
ABSTRACT

Title of dissertation: DUAL-BASED LOCAL SEARCH FOR
DETERMINISTIC, STOCHASTIC, AND
ROBUST VARIANTS OF THE CONNECTED
FACILITY LOCATION PROBLEM

Maŕıa Gisela Bardossy, Doctor of Philosophy, 2011

Dissertation directed by: Professor Subramanian Raghavan
Robert H. Smith School of Business

In this dissertation, we propose the study of a family of network design prob-

lems that arise in a wide range of practical settings ranging from telecommunica-

tions to data management. We investigate the use of heuristic search procedures

coupled with lower bounding mechanisms to obtain high quality solutions for de-

terministic, stochastic and robust variants of these problems. We extend the use of

well-known methods such as the sample average approximation for stochastic opti-

mization and the Bertsimas and Sim approach for robust optimization with heuris-

tics and lower bounding mechanisms. This is particular important for NP-complete

problems where even deterministic and small instances are difficult to solve to opti-

mality. Our extensions provide a novel way of applying these techniques while using

heuristics; which from a practical perspective increases their usefulness.

We study the connected facility location (ConFL) problem, which arises in

a number of applications that relate to the design of telecommunication networks

as well as data distribution and management problems on networks. It combines

features of the uncapacitated facility location problem with the Steiner tree prob-

lem and is known to be NP-complete. In this setting, we wish to install a set of

facilities on a communication network and assign customers to the installed facil-

ities. In addition, the set of selected facilities needs to be connected by a Steiner

tree. We propose a dual-based local search (DLS) heuristic that combines dual-

ascent and local search which together yield strong lower and upper bounds on the

optimal solution. Our procedure is applied to a slightly more general version of

the ConFL problem that embraces a family of four different problems—the Steiner

tree-star problem, the general Steiner tree-star problem, the ConFL problem, and

the rent-or-buy problem—that combine facility location decisions with connectivity

requirements. Consequently, our solution methodology can be successfully applied

to all of them.

DUAL-BASED LOCAL SEARCH FOR
DETERMINISTIC, STOCHASTIC, AND ROBUST VARIANTS OF

THE CONNECTED FACILITY LOCATION PROBLEM

by

Maŕıa Gisela Bardossy

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Subramanian Raghavan, Chair/Advisor
Professor Michael Ball
Professor Zhi-Long Chen
Professor Bruce Golden
Professor Richard La

c© Copyright by
Maŕıa Gisela Bardossy

2011

Dedication

To my nona, Selma Catalina Gariglio de Filippa.

ii

Acknowledgments

First and foremost I’d like to thank my advisor, Professor Raghu Raghavan,

for giving me the invaluable opportunity to work with him over the past five years.

He has always made himself available for help and advice beyond the doctoral pro-

gram and there has never been an occasion when I’ve knocked on his door and he

hasn’t given me time. Thanks are due to Professor Bruce Golden, Professor Zhi-

Long Chen, Professor Michael Ball, and Professor Richard La for agreeing to serve

on my dissertation committee and for sparing their invaluable time reviewing the

manuscript. I have to thank Professor Kazim Ruhi for his great teaching advice and

job search tips.

I am also greatly indebted to my graduate fellows: Inbal Yahav, Dina Ribbink,

Dilek Gunnec, Andrew Hall and Ming Chen, for their care and love. I was lucky

to meet them and share this journey with them. I also want to thank my dear-

est friends, Anita and Javier Bianchi, Francisca and Giorgo Sertsios, and Andrea

Cavassa, who became my College Park family in these last five years. I will forever

cherish the great times that we spent together and I will miss them a lot as we

continue our separate paths and dreams.

I owe my deepest thanks to my husband, José, who has always stood by me so I

could accomplish my dreams. Words cannot express the gratitude I owe him. I need

to thank my parents-in-law for letting me take their son away from them. I would

also like to thank my family, who in their very special ways always supported me.

Thank you mom for your support and constant encouragement. Thank you brothers

iii

for taking more family responsibility than you have to and always protecting me.

I also want to thank my grandparents for being my role models in family

values, love, generosity and joy, and whose memory is a constant inspiration to be

a better Christian.

