
ABSTRACT

Title of dissertation: DECISION TREE-BASED
SYNTACTIC LANGUAGE MODELING

Denis Filimonov, Doctor of Philosophy, 2011

Dissertation directed by: Dr. Mary Harper
Department of Computer Science
Dr. Philip Resnik
Department of Linguistics

Statistical Language Modeling is an integral part of many natural language

processing applications, such as Automatic Speech Recognition (ASR) and Machine

Translation. N-gram language models dominate the field, despite having an ex-

tremely shallow view of language—a Markov chain of words. In this thesis, we

develop and evaluate a joint language model that incorporates syntactic and lexical

information in a effort to “put language back into language modeling.” Our main

goal is to demonstrate that such a model is not only effective but can be made

scalable and tractable. We utilize decision trees to tackle the problem of sparse pa-

rameter estimation which is exacerbated by the use of syntactic information jointly

with word context. While decision trees have been previously applied to language

modeling, there has been little analysis of factors affecting decision tree induction

and probability estimation for language modeling. In this thesis, we analyze sev-

eral aspects that affect decision tree-based language modeling, with an emphasis on

syntactic language modeling. We then propose improvements to the decision tree

induction algorithm based on our analysis, as well as the methods for constructing

forest models—models consisting of multiple decision trees. Finally, we evaluate

the impact of our syntactic language model on large scale Speech Recognition and

Machine Translation tasks.

In this thesis, we also address a number of engineering problems associated

with the joint syntactic language model in order to make it tractable. Particularly,

we propose a novel decoding algorithm that exploits the decision tree structure to

eliminate unnecessary computation. We also propose and evaluate an approximation

of our syntactic model by word n-grams—the approximation that makes it possible

to incorporate our model directly into the CDEC Machine Translation decoder rather

than using the model for rescoring hypotheses produced using an n-gram model.

DECISION TREE-BASED SYNTACTIC LANGUAGE MODELING

by

Denis Filimonov

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Dr. Philip Resnik, Chair
Dr. Mary Harper, Advisor/Co-Chair
Dr. Jimmy Lin
Dr. Hal Daume III
Dr. Jeff Foster
Dr. Armand Makowski, Dean’s Representative

Acknowledgments

First of all, I must say that no words can begin to express the degree of

gratitude I feel towards the people who helped me in various ways on the long way

to this point. Therefore, if I might appear brief, it is for the lack of words not the

appreciation.

First and foremost, I must thank my advisor Professor Mary Harper who has

taught me everything I know about doing research (sorry, the mandatory course

“How to do research” did not turn out to be very helpful). I also must thank her for

being an uncompromising editor and for taking the pain of going through countless

versions of this thesis.

I am very grateful to all people in the CLIP Lab, especially Philip Resnik, to

whose passion about computational linguistics I owe my interest in the field. I am

thankful to Doug Oard for support in the last year. I would like to thank many

fellow UMD students, particularly Zhongqiang Huang (without his parser the work

that has led to this dissertation would not have even begun!) and Vlad Eidelman,

who has been enormously helpful with the machine translation experiments.

I am also indebted to the CLSP group at Johns Hopkins University, especially

Sanjeev Khudanpur and Damianos Karakos, for discussions and criticism–many of

the ideas that made it into this dissertation (and some that didn’t) underwent first

public scrutiny there. I also would like to thank JHU students: Ariya Rastrow,

Anoop Deoras, Scott Novotney and others for their input and help with speech

recognition experiments. I am also grateful to the HLTCOE at JHU for financial

ii

support, and its staff for tolerating my constant [ab]use of the computing cluster,

especially in the last months.

Finally, I would like to thank all my friends and my family: they are the reason

I have made it thus far without going [completely] crazy.

iii

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction and Overview of the Thesis 1
1.1 Motivation . 1
1.2 Structure of the Thesis . 4
1.3 Summary of Contributions . 6

2 Language Modeling Review 8
2.1 Background . 8

2.1.1 What is Language Modeling? 8
2.1.2 Applications of Language Modeling 9
2.1.3 Types of Language Models . 10
2.1.4 Evaluation Metrics . 14

2.1.4.1 Perplexity . 15
2.1.4.2 Metrics for Speech Recognition 16
2.1.4.3 Metrics for Machine Translation 17

2.2 Review of Language Modeling Technology 18
2.2.1 N-gram Language Models . 18

2.2.1.1 Katz Smoothing . 19
2.2.1.2 Jelinek-Mercer Smoothing 21
2.2.1.3 Kneser-Ney Smoothing 21

2.2.2 Class-based Models . 23
2.2.3 Joint Models . 25
2.2.4 Maximum Entropy Models . 28
2.2.5 Other Models . 29

2.2.5.1 Caching LM . 29
2.2.5.2 Neural Network LM 30
2.2.5.3 Discriminative Language Models 31

2.3 Context Clustering in Language Modeling 32
2.3.1 N-gram Models . 32
2.3.2 Class-based Models . 35
2.3.3 Decision Tree Models . 36

2.4 Syntax in Language Modeling . 38
2.4.1 Parse Trees . 39
2.4.2 Syntactic Tags . 42

2.4.2.1 Part-of-Speech (POS) Tags 43
2.4.2.2 SuperARV . 45
2.4.2.3 Parent Constituent 46
2.4.2.4 Head Tag . 47
2.4.2.5 Dependency Tag . 48
2.4.2.6 Information-theoretic Comparison of Tags 49

iv

2.5 Summary . 53

3 Experimental Setups 55
3.1 Hub4 Setup . 55
3.2 WSJ ’94-’96 Setup . 57
3.3 GALE MT Setup . 58

4 Decision Trees (DTs) in Language Modeling: Methods, Problems, and Solu-
tions 61
4.1 DT induction algorithm . 63
4.2 Differences between DT for Classification and Language Modeling . . 64
4.3 Stopping and Pruning Rules . 67
4.4 Question Selection . 68
4.5 Splitting Rule . 73
4.6 Probability estimation in a DT Language Model 75

4.6.1 In-tree Interpolation . 76
4.6.2 Multiple Decision Trees . 79

4.7 Bias in Splitting Rules . 81
4.7.1 Entropy Bias . 81
4.7.2 Attribute Selection Metrics . 83

4.7.2.1 Time Ordered . 84
4.7.2.2 Information Gain (IG) 85
4.7.2.3 Information Gain Ratio (IGR) 86
4.7.2.4 Distance-based Metric 86

4.7.3 Evaluation of Attribute Selection Metrics 87
4.8 Interpolation of Multiple Decision Trees 89

4.8.1 Backoff Property . 90
4.8.2 Linear Interpolation . 93

4.8.2.1 Generalized Linear Interpolation 93
4.8.3 Perplexity Evaluation: Recursive vs. Generalized Interpolation 99
4.8.4 Selection of Decision Trees for Forest Modeling 101

4.8.4.1 Methods of Constructing a Random Forest 103
4.8.4.2 Context-Restricted Forest 107

4.9 Contributions . 109
4.10 Summary . 111

5 Making a Syntactic Decision Tree-based LM Tractable 113
5.1 Computational Considerations . 113

5.1.1 Tree Construction . 114
5.1.2 In-tree Interpolation . 117
5.1.3 Forest Interpolation . 119
5.1.4 Probability Representation . 122
5.1.5 On-disk Format . 123
5.1.6 The Decoding Algorithm . 126

5.1.6.1 Coarse and Fine Decoding 136

v

5.2 N-gram Approximation . 138
5.2.1 Accuracy of N-gram Approximation 140

5.3 Contributions . 144
5.4 Summary . 144

6 Large-scale Experiments in ASR and MT 146
6.1 Broadcast News ASR Rescoring Experiments 146
6.2 Machine Translation Experiments . 148
6.3 Contributions . 157
6.4 Summary . 157

7 Contributions and Future Work 158
7.1 Contributions . 158
7.2 Future Work . 160

Bibliography 163

vi

List of Tables

2.1 Penn Treebank part-of-speech tags 44
2.2 SuperARV tags assigned to the sentence “corn futures also fell.” Each

column (without the word) represents a SuperARV tag. 46
2.3 “the black cat sat” tagged using the parent tagset 47
2.4 “the black cat sat” tagged using the head tagset 47
2.5 “the black cat sat” tagged using the dep tagset 48

4.1 Word-tree model: Perplexity on the RT04 dataset 87
4.2 Joint model: Perplexity on the RT04 dataset 88
4.3 Perplexity results on PTB WSJ section 23. Percentage numbers in

parentheses denote the reduction of perplexity relative to the lower
order model of the same type. 100

4.4 Word-tree model with generalized interpolation: Perplexity on the
RT04 dataset. The numbers in parentheses show the change in per-
plexity relative to the respective models using the baseline interpola-
tion method in Table 4.1. 101

4.5 Joint syntactic model with generalized interpolation: Perplexity on
the RT04 dataset. The numbers in parentheses show the change in
perplexity relative to the respective models using the baseline inter-
polation method in Table 4.2. 101

4.6 Perplexity numbers obtained using fourgram trees only. Note that
“undgr” and “rnd” denote undegraded and randomly grown trees
with Bernoulli trials, respectively, and the number indicates the num-
ber of trees in the forest. “Baseline” refers to the fourgram models
with lower order trees (from Table 4.3, Eq. 4.12). 106

4.7 Perplexity numbers obtained using fourgram trees using random ini-
tialization of the Exchange algorithm and, additionally, variations in
training data folds (+data columns). “Baseline” refers to the four-
gram models with lower order trees (from Table 4.3). All models use
the interpolation method of Eq. 4.12. 107

4.8 Perplexity results using the standard joint syntactic model with addi-
tional trees. “Bernoulli-rnd” and “data-rnd” indicate fourgram trees
randomized using Bernoulli trials and varying training data, respec-
tively. The second column shows the combined size of decision trees
in the forest. 109

4.9 Perplexity and WER results. Note that the last two rows are joint
syntactic models using the interpolation method of Eq. 4.12. 110

6.1 Perplexity and WER results on the RT04 dataset. “syntactic (1)”
denotes the joint syntactic LM utilizing four decision trees (1w1t +
2w2t + 3w3t + 4w4t, as described in Section 4.8.4.2). In addition to
these trees, “syntactic (2)” has four additional trees: 3w4t + 4w3t +
2w3t + 3w2t. 147

vii

6.2 BLEU scores for the Broadcast News (BN) genre. Each system’s
results are aggregated from a set of 5 optimization runs. 151

6.3 BLEU scores for the Broadcast Conversation (BC) genre. Each sys-
tem’s results are aggregated from a set of 5 optimization runs. 152

6.4 BLEU scores for the Newswire (NW) genre. Each system’s results
are aggregated from a set of 5 optimization runs. 153

6.5 BLEU scores for the Weblog (WB) genre. Each system’s results are
aggregated from a set of 5 optimization runs. 154

viii

List of Figures

2.1 Hierarchical clustering in n-gram models 33
2.2 A parse tree example . 39
2.3 A dependency parse tree example . 42
2.4 Non-tree dependency graph . 42
2.5 Tagset selection metrics for different tagsets 51
2.6 Perplexity on PTB WSJ Section 23 and the storage usage of the

syntactic model utilizing different tagsets 53

4.1 A schematic of a pylon which is the structure used in [2, 50] to con-
struct multivariate questions from univariate questions q1, q2, q3, and
q4. 68

4.2 Example of a POS tag tree . 72
4.3 The structure for representing questions constructed using the Ex-

change algorithm . 73
4.4 Recursive smoothing: p̃n = λnpn + (1− λn)p̃n′ 76
4.5 Graphical model representation for in-tree smoothing 77
4.6 Entropy bias: the Exchange algorithm tends to achieve larger reduc-

tions in entropy for attributes with larger vocabularies (larger number
of splits), despite the fact that the splits are random (i.e., no addi-
tional information is introduced by splitting). 83

4.7 Backoff Property (Eq. 4.10) . 91

5.1 Caching interpolated distributions . 123
5.2 On-disk format for CLIP LM. “Model descriptor” contains the map-

pings of wi to the location of the “word data file,” as well as the
total counts of events Ck for all clusters. “Word data file” consists of
an index and a counts file, where the index maps a cluster k to the
location of the counts c(witi) in the counts file. Note that one set of
counts c(witi) may be shared among multiple clusters. 127

5.3 The representation of the tag context space ti−1
i−n+1. Each state S1, S2,

. . . , Sn−1 is associated with a set of tags TS1 , TS2 , . . . , TSn−1 , respec-
tively. A connection between states S1 and S2 (S2 ←− S1) denotes
all combinations of tags {(t1, t2) : t1 ∈ TS1 , t2 ∈ TS2} in the con-
nected states. Thus, the sequence of n − 1 states above represents
|TS1| · |TS2 | · . . . · |TSn−1| elements of the tag space. 131

5.4 Questions about tags split states (see Figure 5.5) in the decoding
lattice represented by tag trees. 132

5.5 A state S in the decoding lattice is associated with the probability
pSin of reaching the state through the links INS, as well as the word
emission probability pS(wi−1) and the set of tags TS emitted from the
state S. The tag emission probability pS(ti−1|wi−1) for all ti−1 ∈ TS
is represented in the form of the tag tree where each internal node
contains the sum of emission probabilities for the tags it dominates. . 132

ix

5.6 An example of the decoding process 134
5.7 Perplexity and decoding time for different threshold parameters θ

estimated on the WSJ task. Time is the sum of user and system time
as measured by time utility, with model initialization time subtracted.
Error bars on the time plot indicate one standard deviation computed
from a sample of 10 runs. 138

5.8 Perplexity on PTB WSJ Section 23 using exact (Eq. 2.6) and n-gram
approximated (Eq. 5.3) probability estimation for trigram (a) and
fourgram (b) joint syntactic model. 141

5.9 Exact (Eq. 2.6) and n-gram approximated (Eq. 5.3) probabilities com-
puted on WSJ Section 23 test set using a joint syntactic trigram model
for various values of n-gram order n 142

5.10 Exact (Eq. 2.6) and n-gram approximated (Eq. 5.3) probabilities com-
puted on WSJ Section 23 test set using a joint syntactic fourgram
model for various values of n-gram order n 143

6.1 The average BLEU score of ngram-4 model (x-axis) and the difference
in average BLEU scores between joint-4 and ngram-4 models (y-axis).
Correlation coefficient r = 0.85. 156

x

Chapter 1

Introduction and Overview of the Thesis

1.1 Motivation

A number of natural language applications including Automatic Speech Recognition

(ASR), Machine Translation (MT), and Optical Character Recognition (OCR) need

to distinguish between word sequences that belong to the language in question and

the sequences that do not. This necessity comes from the fact that the observed

data, be that an acoustic signal or a scanned image, may have originated from many

possible sources. For instance, “flavored popcorn” may be virtually indistinguishable

from “flavored popcom” in some fonts, and yet we would expect an OCR system to

choose the former sequence. “The sky is cloudy” may sound similar to “this guy is

cloudy ;” however, the former transcription appears to be more plausible. Note that

in the last example, it is not that “this guy is cloudy” is an impossible sentence,

but it simply is less likely than “the sky is cloudy.” The subsystem that estimates

which word sequence is the most plausible from a given set of candidates is called

a Language Model (LM). If the language model employs statistical methods, such

as estimating a probability mass function p(W), where W is an arbitrary word

sequence, such model is called a Statistical Language Model 1.

1 Sometimes Statistical Language Model is abbreviated as SLM. We do not use this abbrevia-
tion to avoid confusion with Structured Language Model. Instead, since this work concerns only
statistical models, whenever we say a language model, we mean a statistical language model.

1

A wide variety of methods have been developed for language modeling (see an

extensive survey by Goodman [46]), some of which are quite complex, and still, the

most widely used models are the n-gram models, based on a simple Markov chain.

While many complex models do outperform the n-gram models, the improvement is

often not large enough to justify the increased computational complexity, as argued

by Goodman [46]. “All hope abandon, ye who enter here,” quotes he. While it is

true, that it is usually more effective to add more data to an n-gram model than

to use a more complex model trained on a smaller amount of data (both compu-

tationally and performance-wise), additional data is often simply not available in

some domains and languages, leaving the use of linguistic knowledge, such as syn-

tax and morphology, as possibly the only way to improve the performance. The use

of additional types of information necessitates the construction of more complexly

structured models than the n-gram model.

Another stimulus for developing more complex models comes from the obser-

vation that a language model is never used by itself, rather it is always a part of a

bigger system, such as an ASR or a MT system. Therefore, the potential impact of

the language model strongly depends on other components of the system. Indeed,

it is not uncommon for ASR hypotheses in low-resource languages and domains to

have word error rates of 50% or more. Under these conditions, it would be hard

even for a human judge to select the best candidate, as none of them would prob-

ably make sense. It is reasonable to expect that, as other subsystems improve, the

impact of the language model will increase, making complex models more desirable.

In this work, we use syntactic tags to augment the language model as a means

2

to increase the performance of the model. This choice comes from the strong ev-

idence that there is syntactic structure in the language. Although the sentences

“cats meow” and “dogs bark” consist of different words, they share syntactic struc-

ture — both contain a plural noun as the subject and a present tense verb. There

are restrictions to that structure, e.g., “cats dogs” is not a correct sentence. Thus,

being able to recognize correct syntax should improve the performance of the lan-

guage model2 by making syntactically implausible sentences less likely; indeed, prior

work in syntactic language modeling (e.g. [3, 51]) shows that syntax can improve

the performance of a language model substantially. However, the scalability issues

that arise in such models are often overlooked (e.g., Heeman [51] only uses up to 1

million words of training data–a tiny amount for modern language models), making

the practicality of such models questionable. In this thesis, we not only create an

effective syntactic model, but we also identify and address computational problems

that are vital for a practically useful language model.

Adding syntactic information to a language model exacerbates the problem

of sparse parameter estimation. We choose decision trees to address this problem

because they are known to work well with sparse data, and they also simplify the

addition of various information sources to the model (e.g., prosody or morphological

features) when they are available. Although there are some other methods that can

address the problem of sparsity (e.g., log-linear models, neural networks), their

computational complexity makes their application challenging even for large-scale

2 From the syntactic perspective, “cats bark” is a perfectly good sentence. Therefore, we cannot
rely solely on syntax.

3

word models. Applying these methods to joint syntactic language models does not

appear to be feasible at present, because in these models, the computational cost

depends on the vocabulary size linearly, and in joint models the vocabulary size can

be extremely large. Decision trees are widely used for classification and regression,

and they have been applied to language modeling. However, prior work on decision

tree-based language modeling lacks an analysis of methods for decision tree induction

and probability estimation specifically for language modeling. One of the main goals

of this thesis is to analyze these specifics and devise decision tree-related methods

that are more effective for the language modeling task. Additionally, rather than

stopping at the proof-of-concept stage, we also aim to create a model that can utilize

large amounts of data for training a syntactic decision tree-based LM, which is a

daunting engineering task because of the computational complexity involved.

1.2 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 reviews prior work on statistical language modeling, concentrating

on the problems that are most essential to this thesis: methods used for context

clustering and the use of syntactic information in language modeling.

• Chapter 3 describes experimental setups that we will use throughout this thesis

to evaluate the impact of our ideas.

• Chapter 4 describes in detail the construction of a decision tree-based language

model, from decision tree induction to estimation of probability distribution,

4

as well as the combination of multiple decision tree models. We review prior

work on decision tree-based language modeling and point out the existence of

a bias in the decision tree induction algorithm. We propose a remedy that

utilizes prior research in decision tree induction applied to classification; this

research seems to have been largely overlooked in the literature on decision

tree-based language modeling. We also investigate the problem of backoff in

decision tree models and show that methods adopted from the literature on

n-gram models do not apply well to decision tree-based models. Additionally,

we investigate various methods for constructing forests of decision trees.

• Chapter 5 describes a number of engineering solutions that enable our model

to scale to large amounts of data. Additionally, we introduce an approximation

that allows us to apply our syntactic model to tasks for which such a model

would be intractable otherwise.

• In Chapter 6, we present experiments demonstrating the impact of our model

on large scale speech recognition and machine translation tasks, in addition to

the experiments in Chapters 4 and 5 that are designed to test specific ideas.

• Finally, Chapter 7 presents the contributions of this thesis and discusses di-

rections for future work.

5

1.3 Summary of Contributions

• We analyze the influence of the specifics of the language modeling (particularly

syntactic language modeling) task on the decision tree construction algorithms

in Section 4.2.

• We discover a bias in the metric for decision tree construction used in all prior

work on decision tree-based language modeling, and we propose a novel metric

that addresses this bias in Section 4.7.

• We investigate methods for interpolation of higher- and lower-order decision

tree models, which in prior work were adopted from n-gram models. In Sec-

tion 4.8, we discover that these interpolation methods imply a certain relation

between the context clustering used in the higher- and the lower- order models.

We formulate this property as the Backoff Property; and we observe that in

decision tree-based models, this property is not typically satisfied, leading to

a poor performance of the interpolation methods. We propose a generalized

linear interpolation method that combines decision trees as a forest, i.e., all

trees are treated in the same way, and we show that this interpolation method

performs well even when the Backoff Property is not satisfied. Additionally,

we investigate a number of techniques for constructing small (tractable) forests

of decision trees.

• In Section 5.1, we tackle a number of engineering problems in order to make the

model computationally tractable. Particularly, we propose a novel decoding

6

algorithm that exploits the decision tree structure to eliminate unnecessary

computation.

• In Section 5.2, we show that a syntactic model can be accurately approximated

by sufficiently long word sequences (n-grams). This approximation enables us

to incorporate our model into the CDEC machine translation decoder [36].

• Finally, in Section 6.1, we demonstrate that our syntactic model significantly

outperforms a standard n-gram model on a speech recognition task; and in

Section 6.2, we observe on a machine translation task that the improvement

of our syntactic model over a comparable n-gram model strongly correlates

with the performance of the translation model, leading us to conclude that

the impact of our model on machine translation will only increase as the

translation models improve.

7

Chapter 2

Language Modeling Review

In this chapter, we formulate the problem of language modeling and review prior

work in this area. We put a particular emphasis the analysis of two aspects of

language modeling: context clustering and the use of syntactic information, because

these are the main problems we address in this thesis.

2.1 Background

In this section, we present the definition of a statistical language model, and describe

some of the applications of language models. We also describe metrics that are used

for evaluation of language models.

2.1.1 What is Language Modeling?

Canonically formulated, a Language Model (LM) is a probability mass function that

assigns a probability to any sequence of words.

LM = p(w1w2 . . . wn) ≡ p(wn1)

It is difficult to normalize a function with an infinite set of values, without some

form of factorization; therefore, this equation is usually factored as follows1:

1 Some models, notably Charniak [16], use a different factorization (see Section 2.1.3).

8

p(wn1) =
n∏
i=1

p(wi|wi−1
1) (2.1)

Note that in this factorization, we only need to define a function that computes

the probability of one word (drawn from a finite vocabulary) given prior words.

Incidentally, the lack of future context is a requirement in some applications, such

as Automatic Speech Recognition (ASR) or predictive text input2, where the full

word sequence is simply not available.

In the literature, the distribution of word probabilities given prior words

p(wi|wi−1
1) is often called the language model, thus refining the definition of the

problem. Henceforth, we will generally use this formulation for the language model-

ing task. In the function p(wi|wi−1
1), we will call wi−1

1 the context and wi the future

as in [17].

2.1.2 Applications of Language Modeling

Perhaps the most important application of language modeling stems from the noisy

channel framework. For instance, the goal of an Automatic Speech Recognizer is

to find the most likely sequence of words ŵn1 given the acoustic input A. This

probability cannot be estimated directly; therefore, it is factored using Bayes rule

as follows:

2 Predictive text input uses a language model to offer a user suggestions for subsequent words
or characters as the user types. It is often used in handheld devices, where typing is difficult; and
recently, it has become popular in web applications such as Google search.

9

ŵn1 = argmax
wn

1

p(wn1 |A) (2.2)

= argmax
wn

1

p(A|wn1) · p(wn1)

where the probability p(A|wn1) is called the acoustic model and p(wn1) is the language

model in its canonical form.

In Machine Translation (MT), language modeling plays a similar role:

ŵn1 = argmax
e

p(e|f)

= argmax
e

p(f |e) · p(e)

where e ≡ wn1 is target language phrase, f is a source phrase, p(f |e) is called the

translation model and p(e) ≡ p(wn1) is the language model.

ASR and MT are the most high profile applications that utilize LMs, but not

the only ones; others include predictive text input, information retrieval, optical

character recognition, among others. As Eq. 2.2 shows, the language model plays a

vital role in applications using the noisy channel framework, and the quality of the

language model directly affects the performance of the whole system, motivating

research to improve the effectiveness of language models.

2.1.3 Types of Language Models

There is no widely accepted classification of language models. This is not surprising

as language modeling is a complex task encompassing a number of problems, each

10

of which allows a variety of solutions. Thus, how we divide the existing models into

classes depends on the purpose of the classification. From the perspective of this

thesis, we consider the following types to be important:

1. Generative word models

Models of this type predict the word wi based on its history context hi, and

this history is a function of wi−1
1 , the words preceding wi:

p(wi|wi−1
1) ≈ p(wi|hi) ; hi(w

i−1
1) (2.3)

How the history hi is defined and how the distribution p(wi|hi) is estimated

varies from one modeling approach to another, but what is shared among

language models of this type is the fact that the context hi is observed, i.e.,

there is no ambiguity in the context.

To produce a proper distribution over all word sequences wn1 using the fac-

torization in Eq. 2.1, the model in Eq. 2.3 must have a proper distribution

p(wi|hi) for any given history context hi:

∀hi
:
∑
w∈V

p(w|hi) = 1

where V is the vocabulary of the model. Although natural languages do not

have a limited vocabulary (indeed, new words are invented daily), for the pur-

pose of language modeling there is an assumption that the model’s vocabulary

V is fixed. Words outside V are typically mapped to a special token <unk>,

11

which is a token in V that is modeled as any other word. Such models are called

open vocabulary models. In closed vocabulary models, words not included in

V are simply ignored or assigned probability of 0. Typically, the vocabulary

V includes tens of thousand to hundreds of thousand words, although in some

specific tasks much smaller vocabularies can be used.

2. Joint Models utilize latent stochastic variables ti along with the observed

words wi:

p(witi|wi−1
1 ti−1

1) ≈ p(witi|hi) ; hi(w
i−1
1 ti−1

1) (2.4)

Note that, unlike words, these stochastic variables (tags) are not present in the

input; therefore, the language model must hypothesize them, and in order to

compute the probability of the word sequence, sum over all tag assignments:

p(wn1) =
∑
t1...tn

n∏
i=1

p(witi|wi−1
1 ti−1

1) (2.5)

Although the number of possible tag assignments is exponential in the length

of the word sequence, some independence assumptions together with dynamic

programming reduce the complexity to polynomial in the size of the tagset

(Manning and Schütze [73]). Probability p(wi|wi−1
1) can be estimated as fol-

lows:

12

p(wi|wi−1
1) =

p(wi1)

p(wi−1
1)

=

∑
t1...ti

i∏
j=1

p(wjtj|wj−1
1 tj−1

1)

∑
t1...ti−1

i−1∏
j=1

p(wjtj|wj−1
1 tj−1

1)

(2.6)

We will refer to this type of model as joint model since they estimate the joint

distribution witi.

3. Whole sentence language models

This type of model does not use the factorization in Eq. 2.1 and includes

models that are based on a parser developed by Charniak [16] or exponential

models with whole sentence features developed by Rosenfeld et al. [95]. Be-

cause this type of language model requires the whole sentence to be available

before calculating the probability, the applicability of whole sentence language

models is significantly limited.

Charniak’s approach [16] is based on a syntactic parser. Generally, a parser

computes the probability p(wn1T), where T is a grammar derivation of the

word string wn1 . Normally, the parser’s task is to find the most likely parse

derivation T̂ , given the word sequence:

T̂ = argmax
T

p(T |wn1)

= argmax
T

p(wn1T)

However, it is also possible to marginalize the probability of parse trees, yield-

ing the word sequence probability:

13

p(wn1) =
∑
T

p(wn1T)

Parser-based models can benefit from deep syntactic structure; however, it

is unclear how effective this approach would be with errorful input. In ASR

and MT rescoring tasks, it is often the case that none of the hypotheses is

syntactically well-formed, and in fact, the parser can fail on many of them.

Another type of whole sentence model was proposed by Rosenfeld et al. [95].

