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This thesis proposes a synthesis and generalization of local exponential trans-

lation models, the subclass of feature-rich translation models which associate prob-

ability distributions with individual rewrite rules used by the translation system,

such as synchronous context-free rules, or with other individual aspects of transla-

tion hypotheses such as word pairs or reordering events. Unlike other authors we use

these estimates to replace the traditional phrase models and lexical scores, rather

than in addition to them, thereby demonstrating that the local exponential phrase

models can be regarded as a generalization of standard methods not only in theo-

retical but also in practical terms. We further introduce a form of local translation

models that combine features associated with surface forms of rules and features

associated with less specific representation – including those based on lemmas, in-

flections, and reordering patterns – such that surface-form estimates are recovered

as a special case of the model. Crucially, the proposed approach allows estima-

tion of parameters for the latter type of features from training sets that include

multiple source phrases, thereby overcoming an important training set fragmenta-



tion problem which hampers previously proposed local translation models. These

proposals are experimentally validated. Conditioning all phrase-based probabilities

in a hierarchical phrase-based system on source-side contextual information pro-

duces significant performance improvements. Extending the contextually-sensitive

estimates with features modeling source-side morphology and reordering patterns

yields consistent additional improvements, while further experiments show signifi-

cant improvements obtained from modeling observed and unobserved inflections for

a morphologically rich target language.
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Chapter 1

Contributions and related work

1.1 Generalizing local translation models

In the field of machine translation hierarchical phrase-based systems currently

produce some of the best results. These translation models are derived by purely

statistical methods from parallel corpora. Several recent studies have proposed

methods for extending phrase-based translation to use results of treebank parsers

and other linguistic annotation tools. This thesis contributes to the development of

the subclass of annotation-sensitive translation models which associate probability

distributions with individual rewrite rules used by the translation system, such as

paired n-grams or synchronous context-free rules, or with other individual aspects of

translation hypotheses such as word pairs or reordering events. We call these models

local to distinguish them from global probabilistic models that seek to estimate a

single probability distribution over a set of translation hypotheses.

Local exponential translation models generalize currently used approaches. In

standard translation models each rule is associated with closed-form maximum likeli-

hood estimates computed according to a word alignment and an extraction heuristic.

These estimates calculate conditional probabilities of one half of a rewrite rule given

the other half, and their particular form can be viewed as a rudimentary solution

to a multi-class classification problem. The idea of refining these estimates by de-
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veloping more sophisticated solutions to these classification tasks is not new. Its

first appearance dates back to Brown et al [7]. More recently several studies applied

it to phrase-based translation. Carpuat & Wu [8, 9], working within a flat-phrase

system, trained classifiers of different types to condition phrase probabilities on sur-

rounding source-language context. Chan et al [10] developed a similar elaboration

within a hierarchical phrase system, applying it only to a subset of flat phrases

from its grammar. The first contribution of the present work, originally reported

in [33], generalized this approach by conditioning all phrase-based probabilities in

a hierarchical phrase-based system on source-side contextual information using an

exponential model framework, demonstrating consistent significant improvements

for 2 language pairs and 8 test sets. He et al [17] independently studied a simi-

lar elaboration of hierarchical phrase-based translation. Unlike the other authors

Subotin [33] used the new estimates to replace the traditional phrase models and

lexical scores, rather than in addition to them, thereby demonstrating that the local

exponential phrase models can be regarded as a generalization of standard methods

not only in theoretical but also in practical terms.

The view of exponential estimates as a generalization of standard translation

models also motivated further elaborations. Previous extensions of local transla-

tion models were limited either to training independent classifiers associated with

individual source phrases or to training independent classifiers for less specific rep-

resentations of rewrite rules, such as their reordering patterns. Thus, Carpuat &

Wu and Chan et al train a separate classifier for each source phrase or word pair.

Conversely, Xiong et al [35] and later He et al [18] train specialized classifiers that
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predict reordering patterns of target phrases without giving estimates for target

phrases themselves. This thesis studies a form of local translation models that com-

bine features associated with surface forms of rules (i.e., rules themselves) and fea-

tures associated with their less specific representation (i.e., those based on lemmas,

inflections, and reordering patterns), such that surface-form estimates are recovered

as a special case of the model, while parameters for the latter type of features could

be estimated from training sets spanning multiple source phrases. In contrast to the

above-mentioned studies, where the individual models are interpolated using one

weight per model, this approach permits to optimize trade-offs between these types

of features on a per-feature basis while at the same time counteracting data spar-

sity problems resulting from excessive training set fragmentation. Extending the

contextually-sensitive estimates with features modeling source-side morphology and

reordering patterns yielded additional improvements, while a second series of ex-

periments, reported for the first time in this thesis, shows significant improvements

obtained from modeling observed and unobserved inflections for a morphologically

rich target language.

1.2 Alternative training methods

Several recent studies propose alternative modeling frameworks capable of in-

corporating complex feature sets into phrase-based machine translation. Factored

translation models [19] is a popular framework that can use information from dif-

ferent levels of representation in a phrase-based system, which has been explored

3



in several recent studies [2, 29, 36]. However, it is normally based on interpolating

different relative frequency estimates, and thus cannot learn complex interactions

between features of different kinds. Chiang, Marton & Resnik [13] and Chiang,

Wang & Knight [14] use an alternative algorithm in place of the traditional min-

imum error rate training (MERT) [28], which enables them to incorporate several

thousand additional features into the model, tuning their weights to increase a

translation quality score. The nature and capabilities of their approach differs from

local exponential models in several respects. In contrast to the methods discussed

above, they optimize the additional parameter weights on a small held-out set rather

than on all of the training data. Consequently, they have to compute the standard

translation models in the usual way and interpolate their aggregate scores with the

new features. This is fundamentally different from local exponential models, which,

by virtue of using a convex objective and comparatively inexpensive computations,

can be trained on the entire data set and handle feature sets that are larger by

several orders of magnitude. Aside from using a larger variety of features, this also

allows us to optimize the trade-off between rule features and other features on a per-

feature basis, rather than forcing us to compute rule feature weights by aggregate

heuristics. On the other hand, the method proposed by Chiang et al is able to use

some feature types which cannot be effectively incorporated into local models. An

example of such features are measures of structural similarity between translation

derivations and treebank parse trees of the source sentence [13], which cannot be

effectively modeled by conditional estimates for target phrases, since these features

distinguish between different source phrases. Furthermore, the use of standard eval-
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uation metrics as training objectives has been shown to improve the score, at least

for the respective metrics [28]. Hence, the two approaches may be viewed as being

complementary rather than in direct competition with each another.

Other authors have introduced alternative training methods that utilize the

entire training set. Liang et al [22] study updating methods based on the averaged

perceptron, where the features include both the relative frequency aggregate scores

used in phrase-based translation and additional features such as indicator functions

for part-of-speech tags. Tillmann & Zhang [34] develop an alternative method based

on stochastic gradient updates closely related to the perceptron. Finally, Blunsom

& Osborne [5] study a global probabilistic model based on synchronous context-free

grammar and incorporating n-gram language model features, where the synchronous

parse is treated a hidden variable. All of these methods in their present form present

considerable practical challenges. The problem is more fundamental for proposed

methods based on the perceptron, since their lack of robust feature selection leads

to reduced decoding speed, thereby not only adding to the already long training

times, but also introducing run-time delays that may be unacceptable in industrial

applications. Hidden-variable exponential models, like that proposed by Blunsom

& Osborne [5], can in principle be trained with weight-pruning regularizers, but

difficulties would remain, since estimation would still involve computational costs

comparable to or exceeding the costs of decoding the entire training set, repeated

over multiple iterations, which are exacerbated by the non-convex form of hidden-

variable likelihood. As a result, all of these authors have to carefully restrict dimen-

sionality of their feature space and are able to report only small improvements over
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a relatively weak baseline, or no improvements at all.

Thus, the framework presented here stands apart in offering capabilities that

go beyond alternative approaches, both in terms of the number, and hence variety

of features that can be used in practice, and in terms of the size of parallel sets that

can be used to train the models, while being complementary to alternative training

methods with respect to additional feature types and training objectives that the

latter can use.

1.3 Thesis summary

The main contribution of the thesis is to address the following limitations of

previously proposed local translation models:

1. In one line of previous work [8, 9, 10], context-based features are tied to par-

ticular source phrases, which prevents generalization beyond surface forms of

words required for morphological and syntactic phenomena. Even if less spe-

cific features were introduced into these models, their parameters would have

to be estimated separately in data sets associated with different source phrases,

leading to training set fragmentation that would prevent generalizations these

features were meant to capture.

