (see figure 

3.3)  

 

 

Figure 3.3 Optical microscope image of graphene Hall bar device.  

Graphene (dark purple) is patterned by oxygen plasma etching and 

Cr/Au electrodes (yellow color) are connected. Small squares are used 

for alignment of patterns for the etching and the electrode deposition. 
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Before placing the devices in a ultra-high vacuum (UHV) chamber, the 

devices are annealed in flowing H2 and Ar (with flow rate of H2 1700 ml/min, Ar 

1900 ml/min) at 350°C for 1 hour to remove resist residues [12,66]. In figure 3.4, the 

effect of the annealing is presented by comparing images of the surface before and 

after the cleaning process. The devices after H2 annealing are usually heavily doped 

when exposed to the air (mainly doped with oxygen mediated by water molecules in 

the air), however the doping in ambient condition could be removed by overnight 

bake out in the UHV at 450 - 490 K [12].  

Figure 3.4 Removal of resist residue by annealing in H2. 

 (a) Non-Contact AFM topography of clean graphene device on SiO2 substrate; b)&c) 

Zoomed-in AFM images of graphene on SiO2 (white rectangle in a) before (b) and 

after (c) removal of PMMA residue; d) atomically-resolved STM micrograph of the 

cleaned graphene surface. Figures from ref. [66] 
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3.2 The Helitran ultra-high vacuum compatible LT-3B open cycle cryostat 

 The Helitran UHV compatible LT-3B open cycle cryostat (designed and 

manufactured by Advanced Research Systems Inc.) allows us to perform electrical 

transport measurements in UHV at various temperature ranges. Through multi-pin 

UHV feedthroughs of the cryostat (See figure 3.5), wires for electrical signals are 

connected between instruments placed outside of the chamber and devices in the 

chamber. Using liquid helium or liquid nitrogen, the temperature at the sample stage 

could be cooled down to 10K (for liquid helium) and 77K (for liquid nitrogen). In the 

open cycle cryostat, the coolant evaporates at the cold tip and the resultant gas runs 

out to the exhaust port (see Figure 3.5).  Control of the temperature at the sample 

stage is accomplished by adjusting evaporated gas flow rate at the end of the exhaust 

port. The experimentally achieved lowest temperature (10 K which is higher than one 

specified in the manual 4.2 K) is attributed to additional thermal load from electrical 

wiring anchored to the cold finger and a custom sample stage added at the end of the 

cold tip. For baking the sample at the temperature higher than 400 K, which is 

essential for removing doping in the air, a heater is attached to the cold tip. All the 

temperatures measured here are obtained using DT 670 silicon diodes as 

thermometers placed close to the sample stage. 
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Figure 3.5 The LT-3B ultra high vacuum compatible cryostat with 

dimensions.  

 Electrical wires and custom sample stage not shown. Drawing from 

Advanced Research Systems, Inc. 
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3.3 Transport measurements (lock-in technique) in ultra-high vacuum 

For the longitudinal resistivity measurements (and Hall measurements in Ch. 

6) of the graphene device, the conventional four-probe low-frequency lock-in 

technique is used. One (or two for Hall measurements in Ch. 6) Stanford SR830 lock-

in amplifier is used as both a signal source and a phase-sensitive voltage detector. The 

phase-sensitive detection of AC signal with known frequency is effective in reduction 

of electrical noise with frequencies which are not close to the input signal frequency. 

[67] Because of the relatively low resistance of graphene devices (0.1~10 kΩ), the 

voltage output of the lock-in amplifier can be converted to a current source by 

connecting a 10MΩ resistor (Rs >>Rdevice) in series to the circuit. The measured 

voltage difference is collected in the computer through either DAC board or GPIB 

cable. To minimize Joule heating, the current is limited to 50-100 nA. The frequency 

of the source was set to be in a range of 17-220 Hz. The charge carrier density of the 

device can be tuned by applying back gate voltage to the doped silicon substrate from 

a Keithley source meter. The total schematic of the measurements is depicted in 

figure 3.6  
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3.4 Adatom deposition 

 Once the graphene field effect device is fabricated and loaded in the UHV 

chamber, electrical transport measurements are carried out while adatoms are 

introduced from sources installed at the other side of the chamber (see figure 3.7).  In 

the research described in this thesis, I have used three different kinds of sources for 

adatom deposition. Subsection 3.4.1 describes the evaporation source used to deposit 

potassium, a model charged impurity on graphene, for the experiments described in 

chapter 4.  Subsection 3.4.2 describes the method of ice deposition, which is used to 

modify the dielectric environment of graphene as discussed in chapter 5. Subsection 

Figure 3.6 Schematic of a low frequency lock-in technique.  

 A low frequency AC voltage applied through the resistor Rs (=10 MΩ) is used as a 

current source. And the gate voltage is applied to Si substrate from a Keithley source 

meter. A-B outputs of the lock-in amplifier are transferred to a computer through 

either a DAC board or GPIB connections. 
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3.4.3 describes cobalt deposition by e-beam evaporator which is used to create 

disordered insulating graphene for the studies in chapter 6.  

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Photograph of the UHV chamber (top) and schematic of the 

system (bottom).  

 The cryostat with device is not installed (position is indicated as a blue 

arrow) in the UHV chamber photo. 
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3.4.1 Potassium deposition 

As a source of charged impurity on graphene, a commercially available 

potassium (K) source (potassium getter, SEAS getters) is chosen. The getter consists 

of packed reactive materials placed in an open metal container for use in a vacuum 

system. When it is heated up, the reactive material evaporates and adsorbs gases. 

Thus the getter is usually used to maintain the vacuum by removing small amounts of 

gases in the evacuated and sealed system.  The getter is placed to the UHV chamber 

on the opposite side to the LT-3B cryostat installed (with device). The getter was 

outgassed during bake out of the UHV chamber by applying 2 to 3 A from a power 

supply, while the sample stage is covered with a shutter placed between the source 

and the cold tip of the cryostat. Then actual deposition on graphene is performed with 

preheating (passing 6 to 7 A for 40 s) followed by opening (2 s) the shutter. More 

details are presented in methods of chapter 4. 

3.4.2 Ice deposition 

 In order to introduce high purity water, which will be leaked into the UHV 

chamber as a source of ice layer formation on graphene, Nanopure water is prepared 

in a tube which is connected to a leak valve and a turbo pump. Several cycles of 

degassing process known as „freeze-pump-thaw‟ is followed to remove residual gases 

dissolved in the water. During the process, the tube is placed into iced acetone to 

freeze water then the frozen tube (also ice) is pumped out using the external turbo 

pump. When the frozen ice melts in room temperature at low pressure, dissolved 

gases boils out, thus the water can be purified by repeating the cycle. A low rate of 
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introducing water molecules into the chamber is achieved by the leak valve and the 

partial pressure of water in the chamber is monitored by a residual gas analyzer (RGA) 

positioned off-axis and behind the sample (see figure 3.7). The position of the leak 

valve knob which produces a partial pressure of ~5×10
-8

 torr is marked during the 

calibration using RGA. Then the total exposure of the sample to water molecules 

introduced into the chamber is controlled by varying the valve opening time from 5 to 

20 seconds while keeping the leak rate set as before. Note that the time for the 

exposure is comparable to the reaction time of the leak valve (time delay to reach the 

calibrated target pressure), hence the uncertainties in estimation of ice layer numbers 

could be big. 

3.4.3 Co deposition 

For the deposition of cobalt atoms as a magnetic impurity on graphene, a 

small electron-beam evaporator (EGN 4, Oxford Applied Research) is used. As a 

source, a cobalt rod (99.995%, Alfa Aesar) is installed in the evaporator. The 

evaporation rate of the cobalt is controlled by adjusting e-beam power while 

monitoring the ion current and simultaneously the evaporation rate using a quartz-

crystal film-thickness monitor. In the experiments presented in chapter 6, an 

evaporation rate less than 0.1 Å/s (measured at the crystal monitor) is used with 20 to 

21 W of electron-beam power (corresponding to 50 nA of ion currents).  The total 

amount of cobalt evaporated on the graphene device is estimated to be around 1 nm 

when accounting for the position of the crystal monitor and the sample stage relative 

to the evaporator. As shown in figure 3.8, a shutter can be used to control exposure of 
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the evaporated flux to the sample stage and a water line is connected for cooling the 

source.  

After the cobalt deposition, the sample is warmed up and baked at 430K 

overnight which is expected to lead to irreversible formation of Co clusters on the 

graphene device. AFM images of the final device are obtained ex situ to verify the 

nano-clusters on graphene directly (see chapter 6). 

 

 

Figure 3.8 Mini e-beam evaporator with dimensions. 

 Image and drawing from Oxford Applied Research 
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Chapter 4 : Charged impurity scattering in graphene
1
 

Since the initial demonstration of the ability to experimentally isolate a single 

graphene sheet [6], a great deal of theoretical work has focused on explaining 

graphene's unusual carrier-density-dependent conductivity σ(n), and its minimum 

value (σmin) of nearly twice the quantum unit of conductance (4e
2
/h) 

[6,16,17,29,68,69]. Potential explanations for such behavior include short-range 

disorder [18,21,32,70], 'ripples' in graphene's atomic structure [71,72] and the 

presence of charged impurities [18,19,21,22,25,73-75]. Here, we conduct a systematic 

study of the last of these mechanisms, by monitoring changes in electronic 

characteristics of initially clean graphene [66] as the density of charged impurities 

(nimp) is increased by depositing potassium atoms onto its surface in ultrahigh vacuum. 

At non-zero carrier density, charged-impurity scattering produces the widely 

observed linear dependence [6,16,17,29,68,69,76] of σ (n). More significantly, we 

find that σmin occurs not at the carrier density that neutralizes nimp, but rather the 

carrier density at which the average impurity potential is zero [25]. As nimp increases, 

σmin initially falls to a minimum value near 4e
2
/h. This indicates that σmin in the 

present experimental samples [6,16,17,29,68,69,76] is governed not by the physics of 

the Dirac point singularity [77,78], but rather by carrier-density inhomogeneities 

induced by the potential of charged impurities [21,22,25,69]. 

