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infeasibility of constructing certain cryptographic primitives (e.g., key agreement) from

others (e.g., one-way functions). In this dissertation we further extend the frontier of this

field by demonstrating several new impossibility results as well as a new framework for

studying a more general class of constructions.

Our first two results demonstrate impossibility of black-box constructions of two

commonly used cryptographic primitives. In our first result we study the feasibility

of black-box constructions of predicate encryption schemes from standard assumptions

and demonstrate strong limitations on the types of schemes that can be constructed. In

our second result we study black-box constructions of constant-round zero-knowledge

proofs from one-way permutations and show that, under commonly believed complex-

ity assumptions, no such constructions exist.

A widely recognized limitation of black-box impossibility results, however, is that

they say nothing about the usefulness of (known) non-black-box techniques. This state
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functions still holds even in this non-black-box setting that allows for zero-knowledge

proofs.
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Chapter 1

Introduction

A central goal of theoretical cryptography is to explore relationships between var-

ious cryptographic primitives and, in particular, to show constructions of various “high-

level” cryptographic objects (encryption schemes, key agreement protocols, etc.) based

on “low-level” cryptographic tools (such as one-way functions). This line of research has

been very successful, and we now know, for example, that one-way functions suffice for

constructing all the primitives of private-key cryptography [121, 18, 59, 56, 73] as well

as digital signature schemes [92, 109]. In other cases, however, constructions of certain

primitives from others are unknown: for example, we do not currently know how to con-

struct public-key encryption schemes based on one-way functions. Given this failure, it

is natural to wonder whether such constructions are inherently impossible. Unfortunately,

we cannot rule out all such constructions as long as we believe that the object in question

exists in the real world: if we believe that RSA encryption (say) is secure, then a valid

construction of public-key encryption from any one-way function f consists of simply

ignoring f and outputting the code for the RSA encryption scheme. Yet this is clearly not

what is intended.

In an effort to capture what is meant by a “natural” construction of one primitive

from another, Impagliazzo and Rudich [76] formalized the notion of a black-box construc-

tion. Informally, a black-box construction of primitive Q from primitive P is a construc-

tion of Q that uses only the input/output characteristics of an implementation of P , but
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does not rely on any internal details as to how P is implemented. Moreover, Q should

be “secure” as long as P is “secure” (each in their respective senses). This notion al-

lowed Impagliazzo and Rudich to reason about the existence of such constructions. They

demonstrated the power of this model by showing that there does not exist a black-box

construction of key agreement from one-way functions. Their work opened a wealth of

research opportunities to study the relationships among the various primitives that are

used in cryptography. This has led to many interesting results demonstrating separa-

tions between primitives [117, 85, 52, 54, 49, 53, 68, 9, 10]. We review the techniques used

by these and other results in Chapter 3 and show two new separations in Chapters 4

and 5. As the majority of known constructions in cryptography are in fact black-box,

such results give strong evidence that drastically new techniques will be needed for these

constructions.

However, a recognized drawback of existing black-box impossibility results is that

they say nothing regarding whether these results might be circumvented using non-

black-box techniques. While it is true that most constructions in cryptography are black-

box, we have examples of non-black-box constructions as well. One striking example

is given by the observation that all known constructions of CCA-secure public-key en-

cryption schemes based on trapdoor permutations [93, 37, 114, 88] are, in fact, not black-

box. (Interestingly, a partial black-box separation is known [53].) Other non-black-box

constructions include those of [39, 12, 11, 2, 44, 5]. For a more detailed summary see

Section 6.2.

If black-box constructions are supposed to be representative of existing techniques,

we should update our definition of what “black-box” means. In the final result of this dis-

2



sertation, we propose a framework to do exactly this, allowing us to go beyond black-box

separations. Specifically, we suggest a model that incorporates a rich class of non-black-

box techniques: those that rely on zero-knowledge proofs. We accomplish this by aug-

menting the basic, black-box model — in which there is only an oracle O implementing

some primitive P — with a zero-knowledge (ZK) oracle that allows parties to prove state-

ments relative to O in zero knowledge. (Technically, a ZK oracle allows zero-knowledge

proofs for any language in NPO.) We call any construction using black-box access to O

and its associated ZK oracle an augmented black-box construction. Given primitives P

and Q, we can then ask whether there exists an augmented black-box construction of Q

from P ; an impossibility result demonstrating that no such construction exists rules out

a broader class of approaches to constructing one from the other. Since the technique

of using zero-knowledge proofs is by far the most commonly used non-black-box con-

struction technique, our framework captures a meaningfully larger class of constructions

than [76]. Of course, as with all impossibility results, such a result says nothing about

whether some other non-black-box techniques might apply (and, in fact, the non-black-

box results of, e.g., [11, 2, 5] do not fall within our framework); nevertheless, impossibility

results are still useful insofar as they show us where we must look and what dead ends

we must avoid if we hope to circumvent them.

1.1 Summary of Contributions

In this dissertation, we study the power of black-box and augmented black-box

constructions in relating several cryptographic primitives. We begin with some prelimi-

nary definitions in Chapter 2. Then, in Chapter 3, we review the definitions of black-box
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constructions and the techniques used to prove black-box separation results. We addi-

tionally give a brief survey of the prior work in this area. Then in Chapters 4, 5 and 6 we

present our results:

• In Chapter 4, we investigate the possibility of constructing secure predicate encryp-

tion schemes [24, 81] from trapdoor permutations or CCA-secure encryption. In a

predicate encryption scheme every ciphertext is associated with an attribute I and

every secret key corresponds to a predicate f . A secret key SKf can decrypt a

ciphertext associated with attribute I if and only if f(I) = 1. We identify a combi-

natorial property on the predicates and attributes of a predicate encryption scheme

such that a black-box construction of predicate encryption from trapdoor permuta-

tions is impossible. To demonstrate the usefulness of this property we show that it

is in fact satisfied by several important special cases of predicate encryption such as

identity-based encryption [116, 21], forward-secure encryption [30] and broadcast

encryption [42]. A preliminary version of this work has appeared previously [83].

• In Chapter 5, we investigate the round complexity of black-box constructions of

zero-knowledge proofs [63]. Specifically, we look at the feasibility of constructing

constant-round zero-knowledge proofs from one-way permutations. We identify

the adaptivity of the simulator’s queries to the cheating verifier as a key prop-

erty for studying such constructions. We then show that, under widely believed

complexity assumptions, there is no black-box construction of constant-round zero-

knowledge proofs with constant (and even logarithmic) simulator adaptivity from

one-way permutations. In fact, even if we do not restrict the simulator adaptivity,
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we show that such a construction would lead to a major breakthrough in complex-

ity theory and is thus likely to be difficult to find. A preliminary version of this

work has appeared previously [65].

• In Chapter 6, we introduce a new framework for separation results that allows us to

go beyond traditional black-box separations and prove separations for a richer class

of constructions. Specifically, we define augmented black-box constructions to cap-

ture the class of non-black-box constructions using zero-knowledge proofs relative

to a base primitive. We validate this model by demonstrating that it indeed cap-

tures known non-black-box constructions such as the construction of CCA-secure

encryption from trapdoor permutations [93, 114]. Then, we initiate the study of

augmented black-box separations by showing that there is no augmented black-box

construction of secure (perfect completeness) key agreement from one-way func-

tions. A preliminary version has appeared previously [26].
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Chapter 2

Preliminaries

2.1 Notation

Throughout this thesis, we let n ∈ N denote the security parameter. Efficient com-

putation is modeled by a probabilistic polynomial time (ppt) Turing machineM receiving

1n as an input. A ppt Turing machine is one for which there exists a polynomial poly such

that, for all inputs x and all random tapes r, M(x; r) runs in time bounded by poly(|x|).

Note that by giving M the string 1n as an input, we guarantee that M can run in time

at least poly(n). We will also need the following two definitions. An expected polyno-

mial time Turing machine M is one for which there exists a polynomial poly such that,

for all inputs x, the expected running time of M(x; r)(over the choice of r) is bounded

by poly(|x|). A non-uniform Turing machine is a pair (M,a) where M is a two-input

polynomial time Turing machine and a = a1, a2, . . . is an infinite sequence of strings such

that there exists a polynomial poly for which |an| ≤ poly(n) for all n. On input x, we de-

fine the output of this machine to be M(x, a|x|) where a|x| is a non-uniform advice string

depending on the length of x. Since non-uniform Turing machines are equivalent to (non-

uniform) families of circuits, we will often refer to such machines as circuits rather than

Turing machines.

We write {0, 1}n to denote the set of binary strings of length n and {0, 1}∗ to indicate

the set of all finite, binary strings. For a set S, we write x ← S to indicate that the value
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of x is sampled uniformly from S. We use 〈A(xa), B(xb)〉(x) = (ya, yb) to represent an

interactive protocol between two interactive Turing machinesA andB on common input

x, where A also has private input xa and receives output ya and B has private input

xb and private output yb. When only one of the parties receives output we will abuse

notation to write 〈A,B〉 = a to indicate this single output.

Negligible Functions: We will often need to argue that an event occurs with very low

probability. For this purpose, we use the following definition of a negligible function to

indicate a function that goes to 0 faster than any inverse polynomial.

Definition 2.1.1 (Negligible function) We call a function negl : N → R+ negligible if for

every polynomial poly, there exists an N such that for all n > N , negl(n) < 1
poly(n) .

We say that a function g : N→ R+ is overwhelming if 1− g(·) is negligible.

Additionally, we will need to argue that some events occur with noticeable prob-

ability. For this purpose, we use the following definition of a noticeable function to in-

dicate a function that is lower bounded by an inverse polynomial (for large enough n).

Note that it is possible for a function to be neither negligible nor noticeable.

Definition 2.1.2 (Noticeable function) We say that a function f : N → R+ is noticeable if

there exists a polynomial poly and an N such that for all n > N , f(n) > 1
poly(n) .

Oracle Algorithms: In this dissertation we will often talk about oracle algorithms or

oracle Turing machines. An oracle Turing machine is a Turing machineM that is allowed

to make oracle queries to a function f : {0, 1}∗ → {0, 1}∗. Whenever M makes a query

x to f , it receives the answer f(x) in a single computation step. We write Mf to indicate
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a machine M with oracle access to f . We will also use this notation to represent black-

box access to another Turing machine. That is MA will be used to indicate a machine M

that may make “oracle” queries to a (possibly inefficient) machine A. Such a query will

only take a single time step and we assume that M does not see how the computation is

actually performed.

In this thesis, we make extensive use of the following oracles. A random oracle,

denoted by O : {0, 1}∗ → {0, 1}∗, is an oracle evaluating a random length-preserving

function. That is, O def
= {On : {0, 1}n → {0, 1}n}n∈N where each On is chosen uniformly

at random from the set of all length-preserving functions on {0, 1}n. A PSPACE-complete

oracle, denoted by PSPACE, is an oracle deciding membership in some PSPACE-complete

language such as Quantified Boolean Formula.

2.2 Probabilistic Lemmas

We now provide several probabilistic lemmas that we will use in this dissertation.

The first such lemma is the Borel-Cantelli Lemma. This lemma says that for any infinite

sequence of events if the sum of their probabilities is finite then the probability that in-

finitely many of them happen is 0. The following statement of the lemma is due to [75].

Lemma 2.2.1 (Borel-Cantelli Lemma) Let B1, B2, . . . be a sequence of events on the same

probability space. Then
∑∞

n=1 Pr[Bn] <∞ implies that Pr[
∧∞
k=1

∨
n≥k Bn] = 0.

A second lemma that we will use is Markov’s inequality. This inequality bounds the

probability that a random variable significantly deviates from its expected value.
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Lemma 2.2.2 (Markov’s Inequality) Let X be a random variable assuming only non-negative

values. Then for any t > 0, Pr[X ≥ t] ≤ E[X]
t , where E[X] denotes the expectation of X .

2.3 Cryptographic Primitives

In this section we define some basic cryptographic primitives that will be discussed

throughout this dissertation. We leave the definitions of more complicated primitives to

the corresponding chapters. Our definitions follow the presentation of [79].

2.3.1 Basic Primitives

We begin with the definitions of two very basic cryptographic primitives. The first

of these primitive is a one-way function which is the most basic of all cryptographic prim-

itives and is necessary for all constructions that we will discuss.

Definition 2.3.1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF) if the follow-

ing two conditions hold:

• (Easy to Compute:) There exists a polynomial-time algorithm Mf such that Mf (x) = f(x)

for all x.

• (Hard to Invert:) For every ppt algorithm A, there exists a negligible function negl such

that

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))] ≤ negl(n).

If, for each n, f is a function from {0, 1}n to {0, 1}n then we say that n is a length-

preserving one-way function. If, for each n, f is a permutation on {0, 1}n then we call this

a one-way permutation (OWP).
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The next primitive we define is a pseudorandom generator [18, 121]. A pseudoran-

dom generator (PRG) is a deterministic algorithm that receives a short truly random seed

and stretches it into a long pseudorandom string, where a pseudorandom string is one

that is computationally indistinguishable from a random string of the same length. To

make this definition formal we first define what it means for two probability ensembles

to be computationally indistinguishable.

Definition 2.3.2 Two probability ensembles X def
= {Xn}n∈N and Y def

= {Yn}n∈N are compu-

tationally indistinguishable if, for every ppt distinguisher D there exists a negligible function

negl such that:

|Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| ≤ negl(n)

where the notation D(1n, Xn) means that x is chosen according to distribution Xn and then

D(1n, x) is run.

Additionally, we say that X and Y are indistinguishable for non-uniform distinguishers,

if the above holds for any non-uniform polynomial time distinguisher D.

We let Un denote the uniform distribution over {0, 1}n. We can now define a pseudoran-

dom generator as follows.

Definition 2.3.3 Let l(·) be a polynomial and let G be a deterministic polynomial-time algo-

rithm such that for any s ∈ {0, 1}n, G outputs a string of length l(n). G is a pseudorandom

generator (PRG) if:

• (Expansion:) For every n ∈ N it holds that l(n) > n.

• (Pseudorandomness:) The ensemble {G(Un)}n∈N is computationally indistinguishable
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from the ensemble U def
= {Ul(n)}n∈N.

The random input s given toG is called the seed. The function l(·) is called the expansion factor

of G.

2.3.2 Public-Key Primitives

We now shift to the public-key world and define a few commonly used primitives.

First we define secure key agreement, which is a protocol allowing two parties, Alice

and Bob, to agree on a secret key in the presence of an eavesdropper. This primitive will

figure extensively in our discussion of black-box separations and also in our results in

Chapter 6.

Definition 2.3.4 A key agreement protocol Π is a pair of algorithm (A,B) for Alice and Bob

respectively. On input 1n, A and B choose independent random coins, participate in an inter-

active protocol and output kA, kB ∈ {0, 1}n respectively. Using previously defined notation, Π

is the protocol 〈A(rA), B(rB)〉(1n) = (kA, kB). We require that Π have perfect completeness.

That is, for all random strings for Alice and Bob we have kA = kB .

We say that a key agreement protocol Π is secure in the presence of an eavesdropper if

for every ppt eavesdropper Eve there exists a negligible function negl such that

Pr[KAeavA,Π(n) = 1] ≤ 1

2
+ negl(n)

where KAeavA,Π(n) is the following experiment.

1. On input 1n, A and B execute protocol Π. This results in output (trans, k) where trans is

a transcript of all the messages exchanged and k is the output key.
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2. A random bit b ← {0, 1} is chosen. If b = 0 then choose k̂ ← {0, 1}n and if b = 1 set

k̂ = k.

3. Eve is given (trans, k̂) and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Next, we define two standard security notions for public-key encryption. Namely,

chosen-plaintext (CPA) and chosen-ciphertext (CCA) secure encryption. What we call

CCA-security is also commonly known as CCA-2 security.

Definition 2.3.5 A public-key encryption scheme is a tuple of ppt algorithms (G, E ,D) such

that:

• G takes as input the security parameter 1n and outputs the public and secret keys (pk, sk).

• E takes as input a public key pk and a message m and outputs a ciphertext c. We write

c = Epk(m). If we wish to explicitly specify the randomness r used by E we will write

Epk(m; r).

• D takes as input a ciphertext c and the secret key sk and outputs a message m = Dsk(c).

In this dissertation we require that the encryption scheme have perfect correctness. That is, for

any pair of keys (pk, sk) output by G,

Pr[Dsk(Epk(m)) = m] = 1.

First, we define what it means for a public-key encryption scheme to be secure

under a chosen-plaintext attack.
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Definition 2.3.6 A public-key encryption scheme Π = (G, E ,D) is CPA-secure if for all ppt

adversaries A, there exists a negligible function negl such that:

Pr[PubKcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n)

where, PubKcpa
A,Π(n) is the output of the following experiment

1. G(1n) is run to obtain (pk, sk).

2. A is given pk and outputs a pair of messages (m0,m1) of the same length. Note thatA can

evaluate Epk(·) since it knows pk.

3. A random b← {0, 1} is chosen and then c = Epk(mb) is given to the adversary. c is called

the challenge ciphertext.

4. A outputs a bit b′.

5. The output of the experiment is 1 if b′ = b and 0 otherwise.

A stronger notion of security for public-key encryption is that of chosen ciphertext

security where the adversary is additionally given access to a decryption oracle. For-

mally,

Definition 2.3.7 A public-key encryption scheme Π = (G, E ,D) is CCA-secure if for all ppt

adversaries A, there exists a negligible function negl such that:

Pr[PubKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n)

where, PubKcca
A,Π(n) is the output of the following experiment
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1. G(1n) is run to obtain (pk, sk).

2. A is given pk and access to a decryption oracle Dsk(·) and outputs a pair of messages

(m0,m1) of the same length.

3. A random b← {0, 1} is chosen and then c = Epk(mb) is given to the adversary.

4. A continues to interact with the decryption oracle, but may not request a decryption of c.

Finally, A outputs a bit b′.

5. The output of the experiment is 1 if b′ = b and 0 otherwise.

2.3.3 Zero-Knowledge Proofs

Here we give a definition of zero-knowledge proofs [63] for a language L that we will

use in this dissertation. A zero-knowledge proof is a two-party protocol in which one

party, the prover, can convince the other party, the verifier, that some statement x is in

L without the verifier learning anything other than that x ∈ L. To demonstrate that the

verifier does not learn too much a polynomial time simulator is given that (without hav-

ing a witness w for the statement x ∈ L) can output a view indistinguishable from the

verifier’s view in his interaction with an honest prover. Since the verifier can just run

the simulator himself, this guarantees that he did not learn anything additional from the

proof. We focus on the restricted case of black-box zero-knowledge where the simulator

only accesses the cheating verifier as a black-box while generating the simulated tran-

script. This definition of zero-knowledge was introduced in the works of Goldreich et

al. [62, 58] and we follow the presentation of [55].
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Definition 2.3.8 Fix a language L ∈ NP and a corresponding NP relation RL. For n ∈ N,

let Ln
def
= L ∩ {0, 1}n and Rn

def
= {(x,w) | (x,w) ∈ RL and x ∈ Ln}. An efficient prover

interactive proof system for L is a pair of ppt interactive algorithms (P, V ), where only V has

output, such that the following two conditions hold:

• (Perfect Completeness:) For every (x,w) ∈ RL,

Pr[〈P (w), V 〉(x) = 1] = 1

• (Negligible Soundness:) For every x /∈ L and any (possibly unbounded) adversarial prover

P ∗ there exists a negligible function negl such that,

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(|x|)

We say that (P, V ) is black-box zero-knowledge (BBZK) if additionally the following holds:

• (Black-Box Zero-Knowledge:) There exists an expected polynomial time simulator S such

that for any non-uniform polynomial time cheating verifier V ∗ the following two ensembles

are indistinguishable by non-uniform polynomial time distinguishers.

– {〈P (w), V ∗〉(x)}(x,w)∈RL
(the output of V ∗ after interacting with the honest prover

on witness w for the fact that x ∈ L)

– {SV ∗(x)}(x,w)∈RL
(the simulated output of V ∗ produced by the simulator S using

black-box access to V ∗)
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Some discussion is in order. First, without loss of generality, we assume that the

cheating verifier V ∗ outputs its entire view, so simulating its output is equivalent to sim-

ulating its view. By making both the verifier and distinguisher non-uniform, we also

require zero-knowledge to hold with respect to verifiers (and distinguishers) receiving

auxiliary input. This is necessary for zero-knowledge to be preserved under sequential

composition (see [55] for a discussion).

Our definition differs from the standard one in the following ways. First, we only

define zero-knowledge proofs for the case that L ∈ NP. This allows us to make the honest

prover P efficient when given an NP witness w. Second, we require that zero-knowledge

proofs have perfect completeness and negligible soundness error. Finally, we require that

the simulation be black-box. That is, we require a universal simulator S that is able to

simulate the view of any cheating verifier V ∗ while only making black-box queries to V ∗.

Note that this notion of black-box simulation is quite different from the notion of black-

box constructions discussed in this thesis. In black-box simulation, black-box refers to the

access that the simulator has to the cheating verifier, whereas in a black-box construction,

black-box access refers to the way the construction uses the underlying primitive.
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Chapter 3

Black-Box Constructions and Separations

In this chapter, we introduce the concept of a black-box construction of a primitive

Q from a primitive P . In Section 3.1, we review the definitions of several different types

of black-box constructions and the relationships between them. Then, in Section 3.2, we

define the concept of a black-box separation ofQ from P and give a survey of the techniques

and results proving such separations for various primitives.

3.1 Definitions of Black-Box Constructions

Intuitively, a construction of primitive Q from primitive P is black-box if it treats

P as an oracle, only looking at the input/output behavior of P and not at how P is im-

plemented. To make the above intuition into a formal definition we first need to define

what a primitive is and exactly what it means to construct one primitive from another. In

this section, we provide the necessary language for doing this. Following the definitions

of Reingold et al. [108], we define several types of black-box constructions and discuss

the relationships between them. We note that all the definitions in this section are pre-

sented for the case of uniform adversaries and do not necessarily apply to non-uniform

or information theoretic notions of security.
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3.1.1 Cryptographic Primitives

A cryptographic primitive consists of two components: a correctness requirement

specifying what the primitive should do and a security requirement specifying what it

means for an attacker to break the primitive’s security. A secure implementation of the

primitive should then satisfy the correctness requirement and also be secure against any

polynomial time attacker. That is, no probabilistic polynomial time attacker should be

able to break any of the security requirements. More formally,

Definition 3.1.1 A primitive P is a pair (FP , RP ), where FP is a set of functions f : {0, 1}∗ →

{0, 1}∗ and RP is a relation over pairs (f,M) where f ∈ RP and M is a (possibly inefficient)

Turing machine.

• We say that a function f implements P if f ∈ FP . Additionally, we say that f efficiently

implements P if f ∈ FP and f is computable by a ppt machine.

• A machine M P -breaks implementation f ∈ FP if the pair (f,M) ∈ RP . Thus, a secure

implementation of P is a function f ∈ FP such that no ppt machine P -breaks f .

• A primitive P exists if there exists an efficient and secure implementation f of P .

The set FP in the above definition is used to capture the correctness requirements.

That is, any function f ∈ FP will have the correct input and output space and will have

the proper behavior. For example, in the case when P is a length-preserving one-way

function, any such f must map inputs of length n to outputs of length n. However,

this does not say anything about the security of f . This is captured by the set RP ,

which, for each f ∈ FP , contains all the machines that will break the security of f as
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an implementation of P . By carefully defining which machines M are in this set for a

function f , we can capture the desired security property. For example, for the case of

one-way functions we would define (f,M) ∈ RP if there is a polynomial p such that

Prx←{0,1}n [M(f(x)) ∈ f−1(f(x))] > 1/p(n) for infinitely many values of n.

We will often want to argue that some primitive P can be securely instantiated

using an oracle O. That is, there exists an efficient implementation of P using O such

that no efficient adversary with oracle access to O can break its security. More formally,

Definition 3.1.2 For an oracle O : {0, 1}∗ → {0, 1}∗, we say that:

• O implements primitive P if there exists an implementation f ∈ FP that is computable

by a ppt machine with oracle access to O.

• Implementation f is secure relative toO if there is no ppt oracle machineM such thatMO

P -breaks f .

• A primitive P exists relative toO ifO implements P via implementation f which is secure

relative to O.

3.1.2 Cryptographic Constructions

Now that we know what a cryptographic primitive is, we can define what it means

to construct primitive Q from primitive P . A cryptographic construction consists of two

algorithms, a construction G turning an instance of P into an instance of Q and a security

reduction S showing that if we can break the construction of Q then we can also break

the underlying instantiation of P . Here, we will only consider black-box constructions.

That is, the construction of Q will treat P as an oracle. Following [108], we define several
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variants of such constructions that vary in how the adversary breaking Q is used by

the security reduction. We only give definitions relevant to this work. For additional

definitions and discussion we refer the reader to [108].

We begin with the definition of a fully black-box construction of Q from P . In a

fully black-box construction it is additionally required that the security reduction use the

adversary breaking the security of Q as a black-box. More formally,

Definition 3.1.3 There exists a fully black-box construction of primitive Q = (FQ, RQ) from

primitive P = (FP , RP ), if there exist ppt oracle machines G and S such that:

• For every implementation f ∈ FP , Gf ∈ FQ (Gf implements Q)

• For every implementation f ∈ FP and every (possibly inefficient) machine M , if M Q-

breaks Gf then SM,f P -breaks f .

This construction consists of two components: the construction G and the security

reduction S. As in all black-box constructions, we require that G use the primitive P as a

black-box. In fact we require that a universalGwork for all f . What makes this construc-

tion fully black-box is that the security reduction uses the (possibly inefficient) adversary

M breaking the security of Q in a black-box way to break the security of P . In particu-

lar, S must work for any such adversary, even an inefficient one. Interestingly, the vast

majority of known constructions in cryptography satisfy this very strong requirement.