Lastly, thank God for all your blessings!

iv

Table of Contents

List of Tables vii

List of Figures ix

List of Abbreviations x

1 Dissertation Overview 1

2 The Connected Facility Location Problem and Related Problems 5
2.1 Introduction . 5

2.1.1 Steiner tree-star (STS) problem 5
2.1.2 General Steiner tree-star (GSTS) problem 7
2.1.3 Connected Facility Location (ConFL) problem 7
2.1.4 Rent-or-Buy (ROB) problem 10

2.2 Literature Review . 13
2.2.1 Steiner tree-star (STS) and General STS problem 13
2.2.2 Connected Facility Location (ConFL) problem 14
2.2.3 Rent-or-Buy (ROB) problem 17

2.3 General Connected Facility Location Problem 17
2.3.1 Transforming the GSTS problem to the GConFL problem . . 19
2.3.2 Transforming the ConFL problem into the GConFL problem . 20
2.3.3 Transforming the ROB problem into the GConFL problem . . 22

2.4 Conclusions . 22

3 Heuristics for the General Connected Facility Connected Problem 24
3.1 Introduction . 24
3.2 Modeling the GConFL Problem as a Directed Steiner Tree Problem

with a Unit Degree Constraint on the Root Node 26
3.3 Dual-Based Local Search Heuristic 29

3.3.1 Dual-Ascent Phase . 30
3.3.2 Local Search Phase . 36

3.4 Computational Experiments . 40
3.4.1 Problem Generation and Characteristics 40
3.4.2 UFL Heuristic . 43
3.4.3 Results on Complete Graphs 44

3.4.3.1 STS Problem . 44
3.4.3.2 GSTS Problem . 47
3.4.3.3 ROB Problem . 49
3.4.3.4 ConFL Problem . 52

3.4.4 Results on Sparse Instances 54
3.4.5 Large-Scale Instances and Comparison to Ljubić’s VNS heuristic 58

3.5 Conclusions . 60

v

4 The Stochastic Connected Facility Location Problem 63
4.1 Introduction . 63
4.2 Literature Review . 66
4.3 A Note on Two-Stage Linear Programs with Fixed Recourse 70
4.4 Problem Formulation . 73

4.4.1 SConFL with Uncertain Demands 76
4.4.2 SConFL with Uncertain Locations 80

4.5 Sample Average Approximation Method 83
4.5.1 Quality of the Solution . 85

4.6 Proposed Heuristic . 88
4.7 Computational Experiments . 89

4.7.1 Expected Value Solutions . 89
4.7.2 Problem Generation and Characteristics 91
4.7.3 Polynomial-Scenario Model Results 92
4.7.4 SAA Results (Independent-Activation Model) 93
4.7.5 Sample sizes N and N ′ and number of replications R 97

4.8 Conclusions . 100

5 Robust Optimization for the Connected Facility Connected Problem 102
5.1 Introduction . 102
5.2 Robust Optimization and The ConFL Problem 105

5.2.1 Bertsimas and Sim’s Robust Optimization Model 108
5.2.2 Extending Bertsimas and Sim’s Robust Approximation Algo-

rithm . 112
5.2.3 The ConFL problem robust counterpart 122

5.3 An Example of RConFL problem using RCOH 125
5.4 Special Case . 129
5.5 Computational Experiments . 131

5.5.1 Problem Generation and Characteristics 131
5.5.2 Results on the RConFL Problem 136

5.5.2.1 Results for Set 1 - Disk Uncertainty Area 136
5.5.2.2 Results for Set 2 - Square Uncertainty Area 141
5.5.2.3 Results for Set 3 - Rectangular Uncertainty Area . . 145

5.6 Conclusions . 148

vi

List of Tables

3.1 Comparison of heuristics for the STS problem on Set 1. M = 3, and
facility opening costs are varied . 46

3.2 Comparison of heuristics for the STS problem on Set 2. fi = 30, and
M factor is varied . 46

3.3 Comparison of heuristics for the GSTS problem on Set 1. M = 3,
and facility opening costs are varied 48

3.4 Comparison of heuristics for the GSTS problem on Set 2. fi = 30,
and M factor is varied . 48

3.5 Comparison of heuristics for the ROB problem on Set 3. M factor is
varied . 51

3.6 Comparison of heuristics for the ConFL problem on Set 1. M = 3,
and facility opening costs are varied 53

3.7 Comparison of heuristics for the ConFL problem on Set 2. fi = 30,
and M factor is varied . 53

3.8 Comparison of heuristics for the ConFL problem on Set 4 55
3.9 Performance of the DLS heuristic computed using the best lower

bound on Set 4 . 55
3.10 Comparison of heuristics for the ConFL problem on Set 5 57
3.11 Performance of the DLS heuristic computed using the best lower