2. In another line of previous work [35, 18] context-based features for reordering

patterns are used in a separate classifier, trained independently from the stan-

dard phrase models. This prevents the model from learning the individual

trade-offs between surface forms of the rules and reordering-based features.
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Furthermore, this approach has not been extended to other phenomena, such

as inflections of a morphologically rich target language, which may present

additional difficulties. The use of relative frequency estimates in factored

translation models can be seen as a form of this approach.

The proposed solution can be schematically represented as follows:

1. We start by identifying exponential likelihood functions that underlie the stan-

dard relative frequency phrase models and classifier-based models.

2. We then identify a more general and flexible exponential model that yields

these models as special cases.

3. Finally, we apply the proposed model to different morphological and syntactic

phenomena by varying its feature and normalization sets.

The rest of the thesis is organized as follows. Chapter 2 presents the baseline

approach and discusses several proposed types of local exponential models. Chapter

3 presents experiments studying classifier models, lexical models, source-side mor-

phology models, and reordering models. Chapter 4 presents experiments studying

target-side morphology models. Finally, chapter 5 summarizes the main points of

the thesis and outlines several possible extensions of the proposed framework.
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Chapter 2

Local exponential translation models

2.1 Hierarchical phrase-based translation

We take as our starting point David Chiang’s Hiero system [12], which gener-

alizes phrase-based translation to substrings with gaps. Consider for instance the

following set of context-free rules with a single non-terminal symbol:

〈A , A 〉 → 〈A1A2 , A1A2 〉

〈A , A 〉 → 〈 d′A1 idéesA2 , A1A2 ideas 〉

〈A , A 〉 → 〈 incolores , colorless 〉

〈A , A 〉 → 〈 vertes , green 〉

〈A , A 〉 → 〈 dormentA , sleepA 〉

〈A , A 〉 → 〈 furieusement , furiously 〉

It is one of many rule sets that would suffice to generate the English translation

1b for the French sentence 1a.

1a. d’ incolores idées vertes dorment furieusement

1b. colorless green ideas sleep furiously

As shown by Chiang [12], a weighted grammar of this form can be collected

and scored by simple extensions of standard methods for phrase-based translation

and efficiently combined with a language model in a CKY decoder to achieve large
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improvements over a state-of-the-art phrase-based system. The translation is chosen

to be the target-side yield of the highest-scoring synchronous parse consistent with

the source sentence. Although a variety of scores interpolated into the decision

rule for phrase-based systems have been investigated over the years, only a handful

have been discovered to be consistently useful, as is in our experience also the case

for the hierarchical variant. Setting aside specialized components such as number

translators, we concentrate on the essential sub-models1 comprising the translation

model: the phrase models and lexical models.

2.2 Exponential models

The computation of generalized local translation models is based on the famil-

iar equation for conditional exponential models, which are also known as log-linear

models, and whose maximum likelihood estimates are equivalent to maximum en-

tropy models (see, e.g., [31]):

p(Y |X) =
ew·f(X,Y )∑

Y ′∈GEN(X) ew·f(X,Y ′)
(2.1)

where f(X, Y ) is a vector of feature functions, w is a corresponding weight

vector, so that w · f(X, Y ) =
∑

i wifi(X, Y ), and GEN(X) is a set of values corre-

sponding to Y .

Maximum likelihood estimation for exponential model finds the values of

1To avoid confusion with features of the exponential models described below we shall use the

term ”model” for the terms interpolated using MERT.
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weights that maximize the likelihood of the training data, or, equivalently, its loga-

rithm:

LL(w) = log
M∏

m=1

p(Ym|Xm) =
M∑

m=1

log p(Ym|Xm) (2.2)

where the expressions range over all training instances {m}. Standard op-

timization algorithms enable us to find the unique maximum likelihood solution

for exponential models as long as we can compute the value of the objective and

its gradient for a given set of weights. Estimation thus also involves evaluating

the standard expression for log-likelihood gradient, whose n-th component is shown

below:

∂ logLL(w)

∂wn

=
M∑

m=1

fn(Xm, Ym)−
∑

Y ′∈GEN(Xm)

fn(Xm, Y
′) p(Y ′|Xm)

 (2.3)

Parameter estimates can be made more statistically reliable by use of regu-

larization. The present work uses `1 and `2 regularization [27, 15]. The first type

of regularization involves optimizing a function where the sum of absolute values

of the weights multiplied by a regularization trade-off C is subtracted from the

log-likelihood:

M∑
m=1

log p(Ym|Xm)− C |w| (2.4)

This form of regularization has the additional benefit of driving a large number

of feature weights to zero, thereby reducing the computational costs of computing

model predictions. The discontinuities in the absolute value function make the

10



optimization problem more involved, but efficient methods for its solution have

been recently introduced (e.g., Andrew & Gao [1]).

In `2 regularization the sum of squares of the weights, or, equivalently, the

squared norm of the weight vector, is subtracted from the objective instead.

M∑
m=1

log p(Ym|Xm)− C ||w||2 (2.5)

Unlike `1 regularization, `2 regularization causes relatively few feature weights

to go to zero. However, it gives an optimization problem with a smooth objec-

tive, and smooth optimization problems have been studied more extensively than

problems with non-smooth objectives. In applications where feature pruning is not

important, this may make `2 preferable due to the increased robustness of available

software.

As can be seen from the formulas given above, the form and solution of a

model are completely determined by answers to the following questions:

• What are the training instances?

• What are the features?

• What are the normalization sets GEN(X)?

• How is the model regularized?

It is in these details that the proposed generalizations of local translation

models differ from familiar maxent classifiers.
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2.3 Classifier translation models

The simplest form of local exponential translation models is similar to stan-

dard multiclass classifiers. They generalize phrase-based translation, whose specifics

should be assumed to be adopted in what follows without change unless stated

otherwise. An independent exponential phrase model corresponds to each source-

side phrase rx observed in training data, according to a standard phrase extraction

heuristic. Here the X in eq. 2.1 corresponds to a particular source-side phrase to-

gether with its context. The set GEN(X) enumerates all the target-side phrases ry

co-occurring with rx. As in standard classifier models, each feature consists of two

parts, one picking out a potentially predictive aspect of X and the other one asso-

ciated with one of the possible outcomes Y . The simplest translation model would

thus include only the features combining indicator functions for both halves of some

rule 〈rx, ry〉. The maximum likelihood solutions for these models are equivalent to

the standard relative frequency phrase models:

p(ry|rx) =
count(〈rx, ry〉)∑

ry′∈GEN(rx) count(〈rx, ry
′〉)

(2.6)

To see this, consider the n-th component of the gradient for the entire training

set (Xm, Ym), m = 1, . . .M , corresponding to rule r

∂ logLL(w)

∂wn

=
M∑

m=1

fn(Xm, Ym)−
M∑

m=1

∑
ry′∈GEN(rx)

fn(Xm, Ym)p(ry
′|Xm) (2.7)

At the maximum likelihood solution the gradient is zero and its two terms are

equal. The first term will collect the counts for a given rule in the training set. In
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turn, the inner sum in the second term will have exactly one non-zero term equal

to p(ry|Xm) whenever a factor matches the source side of the rule. The maximum

likelihood solution thus reduces to

∂ logLL(w)

∂wn

= count (〈rx, ry〉)− count
(
〈rx, ry′〉 : ry

′ ∈ GEN(rx)
)
p(ry|Xm) = 0

which is equivalent to (2.6). Thus classifier local phrase models include the

standard phrase model estimates as a special case.

This special case is useful for illustrating several basic properties of the models.

Table 2.1 shows maximum likelihood and `1-regularized probability estimates for a

toy training set consisting of 4 rules, with a feature corresponding to each rule.

One can see that the regularizer introduces a form of smoothing of the probabilities.

Table 2.2 shows the parameter weights for two of the models, illustrating the weight-

pruning property of `1 regularization, which in this case uses only a single non-zero

parameter. Table 2.3 demonstrates that increasing the number of training instances

while preserving their proportions decreases the amount of smoothing produced by

the regularizer and prevents any of the estimated weights from being driven to

zero. Computationally this occurs because additional terms in the log-likelihood

sum reduce the effect of the regularizer in the trade-off. This provides an intuitive

account of why regularization makes the estimates more statistically reliable: it

increases the contribution of predictors to the model to the degree that empirical

evidence warrants it.

