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Chapter 1

Managing Product Rollovers

1.1 Introduction

Firms, particularly in high-tech markets, increasingly see new product introduction

as a tool to gain or maintain market share, to sustain growth, and to create profits.

Accordingly, firms are under constant pressure for faster time-to-market and shorter

life cycles for many products, and face the challenges of managing these. In addi-

tion to traditional new product development issues such as cost, quality, and time-

to-market trade-offs, more frequent product introductions result in more frequent

product rollovers—the process of phasing out the old generation while introducing

the new to the market. Therefore, successful product introduction requires success-

ful management of product rollovers, which involves several interrelated decisions

including those on timing, pricing, preannouncing, and controlling inventory.

There are two basic product rollover timing strategies available to a firm. In a

dual product rollover (dual roll), the old generation remains in the market for some

time after the launch of the new; in a single product rollover (single roll), the old

generation is discontinued as soon as the new generation arrives (Billington et al.

1998). Both of these strategies have implications on the operational decisions that

a firm must make. In a single roll, sharp price markdowns may be necessary to

clear excess inventory of the old product. Under a dual roll, the old product retards
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the diffusion of the new product into the market; this may be undesirable as new

products typically command higher margins.

There are numerous real-life examples attesting to the interplay and conse-

quences of inventory, pricing, and timing decisions. Intel had scheduled the launch

of its X48 chipset for PC motherboards in January 2008, when the X38 chipset

would be replaced in the high-end market. However, the launch was delayed for

two months due to pressure from the world’s largest motherboard manufacturer,

ASUSTEK, on the grounds that it had too much inventory of X38-based parts that

were marginally inferior to X48-based parts. Other manufacturers who had no in-

ventory problems had to wait until March 2008 although they were ready for launch

in January. Another motherboard manufacturer, ASRock, was first to launch its

P43-based motherboards to the mainstream market in June 2008, while all other

manufacturers were struggling with their inventory of older P35-based parts even

with significant price cuts. In November 2007, AMD introduced deep price cuts

for its older Athlon based processors and rushed its long-awaited, quad-core Phe-

nom processors to the market before the holiday season, even though the processors

had a fault which caused unexpected crashes. Further, AMD was unable to meet

the demand at launch and prices remained higher than Intel’s competing quad-core

processors that already greatly dominated the market and performed better. In the

end, although the fault was corrected by March 2008, the highly anticipated Phenom

architecture failed to capture the market share expected (various online technology

news sources).

Despite their importance, product rollovers are commonly mismanaged in
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practice, while understudied in the academic literature. A study of 126 U.S. durable

goods firms reports that 40% of new products failed after launch (Ettlie 1993), one

possible reason being mismanaged rollovers such as the previous examples. Another

study by Greenley and Bayus (1994) indicates that most U.S. and U.K. firms do

not have a formal decision process for product rollovers. Not only is there just a

handful of scholarly papers that discuss product rollover strategies, but there is lit-

tle consensus among them on what rollover strategy to use under what condition.

Saunders and Jobber (1994) identify 11 rollover strategies, which they call “phas-

ing.” They survey U.S. and U.K. managers and find that some sort of dual roll was

used in slightly more than half of them. Billington et al. (1998) and Erhun et al.

(2007) present managerial papers that provide understanding and guidelines derived

from intuition and hands-on experience, but no formal treatment of the problem.

While Billington et al. (1998) associate single (dual) roll with low (high) supply and

demand risk, Erhun et al. (2007) state that oftentimes the industry dictates this

decision and that dual roll is an industry standard for high-tech markets even with

low supply and demand risks. The only two papers to our knowledge that attempt

a formal analysis of product rollovers are Levinthal and Purohit (1989) and Lim and

Tang (2006), but neither model incorporates diffusion, a key attribute of high-tech

markets. Although they use different terminology, Levinthal and Purohit (1989)

consider three alternative strategies: single roll, dual roll, and dual roll with buy-

back of the old generation. They find that single roll is always better than dual roll,

and that single roll is better than dual roll with buy-backs for modest performance

improvements of the new product over the old. Contrast this finding with the rec-
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ommendation of Billington et al. (1998), who suggest that a large technological gap

between generations (large product risk) favors dual roll. Lim and Tang (2006) find

that dual roll is optimal when marginal costs across generations are similar, using a

linear deterministic demand structure. A few other authors (Carrillo 2005, Li and

Gao 2008, Druehl et al. 2009) simply assume a particular rollover strategy in their

models, regardless of the environment.

1.1.1 Contribution of This Study

We are not aware of an academic study that provides an integrated, formal treatment

of product rollovers that incorporates the dynamics discussed above; we address this

gap using a comprehensive model of product rollovers that includes pricing, inven-

tory, product diffusion, and new product preannouncement (before introduction).

More specifically, our key contribution in this essay is to identify the conditions

under which a particular rollover strategy (single vs. dual) is preferred, and which

factors play the most significant role in this strategy decision. We describe our

approach below.

We focus on successive improved generations of a single product by a firm such

as ASUSTEK. The fact that high-tech products are often introduced on a relatively

regular basis supports our model; this notion of (time) pacing of product updates

may also improve a firm’s product development capability (Eisenhardt and Brown

1998). For example, the pacemaker company Medtronics has successfully used a

time-pacing strategy (Christensen 1997). We adapt the multi-generation diffusion
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process by Norton and Bass (1987) to model the arrival process of potential cus-

tomers through the life-cycle of a product. Here, however, an arriving customer

buys the product if the price is lower than her reservation price. In addition, the

firm preannounces the new product sometime before its launch and we study dif-

ferent levels of the market’s responsiveness to preannouncements to account for the

potential changes in consumer purchasing behavior due to the preannouncement.

The firm first adopts a product rollover strategy, single or dual roll, then decides

on the quantity for the final build of the old product and the price paths for both

products.

We find that the decision between dual and single roll is not trivial and depends

on a number of (exogenous) factors considered in our model. Specifically, dual roll

is preferred to single roll if (i) the time between product introductions is short,

(ii) the preannouncement occurs at the later stages of the life-cycle, (iii) the old

product keeps more of its value at the end-of-life, (iv) the market is less responsive

to preannouncements, (v) the new product is expected to have a slower market

diffusion, and/or (vi) performance improvement between the new and old products

is smaller 1. We also find that the optimal price paths closely follow customer

reservation prices over time.

In the next section, we show how our work relates to and differs from the

existing literature. We then present our model and its analytical solutions in Section

1Although some of these factors, such as timing of preannouncement, are in reality not exoge-

nous but decided on by the seller, we treat them as exogenous for tractability and to focus on the

two rollover strategies, and we perform a sensitivity analysis to study their impact on profit.
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1.3, and Section 1.4, a comprehensive numerical analysis of the factors impacting

the optimal rollover strategy. We conclude in Section 1.5.

1.2 Related Literature

We bring together elements from a diverse literature, incorporating rollover strate-

gies, diffusion of innovations (Norton and Bass 1987, Bass and Bass 2004), prean-

nouncements (Farrell and Saloner 1986, Manceau et al. 2002, Su and Rao 2008), dy-

namic pricing (Bitran and Mondschein 1997, Smith and Achabal 1998, Elmaghraby

and Keskinocak 2003), and inventory management at the end of life (Cattani and

Souza 2003).

A stream of research has considered the interaction of diffusion and new prod-

uct generations. Savin and Terwiesch (2005) model the diffusion effects in a duopoly

and find the optimal launch time. Our model differs from theirs in that we study

a multi-generation scenario and the implications of single versus dual roll strate-

gies. Earlier, Wilson and Norton (1989) determined the optimal time to introduce a

product line extension; thus, the rollover strategy is not relevant. They found that

the second product should generally be introduced immediately or not at all, but ig-

nored price and inventory considerations. Mahajan and Muller (1996) extended this

result in a multi-generational scenario where they found that a monopolist should

introduce the next generation either early in the first product’s life cycle, or wait

until it has reached maturity (i.e., sales have peaked).

Pricing of a product over its life-cycle has been addressed by a large number of
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researchers. Several have focused on finding an optimal pricing pattern, assuming

the sales follow the Bass (1969) model (e.g., Robinson and Lakhani 1975, Bass 1980,

Dolan and Jeuland 1981, Kalish 1983, Horsky 1990). However, these studies found

a pricing pattern that follows the sales growth curve, which is not supported by

empirical data (Krishnan et al. 1999). In more recent work, Krishnan et al. (1999)

present a model extending the Generalized Bass Model (Bass et al. 1994), to find an

optimal price path. None of these papers study pricing considering the next product

generation.

The sequence and timing of new product introductions for two or more prod-

ucts with differing quality levels has been considered as a way to alleviate cannibal-

ism (Moorthy and Png 1992, Chen and Yu 2002, Battacharya et al. 2003, Krishnan

and Zhu 2006). Dhebar (1994) examines the pricing and quality level decisions for a

monopolist introducing two generations of products at fixed times. He finds that the

firm may limit the quality (or features) offered in each generation to minimize con-

sumer regret. In our setting, the effects of cannibalization are modeled, but sequence

is not considered, and higher quality is always valued more by the customers.

A successful rollover requires inventory management for a product (generation

1) at the end of its life. A related stream of literature focuses on determining the

optimal size of a “final buy” (or “final build”) for a product nearing the end of its

life when there is uncertain demand (Teunter and Fortuin 1998, Cattani and Souza

2003). Like this stream of research, we also determine the optimal size of the final

build for generation 1, which in our model is being phased out for introduction

of generation 2. Unlike this stream of research, our model considers the demand
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interactions – cannibalization – between old and new generations.

In summary, although there is a significant body of research analyzing prod-

uct introduction management, modeling life-cycle demand, and considering pricing

implications, no single work demonstrates the role and interaction of these in the

product rollover process. Our contribution to the literature is to investigate all

these aspects of the problem and present an analytical framework for a unified un-

derstanding.

1.3 Model

1.3.1 Planning Horizon

Consider an infinite horizon where, every τ periods, a firm introduces successive new

generations of a certain product, in order to replace the existing old generation. In

such a setting, a transition takes place between two consecutive product generations

every τ periods; our model focuses on one product rollover that is representative of

this repetitive process. The notation used in this essay is explained in Table 1.1.

Let t = 0 be the time when generation 1 is introduced (made available) to the

market; accordingly, generation 2 is introduced at t = τ . Throughout the essay, the

following terms are used interchangeably: generation 1 (2), product 1 (2), and old

(new) product. The planning horizon starts at t = ατ , α ∈ (0, 1), which marks the

time when i) generation 2 is preannounced, and ii) the firm produces a final build of

generation 1 and starts concentrating her production capabilities into assuring that

generation 2 is ready to launch at t = τ. An immediate extension of separating these

8



Table 1.1: Notation.

Symbol Explanation

i Index for product (generation); i = 1, 2

j Index for rollover strategy; j = S (single); j = D (dual)

τ Time between product introductions

ατ Time of final build after launch of a product; 0 < α < 1

T j Time that product 1 is taken out of the market for rollover strategy j

Ω The performance of the old generation

γ Performance improvement per generation

h(γ) Logit probability that an old product customer instead buys the new

λji (t) Arrival rate of customers for product i under rollover strategy j at time t

Mi Cumulative market potential with generation i

mi Incremental market potential for generation i

F j(t) Fraction of market potential achieved at time t under rollover strategy j

p Coefficient of innovation for diffusion process

q Coefficient of imitation for diffusion process

φ Customer responsiveness to preannouncements; φ ∈ (0,∞)

pi(t) Price of product i at time t (control variable)

Git(·) Cumulative probability function of reservation price for product i at time t

Ḡit 1−Git
git(·) Probability density function of reservation price for product i at time t

I(t) Inventory of product 1 at time t

I0 Size of final build for product 1 at start of planning horizon (I0 = I(ατ))

cp Unit production cost

ch Unit holding cost per period

cs Unit salvage value (for leftover inventory)

δ Continuous time discount rate

N(·) Non-stationary Poisson process
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two event times is possible; however, this can be effectively achieved by appropriately

modifying the market responsiveness parameter, as seen later. A final build at

t = ατ means that there will be no further inventory replenishments for generation

1. This may occur because, for instance, the same production facility needs to

be reconfigured to produce the new product. The end of the planning horizon is

t = (1 + α)τ when generation 3 is announced and a final build for generation 2 is

due. The time when generation 1 is taken out of the market is T j, j ∈ {S,D},

where T S = τ for the single roll, and TD = (1 + α)τ for the dual roll (that is, in

a dual roll, generation i is taken out of the market at the time generation i + 2 is

announced). Figure 1.1 depicts the sequence of events in our model.

Seller introduces
product 1

Sales horizon of product 1
in single roll

0
time



Seller pre-announces product 2;
Final build of product 1;
Planning horizon starts

Seller introduces
product 2

Seller pre-announces product 3; 
Final build of product 2;
Planning horizon ends

 1

Sales horizon of product 1
in dual roll

Sales horizon of 
product 2

Figure 1.1: Planning horizon and sequence of events.

We assume that each new generation brings performance improvements over

the old one, some of which are observable by the end users. Examples include new

and/or enhanced features, better compatibility, and better environmental proper-

ties. Let Ω denote the performance (a sum of performance attributes) of the old

generation. Then, the performance of the new generation is (1 + γ)Ω, where γ > 0

10



is the performance improvement parameter.

1.3.2 Demand Process

The preannouncement of generation 2 at t = ατ , α ∈ (0, 1)—some time after the

introduction of generation 1—starts a diffusion of “awareness” of the new product.

People first become aware of the new generation even before it is launched, due

to the preannouncement. They then decide to “adopt” (to become a “potential

customer” for) the new generation; this decision is made based on the performance

of generation 2 vis-a-vis that of generation 1. If a customer is a potential customer of

generation 2, then she becomes an actual customer—buys product 2—when product

2 is available (and that occurs only after product 2 is launched at t = τ) and if the

product’s price is below her reservation price (maximum willingness-to-pay for the

product at that time). We elaborate on this process below.

After generation 2 is preannounced, potential generation 1 customers eventu-

ally become aware of generation 2. Speed of this pre-launch information diffusion

process depends on the “responsiveness” of the customer population to preannounce-

ments (Farrell and Saloner 1986, Manceau et al. 2002, Su and Rao 2008). That is, if

customers are fully responsive, then the diffusion of awareness (again, not of sales,

as the product is not yet available) starts as if the product had been released; the

diffusion of awareness is slower if customers are less responsive to preannounce-

ments; finally, the diffusion of awareness does not start until the product is released

if customers are not responsive. Once customers become aware of generation 2, they
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decide whether to adopt the new generation by comparing the new generation’s per-

formance relative to that of the old one. The higher the performance of the new

generation relative to the old one, the higher the likelihood of a person to adopt the

new product. This choice between generation 1 and 2 is modeled through the Logit

model of discrete choice with a logarithmic utility function. Under this model, when

a potential customer of the old generation becomes aware of the new generation, the

probability that she adopts the new generation (i.e., becomes a potential customer

for the new generation) is h(γ) = (1 + γ)/(2 + γ). See Appendix A for a derivation

of this formula.

We model the diffusion of awareness of the new generation through the Norton

and Bass model (Norton and Bass 1987), which we refer to as N&B, as follows. In

N&B, a new generation of an existing technology replaces the old generation through

a process of adoption and substitution; this process continues for subsequent gen-

erations. In our model, the arrival process of potential customers to online and/or

physical stores is described by a process similar to N&B, appropriately modified to

take into account the impact of preannouncement on the diffusion of awareness of

the new generation, and the likelihood of adoption h(γ) by potential customers of

the old generation who become aware of the new generation before its launch date.

This is done as follows. Denoting the cumulative and incremental market potentials

for generation i with Mi and mi, respectively, the potential customer arrival rate

for generation 1 is
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λj1(t) =


(M0 +m1)F j(t) [1− h(γ)F j(t− τ)] , for t ∈ [0, T j]

0, otherwise,

(1.1)

with the fraction of potential customers for a generation at time t and rollover

strategy j, F j(t), given by

F j(t) =



FA(t), if t ≤ 0

1− p 1−FA(0)
p+qFA(0)

e−(p+q)t

1 + q 1−FA(0)
p+qFA(0)

e−(p+q)t
, if 0 < t < T j

1, if t ≥ T j,

(1.2)

where FA(·) (Manceau et al. 2002) is given by

FA(t) =



0, if t ≤ −(1− α)τ

1− e
−φ(p+q)

[
e
t
φ−e−

(1−α)τ
φ

]

1 + q
p
e
−φ(p+q)

[
e
t
φ−e−

(1−α)τ
φ

] , if − (1− α)τ < t ≤ 0.

(1.3)

Equation (1.1) is similar to N&B except for the multiplier h(γ), such that

h(γ)F j(t − τ) is the fraction of potential customers of generation 1 who switch

to generation 2 due to its performance improvement. The fraction of potential

customers for a generation at time t, F j(t), is higher than or equal to the cor-

responding F (t) in N&B due to the preannouncement effect; p and q are N&B’s

coefficients of innovation and imitation, respectively. In N&B, F (t) = 0 ∀ t ≤ 0,

but here, there is adoption of the new generation after preannouncement (but be-

fore introduction time, i.e., for t ≤ 0), which is denoted by FA(t). The parameter

φ ∈ (0,∞) represents the responsiveness of customers to preannouncements. If
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φ → 0, then customers are not responsive to preannouncements, and the diffusion

process approaches N&B starting at t = 0. If, however, φ → ∞, then customers

are fully responsive to preannouncements, and (1.2) is equivalent to N&B starting

at t = −(1 − α)τ , the announcement of generation 1. Note that the time argu-

ment in Equation (1.3) is negative as FA(·) represents the diffusion process due to

preannouncement before a generation is introduced; t ≤ 0.

For generation 2, the arrival rate of potential customers is

λj2(t) =


[(M0 +m1)h(γ)F j(t) +m2]F j(t− τ), for t ∈ (τ, (1 + α)τ ]

0, otherwise.

(1.4)

We further assume that market potentials follow a growth pattern according

to the performance improvement: mi = γMi−1 and Mi = Mi−1 + mi, where mi

(Mi) is the incremental (cumulative) market potential for generation i. Figure 1.2

demonstrates potential customer arrival intensities during the planning horizon for

p + q = 0.3, q/p = 25, M0 = 100, γ = 0.5, τ = 20, α = 0.5, and φ = 6.275. Note

that the arrival rate for generation 1 is independent of the rollover strategy used

for t ≤ τ , but for t ≥ τ , λS1 (t) = 0. Because the market is somewhat responsive

to preannouncements (φ > 0), the arrival rate for generation 2 at the time of its

introduction at τ is larger than 0 (zero would be the traditional diffusion pattern

of N&B). We also have λS2 (t) > λD2 (t) because there is some cannibalization of

generation 2 by generation 1 in a dual roll. In Figure 1.3, the effect of φ is illustrated

using p+ q = 0.3, q/p = 25, M0 = 100, γ = 0.5, τ = 20, and α = 0.5. Note that for

φ → 0, the market is unresponsive to preannouncements, and thus the diffusion of

generation 2 only starts when it is actually introduced at t = τ . For φ → ∞, the
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market is fully responsive to preannouncements, and diffusion starts immediately

after preannouncement at ατ , as if generation 2 had been introduced at that time.