Next, we define a less restricted type of construction called a semi black-box con-

struction. In such a construction the security reduction S no longer uses the Q-adversary

as a black-box and may be different for each M . However, since we now require that M
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be polynomial-time it may no longer be able to evaluate the possibly inefficient imple-

mentation f . Thus, we give M access to an oracle evaluating f . More formally,

Definition 3.1.4 There exists a semi black-box construction of primitive Q = (FQ, RQ) from

primitive P = (FP , RP ) if there exists a ppt oracle machine G such that:

• For every implementation f ∈ FP , Gf ∈ FQ (Gf implements Q)

• For every implementation f ∈ FP , if there exists a ppt oracle machine M such that Mf

Q-breaks Gf , then there exists a ppt oracle machine S such that Sf P -breaks f .

The key difference between a semi black-box and a fully black-box construction is

the fact that the security reduction is defined based on the Q-adversary M . In particular,

this means that a different reduction, dependent on the code of M , can be used for each

M . However, this security reduction still has a black-box component because of M ’s or-

acle access to the possibly inefficient implementation f . The security reduction may not

know the exact queries thatM makes to f and must work regardless of what the answers

to these queries are. For a complete discussion and for a definition of a black-box con-

struction with a truly non-black-box security reduction (a weakly black-box construction)

we refer the reader to [108].

We can actually relax the definition a little more. This time, we leave the security

reduction alone and instead focus on the construction G. In the previous two definitions,

we required a universal construction G that worked for every f . However, it is sufficient

that, for every implementation f , there exists a construction G. We still require that such

a construction be black-box in that it only accesses f as a black-box. More formally,
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Definition 3.1.5 There exists a ∀∃semi black-box construction of primitive Q = (FQ, RQ)

from primitive P = (FP , RP ) if, for every implementation f ∈ FP , there exists a ppt oracle

machine G such that:

• Gf ∈ FQ (Gf implements Q)

• If there exists a ppt oracle machine M such that Mf Q-breaks Gf , then there exists a ppt

oracle machine S such that Sf P -breaks f .

We also define a related notion from complexity theory of a relativizing construc-

tion [4]. These are constructions that remain secure relative to any oracle. It turns out

that relativizing constructions are very useful for reasoning about black-box construc-

tions. Formally,

Definition 3.1.6 There exists a relativizing construction of primitive Q = (FQ, RQ) from

primitive P = (FP , RP ) if for any oracle O : {0, 1}∗ → {0, 1}∗, if P exists relative to O then so

does Q.

We conclude with the following lemma due to [108] demonstrating some simple

relationships between the above definitions. These relationships are summarized in Fig-

ure 3.1. The proof of this lemma follows easily from the definitions and is omitted.

Lemma 3.1.7 For any two primitives P and Q, we have the following:

1. If there exists a fully black-box construction of Q from P , then there exists a semi black-box

construction of Q from P and a relativizing construction of Q from P .

2. If there exists either a semi black-box or a relativizing construction of Q from P , then there

exists a ∀∃semi black-box construction of Q from P .
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Figure 3.1: Relationships Between Black-Box Constructions

3.2 Black-Box Separation Techniques and Results

As mentioned earlier, an important goal in cryptography is to construct “high

level” primitives from “low level” ones. This line of research has been very successful,

and we have many results showing constructions of cryptographic primitives from each

other. However, other constructions, such as the construction of public-key encryption

from one-way functions, have been more elusive. This phenomenon has caused people

to ask whether such constructions are inherently impossible. Unfortunately, as noted

earlier, it is impossible to rule out such a construction as long as we believe that public-

key encryption exists. Thus, a general impossibility result ruling out all constructions of

public-key encryption from one-way functions is not achievable.

Instead, Impagliazzo and Rudich [76] suggested looking at the restricted class of

black-box constructions discussed in the previous section. Since the vast majority of cryp-

tographic constructions are black-box, this rules out most known approaches. Under this

restriction, they were able to show the first known black-box separation between two prim-

itives. They did this by reasoning about relativizing constructions. Specifically, they

showed the following theorem.

Theorem 3.2.1 ([76]) There is no relativizing construction of secure key agreement from one-
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way functions.

We note that Impagliazzo and Rudich [76] actually prove the stronger result that

there is no relativizing construction of key agreement with noticeable (rather than per-

fect) completeness from one-way permutations. Since fully black-box constructions im-

ply relativizing constructions this also implies a separation under fully black-box con-

structions. We introduce some language to talk about such black-box separations.

Definition 3.2.2 We say that there is a fully black-box separation of primitive Q from primi-

tive P if there does not exist a fully black-box construction of Q from P .

Analogously, we can define separations under all the types of black-box constructions

discussed in Section 3.1. Thus, Theorem 3.2.1 shows that there is a relativizing separation

and a fully black-box separation of key agreement from one-way functions.

This result initiated a very active and successful field of study demonstrating black-

box separations between various cryptographic primitives showing that, at least for the

case of black-box constructions, the world of cryptographic primitives is quite complex.

We now review some of the most common techniques used to prove these separations

and the various results that they have been used for. These reviews are meant to give

a sketch of the techniques and results and we refer the reader to the cited works for the

complete details.

3.2.1 One-Oracle Techniques

A Separating Oracle:

This is the original technique suggested by Impagliazzo and Rudich [76] and to this day
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remains the most commonly used technique for proving black-box separations. This

technique proceeds by proving that there is no relativizing construction of primitive Q

from primitive P . This is done by demonstrating an oracle O such that P exists relative

to O, but no construction GO of primitive Q is secure. We call O a separating oracle. More

formally, these separations rely on the following fact.

Fact 3.2.3 To show that there is no relativizing construction from primitive P to primitive Q, it

suffices to show a separating oracle O such that:

• P exists relative to O.

• There exists a ppt oracle machine M , such that MO Q-breaks any ppt oracle construction

GO.

Impagliazzo and Rudich [76] prove their separation as follows. First, they use the

Borel-Cantelli lemma to show that a random oracleO is one-way with probability 1 (over

the choice of O). This holds even against an unbounded adversary making at most poly-

nomially many queries to O. Next, they show an (inefficient) adversary Eve who breaks

the security of any construction, (AO, BO), of key agreement while makingO(n6) queries

to a random O, where the probability that Eve succeeds is again over the choice of O.

Roughly, this Eve works by finding all queries made to O by both A and B (see [76] for

a discussion of why this is enough). Since Eve only makes polynomially many queries

to O, this is sufficient to rule out a fully-black-box construction, as Eve cannot be used

to invert a random O. In fact, this weaker result is the stopping point of most follow up

work. (We discuss this approach in more detail in Section 3.2.5.) To achieve a relativizing

separation, Impagliazzo and Rudich next show that Eve is efficient if P = NP. Then they
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apply the Borel-Cantelli lemma again to argue that there is a fixed oracle Ô relative to

which Eve breaks any construction of key-agreement, but Ô is one-way against any ad-

versary asking polynomially many queries. Finally, using the fact that P = NP relative to

a PSPACE oracle [4], the joint oracle (Ô,PSPACE) gives the necessary separating oracle.

Note, that this also suffices to prove the stronger statement that, if P = NP there is

no ∀∃semi black-box construction of KA from OWF’s, since in this case Eve is efficient as

required and the additional PSPACE oracle is not necessary. This requirement that P =

NP was subsequently removed by Reingold et al. [108] using an “embedding technique”

originally due to Simon [117]. This technique embeds both Ô and the PSPACE oracle

into a single oracle while preserving the one-wayness of Ô. Relative to this oracle, one-

way functions exist but there is an efficient adversary that breaks the security of key

agreement. Thus, combined they prove,

Theorem 3.2.4 ([76] and [108]) There is no ∀∃semi black-box construction of secure key agree-

ment from one-way functions.

This result was recently improved by Barak and Mahmoody-Ghidary [10], who

showed a more efficient adversary demonstrating a fully black-box separation of key

agreement from one-way functions (and even one-way permutations). Namely, they

show an attacker Eve that breaks any construction of key agreement for a random oracle

O while making only O(n2) queries to the oracle. The improved attacker and analysis

have since been used by several works [34, 82] to separate fair coin tossing and blind

signatures from one-way functions.
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Many other works have used this technique to prove black-box separation results.

We review some of them here. We do not define all of the discussed primitives and refer

the reader to the cited works for the necessary definitions. In the setting of secret-key cry-

tography, Rudich [112], Kahn et al. [77] and Chang et al. [31] showed that one-way per-

mutations can not be constructed from a variety of primitives. Additionally, Simon [117]

showed a separation of collision resistant hash-functions from one-way functions and

Fischlin [43] showed a separation of non-interactive statistically-hiding commitments

from one-way permutations and even one-to-one trapdoor functions.

In the setting of public-key cryptography, Rudich [113] showed a separation be-

tween k-round and (k + 1)-round key agreement and his techniques were extended by

Gertner et al. [52] to show separations between key agreement, CPA-secure public-key

encryption and oblivious transfer. A number of works have also looked at the possibility

of constructing CCA-secure encryption. Specifically, Gertner et al. [53] showed a partial

separation of CCA-secure encryption from CPA-secure encryption. Addressing specific

techniques for constructing CCA-secure encryption, Vahlis [119] showed a separation of

trapdoor functions secure under correlated inputs from trapdoor permutations and Kiltz

et al. [84] showed a separation of correlation secure trapdoor functions from adaptive

trapdoor functions. Additionally, Boneh et al. [22] showed a separation of identity-based

encryption from trapdoor permutations.

All of the above results argue about the feasibility of a certain construction. A

somewhat different line of work, also using the same technique, has looked instead at

bounding the efficiency of black-box constructions. Specifically, Kim et al. [85] and Barak

and Mahmoody-Ghidari [9] use this technique to prove lower bounds on the efficiency
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of black-box constructions of universal one-way hash functions and digital signature

schemes from one-way functions.

An Oracle For Each Construction:

A twist on this technique was proposed by Brakerski et al. [25]. Rather than showing a

single separating oracle, the authors give a different oracle for each potential construc-

tion. That is, for each construction G they show an oracle O relative to which primitive

P exists, but GO is not a secure implementation of Q. More formally, their result is sum-

marized by the following,

Fact 3.2.5 To show that there is no semi black-box construction from primitive P to primitive Q,

it suffices to show that for any ppt construction G, there exists an oracle O such that:

• P exists relative to O.

• There is a ppt oracle machine M such that MO breaks the Q-security of GO.

The authors use this technique to show that there is no construction of weak ver-

ifiable random functions from one-way permutations. Note that unlike the separating

oracle technique, this only rules out semi black-box rather than relativizing (and ∀∃semi

black-box) constructions as it can only prove that for each construction there is some

oracle for which it fails rather than an oracle for which all constructions fail.

3.2.2 Two-Oracle Techniques

A Breaker Oracle:

A different technique for black-box separations was first formalized by Hsiao and
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Reyzin [75] who used it to separate public-coin collision-resistant hash functions from

private-coin ones. To separate primitive Q from primitive P , this technique makes use

of two oracles: a “helper” oracle A to guarantee P -security and a “breaker” oracle B to

break the Q-security of any construction using A. More formally, the separation is cap-

tured by the following fact,

Fact 3.2.6 To show that there is no fully black-box construction of primitive Q from primitive P ,

it suffice to show two oracles A and B such that,

• There is an ppt oracle machine L such that LA implements P .

• For any ppt oracle machine G, if GA implements Q then there exists a ppt adversary M

such that MA,B breaks the Q-security of GA.

• There is no ppt oracle machine S such that SA,B breaks the P -security of LA.

This big difference between this technique and the one-oracle techniques is that

the construction G is not given access to the breaker oracle B. In fact, if G were given

both A and B then this would indeed become a one-oracle separation with oracle (A,B).

However, not giving B to G allows B to be defined dependent on the oracles used by the

construction (in this case just A) without having to worry about any “self-referencing”.

Specifically, much care must be taken to design an oracle B that can break constructions

that may use B (as is done in [117]) and this can be avoided by using this technique. A

major drawback of this approach is that it only rules out fully black-box constructions.

This is due to the fact that the adversary MA,B may not be efficient when only given

access to A.
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This approach has also seen a fair amount of use and we now review some of the

results. The most well known of these are the works of Haitner et al. [68, 69] which,

building on the work of Wee [120], show lower bounds on the round complexity of sta-

tistically hiding commitments and the communication complexity of private information

retrieval protocols based on trapdoor permutations. These works define a breaker ora-

cle Sam which finds collisions in interactive protocols. This oracle has since been used

by a number of works (e.g. [111, 65, 105, 71, 104]) and will be discussed in more detail

in Chapter 5. Some other results using this approach include Boldyreva et al. [19] who

rule out constructions of non-malleable hash-functions from one-way permutations and

Matsuda et al. [90] who rule out constructions of one-way permutations from injective

length-increasing one-way functions.

This technique was also used by Hofheinz [74] and Haitner and Holenstein [70] to

demonstrate strongly-black-box separations of commitment schemes secure under selec-

tive opening (SO-COM) and key-dependent message (KDM) secure encryption schemes

from any cryptographic assumption. What makes these separations strongly-black-box

is that they only rule out constructions that, besides being black-box in the underlying

primitive, are also black-box in their use of some additional function given as part of the

definition of the primitive. Specifically, in the case of SO-COM [74], it is required that

the construction be black-box in the underlying message distribution, while in the case

of KDM-secure encryption [70], it is required that the construction treat the KDM query

function as a black-box.

A Construction Dependent Breaker Oracle:

A somewhat different two-oracle technique was introduced by Gertner et al. [54] to sep-
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arate trapdoor functions from public-key encryption. Rather than define a universal

“breaker” oracle as in [75], they allow the breaker oracle to depend on the construction.

Formally, their separation is captured by the following.

Fact 3.2.7 To show that there is no fully black-box construction of primitive Q from primitive P ,

it suffices to show that there exists an oracle A such that:

• There is an ppt oracle machine L such that LA implements P .

• For any ppt oracle machine G, if GA implements Q then there exists an oracle B such that:

– There exists a ppt adversary M such that MA,B breaks the Q-security of GA.

– There is no ppt oracle machine S such that SA,B breaks the P -security of LA.

Just as in the previous two-oracle technique, this approach only rules out fully black-box

constructions. The major advantage of this technique is that a different breaker oracle

can be used for every construction and thus can be tailor-made to break a specific con-

struction rather than giving a general attack against all constructions.

3.2.3 Simulation Based Techniques

Simulating the Helper Oracle:

We now discuss a significantly different technique for showing black-box separations

originally proposed by Gennaro and Trevisan [50]. This technique was further refined

by Gennaro et al. [48] and our presentation follows the merged version of these two

works [49]. The main result of these works is to give lower bounds on the efficiency of

black-box constructions of various cryptographic primitives (e.g. pseudorandom gener-

31



ators, universal one-way hash functions, encryption and signatures schemes) from one-

way and trapdoor permutations. Specifically, they prove that if a black-box construction

of one of these primitives makes “few” queries to the one-way function then there ex-

ists an unconditional instantiation of the primitive in question. Since the unconditional

existence of any of these primitives would imply that P 6= NP, this is viewed as strong ev-

idence that such a construction will be very hard to find. Note that, unlike the separations

discussed previously, this does not prove that such a construction does not exist, only that

it will be hard to find. Our presentation here focuses on the result lower-bounding the

efficiency of weakly black-box constructions of pseudorandom generators (PRGs) from

one-way permutations. For the other results we refer the reader to [49].

The first step, as before, is to prove that a random permutation is one-way. Here,

a very different technique called the reconstruction lemma is used to show that a random

permutation on n-bit strings is, with high probability, one-way even against non-uniform

adversaries of size 2Ω(n). This reconstruction lemma has since been used in a number of

works (e.g. [120, 68, 69]) and we will elaborate on it a little later.

Using this result, the intuition behind the proof for the case of PRGs is as follows.

Let S = 2n/5 (the constant here is arbitrary) and let GO be a secure construction of a

PRG using oracle access to a one-way permutation O. We let O be a permutation that

is a random permutation on its first t = Θ(logS) bits and is the identity function on the

remaining n − t bits. From the above result about random permutations, it follows that

O is one-way against non-uniform adversaries of size S, and hence G must be secure

against any such adversary when instantiated with O. Let q be the number of queries

that G makes to O. Notice that the answer to every O query can be exactly described
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by t random bits as we only need to know the output on the first t bits of the query (the

remaining bits of the output are the same as the corresponding bits in the query). Thus,

it is possible to answer all of G’s queries using at most q · t random bits. Therefore, G

can be converted into a PRG G′ that does not use O. Instead G′ uses the first q · t bits

of its random seed to “simulate” the oracle O for G. If q is sufficiently small and the

expansion factor of G is sufficiently large, the output of G′ is still longer than its seed

making G′ an unconditional PRG secure against (non-uniform) adversaries of size S.

Since the existence of such a PRG implies that P 6= NP such a black-box construction is

likely to be hard to find. Note also that this proof technique does not use the security

reduction at all and thus only requires that the construction be black-box without any

restriction on how the security reduction accesses the adversary. Thus, this technique

can rule out even weakly black-box constructions.

Meta-Reductions: Simulating the Adversary

A somewhat similar approach for demonstrating fully black-box separations between

two primitives is the technique of using meta-reductions. The main idea of this approach

is to build “a reduction against the reduction”. That is, we show that if there exists a se-

curity reduction from the security of a primitive Q to a primitive P then we can use this

reduction to break P -security. In a little more detail, we start by assuming that primitive

P exists. Now assume that a black-box security reduction S exists from the security of

primitive Q to the security of primitive P . That is, given any adversary A that Q-breaks

an instantiation of Q, SA P -breaks the underlying instantiation of P . Now, for any such

S, we construct a meta-reduction S′ that “simulates” the adversary A to the real reduc-

tion S. Specifically, S′ runs S while simulating the answers to any queries S makes to A.
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As long as S can not distinguish this simulated adversary from the real one S′ yields a

ppt procedure for breaking the security of P without any oracles. However, the existence

of such a procedure contradicts the assumption that P is secure. The black-box separa-

tion is then proven by showing a meta-reduction that works for any security reduction

S. Meta-reductions have two important properties that distinguish them from the tech-

niques described earlier. First, meta-reductions do not depend on the construction of Q

from P but only on the security reduction. Thus, they can rule out the existence of any

construction as long as the security reduction is black-box. Second, meta-reductions al-

low the assumed primitive P to be arbitrary making it possible to prove that Q can not

be securely instantiated based on any cryptographic assumption.

This technique was originally proposed by Boneh and Venkatesan [23] in the

context of algebraic reductions from factoring to low-exponent RSA. Since then meta-

reductions have received a fair amount of use. Some examples of problems studied us-

ing this technique include the feasibility of instantiating efficient signature schemes in

the standard model [32, 36, 35, 96, 47], the possibility of CCA-secure encryption based on

factoring [97], relations between one-more style cryptographic assumptions [28, 29] and

the feasibility of three-move blind signature schemes [45].

3.2.4 Security of the Base Primitive

All but one of the approaches mentioned above rely on building an oracle such that

primitive P exists relative to that oracle. We now review the techniques for finding such

an oracle.

Using The Borel-Cantelli Lemma:
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This technique was introduced by Impagliazzo and Rudich [76] for the case of uniform

adversaries. We describe it here for the case of proving that a random oracleO is one-way.

Recall that a random oracle O = {On}n∈N is a collection of oracles where each On

is chosen uniformly from the space of functions from {0, 1}n to {0, 1}n. The first step is

to show that for any fixed ppt oracle adversaryA there exists a polynomial poly such that

for any n ∈ N and any x ∈ {0, 1}n we have that

Pr
O

[
AO(O(x)) ∈ O−1(O(x))

]
≤ poly(n)

2n
. (3.1)

where the above probability is taken over the choice of O and poly(n) is a bound on the

running time of A. This is proven by a simple lazy-sampling argument where we view

any point of O that has not been queried by A as unfixed. Thus, the only way to invert

O is to query it on a point that returns y = O(x). However, on each query asked the

probability that it returns y is exactly 1/2n giving the above.

Next, for any n ∈ N, any fixed ppt adversary A running in time poly(n) and any

fixed oracle O, let En,A,O denote the event that O is such that

Pr
x←{0,1}n

[
AO(O(x)) ∈ O−1(O(x))

]
>
n2 · poly(n)

2n
.

By Equation 3.1, we have that the expected probability (over the choice of O) that A

inverts O(x) is at most poly(n)
2n . Thus, using Markov’s inequality, we get that for any fixed

A running in time poly(n)

Pr
O

[En,A,O] ≤ 1

n2
.
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Then, since
∑∞

n=1
1
n2 < ∞, the Borel-Cantelli lemma implies that the probability

over the choice of O that En,A,O occurs for infinitely many n is zero. Thus, for measure 1

of oracles O we have that for any A there exists a negligible function negl such that

Pr
x←{0,1}n

[
AO(O(x)) ∈ O−1(O(x))

]
≤ n2 · poly(n)

2n
< negl(n) .

Thus, by removing a set of measure 0 oracles for each of the (countably many) machines

A, we get that for measure 1 of random oracles O it holds that for all ppt adversaries

A, the probability that A inverts O is negligible. To summarize, we have proven the

following theorem.

Theorem 3.2.8 With probability 1 over the choice ofO,O is one-way against all ppt adversaries.

In fact, since the above proof relativizes and thus must also hold relative to a

PSPACE oracle, we get that this is true even for computationally unbounded adversaries

as long as they only make polynomially many oracle queries to O.

The Reconstruction Lemma:

An alternative approach for proving that a base primitive P exists was given by Gen-

naro et al. [49]. Specifically, they show that, with overwhelming probability, a random

permutation π : {0, 1}n → {0, 1}n is one-way against any non-uniform adversary of size

S = 2n/5 for sufficiently large n. A major benefit of this approach is that we can get a

concrete bound on the probability that a random permutation on n bits is one way. Addi-

tionally, this allows one to prove that π is one-way even against non-uniform adversaries.

This result is summarized by the following theorem.
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Theorem 3.2.9 For all sufficiently large n, a random π ← Πn is 2n/5-hard with probability at

least 1− 2−2n/2 .

Here Πn is the set of all permutations over n bits and a permutation π is S-hard if

for any circuit A of size less than or equal to S, Pry←{0,1}n [Aπ(y) = π−1(y)] ≤ 1
S .

This theorem is proven using the reconstruction lemma. This is an argument that

shows that if there exists a small circuit A that can invert π with high probability, then

A can be used to give a short description of the random permutation π. Since there are

many permutations on {0, 1}n this leads to a contradiction. More formally, the recon-

struction lemma says,

Lemma 3.2.10 (Reconstruction Lemma) Let A be a circuit that makes q queries to a permu-

tation π : {0, 1}n → {0, 1}n, and for which Pry[Aπ(y) = π−1(y)] ≥ ε. Then π can be described

using at most

2 log

(
2n

a

)
+ log ((2n − a)!)

bits (given A), where a = ε2n

q+1 .

We now sketch the proof of Theorem 3.2.9. Here, we only provide a high-level

outline of the proof and refer the reader to [49] for the details. Let A be a circuit of size

S = 2n/5. Clearly, A makes at most q = 2n/5 queries to π. It is easy to show that any

such circuit has a (relatively) short description. Thus, by Lemma 3.2.10, any permutation

π that can be inverted by A must also have a short description. However, since there

are very many permutations on n-bits, only a tiny fraction of them can have such a short

description. Thus, the probability over the choice of π ← Πn thatA succeeds in inverting
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π must be very small. Finally, taking a union bound over all the possible circuits of size

S, we get that the probability (over the choice of π ← Πn) that there exists a circuit A of

size at most S that inverts π is also very small, proving the theorem.

3.2.5 On The Existence of a Separating Oracle

In many of the techniques described in the previous section we talk about a fixed

separating oracle such that primitive P exists relative to this oracle. For the case of one-

way functions or permutations the existence of such a fixed oracle is, in fact, implied

by either of the results from Section 3.2.4. For example, consider the case of one-way

permutations. Theorem 3.2.9 shows that for any polynomial poly there exists a negligible

function negl such that

Pr
π←Πn

[
∃A s.t. Pr

y←{0,1}n
[Aπ(y) = π−1(y)] ≥ 1/poly(n)

]
< negl(n) (3.2)

where A is of size poly(n).

This statement implies the existence of an oracle Π̂
def
= {π̂n}n∈N such that Π̂ is a

one-way permutation. Such an oracle can be constructed by taking, for each n, some

permutation π̂n that satisfies the above equation. The existence of such an oracle is clearly

necessary if one wants to prove a relativizing separation and it also gives a fixed oracle

that can be used in further constructions. However, if the goal is only to prove a fully

black-box separation, it is not necessary for such a fixed oracle to exist. A technique

formalized by Barak and Mahmoody-Ghidari [9] (although already used many times

before this) shows that it is sufficient to prove that a random permutation oracle is one-
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way rather than that any fixed permutation oracle is one-way. That is, it is enough to

prove that for any polynomial poly there exists a negligible function negl such that for

any A of size poly(n)

Pr
π←Πn,y←{0,1}n

[Aπ(y) = π−1(y)] ≤ negl(n) (3.3)

We now demonstrate why the above is sufficient to prove a fully black-box sepa-

ration. Consider the case of a fully black-box construction of a key-agreement protocol

from one-way permutation. To simplify presentation we assume that, on input 1n, the

construction only queries the one-way permutation on inputs of length n. Thus, to ana-

lyze the probability that Eve succeeds on security parameter n, it is enough to consider

the probability space over the choice of permutation πn. We omit the subscript n for the

rest of this discussion.