                                                 

1
 This chapter was adapted from: C. Jang, J.-H. Chen, S.Adam, M.S. Fuhrer, and E.D. 

Williams, and M.Ishigami, Nature Physics 4, 377 (2008) 
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Several theoretical studies [18,19,21,22,25,73-75] have predicted charged-

impurity scattering in graphene to produce σ (n) of the form 

( ) ,res

imp

n
n Ce

n
                                                                                     (4.1) 

where C is a constant, e is the electronic charge and σres is the residual conductivity at 

n = 0 (this last term was predicted only in refs [74,75]). Hwang et al.[22] first 

calculated the screened Coulomb potential within the random phase approximation, 

and used the results to determine 15 1 15 10C V s   . Novikov [73] noted that, beyond 

the Born approximation used in ref. [22], an asymmetry in C for attractive versus 

repulsive scattering (electron versus hole carriers) is expected for Dirac fermions. 

Experimentally, the behavior described by equation (4.1) is ubiquitously observed in 

graphene, strongly suggesting that charged-impurity scattering is the dominant 

scattering mechanism in present samples. Here, we provide the first direct verification 

of equation (4.1) for charged-impurity scattering in graphene, and determine the 

constant C. We also observe the expected asymmetry for attractive versus repulsive 

scattering for Dirac fermions [73].  

At low carrier density, the conductivity does not vanish linearly, but rather 

saturates to a constant value near 4e
2
/h (ref. [17]). Early theoretical work [77,78] on 

massless Dirac fermions predicted σmin= 4e
2
/πh for vanishing disorder. However, in 

the presence of charged impurities, a finite conductivity ~ 4e
2
/h is predicted over a 

plateau of width ΔVg [21,22,25]. Here, we measure experimentally the dependence on 

nimp of σmin, ΔVg and the gate voltage Vg,min at which the minimum conductivity occurs, 



35 

 

and find agreement with theoretical predictions [21,22,25], indicating that disorder 

due to charged impurities is the relevant physics at the minimum conductivity point in 

present samples.  

 

Figure 4.1(a) shows the graphene device used in this study, and Fig. 4.1(b) 

shows its micro-Raman spectrum; the single lorentzian D' peak confirms that the 

device is single-layer graphene [64] (see the Methods section). To vary the density of 

charged impurities, the device was dosed with a controlled potassium flux in 

sequential 2 s intervals at a sample temperature T = 20 K in ultrahigh vacuum (UHV). 

The gate-voltage-dependent conductivity σ (Vg) was measured in situ for the pristine 

device, and again after each doping interval. After several doping intervals, the device 

was annealed in UHV to 490 K to remove weakly adsorbed potassium [79], then 

Figure 4.1 Optical micrograph and Raman spectrum of a graphene device. 

 (a) Optical micrograph of the device. (b) 633 nm micro-Raman shift spectrum 

acquired over the device area, with Lorentzian fit to the D‟ peak, confirming that 

the device is made from single-layer graphene (vertical scale is same throughout 

b). 
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cooled to 20 K and the doping experiment repeated; four such runs (runs 1–4) were 

carried out in total. 

 

Figure 4.2 shows the conductivity versus gate voltage for the pristine device 

and at three different doping concentrations at 20 K in UHV for run 3. On K-doping, 

(1) the mobility decreases, (2) σ (Vg) becomes more linear, (3) the mobility 

asymmetry for holes versus electrons increases, (4) the gate voltage of minimum 

Figure 4.2 Potassium doping of graphene. 

The conductivity (σ) vs. gate voltage (Vg) curves for the pristine sample and three 

different doping concentrations taken at 20K in ultra-high vacuum are shown. Data 

are from Run 3. Lines are fits to equation (4.1), and the crossing of the lines defines 

the points of the residual conductivity and the gate voltage at minimum conductivity 

(σres, Vg,min) for each data set. The variation of σmin with impurity concentration is 

shown in Figure 4.5. 
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conductivity Vg,min shifts to more negative gate voltage, (5) the width of the minimum 

conductivity region in Vg broadens and (6) the minimum conductivity σmin decreases, 

at least initially (see also Fig. 4.5 below). In addition, (7) the linear σ (Vg) curves 

extrapolate to a finite σres at Vg,min. All of these features have been predicted 

[18,19,21,22,25,73-75] for charged-impurity scattering in graphene; we will discuss 

each in detail below.  

Effects (4) and (5) were observed in a previous study in which graphene was 

exposed to molecular species [80]. However, the authors reported no changes in 

mobility, concluding that charged-impurity scattering contributes negligibly to the 

mobility of graphene. As discussed further in the Supplementary Information section, 

the previous experiments did not control the environment and had low initial sample 

mobility. The failure to observe effects (1)–(3) therefore is most likely due to the 

presence of significant concentrations of both positively and negatively charged 

impurities [80,81], although the presence of water and resist residue [66] may also be 

contributing factors [80]. 

 We first examine the behavior of σ (Vg) at high carrier density. For Vg not too 

near Vg,min, the conductivity can be fitted (Fig. 4.2) by 

,min ,min

,min ,min

( )
( )

( )

e g g g res g g

g

h g g g res g g

c V V V V
V

c V V V V

 


 

  
 

   

                                     (4.2) 

where μe and μh are the electron and hole field-effect mobilities, cg is the gate 

capacitance per unit area, 4 21.15 10 Fm  , and σres is the residual conductivity that is 

determined by the fit. The mobilities are reduced by an order of magnitude during 

each run, and recover on annealing. The electron mobilities ranged from 0.081 to 1.32 
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m
2
 V

-1
 s

-1
 over the four runs, nearly covering the range of mobilities reported so far in 

the literature (~ 0.1 – 2 m
2
 V

-1
 s

-1
) [17,29,69].  

 

For uncorrelated scatterers, the mobility depends inversely on the density of 

charged impurities, 1/μ ~ nimp, and equations (4.1) and (4.2) are identical. We assume 

nimp varies linearly with dosing time t as potassium is added to the device. Figure 4.3 

shows 1/μe and 1/μh versus t, which are linear, in agreement with 1/μ ~ nimp, hence 

verifying that equation (4.1) describes charged-impurity scattering in graphene. We 

Figure 4.3 Inverse electron mobility 1/μe and hole mobility 1/μh vs. doping time. 

 Experimental error determined from standard error propagation is less than 4% (see 

Methods). Lines are linear fits to all data points. Inset: The ratio of μe to μh vs. doping 

time. Error bars represent experimental error in determining the mobility ratio from 

the fitting procedure (see Methods). Data are from run 3 (same as Figure 4.2). 
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estimate the dosing rate dnimp/dt  = (2.6–3.2)×10
15

 m
-2

 s
-1

 and the maximum 

concentration of (1.4–1.8)×10
-3

 potassium per carbon (see the Supplementary 

Information section). From this point, we parameterize the data by 1/μe, proportional 

to the impurity concentration (the data set for e is more extensive than for h because 

of the limited Vg range accessible experimentally).  

Figure 4.3, inset shows that, although the μe and μh are not identical, their ratio 

is fairly constant at μe/μh = 0.83±0.01 (see the Methods section). Novikov [73] 

predicted μe/μh = 0.37 for an impurity charge Z = 1; however, the asymmetry is 

expected to be reduced when screening by conduction electrons is included. 

As K-dosing increases and mobility decreases, the linear behavior of σ (Vg) 

(Fig. 4.2) associated with charged-impurity scattering dominates, as predicted 

theoretically [22]. At the lowest K-dosing level, sub-linear behavior is observed for 

large |Vg- Vg,min| as anticipated. The dependence of the conductivity on carrier density 

n ~ | Vg- Vg,min | is expected to be σ ~ n
a
 with a = 1 for charged impurities and a < 1 

for short-range and ripple scattering (see the Supplementary Information section). 

Adding conductivities in inverse according to Matthiessen's rule indicates that 

scattering other than by charged impurities will dominate at large n, with the 

crossover occurring at larger n as nimp is increased [22]. A previous study [29] also 

found more linear σ (Vg) for devices with lower mobility. Thus, our data indicate that 

the variation in observed field-effect mobilities of graphene devices is determined by 

the level of unintentional charged impurities. 
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Figure 4.4 Shift of minimum conductivity point with doping.  

The gate voltage of minimum conductivity Vg,min is shown as a function of inverse 

mobility, which is proportional to the impurity concentration. All four experimental 

runs are shown. Each data set has been shifted by a constant offset in Vg,min in order to 

make Vg,min(1/μe → 0) = 0, to account for any rigid threshold shift. The offset (in 

volts) is -10, 3.1, 5.6, and 8.2 for the four runs, respectively, with the variation likely 

to be due to accumulation of K in the SiO2 on successive experiments. The open dots 

are Vg,min obtained directly from the σ(Vg) curves rather than fits to equation (4.1) 

because the linear regime of the hole side of these curves is not accessible due to 

heavy doping. The solid and short-dashed lines are from the theory of Adam et al. 

[25] for an impurity-graphene distance d = 0.3 nm (solid line) and d = 1 nm (short-

dashed line), and approximately follow power laws with slopes 1.2 and 1.3, 

respectively. The long-dashed line shows the linear relationship ΔVg,min = 

nimpZe/cg ,where nimp = (5×10
1 

V
-1

s
-1

)/μ and Z = 1. 
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 We now examine the shift of the curves in Vg. Figure 4.4 shows Vg,min as a 

function of 1/μe. Run 1 differs from runs 2–4, presumably owing to irreversible 

changes as potassium reacts with charge traps on silicon oxide and/or edges and 

defects of the graphene sheet. After run 1, subsequent runs are very repeatable, other 

than an increasing rigid shift to more negative voltage in the initial gate voltage of 

minimum conductivity. (The same distinction between first and subsequent 

experiments is seen in Fig. 4.5 as well.) It might be expected that the minimum 

conductivity would occur at the induced carrier density that precisely neutralizes the 

charged-impurity density: n = - Znimp or ΔVg,min = - nimpZe/cg [80], where e is the 

elementary charge and Ze is the charge of the potassium ion. This prediction is shown 

as the long-dashed line in Fig. 4.4; the experimental data show a distinctly different 

effective power-law dependence. Adam et al. [25] proposed that the minimum 

conductivity in fact occurs at the added carrier density  at which the average impurity 

potential is zero, ,min /g gV ne c    , where n  is a function of nimp, the impurity 

spacing d from the graphene plane and the dielectric constant of the SiO2 substrate. 

