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Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging 

technique that provides in vivo information about tissue microstructure, based on the 

local water diffusion environment. DTI models the diffusion displacement of water 

molecules in tissue as a Gaussian distribution. In this dissertation, to mimic the 

complex nature of water diffusion in brain tissues, a diffusion kurtosis model is used, 

to incorporate important non-Gaussian diffusion properties. This diffusion kurtosis 

imaging (DKI) is applied in an experimental traumatic brain injury in a rat model, to 

study whether it provides more information on microstructural changes than standard 

DTI. Our results indicate changes in ordinary DTI parameters, in various brain 

regions following injury, normalize to the baseline by the sub-acute stage. However, 

DKI parameters continue to show abnormalities at this sub-acute stage, as confirmed 

by immunohistochemical examination. Specifically, increased mean kurtosis (MK) 

was found to associate with increased reactive astrogliosis, a hallmark for 



  

inflammation, even in regions far removed from the injury foci. Findings suggest that 

monitoring changes in MK enhances the investigation of molecular and 

morphological changes in vivo. 

Extending DKI to clinical usage, however, poses several challenges: (a) long 

image acquisition time (~20 min) due to the augmented measurements required to fit 

the more complex model, (b) slow image reconstruction (~90 min) due to required 

nonlinear fitting and, (c) errors associated with fitting the inherently low signal-to-

noise ratio (SNR) images from higher diffusion weighting. The second portion of this 

dissertation is devoted to developing imaging schemes and image reconstruction 

methods that facilitate clinical DKI applications. A fast and efficient DKI 

reconstruction method is developed with a reconstruction time of 2-3 seconds, with 

improved accuracy and reduced variability in DKI estimation over conventional 

methods. Further analysis of diffusion weighted imaging schemes and their affect on 

DKI estimation leads to the identification of two clinically practical optimal imaging 

schemes (needing 7-10 min) that perform comparably to traditional schemes. The 

effect of SNR and reconstruction methods on DKI estimation is also studied, to 

provide a foundation for interpreting DKI results and optimizing DKI protocols.  
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Chapter 1. Introduction 

A significant fraction of the human body is water. Water molecules in the human 

body are constantly undergoing Brownian motion or Random Walk. The diffusion of 

water molecules within the tissue is affected by a variety of factors including cellular 

structures, membranes, viscosity of different compartments, etc. (Basser et al., 2009). 

When there is change to the tissue microstructure, e.g., post-traumatic brain injury, the 

properties of the water diffusion will also change. For example, if brain injury causes 

cellular destruction (cells die or shrink, or cell membranes are damaged), there will be 

more free space for water molecules to move, leading to increased water diffusion. On 

the other hand, if there is cell swelling, as commonly observed acutely post injury, then 

there will be reduced extracellular space for water molecules to move, leading to reduced 

water diffusion. Therefore, by measuring the water diffusion change in vivo, we can 

monitor the patho-morphological changes in tissues.  

Diffusion of water molecules in tissue can be measured in vivo using diffusion 

weighted Magnetic Resonance Imaging (MRI). MRI is a non-invasive imaging method 

that measures signals from protons within water molecules. Moving water molecules 

result in reduced MRI signal intensity compared to the static case, but such signal 

attenuation is usually neglected in conventional MRI because diffusion movement is 

small. In diffusion weighted MRI, a diffusion “weighting” is used to magnify the amount 

of signal attenuation caused by diffusion (Stejskal et al., 1965). The diffusion coefficient 

of tissue, D, can then be derived by comparing the diffusion weighted signal S(b) at 

certain diffusion weighting, b (s/mm2), to the non-diffusion weighted signal S0 using a 
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linear equation: lnS(b) = lnS0 - bD. To characterize the anisotropic diffusion in tissues, we 

can further measure the diffusion coefficient along different directions and then model it 

by a diffusion ellipsoid (a 3×3 tensor), with its principle axis pointing along the direction 

for which diffusion is least restricted (with the highest diffusion coefficient, e.g., along 

white matter axons). Diffusion MRI using this tensor model is called Diffusion Tensor 

Imaging (DTI). DTI is a popular imaging method in studying white matter abnormality. 

White matter brain tissue (as opposed to gray matter), is primarily made up of bundles of 

neuronal axons that are highly directional. The diffusion coefficient is very high along the 

length of the axon bundle and very low in directions perpendicular to it. Fractional 

Anisotropy (FA), which measures the anisotropy of water diffusion, has been shown to be 

very sensitive in detecting subtle white matter microstructure changes (Bozzali et al., 

2002; Karagulle Kendi et al., 2008; Schmierer et al., 2004).  

Despite the great advantages of DTI in studying white matter abnormality, the use 

of DTI to study grey matter changes in brain injury has unfortunately received very little 

interest. This is mainly because diffusion in grey matter is largely isotropic and DTI has 

limited sensitivity to complex cellular structure changes in isotropic media. DTI, based 

on a largely simplified model, assumes that the diffusion displacement follows a 

Gaussian distribution, which is rarely the case in a real tissue environment. Indeed, when 

higher diffusion weightings are used (b = 2000 or 2500 s/mm2, compared to b = 1000 

s/mm2 in DTI), the diffusion weighted signal deviate significantly from the mono-

exponential decay predicted by the diffusion tensor model. This is because at high 

diffusion weighting, the proton signal becomes increasingly sensitive to heterogeneous 

diffusion distances arising from complex cellular structures. In order to characterize the 
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more complex tissue microstructure changes, we then look into more extended models 

for diffusion MRI.  

Among the many extended diffusion models, the diffusion kurtosis model (Jensen 

et al., 2005; Lu et al., 2006) stands out because it is relatively simple, does not impose 

more assumptions (e.g., tissue compartmentalization), and has a clinically feasible 

acquisition time. In Diffusion Kurtosis Imaging (DKI), the diffusion weighted signal 

equation is extended to include a quadratic term:  lnS(b) = lnS0 – bD + 1/6b2D2K, with K 

being the kurtosis parameter that captures the non-Gaussian diffusion property. As a 

relatively new imaging technique, there have only been limited studies on DKI, among 

which diffusion kurtosis is described as an imaging marker that captures brain tissue 

complexity (Jensen et al., 2010; Shaw, 2010) and has great potential as a more sensitive 

marker for tissue microstructure change (Falangola et al., 2008; Farrell et al., 2010; Jiang 

et al., 2011; Raab et al., 2010).  

In this dissertation, DKI is applied in Traumatic Brain Injury (TBI) in a rat model, 

to study whether it can provide information above and beyond the widely-used DTI 

method. DKI does require more measurements and longer image acquisition time than 

typical DTI, due to the increased number of model parameters. Diffusion weighted 

images in DKI are also more susceptible to noise because stronger diffusion weightings 

(higher b-values) have to be used, which cause more signal attenuation. Thus, how 

different imaging schemes and levels of noise affect the DKI derived parameters are also 

studied, in addition to the search for a fast and reliable DKI reconstruction method. The 

goal of this dissertation is to introduce DKI as a more sensitive imaging method for 

studying brain injury. The methodology developed here is designed to facilitate the 
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application of DKI in a clinical setting, namely, limited acquisition time, limited image 

signal-to-noise ratio (SNR) level and realtime data reconstruction and visualization. 

The dissertation is organized as follows:  

Chapter 2 provides background information about the principles of DTI and its 

values in studying diseased brain tissue, mainly, TBI. The chapter then continues to 

introduce the new DKI model and its potential value in revealing tissue microstructure 

changes. 

Chapter 3 examines whether DKI provides any additional information about 

damaged brain tissue post experimental TBI in the rat model. This is a collaborative 

work. Animal preparation and tissue histology were provided by colleagues from the 

Dept of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, at 

the University of Maryland School of Medicine. This work led to a paper published in 

NeuroImage in 2012 (Zhuo et al., 2012).  

Chapter 4 describes an improved fast DKI reconstruction method that enables 

more reliable realtime data reconstruction and visualization for clinical DKI studies. This 

work led to a conference abstract at the Proceedings of the 19th annual meeting of the 

International Society of Magnetic Resonance in Medicine (ISMRM) in 2011 (Zhuo et al., 

2011), and a conference paper at the Proceedings of IEEE International Symposium on 

Biomedical Imaging (ISBI) in 2011 (Barmpoutis and Zhuo, 2011).  

Chapter 5 analyzes how diffusion weighted imaging schemes, image noise and 

reconstruction methods affect the accuracy and variability in DKI derived parameters. 
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The study was carried out on both real imaging data and Monte Carlo simulated data. 

Optimized imaging schemes and reconstruction methods, within a clinically feasible 

setting, are determined. The manuscript for this work is in preparation to be submitted to 

NeuroImage.   

Chapter 6 is a summary of the main findings of this dissertation as well as future 

directions.   
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Chapter 2. Background 

2.1 Diffusion MRI – the Gaussian Model 

2.1.1 Diffusion of Water and the Basic Mathematics 

Water molecules in the human body are constantly undergoing Brownian motion 

or Random Walk. Imagine dropping ink into a tub of water; the drop’s size will become 

bigger as time goes on, with the center unchanged. As illustrated in Figure 2.1, an 

individual molecule would go through a random trajectory and move a distance of s after 

certain time t.  

 

Figure 2.1. Schematic representation of random walk of a water molecule that has a displacement 

of s (red arrow) (a). The distribution of its displacement s after time t is shown in (b). 

When water diffusion is free without any restriction, the probability of diffusion 

displacement s follows a Gaussian distribution with zero mean and a standard deviation σ 

that characterizes the average diffusion distance. If D is the diffusion coefficient of water 

molecules in the medium, t the diffusion time, then the typical diffusion distance (σ) is 
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represented by Dt2  according to Einstein’s equation in 1905 (Einstein, 1956). The 

diffusion displacement distribution can then be written as:     

Dtse
Dt

tsP 4/2

4

1
),( 

                                                       (2.1) 

In a homogeneous environment, like in a tub of water, diffusion is isotropic and the 

displacement distribution is the same in all directions.  

Water diffusion is not always isotropic, however. If a stalk of celery is immersed 

in the water tub, then you would imagine that the water molecules will diffuse more 

easily along the direction of the celery fibers than perpendicular to it. The diffusion 

distribution after some time will then be more oval than spherical, with the oval pointing 

along the direction of the celery fibers. In this case, diffusion would still follow a 

multivariate Gaussian distribution as initially indicated by Eq. 2.1, but instead with 

different diffusion coefficients along different directions, like an ellipsoid (See 

illustration in Figure 2.2).  

 

Figure 2.2. Water diffusion in an environment contains densely packed long fibers. Due to 

collisions with the fibers, water molecules would travel less distance perpendicular to the fiber 

direction than along the fiber. It can be modeled as an ellipsoid with preferred direction pointing 

toward the fiber direction. 
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To determine the shape and orientation of the diffusion ellipsoid, we need to 

know the diffusion coefficient along different directions. The diffusion ellipsoid can be 

characterized by a seond-order tensor called the diffusion tensor D. Since the Gaussian 

distribution is symmetric along each of the x, y, z directions, D is a fully symmetric 3×3 

tensor with six independent elements. It can be uniquely determined if diffusion 

coefficients along a minimum of six non-collinear directions (e.g., xx, yy, zz, xy, xz, yz or 

a rotation of the directions) are known. By eigen-decomposition (Eq 2.2), three 

eigenvectors v1, v2, v3 and corresponding eigenvalues λ1, λ2, λ3 can be derived. The 

eigenvectors represent the three principle axes of the diffusion ellipsoid and the 

eigenvalues represent diffusion coefficients along each principle axis. The eigenvalues 

are typically ordered as 321   and v1 is  the direction of the preferred diffusion 

direction.  
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Water diffusion in biological tissue is affected by a variety of factors, including 

cellular structures, membranes, viscosity of different compartments, etc. (Basser et al., 

2009). When there is a change in the tissue microstructure due to disease, the diffusion 

properties will also change. So measuring water diffusion in vivo can be a very useful 

tool to detect underlying tissue abnormality.  
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2.1.2 How to Measure Diffusion using MRI  

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that 

measures proton signal (1H) in a strong magnetic field (typically, 1-3 Tesla). Figure 2.3 

shows a typical diagram for the spin echo imaging scheme introduced by Hahn (Hahn, 

1950). When placed in the magnetic field B0, protons precess at an angular speed of 

0B  along the main magnetic field. γ is the gyromagnetic ratio, a constant specific to 

the nucleus under examination (for the proton, γ = 42.58 MHz/T). A typical MRI scan 

starts with an excitation radio frequency (RF) pulse and ends with an echo signal at the 

receiver. The time between the center of the excitation RF pulse and the center of the 

echo signal is called echo time (TE). At time t = 0, a 90° RF pulse rotates the spins 90° to 

the transverse plane, laying along the x-axis and the phases of spins are in perfect 

coherence (Figure 2.3 (a)). As time goes, spins start to lose their phase coherence 

(dephase) due to spin-spin relaxation and magnetic field inhomogeneity (Figure 2.3 (b)). 

The spin-spin relaxation causes MR signal to decay at a time constant T2 (~80-100ms in 

brain tissues) and T2 is the intrinsic MRI property of a specific tissue type. The magnetic 

field inhomogeneity causes spins to precess at different frequencies depending on their 

spatial locations. At t = TE/2, a 180° refocusing RF pulse is applied that flips all the spins 

to the negative x-axis (Figure 2.3 (c)). Spins that precess at different speeds continue to 

do so, with faster spins still precessing faster and slower spins still precessing slower, so 

they are regaining phase coherence (rephase) (Figure 2.3 (d)). After a same period of time 

TE/2 (i.e. at t = TE), all spins precess back to the –x position and form an echo (Figure 

2.3 (e)). Note that for moving spins, since they see a different magnetic field during the 
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dephase and rephase stages, they will not return to full phase coherence at TE, leading to 

phase dispersion and hence a reduced echo signal.  

 

Figure 2.3. A typical pulse diagram for spin echo imaging scheme, with illustration of phase 
evolution of spins at different stages of the image acquisition: (a) excitation (t = 0); (b) 
dephasing; (c) refocusing (t = TE/2); (d) rephrasing and (e) echo (t = TE). TE is the echo time.  

The signal attenuation due to diffusion movement of spins is negligible in regular 

MRI imaging because the movement is very small. But this effect can also be magnified 

by introducing diffusion weighted gradients at both side of the refocusing pulse as shown 

in Figure 2.4 in red (Stejskal, 1965). When strong magnetic gradients G (mT/mm) are 

applied along a particular imaging direction (e.g., the x direction), the magnetic fields 

then vary along the x-direction, producing a location-dependent magnetic field B(x) = 

B0+Gx. After a duration of δ, each spin will also have a location dependent phase accrual 

ϕ(x) = γGδ (Figure 2.4(b)). For stationary spins/molecules (blue spins), their accumulated 
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phase from the 1st diffusion gradient is negated after the application of the 2nd diffusion 

gradient of the same strength and duration, so they regain their phase coherence at TE. 

However, for spins/molecules that are undergoing random walk (red spins), since they 

have traveled a distance by the time they experience the 2nd diffusion gradient, they will 

have phase dispersion at TE, leading to an attenuated echo signal.   

 

Figure 2.4. A typical pulse diagram for diffusion weighted spin echo imaging scheme with 

illustrations of spin phase evolution. Shown in red is the added diffusion gradients compared to 

Figure 2.3.  

Several factors of the diffusion weighting gradients control the extent of the phase 

dispersion, where more phase dispersion is reflected in a more attenuated signal. 

Specifically, the strength of the diffusion gradients, G, controls how much the magnetic 

field varies spatially. Since the spin precession depends on the local magnetic field, a 

strongly varying magnetic field will cause more phase dispersion of the spins. The 

duration of the diffusion gradient, δ, determines the time over which the spins experience 

a position-dependent phase accrual. The time interval between the two diffusion gradient 
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applications, Δ, is typically referred to as the “diffusion time” and is directly related to 

the diffusion distance of water molecules that we are measuring, with longer diffusion 

time leading to longer diffusion distances. The combination of these diffusion weighting 

factors is usually represented by a b-value (s/mm2) and is calculated as:  

)3/(222   Gb                                                      (2.3) 

where γ is the gyromagnetic ratio. Stronger diffusion weighting (higher b-value), higher 

G or longer Δ, δ, will lead to a more attenuated signal.  

 If the echo signal at t = TE without any diffusion weighted gradients (b = 0 

s/mm2) is S0, then the diffusion weighted signal can be written as: 

bDeSbS  0)(                                                                (2.4) 

The diffusion coefficient D in the tissue can be measured through MRI by acquiring a 

minimum of two datasets. One is without any diffusion weighting (b = 0 s/mm2) and one 

is with diffusion weighting (some particular b-value). The diffusion coefficient for each 

voxel can then be calculated according to Eq. 2.4. Sometimes more than two b-values are 

acquired in order to improve the estimation accuracy. In that case, D can be estimated 

through a linear least squares fitting of equation as:  

  bDSbS 0/)(ln                                                        (2.5) 

2.1.3 Diffusion Weighted MRI (DWI)  

A typical Diffusion Weighted MRI (DWI) acquisition collects images with 

several b-values along 3 directions (x, y and z) (Le Bihan et al., 1986). A diffusion 

coefficient can be fitted using Eq. 2.5 for each direction and an apparent diffusion 
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coefficient (ADC) can then be calculated by averaging the diffusion coefficient along all 

three directions. 

3/)( zyx DDDADC                                                 (2.6) 

Due to the inherent low signal-to-noise ratio (SNR) in diffusion weighted images, 

typically several repetitions of data are acquired and then averaged to improve SNR. 

Figure 2.5 shows a typical set of diffusion weighted images of a brain slice with different 

b-values and the calculated ADC map. Notice the heterogeneous signal decay pattern in 

the brain corresponding to different brain tissue structures. Although the initial signal 

intensities are similar, the diffusion weighted signal attenuation of the red voxel is much 

faster than the blue voxel (Figure 2.5), resulting in a much lower signal intensity at b = 

1500 s/mm2 and a higher ADC value for the red voxel than for the blue one.  

Figure 2.5. Diffusion weighted images at different b-values. In this example, the red voxel has a 

large amount of signal loss, suggesting fast diffusion compared to the blue voxel.  
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2.1.4 Diffusion Tensor Imaging (DTI) 

DWI can only measure the average diffusion. In order to characterize anisotropic 

diffusion in the tissue, we will need to know the diffusion tensor D.. This can be done by 

applying diffusion gradients in at least 6 co-linear directions, measuring the 

corresponding diffusion coefficients and then fitting for the diffusion tensor D (Basser et 

al., 1994). This imaging technique is called Diffusion Tensor Imaging (DTI). Figure 2.6 

shows diffusion weighted images in the brain at b = 0 s/mm2 (S0) and b = 1000 s/mm2 

measured from 6 diffusion directions (x, y, z): (0.707, 0, 0.707), (-0.707, 0, 0.707), (0, 

0.707, 0.707), (0, 0.707, -0.707), (0.707, 0.707, 0), (0.707, -0.707, 0). Notice the highly 

heterogeneous signal attenuation pattern with different diffusion directions due to the 

complexity of tissue microstructure in the brain.  

 

Figure 2.6. Diffusion weighted images at b = 0 s/mm2 (S0) and b = 1000 s/mm2 from 6 diffusion 

directions: (0.707, 0, 0.707), (-0.707, 0, 0.707), (0, 0.707, 0.707), (0, 0.707, -0.707), (0.707, 

0.707, 0), (0.707, -0.707, 0).  

The DTI signal S(g,b) can be written as an extension of the DWI signal (Eq. 2.4): 
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gDgg 
TbeSbS 0),(                                                        (2.7) 

where ],,[ zyx gggg  is a unit vector that describes the direction of applied diffusion 

gradients, D is the diffusion tensor, b is the applied b-value, and S0 is the signal without 

any diffusion weighting. Equation (2.7) can be solved as a linear equation after taking the 

natural log of both sides and explicitly writing out elements in D and g in vector form. 

Let T
yzxzxyzzyyxx DDDDDD ],,,,,[D  , ]2,2,2,,,[ 222

zyzxyxx ggggggggg
zy

g  , then Eq. 

2.7 can be written as: 

Dgg  bSbS )/),(ln( 0                                                  (2.8) 

After eigen-decomposition of the diffusion tensor D, eigenvalues λ1, λ2, λ3 (

321   ) can be estimated. Shown below are several DTI parameters that are of the 

most interest (Basser and Pierpaoli, 1996):  

1. Mean Diffusivity (MD) (also referred to as ADC))  

3
321  

MD                                                       (2.9) 

MD characterizes the average diffusivity. 

2. Fractional Anisotropy (FA) 

)(2

])()()[(3
2
3

2
2

2
1

2
3

2
2

2
1










MDMDMD
FA                            (2.10) 

FA characterizes how anisotropic the diffusion is.  FA is always within the range of 

[0, 1], with FA=0 representing completely isotropic diffusion ( 321   ) and 

FA=1 representing highly anisotropic diffusion ( 321   ).   
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3. Axial Diffusivity (λa) and Radial Diffusivity  (λr) 

1 a ,      
2

32 



r                                         (2.11) 

In regions of high FA, λa and λr are usually calculated to characterize the diffusivity 

along and perpendicular to the fiber, respectively.  

2.2 Applications of Diffusion MRI in Traumatic Brain Injury (TBI) 

2.2.1 Structures in the Brain 

The major types of cells in the central nervous system (CNS) are: neurons, axons, 

myelin sheath and glial cells (Edgar et al., 2009). An understanding of the basic functions 

of these cellular structures is crucial for understanding brain injury mechanisms.  

Figure 2.7 shows a schematic representation of these cellular elements. Neurons 

are the core components of the CNS. Neurons process and transmit information by 

electrical and chemical signaling through axons and synapses. A typical neuron possesses 

a cell body, some dendrites and an axon. Axons are the primary transmission lines of the 

CNS. Axons connect neurons in different parts of the brain regions and conduct electrical 

impulses. Axonal diameters range from less than 0.2μm to up to 10μm. A majority of 

axons with diameters greater than 0.2μm are myelinated, that is, the axons are wrapped 

with an electrically insulating layer called a myelin sheath, which helps to increase the 

propagation speed of impulses along the axons (Hirano and Llena, 1995). Glia cells are a 

broad category of non-neuronal cells that surround and ensheath neuronal cell bodies, 

axons and synapses throughout the CNS. They make up most of the cells in the brain. 