To prove a separation, we need to show an adversary E that breaks the se-

curity of any construction Gπ = (Aπ, Bπ) for a random permutation oracle π. Let

T
def
= 〈Aπ(ra), B

π(rb)〉(1n) be the transcript of an execution of Gπ where A has random-

ness ra and B has randomness rb and let k be the output key. Then for any adversary E

breaking the security of Gπ, there exists a polynomial poly1 such that

Pr
π←Πn,ra←{0,1}n,rb←{0,1}n

[Eπ(T ) = k] > 1/poly1(n)
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By an averaging argument, we get that

Pr
π←Πn

[
Pr

ra,rb←{0,1}n
[Eπ(T ) = k] >

1

2poly1(n)

]
>

1

2poly1(n)

Now, for a fixed adversary E, we say that an oracle π is “bad” with respect to E

(denoted by BADE) if Pr[Eπ(T ) = k] > 1
2poly1(n) . For any such oracle, the assumed fully

black-box construction guarantees the existence of a polynomial size security reduction

S such that SE,π inverts π. That is, there exists a polynomial poly2 such that,

Pr
y←{0,1}n

[SE,π(y) = π−1(y)] > 1/poly2(n)

Note that S makes polynomially many queries to E and each of these can be sim-

ulated using at most polynomially many queries to π (since E is polynomial size). Thus,

there is a polynomial size adversary Ŝ that runs S simulating the answers to all of S’s

queries toE such that Ŝ inverts any π that is BADE . However, since Prπ←Πn [π is BADE ] ≥

1
2poly1(n) , we get that there is a polynomial poly such that Ŝ is of size at most poly(n) and

Pr
π←Πn,y←{0,1}n

[
Ŝ(y) = π−1(y)

]
>

1

2poly1(n) · poly2(n)
>

1

poly(n)

This, however, contradicts equation 3.3 and thus no such construction exists.

However, we wish to point out that this approach leads to a strictly weaker result

than what is achieved by using Equation 3.2. Specifically, Equation 3.3 only shows that

P is secure for a random oracle but fails to guarantee that there exists any fixed oracle

relative to which primitive P is secure. To see this consider the following primitive. We
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say that an adversaryA 0n-inverts a permutation π if it outputs π−1(0n). Now, it is easy to

prove, by a lazy-sampling argument, that for any polynomial poly there exists a negligible

function negl such that for any non-uniform A of size at most poly(n)

Pr
π←Πn

[A 0n-inverts π] ≤ negl(n).

However, for any fixed random permutation oracle Π̂
def
= {π̂n}n∈N there exists a non-

uniform polynomial size adversary A (defined dependent on Π̂) that 0n-inverts π̂n with

probability 1 for all n. Such an A is given by an adversary that receives as non-uniform

advice the sequence of strings a = π̂−1
1 (0), π̂−1

2 (00), . . . and on input 1n simply outputs

an = π̂−1
n (0n). Thus, even though 0n-uninvertability holds for a random permutation

oracle π, it can not hold for any fixed oracle π̂. Similar considerations arise in the case of

collision-resistance and several other primitives. For a more detailed discussion of such

issues having to do with oracle-dependent auxiliary-input see [118]. Due to this counter-

example, this approach should not be used whenever a fixed oracle implementing P is

desired.
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Chapter 4

Black-Box Constructions of Predicate Encryption

4.1 Introduction

In this chapter we present the first of our black-box separation results. Specifically,

we study the possibility of black-box constructions of predicate encryption from trapdoor

permutations.

In a predicate encryption scheme [24, 81] an authority generates a master public key

and a master secret key, and uses the master secret key to derive personal secret keys for

individual users. A personal secret key corresponds to a predicate in some class F , and

ciphertexts are associated (by the sender) with an attribute in some set A; a ciphertext

associated with the attribute I ∈ A can be decrypted by a secret key SKf corresponding

to the predicate f ∈ F if and only if f(I) = 1. The basic security guarantee provided by

such schemes is that a ciphertext associated with attribute I hides all information about

the underlying message unless one holds a personal secret key giving the explicit ability

to decrypt; i.e., if an adversaryA holds keys SKf1 , . . . , SKf` , thenA learns nothing about

the message if f1(I) = · · · = f`(I) = 0. (A formal definition is given later.)

By choosing F and A appropriately, predicate encryption yields as special cases

many notions that are interesting in their own right. For example, by taking A = {0, 1}n

and letting F = {fID}ID∈{0,1}n be the class of point functions (so that fID(ID′) = 1 iff

ID = ID′) we recover the notion of identity-based encryption (IBE) [116, 21]. It can
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be similarly seen that predicate encryption encompasses fuzzy IBE [115], forward-secure

(public-key) encryption [30], (public-key) broadcast encryption [42], attribute-based en-

cryption [66, 16, 95], and more.

Most (though not all) existing constructions of predicate encryption schemes rely

on bilinear maps. A natural question is: what are the minimal assumptions on which predicate

encryption can be based? Of course, the answer will depend on the specific predicate class

F and attribute set A we are interested in; in particular, Boneh and Waters [24] show that

if F is polynomial size then (for any A) one can construct a predicate encryption scheme

for (F ,A) from any (standard) public-key encryption scheme. On the other hand, Boneh

et al. [22] have recently shown that there is no black-box construction of IBE from trapdoor

permutations.

4.1.1 Our Results

The specific question we consider is: for which (F ,A) can we give a (black-box) con-

struction of a predicate encryption scheme over (F ,A) based on CPA-secure encryption? We

show a characterization of (F ,A) under which no such construction exists. Before de-

scribing our results in more detail, we provide some background intuition.

A natural combinatorial construction of a predicate encryption scheme for some

(F ,A) from a CPA-secure encryption scheme (Gen,Enc,Dec) is as follows: The authority

includes several public keys pk1, . . . , pkq from the underlying encryption scheme in the

master public key, and each personal secret key is some appropriate subset of the corre-

sponding secret keys sk1, . . . , skq. Encryption of a message m with respect to an attribute

I requires “sharing” m in some way to yield m1, . . . ,mq, and the resulting ciphertext is
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Encpk1(m1), . . . ,Encpkq(mq). Intuitively, this works if:

Correctness: Let SKf = {ski1 , . . . , skit} be a personal secret key with f(I) = 1. Then the

set of “shares” mi1 , . . . ,mit should enable recovery of m.

Security: Let {ski1 , . . . , skik} =
⋃
f∈F :f(I)=0 SKf . Then the set of “shares” mi1 , . . . ,mik

should leak no information about m.

Roughly, our result can be interpreted as showing that this is essentially the only way to

construct predicate encryption (in a black-box manner) from CPA-secure encryption (or

even trapdoor permutations). We now provide further details.

Impossibility results. Our negative results are in the same model used by Boneh

et al. [22], which builds on the model used in the seminal work of Impagliazzo and

Rudich [76]. Specifically, as in [22] our negative results hold relative to a random ora-

cle (with trapdoor) and so rule out black-box constructions from trapdoor permutations

as well as from any (standard) public-key encryption scheme secure against chosen-

ciphertext attacks. All the separations in this chapter are fully black-box under the def-

initions from Chapter 3.

A slightly informal statement of our result follows. Fix {(Fn,An)}n∈N, a sequence

of predicate classes and attribute sets indexed by the security parameter n. We say that

{(Fn,An)}n can be q-covered if for every set system {Sf}f∈Fn with Sf ⊆ [q(n)] ([q] def
=

{1, . . . , q}), there are polynomially-many predicates f∗, f1, . . . , fp ∈ Fn such that, with

high probability:

1. Sf∗ ⊆
⋃p
i=1 Sfi .

2. There exists an I ∈ An with f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.
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{(Fn,An)}n is easily covered if it is q-covered for every polynomial q. We show:

Main Theorem (informal). If {(Fn,An)}n is easily covered, there is no black-box construc-

tion of a predicate encryption scheme over {(Fn,An)}n based on trapdoor permutations (or CCA-

secure encryption).

Intuitively, if {(Fn,An)}n is easily covered then the combinatorial approach discussed

earlier cannot work: letting q(n) be the (necessarily) polynomial number of keys for the

underlying (standard) encryption scheme, no matter how the secret keys {ski}qi=1 are

apportioned to the personal secret keys {SKf}f∈Fn , an adversary can carry out the fol-

lowing attack (cf. Definition 4.2.2 , below):

1. Request the keys SKf1 , . . . , SKfp , where each SKfi = {sk1, . . . , } ⊆ {ski}qi=1.

2. Request the challenge ciphertext C to be encrypted using an attribute I for which

f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

3. Compute the key SKf∗ ⊆
⋃
i SKfi and use this key to decrypt C.

This constitutes a valid attack since SKf∗ suffices to decrypt C yet the adversary only

requested the keys SKf1 , . . . , SKfp , none of which suffices on its own to decrypt C.

Turning this intuition into a formal proof must, in particular, implicitly show that

the combinatorial approach sketched earlier is essentially the only black-box approach

to building predicate encryption schemes from trapdoor permutations. Moreover, we

actually prove a stronger quantitative version of the above theorem showing, roughly,

that if {(Fn,An)}n is q-covered then any predicate encryption scheme over {(Fn,An)}n

must use at least q + 1 underlying encryption keys.
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One might wonder whether the “easily covered” condition is useful for determin-

ing whether there exist black-box constructions of predicate encryption schemes over

{(Fn,An)}n of interest. We show that it is, in that the following corollary can be proven

fairly easily given the above:

Corollary There are no black-box constructions of (1) identity-based encryption1, (2) forward-

secure encryption (for a super-polynomial number of time periods), or (3) broadcast encryption

(where a super-polynomial number of users can be excluded) from trapdoor permutations.

The first result was already proved in [22]; the point is that our impossibility result serves

as a strict generalization of theirs. To the best of our knowledge, results (2) and (3)

do not follow from result (1), as we do not know a construction of IBE from forward-

secure encryption or broadcast encryption with small (but super-polynomial) number of

revoked users. We also show quantitative versions of the above corollary that bound,

e.g., the number of encryption keys needed to construct forward-secure encryption for

any N = poly(n) time periods.

4.1.2 Comparison to the Results of Boneh et al.

Our proof relies heavily on the impossibility result from [22] for IBE, and indeed

our proofs share the same high-level structure. Our contribution lies in finding the

right abstraction and generalization (specifically, the “easily covered” property described

above) of the specific property used by Boneh et al. in the particular case of IBE, adapting

their proof to our setting, and applying their ideas to the more general case of predi-

cate encryption. Our generalization, in turn, allows us to show impossibility for several

1Of course, anything that implies IBE — e.g., attribute-based encryption — is also ruled out.
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cryptosystems of interest besides IBE (cf. the corollary stated earlier).

4.2 Definitions

4.2.1 Predicate Encryption

We provide a functional definition of predicate encryption, followed by a weak def-

inition of security that we use in proving impossibility (thus making the result stronger)

as well as the standard definition of security [81].

Definition 4.2.1 Fix {(Fn,An)}n∈N, where eachFn is a set of (efficiently computable) predicates

over the set of attributes An. A predicate encryption scheme over {Fn,An}n∈N consists of four

PPT algorithms PE = (Setup,KeyGen,Enc,Dec) such that:

• Setup is a deterministic algorithm that takes as input a master secret key MSK ∈ {0, 1}n

and outputs a master public key MPK.

• KeyGen is a deterministic algorithm that takes as input the master secret key MSK and a

predicate f ∈ Fn and outputs a secret key SKf = KeyGenMSK(f). (The assumption that

KeyGen is deterministic is without loss of generality, since MSK may include a key for a

pseudorandom function.)

• Enc takes as input the public key MPK, an attribute I ∈ An, and a bit b. It outputs a

ciphertext C ← EncMPK(I, b).

• Dec takes as input a secret key SKf and ciphertext C. It outputs either a bit b or the

distinguished symbol ⊥.
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It is required that for all n, all MSK ∈ {0, 1}n and MPK = Setup(MSK), all f ∈ Fn

and SKf = KeyGenMSK(f), all I ∈ An, and all b ∈ {0, 1}, that if f(I) = 1 then

DecSKf
(EncMPK(I, b)) = b.

For our impossibility result, we rule out constructions achieving even a weak definition

of security:

Definition 4.2.2 A predicate encryption scheme over (F ,A) is weakly payload hiding if the

advantage of any PPT adversary A in the following game is negligible:

1. A(1n) outputs I∗ ∈ An and (f1, . . . , fp) ∈ Fn such that fi(I∗) = 0 for all i.

2. A random MSK ∈ {0, 1}n is chosen; let MPK := Setup(MSK) and SKfi :=

KeyGen(MSK, fi) for all i. A random b ∈ {0, 1} is chosen, and a random ciphertext

C∗ ← EncMPK(I∗, b) is computed. A is given (MPK,SKf1 , . . . , SKfp , C
∗).

3. A outputs b′ and succeeds if b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
The standard security definition [81] follows:

Definition 4.2.3 A predicate encryption scheme over (F ,A) is payload hiding if the advantage

of any PPT adversary A in the following game is negligible:

1. A random MSK ∈ {0, 1}n is chosen, and A is given MPK := Setup(MSK).

2. A may adaptively request keys SKf1 , . . . corresponding to the predicates f1, . . . ∈ Fn.
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3. At some point, A outputs I∗ ∈ An. A random b ∈ {0, 1} is chosen and A is given the

ciphertext C∗ ← EncMPK(I∗, b). A may continue to request keys for predicates of its

choice.

4. A outputs b′ and succeeds if (1) A never requested a key for a predicate f with f(I∗) = 1,

and (2) b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
4.2.2 A Random Trapdoor Permutation Oracle

We demonstrate our separations by showing a distribution over oracles such that,

with overwhelming probability over the choice ofO from this distribution, trapdoor per-

mutations and CCA-secure encryption exist relative to O (even against non-uniform ad-

versaries) yet any construction of a predicate encryption scheme (for certain (F ,A)) using

black-box access toO can be broken with noticeable probability (over the choice ofO) by

a polynomial time adversary given oracle access to O and a PSPACE oracle. We refer the

reader to Section 3.2.5 for a discussion on why this suffices to prove the separation. The

distribution over oracles O = (g, e, d) is defined as follows, for each n ∈ N:

• g is chosen uniformly from the space of permutations on {0, 1}n. We view g as

taking a secret key sk as input, and returning a public key pk.

• e: {0, 1}n × {0, 1}n → {0, 1}n maps a public key pk and a “message” m ∈ {0, 1}n to

an output “ciphertext” c ∈ {0, 1}n. It is chosen uniformly subject to the constraint

that, for every pk, the function e(pk, ·) is a permutation on {0, 1}n.
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• d: {0, 1}n×{0, 1}n → {0, 1}n maps a secret key sk and a ciphertext c to a messagem.

We require that d(sk, c) outputs the unique m for which e(g(sk),m) = c.

One can show [49, 22] that with overwhelming probability over the choice ofO from this

distribution, O is a trapdoor permutation even against an unbounded and non-uniform

adversary making at most polynomially many queries to O. Moreover, since the com-

ponents of O are chosen at random subject to the above constraints (and not with some

“defect” as in, e.g., [49]), oracle O also implies CCA-secure encryption [15].

We denote a query α to O as, e.g., α def
= [g(sk) = pk] and similarly for e and d

queries. In describing our attack in the next section, we often use a partial oracle O′

that is defined only on some subset of the possible inputs. We always enforce that such

oracles be consistent:

Definition 4.2.4 A partial oracle O′ = (g′, e′, d′) is consistent if:

1. For every pk ∈ {0, 1}n, the (partial) function e′(pk, ·) is one-to-one.

2. For every sk ∈ {0, 1}n, the (partial) function d′(sk, ·) is one-to-one.

3. For all x ∈ {0, 1}n, and all sk such that g′(sk) = pk is defined, the value e′(pk, x) = c is

defined if and only if d′(sk, c) = x is defined.

4.3 A General Impossibility Result for Predicate Encryption

Here we define a combinatorial property on (Fn,An) and formally state our im-

possibility result. Then, in Section 4.4, we describe an adversary attacking any black-box

construction of a predicate encryption scheme satisfying the conditions of our theorem
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and analyze its probability of success.

Fix a set F and a positive integer q, and let [q]
def
= {1, . . . , q}. An F-set system over [q]

is a collection of sets {Sf}f∈F where each f ∈ F is associated with a set Sf ⊆ [q].

Definition 4.3.1 Let {(Fn,An)}n∈N be a sequence of predicates and attributes. We say

{(Fn,An)}n∈N can be q-covered if there exist ppt algorithms (A1, A2, A3), where A2(1n, f)

is deterministic and outputs I ∈ An with f(I) = 1, such that for n sufficiently large:

For any Fn-set system {Sf}f∈Fn over [q(n)], if we compute

f∗ ← A1(1n); I∗ = A2(1n, f∗); f1, . . . , fp ← A3(1n, f∗),

then with probability at least 4/5,

1. Sf∗ ⊆
⋃
Sfi ;

2. fi(I∗) = 0 for all i.

{(Fn,An)}n∈N is easily covered if it can be q-covered for every polynomial q.

Although the above definition may seem rather complex and hard to use, we show in

Section 4.5 that it can be applied quite easily to several interesting classes of predicate

encryption schemes. Moreover, the definition is natural given the attack we will describe

in the following section.

A black-box construction of a predicate encryption scheme PE =

(SetupO,KeyGenO,EncO,DecO) is q-bounded if each of its algorithms makes at most

q queries to O. We now state our main result, a proof of this theorem appears in

Section 4.4:
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Theorem 4.3.2 (Main Theorem) If {(Fn,An)} can be q-covered, there is no q-bounded (fully)

black-box construction of a weakly payload hiding predicate encryption scheme over {(Fn,An)}

from trapdoor permutations (or CCA-secure encryption).

Since each algorithm defining the predicate encryption scheme can make at most

polynomially-many queries to its oracle, we have

Corollary 4.3.3 If {(Fn,An)} is easily covered, there is no (fully) black-box construction of a

weakly payload hiding predicate encryption scheme over {(Fn,An)} from trapdoor permutations

(or CCA-secure encryption).

4.4 Proof of Main Theorem

We now prove Theorem 4.3.2 by demonstrating an adversary A that breaks the se-

curity of any black-box construction of a predicate encryption scheme for an easily cov-

ered family of predicates and attributes. We first describe the adversaryA in Section 4.4.1

and then analyze its success probability in the sections that follow.

4.4.1 The Attack

Fix an {(Fn,An)} that can be q-covered, and let PE = (Setup,KeyGen,Enc,Dec) be

a predicate encryption scheme over {(Fn,An)} each of whose algorithms makes at most

q = poly(n) queries to O = (g, e, d). We assume, without loss of generality, that before

any algorithm of PE makes a query of the form [d(sk, ?)], it first makes the query [g(sk)].

We additionally assume that PE only queries O on inputs of length polynomially related

to n.
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We begin the proof of Theorem 4.3.2 by describing an adversary A attacking PE.

Adversary A is given access to O and makes a polynomial number of calls to this oracle;

as described, A is not efficient but it runs in polynomial time given access to a PSPACE

oracle (or if P = NP). We then prove that A succeeds with non-negligible probability

over the choice of O, the randomness of A and the security game. This suffices to prove

black-box impossibility as explained in Section 3.2.5.

Let A1, A2, and A3 be as guaranteed by Definition 4.3.1, and let p = poly(n) bound

the number of predicates output by A3. Throughout A’s execution, when it makes a

query to O it stores the query and the response in a list L. We also require that before

A makes any query of the form [d(sk, ?)], it first makes the query [g(sk)]. Furthermore,

once the query [g(sk) = pk] has been made then [e(pk, x) = y] is added to L if and only if

[d(sk, y) = x] is added to L.

Setup and challenge. A(1n) does the following

1. A computes f∗ ← A1(1n), I∗ = A2(1n, f∗) and (f1, . . . , fp)← A3(1n, f∗).

(a) If fi(I∗) = 0 for all i, then A outputs (I∗, f1, . . . , fp) and receives in return the

values (MPK,SKf1 , . . . , SKfp , C
∗) from the challenger (cf. Definition 2).

(b) Otherwise, A aborts and outputs a random bit b′ ← {0, 1}.

Step 1: Discovering important public keys. For i = 1 to p, adversary A does the follow-

ing:

1. Compute Ifi = A2(1n, fi), and choose random b← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi

(
EncOMPK(Ifi , b; r)

)
, storing all O-queries in the list L.
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Step 2: Discovering frequent queries for I∗. A repeats the following q ·p3 times: Choose

random b← {0, 1} and r ← {0, 1}n; compute EncOMPK(I∗, b; r), storing allO-queries in L.

Step 3: Discovering secret queries and decrypting the challenge. A chooses k ← [q · p3]

and runs the following k times.

1. A uniformly generates a secret key MSK ′ and a consistent partial oracle O′ for

which SetupO
′
(MSK ′) = MPK; for all i it holds that KeyGenO

′
MSK′(fi) = SKfi ; the

oracle O′ is consistent with L; and SK ′f∗
def
= KeyGenO

′
MSK′(f

∗) is defined.

We denote by L′ the set of queries in O′ that are not in L (the “invented queries”).

Note that |L′| ≤ q · (p + 2), at most q queries made by Setup and q queries for each

of SKf∗ , SKf1 , . . . , SKfp made by KeyGen(f).

2. A chooses b← {0, 1} and r ← {0, 1}n, and computes C = EncOMPK(I∗, b; r) (storing

all O-queries in L). Then:

(a) In iteration k′ < k, adversary A computes DecO
′′

SK′
f∗

(C) (where O′′ is defined

below).

(b) In iteration k, adversary A computes b′ = DecO
′′

SK′
f∗

(C∗) (where O′′ is defined

below).

Output: A Outputs the bit b′ computed in the kth iteration of step 3.

Before defining the oracle O′′ used above, we introduce some notation. Let L, O′,

and MSK ′ be as above, and note that we can view L and O′ as a tuple of (partial) func-

tions (g, e, d) and (g′, e′, d′) where g′, e′, and d′ extend g, e, and d, respectively. Define the

following:
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• Q′S is the set of pk for which [g′(sk) = pk] is queried during computation of

SetupO
′
(MSK ′).

• Q′K is the set of pk for which [g′(sk) = pk] is queried during computation of

KeyGenO
′

MSK′(f) for some f ∈ {f∗, f1, . . . , fp}.

• Q′K−S = Q′K \ Q′S .

• Lg is the set of pk for which the query [g(sk) = pk] is in L.

Note that A can compute each of these sets from its view. Note further that

Q′S ,Q′K ,Q′K−S ,O′ are fixed throughout an iteration of step 3, but Lg may change as

queries are answered.

Oracle O′′ is defined as follows. For any query whose answer is defined by O′,

return that answer. Otherwise:

1. For an encryption query e(pk, x) with pk ∈ Q′K−S \Lg, return a random y consistent

with the rest of O′′ (i.e., ensuring that e remains one-to-one). Act analogously for a

decryption query d(sk, y) with pk ∈ Q′K−S \ Lg (where pk = g(sk)).

2. For a decryption query d(sk, y), if there exists a pk such that [g(sk) = pk] ∈ O′ but2

there exists an sk′ 6= sk with [g(sk′) = pk] ∈ L, then use O′′ to answer the query

d(sk′, y).

3. In any other case, query the real oracle O and return the result. Store the

query/answer in L (note that this might affect Lg as well).

2While O′ is initially chosen to be consistent, a conflict can occur sinceL is updated as A makes additional
queries to the real oracle O.
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The following lemma completes the proof of Theorem 4.3.2:

Lemma 4.4.1 The probability, over the choice of O, the randomness of A and the security game,

that A succeeds is 29
50 −O

(
1
p2

)
, which is noticeably greater than 1/2 for n sufficiently large.

We now give a full proof of the above in Sections 4.4.2 - 4.4.6. Specifically, in Section 4.4.2

we describe a series of experiments that aid in our analysis and then analyze the proper-

ties of these experiments in the remaining sections. The proof is largely similar to the one

from [22] (the full proof of this result is in Papakonstantinou’s thesis [98]), with the main

difference being Claim 4.4.5. This claim is where we make use of the “easily covered”

property of the predicates.

4.4.2 Defining Four Experiments

We now begin the proof of Lemma 4.4.1 by analyzing the success probability of

the adversary A. Toward this end, we describe a series of experiments, the first of which

corresponds to adversaryA interacting in the experiment from Definition 4.2.2. We show

that, as long as no “bad” events (to be defined later) occur, the statistical distance between

the transcripts generated in each of these experiments is not too large. This allows us to

bound the adversary’s success probability by comparing it to an appropriate event in

the final experiment. We note that, unless specified otherwise, all probabilities in the

remainder of this section are over the choice of random oracle O (from the distribution

in Section 4.2.2) as well as the randomness of A and the security game.

Expt0: This corresponds to adversary A interacting in the experiment from Defini-

tion 4.2.2.
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Expt1: This is the same as Expt0 except thatO′′ (as defined after the kth repetition of step 3)

is used instead of O to compute the challenge ciphertext C∗.

Expt2: This is the same as Expt1 except thatO′′ never queriesO (cf. step 3 in the definition

of O′′); instead, any such queries are answered randomly (subject to ensuring that O′′

remains consistent).

Expt3: This is the following experiment with no adversary and using the real oracle O:

Setup and challenge.

1. Compute f∗ ← A1(1n), I∗ = A2(1n, f∗), and {f1, . . . , fp} ← A3(1n, f∗).

2. Choose at random MSK ← {0, 1}n and compute MPK = SetupO(MSK). If

fi(I
∗) = 1 for some i, abort and output a random bit.

3. For every predicate f ∈ {f∗, f1, . . . , fp} compute SKf = KeyGenOMSK(f).

Step 1: Discovering important public keys. For i = 1 to p do:

1. Compute Ifi ← A2(1n, fi), and choose random b← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi
(EncOMPK(Ifi , b; r)).

Step 2: Decrypting the challenge.

1. Choose r ← {0, 1}n, b← {0, 1} and compute C∗ = EncOMPK(I∗, b; r).

2. Compute b′ = DecOSKf∗
(C∗) and output b′. Note that b′ = b always.

This completes the description of Expt3.
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For i ∈ {0, 1, 2} we will be interested in the following transcripts defined in the

course of Expti. These transcripts contain, in particular, all oracle queries/answers made

and received.

• transisetup: The transcript of the setup phase. This includes the computation of

MPK and SKf1 , . . . , SKfp , as well as the computation of SKf∗ for the f∗ chosen by

the adversary. (Even though SKf∗ is not computed in the experiment, SKf∗ is well

defined given f∗, MSK and O.) Note that the adversary never sees this transcript.

• transipks: The transcript of step 1 (“discovering important public keys”).

• transifreq: The transcript of step 2 (“discovering frequent queries for I∗”).