The theory also assumes that Z = 1; experimentally, a reasonable evaluation [82] of Z 

for dilute potassium on graphite is ~0.7. The theoretical lines in Fig. 4.4 are given by 

the exact result of Adam et al. [25], and follow an approximate power-law behavior 

of ΔVg,min  ~  nimp
b
 with b = 1.2 – 1.3, which agrees well with experiment. The only 

adjustable parameter is the impurity–graphene distance d; we show the results for d = 

0.3 nm (a reasonable value for the distance of potassium on graphene [82-84]) and d 

= 1.0 nm (the value used by Adam et al.). As ΔVg,min gives an independent estimate of 
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nimp, the quantitative agreement in Fig. 4.4 verifies that C = 5×10
15

 V
-1

 s
-1

 in equation 

(4.1), as expected theoretically 

Figure 4.5 Change in behavior near minimum conductivity point with doping. 

 (a) The minimum conductivity and the residual conductivity (defined in text) 

as a function of 1/μe (proportional to the impurity density). (b) The plateau 

width ΔVg as a function of 1/μe. In a and b, data from all four experimental runs 

are shown, as well as the theoretical predictions of the minimum conductivity 

and plateau width from Adam et al.[25] for d = 0.3 nm (solid line) and d = 1 nm 

(short-dashed line). Error bars represent experimental error in determining σres 

and ΔVg from the fitting procedure (see Methods); σmin is measured directly 
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We now turn to the behavior near the point of minimum conductivity. Figure 

4.5 (a) shows the minimum conductivity σmin and residual conductivity σres as a 

function of 1/μe, and Fig. 4.5 (b) shows the plateau width ΔVg as a function of 1/μe; 

ΔVg is the difference between the two values of Vg for which σmin = σ (Vg) in equation 

(4.2). The predictions from the theory of Adam et al. [25] for σmin and ΔVg are also 

shown. The minimum conductivity drops on initial potassium dosing, and shows a 

broad minimum near 4e
2
/h before gradually increasing with further exposure. Notably, 

the cleanest samples show σmin significantly greater than 4e
2
/h, and strongly 

dependent on charged-impurity density, indicating that the universal behavior[77,78]  

of σmin associated with the Dirac point is not observed even in the cleanest samples. 

The irreversible change in the value of σmin between run 1 and runs 2–4 is larger than 

the entire variation within runs 2–4. This difference between initial and subsequent 

runs indicates that the initial K-dosing and anneal cycle introduces other types of 

disorder (possibly short-range scatterers induced by irreversible chemisorption of 

potassium on defects or reaction of potassium with adsorbates) that have a 

comparable or greater impact on σmin than charged impurities. That, for some disorder 

conditions (run 1), σmin varies significantly with nimp, but for other conditions (runs 2–

4), the decrease in σmin saturates rapidly with increasing nimp, and is nearly constant 

for a very broad range of doping, suggests that the substantial variations reported in 

the literature (some groups report that σmin is a universal value [17], whereas other 

groups observe variation in σmin from sample to sample [29]) are probably due to poor 

control of the chemical environment of the devices measured. The observed residual 

conductivity σres is finite and surprisingly constant (Fig. 4.5 (a)); it is only weakly 
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dependent on doping, and shows little variation between the first run and subsequent 

runs. Finite σres has been predicted theoretically [74,75] for graphene with charged 

impurities; however, the magnitude has not been calculated. The change of ΔVg with 

doping (Fig. 4.5 (b)) agrees only qualitatively with the theory, which predicts larger 

values and a sublinear dependence on doping. However, the quantitative 

disagreements between experiment and theory in Fig. 4.5 (a),(b) are connected: 

mobility, minimum conductivity and residual conductivity determine ΔVg. 

 In summary, the dependence of conductivity of graphene on the density of 

charged impurities has been demonstrated by controlled potassium doping of clean-

graphene devices in UHV at low temperature. The minimum conductivity depends 

systematically on charged-impurity density, decreasing on initial doping, and 

reaching a minimum near 4e
2
/h only for non-zero charged-impurity density, 

indicating that the universal conductivity at the Dirac point [17,77,78] has not yet 

been probed experimentally. The high-carrier-density conductivity is quantitatively 

consistent with theoretical predictions for charged-impurity scattering in graphene 

[18,19,21,22,25,73-75]. The addition of charged impurities produces a more linear σ 

(Vg), and reduces the mobility, with the constant C = μnimp = 5×10
15

 V
-1

 s
-1

, in 

excellent agreement with theory. The asymmetry for repulsive versus attractive 

scattering predicted for massless Dirac quasiparticles [73] is observed for the first 

time. Finally, the minimum conductivity point [25] occurs at the applied gate voltage 

at which the average impurity potential is zero and not at the voltage at which the 

gate-induced carrier density neutralizes the impurity charge. 
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Other observations indicate the need for fuller experimental and theoretical 

understanding. The irreversible changes in the behavior around Vg,min between the first 

and subsequent doping runs indicate that the precise value of the minimum 

conductivity depends on the interplay of more than one type of disorder, and hence 

cannot be explained by existing theories [18,21,22,25,32,70,72,74,75]. An interesting 

new feature, the residual conductivity, may point to physics beyond the simple 

Boltzmann transport picture [74,75]. Further experiments including introducing short-

range (neutral) scatterers to graphene will be useful in addressing these questions. 

Full understanding may require scanned-probe studies of graphene under well-

controlled environmental conditions [66], which can completely characterize the 

disorder due to defects, charged and neutral adsorbates and ripples, as well as probe 

the electron scattering from each [85]. 

4.1 Methods 

 Fabrication of graphene devices and in situ transport measurements in UHV 

are described in chapter 3. Experiments are carried out at pressures lower than 5×10
- 

10
 torr and device temperature T = 20 K. Potassium doping is accomplished by 

passing a current of 6.5 A through a getter (SAES Getters) for 40 s before the shutter 

is opened for 2 s. The getter temperature during each potassium dosage was 763±5 K 

as measured by optical pyrometry. The stability of the potassium flux was monitored 

by a residual gas analyzer positioned off-axis and behind the sample (see the 

Supplementary Information section). All measurements were carried out on one four-
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probe device shown in Fig. 4.1 (a), although several two-probe devices showed 

similar behavior. 

 Conductivity σ is determined from the measured four-probe sample resistance 

R using σ = (L/W)(1/R). Because the sample is not an ideal Hall bar, there is some 

uncertainty in the (constant) geometrical factor L/W. We estimate L/W = 0.80 ± 0.09, 

where the error bars represent ± one standard deviation. This 11% uncertainty in L/W 

translates into an 11% uncertainty in the vertical axes of Figs 4.2 and 4.3, the 

horizontal axes of Figs 4.4 and 4.5 (b) and both axes of Fig. 4.5 (a). Such scale 

changes are comparable to the spread among different experimental runs, and do not 

alter our conclusions. Notably, the uncertainty represents a systematic error, so 

relative changes in, for example, the minimum conductivity with charged-impurity 

density are still correct. 

 Best fits to equation (4.1) were determined using a least-squares linear fit to 

the steepest regime in the σ (Vg) curves. The steepest regime of the σ (Vg) curves was 

determined by examining dσ/dVg; the fit was carried out over a 2 V interval in Vg 

around the maximum of dσ/dVg. Other criteria for determining the maximum field-

effect mobility give similar results. The experimental errors in μe and μh are 

determined by the fitting procedure described above; the errors in Vg,min, σres, ΔVg 

(plateau width) and μe/μh are then calculated using equation (4.1) and standard error 

propagation. The errors (standard deviation) in μe, μh and Vg,min were typically less 

than 4% . σmin is measured directly, and has less than 1% error. Error bars (± one 

standard deviation) are shown in Fig. 4.3, inset for the errors in μe/μh, and in Fig. 4.5 
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for the errors in σres and ΔVg. The weighted mean of μe/μh at non-zero dosing time is 

0.83 and the weighted standard deviation of the mean is 0.01. 

4.2 Supplementary Information 

4.2.1 Theoretical predictions for charged impurity scattering in graphene 

 We briefly review the state of theoretical and experimental work on zero 

magnetic-field charge transport in graphene to place this work in context. Early 

theoretical work [77,78] on massless Dirac fermions using the Kubo formalism 

showed that the conductivity at the Dirac point for vanishing disorder is 4e
2
/πh. The 

minimum conductivity on order 4e
2
/πh in graphene in the absence of disorder has 

been verified by others using the Kubo [28] and Landauer formalisms [28,86]. The 

addition of point scatterers gives a finite conductivity at finite carrier density which is 

independent of carrier density [14]. Attempts [21,70] to extrapolate between the high- 

and zero-density limits of scattering from short-range disorder have given a square-

root dependence of conductivity on density, in contradiction with the experimentally-

observed linear dependence. 

 Several groups [18,19,21,22,25] found charged impurity scattering in 

graphene to produce a conductivity linear in charge density and inversely 

proportional to impurity density, i.e.  

( ) ,
imp

n
n Ce

n
                                                                                         (4.2.1) 

This is equivalent to a constant mobility inversely proportional to charged impurity 



48 

 

density μ = C/nimp. The constant C was determined to be on order 10
16

 V
-1

s
-1

 

[18,19,21,22,25], depending on the approximation used to calculate the screened 

Coulomb potential. Hwang, et al.[22] calculated the screened Coulomb potential 

within the random phase approximation, giving the most precise estimate of C = 5 x 

10
15

 V
-1

s
-1

. 

 The minimum conductivity for graphene with charged impurity scatterers has 

been treated theoretically by several groups. Numerical calculations [21,22] showed a 

finite conductivity of order 4e
2
/h at zero charge density, which persisted over a 

plateau width roughly determined by the impurity density, and Adam, et al. [25] 

calculated the plateau width analytically. Adam, et al. also found analytically the 

dependence of minimum conductivity on density, and calculated the density at which 

the minimum conductivity occurs, adapting the theory of semiconductor band tails 

[87] to this problem. The minimum conductivity problem was also treated by 

Cheianov, et al. [88]; the results are qualitatively consistent with Adam, et al., but 

they made no quantitative prediction of its magnitude or dependence on charged 

impurity density. 