ατ τ (1 + α)τ

M1

M2

Time (since release of gen. 1)

A
rr
iv
a
l
in
te
n
si
ty

ατ τ (1 + α)τ

M1

M2

 

 
Dual Roll, gen. 1

Dual Roll, gen. 2

Single Roll, gen. 1

Single Roll, gen. 2

Figure 1.2: Customer arrival intensities for each rollover strategy.

As stated before, the actual sales rate of generation i at time t depends on the

arrival rate of potential customers λji (t), price pi(t) of product i, and the distribution

of customer reservation prices. Price will be discussed in the next section. Customers

of product i at time t have reservation prices distributed according to the cumulative

distribution function (cdf) Git(·), and probability density function (pdf) git(·). We

assume that Git(·) has the shape of a Weibull distribution, as this distribution is

able to capture a variety of consumer behavior and has been used previously in

the literature (Bitran and Mondschein 1997). The Weibull distribution has two

parameters; the mean is mainly determined by the scale parameter β, and the

variance by both β and the shape parameter k. For illustration, Figure 1.4 plots the
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reservation price distribution git(·) for different shape and scale parameters. The

firm knows the distributions for both products at any time; this knowledge feature

is common in most marketing and operations models of consumer behavior.

ατ = 10 τ = 20 (1+ α)τ = 30
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φ→ ∞, gen. 1

φ→ ∞, gen. 2

φ= 6.275, gen. 1

φ= 6.275, gen. 2

φ→ 0, gen. 1

φ→ 0, gen. 2

Figure 1.3: Customer arrival intensities for different responsiveness parameters.

We state the assumptions underlying the demand process in this essay as

follows; we comment on these assumptions later in Section 1.5:

(i) There are no explicit competing firms or products or expectation of any.

(ii) Product generations interact only through the arrival process described above.

Once a customer makes a decision to adopt the new generation, her actual

purchase decision is based on the price of the new generation; she does not

re-evaluate her decision (i.e., consider the old generation) if the price of the

new generation is higher than her reservation price.
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Figure 1.4: Weibull densities with different shape and scale parameters.

(iii) At any time, there are at most two product generations in the market.

(iv) Prices have no influence on the customer arrival processes, although they im-

pact actual sales, because an arriving customer only buys if the price is below

her reservation price. Thus, increasing prices decreases sales monotonically.

(v) Customers are neither price strategic nor do they expect a new generation to

be introduced before its announcement.

1.3.3 Optimization Problem

At the start of the planning horizon, the firm decides on the inventory level for prod-

uct 1, denoted by I0 = I(ατ), and the price paths for both products, pi(t), i = 1, 2,

throughout the horizon such that expected discounted profits are maximized. We
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assume a unit production cost, cp, that is constant over time and across genera-

tions. For product 1, there is a constant holding cost of ch per unit per time, and

a constant unit salvage value cs < cp for any remaining inventory at time T j. We

assume that the firm uses a continuous review, instantaneous replenishment inven-

tory control policy for product 2; therefore, there are no holding costs and no lost

sales. We find that the inventory control policy for product 2 does not significantly

affect the comparison of rollover strategies, enabling us to make this simplifying

assumption. We have also analyzed periodic review order-up-to policies and found

that the single vs. dual roll comparison was not significantly affected by the num-

ber of inventory reviews. This result is primarily driven by our assumption that

the firm faces no supply constraints for the new generation. Although some firms

face capacity constraints for new products, particularly immediately after introduc-

tion if the product is popular, our model does not capture this effect, and we leave

investigation of supply constraints for future research.

The discount rate is δ and a non-stationary Poisson process, with time-depend-

ent arrival intensity λji (t) as its argument, is denoted by N(·). The profit maximiza-

tion problem depends on the rollover strategy and is solved separately for each

strategy. Given the underlying diffusion dynamics, the arrival processes for the two

generations are independent from each other; there are no price or inventory inter-

actions between the two arrival processes. Thus, for each strategy, we can partition

the optimization problem into separate problems for each product.

By selecting a rollover strategy j ∈ {S,D}, the firm faces the following

continuous-time stochastic optimization problem for product 1, where Ḡit = 1−Git
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denotes the tail distribution:

max
I0,p1(t)

Πj
1 = E

[
−
∫ T j

ατ

e−δ(t−ατ)p1(t)dI(t) + e−δ(T
j−ατ)csI(T j)

−ch
∫ T j

ατ

e−δ(t−ατ)I(t)dt− cpI0

]

s.t.

I(T j) > 0

I(t) = I0 −N
(∫ t

ατ

λj1(u)Ḡ1u(p1)du

)
, t ∈

[
ατ, T j

]
.

(1.5)

Note that I(t) describes the inventory remaining at time t and we require that

inventory is nonnegative when the product is pulled from the market. The first term

of the expectation is price times sales rate, the second and third terms account for

salvage and holding costs, respectively, and the last is the cost of final build.

The firm’s problem for product 2 is:

max
p2(t)

Πj
2 = E

[∫ (1+α)τ

τ

e−δ(t−ατ) (p2(t)− cp)N
(
λj2(t)Ḡ2t(p2)

)
dt

]
(1.6)

1.3.4 Solution

The optimal price path for product 2 can be determined in a straightforward manner,

as shown in Proposition 1 below.

Proposition 1 The optimal price path for product 2 satisfies:

p2(t)− Ḡ2t(p2(t))

g2t(p2(t))
= cp,∀t (1.7)

This price path is unique if and only if (Ḡ2t)2

g2t
is a decreasing function of p2(t), ∀t.

Proof See Appendix A.
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Proposition 1 shows that the price for generation 2 at any point in time depends

simply on the production cost and the consumer’s reservation price distribution at

that time. Due to Assumption 2 in the previous section, there is no interaction with

generation 1 customers. Inventory availability also does not affect price due to the

assumptions on reservation prices and inventory replenishment. If we assume that

G2t(·) = G2(·) ∀t, then p2(t) will be constant.

The optimization problem (1.5) for product 1 is not tractable due to its

stochastic nature and the existence of multiple decision variables. Proposition 2

below shows that the deterministic version of this problem is asymptotically opti-

mal as arrival intensities grow large.

Proposition 2 Solution to the following deterministic optimal control problem is

asymptotically optimal to (1.5) as M0 grows large.

max
I0,p1(t)

Πj
1 =

∫ T j

ατ

e−δ(t−ατ)
(
p1λ

j
1(t)Ḡ1t(p1)− chI(t)

)
dt+ e−δ(T

j−ατ)csI(T j)− cpI0

s.t.

I(T j) > 0

dI(t)

dt
= −λj1(t)Ḡ1t(p1) for t ∈

[
ατ, T j

]
(1.8)

The optimal price path for product 1 from Equation (1.8) satisfies

p1(t)− Ḡ1t(p1(t))

g1t(p1(t))
= eδ(t−ατ)

(
cp +

ch
δ

)
− ch

δ
,∀t (1.9)

and is unique if and only if (Ḡ1t)2

g1t
is a decreasing function of p1(t), ∀t.

The associated optimal initial inventory is

I0 =

∫ T j

ατ

λj1(t)Ḡ1t(p1)dt (1.10)
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Proof See Appendix A.

Note that the optimal price path for product 1 closely follows the reservation

price curve, very similarly to the price path for product 2. The only difference is

that the price for product 1 at any time t also accounts for the holding cost of

inventory incurred between ατ and t. If the reservation price curve for product 1 is

decreasing in t, which is a reasonable scenario considering that the product is ending

its life, then the optimal price will also decrease in t accordingly. Because we find

the solution to the asymptotically optimal deterministic problem, the final build

inventory level I0 will be exactly sufficient to satisfy all demand between [ατ, T j]

and there will be no leftover inventory.

To find a price path, one needs to solve equations (1.7) and (1.9) for each time

point t. Given the Weibull distributions for Git, there are no closed form solutions for

pi(t). Numerically, however, this is straightforward: discretize the planning horizon,

and solve (1.7) and (1.9), through any line-search algorithm, for each discrete t. We

study the problem numerically in the next section.

1.4 Comparison of Rollover Strategies: Numerical Analysis

To develop further insight into the choice of rollover strategy, we turn to numerical

analysis and run a full-factorial experimental design with eight model parameters

at three levels each (low, medium and high). This allows us to better understand

under which conditions of parameter values a particular rollover strategy is preferred,

based on maximal profits resulting from the optimization procedure described in
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Section 1.3. We now describe our experiment.

1.4.1 Parameters Describing the Planning Horizon: τ , α

The planning horizon is [ατ, (1 + α)τ ]; however, sales horizons for the two products

differ as shown in Figure 1.1. For the old product, length of the sales horizon (during

the planning horizon) for single roll is (1−α)τ , while that for dual roll is τ . For the

new product, length of the sales horizon does not depend on the rollover strategy

and is always equal to ατ . Therefore, given τ , a small (large) α indicates a long

(short) sales horizon for the old product under single roll. Consequently, we expect

dual roll to result in higher average profits compared to single roll as α increases.

The effect of τ , however, is not as straightforward. A longer time horizon means

higher total sales; however, price may decrease more and there may be downward

substitution, negatively affecting the profit rate. In the following numerical studies,

the time unit is months, and we use (10, 20, 30) months for τ ; these are typical

times between product introductions in the high tech industry (Druehl et al. 2009).

Given that 0 < α < 1, we use α ∈ {0.3, 0.5, 0.7} in order to capture scenarios where

the final build decision occurs very early in the life-cycle (α = 0.3) to late in the

life-cycle (α = 0.7), reflecting, for example, different manufacturing lead times.

1.4.2 Parameters Describing the Arrival Process: p, q, θ, γ, M0

Recall the arrival process consists of a non-stationary Poisson process whose mean

depends on the diffusion process. First, noting that the initial market size is just

22



a scale parameter, we set M0 = 100. For the Bass coefficients p and q, rather

than using individual parameters, we use p+ q and q/p, as done by Krishnan et al.

(1999) and Druehl et al. (2009). We experiment with (0.2, 0.3, 0.4) for p + q and

with (1, 5, 25) for q/p. These values, which remain constant over time and across

generations (Norton and Bass 1987), capture diffusion processes with different char-

acteristics, as shown in Figure 1.5. The diffusion rate is faster with increasing p+ q,

and/or with decreasing q/p. We expect slower diffusion rates to favor dual roll; as

the new product garners adoptions, the old product continues selling at a higher

rate.
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p+q=0.4, q/p=5, gen. 1

p+q=0.4, q/p=5, gen. 2

p+q=0.2, q/p=25, gen. 1

p+q=0.2, q/p=25, gen. 2

p+q=0.2, q/p=5, gen. 1

p+q=0.2, q/p=5, gen. 2

Figure 1.5: Arrival rates for different diffusion parameters.

Recall that the market responsiveness to preannouncements parameter φ takes

values from 0 (no responsiveness) to∞ (full responsiveness). As a result, we consider

in our study three levels of φ, as shown in Figure 1.3: 0 (low), 6.275 (medium), and
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∞ (high). Higher φ indicates higher diffusion rates for the new product and therefore

lower market risk; thus, we expect higher φ to favor the single product roll.

The levels for the performance improvement per generation, γ, are (0, 0.5, 1),

corresponding to no improvement, 50% improvement, or 100% improvement. Recall

that γ plays a role in the arrival process of the new generation in two ways. First,

performance improvement expands the potential customer base according to Mi =

(1 + γ)Mi−1. Thus the levels of γ correspond to no growth, 50% growth, and the

market doubling in size. Second, performance improvement increases the probability

of customers choosing the new product over the old according to h(γ). The levels

correspond to probabilities of choosing new over old of 1
2
, 3

5
, and 2

3
. In other words,

higher γ refers to lower market risk for the new product and should favor the single

roll. Finally, γ affects reservation prices as described next.

1.4.3 Parameters Describing the Reservation Prices: µ, k

Recall that customer reservation prices follow Weibull distributions. In order to

reflect diminishing customer valuations over time, we let the scale parameter β of

the old generation decrease linearly with a slope per τ equal to µ 6 0 2. Let βi(t)

be the Weibull scale parameter for product i at time t and define

β1(t) = β1(ατ)

[
1 + µ

(
t

τ
− α

)]
, t ∈ [ατ, (1 + α)τ ].

2Other decreasing patterns, such as convex, concave, or piecewise linear, can be used; however,

preliminary tests showed that this choice does not significantly impact our results.
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We set β1(ατ) = 10, without loss of generality, and experiment with µ using

(−0.2,−0.5,−0.8). By definition, higher µ means that customer reservation prices

decline slowly and the old product can thus sell at higher prices longer. Therefore,

higher µ should favor dual roll, where the old product remains in the market longer.

For product 2, we find that an increasing or a decreasing pattern for β2(t)

does not significantly affect the results but does complicate the model. Thus we

use a constant scale parameter where β2(t) = β1(ατ)(1 + γ) = 10(1 + γ), ∀t. We

base this assumption on the fact that typically customer willingness to pay increases

with performance, and on the definition of the reservation price Rit (as discussed

in Appendix A). Using this definition requires that β2 ((1 + α)τ) = β1 ((1 + α)τ) =

β1(ατ)(1 + γ).

We assume that the Weibull shape parameter ki is the same for both genera-

tions and is time invariant. We run experiments with k1 = k2 = k = (1.2, 3.6, 10.8),

which reflect different variability levels in consumer valuations (see Figure 1.4). Note

also that because we assume G2t(·) = G2(·) ∀t, according to Proposition 1, the price

for the new product will be constant during the planning horizon.

1.4.4 Auxiliary Parameters and Summary of Runs

The unit production cost is a scale parameter and we set cp = 1. Choice of unit

salvage value is arbitrary as long as it satisfies the condition that marginal cost

is positive; in other words, cs makes the right-hand side of Equation (A.9) in Ap-

pendix A greater than zero. We set the unit holding cost per period to ch = 0.025,
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corresponding to approximately 34.5% of unit production cost annually. Further-

more, we set the continuous time discount rate to δ = 0.005 per period, ≈ 6.2% per

year. Preliminary tests showed that ch and δ were not significantly influential on

the comparison between rollover strategies and are held fixed. We summarize our

experimental design in Table 1.2.

Table 1.2: Experimental design.

Parameter Levels

τ (10, 20, 30)

α (0.3, 0.5, 0.7)

p+ q (0.2, 0.3, 0.4)

q/p (1, 5, 25)

φ (0, 6.275,∞)

γ (0, 0.5, 1)

µ (−0.2,−0.5,−0.8)

k (1.2, 3.6, 10.8)

In total, there are 38 = 6, 561 experiments. For each experiment (run), we use

dt = 0.01 and use Propositions 1 and 2 to compute the prices, sales, inventory levels

and resulting profits in time, for both the dual and single roll strategies. Then,

we calculate the difference in profits (reported as dual minus single roll) for each

of the 6,561 cases. Finally, we conduct statistical analyses to understand the role

of experimental (input) parameters on the profit difference. Specifically, we use

regression with the experimental parameters as independent variables and analyze

the impact of each parameter on profit difference, the dependent variable, through

the t-statistic for its respective regression coefficient; this global sensitivity analysis
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is suggested by Wagner (1995), and it has been used in previous research as we

discuss below.

Table 1.3 gives the summary statistics for the difference in profits between the

rollover strategies. The average profit difference between strategies (profit in a dual

roll minus profit in a single roll) is -24.7, with a minimum, median, and maximum

values of -9944.7, 154.8, and 11086.2. This means that the choice between a single

and dual roll strategy is not trivial; values of the input parameters determine the best

strategy. These results confirm the earlier research (Billington et al. 1998, Erhun

et al. 2007) on rollover strategy that argues that the choice is situation dependent.

Similar to those papers, our purpose is not to decide which rollover strategy is

better, but rather to investigate which one is better under what setting in a more

concrete analytical setting. Therefore, we run a series of regression analyses in order

to understand the effect of input parameters in this comparison of the two strategies.

Table 1.3: Statistics for difference in profits (dual minus single).

Statistic Value

Minimum -9,944.7

25th percentile -780.7

Median 154.8

Mean -24.7

75th percentile 877.3

Maximum 11,086.2
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1.4.5 Statistical Analysis

We first pre-process the input parameters so that the regression results yield more

meaningful insights. For k and q/p, we employ a log transformation; we then nor-

malize φ such that φ → ∞ corresponds to 1, φ → 0 corresponds to 0, and accord-

ingly, φ = 6.275 to 0.5 (see Appendix A for the normalizing relationship); finally,

we center all variables around their respective means. We perform multiple linear

regression with the profit difference as the dependent variable and the processed

input parameters as the independent variables. The summary of this regression is

given in Table 1.4. We present the t-values and the statistical significance levels

to summarize the level and direction of the particular variable’s influence (Druehl

et al. 2009, Souza et al. 2004). All variables are significant at p < 0.0001 (except for

log(k), which is significant at p < 0.05), and we note that the signs on the estimates

confirm our initial expectations.

We also performed two more multiple linear regressions with the profits from

dual and single roll, respectively, as the dependent variables to examine the effect

of the input parameters on these profits. All variables are significant at p < 0.0001

and again the signs on the estimates confirm expectations.

We make the following observations:

(i) Increasing τ , the time between introductions, increases the sales horizon for

both the old and new product under either single or dual roll, and therefore

results in higher profits under either strategy. Although the theoretical impli-

cations of τ are unclear, in our setting we find that its effect on single roll is
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greater and therefore that larger τ favors single roll.

Table 1.4: Statistics of multiple linear regression: Main effects.

Dependent variable: Dual - Single profit difference

Factor t-value

(intercept) -1.6 ·
τ -36.4 ∗ ∗ ∗
α 5.4 ∗ ∗ ∗

log(k) -2.3 ∗
µ 21.1 ∗ ∗ ∗
γ -21.3 ∗ ∗ ∗

p+ q -26.1 ∗ ∗ ∗
log(q/p) 40.8 ∗ ∗ ∗

φ -56.5 ∗ ∗ ∗
Adj. R-sq. 0.543

Statistical significance codes: ‘∗ ∗ ∗’: p ≈ 0; ‘∗’: 0.01 < p < 0.05; ‘·’: p > 0.1

(ii) As α increases, the dual roll strategy tends to have higher profits compared

to single roll. This is because a higher value of α shortens the selling horizon

for the first generation in single roll and as a result decreases sales.

(iii) As expected, higher diffusion speed—higher p+ q, lower q/p, higher φ—favors

single product rollovers, while increasing the profits for both strategies on

average.

(iv) Similarly, a higher performance improvement amount, γ, results in faster dif-

fusion and a larger and more favorable market for the new product. Conse-

quently, a higher γ also favors single roll as well as increases profits on average

under either strategy.
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(v) Increasing µ or k increases profits under either strategy. A larger µ, affecting

the reservation price scale parameter, indicates a more favorable market for

the old generation, and therefore a dual roll tends to result in higher profits.

A larger k (shape parameter) favors a single roll, but it has the least statistical

significance in the comparison. We conclude that lower variance in reservation

prices increases profits under dual and single roll in almost the same way, and

thus loses its significance when they are compared.