We can now generalize these relative frequency estimates by relaxing the re-

strictions they implicitly place on the form of permissible feature functions. The
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Features Count pML p`1,C=0.1 p`1,C=0.5

(rx1 , r
y
1) 2 0.5 0.47 0.45

(rx1 , r
y
2) 1 0.25 0.26 0.275

(rx1 , r
y
3) 1 0.25 0.26 0.275

Table 2.1: Counts and probability estimates for training instances with rule features

only.

Feature wML w`1,C=0.1

(rx1 , r
y
1) 0.46 0.59

(rx1 , r
y
2) -0.23 0

(rx1 , r
y
3) -0.23 0

Table 2.2: Estimated parameter weights for training instances with rule features

only.

Features Count pML p`1,C=0.1 w`1,C=0.1

(rx1 , r
y
1) 20 0.5 0.493 0.53

(rx1 , r
y
2) 10 0.25 0.254 -0.14

(rx1 , r
y
3) 10 0.25 0.254 -0.14

Table 2.3: Counts, probability estimates, and weights for training instances with

rule features only and higher counts.
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simplest elaboration involves allowing indicator functions for rules to be conjoined

with indicator functions for arbitrary attributes of the source sentence or its anno-

tation. We may, for example, conjoin an indicator function for the rule 〈A , A 〉 →

〈 d′A1 idéesA2 , A1A2 ideas 〉 with a function telling us whether a part-of-speech

tagger has identified the word at the left edge of the source-side gap A2 as an ad-

jective, which would provide additional evidence for the target side of this rule.

Because training instances associated with different source phrases have no features

in common, parameter estimation can be decomposed into independent optimiza-

tion problems, one for each source phrase, without affecting the solution (aside from

differences in regularization trade-off). Combining a grammar-based formalism with

contextual features raises a subtle question of whether rules which have gaps at the

edges and can match at multiple positions of a training example should be counted

as having occurred together with their respective contextual features once for each

possible match. To avoid favoring monotone rules, which tend to match at many

positions, over reordering rules, which tend to match at a single span, we randomly

sample only one of such multiple matches for training. Unlike conventional phrase

models, contextually-conditioned probabilities cannot be stored in a pre-computed

phrase table. Instead, we store information about features and their weights and

compute the normalization factors at run-time at the point when they are first

needed by the decoder.

At the expense of more complicated decoding procedures we could also apply

the same line of reasoning to generalize the ”noisy channel” phrase model p(rx|ry)

to be conditioned on local target-side context in a translation hypothesis, possibly
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combining target-side annotation of the training set with surface form of rules. We

do not pursue this elaboration in part because we are skeptical about its potential

for success. The current state of machine translation rarely permits constructing

well-formed translations, so that most of the contextual features on the target side

would be rarely if at all observed in the training data, resulting in sparse and noisy

estimates.

Unlike other authors, who train arbitrary off-the-shelf classifiers for some

phrase types and interpolate their predictions with the standard translation models,

the framework presented here recovers the standard models as a special case. This

makes it straightforward to replace all main translation models, including lexical

scores, with classifier variants and extend them further. In particular, standard

classifiers crucially restrict the possible features to be associated with the surface

form of some rule. The target side of some rule has to be included because tradi-

tional classifier features are associated with one of the outcomes, and the source side

has to be included because different source-side phrases correspond to different nor-

malization sets GEN(X). This causes fragmentation and sparsity of training data

and prevents us from modeling phenomena that generalize beyond specific lexical

items. We describe extensions that overcome this limitation below.

2.4 Lexical models

The use of conditional probabilities in standard lexical models gives us a

straightforward way to generalize them in the same way as phrase models. Consider
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the lexical model pw(ry|rx), defined following Koehn et al [20], with a denoting the

most frequent word alignment observed for the rule in the training set.

pw(ry|rx) =
n∏

i=1

1

|j|(i, j) ∈ a|
∑

(i,j)∈a
p(wy

i |wx
j ) (2.8)

We replace p(wy
i |wx

j ) with context-conditioned probabilities computed at the

level of individual words. Our experience suggests that, unlike the analogous phrase

model, the standard lexical model pw(rx|ry) is not made redundant by this elabora-

tion, and we use its baseline variant in all our experiments.

2.5 Source-side inflection models

The simplest extension redefines the classifier models to apply to source-side

lemmas, adding features conjoined with indicator functions for Arabic lemmas in-

stead of surface word forms to the lexical models in Arabic-English translation.

This preserves decomposition of parameter estimation, with separate optimization

subproblems now associated with individual source-side lemmas rather than words.

Formally, these models are equivalent to classifiers, except that they treat source-

side lemmas in the same way the basic classifier models use source-side inflected

forms, and use source-side inflected forms in the same way the basic classifier mod-

els use source-side context. In particular, each normalization set GEN(X) consists

of all target-side words co-occurring with a given source-side lemma. We apply these

estimates to lexical translation models.
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2.6 Target-side inflection models

Translation into languages with rich morphology presents special challenges

for phrase-based methods. Thus, Birch, Osborne & Koehn [4] find that transla-

tion quality achieved by a popular phrase-based system correlates significantly with

a measure of target-side, but not source-side morphological complexity. Recently,

Avramidis & Koehn [2] and Ramanathan et al [29] proposed modeling target-side

morphology in a phrase-based factored models framework. Under this approach lin-

guistic annotation of source sentences is analyzed using heuristics to identify relevant

structural phenomena, whose occurrences are in turn used to compute additional

relative frequency estimates predicting target-side inflections.

These studies demonstrate that modeling target-language inflection can lead

to improvement, although their evidence is so far limited to small training sets. The

improvements are made possible by consistent structural correspondences between

languages. For example, the accusative case is usually preserved in translation, so

that nouns appearing in object position of English clauses tend to be translated

to words with accusative case markings in languages with richer morphology, and

vice versa. However, there are exceptions. For example, some verbs that place their

object in the accusative case in Czech may be rendered as prepositional constructions

in English [26]:

David was looking for Jana

David hledal Janu

David searched Jana-ACC
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Conversely, direct objects of some English verbs can be translated by nouns

with genitive case markings in Czech:

David asked Jana where Karel was

David zeptal se Jany kde je Karel

David asked SELF Jana-GEN where is Karel

Furthermore, English noun modifiers are often rendered by Czech possessive

adjectives and a verbal complement in one language is commonly translated by a

nominalizing complement in another language, so that the part of speech (POS) of

its head need not be preserved. These complications make it difficult to model these

phenomena using closed-form estimates. In contrast, exponential models are well

suited for capturing the complex interplay of source-side predictors that correlate

with target-level inflections. Exponential translation models can be extended to

model target-side morphology by use of non-lexicalized features with parameters

shared over multiple lexical items. Their form may be clarified by the following toy

example.

Suppose our training set contains 6 distinct rules: (rx1 , r
y
1), (rx1 , r

y
2), (rx1 , r

y
3),

(rx2 , r
y
4), (rx2 , r

y
5), and (rx2 , r

y
6), the first 3 occurring 10 times each and the last 3

occurring once each, so that maximum likelihood estimates p(Y |X) – which in this

case could be computed in closed form – would give each a probability of 1/3.

The features observed for this simple case are shown in table 2.4, while table 2.5

summarizes the training set. The normalization sets are GEN(rx1) = {ry1 , r
y
2 , r

y
3}

and GEN(rx2) = {ry4 , r
y
5 , r

y
6}. We have made the indices of target-side phrases, the
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Feature index Tracked attribute

f1 (rx1 , r
y
1)

f2 (rx1 , r
y
2)

f3 (rx1 , r
y
3)

f4 (rx2 , r
y
4)

f5 (rx2 , r
y
5)

f6 (rx2 , r
y
6)

Table 2.4: Observed rule features.

indices of features, and the indices of training instances all match for easy reference,

but the correspondence between these three indices is arbitrary.