 Recent work either extending Boltzmann transport theory to include electron-

hole correlations [74] or using the current-current correlation function to calculate the 

Conductivity [75] has suggested Eqn. (4.2.1) may be modified to 

 ( ) ,res

imp

n
n Ce

n
                                                                                  (4.2.2) 

which leaves the field-effect mobility independent of density, but does modify the 

minimal conductivity. Trushin and Schliemann [74]  made no prediction for the 
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magnitude of σres, while Yan, et al. [75] found a residual conductivity σres = 0.9e
2
/h 

for a particular impurity density nimp = 7.8 x 10
11

 cm
-2

. However, both works exclude 

the charge inhomogeneity caused by the random Coulomb potential, so it is not clear 

how to determine the minimum or residual conductivities in the presence of this 

inhomogeneity. 

 Novikov [73] extended the semi-classical approach beyond the Born 

approximation, and found that charged impurity scattering obeys Eqn. (4.2.1), but C 

is dependent on the relative sign of carrier and impurity; C is still of order 10
15

 V
-1

s
-1

, 

but the electron-hole asymmetry in C is expected to be a factor of 0.37 for graphene 

on SiO2 in the absence of screening by conduction electrons. Including screening will 

reduce this value, and our experimental value 0.83 is very reasonable. Importantly, 

the asymmetry is only found for scattering by charged impurities, and not for 

scattering by ripples (see below); furthermore the asymmetry is associated with 

massless Dirac quasiparticles, and is not observed for massive quasiparticles in 

conventional materials. Thus, the observation of this asymmetry is definitive evidence 

that we are observing charged impurity scattering of massless Dirac particles. 

 Katsnelson and Geim [72] point out that in addition to charged impurity 

scattering, scattering by ripples could produce the behavior in Eqn. (4.2.1); in general 

ripples with height-height correlation function given by  
2 2( ) (0) Hh r h r  produce 

a conductivity in the form 

2 1

( )

H

imp

n
n Ce

n




 
   

 

, which is equivalent to Eqn. (4.2.1) 

for 2H = 2. However, the experimentally measured exponent for the height-height 
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correlation function of graphene on SiO2 is 2H = 1.1 [66]; notably, this result was 

measured for samples fabricated in the same laboratory as the present work. This 

indicates that for graphene on amorphous SiO2, ripples are more likely to have an 

effect similar to short-range disorder (σ ~ constant) rather than charged impurity 

disorder (σ ~ n). 

4.2.2 Experimental studies of transport in graphene 

 Experimentally, the conductivity of graphene on SiO2 is observed by several 

groups to be linear in density [6,17]. Tan, et al. [29] have reported the most extensive 

data on the range of behaviors observed for graphene on SiO2, and noted a correlation 

between lower mobility, larger threshold shift, and broader minimum conductivity 

region. Their result is consistent with the theory of charged impurity scattering, 

though they could not correlate the observations with an independent measure of 

charged impurity density, and presumably the experiments could also be understood 

considering ripple scattering with 2H = 2. 

 Schedin, et al. [80] studied the doping of graphene by molecular species at 

room temperature, but failed to observe any dependence of the mobility or minimum 

conductivity upon molecular doping (though they explored a much smaller range of 

Vg,min shift than in the present work). They concluded that charged impurity scattering 

contributes negligibly to the mobility of graphene; calculating C > 10
17

 V
-1

s
-1

, more 

than an order of magnitude larger than theoretical expectations and the experimental 

value found in this work. However, their experiments are confounded by the lack of 

UHV environment (especially the presence of adsorbed water), resist residue on the 
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sample (which may be responsible for the unexpected irreversible adsorption of gases 

at room temperature), and low initial sample mobility. Within the model of charged 

impurity scattering, the low initial mobility reported in Schedin, et al. together with 

the Vg,min near zero, indicates significant concentrations nimp
+
 and nimp

-
 of positively 

and negatively charged impurities, respectively. While it cannot be determined which 

confounding factor prevented them from measuring the effects of charged impurity 

scattering, a reasonable explanation is that molecular doping may compensate some 

of the existing impurities [81]. Compensation results in an increase in net impurity 

charge nimp
+
 - nimp

-
, while reducing the absolute number of impurities nimp

+
 + nimp

-
 and 

increasing mobility. In principle a combination of compensation and addition of new 

impurities can cause any behavior in between, and can explain a shift in Vg,min absent 

a change in mobility. 

4.2.3 Comparison of our work to theory 

 We identify six specific effects of charged impurity scattering on transport in 

graphene: (1) the mobility decreases with increasing nimp, (2) the gate-voltage 

dependence of the conductivity σ (Vg) becomes more linear with increasing nimp, (3) 

for positive impurities, the mobility becomes larger for holes than electrons, (4) the 

gate voltage of minimum conductivity Vg,min shifts to more negative gate voltage with 

increasing nimp, (5) the width of the minimum conductivity region in Vg broadens, (6) 

the minimum conductivity σmin decreases and then increases with increasing nimp. In 

addition we observe a seventh effect (7); we observe a residual conductivity σres 

(defined in Eqn. 4.1) which is roughly independent of nimp. Of these, effects (1) and (2) 
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are ubiquitously accepted by the theoretical community [18,19,21,22,25,73-75], and 

our results are in quantitative agreement in the magnitude of the constant C in Eqn. 

(4.2.1). Effect (3) was recently pointed out [89] as a property of Dirac fermions which 

is not observed for massive quasiparticles. Adam, et al. [25] give an analytical 

expression for effect (5), however this effect is anticipated by several other works 

[21,22,88]. Quantitative predictions for effects (4) and (6) have only been attempted 

by Adam [25], but (4) is in general expected, and follows directly from work on the 

problem of semiconductor band tails [87]. Effect (7) was unanticipated in early work 

on charged impurity scattering, but was recently found using two separate techniques 

[74,75]  though there is no quantitative prediction for the residual conductivity as a 

function of impurity density. 

 Together, our results indicate good quantitative agreement with the theory of 

charged impurity scattering in the high-density regime. In particular, charged 

impurity scattering produces a constant field-effect mobility (linear σ (Vg)), with the 

mobility-impurity density product C = 5 x 10
15

 V
-1

s
-1

. We also find that the gate 

voltage shift of the minimum conductivity point is accurately described taking into 

account the screened impurity potential, indicating the physics of the minimum 

conductivity point is governed by charge-carrier inhomogeneity produced by charged 

impurities. Near the minimum conductivity point, we find qualitative agreement with 

theory; the minimum conductivity decreases initially with addition of charged 

impurities, and the minimum conductivity region broadens. Our experimental 

observation of a residual conductivity at zero density and the non-monotonic 

dependence of the minimum conductivity on impurity density indicate that there still 
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remain subtle issues to be understood regarding the minimum conductivity in 

graphene. 

Experimentally, we tune only the density of charged impurities, so we can 

only make comparisons to the theory of charged impurity scattering. However, we 

can argue that other contributions to scattering in graphene at low temperature are 

small, at least in the samples presently available, for the following reasons. First, the 

linear behavior which is characteristic of charged impurity scattering is observed over 

a wide range of impurity densities. The sublinear behavior observed at the lowest 

impurity density can be used to put a bound on any other contribution to the mobility; 

a contribution with a characteristic σ (n) = constant (e.g. from point defects) could at 

most contribute to one-third of the resistivity at a carrier concentration of 3 x 10
12

  

cm
-2

, or a mobility of > 3 m
2
/Vs at that density (and higher at lower density; σ (n) = 

constant implies μ ∝ n
−1

 ). This is significantly higher than the mobility of the best 

samples at present, but future experiments on graphene with significantly lower 

charged impurity density may be able to probe this scattering contribution. Second, 

the linear conductivity behavior seen in all experimental samples to date is associated 

with only two types of scatterers: charged impurities, and ripples with a particular 

height-height correlation function exponent 2H = 2. However, our experiments 

clearly show that the experimentally observed transport behaviors can quantitatively 

described with reasonable charged impurity concentrations. The same is not true for 

ripples; there is no experimental evidence that ripples with the proper height-height 

correlation exponent or magnitude exist in graphene on SiO2. On the contrary, 
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graphene on SiO2 exhibits a height-height correlation exponent 2H ≈ 1 [66], 

indicating ripples should have a similar effect to short-range disorder.  

4.2.4 Effect of Impurity Charge Z ≠ 1 

The theoretical models used in the main text to compare with our 

experimental results assume that the valence of the potassium impurity atoms Z = 1, 

although experimental estimates give Z ~ 0.7. for potassium on graphite [82,90]. 

Following the experimental procedure where mobility μ is measured directly through 

the linear fit of conductivity with gate voltage, one can estimate, that to first order, 

allowing Z ≠ 1 would change our estimates for the experimentally derived quantities 

as follows: C → C/Z
2
, Vg,min → Vg,min/Z

2
, while the minimum conductivity σmin and 

plateau width ΔVg are unchanged to this level of approximation. Therefore, using Z = 

0.7 instead of Z = 1 would change the theoretical predictions for some quantities by a 

factor of ~2. We feel that this is not a significant correction, since we do not expect 

the accuracy of the theory when compared to experiment to be better than a factor of 

2, and moreover, the precise value of Z for potassium on graphene is unknown. 

4.2.5 Determination of Potassium Dosing Rate 

We use the fact that the product of mobility and impurity concentration is a 

constant, μnimp = C, where C = 5×10
15

 V
-1

s
-1

, with the linear fits in figure 4.3 of the 

main text to obtain the dosing rate dnimp/dt = (2.6~3.2)×10
15 

m
-2

s
-1

. The value 

corresponds to a maximum concentration of (1.4~1.8)×10
-3

 potassium atoms per 

carbon atom for the largest dosing time (18s) used. 
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The dosing rate was also estimated from residual gas analysis of the K flux 

during evaporation. Correcting for the geometry factor, the RGA-reported K-pressure 

would correspond to a flux of approximately 5×10
14

 m
-2

s
-1

 at the sample. Since the 

RGA has not been calibrated for potassium, the value cannot be used quantitatively, 

but does confirm the order of magnitude of the deposition rate. 
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Chapter 5 : Tuning the effective fine structure constant in 

graphene ;  opposing effects of dielectric screening on short- 

and long-range potential scattering 
2
 

 

Abstact : We reduce the dimensionless interaction strength α in graphene by 

adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. 