bound on Set 5 . 57
3.12 Comparison of the DLS heuristic with the VNS procedure on large-

scale instances . 62

4.1 Comparison of heuristics for the Stochastic ConFL. fi = 30, M = 7,
and v factor is varied . 94

4.2 Comparison of heuristics for the Stochastic ConFL. fi = 30, M = 7,
and v factor is varied . 94

4.3 Average 98% confidence gaps for the SConFL, fi = 30, M = 3, and
v factor is varied . 95

4.4 Minimum 98% confidence gaps for the SConFL, fi = 30, M = 3, and
v factor is varied . 95

4.5 Maximum 98% confidence gaps for the SConFL, fi = 30, M = 3, and
v factor is varied . 96

4.6 Sample variance of E[zNLB] and computational time for various N and
R values. 99

5.1 Coordinates for nodes in the example 126
5.2 Assignment and tree edge costs in the example 127
5.3 Assignment costs for each nominal problem in the example 127
5.4 Preliminary results for the example 127
5.5 Example results for 0 ≤ Γ ≤ 3 . 128
5.6 Facility node location and closest possible demand node location . . . 134
5.7 Facility node location and farthest possible demand node location . . 134

vii

5.8 Assignment costs for the example shown in Figure 5.6 and 5.7 135
5.9 Average Gaps for Set 1 (M = 3) . 136
5.10 Average Gaps for Set 1 (M = 7) . 137
5.11 Average Computational Times in Seconds for Set 1 (M = 3) 137
5.12 Average Computational Times in Seconds for Set 1 (M = 7) 137
5.13 Average best-case solution loss for Set 1 (M = 3) 140
5.14 Average best-case solution loss for Set 1 (M = 7) 141
5.15 Average Gaps for Set 2 (M = 3) . 141
5.16 Average Gaps for Set 2 (M = 7) . 141
5.17 Average Computational Times in Seconds for Set 2 (M = 3) 142
5.18 Average Computational Times in Seconds for Set 2 (M = 7) 142
5.19 Average best-case solution loss for Set 2 (M = 3) 144
5.20 Average best-case solution loss for Set 2 (M = 7) 144
5.21 Average Gaps for Set 3 (M = 3) . 145
5.22 Average Gaps for Set 3 (M = 7) . 145
5.23 Computational Times for Set 3 (M = 3) 146
5.24 Computational Times for Set 3 (M = 7) 146
5.25 Average best-case solution loss for Set 3 (M = 3) 148
5.26 Average best-case solution loss for Set 3 (M = 7) 148

viii

List of Figures

2.1 Steiner tree-star example . 6
2.2 General Steiner tree-star example . 7
2.3 Connected facility location example 10
2.4 GSTS problem transformation to GConFL problem 19
2.5 Transformations that allow us to assume D, F , and S form a partition

in the ConFL problem . 20
2.6 ConFL problem transformation to GConFL problem 22

3.1 Transforming a GConFL instance, derived from the ROB problem,
into a directed Steiner tree problem 27

3.2 Dual-Ascent Example . 37
3.3 Pseudocode for local improvements 39

4.1 Sample variance of q̄N ′(x) for increasing number of scenarios, N ′ . . . 98

5.1 Bertsimas and Sim’s Algorithm B . 112
5.2 Robust Combinatorial Optimization Heuristic (RCOH) 114
5.3 Example for Lemma 5.2.4 . 116
5.4 RCOH for the Robust ConFL problem 124
5.5 Example of robust ConFL problem 125
5.6 Example of rectangular uncertainty region 133
5.7 Example of rectangular uncertainty region 135
5.8 Solutions for different Γ values for Set 1 (M = 3) 139
5.9 Solutions for different Γ values for Set 1 (M = 7) 140
5.10 Solutions for different Γ values for Set 2 (M = 3) 143
5.11 Solutions for different Γ values for Set 2 (M = 7) 144
5.12 Solutions for different Γ values for Set 3 (M = 3) 147
5.13 Solutions for different Γ values for Set 3 (M = 7) 147

ix

List of Abbreviations

B&C Branch-and-Cut
ConFL Connected Facility Location
DA Dual Ascent
DLS Dual-ascent Local Search
DST Directed Steiner Tree
EVS Expected Value Solution
GRASP Greedy Randomized Adaptive Search Procedure
GSTS General Steiner Tree-Star
MVP Mean Value Problem
RCOH Robust Combinatorial Optimization Heuristic
RConFL Robust Connected Facility Location
ROB Rent-or-Buy
SAA Sample Average Approximation
SConFL Stochastic Connected Facility Location
SSBND Single-Sink Buy-at-Bulk Network Design
STS Steiner Tree-Star
UFL Uncapacitated Facility Location
VNS Variable Neighborhood Search