They used an exponential model in the following form:

p(wn1) =
1

Z
p0(wn1)e

P
k λkfk(wn

1)

where Z is a normalization constant, p0 is a baseline probability for the sen-

tences (estimated using another model), and fk are the features involving

arbitrary information from the entire sentence wn1 . Rosenfeld et al. [95] report

very small improvements over a baseline n-gram model (Section 2.2.1), which

suggests that the approach, although very interesting, requires further work

before it is practical.

2.1.4 Evaluation Metrics

As in many fields of science, formal evaluations are pivotal for comparing the quality

of language models. In this section, we describe metrics used to evaluate language

models: one intrinsic metric based on likelihood of a test set and several extrinsic

14

metrics where the quality of a language model is evaluated by the impact on an

application-specific metric.

2.1.4.1 Perplexity

Language models are typically evaluated using an intrinsic metric called perplexity

(PPL), described by the following formula:

PPL = p(wn1)−
1
n

where wn1 is a representative test set. This formula applies to all types of language

models that compute p(wn1), although they may use very different formulae to com-

pute p(wn1) (see Section 2.1.3).

In practice, all models that are factored as in Eq. 2.1 add a special special

symbol (usually denoted </s>) to the end of each sentence (or utterance). This

special symbol is needed to ensure that the probability of all word sequences sum to

1; moreover, without, the probability of a sentence “I see the” would be higher than

the probability of “I see the sun” because according to Eq. 2.1, p(I see the sun) =

p(sun|I see the)p(I see the), which is counter-intuitive. While all models compute

the probability p(wn1) this way, they differ in whether to count the added symbol

</s> as a word for perplexity computation. In our example “I see the sun,” some

models would calculate the perplexity as PPL = p−
1
4 , while in others, PPL = p−

1
5 .

While arguments can be made to support each of the ways of computing

perplexity, this choice is not essential (in fact, the SRILM toolkit developed by

15

Stolcke [102] computes both). It is important, however, when comparing different

models to ensure that the perplexities are computed in the same way because their

difference is significant. In this work, we do not include </s> as a word for perplexity

computation.

Researchers have observed, however, that perplexity of different models does

not always correlate well with their relative performance in the task the LMs are

applied to (Iyer et al. [56]); therefore, task-specific evaluations often accompany

perplexity numbers, and the quality of language models is judged by their effect on

the performance of an entire system.

2.1.4.2 Metrics for Speech Recognition

In speech recognition, models are usually evaluated by their ability to reduce the

word error rate (WER) [55]. Word error rate is the Levenshtein distance between

the reference word sequence and the hypothesis, i.e.,

WER =
I +D + S

|R|
(2.7)

where I, D, and S are the numbers of word insertions, deletions, and substitutions,

respectively, while |R| is the number of words in the reference. WER is usually

presented as a percentage; note that because of insertions, a WER higher than

100% is possible.

16

2.1.4.3 Metrics for Machine Translation

Metrics used for machine translation are more complex than WER used for speech

recognition, partly because they must account for the fact that there is no single cor-

rect translation, the same idea can be expressed in many ways. Therefore, multiple

reference translations are often used for evaluation. BLEU [86], the most commonly

used metric, is defined as follows:

BLEU = BP ·
N∏
n=1

(prn)wn (2.8)

BP = min(1, e1− |R||C|)

prn =

∑
C

∑
n-gram∈C

Countclip(ngram)∑
C

∑
ngram∈C

Count(ngram)

where prn is the n-gram precision computed from clipped counts Countclip(ngram),

which is the maximum number of times the n-gram ngram appears in any single

reference corresponding to the candidate translation C, BP is the brevity penalty

intended to compensate for the tendency of precision metrics to favor shorter hy-

potheses, and |R| and |C| are the lengths of the best-match and candidate transla-

tions, respectively. Typically, the maximum n-gram order is 4 and the weights are

equal: wn = 1
N

.

Translation Error Rate (TER) [99] is similar to WER, except that in addition

to insertions, deletions, and substitutions, phrasal shifts are allowed. Phrasal shift

helps to account for variability in word order present in many languages. For exam-

ple, if the reference is “I watched a movie last night” and the candidate translation

17

is “Last night I watched a movie,” the phrasal shift will allow this perfectly good

candidate translation to have only one error, while WER and BLEU would be quite

poor.

HTER is similar to TER, except that editing is performed by a human ex-

pert, creating a new reference translation in the process. Other metrics exist (e.g.,

METEOR [33], F-measure [79]), although they are less commonly reported in the

literature.

2.2 Review of Language Modeling Technology

In this section, we review the prior work on language modeling, beginning with n-

gram models, which constitute by far the most widely used class of models because

of their simplicity, computational effectiveness, and freely available implementations

[26, 102, 52].

2.2.1 N-gram Language Models

An n-gram model is a Markov chain, i.e., it makes the assumption that the word wi

only depends on the immediately preceding n− 1 words, where n is called the order

of the model:

p(wi|wi−1
1) ≈ p(wi|wi−1

i−n+1) (2.9)

These models are usually estimated from counts of n-grams, which are tuples of n

consecutive words, as follows:

18

pML(wi|wi−1
i−n+1) =

c(wii−n+1)∑
wi∈V c(w

i
i−n+1)

(2.10)

where c(wii−n+1) is the number of times the n-gram wi−n+1wi−n+2 . . . wi occurs in a

collection of text called the training data. Eq. 2.10 is a maximum likelihood (ML)

estimation because it maximizes the likelihood of the training data. However, this

estimation does not generalize well; indeed, any n-gram that was not observed in the

training data would have zero probability under ML estimation3. Therefore, in prac-

tice, n-gram models discount probabilities of observed n-grams and distribute the

discounted probability mass to unseen n-grams. This process is also often referred

to as smoothing the probability distribution.

Many discounting algorithms have been developed for n-gram models. In the

next three subsections, we describe some of the most frequently used methods.

We refer to Chen and Goodman [20] for a comprehensive survey of discounting

algorithms.

2.2.1.1 Katz Smoothing

Katz smoothing utilizes Good-Turing discounting for observed n-grams while unseen

n-grams are estimated using a lower order backoff model:

pkatz(wi|wi−1
i−n+1) =

drrP

wi
c(wi

i−n+1)
if r > 0

α(wi−1
i−n+1)pkatz(wi|wi−1

i−n+2) if r = 0

(2.11)

3 Unobserved n-grams are quite common: After training on 1.5 million words, 23% of the
trigrams drawn from new text in the same collection of text are unseen (Manning and Schütze
[73]).

19

where r = c(wii−n+1) and dr is the discounting ratio defined as follows:

dr =

1 if r > k

r∗
r
−

(k+1)nk+1
n1

1−
(k+1)nk+1

n1

if 1 ≤ r ≤ k

where nr is the number of n-grams occurring r times in the training data4 and r∗ is

the Good-Turing estimate for n-grams occurring r times.

r∗ = (r + 1)
nr+1

nr

Frequent counts r > k (Katz proposed k = 5) are considered reliable and are not

discounted, while infrequent n-grams with 1 ≤ r ≤ k are discounted proportionately

to the Good-Turing estimate, and this ensures that the total probability mass as-

signed to unseen n-grams also matches that estimate. α(wi−1
i−n+1) in Eq. 2.11 is the

backoff weight, chosen to ensure that the distribution pkatz(wi|wi−1
i−n+1) sums to 1.

Note that Eq. 2.11 contains a recursion: the same equation is used to estimate

the backoff model pkatz(wi|wi−1
i−n+2). The base case for the recursion is the maximum

likelihood estimation for the unigram model:

pkatz(wi) = pML(wi) =
c(wi)∑

wi∈V c(wi)

where V is the word vocabulary.

4 Counts nr are often also smoothed.

20

2.2.1.2 Jelinek-Mercer Smoothing

Jelinek-Mercer [58] smoothing utilizes linear interpolation of the maximum likeli-

hood estimation with a lower order backoff model:

pinterp(wi|wi−1
i−n+1) = λ(wi−1

i−n+1) · pML(wi|wi−1
i−n+1) (2.12)

+(1− λ(wi−1
i−n+1)) · pinterp(wi|wi−1

i−n+2)

The base case for the recursion is the 0-th order model, which has a uniform distri-

bution: puniform = 1
|V | . Coefficients λ(wi−1

i−n+1) are optimized on a heldout set using

Expectation Maximization (EM) approach. Because the number of parameters λ

can be very large, Jelinek and Mercer proposed partitioning them into a relatively

small number of buckets, and then forcing all values of λ in one bucket to have the

same value.

2.2.1.3 Kneser-Ney Smoothing

Chen and Goodman [20] formulate Kneser-Ney (KN) smoothing using the interpo-

lated form, which, they argue, outperforms its original backoff form.

pKN(wi|wi−1
i−n+1) =

max(c(wii−n+1)−D, 0)∑
wi
c(wii−n+1)

+D
N1+(wi−1

i−n+1•)∑
wi
c(wii−n+1)

pKN(wi|wi−1
i−n+2)

(2.13)

where D is the discount coefficient, and N1+(wi−1
i−n+1•) is the number of unique words

following context wi−1
i−n+1:

21

N1+(wi−1
i−n+1•) = |{wi : c(wii−n+1) > 0}|

Unlike previously described smoothing methods, in KN discounting, the lower order

distribution pKN(wi|wi−1
i−n+2) is estimated from modified counts, where number of

observed n-grams c(wi|wi−1
i−n+2) is replaced with the number of unique words preced-

ing wii−n+2. D can be optimized using deleted interpolation, although commonly

the following heuristic value is used:

D =
n1

n1 + 2n2

where n1 and n2 are the numbers of n-grams that occur in the training data exactly

one and two times, respectively.

Chen and Goodman [20] also propose a variant of Eq. 2.13 where D is a

function of count c(wii−n+1), which takes the following values:

D(c(wii−n+1)) =

0 if c(wii−n+1) = 0

D1 if c(wii−n+1) = 1

D2 if c(wii−n+1) = 2

D3+ if c(wii−n+1) ≥ 3

As in the standard KN discounting, the coefficients D1, D2, D3+ can be optimized,

but in practice the following values are used:

22

Y =
n1

n1 + 2n2

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3+ = 3− 4Y
n4

n3

Modified KN smoothing outperforms most of the other discounting techniques [20];

therefore, we will use it for smoothing our baseline n-gram models.

2.2.2 Class-based Models

Class-based language models were defined in Brown et al. [10] as follows:

p(wi|wi−1
1) = p(wi|ci)p(ci|ci−1

1)

where ci is the word class drawn from the class vocabulary C, and each word belongs

to exactly one word class5. Similarly to n-gram models, the context is typically

limited to n− 1 immediately preceding classes:

p(wi|wi−1
1) ≈ p(wi|ci)p(ci|ci−1

i−n+1) (2.14)

Models of this type aim at reducing the parameter space of the model (thus, reducing

the model’s memory footprint, as well as alleviating the sparsity) by grouping words

that behave similarly into one class. The n-gram model in Eq. 2.9 has at most |V |n

5 Sometimes models allowing multiple class membership are also called class-based; however,
they require a very different probability computation (see Eq. 2.5). Therefore, we will describe
them as a special case of joint language models in Section 2.2.3.

23

probabilities to estimate, where V is the word vocabulary. The class-based model

in Eq. 2.14, on the other hand, has at most |V | + |C|n parameters. Typically

|C| << |V |, which results in a significant reduction of the model size.

Class-based models exploit the observation that some words tend to appear

in similar contexts, e.g., Thursday and Friday, and therefore, it might be beneficial

to combine these words together for modeling purposes, i.e., assign them to one

word class. Word classes are generally created using one of the following clustering

approaches:

• Bottom-up: Each word starts in its own class, then the algorithm proceeds by

merging classes until the desired number is reached, as in Brown et al. [10].

• Top-down: The algorithm starts with all words in one class and then proceeds

by splitting classes, as was done by Zitouni [115].

• Non-hierarchical : Words assigned to classes randomly, and then the algorithm

moves words from one class to another, trying to optimize some metric, as in

Martin et al. [77].

While class-based models are able to reduce the size of the model, they generally fail

to outperform n-gram models significantly [10, 115], and often perform more poorly

unless interpolated with an n-gram model.

One of the shortcomings of class-based models is that they fail to distinguish

different syntactic roles a word can play. For instance, the word can in the previous

sentence is a modal verb; however, it can also be a singular noun as in “a can of

24

soup”, or a verb as in “to can goods.” The distributions of words following can are

very different in each of these cases, but if the model does not distinguish them, it

effectively unifies these distributions into one, “blurring” these uses at the expense

of the less frequent meanings6. A clustering algorithm is likely to group the word

can with other modal verbs since it is the predominant usage, further suppressing

other meanings of this word.

Another phenomenon that class-based models do not handle well is collocation,

i.e., a sequence of words that is used together far more frequently than a random

chance would allow, for example, “white house” or “new york stock exchange.”

Indeed, “stock” and “share” are synonymous in the financial domain; however,

“stock exchange” is common, but “share exchange” is not. If a class-based model

groups these words into one class, it would lose the ability to make that distinction

and would result in a poorer quality probability estimation for p(exchange|stock)

than an n-gram model.

2.2.3 Joint Models

Heeman [50] points out that distributions of words that follow the word “loads”

would be quite different when this word is a noun than when it is a verb. He argues

that in those cases we have, in fact, two different words which happen to have the

same surface form. In order to disambiguate the unknown “true” word, we can

represent it as a tuple witi, where wi is the surface word, as used in n-gram models,

6 N-gram models suffer from this problem as well, but in higher order models the issue is largely
remedied by other words in the context.

25

and ti is a tag assigned to the word to help to distinguish its different roles. Tags

can be thought of as word classes, but since in every particular case the true tag is

hidden and often ambiguous, we must assume stochastic class membership:

∑
ti∈T

p(ti|wi) ≡ 1

where T is the vocabulary of tags. This seemingly simple change from deterministic

to stochastic classes complicates the probability computation significantly. In order

to compute the probability of a word sequence, one must sum over all possible tag

sequences, as shown in Eq. 2.5. If we apply Markovian independence assumptions

similar to Eq. 2.9, we get:

p(wm1) =
∑
t1...tm

m∏
i=1

p(witi|wi−1
i−n+1t

i−1
i−n+1) (2.15)

The complexity of direct computation of Eq. 2.15 is prohibitive: O(m · |T |m). How-

ever, this model is very similar to a Hidden Markov Model (HMM)7, so a dynamic

programming algorithm can be used to reduce the computation to O(m·|T |n), where

n is the order of the model (a fixed parameter). This may still be too expensive for

a large tagset T ; therefore, other methods, similar to beam search, are often used to

reduce the complexity further, e.g., Heeman [50] used the following approximation:

p(wi|wi−1
1) ≈

∑
ti∈T

∑
t1...ti−1∈Pi

p(witi|wi−1
1 ti−1

1)p(wi−1
1 ti−1

1)∑
t1...ti−1∈Pi

p(wi−1
1 ti−1

1)

where Pi is a limited set of the most likely tag sequences t1 . . . ti−1.

7 The standard HMM uses a simpler model, shown in Eq. 2.16, but the decoding algorithm is
essentially the same.

26

Note that the parameter space of this model is larger than that of an n-gram

model: O(|T |n|V |n) vs. O(|V |n). In order to reduce the model size, some models

(e.g., [83]) make further approximations, similar to Eq. 2.14:

p(witi|wi−1
i−n+1t

i−1
i−n+1) ≈ p(wi|ti)p(ti|ti−1

i−n+1) (2.16)

When the set of tags T is small, compared to the vocabulary V , the number of

parameters in this model, O(|T |n+ |V ||T |), can be significantly smaller than that of

an n-gram model. That reduction, however, comes at a price; models with reduced

context often perform worse than the n-gram model, while models utilizing full

context show significant improvement over n-gram models [83, 50, 40]. Niesler and

Woodland [83] use a model similar to Eq. 2.16 and report an 11% and a 49% increase

in perplexity compared to a word n-gram model in experiments on different corpora,

although their model is much more compact—their model has an order of magnitude

fewer parameters than the word n-gram model. In contrast, Heeman [50] shows that

using full joint context (p(witi|wi−1
i−n+1t

i−1
i−n+1)) provides a 10% reduction of perplexity

over a word n-gram model, while the approximation in Eq. 2.16 produces a model

with 70% higher perplexity than the word n-gram model.

Another interesting model that can be loosely classified as a joint model was

developed by Chelba [17]. This model is based on a parser that, unlike Charniak’s

model [16], constructs the parse trees using the following model:

p(wn1T) =
n+1∏
k=1

p(wk|wk−1
1 Tk−1)p(T kk−1tk|wk1Tk−1)

27

where Tk is a parse derivation covering wk1 , tk is a POS tag, and T kk−1 is a parser

operation that transforms Tk−1 into Tk. The number of words is n+1 in the equation

because of the end-of-sentence symbol. Similarly to Charniak’s model [16], the

probability of the word sequence is obtained by marginalization:

p(wn1) =
∑
T

p(wn1T)

Chelba [17] reports significant improvements compared to an n-gram model in per-

plexity and WER when his model is interpolated with the n-gram model.

2.2.4 Maximum Entropy Models

The maximum entropy principle states that a model should satisfy some explicitly

specified constraints but should make no assumptions beyond that, i.e., it should

have maximum entropy. The model is represented in the exponential form:

pME(wi|wi−1
1) =

1

Z(wi−1
1)

e
P

j λjfj(wi,w
i−1
1) (2.17)

where fj are features, λj are their weights, and Z is the normalization term: Z(wi−1
1) ≡∑

wi
e

P
j λjfj(wi,w

i−1
1). Typically boolean features are used. The model is usually con-

strained to have the same expected value for each feature as in the training data:

∀fj
:

∑
(wi,w

i−1
1)∈T

p(wi|wi−1
1)fj(wi, w

i−1
1) =

∑
(wi,w

i−1
1)∈T

pME(wi|wi−1
1)fj(wi, w

i−1
1)

where T is the training data set and pME(wi|wi−1
1) is the empirical distribution on

T .

28

Advantages of maximum entropy models include the ease of incorporating arbi-

trary features and resilience to data fragmentation. Training and using a maximum

entropy model is computationally costly, although there have been efforts to reduce

this complexity. Wu and Khudanpur [110] proposed optimizations to the training

algorithm that reduce the training time by over an order of magnitude. In addition,

Wu and Khudanpur [109] proposed using an approximation for the normalization

factor Z in Eq. 2.17, that could be precomputed during the training, reducing the

computational cost of using the model by two orders of magnitude.

2.2.5 Other Models

2.2.5.1 Caching LM

If a person uses a word in the recent past, he or she is more likely to use that word

again. Caching language models [69, 57] exploit this observation by interpolating

a (static) language model estimated from training data using any of the previously

discussed methods with a small LM estimated from recently observed test data,

usually based on a running window of 1000 words.

pcache(wi|wi−1
i−n+1) = λpstatic(wi|wi−1

i−n+1) + (1− λ)pdynamic(wi|wi−1
i−n+1)

Since pdynamic has to be updated after every word, sophisticated smoothing tech-

niques are not used for its estimation. Jelinek et al. [57] propose using a linear

interpolation of maximum likelihood estimated distributions:

29

pdynamic(wi|wi−1
i−n+1) = λ1pML(wi|wi−1wi−2) +

λ2(1− λ1)pML(wi|wi−1) + (1− λ2)(1− λ1)pML(wi)

Kuhn and de Mori [69] and Jelinek et al. [57] report significant improvements over

an n-gram model; however, Goodman in his survey of language modeling techniques

[46] was unable to observe improvement in WER, despite a significant reduction

of perplexity. The likely explanation for this behavior is that in many real-world

applications, such as speech recognition, the true transcript is not available and a

caching model caches the output of a speech recognizer, thus reinforcing the errors

it makes.

2.2.5.2 Neural Network LM

Neural networks have also been used in language modeling, e.g., by Bengio et al. [5]

and Schwenk and Gauvain [96]. Relatively simple feedforward neural networks

(NNs) are often used, consisting of one projection layer (in which discrete words

are mapped to a continuous representation), one hidden layer, and an output layer

(at which each node corresponds to a word in the output vocabulary). Note that

in order to reduce computational complexity, both in training and in applying the

model, the output vocabulary is often reduced to a short list of the most frequent

words, while a simpler model (such as an ngram) is used to compute probabilities

of rare words.

Recently, Mikolov et al. [80] proposed a language model based on a recurrent

30

neural network. Unlike feedforward NNs, which have limited context (similar to

n-gram models), recurrent LMs are capable of capturing long-distance context by

using a recurrent context layer. Mikolov et al. [80] report strong improvements over

a KN n-gram LM. However, neural networks are very slow to train and therefore

are rarely trained with more than a few million words of training data.

2.2.5.3 Discriminative Language Models

Unlike generative language models, discriminative models do not estimate the prob-

ability distribution over sequences of words p(wn1). Instead, they rank a given set

of hypotheses without computing their probabilities, sometimes utilizing additional

information (e.g., the acoustic input [94]).

Stolcke et al. [100] constructed an n-gram model from misrecognized n-grams

(obtained from n-best lists) and used this model with a negative weight to discourage

likely errors. Roark et al. [94] used a linear model:

Ŵ = arg max
W∈GEN(A)

Φ(W,A) · a

where A is the acoustic input, W is a word sequence from the set of hypotheses

GEN(A); Φ(W,A) is a vector of features, and a is the vector of corresponding

weights. A perceptron was used to optimize the weights vector a. Note that unlike

generative models, which are optimized to increase likelihood of an ostensibly rep-

resentative development text, discriminative models are often optimized to reduce

recognition error directly.

31

Discriminative models are designed to complement generative LMs rather than

replace them; therefore, despite their success, they do not reduce the importance of

improving generative language models.

2.3 Context Clustering in Language Modeling

Despite strong independence assumptions, e.g., restricting the context to n − 1

immediately preceding words in n-gram models, the context space of a language

model is still far too large in all but the most trivial language models, necessitating

further approximations. Such approximations generally come in the form of context

clustering:

p(wi|wi−1
i−n+1) ≈ p(wi|Φ(wi−1

i−n+1))

where Φ is the clustering function Φ(wi−1
i−n+1) → {Φ1, . . . ,ΦN}, N is the number of

clusters, and clusters Φk are disjoint subsets of the context space. This clustering

function may be specified either explicitly or implicitly. In this section, we discuss

various types of context clustering methods used in current models.

2.3.1 N-gram Models

In an n-gram model (Section 2.2.1), when a context wi−1
i−n+1 has not been observed

in training data, all probability mass is usually assigned to the lower order model,

because ∀wi
c(wii−n+1) = 0. That is, the distribution p(wi|wi−1

i−n+1) is defined by the

longest observed suffix substring of the context wi−1
i−n+1, and all contexts with the

32

p w
i

p wi∣wi−1

p wi∣wi−1wi−2

tree representation probability

w i-1
 =

 s
ai

d

w i
-2

 =
 A

lic
e

w
i-2
 =

 B
ob

Figure 2.1: Hierarchical clustering in n-gram models

same suffix will have the same probability distribution, i.e., they belong to one

cluster. This type of clustering function can be represented by a k-ary decision

tree, as depicted in Figure 2.1. In this figure, a trigram model using at most two

context words is shown. For a known context, e.g, “Alice said,” the distribution

p(wi|Alice said) is used (shown at the bottom of the tree), and for an unseen context,

e.g., “Carol said,” the bigram backoff p(wi|said) will be used.

Note that this is a very constrained form of a decision tree, and is proba-

bly suboptimal. Indeed, it is likely that some of the clusters predict very similar

distributions of words. In the example in Figure 2.1, one would expect the distribu-

tions p(wi|Alice said) and p(wi|Bob said) to be very similar; hence, the model could

benefit from merging these two clusters together, as it would lead to more robust

probability estimation.

33

Several modifications to this clustering scheme have been proposed. Kneser [64]

and Stolcke [101] pruned least informative n-grams reducing the number of parame-

ters without degrading the performance appreciably. They also showed that increas-

ing the order of the n-gram model while keeping the number of parameters constant

through pruning can improve performance. Niesler and Woodland [83] proposed a

somewhat similar idea, but instead of pruning non-informative n-grams, they added

more context where it was beneficial8.

The n-gram history clustering approach makes several poor assumptions. First,

it makes the assumption that the immediately preceding word is more informative

than the second-most, which is not always true9. Second, it makes the assumption

that all siblings in the clustering tree in Figure 2.1 are “equivalently alike” in the

sense that they back off to the same distribution p(wi|wi−1). Particularly, this im-

plies that the distribution p̃(wi|wi−1
i−2) = p̃(wi|wi−1) if C(wi−1

i−2) = 0, i.e., it depends

only on wi−1 for all wi−2 for which C(wi−1
i−2) = 0; this is not always true (consider

the words that are likely to follow “The can” and “I can”).

Zitouni [115], instead of backing off from the n-gram right to the (n−1)-gram,

wi−1
i−n+1 → wi−1

i−n+2, used a more gradual backoff:

wi−1
i−n+1 → F 1(wi−n+1), wi−1

i−n+2 → F 2(wi−n+1), wi−1
i−n+2 → . . .→ wi−1

i−n+2

where F j is a sequence of clustering functions with F j+1 being coarser than F j. This

8 Niesler and Woodland [83] used n-grams of POS tags (Eq. 2.16) rather than words as in
Kneser [64] and Stolcke [101], but for the purpose of context clustering this is not essential.

9 Skip models, such as Martin et al. [76], mitigate this problem by interpolating models in
which different context words are “skipped,” i.e., p′(wi|wi−1wi−2wi−3) = λ1p(wi|wi−1wi−2) +
λ2p(wi|wi−1wi−3) + (1− λ1 − λ2)p(wi|wi−2wi−3)

34

type of clustering can also be represented as a decision tree similar to Figure 2.1. The

only transformation is that at each node, instead of the flat k-ary structure, siblings

are organized into a binary subtree with the same leaves and the root. Note that

this binarization of the decision tree is performed based on global similarity between

words, rather than similarity within a specific context, which, as we discussed in

Section 2.2.2, has the drawback of mixing secondary usages of words into the same

cluster. Zitouni [115] reported a 6% decrease of perplexity on unseen n-grams,

although the overall perplexity reduction was only 2% compared to a Katz backoff

word n-gram model.

2.3.2 Class-based Models

From the context clustering perspective, class-based models (Eq. 2.14) are structured

similarly to n-gram models shown in Figure 2.1, except that instead of words, word

classes are used.

On the one hand, merging words into one class enables more robust probability

estimation. On the other hand, as we pointed out in Section 2.2.3, since many

surface words have multiple uses, it is likely that they will be merged based on their

most common use, resulting in an odd distribution when a word is used in a less

common meaning. For example, the words “may” and “can” are most frequently

used as modal verbs and, based on that usage, they tend to have very similar words

surrounding them. Therefore, they are very likely to be clustered together by any

word classification algorithm. This results in an improved probability estimation

35

when the words are used as modal verbs, but it also forces the n-grams “a can of”

and “a may of” to have the same probability.

2.3.3 Decision Tree Models

In contract to the clustering methods discussed above, unconstrained decision trees

may be grown to produce any partitioning of the context space. This implies that

an optimal partitioning, i.e., the partitioning that minimizes some loss function, can

be constructed. Unfortunately, construction of an optimal decision tree has been

proven to be NP-complete [30]. Hence, in practice, we can only approximate an

optimal decision tree by using greedy tree construction methods. Unless otherwise

specified, we will utilize binary decision trees because they are simpler than k-ary

trees, and they are equally powerful.

Strengths of decision trees include:

• Optimal partitioning is theoretically achievable. As we have pointed out above,

any context clustering can be represented by a decision tree, unlike, for ex-

ample, n-gram models, which impose constraints on how the context can be

clustered and there is no theoretical justification that the optimal clustering

would satisfy those constraints. While construction of an optimal decision

tree is likely to remain unattainable, we can hope to approach it by improving

greedy tree construction algorithms.

• Any number of attributes can be easily added to the model. Although at-

tributes can be added to n-gram models as well, the type of clustering uti-

36

lized in n-gram models requires a sequence of backoff models. In the n-

gram models described in Section 2.2.1, such a sequence is straightforward;

it is based on the observation that more distant words carry less informa-

tion about the future word. However, if additional attributes, such as tags

in joint models (Section 2.2.3), or morphological features such as a word

stem, or a suffix are added, it becomes unclear which model should be the

backoff for p(witi|wi−1
i−n+1t

i−1
i−n+1): p(witi|wi−1

i−n+1t
i−1
i−n+2), p(witi|wi−1

i−n+2t
i−1
i−n+1), or

p(witi|wi−1
i−n+2t

i−1
i−n+2)? Sometimes the choice of the backoff path is made by

trial and error [105]. Bilmes and Kirchhoff [8] propose a generalized backoff

model where multiple backoff paths can be specified. However, both of these

approaches quickly become unwieldy as the number of attributes grows. Deci-

sion trees, on the other hand, have no limitations on the number of attributes.