The mobility limited by long-range impurity scattering is increased over 30%, due to 

the background dielectric constant enhancement leading to a reduced interaction of 

electrons with charged impurities. However, the carrier-density-independent 

conductivity due to short-range impurities is decreased by almost 40%, due to 

reduced screening of the impurity potential by conduction electrons. The minimum 

conductivity is nearly unchanged, due to canceling contributions from the electron-

hole puddle density and long-range impurity mobility. Experimental data are 

compared with theoretical predictions with excellent agreement.  

 

 

 

 

 

                                                 

2
 This chapter was adapted from: C. Jang, S. Adam, J.-H. Chen, E.D. Williams, S. 

Das Sarma, and M.S. Fuhrer, Phys. Rev. Lett. 101, 146805 (2008) 
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Most theoretical and experimental work on graphene has focused on its 

gapless, linear electronic energy dispersion E = ħvFk. One important consequence of 

this linear spectrum is that the dimensionless coupling constant α (or equivalently rs, 

defined here as the ratio between the graphene Coulomb potential energy and kinetic 

energy) is a carrier-density independent constant [20,91], and as a result, the 

Coulomb potential of charged impurities in graphene is renormalized by screening, 

but strictly maintains its long-range character. Thus there is a clear dichotomy 

between long-range and short-range scattering in graphene, with the former giving 

rise to a conductivity linear [20,22] in carrier density (constant mobility), and the 

latter having a constant conductivity independent of carrier density. Charged impurity 

scattering necessarily dominates at low carrier density, and the minimum conductivity 

at charge neutrality is determined by the charged impurity scattering and the self-

consistent electron and hole puddles of the screened impurity potential[12,22,25,29] .  

Apart from the linear spectrum, an additional striking aspect of graphene, 

setting it apart from all other two-dimensional electron systems, is that the electrons 

are confined to a plane of atomic thickness. This fact has a number of ramifications 

which are only beginning to be explored [92]. One such consequence is that 

graphene's properties may be tuned enormously by changing the surrounding 

environment. Here we provide a clear demonstration of this by reducing the 

dimensionless coupling constant α in graphene by more than 30 percent through the 

addition of a dielectric layer (ice) on top of the graphene sheet. Upon addition of the 

ice layer, the mobility limited by long-range scattering by charged impurities 

increases by 31 percent, while the conductivity limited by short-range scatterers 
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decreases by 38 percent. The minimum conductivity value remains nearly unchanged. 

The opposing effects of reducing α on short-and long-range scattering are easily 

understood theoretically. The major effect on long-range scattering is to reduce the 

Coulomb interaction of electrons with charged impurities, reducing the scattering [93]. 

In contrast, the dielectric does not modify the atomic-scale potential of short-range 

scatterers, and there the leading effect is the reduction of screening by the charge 

carriers, which increases scattering resulting in lower high-density conductivity. Such 

screening of short-range potentials has been predicted theoretically [2,94], although in 

other 2D systems, this effect is difficult to observe experimentally. The minimum 

conductivity is nearly unchanged due to competing effects of increased mobility and 

reduced carrier concentration in electron-hole puddles due to reduced screening 

[25,30]. 

 

 

Figure 5.1 Schematic illustrating dielectric screening in graphene.  

The dielectric environment controls in the interaction strength parameterized by the 

coupling constant α. 
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Figure 5.1 illustrates the effect of the dielectric environment on graphene. For 

graphene sandwiched between two dielectric slabs with κ1 and κ2, 

2

1 2

2

( ) F

e

v


 



                                                                                   (5.1) 

,where e is the electronic charge, ħ is Planck's constant, and vF is the Fermi velocity, 

which we take to be 1.1 × 10
6
 ms

-1
 [16,17,95]. Typically, graphene transport 

experiments [12,16,17,29] are performed on a SiO2 substrate with κ1 ≈ 3.9 and in 

air/vacuum κ2 ≈ 1, making graphene a weakly interacting electron system with α ≈ 0.8 

(although very recently work on substrate-free graphene [96] explored the strong 

coupling regime with α ≈ 2). Here we deposit ice (κ2 ≈ 3.2 [97]) on graphene on SiO2, 

decreasing α from ≈ 0.81 to ≈ 0.56. 

 Graphene is obtained by mechanical exfoliation of Kish graphite on a SiO2 

(300 nm)/Si substrate [17]. The heavily n-doped silicon substrate is used as a back 

gate. Graphene monolayers are identified from the color contrast in an optical 

microscope image and confirmed by Raman spectroscopy [64]. The final device (see 

Figure 5.2 inset) was fabricated by patterning electrodes using electron beam 

lithography and thermally evaporated Cr/Au, followed by annealing in Ar/H2 to 

remove resist residue (see chapter 3 for details). The experiments are performed in a 

cryostat cold finger placed in an ultra high vacuum (UHV) chamber. In order to 

remove residual adsorbed gases on the device and the substrate, the sample was baked 

at 430 K overnight in UHV following a vacuum bakeout. The conductivity was 
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measured using a conventional four-probe technique with an ac current of 50 nA at a 

base pressure (~ 10
-10

 torr) and device temperature (~ 77 K). Deionized nanopure 

water was introduced through a leak valve attached to the chamber. The water gas 

pressure (determined by a residual gas analyzer) was 5 ± 3 × 10
-8

 torr. The amount of 

ice deposited was estimated by assuming a sticking coefficient of unity and the ice Ih 

layer density of 9.54 × 10
14

 cm
-2

 [98,99]. 

 

Figure 5.2 Conductivity of the graphene device as a function of back-gate voltage 

 for pristine graphene (circles) and after deposition of 6 monolayers of ice (triangles). 

Lines are fits to Eq.(5.2). Inset: Optical microscope image of the device. 
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Figure 5.2 shows conductivity as a function of gate voltage for two different 

sample conditions, pristine graphene and ice-covered graphene. We observe several 

interesting effects of adding ice: (i) The offset gate voltage at which the conductivity 

is a minimum Vg,min remains unchanged; (ii) the minimum conductivity σmin value 

remains unchanged, (iii) the maximum slope of σ (Vg) becomes steeper, and (iv) the 

curve σ (Vg) in the presence of ice is more non-linear and crosses that of the pristine 

sample at some large carrier density. All these features can be understood 

qualitatively from the physical picture described above, and we show below that they 

are in quantitative agreement with the predictions of Boltzmann transport theory 

including screening within the Random Phase Approximation (RPA). 

 In order to interpret the experimental results quantitatively [100], we fit the 

conductivity data to  

 1 1 1( , ) ( )g sV ne                                                                      (5.2) 

,where ne = cg |Vg – Vg,min|, e is the electric charge and cg = 1.15 × 10
-8

 V/cm
2
 is the 

gate capacitance per unit area for the 300 nm thick SiO2. Since the transport curves 

are not symmetric about the minimum gate voltage, the fitting is performed separately 

for positive and negative carrier densities (i.e. electron and hole carriers), excluding 

data close to the Dirac point conductivity plateau (Vg,min ± 5V). We report both the 

symmetric μsym (σsym) and anti-symmetric μasym (σasym) contributions to the mobility 

(conductivity). Shown also in figure 5.2 is the result of the fit for pristine graphene 

and after deposition of 6 monolayers of ice.  
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Figure 5.3 shows μsym, σsym and σmin as a function of number of ice layers. The 

mobility (Figure 5.3 (a)) of pristine graphene is 9,000 cm
2
V

-1
s

-1
, which is typical for 

clean graphene devices on SiO2 substrates at low temperature. As the number of 

water layers increases, the mobility increases, and saturates after about 3 layers of ice 

to about 12,000 cm
2
V

-1
s

-1
. In contrast, the conductivity due to short-range scatterers 

(Figure 5.3 (b)) decreases from 280 e
2
/h to 170 e

2
/h. The decrease in conductivity due 

to short-range scatterers shows a similar saturation behavior as the mobility, 

Figure 5.3 μsym, σsym and σmin as a function of number of ice layers. 

Dashed lines show the values for pristine graphene and corresponding theoretical 

expectations for the ice-covered device. 
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suggesting they have the same origin
3
. The absence of any sharp change in the 

conductivity or mobility at very low ice coverage rules out ice itself acting as a 

significant source of short- or long-range scattering. This is corroborated by the 

absence of a shift in the gate voltage of the minimum conductivity, consistent with 

physisorbed ice [98] not donating charge to graphene [12,25,29]. Figure 5.3 (c) shows 

that the minimum conductivity is essentially unchanged during the addition of ice. 

 We now analyze the experimental results within Boltzmann transport theory. 

The conductivity of graphene depends strongly on the coupling constant α. For 

screened long-range impurities within RPA, we have [25] 

 

2

3 2
2 3

2

2 1
,

( )

16 (6 1)arccos[1/ 2 ]
( ) 24 (1 ) ,

4 1

l

imp l

l

e n

h n F

F




  
   






   



             (5.3)  

where in the last term, for α < 0.5 both arcos[1/2α] in the numerator and 24 1  in 

the denominator are purely imaginary so that Fl(α) is real and positive for all α. For 

screened short-range impurities, we have [27]  

                                                 

3
 The saturation behavior shown in Fig. 5.3 indicates that the ice film is continuous well before the 

formation of 6 full ice layers, and has reached a constant value of the dielectric constant. Bulk 

dielectric constant has been observed in ultrathin films of SiO2, see K. Hirose et al., Phys. Rev. B 67, 

195313 (2003), and it is reasonable to assume that these ultrathin ice layers have the bulk dielectric 

constant of ice. 
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                                  (5.4) 

where similarly Fs(α) is real and positive. Consistent with the physical picture 

outlined earlier, in the limit α → 0, σl ~ α
-2

 which describes the scaling of the 

Coulomb scattering matrix element, while for short-range scattering, σs ≈ const (1 + 

(64/3π) α) where increased screening of the potential by the carriers gives the leading 

order increase in conductivity. For the experimental values of α, the full functional 

form of Fs and Fl should be used
4
. Dashed lines in Figures 5.3 (a)-(b) show the 

theoretical expectations for μsym and σsym for vacuum and ice on graphene in 

quantitative agreement with experiment. 