The training set consists of 33 instances, and there is a term for each of them

in the summations over m in eqs. 2.2 and 2.3 (M = 33). Let us write out in full the

term of eq. 2.2 corresponding to the last training instance (omitting the log):

p(Y6|X6) =
ew·f(X,Y )∑

Y ′∈GEN(X) ew·f(X,Y ′)
=

ew6f6

ew4f4 + ew5f5 + ew6f6
(2.9)

Now suppose that we associate additional features with certain case-related

grammatical phenomena associated with these rules, for example, subject or object

position of words on the source side (cx1 and cx2 , respectively) and nominative or ac-

cusative markings on the target side (my
1 and my

2). The additional observed features

and the new form of the training instances are shown in tables 2.6 and 2.7.
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Instance (m) Features Count GEN(X)

1 f1 10 {ry1 , r
y
2 , r

y
3}

2 f2 10 {ry1 , r
y
2 , r

y
3}

3 f3 10 {ry1 , r
y
2 , r

y
3}

4 f4 1 {ry4 , r
y
5 , r

y
6}

5 f5 1 {ry4 , r
y
5 , r

y
6}

6 f6 1 {ry4 , r
y
5 , r

y
6}

Table 2.5: Training instances with rule features only.

Feature index Tracked attribute

f7 (cx1 ,m
y
1)

f8 (cx2 ,m
y
2)

f9 (cx1 ,m
y
2)

Table 2.6: Observed shared features.
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Instance (m) Attributes Features Count GEN(X)

1 (rx1 , r
y
1) (cx1 ,m

y
1) f1 f7 10 {ry1 , r

y
2 , r

y
3}

2 (rx1 , r
y
2) (cx2 ,m

y
2) f2 f8 10 {ry1 , r

y
2 , r

y
3}

3 (rx1 , r
y
3) (cx2 ,m

y
2) f3 f8 10 {ry1 , r

y
2 , r

y
3}

4 (rx2 , r
y
4) (cx1 ,m

y
1) f4 f7 1 {ry4 , r

y
5 , r

y
6}

5 (rx2 , r
y
5) (cx1 ,m

y
1) f5 f7 1 {ry4 , r

y
5 , r

y
6}

6 (rx2 , r
y
6) (cx1 ,m

y
2) f6 f9 1 {ry4 , r

y
5 , r

y
6}

Table 2.7: Training instances with rule features and shared features.

With these additional features the likelihood term corresponding to the last

training instance takes the form:

p(Y6|X6) =
ew6f6+w9f9

ew4f4+w7f7 + ew5f5+w7f7 + ew6f6+w9f9
(2.10)

In this case conjoining the contextual attribute cx1 of instance 6 with the mor-

phological attributes of phrases ry4 and ry5 in both cases produces the feature f7.

However, such conjunctions of feature halves do not always produce features ob-

served in the training set. For example, in computing the normalization factor

for instance 2 we would encounter an unobserved combination of its contextual at-

tribute cx2 with the morphological attribute my
1 of the phrase ry1 . The question thus

arises whether the model should include additional features and weights for these

unobserved combinations. Interestingly, although this issue is relevant in almost
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all maxent applications, it does not seem to be commonly discussed. Consider the

term of the likelihood corresponding to one occurrence of the second training in-

stance which includes the additional feature f10 tracking the attribute combination

(cx1 ,m
y
2):

p(Y2|X2) =
ew2f2+w8f8

ew1f1+w10f10 + ew2f2+w8f8 + ew3f3+w8f8
(2.11)

The feature f10 appears only in the denominator. Thus, for a given choice of

other parameters, we would increase the likelihood by giving it as small a value as

possible. This means that a likelihood expression with unobserved features would

be maximized by letting all of their weights go to −∞. In other words, even though

a maximum of the objective may be found, the solution would not converge. Al-

though adding a regularizer makes the solution convergent, we shall omit unobserved

features from all of the models.

The notion of feature sharing can be further illustrated by looking closer at

the expression for the log-likelihood gradient. Rearranging the sums in eq. 2.3 we

obtain two terms, one equal to the count of a feature in the training set and another

one giving its expected count under the current model:

∂ logLL(w)

∂wn

=
M∑

m=1

fn(Xm, Ym)−
M∑

m=1

∑
Y ′∈GEN(Xm)

fn(Xm, Y
′) p(Y ′|Xm)

=
M∑

m=1

fn(Xm, Ym)−
M∑

m=1

Ep(Y |Xm) [fn(Xm, Y )]

At the maximum of the objective the gradient is zero, so that these two terms

are equal for all features. It is easy to see that all the terms corresponding to
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instances where a shared feature appears or is generated in the normalizer are

pooled together in computing its expectation under the model. In that sense its

weight is estimated as though all the rules were part of a single exponential classifier,

although in this case the normalization sets GEN(Xm) change from one value of m

to another.

Given the distribution of features given in the table 2.7, shared-parameter

exponential models with `1 regularization (C = 0.1) would produce the estimates

shown in table 2.8. The last row in the table, calculated according to eq. 2.10,

illustrates particularly clearly how feature sharing allows the estimate associated

with a rule to be affected by non-lexicalized feature counts observed for rules with

which it may not have any lexical items in common. A particularly attractive feature

of these models is that they naturally define estimates for inflected forms that do

not appear in training data, which can be generated by a straightforward extension

of the phrase table, as described below.

2.7 Reordering models

Another application of shared features, one especially suited to hierarchi-

cal phrase-based translation, involves phrase representations limited to the pat-

terns formed by gaps and words, allowing the model to generalize reordering in-

formation beyond individual tokens. We study two types of ordering patterns.

For rules with two gaps we form features by conjoining contextual indicator func-

tions with functions indicating whether the gap pattern is monotone or inverting.
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Features Count p`1,C=0.1

(rx1 , r
y
1) (cx1 ,m

y
1) 10 0.987

(rx1 , r
y
2) (cx2 ,m

y
2) 10 0.494

(rx1 , r
y
3) (cx2 ,m

y
2) 10 0.494

(rx2 , r
y
4) (cx1 ,m

y
1) 1 0.356

(rx2 , r
y
5) (cx1 ,m

y
1) 1 0.356

(rx2 , r
y
6) (cx1 ,m

y
2) 1 0.289

Table 2.8: Counts and estimates for training instances with shared features.

We also use another type of ordering features, representing the pattern formed

by gaps and contiguous subsequences of words. For example, the rule with the

right-hand side 〈 d′A1 idéesA2 , A1A2 ideas 〉 might be associated with the pattern

〈 aA1 aA2 , A1A2 a 〉. We apply the second type of reordering features to rules

with a single gap only. Because some source-side patterns of this type apply to

many different rules it is no longer possible to decompose parameter estimation into

small independent optimization subproblems. For practical convenience we enforce

a coarser-grained decomposition in the experiments reported below in the following

way. We define indicator functions for sequences of closed-class words and the most

frequent part-of-speech tag for open-class words on the source side. For the rule

above and a simple tag-set the pattern tracked by such an indicator function would

be d′A1N A2 . We require all reordering features to be conjoined with an indicator
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function of this type, ensuring that each corresponds to a separate optimization

subproblem.
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Chapter 3

Experiments: Series I

Two series of experiments were performed. In the first series, described in

this section, classifier models were applied to Arabic-English and Chinese-English

translation tasks and extended with lexical models, source-side inflection models

and reordering models. The main results are shown in tables 3.2-3.4. Table 3.2

shows significant improvements obtained using classifier models with simple lexi-

cal scores, classifier-based lexical scores, and lexical scores incorporating source-side

inflection models for a small-scale Arabic-English translation task. Tables 3.3 and

3.4 show significant improvements obtained using classifier models and further con-

sistent improvements for models with shared reordering features for a large-scale

Chinese-English translation task.

3.1 Corpora and baselines

We apply the models to Arabic-English and Chinese-English translation, with

training sets consisting of 108,268 and 1,017,930 sentence pairs, respectively.1 All

1The Arabic-English data came from Arabic News Translation Text Part 1 (LDC2004T17),

Arabic English Parallel News Text (LDC2004T18), and Arabic Treebank English Translation

(LDC2005E46). Chinese-English data came from Xinhua Chinese English Parallel News Text Ver-

sion 1 beta (LDC2002E18), Chinese Treebank English Parallel Corpus (LDC2003E07), Chinese

English News Magazine Parallel Text (LDC2005T10), FBIS Multilanguage Texts (LDC2003E14),
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conditions use word alignments produced by sequential iterations of IBM model 1,

HMM, and IBM model 4 in GIZA++ , followed by ”diag-and” symmetrization [20].

Thresholds for phrase extraction and decoder pruning were set to values typical

for the baseline system [12]. Unaligned words at the outer edges of rules or gaps

were disallowed. A trigram language model with modified interpolated Kneser-Ney

smoothing [11] was trained by the SRILM toolkit [32] on the Xinhua portion of

the Gigaword corpus and the English side of the parallel training set. Evaluation

was based on the BLEU score with 95% bootstrap confidence intervals for the score

and difference between scores, calculated by scripts in version 11a of the NIST

distribution. The 2002 NIST MT evaluation sets was used for development. The

2003, 2004, 2005, and 2006 sets were used for testing.