They rely on information theoretic metrics to make partitioning decisions.

• There is a natural hierarchy of clusters. Because of sparsity, reliance on backoff

models, i.e., coarser clustering, is essential in language modeling. Decision

trees provide a natural hierarchy of increasingly coarse clusters from a leaf to

the root.

Weaknesses:

• Decision tree construction is computationally intensive (see Section 4.1).

• There is potential for data fragmentation. As the decision tree construction

algorithm progresses, it partitions the training data, thus consequent decisions

37

are based on increasingly smaller amounts of data, leading to the tendency to

overfit the training data.

2.4 Syntax in Language Modeling

It is generally accepted that human languages have structure. For example, in a typ-

ical English sentence, the subject is followed by the main verb, and then optionally

by the object and other verb arguments. Therefore, knowing the syntactic roles of

each of the words wi−1
1 would certainly help to predict the role of the following word,

as well as the word itself, and thus should help to improve the language model.

A number of formalisms has been used to capture the structure of a sentence,

such as context free grammars [24], dependency grammars [49], constraint depen-

dency grammars [78, 48], and link grammars [98]. Additionally, parsing tools has

been developed to automatically generate syntactic structure for a given sentence.

These tools can be broadly divided into two categories: parsers and taggers. Parsers

generate deep syntactic structure that encompasses the entire sentence, while taggers

produce shallow syntactic information, assigning syntactic tags to individual words

without defining the relations among all of the words in the sentence [60, 73]. In

the remainder of this section, we will review some of the methods used to represent

syntactic structure.

38

the

DT VBD

black cat sat

JJ NN

NP VP

S

Figure 2.2: A parse tree example

2.4.1 Parse Trees

In our work, we use two types of parse trees: constituency trees and dependency

trees. Constituency trees are based on the observation that some phrases (con-

stituents) play certain roles in a sentence and can be replaced by other constituents

of the same type.

Figure 2.2 illustrates a constituency parse tree for the sentence “the black cat

sat.” Note that the noun phrase (NP) constituent “the black cat” can be replaced

with another noun phrase, e.g., “a bird with a long tail,” and the entire sentence

would remain syntactically correct.

Relationships among different constituents are typically described using con-

text free grammars (CFG) [24]. Formally, a context free grammar is defined as a

tuple of finite sets of terminals, non-terminals, and productions, with one of non-

terminals designated as the start state. Productions are rewrite rules with one

non-terminal on the left hand side and any sequence of terminals and non-terminals

39

on the right hand side. However, in natural language processing, a slightly more

restrictive form of productions is used; there is a special subset of non-terminals

called pre-terminals10, such that productions with a pre-terminal on the left-hand

side always rewrite to a single terminal; whereas, productions with a non-terminal

(excluding pre-terminals) on the left-hand side can only produce non-terminals (in-

cluding pre-terminals) on the right-hand side. It is common to refer to non-terminals

as the set of non-terminals excluding pre-terminals; we will follow this convention

in subsequent discussion. For example, the following productions are necessary to

produce the parse tree in Figure 2.2:

S → NP V P

NP → DT JJ NN

V P → V BD

DT → the

JJ → black

NN → cat

V BD → sat

In a probabilistic context free grammar (PCFG) [9], probabilities are assigned

to each production in such a way that the probabilities of productions with the same

left hand side sum to 1. The probabilities can be estimated from hand-annotated

treebanks [15, 27].

10 Pre-terminals include the nodes labeled DT, JJ, NN, and VBD in the example in Figure 2.2.

40

Note that a PCFG makes an extremely strong independence assumption,

namely that the probability of each constituent is independent of the context. For

example, the probability of production S → NP V P does not depend on the NP

and VP constituents despite the fact that in natural languages these dependencies

are very strong. For example, inanimate objects are unlikely to be the subject of

some verbs, e.g., “eat.” For this reason, simple PCFG grammars perform poorly.

To overcome this problem, state-of-the-art PCFG parsers condition the production

probabilities on context either explicitly [15, 63] or implicitly by assigning latent

variables to non-terminals [87, 53].

Dependency trees are another way of representing syntactic relations [49, 75].

An example of a dependency parse tree is shown in Figure 2.3. A dependency tree is

a directed graph where each edge represents a relation between two words: the head

(or governor) and its dependent (or modifier). A word can have multiple modifiers.

The edges can be labeled to denote the specific role of the relation. In the example

in Figure 2.3, the dependency parse produced by the Stanford Dependency Parser

[75] indicates that “the” and “black” are the determiner and adjectival modifier

for “cat,” which in turn is the nominal subject for “sat.” Sometimes additional

dependencies are added to a dependency tree (which becomes a more general form

of graph) to represent the fact that a word can be related to multiple words in a

sentence. For example, in Figure 2.4, the word “that” is the subject for the main

verb “driving,” the head of the relative clause “that were driving fast before,” but

at the same time it is a referent to the word “ones.”

Note that a dependency structure can be extracted from a constituency parse

41

the black cat sat

det

amod
nsubj

Figure 2.3: A dependency parse tree example

the onessame that were fastdriving before are drivingstill fast now

advmodamod

ref

aux

aux

det rcmod

nsubj

advmod

advmod

advmod

advmod

nsubj

Figure 2.4: Non-tree dependency graph

tree by applying a set of deterministic rules, often referred to as headword percolation

rules. However, it is often not trivial to infer a constituency tree from a dependency

parse.

2.4.2 Syntactic Tags

Unlike parse trees, which cover the entire sentence in a single coherent structure, tags

are assigned to individual words and therefore express roles that words play in the

sentence without defining inter-word relations. Although tags contain only shallow

syntactic information, they are more suitable as the source of syntactic information

for language modeling than parse trees because language models are often required

42

to operate in a left-to-right manner, without having access to the entire sentence11.

Additionally, sentence boundaries are often not available to a language model, which

further complicates deriving a full parse structure. In the remainder of this section,

we discuss various types of tags, some of which have been used in prior work and

some are novel. Finally, in Section 2.4.2.6, we propose information theoretic metrics

to estimate the usefulness of tagsets for language modeling.

2.4.2.1 Part-of-Speech (POS) Tags

The number of POS tags can vary greatly depending on the language and the

purpose of the tagset. For example, Penn treebank English tagset contains 36

tags excluding punctuation (see Table 2.1), while the Urdu tagset proposed by

Rabbi et al. [90] has 280 tags (the increase in the number of tags was largely to

express gender and number agreement).

The amount of information POS tags typically provide is very limited. For

example, while it is helpful to know whether fly is a verb or a noun, knowing that

you is a personal pronoun does not carry information about whether it is a subject

or an object (given the Penn Treebank tagset), which would certainly help to predict

the following word. Most words can also have more than one tag assignment (to is

a notable exception – it has a dedicated tag TO). For instance, the word can can be

a modal verb (MD), a singular nominal noun (NN), a singular proper noun (NNP),

a verb in the base form (VB), or present tense singular non-3rd person verb (VBP).

11 Parsers that parse sentences left-to-right do exist, e.g., [17], but their performance is substan-
tially worse than whole-sentence state-of-the-art parsers.

43

Tag Description Tag Description

CC Coordinating conjunction PRP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or subordinating conjunction SYM Symbol

JJ Adjective TO to

JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund or present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3rd person singular present

NNP Proper noun, singular VBZ Verb, 3rd person singular present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WP$ Possessive wh-pronoun

PRP Personal pronoun WRB Wh-adverb

Table 2.1: Penn Treebank part-of-speech tags

44

2.4.2.2 SuperARV

The SuperARV [106] essentially organizes information concerning one consistent

set of dependency links for a word that can be directly derived from its syntactic

parse based on knowledge of head dependencies, case roles, and lexical features in

English. SuperARVs encode lexical information, as well as syntactic and semantic

constraints, in a uniform representation that is much more fine-grained than POS.

A SuperARV is a four-tuple (C;F ;R+;D), where C is the lexical category of the

word, F is a vector of lexical features for the word, R+ is a set of governor and need

labels that indicate the function of the word in the sentence and the types of words

it needs, and D represents the relative position of the word and its dependents.

SuperARVs can be produced from parse trees by applying deterministic rules. An

example of SuperARV tag assignments for a sentence is shown in Table 2.2. In the

row labeled C, the lexical categories are assigned to the words. Note that these

categories are coarser than POS tags, e.g., verb includes verbs of all types. Features

are assigned in row F to distinguish among different types of verbs, nouns, and

other lexical categories. The row R+ contains one governor G and zero or more

need roles N with labels. The row DC contains positional constraints, e.g., P<G

means that the current word (P) is in a location before its governor (G). Note that

the verb fell has only one need role filled, N1; the missing dependencies (G, N2, and

N3) point to the word itself: P=G=N2=N3. We refer the reader to the literature

45

corn futures also fell

C noun noun adverb verb

F

behavior: count behavior: count behavior: normal gapp: none

case: common case: common type: common inverted: no

number: 3s number: non-3s mood: none

type: common type: common number: all

voice: active

vtype: past

R+

G=np G=np G=vmod G=vp

N1=S

N2=S

N3=S

DC P<G P<G P<G N1<P=G=N2=N3

Table 2.2: SuperARV tags assigned to the sentence “corn futures also fell.” Each

column (without the word) represents a SuperARV tag.

for further details on SuperARVs [105].

2.4.2.3 Parent Constituent

This tag type is a tuple of three elements: (P,NT, pos), where P is the word’s POS

tag NT is its immediate parent in the parse tree (non-terminal), and pos is the POS

tag’s relative position among its siblings in NT . We refer to this type of tag as

parent. Using this convention, the example in Figure 2.2 would be tagged as shown

in Table 2.3. This tagset is designed to represent constituency information and is

46

word tag

the DT-NP-start

black JJ-NP-mid

cat NN-NP-end

sat VB-VP-single

Table 2.3: “the black cat sat” tagged using the parent tagset

word tag

the DT-NN

black JJ-NN

cat NN-VBD

sat VBD-root

Table 2.4: “the black cat sat” tagged using the head tagset

similar to the tagset used in [29].

2.4.2.4 Head Tag

This tag type is a combination of the word’s POS tag and the POS tag of its

governor. The governor roles are obtained from the dependency parses such as the

example depicted in Figure 2.3. The dependency parse in Figure 2.3 is generated

from the constituency parse tree in Figure 2.2 by applying a set of deterministic

headword percolation rules developed by Charniak for his lexicalized parser [15].

For example, the sentence in Figure 2.2 would be tagged as shown in Table 2.4.

Henceforth, we will refer to this kind of tag as head.

47

word tag

the det,2,nsub

black amod,1,nsubj

cat nsubj,1,root

sat root,0,root

Table 2.5: “the black cat sat” tagged using the dep tagset

2.4.2.5 Dependency Tag

We also use a tagset extracted from typed dependency trees produced from con-

stituency trees by the Stanford Dependency parser [75].

The dependency tag that we utilize is a three-tuple (H,D,GH), where H is the

type of the dependency between the word and its head, D is the distance and direc-

tion from the word to its head, bucketed as follows: D ∈ {≤ −3,−2,−1, 0, 1, 2,≥ 3},

with 0 indicating that the word does not have a head. GH is the type of the depen-

dency between the word’s head and the word’s head head (grand-head). Thus, the

example in Figure 2.3 would be tagged as shown in Table 2.5. We refer to this tagset

as dep. It represents another way of capturing dependency information; note that

unlike the head tagset (Section 2.4.2.4), in the dep tagset, we capture the relative

positions of the word and its head.

It is reasonable to believe that different tasks may favor different tagsets;

indeed, for languages with free word order, tagsets based on dependencies may

perform better, while tasks with a very small amount of training data are likely

to favor tagsets that utilize external linguistic knowledge, such as the SuperARV.

48

Therefore, the ability to easily utilize a variety of different tagsets is one of the main

goals for the design of our language model.

2.4.2.6 Information-theoretic Comparison of Tags

Note that the tags described in the previous sections can easily be modified (aug-

mented or reduced), thus producing new tagsets. For example, the head tag can

be augmented with the relative position of the word’s head. However, it is un-

clear whether the additional information in the tag would lead to a better syntactic

language model. To create an effective tagset, we need a method to estimate the

potential suitability of a tagset without having to train a full model (which would

be computationally expensive). In this section, we propose a simple information-

theoretic approach to estimate the usefulness of a tagset for syntactic language

modeling.

There are two conflicting intuitions for tag design: on the one hand they should

be specific enough to be helpful in the language model’s task; on the other hand,

they should be easy for the LM to predict. We propose the following metrics:

• To quantify how hard it is to predict a tag, we can compute the conditional

entropy:

49

Hp(ti|wi) = Hp(tiwi)−Hp(wi)

= −
∑
witi

p(tiwi) log p(tiwi) +
∑
wi

p(wi) log p(wi)

= −
∑
witi

p(tiwi) log p(tiwi) +
∑
witi

p(tiwi) log p(wi)

= −
∑
witi

p(tiwi) log p(ti|wi)

• To measure how helpful a tagset is in the LM task, we can compute the

reduction of the conditional cross entropy:

Hp̃,q(wi|wi−1)−Hp̃,q(wi|wi−1ti−1) =

−
∑
wi

i−1

q(wii−1) log p̃(wi|wi−1) +
∑

wi
i−1ti−1

q(wii−1ti−1) log p̃(wi|wi−1ti−1)

= −
∑

wi
i−1ti−1

q(wii−1ti−1) log
p̃(wi|wi−1ti−1)

p̃(wi|wi−1)

Note that in this case, we use conditional cross entropy because conditional

entropy has the tendency to overfit the data as we select more and more

fine-grained tags. Indeed, Hp(wi|wi−1ti−1) can be reduced to zero if the tags

are specific enough (meaning that wi is precisely predicted by the context).

This is not a problem for the former metric, because the context there, wi, is

the same for all tagsets. To eliminate zero probabilities in the cross entropy

calculation, we use a smoothed distribution p̃ computed on the training set

and the heldout distribution q. To smooth the distribution, we use one-count

smoothing proposed by Chen [19]:

50

b
it

s
b

it
s

0

1

2

3

4

5

0

1

2

3

4

5

TagsetTagset

POS superarv parent head dep

H(ti|wi)
Hp,q(wi|wi-1) - Hp,q(wi|wi-1ti-1)

Figure 2.5: Tagset selection metrics for different tagsets

p̃(wi|wi−1ti−1) =
c(wiwi−1ti−1) + α · p(wi)∑

wi
c(wiwi−1ti−1) + α

where

α = γ [n1(wi−1ti−1) + β] ; n1(wi−1ti−1) = |{wj : c(wjwi−1ti−1) = 1}|

i.e., n1(wi−1ti−1) is the number of words that appear exactly once (hence the

name) after the context wi−1ti−1, and γ and β are constants12. This smoothing

algorithm is very simple to implement and yet, according to Chen [19], it

performs better than most other n-gram smoothing methods.

In Figure 2.5, we present the results of these measurements obtained on train-

ing and heldout data selected from NYT ’94-’95 section of the English Gigaword

corpus (approximately 70M words) which was parsed using [53] and different tags

12 Chen does not make any suggestions about how to select γ and β; we found that the values
of 15 and 1, respectively, work well in this case.

51

were extracted from parse trees as discussed in Sections 2.4.2.1 through 2.4.2.5. POS

tags, albeit easy to predict, provide very little additional information about the fol-

lowing word; and therefore, we would not expect them to perform very well. The

parent tagset seems to perform better than SuperARVs – it provides 0.13 bits more

information while being only 0.09 bits harder to predict based on the word. The

head tagset is interesting: it provides 0.2 bits more information about the following

word (which would correspond to 15% perplexity reduction if we had perfect tags),

but on the other hand, the model is less likely to predict these tags accurately. The

dep tagset has almost as much information about the following word as the par-

ent tagset does, but it is much harder to predict, i.e., it has a lot of information

irrelevant for word prediction.

This approach is only a crude estimate (it uses only unigram and bigram

context), but it is potentially quite useful for designing tagsets, e.g., for a new

language, because it allows us to assess the relative performance of tagsets without

having to train a full model. To confirm that this approach is in fact predictive

of the performance of a language model, for each tagset, we trained joint syntactic

language models on the data described above using methods presented in Chapter 4.

In Figure 2.6, we present the perplexity results and the storage usage for

the syntactic model utilizing various tagsets. A comparison with the metrics in

Figure 2.5 shows that a larger difference in conditional cross entropy Hp̃,q(wi|wi−1)−

Hp̃,q(wi|wi−1ti−1) results in a better (lower) perplexity, while a larger conditional

entropy Hp(ti|wi) results in an increase in the size of the model. Note that the large

amount of extraneous information in the dep tag does not impact the performance

52

P
er

p
le

xi
ty

P
er

p
le

xi
ty

144

146

148

150

152

154

S
to

ra
g

e,
 G

B
S

to
ra

g
e,

 G
B

0.6

0.8

1.0

1.2

1.4

1.6

TagsetTagset

POS superarv parent head dep

perplexity
storage

Figure 2.6: Perplexity on PTB WSJ Section 23 and the storage usage of the syn-

tactic model utilizing different tagsets

of the model13. In future experiments in this thesis, we will use head and parent

tagsets because they are relatively compact, perform well, and are easy to extract.

2.5 Summary

In this chapter, we have formulated the problem of language modeling and have

described its purpose, and we have reviewed prior literature on language modeling.

In Section 2.3, we have reviewed the methods for context clustering used in language

models; we have observed that some language models, such as n-gram models, im-

pose constraints on the way the context can be clustered, while other models, such

as decision tree-based models, do not have such constraints. In Section 2.4, we have

described various forms of syntactic information, particularly shallow syntactic in-

formation in the form of tags, which can be used in language modeling. We have also

13 This is probably due to the fact that decision trees are very good at ignoring irrelevant
information.

53

proposed and evaluated metrics that allow us to estimate the potential usefulness

of a tagset for syntactic language modeling.

54

Chapter 3

Experimental Setups

In this chapter, we describe the experimental setups that are used throughout this

thesis to compare various language models and to evaluate the impact of our re-

search. Whenever we compare against an n-gram model, unless explicitly specified,

an open vocabulary LM will be employed with interpolated modified Kneser-Ney

(Section 2.2.1.3) smoothing, trained using the SRILM toolkit [102] with default

cutoff parameters1 as follows:

ngram-count -unk -kndiscount -interpolate ...

The order of n-gram models will vary from one experiment to another and will be

specified explicitly for each experiment. All models compared in a single experiment

will utilize the same vocabulary, unless otherwise specified.

3.1 Hub4 Setup

The Hub4 setup is used in perplexity experiments in Sections 4.7.3, 4.8.3, and in

word lattice rescoring experiments in Section 6.1.

Acoustic Model. The ASR system used in this setup is based on the 2007 IBM

Speech transcription system for the GALE Distillation Go/No-go Evaluation [18].

The acoustic model is a state-of-the-art discriminatively trained model that was

1 By default, the SRILM toolkit discards singleton n-grams of order 3 and above.

55

trained on Broadcast News (BN) Hub4 acoustic training data as in [116]. The pro-

nunciation vocabulary for the acoustic model contains approximately 90,000 pro-

nunciations of 84,000 distinct words.

LM training data. Language model training data consists of the TRAIN section

of Hub4 CSR 1996 [44] (130M words). The vocabulary has approximately 84,000

words (the same vocabulary that is used in the ASR system).

In order to produce tags for the syntactic models, we parsed the corpus using

a self-training version of Berkeley parser [53]. To train the parser, we utilized the

Broadcast News treebank from Ontonotes [107] together with the WSJ Penn Tree-

bank (PTB) for supervised training [74], and Hub4 CSR 1996 utterances [44] for

self-training.

The treebanks were preprocessed as follows: empty nodes and function labels

were deleted, auxiliary verbs were replaced with AUX, and symbolic expressions

with verbal forms (e.g., “$5.3” was replaced with “five point three dollars”), and

punctuation and case were removed. The Hub4 self-training data was segmented

into utterances, punctuation was removed, words were down-cased, and contractions

and possessives were tokenized for parsing.

In order to match the tokenization of the output produced by the ASR sys-

tem, after parsing and tag extraction, we recombine tokens that were split, namely,

possessives and contractions, combining the tags as well.

Test data. For perplexity evaluations, the reference utterances for the NIST RT04

Broadcast News dataset, consisting of 1,709 utterances and 44,965 tokens are used.

Additionally, the RT04 test set is used to compute WER in the word lattice rescoring

56

task. The word lattices are produced by the ASR system described above.

3.2 WSJ ’94-’96 Setup

This setup is used in perplexity and n-best list rescoring experiments in Sections

4.8.3, 4.8.4, 5.1.6.1, and 5.2.1.

Acoustic Model. We utilize the same acoustic model as in the Hub4 setup (Sec-

tion 3.1).

LM Training data. Models are trained on 35M words of WSJ ’94-’96 from

LDC2008T13. The text was converted into speech-like form to match the type

of output produced by the ASR system, namely numbers and abbreviations were

verbalized. We then parsed the text using a latent variable PCFG parser [53]. After

parsing, we extracted tags using the head tagset (see Section 2.4.2.4). Then words

were downcased, punctuation was removed, and contractions and possessives were

joined, combining the associated tags. All models use the same vocabulary of ap-

proximately 50k words obtained by intersecting the set of most frequent words from

the training data with the 84k word vocabulary of the acoustic model described in

Section 3.1.

Test data. For perplexity evaluations, the PTB WSJ Section 23 [74], preprocessed

in the same way as the training data, is used.

For ASR n-best list rescoring experiments, we use a test set consisting of

4,088 utterances of WSJ0 (LDC93S6A). We optimize the weights for the combina-

tion of acoustic and language model scores on a separate set comprised of 1,243

57

utterances from Hub2 5k closed vocabulary and the WSJ1 5k open vocabulary sets

(LDC94S13A).

To produce word lattices, the same acoustic model as in the HUB4 setup (de-

scribed in Section 3.1) is used; however, the language model is a trigram LM trained

on 35M words of WSJ ’94-’96 preprocessed as described above. One thousand best

hypotheses were extracted from the lattices.

3.3 GALE MT Setup

Translation Model. In the Arabic-to-English machine translation experiments re-

ported in Chapter 6, we use a hierarchical phrase-based decoder CDEC (Dyer et al. [36]),

which is formally based on synchronous context-free grammar (SCFG) (Chiang [21]).

CDEC can utilize word segmentation lattices as input. The word segmentation lattices

were built using both the standard ATBv3 Arabic segmentation (ATB) [71] and an

untokenized (tok) version of the data, containing only end-of-sentence periods.

The parallel data for the translation model training consists of approximately

6M sentences from the NIST OpenMT evaluation, which includes mostly LDC re-

leases plus approximately 1.5M sentences provided to participants in the GALE

program. The complete list of corpora can be found in the GALE Catalog [42].

In addition, approximately 8M sentences of automatic translations of the Arabic

gigaword corpus (LDC2007T40) with ATB segmentation were used.

The corpus was then filtered based on length ratio; “waw” tokens were removed

from the beginning of Arabic sentences whose English translation did not begin with

58

“and.” Then GIZA++ was used to produce alignment, using the “grow-diag-final-

and” method of Koehn et al. [66]. Finally, <s> and </s> tokens were added to the

beginning and the end of each sentence, respectively, as in [37, 39].

Feature weights in the MT system (including the LM weight(s)) were optimized

using minimum error rate training (MERT) algorithm [84, 36] on GALE DEV10-

tune data set.

LM Training data. Language model training data consists of the English side

of bitext data: Speech transcripts (BN/BC) with 3.4M words2, Xinhua newswire

(XIN) with 45M words, France Press newswire (AFP) with 94M words, and assorted

Arabic newswire corpora (NW) with 210M words. Note that speech transcripts had

punctuation automatically inserted using a hidden-ngram tool from the SRILM

toolkit [102] trained on newswire and weblog bitext data as in [35].

As a baseline, we use a fourgram n-gram model trained on the combination of

the four datasets (BN/BC, XIN, AFP and NW) using the SRILM toolkit (baseline

system). The vocabulary of the model contains all observed words (approximately

300,000 unique words). Additionally, we trained four separate fourgram n-gram

models on each dataset (ngram-4 system). Each model has a vocabulary containing

all words observed in its respective dataset.

In order to produce tags for syntactic language modeling, the training data

was parsed using a latent variable PCFG parser [53]. Note that the parser was

trained on PTB WSJ preprocessed to match the bitext data. Specifically, words were

2 Due to the small amount of speech transcript data available, we did not separate the Broadcast
News (BN) and Broadcast Conversations (BC) genres.

59

lowercased, numbers were verbalized, hyphenated words were split (e.g., “context-

free” would be split into three tokens “context - free”), and a new tag HH was

assigned for the hyphen token.

After parsing, tags were extracted using the parent tagset (see Section 2.4.2.3).

We then trained four separate models on each data set (BN/BC, XIN, AFP and

NW) independently. Similarly to the n-gram models, the vocabulary of each syn-

tactic model consists of all words from the model’s respective training data set.

Additionally, we utilize word-type feature, a feature that determines (using regular

expressions) whether the word is is a number, a punctuation, an Arabic word, or a

regular English word (joint-4 system).

Test data. For evaluation, we use on the following datasets from GALE: DEV09-

dev, DEV09-tune, and DEV10-dev. Each tuning and evaluation dataset consists of

four portions of different genres: Newswire (NW), Broadcast News (BN), Broadcast

Conversations (BC), and Weblogs (WB), and the genre of the test set is presumed

to be known. Therefore, we conduct experiments on each genre separately, e.g., in

Newswire experiments, we optimize on the Newswire portion of DEV10-tune, and

evaluate on the Newswire portions of DEV09-dev, DEV09-tune, and DEV10-dev.

60

Chapter 4

Decision Trees (DTs) in Language Modeling: Methods, Problems,

and Solutions

Decision trees are often used for a classification task, which is formulated as follows:

Given a tuple of attributes X = (x1, x2, . . . , xn), assign a class C ∈ {c1, c2, . . . , ck}.

In a variant of this problem, instead of winner-takes-all classification (a hard class

assignment), soft classification can be used to determine the probability of each

class assignment, i.e., compute the distribution p(C|X). Decision trees solving this

problem are often referred to as class probability trees. Much effort has been invested

in research on various aspects of applying decision trees to this problem [82, 81].

Generative language models (Eq. 2.3 and 2.4) can also easily be formulated as a soft

classification task, where C is the future word wi from vocabulary V , and attributes

(x1, x2, . . . , xn) are features extracted from the context wi−1
1 .

In subsequent discussion, we will use the following notation:

• We denote the context of a language model as ctx. The context is comprised

of a sequence of words ctx ≡ wi−1
i−n+1 for word models p(wi|wi−1

i−n+1) and words

and tags ctx ≡ wi−1
i−n+1t

i−1
i−n+1 for joint models p(witi|wi−1

i−n+1t
i−1
i−n+1). We use C

to denote the context space (the set of possible contexts).

• While our main focus is on the joint syntactic model p(witi|wi−1
i−n+1t

i−1
i−n+1), in

order to decouple the effects of decision tree modeling from syntactic modeling,

61

we will compare results to a word-tree model p(wi|wi−1
i−n+1) constructed using

the same decision tree-based algorithms as the joint model.

• Training data D is a set of tuples (ctx, wi, c) for word-tree models (or (ctx, witi, c)

for joint models), where c is the number of times wi (or witi) is observed fol-

lowing the context ctx in the training corpus.

• A question is a function Q that maps the context space to a finite set of values:

Q : C → {q1, . . . , qk}. We say that a question partitions C into k partitions.

We use boolean values {true, false} for the range of binary questions, and say

that a context ctx matches the binary question q if q(ctx) = true.

• φk denotes a node in the decision tree (a context cluster) and Dt
k is the portion

of the training data that is associated with that node. Dt is the entire training

data set.

The remainder of this chapter is organized as follows: we introduce the recursive

partitioning algorithm used for decision tree induction in Section 4.1. In Section 4.2,

we outline the major differences between decision trees for language modeling and

decision trees for a typical classification task (such as those used in ID3 [89] and

similar algorithms). In Sections 4.3, 4.4, and 4.5, we describe specific steps of the

decision tree induction process, review the techniques used in prior work on decision

trees for language modeling and classification, and present the methods we will use

in this thesis. Section 4.6 describes the method of estimating smooth probabilities

from observed counts. In Sections 4.7 and 4.8, we present our contributions to

62

decision tree language modeling. In Section 4.7, we point out a bias in decision tree

induction methods used in prior language models; and in Section 4.8, we investigate

the problem of combining multiple decision trees into a single language model: we

propose a novel interpolation method for decision tree models and evaluate a number

of techniques for constructing forests of decision trees.