They can further be separated to: Astrocytes, which maintain homeostasis in the brain by 
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providing neurons with energy and substrates for neurotransmission; Oligodendrocytes, 

which form a myelin sheath around axons in the CNS; and Microglia cells, which keep 

the brain under surveillance for damage or infection (Allen and Barres, 2009).  

 

Figure 2.7. Schematic representation of the major cellular elements in the central nervous system 

(CNS), which include: neurons, axons, myelin sheath and glial cells (Oligodendrocytes, 

Astrocytes, Microglia cells). Figure is adapted from (Edgar and Griffiths, 2009) with copyright 

obtained from Elsevier.  

In a macrostructure view, the brain has three main components: grey matter, white 

matter and cerebrospinal fluid (CSF) (Fig. 2.8). Grey matter is distributed at the surface 

of the cerebral hemispheres as well as in the depth of the cerebrum and is composed 

mostly of neurons, glial cells and capillaries. White matter is composed of mostly 

myelinated axons. The name ‘white’ is used because fresh white matter tissue appears 

lighter in color due to the fatty myelin sheath. Within a white matter tract, the majority of 

axons lie parallel to each other (Morell, 1984). CSF is clear bodily fluid that occupies the 

ventricular system and appears around the brain cortex surface.  
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Figure 2.8. A MRI image of brain showing regions of grey matter, white matter and cerebrospinal 

fluid (CSF).  

2.2.2 Traumatic Brain Injury (TBI)  

Traumatic brain injury (TBI) is the primary cause of death and disability in the 

U.S. population under 45 years of age and represents a significant economic and social 

burden to the families and the society at large (Sosin et al., 1996). TBI is the result of an 

external mechanical force applied to the brain, leading to temporal or permanent 

impairments, functional disability, or psychosocial maladjustment (Steyerberg et al., 

2008). TBI can manifest clinically from concussion to coma and death. Patients with TBI 

follow a highly variable clinical course, with initial status frequently discrepant from 

long-term neurological outcome (Cordobes et al., 1986). No objective biological measure 

has been established to accurately predict long-term neurological outcome in these 

patients.  

The primary injury to the brain is a result of sudden acceleration, deceleration 

and/or rotational forces. These forces cause cortical contusions (bruises of the brain 

tissue) and hemorrhages (bleeding) when the brain hits the skull (Thibault and 
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Gennarelli, 1990), and deeper cerebral lesions when white matter axons are stretched and 

damaged,  as well as shearing injuries at the grey matter and white matter interface 

(Blumbergs et al., 1994). Following the initial trauma, injury is propagated through 

various biomolecular and cellular changes, which causes widespread degeneration of 

neurons, glial cells and axons. These secondary injuries are ultimately the deciding 

factors in patient recovery (Gentry, 1994). Therefore it is critical to be able to 

characterize these changes through in vivo imaging markers to help patient management 

and recovery. In this dissertation, more emphasis will be on the cellular structure changes 

following TBI, as these are the changes that are detectable through tissue diffusion 

property changes captured by diffusion MRI.  

Pathophysiology results from experimental TBI models in rat/mice suggest that 

injury to the brain tissues is characterized by early neuronal loss together with a transient 

increase in numbers of astrocytes and microglial cells (Cheng et al., 2003). Such an 

abnormal increase in the number of astrocytes due to destruction of nearby neurons is 

called astrogliosis and the reactive astrogliosis are believed to play essential roles in 

preserving neurons and restricting inflammation (Myer et al., 2006).  

The time course of axonal pathology is that the axons will swell up initially in 

response to injury. Some swelling will resolve and some will result in broken axons with 

terminal axon bulbs. Damage may also involve loss of the myelin sheath (also called 

demyelination), which can progressively get worse in a delayed post injury stage.  

Cerebral edema, which is an excess accumulation of water in the intracellular 

and/or extracellular space of the brain, also typically occurs following TBI. Intracellular 
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edema (also called cytotoxic edema) or cell swelling typically happens immediately 

following traumatic injury due to a change in the cellular metabolism resulting in 

inadequate functioning of the sodium and potassium pump in the cell membrane. 

Extracellular edema (also called vasogenic edema) develops more slowly over time as a 

result of failure of the Blood-brain barrier (a barrier that separates circulating blood and 

CSF and maintains the integrity of CSF). The development of cerebral edema can also 

cause compressive forces toward other brain tissue, elevate intracranial pressure and 

reduce cerebral blood flow, which may cause further damage to the brain (Greve and 

Zinc, 2009).  

2.2.3 Diffusion MRI in the Brain and their Clinical Indications 

Diffusion MRI has long been used as a powerful tool in studying neurological 

disease as it provides in vivo measurements of tissue microstructure change that cannot 

otherwise be easily detected through conventional imaging. Diffusion properties of 

different brain tissues namely grey matter, white matter and CSF, exhibits very different 

features. Diffusion in grey matter is largely non-directional (isotropic) as it is mostly 

composed of neurons and glial cells (FA < 0.2). Diffusion in white matter is highly 

anisotropic due to the myelinated axons, which restrict water diffusion in such a way that 

the axial diffusivity can be as much as seven times the radial diffusivity (FA ~ 0.45 to 

0.8) (Song et al., 2002). Developmental and aging studies in both human and animal 

models have reported increase in FA throughout the early stages of brain development (to 

adolescence), due to the myelin formation process. The FA value plateaus in adulthood 

and starts to decline after age 60, due to the loss of myelin integrity associated with aging 

(Zhang et al., 2007; Lebel et al., 2008; Pfefferbaum et al., 2005). Diffusion in CSF is 
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similar to free diffusion in water, so MD is extremely high (~3×10-3 mm2/s) and FA is 

almost 0.  

Figure 2.9 shows a structure MRI brain image indicating grey matter, white 

matter and CSF regions. Together also shown are the MD, FA, λa and λr maps, as well as 

a color-coded FA map indicating the principle diffusion directions (eigenvector 

corresponding to the largest eigenvalue of the diffusion tensor D). Notice the high FA 

values in white matter regions associated with high λa and low λr, and low FA in grey 

matter regions and CSF. On the other hand, MD does not show any contrast between grey 

and white matter, while CSF shows extremely high diffusivity.  

 

Figure 2.9. Brain structure MRI image and DTI maps (FA, MD, Color FA, λa and λr). Indicated in 

the structure MRI image are grey matter (grey regions as pointed using red arrows), white matter 

(white regions as pointed using yellow arrows) and CSF (dark regions as pointed using blue 

arrows). Color FA shows the principle diffusion direction, color-coded. Blue: Inferior-Superior; 

Red: Left-Right; Green: Anterior-Posterior. 
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In brain injury studies, reduced MD and/or increased FA are commonly observed 

in stroke (Armitage et al., 1998), acute traumatic brain injuries (Shanmuganathan et al., 

2004) or brain tumor (Guo et al., 2002). These DTI changes are typically associated with 

cellular swelling, cytotoxic edema or increased cellularity, leading to reduced extra-

cellular space. Increased MD and/or reduced FA are more often observed in many kinds 

of chronic brain injury (zelaya et al., 1999; Cercignanti et al., 2001; Shanmuganathan et 

al., 2004) and may indicate cellular membrane disruption, cell death, tissue cavitation, 

vasogenic edema, etc., which leads to increased extra-cellular space and reduced tissue 

structure.  

DTI is used widely to study white matter abnormalities because FA has been 

shown to be very sensitive in detecting subtle white matter microstructure changes. 

Damage to white matter axons can also cause decreased neuro-transmission in the brain, 

leading to decreased cognitive function.  So changes in FA often correlates with clinical 

presentation and cognitive functions in many neurological disorders such as Alzheimer’s 

Dementia (Bozzali et al., 2002), Multiple Sclerosis (Schmierer et al., 2004), Parkinsons’s 

Disease (Karagulle Kendi et al., 2008), etc.. More specifically, the axial diffusivity (λa) is 

believed to reveal axonal integrity, and the radial diffusivity (λr) is believed to reveal 

myelin integrity (MacDonald et al., 2007; Sidaros et al., 2008; Song et al., 2003).  

2.2.4 Diffusion MRI Applications in TBI 

Diffusion Axonal Injury (DAI) represents the most common form of TBI, 

comprising approximately half of all such injuries (Arfanakis et al., 2002). Axonal injury 

is also a powerful predictor of morbidity and mortality (Greve et al., 2009). However, 
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both computed tomography (CT) and traditional MRI have limited sensitivity in detecting 

and characterizing DAI in the acute trauma setting (Wilson et al., 1988; Parizel et al., 

1998). Diffusion MRI is quickly gaining interest in the TBI community and diffusion 

parameters are evolving as new imaging biomarkers that have potential prognostic 

values. Early DWI studies in TBI show an increased sensitivity in detecting DAI related 

lesions (Ezaki et al., 2006). Whole brain ADC was also shown to be able to 

independently indicate TBI in spite of normal conventional MRI findings 

(Shanmuganathan et al., 2004).  

More recent studies using DTI focus more on the white matter microstructure 

change associated with DAI thanks to the sensitivity of FA and axial/radial diffusivity in 

detecting axonal injury. As explained previously, TBI is an evolving and dynamically 

changing injury rather than a terminal disease, so the diffusion properties are also 

changing through the different injury phases. At the acute stage (0-6 days), an elevated 

FA, reduced MD and reduced λr are typically observed, indicating an inflammatory 

response such as axonal swelling or cytotoxic edema (Bazarian et al., 2007; Wilde et al., 

2008; Chu et al., 2009). Increased FA and decreased λr are also found to correlate with 

severity of post-concussion symptoms (Wilde et al., 2008). Such patterns of DTI value 

change are found to persist to the semi-acute phase (12 days post-injury), with subsequent 

partial normalization at a delayed stage (3-5 months post injury). Moreover, 

normalization of FA is associated with reduction of TBI symptoms, matching a typical 

recovery timeframe (Mayer et al., 2010). At chronic stages (6 months or longer), most 

studies report a reduced FA and increased MD as a result of increased λa, which is 

consistent with axonal damage. Changes in FA are also shown to correlate with injury 
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severity (Benson et al., 2007), cognitive deficits (Kraus et al., 2007; Niogi et al., 2008) 

and functional outcome (Wilde et al., 2006). Increased λr, as an indication of irreversible 

myelin damage, is also observed in severely injured but not mildly injured TBI patients 

(Kraus et al., 2007).  

2.3 Diffusion Kurtosis Imaging (DKI) – Beyond the Gaussian Model 

2.3.1 Non-Gaussian Behavior in Water Diffusion 

Despite the great advantages of DTI, the assumption of diffusion displacement 

distribution being Gaussian and diffusion weighted signal S following a mono-

exponential decay is a largely simplified model. A typical DTI imaging voxel size of 

2×2×2 mm3 is much bigger than any of the cell structures, which are in the μm size 

range. Within an imaging voxel there are numerous cell membranes, with various 

thicknesses and different viscosities. Water diffusion measured by MRI is an averaged 

process of millions of water molecules encountering a variety of obstacles, so its 

deviation from the Gaussian model is well expected. In routine DTI, b-values of 1000 

s/mm2 are typically used with a diffusion time around 50 ms. With such a setting, DTI is 

sensitive to a minimum diffusion distances of 5-10 μm, where approximately 23% to 

63% of diffusion weighted signal attenuation can be measured. Water molecules that 

move greater distances dominate the diffusion weighted signal decay such that restricted 

diffusion within smaller tissue compartments is largely invisible in DTI. In this range of 

diffusion distances, the Gaussian model is still a fairly good estimate of the diffusion 

weighted signal attenuation in MRI (Figure 2.10). When larger b-values are used, 

diffusion weighted imaging becomes increasingly sensitive to more restricted diffusion 
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and the heterogeneous diffusion distances arise from the underlying complex cellular 

structures. Therefore the diffusion weighted signal deviates from the mono-exponential 

decay predicted by the Gaussian model (Niendorf et al., 1996; Assaf et al., 1998). This is 

evident in the measured diffusion weighted signal attenuation S(b)/S0 (blue circles) 

shown in Figure 2.10: a clear deviation from the mono-exponential decay (green line) is 

observed for b-values beyond 1000 s/mm2.  

 

Figure 2.10. Measured diffusion weighted signal attenuation S(b)/S0 (blue dots) at b-values 

ranging from 0 to 5000 s/mm2.  

2.3.2 Other non-Gaussian Diffusion Models 

1)  Bi-exponential model 

There have been several models being proposed to investigate non-

monoexponential diffusion behavior. The bi-exponential model is a natural choice 

considering there are two main compartments within the tissue: intra-cellular and extra-

cellular (Mulkern et al., 1999; Maier et al., 2004). In the bi-exponential model, there are 

assumed to be two compartments in the tissue: a fast diffusing component and a slow 
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diffusing component. If their respective volume fractions are Af and As, and their 

diffusion coefficient within the components are Df and Ds, then the diffusion weighted 

signal attenuation S(b)/S0 can be written as:  

sf bD
s

bD
f eAeASbS  0/)(

                                            (2.12) 

Although the bi-exponential model fits the DW signal attenuation well, it is 

difficult to associate physical meaning to the two compartments, since the volume 

fractions of the fast and slow diffusing components are inconsistent with the known ratio 

between the intra-cellular and extra-cellular compartments (Niendorf et al., 1996). 

Furthermore, multi-exponential signal decay is also observed in a single compartment 

(Kiselev and Ilyasov, 2007). 

2)  q-space method  

A more general and thorough approach is the q-space theory, which directly 

relates the diffusion signal decay to the displacement distribution function of the water 

molecules (Cohen and Assaf, 2002). Instead of a b-value that characterizes the diffusion 

weighting, a parameter q is defined as γδG/2π (γ is the gyromagnetic ratio, δ is the 

duration of the diffusion gradient, G is the amplitude of the diffusion gradient) by 

separating the diffusion time Δ (the separation between the two diffusion gradients as 

explained in section 2.1.2) out as an independent parameter. The theory is based on the 

Fourier relationship between the signal decay and the displacement distribution profile:  

RRqRq diPE s )2exp(),()(                                         (2.13) 
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where EΔ(q) represents the signal decay as a function of q, R is the net displacement 

vector (R = r - r0), and ),( RsP  is the displacement property. Figure 2.11 shows an 

illustration of the distribution profile for water in different tissue environments. In a free 

diffusion environment (Figure 2.11 (a)), the displacement distribution profile follows a 

Gaussian distribution. The distribution becomes increasingly broader with increasing 

diffusion time, as expected since water molecules should diffuse a longer distance given 

longer diffusion time.  In brain tissues (Figure 2.11 (b)), the diffusion displacement is 

non-Gaussian, although a broad peak can still be observed at longer diffusion times. In a 

diffusion direction radial to white matter axons (Figure 2.11 (c)), the diffusion 

displacement profile is a very narrow peak that does not change with increasing diffusion 

time, indicating restricted diffusion that is directly associated with cell size (Cohen and 

Assaf, 2002).  

 

Figure 2.11. Diffusion displacement profiles for water in different tissue environments: (a) free 

diffusion environment, (b) excised rat brain tissue and (c) the radial direction of excised bovine 

optic nerve. Figure is adapted from Cohen and Assaf (2002) with copyright from John Wiley & 

Sons, Ltd.. 

Although the q-space method can fully describe the diffusion profile and provide 

detailed information about tissue microstructure, the disadvantage is much longer 
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acquisition times (in order to sample the whole q-space), and high demands on imaging 

hardware in order to provide extremely strong diffusion gradients (the maximum q 

needed is equivalent to a b-value of approximately to 30000 s/mm2). Therefore, it is 

rarely used in clinical practice.  

3)  Other models  

Other models proposed to solve the non-Gaussian behavior of water diffusion 

include the stretched exponential model (Bennett et al., 2003) and the generalized DTI 

model (Ozarslan and Mareci, 2003). Since they are less popular and less indicated in 

clinical studies, they will not be discussed in any further detail here. 

2.3.3 Diffusion Kurtosis Model 

The diffusion kurtosis model was first introduced by Jensen in 2005 (Jensen et al., 

2005) and later extended by Lu to a full kurtosis tensor expression (Lu et al., 2006). The 

diffusion kurtosis model includes an excess kurtosis into the diffusion model to describe 

the deviation of diffusion displacement from the Gaussian distribution. It is a simpler 

approach than the q-space method to describe the non-Gaussianity in the diffusion 

distribution function. It has been shown to fit data well up to a moderately large b-value 

(b ~ 2500 s/mm2) (Jensen et al., 2005; Lu et al., 2006). 

Mathematically, excess kurtosis (K) is a dimensionless statistical metric for 

quantifying non-Gaussianity of a probability distribution and is defined as:  

3
2
2

4 



K                                                                 (2.14) 
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where μ2 and μ4 are the 2nd and 4th order central moment of the distribution. If the 

distribution is Gaussian, then K = 0. A more sharply peaked distribution will have K > 0 

and a more broad peaked distribution will have K < 0. Figure 2.12 (a) shows an 

illustration of diffusion displacement probability distribution with different kurtosis and 

figure 2.12 (b) shows the diffusion weighted signal fitted by the diffusion and the kurtosis 

model.  

 
Figure 2.12. Diffusion displacement probability distribution with different kurtosis values (a). (b) 

Measured diffusion weighted signal attenuation ln(S(b)/S0) (blue circle) shows clear deviation 

from the linear function (green line) and is well fit by the Kurtosis model (black line).  

Compared to the Gaussian diffusion model in Eq. 2.5, the diffusion kurtosis 

model includes a b2 term from the cumulant expansion of diffusion weighted signal 

attenuation ln(S(b)/S0):  

)(
6

1
)/)(ln( 322

0 bOKDbbDSbS                                         (2.15) 

where S(b) is the diffusion weighted signal and S0 is the non-diffusion weighted signal. D 

is the diffusion coefficient and K is the diffusion kurtosis. Figure 2.12 (b) shows 

measured diffusion weighted signal attenuation ln(S(b)/S0) that clearly deviates from the 
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linear equation corresponding to the Gaussian model (green line) and is well fit by the 

diffusion kurtosis model (black line). 

As diffusion is directional, the diffusion kurtosis also varies across directions 

being measured. Recall that directional diffusion can be captured by a 2nd order 

symmetric 3×3 diffusion tensor D with 6 independent components. Directional diffusion 

kurtosis can be captured by a 4th order 3×3×3×3 tensor W. Being fully symmetric, the 81-

element kurtosis tensor W has 15 independent elements. So, in order to fully estimate D 

and W, a minimum of two b-values beyond b = 0 s/mm2 and a minimum of 15 diffusion 

directions must be acquired (Lu et al., 2006).  

The apparent diffusion coefficient and apparent diffusion kurtosis measured along 

a specific diffusion direction ],,[ 321 gggg  are usually referred to as Dapp(g) and Kapp(g). 

Their relationships to the diffusion tensor D and kurtosis tensor W are:  
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where Dij are elements in D, and Wijkl are elements in W. MD is the mean diffusivity and 

can be calculated from: 
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2.3.4 Diffusion Kurtosis Derived Parameters 

As the kurtosis tensor W is a 4th order tensor, there are many eigenvalues and 

eigenvectors associated with it, corresponding to the full 3D characteristics of W (Qi et 

al., 2008). An interpretation of these parameters has yet to be explored. More commonly 

used diffusion kurtosis imaging (DKI) parameters are those that have more direct 

physical relevance to the diffusion tensor (Cheung et al., 2009; Hui et al., 2008; Wu and 

Cheung, 2010):  

1)  Mean Kurtosis (MK) 

Mean kurtosis (MK) is computed as the average kurtosis along all diffusion 

directions. If there are N uniformly distributed diffusion directions, then MK is commonly 

estimated as:  


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                                                      (2.19) 

2)  Axial Kurtosis (Ka) and Radial Kurtosis (Kr) 

Directional diffusion kurtosis can also be examined along the axial and radial 

directions of the diffusion tensor. To compute it, the kurtosis tensor W is first 

transformed to the co-ordinate system defined by the three eigenvectors (v1, v2, v3) of the 

diffusion tensor D.  
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Where eij are elements of the 3D rotation matrix P (P = (v1, v2, v3)). The diffusion 

kurtosis along each of the eigenvectors is related to the eigenvalues λ1, λ2, λ3 of the 

diffusion tensor and the mean diffusivity MD as:  

iiii
i

i W
MD

K ˆ
2

2


 ,    3,2,1i                                               (2.21) 

  The axial and radial kurtosis is then calculated analogously to the axial and radial 

diffusivity as:  

1KK a                                                              (2.22)      
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3)  Anisotropy of Kurtosis (FAk) 

As a similar measure to FA in DTI, a measure of anisotropy of diffusion kurtosis 

can be defined as: 
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where 



3

13

1

i
iKK . Note that MKK   because the 3D kurtosis distribution cannot be 

represented by a simple ellipsoid.  

Equations (2.19) to (2.23) are commonly used formulas to calculate the kurtosis-

related parameters. They are derived analogous to DTI parameters. As the diffusion 

kurtosis represent a more complex 3D structure, a more rigorous formula has been 

derived that takes a surface integral when calculating MK and Kr (Jensen and Helpern, 
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2010; Tabesh et al., 2010). For example, MK can be expressed as a surface integral of 

Kapps over a unit sphere Ωg:  

  gg dKMK app )(
4

1


 .                                            (2.25) 

Explicit formulas for MK and Kr in terms of surface integral are given by Jensen 

(Jensen and Helpern, 2010). They are referred to as MKs and Krs here so as to be 

differentiated from Eq. 2.19 and 2.23.  
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where ijklŴ  are components of the kurtosis tensor W in a coordinate system defined by 

the eigenvectors of the diffusion tensor D as explained before. We have: 
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where Rf and Rd represent Carlson’s elliptic integrals (Carlson, 1979).  

The radial kurtosis is calculated as:  
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2.3.5 What Does Diffusion Kurtosis Mean?  

Diffusion kurtosis has been described as a measure for tissue complexity or tissue 

heterogeneity (Jensen and Helpern, 2010). Consider a voxel that contains multiple 

compartments: each has their own volume fraction fm and diffusion coefficient Dm, as 

shown in Figure 2.13. Then the diffusion coefficient D of the whole voxel is a weighted 

averaged of the compartmental diffusion coefficient, while the kurtosis K is proportional 

to the variance of the diffusion coefficients (Jensen and Helpern, 2010). Higher 

complexity or heterogeneity in the tissue will cause a higher variability in diffusion 

coefficient and hence leads to higher kurtosis.  