The decision rule was based on the standard log-linear interpolation of several

models, with weights tuned by MERT [28] on the development set. The baseline

consisted of the language model, two phrase translation models, two lexical models,

and a brevity penalty. In the runs where generalized exponential models were used

they replaced both of the baseline phrase translation models.

3.2 Contextual features and parameter estimation

The feature set used for exponential phrase models in the experiments included

all the rules in the grammar and all aligned word pairs for lexical models. Elementary

Chinese News Translation Text Part 1 (LDC2005T06), and the HKNews portion of Hong Kong

Parallel Text (LDC2004T08). Some sentence pairs were excluded from the training sets due to

large length discrepancies.
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contextual features were based on Viterbi parses obtained from the Stanford parser.

Word features included identities of word unigrams and bigrams adjacent to a given

rule, possibly including rule words. Part-of-speech features included similar ngrams

up to the length of 3 and the tags for rule tokens. These features were collected for

training by a straightforward extension of rule extraction algorithms implemented

in the baseline system for each possible location of ngrams with respect to the

rule: namely, at the outer edges of the rule and at the edges of any gaps that

it has. Our models also included pairs of contextual features formed by features

of the same type (e.g., word-based or POS-based) at the edges of a sequence of

one or more non-terminal symbols of a rule. A final type of contextual features

in these experiments was the sequence of the highest nodes in the parse tree that

fill the span of the rule and the sequences that fill its gaps. We used an Arabic

tokenizer based on a Java implementation of Buckwalter’s morphological analyzer2

and incorporating simple statistics from the Penn Arabic treebank, also extending

it to perform lemmatization.

The total number of candidate features thus defined is very large, and we use

a number of simple heuristics to reduce it prior to training. They are not essential

to the estimates and were chosen so that the models could be trained in a few hours

on a small cluster. With the exception of discarding all except the 10 most frequent

2http://www.cs.cmu.edu/∼cdyer/jbuck.jar
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target phrases observed with each source phrase,3 which benefits performance, none

of these heuristics were applied to the baselines, and we expect that relaxing these

restrictions would improve the score. These limitations included count-based thresh-

olds on the frequency of contextual features included into the model, the frequency

of rules and reordering patterns conjoined with other features, and the size of op-

timization subproblems to which contextual features are added. We don’t conjoin

contextual features to rules whose source phrase terminals are all punctuation sym-

bols. For subproblems of size exceeding a certain threshold, we train on a subsample

of available training instances. For the Chinese-English task we do not add reorder-

ing features to problems with low-entropy distributions of inversion and reordering

patterns and discard rules with two non-terminals altogether if the entropy of their

reordering patterns falls under a threshold. Finally, we solve only those optimiza-

tion subproblems which include parameters needed in the development and training

sets. This leads to a reduction of costs that is similar to phrase table filtering and

likewise does not affect the solution. The pre-training feature pruning heuristics are

summarized in table 3.1. At decoding time all features for the translation models

and their weights are accessed from a disk-mapped trie.

We optimize the objective with an an `1 regularizer using a variant of the

orthant-wise limited-memory quasi-Newton algorithm proposed by Andrew & Gao

[1].4 All values Ci are set to 1 in the experiments below, although we apply stronger

3This has prompted us to add an additional target-side token to lexical models, which subsumes

the discarded items under a single category. During decoding, the probabilities estimated for it

were divided by the appropriate number of unique discarded items.
4Our implementation of the algorithm as a SciPy routine is available at
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Arabic-English Chinese-English

sentence pairs 108,268 1,017,930

phrase-min 50 100

rule-min 5 10

y-cutoff 10 10

problem-max 2000 2000

feature-min 3 5

Table 3.1: Feature pruning settings for contextual features used in the experiments:

1) the minimum number of distinct target phrases which a source phrase must co-

occur with to be part of contextual features (phrase-min); 2) the minimum number

of times a rule must occur to be part of contextual features (rule-min); 3) the

number of target sides a rule can have (keep y-cutoff most frequent, including ties);

4) the maximum size of training instances in an optimization subproblem solved

without subsampling and the size of subsample for problems exceeding this threshold

(problem-max ); 5) the minimum number of occurrences of a contextual feature in

the training set after subsampling (feature-min)
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regularization (Ci = 3) to reordering features. Tuning the regularization trade-off

for these models presents special challenges. Optimizing its value for translation

performance as measured by BLEU should ideally involve repeating MERT training

for each value, which is computationally very expensive. A more efficient alternative

is to optimize the trade-off for the cross-entropy computed on a held-out subsample

of rules. However, our experimentation showed that this procedure hurt translation

accuracy in comparison to setting the trade-off to the value of 1 – an effect that

was both surprising and clear-cut. Following the approach of Mann et al [25], the

larger training sets for reordering features were split into many approximately equal

portions, for which parameters were estimated separately and then averaged for

features observed in multiple portions. Parameter estimation was performed using

a modified version of the maximum entropy module from SciPy.

3.3 Results and discussion

The results are shown in tables 3.2 and 3.3. For both language pairs we had

a choice between using a baseline that is computed in the same way as the other

exponential models, with the exception of its use of relative frequency estimates

and a baseline that incorporates averaged fractional counts for phrase models and

lexical models, as used by Chiang [12]. For the sake of completeness we report both

(though without performing statistical comparisons between them). Statistical tests

for experimental conditions were performed in comparison to the baseline which

http://www.umiacs.umd.edu/∼msubotin/owlqn.py
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Condition MT03 MT04 MT05 MT06

Rel. freq. 48.24 43.92 47.53 37.94

Frac. 48.34 45.68 47.95 39.41

Context 49.47* 45.65 48.76 39.49

+lex 50.42* 46.07* 49.66* 39.32

+lex+lemma 49.86* 47.02* 49.29* 40.81*

Table 3.2: Arabic-English translation, BLEU scores on testing. Conditions include

two baselines: simple relative frequency (rel. freq.) and fractional estimates (frac.).

Experimental conditions: contextual features in phrase models (context); same and

contextual features in lexical models (+lex); same and lemma based features in

lexical models (+lex+lemma). Stars mark statistically significant improvements

over the fractional baseline which produced a higher score on the dev-test MT02 set

than the other baseline (59.75 vs. 59.66).
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Condition MT03 MT04 MT05 MT06

Rel. freq. 32.82 27.42 30.68 22.55

Frac. 32.21 27.94 30.82 23.35

Context 33.21* 28.88* 31.34* 23.97*

+lex 33.13* 28.52* 31.72* 23.60

+lex+reord 33.86* 29.47* 32.09* 24.52*

Table 3.3: Chinese-English translation, BLEU scores on testing. Conditions include

two baselines: simple relative frequency (rel. freq.) and fractional estimates (frac.).

Experimental conditions: contextual features in phrase models (context); same and

contextual features in lexical models (+lex); same and reordering features in phrase

models (+lex+reord). Stars mark statistically significant improvements over the

simple relative frequency baseline which produced a higher score on the dev-test

MT02 set than the other baseline (33.74 vs. 33.26).

34



achieved higher score on the test-dev MT02 set: the fractional count baseline for

Arabic-English and the simple relative count baseline for Chinese-English.

We test models with classifier solutions for phrase models alone and for phrase

models together with lexical models in both language pairs. For Arabic-English

translation we also experiment with adding features based on lemmas to lexical

models, while for Chinese-English we add ”reordering” features – features based on

the ordering pattern of gaps for rules with two gaps and features based on ordering

of gaps and words for rules with a single gap.

For both language pairs the results show consistent distinctions in behavior of

different models between the test sets giving rise to generally higher scores (MT03

and MT05) and generally lower scores (MT04 and MT06). The fractional counts

seem to be more helpful for test sets with poorer coverage, although the reason for

this is not immediately clear. For exponential models the two type of sets present

two possible sources of difference. The lower-performing sets have poorer coverage in

the training data, and they also may suffer from lower-quality annotation, since the

training sets for both the translation models and the annotation tools are dominated

by text in the same, newswire domain. Overall, the use of features based on surface

forms is more beneficial for MT03 and MT05. In contrast, using features based

on less specific representations is more beneficial on test sets with poorer coverage.