 Regarding the magnitude of the minimum conductivity, it was recently 

proposed [25] that one can estimate σmin by computing the Boltzmann conductivity of 

the residual density n* that is induced by the charged impurities. This residual density 

(i.e. rms density of electrons and hole puddles) has been seen directly in scanning 

                                                 

4
 Results beyond the RPA approximation have been examined in A. V. Shytov et al., Phys. Rev. Lett. 

99, 236801 (2007), R. R. Biswas et al., Phys. Rev. B 76, 205122 (2007), V. M. Pereira et al., Phys. 

Rev. Lett. 99, 166802 (2007), I. S. Terekhov et al., Phys. Rev. Lett. 100, 076803 (2008), M. S. Foster 

et al. Phys. Rev. B 77, 195413 (2008) and M. Mueller et al., arXiv:0805.1413v1 (2008). We believe 

that these effects are unobservable in the current experiment. Also M. Trushin et al. Europhys. Lett. 83, 

17001 (2008) consider a phenomenological Yukawa potential. Generally one uses a model Yukawa 

potential in studying systems where the microscopic nature of the screened potential is unknown which 

is not the case for graphene. For the Yukawa potential, we find Fy = πα
2
+8α

3
- πα(1+4α

2
)

0.5
 which is 

qualitatively similar to Eq. 5.3.   
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probe experiments [101] and in numerical simulations [30]. We therefore use Eq.(5.3), 

but replace n with * 2 2/[ ( ) ]D Fn V    (where the angular brackets indicate 

ensemble averaging over configurations of the disorder potential VD) to give [25] 
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                                               (5.5) 

where ε(q) is the RPA dielectric function and d ≈ 1 nm is the typical impurity 

separation from the graphene sheet. The dominant contribution to both the disorder 

potential 2

DV   and Fl(α) is the Coulomb matrix element, giving n* ~ nimpα
2
 and 

1/Fl(α) ~ 1/α
2
 so that to leading order, σmin is unchanged by dielectric screening

5
. 

 

 

 

 

 

                                                 

5
 Estimating the charged impurity density nimp ≈ 5.5×10

10
 cm

2
 (which is comparable to similar 

experiments  Y.-W. Tan, Y. Zhang, K. Bolotin, et al., Measurement of Scattering Rate and Minimum 

Conductivity in Graphene, Phys. Rev. Lett. 99, 246803 (2007).  J.-H. Chen, C. Jang, M. S. Fuhrer, et 

al., Charged Impurity Scattering in Graphene, Nat. Phys. 4, 377 (2008).) we find  S. Adam, E. H. 

Hwang, V. M. Galitski, et al., A self-consistent theory for graphene transport, Proc. Natl. Acad. Sci. 

USA 104, 18392 (2007). σmin(ice) = σmin(vac) ≈ 6.66/6.72 ≈ 0.99. The minimum conductivity (Fig. 5.3 

c) shows almost no variation with ice layers, in agreement with this theoretical expectation. We ignore 

quantum coherent effects such as localization (see e.g. I. Aleiner and K. Efetov, Phys. Rev. Lett. 97, 

236801 (2006)) which are not expected to be important at 77 K, and are not experimentally observed.  
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  Theory Experiments 

Long-range 

(symmetric): 

( )

( )

ice vac
sym l

vac ice

sym l

F

F

 

 
  

Ref [25] 1.26 1.31 

Short-range 

(symmetric): 

( )

( )

ice vac
sym s

vac ice

sym s

F

F

 

 
  

Ref [27] 0.62 0.62 

Minimum Conductivity: 

*

min

*

min

( ) ( )

( ) ( )

ice vacice

l

vac vac ice

l

n F

n F

 

  
  

Ref [25] 0.99 1.00 

Long-range  

(anti-symmetric): 

( )

( )

ice vac ice
asym l

vac ice vac

asym l

F

F

  

  
  

Ref [73] 0.87 0.17 

Short-range  

(anti-symmetric): 

ice

asym

vac

asym




 

Ref [102]  0.13 

  

The experimental data also show a mobility asymmetry (between electrons 

and holes) of about 10 percent. Novikov [73] argued that for Coulomb impurities in 

Table 5.1 Summary of our results in corresponding theoretical predictions. 
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graphene such an asymmetry is expected since electrons are slightly repelled by the 

negative impurity centers compared to holes resulting in slightly higher mobility for 

electrons (since Vg,min > 0, we determine that there are more negatively charged 

impurity centers, see also Ref. [12]); and that for unscreened Coulomb impurities 

μusc(± Vg) ~ [C2 α
2
 ± C3

 
α

3
 + C4α

4
 + …]

-1
. From the magnitude of the asymmetry, we 

know that C3α
3
 << C2α

2
, but if we further assume that C4 α

4
 << C3α

3
 (although, in the 

current experiment, we cannot extract the value of C4), then including the effects of 

screening gives μasym ~ α/Fl(α). 

In table 5.1 we show all the experimental fit parameters and compare them to 

theoretical predictions. The quantitative agreement for μsym, σmin and σsym is already 

highlighted in figure 5.3, while we have only qualitative agreement for μasym, 

probably because the condition C4 α
4
 << C3 α

3
 does not hold in our experiments. 

There is no theoretical expectation of asymmetry in σs; the experimental asymmetry 

(about 30 percent) could be explained by contact resistance [102] which we estimate 

to be a 20 percent correction to σs for our sample geometry. 

In conclusion we have observed the effect of dielectric environment on the 

transport properties of graphene. The experiment highlights the difference between 

long-range and short-range potential scattering in graphene. The enhanced μl (i.e. the 

slope of σ against density) and reduced σs (i.e. the constant conductivity at high 

density) are attributed to the decreased interaction between charged carriers and 

impurities and decreased screening by charge carriers, respectively, upon an increase 

in background dielectric constant with ice deposition in UHV. These variations 

quantitatively agree with theoretical expectations for the dependence of electron 
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scattering on graphene's “fine structure constant” within the RPA approximation. This 

detailed knowledge of the scattering mechanisms in graphene is essential for design 

of any useful graphene device, for example, use of a high-κ gate dielectric will 

increase the transconductance of graphene at the expense of linearity, an important 

consideration for analog applications. As demonstrated here, dielectric deposition 

only improved mobility by 30 %, however the use of high-κ dielectric overlayers 

could significantly enhance this result. 
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Chapter 6 : Magnetic Field induced insulator-quantum Hall 

conductor transition in disordered graphene 

 

Abstract: We have studied the insulator-quantum Hall conductor (I-QH) 

transition in disordered graphene covered with cobalt (Co) clusters. A clear critical 

magnetic field, separating insulating and metallic behaviors, was identified in the 

magnetotransport measurements for different temperatures from 2 – 10 K at fixed 

carrier density. Scaling analysis indicates that the transition is a quantum phase 

transition. The critical scaling exponent varies with carrier density, which may 

indicate the new universality class of the I-QH transition in graphene. 
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The localization-delocalization, or insulator-quantum Hall effect (I-QHE), 

transition in a two-dimensional electron system (2DES) is of fundamental interest as 

an example of a quantum phase transition.  Graphene offers a qualitatively new 2DES 

to study this transition, as graphene exhibits an unconventional half-integer QHE 

[16,17] due to the chiral nature of relativistic Dirac fermions in graphene, and a 

complex interplay of weak localization and weak anti-localization.  Recent 

experimental results on plateau-plateau (PP) transitions [40] and metal (QH plateau) 

to insulator (at N = 0 Landau level (LL)) [40-42,103-112] (PI) transitions have 

identified these phenomena as quantum phase transitions under scaling theory. 

Though the main properties of the transitions are similar to the results for 

conventional two dimensional electron gases (2DEGs) with massive charge carriers, 

several aspects such as the universality classes of the transitions [42,62,63] and the 

origin of the insulating states near N = 0 LL [41,106,108] are still not conclusive. 

Unlike the conventional 2DESs with massive fermions, the massless Dirac 

fermions of graphene cannot be strongly localized with long-wavelength disorder (e.g. 

charged impurities) because the carriers are able to pass through potential barriers 

(Klein tunneling). Only disorder which causes inter-valley scattering can restore the 

usual localization behavior and in principle induce strong localization in graphene 

[21,113-116]. Once strong localization is achieved, one might expect a delocalization 

transition (I-QHE transition) in graphene with increased magnetic field, similar to 

conventional 2DESs [47-51,117-120]. Indeed, in the phase diagram derived from 

numerical simulations based on the tight binding model of disordered graphene in 

magnetic field [39], not only the PP and PI transitions, but also the transitions from 
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the insulating state to QH states with any LL filling factors higher than 2 are possible 

as magnetic field increases. However, experimentally the I-QH transition induced by 

low magnetic field in graphene has not been reported yet, likely due to the difficulty 

of achieving suitably disordered samples. Although several groups recently have 

reported insulating behavior in graphene with inter-valley scatterers obtained by 

oxidation [114], hydrogenation [113,116] and fluorination [115], the transition from 

the insulating states to QH regime has not been reported. 

In this chapter, we investigate the transition from insulator to QH liquid in 

graphene with inter-valley scattering induced by cobalt nanoparticle decoration. 

Scaling analysis of the temperature and magnetic field dependence of the resistivity 

near the transition indicates a zero-temperature transition, i.e. a quantum phase 

transition. The temperature critical exponent varies with carrier density (tuned via 

back gated voltage), which is possibly an indication of a change in the universality 

class of the I-QH transition in graphene due to a change in the dominant disorder type 

with carrier density. 