• transisim-setup: This is the transcript defined by the adversary’s choice of MSK ′ and

O′ in the kth repetition of step 3, and can be viewed as the adversary’s “guess” for

transisetup.

• transi∗: The transcript of the encryption of C/decryption of C∗ in the kth repetition

of step 3.

• transi = (transisetup, trans
i
pks, trans

i
sim-setup, trans

i
∗).

For Expt3 we define

• trans3sim-setup: The transcript of the “setup and challenge” step.

• trans3pks: The transcript of step 1 (“discovering important public keys”).

• trans3∗: The transcript of step 2 (“decrypting the challenge”).

• trans3 = (trans3pks, trans
3
sim-setup, trans

3
∗).
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For a given transcript, we partition the set of public keys used (i.e., the set of pk’s

for which [g(·) = pk] ∈ trans) into the following sets:

• We let QS(trans) denote the public keys queried during execution of Setup:

QS(trans)
def
= {pk | the query [g(·) = pk] ∈ trans is asked by Setup}.

Intuitively, these are the pk’s whose corresponding sk’s are “useful” for decrypting

ciphertexts.

• We let QK(trans) denote the public keys queried by the KeyGen algorithm when

some personal secret key is derived:

QK(trans)
def
= {pk | [g(·) = pk] ∈ trans is asked by KeyGenMSK(·)}

QK−S(trans)
def
= QK(trans) \ QS(trans).

• Finally, we will also look at the public keys “discovered” during encryption and

decryption (cf. step 3 of the experiments):

QENC+DEC(trans, I, f)
def
= {pk | [g(·) = pk] asked by DecSKf

(EncMPK(I, ·; ·))}

4.4.3 Probabilistic Lemmas

Before analyzing the probability that A succeeds, we prove three simple facts that

will be useful in our analysis. The first two of these are just simple probabilistic facts and

the last one shows an important property of a random permutation oracle g.
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Lemma 4.4.2 Let X1, . . . , Xn+1 be independent 0, 1 random variables, where Pr[Xi = 1] = p.

Let E be the event that X1, . . . , Xn = 1, but Xn+1 = 0. Then Pr[E] ≤ 1
e·n

Proof By independence of the variables, we see that Pr[E] = pn(1 − p). This quantity

is maximized at p = n
n+1 , giving Pr[E] ≤ 1

e·n .

Lemma 4.4.3 For any probability space Ω and any function f with domain Ω let x, x′ be sampled

from Ω as follows. First x is sampled from Ω, then x′ is sampled from Ω conditioned on f(x′) =

f(x). Then for every y ∈ Ω, Pr[x = y] = Pr[x′ = y].

Proof For any y ∈ Ω, let Bally be the set of values y′ ∈ Ω such that f(y′) = f(y).

Then, Pr[x = y] = Pr[x ∈ Bally] · Pr[x = y | x ∈ Bally]. Also, Pr[x′ = y] = Pr[x′ ∈

Bally] · Pr[x′ = y | x′ ∈ Bally]. However, since x′ is chosen conditioned on f(x′) = f(x),

Pr[x′ ∈ Bally] = Pr[x ∈ Bally], so Pr[x = y] = Pr[x′ = y].

Lemma 4.4.4 For n ∈ N, let g : {0, 1}n → {0, 1}n be sampled uniformly from the space of

permutations on {0, 1}n. Then, for any computationally unbounded machine B making poly(n)

oracle queries to g,

Pr[(x, y)← Bg(1n);x ∈ {0, 1}n ∧ y = g(x) ∧B did not query g(x)] ≤ negl(n)

where the probability is over the choice of g.

Proof Let Y be the set of y values returned byB’s queries to g. IfB has not queried g(x)

then this value is distributed uniformly in the set Z = {0, 1}n \ Y . Since |Y | ≤ poly(n),

the probability that g(x) = y is bounded by 1
2n−poly(n) ≤ negl(n).
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4.4.4 Bounding Probabilities of Bad Events

To analyze the probability thatA succeeds, we define four “bad” events that would

prevent A’s success, and then bound the probabilities of each of them.

EiNC is the event that either of the following is true (in Expti):

1. ∃fi ∈ {f1, . . . , fp} such that fi(I∗) = 1.

2. The following condition holds:

QENC+DEC(transi∗, I
∗, f∗)

⋂
QS(transisim-setup)

*

 ⋃
f∈{f1,...,fp}

QENC+DEC(transipks, If , f)

⋂QS(transisim-setup),

where If := A2(1n, f).

Intuitively, the second condition in the definition of ENC is the event that the set of pub-

lic keys that are “useful” for f1, . . . , fp does not contain the set of public keys that are

“useful” for f∗.

We bound the probability of eventE3
NC using the assumed easily-covered property

of {(Fn,An)}; this represents the crux of our proof, and motivates our Definition 4.3.1.

Claim 4.4.5 For anyO and anyMSK ∈ {0, 1}n, Pr[E3
NC ] ≤ 1/5, where the probability is over

the randomness of A1 and A3.

Proof Fix O and MSK ∈ {0, 1}n, thus fixing trans3sim-setup. In addition, for each predi-

cate f ∈ Fn, fix a string rf that is sufficiently long to run DecSKf
(EncMPK(I, b; r)) (where
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I
def
= A2(f)), then this defines, for each f , the set

Sf
def
=
{
pk | [g(·) = pk] is asked by DecSKf

(EncMPK(I, b; r))
}
∩QS(trans3sim-setup).

Numbering the (at most q) public keys in QS(trans3sim-setup) in lexicographic order, we

can view these {Sf}f∈Fn as an Fn-set system over [q]. The fact that {(Fn,An)} can be

q-covered then implies that there exists a polynomial p such that

Pr

 f∗ ← A1, I
∗ = A2(1n, f∗)

{f1, . . . , fp} ← A3(f∗)

:

(
Sf∗ ⊆

p⋃
i=1

Sfi

)∧(
∀i : fi(I

∗) = 0
) ≥ 4

5
. (4.1)

The above is exactly a lower bound on the probability that E3
NC does not occur.

Let abort be the event that there is an abort in the “setup and challenge” step of any

of the experiments. (It is not hard to see that the probability of abort is the same in all the

experiments since it only depends on A1 and A3.) Note that Pr[abort] ≤ Pr[E3
NC ].

EiHQ is the event that a hidden query appears in transi∗. A query α is hidden if one of

the following holds:

1. α ∈ trans0setup \ L.

2. α is of the form [e(pk, x)], and there exists sk, y such that [g(sk) = pk], [d(sk, y) =

x] ∈ trans0setup \ L.

3. α is of the form [d(sk, x)], and there exists an x such that [g(sk) = pk], [e(pk, x) =

y] ∈ trans0setup \ L.

Intuitively, EHQ is the event that a query used by Setup that is necessary to encrypt or
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decrypt the challenge ciphertext is not found in the attack.

Claim 4.4.6 For anyO, Pr[E0
HQ | ¬abort] ≤

3·(p+2)
p3

= O
(

1
p2(n)

)
, where the probability is over

the randomness of A and the security game.

Proof In step 3 of the attack, A chooses a random round k ≤ q · p3 in which to decrypt

the challenge ciphertext. In each of the k repetitions of step 3 the ciphertext is computed

exactly the same way as the challenge, using the real oracle O, a random bit b, and ran-

domness r. Note that |trans0setup| ≤ q · (p+ 2), since Setup makes at most q queries, and at

most q queries are made for each of the p+ 1 keys SKf∗ , SKf1 , . . . , SKfp . For each query

in trans0setup, there are at most 3 hidden queries; thus, there are at most 3q · (p+ 2) hidden

queries. By definition of O′′, any hidden queries found in step 3 are queried to the real

oracle O and stored in L; i.e., each hidden query is only found once. We conclude that

there are at most 3q · (p + 2) rounds in which a hidden query is found. The probability

that the kth round is such a round is at most 3q·(p+2)
q·p3 = 3(p+2)

p3
.

EKG is the event that there exists a public key pk ∈ QK−S(trans0sim-setup) \ Lg such

that [e(pk, ·) = ·] ∈ trans0freq. Intuitively, EKG is the event that one of the executions of

Enc uses a public key that was generated by KeyGen for some predicate f but was not

generated by Setup.

Claim 4.4.7 Pr[E0
KG | ¬abort] is negligible in n, where the probability is over the choice of O,

the randomness of A and the security game.

Proof The proof shows that if Pr[E0
KG] is not negligible, then there is an adversary

A′ that makes polynomially-many queries to a random oracle g and outputs with non-
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negligible probability a pair (sk, pk) where pk = g(sk) but g(sk) was never queried. By

Lemma 4.4.4, this can only happen with negligible probability.

We start by analyzing the probability of the following, related, event E′KG defined

with respect to transsetup instead of transsim-setup. Let Lfreq be the subset of the queries

in Lg that is found during step 2 of the attack (“discovering frequent queries”). Now, let

E′KG be the event that there exists pk ∈ QK−S(trans0setup) \ Lfreq such that [e(pk, ·) = ·] ∈

trans0freq. We bound the probability of E′KG.

Let A′ be the following adversary. A′, given a random random oracle g : {0, 1}n →

{0, 1}n simulates the TDP oracle as follows. Whenever a query [g(sk)] is made he queries

it to his random oracle g. When a query [e(pk, ·)] or [d(sk, ·)] is made he just returns a

random string in {0, 1}n making sure that e(pk, ·) is a permutation for every pk. This

simulated oracle is distributed exactly like a random TDP oracle O.

Now, A′ simulates the setup and challenge as well as the discovering frequent

queries steps of A’s attack in Expt0 using this simulated oracle. In his simulation, A′

reverses the order of encryption and key generation, running all the encryptions for f∗

first and only then generating the secret keys for f1, . . . , fp. At a random query α in the

key generation process A′ stops (without answering α). He selects at random a query β

asked during the encryptions for f∗.

Assume that E′KG occurred. Then, with probability at least
(

1
p·q

)(
1

q2·p3

)
≥ 1

poly(n)

(for some polynomial poly), α is a query [g(sk)] and β is a query [e(pk, ·)] such that g(sk) =

pk, as guaranteed to exist by E′KG. If this is the case, then A′ outputs the pair (sk, pk).

Note that g(sk) = pk for the random oracle g and A′ never queried g(sk). Therefore,

Pr[E′KG] ≤ poly(n)
2n ≤ negl(n).
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To bound Pr[EKG] we need to relate it to Pr[E′KG]. To do this, we consider the

pairs of transcripts t1 = (trans0setup, trans
0
freq) and t2 = (trans0sim-setup, trans

0
freq). The

pair t2 is the adversary’s guess at t1 after he sees some information about it. That is,

he sees all of trans0freq, the secret keys of f1, . . . , fp and the public parameters. Let r be

the additional randomness that determines A’s information about t1. More formally, A’s

view is δ = F (t1, r) for some function F . A then chooses t2 and r′ conditioned on them

resulting in the same view, F (t2, r
′) = δ. Therefore, by Lemma 4.4.3, t2 = t1.

The above shows that the probability that there exists a pk such that [g(sk) = pk] ∈

QK−S(trans0setup)\Lfreq is negligible in n. Since, Lfreq ⊆ Lg, the probability of there being

such a pk in QK−S(trans0setup) \ Lg is also bounded by the above, proving the claim.

Finally, EiFK is the event that there exists a public key pk such that [e(pk, ·) = ·] ∈

O′, pk /∈ QS(transisim-setup) ∪ QK(transisim-setup), and there exists an sk such that [g(sk) =

pk] ∈ transi∗. Intuitively, this means that after A invents the answers to some e(pk, ·)

queries during the attack, the transcript trans∗ ends up containing a query [g(sk) = pk].

This is a bad event because this may result in invalid decryption using sk.

Claim 4.4.8 Pr[EiFK | ¬abort] is negligible in n for i ∈ {0, 1, 2}, where the probability is over

the choice of O, the randomness of A and the security game.

Proof The proof for i ∈ {0, 1} is similar to the proof of Claim 4.4.7. For i = 2, remember

that, in Expt2, whenever a query [g(sk)] is made to O′′ the answer is chosen uniformly

from {0, 1}n (O is never queried in step 3 of Expt2). There are at most 2q queries in trans2∗

and at most q · (p + 2) queries in L′ (the list of made up queries in O′). Therefore, the

probability that one of the 2q random pk returned in answer to a query in trans2∗ equals
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one of the pk in L′ is negligible in n.

4.4.5 Analyzing the Experiments

Now we are ready to compare the transcripts of the experiments, always condi-

tioned on the event that abort did not occur.

Claim 4.4.9 SD(trans0, trans1) ≤ 3(p+2)
ep3

+negl(n) = O
(

1
p2(n)

)
(even conditioned on ¬abort).

Proof Expt0 and Expt1 only differ in the way that C∗ is computed. In Expt0 it is com-

puted using the real oracle O, while in Expt1 it is computed using the hybrid oracle O′′.

Thus it is enough to prove the following claim.

Claim 4.4.10 Choose MSK ← {0, 1}n and a random oracle O (from the distribution in Sec-

tion 4.2.2). Let MPK = SetupO(MSK) and let f∗ be the challenge predicate, I∗ = A2(f∗) be

the challenge attribute andO′′ be the oracle created by the adversary in the kth repetition of step 3.

Then

Pr[EncOMPK(I∗, b; r) 6= EncO
′′

MPK(I∗, b; r)] ≤ 3(p+ 2)

ep3
+ negl(n)

where the probability is over the choice of MSK and O, the randomness of A, and the choice of

random tape r ← {0, 1}n and b← {0, 1}.

Proof Consider a query α to O′′ that is asked by Enc. Let Eα be the event that α is not

asked during step 2 of the attack, but is asked by EncO
′′

MPK(I∗, b; r) (in the kth repetition

of step 3). For these q · p3 + 1 encryptions, let Xi be an indicator random variable such
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that Xi = 1 if α is not asked in the ith encryption. Clearly, Eα is the event that Xi = 1 for

i ≤ q · p3 and Xq·p3+1 = 0. Using Lemma 4.4.2 we get that Pr[Eα] ≤ 1
eq·p3 .

Let O′ be the invented oracle in iteration k of step 3 and let L′ be the list of queries

in O′ \ L (the invented queries). Remember that |L′| ≤ q · (p+ 2). The only way the two

encryptions in the statement of the claim can differ is if EncO
′′

MPK(I∗, b; r) asks a query

α that is dependent on the invented set of queries L′. We show that this happens with

probability at most 3(p+2)
e·p3 +negl(n). There are three ways the event in question can occur:

1. α ∈ L′. By definition of L′, α is not asked in step 2 of the attack, implying that Eα

has occurred. But Eα occurs with probability at most 1
eq·p3 for each query α ∈ L′.

Since there are at most q · (p+ 2) queries in L′, the probability such an α is asked is

at most q·(p+2)
eq·p3 = p+2

e·p3 .

2. α is of the form [e(pk, ·)] such that [g(·) = pk] ∈ QK−S \ L. (Remember that O′′

answers such queries randomly.) By Claim 4.4.7, such a query α is in Lfreq with at

most negligible probability. However, if α /∈ Lfreq then Eα has occurred implying

that such a query is asked with probability at most p+2
e·p3 + negl(n).

3. α is of the form [d(sk, ·)] such that query β = [g(sk) = ·] ∈ L′. Note that this means

that the query β /∈ L. Also remember that whenever α is queried in the experiment,

we also query β to O′′. However, this would imply that event Eβ has occurred and

thus happens with probability at most p+2
e·p3 as above.

Summing these up completes the proof of Claim 4.4.10, and hence Claim 4.4.9 as

well.

67



Next, we compare Expt2 and Expt3. We prove

Claim 4.4.11 (trans2pks, trans
2
sim-setup, trans

2
∗) = trans3.

Proof Since, in Expt2, O′′ never queries O, O′′ is just a random TDP oracle.

Therefore, it is easy to see that the marginal distributions (trans2setup, trans
2
pks) and

(trans3sim-setup, trans
3
pks) are identical. To see that the distribution (trans2sim-setup, trans

2
pks)

is also identical to these, note that A gets some partial information δ =

F (trans2setup, trans
2
pks, r) for some randomness r, and then uniformly generates

(trans2sim-setup, trans
2
pks) consistent with δ. This is the same argument as in the proof of

Claim 4.4.7.

To see that trans2∗ = trans3∗, note that the oracle O′′ used in Expt2 is just a random

extension of the oracle O′ (in Expt2 all queries not in O′ are answered randomly). Since

O′ contains all the queries from (trans2sim-setup, trans
2
pks) these are all consistent with O′′.

In Expt3, all the queries are answered consistently with the random oracle O which con-

tains all the queries in (trans2sim-setup, trans
2
pks). SinceO andO′′ are identically distributed

random oracles, trans2∗ = trans3∗, implying the claim.

To complete the comparisons of the experiments we need to compare the tran-

scripts of Expt1 and Expt2.

Claim 4.4.12 SD(trans1, trans2) ≤ 2
5 +O

(
1

p2(n)

)
(even conditioned on ¬abort).

Proof Expt1 and Expt2 only differ in the way O′′ works. It therefore follows immedi-

ately that (trans1sim-setup, trans
1
pks) = (trans2sim-setup, trans

2
pks), and we only need to com-

pare trans1∗ and trans2∗.
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The transcripts trans1∗ and trans2∗ consist of the (at most 2q) queries asked during

EncMPK(I∗, b; r) and DecSKf∗ (C
∗). Let αji be the distribution on the ith query asked in

transj∗ for 1 ≤ i ≤ 2q (we will use αji to indicate a value sampled from this distribution).

Let βji be the distribution of answers to αji . When there are less than i queries in transj∗

then we set (αji , β
j
i ) = (⊥,⊥).

In order to compare Expt1 and Expt2 we introduce the following two intermediate

experiments. Let Ek = EkFK ∨ EkHQ ∨ EkNC for k ∈ {1, 2}. Expt1′ proceeds exactly like

Expt1 up to the first query αi for which E1 occurs. When E1 occurs Expt1′ stops and

sets (α1′
j , β

1′

j ) = (⊥,⊥) for all j ≥ i. Similarly, we define Expt2′ to run as Expt2 until E2

occurs. All random variables defined in Expti are also defined in Expti′ and we use a

prime superscript to differentiate the variables.

The proof of the following is identical to the one given by [22], but we include it

here for completeness:

Claim 4.4.13 SD(trans1
′
, trans2

′
) = negl(n) (even conditioned on ¬abort).

Proof To compare trans1
′

and trans2
′

we only need to compare the distributions

(α1′
i , β

1′
i )i∈[2q] and (α2′

i , β
2′
i )i∈[2q]. Let 1 ≤ i ≤ 2q, and suppose that α1′

j = α2′
j and

β1′
j = β2′

j for all j < i. Note, that this implies that α1′
i = α2′

i since a query is de-

termined by all the previous queries and answers. We show that the distributions on

the answers given in the two experiments, β1′
i and β2′

i , are statistically close. We define

O′′i = O′ ∪ {αj → βj | 1 ≤ j < i}.

We prove the claim by bounding the statistical distance of β1′
i and β2′

i for every

possible query α1′
i . Note that O′′i and O′ are always equal in Expt1′ and Expt2′ since we
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assumed that α1′
j = α2′

j and β1′
j = β2′

j for all j < i. We split up the possible queries into

two sub-categories as follows.

1. The answers β2′
i and β1′

i are determined by O′′i

(a) If α1′
i =⊥ then β1′

i = β
2′

i =⊥ so β1′
i = β2′

i .

(b) If there exists an answer β such that [α1′
i = β] ∈ O′′i then β

1′

i = β
2′

i = β so

β1′
i = β2′

i .

(c) If α1′
i is a query [g(sk) = pk] ∈ O′′i \ O′. Since, α1′

i 6=⊥ we know that3 ¬E1′
FK ,

implying that there is no query of the form [e(pk, ·) = ·] ∈ O′. Also, since

[g(sk) = pk] /∈ O′ there is no query [d(sk, ·) = ·] ∈ O′. Note that since α1′
i ∈ O′′i

there is already an answer, β = β
1′

j , defined for this query inO′′ for some j < i.

Remember that we assumed β1′
j = β2′

j . By definition of Expt1′ andO′′, β1′

j must

have come from the real oracle O and α1′
i will thus be answered consistently.

In Expt2′ , this query α2′
i answered according to a random O′′ consistent with

all previous queries, implying that β1′
i = β2′

i .

(d) Consider all pk ∈ QS(trans1
′
sim-setup) \ Lg. Since α1′

i 6=⊥ we know that ¬E1′
NC .

Therefore, no query α1′
i of the form [d(sk, y)] such that [g(sk) = pk] ∈ O′ is

asked in trans1
′
∗ .

(e) Consider all pk ∈ QK−S(trans1
′
sim-setup) \ Lg. In both Expt1′ and Expt2′ such

queries are answered randomly without ever usingO. Therefore, the distribu-

tions β1′
i = β2′

i .

(f) Consider all pk ∈ (QS(trans1
′
sim-setup)∪QK(trans1

′
sim-setup))∩Lg. Now consider

3In this proof, when we say ¬E, we mean that event E has not occurred through query i
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the case that α1′
i is of the form [d(sk, y)] such that [g(sk) = pk] ∈ O′ and there

exists a query α′ = [e(pk, x) = y] ∈ O′′i . Note that the answer to α′, may be

from the real oracleO, or made up by the adversary inO′. In either case, since

pk ∈ Lg, there exists an sk′ such that [g(sk′) = pk] ∈ L. This means that before

α1′
i is asked to O′′ it is first modified to [d(sk′, y)].

Now, we analyze the possible answers to α1′
i . If α′ was answered by O, then

we get that β1′

i = d(sk′, y) = x by the correctness of O. Also, β2′

i = x, because

this is the answer contained in O′′. If, on the other hand, the answer to α′ is

made up by A in O′, we know that the query [d(sk, y) = x] is also in O′. This

is because [g(sk′) = pk] ∈ L ⊆ O′ implying that [e(pk, x) = y] ∈ O′ ⇐⇒

[d(sk′, y) = x] ∈ O′. Since β1′

i and β2′

i are both answered consistently with O′,

we get that β1′

i = β
2′

i = x. A symmetric argument works for the case when α1′
i

is of the form [e(pk, x)] except that the query is never modified.

2. The answers β2′
i and β1′

i are not determined in O′′i

(a) If α1′
i is of the form [g(sk)]. Since α1′

i 6=⊥, we know that ¬E1′
HQ implying that

there are no hidden queries in trans1
′
∗ so [g(sk) = ·] /∈ trans1

′
setup. This means

that this is the first time that [g(sk)] is queried to O. Therefore, the answer

is distributed uniformly in {0, 1}n in both Expt1′ , where it is queried to the

random oracle O, and in Expt2′ , where it is generated at random. So, the dis-

tributions β1′
i = β2′

i .

(b) If α1′
i is of the form [e(pk, x)]. Since α1′

i 6=⊥, we know that ¬E1′
HQ implying that

there are no hidden queries in trans1
′
∗ . Therefore, α1′

i /∈ trans1
′
setup and there do

71



not exist a secret key sk and a value y such that [g(sk) = pk], [d(sk, y) = x] ∈

trans1
′
setup. Therefore, α1′

i is queried to the real oracle O, returning a uniformly

random value β1′

i that has not been previously assigned to e(pk, ·) by O. Thus

β1′
i is the uniform distribution over the set Bpk = {y ∈ {0, 1}n not assigned by

O as the answer to any query [e(pk, x′)]}.

Since we also know that ¬E2′
HQ (α2′

i = α1′
i 6=⊥), we know that the value β2′

i is

distributed uniformly in such a way as to keep e(pk, ·) a permutation relative

to O′′i . Thus, β2′
i is the uniform distribution over the set Apk = {y | @x′ s.t.

[e(pk, x′) = y] ∈ O′′i }.

Note that the sets Apk and Bpk consist of all possible strings in {0, 1}n except

for the ones that were queried to either O or O′′ during the attack. Therefore,

|Apk ∩ Bpk| ≥ 2n − poly(n). This gives us that |Apk4Bpk| ≤ poly(n) implying

that SD(β1′
i , β

2′
i ) ≤ 2poly(n)

2n .

(c) If α1′
i is of the form [d(sk, y)] then a symmetric argument shows SD(β1′

i , β
2′
i ) ≤

poly(n)
2n

We now know that for any i ∈ [2q] s.t α2′
j = α1′

j and β2′
j = β1′

j for all j < i,

SD(β1′
i , β

2′
i ) ≤ 2poly(n)

2n . Taking a union bound over all possible values of i we get that,

SD(trans1
′
∗ , trans

2′
∗ ) ≤ 2q·2poly(n)

2n implying the claim.

To finish the proof of Claim 4.4.12 we prove the following lemma bounding the

statistical distance between trans1 and trans1
′

as well as trans2 and trans2
′
.

Claim 4.4.14 SD(trans2, trans2
′
) ≤ 1

5 +O
(

1
p2(n)

)
and SD(trans1, trans1

′
) ≤ 1

5 +O
(

1
p2(n)

)
.

(In each case, this holds even conditioned on ¬abort.)
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Proof We implicitly condition on ¬abort in everything that follows. Experiments

Expt2 and Expt2′ proceed identically unless event E2 = E2
FK ∨ E2

HQ ∨ E2
NC occurs in

Expt2, or E2′ occurs in Expt2′ . Therefore, Pr[E2] = Pr[E2′ ]. In addition, we have that

Pr[E2′
FK ] ≤ Pr[E2

FK ], Pr[E2′
HQ] ≤ Pr[E2

HQ] and Pr[E2′
NC ] ≤ Pr[E2

NC ]. To see this, note that

E2′
FK ⇒ E2

FK (this also holds for EHQ andENC) sinceE2′
FK only whenE2

FK occurs. Note,

however, that the reverse implication, E2
FK ⇒ E2′

FK , is not necessarily true as E2
FK may

occur after another bad event has already occurred, while E2′
FK can not occur in this case

since Expt2′ aborts. Similar arguments hold for Expt1 and Expt1′ . Now:

1. From Claim 4.4.8, we know Pr[E2′
FK ] ≤ Pr[E2

FK ] = negl(n) and Pr[E1′
FK ] ≤

Pr[E1
FK ] = negl(n).