(vi) Given by their t-values, parameters are ordered as φ > q/p > τ > p+ q > γ >

µ > α > k with respect to their influence on the profit difference. With respect

to profit levels, the ordering is γ > τ > k > α > φ > q/p > p + q > µ. This

indicates that in the decision of whether to use a single or dual roll strategy, the

diffusion rates, time between introductions, and performance improvement are

the most important. Recall that φ, q/p and p+q are all measures of the speed

of diffusion. Given a particular rollover strategy, the strongest influencers

of profit are performance improvement, time between introductions, and the

shape parameter.

An interesting observation from the experimental runs is when the maximum

and minimum differences between dual and single profits occur. Dual (single) roll

achieves the greatest profit advantage when q/p is at the highest (lowest) level,

p + q and φ are at their lowest (highest) levels, while k, α, µ, τ , and γ are at their

highest levels. This seems to indicate that market risk, and in particular, speed

of diffusion, is a key factor in the decision of rollover strategy, again confirming
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managerial prescriptions (Billington et al. 1998, Erhun et al. 2007).

We also consider the effect of interactions between the eight parameters be-

cause the adjusted R-squared value of 0.543, while it does not take away from our

first-order insights, indicates that the main effects-only model is not sufficient to

fully explain the profit difference between dual and single roll. Therefore, in order

to obtain deeper insights, we conduct additional regression analyses incorporating

two-way interaction effects between all input parameters. Here we summarize our

results which are given in Table A.1 in Appendix A. All two-way interactions are

highly significant (p < 0.0001), with the exception of τ and µ, α and log(k). The ad-

justed R-squared value increases to 0.837, showing that the optimal rollover strategy

decision is driven by the interplay between the input parameters. We find that the

shape parameter k, whose main effect on profit differences is not highly significant,

is highly significant in interaction with other independent variables. Moreover, we

observe that for all variables, the interaction terms with k have the same sign as

their main effects in Table 1.4. In other words, higher k amplifies the main effects of

all other variables. This means that if the variability of customer reservation prices

is (or, is predicted to be) low (i.e., high k), then any errors in estimating (or, decid-

ing on, when applicable) the other parameters will have more serious consequences

and may easily result in an erroneous choice between single and dual roll strategies.
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1.5 Conclusion

We study the decision process a firm undertakes when introducing a new generation

of a product while phasing out the old. We address many aspects of this problem,

including product rollover strategy (single vs. dual), dynamic pricing and inventory

control, preannouncements, and technology advancement. Erhun et al. (2007) and

Billington et al. (1998) indicate that the demand situation influences the choice of

rollover strategy. Accordingly, we use a demand model that incorporates an infor-

mation diffusion process based on preannouncements and the Bass model, as well as

a heterogeneous customer base with reservation prices that may change in time and

exhibit various levels of responsiveness to preannouncements. To our knowledge,

we are the first to provide a formal analysis of this problem in a unified analytical

framework with a more complete demand model; previous literature looked at only a

subset of these aspects at a time. Our novel model enables us to incorporate several

decision parameters jointly for an overall understanding and sensitivity analysis.

The results of our study confirm some managerial prescriptions and uncover

interactions of several parameters that were not examined before. The optimal price

path closely follows changes in reservation price curves for the two products over

time. We find that lower market risk characterized by faster diffusion speed favors

single roll compared to dual roll, confirming the managerial prescriptions by Billing-

ton et al. (1998); however, we also show that the rate of performance improvement

and the market responsiveness to preannouncements play an important role in the

diffusion process and thus in the comparison of rollover strategies. Furthermore, we
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find that timing decisions (introduction of new product, and preannouncement/final

build of the old) are highly related to the rollover strategy decision. Ultimately, we

show that the interaction of all these parameters/decisions drives the choice between

dual and single roll.

We acknowledge the limitations posed by the assumptions of our model. We do

not explicitly study competition and its influence on the decision process; however,

parameters regarding the diffusion process and reservation price distribution may be

modified to reflect the existence of competition. We reduce the interaction of new

and old product to an (exogenous) diffusion process since doing so helps simplify the

dynamic pricing mechanism. We leave the investigation of joint pricing of old and

new generations to future research. Finally, one can investigate the possible supply

related issues especially for the new product; this is one of the common reasons for

new product failure and should be incorporated in an ideal decision framework.
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Chapter 2

Return Policies and Seller-Provided Information in Experience Good

Markets

2.1 Introduction

Consumers are typically uncertain about what to expect from a product that they

have no experience with, even though they do not lack information regarding the

feature set, performance specs or the quality of the good. The source of uncertainty

lies in their individual preferences and/or utility regarding that good; they are un-

sure if they will like an upcoming book, a new dress, if they prefer a particular

furniture design alternative over another, or if they can comfortably use a new elec-

tric razor. For many—if not the vast majority of—goods, consumers can have but

a vague idea about the value of using/owning it before having personal experience

with it; there is always a possibility that it is not a perfect fit. This type of good is

commonly referred to as “experience good” (Nelson 1970), while this phenomenon

is particularly prevalent for new-to-market goods.

Consumers learn more of their true valuation as they gather more information

regarding the good (Ackerberg 2003), and they can make a better purchase deci-

sion given more information. Direct contact—through trial versions or periods, free

samples, previews, fit-rooms, test-drives, and so forth—with the exact or a similar
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product, interaction with sales personnel, peer or expert reviews, and other forms of

word-of-mouth, which we collectively refer to as informational tools, serve this pur-

pose. We observe that many sellers put effort to make informational tools available

to consumers. For example, fit-rooms are standard practice in department stores

such as Macy’s; Adobe Systems, Inc., like many software companies, offers a 30-day

trial of its products such as Acrobat Professional; Costco.com offers free samples

of select items; in a recent campaign, Mitsubishi let people over the Internet to re-

motely test-drive an actual vehicle on a closed course; Best Buy spends as much as

5% of its total sales on employee training (Kump 2005). Some of these informational

tools serve as a means for advertising, however we focus only on the information

regarding the product that is conveyed to the consumer.

While seller-provided informational tools help the consumers make a better

purchase decision, they do not fully resolve the uncertainty regarding product fit.

According to a recent survey by the National Retail Federation, more than $185

billion worth of retail merchandise, amounting to 8% of total retail sales, was re-

turned to sellers in 2009 in the US (Davis 2010). More strikingly, recent studies

show that a large percentage of these returns have no verifiable defect; for example,

they account for up to 80% of HP printer returns (Ferguson et al. 2006), and 95% of

all electronics purchases (Lawton 2008). These returns are made possible through

the customized return policies offered by the sellers. For example, Amazon.com

has 31 different product-specific return policies with restocking fees of up to 50%,

Best Buy has a customized return policy with restocking fees up to 25%, Nordstrom

offers full refunds for any return to their stores. In effect, return policies enable
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consumers to defer their ownership decisions until after they gain some experience

with the product (for a fee, in the case of partial refunds). In other words, they

act as a contract that allocates the product fit-risk between the consumer and the

seller; with full refunds, the seller takes on all the risk.

The interaction between the informational state of a consumer and returns

is natural: The more informed the consumer, the less the likelihood of a return.

However, it is neither practically possible to fully inform each and every consumer

in order to stop any returns due to product misfit, nor it is clear that the seller

should stop all such returns. It is further unclear how providing partial information

effects the consumer return behavior, and therefore how the seller should design her

return policy given the consumers’ imperfect information level. While lenient return

policies are highly valued by all consumers, they are open to abuse by some. The

National Retail Federation reports that more than $9.5 billion worth of retail returns

in 2009 was deemed to be fraudulent returns (Davis 2010). Lenient return policies

may also leave the seller with too many returned items, resulting in high processing

and supply chain management costs, and possible negative brand implications, due

to the product being perceived as a high return rate brand; for example, Lawton

(2008) reports that 25% of people who return an item refrain from buying that

same brand again, while 14% of such people are unlikely to buy from the same seller

again. Stringent return policies—high restocking fees or non-refundable charges,

limited eligibility or time period, etc.—may result in negative perception of brand,

worsened consumer satisfaction, and eventually lost sales, due to some dissatisfied

buyers being unable to return.
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Our observations of the interaction between informational tools and return

policies in experience good markets lead us to important research questions: Given

that successful reverse supply chain management practices can maximize the value of

returns (Guide et al. 2006), is there an optimal return rate for the seller? Considering

the interaction between product information and returns, how much information

should the seller provide and how should she design her return policies in order to

maximize her profits while managing consumer dissatisfaction?

In order to answer these research questions, we develop a novel model of a

consumer’s learning process through informational tools provided by the seller. Our

two-period model captures the interaction between information provision, return

policies, prices and consumer dissatisfaction, and we analytically show that this

interaction governs a consumer’s pre- and post-purchase decisions, and therefore

the market outcome overall. In this study, we focus on the implications of return

policies regarding brand/product perception (pre-purchase effect), consumer satis-

faction (post-purchase effect), and word-of-mouth (delayed future effect).

We contribute to the existing literature in several ways. To our knowledge, this

is the first analytical study that addresses the role of partial information in consumer

purchasing behavior, and its implications on product return decisions. We treat the

information state of a consumer as a continuous variable and build a tractable yet

comprehensive model around it. Furthermore, we consider the full spectrum of

return policies from zero to 100% refunds, and incorporate pricing into the seller’s

decision process. This is the first study to tackle joint optimization of information,

return policies and prices in a continuous decision space. We identify conditions
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under which a seller chooses not to provide any information even if it is costless.

Furthermore, we find that even when it is optimal to provide full information (so

that all consumers know their true valuation of the product before purchase), the

seller can instead provide only partial information and offer a specific partial refund

return policy such that the same outcome is achieved. We further find that it is

never strictly optimal to offer full refunds. We note that these conclusions are robust

to distributional assumptions.

The rest of the essay is organized as follows. Section 2.2 gives a review of the

relevant literature. In Section 2.3, we develop our basic model, and we provide a full

analysis of the monopoly case in Section 2.4. In Section 2.5 we solve the seller’s joint

optimization problem analytically and discuss the findings. Section 2.6 summarizes

our findings, and provides directions for extensions.

2.2 Literature Review

The paper that most closely relates to ours is by Shulman et al. (2009), who inves-

tigate a single seller with two products on a single-period setting, and they consider

product returns and exchanges given that the consumers are uncertain of their val-

uations as well as the products’ fit, and their valuations are uniformly distributed.

They assume that the consumers are either fully uninformed or fully informed.

In contrast, we capture penalty for consumer dissatisfaction due to product misfit

through market growth in the second period. We model the purchasing behavior of

a partially informed consumer, address both sources of uncertainty without using
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exogenous parameters, and we obtain several results without explicit distributional

assumptions. The main findings of Shulman et al. (2009) are that a seller’s optimal

refund amount can be higher or lower than the salvage value and it depends on

her cost structure as well as consumer preferences, and that eliminating returns by

providing full information is not always optimal. We find that the optimal refund

amount depends on consumer dissatisfaction, and that a refund amount more than

the salvage value is never exercised. Like Shulman et al. (2009), we find that elimi-

nating returns is not always optimal. We further find, however, that the seller can

devise a particular partial refund return policy that eliminates returns. In other

words, our result suggests using return policies as an alternative to providing infor-

mation in order to eliminate returns.

Matthews and Persico (2007) consider a single-period model where consumers

are uninformed and may seek information to learn their valuation of the product.

In their model, consumers are either fully uninformed or fully informed, and the

seller decides on the refund amount and price. As a result of the single-period

setting, the seller is motivated to use return policies to induce consumers to not

seek information and to make an uninformed purchase decision. In our model, all

consumers are information seekers but it is the seller who decides on the amount of

information to provide, and we find conditions under which it is optimal to withhold

information.

A crucial aspect of our study is that we investigate the future consequences of

dissatisfied consumers by incorporating market growth and the effect of consumer

dissatisfaction and returns on sales through word-of-mouth. This is the first study
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to address this aspect of consumers returns; all other works in relevant literature

assume a single-period, myopic setting (Shulman et al. 2009, Su 2009, Ketzenberg

and Zuidwijk 2009, Matthews and Persico 2007, Yalabik et al. 2005, Davis et al.

1995). This assumption forces these studies to further assume the salvage value

of a returned item to be less than its production/acquisition cost, which may not

be realistic when the return occurs not due to product failure but product misfit

(Ferguson et al. 2006). While Shulman et al. (2009) provide insights that relate a

seller’s forward channel cost structure to optimal refunds and information provision,

incorporating market growth enables us to extend their work in this respect and show

that a seller’s cost structure as well as market diffusion capabilities in her forward

channel are important in her decision process.

Regarding product fit, the common practice in the literature is to assume an

exogenous fit probability (Shulman et al. 2009, Yalabik et al. 2005, Chu et al. 1998,

Hess et al. 1996, Davis et al. 1995). In contrast, we model the fact that a consumer

makes her purchase and return decisions considering both the value of the product

and its price. For example, a consumer who purchased, from an online store, a pair

of shoes that turned out to be too tight is dissatisfied not because the shoe has

absolutely no value to her (she may gift it to a friend, etc.), but because the realized

value is not a match to the price she paid for it (whereas she thought, pre-purchase,

that it was). Another common practice in the literature is to use a parameter

representing the consumer’s cost of returning in order to explain the phenomenon

where a dissatisfied consumer is unwilling to return (Shulman et al. 2009, Matthews

and Persico 2007, Yalabik et al. 2005, Chu et al. 1998, Davis et al. 1998, Hess et al.
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1996). Our model endogenously captures this phenomenon without using a hassle

cost parameter.

Che (1996) and Davis et al. (1995) compare a full-refund return policy to a

no-returns policy. Su (2009) considers partial refunds, however he assumes that

consumers have no ex-ante information regarding the product, and he does not

consider acquisition or provision of information. Ketzenberg and Zuidwijk (2009)

also considers partial refunds but they assume an exogenous return probability in a

deterministic model of product returns and remanufacturing. Heiman et al. (2001)

also assume an exogenous return probability and value of information, and they

compare the alternatives of demonstrating the product and/or offering a full refund.

Ackerberg (2003) empirically finds that, in experience goods markets, the primary

effect of advertising is that of informing the consumers of their valuations. We build

our research on this fact and we model the learning process of a consumer and

study its endogenous consequences on her pre- and post-purchase behavior, given

seller provided information tools and a full spectrum of return policies from zero

to 100% refunds. To our knowledge, this is the first work that investigates optimal

refunds, optimal provision of information and optimal prices jointly in a continuous

decision space.

To summarize, the existing literature on consumer returns does not study the

impact of seller-provided (partial) information in consumer pre- and post-purchase

behavior, or the interaction of return policies and knowledge state of consumers. It

also does not consider the negative impact of consumer dissatisfaction and product

returns on the firm’s brand and consequent potential market size in the future. Our
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research addresses these shortcomings by endogenizing different market outcomes

that were treated exogenously in the existing literature.

2.3 Model

We build our model based on the real-life observations pointed out in Section 2.1.

In the following, we first describe how we model consumer valuations given partial

information on the product. Then, we detail the setting and the planning horizon

over which the seller maximizes profits.

2.3.1 Consumer Uncertainty

We model a consumer’s valuation of a product as a learning process. Consider a new

product being introduced to the market. With no private information regarding the

product, a consumer can only have a näive expected valuation. Therefore, at this

zero-state, the consumer pool is homogeneous in terms of their ex-ante valuations;

we denote the zero-state ex-ante consumer valuation as v0.

Seller-provided informational tools help a consumer draw inference (prior to

purchase) about his true ex-post valuation, denoted by v. Without loss of generality,

we assume v ∈ [0, 1]. We consider a mapping from the amount of seller’s effort to

the amount of consumer learning, α ∈ [0, 1], and we assume that consumers learn

homogeneously. We do not model how the seller’s efforts, which may be quantified

in monetary terms, map to consumer learning; we merely postulate that given some

(if any) effort to inform the consumers, a consumer’s knowledge state is α ∈ [0, 1],
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where α = 1 means a fully informed consumer. We assume that the seller knows

this mapping; that is, while deciding how much effort to put on informational tools,

the seller effectively decides on α. As a result, we hereinafter refer to α as the

“amount of information provided by the seller.” In order to isolate and investigate

the underlying motivations for the seller to provide information or not, we assume

that providing information has no cost to the seller; if there are conditions where

the seller chooses not to provide information when it’s free, then it would mean

there is a wider range of such conditions with costly information provision. We later

comment on the impact of costly information provision on our results.

We model the valuation learning process such that, at an α-state, a consumer

of type v has ex-ante valuation of

vα = (1− α)v0 + αv. (2.1)

In other words, consumers approach their idiosyncratic ex-post valuations as they

learn more about the product. With full information (α = 1), there is no valua-

tion uncertainty since each consumer realizes his ex-post valuation even before the

purchase. In Figure 2.1, we give an illustration of consumer learning and resulting

heterogeneity, as modeled in this study.

We assume that there is a single pool of consumers with individual valuations,

V , drawn identically and independently from a publicly known distribution, F , de-

fined over [0, 1]. Then, in the absence of any return policy, v0 = E[V ]. However,

given a return policy with a refund factor of β ∈ (0, 1], consumers have the opportu-

nity to re-consider their initial purchase decision as follows. Denoting the sales price
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by p, a consumer will either keep the product (if v ≥ pβ) or return it for refund

(if v < pβ). Thus, given β, v0 = E[max{V, pβ}]. Substituting in (2.1), the ex-ante

valuation of a consumer with ex-post valuation v is given by

vα = (1− α)E[max{V, pβ}] + αv. (2.2)

0 1

v0

vα

v

α 0

1

Information

Valuation

Figure 2.1: Illustration of consumer learning and heterogeneity with information.

At an α-state, by definition, the consumer purchases the product if vα ≥ p.

From (2.2), one can show that this condition is equivalent to v ≥ vθ, where

vθ(α, β) , p+
(1− α)

α
(p− E[max{V, pβ}]) , α ∈ (0, 1], β ∈ [0, 1] (2.3)

is the threshold ex-post valuation for purchase. Note that the definition of vθ above

presumes α > 0, since we have homogeneity when α = 0; either all consumers

purchase if v0 ≥ p, or none of them purchase if v0 < p.
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2.3.2 Market Demand

We conceptualize a two-period model to capture the long-run consequences of seller’s

decisions. At the beginning of the first period, the seller announces a new product to

be introduced to the market, and sets the first-period price, p1 and the refund factor,

β. At the same time, the seller also decides on α and accordingly provides tools to

help the consumers make a more informed purchase decision. The seller announces

the second-period price, p2, after the first-period arrivals and their purchase decision.

The product is made available for purchase only at the end of each period; there are

thus two purchase points. The chronology of events is summarized in Figure 2.2.

We assume that this product is sufficiently distinguished from existing products in

the market to induce an uncertainty in consumer valuations as studied in this essay.

Seller announces product, 
available at the end of period 1.
Seller decides on return policy

and first period price.

Seller provides information:

Product is available for purchase.
First period arrivals.

Seller decides on second period price

Second period arrivals.

Buyers acquire full information.

0 1 2
time

α

Figure 2.2: Chronology of events in the two-period setting.