This agrees with our intuitions and also suggests that the differences in coverage of

training data for the translation models may be playing a more important role in

these trends than coverage for annotation tools.

These experiments do not use the largest or optimally selected data sets avail-
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able for training either the translation or language models. Consequently, the ob-

tained scores are lower than those reported in other recent work, such as Chiang et al

[13] and Setiawan et al [30]. In this regard, it should be emphasized that the primary

goal of present study is not to beat the current strongest baselines for these particu-

lar language pairs, but rather to demonstrate scalability of the proposed framework

in conjunction with consistency of improvements it can produce over a varied range

of data scenarios and model types. The ability of a model to yield improvements on

a training set of modest size and/or for a testing set with poor coverage in training

data is no less important than improvement it may yield on training and testing

data derived from the largest extant parallel corpus, since for the vast majority of

world’s languages the available resources belong to the former end of the spectrum.

We argue that the promise held by this framework crucially depends on the variety

of feature types it can incorporate, and it is beyond the scope of the present study

to find the variation that is optimal for any given language pair. At the same time,

its scalability and consistency of reported improvements set it apart from other pro-

posed models capable of incorporating a similar variety of features. Thus, Liang

et al [22], who use a training set of 67K sentence pairs, precomputed aggregate

features, and monotonic translation, report a 0.1 BLEU point improvement over a

non-hierarchical phrase system with a 3-gram language model. Tillmann & Zhang

[34], who use a training set of 230K sentences, do not present comparisons with a

standard baseline. Blunsom & Osborne [5], who use a training set of 38K sentence

pairs with an average length of under 10 words per sentence, report improvements

over a hierarchical phrase-based baseline with a 3-gram language model only for
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some forms of BLEU, and do not report significance tests.

Among the different ways in which a baseline can be improved, the n-gram

limit of language model arguably presents a reasonable exception to the line of

argument in the preceding paragraph, since monolingual data is easier to obtain

than parallel data, and using 5-gram language models generally does not present

additional difficulties for any language, given sufficient random-access memory. We

therefore briefly consider results for the Chinese-English models trained with a 5-

gram language model, shown in table 3.4. The pattern of results is similar for models

with simple contextual features, except for the generally higher scores. In contrast,

the version with reordering features shows a surprising degradation of BLEU on test.

Upon closer examination, the reason for this lies in the selection of MT02 for tuning

MERT weights. Evidently, its relatively high coverage causes it to learn weights

that are appropriate only for another set with similarly high coverage like MT05.

The last line in the table, which shows results for the same model, but with MERT

weights borrowed from a simple contextual model (+lex) supports this conjecture.

These results – which provide a conservative estimate for the model performance,

since they can only be improved by better selection of MERT weights – demonstrate

the same pattern of results observed above, although the degree of improvements

obtained from reordering features is smaller. A more thorough investigation of

domain adaptation issues for these translation models is beyond the scope of the

present study and is left for future research.

Finally, table 3.5 illustrates the effects of run-time exponential model normal-

ization and `1 regularization on decoding speed using the example of a Chinese-
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Condition MT03 MT04 MT05 MT06

Baseline 33.78 28.70 32.35 23.44

Context 34.27 29.24* 33.38* 23.74

+lex 34.51* 31.44* 33.18* 26.32*

+lex+reord+mert 34.44 29.18* 33.76* 23.61

+lex+reord-mert 34.83* 31.94* 33.45* 26.81*

Table 3.4: Chinese-English translation, 5-gram language model, BLEU scores on

testing. Experimental conditions: contextual features in phrase models (context);

same and contextual features in lexical models (+lex); same and reordering features

in phrase models (+lex+reord+mert); same but with MERT weights taken from the

model marked +lex (+lex+reord-mert). Asterisks mark statistical significance over

the relative frequency baseline.
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Model type Run-time norm. Rules Context features Avg. time (sec)

Baseline No 5,539,989 0 4.3

No contexts Yes 5,539,989 0 6.8

Non-zero contexts Yes 5,539,989 5,024,917 28.1

All contexts Yes 5,539,989 18,889,683 80.7

Table 3.5: Effects of feature pruning on decoding speed (average decoding time

per sentence). Baseline: precomputed grammar, no run-time normalization. No

contexts: phrase models normalized at decoding time, no context features. Non-zero

contexts: standard model with context features. All contexts: same, but including

context features with zero weights.

English model with contextual phrase-model features. For consistency of compari-

son, the same pre-training pruning heuristics were applied to all the models shown

in the table. The table shows that normalization of the models during decod-

ing accounts for only a small portion of increased computational expenses for the

contextually-sensitive models. This is because only a single normalization factor

needs to be computed for each source phrase matched in the translated sentence.

In contrast, checking contextual features incurs considerable expenses even with

feature match caching in the decoder.
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Chapter 4

Experiments: Series II

This section describes an application of target-side morphology model to English-

Czech translation, including modeling of inflected variants unobserved in training

data. The main results, presented in tables 4.2 and 4.3, show significant im-

provements for target-side inflection models obtained for small-scale and large-scale

English-Czech translation tasks with a 3-gram language model, and consistent im-

provements obtained with a 5-gram language model.

4.1 Features for target-side inflection models

The feature space for target-side inflection models used in this work consists

of features tracking the source phrase and the corresponding target phrase together

with its complete morphological tag, which will be referred to as rule features for

brevity. The feature space also includes features tracking the source phrase together

with the lemmatized representation of the target phrase, called lemma features be-

low. Since there is little ambiguity in lemmatization for Czech, the lemma rep-

resentations were for simplicity based on the most frequent lemma for each token.

Finally, we include features associating aspects of source-side annotation with inflec-

tions of aligned target words. Inflection features fall into three classes corresponding

to the POS for the source word aligned to the target word whose inflection is being
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predicted.

4.1.1 Nouns

Among the inflection types of Czech nouns, the only type that is not generally

observed in English and does not belong to derivational morphology is inflection

for case. Czech marks seven cases: nominal, genitive, dative, accusative, vocative,

locative, and instrumental. Not all of these forms are overtly distinguished for all

nouns, and some lexical items that function syntactically as nouns do not inflect at

all. The following feature types were included:

• The structural position of the aligned source word or the head of the smallest

noun phrase containing the aligned source word. Features were included for

the roles of subject, direct object, and nominal predicate.

• The preposition governing the smallest noun phrase containing the aligned

source word, if it is governed by a preposition.

• An indicator for the presence of a possessive marker modifying the aligned

source word or the head of the smallest noun phrase containing the aligned

source word.

• An indicator for the presence of a numeral modifying the aligned source word

or the head of the smallest noun phrase containing the aligned source word.

• An indication that aligned source word modified by quantifiers many, most,

such, and half. These features would be more properly defined based on the
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identity of the target word aligned to these quantifiers, but little ambiguity

seems to arise from this substitution in practice.

Features corresponding to aspects of the source word itself and features cor-

responding to aspects of the head of a noun phrase containing it were treated as

separate types.

4.1.2 Adjectives

Czech adjectives inflect for case, number, gender, animacy, negation, and de-

gree of comparison. The features we use for adjectives include all the same types

depending on properties of the smallest noun phrase containing the aligned source

word which we have described for nouns above, in addition to the number marking

of its head. Gender and animacy present a more difficult inflection type to model,

since they depend on the lexical choice for the head of the target noun phrase which

contains the predicted inflection. Thus, the decoder needs to split states until this

choice can be known in the course of the derivation. These features are also un-

likely to make an impact on translation quality, since Czech adjectives are generally

adjacent to their head noun, or to another word in the same noun phrase. Thus,

this type of agreement is especially likely to be captured by a language model. We

leave these types of inflection aside. Negation and the degree of comparison is also

not modeled by special features, although they are taken into account in generating

morphological variants, as described below.
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4.1.3 Verbs

Czech verbs inflect for person, number, gender, negation, and aspect. We add

features marking the number of the subject of the verb aligned to the predicted

inflected form, with separate features for noun and pronoun subjects. The consider-

ations outlined above for adjective gender agreement also apply to verbs. Although

verbs are more commonly separated from their subject noun phrase, verbal features

are also less likely to affect translation quality since Czech marks gender agreement

only in the past tense, and verbs appear in formal text less frequently than adjec-

tives and nouns in terms of total counts. The other forms of inflection are left aside

since they are even more infrequent.

We add inflection features for all words aligned to at least one English verb,

adjective, noun, pronoun, or determiner, excepting definite and indefinite articles.