x

Chapter 1

Dissertation Overview

In this dissertation, we propose the study of a family of network design prob-

lems that arise in a wide range of practical settings ranging from telecommunica-

tions to data management. We investigate the use of heuristic search procedures

coupled with lower bounding mechanisms to obtain high quality solutions for de-

terministic, stochastic and robust variants of these problems. We extend the use of

well-known methods such as the sample average approximation for stochastic op-

timization (Shapiro and Philpott 2007) and the Bertsimas and Sim approach for

robust optimization (Bertsimas and Sim 2003) with heuristics and lower bounding

mechanisms. This is particular important for NP-complete problems where even

deterministic and small instances are difficult to solve to optimality. Our extensions

provide a novel way of applying these techniques while using heuristics; which from

a practical perspective increases their usefulness.

We study the connected facility location (ConFL) problem, which arises in

a number of applications that relate to the design of telecommunication networks

as well as data distribution and management problems on networks. It combines

features of the uncapacitated facility location problem with the Steiner tree prob-

lem and is known to be NP-complete. In this setting, we wish to install a set of

facilities on a communication network and assign customers to the installed facil-

1

ities. In addition, the set of selected facilities needs to be connected by a Steiner

tree. We propose a dual-based local search (DLS) heuristic that combines dual-

ascent and local search which together yield strong lower and upper bounds to the

optimal solution. Our procedure is applied to a slightly more general version of

the ConFL problem that embraces a family of four different problems—the Steiner

tree-star problem, the general Steiner tree-star problem, the ConFL problem, and

the rent-or-buy problem—that combine facility location decisions with connectivity

requirements. Consequently, our solution methodology can be successfully applied

to all of them. We discuss a wide range of computational experiments, which indi-

cate that our heuristic is a very effective procedure that finds high quality solutions

very rapidly for the deterministic variant of the problem.

In the next part of the dissertation, we focus our attention mainly on the

ConFL problem because as we show in Chapter 2 the remaining problems can

be easily transformed into ConFL instances, and our computational experiments

in Chapter 3 reveal that the ConFL problem is the hardest to solve for the DLS

heuristic. Regardless, all of the subsequent analyses and solution methodologies for

the stochastic and robust variants presented throughout this dissertation can be

successfully applied to all of the problem within the broader family.

We consider the ConFL problem in the case where there is uncertainty on the

assignment costs either due to random quantity demands, unknown customer loca-

tions, or varying edge lengths. We show that the optimal solution of the stochastic

problem with random demands can be obtained by replacing the unknown values

with their averages. However, when customer locations or edge lengths are random

2

this strategy is not optimal. Instead, we define a deterministic equivalent problem

and provide a set of graph transformations that allow us to apply our DLS proce-

dure to this equivalent problem. Our computational results show that this strategy

is very effective for instances with a polynomial number of scenarios. However, as

the number of scenarios increases, it becomes impractical to generate a complete

deterministic equivalent problem. Under such circumstances, we propose a more ef-

fective framework that relies on the sample average approximation (SAA) approach

(Shapiro and Philpott 2007) yet it utilizes a heuristic to solve the sample average

problems and a lower bounding procedure to construct a confidence interval on the

true optimal value. To our knowledge this is the first discussion of the SAA ap-

proach in stochastic programming with the use of heuristics to solve the underlying

optimization problems.

Finally, we present a robust optimization model for the ConFL problem under

customer uncertainty and we show how a DLS heuristic can be effectively used

to obtain high quality solutions to this robust optimization problem. We extend

Bertsimas and Sim’s robust optimization solution approach (Bertsimas and Sim

2003) to situations where one has a heuristic upper bound and a lower bound on

the optimal solution objective value for each nominal problem. An advantage of

the DLS heuristic is that it provides high quality lower bounds in addition to the

heuristic solution. We present computational results that demonstrate that the DLS

heuristic rapidly obtains high-quality solutions for a large set of test instances for

the robust variant of the ConFL problem.

We conclude this dissertation with a summary of contributions and directions

3

for future research.