4.1 DT induction algorithm

One step look-ahead top-down greedy recursive partitioning [13], which is outlined

in Algorithm 1, is the most commonly used algorithm to build a decision tree from

training data. The algorithm starts with a tree consisting of one node, the root,

from which the tree is grown. The entire training data Dt is associated with the

root. The algorithm consists of the following steps:

• Given a decision tree node φk and the data Dt
k associated with it, the algorithm

first checks if the stopping rule applies. The purpose of the stopping rule is to

prevent the tree from overfitting the training data. We discuss the stopping

rule in detail in Section 4.3.

• Then a set of possible questions is generated. Since it is infeasible to consider

all possible partitioning questions of a dataset1, we must select a relatively

small number of questions to evaluate, as discussed in Section 4.4.

• The metric used to evaluate partitionings is often referred to as a splitting

rule, denoted as metric M, which is discussed in Section 4.5. Without loss of

1 There are kN different k-ary partitionings of a training set with N unique contexts.

63

generality, we choose to interpret the metric as cost, and therefore, minimize it.

Sometimes the metric is interpreted as gain and maximized (e.g. Quinlan [89]),

however, one interpretation can be transformed into the other essentially by

changing the sign (see Section 4.7.2.2).

• Once the best question q is selected, new children nodes of φk are created

and the training data set (ctx, wi, c) ∈ Dt
k is partitioned according to q(ctx).

The number of children nodes is the size of the range of the question q, thus

boolean questions produce binary trees.

• The algorithm proceeds recursively with each of the newly created leaf nodes,

and the algorithm terminates when each leaf triggers the stopping rule.

• Sometimes after a tree is grown, it is pruned using a pruning rule; however,

pruning can also be applied during tree construction, thus preventing creation

of branches that would be ultimately pruned, similarly to the stopping rule.

4.2 Differences between DT for Classification and Language Model-

ing

Although language modeling is an instance of a soft classification problem, there

are a number of differences in the way the problems are typically set up that lead

to substantial differences in the details of the tree growing algorithm:

• In classification problems, there is typically a large number of attributes, but

each attribute tends to take on a small number of distinct values. Therefore in

64

Input: training data Dt

Result: decision tree ROOT

ROOT ← new-node

GrowTree(ROOT,Dt)

Procedure GrowTree(φk, D
t
k)

begin

if stopping-rule(φk, D
t
k) then return

Q← create-set-of-questions(φk, D
t
k)

q̂ ← arg minq∈Q M(φk, q,D
t
k)

foreach v ∈ range(q̂) do

φkv ← new-child-of(φk)

Dt
kv
← {(ctx, wi, c) ∈ Dt

k : q̂(ctx) = v}

GrowTree(φkv , D
t
kv
)

end

Algorithm 1: Generic decision tree growing algorithm

65

classification, a question simply queries the value of an attribute, with its range

being the number of observed values of that attribute (e.g., ID3 algorithm [89]).

In language modeling, on the other hand, attributes are usually extracted

from a small window of previous words, but each attribute can take on a large

number of distinct values. If language models were to use the same strategy

for question construction as classification, it would produce a decision tree

similar to the n-gram model shown in Figure 2.1. More sophisticated methods

of question construction are required to overcome the limitations of the n-gram

type of clustering discussed in Section 2.3.1.

• Splitting rules are affected by the aforementioned differences in the type of

attributes. In Section 4.7, we discuss the issue of a bias in splitting rules to-

wards attributes with larger vocabularies, which is a significant problem for

language models (particularly syntactic language models) because the dispar-

ity in vocabulary sizes of different attributes may be very large. Additionally,

the large number of classes2 results in sparse observations, which also affects

the choice of the splitting rule as some approximate methods (e.g., χ2-based)

become inaccurate [41, 113].

• Decision trees for classification are often optimized for minimum size in ad-

dition to minimum error because smaller trees are easier for humans to un-

derstand. While smaller trees are always desirable due to the reductions in

storage and computation, in language modeling, trees tend to be too large

2 Recall that in language modeling the set of classes is the word vocabulary, which often contains
tens of thousand to hundreds of thousand words.

66

(millions of nodes) to be understandable; therefore, language modeling per-

formance is the sole criterion for decision tree induction used in this thesis.

In Chapter 5, however, we describe methods used to reduce storage and com-

putational requirements of the model to make the model practical on existing

computers.

4.3 Stopping and Pruning Rules

Like most supervised machine learning approaches, decision trees have the tendency

to overfit the training data. Stopping and pruning rules are used to prevent the

decision tree from becoming too faithful to the training data. While the purpose of

the stopping and pruning rules is similar, they are applied at different points in the

tree construction algorithm:

• The stopping rule answers the question of whether to split a node at all. The

rule is usually very simple and consists of checking that the training data

associated with the node has a certain minimum number of examples.

• The pruning rule is applied after the best question for the node is chosen

(or alternatively, after the tree is fully grown). Pruning rules usually involve

verifying that the proposed question performs sufficiently well on a heldout

set, independent of the training data.

67

q
1

yesno

q
4

q
3

q
2

yes

yes

yes

yes

no

no

no

no

Figure 4.1: A schematic of a pylon which is the structure used in [2, 50] to construct

multivariate questions from univariate questions q1, q2, q3, and q4.

4.4 Question Selection

All decision tree language models have used binary questions [2, 50, 112] because,

as noted in Section 4.2, splitting on all attribute values results in an n-gram-like

decision tree.

Questions can be univariate, i.e., involving a single attribute, or multivariate.

Multivariate questions are constructed as Boolean combinations of univariate ques-

tions. Although arbitrary Boolean combination is possible, Bahl et al. [2] argue that

it would be impractical from the computational perspective to consider all possible

combinations. They proposed instead a restricted combination called a pylon (Fig-

ure 4.1). Below we describe the types of questions used in prior work on language

modeling:

• Bahl et al. [2] used a large window of words (19 prior words) to construct

multivariate questions in the form of pylons, for which elemental questions are

68

of the form “wi−x ∈ S,” where S is a subset of the vocabulary and x ∈ [1, 19].

The subset S is determined using a greedy iterative algorithm similar to the

Exchange Algorithm (Algorithm 2).

• In his joint model, Heeman [50] views words as an extension of the POS

tag; therefore, the identity of the word wi−x is allowed to be questioned only

when its tag ti−x is fully resolved by previous questions. In order to construct

questions about tags, Heeman [50] first creates a hierarchical classification for

tags in the form of a binary tree, in which each leaf is a tag (see Figure 4.2).

Each tag can be encoded as a binary path from the root to the respective leaf

in that tree, while the inner nodes represent subsets of tags that share the

same prefix of the path. The questions about tags are expressed in the form

prefix(ti−x) = 11001, which essentially means “does the tag ti−x belong to

the set of tags dominated by the node in the tag tree whose path from the

root is 11001?”

• Xu and Jelinek [112] used the Exchange Algorithm (Algorithm 2) to construct

univariate questions about words, but unlike Bahl et al. [2], they did not

combine them into pylons.

Note the key difference between the approaches to question construction taken by

Heeman [50] on the one side and Bahl et al. [2] and Xu and Jelinek [112] on the

other. Heeman constructs questions up front based on the similarity between tags

and words in the entire corpus, while Bahl et al. and Xu and Jelinek create

questions for each individual node based on the training data associated with that

69

Input: Context attribute: x, training data: Dt
k

Output: Split vocabulary of x: S, S

V ocabulary ← {x(ctx) : (ctx, wi, c) ∈ Dt
k}1

(S, S)← random-split(V ocabulary)2

queue1 ← S3

queue2 ← S4

updated(S) ← False5

updated(S) ← False6

entropy ← compute-entropy(S, S, Dt
k)7

repeat8

iteration ← iteration + 19

if queue1 6= ∅ then10

w ← take-first(queue1)11

if entropy > compute-entropy(S − {w}, S + {w}, Dt
k) then12

entropy ← compute-entropy(S − {w}, S + {w}, Dt
k)13

S ← S − {w}14

S ← S + {w}15

updated(S) ← True16

updated(S) ← True17

18

else19

if updated(S) then20

queue1 ← S21

updated(S) ← False22

23

if queue2 6= ∅ then24

w ← take-first(queue2)25

if entropy > compute-entropy(S + {w}, S − {w}, Dt
k) then26

entropy ← compute-entropy(S + {w}, S − {w}, Dt
k)27

S ← S + {w}28

S ← S − {w}29

updated(S) ← True30

updated(S) ← True31

32

else33

if updated(S) then34

queue2 ← S35

updated(S) ← False36

37

38

until (queue1 = ∅ ∧ queue2 = ∅) ∨ iteration = MAX ITERATIONS39

return S, S40

Algorithm 2: Exchange Algorithm used to construct binary questions for
multivalued attributes 70

node. Both approaches have strengths and weaknesses. Creation of questions for

individual nodes takes advantage of the knowledge of the context. Words are often

ambiguous and clustering them together introduces noise and obscures rare uses of

words as we argued in Section 2.3. Answers to the questions that lead to the current

node help to disambiguate the word-uses and thus create a more accurate clustering.

However, only a fraction of the training data is assigned to a node, leading to an

increase of sparsity. Heeman’s approach partially addresses the problem of word-

use ambiguity by considering words with the same surface form but different POS

tags to be different words. This, however, imposes a strong limitation on the tagset

because finer-grained tags would increase the sparsity. Therefore, we choose to use

a mixed approach and construct questions about words and tags differently.

• Questions about words (as well as other attributes, such as morphological

features) are constructed using the Exchange Algorithm (Algorithm 2), similar

to Xu and Jelinek [112]. As we described above, this allows us to benefit from

implicit word-use disambiguation based on the previously asked questions.

• Questions about tags are constructed using Heeman’s method, namely tags

are organized in a binary tree (an example for POS tags is shown in Figure

4.2), individual tags are addressed by their binary paths in that tree, and tag

questions query whether a tag’s path has a certain binary prefix. This form of

question about tags enables an efficient decoding algorithm, which we discuss

in Section 5.1.6.

The Exchange Algorithm [77] is outlined in Algorithm 2, where Dt
k is the training

71

,

``

.

-LRB-
SYM

FW
<s>

:

DT

PRP$

IN

WRB

''

</s>

WP$ WDT
POS

CC

VBZ

NNS

-RRB-

NNPS

LS

NNP

WP

EX

PRP

VBN

JJR

TO

VB

RP
MD

RB

UH

RBS

RBR

VBP

VBD

#

NN

PDT

$

VBG

JJS

CD

JJ

Figure 4.2: Example of a POS tag tree

72

wi−2∈S

Backoff leaf

yes

yesno

no

A

B

wi−2∈S

Figure 4.3: The structure for representing questions constructed using the Exchange

algorithm

data associated with the current node and x denotes the attribute in the form of a

function of context, i.e., when x = wi−1, x(ctx) extracts the value of wi−1 from the

context. Note that the algorithm partitions only the values (words) observed in the

training data Dt
k (line 1). In order to account for the unseen words, it utilizes the

structure depicted in Figure 4.3, where the set S with its complement S comprise

the set of words observed in the training data of the node A. The backoff leaf B is

designated for the contexts with unseen words.

4.5 Splitting Rule

The purpose of the splitting rule is the selection of the decision tree Φ̂ that minimizes

some some metric M:

Φ̂ = arg min
Φ

M(Φ) (4.1)

All prior decision tree language models [2, 112, 50] have used entropy of the training

73

data set as the metric M:

M(Φ) = − 1

C

∑
(ctx,wi,c)∈Dt

c · log p(wi|Φ(ctx)) (4.2)

where C is the total number of events in the training data, and p(wi|Φ(ctx)) is

the maximum likelihood probability, estimated from events observed at the leaf

Φ(ctx) ≡ φk as follows:

p(wi|φk) =

∑
(ctx,w′i,c)∈Dt

k∧w
′
i=wi

c

∑
(ctx,w′i,c)∈Dt

k

c

where Dt
k is the training data associated with the cluster φk: {(ctx, w′i, c) ∈ Dt :

ctx ∈ φk}. We can rewrite Eq. 4.2 in the following form:

M(Φ) =
∑

k:φk∈Φ

− 1

C

∑
(ctx,wi,c)∈Dt

k

c · log p(wi|φk)

 (4.3)

Note that in this representation, the entropy contribution of each leaf φk is computed

independently and therefore, the reduction of global entropy by splitting a leaf can

also be calculated using only the training data associated with that leaf, which is

very convenient computationally. Thus, the reduction of entropy by splitting the

leaf φk into φk′ and φk′′ is as follows:

74

∆M(Φ) = − 1
C

 ∑
(ctx,wi,c)∈Dt

k

c · log p(wi|φk) (4.4)

−
∑

(ctx,wi,c)∈Dt
k′

c · log p(wi|φk′)

−
∑

(ctx,wi,c)∈Dt
k′′

c · log p(wi|φk′′)

Although reduction of entropy on the training data is certainly a desirable goal

(as it tends to create trees that best explain the training corpus), there are some

problems that arise from the properties of entropy. It has been shown [61, 111] that

the reduction of entropy ∆M(Φ) is always non-negative, regardless of how the leaf

φk is split. In practice, it is always positive, barring such cases as Dt
k′ = ∅ or Dt

k′′ = ∅,

or p(wi|φk′) and p(wi|φk′′) being identical. As a result, even arbitrary splits lead to

reductions of entropy, which is counter-intuitive and undesirable because it leads to

overfitting of the decision tree to the training data. Moreover, we observe that this

metric has a bias towards attributes with larger vocabularies, and in Section 4.7, we

will discuss this bias at length and propose a remedy.

4.6 Probability estimation in a DT Language Model

A decision tree partitions training data and, as a result, each leaf contains only a

small number of events, necessitating smoothing of probability estimates. In this

section, we describe the methods that can be used to smooth probability distribu-

tions: smoothing in-tree by exploiting the hierarchy of clusters in the decision tree

and smoothing by combining multiple decision trees into one model.

75

pn '

pn
λn

n'

n

Figure 4.4: Recursive smoothing: p̃n = λnpn + (1− λn)p̃n′

4.6.1 In-tree Interpolation

In order to smooth probability distributions at the leaves of the decision tree, the

following recursive formula can be used:

p̃n(wi) = λnpn(wi) + (1− λn)p̃n′(wi) (4.5)

where n′ is the n-th node’s parent, and pn(wi) is the maximum likelihood distribution

at node n (see Figure 4.4). The root of the tree is interpolated with the distribution

punif (wi) = 1
|V | . To estimate interpolation parameters Λ = {λ1, λ2, . . .}, we use a

variant of Forward-Backward algorithm described in the rest of this section.

Note that since a decision tree is a hierarchical clustering function, a context

ctx belongs to the sequence of clusters that constitutes the path from the root of

the tree to a leaf. Let l(ctx) denote this leaf, and P(ctx) denote the path from

l(ctx) to the root of the tree. Eq. 4.5 can be viewed as a graphical model where,

given that we are at the state (node) n, a transition to the emission state will be

taken with probability λn, and a transition to the next state n′ will be taken with

76

1−λn

λn

1−λn '

λn '

n n'

pn(wi) pn ' (wi)

Figure 4.5: Graphical model representation for in-tree smoothing

probability 1− λn (see Figure 4.5). Hence, αn(ctx), the probability of reaching the

state n ∈ P(ctx), can be defined recursively:

αl(ctx)(ctx) = 1

αn′(ctx) = (1− λn)αn(ctx)

States not on the path P(ctx) cannot be reached, thus:

∀n/∈P(ctx)αn(ctx) ≡ 0

The probability of generating the word wi from the state n is:

PrΛ(wi, n|ctx) = αn(ctx)λnpn(wi)

Let βn(wi|ctx) be the probability of generating wi from the state n or any of its

ancestors:

77

βn(wi|ctx) = λnpn(wi) + (1− λn)βn(wi|ctx)

Note that βl(ctx)(wi|ctx) is the total probability of generating wi given the context

ctx:

βl(ctx)(wi|ctx) =
∑

n∈P(ctx)

PrΛ(wi, n|ctx)

Let PrΛ(n|wi, ctx) be the probability that wi is generated from the state n given

the context ctx:

PrΛ(n|wi, ctx) =
PrΛ(wi, n|ctx)∑

n∈P(ctx) PrΛ(wi, n|ctx)
=
αn(ctx)λnpn(wi)

βl(ctx)(wi|ctx)

The maximization step gives us the following update equation for parameters Λ:

λ′n =

∑
(ctx,wi,c)∈Dh

c · PrΛ(n|wi, ctx)

∑
(ctx,wi,c)∈Dh

c · αn(ctx)βn(wi|ctx)

βl(ctx)(wi|ctx)

(4.6)

where Dh is the heldout dataset.

This method for smoothing probability in a decision tree model using a heldout

set has been utilized by Bahl et al. [2], Magerman [72], and Heeman [50]3. Rather

than setting aside a separate development set for optimizing λn, we chose to use 4-

fold cross validation and calculate the geometric mean of the resulting coefficients4.

We chose this approach because a small development set often does not overlap with

the training set for low-count nodes, leading the EM algorithm to set λn = 0 for

3 Magerman [72] attributes the first publication of this algorithm to J. Lucassen’s doctoral
dissertation in 1983; however, we were unable to find the citation.

4 To avoid a large number of zeros due to the product, we set a minimum for λ to be 10−7.

78

those nodes, and because setting aside a large heldout set just for optimization is a

waste of precious data. We also observed that bucketing of parameters λn, as was

suggested by Magerman [72], did not improve the performance, and therefore, we

chose not to use it.

Since backoff nodes (see Figure 4.3) have no observed events, the distributions

for these nodes can be estimated using their grandparents (node A in Figure 4.3),

or using a lower order model (see Section 4.6.2), or a combination of these methods.

Our preliminary experiments found that none of these methods have a noticeable

benefit over the others in performance, probably because only a small fraction of

probability is estimated from these leaves (i.e., the probability of getting into a

backoff leaf is small). Therefore, we will use the probability of the grandparent

node as the method for estimating the probability of the backoff leaves due to its

simplicity.

4.6.2 Multiple Decision Trees

Although a decision tree model can produce smooth probability estimates using a

single decision tree by utilizing the smoothing method described in Section 4.6.1, ad-

ditional decision trees may be used for more robust probability estimation. Xu [112]

utilizes lower order decision trees (i.e., decision trees that were grown using a re-

duced context) as backoff models5. To interpolate with the lower order model, he

used a discounting technique inspired by KN discounting for n-gram models (dis-

5 Alternatively, an n-gram model could be used in his model for backoff instead of a lower order
decision tree.

79

cussed in Section 2.2.1.3). In addition to interpolation with the lower order model,

he utilized a combination of same order decision tree models (a forest) constructed

using randomization techniques. Assuming that all models in the forest are a priori

equal, he used a simple equally weighted combination of decision tree models:

pforest(wi|wi−1
i−n+1) =

1

M

M∑
m=1

pm(wi|wi−1
i−n+1)

where M is the number of models in the forest and pm is the probability function

of the m-th model in the forest.

Note that these two types of model combinations (the combination with lower

order models and the combination with same order models) are substantially differ-

ent, and Xu [112] utilizes different interpolation methods for these types of combi-

nation; for lower order models he uses a backoff technique borrowed from n-gram

models, while same order decision trees are combined by simple weighting.

Similar to Xu [112], we also utilize lower order decision trees and use an n-gram

model-inspired backoff technique; however, we use linear interpolation (see Eq. 4.7)

similar to Jelinek-Mercer smoothing (see Section 2.2.1.2), because unlike Xu [112],

our individual decision tree models are smoothed as described in Section 4.6.1, thus

count based discounting methods, such as Kneser-Ney, are not applicable.

p̃n(witi|wi−1
i−n+1t

i−1
i−n+1) = λn(φn) · pn(wi|φn) + (4.7)

(1− λn(φn)) · p̃n−1(witi|wi−1
i−n+2t

i−1
i−n+2)

where φn ≡ Φn(wi−1
i−n+1t

i−1
i−n+1) is the cluster in the decision tree Φn of order n, to

80

which the context wi−1
i−n+1t

i−1
i−n+1 belongs, and λn(φn) ∈ [0, 1] are assigned to each

cluster and are optimized on a heldout set using EM. pn(witi|φn) is the probability

distribution at the cluster φn in the tree of order n. In Section 4.8, we will explore

the problem of combining multiple decision tree models in depth.

4.7 Bias in Splitting Rules

As we mentioned in Section 4.5, all prior decision tree language models in the lit-

erature have utilized reduction of entropy (Eq. 4.4) as the metric for the splitting

rule, i.e., the metric that is used to select the best partitioning question of the cur-

rent node among the set of candidate questions. In Section 4.7.1, we show that the

entropy metric has a bias towards attributes with larger vocabularies. To address

this problem, in Section 4.7.2, we propose a two-step splitting rule that allows us to

take advantage of the large body of research on metrics for growing decision trees

for classification; this research has largely been ignored in prior work on decision

tree language modeling. In Section 4.7.3, we evaluate the impact of different metrics

on quality a language model.

4.7.1 Entropy Bias

The hypothesis that entropy is biased towards attributes with larger vocabularies is

based on the following observation. Suppose that we have an attribute x with vo-

cabulary X = {x1, x2, . . . , x|X|} and training data Dt. Now suppose we split a value

xk of the attribute x into two new values xk′ and xk′′ , and distribute observations

81

(xk, wi) between them randomly. We then can apply the Exchange algorithm (Al-

gorithm 2) to partition the vocabulary X into two sets X1 and X2. Two outcomes

are possible:

1. If both xk′ and xk′′ end up in the same set (say X1), the resulting reduction

of entropy (Eq. 4.4) will be the same as if we did not split xk at all;

2. xk′ and xk′′ are in different sets. Note that if this outcome is chosen, it means

that splitting xk into xk′ and xk′′ results in a larger reduction of entropy,

because otherwise the Exchange algorithm would have moved either xk′ or

xk′′ , yielding outcome 1.

Thus, the attribute with split value xk will tend to have larger reduction entropy of

the split and will be preferred, despite having no additional information.

To examine this bias, we have conducted a simple simulation. We first com-

puted counts of events (ti−1, wi) from varying amounts of tagged text (10, 20, and

40 thousand words) from the PTB WSJ [74], where ti−1 is the part-of-speech tag

preceding the word wi. Then we split each distinct POS tag ti−1 into a number of

subtags txi−1, distributing the observed events (ti−1, wi) randomly among the sub-

tags of ti−1. We then applied the Exchange algorithm (Algorithm 2) to obtain a

binary split of the attribute txi−1 and measured the reduction of entropy (Eq. 4.4).

By doing so, we create new context attributes with different vocabulary sizes, but

with exactly the same amount of information about wi; therefore, any significant

increase in entropy reduction indicates a bias that is affected by the vocabulary size.

82

en
tr

o
p

y
re

d
u

ct
io

n
,

b
it

s
en

tr
o

p
y

re
d

u
ct

io
n

,
b

it
s

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.4

0.5

0.6

0.7

0.8

number of sp l i tsnumber of sp l i ts

1 2 4 8 16 32 64 128 256 512 1,024

10,000 samples
20,000 samples
40,000 samples

Figure 4.6: Entropy bias: the Exchange algorithm tends to achieve larger reductions

in entropy for attributes with larger vocabularies (larger number of splits), despite

the fact that the splits are random (i.e., no additional information is introduced by

splitting).

The results of the simulation can be seen in Figure 4.6, where we varied the

number of subtags for each tag (on the x-axis), from 1 to 1024, with 1 meaning

that the original POS tag is used. The plot shows the average entropy reduction

(y-axis) over 1000 experiments with error bars indicating one standard deviation.

Note that as the number of splits increases beyond 32, the reduction in entropy

grows dramatically, which confirms our hypothesis. Thus, if we treat all attributes

equally and select questions solely based on their entropy reduction, there will be a

bias in selection towards the attributes with larger vocabularies.

4.7.2 Attribute Selection Metrics

To address this issue, we propose to view question selection as a two-step process:

(1) selection of an attribute and (2) selection of the best binary split of the attribute.

83

This perspective allows us to analyze attribute selection using contingency tables

where the two random variables are the attribute values x and the word wi. We

also propose to use two different metrics for these steps:

• The first metric uses contingency tables to evaluate attributes rather than

binary splits. This type of metric has been used in decision trees for classifica-

tion, but not for language modeling. The purpose of this metric is to support

a more unbiased selection of the most informative attribute.

• The second metric selects the best binary split of the attribute selected by the

first metric. We will use the reduction in entropy for this metric because the

lowest entropy is a reasonable goal for decision tree induction. Since the bias

has been eliminated (because we compare splits of the same attribute), there

is no reason not to utilize this metric.

Below we describe some of the other metrics used in the literature on decision

trees for classification and discuss how they can be used in language modeling.

4.7.2.1 Time Ordered

Recall that the n-gram model is a k-ary decision tree (Figure 2.1), where the at-

tributes are ordered by the time offset: first wi−1, then wi−2, etc. We can use the

same heuristic for the attribute selection metric, which we call time ordered. Note

that this metric does not distinguish different types of attributes (i.e., questions

about all attributes at the same time offset will be pooled together); therefore, for

the joint model, we will add a variant of this metric that orders attributes by time

84

and type, preferring tags over words to counter the bias due to the larger word

vocabulary.

4.7.2.2 Information Gain (IG)

This metric was initially proposed by Quinlan [88]6.

M = H(wi|x) = −
∑
x,wi

p(x,wi) · log p(wi|x)

= −

 1

C

∑
(x,wi,c)∈Dt

k

c · log

 ∑
(x′,w′i,c

′)∈Dt
k∧x=x′

c′

+ logC

However, later several researchers found that the metric has a strong bias towards

attributes with larger vocabularies [68, 89]. Recall that decision trees for classifi-

cation are k-ary. Quinlan [89] observed that if, from an attribute x with k values

we create the attribute x′ with k + 1 values by splitting one of values of x in two

arbitrarily, then the latter would have a lower or equal H(wi|x) due to non-negative

entropy reduction in Eq. 4.4, and therefore will tend to be preferred, despite the fact

that it has no additional information. The bias can also be demonstrated on the

following example: Suppose we have an attribute x such that it has a random unique

value for each observed pair (x,wi) in the training data. Then the Information Gain

metric will always prefer this attribute because H(wi|x) = 0.

Note that this bias has a different nature from the bias we describe in Sec-

tion 4.7.1: The bias that was observed in [68, 89] was due to the fact that in a k-ary

6 Originally, the metric was H(wi)−H(wi|x), hence the name information gain, but we change
the sign and add a constant H(wi) because, unlike Quinlan, we wish to minimize metrics.

85

decision tree, an attribute with a larger vocabulary gets split into more branches,

while we showed that even when all attributes are split into the same number of

branches, there is a bias towards attributes with larger vocabularies because the

ability of the partitioning algorithm to better (over)fit the observed data tends to

increase with the size of the attribute vocabulary. We will not use Information

Gain in our experiments since its similarity to the entropy reduction metric makes

it redundant.

4.7.2.3 Information Gain Ratio (IGR)

In order to mitigate the bias towards attributes with larger vocabularies, Quin-

lan [89] proposed to use information gain relative to the information of the attribute:

M = 1− H(wi)−H(wi|x)

H(x)
= 1− I(x;wi)

H(x)

Attributes x with larger vocabularies tend to have higher entropy H(x), thus this

corrects the bias. We refer to this metric as Information Gain Ratio (IGR).

4.7.2.4 Distance-based Metric

A distance-based metric was proposed by de Mántaras [31].

M =
H(wi|x) +H(x|wi)

H(wi, x)

Unlike the metrics discussed above, this metric satisfies the mathematical properties

of a distance metric, namely:

86

order n-gram entropy time distance IGR

3 250.2 246.4 246.7 251.1 245.5

4 234.8 237.2 235.5 245.8 234.0

Table 4.1: Word-tree model: Perplexity on the RT04 dataset

1. M(x, y) ≥ 0 and M(x, y) = 0 iff x = y

2. M(x, y) =M(y, x)

3. M(x, y) +M(y, z) ≥M(x, z)

However, it is unclear why properties such as symmetry or triangular inequality

would be important for the task of question selection. Since we only measure the

distance from an attribute x to wi, and never between two attributes or from wi to

an attribute, we are not interested in the isotropy of the space. Note however that

the metric was shown not to have the bias of the Information Gain metric.