A separate feature type marks cases where an intended inflection category is not

applicable to a target word falling under these criteria due to a POS mismatch

between aligned words.

4.2 Modeling unobserved target inflections

As a consequence of translating into a morphologically rich language, some

inflected forms of target words are unobserved in training data and cannot be gen-

erated by the decoder under standard phrase-based approaches. Exponential models

with shared features provide a straightforward way to estimate probabilities of un-

observed inflections. This is accomplished by extending the sets of target phrases
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GEN(X) over which the model is normalized by including some phrases which have

not been observed in the original sets. When additional rule features with these un-

observed target phrases are included in the model, their weights will be estimated

even though they never appear in the training examples (i.e, in the denominator of

their likelihoods)1.

We generate unobserved morphological variants for target phrases starting

from a generation procedure for target words. Morphological variants for words

were generated using the ÚFAL MORPHO tool [21]. The forms produced by the

tool from the lemma of an observed inflected word form were subjected to several

restrictions:

• For nouns, generated forms had to match the original form for number.

• For verbs, generated forms had to match the original form for tense and nega-

tion.

• For adjectives, generated forms had to match the original form for degree of

comparison and negation.

• For pronouns, excepting relative and interrogative pronouns, generated forms

had to match the original form for number, case, and gender.

1The fact that the additional inflections share lemma features with observed forms may suggest

an alternative method where the model is trained in the usual way and only lemma and inflection

features are used for unobserved forms. However, this approach would be incorrect. It implicitly

assumes that unobserved rule features have zero weights, which would make their weights larger

than the negative weights assigned to many observed rule features.

44



• Non-standard inflection forms for all POS were excluded.

The following criteria were used to select rules for which expanded inflection

sets were generated:

• The target phrase had to contain exactly one word for which inflected forms

could be generated according to the criteria given above.

• If the target phrase contained prepositions or numerals, they had to be in a

position not adjacent to the inflected word. The rationale for this criterion

was the tendency of prepositions and numerals to determine the inflection of

adjacent words.

• The lemmatized form of the phrase had to account for at least 25% of target

phrases extracted for a given source phrase.

The standard relative frequency estimates for the p(X|Y ) phrase model and the

lexical models do not provide reasonable values for the decoder scores for unobserved

rules and words. In contrast, exponential models with surface and lemma features

can be straightforwardly trained for all of them. For the experiments described

below we trained an exponential model for the p(Y |X) lexical model. For greater

speed we estimate the probabilities for the other two models using interpolated

Kneser-Ney smoothing [11], where the surface form of a rule or an aligned word pair

plays to role of a 3-gram, the pairing of the source surface form with the lemmatized

target form plays the role of a bigram, and the source form alone plays the role of

a unigram.
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4.3 Parameter estimation

Although the number of contextual features in these experiments was much

smaller than in the experiment described above, optimization nevertheless presented

a challenge due to the size of the training sets. Several strategies were pursued to

reduce the computational expenses. As above, we used the parallelization strat-

egy of Mann et al [25]. The sets of target phrases for each source phrase prior to

generation of additional inflected variants were truncated by discarding extracted

rules which were observed with frequency less than the 200-th most frequent target

phrase for that source phrase. Exponential models included an `2 regularizer with

C = 1. We do not use `1 regularization as in the other experiments, because for these

models dimensionality reduction gives no practical advantage, while the combina-

tion of weight-averaging parallelization of training with `1 regularization is not well

researched and may show undesirable effects. Additional computational challenges

remained due to an important difference between models with shared features and

models discussed in earlier sections. Features appearing with source phrases found

in development and testing data share their weights with features appearing with

other source phrases, so that filtering the training set for development and testing

data affects the solution. Although there seems to be no reason why this would

positively affect translation accuracy, to be methodologically strict we estimate pa-

rameters for rule and lemma features without inflection features for larger models,

and then combine them with weights for inflection features estimates from a smaller

portion of training data. This should affect model performance negatively, since
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it precludes learning trade-offs between evidence provided by the different kinds of

features, and therefore it gives a conservative assessment of the results that could

be obtained at greater computational costs. Inflection features from the small data

set models were used in the the other models.

4.4 Corpora and baselines

We investigate the models using the 2009 edition of the parallel treebank from

ÚFAL [6]. The set is very large and contains texts from a number of genres (table

4.1), which gives us an opportunity to study performance of the models in a variety of

settings. The English side follows the standards of the Penn Treebank and includes

dependency parses and semantic role labels. The Czech tags follow the standards

of the Prague Dependency Treebank. While the Czech side includes several layers

of annotation, only the morphological tags and lemmas are used in this study.

The impact of the models on translation accuracy was investigated for 2 ex-

perimental conditions:

• Small data set: trained on the news portion of the data; development and

testing sets containing 1500 sentences of news text each.

• Large data set: trained on all the training data; developing and testing sets

each containing 1500 sentences of EU, news, and fiction data in equal portions.

The other genres were excluded from the development and testing sets because

manual inspection showed them to contain a considerable proportion of non-

parallel sentences pairs.
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Genre Sentence pairs English words Czech words

EU Legislation 1,271,413 25,374,862 22,719,663

Prose fiction 830,354 13,624,545 12,006,426

News 111,176 2,527,090 2,328,075

Movie Subtitles 2,840,595 21,245,195 17,735,011

Technical Documentation 968,658 7,272,451 6,745,935

Parallel Web Pages 372,563 3,955,808 3,796,210

Project Navajo 37,239 485,993 427,293

Total 6,424,476 74,485,944 65,758,613

Table 4.1: Descriptive statistics for the CzEng09 corpus
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The training of baselines and evaluation of the results was performed using

the procedures described above for the experiments of series I, with 3-gram and

5-gram language models estimated from a set of 208 million running words of text

obtained by combining the monolingual Czech text distributed by the 2010 ACL

MT workshop with the Czech portion of the training data.

4.5 Results and discussion

Table 4.2 shows the results obtained with a 3-gram language model. For

both data sets translation accuracy was significantly higher for the experimental

condition than for the baseline. Results with a 5-gram language model are shown

in table 4.3. We can see that for the smaller data set the gains obtained over

the baseline remain almost the same for both language models, with slightly larger

improvements obtained with a 5-gram language model. For the large data set the

improvement with a 5-gram language model is smaller. To gain better insight into

the role played by different elements of the model (grammar expansion, phrase model

scores incorporating tag information, and non-standard estimates for all models),

we also evaluated a system that was identical to the experimental condition, except

that the grammar was restriced to observed rules and the main exponential model

was replaced by a relative frequency phrase model based on counts of rules labeled

with target-side tags. The last column in the table shows that inflection-based

features account for about half of the gains obtained over the baseline for the small

data set and for all of the gain obtained for the large data set. The fact that the
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Condition Baseline Exponential

Small data set 0.1905 0.2116*

Large data set 0.2429 0.2503*

Table 4.2: BLUE scores on testing, 3-gram language model.

Condition Baseline Exponential W/out infl.

Small data set 0.1964 0.2184* 0.2067

Large data set 0.2562 0.2573 0.2522

Table 4.3: BLUE scores on testing, 5-gram language model. The last column shows

scores for a system that is identical to the experimental condition except in being

restriced to observed rules and in having the main exponential model replaced with

a relative frequency phrase model.

other elements of the model actually degrade performance for the large data set also

suggests that the results obtained by the full model could be improved by tuning

various aspects of these elements.

Tables 4.4 and 4.5 show a summary of the grammars and feature spaces for

the models. The weights learned for inflection features generally conformed with

intuitive expectations. Table 4.6 shows a typical example for the feature which

associates constituents of a noun phrase headed by a subject and case markings for

the aligned target word.

We now illustrate general properties of these models using toy examples and
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Condition Total rules Added rules Source phrases w/ added rules

Small data set 11,811,041 7,827,430 1,270,064 503,331

Large data set 38,040,661 12,123,583 2,179,650 749,831

Table 4.4: Summary of grammars (all filtered for dev/test sets). The columns

show the total number of rules with target tags, the number of rules added through

generation of inflected forms, the number of distinct source phrases, and the number

of distinct source phrases with some rules added through generation of inflected

forms.