4

Chapter 2

The Connected Facility Location Problem and Related Problems

2.1 Introduction

The recent growth of telecommunication networks coupled with digital data

management has motivated a range of network design problems that combine facility

location with connectivity requirements. These network design problems combine

features of the uncapacitated facility location (UFL) problem with the Steiner tree

problem. The connected facility location (ConFL) problem belongs to this class

of network design problems and is known to be NP-complete. In this chapter we

introduce a slightly more general version of the ConFL problem that subsumes a

family of four closely related problems (that arise in virtual private network design

and data distribution problems on networks) and propose a dual-based local search

(DLS) heuristic that combines dual-ascent and local search to obtain high quality

solutions rapidly.

We first describe the family of four closely related problems that are special

cases of the general version of the ConFL problem that we introduce in this essay.

2.1.1 Steiner tree-star (STS) problem

The Steiner tree-star (STS) problem (Lee et al. 1993) is a virtual private

network design problem that arises in the design of telecommunication networks for

5

Open facility node

Facility node

Demand node(a) (b)

Figure 2.1: Steiner tree-star example

digital data services and can be stated as follows. Given a graph G = (V,E) and a

disjoint partition of the nodes in V into two sets: D ⊂ V , set of demand nodes (also

referred to as target nodes in the STS literature), and F ⊂ V , set of potential facility

nodes (also referred to as hubs in the STS literature), we seek to find a minimum cost

tree such that every demand node is connected (or assigned) to a facility node, and

the facilities serving demand nodes are connected through a node-weighted Steiner

tree T constructed solely on the F nodes (i.e., on G(F) = (F,E(F))). Each facility

has an opening (or activating) cost, fi ≥ 0, that is incurred if the facility is included

in the final network design (regardless of whether the facility serves a demand node).

The cost to connect a demand node, j ∈ D, to a facility node, i ∈ F , is given by

an assignment cost aij; while the cost to connect two facilities, i, j ∈ F , comes at

a significantly higher (in terms of cost per unit distance) connection cost bij. The

network design cost is thus given by
∑

j∈D a(j)j+
∑

i∈T fi+
∑
{i,j}∈T bij, where i(j) is

the facility serving demand node j, and T is the Steiner tree connecting the facilities

serving demand nodes. Figure 2.1 illustrates an example of the STS problem, where

6

Active facility node

Facility node

Demand node

(a) (b)

Dual role node

(c)

Figure 2.2: General Steiner tree-star example

(a) shows the graph G, and (b) represents a feasible solution to the STS problem.

2.1.2 General Steiner tree-star (GSTS) problem

Khuller and Zhu (2002) extended the STS problem to a more general setting

where the facility and demand node sets are not disjoint and called it the general

STS (GSTS) problem. In this case some demand nodes may host a facility in a

solution to the problem. Figure 2.2(a) shows a small example of GSTS problem,

where one node has dual role and can be both a facility and a demand node. Figure

2.2(b) illustrates a solution where the dual-role node takes the function of a demand

node; while Figure 2.2(c) shows a solution where it takes the role of a facility node.

Note that when the dual-role node takes the role of a facility node it also satisfies

its demand node at no additional cost.

2.1.3 Connected Facility Location (ConFL) problem

Karger and Minkoff (2000), Krick et al. (2003), and Havet and Wennink (2004)

independently introduced data distribution and management problems in a network

setting that arise in information/content distribution networks (such networks are

7

widely prevalent at search providers for example). In the applications discussed

in these three papers, there are facilities (or servers) to be located on a network

that will contain (or cache) information. Demand nodes make requests for the

information. When a demand node j requests a piece of information, it is served

from the closest facility i(j) and incurs a cost α(i(j), j) (if a demand node j makes

multiple requests, say dj requests, the cost is simply djα(i(j), j)). Further, updates

to the information on the servers are made over time. If a piece of information is

updated, then it must be updated at every facility (or server) on the network. This

incurs a cost β(i, j) for every edge {i, j} in the network on which this information

is sent. Consequently, the cheapest way to update information over facilities (once

a choice of which facilities to open has been made) is via a Steiner tree T on the

facilities with a cost of
∑
{i,j}∈T β(i, j) (if µ information update requests are made,

then the cost is µ
∑
{i,j}∈T β(i, j)). The goal is to determine (i) what facilities to

locate (or open), (ii) which facility serves each demand node, and (iii) how to connect

the open facilities; in order to minimize the total cost. In the applications discussed

in Karger and Minkoff (2000) and Havet and Wennink (2004) the facility opening

costs are zero, while in Krick et al. (2003) there are costs associated with opening

facilities.