 

Figure 2.13. Diffusion coefficient and kurtosis in a multiple compartment model.  

Figure 2.14 shows an illustration of the kurtosis distribution corresponding to the 

diffusion distribution in brain tissues. If diffusion is modeled as an ellipsoid with its 

principle direction (defined by v1) pointing along the white matter axons, then the 

kurtosis distribution will be like a pancake shaped ellipsoid. The kurtosis is low in the 
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axial direction of the diffusion ellipsoid (defined by v1) because diffusion is most freely 

along the axons, resulting in a more Gaussian diffusion displacement distribution. The 

kurtosis is high in the radial direction of the diffusion ellipsoid (the plane spanned by v2 

and v3) because movement of the water molecules is highly heterogeneous due to the 

myelin sheaths and cell membranes, etc., resulting in a highly non-Gaussian displacement 

distribution. Note, though, that the representation of kurtosis distribution by an ellipsoid 

is a simplified view of a more complex structure defined by the 4th order kurtosis tensor.  

 

Figure 2.14. An illustration of the diffusion and kurtosis distribution in the 3D system defined by 

diffusion eigenvectors (v1, v2, v3). The diffusion distribution is an ellipsoid (blue) with the 

principle direction pointing at v1. The kurtosis distribution, from a simplified point of view, is like 

a pancake (yellow) with higher kurtosis along radial direction of the diffusion ellipsoid, indicating 

restricted diffusion.  

The diffusion kurtosis properties in the brain can be inferred from DTI-related 

parameters. Figure 2.15 shows DTI and DKI derived parameter maps in human and rat 

brains. In white matter, MK is high, indicating a generally higher tissue complexity in an 

environment of densely packed axons. Kr is high (and λr is low), reflective of highly 

heterogeneous and restrictive diffusion perpendicular to the axon direction. In grey matter 

and CSF, due to the isotropic diffusion property, kurtosis is also non-directional. FAk and 
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FA generally present the same information, as regions with highly anisotropic diffusion 

will also have a highly anisotropic kurtosis distribution (although FAk is noisier than FA 

due to the more complex structure of the kurtosis tensor).  

 

Figure 2.15. DTI and DKI related parameters in the human brain (a) and the rat brain (b).  

2.3.6 DKI Applications in Neural Tissue Characterization 

Although DKI is a relatively new imaging method and there have only been a 

limited number of studies utilizing DKI, kurtosis parameters have been shown to 

potentially have higher sensitivity in characterizing neural tissues than DTI. Cheung et al. 

found that DKI parameters were more sensitive to the developmental changes in the rat 



 

 37 
 

than conventional DTI parameters (Cheung et al., 2008). Falangola et al. reported age 

related MK changes in grey matter, which has never before been reported in DTI aging 

studies (Falangola et al., 2008). Grey matter MK values have also been shown to correlate 

with cognitive function in chronic TBI patients (Grossman et al., 2011) and adolescents 

with ADHD (Helpern et al., 2011). Furthermore, DKI has been applied in head and neck 

squamous cell carcinoma (Jansen et al., 2010) and cerebral gliomas (Raab et al., 2010), 

indicating a higher predictive value of kurtosis measures to patient outcome than 

conventional DTI measures.  
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Chapter 3. Diffusion Kurtosis as an In Vivo Imaging 
Marker for Reactive Astrogliosis in Traumatic Brain 
Injury 
 

3.1 Introduction 

Understanding tissue alterations at an early stage following traumatic brain injury 

(TBI) is critical for injury management and prevention of more severe secondary damage 

to the brain. Diffusion tensor imaging (DTI) is a powerful tool for studying neurological 

disease as it provides in vivo measurements of tissue microstructure change that could not 

otherwise be detected through conventional magnetic resonance imaging (MRI) 

techniques. Studies using DTI have focused on white matter abnormality because of the 

highly directional diffusion of water found in the white matter tracts. In acute brain 

injuries, a reduced MD and/or increased FA has been equated with cellular swelling 

(cytotoxic edema) or increased cell density, leading to a reduced extra-cellular space 

(Armitage et al., 2008; Bazarian et al., 2007; Shanmuganathan, 2004). At the same time, 

an increased MD and/or reduced FA has been equated with cellular membrane disruption, 

cell death, tissue cavitation, or vasogenic edema,  which leads to an increased extra-

cellular space as seen in patients with chronic brain injury (Cercignanti et al., 2001; 

Warring et al., 2000; Zelaya et al., 1999). Since the diffusion profile in the grey matter is 

considered to be largely isotropic (Pierpaoli et al., 1996), the use of DTI to study changes 

in the gray matter in brain injury has unfortunately received very little interest. 

The diffusion of water in brain tissue, while complex, is largely simplified  in the 

DTI model where the diffusion-weighted signal ‘S’ is assumed to follow a mono-
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exponential decay. Typically for routine clinical evaluation, the b-values in DTI 

experiments are around 1000 s/mm2 and can probe a minimum diffusion distances of 

about 5-10μm (Assaf and Cohen, 2000). While this model is routinely used in the clinic, 

the model breaks down when higher b-values are used and the diffusion gradients are 

sensitized to probe restricted diffusion over shorter molecular distances (Assaf and 

Cohen, 1998; Niendorf et al., 1996). At such short molecular distances, the signal decay 

seen from diffusion-weighted imaging may deviate from mono-exponential decay as the 

technique becomes sensitive to even shorter molecular distances and increasingly 

sensitive to heterogeneous cellular structures. This deviation from mono-exponential 

decay of the diffusion signal can potentially reveal more information about tissue 

microstructure changes, especially in structures such as the gray matter, tumor micro-

environment (Raab et al., 2010), in regions of neurodegeneration (Farrell et al., 2010), 

and post traumatic tissue (Jiang et al., 2011), where heterogeneity may prevail.  

The diffusion kurtosis model uses a cumulant expansion of ln(S) in a power series 

of b to fit the diffusion weighted signal. This model makes no presumption of 

compartmentalization and has shown to fit the diffusion-weighted signal well, up to 

moderately large b-values of around 2500 s/mm2. Using this model, Diffusion Kurtosis 

Imaging (DKI) has shown great promise to better characterize grey matter microstructure 

change in rodent brain maturation (Cheung et al., 2008; Hui et al., 2008; Wu et al., 2010) 

and in human brain aging (Falangola et al., 2008). Diffusion kurtosis has also shown to 

have clinical value in detecting tissue microstructure abnormality such as in squamous 

cell carcinoma (Jansen et al., 2010), cerebral gliomas (Raab et al., 2010), and lung 

dysfunction (Trampel et al., 2006). More specifically, diffusion kurtosis has been 
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described as an imaging marker that captures brain tissue complexity (Jensen et al., 2010; 

Shaw, 2010). Falangola et al., (2008) reported increased grey matter kurtosis with age, 

when moving from adolescence to adulthood, and attributed this increase to cortical cell-

packing density, continuing myelination and an overall increase of the microstructural 

complexity in the brain. Earlier papers had determined the increased microstructural 

complexity with age to be related to increased activity of glial cells, which have a more 

complex cell structure than neurons (Terry et al., 1987). On the other hand, increased 

glial cell activity, or more specifically reactive astrogliosis, has long been used as reliable 

and sensitive pathology hallmark for diseased tissue in the central nervous system and for 

determining long-term clinical outcome from central nervous system injury (Chen et al., 

2003; Sofroniew, 2009; Sofroniew and Vinters, 2010). Given the sensitivity of diffusion 

kurtosis to changes in tissue microstructure and possibly inflammation as a result of glial 

and astrocytic proliferation following brain injury we hypothesize that it may play an 

important role in detecting inflammatory changes following TBI. To test this hypothesis, 

we investigated the utility of diffusion kurtosis and compared its performance to standard 

diffusion tensor imaging parameters by monitoring changes in these parameters in a 

controlled compact injury (CCI) rat model at the acute (2 hours) stage and the sub-acute 

(7 days) stage and compared the findings with the tissue histopathology. 

3.2 Material and methods 

3.2.1 CCI TBI Model 

Adult male Sprague-Dawley rats (n=12, 250-350 grams) were subjected to left 

parietal CCI injury. Brain injury was induced using the controlled cortical impact device 
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(Pittsburgh Precision Instruments, Pittsburgh, PA) as previously described (Dixon et al., 

1991) with modified settings. Briefly, after being anesthetized initially with 4% 

isoflurane, the rats were maintained at 2% isoflurane throughout the procedure. The left 

parietal bone was exposed via a midline incision in a stereotactic frame. A high-speed 

dental drill (Henry Schein, Melville, NY) was used to perform a left-sided 5 mm 

craniotomy that was centered 3.5 mm posterior and 4 mm lateral to bregma. A 5 mm 

round impactor tip was accelerated to 5 m/sec for an impact duration of 50 ms, resulting 

in a vertical deformation depth of 1.5 mm. The bone flap was immediately replaced with 

dental acrylic and the scalp incision was closed with silk. At the completion of surgery, 

isoflurane was discontinued, and rats were awakened and returned to their cages. Two 

additional sham rats (blank implanted) underwent identical surgeries, with the exclusion 

of the CCI. The experimental protocol was approved by the University of Maryland, 

Baltimore Institutional Animal Care and Use Committee.  

3.2.2 Imaging 

All experiments were performed on a Bruker Biospec 7.0 Tesla 30 cm horizontal 

bore scanner (Bruker Biospin MRI GmbH, Germany) equipped with a BGA12S gradient 

system capable of producing pulse gradients of 400 mT/m in each of the three axes, with 

AVANCE III electronics and interfaced to a Bruker Paravision 5.0 console. A Bruker 1H 

4-channel surface coil array was used as the receiver and a Bruker 72 mm linear-volume 

coil as the transmitter. At all times during the experiment, the animal was under 1-2% 

isoflurane anesthesia and 1 L/min oxygen administration. Ear pins were used to reduce 

head motion and improve consistency in head positions for each animal. An MR 

compatible small-animal monitoring and gating system (SA Instruments, Inc., New York, 
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USA) was used to monitor the animal respiration rate and body temperature. The animal 

body temperature was maintained at 36-37oC using a warm water bath circulation. The 

total duration of the whole experiment was approximately 2 hours. Each rat was imaged 1 

day before injury and 2 hour post-injury. Seven of the twelve rats were also imaged at 7 

days post-injury while the other five rats were sacrificed at 48 hours for histology for a 

separate study.    

A three-slice (axial, mid-sagittal, and coronal) scout using rapid acquisition with 

fast low angle shot (FLASH) was used to localize the rat brain. A fast shimming 

procedure (Fastmap) was used to improve the B0 homogeneity within a region of the 

object. Both proton density (PD) and T2-weighted images were obtained using a 2D rapid 

acquisition with relaxation enhancement (RARE) sequence in both the axial and coronal 

plane.  Imaging was performed over a 3 cm field of view (FOV) in the coronal plane with 

an in-plane resolution of 117μm using 24 slices at 1 mm thickness with no gap, at an 

effective echo-time of 18.9 ms for the proton density weighted image and an effective 

echo-time of 56.8 ms for the T2-weighted image. The echo-train length for each of the 

echoes was 4 and the repeat time (TR) was 5500 ms with two averages for a total 

acquisition time of ~12 minutes.  Imaging was also performed in the axial plane using the 

same imaging parameter as above but over a FOV of 3.0 x 3.2 cm2.   

 For the DKI acquisition, diffusion weighted images were acquired with single 

shot, spin-echo echo-planar imaging (EPI) sequence. An encoding scheme of 30 gradient 

directions was used with the duration of each of the diffusion gradients (δ) being 4 ms 

with a temporal spacing of 23 ms (Δ) between the two diffusion gradients.  Two b-values 

(1000 s/mm2 and 2000 s/mm2) were acquired for each direction following the acquisition 
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of five images acquired at b = 0 s/mm2. The DKI images were obtained using two 

averages using the same FOV and slice positions as the axial PD/T2 images but at an in-

plane resolution of 234 μm at a TR/TE of 6000/50ms respectively for a total acquisition 

time of about 13 minutes.   

3.2.3 Histology 

At seven days post-surgery, and after all imaging was complete, the seven rats 

were anesthetized with ketamine and transcardially perfused with 4% formaldehyde and 

2.5% acrolein. The brains were extracted from the skull and placed in 30% sucrose. A 

freezing sliding microtome was used to obtain 35 μm brain sections. Sections were held 

at -20oC prior to the immunohistochemistry procedure.  

Each of the 35 μm sections was labeled with antibodies against glial fibrillary 

acidic protein (GFAP). Sections were rinsed multiple times with a 0.05 M KPBS buffer 

and then subjected to a 20 minute wash in a 1% solution of sodium borohydride and 

incubated in the primary antibody (anti-GFAP, 1:150K; Dako North America, Inc., 

Carpenteria, CA) diluted in 0.05 M KPBS + 0.4% Triton-X  for 48 hours. They were then 

incubated for the secondary antibody (1:600), also diluted in 0.05 M KPBS + 0.4% 

Triton-X, for one hour. Sections were incubated in A/B solution (1:222) for one hour, and 

then in a Ni-DAB solution with a 0.175 M sodium acetate buffer for 12 minutes. 

Resulting slices were then mounted on slides, dehydrated, and cover-slipped with DPX 

mounting media. The sections were examined with a Leica (Nussloch, Germany) DMRX 

microscope equipped with a Phase One (Copenhagen, Denmark) Power Phase digital 

camera.  Histology was also obtained from the two rats subject to sham injury.  
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3.2.4 Diffusion Reconstruction 

Diffusion weighted (DW) images from individual averages were corrected first 

for motion artifacts using the 3dvolreg command in AFNI (Analysis of Functional 

NeuroImages, http://afni.nimh.nih.gov/afni; Cox, 1996). The two averages of 

motion/eddy-current corrected DW images were then averaged and spatially smoothed 

using a Gaussian filter with a FWHM of 0.3mm to increase the signal-to-noise ratio 

(SNR). DW signals from all three b-values (b = 0, 1000, 2000 s/mm2) and 30 directions 

were then fitted voxel-wise using non-linear least squares fit to the equation: 
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where, 

),,( 321 gggg  is the unit-vector direction of the diffusion gradient. 

S(g,b) is the diffusion-weighted signal at a particular b value with direction g.  

S0 is the MR signal with no diffusion weighting (b = 0 s/mm2) and is the average 

of all the five b=0 volumes that were acquired.  

Dij is element of the 3x3 diffusion tensor D.  

Kijkl is element of a 3x3x3x3 4th order tensor. Kijkl is related to elements Wijkl of the 

diffusion kurtosis tensor W and the mean diffusivity MD (mm2/s) by: 

     ijklijkl WMDK  2                                                              (3.2) 

Since D and W are both totally symmetric matrices, with 6 independent elements 

of the diffusion tensor and 15 independent elements for kurtosis tensor, a total of 21 

parameters were fitted using Eq. 3.1. The apparent diffusion coefficient Dapp(g) and 

apparent kurtosis Kapp(g) for each direction g were then calculated from:  
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It should be noted that this is a slightly different approach than what has been proposed in 

previous published literature where Dapp(g) and Kapp(g) are fit for each direction and then 

fit for the diffusion tensor, D and kurtosis tensor, W (Cheung, 2009; Hui, 2008; Jensen, 

2005; Lu, 2006; Wu, 2010). Our initial testing of these two approaches (Zhuo et al., 

2011) indicated that fitting the tensors first resulted in less fitting errors and resulted in 

parametric maps that were less noisy. The improved DKI reconstruction method was 

described in more detail in Chapter 4.  

Diffusion tensor related parameters (MD, FA, λa and λr) were calculated using Eq. 

2.9-2.11. Kurtosis related parameters (MK, Ka, Kr) were calculated using the Eq. 2.20, 

2.24, 2.27. Note the surface integrated version of Kr (Jensen and Helpern, 2010) were 

used due to its low susceptibility to noise as would be shown in Chapter 4.  

3.2.4 ROI Analysis  

To assess the effectiveness of the DTI and DKI parameters, several brain regions 

were selected. Manually drawn regions of interest (ROI) were placed ipsilateral and 

contralateral to the injury in the cortex (CTX), hippocampus (HC), external capsule (EC) 

and the corpus callosum (CC) on 2-3 consecutive slices at around Bregma 2.12mm – 

4.52mm (Paxinos and Watson, 1986) as shown in Figure 3.1. These regions were defined 

on the FA images while using the T2-weighted image for anatomic reference. Mean and 

standard deviation values from each of the ROI’s from the diffusion and kurtosis 
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paramtetric maps were then computed. For all regions, mean MD, FA, MK values were 

measured. For white matter regions (bilateral EC and CC), the paramaters   λa, λr, Ka, and 

Kr were also measured.  

 

Figure 3.1. Illustration of ROIs on FA maps for a representative injured rat on three consecutive 

coronal slices. Regions shown are: ipsi- (1) and contra- (2) lateral cortex, ipsi- (3) and contra- (4) 

lateral hippocampus, corpus callosum (5), ipsi- (6) and contra- (7) lateral external capsule.   

Note that voxels with MK < 0 or MD > 1.5×10-3 were excluded and did not 

contribute to the ROI. Negative MKs were dominantly observed in the cortex ipsilateral 

to the injury and were typically associated with extremely low diffusivities (or noise) or 

hemorrhage, leading to erroneous fit for Kapp with a negative value. Rather than replacing 

the negative Kapp values with zero, which does not accurately reflect the local water 

mobility environment, these pixels were ignored and did not contribute to the average 

value of any given ROI. Negative MKs were dominantly observed in the ipsilateral cortex 

region closer to the foci of the injury at the acute stage, leading to an exclusion of 

2.2±2.8% of voxels (ranging from 0% to 11%) within the region. Similarly, because of 

our interest in the diffusion behavior of the surviving tissue, we used a MD threshold of 

1.5x10-3 mm/s2 to exclude very highly edematous regions given that the normal MD of 

the cortex is around (0.82±0.04) ×10-3 mm/s2.  Visual observation of each rat showed that 
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most of these voxels were only in the ipsilateral cortex at the sub-acute stage which 

resulted in the elimination of 22.8±20.7% of voxels (range of 0-60%) within the ROI.  

3.2.5 Statistics Analysis 

For each of the measured parameters (FA, MD, MK, λa, λr, Ka, and Kr depending 

on gray or white matter) and each ROI (CC and bilateral HC, CTX, EC), a mixed model 

ANOVA was performed with two degrees of freedom for time (fixed effect) and eleven 

degrees of freedom for subjects (rats) to test changes in the signal patterns with time for 

each of the measures using SAS 9.2. The significant P values from ANOVA were then 

corrected for multiple comparison across all parameters and ROIs using false discovery 

rate (FDR) (Benjamini and Hochberg, 1995) with a q(FDR) = 0.05. Following ANOVA, 

post-hoc tests with Tukey-Kramer correction were carried out to test for differences 

between the baseline and the different time points post-injury. All reported p values were 

corrected and statistical significance was deemed at p < 0.05.  

3.3 Results 

All the animals survived the seven day trial following the CCI injury.  Parametric 

maps of diffusion tensor (MD, FA, λa, and λr) and kurtosis tensor (MK, Ka, Kr) were 

generated for each of the animals. Figure 3.2 shows FA, MD and MK maps from a 

representative rat before and after injury.  All animals demonstrated a decreased MD and 

an increased FA at the site of injury at the initial time point which reversed by the sub-

acute stage as seen by changes in MD and FA on their respective maps.  Increased edema 

was also clearly observed in the MD maps, including the T2-weighted images (not shown) 
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on all animals by the sub-acute stage at the site of the injury.  Increased MK was observed 

in and around the site of the injury in all animals at two hours post injury, followed by 

normalization by seven days but persisted diffusely surrounding the injury.   

 
Figure 3.2. FA, MD, and MK maps of a representative rat in the coronal view at baseline (pre-

injury), 2 hour and 7 days post injury. Circles indicate the site of injury.   

3.3.1 DTI Changes Following CCI 

Mixed model ANOVA revealed a significant temporal change in MD for bilateral 

hippocampus and cortex (HC_ips: F2,11 = 50.31, p < 0.0001; HC_con: F2,11 = 16.69, p 

=0.0007; CTX_ips: F2,11 =  70.98, ; p < 0.0001; CTX_con: F2,11 = 25.78, p < 0.0001), 

where F2,11 is the F-score using two degrees of freedom for the imaging time points and 

eleven degrees of freedom for subjects (rats). These regions experienced a significantly 

reduced MD (p < 0.0005) during the acute stage following CCI (Figure 3.3) that tended to 
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return to baseline by the sub-acute stage. Only the CTX_ips demonstrated a significant 

increase in MD (p = 0.031) compared to the baseline suggesting significant edema in this 

region.  

 

Figure 3.3. Changes in MD, FA and MK values for ipsilateral and contralateral hippocampus 

(HC-ips, HC-con), cortex (CTX-ips, CTX-con), external capsule (EC-ips, EC-con), and corpus 

callosum (CC) from baseline to 7 days post-injury. Statistical significance was based on 

comparison with baseline values. Error bars indicate standard deviation.   

For FA, the time effect was significant for HC_ips (F2,11 = 12.06, p = 0.0028), 

CTX_ips (F2,11 = 26.96, p < 0.0001), EC_con (F2,11 = 5.85, p = 0.03) and CC (F2,11 = 

6.68, p = 0.02). A significant increase in FA was observed in HC_ips (p = 0.014) and 
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CTX_ips (p < 0.0001), while a significant decrease in FA was observed in EC_con (p = 

0.011) and CC (p = 0.031) at acute stage. These changes also returned to baseline levels 

by the sub-acute stage with the only exception being CTX_ips where a significant 

reduction of FA was observed compared to the acute stage (p = 0.016). The temporal 

change in FA within the EC_ips was near significant (p = 0.08) from ANOVA analysis 

but exhibited some variability probably due to the varying extent of injury between the 

rats at this site. Significant temporal changes for λa were observed in the EC_con (F2,11 = 

15.63, p = 0.001) where λa was significantly reduced (p = 0.0006) at the acute stage 

which tended to return to the baseline by the sub-acute stage (Figure 3.4). Changes in λr 

were not significant in any region. 