2. From Claim 4.4.6, we know Pr[E0
HQ] = O

(
1

p2(n)

)
.

3. Applying Claim 4.4.9, we know Pr[E1′
HQ] ≤ Pr[E1

HQ] ≤ Pr[E0
HQ] + O

(
1

p2(n)

)
=

O
(

1
p2(n)

)
.

4. Applying Claim 4.4.13, we get that Pr[E2′
HQ] ≤ Pr[E1′

HQ] + negl(n) = O
(

1
p2(n)

)
.

5. From Claim 4.4.5, we know that Pr[E2′
NC ] ≤ Pr[E2

NC ] = Pr[E3
NC ] ≤ 1/5.

6. Applying Claim 4.4.13, we get that Pr[E1′
NC ] ≤ Pr[E2′

NC ] + negl(n) ≤ 1/5 + negl(n).

Therefore,

SD(trans2, trans2
′
) = Pr[E2′ ] = Pr[E2′

FK ] + Pr[E2′
HQ] + Pr[E2′

NC ] ≤ 1

5
+O

(
1

p2(n)

)
SD(trans1, trans1

′
) = Pr[E1′ ] = Pr[E1′

FK ] + Pr[E1′
HQ] + Pr[E1′

NC ] ≤ 1

5
+O

(
1

p2(n)

)
,
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as desired.

Combining Claims 4.4.13 and 4.4.14, we get Claim 4.4.12.

4.4.6 Completing the Proof

Let abort be the event that there is an abort in the “setup and challenge” step of

the experiment, and let correcti be the event that b′ = b in Expti. Claims 4.4.9, 4.4.12,

and 4.4.11 together imply that SD(trans0, trans3) ≤ 2/5 +O
(

1
p2(n)

)
even conditioned on

¬abort, and Claim 4.4.5 shows that Pr[abort] ≤ 1/5. It follows that

Pr[A succeeds] =
1

2
· Pr[abort] + Pr[correcti | ¬abort] · Pr[¬abort]

≥ 1

2
· 1

5
+

(
1− 2

5
−O

(
1

p2(n)

))
· 4

5

=
29

50
−O

(
1

p2(n)

)
,

which is noticeably larger than 1/2 for n sufficiently large.

4.5 Impossibility for Specific Cases

We now show how we can use Theorem 4.3.2 to rule out black-box constructions

of predicate encryption schemes in several specific cases of interest. We begin with the

following lemma.

Lemma 4.5.1 Fix q = q(n), and assume {(Fn,An)}n∈N has the following property: For suffi-

ciently large n, there exist f1, . . . , f5q ∈ Fn and I1, . . . , I5q ∈ An such that:

For all i ∈ {1, . . . , 5q} it holds that fi(Ii) = 1 but fj(Ii) = 0 for j > i.
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Then (Fn,An)n∈N can be q-covered.

If the above holds for every polynomial q, then {(Fn,An)}n∈N is easily covered.

Proof We show that, under the stated assumption, {(Fn,An)}n∈N satisfies Defini-

tion 4.3.1. Fix q and n large enough so that the condition of the lemma holds, and let

f1, . . . , f5q and I1, . . . , I5q be as stated. Define algorithms A1, A2, A3 as follows:

1. A1(1n) chooses i← {0, . . . , 5q} and outputs f∗ = fi.

2. A2(1n, f∗) finds i for which f∗ = fi and outputs I∗ = Ii.

3. A3(1n, f∗) finds i for which f∗ = fi and outputs fi+1, . . . , f5q. (If i = 5q then output

nothing.)

Note that A2(1n, f∗) always outputs I∗ with f∗(I∗) = 1. We show that for any Fn-set

system {Sf}f∈Fn over [q], the conditions of Definition 4.3.1 hold. We begin with the

following claim:

Claim 4.5.2 For anyFn-set system {Sf}f∈Fn over [q], there are at most q values i ∈ {1, . . . , 5q}

for which Sfi *
⋃
i<j≤5q Sfj . (By convention, the union is the empty set if j = 5q.)

Proof Define Si
def
=
⋃
i<j≤5q Sfj , with S5q = ∅. Note that Si−1 = Si ∪ Sfi , and so

Sfi *
⋃
i<j≤5q Sfj = Si iff Si ( Si−1. Since

S5q ⊆ S5q−1 ⊆ · · · ⊆ S1 ⊆ [q],

there can be at most q indices i where this occurs.
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Fixing an arbitrary Fn-set system {Sf}f∈Fn over [q], let I ⊂ {1, . . . , 5q} be the set

of indices for which Sfi ⊆
⋃
i<j≤q Sfj ; the claim above shows that |I| ≥ 4q. If A1 chooses

i ∈ I then:

1. Sf∗ = Sfi ⊆
⋃
i<j≤q Sfj .

2. fj(I∗) = fj(Ii) = 0 for all the predicates fi+1, . . . , fq output by A3.

Since A1 chooses i ∈ I with probability 4/5, this proves the lemma.

We now apply this lemma to several specific cases.

Identity-based encryption. It is easy to see that IBE for identities {In} can be viewed as

an instance of predicate encryption by setting An = In and Fn = {fID}ID∈In where

fID(ID′)
def
=


1 if ID′ = ID

0 otherwise
.

Let N = |In| denote the size of the identity space. Boneh et al. [22] already rule out

black-box constructions of IBE from trapdoor permutations for N = ω(poly(n)); the next

theorem shows that our Theorem 4.3.2 generalizes their result:

Theorem 4.5.3 There is no black-box construction (from trapdoor permutations or CCA-secure

encryption) of an IBE scheme for 5N identities where each algorithm makes fewer than N queries

to its oracle.

As a corollary, there is no black-box construction of an IBE scheme (from trapdoor permu-

tations or CCA-secure encryption) for a super-polynomial number of identities.
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Proof Let In = {ID1, . . . , ID5N}. It is not hard to see that {(Fn,An)}n∈N can be N -

covered: take fID1 , . . . , fID5N
and set Ii = IDi for all i. Then apply Theorem 4.3.2.

Forward-secure encryption. In a forward-secure public-key encryption scheme [30] se-

cret keys are associated with time periods; the secret key at time period i enables de-

cryption for ciphertexts encrypted at any time j ≥ i. (We refer the reader to [30] for

further discussion.) A forward-secure encryption scheme supporting N = N(n) time

periods can be cast as a predicate encryption scheme by letting An = {1, . . . , N} and

Fn = {fi}1≤i≤N where

fi(j)
def
=


1 if j ≥ i

0 otherwise
.

(A forward-secure encryption scheme imposes the additional requirement that SKfi+1

can be derived from SKfi ; since we do not impose this requirement our impossibil-

ity result is even stronger.) A black-box construction of a forward-secure encryption

scheme from any CPA-secure encryption scheme exists for any N = poly(n): the mas-

ter public key contains public keys {pk1, . . . , pkN}, and the secret key at period i is

SKfi = {ski, . . . , skN}; encryption at period j uses pkj . While such a scheme is trivial

as far as forward-secure encryption goes (since the public/secret key lengths are linear

inN ), it satisfies the definition. The next theorem indicates that, in some sense, this trivial

construction is almost optimal as far as black-box constructions are concerned; moreover,

there is no black-box construction supporting a super-polynomial number of time peri-

ods. (In contrast, existing schemes based on specific assumptions [30, 20] support an

unbounded number of time periods.)
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Theorem 4.5.4 There is no black-box construction (from trapdoor permutations or CCA-secure

encryption) of a forward-secure encryption scheme for 5N periods where each algorithm in the

scheme makes fewer than N queries to its oracle.

Thus, there is no black-box construction of a forward-secure encryption scheme (from trap-

door permutations or CCA-secure encryption) supporting a super-polynomial number of time

periods.

Proof It is easy to see that {(Fn,An)}n∈N can be N -covered, as taking f1, . . . , f5N and

setting Ii = i for all i satisfies the conditions of Lemma 4.5.1. Then apply Theorem 4.3.2.

Broadcast encryption. Finally, we look at the case of (public-key) broadcast encryption

[42]. Here, there is a fixed public key and a set of users U = {1, . . . , U} each with their

own personal secret key; it should be possible for a sender to encrypt a message in such a

way that only some subset U ′ ⊂ U of users can decrypt. Consider the case where at most

k = k(n) < U users are excluded; we refer to this as k-exclusion broadcast encryption. This

can also be modeled by predicate encryption, if we let An = {U ′ ⊆ U | |U ′| ≥ U − k} and

define Fn = {fi}i∈U where

fi(U ′)
def
=


1 if i ∈ U ′

0 otherwise
.

Theorem 4.5.5 There is no black-box construction (from trapdoor permutations or CCA-secure

encryption) of a (5k)-exclusion broadcast encryption scheme where each algorithm in the scheme

makes k or fewer queries to its oracle.
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Thus, there is no black-box construction of a k-exclusion broadcast encryption scheme (from

trapdoor permutations or CCA-secure encryption) for super-polynomial k.

Proof We show that {(Fn,An)}n∈N can be k-covered. Take f1, . . . , f5k and define

Ii
def
= U \ {i, . . . , 5k}

for i ∈ {1, . . . , 5k}. (So I5k = U .) Note that |Ii| ≥ U − 5k always, and these satisfy the

conditions of Lemma 4.5.1. Applying Theorem 4.3.2 concludes the proof.
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Chapter 5

Black-Box Constructions of Constant-Round Zero-Knowledge Proofs

5.1 Introduction

In this chapter we present our second black-box separation result. Specifically,

we study the round complexity of black-box constructions of black-box zero-knowledge

proofs from one-way permutations.

A zero-knowledge proof is a protocol wherein one party, the prover, convinces another

party, the verifier, of the validity of an assertion while revealing no additional knowledge.

Introduced by Goldwasser, Micali and Rackoff in the 1980s [63], zero-knowledge proofs

have played a central role in the design and study of cryptographic protocols. In these

applications, the main measure of efficiency is the round complexity of the proof system,

and it is important to construct constant-round zero-knowledge proofs (with negligible

soundness) for NP under minimal assumptions. In many cases, a computational zero-

knowledge argument system (where both the zero-knowledge and soundness guaran-

tees hold against computationally bounded adversaries) suffices, and we know how to

construct such protocols for NP under the minimal assumption of one-way functions

[41, 94]. However, in this chapter, we focus on computational zero-knowledge proof

systems, where the soundness guarantee must hold against computationally unbounded

adversaries.

A common intuition in constructing zero knowledge protocols (typically based on
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some form of commitments) is that statistical (resp. computational) soundness corre-

sponds to using a statistically (resp. computationally) binding commitment, while statis-

tical (resp. computational) zero knowledge corresponds to using statistically (computa-

tionally) hiding commitments. One might also expect that the round complexity of the

resulting zero knowledge protocol is roughly the same as the round complexity of the

underlying commitment scheme.

However, the best known construction of computational zero-knowledge proofs

from one-way permutations has ω(1) rounds [61, 17], and the minimal assumption from

which we know how to construct constant-round computational zero-knowledge proofs

for NP is constant-round statistically hiding commitments [57, 110], which seem to be a

stronger assumption than one-way permutations [120, 68]. There are no known construc-

tions of constant-round computational zero knowledge proofs from constant-round sta-

tistically binding commitments. We note that the latter may be constructed from one-way

permutations [17] and one-way functions [91, 73]. This raises the following intriguing

open problem:

Can we base constant-round zero-knowledge proofs for NP on the

existence of one-way permutations?

We briefly survey what’s known in this regard for constant-round black-box zero-

knowledge protocols (that is, those using a black-box simulation strategy). We clarify that

while we do know of non-black-box zero-knowledge protocols [5, 67], these protocols are

all zero-knowledge arguments and not proofs.
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Unconditional Constructions. The only languages currently known to have constant-

round zero-knowledge proofs from assumptions weaker than statistically hiding com-

mitment schemes are those that admit statistical zero-knowledge proofs, which do not

require any computational assumption at all. Even though this includes languages be-

lieved to be outside of BPP such as graph isomorphism and graph non-isomorphism

[61, 14], all languages with statistical zero knowledge proofs lie in AM ∩ coAM [1, 46]

(and therefore do not include all of NP unless the polynomial hierarchy collapses).

Lower Bounds. Lower bounds for constructions of zero-knowledge protocols were

initiated by the work of Goldreich and Oren [62] who showed that 2-round zero-

knowledge proofs only exists for languages in BPP. Extending their result, Goldreich and

Krawczyk [58] showed that 3-round zero-knowledge proofs and public-coin constant-

round zero-knowledge proofs with black-box simulators exist only for languages in BPP.

Katz [78] showed that 4-round black-box zero-knowledge proofs only exist for languages

in MA ∩ coMA. Haitner et al. [68] ruled out fully black-box constructions of constant-

round statistically hiding commitment schemes (in fact, any O(n/ log n)-round protocol)

from one-way permutations, which means that we are unlikely to obtain constant-round

zero-knowledge proofs from one-way permutations via the approach in [57]. More re-

cently, Haitner et al. [72] established a partial converse to [57], namely that any constant-

round zero-knowledge proof for NP that remains zero-knowledge under parallel compo-

sition implies the existence of constant-round statistically hiding commitments. Unlike

the case for stand-alone zero-knowledge, we do not know if there exists a ω(1)-round

zero-knowledge proof system for NP that remains zero-knowledge under parallel com-

82



position, assuming only the existence of one-way permutations. Indeed, zero-knowledge

under parallel composition appears to be a qualitively much stronger security guarantee

than stand-alone zero-knowledge.

5.1.1 Our Result.

In this chapter, we establish new barriers towards constructing zero-knowledge

proof systems from one-way permutations for all of NP:

Main Theorem (informal). Only languages in AM∩coAM admit a fully black-

box construction of zero-knowledge proofs starting from one-way permuta-

tions where the construction relies on a black-box simulation strategy with

constant adaptivity.

As defined in Chapter 3, a fully black-box construction is one that uses the underly-

ing primitive as a black-box. Additionally, any adversary breaking the black-box zero-

knowledge of the construction can be used as a black-box to break the security of the

underlying primitive. Adaptivity is a measure of how much the black-box simulator

relies on responses from previous queries to the cheating verifier in order to generate

new queries. We point out that all known constructions of black-box simulators achieve

adaptivity that is linear in the round complexity of the protocol and therefore constant

adaptivity is a fairly natural restriction for constant-round protocols. Apart from the re-

striction on adaptivity, this is essentially the best one could hope for in lieu of various

positive results mentioned earlier:

• Our result only applies to constant-round protocols – running the O(log n)-fold
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parallel repetition of Blum’s Hamiltonicity protocol [17] sequentially yields a ω(1)-

round black-box zero-knowledge proof system for NP.

• Our result applies only to proofs, but not arguments – there exists a fully black-box

construction of constant-round computational zero-knowledge arguments with

constant adaptivity from one-way functions for all of NP [41, 106].

• We have unconditional constructions of constant-round statistical black-box zero-

knowledge proofs for graph isomorphism and graph non-isomorphism, languages

which are in AM ∩ coAM but are commonly believed to lie outside BPP.

Limitations of Our Impossibility Result. Our impossibility result imposes three main re-

strictions on the construction: black-box simulation strategy, black-box access to the one-

way permutation, and bounded adaptivity of the black-box simulator, amongst which

adaptivity appears to be the greatest limitation. Our current ability to prove general

lower bounds for zero-knowledge (without limitation to black-box simulation) is rela-

tively limited [62, 8]; moreover, non-black-box simulation strategies so far only yield ar-

guments and not proof systems. In the context of zero-knowledge protocols, there is no

indication whether non-black-box access to the underlying primitive has an advantage

over black-box access to the primitive.

Extensions to Higher Adaptivity. The formal statement of our result (Theorem 5.3.4) is

slightly more general than stated above and, in particular, allows us to obtain non-trivial

consequences even when the simulator’s adaptivity is polynomial.
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Generalized Main Theorem (informal). If a language L admits a fully black-

box construction of zero-knowledge proofs starting from one-way permuta-

tions where the construction relies on a black-box simulation strategy with

adaptivity t, then both L and L haveO(t)-round public coin interactive proofs

where the honest prover strategy can be implemented in BPPNP.

For the case t = O(1) this is just our main theorem. If we now let L be an NP-complete

language, then for t = O(log n) this implies a collapse in the quasi-polynomial hierarchy

[107], which one can view as a weakened version of a collapse in the polynomial hier-

archy. For t = o(n) this would improve on the best known round complexity for an

interactive proof for a coNP-complete language (the best known is linear [89]), and even

for t = poly(n) this would improve on the best known honest prover complexity for an

interactive proof for a coNP-complete language (the best known is P#P [89]). We view

these results as evidence that such constructions will be hard to find.

5.1.2 Proof Overview

Recall that we start out with a constant-round zero-knowledge proof system (P,V)

with constant adaptivity for a language L and we want to show that L lies in AM ∩

coAM. The high level strategy is to extend the Goldreich-Krawczyk lower bound for

constant-round public-coin proofs [58] to the private-coin setting. Following [58] (also

[100, 78, 72]), we consider a cheating verifier V∗GK that “resamples” new messages that

are distributed identically to the real verifier’s messages (conditioned upon the partial

transcript) every time it is rewound by the simulator. We will need to address the fact that

we do not know how to simulate such a V∗GK efficiently for general private-coin proofs.
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The computational complexity of V∗GK comes up in two ways in [58]: first to deduce that

the zero-knowledge property holds against such a V∗GK, and second to derive an efficient

AM proof for the underlying language L and its complement L.

To address the first issue, we rely on a result of Haitner et al. [68], which, roughly

speaking, demonstrates the existence of a one-way permutation π secure in the presence

of a V∗GK oracle (as long as the zero-knowledge proof has bounded round complexity,

which is the case here). We will then instantiate the zero-knowledge proof (P,V) with the

permutation π. This will remain zero-knowledge against the cheating verifier V∗GK since π

is one-way against V∗GK. Following [58, 78, 72], we may then deduce a BPPπ,V
∗
GK algorithm

for L. (Such a statement was obtained independently by Pass and Venkitasubramaniam

[105].) Along the way, we will exploit (as with [78, 72]) the fact that (P,V) is a proof

system as we need soundness to hold against a cheating prover that is able to simulate

V∗GK.

Next, we will essentially show that BPPπ,V
∗
GK ⊆ AM ∩ coAM from which our main

result follows. We do this by constructing a AM proof for L and L. The strategy is to have

the AM prover (Merlin) and verifier (Arthur) jointly simulate π and V∗GK. In more detail,

Arthut will pick the permutation π at random from a space of poly(Tm) permutations,

where T is an upper bound on the running time of the reduction in the zero-knowledge

proof and m is the round complexity of the proof; this turns out to suffice as a one-

way permutation for the result in [68].1 Next, we will have Arthur and Merlin jointly

simulate each oracle computation of V∗GK using a (constant-round public-coin) random

sampling protocol from [71]. Note that naively having Merlin perform the computation

1Having Arthur sample a random permutation “on the fly” does not work because the permutation π
needs to be defined everywhere for V∗GK to be well-defined.
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of V∗GK fails for two reasons: a cheating Merlin may resample messages from a distribu-

tion different from the uniform distribution, and may not answer all of the V∗GK queries

“independently”. Finally, we rely on the constant adaptivity requirement of (P,V) to to

guarantee that the final proof for L has constant round complexity.

As mentioned previously, in a recent work, Pass et al. [105] independently obtained

results similar to ours. They also show that any language L for which there exists a fully

black-box construction of constant-round zero-knowledge proofs from one-way func-

tions is in BPPπ,V
∗
GK . Their techniques for doing this are different from ours. They use a

generic transformation from private-coin proofs into V∗GK-relativized public-coin proofs,

upon which the result then follows from the (relativized) lower bound for constant-round

public-coin proofs in [58]. They then argue that if such proofs exist for all of NP, this

would imply unlikely properties for the complexity class BPPπ,V
∗
GK . Our techniques, on

the other hand, allow us to relate the existence of such proofs to old questions in complex-

ity such as whether NP ⊆ coAM or whether coNP has interactive proofs with a BPPNP

prover, whereas BPPπ,V
∗
GK is a new and less well-understood notion.

5.2 Preliminaries

5.2.1 Basic Definitions

We need the following definitions due to [49].

Definition 5.2.1 A permutation π : {0, 1}n → {0, 1}n is T -hard if for any circuit C of size at

most T , and for y chosen uniformly at random, Pr[C(y) = π−1(y)] ≤ 1
T , where the probability

is taken over the choice of y. If, given x, π(x) is also efficiently computable then we call such a
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permutation a one way permutation (OWP).

Definition 5.2.2 Let Πn be the set of all permutations from {0, 1}n → {0, 1}n. Then, using the

notation of [49], we define Πk,n ⊆ Πn as {πk,n | πk,n(a, b) = (πk(a), b) for some πk ∈ Πk} In

other words, a uniform element of Πk,n is a random permutation on the first k bits, and fixes the

last n− k bits.

5.2.2 Complexity Classes.

We now review the definitions of several complexity classes that are used in this

chapter. We let BPP denote the class of languages that can be recognized by a ppt Turing

machine. Formally,

Definition 5.2.3 A language L is in BPP if there exists a ppt Turing machine M such that:

• For every x ∈ L it holds that Pr[M(x) = 1] ≥ 2
3 .

• For every x /∈ L it holds that Pr[M(x) = 1] < 1
3 .

For any oracleO, we let BPPO[k] denote the class of languages that are decidable by

efficient randomized algorithms using at most k rounds of adaptive queries to an oracle

O. One round of adaptivity is a set of queries x1, . . . , xk the algorithm asks to the oracle

such that the xi can only depend on oracle answers to queries asked in previous rounds.

Additionally, we recall the definition of Arthur-Merlin (public-coin) proofs [3]. We

let AM[k] denote the class of languages that have O(k)-round public-coin interactive

proofs (recall that public-coins are equivalent to private coins by [64] in this setting).

Namely:
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Definition 5.2.4 L ∈ AM[k] if there is a O(k)-round public-coin interactive proof between an

efficient verifier V and an all-powerful prover P such that:

• (Perfect Completeness:) For all x ∈ L, V always accepts when interacting with P .

• (Negligible Soundness Error:) For all x /∈ L and all possibly cheating prover strategies P ∗,

V accepts when interacting with P ∗ with only negligible probability.

We note that, this definition is equivalent to one only requiring an inverse polynomial

gap between completeness and soundness error.

We let AM def
= AM[O(1)]. Additionally, we let MA denote the class defined similarly

for 1-round proofs (sent from P to V ). We say that a protocol (P, V ) has an honest prover

strategy of complexity C if the prover algorithm can be implemented by a machine in the

class C. We recall that coNP is in AM[n] (where n is the length of the instance) with an

honest prover strategy complexity of P#P [89], and it is an open question whether the

round complexity or the honest prover strategy complexity can be improved. From here

on, we will call the prover in an AM proof Merlin and the verifier Arthur.

5.2.3 Zero-Knowledge

We have previously given a definition of black-box computational zero-knowledge

proofs in Definition 2.3.8. Here we give a special case of this definition that we will use

in this chapter. Specifically, we define a fully black-box construction of weak computa-

tional zero knowledge (wCZK) from one way permutations. As usual, we let negl(n) be

a negligible function.

Notation: we will use the following notation for interactive protocols. For any interactive
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protocol between a prover P and a verifier V , we let 2m denote the total number of

rounds of communication, where a round consists of one message, either from P to V or

from V to P . We let αi denote the ith message sent from P to V , and βi the ith response

from V to P . Note that αi is sent in round 2i−1 and βi is sent in round 2i. Also, having P

always send the first message is without loss of generality as we can set α1 =⊥ to model a

proof where V goes first. For i ∈ {1 . . . ,m}, we let α[i] = (α1, . . . , αi). Let V = (V1, . . . Vm)

be the decomposition of V into its next-message functions. Here Vi(x, α[i], ω) outputs βi,

the ith message sent by V when using input x, random coins ω, and receiving messages

α[i] from P . Let 〈P, V 〉(x) denote the verifier’s view of an execution of the interactive

protocol on an input x. This view includes all messages α[m] sent by the prover, the

verifier’s random coins ω, and (if V is allowed access to an oracle) the answers to any

oracle queries V may have made. We say that 〈P, V 〉(x) accepts if Vm(x, α[m], ω) = 1.

We will use calligraphic P,V,S to denote the prover, verifier, and simulator in a zero-

knowledge protocol.

Definition 5.2.5 A fully black-box construction of a (weak) computational zero-knowledge proof

system from one-way permutations for a language L is a tuple of oracle procedures (P,V,S,M)

such that there exists a polynomial T (n) satisfying the following properties for every family of

permutations π = {πn}n≥1:

Efficiency. The running times of V,S,M are bounded by T = T (n).

Completeness. For all x ∈ L: Pr[〈Pπ,Vπ〉(x) accepts] ≥ 1− negl(n).
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Soundness. For all x /∈ L and for all (possibly computationally unbounded) P∗,

Pr[〈P∗,Vπ〉(x) accepts] ≤ negl(n).

Black-Box Zero-Knowledge. For all (possibly unbounded) V∗, D and for all x ∈ L:

if

∣∣∣Pr[D(〈Pπ,V∗〉(x)) = 1]− Pr[D(Sπ,V∗(x)) = 1]
∣∣∣ > 1/n

then M can invert π, namely:

Pr
y←{0,1}n

[Mπ,V∗,D(y) = π−1(y)] > 1/T

We note that completeness and soundness hold even if the given permutations are

not one-way. Also, V∗, D are quantified after π is fixed and therefore may depend on π.