4.7.3 Evaluation of Attribute Selection Metrics

To evaluate the impact of the proposed two-step splitting rule (as discussed in

Section 4.7.2) on the performance of language models, we trained several different

models (both joint syntactic and word-tree) using the metrics described in Section

4.7.2. The experiments were conducted on the Hub4 corpus (see Section 3.1). For

joint syntactic models, we used the parent tagset (Section 2.4.2.3) containing 1,429

distinct tags.

In Table 4.1, we present the perplexity of the word-tree models using entropy,

87

order n-gram entropy time time-type distance IGR

3 250.2 239.0 239.2 235.8 240.2 233.5

4 234.8 233.1 229.6 224.0 236.5 224.3

Table 4.2: Joint model: Perplexity on the RT04 dataset

time, distance, and IGR metrics on the RT04 test set, along with standard n-gram

models. The entropy column refers to the method currently used by all decision

tree language models: questions are selected solely based on the entropy reduc-

tion, regardless of the attribute. When we use trigram context, all metrics perform

comparably7 and slightly better than the state-of-the-art n-gram model. Indeed,

the trigram model has only two attributes: wi−1 and wi−2, with wi−1 being by far

more informative about wi. It would require a really bad metric to pick the wrong

attribute. When we increase the size of the context, the differences between the

metrics become more pronounced, with the IGR metric being the only one with

perplexity lower than the n-gram model’s, although by a small margin. The entropy

metric begins to suffer from the bias described in Section 4.7.2 and has 2% higher

perplexity than the IGR metric. Although, in the word-tree model the differences

between different metrics are small, they become more evident in a model with

different types of attributes, such as the joint syntactic model.

We present perplexity results for the joint syntactic model in Table 4.2. The

metrics time and time-type are both heuristic, and the only difference between

them is that time-type explicitly favors tags over words, while time relies on entropy

7 The exception is the distance metric, which despite its mathematical beauty, performed poorly
in all experiments.

88

reduction (Eq. 4.4) to select questions about words or tags at the same time offset.

The bias that we described in Section 4.7.1 causes the time, as well as entropy,

metrics to perform more poorly than the time-type metric. IGR performs similarly

to time-type in this experiment. Note that, although we were able to develop a

simple heuristic metric (time-type) that performed well, this may not be easy to

do when more attributes are added, e.g., word suffix; therefore, Information Gain

Ratio (IGR) is a more appealing metric, and so we will use it in all subsequent

experiments.

4.8 Interpolation of Multiple Decision Trees

In Section 2.2.1, we described methods used for smoothing n-gram models by backing

off to lower order models. All those methods can be described by the following

generic formula:

p̃(wi|wi−1
i−n+1) = ρ(wi|wi−1

i−n+1) + (4.8)

γ(wi−1
i−n+1) · p̃(wi|wi−1

i−n+2)

where ρ is a discounted probability and γ(wi−1
i−n+1) is chosen to normalize the distribu-

tion. In n-gram models, the lower order model is a necessity because the discounted

distribution ρ is not smooth (all words wi that were not seen after the context wi−1
i−n+1

in the training data would have zero probability). However, even in models where

ρ is smooth (such as a decision tree model estimated as described in Section 4.6.1),

89

interpolation is beneficial because the lower order model adds robustness8. In the

remainder of this section, we argue that, although superficially similar to n-gram

models, interpolation of decision tree models, unlike n-gram models, does not sat-

isfy a fundamental backoff property (formulated in Section 4.8.1) because of the

differences in context clustering utilized by n-gram models and decision trees (see

Sections 2.3.1 and 2.3.3); and therefore, interpolation of decision trees necessitates

a different approach to be effective. In Section 4.8.2, we propose a generalization of

the Jelinek-Mercer interpolation method for decision tree models and evaluate its

effectiveness in Section 4.8.3. We then discuss and evaluate methods for selection

of decision trees for combining in a forest model in Section 4.8.4.

4.8.1 Backoff Property

Let us rewrite the interpolation in Eq. 4.8 in a more generic way:

p̃(wi|wi−1
1) = ρn(wi|Φn(wi−1

1)) + (4.9)

γ(Φn(wi−1
1)) · p̃(wi|BOn−1(wi−1

1))

where ρn is a discounted distribution, Φn is a clustering function of order n, and

γ(Φn(wi−1
1)) is the backoff weight chosen to normalize the distribution. BOn−1 is

the backoff clustering function of order n−1, representing a reduction of the context

size. In the case of an n-gram model, Φn(wi−1
1) is the set of word sequences where

the last n − 1 words are wi−1
i−n+1, similarly, BOn−1(wi−1

1) is the set of sequences

8 Reduced context implies less sparse and therefore more reliable estimation.

90

Φn

BOn−1 Contexts from the same Φ
n

belong to different BO
n-1

(a) Backoff Property satisfied (b) Backoff Property violated

context space context space

Figure 4.7: Backoff Property (Eq. 4.10)

ending with wi−1
i−n+2. In the case of a decision tree model, the same backoff function

is typically used; however, the clustering function can be arbitrary.

The intuition behind Eq. 4.9 is that the backoff context BOn−1(wi−1
1) allows for

more robust (but less informed) probability estimation than the higher order context

cluster Φn(wi−1
1). More precisely, any two sequences (W = wi−1

1 and W ′ = w′i−1
1)

that belong to one cluster in Φn must belong to the same backoff cluster BOn−1:

∀W,W ′ : W ′ ∈ Φn(W)⇒ W ′ ∈ BOn−1(W) (4.10)

thus, the sequences W and W ′ (and by extension all sequences in Φn(W)) have

the same backoff distribution (Figure 4.7 (a)). For n-gram models, Property 4.10

trivially holds since BOn−1(wi−1
1) and Φn(wi−1

1) are defined as sets of sequences

ending with wi−1
i−n+2 and wi−1

i−n+1, respectively, with the former clearly being a superset

of the latter. However, when Φ can be arbitrary, e.g., a decision tree, that is not

91

necessarily so.

Let us consider what happens when we have two context sequences W and

W ′ that belong to the same cluster Φn(W) = Φn(W ′) but different backoff clusters

BOn−1(W) 6= BOn−1(W ′) (Figure 4.7 (b)). For example, suppose we have a higher

order cluster Φ′ = Φ(wi−2 ∈ {on}, wi−1 ∈ {may,june}) and two corresponding back-

off clusters: BO′ = BO(wi−1 ∈ {may}) and BO′′ = BO(wi−1 ∈ {june}). Following

on, the word may is likely to be a month rather than a modal verb, although the

latter is more frequent and will dominate in BO′. Therefore, as the backoff for Φ′,

we have much less faith in p̃(wi|BO′) than in p̃(wi|BO′′) and would like a much

smaller weight γ assigned to BO′, but it is not possible in the backoff scheme in

Eq. 4.9, because the backoff weight γ depends only on the higher order cluster Φ′;

thus, we will have to settle on a compromise value of γ, resulting in suboptimal

performance.

We would expect this effect to be more pronounced in higher order models

because violations of Property 4.10 are less frequent in lower order models. Indeed,

in a 2-gram model, the property is never violated since its backoff, the unigram,

contains the entire context in one cluster. The 3-gram example above, Φ(wi−2 ∈

{on}, wi−1 ∈ {may,june}), although illustrative, is not likely to occur because may in

wi−1 position will likely be split from june very early on since it is very informative

about the following word. However, in a 4-gram model, Φ(wi−3 ∈ {on}, wi−2 ∈

{may,june}, wi−1 ∈ {<unk>}) is quite plausible.

Arbitrary clustering (an advantage of decision trees) leads to violation of Prop-

erty 4.10, which, we argue, may lead to a degradation of performance if backoff

92

interpolation Eq. 4.9 is used. In the next section, we generalize the interpolation

scheme which, as we show in Section 4.8.3, allows us to find a better solution in the

face of the violation of Property 4.10.

4.8.2 Linear Interpolation

As we mentioned in Section 4.6.2, we utilize linear interpolation as the baseline in

our experiment in Section 4.8.3, represented recursively in Eq. 4.7, shown below:

p̃n(wi|ctx) = λn(φn) · pn(wi|φn) +

(1− λn(φn)) · p̃n−1(wi|ctx)

where φn ≡ Φn(ctx), and λn(φn) ∈ [0, 1] are assigned to each cluster and are opti-

mized on a heldout set using EM as was discussed in Section 4.6.2. pn(wi|φn) is the

probability distribution at the cluster φn in the tree of order n.

4.8.2.1 Generalized Linear Interpolation

We can unwind the recursion in Eq. 4.7 and make substitutions:

λn(φn) → λ̂n(φn)

(1− λn(φn)) · λn−1(φn−1) → λ̂n−1(φn−1)

...

93

p̃n(wi|ctx) =
n∑

m=1

λ̂m(φm) · pm(wi|φm) (4.11)

n∑
m=1

λ̂m(φm) = 1

Ideally we should be able to assign a different set of interpolation weights for every

eligible combination of clusters φn, φn−1, . . . , φ1. However, not only is the number

of such combinations extremely large, but many of them will not be observed in the

training data, making parameter estimation cumbersome. Therefore, we propose

the following parameterization for the interpolation of decision tree models:

p̃n(wi|ctx) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(4.12)

Note that this parameterization has the same number of parameters as in Eq. 4.11

(one per cluster in every tree), but it has more degrees of freedom because the

parameters are not constrained to sum to 1, hence the denominator.

In Eq. 4.12, there is no explicit distinction between higher order and backoff

models. Indeed, it acknowledges that lower order models are not backoff models

when Property 4.10 is not satisfied. However, it can be shown that Eq. 4.12 reduces

to Eq. 4.7 if Property 4.10 holds.

Before we proceed to the proof of this statement, let us note that a cluster φm

has two meanings: On the one hand, it is a node in the m-th decision tree, and on

the other hand, it represents a set of contexts that belong this cluster. Given the

latter meaning, φm can be used outside the scope of the m-th decision tree. Thus,

for some function Ψ with a domain in the context space C and some set φm ⊂ C,

94

Ψ(φm) is defined as follows:

∀c,c′∈φm Ψ(c) = Ψ(c′) ≡ Ψ(φm) (4.13)

i.e., the function Ψ has a constant value on the set φm, and that value is denoted

Ψ(φm).

Using this notation we will prove by construction that, given a set of decision

trees {Φ1, . . . ,Φn}, for any model represented by Eq. 4.12:

p̃n(wi|ctx) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
, where φm ≡ Φm(ctx),

that if Property 4.10 holds (i.e., Φm−1 is a backoff decision tree for Φm, m = 2, . . . , n),

then:

1. p̃n(wi|ctx) = p̃n(wi|φn), using definition 4.13,

i.e., ∀ctx,ctx′∈φn p̃n(wi|ctx) = p̃n(wi|ctx′)

2. There exists a set of parameters λ̂ such that:

∀φn : p̂n(wi|φn) = p̃n(wi|φn)

where

p̂n(wi|φn) =

λ̂n(φn) · pn(wi|φn) + (1− λ̂n(φn)) · p̂n−1(wi|φn−1) if n > 1

p1(wi|φ1) if n = 1

(4.7)

95

and

λ̂m ∈ [0, 1], m = 1 . . . n

That is, if Property 4.10 holds, for any model utilizing the proposed interpolation

method (Eq. 4.12) of individual decision trees p1, . . . , pn, there exists an equivalent

model utilizing the recursive interpolation (Eq. 4.7) of the same individual decision

tree models p1, . . . , pn. Therefore, the proposed interpolation of Eq. 4.12 can be

thought of as a generalization of the recursive linear interpolation that naturally

extends to the case when Property 4.10 does not hold.

Proposition 1 (p̃n(wi|ctx) = p̃n(wi|φn)) trivially holds by the definition of

p̃n(wi|ctx):

p̃n(wi|ctx) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(4.12)

and because Property 4.10 implies that φn ⊂ φn−1 ⊂ . . . ⊂ φ1.

Suppose that we have the parameterization of Eq. 4.12 and that Property 4.10

holds. Let us transform this parameterization into Eq. 4.7:

p̂n(wi|φn) =

λ̂n(φn) · pn(wi|φn) + (1− λ̂n(φn)) · p̂n−1(wi|φn−1) if n > 1

p1(wi|φ1) if n = 1

(4.7)

by induction. Let us first define a partial model p̃m(wi|ctx) as follows:

p̃m(wi|ctx) =

∑m
k=1 λk(φk) · pk(wi|φk)∑m

k=1 λk(φk)

96

Note that p̃m(wi|ctx) = p̃m(wi|φm) for all m = 1 . . . n because φm ⊂ φm−1 ⊂ . . . ⊂

φ1.

For the induction base case, the lowest order distribution p1 is not interpolated

with anything, hence:

p̃1(wi|φ1) ≡ λ1p1(wi|φ1)

λ1

= p1(wi|φ1)

= p̂1(wi|φ1)

Now the induction step. Suppose that the distribution p̃m−1(wi|ctx) can be repre-

sented recursively as p̂m−1(wi|φm−1):

p̃m−1(wi|ctx) ≡
∑m−1

k=1 λk(φk) · pk(wi|φk)∑m−1
k=1 λk(φk)

= p̂m−1(wi|φm−1)

We need to show that ∃λ̂m(φm) ∈ [0, 1], s.t.:

p̃m(wi|ctx) ≡
∑m

k=1 λk(φk) · pk(wi|φk)∑m
k=1 λk(φk)

= λ̂m(φm) · pm(wi|φm) + (1− λ̂m(φm)) · p̂m−1(wi|φm−1)

= p̂m(wi|φm)

We use the following transformations:

97

p̃m(wi|ctx) =

= p̃m(wi|φm)

=

∑m
k=1 λk(φk) · pk(wi|φk)∑m

k=1 λk(φk)

=
1∑m

k=1 λk(φk)

(
λm(φm) · pm(wi|φm) +

m−1∑
k=1

λk(φk) · pk(wi|φk)

)

=
1∑m

k=1 λk(φk)

(
λm(φm) · pm(wi|φm) + (

m−1∑
k=1

λk(φk)) ·
∑m−1

k=1 λk(φk) · pk(wi|φk)∑m−1
k=1 λk(φk)

)

=
1∑m

k=1 λk(φk)

(
λm(φm) · pm(wi|φm) + (

m−1∑
k=1

λk(φk)) · p̃m−1(wi|φm−1)

)
using the induction assumption p̂m−1(wi|φm−1) = p̃m−1(wi|φm−1), we have:

=
1∑m

k=1 λk(φk)

(
λm(φm) · pm(wi|φm) + (

m−1∑
k=1

λk(φk)) · p̂m−1(wi|φm−1)

)

=
λm(φm)∑m
k=1 λk(φk)

· pm(wi|φm) +

∑m−1
k=1 λk(φk)∑m
k=1 λk(φk)

· p̂m−1(wi|φm−1)

=
λm(φm)∑m
k=1 λk(φk)

· pm(wi|φm) + (1− λm(φm)∑m
k=1 λk(φk)

) · p̂m−1(wi|φm−1)

substituting λ̂m(φm) ≡ λm(φm)∑m
k=1 λk(φk)

, we get:

= λ̂m(φm) · pm(wi|φm) + (1− λ̂m(φm)) · p̂m−1(wi|φm−1)

= p̂m(wi|φm)

Additionally, since λm(φm) > 0 for m = 1 . . . n:

λ̂m(φm) =
λm(φm)∑m
k=1 λk(φk)

∈ [0, 1]

After n iterations, we have:

p̃n(wi|ctx) = p̂n(wi|φn)

98

Thus, we have constructed p̃n(wi|φn) using the same recursive representation as in

Eq. 4.7, proving that the standard linear interpolation is a special case of the new

interpolation scheme, which occurs when the backoff Property 4.10 holds.

The denominator
∑n

m=1 λm(φm) in Eq. 4.12 makes it difficult to use an EM

approach9 for estimating the parameters λ; therefore, we use L-BFGS-B method [14]

for optimization. In this method, we maximize the log likelihood (LL) of a heldout

dataset:

LL =
∑

(wi,ctx,c)∈Dh

c · log p̃n(wi|ctx)

where Dh is the heldout dataset and p̃n is defined in Eq. 4.12. L-BFGS-B requires

the gradient of this function:

∂LL

∂λm(φm)
=

1

C
·

∑
(wi,ctx,c)∈Dh∧ctx∈φm

c · 1∑n
m=1 λm(φm)

·
(
pm(wi|φm)

p̃n(wi|ctx)
− 1

)
(4.14)

where C is the total number of events in Dh. Since parameters λm(φm) can be

interpreted as the confidence in the cluster φm of the model m, we choose the

bounded version of the algorithm with the boundary ∀m,φm λm(φm) > 0.

4.8.3 Perplexity Evaluation: Recursive vs. Generalized Interpolation

In Table 4.3, we compare the effectiveness of recursive interpolation (Eq. 4.7) and the

proposed generalized interpolation (Eq. 4.12) by calculating the perplexity of PTB

9 In the maximization step of an EM approach, we need to maximize the auxiliary function
Q(λ′|λ), which is a lower bound for the change in log likelihood (see [7]). The denominator in
Eq. 4.12 makes it difficult to construct an auxiliary function that can be maximized analytically.

99

Model 2-gram 3-gram 4-gram

n-gram
Jelinek-Mercer 270.2 186.5 (31.0%) 177.1 (5.0%)

Mod KN 261.0 174.3 (33.2%) 161.7 (7.2%)

DT: Eq. 4.7 (baseline)
word-tree 257.8 168.7 (34.6%) 164.0 (2.8%)

joint 214.3 156.8 (26.8%) 156.5 (0.2%)

DT: Eq. 4.12 (generalized)
word-tree 258.1 168.4 (34.8%) 155.7 (7.5%)

joint 214.6 155.3 (27.6%) 147.1 (5.3%)

Table 4.3: Perplexity results on PTB WSJ section 23. Percentage numbers in

parentheses denote the reduction of perplexity relative to the lower order model of

the same type.

WSJ Section 23 using WSJ ’94-’96 corpus as the training data (see Section 3.2).

We used the same decision trees for both interpolation methods to ensure that

no other factors affect the measurement. For reference, we include the standard

n-gram models using Jelinek-Mercer and Modified KN smoothing techniques. As

expected, the benefit of the new interpolation becomes apparent at the 4-gram order,

when Property 4.10 is most frequently violated. Note that both word-tree and joint

syntactic models benefit from the generalized approach.

In order to evaluate how the generalized interpolation interacts with the im-

provements in the tree induction algorithm proposed in Section 4.7.2, we compare

decision tree models that utilize various attribute selection metrics and different

interpolation methods: recursive interpolation (this method was used for the mod-

els presented in Tables 4.1 and 4.2) and the generalized interpolation (the results

for this method are presented in Tables 4.4 and 4.5). Note that the improvements

100

order n-gram entropy time distance IGR

3 250.2 246.5 (0.0%) 247.6 (0.4%) 247.6 (-1.4%) 244.5 (-0.4%)

4 234.8 228.8 (-3.5%) 230.2 (-2.3%) 234.3 (-4.7%) 227.3 (-2.9%)

Table 4.4: Word-tree model with generalized interpolation: Perplexity on the RT04

dataset. The numbers in parentheses show the change in perplexity relative to the

respective models using the baseline interpolation method in Table 4.1.

order n-gram entropy time time-type distance IGR

3 250.2 240.4 (0.6%) 241.3 (0.9%) 234.6 (-0.5%) 236.8 (-1.4%) 231.0 (-1.1%)

4 234.8 225.4 (-3.3%) 225.2 (-1.9%) 220.5 (-1.6%) 225.3 (-4.7%) 216.8 (-3.3%)

Table 4.5: Joint syntactic model with generalized interpolation: Perplexity on the

RT04 dataset. The numbers in parentheses show the change in perplexity relative

to the respective models using the baseline interpolation method in Table 4.2.

from utilizing a better metric and a better interpolation method are additive. Also

note that metrics time and time-type have smaller reductions in perplexity than

the other metrics. Recall that these metrics always select attributes by the time

offset, nearest first (see Section 4.7.2.1). Thus, these metrics tend to create decision

trees that have time-based hierarchy, similar to n-gram models; and therefore, the

decision trees produced by these metrics are less prone to violate Property 4.10.

4.8.4 Selection of Decision Trees for Forest Modeling

Note that in Eq. 4.12 individual trees do not have explicit higher-lower order rela-

tions and are treated as a collection of trees, i.e., as a forest. Naturally, to benefit

from the forest model, the component trees must differ in some way. Different

101

trees can be created based on differences in the training data, differences in the tree

growing algorithm, or some non-determinism in the way the trees are constructed.

Xu [111] used randomization techniques to produce a large forest of decision

trees that were combined as follows:

p(wi|wi−1
i−n+1) =

1

M

M∑
m=1

pm(wi|wi−1
i−n+1) (4.15)

where M is the number of decision trees in the forest (Xu proposed M = 100)

and pm is the m-th tree model10. Note that this type of interpolation assumes that

each tree model is “equal” a priori and therefore is only appropriate when the tree

models are grown in the same way (particularly, using the same order of context).

The generalized interpolation (Eq. 4.12) proposed in Section 4.8.2.1 not only assigns

weights to models but conditions the weights on the context, and is therefore more

suitable for combination of significantly different models. Note that Eq. 4.15 is a

special case of Eq. 4.12 when all parameters λ are equal.

Xu [111] showed that, although each individual tree is a fairly weak model,

their combination outperforms the n-gram baseline substantially. However, we find

this approach impractical for online application of any sizable model. In our experi-

ments, fourgram trees have approximately 1.8 million leaves, and the tree structure

itself (without probabilities) occupies nearly 200MB of disk space after compression.

It would be infeasible to apply a model consisting of more than a handful of such

trees without distributed computing of some sort. Therefore, we pose the following

question: If we can afford to have only a handful of trees in the model, what is the

10 Note that Xu [111] used lower order models to estimate pm.

102

best approach for constructing those trees?

In the remainder of this section, we will discuss and evaluate different ways of

building decision tree forests for language modeling and also compare combination

methods of Eq. 4.12 and Eq. 4.15 (when Eq. 4.15 is applicable). As in Section 4.8.3,

we evaluate different combinations by comparing the perplexity results on PTB

WSJ Section 23 using WSJ ’94-’96 setup (described in Section 3.2). Additionally, in

order to ensure significance of our findings, we evaluate some of the best performing

models on the WSJ rescoring task (described in Section 3.2).

4.8.4.1 Methods of Constructing a Random Forest

Xu [111] evaluated a variety of randomization techniques that can be used to build

trees. He used a word-only model, with questions constructed using the Exchange

algorithm (Algorithm 2), similar to our model. He investigated two methods of

randomization: selecting the positions in the history for question construction by a

Bernoulli trial11, and random initialization of the Exchange algorithm. He evaluated

the performance of his random forest model with different values for the Bernoulli

trial parameter r (between 0.01 and 0.99) and found that when the Exchange algo-

rithm was initialized randomly, the Bernoulli trial parameter did not matter; how-

ever, when the Exchange algorithm was initialized deterministically; lower values for

the Bernoulli trial parameter r yielded better overall forest performance. We im-

plemented a similar method, namely, initializing the Exchange algorithm randomly

11 In this method, positions in the history are ignored with probability 1 − r, where r is the
Bernoulli trial parameter.

103

and using r = 0.1 for Bernoulli trials12. Note however that Xu [111] utilized a differ-

ent smoothing method: The distribution at a leaf was computed by discounting the

maximum likelihood distribution using a method similar to Kneser-Ney discount-

ing for n-gram models and interpolating the discounted distribution with either a

lower order decision tree model or an n-gram model, while we used the recursive

interpolation method described in Section 4.6.1 to compute smooth distributions at

leaves.

There is a key difference between the two randomization methods. Since there

is no a priori preference for choosing initializations for the Exchange algorithm,

by using random initializations it is hoped that due to the greedy nature of the

algorithm, the constructed trees, while being “undegraded,”13 will be sufficiently

different so that their combination improves over an individual tree. By introduc-

ing Bernoulli trials, on the other hand, there is a choice to purposely degrade the

quality of individual trees in the hope that additional diversity would enable their

combination to compensate for the loss of quality in individual trees. Another way

of introducing randomness to the tree construction without apparent degradation

of individual tree quality is by varying the data, e.g., using different folds of the

training data (see Section 4.1).

Let us take a closer look at the effect of different types of randomization on

individual trees and their combinations. In the first set of experiments, we compare

12 Note that because in the joint model, the question about tags are deterministic, we use a
lower value of r than Xu [111] to increase randomness.

13 Here and henceforth, by “undegraded” we mean “according to the algorithm described in
Section 4.1.”

104

the performance of a single undegraded fourgram tree14 with forests of fourgram trees

grown randomly with Bernoulli trials. Having only same-order trees in a forest allows

us to apply the interpolation of Eq. 4.15 (used by Xu [111]) and compare it with

the generalized interpolation method presented in Eq. 4.12. By comparing forests

of different sizes with the baseline from Table 4.3, we are also able to evaluate the

effect of randomization in decision tree growing and assess the importance of the

lower order trees.

The results are shown in Table 4.6. Note that, while an undegraded joint

syntactic tree is better than the word tree, the situation is reversed when the trees

are grown randomly. This can be explained by the fact that the joint model has

a much higher dimensionality of the context space, and therefore is much more

sensitive to the clustering method.

As we increase the number of random trees in the forest, the perplexity de-

creases as expected, with the interpolation method of Eq. 4.12 showing an improve-

ment of a few percentage points over Eq. 4.15. Note that in the case of the word-tree

model, it takes four random decision trees to reach the performance of a single unde-

graded tree, while in the joint syntactic model, even the forest of five trees is worse

than a single decision tree constructed without randomization. Finally, compare the

performance of single undegraded fourgram trees in Table 4.6 with the baseline four-

gram models, which are constructed with lower order trees: both word-tree and joint

models in Table 4.3 have over 20% lower perplexity compared to the corresponding

14 Since each tree has a smooth distribution based on Eq. 4.5, lower order trees are not strictly
required.

105

word-tree joint

Eq. 4.15 Eq. 4.12 Eq. 4.15 Eq. 4.12

1 × undgr 204.9 189.1

1 × rnd 250.2 289.9

2 × rnd 229.5 221.5 244.6 240.9

3 × rnd 227.5 214.5 226.2 220.0

4 × rnd 219.5 205.0 219.5 212.2

5 × rnd 200.9 184.1 216.5 209.0

baseline N/A 155.7 N/A 147.1

Table 4.6: Perplexity numbers obtained using fourgram trees only. Note that

“undgr” and “rnd” denote undegraded and randomly grown trees with Bernoulli

trials, respectively, and the number indicates the number of trees in the forest.

“Baseline” refers to the fourgram models with lower order trees (from Table 4.3,

Eq. 4.12).

models consisting of a single fourgram tree.

In Table 4.7, we evaluate forests of fourgram trees produced using randomiza-

tions without degrading the tree construction algorithm. That is, we use random

initializations of the Exchange algorithm and, additionally, variations in the training

data folding. All forests in this table use the interpolation method of Eq. 4.12. Note

that, while these perplexity numbers are substantially better than trees produced

with Bernoulli trials in Table 4.6, they are still significantly worse than the baseline

model from Table 4.3.

These results suggest that, while it is beneficial to combine different deci-

106

word-tree joint

trees Exchange +data Exchange +data

1 204.9 189.1

2 185.9 186.5 174.5 173.7

3 179.5 179.9 168.8 167.2

4 176.2 176.4 165.1 164.0

5 173.7 172.0 163.0 162.0

baseline 155.7 147.1

Table 4.7: Perplexity numbers obtained using fourgram trees using random initial-

ization of the Exchange algorithm and, additionally, variations in training data folds

(+data columns). “Baseline” refers to the fourgram models with lower order trees

(from Table 4.3). All models use the interpolation method of Eq. 4.12.

sion trees, we should introduce differences to the tree construction process without

degrading the trees when introducing randomness, especially for joint models. In

addition, lower order trees seem to play an important role for high quality model

combination.

4.8.4.2 Context-Restricted Forest

As we have mentioned above, a forest with a combination of higher and lower order

decision trees produces much better results than a forest with same-order trees. A

lower order decision tree is grown from a lower order context space, i.e., the context

space where we purposely ignore some attributes. Note that in this case, rather

107

than randomly ignoring contexts via Bernoulli trials at every node in the decision

tree, we discard some context attributes upfront in a principled manner (i.e., most

distant context) and then grow the decision tree without degradation. Since the

joint model, having more context attributes, affords a larger variety of different

contexts, we use this model in the remaining experiments.