 

Figure 3.4. Changes in radial and axial diffusivity (λa, λr), and kurtosis (Ka, Kr) for white matter 

regions of corpus callosum (CC) and bi-lateral external capsule (EC_ips, EC_con) from baseline 

to 7 days post-injury. Statistical significance was based on comparison with baseline values. Error 

bars indicate standard deviation. 
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3.3.2 DKI changes following CCI 

 The ipsilateral regions of the hippocampus (F2,11 = 6.27, p =0.025), cortex (F2,11 =  

31.72 p < 0.0001) and external capsule (F2,11 = 8.66, p = 0.009) demonstrated a 

significant increase in MK over the seven days of observation. Only the contralateral 

hippocampus (F2,11 = 11.47, p = 0.003) and the cortex (F2,11 = 8.86, p = 0. 008) 

experienced significant increase in MK over seven days. Temporal MK changes in the CC 

were also significant (F2,11 = 14.58, p = 0.02). Significant increase in MK was observed in 

the CTX_ips (p = 0.0002) at the acute stage, and trend towards an increase was also 

observed in the HC_ips (p = 0.09). The signal abnormality in different regions at the sub-

acute stage appeared to scale inversely with the distance from the impacted site, where 

CTX-ips and CC showed the strongest increase in MK (p = 0.0002), followed by EC_ips 

(p = 0.003), HC_ips (p = 0.011), CTX_con (p = 0.032) and HC_con (p = 0.039). 

 Significant changes with time were observed for Ka, in the regions of EC_ips 

(F2,11 = 12.11, p = 0.0028) and CC (F2,11 = 6.66, p = 0.02). Ka was significantly increased 

in EC_ips (p = 0.013) at the acute stage and stayed elevated at sub-acute stage (p = 

0.0032) as shown in Figure 3.4. The increase of Ka in CC on the other hand was 

significant only at the sub-acute stage (p = 0.0084).  

 The temporal changes in Kr were significant in all the three white matter regions 

(EC_ips: F2,11 = 6.37, p = 0.024; CC: F2,11 = 6.49, p = 0.023; EC_con: F2,11 = 6.19, p = 0. 

026). Significant reductions in Kr were observed in both the CC (p = 0.009) and EC_con 

(p = 0.01) at the acute stage which then returned to the baseline by the sub-acute stage 

(Figure 3.4). Similar trend was also observed in EC_ips (p = 0.07).  
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It should be noted that while MD was found to be a good discriminator of injury 

in the cortex and the hippocampus at the acute stage, it was unable to distinguish changes 

in these brain tissues at the sub-acute stage (HC_ips: p = 0.66; HC_con: p = 0.98; 

Cor_con: p = 0.97). However, MK was able to distinguish changes in the brain 

microstructure between the baseline and the sub-acute stage following injury, both in the 

gray and white matter regions.  The increase in MK was also observed in the contralateral 

hippocampus and the cortex although to a lower extent.   

3.3.3 Diffusion Kurtosis vs. Histology 

Figure 3.5 shows histology using glial fibrillary acidic protein (GFAP) staining 

from two representative rats (Rat A and B) at the sub-acute stage post injury compared to 

a sham rat. Significantly increased GFAP immunoreactivity, indicated by increased 

number of astrocytes, is clearly present for both Rat A and B in the ipsilateral cortex and 

the hippocampus compared to the sham rat. For rat A, the contralateral side also showed 

an increased GFAP immunoreactivity, which was associated with increased MK values 

(not accompanied by MD values change), indicating that MK is sensitive to the changes 

associated with reactive astrogliosis. For rat B, the contralateral cortex had very low 

levels of GFAP staining that corresponded with low MK values.  
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Figure 3.5. Comparison of immunohistochemical stains using glial fibrillary acidic protein 

(GFAP) two representative CCI exposed rats (Rat A and B) at 7 day post-injury and a  sham rat. 

The GFAP stains (40× magnification) are shown from the ipsilateral cortex, hippocampus and 

contralateral hippocampus, cortex of each rat.   

To assess the sensitivity of the various DTI/DKI parameters in detecting the 

abnormality far away from the foci of injury, the rats were divided into two groups based 

on the optical density in GFAP staining in the contralateral cortex. Two rats were found 

to have severe contralateral cortex staining (severe group, like rat A in Figure 3.5) and 
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the other five were found to have mild staining in the contralateral cortex (mild group, 

like rat B in Figure 3.5). Figure 3.6 shows pair-wise scatter plots for MD, FA and MK 

(FA vs. MD, MK vs. FA, and MD vs. MK) values from all voxels within the contralateral 

cortex ROI of all rats in each group along with their respective histograms (20 bins, 

smoothed by 3 point moving average). The plot of MK vs. MD for the severe group 

(Figure 3.6a) for the MK values compared to the MD values between the voxels at 

baseline and the voxels from the sub-acute stage following injury indicating that MK is 

sensitive to changes associated with reactive astrogliosis. Similarly, an upward shift of 

MK peak is also seen while no shift is observed for FA.  Figure 3.6b shows a similar pair-

wise scatter plot for the mildly stained rats. No significant shifts of MD, FA or MK were 

observed in this group in the contralateral cortex. To compare the changes in voxel values 

between baseline and the sub-acute stage for the different parameters, standardized mean 

effect size was computed using Cohen’s d (Cohen, 1988), which is defined as the 

difference between two means divided by the standard deviation of the data. In this test, 

an effect size of around 0.8 is considered large, an effect size of 0.5 as moderate and an 

effect size of 0.2 is considered small (Cohen, 1988). The effect size between the baseline 

voxels and the seven day voxels for the severe group was large for MK (deff, MK = 0.91), 

moderate for MD (deff, MD = 0.46) and none for FA (deff, FA = 0.03). In the mild group, the 

two clusters of baseline and the sub-acute stage voxel values was not separable by the 

pair-wise plots, although the histogram indicating a slight shift of MD and FA toward 

lower values, while MK tended to be higher. However, the overall effect of all three 

parameters were small (deff,MD&FA ≈ 0.2), with MK showing the largest effect (deff, MK = 
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0.35). Overall these results suggest that changes in MK are strongly associated with 

increased GFAP immunoreactivity.  
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Figure 3.6. Pair-wise scattered plots of diffusion-related (MD, FA) and kurtosis-related (MK) 

parameters for voxels from an ROI on the contralateral cortex  (see Figure 3.1) from groups of (a) 

severely   and (b) mildly stained  rats showing changes in these parameters at 7 days post injury 

(red dots) in comparison to the baseline (blue dots). The corresponding histograms for each of the 

parameters with the effect size deff are also shown.   

3.4 Discussion 

Diffusion-weighted MRI, and especially DTI, has long been shown to be a 

powerful tool in detecting tissue microstructure changes in vivo. However, the model 

most widely used inherently expects diffusion distances to have a Gaussian distribution, 

which can mask information regarding the underlying tissue heterogeneity. More 

recently, diffusion kurtosis has been described as an imaging marker that can provide 

information on tissue heterogeneity or tissue complexity (Jensen et al., 2010) and hence 
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can reveal information beyond measures such as MD or FA. Our results indicate that 

diffusion kurtosis provides additional information not available through standard DTI 

parameters, and is sensitive to local tissue heterogeneity both in the gray and white matter 

following traumatic brain injury. More specifically, our study indicates a strong 

association with diffusion kurtosis and astrocytic immunoreactivity as revealed by the 

GFAP stains.  

In a study of brain maturation, Falangola et al. (2008) have shown that MK is 

sensitive to changes in grey matter, where MK increases with brain maturation while the 

DTI parameters, MD and FA remained relatively unchanged. They postulated that the 

increase in MK during maturation in the grey and white matter was likely due to 

consistent and continuing myelination and an overall increase of the microstructural 

complexity and increased cell-packing density especially in the grey matter. Post-mortem 

studies also confirm the increase in the number and volume of glial cells with age in 

response to neuronal pruning as part of the developmental process of the nervous system 

(Finch, 2003; Terry et al., 1987). The combined effect of increased glial cell activity and 

neuronal pruning may essentially offset any changes in DTI parameters including MD 

and FA. However, this complex scenario of microstructural changes appears to be 

sensitive to MK.  

Previous studies of brain injury have observed reactive astrogliosis activity to 

peak at 4-7 days post injury (Chen et al., 2003; MacDonald et al., 2007). This observation 

agrees with our histopathological findings where we observe significant increase in 

reactive astrocytosis and microglial response at 7 days. Furthermore, this increased 

reactive astrogliosis corresponds directly to the increased MK seen in vivo at sub-acute 
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stage when DTI parameters such as FA and MD have returned to baseline, indicating that 

MK is sensitive to changes in tissue microstructure in response to the injury. Taken 

together, the results from DKI and histology confirm that MK is sensitive to the increased 

complexity of the tissue microstructure in response to the TBI.   

Although the primary injury from CCI was focal, the pattern of injury as observed 

through DKI, especially at the sub-acute stage, was diffuse and even extended to the 

contralateral hemisphere. This finding is consistent with a previous study that found 

progressive neurodegeneration following CCI, starting at the site of the injury and 

gradually progressing to a widespread callosal and thalamic neuro-degeneration in both 

hemispheres by 7 days (Hall et al., 2005). The authors attributed this widespread change 

to degeneration of fibers in the corpus callosum and commissural pathway, causing 

progressive neuronal death and cellular destruction on the contralateral hemisphere.  

Reactive astrocytes are also known to have important neuroprotective roles after trauma 

in preserving neural tissue and restricting inflammation (Chen and Swanson, 2003; Laird 

et al., 2008; Myer, 2006). So such a process would also likely trigger mild reactive 

astrogliosis that might contribute to an increase in MK in the contralateral hemisphere. It 

is well known that reactive astrogliosis occurs in response to CNS injury and other 

disease process, the extent of which may vary based on the severity of the insult (Laird et 

al., 2008; Sofronview, 2009).  These changes are modulated by inter- and intra-cellular 

signaling mechanisms and have the potential to modify the degree of changes in a manner 

that can be either detrimental or beneficial for the surrounding cells.  The increased 

GFAP staining in the contralateral cortex for Rat A in Figure 3.5 at the sub-acute stage is 

indicative of mild to moderate reactive astrogliosis.  Although some hypertrophy is 
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observed without intermingling or overlapping of astrocyte domains, it is likely that such 

proliferation will eventually resolve and the astrocytes will return to their normal 

appearance (Sofroniew, 2010).  Indeed this was the observation made by Chen et al. 

(2003) in a non-imaging study where a significant proliferation of reactive astrocytes was 

observed up to 7 days with eventual resolution to normal levels by 28 days post CCI.      

The DTI changes in the white matter were more severe in regions adjacent to the 

direct impact compared to the remote regions in the contralateral hemisphere. A 

significant reduction in FA in the corpus callosum and the contralateral external capsule 

at the acute stage that returned to baseline by seven days was observed.  Further, a trend 

towards a decrease in FA, driven by a reduction in λa was observed in the ipsilateral 

external capsule was observed. This behavior appears to be typical of CCI related axonal 

injury and is consistent with DTI studies in mice using the same injury model 

(MacDonald et al., 2007), as well as other diffuse axonal injury studies in human TBI s 

(Kraus et al., 2007; Mayer et al., 2010). It should be noted that the experimental injury 

used in our study was of only 1.5 mm impact depth compared to the more severe impact 

depth of 2.5 mm used by MacDonald et al. (2007).  This might also explain the relatively 

milder changes in both λa, and λr in our study.  

In the regions of the white matter, we also observed increased Ka and decreased 

Kr associated with decreased and increased diffusivity respectively in their respective 

directions. This may be due to broken and beading axons, which would cause more water 

diffusion restriction in the axial direction, leading to lower λa and higher Ka. These 

processes together with demyelination may result in more free water diffusion in the 

radial direction and hence higher λr and lower Kr. Moreover, the significant decrease of 
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Kr within CC and EC_con at the acute stage is accompanied by no changes in λr which 

further suggests that kurtosis is more sensitive to changes in intra- and extra- axonal 

water exchange (for example, in the case of axonal break-down and demyelination), as 

also suggested by Jensen (Jensen et al., 2010). The increase in Ka was also significant in 

the ipsilateral EC without a corresponding change in λa. This is probably due to the 

combined effect of axonal break-down and swelling in the tissue, which could effectively 

counterbalance, leading to no changes in MD (Figure 3.3), while increasing tissue 

heterogeneity would still lead to the observed increase in MK (Jensen et al., 2010). The 

increase in Ka and normalization of Kr at sub-acute stage can be attributed to reactive 

fibrous astrogliosis activity in the white matter.   

DTI has been used extensively in characterizing white matter disease because 

diffusion properties along and perpendicular to the axon provide important information 

about axonal integrity.  However, given the isotropic nature of grey matter, studies of 

microstructural imaging changes in the grey matter have been very limited.  The fact that 

changes in the grey matter can be realized using MK provides an extra dimension to the 

repertoire of imaging techniques for the investigators.  The directly impacted cortex 

shows an increased MD and reduced FA at the acute stage due to tissue edema, visible on 

T2-weighted images.  In the grey matter regions of the hippocampus and the cortex, we 

observed a reduced MD and increased FA at the acute stage. Similar DTI signal behavior 

has been reported in white matter regions, thalamus and at the whole brain level for TBI 

patients at the acute stage (Bazarian et al., 2007; Chu et al., 2010; Shanmuganathan et al., 

2004; Wilde et al., 2008;) and has been attributed to cell swelling and cytotoxic edema. 

By the sub-acute stage a return to the baseline for MD and FA was observed in all these 
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regions.  Similar patterns of changes in MD/FA at an early and late stage were reported in 

a longitudinal study of mild TBI patients at 12 days post injury and 3-5 months post-

injury respectively (Mayer et al., 2010).  Increased MD and/or reduced FA at the chronic 

stage has also been observed in both white matter and grey matter in human studies 

(Bensen et al., 2007; Kraus et al., 2007; Niogi et al., 2008; Wilde et al., 2006) and also in 

several animal studies (Immonen et al., 2009; MacDonald et al., 2007).   

Reliance purely on DTI parameters may underestimate the underlying cellular 

processes that influence changes in the tissue microstructure.  In our study, the acute MK 

increase was only significant in the ipsilateral cortex and was directly associated with 

highly restricted diffusion as observed by MD in the directly impacted area.  However, a 

wide spread increase in MK was observed by the sub-acute stage in other regions, at a 

time when both MD and FA appear to return to baseline levels.  The increase in MK 

suggests increased tissue heterogeneity which was confirmed as reactive astrogliosis from 

GFAP staining.  The normalization of MD and FA may reflect the ongoing activity of 

both detrimental and beneficial astrogliosis processes, the complexity of which is only 

reflected by changes in MK.  Once again, this reflects the sensitivity of MK that is not 

captured by either MD or FA which underestimate the processes underlying tissue 

microstructure changes, when clearly reactive protoplasmic astrocytes have not 

completely resolved. 

One limitation to the present study is that only GFAP staining was performed to 

obtain immunohistochemistry information on the animals.  Although our study here 

clearly indicates an association of increased MK to increased reactive astrocyte activity 

from GFAP staining, one should not discount the possibility of other physiological 
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processes that may also be in play that may have an effect on diffusion kurtosis. For 

example as indicated earlier, cellular destruction, edema, axonal breakage or 

demyelination, etc have been shown to be sensitive to diffusion-weighted imaging, and 

may also contribute to changes in diffusion kurtosis.  While future studies should focus 

on teasing the contribution of these physiological processes, it is clear that diffusion 

kurtosis may have value in the case of mild injury where no focal contusion or lesion is 

observed on conventional MRI or can be identified by standard DTI parameters.  Because 

of its sensitivity to changes in reactive astrogliosis, diffusion kurtosis may be a suitable 

imaging marker to monitor inflammatory changes in the brain following TBI.   

The association of increased MK to increased astrocyte immunoreactivity in this 

study should be viewed in the context of its limitations. The sample size used in this 

study is small, especially at the sub-acute stage compared to the acute stage (only 7 out of 

12 were imaged at 7 day post injury). Although we observed a strong association of 

changes in MK with GFAP immunoreactivity, it would be of great interest to see how MK 

correlates with histological findings, especially with the density of astrocytes within the 

injured tissue and the relationship with behavior and size of the contusion.  It should be 

noted that reactive astrogliosis is believed to be a reliable and sensitive marker of 

diseased tissue (Sofroniew, 2010) and can play an important role in determining long-

term clinical outcome (Cheng et al., 2003; Sofroniew, 2009). Another key limitation to 

our study is that we only followed the animals for 7 days.  It would of interest to see if 

the MK tracks the normalization of the astrocytic activity over a longer period.   

We only used three b-values primarily because of concern for the effects of 

prolonged anesthesia for the animals, potential for the animal to move during these 
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prolonged experiments, and time constraints posed for magnet use.  The reliability in the 

estimation of DKI parameters increases with the use of multiple b-values as it helps in 

minimizing fitting errors (Cheung et al., 2008; Falangola et al., 2008; Hui et al., 2008). 

However, more b-values will have little influence on the standard DTI parameters 

(Veraart et al., 2011).  While the use of only three different b-values up to a maximum b-

value of 2000 s/mm2 may have led to some error in the estimation of the DKI parameters, 

such an acquisition has been suggested to be more practical in the clinical scenario 

(Jensen et al., 2010).  

3.5 Conclusions 

In summary, diffusion kurtosis parameters can provide additional microstructural 

information and complement the parameters from diffusion tensor imaging.  Our study 

clearly indicates changes in diffusion kurtosis parameters correspond to active processes 

that involve reactive astrocytes not realized by other MR imaging techniques.  Given that 

reactive astrogliosis is considered to be a reliable and sensitive biomarker for insults from 

traumatic brain injury and the fact that it can play an important role in determining the 

clinical outcome, we believe that DKI parameters are effective imaging markers to detect 

this activity in vivo.   
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Chapter 4. Improved Fast DKI Reconstruction 
 

4.1 Introduction 

Conventional fitting for Diffusion Kurtosis Imaging (DKI), as explained in 

section 2.3.3, typically uses a Levenber-Marquardt nonlinear fitting algorithm (Jensen et 

al., 2005). The apparent diffusion coefficient Dapp(g) and kurtosis Kapp(g) are fitted from 

each diffusion direction g according to equation:   
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                               (4.1) 

The diffusion tensor D and the kurtosis tensor W are then estimated by using linear least-

squares fit to Eq. 2.16-17. A whole-brain dataset can take well more than 1 hour to 

process (Lu et al., 2006). This significantly limits the clinical application of DKI, as real-

time reconstruction and visualization are highly desirable in a clinical environment. 

A faster, but limited, DKI reconstruction algorithm was introduced by Jensen et 

al. (Jensen et al., 2009), which explicitly solves Eq. 4.1 for the diffusion coefficient Dapp 

and kurtosis Kapp when exactly 3 b-values (b1, b2, b3) are used. Here, S(b) and S0 are 

diffusion weighted and non-diffusion weighted signals, respectively. Dapp and Kapp can be 

calculated using a closed-form expression:  
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Jensen’s fast DKI algorithm reduces post-processing speed to only a few seconds. 

But it also has the following limitations:  

1. It only works for 3 b-values, but typically 4-5 b-values are used in DKI 

experiments.  

2. The closed-form expression assumes the diffusion directions are exactly the same 

for different b-values. While this is typically true during data acquisition, after 

motion correction, which requires rotating the diffusion directions accordingly, 

this condition usually does not hold anymore.   

Furthermore, although it is a common practice to fit the diffusion coefficient Dapp 

in each diffusion direction first and then reduce to the diffusion tensor D, a similar 

approach for DKI reconstruction poses an over-fitting problem and can increase fitting 

errors for this much more complex model. Fitting for Dapp and Kapp in each diffusion 

direction can add up to 60 parameters to fit for a common diffusion weighted (DW) 

imaging scheme of 30 diffusion directions, while the number of independent tensor 

parameter is only 21 (6 for the diffusion tensor and 15 for the kurtosis tensor).  

A potential way of overcoming these obstacles arises from the fact that the DKI 

equation, when written in the tensor form, can also be easily transformed to a set of linear 

equations. They can then are solved by linear least squares fitting and result in a 

significantly reduced reconstruction time.  
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In this chapter, an improved tensor-based fast DKI reconstruction method, 

fDKI_T is described.  It is compared to the conventional non-linear least squares method 

(referred to as NLS) (Jensen et al., 2005), as well the original fast DKI method (Jensen et 

al., 2009). A non-linear least squares version of the tensor-based DKI reconstruction 

(NLS_T) is also considered in order to assess the errors of going from non-linear DKI 

reconstruction to linear reconstruction. Analysis was performed on a set of rat-brain data, 

at both the whole-brain level and the region-of-interest (ROI) level, based on the 

accuracy of reconstructed parametric maps.  

4.2 Methods 

4.2.1 Theory 

The diffusion tensor D and kurtosis tensor W can be estimated directly through 

the following equation after combining and rewriting the Eq. 4.1 and Eq. 2.16-17:  
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where, 

),,( 321 gggg  is the unit-vector in the direction of the diffusion gradient, 

S(g,b) is the diffusion-weighted signal at a particular b value with direction g,  

S0 is the MR signal with no diffusion weighting (b = 0 s/mm2), and 

Dij is element (i,j) of the 3x3 diffusion tensor D. 