We normalize the initial size of the potential consumer population to 1. These

first-period arrivals are analogous to the “innovators” as described in Bass (1969),

and are uncertain in their valuations as described above. During the second period,

the innovators “spread the word” such that each first-period arrival who is not

dissatisfied creates a second-period consumer base of g ≥ 0; we assume this process
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to be deterministic for parsimony 3. Therefore, the more consumers are dissatisfied

in the first period, the less potential buyers in the second period; this dynamic

effectively captures the future consequences of consumer dissatisfaction. We assume

that even with full refunds (β = 1), the consumers who return their items do not

contribute to market growth in the second period; this effectively incorporates the

negative impact of returns to brand and seller image (Lawton 2008). As a result,

in our model, the larger the parameter g, the greater the negative consequences of

causing consumer dissatisfaction and/or returns. Therefore, hereinafter, we aptly

refer to g as “misfit penalty.”

We further assume that the second-period arrivals have full information re-

garding their valuations (through owner experiences and reviews as well as seller

provided informational tools); there is no valuation uncertainty in the second pe-

riod. Finally, we assume that any returns occur at the end of the second period and

any returning consumers leave the market.

This setting enables us to study interesting aspects of seller’s decisions:

• Through vθ, a consumer’s purchasing decision in the first period is determined

not only by p1, but also by α and β.

• Although providing information has a possible cost to the seller, it enables

3With this definition, we assume that any first-period arrival contributes to the second-period

market even if he leaves without purchasing. The underlying reasoning is that the diffusion (of

information) is triggered by being aware of the product, not by purchasing it. While we take it as

given, the value of g is an indicator of the product’s market diffusion speed which is affected by

market and product characteristics.
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consumers to make more informed decisions in the first period and therefore

decreases returns.

• Offering a generous return policy (high β) increases sales in the first period.

However, as we show in the following section, a sufficiently high β results

in consumers purchasing and being dissatisfied post-purchase, which in turn

decreases sales in the second period.

In the next section, we show how the interplay of these three decisions determine

the overall outcome both for the seller and the consumers. We analyze the seller’s

optimal decision strategy in detail and solve her profit maximization problem under

a more specific setting.

2.4 Analysis of the Model

2.4.1 Structural Properties

We start our analysis by showing some structural properties of the seller’s (α, β)

decision space for a given p1. First recall that under our setting, the condition for

consumer purchasing in the first period, vα ≥ p1, is equivalent to v ≥ vθ; however,

each consumer realizes her own ex-post valuation, v, only after she purchases the

product. If it turns out that v ≥ p1, then the consumer is satisfied. If v < p1

she is dissatisfied; in this case, if her valuation is as low as to be below the refund

amount (v < p1β), then she returns the item, otherwise she keeps it although she

is dissatisfied. As a result, there are three possible market outcomes depending on
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the value of vθ. Figure 2.3 illustrates these cases, which we explain below:

Dissatisfied buyers
who return

0 1 vv

Dissatisfied buyers
who keep

Satisfied buyersDissatisfied buyers

Consumers who purchase in the first period

0 1 vp1p1β v

Dissatisfied buyers
who keep Satisfied buyers

Consumers who purchase in the first period

0 1 vv

Consumers who purchase
in the first period

All buyers are satisfied

v≥p1Case I:

p1β≤vθ<p1Case II:

vp1 Case III:

p1p1β

p1p1β

Figure 2.3: Possible cases for vθ and corresponding market outcomes.

Case I (vθ ≥ p1): If vθ ≥ p1, all consumers who purchase the product have non-

negative surplus (v ≥ p1), since they purchase only if v ≥ vθ. All buyers are

satisfied, and there are no returns.

Case II (p1 > vθ ≥ p1β): In this case, there are some dissatisfied buyers (v < p1),

but all buyers have v ≥ p1β: There are some consumers who are dissatisfied

with their purchase but none of them return their item as the refund amount

is not sufficiently attractive.

Case III (vθ < p1β): When vθ < p1β, there are some dissatisfied buyers with p1 >
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v ≥ p1β who keep their items but also some with v < p1β who return for a

refund; there are some buyers who are dissatisfied but not all of them return

their items.

The boundary vθ = p1 is of particular importance since it marks the condition

for efficient allocation of the product: When vθ = p1, a consumer’s purchasing

condition becomes v ≥ p1 and therefore, 1) all consumers who value the product at

least as much as its price purchase the product, and 2) all consumers who purchase

the product value it at least as much as its price. Note that, when vθ = p1, this

efficient allocation is achieved ex-ante, as opposed to ex-post (which is possible

through a full refund return policy, β = 1). From (2.3), vθ = p1 is satisfied for α = 1

(full information) regardless of the value of β. We show that it can also be satisfied

with partial information (0 < α < 1) and if p1 ≥ E[V ], and we state this result in

Proposition 3 below.

Proposition 3 With partial information, i.e. 0 < α < 1, and for p1 ≥ E[V ], there

exists a βp ∈ [0, 1] such that ex-ante efficient allocation is achieved, i.e., vθ(α, βp) =

p1. Furthermore, vθ(α, β) > p1 if β < βp and vθ(α, β) < p1 if β > βp.

Proof See Appendix B.

Proposition 3 is a significant result as it means that, even without providing

full information, the seller can achieve ex-ante efficient allocation of the product

through a partial-refund return policy, i.e. by setting β = βp. In other words,

return policies can be used to substitute for full information in order to minimize

consumer dissatisfaction and returns, even when providing information is costless.
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This means that under costly information provision, the seller has a clear incentive

to design such a return policy in order to minimize consumer dissatisfaction and

returns.

We see from (2.3) that for a given p1, any fixed vθ value results in a relationship

between α and β. Therefore, the three cases above translate into three regions on

the (α, β) plane, as shown in Figure 2.4. In essence, vθ is on the z-axis in Figure 2.4

and each boundary seen on the (α, β) plane represents the curve satisfying the

specified relationship. Although the graph is plotted for uniform valuations and a

particular p1 value, we show in Appendix B that it is representative of the general

case (in terms of the signs of first and second order derivatives). Note that the cases

p1 ≥ E[V ] and p1 < E[V ] result in different graphs since in the latter, vθ > p1 for

all β ∈ [0, 1] without full information (0 < α < 1), and therefore Region I does not

exist (see proof of Proposition 3 in Appendix B).

p1 = 0.51 > E[V ] p1 = 0.45 < E[V ]
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ΥΘ = p1 Β
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Figure 2.4: Seller’s (α, β) decision space for V ∼ U(0, 1) at different price points.
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We now turn our attention to the seller’s general profit maximization problem.

2.4.2 Seller’s Optimization Problem

Facing the market dynamics described in Section 2.3, the seller maximizes two-

period profits by determining the optimal set of decisions, (α∗, β∗, p∗1, p
∗
2). Demand

in the first period is (1 − F (vθ)), since we have unit market size. Demand in the

second period is (g(1 − F (p2))(1 − L)), where L , max{0, F (p1) − F (vθ)} is the

rate of dissatisfaction in the first-period market. Fraction of returns is given by

M , max{0, F (p1β) − F (vθ)} and an amount of p1β is refunded for each return.

Production cost per unit is c and each returned product (if any) has a net salvage

value of s. We assume reasonably that s ∈ (0, 1). Note that we allow for s > c,

in which case there is a profitable market for returned items. We write the seller’s

optimization problem in general form as follows and characterize the optimal second-

period price in Proposition 4.

max
α,β,pi

R = (p1 − c) (1− F (vθ)) + (−p1β + s)M + g (p2 − c) (1− F (p2)) (1− L)

s.t. α, β ∈ [0, 1]

(2.4)

Proposition 4 The optimal price in the second period is given by

p∗2 = arg max
p

(p− c) (1− F (p)).

Proof The solution for p2 follows since p2 appears only in the final term in the

objective function and since g (1− L) ≥ 0 under any circumstances.
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Proposition 4 shows that the optimization of p2 is decoupled from the rest

of the decision process. Therefore in the rest of the essay, we continue studying

the joint optimization of α, β and p1. In the next section, we determine strictly

dominated regions and identify conditions for optimality of others.

2.4.3 Characterization of Optimal Information and Refunds

As discussed in Appendix B, boundaries in the (α, β) decision space, which are

critical for consumer dissatisfaction and existence of returns, are functions of p1.

Although this complicates the seller’s problem of jointly optimizing α, β and p1, we

find that a general characterization of the optimal α and β is possible for a given

p1. We summarize our findings in Proposition 5. Note that we do not yet make

any assumptions as to how the consumer valuations are distributed. In the rest of

the essay, we use superscripts for association to the indicated region in the (α, β)

decision space, and we use the subscript θ to indicate a threshold value.

Proposition 5 For a given p1, the optimal (α, β) corresponds to one of the two

candidate solutions below, depending on the values of p1, g, c and s, and on the

distribution F . We depict these solutions in Figure 2.5.

i) Solution (D): (α∗, β∗) =
{

(α, β) | α ∈ [0, 1− p1
E[max{V,p1β}] ], p1β = s− F (p1β)

F ′(p1β)

}
This solution lies on the region where vθ = 0 and p1β ≤ s. All consumers

purchase but the optimal refund amount is less than the salvage value.

ii) Solution (E): (α∗, β∗) = {(α, β) | vθ = p1}
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This solution implies ex-ante efficient allocation, i.e. vθ = p1, which is

satisfied when α = 1 for any β, or if p1 ≥ E[V], when β = βp for any

α > 0.

E

ΥΘ = 1

D ΥΘ = 0

ΥΘ = p1 Β

Β =

s

p1

I
II

III
Β = Βp
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Β

Α

Figure 2.5: Candidate solutions in the seller’s (α, β) decision space for V ∼ U(0, 1).

Specifically, if g > ḡEθ , then Solution (E) is optimal; if g < ḡEθ , then Solution

(D) is optimal, where

ḡEθ =

(
(p1 − c) + (s− p1β

∗)F (p1β∗)
F (p1)

)
(p2 − c) (1− F (p2))

, (2.5)

and β∗ satisfies

p1β
∗ = s− F (p1β

∗)

F ′(p1β∗)
.

Proof See Appendix B.

Proposition 5 finds that for sufficiently small misfit penalty, Solution (D),

which sells to all consumers in the first period, is optimal; equivalently, for suffi-
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ciently large misfit penalty, Solution (E), which suggests no returns through ex-ante

efficient allocation, is optimal. This result has three immediate corollaries. The first

is that there are conditions that makes the ex-ante efficient allocation undesirable

for the seller. Specifically, if the net profit of selling a product to a consumer in the

first period exceeds the expected loss in the second period due to dissatisfying that

consumer, then the seller chooses (α, β) such that every consumer in the first pe-

riod purchases a product, regardless of his valuation. Since the expected loss in the

second period increases with misfit penalty, we conclude that if the misfit penalty

is sufficiently small, then it is optimal to sell to all consumers in the first period.

Furthermore, observe that ḡEθ , which is the threshold for absolute dominance of So-

lution (E), increases in s; the larger the salvage value, the narrower the dominance

region of Solution (E).

Second, offering a refund amount of more than the salvage value of returned

items is not optimal unless it is optimal to provide full information. On the other

hand, in case of full information, the return policy is redundant (since there are no

returns) and the seller is indifferent in choosing a refund amount. Therefore, we say

that it is weakly suboptimal to offer a refund amount more than the salvage value.

Note that as long as the price is larger than the salvage value, this also means that

it is weakly suboptimal to offer a full (100%) refund.

Finally, note that in the case of costly information provision, if p1 ≥ E[V],

providing full information is never optimal since the seller can instead design a

return policy, by setting β = βp, to achieve the same effect. If, however, p1 < E[V],

then the seller would have more incentive to choose Solution (D); that is, Solution
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(D) would be optimal for a wider range of misfit penalty.

2.5 Jointly Optimal Information, Refund and Price Strategy

In the previous section, we identified the two candidate solutions for optimal (α, β)

without making any distributional assumptions, but under the assumption that p1

is given. We observe that there is no clear dominance relationship between these

solutions if p1 is a decision variable as well. In this section, we assume uniform

valuations, F (p) = p, and identify the candidate solutions for jointly optimizing

information, refund and price, and determine the conditions that lead to the opti-

mality of each solution. Uniform valuations is the most common assumption in the

operations management, marketing and economics literatures (Shulman et al. 2009,

Chesnokova 2007, Villas-Boas 2006, Davis et al. 1998, Chu et al. 1998). We employ

this assumption in this essay in order to facilitate closed-form optimal solutions for

better interpretation. This essentially constitutes the optimal (α, β, p1, p2) strategy

for the seller, contingent on the values of g, c, and s as given in Proposition 6. We

find that there is a boundary, critical for shaping the optimal strategy, in the (s, c)

plane, which we plot in Figure 2.6.

Proposition 6 With uniform valuations, the joint optimal (α, β, p1, p2) strategy is

such that;

For (s, c) such that c ≥ cθ(s) – Region (1) in Figure 2.6 – we have gE,Dθ ≤

gE,Cθ ≤ gD,Cθ , and

(a) If g ≥ gE,Cθ , the optimal solution is Solution (E),
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(b) If g < gE,Cθ , the optimal solution is Solution (C);

For (s, c) such that c < cθ(s) – Region (2) in Figure 2.6 – we have gD,Cθ <

gE,Cθ < gE,Dθ , and

(a) If g ≥ gE,Dθ , the optimal solution is Solution (E),

(b) If gD,Cθ < g < gE,Dθ , the optimal solution is Solution (D),

(c) If g < gD,Cθ , the optimal solution is Solution (C),

where

cθ(s) = 2

√
1 + s2

3
− 1,

gE,Cθ =
4(1 + s2)− 2(1 + c)2

(1 + s2)(1− c)2
,

gE,Dθ =
4 + 12(1 + s2)− 8(1 + c)2

(4 + s2)(1− c)2
,

gD,Cθ =
4

3(1− c)2
,

c = cΘHsL
1

2
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Figure 2.6: Critical regions in the (s, c) plane.

and
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Solution (E): (α∗, β∗) = {(α, β) | vθ = p∗1}, p∗1 = p∗2 = 1+c
2

,

Solution (D): (α∗, β∗, p∗1, p
∗
2) =

(
0, 4s

4+s2
, 4+s2

8
, 1+c

2

)
,

Solution (C): (α∗, β∗, p∗1, p
∗
2) =

(
0, 2s

1+s2
, 1+s2

2
, 1+c

2

)
.

Proof See Appendix B.

We show in Proposition 6 that, for the joint optimization of α, β, p1 and p2,

there are three solutions among which the seller chooses, depending on the rela-

tionship between market parameters (c, s and g). Solution (E) corresponds to any

(α, β) pair that satisfies vθ = p1. We show in Section 2.4.1 that this implies efficient

allocation of the product at the time of purchase even under valuation uncertainty.

In other words, exactly those consumers who would purchase the product with full

information do purchase the product. We also show that this can be achieved either

by providing full information or, without full information, by setting the refund

amount to a certain level β = βp; when providing information is costless, the seller

is indifferent between these two options. However, under costly information provi-

sion, Solution (E) reduces to α∗ ' 0 and β∗ = βp = 2
√
c

1+c
. In either case, since the

consumer purchasing behavior is identical to full information case, the seller sets

the classical monopoly prices: p∗1 = p∗2 = 1+c
2

.

Solutions (C) and (D) are both characterized by vθ = 0 but at different prices

and refund factors; Solution (C) suggests higher values in both: β∗(C) > β∗(D) and

p∗1(C) > p∗1(D). Therefore, Solution (C) offers a larger refund amount than Solution

(D); the former offers a refund amount equal to the salvage value (p∗1β
∗(C) = s),

while the latter offers half the salvage value (p∗1β
∗(D) = 1

2
s). In both Solutions (C)
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and (D), the seller provides no information and ensures that all consumers purchase

in the first period. Solution (C) offers a larger refund amount than Solution (D) and

attains higher ex-ante consumer valuations in the first period; as a result, the seller

charges more: p∗1(C) = 1+s2

2
> p∗1(D) = 4+s2

8
. Due to higher price and higher refund

amount, Solution (C) results in both larger dissatisfaction rate (which is equal to

the price), and larger return rate (which is equal to the refund amount).

The optimal strategy states that Solution (E) should be preferred only when

the misfit penalty (g) is sufficiently large. In other words, if the misfit penalty

is sufficiently small, the seller chooses to maximize her profits at the expense of

consumer satisfaction. We further see that if the cost of production is sufficiently

large, Solution (D) is never optimal; higher production costs require higher prices

to compensate for them and Solution (C) is preferred. With low production costs,

there is a range of misfit penalty for which Solution (D) is optimal; for sufficiently

low misfit penalty, Solution (C), which is greedier, is optimal.

We attain an intuitive corollary out of Proposition 6, by noting that the opti-

mality threshold for Solution (E) in Region (1) is gE,Cθ ; in Region (2), the optimality

threshold for Solution (E) is gE,Dθ . Next, we observe that
∂gE,Cθ

∂s
= 4s(1+c)2

(1+s2)2(1−c)2 > 0,

and
∂gE,Dθ

∂s
= 16s(5+2c+c2)

(4+s2)2(1−c)2 > 0. Therefore, for a constant c, larger s results in larger

thresholds, which in turn limits the optimality of range for Solution (E). We con-

clude that when salvage value is higher, it is easier for the seller to reject ex-ante

efficient allocation, thus to allow returns.
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2.6 Conclusion

In this essay, we study the profit maximization problem for a seller who optimizes

information provision, return policy and prices for a new experience good, over a

two-period horizon. With no information, consumers are fully uncertain of their

valuations of the product. However, given more information, they learn more, ap-

proaching to individual valuations; information creates ex-ante heterogeneity among

consumers. On the other hand, being aware of a return option, consumers update

their valuations of the purchase decision.

We make several important contributions with this study. We devise a novel

approach in understanding and modeling the process of a consumer’s learning of own

valuation, taking into consideration both partial information and partial-refund re-

turn policies. Our model incorporates two key parameters; 1) market growth rate,

g, which represents the seller’s forward channel capability; 2) s, which determines

the value of returned items and therefore points to the seller’s reverse channel ca-

pabilities. Building on the dynamics of interaction between information and return

policy in consumer valuations, we treat the seller’s optimization problem analyti-

cally, show structural properties of her decision space, and characterize the optimal

solution for the general case. These characterizations lead to three major findings

that are robust to distributional assumptions. First, if the market growth rate—

and hence the future penalty due to consumer dissatisfaction and/or returns—is

sufficiently low, then the seller may choose to provide no information to consumers

even if it is costless to do so. We also show that as the salvage value increases, it
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becomes easier for the seller to withhold information from consumers. This shows

how the seller’s reverse channel capabilities interact with her forward channel de-

cisions. Second, we show that even when it is optimal to ensure ex-ante efficient

allocation, Solution (E), it is not necessary to provide full information as this can

be achieved by devising the return policy appropriately (by setting β = βp) and

providing only partial information. This is a significant result as it showcases a

situation where the return policy can be used to substitute for informational tools.

Third, we find that offering a refund amount that is more than the salvage value is

never exercised; the seller can advertise such a refund amount when Solution (E) is

optimal, in which case there are no returns. Lastly, assuming uniform valuations,

we determine the optimal decision strategy for the seller, which dictates the optimal

values for information provision, refund factor and prices given model parameters.

Future work could investigate opportunistic consumer behavior where a con-

sumer “purchases without intention to keep.” A seller can be exposed to such

behavior if she offers lenient returns; tightening return policies for some sellers

is attributed to their losses due to this type of consumer behavior (Davis 2010).