In Table 4.8, we present the perplexity numbers for our standard model with

additional trees. We denote context-restricted trees by their Markovian orders

(words w and tags t independently), so 3w2t indicates a decision tree implementing

the probability function: p(witi|wi−1wi−2ti−1). The fourgram joint model presented

in Table 4.3 has four trees and is labeled with the formula “1w1t + 2w2t + 3w3t +

4w4t” in Table 4.8. The randomly grown trees (denoted “bernoulli-rnd”) are grown

utilizing the full context 4w4t using the methods described in Section 4.8.4.1. All

models utilize the generalized interpolation method described in Section 4.8.2.1.

As can be seen in Table 4.8, adding undegraded trees consistently improves the

performance of an already strong baseline, while adding random trees only increases

the perplexity because their quality is worse than undegraded trees’. Trees produced

by data randomization (denoted “data-rnd”) also improve the performance of the

model; however, the improvement is not greater than from addition of lower order

trees, which are considerably smaller in size.

In Table 4.9, we present WER results along with the corresponding perplexity

numbers from Tables 4.3 and 4.8. The interpolation method of Eq. 4.12 substantially

improves performance over the interpolation of Eq. 4.7, reducing WER by 0.25%

absolute (p < 10−5). Adding four trees utilizing context restricted in different ways

108

Model size PPL

1w1t + 2w2t + 3w3t + 4w4t (*) 294MB 147.1

(*) + 4w3t + 3w2t 579MB 143.5

(*) + 4w3t + 3w4t 587MB 144.9

(*) + 4w3t + 3w4t + 3w2t + 2w3t 699MB 140.7

(*) + 1 × bernoulli-rnd 464MB 149.7

(*) + 2 × bernoulli-rnd 632MB 150.4

(*) + 3 × bernoulli-rnd 804MB 151.1

(*) + 1 × data-rnd 484MB 147.0

(*) + 2 × data-rnd 673MB 145.0

(*) + 3 × data-rnd 864MB 145.2

Table 4.8: Perplexity results using the standard joint syntactic model with addi-

tional trees. “Bernoulli-rnd” and “data-rnd” indicate fourgram trees randomized

using Bernoulli trials and varying training data, respectively. The second column

shows the combined size of decision trees in the forest.

further reduces WER by 0.12%, which is also a statistically significant (p < 0.025)

improvement over the baseline models labeled (*). Altogether, the improvements

over the n-gram baseline add up to 0.61% absolute (8% relative) WER reduction.

4.9 Contributions

• In Section 4.7, we have discovered a bias towards attributes with larger vocab-

ulary in the splitting rule used in prior decision tree-based language models.

In order to address this problem, we have introduced a novel two-step splitting

109

Model PPL WER

n-gram 161.7 7.81%

1w1t + 2w2t + 3w3t + 4w4t (Eq. 4.7) 156.5 7.57%

1w1t + 2w2t + 3w3t + 4w4t (*) 147.1 7.32%

(*) + 4w3t + 3w4t + 3w2t + 2w3t 140.7 7.20%

Table 4.9: Perplexity and WER results. Note that the last two rows are joint

syntactic models using the interpolation method of Eq. 4.12.

rule and have demonstrated its efficiency.

• In Section 4.8.1, we have observed that in the backoff interpolation scheme,

there is an implied relation between context clustering in the higher- and the

lower-order models. We have formulated this relation as the Backoff Property

and have pointed out that this property is not typically satisfied in decision

tree-based models, resulting in a poor performance of backoff interpolation

methods in such models.

• We have proposed a generalization of linear interpolation for the models where

the Backoff Property is not satisfied in Section 4.8.2; and we have demon-

strated that the proposed generalized interpolation method significantly out-

performs the previously used interpolation method in Section 4.8.3.

• In Section 4.8.4, we have investigated a number of techniques for construction

of small forests of decision trees. We have found that the combinations of

decision trees constructed using context restricted in different ways yield sig-

nificantly better results than the combinations of trees in which the variability

110

is introduced by Bernoulli trials or by varying inherently arbitrary parameters,

such as initialization of greedy algorithms.

4.10 Summary

In this chapter, we have described various aspects of the decision tree construc-

tion process, which in the past was primarily investigated from the perspective of

classification task. We have outlined the major differences between the tasks of

classification and language modeling, and we have pointed out how these differences

affect decision tree construction. We have reviewed prior approaches to decision

tree language modeling and have observed that they suffer from bias in the tree in-

duction. We have proposed to address the bias by utilizing methods that had been

investigated in the literature on decision trees for classification, and our evaluations

have demonstrated that the proposed method for correcting the bias consistently

results in reduced perplexity of the language model.

We have also shown that combinations of higher- and lower-order decision tree

models require approaches different from the methods developed for n-gram models,

because the context clustering of decision tree-based models results in a violation of

the backoff Property 4.10, upon which the n-gram model interpolation methods were

implicitly built. We have proposed a generalization of linear interpolation suitable

for decision tree models and have demonstrated its effectiveness. Additionally, we

have evaluated a variety of techniques for induction of forests of decision trees that

are effective without requiring a very large number of trees. We have concluded

111

that restricting context for decision tree induction in different ways produces better

forests than randomization techniques.

112

Chapter 5

Making a Syntactic Decision Tree-based LM Tractable

The complexity of the joint syntactic model described in the previous chapter poses

a number of engineering problems that must be addressed for the model to be able

to utilize practically useful amounts of data and vocabularies. In Section 5.1, we

describe the algorithms and data structures that are crucial for scalability of the

model. In Section 5.2, we introduce and evaluate an n-gram approximation of the

syntactic model. This approximation extends the applicability of the model to on-

line applications, such as machine translation, and has enabled us to integrate our

model into the CDEC decoder [36] for an experiment reported in Chapter 6.

5.1 Computational Considerations

Large-scale modeling implies that the model cannot rely on being able to load si-

multaneously all necessary data into the main memory during training or decoding

process (or both). Instead, all memory-intensive algorithms of the model must ei-

ther use a data pipelining approach, similar to the MapReduce framework [32], or

be adjusted in such a way that most of data access is localized to a relatively small

working set that can be kept in the main memory.

In the remainder of this section, we describe the approaches we have taken to

ensure our model scales well for large amounts of data. In Sections 5.1.1 and 5.1.2, we

113

revisit the decision tree induction algorithm and in-tree interpolation, respectively,

and describe the modifications to generic algorithms that we have implemented

in order to improve scalability of the model. In Sections 5.1.3 through 5.1.6, we

describe various various aspects of the model pertaining to the decoding process,

including probability representation, on-disk format, and the decoding algorithm.

5.1.1 Tree Construction

In Algorithm 3, we introduce a modified version of tree induction algorithm (Algo-

rithm 1 in Section 4.1). Unlike the generic tree induction algorithm (Algorithm 1),

which grows the tree depth-first, this implementation uses a breadth-first approach

by maintaining a list of active leaves and growing the tree layer-by-layer. This ap-

proach allows us to use a sequential data access pattern, which is much faster than

random access; and since partitioning of a leaf depends only on the data associated

with the leaf, this approach does not affect the quality of the produced decision tree.

Additionally, this organization of data lends itself to a straightforward implementa-

tion within massively parallel frameworks, such as Hadoop [47]. Some of the data

structures we employ for collecting statistics are similar to the structures used in

prior literature on scalable decision tree induction, e.g., the SPRINT system [97].

The idea of decision trees from streaming data has also been investigated in the lit-

erature, e.g., by Jin and Agrawal [59]; however, they attack a much harder problem:

each data record is allowed to be read only once, which imposes restrictions on the

algorithm unnecessary in our model.

114

Input: training data Dt

Output: binary decision tree ROOT

ActiveLeaves ← {(ROOT, Dt)}1

repeat2

NewLeaves ← ∅3

/* collect statistics and select the best partitioning

question for each φk */

forall (φk, Dt
k) ∈ ActiveLeaves do4

Q← create-tag-questions(φk, Dt
k)5

Stats ← collect-statistics(Dt
k, Q)6

if stopping-rule(φk, Dt
k, Stats) then continue7

Q← Q ∪ create-word-questions(φk, Dt
k, Stats)8

question(φk) ← arg minq∈Q M(φk, q,D
t
k, Stats)9

/* grow the tree by splitting leaves and partition the10

training data */

forall (φk, Dt
k) ∈ ActiveLeaves do11

if not question(φk, Dt
k) then continue12

φk′ ← new-child-of(φk)13

φk′′ ← new-child-of(φk)14

((φk′ , D
t
k′), (φk

′′, Dt
k′′))← partition-data(q̂, (φk,Dt

k))15

NewLeaves ← NewLeaves ∪ {(φk′ , Dt
k′), (φk′′ , D

t
k′′)}16

ActiveLeaves ← NewLeaves17

until ActiveLeaves = ∅18

Algorithm 3: Pipelined Decision Tree Growing Algorithm

115

Note that to grow the tree by one layer, Algorithm 3 makes two passes through

the training data, see the loops in lines 4-9 and 11-16. In the first pass (lines 4-9),

we select the best question for the each leaf φk (or decide that the leaf is final and

not to be split further). In the second pass (lines 11-16), we partition the data for

the next layer of leaves. These two passes cannot be easily combined, because each

data set Dt
k (the set of training data associated with the node φk) is assumed to be

too large to fit into memory, and therefore, is represented as a stream of data items

(ctx, wi, c). Thus, line 6 iterates over the training data Dt
k associated with φk and

collects statistics for:

• Attribute Selection Metrics (see Section 4.7.2). Computation of metrics re-

quires a contingency table for a context attribute x and the future word wi.

A compact representation of a sparse table requires space proportional to the

number non-zero elements, i.e., the number of unique pairs (x,wi) observed

in the training data Dt
k. Words tend to have the largest vocabulary among

all attributes (as discussed in Section 4.7); therefore, the amount of space

is dominated by word attributes, which require O(B(Dt
k)), where B(Dt

k) is

the number of bigram types in Dt
k. The number of context attributes is pro-

portional to the order of the model; thus, the overall space complexity is:

O(n ·B(Dt
k)), where n is the order of the model.

• The Exchange algorithm (Algorithm 2 in Section 4.1) utilizes the same type

of statistics as the Attribute Selection Metrics; therefore, it does not add to

overall space complexity.

116

• Tag questions evaluation using Eq. 4.4:

∆M(Φ) = − 1
C

 ∑
(ctx,wi,c)∈Dt

k

c · log p(wi|φk)

−
∑

(ctx,wi,c)∈Dt
k′

c · log p(wi|φk′)

−
∑

(ctx,wi,c)∈Dt
k′′

c · log p(wi|φk′′)

The space required for calculation of this equation is O(|V |), where V is the

vocabulary for wi. Note that questions about words do not exist at this point

(line 6) yet (they are produced later using the Exchange algorithm at line 8),

however, the statistics collected for the Exchange algorithm contains sufficient

information for computation of Eq. 4.4.

Thus, the overall space requirement for the pipelined decision tree construction

algorithm (Algorithm 3) is as follows:

O(n ·B(Dt
k) + |Q||V |)

where Q is the set of possible questions.

5.1.2 In-tree Interpolation

In-tree interpolation described in Section 4.6.1 is also a memory intensive process

as it involves observed distributions for every cluster in the tree (including the inner

nodes). Recall that the smoothed probability distribution p̃n(wi) at a leaf n is

estimated as the observed distribution at the leaf pn(wi) recursively interpolated

with the smoothed distribution at the leaf’s parent node n′:

117

p̃n(wi) = λnpn(wi) + (1− λn)p̃n′(wi) (4.5)

The λ parameters are estimated using an EM approach similar to Forward-Backward

algorithm, with the following EM update equation:

λ′n =

∑
(ctx,wi,c)∈Dh

c · PrΛ(n|wi, ctx)

∑
(ctx,wi,c)∈Dh

c · αn(ctx)βn(wi|ctx)

βl(ctx)(wi|ctx)

(4.6)

where PrΛ(n|wi, ctx) is the probability of generating wi from the node n given

context ctx, αn(ctx) is the probability of reaching the node n given context ctx

climbing up from the leaf l(ctx), βn(wi|ctx) is the probability of generating wi from

the node n or any of its ancestors, and Dh is the heldout data set.

A close examination of the update equation Eq. 4.6 shows that any given

tuple (ctx, wi, c) of the heldout data Dh contributes only to the update of the λ

parameters of the nodes n to which the context ctx belongs, i.e., n ∈ P(ctx), because

∀n/∈P(ctx)αn(ctx) ≡ 0, and therefore ∀n/∈P(ctx) PrΛ(n|wi, ctx) = 0. Hence, for any given

context ctx in the heldout data Dh, only the observed distributions for the clusters

that belong to P(ctx) must be loaded into the main memory, which is tractable

even for large decision trees, since the memory usage is O(|V | · |P(ctx)|). Per-cluster

distributions pn(wi) are stored in a database1 and loaded on demand. Aggregation

of the distributions pn(wi) from the training data is performed using a layer-by-layer

approach (Algorithm 4), similar to the pipelined decision tree induction algorithm

(Algorithm 3).

1 We utilized Berkeley DB Java Edition [85].

118

Additionally, the heldout data (ctx, wi, c) ∈ Dh is sorted by the cluster Φ(ctx).

This allows us to minimize database access as we iterate through Dh computing the

EM update Eq. 4.6.

Input: training data Dt

Output: binary decision tree ROOT

ActiveLeaves ← {(ROOT, Dt)}1

repeat2

NewLeaves ← ∅3

forall (φk, Dt
k) ∈ ActiveLeaves do4

pk(wi)← collect-statistics(Dt
k)5

store(pk(wi))6

NewLeaves ← NewLeaves ∪ new-child-of(φk);7

ActiveLeaves ← NewLeaves8

until ActiveLeaves = ∅9

Algorithm 4: Pipelined Data Aggregation Algorithm

5.1.3 Forest Interpolation

In Section 4.8.2.1, we described the interpolation method for combining multiple

decision trees:

p̃n(wi|ctx) =

∑n
m=1 λm(φm) · pm(wi|φm)∑n

m=1 λm(φm)
(4.12)

119

where φm is the cluster in the m-th decision tree to which the context ctx belongs,

pm(wi|φm) is the smoothed distribution of the model m for that cluster, and λm(φm)

is the weight associated with the cluster φm in the model m. The λm(φm) parameters

for this interpolation are estimated using L-BFGS-B approach, with the gradient

given in Eq. 4.14:

∂LL

∂λm(φm)
=

1

C
·

∑
(wi,ctx,c)∈Dh∧ctx∈φm

c · 1∑n
m=1 λm(φm)

·
(
pm(wi|φm)

p̃n(wi|ctx)
− 1

)
(4.14)

Note that this method assumes that, in every decision tree m, any context ctx

belongs to exactly one cluster φm, which corresponds to a leaf in m. Recall, however,

that a decision tree is a hierarchy clusters. Thus, the context ctx belongs to a

sequence of clusters from a leaf to the root of the tree P(ctx); and any of the

clusters from the sequence P(ctx) can be used instead of the leaf2 in Eq. 4.12. We

use an internal node for the cluster φm instead of a leaf in two cases:

1. When the leaf node for the context ctx is a backoff node, we use the backoff

node’s grandparent node for φm (see node A in Figure 4.3).

2. The leaf corresponding to the context ctx is resolved by applying decision tree

questions to the context ctx starting from the root; we may choose to stop this

process at an internal node and use the internal node as the cluster for ctx

in order to reduce the amount of computation. The general idea behind this

optimization is that in HMM decoding, the states that have a relatively small

2 This would have the same effect as pruning the tree.

120

probability of reaching them will have a small effect on the overall probabil-

ity, and therefore, a less accurate emission probability (afforded by a coarser

internal node cluster) will have little impact on the quality of the model. We

will discuss this optimization in detail in Section 5.1.6.1.

Due to the optimization described above, for any given context ctx, in the set of

clusters φ1, . . . , φn in Eq. 4.12, any number of the clusters can be internal nodes in

their respective decision trees. Thus, for a given context ctx, the number of possible

combinations of clusters φ1, . . . , φn grows exponentially with the number of decision

trees in the forest, which makes the estimation of the λ parameters difficult.

We solve this problem by estimating the λ parameters for the leaves and for

the internal nodes separately, using a two-step procedure as follows:

1. In the first step, we optimize parameters λm(φm) assigned to the leaves as

described in Eq. 4.14.

2. In the second step, for every decision tree m in the forest, and for every internal

node φm in m, we optimize the combination of φm with the leaf nodes of other

trees, while keeping the weights assigned to the leaf nodes constant.

While we do not optimize the λ parameters for every possible combination of inter-

nal nodes3, this technique produces good estimations for the parameters, and the

experiments in Section 5.1.6.1 show no noticeable degradation in performance due

to the use of internal nodes compared to using leaves only.

3 Note that we do not optimize every possible combination of leaves either; we only can optimize
the combinations observed in the heldout data.

121

5.1.4 Probability Representation

In-tree interpolation (Section 4.6.1) produces a smooth distribution for each cluster

k: p̃k(wi) in the case of the word-tree model, and p̃k(witi) in the case of the joint

model. However, storing the smoothed distributions would require O(|Φ|·|V |) space,

where |Φ| is the number of clusters in the decision tree Φ and V is the vocabulary for

wi. This is intractable even for moderately sized word-tree models with |Φ| ≈ 106

and |V | ≈ 50, 000. Therefore, instead of storing pre-computed smooth distributions

p̃k(wi), we store observed distributions pk(wi) for all clusters (including inner nodes)

along with interpolation weights λk and compute smooth distributions on demand.

In the joint model p(witi|wi−1
i−n+1t

i−1
i−n+1), the computation of p(wi|wi−1

1) involves

many leaves to which the contexts wi−1
i−n+1t

i−1
i−n+1 belong (for a given wi−1

i−n+1 and

varying ti−1
i−n+1, as we sum over the tag sequences as shown in Eq. 2.6):

p(wi|wi−1
1) =

p(wi1)

p(wi−1
1)

=

∑
t1...ti

i∏
j=1

p(wjtj|wj−1
1 tj−1

1)

∑
t1...ti−1

i−1∏
j=1

p(wjtj|wj−1
1 tj−1

1)

(2.6)

Thus, we require smoothed distributions p(witi|φk) for multiple leaves φk for the

computation of Eq. 2.6. Many of these leaves share parts of their paths to the root,

e.g., leaves A and B in Figure 5.1 share the path to the root starting from node C.

Therefore, to eliminate duplicate computations, we cache smoothed distributions

computed for internal nodes (C and D in Figure 5.1).

122

D

C

A B

p̃C

p̃D

Figure 5.1: Caching interpolated distributions

5.1.5 On-disk Format

Large-scale language modeling demands that the model may not be loaded entirely

into the memory, and since disk access is very expensive compared to main memory,

the on-disk format plays an important role in overall model performance. There are

several goals that the design of the on-disk format must achieve:

• Compactness. Reduction of the on-disk footprint reduces disk IO directly; and

indirectly, it allows larger portions of the model to be cached by the operating

system, further reducing disk IO.

• Favor sequential access pattern over random. In rotating hard drives, the

slowest operation is the track seek. Sequential access reduces the number of

seeks, resulting in dramatically faster transfer rates.

123

• Reduce unnecessary transfers. Due to the fact that hard drives are block de-

vices (i.e., all operations are performed using fixed-size blocks), reading even

one byte from the disk incurs the transfer of at least one block (typically

several kilobytes) and often more, depending on the hard drive’s and the op-

erating system’s read-ahead settings. Therefore, the on-disk format should

keep related data close together.

In a decision tree forest model, we represent models of individual decision trees

independently; therefore, in this section, we describe the format of one decision tree

model that utilize the above goals in its design. A decision tree model consists of

a decision tree Φ and observed probabilities pk(witi), and the interpolation weights

λk, as described in Section 5.1.4. Even large decision trees with millions of leaves are

small enough to be loaded into memory entirely; therefore, we only aim at optimizing

the format of observed distributions pk(witi). Our design of the on-disk format is

based on a simple yet ubiquitous phenomenon in natural language processing, i.e.,

“the majority of events are rare” [73]. Below are the specific consequences of this

phenomenon that directly influenced the design of the on-disk format for our model:

1. In large vocabulary language modeling, only a fraction of the vocabulary is

used in any given task due to the Zipfian nature of word frequencies: the

majority of words are very rare.

2. The majority of observed counts of events witi in clusters are small numbers.

3. For any given word wi, many clusters contain the same number of events witi

for all ti, i.e., for a given word wi, many clusters k will have the same observed

124

distribution pk(ti|wi). Consider the following: In the decision tree induction

process, the training data associated with some node k is divided among its

children. If one of the children gets all events with wi and the other gets none

then the former child will have the same number of events witi as the node

k. This is likely because, firstly, this is essentially what the decision tree is

optimized for, and secondly, the number of events with wi is very small for the

majority of nodes k and words wi.

This leads us to the following design (depicted in Figure 5.2):

• We group distributions pk(witi) by the word wi rather than by the cluster k.

This way, the data blocks holding distributions for words (model data file in

Figure 5.2) that are not used in the current task will not be loaded at all.

And at the same time, observed distributions for many clusters required to

compute the smoothed leaf distributions can be retrieved in one sequential

disk access.

• We store integer counts ck(witi) and the total number of events in the cluster

Ck (cluster counts in Figure 5.2), rather than probabilities pk(witi) ≡ ck(witi)
Ck

.

Since the majority of counts ck(witi) are small, most of the counts require

only one byte in a variable-length coding4, leading to an approximately 50%

reduction in space usage compared to a fixed length (4 bytes) integer repre-

sentation.

4 We utilize variable length integer coding used in Berkeley DB Java Edition [85], which encodes
integers between -119 and 119 in one byte, while adding an extra byte for larger numbers.

125

• As we pointed out above, for a given word wi many clusters have identical

counts5 ck(witi), and the duplicates can be eliminated (counts file in Fig-

ure 5.2). In fact, our experiments showed that as many as 90% counts are

duplicated, and elimination of the duplicates leads to further 50% reduction

in disk space usage.

There are methods that achieve compact probability representation for lan-

guage models by utilizing randomized approximate storage, e.g., [104, 6]. These

methods have been successfully used for n-gram models, reducing on-disk footprint

substantially without degrading the quality of the LM. We have evaluated the appli-

cability of this approach to our decision tree-based joint language model by using an

implementation of Van Durme and Lall [6] generously provided by Ben Van Durme.

We have found that the amount of storage required for his method is comparable

to the format we have outlined in Figure 5.2. However, random access is essential

in his method, thus it requires the entire model to be loaded into the main memory,

which significantly limits the scalability of the model.

5.1.6 The Decoding Algorithm

As in HMM decoding, in order to compute probabilities for i-th step, we need to

sum over |T |n−1 possible combinations of tags in the history, where T is the set of

tags and n is the order of the model. With |T | predictions for the i-th step, we have

O(|T |n) computational complexity per word. Straightforward computation of these

5 Note that although counts ck(witi) are often the same, the distributions pk(witi) are not,
because clusters have different total number of events Ck.

126

model data file

counts file

word data file

model descriptor
cluster counts : k→C k

model index : wi→word file location

index : cluster→ counts filelocation

index : cluster→ counts file location index : cluster→ counts file location

t i→c(wi t i)

t i→c(wi t i) t i→c(wi t i) t i→c(wi t i)

clu
ste

r #
7

clu
ste

r #
2

clu
ste

r #
1

Figure 5.2: On-disk format for CLIP LM. “Model descriptor” contains the mappings

of wi to the location of the “word data file,” as well as the total counts of events Ck

for all clusters. “Word data file” consists of an index and a counts file, where the

index maps a cluster k to the location of the counts c(witi) in the counts file. Note

that one set of counts c(witi) may be shared among multiple clusters.

127

probabilities is costly even for a trigram model with POS tags, i.e., n = 3, |T | ≈ 40.

A standard approach to limit computational requirements is to use beam search

where only N most likely paths are retained. However, with fine-grained tags where

|T | ≈ 1, 500, a tractable beam size would cover only a small fraction of the entire

space, leading to search errors such as pruning good paths.

Recall that a decision tree-based language model has a history clustering func-

tion Φ(wi−1
i−n+1t

i−1
i−n+1) represented by the decision tree, and in that tree, there are

only |Φ| distinct clusters. For larger tagsets and order n, |Φ| � |T n−1|; moreover,

any given word history W i−1
1 (we will use W to denote concrete values of word con-

text, not to be confused with word context variables w) appears in only a subset

of the clusters in Φ. wi−1
i−n+1 = W i−1

i−n+1 can be thought of as a plane in the space

wi−1
i−n+1t

i−1
i−n+1, the domain of clustering function Φ. The function Φ maps the plane

wi−1
i−n+1 =W i−1

i−n+1 to a subset of clusters from its range.

Φ(wi−1
i−n+1t

i−1
i−n+1)

∣∣
wi−1

i−n+1=Wi−1
i−n+1

⇒ Φ̂Wi−1
i−n+1

(ti−1
i−n+1) (5.1)

The number of distinct clusters in Φ̂i−1
i−n+1 depends on the decision tree configuration

and can vary greatly for different words W i−1
i−n+1 in the history, but generally it is

relatively small:

|Φ̂Wi−1
i−n+1

(ti−1
i−n+1)| � |Φ|

Thus, the number of probabilities that we need to compute |Φ̂Wi−1
i−n+1
| · |T | is much

smaller than |T |n for standard HMM decoding.

128

In order to achieve an overall complexity close to O(|Φ̂Wi−1
i−n+1
| · |T |), the decod-

ing algorithm must cluster the tag space ti−1
i−n+1 without having to iterate through

every element of this space: Because the tag context space consists of |T |n−1 ele-

ments, iterating over all ti−1
i−n+1 would result in the same complexity as the standard

HMM decoding algorithm, which is much greater than would be practical. The only

available partitioning approach that does not require iterating over all elements is

top-down partitioning, in which we begin with the entire space ti−1
i−n+1 as a single

cluster and then partition it recursively into |Φ̂Wi−1
i−n+1
| clusters. Note that the appli-

cation of the decision tree clustering function Φ to the context space W i−1
i−n+1t

i−1
i−n+1

achieves exactly what we require. Specifically:

• The decision tree Φ recursively partitions the entire context wi−1
i−n+1t

i−1
i−n+1 in a

top-down manner.

• Questions about words in the context cut off elements of context space wi−1
i−n+1t

i−1
i−n+1

that do not match the observed word history W i−1
i−n+1, effectively discarding

clusters that do not belong to Φ̂Wi−1
i−n+1

.

• Questions about tags partition the tag space into |Φ̂Wi−1
i−n+1
| clusters.

Note that a top-down partitioning does not automatically achieve partitioning of

the tag space without iterating over each element; we need a special representation

for the tag space to accomplish that. Recall that the set of tags T is represented

as a binary tree (see Figure 4.2 in Section 4.4), thus, the entire space ti−1
i−n+1 can

be represented as shown in Figure 5.3. Also recall that the only type of questions

129

about tags is in the form of a binary path prefix in the tag tree (as discussed in

Section 4.4). Such a question dissects the tag tree into two parts as depicted in

Figure 5.4. This partitioning does not iterate over all tags and the cost of this

operation is approximately O(log |T |)6.

Let us illustrate how the decoding algorithm (Algorithm 5) works in the case of

a bigram model. We represent states in the decoding lattice as shown in Figure 5.5,

where pSin is the probability of reaching the state S:

pSin =
∑

S′∈INS

pS′in pS′(wi−2)
∑
t∈TS′

pS′(t|wi−2)

 (5.2)

and INS is the set of incoming links to the state S from the previous time index,

and TS′ is the set of tags generated from the state S ′ represented as a fragment of

the tag tree. Note that since we maintain the property that the probability assigned

to an inner node of the tag tree is the sum of probabilities of the tags it dominates,

the sum
∑

t∈TS′
pS′(t|wi−2) is stored at the root of TS′ , and therefore it is an O(1)

operation.

Now given the state S at time i − 1, in order to generate tag predictions for

i-th word, we apply questions from the history clustering tree, starting from the

top. As we mentioned above, questions about words always follow either a true or

false branch, implicitly computing Φ̂Wi−1
i−n+1

(ti−1
i−n+1). Questions about tags can split

the state S into two states Strue and Sfalse, each retaining a part of TS as shown in

the Figure 5.4. This process continues until each fragment of each state at the time

6 O(log |T |) is the estimate for a balanced tree. In practice, we do not require the tag tree to
be balanced, but as Figure 4.2 shows, the tree does not degrade into a chain to require O(|T |)
estimate.