Kijkl is element  (i,j,k,l) of the 3x3x3x3 4th order tensor K, which is related to the 

kurtosis tensor W and the mean diffusivity MD (measured in mm2/s) by: 

     K  MD2 W                                                       (4.6)                         
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By rewriting D and W in a vector format where: 
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and defining a vector of monomials of the diffusion direction g that correspond to Dv and 
Kv, respectively:  
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Eq. 4.5 can then be transformed to a set of linear equations:  
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Dv and Kv can be easily solved through matrix division as: 
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Dapp and Kapp at a particular direction g can then be estimated by: 

T
dvapp gDD )(g

                         (4.14)
 

2)(
)(

g
g

app

T
kv

app D

gK
K




                 (4.15)
 

All parametric maps can be calculated as discussed in section 2.3.4.  
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4.2.2 Data Acquisition 

DKI data were collected on an adult male Sprague-Dawley rat. Imaging was 

performed on a Bruker Biospec 7.0 Tesla 30 cm horizontal bore scanner (Bruker Biospin 

MRI GmbH, Germany) equipped with a BGA12S gradient system capable of producing 

pulse gradients of 400 mT/m in each of the three dimensions (x, y and z),  and interfaced 

to a Bruker Paravision 5.0 console. A Bruker 1H 4-channel surface coil array was used as 

the receiver and a Bruker 72 mm linear-volume coil, as the transmitter. During the 

experiment, the animal was under 1-2% isoflurane anesthesia and 1 L/min oxygen 

administration. A MR compatible small-animal monitoring and gating system (SA 

Instruments, Inc., New York, USA) was used to monitor the animal respiration rate and 

body temperature. The animal body temperature was maintained at 36-37o C using a 

warm water bath. Diffusion weighted images were acquired with a single shot spin-echo 

echo-planar imaging (EPI) sequence. A Bruker standard encoding scheme of 30 gradient 

directions was used with δ/Δ = 4/20 ms. Five non-zero b-values: 500, 1000, 1500, 2000, 

2500 s/mm2 were acquired for each direction following five images acquired at b = 0 

s/mm2. FOV = 3.0 × 3.0 cm2, matrix resolution = 128 × 128, TR/TE = 6000/50 ms, slice 

thickness = 1 mm with no gap, number of slices = 24, number of averages = 2. The 

acquisition time is around 17 min. A proton density (PD) and T2-weighted images were 

obtained using a 2D rapid acquisition with relaxation enhancement (RARE) sequence in 

the slice locations for anatomical reference.  Imaging was performed over a 3 cm field of 

view (FOV) in the axial plane with an in-plane resolution of 117μm, at an effective echo-

time of 18.9 ms for the proton density weighted image and an effective echo-time of 56.8 

ms for the T2-weighted image. The echo-train length for each of the echoes was 4 and the 
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repeat time (TR) was 5500 ms with two averages for an acquisition time of around 12 

minutes.   

4.2.3 Post processing 

1)  Data Reconstruction 

Diffusion weighted (DW) images from individual averages were corrected first 

for motion artifacts using the 3dvolreg command in AFNI (Analysis of Functional 

NeuroImages, http://afni.nimh.nih.gov/afni; Cox, 1996). Gaussian smoothing with a full 

width at half maximum (FWHM) of 0.3 mm was applied to the motion corrected DW 

images to increase the signal-to-noise ratio (SNR). The two repetitions were averaged 

first. Images from all 5 b = 0 s/mm2 were then averaged as a b0 volume. DW images from 

all five b-values (b = 500, 1000, 1500, 2000, 2500 s/mm2) for 30 directions were fitted 

voxel-wise using the nonlinear least squares fitting of the tensor-based DKI (Eq. 4.5). 

DTI and DKI parameter maps (FA, MD, MK, Ka, Kr), as well as the surface integrated 

version of the mean and radial kurtosis  (MKs, Krs), were generated as described in 

chapter 2.1.4 (Eq. 2.9-11) and 2.3.4 (Eq. 2.19, 2.22-23, 2.26-29) and used as the gold 

standard. Then, a subset of the full dataset with two non-zero b-values (b = 1000, 2000 

s/mm2) and the b0 volumes were singled out as a short, and more clinically practical, 

protocol for voxel-wise fitting using: 

(1) The Conventional nonlinear least squares (NLS), 

(2) The fast DKI algorithm (fDKI),  

(3) The tensor based fast DKI algorithm (fDKI_T) algorithm as described in this 

chapter, 
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(4) The nonlinear least squares version of fDKI_T that fit for Eq. 4.5 directly 

(NLS_T).  

DTI and DKI parameter maps were generated the same way as for the ground 

truth.  

2) Error Analysis 

The fitting error for different DKI reconstruction methods was first assessed at the 

whole brain level. A brain mask was manually drawn to exclude non-brain regions using 

MIPAV (Medical Image Processing, Analysis, and Visualization) application by NIH 

(http://mipav.cit.nih.gov) (McAuliffe et al., 2001). The percent error of each parameter 

compared to the gold standard was calculated voxel-wise using: 

 

],0[%,100 NiSSSError gold
i

gold
iii                            (4.16)                         

where N is the total number of voxels within the brain mask. Si and Si
gold are values at 

voxel i of the image for a specific method, and the gold standard, respectively. The 

median error, as well as the 25th and the 75th percentile error values, were calculated to 

assess the overall error in using each method. Median error is more representative of a 

typical error value than mean error, since many of the statistics estimated here have 

strongly non-Gaussian error distributions with significant tails. 

Since ROI analysis still remains the most common way of data analysis, the 

fitting error was further analyzed in several representative grey matter and white matter 

regions, to understand the effect of different reconstruction method on regional parameter 

values. Two grey matter regions: Cortex (CTX) and hippocampus (HC), and two white 
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matter regions: Corpus Callosum (CC) and External Capsule (EC), were considered. 

ROIs were placed on 2-3 consecutive slices near Bregma 2.12mm – 4.52mm (Paxinos 

and Watson, 1986) as shown in Figure 4.1. These regions were defined on the FA images 

using the T2-weighted image for anatomic reference. Regional fitting errors were 

calculated as the mean and standard deviation of voxel-wise errors (Errori in Eq. 4.16) 

within each region.  

 

Figure 4.1. Illustration of ROIs on FA maps on three consecutive coronal slices. Regions shown 

are: (1) cortex (CTX), (2) hippocampus (HC), (3) corpus callosum (CC) and (4) external capsule 

(EC).  

4.3 Results 

Figure 4.2 shows FA, MD, MK, Ka, Kr, MKs, and Krs maps using all methods 

(NLS, fDKI, fDKI_T, NLS_T), compared to the gold standard. DTI derived parameters 

(MD and FA) show little visible difference among all the methods compared to the gold 

standard. The FA maps appear somewhat nosier for all methods when only two b-values 

are used, especially in the low FA regions like the hippocampus and the thalamus (yellow 

arrow). DKI derived parameters (MK, Ka, Kr, MKs, Krs) are noticeably noisier when only 

2 b-values are used, compared to the gold standard. Little difference is observed for the 

MK and MKs maps among different reconstruction methods. Ka, Kr and Krs maps are less 

noisy for both the tensor based methods (fDKI_T and NLS_T) than either fDKI or NLS, 
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with NLS showing slight improvement over fDKI, but with very little visible difference 

between fDKI_T and NLS_T. Between the surface integrated parameters (MKs and Krs) 

and the conventional ones (MK and Kr), no difference is observed for the mean kurtosis, 

but the radial kurtosis is much improved using the surface integration methods.  

 

Figure 4.2. FA, MD, MK, Ka, Kr, MKs, Krs maps using the all methods (fDKI, NLS, fDKI_T, 

NLS_T), compared to the gold standard. Yellow arrows show specific regions (hippocampus and 

thalamus) that are more susceptible to noise.  
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Table 4.1 shows the median percent error calculated for all four methods (fDKI, 

NLS, fDKI_T, NLS_T) and all DTI and DKI parameters (FA, MD, MK, Ka, Kr, MKs, Krs). 

Figure 4.3 shows the same percent errors graphically and with confidence intervals 

(median error, with the 25th and the 75th percentile error indicated by the error bars). For 

DTI-related parameters (MD & FA), there is very little difference in estimation error 

among the different reconstruction methods. For DKI-related parameters (Ka, Kr, MK, Krs 

and MKr), the tensor-based methods (fDKI_T and NLS_T) perform significantly better 

than either fDKI or NLS, both because of smaller median error and less variability in 

error across brain voxels (75th–25th error). NLS produces overall smaller errors than 

fDKI, as expected by nonlinear fitting, but there is almost no difference between fDKI_T 

and NLS_T. Among all parameters, MD shows the least error across the brain; followed 

by MK and MKs. Krs has smaller errors than Krs for all methods except fDKI. MK does 

not show any difference in errors compared to MKs.  

 fDKI NLS fDKI_T NLS_T 
MD 1.25 1.23 1.25 1.27 
FA 7.61 7.56 7.61 7.58 
MK 3.57 3.43 2.59 2.58 
Ka 8.81 8.55 5.33 5.31 
Kr 6.02 6.06 4.56 4.56 

MKs 3.58 3.47 2.59 2.57 
Krs 6.15 5.96 4.15 4.15 

 

Table 4.1. Median percent error for all four methods (fDKI, NLS, fDKI_T, NLS_T) and all DTI 

and DKI related parameters (FA, MD, MK, Ka, Kr, MKs, Krs). 
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Figure 4.3. Median percent error for all four methods (fDKI, NLS, fDKI_T, NLS_T) and all DTI 

and DKI related parameters (FA, MD, MK, Ka, Kr, MKs, Krs). Error bars indicate the 25th and the 

75th percentile values.  

Figure 4.4 shows errors in DKI parameters (MK, Ka, Kr, MKs, Krs) for various 

regions. DTI parameters are not shown as there was little noticeable difference between 

the different reconstruction methods. A similar trend as the whole brain analysis was 

observed. Both tensor-derived methods (fDKI_T and NLS_T) provided higher accuracy 

and less variability than either fDKI or NLS. This is indicated both by smaller errors 

compared to the gold standard and by smaller standard deviations of errors within each 

region. NLS has fewer errors than fDKI for both radial kurtosis measures (Kr and Krs). 

The difference between the two tensor derived methods (fDKI_T and NLS_T) is very 

small. Krs provides lower errors than Kr for all regions, while MKs shows no improvement 

compared to MK.  
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Figure 4.4.  Fitting errors in DKI parameters (Ka, MK, MKs, Kr, Krs) values in cortex (CTX), 

hippocampus (HC), external capsule (EC) and corpus callosum (CC). Error bars indicate standard 

deviations of percent errors within each region. 

4.4 Discussion 

This study describes a tensor-based fast DKI reconstruction method, fDKI_T, 

which provides better-fitting results than the original DKI reconstruction (NSL) and the 

fast DKI method (fDKI). This is indicated by less noise in the DKI parametric maps, 

smaller overall errors across the whole brain, as well as higher accuracy and less 

variation in regional values. The fDKI_T reconstruction time for a whole brain dataset is 

only several seconds, comparable to the reconstruction time in DTI, rather than the hour 

required by the full non-linear fitting. It should be particularly helpful for clinical studies 

where real-time reconstruction and visualization is highly desirable.  
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The fDKI_T method is an improvement not only over the original fast DKI 

method (fDKI) (Jensen et al., 2009), but even over the conventional non-linear least 

squares method (NLS) (Jensen et al., 2005; Lu et al., 2006) as well. This is due to the fact 

that conventional DKI fitting estimates 2 parameters (Dapp and Kapp) for each diffusion 

direction, which can result in 60 parameters for the 30 diffusion directions as in this 

study. These 60 parameters then need to be reduced to 21 tensor-related parameters 

through a linear least squares fit, which poses an over-fitting problem. In contrast, the 

proposed fDKI_T method estimates the 21 tensor-related parameters (6 for the diffusion 

tensor and 15 for the kurtosis tensor) directly from diffusion weighted signals and hence 

reduces the overall fitting errors.  

The proposed fDKI_T method is also flexible for general diffusion weighted 

imaging schemes (e.g. the number of b-values or applied diffusion gradients directions) 

and does not require the same set of diffusion directions for different b-values. This 

provides flexibility for both image acquisition schemes and post-processing 

methodologies employed.   

The results from this study also suggest that if the tensor-based formula is used 

(Eq. 4.5), then the linear least squares fit (fDKI_T) provides as good results as the much 

more time consuming non-linear least squares fit (NLS_T). This, again, arises from the 

improved robustness of the reduced number of fitting parameters. The signal-to-noise 

ratio (SNR) in the b0 volume averaged around 35 in the dataset used for this study, which 

is similar as standard clinical studies (~25-40). If image SNR is much lower (<20), 

however, NLS_T might show more advantages than fDKI_T because linear fitting 
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requires DW data to be log-transformed first, e.g., ln(S(b)/S0), and will give an incorrect 

weighting for fitting residuals at very low SNR.   

Compared to the DTI parameters (FA and MD), DKI parameters (MK, Ka, Kr) are 

more error prone. This is evident from the increased noisiness in the fitted DKI 

parametric maps using 2 b-values, compared to the gold standard that uses 5 b-values, 

while little difference was noted in the DTI parameters. The overall percentage errors 

also varied strongly across the different fitting methods, indicating that DKI fitting is less 

robust to changes in the numerical computation method than in the DTI fitting. Among 

all DKI parameters, radial kurtosis is the most susceptible to noise, followed by axial 

kurtosis and mean kurtosis. Another important finding is that the surface integration 

greatly improves the estimation accuracy for radial kurtosis and should always be used. 

For mean kurtosis, an average over Kapp from all diffusion directions appeared to work as 

well as the extended version of surface integration.  

All DKI reconstruction methods were compared for a short imaging scheme with 

only 2 nonzero b-values and 30 diffusion directions. This was suggested by Jensen as the 

most efficient scheme of DKI acquisition (Jensen et al., 2010). When more b-values are 

used, the advantage of fDKI_T over NSL or fDKI will likely decrease, due to the 

increased redundancy of measurements over fitting parameters. Critically, however, 

acquiring more b-values also means a prolonged imaging acquisition time. This can be 

hard to accommodate for clinical studies, especially for patients in an acutely injured 

stage who may be in severe pain or discomfort.  
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4.5 Conclusion 

In this chapter, an improved fast DKI method (fDKI_T) was described. It fits the 

diffusion and kurtosis tensors directly and improved fitting accuracy over conventional 

DKI fitting methods. The fDKI_T method provides a DKI reconstruction time of only 

seconds for a complete brain dataset, which is comparable to the typical DTI 

reconstruction time. Using the tensor based approach, linear fitting also provides 

comparable results to the much more time consuming non-linear fitting. This will greatly 

facilitate DKI applications in clinical practice where real-time reconstruction is highly 

desirable.  
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Chapter 5. Diffusion Weighting Schemes and 
Reconstruction Methods for Diffusion Kurtosis Imaging 
Parameters 
 

5.1 Introduction 

Diffusion Kurtosis Imaging (DKI) characterizes the non-Gaussian nature of water 

diffusion in tissues (Jensen et al., 2005) and has gained much interest lately. The DKI 

model extends the linear DTI model by using a cumulant expansion in diffusion 

weighting (b) with a b2 term:  

appapp KDbbDSbS 22
0 6

1
ln)(ln                                     (5.1) 

where S(b), S0 are diffusion weighted and non-diffusion weighted signals, respectively. 

Dapp is the apparent diffusion coefficient and Kapp the apparent diffusion kurtosis. Studies 

have shown that DKI can capture information regarding the environment of the tissue 

micrsotructure and extends the utility of diffusion tensor imaging to probe gray matter 

structures (Cheung et al., 2009; Falangola et al., 2008; Grossman et al., 2011; Helpern et 

al., 2011; Hui et al., 2008; Wang et al., 2011; Zhuo et al., 2012).  

Extending DKI to the clinical, however, poses several challenges. The biggest 

challenge is the long image acquisition time. The DKI model involves estimation of both 

the 2nd order diffusion tensor (3×3 symmetric tensor with 6 independent elements, as in 

standard DTI) and a 4th order kurtosis tensor (3×3×3×3 symmetric tensor with 15 

independent elements). So, DKI acquisition requires a minimum of two non-zero b-

values measured with at least 15 diffusion directions (Lu et al., 2006). Compared to a 
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DTI acquisition, which requires only one non-zero b-values measured with at least 6 

diffusion directions, DKI acquisition needs approximately 5 times more time. In practice, 

DKI or DTI acquisitions usually involve several times more data than minimally required 

in order for more reliable tensor fitting. For example, 30 or more diffusion directions with 

a b-value of approximately 1000 s/mm2 are usually recommended for the diffusion tensor 

estimation in DTI (Jones et al., 1999). A typical DKI imagine scheme with 30 diffusion 

directions and 5 non-zero b-values (b = 500, 1000, 1500, 2000, 2500 s/mm2, referred to 

as the 5B30D scheme) takes nearly 20 min to cover the whole brain (Jensen et al., 2005). 

Such long acquisitions not only lead to poor data quality because of motion but can be 

intolerable for patients who may be under severe discomfort. To circumvent the long 

acquisition time, usually only part of the brain is covered in DKI studies in order to 

achieve a more clinically feasible scan time of  ~10 min (Falangola et al., 2008; Helpern 

et al., 2011; Wang et al., 2011). More recently, Jensen et al. has suggested a shorter DKI 

imaging scheme with 30 diffusion directions and only 2 non-zero b-values (b = 1000, 

2000 s/mm2, referred to as the 2B30D scheme) (Jensen and Helpern, 2010) for more 

efficient DKI acquisition. The 2B30D scheme requires only 7 min to cover the whole 

brain. But, little is known about the whether it might be an optimal scheme, and what is 

the accuracy and variability in estimated DKI parameters using this imaging scheme, 

compared to the 5B30D scheme.   

This leads to a question: what is the optimal DKI imaging scheme, within a 

limited acquisition time? Ideally, model fitting always improves with more 

measurements. More measurements here can be either more diffusion weightings (more 

b-values) or more diffusion directions. There has been substantial theoretical and 
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experimental effort in developing optimized DTI imaging schemes to improve the 

accuracy and variability in estimating the diffusion tensor (Alexander and Barker, 2005; 

Conturo et al., 1996; Hasan et al., 2001, Jones et al., 1999; Jones, 2004; Landman et al., 

2007). But, little research has been done on the choices of possible b-values and diffusion 

directions for DKI and their effect on the estimation of the kurtosis tensor. Previously 

Poot et al., (2009) proposed an optimization framework for DKI based on minimizing the 

Cramer-Rao lower bound of a DKI parameter (mean kurtosis, MK or radial kurtosis, Kr) 

(Poot et al., 2009). Although Poot’s approach provides a theoretical foundation for 

optimizing DKI imaging schemes, it depends on the estimation of a prior distribution of 

DKI parameters. The distribution can vary depending on the diffusion weighted MR 

imaging parameters (echo time, repetition time, image resolution, etc.) and the subject 

being scanned. So, Poot provides no uniform solution. What constitutes an optimal and 

efficient DKI acquisition still remains unknown.  

A second challenge for DKI is the low signal-to-noise ratio (SNR) in diffusion-

weighted images. Diffusion weighted MRI typically uses the echo planar imaging (EPI) 

technique, which is rapid but inherently low SNR. On top of that, the diffusion weighting 

also causes signal attenuation that scales with the b-value (Basser et al., 1994). In DKI, b-

values up to 2000 or 2500 s/mm2 are typically used, much more than in a standard DTI 

acquisition (b = 1000 s/mm2), in order to reveal the heterogeneous diffusion distances 

related to the heterogeneous cellular structures (Jensen et al., 2005). Therefore, image 

noise is a greater concern in DKI. The effect of noise on DTI parameters has been 

investigated extensively (Anderson et al., 2001; Jones et al., 2004; Farrel et al., 2007; 

Landman et al., 2008), but how noise affects the accuracy and variability of the estimated 
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DKI parameters is not well known. Such an understanding would be very helpful in 

interpreting DKI results. 

Another factor that affects the estimation of DKI parameters is the choice of 

reconstruction method, because estimation of the kurtosis tensor can be highly 

susceptible to fitting errors (Tabesh et al., 2010; Veraart et al., 2011). Since diffusion of 

water molecules reflects the physical property of tissues, diffusion parameter estimates 

must be physically meaningful. But, noise in the measured diffusion weighted signal can 

make the estimated diffusion and kurtosis parameters deviate from their true underlying 

values, causing erroneous inferences. For example, the diffusion coefficient (Dapp) should 

always be non-negative, i.e., the diffusion weighted signal S(b) should have attenuated 

signal compared to non-diffusion weighted signal S0 (Basser et al., 1994). This is the 

guiding principle of diffusion weighted MRI, but it can be violated in isolated voxels 

when diffusion is extremely restricted and very little signal attenuation is truly present. 

Kurtosis values can also be easily fitted too low or too high. The lower physical bound 

for kurtosis values should be zero, according to both multi-compartment diffusion models 

and empirical evidence from the brain (Jensen and Helpern, 2010): S(b) should be a 

convex function of b. But when the signal attenuation is small and S(b) stays almost 

constant for all b, noise can easily make S(b) appear as a concave function of b. This then 

may result in very large negative kurtosis values. The upper bound for kurtosis values is 

believed to be 3/(bmax·Dapp), where bmax is the maximum b-value used for acquisition 

(Jensen and Helpern, 2010). This constraint is to ensure that S(b) stays within the 

monotonically decaying portion with respect to b (the left half of the quadratic DKI Eq. 

5.1), because stronger diffusion weighting (higher b-value) should always result in higher 
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signal attenuation (Basser et al., 1994). For the same reason, bmax in DKI acquisition is 

always restricted to no more than 2500-3000 s/mm2. Yet, even with a bmax of only 2000 

s/mm2, such violations can still arise in case of high diffusion coefficient (e.g., in cerebral 

spinal fluid or along the axial direction of the axons). 

 Negative diffusion coefficients are rather rare (< 1% of brain voxels) and are 

associated with extremely low SNR (Landman et al., 2008). Hence, although nonnegative 

diffusion tensor reconstruction methods have been developed (Cox and Glen, 2006; Koay 

et al., 2006), the unconstrained linear least squares fitting still remains the most common 

choice for DTI reconstruction due to its fast and easy implementation. On the contrary, 

physically irrelevant kurtosis values are frequently observed in more than 10% of brain 

voxels (Tabesh et al., 2011; Veraart et al., 2011) and may cause erroneous results if left 

untreated. Therefore, constrained fitting, which ensures all diffusion and kurtosis values 

are physically meaningful, has been suggested for DKI reconstruction (Jensen and 

Helpern, 2010; Tabesh et al., 2010; Veraart et al., 2011). But, caution must be taken with 

constrained fitting because it may itself introduce new errors. For example, the maximum 

kurtosis value is based on the estimation of Dapp. An underestimated Dapp can lead to 

overestimated Kapp. Therefore, it is important to understand the effect of constrained 

fitting in estimating DKI parameters.  

 In this study, the way in which diffusion weighted imaging schemes affect the 

accuracy and variability of DKI derived parameters are analyzed using data obtained 

from a human volunteer. Based on the results, we proposed two optimal DKI imaging 

schemes within a clinically feasible acquisition time (<10 min). The performance of these 

optimal schemes are compared to the more frequently used DKI imaging schemes 
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(5B30D and 2B30D) by evaluating their estimation accuracy of DKI parameters and their 

susceptibility to physically irrelevant diffusion and kurtosis values. Finally, the effect of 

constrained versus unconstrained DKI reconstruction methods and image SNR are 

analyzed for different imaging schemes using both human data and Monte Carlo 

simulation.  