Comparison with standard definitions of zero-knowledge: The property that makes

the above definition weak zero knowledge is that we only require the distinguishing ad-

vantage to be smaller than 1/n, rather than negligible (the choice of 1/n was arbitrary;

any non-negligible function will do). This enables us to consider simulators that run

in strict polynomial time; it is known that in the standard definition of zero knowledge

where the distinguishing advantage is negligible, no strict polynomial-time black-box

simulators exist for constant-round protocols [7], although there are examples of non-

black-box simulators [5]. It is useful for us to consider strict polynomial-time simulators
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because defining adaptivity is more straight-forward for such simulators than for ex-

pected polynomial-time simulators. This is discussed in the next section.

Nevertheless, we note here that any zero knowledge proof satisfying the standard

definition also satisfies the weak definition above: if a simulator S ′ satisfies the standard

definition and runs in expected time T ′, then a simulator S satisfies the weak definition

by running S ′ for at most 2nT ′ steps, and halting with a failure symbol if S ′ does not

produce an output in that time. This is true since, by Markov’s inequality, the probability

that S ′ runs for more than 2nT ′ steps is bounded by 1
2n . Thus, by ruling out black-box

constructions of weak zero knowledge proofs from one-way permutations, we also rule

out proofs satisfying the standard definition. We note that the same discussion applies to

the runtime of the reduction algorithm M .

Simplifying assumptions: we assume for simplicity that on inputs of length n, V and

S only query π on inputs of length n. We assume that in an honest interaction of the

protocol, the last message is from the verifier V to the prover P and contains the ver-

ifier’s random coins. Clearly this does not affect either zero knowledge or soundness

since it occurs after all “meaningful” messages are sent. This assumption allows us to

define a transcript to be accepting if the honest verifier would accept that transcript us-

ing the coins output in the last message, and this definition remains meaningful even for

transcripts generated by cheating verifiers. We assume without loss of generality that

the simulator S never asks the same query twice and that it only asks refinement queries.

Namely, for i > 1 and for every query α[i] = (α[i−1], αi) that the simulator queries to its

cheating verifier black box V∗, it must have previously queried α[i−1] as well. We direct

the reader to [57] for a discussion of why this holds without loss of generality.
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5.2.4 Adaptivity

Here we define the adaptivity of the simulator, namely how much it uses responses

from previous queries to the verifier black-box in order to generate new queries. All of

the black-box simulators for constant-round zero knowledge in the literature intuitively

work the following way: repeatedly query the cheating verifier with dummy queries

enough times until it leaks some secret, then rewind and use this secret to output a sim-

ulated transcript [57, 13, 27, 41, 110]. The simulator may use the verifier’s answers to

determine whether to continue with dummy queries or to proceed to the next step of the

simulation. If the simulator runs in expected polynomial time (rather than strict polynomial

time), this procedure lasts indefinitely, making it hard to define the degree of the simu-

lator’s adaptivity. This is why we choose to work with weak zero knowledge, where the

simulation is strict polynomial time; the definition of adaptivity becomes much simpler

and more intuitive in this setting. We stress again that this only strengthens our result,

as any zero-knowledge proof system satisfying the standard definition also satisfies the

weak definition.

Definition 5.2.6 A simulator S running in time T is said to be t-adaptive if it can be decomposed

into t+ 1 oracle machines S = (S1, . . . ,St,St+1) with the following structure. Let x, ω (respec-

tively) be the input and random coins for S. For all permutations π and all cheating verifiers V∗,

Sπ,V∗ operates as follows:

1. Sπ,V
∗

1 (x;ω) generates at most T queries q(1)
1 , . . . , q

(1)
T using x, ω. It sends these queries to

V∗ and gets back answers ~a1 = (a
(1)
1 , . . . , a

(1)
T ).

2. For each phase j, 1 < j ≤ t, Sπ,V
∗

j (x;ω,~aj−1) generates at most T queries q(j)
1 , . . . , q

(j)
T
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using x, ω and ~aj−1 which is the concatenation of all oracle answers from phases 1, . . . , j−

1. Sπ,V
∗

j sets ~aj to be the oracle answers a(j)
1 , . . . , a

(j)
T for the j’th phase, concatenated with

~aj−1.

3. After obtaining ~at, Sπt+1(x;ω,~at) computes the final output (notice it does so without call-

ing V∗).

5.2.5 The Sam Oracle

In our separation, we make extensive use of the Sam oracle defined in [68]. Here

we provide a brief description of this oracle. A more formal description can be found in

[68].

Description of Samd: Samd takes as input a query q = (i, Cnext, Cprev, z) and outputs

(ω′, z′), such that:

1. ω′ is chosen uniformly at random from:

• the domain of Cnext if i = 1.

• the set {ω | Cprev(ω) = z} if i > 1.

2. z′ = Cnext(ω
′).

The inputs to Samd are subject to the following restrictions:

1. The root query in every tree must include a security parameter 1n such that d = d(n)

is the maximum depth query.

2. Queries with i > d receive output ⊥.
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3. If i > 1, then the input (i − 1, Cprev, ·, ·) was previously queried and resulted in

output (ω, z) for some ω. Note that this restriction imposes a forest structure on the

queries.

4. Cnext is a refinement of Cprev. Formally: Cnext = (Cprev, C̃) for some circuit C̃.

For our purposes, it is easier to think of Samd as being stateful, in which case the

above restrictions can easily be implemented. Technically however Samd must be state-

less, and so the above restrictions are enforced in [68] by giving Samd access to a signature

protocol, and having him sign the output to every query, as well as the depth of the query,

before returning a response. New queries are required to include a signature on a prior

query, demonstrating that the first and third requirements have been met. (The refine-

ment property can be verified by Samd independently.) Any query not meeting these

restrictions receives output ⊥. We direct the reader to [68] for the complete details (see

also [71] for a precise statement about how to remove state), and we work with a stateful

Samd for the remainder of this paper.

We will also consider Samd in a relativized world with a random permutation π =

{πn}n∈N, where πn : {0, 1}n → {0, 1}n is chosen at random from all permutations on

{0, 1}n. We let Samπ
d denote Samd in this relativized world. Samπ

d is defined exactly as

Samd, except it accepts circuits Cπprev, Cπnext that can possibly contain π gates to represent

queries to π.

We will abuse notation and write Sam to denote Samd for some d = O(1). Our

results will apply to all constant d so this slight abuse does not affect the correctness of

our statements. Next, we state a theorem that will be very useful to us showing that Sam

95



can be simulated by a public-coin proof.

Using Merlin to Simulate Sam:

Let BPPSam[t] denote the class of languages that can be decided efficiently by a machine

making at most t adaptive rounds of queries to the oracle Sam. We use the following

theorem from [71] which shows that one can simulate this Sam oracle by a constant-

round public-coin protocol.

Theorem 5.2.7 ([71]) For any L ∈ BPPSam[t], it holds that both L and L have AM[t] proofs with

an honest prover strategy complexity of BPPNP.

5.3 Proof of Main Theorem

5.3.1 Overview

As discussed in the Introduction, our proof involves using a particular cheating

verifier, V∗GK defined in Section 5.3.2, with the following properties:

• V∗GK cannot invert a random permutation π. By definition 5.2.5, this implies that

the view 〈Pπ,V∗GK〉(x) can be simulated by a simulator Sπ,V∗GK(x) whenever x ∈ L.

(Section 5.3.3)

• The simulator Sπ,V∗GK(x) cannot produce an accepting transcript whenever x /∈ L.

Together with the previous property, this gives a way of deciding L. (Section 5.3.3)

• One can efficiently generate a transcript according to Sπ,V∗GK(x) in a constant num-

ber of rounds with the help of an all-powerful (but possibly cheating) prover Mer-

lin. Since, using the output of Sπ,V∗GK(x), one can efficiently decide whether or not
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x ∈ L, this implies L ∈ AM ∩ coAM. (Section 5.3.4)

5.3.2 Defining V∗GK

Our cheating verifier V∗GK is an extension of the one proposed by Goldreich and

Krawczyk [58]. Informally, upon receiving a message, this cheating verifier uniformly

chooses a new random tape consistent with the transcript seen so far, and uses this to

compute his next message. The formal definition follows, using notation defined in Sec-

tion 5.2.1.

Fix any black-box construction of weak zero knowledge from one-way permuta-

tions (P,V,S,M). Let ω ∈ {0, 1}T be a random tape for the honest verifier V which is

divided into next-message functions V1, . . . ,Vm. Define

R
α[i]
ω = {ω′ ∈ {0, 1}T | ∀j < i, Vj(x, α[j];ω) = Vj(x, α[j];ω

′)}

i.e. the set of random tapes that, given prover messages α[i], produce the same verifier

messages as the random tape ω. For the special case where i = 1, set Rα1
ω = {0, 1}T for

all α1 and all ω.

Define V[i] = (V1, . . . ,Vi) to be the circuit that outputs the concatenation of

V1, . . . ,Vi. Namely, for every α[i] and ω, it holds that

V[i](α[i], ω) = (V1(α1, ω),V2(α[2], ω), . . . ,Vi(α[i], ω))

For any α[i], let V[i](α[i], ·) denote the circuit V[i] with the input α[i] hard-wired (therefore

it takes only input ω.
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Definition 5.3.1 The cheating verifier V∗GK = (V∗GK,1, . . . ,V
∗
GK,m) is defined using the Samπ

m

oracle and a look-up table that associates server queries α[i] with Samπ
m oracle responses (ω, z).

We write V∗GK with the understanding that the input x is hardwired into the verifier and the

verifier is allowed oracle access to the permutation π and Samπ
m. Additionally, we write Vi(α[i], ·)

to indicate the circuit Vi(x, α[i];ω) outputting the verifier’s messages β[i] on input ω with the

values x and α[i] fixed.

• V∗GK,1(α1): invoke Samπ
m(1,V1(α1, ·),⊥,⊥) and let (ω1, β1) be the response. (Here, the ⊥

inputs are placeholders and can be replaced by anything.) Store (α1, ω1, β1) in the look-up

table and output β1.

• V∗GK,i(α[i]) for i > 1: let α[i] = (α[i−1], αi). Look up the value (α[i−1], ωi−1, β[i−1]) stored

during a previous query. Query

Samπ
m(i, V[i](α[i], ·), V[i−1](α[i−1], ·), β[i−1])

and let (ωi, β[i]) be the response. Store (α[i], ωi, β[i]) in the look-up table and output βi.

Observe that querying Samπ
m in the manner described above for the case i > 1

returns an ωi that is distributed uniformly in R
α[i]
ωi−1 .

Recall that we assume the simulator never repeats queries and only makes refine-

ment queries. Therefore, V∗GK never tries to store inconsistent entries in the table, and

V∗GK never queries its table for entries that do not exist. Therefore, V∗GK’s queries to

Samπ
m always satisfy the restrictions laid out in Section 5.2.5. Observe that the output

of 〈Pπ,V∗GK〉(x) is distributed identically to the honest 〈Pπ,Vπ〉(x). We note that V∗GK is
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not efficient as there may be no way to sample from R
α[i]
ω efficiently. However, we show

in Section 5.3.4 how to simulate V∗GK using an Arthur-Merlin proof.

To complete the description of V∗GK we also need to construct a one-way permuta-

tion that remains one-way in the presence of a V∗GK-oracle. To accomplish this, we refer to

a result of Haitner et al. [68], which ruled out fully black-box constructions of o(n/ log n)-

round statistically hiding commitment schemes form one-way permutations (where n is

the security parameter). Building on and generalizing the works of [49, 117, 120], they

demonstrated that by choosing π from Πk,n for appropriate k, π remains one-way even

in the presence of a Samπ
m-oracle.

Formally, the following lemma follows directly from their results.

Lemma 5.3.2 (implicit in [68]) Suppose T, k satisfy T 3m+2 < 2k/8. Then, for any oracle ma-

chine A running in time T , it holds that:

Pr
π←Πk,n, y←{0,1}n

[Aπ,V
∗
GK(y) = π−1(y)] ≤ 1/T

Proof This follows from [68, Theorem 5.1], which established the above statement

where V∗GK is replaced by Samπ
m. From our definition of V∗GK, it is clear that one call to

V∗GK can be implemented using one call to Samπ
m Furthermore, as noted above, since we

assume S only makes unique refinement queries, all of the queries that V∗GK asks of Samπ
m

satisfy the restrictions in the definition of Samπ
m.
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5.3.3 Deciding L Using V∗GK

We show that any language L admitting a fully black-box constructions of a weak

computational zero-knowledge proof from one-way permutations can be decided in

BPPπ,V
∗
GK . Specifically, the following lemma shows that Sπ,V∗GK(x) generates an accept-

ing transcript with high probability if and only if x ∈ L.

Lemma 5.3.3 Given any fully black-box construction from one-way permutations of a constant-

round weak zero knowledge proof (P,V,S,M) for a language L, and any n, k satisfying

T 3m+2 < 2k/16, where 2m = O(1) is the round complexity of the proof system and T = poly(n)

is the strict polynomial bound on the running times of V,S,M , the following hold:

1. If x ∈ L, then Prπ←Πk,n,S,V∗GK [Sπ,V∗GK generates accepting transcript] ≥ 2/3.

2. If x /∈ L, then Prπ←Πk,n,S,V∗GK [Sπ,V∗GK generates accepting transcript] < 1/3.

Proof

Yes instances: We use the zero-knowledge property of the proof system to prove that for

all x ∈ L:

Pr[Sπ,V∗GK(x) outputs an accepting transcript] ≥ 2/3 (3.1)

The proof proceeds by contradiction, showing that if S fails to output an accepting

transcript with sufficiently high probability then, by the weak zero-knowledge property

of (P,V,S,M), M can invert a random permutation π ∈ Πk,n.

As was noted before, the distributions 〈Pπ,V∗GK〉(x) = 〈Pπ,Vπ〉(x). Therefore, by

the completeness of the proof system, for x ∈ L, the transcript 〈Pπ,V∗GK〉(x) is accepted by

the honest verifier with probability 1− negl(n). More formally, Pr[Vπm(x, 〈Pπ,V∗GK〉(x)) =
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1] ≥ 1− negl(n).

For the sake of contradiction, assume that Sπ,V∗GK(x) outputs an accepting transcript

with probability less than 2/3. That is, Pr[Vπm(x,Sπ,V∗GK(x)) = 1] < 2/3. Then we can use

the honest verifier V to distinguish between the prover and simulator output, since

|Pr[Vπm(x, 〈Pπ,V∗GK〉) = 1]− Pr[Vπm(x,Sπ,V∗GK(x)) = 1]| > 1/3− negl(n).

Therefore, by the weak black-box zero-knowledge property of (P,V,S,M), there exists

an oracle machine Mπ,V∗GK,V running in time T that can break the one-wayness of π with

probability at least 1/T . We can remove oracle access to V by having M simulate V

internally, making at most T oracle calls to π for each call to V . Thus, we get a machine

Mπ,V∗GK running in time T 2 such that

Pr
π←Πk,n, y←Un

[Mπ,V∗GK(y) = π−1(y)] ≥ 1/T > 1/T 2.

This yields a contradiction to Lemma 5.3.2, and Equation (3.1) follows.

No instances: Here, we use statistical soundness (following [72, 78, 58]) to argue that for

all x /∈ L:

Pr[Sπ,V∗GK(x) outputs an accepting transcript] < 1/3 (3.2)

The proof proceeds by contradiction, showing that if S outputs an accepting tran-

script with high probability, then there exists a (computationally unbounded) cheating

prover P∗GK that breaks the statistical soundness of the proof system. Let T , the running

time of S, be the bound on the total number of V∗GK queries made by S, and let m = O(1)
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be the round complexity of the zero knowledge proof system. Starting from V∗GK, we de-

fine a new (inefficient) prover strategy P∗GK which interacts with an external verifier V as

follows:

1. Choose queries to forward to V : On input x, P∗GK picks a random subset of query

indices U = {j1, j2, . . . , jm} ⊂ [T ] of size m. The set U represents the queries that

P∗GK will forward to the verifier V .

2. Simulate Sπ,V∗GK(x): Internally simulate Sπ,V∗GK(x) step by step. We handle the j’th

oracle query, qj , that S makes to V∗GK as follows. Let qj = α[i] for some i ≤ m.

• If j /∈ U : Simulate V∗GK internally to answer qj . More formally, look up

the value (α[i−1], ω) stored during a previous V∗GK query. (Note that since S

only makes refinement queries, S must have made such a query.) Choose

ω′ ← R
α[i]
ω uniformly at random (P∗GK can do this since he is computationally

unbounded), store (α[i], ω
′) and output Vi(x, α[i], ω

′).

• If j ∈ U : If qj = α[i] and i > 1, forward αi to the external V . Upon receiving

βi in response, look up the stored value (α[i−1], ω) and uniformly sample a

random string ω′′ ← {ω′ ∈ R
α[i]
ω ∧ Vi(x, α[i], ω

′) = βi}. Store (α[i], ω
′′) and

output βi.

Note that as long as S outputs an accepting transcript with noticeable probability when

interacting with V∗GK on x /∈ L then this cheating prover P∗GK has a noticeable probability

of outputting an accepting transcript when interacting with the honest verifier V . This

happens ifP∗GK chooses U to include exactly the messages that are used by S in his output

transcript. P∗GK succeeds in choosing the correct queries with probability at least 1/TO(m).
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Thus, if S outputs an accepting transcript with probability ≥ 1/3, then P∗GK outputs an

accepting transcript with probability at least 1/3 · 1/TO(m) which is non-negligible when

m = O(1). This is a contradiction of the fact that the proof has negligible soundness error,

thus Equation (3.2) follows.

5.3.4 Applying Theorem 5.2.7 To Remove V∗GK

We can now combine Lemma 5.3.3 and Theorem 5.2.7 to prove our main theorem.

Theorem 5.3.4 (Main Theorem) Suppose there is a black-box construction from a one-way per-

mutation of a constant-round weak zero knowledge proof (P,V,S,M) for a language L, where S

is t-adaptive. Then both L and L are in AM[t] with honest prover complexity BPPNP.

Proof From Lemma 5.3.3 we already know that Sπ,V∗GK decides L. We will construct an

oracle algorithm A based on S, such that ASam decides L and furthermore the adaptivity

of A is the same as the adaptivity of S .

Sampling π Efficiently: By Lemma 5.3.2, we know that for π to be one-way in the pres-

ence of V∗GK, it is sufficient to choose π ← Πk,n with k = 9(3m+ 2) log T = O(log n). Such

a permutation can be sampled in polynomial time by sampling a uniform permutation

on k = O(log n) bits. Let AV
∗
GK

1 be identical to Sπ,V∗GK , except A1 first samples π by itself

and then runs Sπ,V∗GK .

From Definition 5.3.1, it holds that oracle access to V∗GK can be implemented using

oracle access to Sam and an additional look-up table to associate previous queries with

previous oracle responses. Therefore, we can construct a polynomial time oracle machine
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A such that ASam behaves identically to AV
∗
GK

1 using the Sam oracle to simulate the V∗GK

oracle for A1. Furthermore, the adaptivity of A is identical to the adaptivity of A1, whose

adaptivity in turn is the same as that of S.

Since S has adaptivity t, this implies that L ∈ BPPSam[t]. We can therefore apply

Theorem 5.2.7 to conclude the proof.
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Chapter 6

Augmented Black-Box Constructions

6.1 Introduction

In the previous two chapters we have studied the limitations of black-box con-

structions. Such limitations are usually seen as evidence that any construction bypassing

them will require new techniques. However, as mentioned in the introduction, there are

several known techniques that are not black-box and black-box separations say nothing

about what is feasible using these techniques. Thus, the class of black-box techniques

fails to capture all “known techniques”. In this chapter we propose a novel framework

to partially address this shortcoming.

Specifically, we extend the model of black-box constructions to capture the most

common non-black-box technique; that of using zero-knowledge proofs relative to a base

primitive. We propose a model of augmented black-box constructions to capture this pow-

erful class of constructions. This model consists of an oracleO guaranteeing the existence

of some base primitive and a pair of oracles (P,V) that allow zero-knowledge proofs rel-

ative to O. We note that such proofs are not in general possible without such oracles as,

even though the existence of one-way functions implies zero-knowledge proofs for all of

NP, it does not imply the existence of zero-knowledge proofs for NPO. (See [76] for fur-

ther discussion.) With these oracles, a construction using zero-knowledge proofs relative

to O can be cast as a black-box construction using oracle access to O and (P,V). This
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model allows us to reason about the existence of such augmented black-box construc-

tions allowing us to come much closer to truly describing what is possible using known

techniques.

Our contributions. In addition to putting forth the notion of augmented black-box con-

structions we also show several technical results. To validate our framework, we show

that the Naor-Yung/Sahai [93, 114] (shielding) construction of CCA-secure public-key

encryption from CPA-secure public-key encryption falls within our framework. (Such a

construction is ruled out, in a black-box sense, by the result of Gertner et al. [53].) We note

that several other existing non-black-box constructions also fall within our framework,

including those of [39, 12, 44]. This demonstrates that our framework meaningfully en-

compasses constructions that lie outside the standard black-box model.

On the negative side, we present the first impossibility result for augmented black-

box constructions. Generalizing the work of Impagliazzo and Rudich [76], we rule out

augmented (fully) black-box constructions of key agreement protocols with perfect com-

pleteness from one-way functions. (We leave the case of protocols without perfect com-

pleteness as an open problem.) Though it may seem “intuitively obvious” to the reader

that zero-knowledge proofs cannot help in the setting of key-agreement, the challenge —

as in all black-box impossibility proofs — is to prove this intuition. (In fact, under our

initial modeling of a random zero knowledge proof system there was a construction of

key agreement from one-way functions. See Section 6.3.3 for details.)

Chapter outline. To motivate the need to extend the black-box model, we begin this

chapter with a brief overview of known non-black-box techniques in Section 6.2. Then,
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in Section 6.3 we formally define and instantiate the notion of augmented black-box

constructions, and in Section 6.4 we show that our framework encompasses the Naor-

Yung/Sahai paradigm for building CCA-secure public-key encryption from CPA-secure

schemes. Our main technical result is in the section that follows. Specifically, we initi-

ate the study of augmented black-box separations by ruling out augmented black-box

constructions of (perfect completeness) key agreement from one-way functions in Sec-

tion 6.5.

6.2 Known Non-Black-Box Techniques

In this section, we briefly review the known non-black-box techniques that have

appeared in the literature. In this summary we provide only the high-level overview of

the different techniques used and refer the interested reader to the referenced works for

details.

Using Zero-Knowledge Proofs: The oldest and still most commonly used non-black-box

technique is that of using zero-knowledge proofs to guarantee that a primitive is used

correctly. In a little more detail, this technique works as follows: To construct primitive

Q (e.g. CCA-secure encryption) from a primitive P (e.g. trapdoor permutation) the con-

struction may use P as a black-box and additionally it may give zero-knowledge proofs

relative to the primitive P . More formally, the construction gives zero-knowledge proofs

for some language in NPP . Usually such proofs are used to ensure that the adversary

has used the primitive P in some prescribed way. For example, in the case of construc-

tions of CCA-secure encryption, zero-knowledge proofs are used to guarantee that any
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ciphertext generated by the adversary is well-formed. What makes such constructions

non-black-box is this use of zero-knowledge proofs relative to primitive P . To generate

such proofs, the construction must know the circuit implementing primitive P in order

to be able to reduce the statement “I used P correctly” to the corresponding statement

in some NP-complete language, after which standard constructions of zero-knowledge

proofs for NP [61] can be used.

This technique originated in the work of Goldreich et al. [60] who used it to enforce

honest behavior in protocols for secure computation. Since then this technique has seen

a significant amount of use. The most well known examples of this approach are the con-

structions of CCA-secure encryption from general assumptions. Specifically, all known

constructions of CCA-secure encryption from trapdoor permutations [93, 37, 114, 88] are

of this type. Also in the realm of public-key encryption, Pass et al. [101] use this tech-

nique to construct non-malleable encryption from CPA-secure encryption. Building on

this work, Cramer et al. [33] use it to construct bounded CCA-secure encryption from

CPA-secure encryption. Additional examples of constructions using this technique in-

clude Feige et al. [39] who use it to construct secure identification schemes, Bellare and

Goldwasser [12] who use it to construct digital signature schemes, Fischlin [44] who uses

it to construct round-optimal blind signature schemes and Boldyreva et al. [19] who use

it to construct non-malleable hash-functions.

Using Secure Computation: Another non-black-box technique introduced by Beaver [11]

is to execute a protocol for secure computation on the circuit for the underlying primitive

P . This is done to securely evaluate the underlying primitive in such a way that both

parties learn the correct output but neither party learns anything other than this. For
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example, Beaver [11] uses non-black-box access to a pseudorandom generator G to do

oblivious transfer extension. In this construction the two parties jointly evaluate G(s) for

a random seed s by running the Yao garbled circuit protocol [122] on the circuit for G.

A closely related technique is that of computationally private randomized encodings

introduced by Applebaum et al. [2]. Roughly, a randomized encoding of a function f , is

a randomized function f̂(x, r) such that (1) given f̂(x, r), f(x) can be efficiently recov-

ered and (2) given f(x), it is possible to efficiently sample from f̂(x, r) for a random r.

Such randomized encodings preserve many of the security properties of the function f

so f̂ can often be used in place of f . Applebaum et al. show that low-depth randomized

encodings can be constructed for a primitive P by using the Yao garbled circuit tech-

nique [122] on the circuit for P . Thus, a construction of a low-depth primitive Q from a

standard (polynomial-depth) version of the same primitive, P , can proceed as follows.

First use the Yao garbled circuit to compute a low-depth randomized encoding f̂ for the

function f implementing P (given as a circuit). Then we can instantiate Q by evaluating

f̂(x, r) for a random r. Since f̂ has low depth this results in a low-depth implementation

of P . Since this construction needs the circuit of the base primitive P (to construct the

randomized encoding) it is not black-box.

Non-Black-Box Simulation: A closely related technique is that of non-black-box simu-

lation introduced in the context of zero-knowledge arguments by Barak [5]. The non-

black-box access here refers to the way that the simulator accesses the cheating verifier

while generating the simulated transcript. This means that the simulator is given the

code of the cheating verifier instead of just treating it as an oracle. In a breakthrough re-

sult Barak [5] showed that, in the context of zero-knowledge arguments (zero-knowledge
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protocols where soundness is only required to hold against a polynomial time cheating

prover), non-black-box access to the verifier can be used to get a construction achieving a

number of properties that are known to be impossible for protocols using only black-box

simulation.