A graphene field effect transistor device was fabricated and placed in a UHV 

chamber (as described in Chapter 3). Then 1 nm thick Co was deposited on the 

graphene device using an e-beam evaporator with a rate of 0.1 Å/s in UHV at 14 K. 

Later the device was annealed at 400 K overnight in the chamber expecting to form 

Co clusters on graphene as reported in Ref. [121]. Finally the annealed sample was 

transferred (exposing to air) to another cryostat (Quantum Design Physical Property 

Measurements System, PPMS) and resistivity and Hall effect measurements for 

various temperatures and magnetic fields were performed using a conventional 4-
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probe low frequency lock-in technique. After transfer and exposure to air, p-type 

doping of the sample was observed.  The doping could be reduced by baking the 

sample at 100  C overnight in PPMS before the measurements. 

Figure 6.1 ρxx vs Vg for different temperatures, and Raman spectroscopy of the 

disordered device 

 (a) Longitudinal resistivity ρxx of cobalt-decorated graphene as a function of gate 

voltage for different temperatures from 2 – 200 K (as indicated in legend) and zero 

magnetic field.  The inset shows an atomic force micrograph of the Co covered 

graphene on SiO2; the left side is graphene, and the right side is bare SiO2 

substrate. The scale bar corresponds to 200 nm. (b) Raman spectroscopy of the Co 

covered graphene device. 
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Fig. 6.1 (a) shows the longitudinal resistivity xx  as a function of gate voltage 

Vg for different temperatures T from 2 K to 200 K at zero magnetic field (B = 0). 

Surprisingly, the temperature dependence of the resistivity exhibits strong insulating 

behavior (dρxx/dT < 0). Fig. 6.2 (a)-(b) shows the temperature dependences of the 

resistivity at different carrier densities.  The carrier density is given by n = cgΔVg/e, 

where cg = 1.15 x 10
-8

 F/cm
2
 is the gate capacitance per unit area, e the elemental 

charge, and ΔVg = |Vg – Vg,CNP| is the gate voltage measured relative to the gate 

voltage at charge neutrality, with Vg,CNP = 33 V for this sample.  The facts that the 

temperature dependence of ρxx is faster than logarithmic (as might be expected for 

WL) and the resistivity greatly exceeds πh/4e
2
 ≈ 20 kΩ (maximum resistivity 

graphene in the absence of inter-valley scattering [122]) near the charge neutral point 

(CNP) at low temperature, suggest that electrons (holes) in the system are strongly 

localized. ρxx(T) at different densities (figure 6.2) shows that below the resistivity of 

h/2e
2
, the temperature dependence of resistivity follows logarithmic relation  (≈ ln T, 

consistent to the weak localization). However, the resistivity over the h/2e
2
 increases 

even faster than the logarithmic function, which indicates that the localization 

strength is even stronger in the regime. As carrier density increases, the transition 

from WL to SL occurs at lower temperatures. The conductance mechanism of the 

strong localization regime cannot be described by simple mechanism such as variable 

range hopping (VRH). Especially, for temperatures below 5K, the resistivity deviates 

severely from the VRH conductance. We think the deviation implies magnetic 

impurity related mechanisms or electron-electron interaction or heating from current 
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source may need to be considered at the low temperature range (More studies are 

needed to resolve the temperature dependence.) 

 

 

 

 

Figure 6.2 Temperature dependences of the ρxx for different carrier densities. 
 Semi-log graph of ρxx vs T at four different carrier densities (ΔVg = 3, 5, 9, 13, 

16 V). Above the resistivity (grey dark line ~h/2e
2
), the temperature 

dependence becomes stronger than a logarithmic relation (dashed line). 



75 

 

From both the atomic force microscope (AFM) image of the nano-scale Co 

clusters on graphene (see inset of Fig. 6.1 (a) ) and the high intensity of the disorder 

(D) peak in Raman spectroscopy (indicating an increase in inter-valley scattering, see 

Fig. 6.1 (b)), we believe that the insulating behavior of the graphene is caused by 

increasing of the inter-valley scattering due to symmetry breaking associated with 

local hybridization between Co d orbitals and carbon (C) pz states. Some theoretical 

simulations [123,124] indicate that Co atoms on graphene would chemically bond at 

the T site (directly above one of the carbon atoms in the unit cell ) as the most 

favorable position. Note that such symmetry breaking is not achieved with adatoms 

sitting on h sites (center of hexagon) such as potassium ions, which explains the lack 

of insulating behavior for potassium on graphene as seen in chapter 4. Experimentally 

it is also observed that under certain conditions (the existence of hydrocarbon 

impurities), the reaction making Co-C bonds can be mediated by the impurities even 

under UHV. [125,126] Given the probable existence of some hydrocarbon 

contaminants in our sample (which cannot be completely removed even after resist 

residue cleaning), such chemical bonding could offer an alternate explanation for the 

observed symmetry breaking. 

Figure 6.3 shows the gate voltage dependence of the longitudinal resistance 

ρxx(Vg) and Hall resistance ρxy(Vg) at a magnetic field B = 10 T at a temperature T = 

2.5 K. The plateau in the Hall resistance 
2/ 2xy h e   and the corresponding 0xx  

indicate that the ν=2 Landau level (LL) is quantized with the magnetic field even in 

this highly disordered insulating graphene sample. The inset of Fig. 6.3 shows the 
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magnetoresistance ρxx (B) and Hall effect ρxy (B) at  ΔVg = 8 V. The giant negative 

magnetoresistance can be interpreted as the transition from the insulating regime to 

the quantum Hall regime. Note that in Fig. 6.3 main panel and inset, only the ν=2 LL 

is observed, suggesting a transition from the insulating state directly to the ν=2 LL as 

a function of magnetic field or gate voltage.  This is consistent with numerical 

simulations of the quantum Hall effect in disordered graphene [39,127], in which the 

higher filling factor plateaus will disappear first with increasing disorder, and the 

2    plateaus are the most resistive to disorder. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Longitudinal and Hall resistivities  ρxx, ρxy of cobalt-decorated 

graphene as a function of gate voltage at 10 T and 2.5 K.  

 Inset shows ρxx, ρxy  as a function of magnetic field at ΔVg = 8 V. 
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Fig. 6.4 (a) shows ρxx(B) for five different temperatures from 2.5K to 10.5K. A 

clear temperature independent point Bc, separating insulating (dρxx/dT < 0) from 

metallic (dρxx/dT > 0) behavior is observed (arrow in Fig. 6.4 (a)).  According to the 

scaling theory for two-dimensional quantum phase transitions, the resistivity should 

follow the scaling function: ( )xx cf B B T       and hence /
c

xx B B
d dB T  


   

near the transition point
 
[51,128], where 

cB  is the critical magnetic field that the 

transition occurs and   is the temperature critical exponent. cB  was estimated from 

the Fig. 6.4 (a) by taking the cross point of the curves for different temperatures. Then 

 can be determined by plotting ln /
c

xx B
d dB vs lnT  as shown in Fig. 6.4 (b). From 

the slope of the linear fit, we obtained 0.63 0.04    for ΔVg = 15 V. The value is 

bigger than the universal value (0.42) known for other 2DEGs
 
[129-131] and PP 

transitions in graphene, [40] while the number is close to the value (0.58) of PI 

transitions in graphene at high magnetic field [42]. It is also interesting to note that 

the QH state ( 2)   is four fold degenerate but the obtained values are not different 

from the cases of non-degenerate LL [132]. The deviations of the experimental data 

from the linear fit could be understood as marks of density fluctuations affected by 

magnetic field sweeps and gate voltage changes. 
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Figure 6.4 Phase transition at a fixed gate voltage. 

 (a) Longitudinal resistivity ρxx of cobalt-decorated graphene as a function of 

magnetic field at ΔVg = 15 V for different temperatures T from 2.5 to 10.5 K. 

The temperature independent point Bc, which separates insulating from metallic 

temperature-dependent resistivity, is depicted by an arrow.  (b)  

vs. ln T at ΔVg = 15V. The solid line has slope 0.63. (c) as a function of the 

dimensionless scaling variable  for various temperatures. 
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Using the two parameters, 
cB and  , we tested the scaling relation 

independently by plotting xx against the scaling variables of cB B T  . As shown 

in Fig. 6.4 (c), xx  for five different temperatures collapse into two distinct branches 

with very symmetric shapes. The scaling behavior strongly suggests that the I-QH 

transition is indeed a quantum phase transition. The temperature range (~10 K) over 

which scaling persists in disordered graphene is relatively high compared to other 

2DESs, likely due to the large energy gaps between LLs and relative lack of 

temperature-dependent scattering.   

Fig. 6.5 (a) shows four sets of (smoothed) magnetoresistance ρxx(B) at various 

temperatures, corresponding to four different gate voltages away from the CNP (ΔVg 

= 5V, 9V, 13V, 17V) respectively. The sample is placed in air for several days after 

the first measurement (Fig. 6.4), but the second measurements (Fig 6.5) also show 

similar behaviors.  As depicted in Fig 6.5. (b), the linear relation between 

ln /
c

xx B
d dB  and lnT for each gate voltage is used again to evaluate the critical 

exponent ξ. The scaling behavior of ρxx(B) (such as seen in Fig 6.4 (b)) was also 

checked independently for all the gate voltages. Results of the evaluation of   as a 

function of relative gate voltage are summarized in Fig. 6.5 (c). The scaling exponent 

  for each carrier density is not universal, rather it varies with gate voltages from 0.4 

to higher values as the charge carrier density increases. It might be interesting to note 

that slope of the linear relations appears to be systematically changing to lower value 

as temperature decreases. To verify the temperature dependence of the critical 

exponents, further measurements at lower temperatures are required. 
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Figure 6.5 The phase transition at different carrier densities (gate voltages). 

 (a) Longitudinal resistivity ρxx 
of cobalt-decorrated graphene as a function 

of magnetic field for different temperatures T from 2.5 K to 10.5 K at four 

different gate voltages. The resistivities are shifted upward for each gate 

voltage to show all lines separately. (b)  vs ln T at four 

different gate voltages. The solid lines are the linear fits indicating the 

critical exponent . (c) The critical exponent determined from Fig 6.4 (red 

star) and (b) (black circle) as a function of ΔVg 
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The temperature critical exponent can be expressed as / 2p  , where   is 

the localization critical exponent and p is the temperature exponent of inelastic 

scattering [40,133]. Within Fermi liquid theory, p  is expected to be 2 [133,134]. 