5.2 Preprocessing Methods 

5.2.1 Data Acquisition 

A complete DKI dataset was obtained on a healthy 33 year old male volunteer on 

a Siemens Tim Trio 3T clinical scanner with body coil excitation and 12-channel phased 

array coil for reception. Following a 3D T1-MPRAGE acquisition for anatomical 

reference, four separate datasets of DKI acquisitions were obtained. Each DKI dataset 

contained 5 non-zero b-values (b = 500, 1000, 1500, 2000, 2500 s/mm2), each applied in 

64 diffusion directions plus eight additional volumes with no diffusion weighting (b = 0 

s/mm2). Diffusion weighted gradient was applied using a twice-refocused single-short 

spin-echo echo planar imaging sequence for reduced eddy current distortion [Reese et al., 

2003]. Each DKI dataset contained 40 axial slices and were collected with an isotropic 

resolution of 2.7mm. Parallel imaging using the GRAPPA technique was used with an 

acceleration factor of 2 at a TE/TR = 101ms/5500ms. Due to the lengthy acquisition time 

of a complete 64 direction using five b-values, each repeat of the DKI acquisition was 

split into two sessions with 32 directions each and the transmit frequency was readjusted 

after each single set to account for the B0 frequency shift. The total scan time for one 

repeat of DKI dataset was 25 minutes (12.5 minutes for each 32 direction set). The 3D 
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T1-MPRAGE sequence was acquired in the sagittal plane with an isotropic resolution of 

1mm, at an FOV of 25.6cm, using TI/TE/TR/flip of 900ms/3.39ms/2500ms/9°.  

5.2.2 Data Preprocessing  

Each of the two 32 direction DKI acquisitions were first concatenated which 

resulted in four complete DKI datasets with 64 directions and five diffusion weightings.  

Each volume of each dataset was then registered to the b=0 volume using 12 degree-of-

freedom affine registration to correct for motion SPM8 (Statistical Parametric Mapping, 

Wellcome Department of Imaging Neuroscience, University College London, UK).   The 

four motion-corrected DKI datasets were then averaged to construct an averaged DKI 

dataset to serve as the gold standard. Both the individual DKI datasets and the averaged 

DKI datasets were then smoothed with a 3D Gaussian filter with FWHM = 3.0mm to 

increase the SNR.  The appropriate datasets were used to construct subsets as described 

in section 5.2.5. 

5.2.3 DKI Reconstruction 

The diffusion tensor D and kurtosis tensor W were estimated for without any 

constraints using the linear least squares (LS) fit using the following equation (Zhuo et al, 

2011): 
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where S(g,b) is the diffusion weighted signal at diffusion direction g = (g1,g2,g3) at a 

particular b-value. S0 is the non-diffusion weighted signal, Dij is an element of the 
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diffusion tensor D and Kijkl is related to element Wijkl of the kurtosis tensor W by

ijklijkl WMDK  2 .    
. 

Since both D and W are totally symmetric matrices, with 6 independent elements 

of the diffusion tensor and 15 independent elements for the kurtosis tensor respectively, a 

total of 21 parameters were fitted using Eq. 5.2. The apparent diffusion coefficient 

Dapp(g) and apparent kurtosis Kapp(g) for each direction g were then calculated from:  
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Three types of constraints based on physical constraints of the biological system 

were considered as suggested by Tabesh et al. (2010): 

Constraint 1: Non-negative diffusion coefficient, which requires that:  

0)( gappD  ,  for any g                                             (5.5) 

Constraint 2: Non-negative kurtosis, which requires that: 

0)( gappK  ,  for any g                                           (5.6) 

Constraint 3: The diffusion weighted signal S(g,b) should be a monotonically decreasing 

function of b, which requires that: 
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gg   , for any g                        (5.7)   

where bmax is the maximum b-value used in the imaging protocol.  
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The constrained linear least squares fitting (CLS) was implemented using the 

lsqlin() function in Matlab (Version R2007a, MathWorks) based on quadratic 

programming (Tabesh et al., 2010).  

 DTI parameters, such as mean diffusivity (MD), fractional anisotropy (FA), axial 

(λa) and radial diffusivity (λr) were calculated by eigen-decomposition of the diffusion 

tensor (Eqs. 2.9-11). DKI parameters, such as mean kurtosis (MK), axial kurtosis (Ka) and 

radial kurtosis (Kr) were calculated from the kurtosis tensor using elliptic integrals 

derived by Tabesh et al., (2010).  

5.2.4 Image Analysis 

Performance of DKI estimation was based on the accuracy and variability in 

estimating diffusion tensor and kurtosis tensor parameters. Parameter values were 

measured from several representative regions of interest (ROI) and from the whole brain.  

In ROI analysis, four representative ROIs, two each from white and gray matter 

were chosen (Figure 5.1).  The white matter (WM) ROI’s included the genu of the corpus 

callosum and the internal capsule. The gray matter (GM) ROI’s included the thalamus 

and the basal ganglia.  ROIs were drawn on the FA map reconstructed from the gold 

standard data (average of the 4 complete DKI datasets), with the 3D MPRAGE images 

serving as the high resolution anatomical reference. Voxel values from preprocessed 

diffusion weighted images were averaged first from each region before tensor fitting. 

These were compared with the respective parameter values from the ROI’s of the 

parametric maps of the gold standard dataset.  It should be noted that the gold standard 
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data did not exhibit any violations of the above mentioned constraints (section 5.2.2) and 

hence the LS-fitted and the CLS-fitted data produced the same results.  

 

Figure 5.1. Illustration of different ROIs used in imaging analysis: genu of the Corpus Callosum 

(a) and internal capsule (b) in white matter; and the thalamus (c) and basal ganglia (d) in grey 

matter. The ROIs were shown on a b0 image. 

 In order to understand the overall accuracy and variability of DKI parameters in 

different brain tissues that have distinct diffusion properties, values from whole brain 

white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) were also analyzed. 

Since the MPRAGE images were acquired at a higher resolution than the DW images, the 

MPRAGE images were resampled to the resolution as the DW images. A segmentation of 

the whole brain to different brain tissues (WM, GM and CSF) was then performed using 

the 3D MPRAGE images after registering the MPRAGE images to the FA images using 

SPM8.   Figure 5.2 showed two representative slices from the original MPRAGE images 

and the segmented tissue masks for each of the brain tissue types (WM: pink, GM: green, 

CSF: blue).  The segmented tissue probability maps were thresholded with a p > 0.6 to 

generate binary masks for each segment. The segmented GM and WM MK maps are also 

shown in Figure 5.2. 
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Figure 5.2. Segmentation results based on the MPRAGE acquisition. Images shown from left to 

right are: representative slices of the MPRAGE volume; the segment mask (WM in pink, GM in 

green, CSF in blue); masked out WM MK map; masked out GM MK map.   

 

5.2.5 Partitioning and Selection of Diffusion Gradient Subsets 

 The effect of diffusion weighted imaging schemes was studied by partitioning and 

grouping of diffusion weighted data from the complete DKI datasets to construct various 

imaging schemes. More specifically, the effect of the number of diffusion direction 

chosen was studied by taking subsets with 15 (Ndir15), 30 (Ndir30) and 45 (Ndir45) 

diffusion directions from the complete dataset of 64 directions (Ndir64). Effect of the 

applied diffusion weightings was studied by taking various combinations of two (Nbval2), 

three (Nbval3) and four (Nbval4) nonzero b-value subset from the complete set of 5 b-

values (Nbval5) used for the gold standard dataset. These repartitioned and grouped data 
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were then used to recreate the diffusion and kurtosis tensors respectively for each of the 

imaging schemes.   

 

1) Selection of Diffusion Direction Subsets 

To study the effect of applied number of diffusion directions, subsets with 15 

(Ndir15), 30 (Ndir30) and 45(Ndir45) diffusion directions were taken from the complete 

dataset of 64 directions. The Monte Carlo pair-wise (MCPW) relaxation method was 

used (Landman et al., 2006) to derive these data with subsets of direction vectors that are 

as uniformly distributed as possible on a unit sphere, and yet had minimal electrostatic 

energy (Jones et al., 1999), In the MCPW procedure, an initial direction vector subset 

with desired number of directions is first selected randomly. An exhaustive pair-wise 

swapping of each direction vector within the direction subset and each gradient vector 

outside of the direction subset is then carried out in order to minimize the electrostatic 

energy of the selected direction subset. Although each MCPW procedure results in a 

different optimal direction subset, depending on the starting subset, they are all near 

optimal. Figure 5.3 shows the achieved electrostatic energy for 100 MCPW procedures 

for an optimal Ndir30 subset from Ndir64. The electrostatic energy for all optimal Ndir30 

subsets (blue circles) are significantly lower compared to a randomly picked 30-direction 

subset (red line), and are all within 1% of the MR vendor provided 30-direction set, 

which is considered truly optimal (green line).  
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Figure 5.3. Electrostatic energy of 100 optimal 30-diffusion-direction subsets (Ndir30) from the 

MCPW procedures (blue circles). All optimal Ndir30 subsets achieved electrostatic energy that is 

much lower than a random pick (red line) and is close to the MR vendor provided 30-direction set 

(green line). 

In order to find diffusion gradient subsets that are close to the true optimal, 100 

MCPW procedures were run for each number of diffusion directions (Ndir15, Ndir30, 

Ndir45) and the one with the lowest electrostatic energy was selected (denoted as black 

star for the Ndir30 subset in Figure 5.3). Figure 5.4 shows the final optimal Ndir15, Ndir30 

and Ndir45 subsets from the complete Ndir64 set. These subsets were used for whole-brain 

analysis of DKI parameters.  
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Figure 5.4. The optimal 15, 30, 45 diffusion direction subsets from 100 MCPW procedures.  Each 

of the direction subsets is plotted (red stars) alongside the complete Ndir64 set (blue circles) using 

spherical coordinate grid.  

Landman et al. has suggested that diffusion direction sets may have angular 

dependent variability in estimating diffusion tensors (Landman et al., 2007). Therefore, 

the optimal diffusion direction subsets are reasonable for whole-brain analysis where the 

variability in tensor directions differs in different anatomies.  However, at the ROI level 

within a given anatomical region, this may cause unwanted bias.  In order to account for 

this angular dependent variability that is associated with the choice of the diffusion 

direction vectors, eight maximally different direction subsets were picked from the Ndir64 

set for each of 15, 30 and 45 diffusion direction schemes.  Since, at most, four 

independent direction subsets can be found with the smallest Ndir (Ndir15), eight 

maximally different gradient sets were considered to be a fair number to account for the 

variability associated with the derived tensor parameters. To choose maximally different 

gradient subset, 1000 MCPW procedures were performed and a gradient subset was kept 

only if it had at least K different directions than all previously chosen sets. In our 

experiment, the selected subsets were at least 25% different from each other for Ndir45 (K 

= 12), at least 50% from each other for Ndir30 (K = 15) and at least 70% different from 
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each other for Ndir15 (K = 11). Figure 5.5 shows an example selection of eight Ndir30 

subsets (red stars) plotted against the original Ndir64 set (blue circle) using spherical 

coordinates. The electrostatic energy of selected Ndir30 subsets are at most 0.6% higher 

than that provided by the vendors provided optimal 30 direction set. The eight subsets for 

each Ndir set were then picked from each of the 4 DKI datasets, resulting in a total of 32 

data points (4 repetitions × 8 direction sets) for each imaging scheme with 15, 30 and 45 

diffusion directions.  

 

Figure 5.5. The graphs demonstrate an example of eight Ndir30 subsets (red stars) 
deduced from the complete 64 diffusion directions (blur circles) using a spherical 
coordinate grid.  

 
2) Selection of Diffusion Weighting Subsets 

All possible choices of Nbval2, Nbval3 and Nbval4 were considered from the 

complete Nbval5 set by keeping b=1000 s/mm2 (standard clinical choice in DTI) as a 

standard fixture in each of the choices. Choosing a b=1000 s/mm2 as a standard fixture in 
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each scheme allows the flexibility for choosing either DTI or DKI reconstruction 

algorithms.  It should be noted that the diffusion tensor parameters estimated using the 

DKI model have a positive bias compared to those estimated using the DTI model 

(Veraart et al., 2011), and, therefore, this flexibility may be desirable as it provides the 

ability to compare the diffusion tensor values with existing literature that is widely 

available based on DTI reconstruction.  

Therefore, the choices of b-values studied here were:  

Nbval2: b = 1000, 2000 s/mm2; b = 1000, 2500 s/mm2. 

Nbval3: b = 500, 1000, 2000 s/mm2; b = 500, 1000, 2500 s/mm2; b = 1000, 1500, 

2000 s/mm2; b = 1000, 1500, 2500 s/mm2; b = 1000, 2000, 2500 s/mm2. 

Nbval4: b = 500, 1000, 1500, 2000 s/mm2; b = 500, 1000, 1500, 2500 s/mm2; b = 

1000, 1500, 2000, 2500 s/mm2; b = 500, 1000, 2000, 2500 s/mm2. 

Nbval5: b = 500, 1000, 1500, 2000, 2500 s/mm2. 

Note that the number of b-values specifically refers to the nonzero b-values and 

does not include the b = 0 dataset (same for all later references).  

5.3 Experimental Methods and Results 

Five sequential experiments are described in this section. The first experiment 

involves the evaluation of the effect of the choice of the specific b-values on the final 

diffusion and kurtosis parameters. The goal here is to understand the effect of specific b-
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values chosen and their influence in estimation accuracy. This experiment will provide 

information on optimal b-values to choose for diffusion or kurtosis tensor estimation.  

The second experiment checks the effect of number of b-values and number of 

diffusion directions on the estimated diffusion and kurtosis parameters. The goal of this 

experiment is to understand the benefits of the increased number of b-values versus the 

number of diffusion directions applied.  These experiments will lead to the identification 

of efficient imaging schemes, specifically those that can be obtained in a clinically 

feasible time (10 min of acquisition time).  

The third experiment will be to assess the performance of different imaging 

schemes derived from the second experiment, compared to the ideal imaging scheme of 5 

b-values and 30 diffusion directions (Jensen et al., 2005; Helpern et al., 2011; Hui et al., 

2008; Cheung et al., 2009) (hereafter referred to as the 5B30D scheme) and a previously 

suggested shorter imaging scheme of 2 b-values and 30 diffusion directions (Jensen and 

Helpern, 2010; Tabesh et al., 2011) (hereafter referred to as the 2B30D scheme).  

The fourth experiment involves the evaluation of the non-constrained least square 

and the constrained least square fitting technique to assess their ability to provide 

accurate diffusion and kurtosis tensor estimates. Three specific constraints as described in 

section 5.2.3, to ensure the derived diffusion and kurtosis parameters to be physically 

meaningful, will be considered.  

The fifth experiment involves the evaluation of the effect of noise to the accuracy 

and variability in estimating diffusion and kurtosis parameters using different imaging 

schemes.  
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5.3.1 Experiment#1: Effect of the Choice of b-values on the Derived DKI 

Parameters 

Methods: The effect of the choice of b-values on the quality of DKI estimation was 

assessed in this experiment by comparing the accuracy and variability in regional 

parameteric values, compared to the gold standard. The comparison was performed using 

30 diffusion directions as it is the most frequent choice for a DKI acquisition. It is also 

more clinically practical than 45 or 64 directions where the acquisition time is well above 

10 min since more than 2 b-values are used.  

Regional diffusion weighted signals were extracted from the four complete DKI 

datasets. Different b-value subsets and the eight Ndir30 subsets were then selected from 

each of the four complete DKI datasets to recreate the diffusion and kurtosis tensors 

using CLS, resulting in 32 data points for each parameter for each b-value set. The mean 

(ܵ̅) and standard deviation (σ(S)) from these 32 data points for each parameter were then 

calculated. Estimation accuracy is based on percent bias for each parameter calculated. 

Since the bias can be positive or negative for different imaging schemes, only the 

absolute values of bias are considered here: 
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where Sgold stands for the gold standard parameter value. Estimation variability is based 

on the percent coefficient of variation (CV) for each parameter: 
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This experiment should lead to the best combination of b-values that would 

provide the diffusion and kurtosis tensor estimates with the highest accuracy and the least 

variability from each of the Nbval2, Nbval3 and Nbval4. 

Results: Figure 5.6 shows the mean and standard deviation of Ka, Kr, MK and λa, λr, MD 

for each Nbval set compared to the gold standard value for genu and thalamus, as 

representative of WM and GM regions. The Nbval sets with a bmax of 2000 s/mm2 

(Nbval2: b = 1000, 2000 s/mm2; Nbval3: b = 500, 1000, 2000 s/mm2 and b = 1000, 1500, 

2000 s/mm2; Nbval4: b = 500, 1000, 1500, 2000 s/mm2) demonstrated a strong positive 

bias in estimating all parameters. The bias is worse for the kurtosis parameters (Ka, Kr, 

MK) compared to the diffusion parameters (λa, λr, MD). The variability in all the 

estimated parameters as demonstrated by the standard deviations in the graphs was also 

higher in the sets with a bmax of 2000 s/mm2. For the Nbval2 set, b = 1000, 2500 s/mm2 

shows clear advantage in terms of both bias and variability in both regions. For the 

Nbval3 and Nbval4 subsets, the differences between the various choices of b-values with a 

bmax of 2500 s/mm2 are small.  



 

 98 
 

 

Figure 5.6. Mean and standard deviation (error bars) of Ka, Kr, MK and λa, λr, MD for each Nbval 

set compared to the gold standard value for genu and thalamus. The solid line shows the gold 

standard value and the dotted line shows ±5% of the gold standard value. 
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Table 5.1 displays the overall percent bias and coefficient of variation (CV) 

averaged across diffusion and kurtosis parameters (λa, λr, MD and Ka, Kr, MK) for the 

various Nbval sets in all WM (genu and internal capsule) and GM (thalamus and basal 

ganglia) regions. The differences between the two Nbval3 sets: b = 500, 1000, 2500 

s/mm2 vs. b = 1000, 2000, 2500 s/mm2 or the two Nbval4 sets: b = 500, 1000, 1500, 2500 

s/mm2 vs. b = 1000, 1500, 2000, 2500 s/mm2 is small. The bias and CV also vary across 

regions. The final choices (indicated in Table 5.1 in bold) were based on the low CV and 

bias averaged from all regions. 

b-values genu thalamus 
internal 
capsule 

basal 
ganglia Average 

Bias CV Bias CV Bias CV Bias CV Bias CV 
1000, 2000 3.47 2.91 1.22 3.24 2.90 2.86 3.85 4.13 2.53 3.29
1000, 2500 1.42 2.24 0.78 2.28 0.72 1.77 1.58 2.75 1.53 2.26
500, 1000, 2000 5.04 2.66 5.84 3.64 4.95 2.49 5.98 4.76 4.51 3.39
500, 1000, 2500 1.27 2.23 1.39 2.60 0.64 1.74 0.96 3.52 1.35 2.52
1000, 1500, 2000 2.60 2.92 1.47 3.16 1.90 2.79 3.65 3.96 2.23 3.21
1000, 1500, 2500 1.80 2.20 1.65 2.17 1.53 1.63 1.84 2.88 1.79 2.22
1000, 2000, 2500 1.10 2.09 1.29 2.22 0.93 1.61 2.11 2.53 1.35 2.11
500, 1000, 2500, 2000 4.70 2.63 3.96 3.05 4.31 2.42 5.01 3.78 3.79 2.97
500, 1000, 1500, 2500 1.15 2.15 0.88 2.23 0.61 1.63 0.77 2.75 1.20 2.19
1000, 1500, 2000, 
2500 1.06 2.06 0.99 2.19 0.91 1.56 1.37 2.59 0.74 2.10
500, 1000, 2000, 2500 1.72 2.11 1.69 2.13 1.71 1.54 2.01 2.98 1.28 2.19
500, 1000, 1500, 
2000, 2500 0.78 2.06 0.69 2.16 0.27 1.54 0.80 2.77 0.43 2.13

 
Table 5.1. Percent bias and coefficient of variation (CV) averaged across the diffusion and 

kurtosis  parameters (Ka, Kr, MK, λa, λr, MD) for all ROIs. An overall average for the bias and CV 

are listed in the last column. Rows in bold indicate the final choice of b-values for Nbval2 (b = 

1000, 2500 s/mm2), Nbval3 (b = 1000, 2000, 2500 s/mm2) and Nbval4 (b = 1000, 1500, 2000, 

2500 s/mm2).  Bias and CV shown are all in %.  
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5.3.2 Experiment#2: Effect of the Number of b-values Chosen & Diffusion 

Directions Chosen on the Variability of DKI estimation  

Methods: The accuracy and variability of diffusion and kurtosis parameter estimates 

from the choice of the number of b-values and diffusion gradient direction subsets were 

studied in this experiment. The goal of this experiment was to understand whether the 

increased number of b-values or an increased number of diffusion directions is beneficial 

for accurate DKI estimation.  Only the optimal Nbval sets from Exp#1 were considered 

along with the eight subsets from each of the Ndir subsets (Ndir15, Ndir30 and Ndir45) and 

the one complete Ndir64 set for every DKI dataset. Assessment was again based on 

estimation bias (Eq 5.8) and variability (Eq 5.9) from each of the Nbval / Ndir 

combinations. The output of this experiment is to arrive at efficient imaging schemes that 

are practical in the clinical setting (acquisition time of ~10 min).  

Results: Figure 5.7 shows mean and standard deviation of Ka, Kr, MK and λa, λr, MD 

with various numbers of b-values (Nbval2, Nbval3, Nbval4, Nbval5) and diffusion 

directions (Ndir15, Ndir30, Ndir45 and Ndir64) in genu and thalamus. The inherent 

variability for each parameter was determined from the four repetitions of the complete 

DKI acquisition, whose CV was found to be approximately 2% (ranging from 0.5% -5% 

across parameters and regions). Given this variability, the number of b-values chosen 

appeared to make little difference to the estimate of both the diffusion and kurtosis 

parameters. However, there is a significant reduction in the variability and accuracy of 

the estimates when going from 15 (Ndir15) to 30 diffusion directions (Ndir30), especially 

for the kurtosis parameters (Ka, Kr, MK). A further reduction in the variability with 
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increasing diffusion directions from 30 to 45 (Ndir45) was also observed for Kr in the 

genu and Ka and Kr for the thalamus.  