Davis et al. (1995) and Hess et al. (1996) examine consumers who purchase with-

out intention to keep; however, they assume that consumers have no pre-purchase

information, and they do not consider information provision.
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Chapter 3

Managing Return Policies and Information Provision under

Competition

3.1 Introduction

More than 8% of total retail sales, $185 billion worth of retail merchandise, was

returned to sellers in 2009 in the US, and predictions for the near future indicate

similar outcomes (Davis 2010). While the substantial implications, in terms of direct

and overhead costs, of these returns for the whole supply chain makes the study of

consumer returns valuable, it is further interesting to observe that a significant

amount of these returns have no verifiable defect. For example, they account for

up to 80% of HP printer returns (Ferguson et al. 2006), and 95% of all electronics

purchases (Lawton 2008).

The primary reason for these “false-failure” returns is that the consumers

learn—only after the purchase—that the good is not a perfect fit to their tastes,

preferences, usage norms, established settings, etc. Take for example a consumer

purchasing a new electric razor only to realize that its grip is not as comfortable

as the old one he had, or a curtain set to be brought home only to notice it does

not match the color of furniture at home. When lacking experience with the good

before the purchase, the consumers cannot be certain of the true value of the good
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for them, and thus, there is a possibility for a misfit. This type of good is commonly

referred to as “experience good” (Nelson 1970). As a result, lack of information—

regarding the value of the good—is the underlying driver of false-failure returns of

experience goods.

Before purchasing an experience good, consumers mainly rely on the seller to

gain access to, and—however limited—experience with the good; this is especially

true in case of a new-to-market good. Consider for example trial versions of com-

mercial software, test-drive events organized by auto manufacturers, fit-rooms that

are a standard in all department stores, electronic stores with items displayed openly

with trained sales personnel present, free samples of cosmetic products made avail-

able through online or physical channels, product samples sent to expert reviewers,

etc. While the level of these efforts by firms vary greatly, their main purpose is to

reduce false-failure returns by providing the consumers information regarding the

true value of the goods. On the other hand, the sellers also offer customized return

policies that facilitate product returns. For example, Amazon.com has 31 different

product-specific return policies with restocking fees of up to 50%, Best Buy has

a customized return policy with restocking fees up to 25%, Nordstrom offers full

refunds for any return to their stores. In effect, return policies enable consumers

to defer their ownership decisions until after they gain some experience with the

product (for a fee, in the case of partial refunds).

If a seller’s objective is to maximize consumer satisfaction, the initial intuition

is that this goal can be achieved either by providing full information to all con-

sumers, or by offering a full-refund return policy. While providing full information
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to each and every consumer would cut all false-failure returns, it is also practically

impossible to achieve. Offering full refunds would enable any misfit alleviated, how-

ever at the cost of the seller—on top of immediate financial costs, negative brand

implications can be substantial; Lawton (2008) reports that 25% of people who

return an item refrain from buying that same brand again, while 14% of such peo-

ple are unlikely to buy from the same seller again. On the other hand, we show

in Essay 2 that a monopoly seller can design a partial-refund return policy to get

rid of false-failure returns, while providing only partial information. In Essay 2,

we also identify conditions where it is in fact optimal for the monopoly seller to

minimize false-failure returns. Then, the question is ‘what happens when there is

competition?’ Specifically, we pursue the following research questions in this essay:

1) Given competition, is it still possible to design a return policy to effectively

minimize false-failure returns without having to provide full information? If

it is, is such an outcome ever desirable for the sellers?

2) Are there any equilibrium return policy and information provision decisions?

(a) How do they differ from the decisions of a monopoly?

(b) Under what conditions do they exist?

To address these questions, we build on the basic two-period model described

in Essay 2, with the exception of assuming uniform valuations for tractability. In

order to isolate the effect of competition, we conceptualize a perfectly symmetric

duopoly setting, and examine equilibrium information provision and return policy
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decisions. To our knowledge of the literature, this is the first scholarly work that

analytically studies the effects of competition on joint information provision and

return policy decisions. We identify all potential Nash equilibria and their respective

conditions of existence. Contrasting the results to the monopoly case, we find that,

while competition can induce sellers to withhold information from the consumers

under certain conditions, it forces them to offer full refunds.

The rest of the essay is organized as follows. Section 3.2 reviews the relevant

literature. In Section 3.3, we describe and analyze the competition model, and we

examine and discuss the equilibrium in Section 3.4. We conclude in Section 3.5.

3.2 Literature Review

Among the very few studies that investigate competition in a similar context as ours,

the paper by Shulman et al. (2011) is the most relevant. In Shulman et al. (2011),

they examine equilibrium prices and return policies in a competitive market where

consumers are not informed of their tastes or valuations. On a single-period horizon,

the sellers offer horizontally-differentiated products but provide no information to

consumers, and they extract no value out of returned items. Our competition set-

ting is significantly different from theirs in that we look at equilibrium information

provision and return policies incorporating consumer dissatisfaction in the second

period. We show that consumer dissatisfaction and salvage value are critical in

determining the market equilibrium. In direct contrast to our findings, Shulman

et al. (2011) conclude that competition may induce higher restocking fees, whereas
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we find that sellers typically offer full refunds in a competitive setting. Their result

can be explained by noting that they do not consider the impact of high restocking

fees on consumer dissatisfaction (given their single period setting), and therefore

the return policy effectively becomes a tool to discourage consumers from returning,

in order to maximize short-term profits. Our findings help explain why full refunds

are observed in competitive retail markets.

Aside from Shulman et al. (2011), Chesnokova (2007) considers a duopoly

where the firms engage in a product reliability and price competition, and returns are

in the form of repairs, not refunds; i.e., the source of returns in her model is product

reliability, and not consumer tastes and preferences as in our model. In the context

of experience goods, Doganoglu (2010), Villas-Boas (2006) and Villas-Boas (2004)

study the price competition of two sellers over an infinite horizon; however, neither

paper considers return policies or pre-purchase information provision. We study a

duopoly case where two identical sellers engage in return policy and information

competition over two periods; this is the first scholarly work to our knowledge to

study the effects of competition on seller decisions on return policies and provision

of information.

3.3 Competition Model

We build the competition setting on the same framework as described in Section 2.3

in Essay 2. Specifically, we conceptualize a consumer’s valuation of a product as a

learning process, given information of amount α ∈ [0, 1] by a seller. Further given a
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return policy with a refund factor of β ∈ (0, 1], such that the refund amount is pβ

where p is the purchase price, each consumer has the opportunity to re-consider her

initial purchase decision. As in Essay (2), we assume costless information provision

in our analysis, and we later comment on the impact of costly information provision.

We consider a duopoly case with identical sellers, Y and Z; sellers have identi-

cal unit costs c, net salvage values s, and market growth rates g, and they introduce

new products at the same time. We assume that consumers equally value the prod-

ucts from both sellers; that is, the products are perfect substitutes of each other. In

other words, there is a single, seller-independent distribution F , of consumer valua-

tions V , which we assume to be uniformly distributed: F (p) = p. We further assume

identical period prices, p1 and p2, for both sellers. While we do not assume identi-

cal products, we assume that information provided by a seller on her product does

not contribute to information on the other seller’s product; while this assumption

does not hold in general, it is valid for many—if not all—experience goods 4. These

assumptions help us focus on information and return policy (α and β) competition,

as well as allowing a tractable solution.

We employ the same two-period setting as in the monopoly case, with the

chronology of events shown in Figure 2.2 in Essay 2. As in the monopoly case, we

assume that consumers attain full information on the products in the second period,

regardless of the information provided in the first period. At the start of the first

4Consider for example two electric razors of different brands. Even after having used one of

them, a consumer would have no understanding regarding how well the other product will perform,

how comfortable it will feel in his hand, how comfortable a shave it will provide, etc.
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period, the sellers simultaneously decide on their respective α and β. In the first

period, we assume a unit market size, which is shared between the sellers according

to consumer valuations given the sellers’ α and β decisions. Specifically, a consumer

with ex-post valuation v perceives ex-ante valuations of vα,Y and vα,Z for the sellers’

products, and since prices are equal, chooses the seller with the larger vα,j, where

vα,j = αjv + (1− αj)E[max{V, p1βj}]

= αjv + (1− αj)
1 + (p1βj)

2

2

for uniform valuations. In the second period, the market size for each seller grows

with rate g in the same manner as in the monopoly case: Consumers who are

dissatisfied or who return their purchases in the first period do not contribute to

market growth. Therefore, similarly, we refer to g as “misfit penalty.”

3.3.1 Market Share Dynamics

In preparation for the equilibrium analysis, we here analyze the market share dynam-

ics given the sellers’ α and β decisions. Suppose first that αY = αZ . If αY = αZ < 1

and if, without loss of generality, βZ > βY , then vα,Z > vα,Y , ∀v. That is, in the

case of symmetric, partial information, the seller offering a more lenient return pol-

icy captures the whole market. If αY = αZ = 1, then vα,Y = vα,Z , ∀v; if both sellers

provide full information, then the consumers are indifferent between the sellers re-

gardless of the return policies. Suppose without loss of generality that αY < αZ .

Then, there is a threshold valuation, vY Zθ , such that all consumers with v > vY Zθ

prefer seller Z to seller Y , while those with v < vY Zθ prefer seller Y to seller Z,
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where

vY Zθ ,
(1− αY )(1 + (p1βY )2)− (1− αZ)(1 + (p1βZ)2)

2(αZ − αY )
. (3.1)

Therefore, the first-period market share for seller Y is vY Zθ ; for seller Z, it is (1−vY Zθ ).

If βY = βZ = β, we have vY Zθ = E[max{V, p1β}]; that is, in case of identical return

policies, the threshold valuation is independent of the level of information provided

as long as αY 6= αZ .

Further analysis of the market share dynamics reveals that the seller with a

more lenient return policy can set an appropriate level of information to achieve a

desired market share. Consequently, she can set an appropriate level of information

to achieve 100% market share, that is, drive the other seller out of the market. This

is formalized in Proposition 7 below.

Proposition 7 Suppose, without loss of generality, that αY < 1 and let Z be the

seller offering a more lenient return policy, i.e., βZ > βY . Then, seller Z can

achieve a desired market share, v̂, by setting αZ = αv̂, where

αv̂ , αY + p2
1(1− αY )

β2
Z − β2

Y

2v̂ + (p1βZ)2 − 1
.

In addition, seller Z can drive seller Y out of the market by setting αZ ∈ [α, α],

where

α , max

{
0, αY − p2

1(1− αY )
β2
Z − β2

Y

1− (p1βZ)2

}
,

and

α , αY + p2
1(1− αY )

β2
Z − β2

Y

1 + (p1βZ)2
.

Proof See Appendix C.
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Regardless of how the market is shared, the dynamics between the consumer

and the seller is identical to the monopoly case: Given that a consumer prefers

seller Z (v > vY Zθ ), he purchases only if vα,Z ≥ p1, or equivalently if v ≥ vθ,Z .

If p1βZ ≤ v < p1, he is unhappy with the purchase but is not willing to return;

if v < p1βZ , he is unhappy and would like to return. Therefore, all the findings

regarding the structure of the (α, β) decision space carries on from the monopoly

case. Furthermore, since we assume equal first-period prices, unit costs and net

salvage values, the sellers have identical (α, β) decision spaces.

3.4 (α, β) Equilibrium

In this section, we analyze the sellers’ (α, β) decision space in the light of the results

for the monopoly case and the analysis of market shares above, in order to identify

the possible Nash equilibria. In other words, we investigate whether and when there

exists a pair of decisions (αY , βY ) and (αZ , βZ) such that the former is seller Y ’s best

response to the latter, which in turn is seller Z’s best response to the former. When

a pure-strategy Nash equilibrium does not exist, we identify the mixed-strategy

equilibrium. The intuitive corollary of Proposition 7 suggests the non-existence of

a Nash equilibrium where both sellers set (αj < 1, βj < 1), since given, without loss

of generality, (αY < 1, βY < 1), seller Z has a potential best response where she sets

a more lenient return policy and an appropriate level of information to capture the

whole market. In fact, we find that capturing the whole market is the best response

to (αY < 1, βY < 1), and we summarize our findings in Proposition 8 below.
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Proposition 8 In the duopoly where both sellers have identical p1, p2, c, s and g,

and consumer valuations are uniformly distributed, we identify four thresholds on g

(as functions of other variables) that are critical for the existence and the form of

(α, β) Nash equilibria: ḡIIIθ , gIVθ , gVθ and gV Iθ . Furthermore, we find that the ordering

of these functions is determined by the value of s compared to a threshold function

sθ. Specifically, the potential (α, β) Nash equilibria and the associated conditions for

their existence are as follows.

For s > sθ, we have gVθ > ḡIIIθ , and

(i) If g < ḡIIIθ , then there is a symmetric pure-strategy Nash equilibrium

where both sellers provide no information but offer full refund return

policy: (αj = 0, βj = 1) for both sellers,

(ii) If ḡIIIθ < g < gVθ , there is no pure-strategy Nash equilibrium. There is a

mixed-strategy Nash equilibrium where both sellers set βj = 1 and pick

α ∈ [0, 1] randomly,

(iii) If g > gVθ , there is no pure-strategy Nash equilibrium. There is a mixed-

strategy Nash equilibrium where both sellers set βj = 1 and pick α ∈

[α̂, 1] randomly;

For s < sθ, we have gVθ < gV Iθ < ḡIIIθ < gIVθ , and

(i) If g < gVθ , then there is a symmetric pure-strategy Nash equilibrium

where both sellers provide no information but offer full refund return

policy: (αj = 0, βj = 1) for both sellers,
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(ii) If gVθ < g < gV Iθ , then there is an asymmetric pure-strategy Nash equilib-

rium where one seller provides full information and offers an arbitrary

return policy, while the other seller provides no information but offers a

full refund return policy: without loss of generality, (αY = 1, βY ∈ [0, 1])

and (αZ = 0, βZ = 1),

(iii) If gV Iθ < g < gIVθ , then there is a symmetric pure-strategy Nash equi-

librium where both sellers provide full information and offer arbitrary

return policies: (αj = 1, βj ∈ [0, 1]) for both sellers,

(iv) If g > gIVθ , there is no pure-strategy Nash equilibrium. There is a mixed-

strategy Nash equilibrium where both sellers set βj = 1 and pick α ∈

[α̂, 1] randomly,

where

sθ = 1− p1 + c

(
2− 1

p1

)
,

ḡIIIθ =
s− c

(p2 − c)(1− p2)
,

gIVθ =
(p1 − c)(1− p1)

p1(p2 − c)(1− p2)
,

gVθ =
s− p1(1− p1 + c)

(1− p1)(p2 − c)(1− p2)
,

gV Iθ =
2s− c− p1(1− p1 + c)

(2− p1)(p2 − c)(1− p1)
,

and

α̂ =
(1− p1)2(g(1− p2)(p2 − c) + c− s)

(c− s)(1− p1)2 − 2p1(1− p1)(p1 − c) + g(1− p2)(p2 − c)(1− 2p1 + 3p2
1)
.

Proof See Appendix C.
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We see from Proposition 8 that for sufficiently small misfit penalty, g, both

sellers find it the best decision to provide no information to sell to all consumers and

share the market equally, although there are some dissatisfied consumers as well as

some returns. Moreover, we observe that as the salvage value increases, the range of

g, where providing no information is the best decision, grows. Both of these results

are consistent with the monopoly case (Proposition 5).

We observe that for sufficiently large misfit penalty (g > ḡIIIθ for s > sθ, and

g > gIVθ for s < sθ), there is no pure-strategy Nash equilibrium since both sellers

always find a best response where they capture the whole market alone. The mixed-

strategy equilibrium we identify for s > sθ and ḡIIIθ < g < gVθ suggests that both

sellers offer full refunds and pick α randomly in [0, 1]. The second mixed-strategy

Nash equilibrium suggests that for sufficiently large g, both sellers’ best decision

is to offer full refunds and provide at least partial information; they randomly set

an information level between α = α̂ and α = 1. This means that for sufficiently

large g, it is not a best decision to provide little or no information; a result that is

consistent with the monopoly case. Both mixed-strategy equilibria suggest that the

market is not necessarily covered in the first period (i.e., there are some consumers

who leave without purchasing), since full market coverage requires αj ≤ α(vθ = 0)

for at least one of the sellers and this is not necessarily the case. Furthermore,

recalling that for a monopoly, the optimal decision given β = 1 and g > ḡIIIθ is to

provide full information, so that there are no dissatisfied consumers, we note that

both mixed-strategy equilibria imply partial information, resulting in sub-optimal

outcomes where there are some dissatisfied consumers and some returns.
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For sufficiently small net salvage value, s < sθ, intermediary misfit penalty

values result in two different pure-strategy Nash equilibria. In the lower g range

(gVθ < g < gV Iθ ), one seller provides full information and offers an arbitrary return

policy, while the other provides no information but offers a full refund return policy.

This implies full market coverage in the first period (i.e., all consumers purchase),

and a market allocation such that one seller serves the consumers with higher val-

uations and sees no dissatisfied consumers and no returns, while the other seller

serves the remainders and sees some dissatisfied consumers and some returns. This

is an interesting result given that the sellers are identical. In the higher g range

(gV Iθ < g < gIVθ ), both sellers provide full information and offer arbitrary return

policies. In this case, while consumers are indifferent between the sellers, only the

consumers with ex-post valuations at least as high p1 purchase in the first period

and there is ex-ante efficient allocation of the goods.

We note that costly information provision may significantly alter the Nash

equilibria, even if the sellers would have the identical cost structure. For example,

it is conceivable that in the mixed-strategy equilibria described above, the range

for α would be capped from above since neither seller would have an incentive to

incur high information provision costs. Furthermore, the pure-strategy equilibria

where one or both sellers provide full information, α = 1, may not exist; in that

case, a mixed-strategy equilibrium where both sellers offer full refunds, β = 1, with

α randomized over a range may prevail.

Regarding the refund factor, β, recall that in the monopoly solution described

in Proposition 5, full refunds are never exercised; Solution (D) suggests partial
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refunds, and when Solution (E) is optimal, amount of refund is arbitrary. However,

we see from Proposition 8 that competition changes the picture abruptly. In the

duopoly case, all but one Nash equilibria suggest that at least one seller offers full

refunds; for s < sθ and gV Iθ < g < gIVθ , both sellers provide full information and the

refund amount becomes arbitrary.

Consequently, we conclude, contrasting with the monopoly case, that while

competition results in one or both of the sellers withholding information from con-

sumers in certain cases, it typically forces them to offer full refunds. That helps

explain why we observe full refunds in practice (e.g., Nordstrom.)