130

S
1

timei-1i-2

T S1

i-n+1

…. S
2

T S2

S
n-1

T S n−1

….

Figure 5.3: The representation of the tag context space ti−1
i−n+1. Each state S1, S2,

. . . , Sn−1 is associated with a set of tags TS1 , TS2 , . . . , TSn−1 , respectively. A con-

nection between states S1 and S2 (S2 ←− S1) denotes all combinations of tags

{(t1, t2) : t1 ∈ TS1 , t2 ∈ TS2} in the connected states. Thus, the sequence of n− 1

states above represents |TS1| · |TS2| · . . . · |TSn−1| elements of the tag space.

i − 1 reaches the bottom of the decision tree, at which point new states for time

i are generated from the clusters associated with leaves. The states at i − 1 that

generate the cluster ΦS̃ become the incoming links to the new state S̃ at time i.

In Figure 5.6, we illustrate how the decoding algorithm works on a simple

example. We depict the partitioning of the context for both types of questions

(about words and tags) in a bigram model, as well as the generation of probabilities

for the following word, i.e., we illustrate an entire decoding cycle.

• Step (a) Let us assume that at time i− 1, we have one state in the decoding

lattice with two incoming links from time i − 2. We associate each state at

time i − 1 with the root of the decision tree and place these state into the

agenda. We repeat the following steps until there are no states left in the

131

yesno

tag tree

prefix

q prefix
time

no yes

Decision tree node Runtime state in the decoding lattice

Figure 5.4: Questions about tags split states (see Figure 5.5) in the decoding lattice

represented by tag trees.

time

ps(ti−1∣wi−1)

∑t i−1∈T S
p̃s(ti−1∣wi−1)

S

p in
S

i-1i-2

T S

IN S

Figure 5.5: A state S in the decoding lattice is associated with the probability pSin

of reaching the state through the links INS, as well as the word emission proba-

bility pS(wi−1) and the set of tags TS emitted from the state S. The tag emission

probability pS(ti−1|wi−1) for all ti−1 ∈ TS is represented in the form of the tag tree

where each internal node contains the sum of emission probabilities for the tags it

dominates.

132

S ← new-state1

word(S) ← <s>2

PIN(S) ← 1.03

node(S) ← ROOT4

agenda ← { S }5

for i = 1 . . . N do6

predictions(i) ← ∅7

repeat8

S ← pop-item(agenda)9

if is-leaf(node(S)) then10

predictions(i) ← predictions(i) ∪ { new-prediction(S) }11

continue12

(trueS,falseS) ← partition-state(S, question(node(S)))13

if trueS 6= None then agenda ← agenda ∪ { trueS }14

if falseS 6= None then agenda ← agenda ∪ { falseS }15

until agenda = ∅16

agenda ← predictions(i)17

return sum-probabilities(predictions(N))18

Algorithm 5: Decoding algorithm for decision tree syntactic LM

133

q prefix
time

decision tree

q overt
time

(a)

(b)

(c)

(d)

timei-2 i-1 i

decision tree

decision tree

decision tree

decision tree

Figure 5.6: An example of the decoding process

134

agenda.

• Step (b) Suppose that the question at the root node of the decision tree is

a question about tags that splits the state into two states, as was shown in

Figure 5.4. Now the two new states are associated with the true and the false

branches of the root node. The state on the top in Figure 5.6 (b) has reached

a leaf of the decision tree, ending the partitioning of this state (the state is

removed from the agenda at this point). Note that both of the new states can

be reached from the same states at time i− 2; and the probability of reaching

these new states is the same as the probability of reaching the original, unsplit

state.

• Step (c) Suppose that the question we apply to the state remaining in the

agenda is about words. In this case, the state is not split, because answer to

the question depends on the words in the history W i−1
i−n+1 but not on the tags

associated with the state. Thus, the algorithm simply takes either the true or

the false branch. The remaining state also reaches a leaf of the decision tree,

ending the partitioning step of the algorithm.

• Step (d) Now that we know which leaves (clusters) the states at time i − 1

belong to, we can generate probabilities for the new states at time index i.

The newly generated states have incoming links from the states they were

generated from. Note that there could be more than one if there were several

states at i−1 before partitioning. The incoming probability for the new states

is computed similarly to Eq. 5.2. This ends a cycle of the decoding algorithm,

135

and we proceed to splitting the states at time i.

Higher order models work similarly, except when a question concerns time i−x, we

apply it all states at time i−x that are connected with the state at time i−1 under

consideration. A forest model with multiple decision trees is decoded similarly,

instead of a single decision tree node, we associate with each state a tuple of nodes,

where each node corresponds to one decision tree in the forest. Steps (b) and (c)

are applied to a state until all decision trees associated with the state have reached

their respective leaves.

5.1.6.1 Coarse and Fine Decoding

Note that in the decoding algorithm, a state S with a small (compared to other

states at the same time index) incoming probability pSIN tends to have small impact

on the overall probability of the sentence. In decoding algorithms that use beams

of fixed width, such states are typically pruned to save computation. However, the

specifics of our model and the decoding algorithm allow us to reduce computational

cost by using a coarser probability estimation for such states instead of pruning

them entirely.

Note that a decision tree represents a hierarchy of clusters, i.e., the inner

nodes are also clusters, albeit coarser than leaves. Also note that the smoothed

distributions p̃k(witi) are readily available for the inner nodes, as well as for the

leaves, because the smoothed distribution at a leaf is computed recursively as an

interpolation of the observed distribution at the leaf with the smoothed distribution

136

of its parent node (see Section 5.1.4).

The only change in the decoding algorithm (Algorithm 5) necessary to af-

fect this approximation is at line 10, where we can add an alternative termination

condition, such as a threshold:

pSin · pS(wi−2)
∑
t∈TS

pS(t|wi−1) < θ ·
∑
S′

P S′

in · pS′(wi−1)
∑
t∈TS′

pS′(t|wi−1)

< θ · p(wi−1

1)

A coarse probability estimation for the state S is used when its relative contribution

to the total probability is smaller than the threshold parameter θ.

To evaluate the trade-off between accuracy and computational efficiency, we

conducted an experiment on the WSJ task (see setup in Section 3.2). For this ex-

periment, we compute the perplexity of the PTB WSJ Section 23 and measure CPU

time for different values of the threshold parameter θ. This experiment was con-

ducted on a dual Intel Xeon E5430 machine with 16 gigabytes of RAM. The results

are presented in Figure 5.7. Note that with θ ≤ 10−3, the model does not suffer a

noticeable degradation in performance (less than a 1% increase in perplexity), while

the increases in speed is manifold.

Even with all improvements we have described in this section, our model is

still approximately two orders of magnitude slower than the SRILM implementation

of the n-gram model7: Computing perplexity of the MT08-NW data set (29,341

words) takes 1,152 seconds (CPU time) using our model with θ = 10−3 threshold,

7 Not surprisingly, since we have to sum over all possible tag assignments!

137

ti
m

e,
 s

ec
o

n
d

s
ti

m
e,

 s
ec

o
n

d
s

0

500

1,000

1,500

2,000

P
P

L
P

P
L

146

147

148

149

150

151

152

thresho ld thresho ld ΘΘ
10−8 10−7 10−6 10−5 10−4 10−3 10−2

time
ppl

θ=
10

-3

Figure 5.7: Perplexity and decoding time for different threshold parameters θ esti-

mated on the WSJ task. Time is the sum of user and system time as measured by

time utility, with model initialization time subtracted. Error bars on the time plot

indicate one standard deviation computed from a sample of 10 runs.

and only 13 seconds using the n-gram model (both models are fourgram models

trained on the 210M words of Newswire data, described in Section 3.3). However,

we did reduce asymptotic computational complexity of the standard HMM decoding

(O(|T |n) = O(1, 3974) ≈ 3.8 · 1012 per word) to something that can be feasibly

computed. We believe there is room for substantial increase in speed of our model

by careful optimization of algorithms and data structures, we intend to pursue this

direction of work in the future.

5.2 N-gram Approximation

Unlike n-gram models, in which the observed history is limited to n− 1 words, in a

joint syntactic model, the entire word sequence wi−1
1 is required to predict the word

wi, as can be seen in Eq. 2.6:

138

p(wi|wi−1
1) =

p(wi1)

p(wi−1
1)

=

∑
t1...ti

i∏
j=1

p(wjtj|wj−1
1 tj−1

1)

∑
t1...ti−1

i−1∏
j=1

p(wjtj|wj−1
1 tj−1

1)

(2.6)

Note that this is the case even if the model limits its context to n − 1 words and

tags: wi−1
i−n+1t

i−1
i−n+1. This is because the distribution of tags ti−1

i−n+1 depends on the

prior context; in a sense, the model carries information from the beginning of the

sentence through the distribution of hidden states (tags).

The necessity of having the entire word sequence wi−1
1 to predict the word wi

limits the applicability of the model to rescoring n-best lists, or with special search

algorithms, confusion networks (e.g., Deoras and Jelinek [34]) and word lattices (e.g.,

Rastrow et al. [91]). On-line application of such a model in ASR or MT decoding is

infeasible because the number of different word sequences grows exponentially with

the length of the input. However, it is likely that remote words have very little

influence on the probability of wi. This is due in part to the fact that the hidden

states can carry a limited amount of information, and partly, because in most cases,

a few previous words are sufficient to disambiguate syntactic and semantic roles of

a word. Given these assumptions, we propose the following approximation for the

probability of a word-tag sequence:

p(wii−n+1t
i
i−n+1) ≈

(
i∏

k=i−n+2

p(wktk|wk−1
i−n+1t

k−1
i−n+1)

)
· p(wi−n+1ti−n+1)

That is, the first word-tag wi−n+1ti−n+1 in the n-gram wii−n+1t
i
i−n+1 is predicted

using a unigram distribution p(wi−n+1ti−n+1) with no context, the second word-tag

139

wi−n+2ti−n+2 is predicted using a bigram model p(wi−n+2ti−n+2|wi−n+1ti−n+1), and

so on. Marginalizing tag distributions out, similarly to Eq. 2.6, we get the following

n-gram probability estimation:

p(wi|wi−1
i−n+1) ≈ (5.3)∑

ti−n+1,...,ti

p(witi|wi−1
i−n+1t

i−1
i−n+1) · p(wi−1ti−1|wi−2

i−n+1t
i−2
i−n+1) · . . . · p(wi−n+1ti−n+1)∑

ti−n+1,...,ti−1

p(wi−1ti−1|wi−2
i−n+1t

i−2
i−n+1) · . . . · p(wi−n+1ti−n+1)

With this approximation, a joint syntactic model can be applied in any application

where regular n-gram models are used.

5.2.1 Accuracy of N-gram Approximation

N-gram probability estimation in Eq. 5.3 is an approximation of the Eq. 2.6, because

in Eq. 5.3, we use lower order models (down to a unigram!) to estimate probabilities

of the first words in an n-gram. Before applying this approximation, we need to make

sure that it does not degrade the quality of the model significantly. In this section,

we evaluate the accuracy of this approximation and its dependency on the size of

the n-gram and the order of the model.

We conducted two experiments using WSJ ’94-’96 setup discussed in Sec-

tion 3.2. We measured the perplexity of the test set using both Eq. 2.6 and its

approximation Eq. 5.3, and compared probabilities of individual n-grams. In the

first experiment, we used a trigram joint syntactic model and varied the size of the

n-gram from 3 to 10; and in the second experiment, we used a fourgram model

140

P
er

p
le

xi
ty

P
er

p
le

xi
ty

154

155

156

157

158

159

160

161

162

163

164

n-gram ordern-gram order

3 4 5 6 7 8 9 10

approximated
exact

(a) Trigram

P
er

p
le

xi
ty

P
er

p
le

xi
ty

146

147

148

149

150

151

152

153

154

155

156

n-gram ordern-gram order

4 5 6 7 8 9 10

approximated
exact

(b) Fourgram

Figure 5.8: Perplexity on PTB WSJ Section 23 using exact (Eq. 2.6) and n-gram

approximated (Eq. 5.3) probability estimation for trigram (a) and fourgram (b) joint

syntactic model.

and varied the n-gram size from 4 to 10. Naturally, we expect that as the size of

the n-gram grows, the approximated probability estimation should become closer to

Eq. 2.6, however, the most important question is just how large an n-gram is needed

for the loss in accuracy due to the approximation to be negligible.

In Figure 5.8, we present the perplexity results for trigram and fourgram mod-

els. Note that for both models, approximating probability estimation with n-grams

larger than a fourgram results in very a slight difference from the exact estimation,

while using fourgrams produces approximately a 1% increase in perplexity.

In Figures 5.9 and 5.10 we plot probabilities p(wi|wi−1
1) in the test set (54,470

words) estimated using Eq. 2.6 (exact estimation) and Eq. 5.3 (approximated esti-

mation). As predicted, as the order of n-gram increases, the approximated estima-

tion becomes very close to the exact. Interestingly, the approximation with lower

order n-grams, shown in Figures 5.9 (a) and Figure 5.10 (a), tends to underesti-

141

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(a) n=3

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(b) n=4

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(c) n=5

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(d) n=10

Figure 5.9: Exact (Eq. 2.6) and n-gram approximated (Eq. 5.3) probabilities com-

puted on WSJ Section 23 test set using a joint syntactic trigram model for various

values of n-gram order n

142

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(a) n=4

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(b) n=5

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(c) n=6

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

ap
p

ro
xi

m
at

ed
 p

ro
b

ab
ili

ty
,

lo
g

1
0

1
0

−8

−6

−4

−2

0

−8

−6

−4

−2

0

exact probability, logexact probability, log 1010

−8 −6 −4 −2 0

−8 −6 −4 −2 0

(d) n=10

Figure 5.10: Exact (Eq. 2.6) and n-gram approximated (Eq. 5.3) probabilities

computed on WSJ Section 23 test set using a joint syntactic fourgram model for

various values of n-gram order n

143

mate n-grams with very high probabilities. We believe that the main reason for this

phenomenon is the inability of the approximation to properly account for syntactic

ambiguity in the context due to the use of the unigram distribution.

5.3 Contributions

• In Section 5.1, we have proposed solutions to the engineering problems that

are essential to make a large-scale joint syntactic model tractable: algorithms

with limited memory footprint and efficient data structures for on-disk rep-

resentation of the model. We have also proposed a novel decoding algorithm

which, in combination with decision tree-based context clustering, has enabled

us to utilize fine-grained syntactic tags producing a stronger language model

than would be possible by utilizing less informative tags, such as part-of-speech

tags.

• In Section 5.2, we have proposed a method for approximating a syntactic

language model by word n-grams, and we have evaluated the accuracy of the

approximation.

5.4 Summary

In this chapter, we have explored a number of computational issues that arise from

the complexity of the joint syntactic model and the necessity for a practically useful

language model to be able to utilize large amounts of training data. We have pre-

sented scalable algorithms for decision tree construction and probability estimation,

144

as well as an efficient on-disk format for the syntactic language model. We have also

introduced an efficient decoding algorithm that exploits the decision tree to elimi-

nate unnecessary computation, and additionally, provides a straightforward way to

trade a little accuracy for a considerable reduction in computation. In addition,

we have proposed an n-gram approximation for the syntactic model—the approxi-

mation that extends the applicability of the model to the tasks where it would be

infeasible otherwise—and have evaluated the accuracy of this approximation.

145

Chapter 6

Large-scale Experiments in ASR and MT

In this chapter, in order to evaluate the impact of our model on speech recognition

and machine translation tasks, we conduct Broadcast News ASR word lattice rescor-

ing and Arabic-to-English MT experiments, comparing the joint syntactic model

described in Chapter 4 with respective n-gram baselines.

6.1 Broadcast News ASR Rescoring Experiments

In addition to ASR n-best list rescoring experiments presented in Section 4.8.4.2

in Table 4.9, which were based on speech produced by reading WSJ articles, we

evaluate our model on the Broadcast News ASR lattice rescoring task using the

setup described in Section 3.1. To select 1-best hypotheses, we utilized the lattice

search framework developed by Rastrow et al. [91]. This framework extracts full

utterance hypotheses from a lattice, similarly to n-best lists; however, it has been

shown to be much more efficient than n-best lists, in the sense that it does not

require as many hypotheses to be evaluated as a standard n-best list to achieve the

same Word Error Rate (WER). This lattice search framework utilizes a stochastic

hill climbing method, and therefore, may converge to a different solution every time

it is restarted; hence, we restart the algorithm 10 times (as recommended by Ariya

Rastow in a personal communication).

146

model PPL WER

n-gram 239.6 15.2%

syntactic (1) 217.0 14.7%

syntactic (2) 208.9 14.6%

Table 6.1: Perplexity and WER results on the RT04 dataset. “syntactic (1)”

denotes the joint syntactic LM utilizing four decision trees (1w1t + 2w2t + 3w3t

+ 4w4t, as described in Section 4.8.4.2). In addition to these trees, “syntactic (2)”

has four additional trees: 3w4t + 4w3t + 2w3t + 3w2t.

The hypotheses were selected based on the following score:

wAM logP (A|W) + logP (W)

where P (A|W) is the acoustic model score, P (W) is the language model score for

the hypothesis W , and wAM is the acoustic model weight. We selected wAM to

minimize WER on a heldout set (the combined NIST dev04f and NIST rt03f sets)

containing 840 utterances.

The baseline n-gram model used in these experiments was trained on 130M

words of Hub4 CSR 1996 [44] (the same dataset that was used to train the syntactic

models) using the language modeling tool from IBM Attila framework [18]. The n-

gram LM is a fourgram model smoothed using the interpolated modified Kneser-Ney

method (described in Section 2.2.1.3).

In Table 6.1, we present WER results for three language models: the n-gram

baseline and two joint syntactic models. Both syntactic models utilize parent tagset

(described in Section 2.4.2.3). The model denoted “syntactic (1)” utilizes the stan-

147

dard set of trees (from unigram to fourgram), while the model denoted “syntactic

(2)” has four additional trees 3w4t + 4w3t + 2w3t + 3w2t, similarly to the experi-

ments presented in Section 4.8.4.2. Both syntactic models outperform the baseline

significantly. The difference in word error rate between the two syntactic models was

not found statistically significant in this experiment, however, the lower perplexity

of the “syntactic (2)” model compared to the “syntactic (1)” model suggests that

the improvement in WER is not random. Nonetheless, we conclude that the dif-

ference in performance between the model “syntactic (1)” using the standard forest

configuration (1w1t+2w2t+3w3t+4w4t) and the model “syntactic (2)” is not large

enough to justify the increased computational expense of additional trees.

6.2 Machine Translation Experiments

The n-gram approximation described in Section 5.2 enables us to apply our syntactic

model in applications, such as MT decoding, where it would otherwise be infeasible

because the number of unique translation hypotheses is astronomical even for a

moderate length source language sentence. In this section, we present the results

of experiments for integration of our syntactic model into CDEC machine translation

decoder using the n-gram approximation described in Section 5.2.

This evaluation includes translations of GALE data sets representing four

different genres: Broadcast News (BN), Broadcast Conversation (BC), Newswire

(NW), and Weblogs (WB). Naturally, language in different genres differs substan-

tially; therefore, it should be beneficial for each genre, if the language model is

148

adapted to that specific genre. Language model adaptation has been widely used

in speech recognition (e.g., [4, 1, 12]); however, in machine translation community,

LM adaptation techniques have received relatively little attention. Perhaps, one

of the reasons is that language model adaptation has not always been successful

in machine translation. In a domain adaptation study, Koehn and Schroeder [67]

report that using only in-domain language model resulted in a slightly better per-

formance than using a linear interpolation of in-domain and out-of-domain language

models or using both LMs (which is similar to log-linear interpolation). However,

Bulyko et al. [11] observed moderate improvements (0.3-0.4 BLEU) on the MT n-

best list rescoring task by using a combination of several language models trained

on data from different sources. They hypothesized that the improvements could be

larger if the adaptation had been performed during the decoding rather than in a

post-processing step, such as n-best rescoring.

Similarly to Bulyko et al. [11], we trained multiple models (n-gram and syntac-

tic) on data from different sources as described in Section 3.3. As the baseline, we

use a single n-gram model trained on the combined data. In Tables 6.2 through 6.5,

“ngram-4” denotes the combination of four n-gram models, and “joint-4” refers

to the combination of four joint syntactic models using the n-gram approximation

(Section 5.2). All models (n-gram and syntactic) utilize fourgram context1.

We report results using the BLEU metric [86], which is the most frequently

reported metric for evaluation of MT systems. Unfortunately, there are unresolved

1 In the case of the syntactic model, we use a joint syntactic fourgram model approximated by
word fourgrams as in Figure 5.10 (a).

149

issues related to establishing the statistical significance of the difference between

two systems. Collins et al. [28] argued that the BLEU metric may not meet the

requirements for the bootstrap resampling [38] method used in prior work (e.g.,

[65, 114]) to establish statistical significance; hence, they proposed to use the sign

test [70] instead. Chiang et al. [22] pointed out that the sign test produces counter-

intuitive results in some realistic cases because of the brevity penalty factor in

the BLEU score (see Eq. 2.8 in Section 2.1.4.3). They proposed to use bootstrap

resampling with a modified version of the BLEU score.

Recently, Clark et al. [25] pointed out that testing one pair of hypotheses

produced by two systems to be compared is not sufficient to establish whether one

system is significantly better than the other because of the substantial variance

observed in the MT optimization procedures. They proposed to evaluate multiple

hypotheses produced by different optimization runs of each system, and they made

their evaluation tool publicly available. They use stratified shuffling [23, 93] to es-

timate the confidence interval of observing the difference in average BLEU scores

between two system, which made interpretation of the reported p-values somewhat

counter-intuitive. They did not discuss the implications of the brevity penalty on the

significance test which, based on the previous arguments made by Collins et al. [28]

and Chiang et al. [22], deserves attention. Therefore, while we fully support the

argument of Clark et al. [25] that several optimization runs of each system must be

evaluated for significance testing, we have opted for Student’s t-test [103] to estab-

lish significance of the differences between our systems. In this test, each system

produces a sequence of BLEU scores, where each score corresponds to a different

150

model avg median σ min max ∆ avg
p-value

vs. baseline vs. ngram-4
D

E
V

10
-d

ev baseline 30.10 30.12 0.11 29.96 30.25 - - -

ngram-4 29.97 29.99 0.11 29.78 30.07 -0.13 0.1066 -

joint-4 30.49 30.52 0.10 30.34 30.61 0.39 0.0005 0.0001

D
E

V
09

-d
ev baseline 28.63 28.60 0.08 28.56 28.76 - - -

ngram-4 28.88 28.90 0.15 28.65 29.07 0.25 0.0121 -

joint-4 29.63 29.61 0.08 29.55 29.76 1.00 0.0001 0.0001

D
E

V
09

-t
u
n
e

baseline 29.21 29.20 0.19 29.01 29.43 - - -

ngram-4 29.36 29.44 0.23 29.12 29.62 0.15 0.2889 -

joint-4 29.86 29.87 0.11 29.70 29.98 0.65 0.0002 0.0023

Table 6.2: BLEU scores for the Broadcast News (BN) genre. Each system’s results

are aggregated from a set of 5 optimization runs.

optimization run, and the null hypothesis is that each sequence was drawn from the

same normally distributed population. We use p-value < 0.05 for significance.

In Tables 6.2 through 6.5, we present the results of our machine translation ex-

periments. For each genre (BN, BC, NW, and WB) we performed five optimization

runs of each system (baseline, ngram-4, and joint-4), using the portion of DEV10-

tune corresponding to the respective genre. We then decoded the evaluation sets

(DEV10-dev, DEV09-dev, and DEV09-tune) using these systems. Note that the

evaluation sets are also divided by genre; therefore, we use the respective sections

of the evaluation sets to evaluate the genre-tuned systems, i.e., the BLEU scores for

151

model avg median σ min max ∆ avg
p-value

vs. baseline vs. ngram-4

D
E

V
10

-d
ev baseline 38.18 38.18 0.07 38.09 38.27 - - -

ngram-4 38.61 38.62 0.15 38.39 38.77 0.43 0.0004 -

joint-4 39.26 39.27 0.09 39.16 39.36 1.08 0.0001 0.0001

D
E

V
09

-d
ev baseline 20.48 20.48 0.10 20.35 20.62 - - -

ngram-4 20.71 20.86 0.37 20.28 21.09 0.22 0.2291 -

joint-4 20.96 21.00 0.19 20.71 21.14 0.47 0.0014 0.2137

D
E

V
09

-t
u
n
e

baseline 20.95 20.93 0.08 20.87 21.07 - - -

ngram-4 21.26 21.24 0.10 21.15 21.38 0.31 0.0009 -

joint-4 21.49 21.52 0.17 21.27 21.71 0.54 0.0002 0.0279

Table 6.3: BLEU scores for the Broadcast Conversation (BC) genre. Each system’s

results are aggregated from a set of 5 optimization runs.

152

model avg median σ min max ∆ avg
p-value

vs. baseline vs. ngram-4

D
E

V
10

-d
ev baseline 36.23 36.22 0.08 36.12 36.31 - - -

ngram-4 36.22 36.23 0.04 36.16 36.27 -0.01 0.8094 -

joint-4 36.88 36.89 0.04 36.84 36.93 0.65 0.0001 0.0001

D
E

V
09

-d
ev baseline 32.31 32.30 0.05 32.26 32.39 - - -

ngram-4 32.59 32.59 0.13 32.47 32.78 0.28 0.0020 -

joint-4 33.06 33.00 0.14 32.96 33.27 0.75 0.0001 0.0005

D
E

V
09

-t
u
n
e

baseline 33.05 33.07 0.09 32.91 33.13 - - -

ngram-4 33.23 33.16 0.14 33.12 33.46 0.19 0.0364 -

joint-4 33.70 33.64 0.11 33.58 33.82 0.65 0.0001 0.0004

Table 6.4: BLEU scores for the Newswire (NW) genre. Each system’s results are

aggregated from a set of 5 optimization runs.

153

model avg median σ min max ∆ avg
p-value

vs. baseline vs. ngram-4

D
E

V
10

-d
ev baseline 39.80 39.84 0.13 39.57 39.88 - - -

ngram-4 39.76 39.76 0.15 39.57 40.00 -0.04 0.6970 -

joint-4 40.60 40.50 0.29 40.23 40.94 0.80 0.0006 0.0005

D
E

V
09

-d
ev baseline 23.58 23.62 0.14 23.36 23.74 - - -

ngram-4 23.80 23.88 0.27 23.38 24.09 0.22 0.1420 -

joint-4 24.11 24.15 0.11 23.98 24.24 0.53 0.0002 0.0447

D
E

V
09

-t
u
n
e

baseline 22.95 22.98 0.10 22.78 23.04 - - -

ngram-4 23.28 23.26 0.16 23.09 23.50 0.32 0.0053 -

joint-4 23.47 23.47 0.20 23.19 23.75 0.52 0.0009 0.1261

Table 6.5: BLEU scores for the Weblog (WB) genre. Each system’s results are

aggregated from a set of 5 optimization runs.

154

“DEV10-dev” in Table 6.2 refer to the BN section of DEV10-dev produced by the

systems optimized on the BN section of DEV10-tune dataset.

Note that in many cases the difference between the minimum and the max-

imum score in the series of optimization runs of one system is quite substantial,

which confirms the proposition of Clark et al. [25] that using a single optimization

run of each system may lead to wildly inaccurate conclusions regarding the relative

performance of the systems. Also note that ngram-4 and joint-4 tend to have a

larger standard deviation σ, which we ascribe to the fact that these systems have

more optimization parameters (each language model has an independent parameter)

than the baseline system.

Although the ngram-4 system does tend to outperform the baseline system,

the improvement is not very consistent across all corpora. On 6 out of 12 datasets,

ngram-4 significantly outperformed the baseline, but in the other cases the difference

in average scores was not found to be statistically significant, and in 3 cases ngram-4

is even slightly worse than the baseline. The syntactic model joint-4, however, sig-

nificantly outperformed the baseline on every dataset. Moreover, the examination of

minimum and maximum scores of the baseline and joint-4 shows that the minimum

score of joint-4 is greater than the maximum score of the baseline on every dataset.