To determine the optimal imaging schemes, the bias and CV for diffusion and 

kurtosis parameters (Ka, Kr, MK and λa, λr, MD) were averaged. The average bias for any 

parameters did not appear to be related to the choice of the imaging scheme (typically 1-

2%, compared to the inherent variability of approximately 2% for the gold standard). 

Therefore, only the averaged CV from all regions was considered in determining the 

efficient imaging schemes (Figure 5.8). For each region, the average CV was plotted 

against the number of diffusion weightings used to obtain the data (NDir × Nbval) as 

shown in Figure 5.8. The average CVs for NDir15 were much higher than any other NDir 

set for all regions. As expected, reduced CVs were observed with increased diffusion 

directions. However, for each NDir set, increased numbers of b-values appear to have 

very little effect on reducing CVs. With an acquisition time of approximately 6 sec 

(repeat time) for each diffusion weighted volume, and a recommended choice of at least 1 

b0 volume for every 7 diffusion weighted volumes (Jones et al., 1999), 90 diffusion 

weighted volumes would require an acquisition time of approximately 10 min (dotted line 

in Figure 5.8). Keeping this time constraint in mind, optimal imaging scheme is the 

combination of NDir30 and Nbval2 with approximately 7 min of acquisition time (referred 

to as the Opt7min scheme, circled in red in Figure 5.8). However, an extended imaging 

scheme may be used which is a combination of NDir45 and Nbval2, which requires an 

acquisition time of approximately10 min (referred to as the Opt10min scheme, circled in 

black in Figure 5.8).  
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Figure 5.7. Mean and standard deviation (error bars) of Ka, Kr, MK and λa, λr, MD in the genu and 

thalamus for various b-valuses (Nbval2, Nbval3, Nbval4, Nbval5) and diffusion directions (Ndir64, 

Ndir45, Ndir30, Ndir15). The solid line is the gold standard value and the dotted line shows ±5% of 

the gold standard value.  
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Figure 5.8. Average CVs for various imaging schemes in all ROIs. Number of diffusion weighted 

(DW) volumes is calculated as NDir × Nbval. For each NDir set, the imaging schemes Nbval2 → 

Nbval5 required longer acquisition time.  Dotted line shows the preferred clinical acquisition 

limit of 10 min. The imaging scheme circled in red is the optimally efficient scheme with 

approximately 7 min of acquisition time (Opt7min). The one circled in black is an extended 

imaging scheme with approximately 10 min of acquisition time (Opt10min).   

 

5.3.3 Experiment#3: Performance Evaluation of the Optimal Imaging Schemes  

Methods: The initial assessment of the effect of b-values and diffusion directions were 

based on ROI analysis. Performance of the two optimal imaging schemes determined 

from Exp #2 (the Opt7min scheme with 30 diffusion directions, b = 1000, 2500 s/mm2, 
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~7 min; and the Opt10min scheme with 45 diffusion directions, b = 1000, 2500 s/mm2, 

~10 min) were evaluated in this experiment at the whole-brain level within the GM and 

WM masks produced from the segmentation of whole brain, as described previously. The 

two optimal imaging scheme were compared to the gold standard 64 direction and 5 b-

value set, the recommended 30 diffusion directions (the 5B30D scheme, ~17min) (Jensen 

et al., 2005; Helpern et al., 2011; Hui et al., 2008; Cheung et al., 2009) and a previously 

suggested short imaging scheme of 2 b-values (b = 1000, 2000 s/mm2) and 30 diffusion 

directions (the 2B30D scheme, ~7min) (Jensen and Helpern, 2010; Tabesh et al., 2011).  

Performance of the various imaging schemes were evaluated based on the 

accuracy and variability in estimated diffusion and kurtosis tensor parameters from 

repeated measurements.  Different combinations of b-values and diffusion directions 

were picked out from each of the four complete DKI datasets to construct different 

imaging schemes. Let  పܵഥ  and σ(Si) denote the mean and standard deviation for each 

parameter from 4 repeated acquisitions in voxel i. Then, the estimation accuracy was 

assessed by comparing percent bias voxel-wise to the gold standard (
gold

iS ): 
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where N is total number of voxels within a WM or GM mask. Estimation variability was 

assessed voxel-wise by the CV:  
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(5.11) 

The distribution of CVi and Biasi for each parameter was compared among various 

imaging schemes based on the median, 25th (Q1) and the 75th (Q3) percentile values, as 
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well as the interquantile range (IQR = Q3– Q1). The IQR is a measure for estimation 

variability as it represents the spatial variability of CV or Bias across brain voxels.  

Results: Figure 5.9 shows representative FA, MK and Kr maps using the various imaging 

schemes from the first DKI acquisition compared to the gold standard. White arrows 

indicate the frontal lobe, where the most differences were observed for MK and Kr among 

the various imaging schemes. It is likely that the susceptibility-induced distortion from 

the sinus may have played a role for these observed differences.  Residual misalignment 

in voxels across different diffusion directions, even after co-registration, caused a higher 

variability in estimating the kurtosis tensor in the frontal lobe. The variability in the 

estimates was reduced when using increased diffusion directions with the Opt10min 

scheme (45 diffusion directions) compared to all other 30 diffusion direction schemes. A 

similar reduction in variability was also observed in thalamus (yellow arrows in Figure 

5.9) for Kr in the Opt10min scheme compared to other schemes. The Opt7min scheme 

with only 2 b-values produced similar maps to the much lengthier 5 b-value scheme 

(5B30D). The estimates were also better compared to the 2B30D scheme, when using a 

higher bmax of 2500 s/mm2. The diffusion tensor estimation appeared to be minimally 

affected by the various imaging schemes as indicated by similar FA maps from the 

various imaging schemes.   
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Figure 5.9. Representative FA, MK and Kr maps using various imaging schemes. White arrows 

(frontal lobe grey and white matter) and yellow arrows (thalamus) indicate regions showing large 

differences for various imaging schemes.  

The variability in estimating diffusion and kurtosis parameters across repeated 

measurements using the various imaging schemes are shown in Figure 5.10. The 

distribution of the CVs for all voxels within the GM or WM masks is represented by their 

median CV, and the 25th (Q1) and the 75th (Q3) percentile CVs. Among different imaging 

schemes, the Opt10min scheme has the lowest median CV as well as the lowest IQR for 

all parameters in both GM and WM, indicating an overall lower variability in estimating 

the diffusion and kurtosis parameters. The Opt7min provides similar CV and IQR as the 

5B30D scheme for MD and MK. For other parameters, the 5B30D scheme performs 

slightly better than the Opt7min scheme with the biggest difference being for the 

estimation of FA in GM, where the Opt7min has a 1.5% higher median CV and 0.73% 
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higher IQP compared to the 5B30D scheme. The 2B30D scheme had the highest median 

CV and IQP among all schemes and the effect was worse for kurtosis parameters in WM. 

In general, kurtosis parameters were found to have higher CVs than diffusion parameters 

and the only exception was FA in GM, which had the highest variability due to the 

inherent low diffusion anisotropy in GM.  

 

Figure 5.10. Estimation variability using different imaging schemes for all diffusion (MD, Ea, Er, 

FA) and kurtosis parameters (MK, Ka, Kr). Each box shows median CV from repeated DKI 

acquisitions in GM and WM voxels. Upper and lower bounds of each box represent the 25th and 

75th percentile values of CV.  
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The estimation accuracy of the various imaging schemes was evaluated by the 

average percent bias of four DKI acquisitions compared to the gold standard. Figure 5.11 

shows the distribution of average bias for different diffusion and kurtosis parameters in 

all GM and WM voxels.  The 2B30D scheme is not included in the graph since it 

exhibited a much higher bias compared to the other three schemes due to its bmax (2000 

mm/s2 vs. 2500 mm/s2 for all other). The 5B30D scheme exhibited the least bias (closer 

to 0) for all kurtosis parameters in both GM and WM, and for diffusion parameters 

(except FA) in GM, indicating the benefit of using increasing number of b-values for 

accurate estimation. For diffusion parameters in WM and FA in both WM and GM, the 

Opt10min scheme provided slightly lower bias than the 5B30D scheme, indicating that 

the anisotropic diffusion (typical in WM) were better measured by more diffusion 

directions. The Opt10min scheme also has the lowest spatial variability in bias across 

brain voxels (lower IQP) for all parameters in both GM and WM, indicating that the 

estimation bias for the Opt10min scheme is likely systematic, due to the choice of b-

values. The Opt7min showed higher percent bias (~1% in diffusion parameters and 2% in 

kurtosis parameters compared to the 5B30D scheme; ~0.5% in all parameters compared 

to the Opt10min scheme), as well as a higher variability in bias compared to the 

Opt10min scheme (IQP ~ 0.5% higher for diffusion parameters and 1% higher for 

kurtosis parameters). Generally biases were much higher in the kurtosis parameters than 

the diffusion parameters. MK, Kr and FA showed strong yet systematic negative bias, 

while MD and Ea appeared to have positive bias for various imaging schemes. Compared 

to the gold standard, which was averaged across four repetitions equivalent to doubling 
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the SNR, the bias observed in the optimal schemes appear to be mainly noise related and 

is explored in greater detail in section 5.3.5.  

 

Figure 5.11. Average percent bias compared to the gold standard for four DKI acquisitions in GM 

and WM voxels, for all diffusion and kurtosis parameters using various imaging schemes. Boxes 

show the median, 25th and 75th percentile values of the bias.   
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5.3.4 Experiment#4: Effect of Reconstruction Methods on Parameter Estimates 

Methods: Experiments 1-3 used the constrained least squares method (CLS) in 

estimating the parameters. CLS restricts the diffusion coefficient to be non-negative 

(Dapp(g) ≥ 0, constraint 1), the diffusion kurtosis to be non-negative (Kapp(g) ≥ 0, 

constraint 2), and the diffusion weighted signal to be a monotonically decaying function 

with increasing b-value, which is equivalent to kurtosis values not being too high (Kapp(g) 

≤ Kmax(g), constraint 3), for all diffusion directions g. In this experiment, the effect of 

constrained fitting is studied for the optimal imaging schemes (Opt7min and Opt10min 

schemes) and compared to the 5B30D and the 2B30D schemes. The susceptibility of the 

various imaging schemes to constraint violations (as described in section 5.2.3) is 

assessed by counting voxels violating the constraints when only LS is used. A voxel is 

considered as violating a constraint if the diffusion coefficient or kurtosis of any one of 

the diffusion directions violates the constraint. How constrained fitting affects the derived 

parameter variability and bias was further assessed by calculating the difference in CV 

and absolute Bias using CLS and LS voxel-wise: 

NiCVCVCV CLS
i

LS
ii ,...,1

                                 
(5.12) 
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(5.13) 

A positive ΔCVi (ΔBiasi) indicates an improvement from using CLS, while a negative 

ΔCVi (ΔBiasi) indicates a worse performance using CLS compared to LS.  

Results: Unconstrained fitting (LS) can lead to erroneous results as shown in the MK 

maps (Figure 5.12). The MK and FA maps shown are from a same axial slice using the 

2B30D scheme reconstructed with LS and CLS methods (no Gaussian smoothing was 
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used to magnify the effect when these constraints are violationed). The unconstrained MK 

map shows many negative values (black holes) scattered in the corpus callosum and the 

frontal lobe WM (especially at the tissue junctions of WM and GM), where high kurtosis 

values are expected due to higher tissue complexity of the WM. These negative MK 

values in WM are mainly due to highly restricted diffusion along the radial direction of 

the axons, while negative MK values in GM/WM tissue junctions are thought to be due to 

the tissue misalignment across different diffusion directions. By using constrained fitting, 

these ‘black holes’ in MK map are avoided resulting in values closer to the surrounding 

tissues. The fitting errors are much less noticeable in the FA map as those unconstrained 

voxels typically end up (erroneously) as highly anisotropic voxels and is, consistent with 

the generally high FA observed in WM.  

 

Figure 5.12. Representative MK and FA maps of a same axial slice using the 2B30D scheme 

reconstructed with LS and CLS methods. The effect of constraint violations was magnified by 

having the diffusion weighted volumes undergo all pre-processing steps except Gaussian 

smoothing, resulting in lower image SNR. 
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The effect of constraint violations as shown in Figure 5.12 is most noticeable and 

prevails with low SNR. Even with Gaussian smoothing, 6.35% of WM voxels and 

2.65% of GM voxels still have negative kurtosis values (violations of constraint 2) using 

the 2B30D scheme (Table 5.2). Voxels with negative diffusion coefficient (violations of 

constraint 1) were rare (< 0.1% of all voxels) for any of the imaging schemes. Although 

several voxels had very high kurtosis (violations of constraint 3), it is difficult to 

observe them in the brain tissue.  However, a significant number of voxels appeared to 

have high kurtosis in the CSF. This is most likely due to the high diffusion coefficient in 

CSF, as it is very similar to free water. Violations of constraint 3 were also observed in 

approximately 12% of GM voxels and approximately 19% of WM voxels even in the 

gold standard dataset when only LS was used. A comparison among different imaging 

schemes shows that the Opt10min scheme has the least number of voxels with negative 

kurtosis, followed by 5B30D, Opt7min, and 2B30D schemes. The 2B30d scheme had 

the least number of voxels with kurtosis values being fitted too high due to its lower 

maximum b-value (bmax = 2000 s/mm2), compared to all other schemes that used a high 

b-value of 2500 s/mm2. Among the other three schemes, the Opt10min scheme 

demonstrated to be less sensitive to erroneously fitting voxels to a high kurtosis value, 

followed by the 5B30D and then the Opt7min imaging schemes. 
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Constraint 
Percent voxel violations in GM (%) 

Gold 
Standard 5B30D 2B30D Opt7min Opt10min 

#1 0 0.03 ± 0.06 0.06 ± 0.13 0.05 ± 0.10 0.05 ± 0.09
#2 0.23 0.76 ± 0.77 2.65 ± 1.52 0.93 ± 0.83 0.47 ± 0.32
#3 12.10 20.17 ± 2.95 8.18 ± 2.46 20.62 ± 2.98 16.73 ± 1.64

#1 U #2 U #3 12.33 20.68 ± 3.25 10.43 ± 3.37 21.22 ± 3.21 17.08 ± 1.82
                  

Constraint 
Percent voxel violations in WM (%) 

Gold 
Standard 5B30D 2B30D Opt7min Opt10min 

#1 0 0.01 ± 0.01 0.02 ± 0.05 0.02 ± 0.03 0.00 ± 0.00
#2 0.05 1.36 ± 0.88 6.35 ± 2.70 1.90 ± 1.12 0.75 ± 0.43
#3 19.46 30.88 ± 6.66 13.70 ± 3.74 31.57 ± 6.42 24.70 ± 3.08

#1 U #2 U #3 19.50 31.74 ± 6.68 19.02 ± 5.17 32.70 ± 6.59 25.21 ± 3.21
                  

Constraint 
Percent voxel violations in CSF (%) 

Gold 
Standard 5B30D 2B30D Opt7min Opt10min 

#1 0 0.00 ± 0.01 0.10 ± 0.20 0.04 ± 0.08 0.00 ± 0.01
#2 0.01 0.47 ± 0.94 0.53 ± 1.06 0.39 ± 0.78 0.41 ± 0.59
#3 82.31 89.25 ± 0.50 54.41 ± 5.80 89.91 ± 0.85 87.72 ± 1.02

#1 U #2 U #3 82.32 89.68 ± 1.09 54.75 ± 6.35 90.15 ± 1.18 88.02 ± 1.21
 
Table 5.2. Percent voxel violations of various constraints in different brain tissues (GM, WM, 

CSF) for different imaging schemes. Values shown are mean ± 1 standard deviation for the four 

DKI repetitions.  

 Using CLS, as opposed to LS, provides an overall lower CV and a lower averaged 

estimation bias across several repetitions of DKI acquisitions, for all parameters and 

using all imaging schemes. Figure 5.13 shows the reduction in CV and bias in all GM and 

WM voxels when CLS was used for the Opt10min scheme (plots for other schemes are 

similar and not shown here). The box plots show the median value and the 25th, 75th 

percentile ranges of the reduction in CV (ΔCV) or bias (ΔBias) across voxels within the 

GM and WM mask when CLS was used in comparison to LS method. Only voxels with 

constraint violations were considered here in arriving at these estimates. All diffusion 

parameters benefitted from the constrained fitting, indicated by a positive ΔCV and 

ΔBias. The kurtosis parameters demonstrated a general reduction in CV when using CLS.  
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However, there was little change in the estimation bias estimate whether using CLS or 

LS. Therefore, although CLS reduced the fitting variability for kurtosis parameters, the 

estimation accuracy was not affected. Possibility lays that while CLS generally serves to 

reduce fitting bias, it may also cause more bias for some voxels (as will be shown in the 

next section).  

 

 

Figure 5.13. Reduction in CV and bias in all GM and WM voxels when constrained fitting (CLS) 

is used compared to the unconstrained fitting (LS) for the Opt10min scheme. Boxplots show the 

median value, the 25th and 75th percentile values of the difference in CV and bias (LS – CLS).   

 

5.3.5 Experiment#5: Effect of Image Noise on DKI Estimates 

Methods: Monte Carlo simulations were conducted to study the effect of noise in the 

acquired data for DKI estimation using various imaging schemes (5B30D, Opt7min and 
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Opt10min).  Rician noise was added to the gold standard diffusion weighted signal from 

genu and thalamus (representative of WM and GM, respectively), with SNRs ranging 

from 5 to 40 (with a step size of 2.5). For each SNR level, 1000 runs of Monte Carlo 

simulations were conducted to generate Gaussian noise (n ~ N(0,1/SNR)). To simulate 

additive Rician noise to the gold standard data (S), the noisy dataset (Sn) was generated as 

follows:  

 22)( nnSSn 
                                             

(5.14) 

Diffusion and kurtosis tensors are then reconstructed from subsets of the noisy data using 

each of the imaging schemes. The effect of noise was assessed using both the CLS and 

LS reconstruction methods. The median parameter value from 1000 simulations for each 

SNR was compared to the gold standard to evaluate estimation bias. The estimation 

variability was assessed using a percentile based CV calculated as:  
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(5.15) 

where Q1, Q2, Q3 are the 16th, 50th, 84th percentile values for each parameter. (Q3 – Q1)/2 

is analogous to the standard deviation, and Q2 is analogous to the mean, in a Gaussian 

distribution. This percentile-based formula is chosen due to its robustness against 

outliers, i.e., huge erroneous values in the distribution.   

Results: Noise in the data may lead to violation of the various constrains during DKI 

estimation. Figure 5.14 shows constraint violations under simulated additional Rician 

noise, with an SNR ranging from 5 to 40 in the genu (a) and the thalamus (b) for various 

imaging schemes. Violations of constraint 1 (Dapp(g) < 0) is almost non-existent (<1% 

from 1000 runs) when SNR is ≥ 10 for both the genu and the thalamus. Violations of 
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constraint 2 (Kapp(g) < 0) was much more evident in the data with increased noise. Even 

at SNR of 20, more than 6.4% of the runs in the genu and 10.1% of the runs in the 

thalamus returned negative kurtosis values. The Opt7min scheme had the most violations 

of constraint 2, while the 5B30D and the Opt10min schemes performed similarly but with 

lesser number of violations. The SNR in the raw images plays an important role in 

causing negative kurtosis values as the rate of violation reduces sharply when SNR 

increases. Simulations reveal that SNR of 30 or greater can ensure minimal erroneous 

fitting that leads to negative kurtosis in pixels (<1%).  

Runs related to violations of constraint 3 (Kapp(g) ≥ Kmax(g)) were persistently 

more than 93% for all imaging schemes in the genu, although fewer diffusion directions 

were affected when SNR increased. But, even at an SNR of 40, on average, 

approximately 10% of diffusion directions were still affected. This indicates that areas of 

free diffusion can erroneously be classified as regions of very high kurtosis regardless of 

the noise characteristics of the image.  In the thalamus where diffusion is mildly 

restricted in all directions, violations of constraint 3 decreases with increased SNR. 

Violations of constraint 3 were more common than the other two constraints, but were 

least observed using the Opt10min scheme, followed by the 5B30D scheme and then the 

Opt7min scheme. Overall the Opt10min scheme appeared to be least susceptible to 

constraint violations. The Opt7min scheme had more violations than the 5B30D scheme 

(at a typical SNR level of 25 for Opt7min vs. 5B30D, violation of constraint 2 was: 2.8% 

vs. 1.4% in genu and 5.4% vs. 1.9% in thalamus; violation of constraint 3 was: 98.7% vs. 

97.7% in genu and 30% vs. 20.1% in thalamus).  
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Figure 5.14. Comparison of different imaging schemes under simulated noise with an SNR of 5 to 

40 in the genu (a) and the thalamus (b) in terms of constraint violations. Top row shows percent 

of iterations from the 1000 Monte Carlo simulations that violated the 3 constrains. Bottom row 

shows average percent directions that violated each constraint.  
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The effect of noise on the accuracy and variability in estimating kurtosis 

parameters is shown in Figure 5.15 for the genu (a) and the thalamus (b) with different 

imaging schemes (5B30D, Opt7min and Opt10min) and the two reconstruction methods 

used (LS and CLS). For both the genu and the thalamus, Ka appears to be overestimated, 

while Kr and MK appear to be underestimated as SNR decreases. The positive bias in Ka 

is mainly due to the kurtosis value being fitted too high (violations of constraint 3), since 

the axial direction is where the highest diffusion occurs. The negative bias in Kr is mainly 

due to negative kurtosis values (violations of constraint 2) where diffusion is highly 

restricted in the radial direction of the axons. As the negative kurtosis values can easily 

be huge, this also dominates the fitting bias for MK. In the thalamus, where the diffusion 

is largely isotropic, the error in fitting the radial or axial kurtosis can be quite large. The 

bias for MK and Kr may also change directions with extremely low SNR (<10), when the 

radial or axial direction becomes even more ambiguous and violations of constraint 3 

dominate, leading to overestimated kurtosis values. 