3.5 Conclusion

In this essay, we study competition in the context of information provision and return

policies in experience good markets. In order to isolate the effects of competition

on our results in the monopoly model given in Essay 2, we consider a duopoly

case where two identical sellers engage in information provision and return policy

competition. We identify the possible pure-strategy Nash equilibria, or if none exists,

the mixed-strategy Nash equilibria, and the associated conditions where they take

place. We find, in contrast to the monopoly case, that while competition can cause

the sellers to withhold information under certain conditions, it typically forces them

to offer full-refund return policies. This finding can shed light on some real-life

phenomena where sellers offer full refunds and/or they do not put much effort to

provide informational tools to consumers.
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Appendix A

Appendix for Essay 1

A.1 Derivation of h(γ)

Let Rit denote the reservation price for product i at time t, a random variable. We

write R1t = u(Ω)ε1t, where u(·) is a (deterministic) linear mapping function and ε1t

is a random variable with a Weibull distribution (so that Rit has a Weibull distribu-

tion); similarly R2t = u((1+γ)Ω)ε2t. We define customer utility Vit as a log function

of the customer’s reservation price Vit = ln(Rit) = ln(u(Ω)) + ln(εit). Because εit

has a Weibull distribution, Vit has a Gumbel distribution; this is consistent with the

Logit model for choice. As a result, the probability that a customer adopts the new

generation is

h(γ) =
eln(u((1+γ)Ω))

eln(u((1+γ)Ω)) + eln(u(Ω))
=

u((1 + γ)Ω)

u(Ω) + u((1 + γ)Ω)
=

1 + γ

2 + γ
. (A.1)

A.2 Proof of Proposition 1

For a non-stationary Poisson process with intensity Λ(t), E [N (Λ(t))] = Λ(t), and

thus (1.6) becomes

max
p2(t)

Πj
2 =

∫ (1+α)τ

τ

e−δ(t−ατ) (p2(t)− cp) E
[
N
(
λj2(t)Ḡ2t(p2)

)]
dt

=

∫ (1+α)τ

τ

e−δ(t−ατ) (p2(t)− cp)λj2(t)Ḡ2t(p2)dt

(A.2)
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This is a simple optimal control problem, with the first-order necessary condition

given in (1.7). The solution is similar to that found in Bitran and Mondschein

(1997). For uniqueness of the solution to (1.7), we need

K2,t = p2(t)− Ḡ2t

G2t

to be an increasing function of p2(t) since lim
p2(t)→∞

K2,t =∞. Therefore, we need

0 <
dK2,t

dp2

= 1− d

dp2

Ḡ2t

G2t

= 1− −G
2
2t − Ḡ2tg

′
2,t

G2
2t

which becomes

0 >
−2G2

2tḠ2t − Ḡ2
2tg
′
2,t

G2
2t

=
d

dp2

Ḡ2
2t

G2t

.

A.3 Proof of Proposition 2

We show through fluid approximations (Mandelbaum and Pats 1998) that the solu-

tions to the deterministic version of (1.5) is asymptotically optimal as initial max-

imum arrival rate, M0, and I0 grow proportionally large. However, since I0 is a

decision variable, we first show that it is optimal to select I0 proportionally large as

M0.

Consider a sequence of instances of problem (1.5) indexed by n ∈ Z+. Let

Mn
0 denote the initial maximum arrival rate and λjn1 be the resulting arrival rate

intensity function for the nth instance. Let

lim
n→∞

Mn
0

n
= M0.

Thus, we have

lim
n→∞

λjn1
n

= λj1.
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Let In0 be the decision parameter for the final build and In(t) denote the

corresponding inventory trajectory for the nth instance, and let all other parameters

be held constant, independent of n. For the nth instance, (1.5) becomes

max
In0 ,p1(t)

E

[
−
∫ T j

ατ

e−δ(t−ατ)p1(t)dIn(t) + e−δ(1−α)τcs

(
In0 +

∫ T j

ατ

dIn(t)

)

− ch
∫ T j

ατ

e−δ(t−ατ)In(t)dt− cpIn0

]

s.t.

−
∫ T j

ατ

dIn(t) 6 In0

In(t) = In0 −N
(∫ t

ατ

λjn1 (u)Ḡ1u(p1)du

)
for t ∈

[
ατ, T j

]
,

(A.3)

where we wrote I(T j) > 0 as −
∫ T j
ατ
dI(t) 6 I0. After dividing the second constraint

by n, taking limits on both sides, and applying Lebesgue’s monotone convergence

theorem, we get

lim
n→∞

1

n
In(t) = lim

n→∞

1

n
In0 −N

 t∫
ατ

λj1(u)Ḡ1u(p1)du

 .

Similarly, from the first constraint in (A.3), we have

lim
n→∞

− 1

n

∫ T j

ατ

dIn(t) 6 lim
n→∞

1

n
In0 .

Therefore, applying the same transformation to the objective function, we can

rewrite (A.3) as
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lim
n→∞

1

n
max
In0 ,p1(t)

E

[
−
∫ T j

ατ

e−δ(t−ατ)p1(t)dIn(t) + e−δ(1−α)τcs

(
In0 +

∫ T j

ατ

dIn(t)

)

− ch
∫ T j

ατ

e−δ(t−ατ)In(t)dt− cpIn0

]

s.t.

lim
n→∞

− 1

n

∫ T j

ατ

dIn(t) 6 lim
n→∞

1

n
In0

lim
n→∞

1

n
In(t) = lim

n→∞

1

n
In0 −N

(∫ t

ατ

λj1(u)Ḡ1u(p1)du

)
for t ∈

[
ατ, T j

]
.

(A.4)

Suppose (I∗0 , p
∗
1) is an optimal solution to (1.5), with the optimal objective

function value π∗1. Then, (In∗0 , p∗1) is an optimal solution to (A.4) with the objective

function value πn∗1 , such that In∗0 and πn∗1 satisfy lim
n→∞

In∗0 /n = I∗0 and πn∗1 = π∗1,

respectively. This follows by observing that (A.4) is equivalent to problem (1.5)

divided by n and taking limits as n → ∞. As a result, we have shown that it is

optimal to let the final build, I0, grow proportionally large as M0 in the asymptotic

regime.

Noting that the demand intensity process∫ t

ατ

λj1(u)Ḡ1u(p1)du

is continuous and uniformly bounded in [ατ, T j], and we find that in the limit as

n→∞, In(t)/n converges (almost surely and uniformly over a compact set) to I(t),

given by

I(t) = I0 −
∫ t

ατ

λj1(u)Ḡ1u(p1)du.

Further details regarding the proof of this convergence result can be found
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in Mandelbaum and Pats (1998). In this asymptotic regime, the stochastic opti-

mization problem in (1.5) reduces to the optimal control problem in (1.8), where

I0 +
∫ T j
ατ
dI(t) is replaced with I(T j), and the second constraint is substituted into

the first term in the objective function.

The solution to (1.8) can be found as follows. Treating I(t) as the state variable

and p1(t) as the control variable, and letting ν and ω(t) be the multipliers for the

first and second constraints in (1.8), the Hamiltonian is H = e−δ(t−ατ)(λj1Ḡ1tp1 −

chI)−ωλj1Ḡ1t, where arguments have been suppressed for simplicity. The optimality

conditions are:

∂H

∂p1

= 0 ∴ λj1
[
e−δ(t−ατ)

(
−p1G1t + Ḡ1t

)
+ ω(t)G1t

]
= 0, (A.5)

∂H

∂I
= −∂ω

∂t
∴ che

−δ(t−ατ) =
∂ω

∂t
, (A.6)

ω(T j) = ν + e−δ(T
j−ατ)cs and νI(T j) = 0. (A.7)

A first-order condition for I0 is obtained by considering that the marginal

revenue from the last unit must equal to its marginal cost (including the procurement

cost and cumulative holding costs in time). That is,

ω(T j) = cp + ch

∫ T j

ατ

e−δ(u−ατ)du. (A.8)

Combining (A.7) and (A.8), we get

ν = cp + ch

∫ T j

ατ

e−δ(u−ατ)du− e−δ(T j−ατ)cs. (A.9)

However, we must have ν > 0, otherwise I0 → ∞ is optimal and the problem in

(1.8) is unbounded. Therefore, from (A.7), I(T j) = 0. In other words, the entire
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initial inventory is depleted during the sales horizon. To find p1(t), we proceed as

follows. From (A.5),

ω(t) = e−δ(t−ατ)

(
p1 −

Ḡ1t

G1t

)
. (A.10)

On the other hand, (A.7) and (A.8) yield

ω(t) = cp + ch

∫ t

ατ

e−δ(u−ατ)du. (A.11)

We combine (A.10) and (A.11) to obtain the necessary condition for the optimal

price pattern for product 1, given in (1.9). The proof of uniqueness follows the same

steps as in the proof for Proposition 1.

Once the optimal price path is determined using (1.9), and given that I(T j) =

0, the optimal initial inventory is equal to the total sales through the planning

horizon.

A.4 Normalization of φ for the Regression

We normalize the parameter φ, for the purposes of running the regression, so that it

takes values between 0 and 1, instead of between 0 and ∞. We do this by mapping

φ to a new parameter θ, according to the normalizing relationship:

φ = (1− α)τ
/(1

θ
+ W

(
−1

θ
× e− 1

θ

))
, (A.12)

where W(·) is the Lambert W function. The Lambert W function is the inverse of

f(w) = wew and we use the zeroth branch which is single valued and real for the

range of θ considered. It is easily verified that lim
φ→∞

θ = 1, and lim
φ→0

θ = 0.
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Table A.1: Statistics of multiple linear regression: Two-way interaction effects.

Factor t-value

(intercept) -2.7 ∗∗

τ -60.9 ∗ ∗ ∗

α 9.0 ∗ ∗ ∗

log(k) -3.8 ∗ ∗ ∗

µ 35.3 ∗ ∗ ∗

γ -35.7 ∗ ∗ ∗

p+ q -43.7 ∗ ∗ ∗

log(q/p) 68.3 ∗ ∗ ∗

φ -94.5 ∗ ∗ ∗

τ : α -20.9 ∗ ∗ ∗

τ : log(k) -17.7 ∗ ∗ ∗

τ : µ -1.8 ◦

τ : γ -35.0 ∗ ∗ ∗

τ : p+ q -30.4 ∗ ∗ ∗

τ : log(q/p) 25.1 ∗ ∗ ∗

τ : φ -48.1 ∗ ∗ ∗

α : log(k) 1.9 ◦

α : µ 6.3 ∗ ∗ ∗

α : γ -12.0 ∗ ∗ ∗

α : p+ q -20.0 ∗ ∗ ∗

α : log(q/p) 30.7 ∗ ∗ ∗

α : φ -9.5 ∗ ∗ ∗

log(k) : µ 10.0 ∗ ∗ ∗

log(k) : γ -10.3 ∗ ∗ ∗

log(k) : p+ q -11.3 ∗ ∗ ∗

log(k) : log(q/p) 17.7 ∗ ∗ ∗

log(k) : φ -24.4 ∗ ∗ ∗

µ : γ -4.0 ∗ ∗ ∗

µ : p+ q -11.2 ∗ ∗ ∗

µ : log(q/p) 15.7 ∗ ∗ ∗

µ : φ -21.9 ∗ ∗ ∗

γ : p+ q -16.3 ∗ ∗ ∗

γ : log(q/p) 25.8 ∗ ∗ ∗

γ : φ -35.2 ∗ ∗ ∗

p+ q : log(q/p) -6.3 ∗ ∗ ∗

p+ q : φ -4.2 ∗ ∗ ∗

log(q/p) : φ -6.0 ∗ ∗ ∗

Adj. R-sq. 0.837

Statistical significance codes: ‘∗ ∗ ∗’: p ≈ 0; ‘∗∗’: 0.001 < p < 0.01; ‘◦’: 0.05 < p < 0.1
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Appendix B

Appendix for Essay 2

B.1 Proof of Proposition 3

Under partial information, using the definition of vθ, the condition vθ = p1 translates

to p1 = E[max{V, p1β}]. Suppose that p1 ≥ E[V ]. Then, since p1 ≤ E[max{V, p1}]
and through the intermediate value theorem, there exists βp ∈ [0, 1] such that p1 =

E[max{V, p1βp}]. Note that if p1 < E[V ], no such βp ∈ [0, 1] exists and there are

no first period buyers with positive surplus for α < 1. Thus, if p1 ≥ E[V ], setting

β = βp is equivalent to providing full information as it completely nullifies the

consequences of valuation uncertainty regardless of the value of α.

B.2 Structural Properties of the (α, β) Decision Space

B.2.1 Boundary for Returns: vθ (α, β) = p1β

The condition vθ (α, β) = p1β is critical for the existence of returns. Assuming

α > 0, this condition is equivalent to p1 + (1−α)
α

(p1 − E[max{V, p1β}]) = p1β, which

reduces to

α = αr(β) ,
E[max{V, p1β}]− p1

E[max{V, p1β}]− p1β
.

Note that, given p1, this equation represents a curve in the (α, β) space. Sup-

pose first that p1 ≥ E[V ]. Then, by Proposition 3, βp ≥ 0 exists and therefore

∂vθ
∂α

= − 1
α2 (p1 − E[max{V, p1β}]) > 0. Furthermore, αr(β) > 0 if and and only if

β > βp, since the denominator in αr(β) is always positive. Thus, vθ (α, β) < p1β

if and only if α < αr(β). Finally, αr(β) is strictly convex and increasing, since

for a continuously differentiable F , dαr
dβ

= p1(E[max{V,p1β}]−p1(1−(1−β)F (p1β)))

(E[max{V,p1β}]−p1β)2
> 0, and

d2αr
dβ2 = p2

1
(2(1−F (p1β))(E[max{V,p1β}]−p1+p1(1−β)F (p1β))+p1(1−β)(E[max{V,p1β}]−p1)F ′(p1β))

(E[max{V,p1β}]−p1β)3
> 0

for all β > βp. Suppose p1 < E[V ]. Then, we have ∂vθ
∂α

> 0, αr(β) > 0, dαr
dβ

> 0, and
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d2αr
dβ2 > 0 satisfied for all β ∈ [0, 1].

B.2.2 Boundary for 100% Sales: vθ (α, β) = 0

The condition vθ (α, β) = 0 reduces to

α = α0(β) , 1− p1

E[max{V, p1β}]
.

Similar to above, when p1 ≥ E[V ], βp ≥ 0 exists and for β > βp, α0(β) > 0 is well

defined and we have ∂vθ
∂α

> 0. Finally, the function α0(β) is strictly increasing if F

is continuously differentiable, since dα0

dβ
=

p21F (p1β)

(E[max{V,p1β}])2
> 0. If p1 < E[V ], then we

have ∂vθ
∂α

> 0, α0(β) > 0 and dα0

dβ
> 0 for all β ∈ [0, 1].

B.2.3 Boundary for No Sales: vθ (α, β) = 1

Note that vθ (α, β) = 1 is possible only if p1 > E[V ], and it reduces to

α = α1(β) ,
p1 − E[max{V, p1β}]
1− E[max{V, p1β}]

.

Then, it is seen that α1(β) > 0 only if 0 ≤ β < βp. On the other hand, we

have ∂vθ
∂α

< 0 for all β < βp; hence, vθ (α, β) > 1 for all β ∈ (0, βp) and α <

α1(β). Finally, for a continuously differentiable F , dα1

dβ
= − p1(1−p1)F (p1β)

(1−E[max{V,p1β}])2
< 0,

and d2α1

dβ2 = −p21(1−p1)(2(F (p1β))2+(1−E[max{V,p1β}])F ′(p1β))
(1−E[max{V,p1β}])3

< 0; therefore, α1(β) is strictly

concave and decreasing in β.

B.2.4 Redundant Regions

We observe that two regions are rendered redundant in our model with the assump-

tion of costless information. First, note the region where α < α0(β). By defini-

tion, any (α, β) pair in this region results in vθ < 0; all consumers purchase since

v ∈ (0, 1). Furthermore, this result is also achieved with no information (α = 0),

as long as β > βp; when β > βp, we have v0 = E[max{V, p1β}] > p1 by definition.

Therefore, for a given β > βp, the seller is indifferent in choosing an α ∈ [0, α0(β)]
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when information is costless. Consequently, in our analyses in this study, we treat

the conditions vθ = 0 and α = 0 as equal at a given β > βp.

Similarly, the second region is where α < α1(β), for which vθ > 1; there are

no sales since consumer valuations are in (0, 1). We see that “no sales” is achieved

for any α ∈ [0, α1(β)], which is possible for β < βp.

B.3 Analysis of the α, β Decision Space

B.3.1 Ex-Ante Efficient Market: vθ = p1

When vθ = p1, there are no dissatisfied consumers and there are no returns; i.e.,

L = M = 0. Then, the seller’s optimization problem takes the following form, where

we name the region where vθ = p1 as Region (E):

max
α,β,pi

RE = (p1 − c) (1− F (p1)) + (p2 − c) g (1− F (p2))

s.t. vθ = p1

(B.1)

The optimal prices are determined as p∗1 = p∗2 = arg max
p

(p− c) (1− F (p)).

Since the objective function does not include α or β, the seller is indifferent in

choosing them as long as they satisfy vθ = p1. We name this as Solution (E).

B.3.2 Positive Consumer Surplus: vθ > p1

Regardless of the value of α ∈ (0, 1), all buyers have strictly positive surplus when

β < βp since vIθ > p1; we name this region as Region (I). In other words, under

partial information, setting a stringent returns policy scares away some consumers

with vθ > v ≥ p1 due to high risk of fit. Seller’s optimization problem in this region

is

max
α,β,pi

RI = (p1 − c) (1− F (vθ)) + (p2 − c) g (1− F (p2))

s.t. vθ > p1

(B.2)

We observe that ∂RI

∂vθ
= −F ′(vθ) (p1 − c) < 0; it is optimal to decrease the

purchasing threshold at any price point. We conclude that any (α, β) decision in
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Region (I) is strictly dominated by Region (E) since vEθ = p1 < vIθ ; the seller never

lets the consumers have positive surplus while there is an option to have efficient

allocation.

B.3.3 Some Dissatisfied Consumers, No Returns: p1 > vθ ≥ p1β

In the region where p1 > vθ ≥ p1β, Region (II), there are some dissatisfied buyers

but they are not willing to return their items as the refund amount is not high

enough. We have L = F (p1) − F (vθ), and since there are no returns, M = 0.

Seller’s profit maximization problem in this region is

max
α,β,pi

RII = (p1 − c) (1− F (vθ)) + (p2 − c) g (1− F (p2)) (1− F (p1) + F (vθ))

s.t. p1 > vθ ≥ p1β

(B.3)

The partial derivative with respect to vθ is

∂RII

∂vθ
= F ′(vθ)

(
−p1 + c+ g (p2 − c) (1− F (p2))

)
which is positive for

g > gIIθ ,
(p1 − c)

(p2 − c) (1− F (p2))
, (B.4)

and negative for g < gIIθ . Then, at any given price point (p1, p2), it is optimal to

increase vθ if g > gIIθ and it is optimal to decrease vθ if g < gIIθ . Therefore, if g > gIIθ ,

Region (II) is dominated by Region (E) since vEθ = p1 > vIIθ ; if g < gIIθ , Region (II)

is dominated by the boundary where vθ = p1β. As a result, no internal solution is

optimal in Region (II).