Given that inelastic scattering is unlikely limited by the sample size (≈10μm) within 

the temperature range of the measurements, we assume that the value of p does not 

change with carrier density. Then any density dependence of ξ would reflect density 

dependence of  . Remarkably, unlike the universal value found for other 2DEGs 

( 7 / 3  ) [129-131,133,135-140], graphene with certain types of disorder has been 

predicted to belong to a new universality class in which the value of   varies 

continuously [62].  For example, with bond disorders with mass, numerical 

simulations showed that the value is close to 7/3 and continuously decreases to 1 as 

the strength of the disorder changes from strong to weak [62,63]. In our sample it 

appears that localization behavior is diminished with increasing carrier density (see 

figure 6.2 (a),(b)), which qualitatively explains the non-universal and the variation of 

the critical exponents in Fig 6.5 (c). We note that for the gate voltage near the CNP, 

inhomogeneous carrier density (electron and hole puddles) make it difficult to 

measure ξ.  

Another possible explanation for the density dependence of the critical 

exponents is the transition of the dominant percolation mechanism from classical to 

quantum as the temperature is lowered, as has been supposed to occur previously in 

conventional 2DEG experiments [60,141]. More theoretical work is needed on the 

classical to quantum transition in graphene to understand whether this could be the 
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case. 

In the phase diagram found by numerical study [39], the transition into higher 

( 2  ) plateaus also can be expected when the disorder is reduced. I fabricated an 

additional cobalt-decorated sample which exhibited ν = 2 and ν = 6 plateaus, however 

insulating behavior could not be seen at a carrier density for which the ν = 6 plateau 

occurred, so the insulator to ν = 6 QH transition could not be studied.  It seems that 

for present samples the impurity density needed to induce clear insulating behavior 

also is sufficient to destroy all but the ν = 2 level at magnetic fields less than 15 T. 

Thus the I-QH transition for higher landau level is not observable so far and might be 

difficult to be observed in the future.  However, studies at higher magnetic fields, and 

also starting with cleaner samples (such that inter-valley scattering could become 

dominant at a lower total scattering rate) would be of interest.    

In conclusion, strong localization in graphene was achieved with 

chemisorption of Co clusters. The transition from the insulating state to the quantum 

Hall state ( 2  ) was observed as a function of magnetic field and carrier density. 

Scaling analysis supports that the transition is a quantum phase transition caused by 

magnetic fields in 2D. The critical scaling exponent ξ was possibly non-universal, 

increasing from near 0.4 to 0.8 with carrier density increase. This may reflect a 

change in the localization critical exponent   which has been predicted for certain 

kinds of disorder in graphene. The fact that both the type and strength of disorder can 

be controllably tuned in a single graphene sample, and the relatively low transition 

magnetic field, make graphene an interesting system for further study of low 

dimensional quantum phase transitions. 
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Chapter 7 : Summary 

The pace of graphene research is incredibly fast. The first gated graphene 

device was reported in 2004, one year before I joined my graduate program. And 

before the completion of my degree, the 2010 Nobel Prize was awarded to the 

researchers who demonstrated the initial graphene device. (One may blame my slow 

progress in graduate school though.) Therefore parts of the works described in my 

thesis already have been expanded upon by many other groups. Also relatively new 

results would induce similar research keeping up with the fast development. In this 

chapter I will summarize the main three topics of the thesis and introduce the effects 

of the works as briefly mentioning (future) follow up experiments. 

 

In chapter 4, through the addition of potassium ions on graphene in ultrahigh 

vacuum, we investigated the effect of Coulomb scatterers on graphene conductivity. 

The measured conductivity with charged impurities quantitatively agrees with the 

prediction of the Boltzmann transport theory limited by long-range Coulomb disorder. 

The experiments demonstrated that the linear carrier-density-dependent conductivity 

is associated with long-range scattering, suggesting that long-range Coulomb disorder 

is the main scattering mechanism in graphene. Furthermore, the experiments 

demonstrated the relative insensitivity of the minimum conductivity in graphene to 

the amount of long-range disorder.  The fact that the minimum conductivity is 

observed to be similar in samples of widely different mobility fabricated by different 
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research groups [6,29,142] is also consistent with long range scattering as the source 

of disorder in all graphene samples on SiO2.      

The identification of charged impurities (particularly charged impurities in the 

substrate) as a major source of disorder in graphene in the works discussed in this 

thesis as well as work by other researchers[143], has led to significant improvements 

in graphene device quality through use of alternative substrates to SiO2 or removal of 

the substrate altogether. One example is the drastic improvement of mobility in 

suspended graphene with current annealing [96,110].  This suggests that the long-

range scatterers are in the SiO2 substrate, and removal of the substrate increases the 

mobility.  Most interestingly and recently, high field effect mobility has been 

obtained in graphene devices fabricated on hexagonal boron nitride (h-BN) substrates 

[144], where it is assumed that the crystalline h-BN lattice has fewer charge traps 

than amorphous SiO2.  The reduction in long-range disorder has begun another era of 

graphene transport research, allowing researchers to discover new and useful 

properties of graphene such as fractional QHE and the opening of a band gap in 

bilayer graphene [145], made accessible in low-disorder graphene devices.  

 

 Another prediction of  the transport theory with Coulomb scattering as the 

dominant mechanism, increased mobility by reducing the effective fine structure 

constant (rs), is verified in chapter 5. There, rs is changed by deposition of ice layers 

on graphene in ultrahigh vacuum, and 30% increased mobility is obtained with the ice 

top dielectric layer.  
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The results, which are successfully explained by transport theory of screened 

scattering, strongly suggested the use of high dielectric constant (κ) substrates (or 

upper layers) for achievement of high mobility graphene devices. However, 

experimental results obtained since that time have been at times inconclusive or 

controversial.  Several groups have experimented with high κ dielectric overlayers on 

graphene [146-149].  In some cases the mobility of graphene has been increased 

slightly through deposition of a dielectric overlayer [146-148], but typically the 

mobility is decreased.  This could be understood by an increase in the impurity 

density as the deposited material undoubtedly contains additional charge traps.  More 

significantly, Ponomarenko et al. [150] reported that the mobility of graphene 

measured in high κ liquids (water, ethanol) was found to increase only slightly, 

though the very high dielectric constant of these liquids would predict a large 

mobility increase.  The authors took this as evidence that charged impurities are not 

the dominant scattering source in graphene on SiO2.  Also other experiments with 

liquids showed a change in gating capacitance not mobility of the graphene sample 

[151]. The reasons for the apparent experimental disagreements are not well 

understood. There is a numerical study [152] that showed the increase in mobility 

would be limited by surface phonon of the substrates. A recent unpublished study of 

suspended graphene in polar and non-polar liquids showed the expected dependence 

of mobility on dielectric constant for non-polar liquids, but no increase in mobility for 

polar liquids.  This was interpreted as evidence of additional scattering by charged 

ions in the polar liquids canceling any effect of increasing dielectric constant [153]. 
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In addition to the semi-classical transport in graphene, quantum transport with 

adatoms was also investigated in the last part of the thesis (chapter 6); where 

magnetotransport of disordered graphene was used to probe the insulator-quantum 

Hall transition. Similar to other 2DES, we observed a low magnetic field induced 

phase transition in the Co added (disordered) graphene: localization to the delocalized 

ν=2 quantum Hall state. 

The insulating nature of graphene with disorder which increases inter-valley 

scattering has been reported by many other groups.[114-116,154] But the phase 

transition with magnetic field has not been studied previously. My experimental result 

suggests that the large negative magneto-resistance observed in the insulating 

graphene could be a signature of the phase transition in the system.   

In chapter 6, the role of Co clusters on graphene as magnetic impurity is not 

considered. But graphene can be considered as a good material for spintronics 

[155,156] due to long spin scattering time rooted from long mean free path and 

extremely small spin-orbit coupling [157]. The fact that graphene retains its Dirac 

electronic properties with minimal doping in the presence of cobalt overlayers may 

open possibilities for increasing the spin-orbit interaction in graphene through the 

addition of magnetic adatoms. Further studies of the interaction between magnetic 

impurities and charge and spin transport in graphene may be interesting. 

 

Finally, I will finish this dissertation by discussing the ambitious future of 

graphene. One of the main future research directions is to make graphene transistors 

which could replace silicon in the semiconductor industry. The physical limit of 
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making silicon transistors smaller requires a new breakthrough in order to make 

semiconductor chips with better performance and lower power consumption. For 

graphene, a lack of band gap is the main obstacle to the final goal. Graphene 

nanoribbons in which a band gap is generated by quantum confinement, and the 

tunable band gap opened by electric field applied perpendicular to clean bilayer 

graphene seem to be promising approaches so far.  

Even without modification to open a bandgap, graphene also is promsing for 

many applications. A long spin diffusion length even at room temperature makes it an 

interesting candidate for spintronics. A true two dimensional nature of the material 

implies variety usages such as strain sensors, chemical and biological sensors. The 

lack of gap combined with transparency of graphene suggests the use as a transparent 

electrode for applications such as solar photovoltaic cells. The linear dispersion 

allows adsorption of light with wide spectrum. Even in the biological area, one can 

find possible applications, for example DNA sequencing. Nanopores in graphene 

sheets could be made just big enough for DNA strands to pass through, and the 

electrical property change of graphene due to interaction with each base pair could be 

detected[158-160]. The possible applications of graphene as a new material in 

industry are almost limitless, it could replace carbon fiber in composite form to make 

lighter and stronger plates useful for aero industry, embedding graphene on 

transparent and flexible substrate possibly opens a way to make advanced conducting 

and transparent electrodes. Recently Samsung Electronics announced they would 

launch a new type of cell phone made out of the graphene-based flexible substrate by 

2013. And graphene-based material is being used now as an additive by oil industry 
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to drilling fluids to prevent from clogging pores. We will likely see that graphene 

become common place material as plastic is now.   
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