In general, CLS greatly reduces fitting errors, over LS, for all parameters, as 

indicated by a lower CV among the 1000 simulated runs, and by less error for fitted 

parameter values compared to the gold standard. In thalamus, where constraint violations 

reduce to zero when SNR increases, values fitted by CLS and LS also merge. In genu, on 

the other hand, due to the persistently high level of violations to constraint 3, values fitted 

by CLS and LS continue to be different even at SNR = 40.  This leads to the increased 

bias for Ka in genu with CLS. Among the three imaging schemes, the Opt7min has the 

highest fitting variability (higher CVs), while the 5B30D scheme has the lowest bias for 
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both genu and thalamus, consistent with previous findings in WM and GM voxels 

(section 5.3.3). 

The effect of noise on diffusion parameters is shown in Figure 5.16. The 

estimation bias in the diffusion parameters is generally lower than the kurtosis 

parameters. The estimation bias exceeds beyond the 5% bound only when SNR is less 

than 15 for FA and λa in genu. For thalamus, λa, λr and FA are inherently erroneous due to 

the low diffusion anisotropy in thalamus. CLS again reduces estimation variability (lower 

CV) for the diffusion parameters than LS, although to a lesser degree than for kurtosis 

parameters. The difference between the different imaging schemes in estimating diffusion 

parameters is very small in terms of both the fitting variability (CV) and bias.  

Interestingly though CLS changes the direction of bias in λa, MD and FA in genu toward 

low SNR compared to LS. Toward low SNR, λa, MD and FA in genu tend to be 

overestimated using LS but underestimated using CLS.  
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Figure 5.15. Comparison of different imaging schemes (5B30D, Opt7min and Opt10min) and 

reconstruction methods (LS = * and CLS = ○), under simulated noise with SNR of 5 to 40 in 

genu (a) and thalamus (b), for kurtosis parameters. The top row is the median values and the 

bottom row is the coefficient of variation (CV) from 1000 simulations. The green line is the gold 

standard value, and the dotted line is ±5% of the gold standard value.  
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Figure 5.16. Comparison of different imaging schemes (5B30D, Opt7min and Opt10min) and 

reconstruction methods (LS = * and CLS = ○) under simulated noise with an SNR of 5 to 40 in 

genu (a) and thalamus (b) for the diffusion parameters. The top row is the median values and the 

bottom row is the CV from 1000 simulations. Green line is the gold standard value and the dotted 

line showed ±5% of the gold standard value. Values for MD, λa and λr are of unit mm2/s.  
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5.4 Discussion 

The use of very high diffusion-weighting (b-values) in a diffusion weighted 

imaging sequence allows the probing of water diffusion over very short molecular 

distances and hence can be sensitive to the tissue microstructure.  However, the signal 

received from such sequences is inherently starved for signal to noise.  Diffusion kurtosis 

relies on multiple diffusion weightings, including the use of very high diffusion 

weighting or very high b-values.  The scans can be very long due to the use of multiple 

diffusion weightings and multiple directions and sometimes are clinically impractical.  

However, the wealth of information that it can provide regarding the tissue 

microstructure begs for a better understanding of the technique and ways to minimize the 

scan time so that it can be clinical useful and yet be accurate.     

The experiments performed in this study demonstrate that an efficient DKI 

imaging scheme with only two nonzero b-values can provide comparable bias and 

variability in estimating diffusion and kurtosis parameters as that obtained from a 64 

direction scheme employing 5 separate diffusion weighting (or 5 b-values). This amounts 

to a 60% decrease in acquisition time, which allows for the practical application of DKI 

acquisitions on clinical patients.  Although unproven until now, this study also confirms a 

prior suggestion of the feasibility of an efficient DKI acquisition scheme for whole brain 

coverage (Jensen and Helpern, 2010; Tabesh et al., 2010). Both the regional and whole-

brain analysis indicate that more b-values have little effect on reducing the variability in 

the estimated DKI parameters. However, this comes with a cost of losing some 

estimation accuracy compared to data obtained with five b-values. The maximum b-value 
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(bmax) used appears to have a direct impact on the estimation of DKI parameters. The 

kurtosis parameters (Ka, Kr, MD) estimated with a bmax of 2000 s/mm2 showed a positive 

bias compared to the ones estimated with a bmax of 2500 s/mm2, as well as a higher 

estimation variability. On the other hand, even though diffusion parameters (λa, λr, MD) 

are b-value dependent in DTI (Jones and Basser, 2004; Andersson et al, 2008), their 

estimation was not affected by the choice of bmax in DKI. This confirms the findings by 

Veraart et al., who observed that diffusion tensor parameters were more accurately 

estimated using the DKI model (Veraart et al., 2011). Although a bmax of 2500 s/mm2 is 

preferred over 2000 s/mm2, diffusion weighted images at b-value of 2500 s/mm2 are of 

lower signal intensity and are more susceptible to noise. The SNR for our data in the 

unsmoothed b0 images is mostly more than 20 (about 20-35 in WM and 20-50 in GM). If 

lower SNR would be expected from a given acquisition, a bmax of 2000 s/mm2 should be 

recommended for DTI estimation Lu et al. (Lu et al., 2006).   

 The number of diffusion directions was found to have a significant effect on the 

variability in DKI estimation. In order to estimate the kurtosis tensor, a 4th order tensor 

with 15 independent elements, a minimum of 15 diffusion directions is required (Lu et 

al., 2006). But, with such a minimal diffusion direction number, the estimated kurtosis 

parameters are highly variable. A significant reduction in estimation variability was 

observed when 30 diffusion directions were used compared to 15. A further extension to 

45 diffusion directions provided even lower estimation variability. This led to an 

extended imaging scheme with 45 diffusion directions that can still fit in the 10 min 

clinically feasible acquisition time (with 2 nonzero b-values). The findings that kurtosis 

tensor estimation benefits more from increased number of diffusion directions than the 
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increased number of b-values is analogous to a general understanding in diffusion tensor 

estimation, where a single nonzero b-value and an abundance of diffusion directions are 

recommended over limited diffusion directions and many b-values (Jones et al., 1999; 

Landman et al., 2008). Even though 30 diffusion directions are only twice as many as the 

independent elements in the kurtosis tensor, it provides reasonable accuracy in estimating 

the kurtosis parameters in our experiments. One important aspect of this finding is the 

formula used to calculate the kurtosis parameters is already based on elliptical integration 

(Tabesh et al., 2010), where MK is the average kurtosis integrated over the whole sphere, 

and Kr is the average kurtosis integrated over a 2D plane perpendicular to the principle 

direction of the diffusion tensor. More diffusion directions are required if a full 

characterization of the 4th order kurtosis tensor is desired. The different diffusion 

directions used had very little affect on the derived diffusion parameters, because even 

the minimal set of 15 directions and 2 nonzero b-values provided enough redundancy for 

the 6 parameter diffusion tensor estimation.  

Overall the most efficient imaging scheme for both diffusion and kurtosis 

parameter estimation was found to be the two nonzero b-value (b = 1000, 2500 s/mm2) 

and 30-diffusion-direction scheme (the Opt7min scheme), which requires an acquisition 

time of approximately 7 min for whole brain coverage. This acquisition is 2.5 times 

shorter in duration compared to the frequently used imaging scheme of 5 nonzero b-

values and 30 diffusion directions (the 5B30D scheme), and yet provides only a marginal 

increase in variability and bias in its diffusion and kurtosis estimates. A slightly longer 

imaging scheme uses the same 2 b-values and 45 diffusion directions (the Opt10min 

scheme), requires 10 minutes to acquire the data and lowers the estimation variability 
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than the 5B30D scheme, but with a slightly higher bias in the estimated parameters. But 

the bias in the Opt10min scheme appeared to be systematic, with a lower spatial 

variability across WM and GM voxels than the 5B30D scheme. This lower inherent 

variability in DKI estimation with the Opt10min scheme may be preferred when 

conducting studies that seek to compare group-wise parametric values with the same 

imaging scheme (i.e. at the same level of systematic bias).  

For DKI reconstruction, constraints play an important role in ensuring that the 

diffusion and kurtosis parameters are physically meaningful in the context of the 

microstructure of the underlying tissue (Tabesh et al., 2010; Veraart et al., 2011). Among 

the three types of constraints applied in this study, negative diffusion coefficient 

(violations of constraint 1) was rare (less than 0.2% brain voxels). Negative kurtosis 

values (violations of constraint 2) were observed in as much as 7% and averaged about 1-

2% of whole brain voxels. Kurtosis values over the maximum limit (violations of 

constraint 3) were observed in as many as 30% of WM, 20% of GM and 90% of CSF 

voxels. Violations of constraints 1 and 2 usually reduces in number when SNR increases, 

as indicated from a low number of violations found in the gold standard data and from the 

Monte Carlo simulation for SNR. However, violations of constraint 3 appeared to be 

inevitable, even in the gold standard dataset or with high SNR. Note that the numbers of 

voxels that violated these constraints are much lower than reported in Veraart et al. 

(Veraart et al., 2011). The reason may be that our data were smoothed prior to DKI 

reconstruction. A Gaussian smoothing with a FWHM (3mm) of only 110% of the voxel 

size (2.7mm) increased the image SNR by approximately 70% by reducing the noise 

standard deviation.  
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 Although constrained DKI fitting (CLS) improved the accuracy and reduced 

variability in estimating diffusion and kurtosis parameters, some caution needs to be 

exercised when interpreting results from CLS. Constrained fitting mainly replaces 

erroneous parameter values with the upper or lower bound set for that parameter. To 

replace a negative diffusion coefficient with zero is probably reasonable, because 

negative diffusion coefficient appears where diffusion is highly restrictive and has very 

low diffusion coefficient. However, it is not entirely correct to replace a negative kurtosis 

with zero when the real kurtosis should be higher, as is typical in directions exhibiting 

high diffusion restriction and complex cellular structures. Nor is it correct to replace too 

high a kurtosis value with the maximum value when the real kurtosis should be almost 

zero, as is typical in directions with free diffusion. These simplistic but insufficient 

corrections for kurtosis values produce large negative bias in Kr and MK in white matter 

when SNR is low, because negative kurtosis values are only corrected to approximately 

zero instead of a high value more representative of the generally high complexity in white 

matter. They also result in the positive bias in Ka in white matter, where kurtosis values 

along the axons are estimated to be falsely high instead of the near zero value that is more 

representative of free diffusion. Our study clearly depicts that correcting for these three 

constraints significantly increases the accuracy and bias in the estimates.  Further, it also 

favors schemes with more diffusion directions (the 2B45D scheme), which produce the 

least number of constraint violations, over schemes with more b-values (the 5B30D 

schemes).   

Overall kurtosis parameters are more susceptible to noise than diffusion 

parameters, mainly in estimation bias. Bias in estimating diffusion parameters only 
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becomes significant (>5% change from value at SNR=40) when SNR is 15 or lower. 

High bias also only appears in the radial diffusivity (λr) in white matter like genu, which 

is inherently more variable due to the low diffusivity perpendicular to the axons. Bias in 

estimating kurtosis parameters was significant for Kr (with SNR < 20) and MK (with 

SNR < 15). Interestingly, CLS changed the bias behavior FA, MD and λa compared to 

LS. The positive bias in FA using LS, and negative bias in FA using CLS at very low 

SNR (<20), is similar to that observed by Landman et al. (Landman et al., 2008). For MD 

and λa, the CLS fitted values showed a similar trend of bias with lower SNR as other DTI 

studies (Farrel et al., 2007; Landman et al., 2007). 

 The reconstruction methods considered in this study are restricted to linear least 

squares fitting only. Although non-linear least squares method was originally used for 

DKI model fitting (Jensen et al., 2005; Lu et al., 2006), they are time inefficient for 

image reconstruction (~90 min for a typical brain data set) and do not necessarily offer a 

significant benefit over the linear least squares method (as described in Chapter 3). 

Nevertheless, if image SNR is extremely poor (<20), it is possible that the non-linear 

methods may offer some advantages. Furthermore, although constrained fitting is 

important, the unconstrained linear least squares (LS) method has a computation time 

comparable to the normal DTI reconstruction and hence can be a good option if real-time 

reconstruction is required in a typical clinical setting.  

5.5 Conclusion 

In this study, an optimally efficient DKI imaging scheme was determined (b = 

1000, 2500 s/mm2 and 30 diffusion directions) to require only 7 min to obtain data from 
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the whole brain. A slightly longer imaging scheme of the same two b-values but with 45 

diffusion directions was shown to provide less variable parameter estimates than the most 

frequently used DKI imaging scheme (5 b-values and 30 diffusion directions), with a 

50% reduction in acquisition time (~10 min). Kurtosis parameters are more prone to 

noise and fitting bias than the diffusion parameters, and an SNR of at least 20 (in the b0 

volume) is desired to obtain reliable estimates of DKI parameters. Constrained DKI 

reconstruction was shown to provide more accurate estimates compared to standard least 

square estimation of DKI parameters.  
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Chapter 6. Summary and Future Directions 
 

There were two main goals for this dissertation. The first was to assess the value 

of Diffusion Kurtosis Imaging (DKI), a recently developed imaging technique, in 

detecting tissue microstructure change post brain injury (e.g., Traumatic Brain Injury). If 

DKI does prove to be valuable, then the question becomes one of understanding the 

performance characteristics of the technique so that it may be optimally used in clinical 

diagnostic imaging. So the second goal of this dissertation was to develop the necessary 

imaging and image reconstruction tools for practical use in the clinic, while still 

preserving as much information from the technique as possible. As an extension to the 

second goal, we also wanted to understand how DKI-derived parameters are affected by 

different factors: for example, different imaging schemes, reconstruction methods or data 

signal-to-noise ratios (SNR). 

6.1 Clinical Values of DKI 

In Chapter 3, we investigated the changes in water diffusion and kurtosis 

parameters in several white and grey matter regions, in a controlled cortical impact (CCI) 

injury rat model, at both the acute (2 hours) and sub-acute (7 days) stages. Our results 

indicated changes in standard diffusion tensor parameters, including fractional anisotropy 

(FA) and mean diffusivity (MD) that normalized by the sub-acute stage. However, mean 

kurtosis (MK) was significantly elevated and remained elevated at 7 days in the ipsilateral 

regions of the hippocampus, cortex and the external capsule. Further, at 7 days, increased 

MK was also observed in the contralateral regions, indicating a spread of injury to remote 

regions, while no changes were observed with MD and FA. Immunohistochemical 
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examination demonstrates that the increase in MK is associated with increased reactive 

astrogliosis in the cortex, hippocampus, corpus callosum and external capsule. Our study 

suggests that DKI is sensitive to microstructural changes resulting from increased 

astrocytotic activity that may be missed by standard diffusion tensor imaging (DTI) 

parameters. Monitoring changes in MK allows the investigation of molecular and 

morphological changes in vivo due to reactive astrogliosis and may complement 

information available from standard DTI parameters. To date the use of DTI has been 

limited to study changes in white matter integrity following traumatic insults. The 

sensitivity of DKI to detect microstructural changes even in the gray matter in vivo, 

allows the extension of the technique to understand patho-morphological changes in the 

whole brain following a traumatic insult. 

6.2 DKI Reconstruction Methods 

In Chapter 4, we introduced an improved fast DKI reconstruction method 

(fDKI_T). The conventional way of DKI reconstruction is by fitting the diffusion and 

kurtosis along each diffusion direction (Dapp(g) and Kapp(g)) using the nonlinear least 

squares method first, and then reducing them to the diffusion tensor D and the kurtosis 

tensor W by the linear least squares method, as a second step. This method, although 

intuitive, is not only time consuming (due to the nonlinear fitting), but also error prone 

(due to the over-fitting problem). Therefore, we proposed a tensor-based formula that fit 

the 21 tensor parameters directly. The tensor-based formula can further be transformed to 

linear equations and be solved by linear least squares fitting. fDKI_T reduces the DKI 

reconstruction time for a whole brain dataset to 2-3 seconds, compared to  ~90 minutes 



 

 131 
 

using the non-linear method.  This reduced reconstruction time is comparable to standard 

DTI reconstruction and would be strongly preferred in a clinical scenario. We further 

compared fDKI_T and the corresponding non-linear least squares version (NLS_T), to 

the conventional non-linear reconstruction method (NLS) and a previously proposed fast 

DKI reconstruction method (fDKI). Both whole brain analysis and regional analysis 

showed an improved accuracy and reduced variability in estimating DKI parameters 

using the tensor-based methods (fDKI_T and NLS_T). Furthermore, fDKI_T preformed 

comparable to the more time-consuming nonlinear fitting (NLS_T). In summary, the 

linear least squares fitting using a tensor-based approach should be the method of choice 

for faster and more efficient DKI reconstruction.  

Even with the improved tensor-based reconstruction, DKI estimation is still 

highly susceptible to fitting errors. In order to ensure that estimated diffusion and kurtosis 

parameters are physically meaningful, three constraints were introduced in Chapter 5: 1. 

Nonnegative diffusion coefficient (Dapp(g) ≥ 0); 2. Nonnegative kurtosis values (Kapp(g) ≥ 

0); 3. Monotonically decreasing diffusion weighted signal for increasing b-value, which 

translates to an upper bound for kurtosis values (Kapp(g) ≤ 3/(Dapp(g)·bmax)). Only 0.2% of 

the voxels in the brain violated constraint 1 in our study, yet, as much as 7% of the brain 

voxels violated constraint 2, and more than 30% of the brain voxels violated constraint 3. 

At a cost of increased reconstruction time (~40 minutes for a whole brain dataset), 

constrained fitting showed improved accuracy and reduced variability in estimating DKI 

parameters than the unconstrained fitting. Therefore, the unconstrained linear least 

squares method is a good option if real-time DKI reconstruction is desired, in which case 
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caution must be taken when physically irrelevant DKI parameter values are encountered. 

If time permits, constrained DKI reconstruction should always be used.  

6.3 Effect of Diffusion Weighted Imaging Schemes and Signal-to-Noise 

Ratio (SNR) to DKI parameters 

In Chapter 5, we studied how different diffusion weighting imaging schemes and 

image SNRs, as well as reconstruction methods, affect the accuracy and variability in 

DKI parameters. Number of diffusion weightings (b-values) appeared to have little effect 

for DKI estimation. Rather, the choice of b-values, especially the maximum b-value, 

determines the value of estimated kurtosis parameters. On the other hand, more diffusion 

directions greatly improved the kurtosis tensor estimation, especially going from a 

minimum of 15 diffusion directions to 30. We found the optimally efficient DKI imaging 

scheme to be with 30 diffusion directions and two nonzero b-values (b = 1000, 2500 

s/mm2), which requires ~7 min for a whole brain acquisition (the Opt7min scheme). An 

extended imaging scheme was also examined, with 45 diffusion directions and the same 

b-values, with a scan time of ~10 min for whole brain acquisition (the Opt10min 

scheme). The performance of these two optimal imaging schemes was compared to a 

frequently used DKI imaging scheme (the 5B30D scheme, ~17min) and a previously 

suggested efficient imaging scheme (the 2B30D scheme, ~7min). Between the two 

schemes with acquisition time of seven minutes, the Opt7min scheme performed better 

than 2B30D schemes in all categories (estimation accuracy and variability, as well as 

erroneous fitting results that violated any of the three constraints). With a 40% reduction 

in time compared to the 5B30D scheme, the Opt10min scheme had the least estimation 
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variability and resulted in least erroneous fitting results among all imaging schemes. 

These experiments confirmed that DKI estimation benefits more from more diffusion 

directions than diffusion weightings.  

The effect of noise to DKI estimation appeared to be mainly due to an increased 

chance of erroneous fitting with low SNR. Kurtosis parameters are more susceptible to 

noise than diffusion parameters because it is easier to violate the kurtosis value 

constraints. Kr and MK tend to be underestimated, while Ka is overestimated as SNR is 

reduced. Caution is advised when low SNR images are used for DKI (SNR < 20). 

6.4 Future Directions 

 The DKI imaging technique is currently being applied in a new human TBI study. 

Patients with different levels of injury (mild, moderate, severe) are being recruited and all 

are undergoing MRI scans at different time points (visit 1: within 10 days post injury; 

visit 2: ~ 1 month; visit 3: ~ 6 months; visit 4: ~ 18 months). During each visit, their 

cognitive functions are also assessed through a battery of neuropsychological tests. The 

goal of the study is to find imaging markers that may have prognostic values. Initial 

findings from 22 mildly injured patients have suggested a similar trend of temporal 

pattern in DKI parameters in patients as our animal study in Chapter 3. Kurtosis values in 

thalamus and internal capsules have also shown correlations with reaction time in the 

cognitive tests. Eventually, we will determine whether DKI can be useful in the diagnosis 

of patients' clinical status, as well as long-term recovery. We also want to know whether 

diffusion and kurtosis parameter values at the acute stage can be predictive of patents' 

cognitive function recovery. At the same time, we also hope to do more animal studies 
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to better understand the association of increased kurtosis with tissue pathological 

changes. It would be of great interest to see how MK correlates with histological findings, 

for example, the density of astrocytes within the injured tissue and the relationship with 

behavior and size of the contusion. Other tissue microstructure change may also affect 

kurtosis values, for example, neuronal degeneration, microglia activation, etc., and we 

would like to better understand how these changes may affect diffusion kurtosis.  

 In terms of clinical applications of DKI, there are still several challenges ahead. 

DKI reconstruction can be done linearly within 2-3 seconds, which is ideal for clinical 

applications. But more than 30% of all voxels may suffer from erroneous fitting if 

unconstrained. Constrained reconstruction can significantly reduce fitting error, but 

requires substantially increased reconstruction time (~40 min). So developing better and 

faster DKI reconstruction methods is still of great interest. Moreover, better visualization 

of kurtosis data that can more clearly illuminate individual patients' injuries is also 

critical to making DKI a more clinically practical tool. Clinicians typically focus on an 

individual patient, rather than trying to assess group trends, so individual patient analysis 

is of great interest. One possible route is to compare a patient’s kurtosis values to 

normative values (after gathering large scale normative data) and highlight the abnormal 

regions (e.g., more than 2 standard deviations from normal) to indicate possible injured 

sites.   

As an extension to studies in Chapter 5, we plan to measure the test/re-test 

reproducibility of the diffusion and kurtosis parameters estimated from the DKI model. 

This will be conducted on a group of healthy normal volunteers; each will be scanned 

multiple times. Both inter-subject and inter-session reliability will be determined. This 
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will provide an understanding of the baseline variability in estimated DKI parameters and 

may help to better interpret group comparison results between patients and normal 

controls.  
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