We wish to point out that the notion of non-black-box access used here is some-

what orthogonal to the black-box constructions discussed in the remainder of this thesis.

Here the black-box refers to the simulator’s access to the cheating verifier, whereas every-

where else in this dissertation black-box refers to the access to the underlying primitive

and the adversary breaking the security of the construction. In particular, it may be pos-

sible to give a black-box construction of a zero-knowledge protocol with non-black-box

simulation. (We note that Barak’s construction is not black-box due to its use of witness

indistinguishable proofs relative to a collision resistant hash function.) However, we in-

clude this technique in this list due to its historical significance as the first non-black-box

technique shown to bypass proven limitations of black-box techniques.

Since this original result a number of other works have used this technique to give

non-black-box constructions. We list some of these works here. In a series of works Lin-

dell, Pass and Rosen [87, 102, 99] showed constructions of bounded-concurrent two-party

and multi-party secure computation. In a somewhat different direction, Barak [6] gave a

protocol for coin-tossing in a constant number of rounds. This result was later used by

Katz et al. [80] to give round efficient protocols for multi-party computation. Addition-

ally, Pass and Rosen [103] used this technique to construct non-malleable commitments

and zero-knowledge.
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6.3 Augmented Black-Box Constructions

In this section we formally define our notion of augmented black-box constructions.

Recall that our goal here is to model constructions that use an oracle O for some primi-

tive as a black box, while also (possibly) using zero-knowledge proofs of NP statements

relative to O. To enable such proofs we introduce an additional pair of oracles (P,V) im-

plementing a “prover” and a “verifier”, respectively. We find it easiest to model (P,V) as

a witness-indistinguishable (WI) proof system [38], and to prove our impossibility results

relative to oracles achieving this notion. In Section 6.3.2, however, we show that any WI

proof system can be used to construct non-interactive zero-knowledge (NIZK) proofs in

the common random string model, assuming the existence of one-way functions. Thus,

our model also suffices to rule out constructions using such zero-knowledge proofs.

Fix an oracleO : {0, 1}∗ → {0, 1}∗. For a language L, we say L ∈ NPO if there exists

a polynomial-time oracle machine M running in time polynomial in its first input such

that x ∈ L if and only if there exists a witness w for which MO(x,w) accepts. (We assume

a valid witness w satisfies |w| = |x| without loss of generality.) For any L ∈ NPO, we let

RL denote an NP-relation associated with L, and we let Ln
def
=L∩{0, 1}n andRn

def
={(x,w) |

(x,w) ∈ RL and x ∈ Ln}.

We now define what it means for a pair of oracles (P,V) to be a witness-

indistinguishable proof system relative to a base oracle O. It is convenient to view the

(infinite) oracles (P,V) as a sequence of oracles {(Pn,Vn)}n∈N, one for each input length.

In the following all adversaries are stateful by default.

Definition 6.3.1 Fix an oracleO, a language L ∈ NPO, and an NP relation RL for L. An oracle
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WI = (P,V) is a proof system for RL if the following hold:

• Perfect completeness: For any n ∈ N, (x,w) ∈ Rn, and r ∈ {0, 1}n, it holds that

Vn(x,Pn(x,w, r)) = 1.

• Perfect soundness: For any n ∈ N, any x /∈ L and any π, it holds that Vn(x, π) = 0.

WI is witness indistinguishable (WI) if additionally:

• Witness indistinguishability: For every polynomial-time adversary A, it holds that

|Pr [ExptWIA(n) = 1]− 1/2| is negligible in n, where ExptWIA(n) is defined as follows:

(x,w0, w1)← AO,WI (1n); b← {0, 1};

r ← {0, 1}n;π ← Pn(x,wb, r)

b′ = AO,WI (1n, π)

:

if (x,w0), (x,w1) ∈ Rn

output 1 iff b′ = b

else, output a random bit

When the relation RL is irrelevant for the discussion at hand, or is clear from the

context, we may abuse terminology and call WI a WI proof system for L. We say that

WI is a WI proof system for NPO if it is a WI proof system for the NPO-complete lan-

guage CIRCUIT-SATO (the set of satisfiable circuits with O gates) under the natural rela-

tion RL.

We now define our notion of black-box constructions using a base oracle O and

a WI oracle WI for NPO. The definitions and terminology are adapted from the corre-

sponding definitions in Chapter 3.

Definition 6.3.2 (Augmented fully black-box construction) There is an augmented fully

black-box construction of primitive Q from primitive P if there exist probabilistic polynomial-

time oracle machines G and S such that:
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• For any oracles O,WI such that O implements P , and WI is a proof system for NPO,

the algorithm GO,WI implements Q.

• For any O,WI such that WI is a proof system for NPO and any (possibly inefficient)

adversary AO,WI that breaks the Q-security of GO,WI , the adversary SA,O,WI breaks the

P -security of O or the witness indistinguishability ofWI .

Additionally, we can define a notion of augmented semi black-box constructions as fol-

lows.

Definition 6.3.3 (Augmented semi black-box construction) There is an augmented semi

black-box construction of primitiveQ from primitive P if there exists a probabilistic polynomial-

time oracle machine G such that:

• For any oracles O,WI such that O implements P , and WI is a proof system for NPO,

the algorithm GO,WI implements Q.

• For anyO,WI such thatWI is a proof system for NPO and any probabilistic polynomial-

time adversary AO,WI that breaks the Q-security of GO,WI , there is a probabilistic

polynomial-time S such that SO,WI breaks the P -security of O or the witness indistin-

guishability ofWI .

We remark that our notion of augmented black-box constructions is not transitive:

i.e., if there is an augmented black-box construction of Q from P , and an augmented

black-box construction of R from Q, this does not imply that there is an augmented

black-box construction of R from P . (On the other hand, if either of the given construc-

tions is black-box, that does imply an augmented black-box construction of R from P .)
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The reason is that WI enables proofs for NPO but not NPO,WI . While it is true that

Definition 6.3.1 can be meaningfully changed to allow for proofs of NPO,WI , doing so in-

troduces technical issues (due to circularity) and we were unable to prove our separation

results with respect to such a definition. We leave this as an interesting open question.

6.3.1 Instantiating a WI Proof System

For arbitrary O, we now show how to instantiate a WI proof system for NPO. We

begin by describing a distribution over oracles such that an oracle sampled according to

this distribution is a proof system for NPO and is witness indistinguishable with over-

whelming probability (Lemma 6.3.7). We then show that this implies that measure 1 of

the oracles under this distribution constitute a WI proof system for NPO (Lemma 6.3.9).

Throughout this section, we take L to be CIRCUIT-SATO.

We again view the (infinite) oracle WI as a sequence of oracles {WI n =

(Pn,Vn)}n∈N, one for each input length. Consider the distribution over WI where, for

each n, the distribution overWI n is defined as follows:

Prover oracle: Pn is a random function Pn : {0, 1}3n → {0, 1}7n whose inputs are parsed

as tuples of the form (x,w, r) ∈ {0, 1}n × {0, 1}n × {0, 1}n. Note that Pn is defined for all

such tuples (x,w, r) of the appropriate length, and not only for those satisfying (x,w) ∈

RL (i.e., Pn does not check whether (x,w) ∈ RL).

Verifier oracle: The verifier oracle is a function Vn : {0, 1}8n → {0, 1}, whose inputs are
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parsed as pairs of the form (x, π) ∈ {0, 1}n × {0, 1}7n. The function is defined as:

Vn(x, π) =


1 if ∃(w, r) s.t. π = Pn(x,w, r) ∧ (x,w) ∈ RL

0 otherwise

Note thatWI sampled as above is always a proof system. It remains to show that

witness indistinguishability holds with overwhelming probability. We begin by proving

that, for oracles distributed as above, it is essentially impossible to “spoof” a proof. That

is, for n large enough, the only way to generate a proof π such that Vn(x, π) = 1 is by

querying Pn on input (x,w, ?) for some w such that (x,w) ∈ RL. This property of the

WI oracle will also be useful later.

More formally, for an oracle Turing machine MO,WI , let Spoofn be the event

that M makes a query Vn(x, π) that returns 1, yet π was not output by a previous

query Pn(x,w, ?) with (x,w) ∈ RL. We prove the following bound on the probability

of Spoofn.

Lemma 6.3.4 For any oracleO, any oracle Turing machineMO,WI making at most q V-queries,

and any n,

Pr[Spoofn] ≤ q · 2−4n

where the probability is taken over the choice ofWI according to the distribution above.

Proof. We drop the subscript n for ease of presentation. Since P is chosen independently

of O, queries to O give no information about the range of P . We assume, without loss of

generality, that M never makes a query V(x, π) if π was the output of a previous query

P(x,w, r) = π as such queries can be answered without querying V .
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Let Q0 = (x0, π0), . . . , Qq−1 = (xq−1, πq−1) be the queries that M makes to V . For

i ∈ {0, . . . , q − 1}, let WINi be the event that Qi is the first query asked by M such that

V(xi, πi) = 1. We now bound the probability of WINi using the following thought exper-

iment.

For i ∈ {0, . . . , q − 1} define GAMEi as the following game with adversary M :

GAMEi: Run M(1n), asking any P queries made by M to the oracle. Answer M ’s V

queries as follows. For j < i answer M ’s query Qj with 0 without querying V . Ask Qi to

the oracle V and return the answer to M . Finally, answer all remaining V queries with 0.

Let WIN′i be the event that M makes a query V(x, π) = 1 to the oracle V in GAMEi. The

following two claims use the above experiments to prove the lemma. Both of these claims

hold for any oracle O and the probability is taken over the choice of P .

Claim 6.3.5 Pr[WIN ′i ≤ 2−4n]

Proof. Consider the situation right before M makes the V query Qi. Note that the image

of P has at most 23n points. By the definition of GAMEi, no queries have been made to V ,

so the 23n points in the range of P are distributed uniformly in the space {0, 1}7n. Thus

for any string π ∈ {0, 1}7n, the probability that π is in the range ofP is at most 23n

27n
= 2−4n.

This clearly bounds the probability that V(xi, πi) = 1, proving the claim.

Claim 6.3.6 For any i ∈ {0, . . . , q − 1}, Pr[WINi] = Pr[WIN ′i ]

Proof. By definition, WINi only occurs if Qi is the first query asked by M such that

V(xi, πi) = 1. Thus, for WINi to happen, for all previous queries Qj , we have that

V(xj , πj) = 0. However, this means that M ’s view in the real experiment is identical
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to its view in GAMEi up to this point implying that Qi is the same in the real game and

in GAMEi. Thus, the probability that this query returns 1 is the same here and in GAMEi

proving the claim.

By the above, we have that

Pr [Spoofn] ≤ Pr

 ∨
i∈{0,...,q−1}

WINi

 ≤ q−1∑
i=0

Pr[WIN′i] ≤ q · 2−4n.

This completes the proof of Lemma 6.3.4.

We now use Lemma 6.3.4 to bound the advantage of any specific polynomial-time

machine A in distinguishing between proofs generated by two different witnesses, for a

random instance of the oracle WI . Then, using standard techniques [76] based on the

Borel-Cantelli lemma and discussed in Section 3.2.4, we show that it is possible to switch

the order of quantifiers and fix a specific oracle such that any polynomial-timeA has only

a negligible distinguishing advantage. In fact, this property will hold for measure 1 of

the oraclesWI .

Lemma 6.3.7 For any oracle O, every probabilistic polynomial-time oracle machine A, and n

large enough: ∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ ≤ 2−n/2,

where ExptWIA(n) is as in Definition 6.3.1, and the above probability is also taken over the choice

ofWI .

Proof. Consider some value of n and fix the values of WI other than WI n. Assume

without loss of generality thatA(1n) outputs values (x,w0, w1) with (x,w0), (x,w1) ∈ Rn.
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Then A is given a proof π and has to identify whether w0 or w1 was used to generate it.

We observe that for all k 6= n the output of any query to Pk and Vk is independent of the

bit b. Therefore, from this point on, we focus on queries to Pn and Vn. Let q be the total

number of oracle queries made by A.

We may assume that A does not query Vn since it can simulate this oracle by itself

to within statistical difference at most 2−n (for n large enough). Indeed, there are three

types of queries to Vn:

• The query Vn(x, π). In this case, the output is 1.

• Queries of the form Vn(x, π′), where π′ was output by a previous query Pn(x,w, ?)

with (x,w) ∈ Rn. Once again, in this case the output is 1. Note that A can check in

polynomial time whether (x,w) ∈ Rn.

• All other queries to Vn. In this case, Lemma 6.3.4 shows that the output of all these

queries is 0 except with probability at most q · 2−4n, which is bounded by 2−n for n

sufficiently large.

We now show that for any A making at most q queries to Pn, A’s advantage is

small. We assume, without loss of generality, that A never repeats any query it makes to

P . Formally, we prove the following claim:

Claim 6.3.8 For any n ∈ N, for any adversary A making at most q oracle queries

∣∣∣∣ Pr
Pn,r←{0,1}n

[APn(π) = 1 | b = 0]− Pr
Pn,r←{0,1}n

[APn(π) = 1 | b = 1]

∣∣∣∣ ≤ 1/2 + q · 2−n,

where π = Pn(x,wb, r).
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Proof. Consider the following experiment. First choose b ← {0, 1}, r ← {0, 1}n, π ←

{0, 1}7n and give π to A. Now, every time A makes a query P(x′, w′, r′), if (x′, w′, r′) =

(x,wb, r) return π. Otherwise, return a random string π′ ← {0, 1}7n.

The success probability of A in this experiment is the same as in the original game

with the oracle P . Clearly, A succeeds if he queries P(x,wb, r). However, since π is

completely independent of r, the probability that A succeeds by making a query with

r′ = r is at most q ·2−n. However, if he does not make such a queryA’s view is completely

independent of the bit b and so he can not distinguish between the two distributions with

probability better than 1/2.

Given the above claim and the fact thatA simulates Vn to within statistical distance

2−n, we get that A can not distinguish which witness was used with probability better

than (q + 1) · 2−n which is bounded by 2−n/2 for n sufficiently large. The lemma follows.

Lemma 6.3.9 Fix an oracle O. For measure 1 of the oraclesWI under the distribution defined

above,WI is a witness-indistinguishable proof system for L.

Proof. Completeness and soundness always hold, and so we must only prove witness

indistinguishability. To do so we apply a standard argument using the Borel-Cantelli

lemma for reversing the order of quantifiers in Lemma 6.3.7.

Fix O. For any n ∈ N and any probabilistic polynomial-time A, denote by En,A the

event in whichWI is chosen such that

∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ > 2−n/3.
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Lemma 6.3.7 and an averaging argument imply that for anyA and sufficiently large n the

probability of En,A is at most 1/n2. Then
∑

n Pr[En,A] is finite, and so the Borel-Cantelli

lemma implies that the probability over choice ofWI that eventEn,A occurs for infinitely

many values of n is zero. Thus, for large enough n and measure 1 of the oracles under

the distribution in question we have

∣∣∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣∣∣ ≤ 2−n/3.

This holds for any specific A, and therefore by removing a set of measure 0 for each

of the (countably many) machines A we obtain that for measure 1 of the oracles WI it

holds that for all probabilistic polynomial-time A the quantity
∣∣Pr [ExptWIA(n) = 1]− 1

2

∣∣
is negligible.

Before concluding this section we prove a technical result regarding oracles WI

sampled according to the distribution described earlier. We show that if f is one-way

relative toO, then for measure 1 of the oraclesWI under the distribution defined above,

f remains one-way relative to (O,WI ). We note that this proof can be extended to any

other security property of the oracleO. For a discussion of security properties of an oracle

see [74].

Lemma 6.3.10 Let f be a polynomial-time oracle machine such that fO is one-way relative toO.

Then for measure 1 of the oraclesWI under the distribution defined above, fO is one-way relative

to (O,WI ).

Proof. It suffices to show that for any PPT A the probability that AO,WI inverts fO is
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negligible, where the probability is also taken over choice ofWI . We can then proceed

as in Lemma 6.3.9 to obtain the stated result.

Assume toward a contradiction that there exists an algorithm A and a polynomial

p(n) ≥ n such that the running time of A is bounded by p(n) and, for infinitely many n,

it holds that AO,WI inverts fO with probability at least 1/p(n) when WI is chosen at

random. We show how to construct a PPT algorithm Â such that ÂO inverts fO with

inverse-polynomial probability for infinitely many values of n, a contradiction.

Â(1n, y) runsA(1n, y), simulating theWI oracle forA as follows. Let k∗ = log p(n).

Algorithm Â samples WI k = (Pk,Vk) according to the prescribed distribution for all

k ≤ k∗, and these are used to (perfectly) simulate {WI k}k≤k∗ to A. Thus, we now only

need to deal with the queries ofA toWI k for k > k∗. WhenA queries Pk(x,w, r), then Â

returns a random π ∈ {0, 1}7k as the result. When A queries Vk(x, π) then Â first checks

to see whether there was any prior query Pk(x,w, ?) = π with (x,w) ∈ RL. If not, then Â

returns 0 in response to this Vk-query. Otherwise, Â returns 1.

Note that Â’s simulation of the V oracle is perfect unless Spoof occurs. Thus, since

A asks at most p(n) oracle queries, by Lemma 6.3.4, Â’s simulation of A degrades the

latter’s probability of inversion by at most p(n) · 2−4k∗ = p(n)
(p(n))4

≤ 1
2p(n) . This implies

that ÂO inverts fO with probability at least 1/2p(n) for infinitely many values of n, a

contradiction.

6.3.2 Zero-Knowledge Proofs

We define a notion of zero knowledge, and then discuss appropriate conditions

under which zero-knowledge (ZK) proofs can be constructed from WI proofs. In our
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context, zero knowledge is most easily expressed in terms of non-interactive zero knowl-

edge in the common random string model. Note that we only require zero-knowledge

to hold against uniform adversaries, whereas the standard definition requires it to hold

even for non-uniform adversaries.

Definition 6.3.11 Fix an oracleO and a language L ∈ NPO. An oracle ZK = (P,V) is a proof

system in the common random string model for L with relation RL if there is a polynomial `

such that the following hold:

• Perfect completeness: For all n ∈ N, all (x,w) ∈ Rn, all crs ∈ {0, 1}`(n), and all

r ∈ {0, 1}n, we have V(crs, x,P(crs, x, w, r)) = 1.

• Statistical soundness: With all but negligible probability over choice of crs ∈ {0, 1}`(n),

there do not exist x 6∈ Ln and π such that V(crs, x, π) = 1.

ZK is a non-interactive zero-knowledge (NIZK) proof system if additionally:

• Black-box (adaptive) zero knowledge: There exists a PPT simulator Sdef
= (S1,S2) such

that for all probabilistic polynomial-time A the following is negligible:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



crs← {0, 1}`(n);

(x,w)← AO,ZK(crs);

r ← {0, 1}n;

π ← P(crs, x, w, r)

: AO,ZK(π) = 1 ∧ (x,w) ∈ Rn



− Pr


(crs, s)← SO,ZK1 (1n);

(x,w)← AO,ZK(crs);

π′ ← SA,O,ZK2 (s, x)

: AO,ZK(π′) = 1 ∧ (x,w) ∈ Rn



∣∣∣∣∣∣∣∣∣∣∣∣
.
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Constructing NIZK proofs from WI proofs. Fix an oracle O, and let WI = (P,V) be

a WI proof system for L =CIRCUIT-SATO. We show that if a one-way function fO exists

relative to O,WI , then we can construct an NIZK proof system for NPO.

Assume fO is one-way relative to O,WI . Using f , we can construct, in a black-

box fashion, a pseudorandom generator GO : {0, 1}n → {0, 1}2n (see [73]). Define the

following language L′ ∈ NPO:

L′
def
=
{

(x, crs) s.t. ∃w ∈ {0, 1}n for which (x,w) ∈ RL or crs = GO(w)
}
.

A zero-knowledge proof that x ∈ L can then be constructed [40] by giving a witness-

indistinguishable proof that (x, crs) ∈ L′. In more detail, given a WI proof system (P,V)

for L, consider the following proof system (PZK,VZK) for L:

Prover PZK: Given crs, x, w with crs ∈ {0, 1}2n and (x,w) ∈ Rn, set x′ = (x, crs) and note

that (x′, w) ∈ L′. Use a Levin reduction [86] to the NPO-complete language L to obtain

(x̂, ŵ) ∈ L. Choose r ← {0, 1}|x̂| and return the proof π = P(x̂, ŵ, r).

Verifier VZK: Given crs, x, π, set x′ = (x, crs) and use a Levin reduction to the NPO-

complete language L to obtain x̂. Then output V(x̂, π).

Theorem 6.3.12 If (P,V) is a WI proof system for L and GO : {0, 1}n → {0, 1}2n is a pseudo-

random generator relative to O,WI , then (PZK,VZK) is an NIZK proof system for L.

Proof. Completeness is immediate, and statistical soundness of (PZK,VZK) follows from

the perfect soundness of (P,V) and the fact that a uniform crs ∈ {0, 1}2n is in the range

of G with only negligible probability.
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A simulator S = (S1,S2) is given as follows. S1(1n) chooses w ← {0, 1}n computes

crs = GO(w), and then outputs (crs, w). Given x, simulator S2 sets x′ = (x, crs), applies

a Levin reduction to (x′, w) to obtain (x̂, ŵ) ∈ L, chooses r ← {0, 1}|x̂|, and outputs

π = P(x̂, ŵ, r).

The fact that S provides a good simulation follows from pseudorandomness of G

relative to O,WI , and witness indistinguishability ofWI . In a little more detail, in the

real proof the distinguisher D gets (crs, π) where crs ← {0, 1}2n and π = P(x̂, ŵ, r) for

r ← {0, 1}|x̂|. In the simulated proof, D gets (crs′, π′) where crs′ = G(w′) for w′ ← {0, 1}n

and π′ = P(x̂, ŵ′, r) for r ← {0, 1}n. We show that any polynomial time distinguisher

D cannot distinguish between these two distributions by a hybrid argument. Let hybrid

H0 be the real proof (crs, π). In hybrid H1, we replace the crs in the real proof with

a simulated crs′ = G(w′). If D can distinguish between H0 and H1 then it breaks the

pseudorandomness of G. In hybrid H2 we replace the proof π = P(x̂, ŵ, r) with the

simulated proof π′ = P(x̂, ŵ′, r). If D can distinguish between H1 and H2 then it breaks

the witness indistinguishability ofWI . Since H2 is distributed exactly as the simulated

proof, this proves the theorem.

6.3.3 On the Definition of theWI Oracle

We considered many possibilities for the definition of the WI oracle above. At

first glance, it may be tempting to define the prove oracle not to depend on w as this

would guarantee that a proof can not reveal any information about the witness. However,

such a definition is too powerful as it allows for the following key agreement protocol

when the base oracle, O, is a one-way permutation. A picks random strings x← {0, 1}n,
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r ← {0, 1}n and B picks x′ ← {0, 1}n. They privately query y = O(x) and y′ = O(x′)

and send the values y, y′, r to each other. Now, both A and B query P for a proof of the

following statement s = (∃w such that y = O(w) ∨ y′ = O(w)) and receive proofs πA

and πB . Note, that this statement has exactly two witnesses x, x′ and each of A and B

knows one, but E can not learn either by the one-wayness of O. If P is independent of

the witness then πA = πB and A and B have a secret which E can not learn. Note that it

is also necessary that P take additional randomness r as an input as otherwise the proofs

would not be witness indistinguishable.

6.4 An Augmented Black-Box Construction

Here we show that the Naor-Yung/Sahai construction of CCA-secure public-key

encryption from CPA-secure public-key encryption can be cast as an augmented fully

black-box construction. This result is not surprising; the point is to demonstrate that our

framework does, indeed, capture constructions that go beyond the usual black-box ones.

In particular, the construction is shielding in the terminology of [53], something ruled out

in that same work in a black-box sense.

Let O = (G,E,D) be a public-key encryption scheme (with perfect correctness),

and let WI = (P,V) be a WI proof system for NPO. Assume O is CPA-secure relative

to O,WI . As noted in Section 6.3.2, we can useWI to construct an NIZK proof system

(PZK,VZK) for NPO. (Existence of CPA-secure encryption implies existence of a one-

way function.) Moreover, we can use the results of Sahai [114] to transform (PZK,VZK)

into a simulation-sound NIZK proof system ssZK = (PssZK,VssZK) for NPO. (We remark

that for WI sampled according to the distribution described in Section 6.3.1, the NIZK
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proof system (PZK,VZK) would already satisfy simulation soundness with overwhelm-

ing probability. However, here we want a construction starting from any WI proof sys-

tem.) For notational convenience, we will treat ssZK as an NIZK proof system for the

specific language

L
def
={(c1, c2, pk1, pk2) | ∃m, r1, r2 : c1 = EOpk1(m; r1) ∧ c2 = EOpk2(m; r2)}.

We now describe the construction of a CCA-secure encryption scheme:

KeyGen GO,ssZK: Compute (pk1, sk1) ← G(1n) and (pk2, sk2) ← G(1n). Then choose

crs← {0, 1}`(n) and set PK = (pk1, pk2, crs) and SK = (sk1, sk2).

Encryption EO,ssZK: To encrypt plaintext m, choose r1, r2, r ← {0, 1}n and then compute

the ciphertexts c1 = Epk1(m; r1) and c2 = Epk2(m; r2). Set x = (c1, c2, pk1, pk2) and

w = (m, r1, r2) and generate an NIZK proof π = PssZK(crs, x, w, r). Output (c1, c2, π).

Decryption DO,ssZK: To decrypt (c1, c2, π), set x = (c1, c2, pk1, pk2) and check that

VssZK(crs, x, π) = 1. If not, output ⊥. Otherwise, output m = Dsk1(c1).

The following theorem follows from [114, Theorem 4.1]. We note that even though [114]

proves this theorem for non-uniform zero-knowledge proofs, uniform zero-knowledge

suffices since we consider a uniform notion of CCA-security.