Condition Rule features Lemma features Inflection features

Small data set 54,896,451 19,592,256 750

Large data set 37,562,137 19,117,426 0

Table 4.5: Distinct features included in the models. Only the large training set was

filtered for dev/test sets. Parameters from inflection features from the small data

set model were used in the large data model during decoding.
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Case code Case Feature weight

1 Nominative 1.6614028807

2 Genitive 0.0266661206

3 Dative -0.6682866795

4 Accusative -0.1597880022

5 Vocative -3.3165760566

6 Locative -1.2214837635

7 Instrumental -0.8131854644

X Any 1.2539379959

- n/a -0.5932031147

Table 4.6: Feature weights for target case and source constituents of a noun phrases

headed by a subject. The coded representations for case forms used in the corpus

annotation are included for future reference.
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the actual parameters estimated from the large data set. Table 4.7 shows a summary

of rule sets for 2 source phrases extracted from the large training set. The columns

show the counts for total and unique rule features extracted from the training data,

the number of lemmatized target phrase forms selected for generation of inflection

variants, and the number of added inflection variants. Table 4.8 provides additional

details about the rulesets, illustrated using 3 representative rules selected for each

rule set: a relatively rare rule, a relatively frequent rule, and an unobserved rule

added to the grammar through generation of inflection variants.

The next two tables illustrate the probabilities estimated for these rule sets.

Table 4.9 shows the baseline p(Y |X) phrase model estimated from the counts of

tagged rules and compares it to estimates given by the exponential model with rule

and lemma features computed on the large data set. The values for the estimated

parameters are also shown. One can see from the table that for both rule sets there

is little difference in the estimated probabilities for rules observed a single time and

generated unobserved rules, although this similarity originates from two different

underlying factors: from the greater smoothing caused by the lower frequencies

in the case the first rule set and from the lower probability alloted to singletons

rules in the second rule set due to the greater total number of observed rules in

the set. The probability of the more frequent example rule in the first rule set is

additionally pushed down by the negative value of the lemma feature, which results

from the addition of terms with that feature in the denominator of the likelihood

for generated inflected variants. Although this effect is partially compensated by

the surface feature for that rule, to which the model is thus forced to give additional
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Source phrase Observed rules Expanded forms Added variants

1 ( A1 ) A2 cooperation 9 (7 distinct) 1 6

2 ( A1 cooperation 131 (22 distinct) 2 12

Table 4.7: Example rule sets for two source phrases extracted from the large data

set.

credence, the smoothing of probabilities for observed rules in this particular rule set

seems excessive on intuitive level, and suggests that it might be benefitial to add

inflected variants for all rules in any ruleset to which any generated inflected forms

are added, despite practical complications this presents. On the other hand, this

effect is virtually unnoticeable in the second ruleset, where the additional terms in

the normalization factor are well compensated by the prevalence of the lemma form

corresponding to both of the observed rules chosen for illustration.

The same models were then recomputed in the decoder for artificially con-

structed examples with and without inflection features with the results shown in

table 4.10. There is a grammatical match between nominative case for the target

word and subject position for the aligned source word and between the accusative

case for the target word and the object role for the aligned source word. The other

pairings represent grammatical mismatches. One can see that the probabilities for

rules leading to correct case matches are several times greater than the alternatives

with incorrect case matches.
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Source # Target # Target phrase Target tag Observed

1 1 ( A1 ) , A2 spolupráci NNFS3—–A- 1

1 2 ( A1 ) A2 spolupráci NNFS4—–A- 3

1 3 ( A1 ) A2 spolupráce NNFS1—–A- 0

2 1 ( A1 spolupraćı NNFS7—–A- 1

2 2 ( A1 spolupráce NNFS1—–A- 31

2 3 ( A1 spolupráci NNFS4—–A- 0

Table 4.8: Representative target phrases for the two rulesets, the tags of the target

word subject to morphological generation and their observed counts. The case is

marked in the fifth position of the tag using the coding given in table 4.6.
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Source # Target # Baseline Exponential Weights (rule/lemma)

1 1 0.111111111 0.0849776054 0.0334523185 / 0.0669046369

1 2 0.333333333 0.0859253624 0.2470487544 / -0.1356005141

1 3 0 0.0628478066 -0.0657142498 / -0.1356005141

2 1 0.007633588 0.0066588695 -0.4731434663 / 0.0285786938

2 2 0.236641221 0.2115539786 2.9853869979 / 0.0285786938

2 3 0 0.0047809538 -0.8044531177 / 0.0285786938

Table 4.9: Model details for example rule sets introduced in tables 4.7 & 4.8. The

columns show the baseline relative frequency probabilities, the probabilities esti-

mated by the exponential model without inflection features, and values of weights

for rule and lemma features corresponding to each rule.
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Source # Target # Rule case No infl. Sb Obj

1 1 Dat 0.084978 0.037419 0.035458

1 2 Acc 0.085925 0.091517 0.203561

1 3 Nom 0.062848 0.416277 0.062669

2 1 Instr 0.006659 0.001585 0.003247

2 2 Nom 0.211554 0.623763 0.168965

2 3 Acc 0.004781 0.002267 0.009468

Table 4.10: The effect of inflection features on estimated probabilities. The estimates

are shown for models with and without inflection features, computed for translated

sentences with the aligned word with subject and object structural positions.
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Chapter 5

Conclusion

5.1 Summary

We reiterate the main contributions of the thesis below.

• This thesis contributes to the development of the subclass of annotation-

sensitive translation models which associate probability distributions with in-

dividual rewrite rules used by the translation system, such as synchronous

context-free rules, or with other individual aspects of translation hypotheses

such as word pairs or reordering events.

• Unlike other authors we used the new estimates to replace the traditional

phrase models and lexical scores, rather than in addition to them, thereby

demonstrating that the local exponential phrase models can be regarded as a

generalization of standard methods not only in theoretical but also in practical

terms.

• We have introduced a form of local translation models that combine features

associated with surface forms of rules and features associated with less spe-

cific representation – including those based on lemmas (sections 2.5 & 2.6),

inflections (ibid.), and reordering patterns (section 2.7) – such that surface-

form estimates were recovered as a special case of the model, while parameters
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for the latter type of features could be estimated from training sets spanning

multiple source phrases.

• These proposals were experimentally validated. Conditioning all phrase-based

probabilities in a hierarchical phrase-based system on source-side contextual

information showed significant improvements for 2 language pairs and 8 test

sets (section 3). Extending the contextually-sensitive estimates with features

modeling source-side morphology and reordering patterns yielded additional

improvements (ibid.), while further experiments showed significant improve-

ments obtained from modeling observed and unobserved inflections for a mor-

phologically rich target language (section 4).

5.2 Further extensions

5.2.1 Other possible feature types

The general form of proposed models can straightforwardly support other fea-

ture types besides those described above. Thus, any version of the model could

incorporate features tracking aligned word pairs inside grammar rules, thereby tak-

ing over some of the work normally done by the standard lexical models. Conversely,

features tracking aspects of the target side of rules without dependence of the source

side would play a role analogous to the language model, but optimizing individual

weight trade-off with the translation model while performing parameter estimation

on the parallel data set alone. Instead of using the output of monolingual annotation
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tools, one could use features that depended on character n-grams seeking to cap-

ture morphological inflections or classes learned by clustering algorithms seeking to

capture semantic or syntactic generalizations. Finally, a model of reordering could

be extended to include features tracking the topological ordering of function words

studied by Setiawan et al [30], taking the heuristic they use to count reordering

patterns and adapting it to identify instances of these reordering patterns within

the span of non-terminals in a parallel corpus and at decoding time.

5.2.2 Other possible applications

The general form of exponential model with shared features can be combined

with other methods besides standard phrase-based machine translation. Thus, it

could be applied to other translation models based on local conditional probabilities

conditioned on source-side information, such as a reversed (target given source)

variant of the syntax-based translation model used in the GHKM system [16]. It

could also be used in systems of this kind designed for other tasks, such as paraphrase

generation [24]. Local exponential models with `1 regularization could be used for

the purposes of selecting contextual features to include in the global translation

model by Blunsom & Osborne [5] or perceptron-based approaches [22, 34]. As was

shown in section 3.3 (table 3.5), checking contextual features is computationally

expensive, and it is reasonable to hypothesize that for important classes of contextual

features lack of discriminative power in a local translation model, as evidenced by

an estimated zero weight, implies low discriminative power in a global translation
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model. These two approaches could be futher combined with the feature-rich locally

normalized version of the EM algorithm proposed by Berg-Kirkpatrick et al [3] to

further reduce computational expenses of training. With this combined approach,

the synchronous parsing would be used to collect expected counts, with the results

providing the basis for an iterative M-stem.

We leave these possibilities for future research.
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