B.3.4 Some Dissatisfied Consumers, Some Returns: vθ < p1β

Region (III) is characterized by vIIIθ < p1β, which means there are some dissatisfied

consumers (L = F (p1) − F (vθ)) and a portion (M = F (p1β) − F (vθ)) of these

consumers are willing to return their purchases. Thus, the seller’s optimization
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problem in this region is as follows:

max
α,β,pi

RIII = (p1 − c) (1− F (vθ)) + (−p1β + s) (F (p1β)− F (vθ))

+ g (p2 − c) (1− F (p2)) (1− F (p1) + F (vθ))

s.t. vθ < p1β

(B.5)

In order to solve this problem, we look at the partial derivative of the objective

function with respect to vθ:
∂RIII

∂vθ
= F ′(vθ)

(
−p1+c+p1β−s+g (p2 − c) (1− F (p2))

)
which is positive if

g > gIIIθ ,
((p1 − c) + (s− p1β))

(p2 − c) (1− F (p2))
(B.6)

and negative if g < gIIIθ . Then, since vIIθ > vIIIθ > 0, if g > gIIIθ , Region (II)

dominates Region (III), and if g < gIIIθ , the boundary where vθ = 0 dominates

Region (III). We name the part of this boundary region where β > s
p1

as Region (B)

and the part where β ≤ s
p1

as Region (D).

Note that if β > s
p1

then gIIIθ < gIIθ , and if β < s
p1

then gIIIθ > gIIθ . Therefore,

combining our results so far for Regions (II) and (III), for β < s
p1

, there is a range

gIIθ < g < gIIIθ where Region (E) dominates Region (II) and Region (D) dominates

Region (III) and however it is not obvious which one of the two dominates the other.

In order to identify the threshold g value, we write the profit functions for the two

regions equal, RE = RD, and solve for g;

gEθ ,

(
(p1 − c) + (s− p1β)F (p1β)

F (p1)

)
(p2 − c) (1− F (p2))

. (B.7)

Observing that ∂RE

∂g
> ∂RD

∂g
, we conclude that Region (E) dominates Region

(D) if g > gEθ . Note that for β < s
p1

, gIIθ < gEθ < gIIIθ ; wherever Region (E)

dominates Region (D), it dominates all other regions, and wherever Region (D)

dominates Region (E), it dominates all other regions.

The following summarizes our findings in determining the optimal region in

the (α, β) decision space given β, p1, p2, c, s, and g.

1. For β > s
p1

, we have gIIIθ < gIIθ , and
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(i) If g > gIIθ , then Region (E) dominates all regions; it is optimal to set

α = 1.

(ii) If gIIIθ < g < gIIθ , then the boundary region between Regions (II) and

(III) where vθ = p1β, Region (A), dominates all regions.

(iii) If g < gIIIθ , then Region (B) dominates all regions.

2. For β ≤ s
p1

, we have gIIIθ ≥ gEθ ≥ gIIθ , and

(i) If g > gEθ , then Region (E) dominates all regions.

(ii) If g < gEθ , then Region (D) dominates all regions.

We see that there are four candidate regions (A, B, D and E) for optimality.

Figure B.1 gives an illustration of these regions for a specific case. Note again that

the findings above are for given β, p1, p2, c, s, and g values and point to the best α

decision depending on the relationships between these “parameters”. For example,

consider a price taking seller for whom the restocking fee, hence β, is also dictated by

either the industry or some trade regulations. Then, the above rules apply directly

to find the optimum amount of information to be provided, assuming it is costless.

E

ΥΘ = 1

Β = Βp

ΥΘ = 0

ΥΘ = p1 Β

Β =

s

p1

B
D

A

I
II

III

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Β

Α

Figure B.1: Candidate regions for optimality for V ∼ U(0, 1), p1 = 0.51 and s = 0.4.
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We continue our analysis considering a seller who can set all α, β and p1 freely,

and use the above rules as a guideline to find the optimum strategy.

B.4 Analysis of Candidate Regions and Proof of Proposition 5

B.4.1 Region (A)

We start with looking at Region (A), which is optimal if gIIIθ < g < gIIθ , which is

in turn possible if β > s
p1

. Plugging in the defining constraint, vθ = p1β, to the

objective function and taking partial derivative with respect to β, we get

∂RA

∂β
= p1F

′(p1β)
(
−p1 + c+ g (p2 − c) (1− F (p2))

)
,

which is negative for g < gIIθ . Therefore, it is optimal to decrease β in Region (A),

where sup(β) = s
p1

. As a result, setting β = s
p1

and α such that vθ = p1β dominates

Region (A). However, from the discussion above, when β = s
p1

, Region (D), where

vθ = 0, is optimal. This therefore establishes that Region (D) dominates Region

(A).

B.4.2 Regions (B) and (D)

We collectively represent Regions (B) and (D) as vθ = 0. Thus, the objective

function for these regions is

RB,D = (p1 − c) + (−p1β + s)F (p1β) + g (p2 − c) (1− F (p2)) (1− F (p1)) .

The first order condition (FOC) for β is

∂RB,D

∂β
= p1 (−F (p1β) + F ′(p1β) (−p1β + s)) = 0,

or equivalently,

β∗ =
s

p1

− 1

p1

F (p1β
∗)

F ′(p1β∗)
. (B.8)

Note that since the second term on the right is positive, at optimality, we

have β∗ < s
p1

. This means that Region (D) dominates Region (B) since the latter is

defined for β > s
p1

.
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Combining our results so far, we see that when g < gIIθ , it is never optimal to

have β > s
p1

; Region (D) dominates both Regions (A) and (B). Therefore, we have

two candidate optimal solutions left: Solution (D), which is defined by vθ = 0 (or

equivalently, α ∈ [0, α0(β)], as shown above) and the FOC given in Equation B.8,

and Solution (E) which is defined by vθ = p1. This constitutes the proof of Propo-

sition 5.

B.5 Proof of Proposition 6

From the analysis of the structural properties of seller’s (α, β) decision space, we

know that changing p1 changes the (α, β) decision space as all the critical boundaries

is a function of p1. Therefore, when p1 is a decision variable as well, the seller has the

tool to change the (α, β) decision space in order to maximize her profits. Considering

this, we observe that the point β = s
p1

on Region (D) structurally changes the profit

function when solving for the optimal p1; when β = s
p1

, refund is equal to salvage

value and each return has zero net after-sales revenue. Therefore, we take this point

explicitly and define Region (C): {α = 0, β = s
p1
}. Profits for Region (C) is given

by RC = (p1 − c) + g (p2 − c) (1− F (p2)) (1− F (p1)). Since Region (C) is a single

point on the (α, β) decision space, the seller’s profits here is a function of only the

prices.

In the following, we solve for the optimal α, β, p1 and p2 for each of the

regions (C), (D), (E), and we identify the optimal strategy for uniformly distributed

consumer valuations; F (p) = p. Using Proposition 4, the optimal second period

price is p∗2 = (1 + c)/2 for all regions.

B.5.1 Region (C)

In order to solve for the optimal profit function, we take the partial derivative with

respect to p1, ∂RC

∂p1
= 1 − g (p2 − c) (1− p2), which is positive for g < gEθ . Recall

that Region (C) is optimal only if g < gEθ ; thus, it is optimal to increase p1 as

much as possible in the feasible range for Region (C). Constrained by the equality
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β = s
p1

for Region (C), the largest value that p1 can attain is determined by the

smallest value that β can take, which is equal to βp. With uniform valuations, we

have E[max{V, p1β}] = 1+(p1β)2

2
, and we find that

βp = {β | p1 = E[max{V, p1β}]} =

√
2p1 − 1

p1

from Proposition 3. Therefore, the optimal price should satisfy
√

2p1 − 1 = s, and

it yields p∗1 = 1+s2

2
. Then, we find the optimal refund factor as β∗ = s

p1
= 2s

1+s2
. As

a result, recalling that α = 0 in Region (C) by definition, Solution (C) is given by

(α∗, β∗, p∗1, p
∗
2)C =

(
0,

2s

1 + s2
,
1 + s2

2
,
1 + c

2

)
and it yields the net profits of

RC∗ =
1

8
g
(
1− c

)2(
1− s2

)
+
s2

2
− c+

1

2
.

Note that β∗ = 2s
1+s2

< 1 for all s < 1; it is not optimal to offer full refunds when

Solution (C) is optimal.

B.5.2 Region (D)

With uniform valuations, the FOC for β yields β = s
2p1

in Region (D). Plugging this

equality in the objective function, we get ∂RD

∂p1
=

∂
(

(p1−c)+ 1
4

(s)2+g(p2−c)(1−p2)(1−p1)
)

∂p1
=

1 − g (p2 − c) (1− p2). Therefore, profits are increasing in p1 for g < gEθ , for which

Region (D) is optimal; i.e., it is optimal to increase p1 as high as possible in Region

(D). Given the FOC for β, the highest value for p1 is determined by lowest value of

β, which is equal to βp =
√

2p1−1
p1

. Therefore, the optimal price should satisfy p1βp =
√

2p1 − 1 = s
2
, which yields p∗1 = 4+s2

8
. The corresponding β is β∗ = s

2p1
= 4s

4+s2
.

Then, these values constitute Solution (D),

(α∗, β∗, p∗1, p
∗
2)D =

(
0,

4s

4 + s2
,
4 + s2

8
,
1 + c

2

)
,

which results in the profits of

RD∗ =
1

32
g
(
1− c

)2(
4− s2

)
+

3s2

8
− c+

1

2
.

Note that β∗ = 4s
4+s2

< 1 for all s < 1; full refunds are not optimal when Solution

(D) is optimal.
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B.5.3 Region (E)

Given that V ∼ U(0, 1), the optimal pricing decision in Region (E) is p∗1 = p∗2 = (1+c)
2

.

In this case, the seller’s net profit is equal to

RE∗ =
1

4
(1− c)2(1 + g).

As we pointed out above, the seller is indifferent in deciding on an (α, β) point in

Region (E), or more formally, in choosing between (α∗ = 1, β∗ ∈ [0, 1]), and given

p1 > E[V ], (α∗ ∈ (0, 1], β∗ =
√

2p1−1
p1

).

B.5.4 Deriving the Optimal Strategy

To summarize our analysis above, there are three solutions that the seller can choose

among, depending on the parameters incorporated in this study:

Solution (C): (α∗, β∗, p∗1, p
∗
2) =

(
0, 2s

1+s2
, 1+s2

2
, 1+c

2

)
, with profits RC∗.

Solution (D): (α∗, β∗, p∗1, p
∗
2) =

(
0, 4s

4+s2
, 4+s2

8
, 1+c

2

)
, with profits RD∗.

Solution (E): (α∗, β∗) = {(α, β) | vθ = p∗1}, p∗1 = p∗2 = (1+c)
2

, with profits RE∗.

In order to determine the ultimate optimal strategy, we conduct a three-way

comparison of the net profits offered by these optimal solutions. First, we find the

thresholds on g by conducting three pairwise comparisons between the above net

profits. That is, we determine gi,jθ as a function of c and s by setting Ri∗ = Rj∗ and

solving for g; gi,jθ , {g | Ri∗ = Rj∗}. Through algebraic manipulations, we get

gD,Cθ =
4

3(1− c)2
,

gE,Cθ =
4(1 + s2)− 2(1 + c)2)

(1 + s2)(1− c)2
,

gE,Dθ =
4 + 12(1 + s2)− 8(1 + c)2

(4 + s2)(1− c)2
.
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Then, we verify that

∂(RD∗ −RC∗)

∂g
=

3

32
(1− c)2s2 > 0,

∂(RE∗ −RC∗)

∂g
=

1

8
(1− c)2(1 + s2) > 0,

∂(RE∗ −RD∗)

∂g
=

1

32
(1− c)2(4 + s2) > 0,

establishing that Solution (i) is preferred to Solution (j) if g > gi,jθ , and Solution (j)

is preferred to Solution (i) if g < gi,jθ . However, this gives only a partial ordering;

in order to develop a full ordering, we seek the ordering of these thresholds on g.

Pairwise comparisons of these thresholds show that there is a critical c value that

renders gD,Cθ = gE,Cθ = gE,Dθ : cθ(s) = {c | gD,Cθ = gE,Cθ = gE,Dθ }. We determine

cθ(s) = 2

√
1 + s2

3
− 1,

and observe that

∂
(
gD,Cθ

gE,Cθ

)
∂c

=
4(1 + s2)(1 + c)

3(2 + 2s2 − (1 + c)2)2
> 0,

∂
(
gD,Cθ

gE,Dθ

)
∂c

=
4(4 + s2)(1 + c)

3(4 + 3s2 − 2(1 + c)2)2
> 0,

∂
(
gE,Cθ

gE,Dθ

)
∂c

=
s2(4 + s2)(1 + c)

(1 + s2)(4 + 3s2 − 2(1 + c)2)2
> 0.

Therefore, we infer that if c > cθ(s), then gE,Dθ < gE,Cθ < gD,Cθ , and if c < cθ(s), then

gD,Cθ < gE,Cθ < gE,Dθ . Proposition 6 follows by observing the ordering of solutions

(C), (D) and (E) with respect to g, which is depicted in Figure B.2.

B.6 On the Value of Optimal Refund Amount

It is interesting to investigate if the “refund amount” exceeds the salvage value or

not: does the seller allow returns even when they have negative net revenues? By

definition, Solutions (C) and (D) do not offer a refund amount more than the salvage

value; they offer exactly equal to, and exactly half of the salvage value, respectively.
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Solution (C) is optimal Solution (E) is optimal

g
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DCE DECCDE EDC

Solution (D) is optimalSolution (C) is optimal Solution (E) is optimal

g

Region 1 :c≥c s 

Region 2: cc s

Figure B.2: Ordering of solutions according to the the regions in Figure 2.6.

In case of Solution (E), if the seller provides full information, there are no

returns and the seller can “advertise” any return policy. On the other hand, if she

provides only partial information and sets β∗ = βp =
√

2p1−1
p1

, the refund amount is

equal to p∗1β
∗ =
√

2p∗1 − 1 =
√
c. Therefore, the seller can advertise a refund amount

of more than the salvage value if
√
c > s, or c > s2. However, since Solution (E)

does not actually exercise returns, we conclude that a refund amount of more than

the salvage value is never exercised.
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Appendix C

Appendix for Essay 3

C.1 Proof of Proposition 7

Suppose, without loss of generality, that αZ > αY . Then, the condition for seller Z

capturing the whole market is vY Zθ = 0. Solving from (3.1) for αZ that satisfies this,

we get

αZ = α , α(vY Zθ = 0) = αY + p2
1(1− αY )

β2
Z − β2

Y

1 + (p1βZ)2
.

Note that α > αY only if βZ > βY and αY < 1. Furthermore, we observe that

∂vY Zθ
∂αZ

= p2
1(1− αY )

β2
Z − β2

Y

2(αZ − αY )2
> 0

if βZ > βY and αY < 1. Then, any αZ < α results in vY Zθ < 0, and thus seller Z

captures the whole market. Therefore, given αY < 1 and βZ > βY , αZ ∈ [αY , α]

results in seller Z capturing the whole market.

Suppose now that αZ < αY , which is possible only if αY > 0. In this case,

vZYθ is defined analogous to vY Zθ in (3.1); all consumers with v > vZYθ prefer seller

Y to seller Z, while those with v < vZYθ prefer seller Z to seller Y . Then, seller Z

captures the whole market if vZYθ = 1. Solving for αZ from (3.1), we find

αZ = α(vZYθ = 1) , αY − p2
1(1− αY )

β2
Z − β2

Y

1− (p1βZ)2
.

Observe that α(vZYθ = 1) < αY as long as βZ > βY and αY < 1, and that α(vZYθ =

1) > 0 as long as αY > 0. Moreover, we have

∂vZYθ
∂αZ

= p2
1(1− αY )

β2
Z − β2

Y

2(αY − αZ)2
> 0

if βZ > βY and αY < 1. Then, any αZ > α(vZYθ = 1) results in vZYθ > 1, and

thus seller Z captures the whole market. This means, given that αY ∈ (0, 1) and

βZ > βY , αZ ∈ [α(vZYθ = 1), αY ] results in seller Z capturing the whole market, or
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given that αY = 0 and βZ > βY , αZ = 0 results in seller Z capturing the whole

market.

Combining the two results above, we conclude that given αY < 1, seller Z

captures the whole market if she sets βZ > βY and αZ such that αZ ∈ [α, α], where

α , max{0, α(vZYθ = 1)}.
Suppose seller Z would like to have only the consumers with valuation greater

than (1− v̂) prefer seller Z over seller Y ; that is she would like to have vY Zθ = 1− v̂.

From (3.1), we see that this is possible only if αZ > αY and solving for αZ , we find

αZ = αv̂ , α(vY Zθ = 1− v̂) = αY + p2
1(1− αY )

β2
Z − β2

Y

2v̂ + (p1βZ)2 − 1
.

Then, seller Z can set βZ > βY and αZ = αv̂ > αY to attain vY Zθ = 1 − v̂, as long

as αY < 1 and v̂ > 1−(p1βZ)2

2
. Note that vY Zθ = 1 − v̂ means seller Z has a market

share of 1− vY Zθ = v̂.

C.2 Proof of Proposition 8

Before we proceed with the proof, we note that the crucial aspect of the duopoly

case in this essay is that the market is being divided among the sellers, and that

there is no value creation as a result of competition. In other words, there are no

win-win scenarios and the game is rather close to a constant-sum game. In the light

of this observation and the market share dynamics described in Proposition 7, our

first intuition is that setting (αZ , βZ) to capture the whole market is a potential best

response of seller Z to seller Y ’s (αY < 1, βY < 1). Note that once seller Z captures

the whole market, she is effectively a monopoly and the results for the monopoly

case directly apply. Being a monopoly, seller Z clearly prefers to be at the monopoly

optimal solution described in Proposition 5 (recall that in the duopoly case, we as-

sume p1 and p2 are given, and therefore Proposition 5 applies). However, we see from

Proposition 7 that conditions for seller Z to become a monopoly is not arbitrary,

and that she is not necessarily able to attain the monopoly optimal solution while

becoming a monopoly. In the proof below, we first identify the cases where seller

Z can capture the whole market at the monopoly optimal solution. Then, we look
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at the remainder cases step-by-step and investigate whether capturing the whole

market is profitable given that monopoly optimal solution is not attainable. We ul-

timately find that under any condition, seller Z’s best response to (αY < 1, βY < 1)

is to appropriately set (αZ , βZ) to capture the whole market. Since the sellers are

identical in terms of p1, p2, c, s and g, we conclude that there is no Nash equilibrium

where a seller sets (αj < 1, βj < 1). Given this result, we analyze best responses in

the form of full refund (αj < 1, βj = 1) and full information (αY = 1, βY ∈ [0, 1]),

and identify the potential Nash equilibria and the associated conditions as given in

Proposition 8.

We start by summarizing Proposition 5 for uniformly distributed valuations:

The optimal (α, β) for a monopolistic seller when p1, p2, c, s and g are given is that

the seller chooses either Solution (D) if g < ḡEθ , or Solution (E) if g > ḡEθ , where,

for uniformly distributed valuations,

Solution(D) : (α∗, β∗) =

{
(α, β) | α ∈

[
0, 1− 2p1

1 + (p1β)2

]
, β =

s

2p1

}
,

Solution(E) : (α∗, β∗) = {(α, β) | vθ = p1} , and

ḡEθ =
p1 − c+ s2

4p1

(p2 − c) (1− p2)
.