The comparison of the ngram-4 and joint-4 systems shows that the syntac-

tic models significantly outperform the n-gram models on all datasets except two:

DEV09-dev (BC) and DEV09-tune (WB). Note that both of these datasets have

relatively low BLEU scores: the average scores of ngram-4 system on DEV09-dev

(BC) and DEV09-tune (WB) are 20.71 and 23.28, respectively. In Figure 6.1, we

155

ΔΔ
B

LE
U

 (
jo

in
t4

 -
 n

g
ra

m
4

)
B

LE
U

 (
jo

in
t4

 -
 n

g
ra

m
4

)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ngram-4, BLEUngram-4, BLEU
15 20 25 30 35 40 45

15 20 25 30 35 40 45

Figure 6.1: The average BLEU score of ngram-4 model (x-axis) and the difference

in average BLEU scores between joint-4 and ngram-4 models (y-axis). Correlation

coefficient r = 0.85.

present a scatterplot of the average score of ngram-4 system and the difference be-

tween the average scores of the joint-4 and ngram-4 systems using all datasets and

genres (12 points total). We observe that the score of ngram-4 and the improvement

provided by the syntactic system are highly correlated (Pearson’s correlation coef-

ficient r = 0.85). This phenomenon has an intuitive explanation: a language model

is responsible for producing fluent hypotheses; however, if the hypotheses produced

by the translation model are inadequate, making them more fluent will not make

them [much] more similar to the reference translation. Indeed, if the translation

model produces “apple” instead of “orange,” it is beyond the power of a language

model to correct that error. This leads us to believe that the impact of language

modeling on the quality of machine translation will only increase as the translation

model improves.

156

6.3 Contributions

• We have demonstrated that our model performs well in large-scale speech

recognition and machine translation tasks, significantly outperforming n-gram

baselines.

• We have observed that in machine translation experiments, the improvement

of the syntactic model over an n-gram baseline strongly correlates with the

quality of the translation model, thus we expect that the gains from using

complex language models will increase as translation models improve.

6.4 Summary

In this chapter, we have evaluated our joint syntactic model on an ASR word lattice

rescoring task and have observed significant reductions in WER compared to the

n-gram baseline. We have also incorporated the n-gram approximated version of

the joint syntactic model into the CDEC MT decoder and found that not only does

our model significantly outperform a comparable n-gram model, but that the gains

in the BLEU score increase as the performance of MT system improves.

157

Chapter 7

Contributions and Future Work

In this chapter, we summarize our contributions, present conclusions, and outline

directions for future work.

7.1 Contributions

The main contributions of this thesis belong to two broad categories:

• Advancements in decision tree technology for language modeling,

• Scalable syntactic modeling

Although decision trees have been used for language modeling in prior litera-

ture (e.g., [2, 51, 112]), the methods for decision tree construction and probability

estimation have been largely imported from other domains, such as decision trees for

classification and n-gram models, without due analysis of the differences in the ways

those domains affect such models. We have outlined the main differences between

classification and language modeling tasks, and have analyzed how their differences

affect decision tree construction. Additionally, the analysis of the differences has

led us to discover a bias in the splitting rule metric used in all prior decision tree

language models. To eliminate this bias, we have proposed a two-step splitting

rule and have observed reductions in perplexity, particularly in the case of syntactic

158

language modeling, where the bias is most prominent.

We have also shown that backoff methods developed for n-gram models do not

apply well to decision tree models because of the differences in context clustering

methods. Using context clustering terminology, we have formulated the backoff

property that expresses the relation between the higher- and the lower-order models

in backoff interpolation schemes such as in n-gram models. We have shown that this

property is essential for backoff interpolation to work well and that this property

is satisfied by n-gram models but not by decision tree models. We have proposed

a generalization of Jelinek-Mercer smoothing method for decision tree models, and

we have observed significant improvements from using it over the previously used

method.

We have also investigated methods for constructing small forests of diverse

trees. Unlike prior work on forests of decision trees for language modeling, where

decision trees are either “backoff” or “equivalent,” the generalized interpolation for

decision trees has enabled us to combine any decision trees in a single forest. We have

evaluated a number of approaches for introducing variability into decision tree con-

struction process, and we have concluded that, in the case of small forests, decision

trees with the context restricted in different ways results in the best combination.

We have also tackled a number of engineering problems in order to make the

model computationally tractable. We have proposed a novel decoding algorithm that

exploits the decision tree structure to eliminate unnecessary computation. The algo-

rithms and data structures that we have developed have enabled us to utilize large

amounts of data (hundreds of million words) and fine-grained tagsets (thousands of

159

distinct tags!) in a joint syntactic model which would be intractable otherwise. Ad-

ditionally, we have shown that a syntactic model can be accurately approximated by

sufficiently long word n-grams. This approximation has enabled us to incorporate

our model into the CDEC machine translation decoder. Our experiments in machine

translation have demonstrated that the impact of a stronger language model (such

as a syntactic LM) increases as the translation model improves. Therefore, future

advancements in translation models will only increase the importance of language

models.

Finally, we have made our code available at http://code.google.com/p/clip-lm/

under GNU GPLv2.

7.2 Future Work

• The ability to easily incorporate additional features is one of the strengths

of a decision tree-based language model. At the same time, morphologi-

cally rich languages, such as Arabic, Czech, or Russian have proven difficult

to model using n-gram models because of the large number of word forms.

Bilmes and Kirchhoff [8] have shown that adding word stem as backoff con-

text for unknown word forms improves language modeling of Arabic, using an

approach similar to n-gram models. It is likely that using such information

can be even more beneficial in decision tree-based models because a decision

tree is a much more flexible way of context clustering, as we have argued in

Section 2.3.

160

http://code.google.com/p/clip-lm/

Additionally, in speech recognition, non-verbal information, such as prosody,

may be used to enhance language models. The structural information pro-

vided by prosody has been shown to improve parsing of speech (e.g., [54]),

and therefore, we believe it would be helpful for syntactic language modeling.

However, human-annotated prosodic information is usually available only in

small quantities, much less than would normally be required for LM training.

This problem can be addressed by using automatically produced prosodic la-

bels, or by using a combination of models trained on datasets with and without

prosodic labels.

• The generalized interpolation for decision tree-based model that we have pro-

posed can also be applied to language model adaptation. This can be achieved

by combining decision trees constructed using data from different domains and

then using the generalized interpolation method to optimize the combination

of trees on a heldout set from the target domain. There is a technical limita-

tion: all decision tree models must utilize the same word vocabulary and the

same tagset. However, in many applications this is an acceptable restriction, in

fact, some previously used LM adaptation techniques, e.g., count merging [1],

have similar restrictions.

• Decision trees are used in a large variety of applications (e.g., see [82] for a

survey), both in natural language processing domain and outside of it. For

example, in speech recognition, decision trees are often used to model pro-

nunciation variations (e.g., [108]). We believe that some of the methods for

161

decision tree-based models that we have developed may have an impact beyond

language modeling.

• Since the syntactic model can utilize a wide variety of tags (all that is re-

quired of a tag is to be predictive of the following word, as we have shown in

Section 2.4.2.6), the model can be applied to low-resource languages that do

not have treebanks by utilizing unsupervised techniques such as unsupervised

part-of-speech tagging (e.g., [43, 45]) or unsupervised parsing (e.g., [62, 92])

to create training data for the LM.

162

Bibliography

[1] Michiel Bacchiani and Brian Roark. Unsupervised language model adaptation.
In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 1, pages I–224–I–227, April 2003.

[2] Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. A
tree-based statistical language model for natural language speech recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7):1001–
1008, July 1989.

[3] Srinivas Bangalore. ‘Almost parsing’ technique for language modeling. In
Proceedings of the International Conference on Spoken Language Processing,
volume 2, pages 1173–1176, 1996.

[4] Jerome R. Bellegarda. Statistical language model adaptation: review and per-
spectives. Speech Communication, 42(1):93–108, 2004. Adaptation Methods
for Speech Recognition.

[5] Yoshua Bengio, Duchar Réjean, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137–1155, March 2003.

[6] Van Dur Benjamin and Ashwin Lall. Probabilistic counting with randomized
storage. In Proceedings of the 21st international jont conference on Artifical
intelligence, pages 1574–1579, San Francisco, CA, USA, 2009. Morgan Kauf-
mann Publishers Inc.

[7] Adam Berger. Convexity, maximum likelihood and all that. Technical report,
1996.

[8] Jeff A. Bilmes and Katrin Kirchhoff. Factored language models and general-
ized parallel backoff. In Proceedings of the Conference on Human Language
Technologies and North American Chapter of the Association for Computa-
tional Linguistics, pages 4–6, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[9] Taylor L. Booth and Richard A. Thompson. Applying probability measures to
abstract languages. IEEE Transactions on Computers, pages 442–450, 1973.

[10] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai,
and Robert L. Mercer. Class-based n-gram models of natural language. Com-
putational Linguistics, 18(4):467–479, 1992.

[11] Ivan Bulyko, Spyros Matsoukas, Richard Schwartz, Long Nguyen, and John
Makhoul. Language model adaptation in machine translation from speech. In
Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 4, pages 117–120, April 2007.

163

[12] Ivan Bulyko and Mari Ostendorf. Getting more mileage from web text sources
for conversational speech language modeling using class-dependent mixtures.
In Proceedings of the Conference on Human Language Technologies and North
American Chapter of the Association for Computational Linguistics, pages
7–9, 2003.

[13] Wray L. Buntine. A Theory of Learning Classification Rules. PhD thesis,
Sydney, February 1990.

[14] Richard H. Byrd, Richard H. Byrd, Peihuang Lu, Peihuang Lu, Jorge Nocedal,
Jorge Nocedal, Ciyou Zhu, and Ciyou Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing,
16:1190–1208, 1994.

[15] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the
Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 132–139, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[16] Eugene Charniak. Immediate-head parsing for language models. In Proceed-
ings of the Conference of the Association for Computational Linguistics, pages
116–123, 2001.

[17] Ciprian Chelba. Exploiting Syntactic Structure for Natural Language Model-
ing. PhD thesis, 2000.

[18] Stanley Chen, Brian Kingsbury, Linda Mangu, Daniel Povey, George Saon,
Hagen Soltau, and Geoffrey Zweig. Advances in speech transcription at IBM
under the DARPA EARS program. IEEE Transactions on Audio, Speech and
Language Processing, pages 1596–1608, 2006.

[19] Stanley F. Chen. Building Probabilistic Models for Natural Language. PhD
thesis, 1996.

[20] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. Computer Speech & Language, 13(4):359–
393, 1999.

[21] David Chiang. Hierarchical phrase-based translation. Computational Linguis-
tics, 33, 2007.

[22] David Chiang, Steve DeNeefe, Yee Seng Chan, and Hwee Tou Ng. Decompos-
ability of translation metrics for improved evaluation and efficient algorithms.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 610–619, Stroudsburg, PA, USA, 2008. Association for Com-
putational Linguistics.

164

[23] Nancy Chinchor. The statistical significance of the MUC-4 results. In Proceed-
ings of the 4th conference on Message understanding, pages 30–50, Strouds-
burg, PA, USA, 1992. Association for Computational Linguistics.

[24] Noam Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2(3):113 –124, September 1956.

[25] Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A. Smith. Better
hypothesis testing for statistical machine translation: controlling for optimizer
instability. In Proceedings of the Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 176–181, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[26] Philip Clarkson and Ronald Rosenfeld. Statistical language modeling using the
CMU-Cambridge toolkit. In Proceedings of EUROSPEECH, pages 2707–2710,
1997.

[27] Michael Collins. Head-driven statistical models for natural language parsing.
Computational Linguistics, 29:589–637, December 2003.

[28] Michael Collins, Philipp Koehn, and Ivona Kučerová. Clause restructuring
for statistical machine translation. In Proceedings of the Conference of the
Association for Computational Linguistics, pages 531–540, Stroudsburg, PA,
USA, 2005. Association for Computational Linguistics.

[29] Michael Collins, Brian Roark, and Murat Saraclar. Discriminative syntactic
language modeling for speech recognition. In Proceedings of the Conference of
the Association for Computational Linguistics, pages 507–514, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

[30] Louis Anthony Cox, Jr., Yuping Qiu, and Warren Kuehner. Heuristic least-
cost computation of discrete classification functions with uncertain argument
values. Annals of Operations Research, 21:1–30, January 1990.

[31] R. López de Mántaras. A distance-based attribute selection measure for deci-
sion tree induction. Machine Learning, 6(1):81–92, 1991.

[32] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data process-
ing on large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation, Berkeley, CA, USA, 2004.
USENIX Association.

[33] Michael Denkowski and Alon Lavie. METEOR-NEXT and the METEOR
Paraphrase Tables: Improved Evaluation Support For Five Target Languages.
In Proceedings of the ACL 2010 Joint Workshop on Statistical Machine Trans-
lation and Metrics MATR, 2010.

165

[34] Anoop Deoras and Frederick Jelinek. Iterative decoding: A novel re-scoring
framework for confusion networks. In Proceedings of IEEE Automatic Speech
Recognition and Understanding (ASRU), 2009.

[35] Chris Dyer. The University of Maryland Translation System for IWSLT 2007.
In Proceedings of the International Workshop on Spoken Language Translation,
2007.

[36] Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture,
Phil Blunsom, Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec:
A decoder, alignment, and learning framework for finite-state and context-free
translation models. In Proceedings of the Conference of the Association for
Computational Linguistics 2010 System Demonstrations, pages 7–12, 2010.

[37] Chris Dyer, Hendra Setiawan, Yuval Marton, and Philip Resnik. The Univer-
sity of Maryland statistical machine translation system for the Fourth Work-
shop on Machine Translation. In Proceedings of the Fourth Workshop on
Statistical Machine Translation, pages 145–149, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[38] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.
Springer-Verlag, 1993.

[39] Vladimir Eidelman, Chris Dyer, and Philip Resnik. The University of Mary-
land statistical machine translation system for the Fifth Workshop on Ma-
chine Translation. In Proceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, pages 72–76, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[40] Denis Filimonov and Mary Harper. A joint language model with fine-grain
syntactic tags. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2009.

[41] Ronald A. Fisher. Statistical Methods for Research Workers (5th ed.). Oliver
and Boyd, 1934.

[42] GALE Phase 5 data catalog. http://projects.ldc.upenn.edu/gale/data/
catalog.html.

[43] Jianfeng Gao and Mark Johnson. A comparison of bayesian estimators for
unsupervised hidden markov model pos taggers. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, pages 344–352,
Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

[44] John Garofolo, Jonathan Fiscus, William Fisher, and David Pallett. CSR-IV
HUB4. Linguistic Data Consortium, Philadelphia, 1996.

166

http://projects.ldc.upenn.edu/gale/data/catalog.html
http://projects.ldc.upenn.edu/gale/data/catalog.html

[45] Yoav Goldberg, Meni Adler, and Michael Elhadad. EM can find pretty good
HMM POS-taggers (when given a good start). In Proceedings of the Confer-
ence of the Association for Computational Linguistics, pages 746–754, 2008.

[46] Joshua Goodman. A bit of progress in language modeling. Computing Research
Repository, 2001.

[47] Apache Hadoop Project. http://hadoop.apache.org.

[48] Mary P. Harper and Randall A. Helzerman. Extensions to constraint depen-
dency parsing for spoken language processing. Computer Speech & Language,
9(3):187 – 234, 1995.

[49] David G. Hays. Dependency theory: A formalism and some observations.
Language, 40(4):511–525, 1964.

[50] Peter Heeman. Speech repairs, intonational boundaries and discourse markers:
modeling speakers’ utterances in spoken dialog. PhD thesis, Rochester, NY,
USA, 1998.

[51] Peter A. Heeman. POS tags and decision trees for language modeling. In
Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, pages 129–137, 1999.

[52] Bo-June P. Hsu and James Glass. Iterative language model estimation: Effi-
cient data structure & algorithms. In Proceedings of Interspeech, 2008.

[53] Zhongqiang Huang and Mary Harper. Self-Training PCFG grammars with
latent annotations across languages. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, 2009.

[54] Zhongqiang Huang and Mary P. Harper. Appropriately handled prosodic
breaks help PCFG parsing. In Proceedings of the Conference on Human Lan-
guage Technologies and North American Chapter of the Association for Com-
putational Linguistics, pages 37–45, 2010.

[55] Melvyn J. Hunt. Figures of merit for assessing connected-word recognisers.
Speech Communication, 9(4):329–336, 1990.

[56] Rukmini Iyer, Mari Ostendorf, and Marie Meteer. Analyzing and predict-
ing language model improvements. In Proceedings of the IEEE Workshop on
Automatic Speech Recognition and Understanding, pages 254–261, 1997.

[57] F. Jelinek, B. Merialdo, S. Roukos, and M. Strauss. A dynamic language model
for speech recognition. In Proceedings of the workshop on Speech and Natural
Language, HLT ’91, pages 293–295, Stroudsburg, PA, USA, 1991. Association
for Computational Linguistics.

167

http://hadoop.apache.org

[58] Frederick Jelinek and Robert L. Mercer. Interpolated estimation of Markov
source parameters from sparse data. In Proceedings of the Workshop on Pat-
tern Recognition in Practice, pages 381–397, 1980.

[59] Ruoming Jin and Gagan Agrawal. Efficient decision tree construction on
streaming data. In Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD ’03, pages 571–576,
New York, NY, USA, 2003. ACM.

[60] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. University of Colorado, Boulder, 2000.

[61] G. Kalkanis. The application of confidence interval error analysis to the design
of decision tree classifiers. Pattern Recognition Letters, 14(5):355–361, 1993.

[62] Dan Klein and Christopher D. Manning. Natural language grammar induc-
tion using a constituent-context model. In Advances in Neural Information
Processing Systems. MIT Press, 2001.

[63] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In
Proceedings of the Conference of the Association for Computational Linguis-
tics, pages 423–430, Stroudsburg, PA, USA, 2003. Association for Computa-
tional Linguistics.

[64] Reinhard Kneser. Statistical language modeling using a variable context
length. In Proceedings of the International Conference on Spoken Language
Processing, pages 494–497, Philadelphia, PA, 1996.

[65] Philipp Koehn. Statistical significance tests for machine translation evalu-
ation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 388–395, 2004.

[66] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based
translation. In Proceedings of the Conference on Human Language Technolo-
gies and North American Chapter of the Association for Computational Lin-
guistics, pages 48–54, Stroudsburg, PA, USA, 2003. Association for Compu-
tational Linguistics.

[67] Philipp Koehn and Josh Schroeder. Experiments in domain adaptation for
statistical machine translation. In Proceedings of the Second Workshop on
Statistical Machine Translation, StatMT ’07, pages 224–227, Stroudsburg, PA,
USA, 2007. Association for Computational Linguistics.

[68] I. Kononenko, I. Bratko, and E. Roskar. Experiments in automatic learning
of medical diagnostic rules. Technical report, 1984.

168

[69] Ronald Kuhn and Renato De Mori. A cache-based natural language model
for speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(6):570–583, June 1990.

[70] Erich L. Lehmann. Testing Statistical Hypotheses (Second Edition). Springer-
Verlag, 1986.

[71] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The
Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus. In
Proceedings of the NEMLAR Conference on Arabic Language Resources and
Tools, 2004.

[72] David M. Magerman. Natural language parsing as statistical pattern recogni-
tion. PhD thesis, Stanford, CA, USA, 1994.

[73] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, June 1999.

[74] Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann
Taylor. Treebank-3. Linguistic Data Consortium, Philadelphia, 1999.

[75] Marie-Catherine de Marneffe, Bill Maccartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In Pro-
ceedings of LREC, 2006.

[76] Sven Martin, Christoph Hamacher, Jrg Liermann, J Org Liermann, Frank
Wessel, and Hermann Ney. Assessment of smoothing methods and complex
stochastic language modeling. In Proceedings of the 6th European Conference
on Speech Communication and Technology, pages 1939–1942, 1939.

[77] Sven Martin, Jorg Liermann, and Hermann Ney. Algorithms for bigram and
trigram word clustering. In Speech Communication, pages 1253–1256, 1998.

[78] Hiroshi Maruyama. Structural disambiguation with constraint propagation. In
Proceedings of the Conference of the Association for Computational Linguis-
tics, pages 31–38, Stroudsburg, PA, USA, 1990. Association for Computational
Linguistics.

[79] I. Dan Melamed, Ryan Green, and Joseph P. Turian. Precision and recall of
machine translation. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology, pages 61–63, Stroudsburg, PA, USA, 2003. Association for Com-
putational Linguistics.

[80] Tom Mikolov, Martin Karafit, Luk Burget, Jan ernock, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Proceedings of
the 11th Annual Conference of the International Speech Communication Asso-
ciation, pages 1045–1048. International Speech Communication Association,
2010.

169

[81] John Mingers. An empirical comparison of selection measures for decision-tree
induction. Machine Learning, 3(4):319–342, 1989.

[82] Sreerama K. Murthy. Automatic construction of decision trees from data: A
multi-disciplinary survey. Data Mining and Knowledge Discovery, 2:345–389,
1997.

[83] Thomas R. Niesler and Phil C. Woodland. A variable-length category-based
n-gram language model. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1996.

[84] Franz Josef Och. Minimum error rate training in statistical machine transla-
tion. In Proceedings of the Conference of the Association for Computational
Linguistics, pages 160–167, Stroudsburg, PA, USA, 2003. Association for Com-
putational Linguistics.

[85] Oracle Berkeley DB Java Edition. http://www.oracle.com/technetwork/

database/berkeleydb/.

[86] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
Conference of the Association for Computational Linguistics, 2001.

[87] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning ac-
curate, compact, and interpretable tree annotation. In Proceedings of the
Conference of the Association for Computational Linguistics, pages 433–440,
Sydney, Australia, July 2006. Association for Computational Linguistics.

[88] J. Ross Quinlan. Discovering rules by induction from large collections of
examples. Expert systems in the microelectronic age, 1979.

[89] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[90] Ihsan Rabbi, Mohammad Abid Khan, and Rahman Ali. Developing a tagset
for Pashto part of speech tagging. In Proceedings of the International Confer-
ence on Electrical Engineering, pages 1–6, 2008.

[91] Ariya Rastrow, Markus Dreyer, Abhinav Sethy, Sanjeev Khudanpur, Bhu-
vana Ramabhadran, and Mark Dredze1. Hill climbing on speech lattices: A
new rescoring framework. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2011.

[92] Roi Reichart and Ari Rappoport. Improved fully unsupervised parsing with
zoomed learning. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 684–693, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

170

http://www.oracle.com/technetwork/database/berkeleydb/
http://www.oracle.com/technetwork/database/berkeleydb/

[93] Stefan Riezler and John T. Maxwell. On some pitfalls in automatic evaluation
and significance testing for MT. In Proceedings of the ACL Workshop on
Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, pages 57–64, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics.

[94] Brian Roark, Murat Saraclar, and Michael Collins. Discriminative n-gram
language modeling. Computer Speech & Language, 21(2):373–392, 2007.

[95] Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu. Whole-sentence expo-
nential language models: A vehicle for linguistic-statistical integration. Com-
puters, Speech and Language, 15:2001, 2001.

[96] Holger Schwenk and Jean-Luc Gauvain. Neural network language models
for conversational speech recognition. In Proceedings of the Interspeech-2004,
pages 2253–2256, 2004.

[97] John C. Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A Scalable
Parallel Classifier for Data Mining. In Proceedings of the 22th International
Conference on Very Large Data Bases, VLDB ’96, pages 544–555, San Fran-
cisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[98] Daniel Dominic Sleator and David Temperley. Parsing English with a link
grammar. Computing Research Repository, 1995.

[99] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and Ralph
Weischedel. A study of translation error rate with targeted human annotation.
In Proceedings of the Association for Machine Transaltion in the Americas,
2006.

[100] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. Rao Gadde, M. Plauch,
C. Richey, E. Shriberg, K. Snmez, F. Weng, and J. Zheng. The SRI March
2000 Hub-5 conversational speech transcription system. In Proceedings NIST
Speech Transcription Workshop, 2000.

[101] Andreas Stolcke. Entropy-based pruning of backoff language models. In
Proceedings of the DARPA Broadcast News Transcription and Understand-
ing Workshop, pages 270–274, 1998.

[102] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In Pro-
ceedings of the International Conference on Spoken Language Processing, 2002.

[103] Student. The probable error of a mean. Biometrika, 6:1–25, 1908.

[104] David Talbot and Miles Osborne. Randomised language modelling for sta-
tistical machine translation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages 512–519, Prague, Czech
Republic, June 2007. Association for Computational Linguistics.

171

[105] Wen Wang. Statistical parsing and language modeling based on constraint
dependency grammar. PhD thesis, 2003.

[106] Wen Wang, Mary P. Harper, and Andreas Stolcke. The robustness of an
almost-parsing language model given errorful training data. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, 2003.

[107] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer, Ni-
anwen Xue, Mitchell Marcus, Ann Taylor, Craig Greenberg, Eduard Hovy,
Robert Belvin, and Ann Houston. OntoNotes Release 2.0. Linguistic Data
Consortium, Philadelphia, 2008.

[108] P.C. Woodland, J.J. Odell, V. Valtchev, and S.J. Young. Large vocabulary
continuous speech recognition using HTK. Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, 3:125–128,
1994.

[109] Jun Wu and S. Khudanpur. Building a topic-dependent maximum entropy
model for very large corpora. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2002.

[110] Jun Wu and Sanjeev Khudanpur. Efficient training methods for maximum
entropy language modeling. In Proceedings of the 6th International Conference
on Spoken Language Technologies, 2000.

[111] Peng Xu. Random Forests and Data Sparseness Problem in Language Model-
ing. PhD thesis, Baltimore, Maryland, April 2005.

[112] Peng Xu and Frederick Jelinek. Random forests in language modeling. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2004.

[113] Frank Yates. Contingency tables involving small numbers and the χ2 test.
Supplement to the Journal of the Royal Statistical Society, 1(2):217–235, 1934.

[114] Ying Zhang and Stephan Vogel. Measuring confidence intervals for the ma-
chine translation evaluation metrics. In Proceedings of the 10th International
Conference on Theoretical and Methodological Issues in Machine Translation,
pages 4–6, 2004.

[115] Imed Zitouni. Backoff hierarchical class n-gram language models: effectiveness
to model unseen events in speech recognition. Computer Speech & Language,
21(1):88–104, 2007.

[116] Geoffrey Zweig, Patrick Nguyen, Dirk Van Compernolle, Kris Demuynck, Les
Atlas, Pascal Clark, Greg Sell, Fei Sha, Meihong Wang, Aren Jansen, Hynek
Hermansky, Damianos Karakos, Keith Kintzley, Samuel Thomas, Sivaram

172

G.S.V.S., Sam Bowman, and Justine Kao. Speech recognition with segmental
conditional random fields: Final report from the 2010 JHU summer workshop.
Technical report, 2010.

173

	List of Tables
	List of Figures
	Introduction and Overview of the Thesis
	Motivation
	Structure of the Thesis
	Summary of Contributions

	Language Modeling Review
	Background
	What is Language Modeling?
	Applications of Language Modeling
	Types of Language Models
	Evaluation Metrics

	Review of Language Modeling Technology
	N-gram Language Models
	Class-based Models
	Joint Models
	Maximum Entropy Models
	Other Models

	Context Clustering in Language Modeling
	N-gram Models
	Class-based Models
	Decision Tree Models

	Syntax in Language Modeling
	Parse Trees
	Syntactic Tags

	Summary

	Experimental Setups
	Hub4 Setup
	WSJ '94-'96 Setup
	GALE MT Setup

	Decision Trees (DTs) in Language Modeling: Methods, Problems, and Solutions
	DT induction algorithm
	Differences between DT for Classification and Language Modeling
	Stopping and Pruning Rules
	Question Selection
	Splitting Rule
	Probability estimation in a DT Language Model
	In-tree Interpolation
	Multiple Decision Trees

	Bias in Splitting Rules
	Entropy Bias
	Attribute Selection Metrics
	Evaluation of Attribute Selection Metrics

	Interpolation of Multiple Decision Trees
	Backoff Property
	Linear Interpolation
	Perplexity Evaluation: Recursive vs. Generalized Interpolation
	Selection of Decision Trees for Forest Modeling

	Contributions
	Summary

	Making a Syntactic Decision Tree-based LM Tractable
	Computational Considerations
	Tree Construction
	In-tree Interpolation
	Forest Interpolation
	Probability Representation
	On-disk Format
	The Decoding Algorithm

	N-gram Approximation
	Accuracy of N-gram Approximation

	Contributions
	Summary

	Large-scale Experiments in ASR and MT
	Broadcast News ASR Rescoring Experiments
	Machine Translation Experiments
	Contributions
	Summary

	Contributions and Future Work
	Contributions
	Future Work

	Bibliography