Theorem 6.4.1 For anyO implementing an encryption scheme (with perfect correctness) that is

CPA-secure relative to O,WI , the above construction is CCA-secure relative to O,WI . Thus,

the above is an augmented fully black-box construction of a CCA-secure encryption scheme from

CPA-secure encryption.
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6.5 An Impossibility Result for Key Agreement

In this section, we rule out augmented black-box constructions of key agreement

with perfect completeness from one-way functions. (We conjecture that the result ex-

tends to the case of imperfect completeness, but we were unable to prove this.) For the

remainder of this section, we only consider 1-bit key-agreement protocols with perfect

completeness.

Say (A,B) is a pair of polynomial-time oracle algorithms that is an augmented

black-box construction of key agreement from one-way functions. Then:

• For any O,WI such that WI is a proof system for NPO and all n, following an

execution between AO,WI (1n) and BO,WI (1n) both parties agree on a common

bit k ∈ {0, 1}.

• Given (A,B) and E, define the advantage of E by the following experiment:

1. AO,WI (1n) and BO,WI (1n) interact, resulting in a shared key k and a tran-

script T .

2. E is given T , and outputs a bit k′.

The advantage of E is |Pr[k′ = k]− 1/2|.

For any O and WI such that O is one-way relative to (O,WI ) and WI is a WI

proof system for NPO, every unbounded algorithmE making at most polynomially

many queries to O andWI has negligible advantage.

To prove that no augmented (fully) black-box construction of key agreement from

one-way functions exists, we instantiate the oracle O with a random oracle and choose
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WI as described in Section 6.3.1. That is, O = {On}n∈N where for each n ∈ N, On

is chosen uniformly at random from the space of all functions from {0, 1}n → {0, 1}n.

A random oracle is one-way [76], and Lemma 6.3.10 shows that it remains one-way in the

presence of WI chosen from the specified distribution. Moreover, by Lemma 6.3.9 we

have thatWI is a WI proof system for NPO. We note that even though these lemmas are

stated with respect to polynomial time adversaries, since our proofs relativize, they also

hold for computationally unbounded adversaries making at most polynomially many

oracle queries.

Now consider a construction (AO,WI , BO,WI ) of key-agreement relative to these

oracles. if (A,B) is an augmented black-box construction of key-agreement from one-

way functions, then for any unbounded algorithmE making at most polynomially many

oracle queries that has non-negligible advantage, there should exist a polynomial time

machine SE,O,WI that inverts O or breaks the witness indistinguishability ofWI . How-

ever, since S makes at most polynomially many queries toO,WI , such an S does not ex-

ist. Therefore, every unbounded algorithmE making at most polynomially many queries

to O and WI should have negligible advantage. However, we show an explicit E for

which this is not the case, thus proving that no augmented (fully) black-box construc-

tion of key agreement from one-way functions exists. As described, E is not polynomial

time. However, E can be made efficient if P = NP; thus any augmented semi-black-box

construction of key agreement from one-way functions would imply P 6= NP.
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6.5.1 Breaking Key Agreement Relative to a Random Oracle

In this section we provide a warmup for our main proof by ruling out (standard)

black-box constructions of key agreement from one-way functions. This proof may also

be of independent interest for pedagogical purposes as a simplified version of the proofs

in [76, 10]. Note, however, that we prove a weaker result: we only rule out construc-

tions of key-agreement protocols with perfect completeness based on one-way functions

whereas [76, 10] rule out constructions with arbitrary completeness even based on one-

way permutations.

Let (A,B) be a construction of key agreement from one-way functions. Let qA

(resp., qB) be a polynomial upper bound on the number of queries made by A (resp., B).

Consider an attacker E defined as follows. E, given a transcript trans of an execution of

(A,B) in the presence of a random oracleO, maintains a set Q(E) of query/answer pairs

for O, and a multiset of candidate keys K, both initialized to ∅. Then E runs 2qB + 1

iterations of the following attack:

• Simulation phase: E finds a view of A consistent with the given transcript and

with Q(E). This view contains the randomness rA used by A, as well as a set of

oracle queries/answers Q̂(A) made by A. The set Q̂(A) is chosen to be consistent

with any queries/answers in Q(E), but it need not be consistent with the true ora-

cle O.

Let k denote the key computed by A in the view. Then E adds k to K.

• Update phase: E makes all queries in Q̂(A) \Q(E) to the true oracleO, and adds the

resulting query/answer pairs to Q(E).
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Following the above, E has a multiset K of 2qB + 1 possible keys. E outputs the majority

value in K.

In each iteration, E makes at most qA queries to O. Thus, E makes O(qA · qB)

queries overall. We claim that E outputs the key computed by A and B with probabil-

ity 1. Toward this, we first prove the following:

Claim 6.5.1 Let k denote the actual key computed by A and B in an execution of the protocol.

Then in each iteration of the attack, either E adds k to K, or E adds to Q(E) one of the queries

made by B in the real execution.

Proof. Let Q(B) denote the queries made by B in the real execution of the protocol. In

a given iteration, there are two possibilities. If Q̂(A) ∩ Q(B) 6⊆ Q(E), then we are done

since E makes all queries in Q̂(A) \ Q(E) to the true oracle O. If, on the other hand,

Q̂(A) ∩ Q(B) ⊆ Q(E) then there is an oracle Õ that is consistent with the sampled view

of A and the view of the real B. That is, there is an execution of the protocol with an

oracle Õ that yields the observed transcript trans, a view for B identical to the view of

the real B, and a view for A identical to the view generated by E in the current iteration.

Perfect completeness implies that the key k computed by A in this case must match the

(actual) key computed by B.

Since B makes at most qB queries, it follows that there are at most qB iterations in

which E adds an incorrect key to K, and so at least qB + 1 iterations in which E adds the

correct key to K. Since E outputs the key that occurs most often, E always outputs the

correct key.
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6.5.2 Breaking Key Agreement Relative to O,WI

Here we prove our main result:

Theorem 6.5.2 There is no augmented fully black-box construction of key agreement with perfect

completeness from one-way functions.

The overall structure of the attack is the same as in the previous section, but there

are some key differences. Our attack again proceeds by having E repeatedly find a view

of A consistent with a transcript trans and the oracle queries Q(E) that E has made thus

far. Let Q(A) and Q(B) denote the queries of A and B, respectively, in the actual execu-

tion of the protocol, and let Q̂(A) denote the queries of A in the view found by E in some

iteration. In the previous section we argued that as long as Q̂(A)∩Q(B) ⊆ Q(E), the key

found by E in the given iteration matches the key computed by the real B. This was be-

cause, under that condition, there must exist an oracle Õ that is consistent with an execu-

tion of the protocol in which party A makes queries Q̂(A), party B makes queries Q(B),

and the resulting transcript is trans. Here, however, this need not be the case. For ex-

ample, consider a real execution of the protocol in which B makes a query V(x, π) that

returns 1, yetB does not make any corresponding query P(x,w, ?) = π with (x,w) ∈ RL.

If E samples a view of A in which x 6∈ L, then there are no oracles Õ, W̃I consistent with

the sampled view of A and the real view of B, but neither does E necessarily learn any

new queries in Q(B).

We deal with the above by modifying the attack and changing the proof. First,

we modify the attack by having E sample extended views of A, which include a view

of A along with additional oracle queries used for “book-keeping”. Second, rather than
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showing that, in every iteration, E either learns the correct key or a query in Q(B), we

show that, in every iteration,E either learns the correct key or a query inQ(AB)
def
=Q(A)∪

Q(B).

An additional subtlety arises due to the possibility that Spoofi occurs (cf.

Lemma 6.3.4) for some i. In our attack we handle this by guaranteeing that Spoof =

∪iSpoofi occurs with sufficiently small probability, and showing that the attack is suc-

cessful whenever Spoof does not occur. (Our proof can be significantly simplified if we

make the assumption thatA(1n) andB(1n) only query their oracles on inputs of length n,

however we wish to avoid this assumption.)

Preliminaries: We view Q(A), Q(B), and Q(E) interchangeably as sets of queries and

sets of query/answer pairs. We write, e.g., [P(x,w, r) = π] ∈ Q(A) to denote that A

made the query P(x,w, r) and received the answer π. As usual, we let L denote the set

of satisfiable circuits with O-gates.

We assume any key-agreement construction (A,B) has the following normal form:

Before a party queries P(x,w, r), that party also asks all O-queries necessary to check

whether (x,w) ∈ RL; after receiving the result π = P(x,w, r), that party also asks V(x, π).

Any key-agreement protocol can be modified to satisfy this condition with only a poly-

nomial blow-up in the number of queries. We let q = q(n) ≥ n denote a polynomial

upper bound on the combined running time of A and B (and so in particular a bound on

the number of queries they make).

Without loss of generality, assume that for any (circuit) x ∈ {0, 1}n and w ∈ {0, 1}n,

computation of x on input w queries O at most n times, each time on input of length at

most n. In other words, deciding whether (x,w) ∈ CIRCUIT-SATO depends only on the
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values of O on inputs of length at most n.

Extended views of A: In our attack, E will repeatedly sample extended views of A which

include A’s view along with some additional oracle queries/answers. We denote an

extended view by (rA,O′,WI ′), where rA are the random coins of A andO′,WI ′ is a set

of query/answer pairs that includes all those made by A (using coins rA and the given

transcript). E samples only consistent extended views, which we define now.

Definition 6.5.3 Let Q =
(
O′,WI ′ = (P ′,V ′)

)
be a set of queries/answers. We say it is con-

sistent if

1. For every query [P ′(x,w, r) = π] ∈ WI ′, oracle O′ contains queries/answers sufficient to

determine whether (x,w) ∈ RL. Moreover, if (x,w) ∈ RL then [V ′(x, π) = 1] ∈ WI ′,

while if (x,w) 6∈ RL then [V ′(x, π) = 0] ∈ WI ′.

2. For every query [V ′(x, π) = 1] ∈ WI ′, there exist w, r such that O′ contains

queries/answers for which (x,w) ∈ RL and [P ′(x,w, r) = π] ∈ WI ′.

Let trans be a transcript of an execution between A(1n) and B(1n), and let Q(E) be a set of

queries/answers. We say the extended view (rA,O′,WI ′) is consistent with trans and Q(E) if

O′,WI ′ is consistent, and also:

1. Every query in Q(E) is in O′,WI ′, and is answered the same way.

2. AO′,WI ′(1n; rA), when fed with incoming messages as in trans, would generate outgoing

messages consistent with trans. Furthermore, all oracle queries/answers made/received by

A in such an execution are in O′,WI ′.
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The attack. Let t = 4 log q. First, in a pre-processing step, E queries O(x) for all x with

|x| ≤ t; queries P(x,w, r) for all x,w, r with |x| = |w| = |r| ≤ t; and queries V (x, π) for

all x, π with |x| = |π|/7 ≤ t. Denote these queries/answers by Q∗(E). The rest of the

attack is similar to that of the previous section. E, given a transcript trans of an execution

of (A,B), initializes Q(E) = Q∗(E) and K = ∅, and then runs 2q + 1 iterations of the

following:

• Simulation phase: E finds an extended view (rA,O′,WI ′) consistent with trans

and Q(E), with O′,WI ′ of size at most |Q(E)| + q. (If no such extended view

exists, E aborts.) Let k be the key computed by A in this view. E adds k to K.

• Update phase: E makes all queries in (O′ ∪WI ′) \Q(E) to the true oracles O,WI .

For any queries [P ′(x,w, r) = π] just made, E also makes any O queries needed

to determine whether (x,w) ∈ RL, as well as the query V(x, π). All the resulting

query/answer pairs are added to Q(E).

Following the above, E has a multiset K of 2q + 1 possible keys. E outputs the majority

value in K.

Analysis. In pre-processing, E makes polynomially many queries. In each iteration of

the attack, E makes at most q + q(q + 1) ≤ 3q2 queries: there are at most q queries in

(O′ ∪WI ′) \Q(E), and for each such query of the form [P ′(x,w, r) = π] we have |x| ≤ q

and so at most q queries are needed to check whether (x,w) ∈ RL and one additional

query for V(x, π). Thus, E makes at most 3q2 · (2q + 1) queries after the pre-processing,

which is bounded by 7q3 for q > 3.
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For any i, define Spoofi (cf. Lemma 6.3.4) to be the event that there is a query

[Vi(x, π) = 1] ∈ Q(A) ∪Q(B), yet there is no query

[Pi(x,w, ?) = π] ∈ Q(A) ∪Q(B) ∪Q∗(E)

with (x,w) ∈ RL. Let Spoof =
∨
i Spoofi. We claim that Spoof occurs with probability

at most 1/8. Indeed, by construction Spoofi cannot occur for i ≤ t, and for i > t, by

Lemma 6.3.4 Pr[Spoofi] ≤ q · 2−4i. Thus, by a union bound, Pr[
∨
i>t Spoofi] ≤ q−15 ·∑∞

i=1(2−4)i ≤ 1/8 for q ≥ 2.

Define Spoof ′ to be the event that, at some point during the attack, E queries

V(x, π) = 1 to the real oracle, but there was no previous query [Pi(x,w, ?) = π] made by

A, B, or E with (x,w) ∈ RL. By construction, this can only possibly occur if |x| > 4 log q.

Since E makes at most 7q3 queries after the pre-processing stage, however, Spoof ′ occurs

with probability at most 1/8.

In the rest of the analysis, we show that as long as neither Spoof nor Spoof ′ occur,

E outputs the key computed by A and B. This suffices, since then E finds the shared

key with probability at least 3/4 overall. Then, as in the previous section, the following

lemma will prove Theorem 6.5.2:

Lemma 6.5.4 Let k denote the actual key computed by A and B in an execution of the protocol,

and assume neither Spoof nor Spoof ′ occur. Then E does not abort, and in each iteration of the

attack either E adds k to K, or E adds to Q(E) one of the queries made by A or B in the real

execution.

Proof. Let Q(AB)
def
=Q(A)∪Q(B) denote the queries/answers made/received by A or B
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in the real execution. We first show that E never aborts. Say Q(E) is consistent at the

beginning of some iteration; this is true by construction in the first iteration. Since Spoof

did not occur, a consistent, extended view is given by letting (O′,WI ′) = Q(E)∪Q(AB),

which is of size at most |Q(E)| + q. Moreover, regardless of what consistent, extended

view is actually sampled by E, the new set Q(E) defined at the end of the iteration is

consistent unless Spoof ′ occurs.

In the remainder of the proof we assume that neither Spoof nor Spoof ′ occur. We

now prove the rest of the lemma. Let (rA,O′,WI ′) be the consistent, extended view

chosen by E in some iteration. We define three events, and show:

• If one of the events occurs, then, in the update phase of that iteration, E adds to

Q(E) some query in Q(AB).

• If none of the events occur then there are oracles Õ, W̃I that match (i.e., are not

inconsistent with) the extended view of A and the real view of B. (Thus, by perfect

completeness, E adds the correct key to K in that iteration.)

Before defining the events, we introduce some terminology. Given some set of

queries Q, we say Q fixes x ∈ L if either (1) there exists a w and O-queries in Q such that

(x,w) ∈ RL, or (2) there is a query [V(x, ?) = 1] ∈ Q. We say Q fixes x 6∈ L if for all w

there are O-queries in Q such that, regardless of how any of the O-queries not in Q are

answered, it holds that (x,w) 6∈ RL. We define Q fixes (x,w) ∈ RL and Q fixes (x,w) 6∈ RL

in the obvious way.

We now define the events of interest:

E1: O′,WI ′ disagrees with Q(AB) on the answer to some O-, P-, or V-query.
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E2: There exists an x such that Q(AB) fixes x ∈ L but O′,WI ′ fixes x 6∈ L, or vice versa.

E3: A V ′-query returning 0 inWI ′ is “inconsistent” with the O,P queries in Q(AB), or

vice versa. Formally, one of the following occurs:

• There is a query [V ′(x, π) = 0] ∈ WI ′, but [P(x,w, ?) = π] ∈ Q(AB) and

Q(AB) fixes (x,w) ∈ RL.

• There is a query [P ′(x,w, ?) = π] ∈ WI ′ and O′ fixes (x,w) ∈ RL, but

[V(x, π) = 0] ∈ Q(AB).

Claim 6.5.5 If any ofE1, E2, orE3 occur in the simulation phase of some iteration, thenE learns

a new query in Q(AB) in the update phase of that iteration.

Proof. If E1 occurs, the claim is immediate. (Q(E) contains the answers of the true ora-

cles, and so can never disagree with Q(AB). So any disagreement between O′,WI ′ and

Q(AB) must be due to some query in O′,WI ′ outside of Q(E).) If E2 occurs there are

several sub-cases to consider:

1. Say Q(AB) fixes x ∈ L, but O′,WI ′ fixes x 6∈ L. The second event implies that for

all w oracle O′ fixes (x,w) 6∈ RL. There are two ways the first event can occur:

• There exists a w such that Q(AB) fixes (x,w) ∈ RL. In this case there must be

an O-query in Q(AB) that is answered inconsistently with some query in O′,

and event E1 has occurred.

• There is a query [V(x, π) = 1] ∈ Q(AB) (for some π). Since Spoof has not oc-

curred, this means that for some w, r there is a query [P(x,w, r) = π] inQ(AB)
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or Q∗(E). Say [P(x,w, r) = π] ∈ Q(AB). Then by our normal-form assump-

tion, Q(AB) fixes (x,w) ∈ RL; this, in turn, implies an O-query in Q(AB)

inconsistent with O′ (which, recall, fixed x 6∈ L), and so E1 has occurred.

On the other hand, say [P(x,w, r) = π] ∈ Q∗(E). Then, by construction

ofQ∗(E), the query [V(x, π) = 1] is also inQ∗(E), andQ∗(E) fixes (x,w) ∈ RL.

But since any queries in O′ must agree with the corresponding O-queries in

Q∗(E), this cannot happen.

2. Say O′,WI ′ fixes x ∈ L, but Q(AB) fixes x 6∈ L. The second event implies that for

all w we have that Q(AB) fixes (x,w) 6∈ RL. There are two ways the first event can

occur:

• There exists a w for whichO′ fixes (x,w) ∈ RL. In this case there is anO-query

inQ(AB) that is answered inconsistently with some query inO′, and event E1

has occurred.

• There is a query [V(x, π) = 1] ∈ WI ′ for some π. By definition of consistency,

there exists w such that O′ fixes (x,w) ∈ RL. Then there must be an O-query

in Q(AB) that is answered inconsistently with O′, and so E1 has occurred.

Finally, we turn to E3. Here there are two sub-cases:

1. Say [V ′(x, π) = 0] ∈ WI ′, but [P(x,w, ?) = π] ∈ Q(AB) and furthermore Q(AB)

fixes (x,w) ∈ RL. Because of our normal-form assumption, [V(x, π) = 1] ∈ Q(AB).

Thus there is a V-query in Q(AB) that is answered inconsistently with WI ′ and

so E1 has occurred.
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2. Say [P ′(x,w, ?) = π] ∈ WI ′ and O′ fixes (x,w) ∈ RL, but we have [V(x, π) = 0] ∈

Q(AB). By definition of consistency, [V(x, π) = 1] ∈ WI ′. Thus there is a V-query

in Q(AB) that is answered inconsistently withWI ′, and so E1 has occurred.

This concludes the proof of Claim 6.5.5.

To complete the proof of the lemma, we show that if none of E1, E2, or E3 occur,

there exist oracles Õ, W̃I (in the support of the distribution from Section 6.3.1) that match

(i.e., do not disagree with) O′,WI ′, and Q(AB). This means there is an execution of the

protocol with oracles Õ, W̃I that yields a view for B identical to the view of the real B,

and a view for A identical to the view of A in the extended view sampled by E. Perfect

completeness implies that the key k computed by A in that case must match the (actual)

key computed by B, as we needed to show.

We construct Õ, W̃I as follows. First, answer all queries inO′,WI ′, andQ(AB) as

answered by those oracles; ifE1 does not occur, this is well-defined as there is no conflict.

Answer all other queries in Õ arbitrarily. Note that ifO′,WI ′, Q(AB) fixes x ∈ L then so

does Õ, and similarly if O′,WI ′, Q(AB) fixes x 6∈ L. Note also that with Õ fixed, so are

L̃ and R̃L.

For P̃ , proceed as follows. Recall that all P̃i queries for i ≤ t = 4 log q were made by

E during pre-processing and so are already fixed. Any other unassigned query P̃(x,w, r)

with |x| > t is defined as follows:

• If (x,w) 6∈ R̃L, the query is answered arbitrarily.

• If (x,w) ∈ R̃L, let π∗ ∈ {0, 1}7|x| be such that V(x, π∗) is not in WI ′ or Q(AB).

(There must exist such a π∗, by the bound on the number of queries in these sets.)
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Set P̃(x,w, r) = π∗.

With the Õ and P̃ queries fixed, oracle Ṽ is set as in Section 6.3.1.

We show that Õ, W̃I match (i.e., do not disagree with) O′,WI ′, and Q(AB). By

construction, the only possible conflict can be between Ṽ and some V-query in WI ′

or Q(AB). No such conflict is possible:

1. Say [V(x, π) = 1] ∈ WI ′ for some x, π. Then by definition of consistency, there

exist w, r such that O′ fixes (x,w) ∈ RL, and [P(x,w, r) = π] ∈ WI ′. But then

(x,w) ∈ R̃L and P̃(x,w, r) = π, and so Ṽ(x, π) = 1.

2. Say [V(x, π) = 1] ∈ Q(AB) for some x, π. Since Spoof does not occur, there existw, r

such that O′ ∪Q(AB) fixes (x,w) ∈ RL, and [P(x,w, r) = π] ∈ WI ′ ∪Q(AB). But

then (x,w) ∈ R̃L and P̃(x,w, r) = π, and so Ṽ(x, π) = 1.

3. Say [V(x, π) = 0] ∈ WI ′ ∪ Q(AB) for some x, π. If x 6∈ L̃ then Ṽ(x, π) = 0 also.

If x ∈ L̃, there is an inconsistency only if there is some w such that P̃(x,w, ?) = π

and (x,w) ∈ R̃L. Note that P̃(x,w, ?) = π can only occur if [P(x,w, ?) = π] ∈

WI ′ ∪Q(AB), but in that case (since [V(x, π) = 0] ∈ WI ′ ∪Q(AB) and E3 did not

occur) either O′ or Q(AB) fix (x,w) 6∈ RL, and hence (x,w) 6∈ R̃L either.

This completes the proof of Lemma 6.5.4.
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Chapter 7

Conclusions

In this dissertation we have studied the limitations of cryptographic construc-

tions. We began, in Chapters 4 and 5, with the restricted class of black-box construc-

tions demonstrating new black-box separations between several widely used crypto-

graphic primitives. Then, in Chapter 6, we proposed the model of augmented black-box

constructions to capture a richer class of techniques. Using this new model we were

able to demonstrate limitations on the power of a commonly used class of non-black-

box constructions, those using zero-knowledge proofs. We view this as a significant step

towards understanding the relationships between cryptographic primitives and, more

importantly, for truly capturing what is possible using “known techniques”.

We believe that the study of relationships among cryptographic primitives is an im-

portant one. Separation results can make clear fundamental differences between primi-

tives. They can also save a lot of wasted effort by guiding researchers away from hopeless

approaches. Additionally, such results may aid in finding new constructions by pinpoint-

ing exact properties that a construction can have in order to bypass them. For these rea-

sons, we believe that our augmented black-box model will find further applications in the

study of cryptographic primitives and the search for new cryptographic constructions.

Many open questions remain following our work, both in the traditional setting of

black-box separations and in the setting of augmented black-box separations. Some such

questions include:
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Black-Box Separations. Perhaps the most interesting open question in the study of black-

box constructions is the black-box complexity of CCA-secure encryption. Specifically,

it is not known if there exists a black-box construction of CCA-secure encryption from

CPA-secure encryption or even from trapdoor permutations. Interestingly, for the case of

trapdoor permutations there exist non-black-box constructions [93, 37, 114, 88]. Whereas,

for the case of constructions from CPA-secure encryption, there exists a partial black-

box separation [53]. However, these results fail to resolve the question regarding the

existence of a black-box construction. Since CCA-secure encryption has been accepted as

the standard security notion for public-key encryption, it is an interesting and important

open question to understand the black-box complexity of this primitive.

Another interesting problem in the area of black-box separations is to investigate

the power of fully-homomorphic encryption. Fully-homomorphic encryption (FHE) is a

very powerful new primitive that has only recently been realized [51] and has already

proven very useful in many constructions and applications. We believe that an interest-

ing question is to explore the limits of what can, and what cannot, be accomplished using

this powerful new primitive. As a starting point, we propose looking at limitations on

the power of black-box constructions using fully-homomorphic encryption.

Non-Black-Box Separations. Even more open problems remain in the study of non-

black-box constructions and separations. The augmented black-box suggested in Chap-

ter 6 gives a way to study such constructions and we suggest several directions for im-

proving our results and model. The first such open question is to close the gap between

our result and the corresponding black-box separations [76, 10]. Specifically, it would be

interesting to prove that our augmented black-box separation holds also for the case of
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constructions of key agreement with imperfect completeness and for constructions start-

ing from one-way permutations. Going beyond key agreement, it would be interesting to

study what other primitives can be separated under augmented black-box separations.

Such separations will help us better understand the power of zero-knowledge proofs in

cryptographic constructions. For some preliminary results in this direction see [26].

The augmented black-box model comes short of capturing all known techniques.

Thus, an important line of work is to extend this model to capture additional construc-

tions. Some potential problems in this direction are as follows. Currently, augmented

black-box constructions do not allow one to give proofs of proofs. More formally, the

Prover oracle can not prove membership in a language defined relative to itself. It would

be interesting to find an alternative model in which such proofs are allowed but our sep-

aration result still holds. Additionally, the augmented black-box model fails to capture

many known non-black-box techniques (e.g. [11, 2, 5]). It would be very interesting

to devise a model capturing some of these constructions. Specifically, we believe that

capturing the non-black-box simulation technique of [5] would be of particular interest.
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