Suppose first that g > ḡEθ . Then, Solution (E) is optimal for a monopoly

seller and thus, her optimal decision is to set α and β such that vθ is as close

to p1 as possible. Therefore in the duopoly case, following Propositions 3 and

7, if g > ḡEθ , then the best response of seller Z to (αY < 1, βY < βp) is to set

(αZ ∈ [max{0, α(vZYθ = 1)}, α(vY Zθ = 0)], βZ = βp) achieving vθ,Z = p1 while

capturing the whole market. If βY ≥ βp, however, seller Z cannot capture the whole

market and set vθ,Z = p1 at the same time. However, from Proposition 7, if αY < 1,

she can achieve vY Zθ = p1 by setting βZ > βY and

αZ = α(vY Zθ = p1) = αY + p2
1(1− αY )

β2
Z − β2

Y

1 + (p1βZ)2 − 2p1

.

Note that, since βZ > βY ≥ βp, we have 1 + (p1βZ)2 − 2p1 > 0 and vθ,Z ≤ p1. By

setting vY Zθ = p1, seller Z ensures that only those consumers with valuation greater

96



than the price prefer seller Z over seller Y , and since vθ,Z ≤ p1, all such consumers

purchase from seller Z. In other words, seller Z achieves monopoly optimal profits.

We conclude, due to symmetry, that if g > ḡEθ , there is no equilibrium where a seller

sets (αj < 1, βj < 1), since the other seller can always capture the whole market

profitably.

Suppose that g < ḡEθ . In this case, we know that Solution (D) is optimal for a

monopoly seller, and that she would set α as low as possible so that she can sell to

as many consumers as possible. Thus, if seller Y chooses (αY < 1, βY <
s

2p1
), seller

Z can set βZ = s
2p1

and αZ = max{0, α(vZYθ = 1)}, capturing the whole market

profitably. Therefore due to symmetry, if g < ḡEθ , there is no equilibrium where a

seller sets (αj < 1, βj <
s

2p1
).

Recall by definition in (2.5) that ḡEθ = gEθ (β = s
2p1

) for uniformly distributed

valuations. Then, compare (B.4) and (B.7) in Appendix B to observe that

gIIθ = gEθ (β =
s

p1

) =
p1 − c

(p2 − c) (1− p2)

for uniformly distributed valuations. Given that

∂gEθ
∂β

=
s− 2p1β

(p2 − c) (1− p2)
< 0

for all β > s
2p1

, we conclude that gEθ strictly decreases from ḡEθ to gIIθ as β goes from

s
2p1

to s
p1

. As a corollary, if gIIθ < g < ḡEθ , then there exists a critical return factor,

s
2p1

< β̂ < s
p1

, for which g = gEθ (β̂); through algebraic operations, we determine

β̂ =
(
s+

√
s2 + 4p1 (p1 − c− g(p2 − c)(1− p2))

)
/(2p1). Suppose gIIθ < g < ḡEθ .

Then, as long as s
2p1

< β ≤ β̂, we have g < gEθ (β), and following the results in

Appendix B, it is profitable for a monopoly seller to sell to all consumers. In other

words, in the duopoly case, a seller would like to decrease her α as much as possible

while capturing the whole market. Suppose (αY < 1, βY < β̂), then seller Z can set

(αZ = max{0, α(vZYθ = 1)}, βZ = β̂), and thus capture the whole market and sell to

as many consumers as possible. If (αY < 1, βY ≥ β̂), seller Z must offer βZ > βY ≥ β̂

in order to capture the whole market; however, for g > gIIθ and β > β̂, it is no longer

optimal to have any dissatisfied buyers for a monopoly. Therefore, while capturing
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the whole market, seller Z sets αZ = α(vY Zθ = p1) and βZ > βY , achieving the

monopoly optimal profits; vY Zθ = p1 means all consumers with v > p1 prefer seller

Z, and since vθ,Z < p1, they all purchase. Note that since
∂α(vY Zθ =p1)

∂β
> 0, there

exists βZ > βY such that 1 > α(vY Zθ = p1) > αY , given that αY < 1 and βY < 1. As

a result, if gIIθ < g < ḡEθ , and given that αY < 1, seller Z has a best response that

enables him to capture the whole market profitably for any βY < 1. We conclude

due to symmetry that if gIIθ < g < ḡEθ , there is no equilibrium with (αj < 1, βj < 1)

for any seller.

So far we showed that if g > gIIθ , there is no Nash equilibrium where any seller

sets (αj < 1, βj < 1). Then, suppose that g < gIIθ . Given this sufficiently small

g, it is optimal for a monopoly seller to sell to all consumers as long as β ≤ s
p1

.

Therefore in the duopoly case, as response to (αY < 1, βY < s
p1

), seller Z can set

(αZ = max{0, α(vZYθ = 1)}, βZ = s
p1

), and thus capture the whole market selling

to as many consumers as possible. Due to symmetry, we conclude that if g < gIIθ ,

neither seller sets (αj < 1, βj <
s
p1

) in an equilibrium.

Now recall from (B.6) and the subsequent analysis in Appendix B that if

β > s
p1

, it is optimal for a monopoly seller to sell to all consumers as long as

gIIIθ > 0 and if g < gIIIθ . Since gIIIθ is decreasing in β, if gIIIθ (β = 1) > 0, then

gIIIθ > 0 for all β < 1; otherwise, since gIIIθ (β = s
p1

) = gIIθ > 0, there is a s
p1
< β̄ < 1

such that gIIIθ (β = β̄) = 0. Therefore, as long as max{0, gIIIθ (β = 1)} < g < gIIθ ,

there is a critical return factor, s
p1
< β̃ < min{1, β̄}, such that g = gIIIθ (β = β̃). In

other words, given max{0, gIIIθ (β = 1)} < g < gIIθ , it is profitable for a monopoly

seller to sell to all consumers as long as β ≤ β̃. Thus in the duopoly case, if

max{0, gIIIθ (β = 1)} < g < gIIθ , seller Z’s best response to (αY < 1, βY < β̃) is

to set (αZ = max{0, α(vZYθ = 1)}, βZ = β̃), capturing the whole market profitably.

Due to symmetry, we conclude that if max{0, gIIIθ (β = 1)} < g < gIIθ , there is no

equilibrium where a seller sets (αj < 1, βj < β̃).

Consider then (αY < 1, βY ≥ β̃) in case of max{0, gIIIθ (β = 1)} < g < gIIθ .

From Appendix B, for any given β > β̃, if max{0, gIIIθ (β = 1)} < g < gIIθ , a

monopoly seller would like to set vθ = p1β so that no buyer returns even though
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they may be dissatisfied. Thus, seller Z can set βZ > βY and

αZ = α(vY Zθ = p1βZ) = αY + p2
1(1− αY )

β2
Z − β2

Y

(1− p1βZ)2
,

ensuring that none of her buyers return while all (if any) buyers of seller Y return

their purchases. Note that given αY < 1 and βY < 1, there exists 1 > βZ > βY such

that 1 > α(vY Zθ = p1βZ) > αY . Therefore, due to symmetry, if max{0, gIIIθ (β =

1)} < g < gIIθ , there is no equilibrium where a seller sets (αj < 1, βj ≥ β̃). Com-

bining with the above result, we conclude that if max{0, gIIIθ (β = 1)} < g < gIIθ ,

neither seller sets (αj < 1, βj < 1) in an equilibrium.

Suppose ḡIIIθ , gIIIθ (β = 1) > 0, which translates to s > c. Then, if g < ḡIIIθ ,

it is profitable for a monopoly seller to sell to all consumers for any β ∈ [0, 1]. Thus

in the duopoly case, in response to (αY < 1, βY < 1), seller Z can set βZ > βY

and αZ = max{0, α(vZYθ = 1)}, capturing the whole market and sell to as many

consumers as possible. Due to symmetry, we conclude that there is no equilibrium

where a seller sets (αj < 1, βj < 1) if 0 < g < ḡIIIθ , which is possible only if s > c.

Combining our analysis so far, we established that for any value of g > 0

there is no Nash equilibrium where (αj < 1, βj < 1) for any seller. Then, consider

(αY < 1, βY = 1). In this case, seller Z’s best response is either (αZ < 1, βZ = 1),

or αZ = 1, βZ ∈ [0, 1]. Note that once αZ = 1, the value of βZ is irrelevant for both

sellers. Furthermore, as long as αZ > αY and βY = βZ = 1, the value of αZ is

irrelevant for both sellers and the value of αY is irrelevant for seller Z. Therefore,

essentially, seller Z has three potential best responses: 1) (αZ < αY , βZ = 1), 2)

(αZ = αY , βZ = 1), or 3) (αZ = 1, βZ ∈ [0, 1]). In the first, seller Z provides less

information than seller Y and we have vZYθ =
1+p21

2
> p1; in the second, seller Y

and seller Z are identical and they equally share the profits; in the third, seller Z

provides full information and we have vY Zθ =
1+p21

2
> p1. We write seller Z’s net
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profits under each decision as follows:

RZ(αZ < αY , βZ = 1) =(p1 − c)
(

1 + p2
1

2
− vθ,Z

)
+ (s− p1)(p1 − vθ,Z)

+ g(p2 − c)(1− p2)

(
1 + p2

1

2
− p1 + vθ,Z

)
,

RZ(αZ = αY , βj = 1) =
1

2
((p1 − c)(1− vθ,Y ) + (s− p1)(p1 − vθ,Y )

+g(p2 − c)(1− p2)(1− p1 + vθ,Y )) ,

RZ(αZ = 1, αY < 1, βY = 1) =(p1 − c)
(

1− 1 + p2
1

2

)
+ g(p2 − c)(1− p2)

(
1− 1 + p2

1

2

)
.

We observe from the profit function in the first case that seller Z would like

to increase vθ,Z as much as possible if g > ḡIIIθ and would like to decrease it if

g < ḡIIIθ . Suppose g > ḡIIIθ ; then seller Z’s optimal decision given αZ < αY is to

set αZ as close to αY as possible; we denote this by αZ / αY , and thus vθ,Z / vθ,Y

since βY = βZ = 1. Comparing the profits for the three decisions, we find that

RZ(αZ / αY , βZ = 1) > RZ(αZ = αY , βj = 1) > RZ(αZ = 1, αY < 1, βY = 1) if

g > gIVθ and vθ,Y > v̂θ, otherwise if g > gIVθ and vθ,Y < v̂θ, or if g < gIVθ , then

RZ(αZ / αY , βZ = 1) < RZ(αZ = αY , βj = 1) < RZ(αZ = 1, αY < 1, βY = 1),

where

v̂θ =
p1 (g(1− p1)(p2 − c)(1− p2) + p1(1− p1 + c)− s)

g(p2 − c)(1− p2) + c− s , (C.1)

and

gIVθ ,
(p1 − c)(1− p1)

p1(p2 − c)(1− p2)
.

As a result, depending on the value of g and vθ,Y , and hence on αY , seller Z’s best

decision is either to set either αZ / αY or αZ > αY ; it is never the best decision to

provide the same level of information given that αY < 1. We observe from above

that v̂θ = 0 only if g = gVθ , where

gVθ ,
s− p1(1− p1 + c)

(1− p1)(p2 − c)(1− p2)
.

Furthermore, we find that ∂v̂θ
∂g

> 0 only if s > sθ, where

sθ , 1− p1 + c

(
2− 1

p1

)
.
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Finally, we observe that if s > sθ, then gVθ > ḡIIIθ > gIVθ , and if s < sθ, then

gVθ < ḡIIIθ < gIVθ . To sum, if s > sθ and ḡIIIθ < g < gVθ , then seller Z’s best response

is αZ / αY for all αY < 1; if s > sθ and g > gVθ , then αZ / αY is the best response

if vθ,Y > v̂θ, and αZ > αY is the best response if vθ,Y < v̂θ. Suppose that we

have s > sθ and ḡIIIθ < g < gVθ ; then, due to symmetry, there is no pure-strategy

Nash equilibrium where a seller sets αj < 1 because providing a marginally less

information than competition is always the best response for both sellers and there

is a continuum of such best responses.

Suppose that s > sθ and g > gVθ . Then, both sellers’ best response is to provide

marginally less information than the competition until, without loss of generality,

vθ,Z = v̂θ,Z , at which point seller Y ’s best response is αY = 1. Seller B’s best response

to αY = 1 is either (αZ / 1, βZ = 1) with profits RZ(αZ / αY = 1, βZ = 1), or

αZ = 1 with profits

RZ(αj = 1) =
1

2
((p1 − c)(1− p1) + g(p2 − c)(1− p2)) .

We find that RZ(αZ / αY = 1, βZ = 1) > RZ(αj = 1) only if g > gIVθ ; however,

given s > sθ, we have gVθ > ḡIIIθ > gIVθ . Therefore, if s > sθ and g > gVθ , seller Z’s

best response to αY = 1 is (αZ / 1, βZ = 1). Given (αZ / 1, βZ = 1), seller Y ’s best

response is (αY / αZ , βZ = 1) and the sellers are back in the loop of a continuous

series of best responses where they unilaterally deviate from an equilibrium. As a

result, there is no pure-strategy Nash equilibrium if s > sθ and g ≥ gVθ . Combined

with the above result, we conclude that if s > sθ and g > ḡIIIθ , there is no pure-

strategy Nash equilibrium in the duopoly.

On the other hand, consider, for s > sθ and ḡIIIθ < g < gVθ , the case where

seller Y sets βY = 1 and picks αY ∈ [0, 1] arbitrarily. Without knowing where seller

Y is located in terms of α, seller Z is forced to randomize his decision as well and her

best response is similarly to set βZ = 1 and choose αZ ∈ [0, 1] randomly. Therefore,

given s > sθ and ḡIIIθ < g < gVθ , there is a mixed-strategy Nash equilibrium where

both sellers set βj = 1, and pick αj ∈ [0, 1] randomly. Next, consider for s > sθ and

g > gVθ , the case where seller Y sets βY = 1 and picks αY ∈ [α̂, 1] randomly, where
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α̂ , α(vθ = v̂θ) can be found by substituting (C.1) and β = 1 into (2.3). From the

above analysis, we see that seller Z’s best response is to set βZ = 1 and randomize

αZ ∈ [α̂, 1]. As a result, given s > sθ and g > gVθ , there is a mixed-strategy Nash

equilibrium where both sellers set βj = 1 and pick αj ∈ [α̂, 1] randomly.

Consider now s > sθ and g < ḡIIIθ . In this case, seller Z’s best response to

(αY ∈ (0, 1), βY = 1) given αZ < αY is to set αZ = 0, resulting in

RZ(αZ = 0, αY > 0, βZ = 1) =(p1 − c)
(

1 + p2
1

2

)
+ (s− p1)p1

+ g(p2 − c)(1− p2)

(
1 + p2

1

2
− p1

)
.

We determine that if g < gVθ , then

RZ(αZ = 0, αY > 0, βZ = 1) > RZ(αZ = αY , βj = 1) > RZ(αZ = 1, αY < 1, βY = 1)

and if g > gVθ , then

RZ(αZ = 0, αY > 0, βZ = 1) < RZ(αZ = αY , βj = 1) < RZ(αZ = 1, αY < 1, βY = 1)

for any αY . Since for s > sθ we have gVθ > ḡIIIθ , we conclude that if s > sθ and

given g < ḡIIIθ , seller Z’s best response to (αY ∈ (0, 1), βY = 1) is (αZ = 0, βZ = 1).

Consider then (αY = 0, βY = 1); seller Z’s best response is either (αZ > 0, βZ = 1)

with profits equal to RZ(αZ = 1, αY < 1, βY = 1), or αZ = 0 resulting in

RZ(αj = 0, βj = 1) =
1

2
((p1 − c) + (s− p1)p1 + g(p2 − c)(1− p2)(1− p1)) .

We see from above that RZ(αj = 0, βj = 1) > RZ(αZ = 1, αY < 1, βY = 1) if s > sθ

and g < ḡIIIθ ; in other words, both sellers’ best response to the competition providing

no information and offering full refund is to provide no information and offer full

refund. This result leads us to a Nash equilibrium where both sellers provide no

information and offer a full refund return policy, (αj = 0, βj = 1), in case of s > sθ

and g < ḡIIIθ .

Suppose now s < sθ, in which case we have gVθ < ḡIIIθ < gIVθ . Therefore, if

g < gVθ , then we have g < ḡIIIθ readily satisfied, and following the analysis above,
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seller Z’s best response to (αY ∈ [0, 1), βY = 1) is (αZ = 0, βZ = 1). As a result,

(αj = 0, βj = 1) is the only Nash equilibrium if s < sθ and g < gVθ .

Given s < sθ, suppose g > gVθ ; then, seller Z’s best response to (αY = 0, βY =

1) is (αZ > 0, βZ = 1). In other words, both sellers’ best response to the competition

setting (αj < 1, βj = 1) is to provide more information than the competition,

and therefore due to symmetry, there is no equilibrium where both sellers have

(αj < 1, βj = 1). Consider then (αY = 1, βY ∈ [0, 1]); seller Z’s best response is

either (αZ = 0, βZ = 1) with RZ(αZ = 0, αY > 0, βZ = 1), or (αZ = 1, βZ ∈ [0, 1])

with RZ(αj = 1). Comparing the profits, we find that if g < gV Iθ , seller Z’s best

response to (αY = 1, βY ∈ [0, 1]) is (αZ = 0, βZ = 1), and if g > gV Iθ , then it is

(αZ = 1, βZ ∈ [0, 1]), where

gV Iθ ,
2s− c− p1(1− p1 + c)

(2− p1)(p2 − c)(1− p1)
.

We further find that given s < sθ, we have gVθ < gV Iθ < ḡIIIθ . Therefore, if s < sθ and

gVθ < g < gV Iθ , seller Z’s best response to (αY = 1, βY ∈ [0, 1]) is (αZ = 0, βZ = 1),

to which seller Y ’s best response is (αY = 1, βY ∈ [0, 1]). We conclude that, if

s < sθ and gVθ < g < gV Iθ , there is a Nash equilibrium where one seller provides

full information and offers an arbitrary return policy, while the other seller provides

zero information but offers a full refund return policy.

Consider now the case where s < sθ (for which gV Iθ < ḡIIIθ < gIVθ ) and gV Iθ <

g < gIVθ . We know from above that if g < ḡIIIθ , then seller Z’s best response to

(αY = 1, βY ∈ [0, 1]) given αZ < αY is (αZ = 0, βZ = 1), and therefore her overall

best response for gV Iθ < g < ḡIIIθ is (αZ = 1, βZ ∈ [0, 1]). Furthermore, we know

that if g > ḡIIIθ , then seller Z’s best response given αZ < αY is (αZ / αY , βZ = 1),

and therefore for ḡIIIθ < g < gIVθ , her overall best response to (αY = 1, βY ∈ [0, 1])

is (αZ = 1, βZ ∈ [0, 1]). To sum, if s < sθ and gV Iθ < g < gIVθ , seller Z’s best

response to (αY = 1, βY ∈ [0, 1]) is (αZ = 1, βZ ∈ [0, 1]). In other words, if s < sθ

and gV Iθ < g < gIVθ , there is a Nash equilibrium where both sellers provide full

information and offer arbitrary return policies.

Finally, if s < sθ and g > gIVθ , we have g > ḡIIIθ and g > gVθ readily satisfied,
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and as shown above, there is a continuous series of best responses where both sellers

unilaterally deviate from an equilibrium. As a result, if s < sθ and g > gIVθ ,

there is no pure-strategy Nash equilibrium in the duopoly. On the other hand,

there is a mixed-strategy Nash equilibrium where both sellers set βj = 1 and pick

αj ∈ [α(vθ = v̂θ), 1] randomly.
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