The problems introduced by Karger and Minkoff (2000), Krick et al. (2003) and

Havet and Wennink (2004) can be modeled as ConFL problems (Gupta et al. 2001,

introduced the terminology ConFL) that can be stated as follows. We are given a

graph G = (V,E), and three sets: D ⊆ V , set of demand nodes (or customers);

F ⊆ V , set of potential facility nodes; and S ⊆ V , set of potential Steiner nodes,

8

with D∪F ∪S = V and F ∩S = ∅. We seek to find a minimum cost network where

every demand node is assigned to an open facility and open facilities are connected

through a Steiner tree T constructed on the subgraph of G on the nodes F ∪ S

(i.e., G(F ∪ S) = (F ∪ S,E(F ∪ S))). There are facility opening costs, fi ≥ 0,

incurred for each facility that serves a customer; assignment costs, aij ≥ 0, for

assigning a customer j ∈ D to a facility i ∈ F ; and edge costs, bij ≥ 0, for an edge

{i, j} ∈ E(F ∪S) if it is used on the Steiner tree T . The nodes in S may be viewed

as pure Steiner nodes and can only be used in the tree T as Steiner nodes, while the

nodes in F may be used as Steiner nodes on the tree T without incurring a facility

opening cost when no customers are assigned to them. The final network cost is given

by
∑

j∈D ai(j)j+
∑

i∈Z fi+
∑
{i,j}∈T bij, where i(j) is the facility serving demand node

j, F is the set of open facilities (or facilities serving customers), and T is a Steiner

tree connecting the open facilities. The data distribution problems introduced by

Karger and Minkoff (2000), Krick et al. (2003), and Havet and Wennink (2004) may

be modeled as a ConFL problem by setting aij = djα(i, j), bij = µβ(i, j), and fi as

the facility opening cost. Figure 2.3 illustrates an example of the ConFL problem

and a feasible solution.

In the definition of the ConFL problem above, it is possible that D ∩ F 6= ∅

or D ∩S 6= ∅. In both these situations a demand node j can be used on the Steiner

tree T . In this case, in addition to the edges adjacent to node j in the Steiner tree

T , we have a connection {i(j), j} between node j and the facility it is assigned to.

Consequently, the minimum cost network is not necessarily a tree. On the other

hand, if D ∩ F = ∅ and D ∩ S = ∅ (meaning that D, F , and S form a partition), a

9

Open facility node

Facility node

Demand node
(a)

Steiner node

(b)

Figure 2.3: Connected facility location example

demand node cannot be used on the Steiner tree T and the minimum cost network

is a tree. It can be viewed as consisting of a core tree T (where the leaf nodes must

be open facility nodes), with the assignment edges dangling from open facility nodes

on the core tree. Typically, the papers in the computer science literature allow for

D ∩ F 6= ∅ or D ∩ S 6= ∅, while the papers in the operations research literature

assume that D, F , and S form a partition. It is easy to transform ConFL instances

where D∩F 6= ∅ or D∩S 6= ∅ into ones where the sets D, F , and S form a partition.

We will discuss this transformation in §2.3.2.

2.1.4 Rent-or-Buy (ROB) problem

The rent-or-buy (ROB) problem, often viewed as a special case of the ConFL

problem, has the feature that facilities can be opened at any node of the graph

(i.e., F = V) at zero cost. (The term rent-or-buy comes from a related problem

called the single-sink buy-at-bulk network design (SSBND) problem (Salman et al.

1997) which ROB is equivalent to when the SSBND problem has two cable types.

10

Here the idea is that edges on the network can either be rented, in which case

the cost function aij applies, or can be purchased in which case the cost function

bij applies.) In our opinion, the ROB problem can also be viewed as a special

case of the GSTS problem with zero facility opening costs and D ⊆ F = V . In

the ROB problem any demand node can act as a facility node and hence serve

other customers (i.e., demand nodes). Consequently, the cost of an edge depends

on the role of its adjacent nodes. If one of the end points of the edge plays the

role of a demand node, meaning that the edge is connecting a demand node to an

open facility, we say the edge is an assignment edge and its cost is aij. Otherwise,

the edge belongs to the Steiner tree T (and we call it a tree edge) and its cost is

bij. (In all four problems (STS, GSTS, ConFL, and ROB) we will use the term

customer interchangeably with demand node. We will also refer to edges connecting

demand nodes to facilities as assignment edges, and potential edges on the Steiner

tree connecting open facilities as tree edges.) In this problem, the final network

cost is given by
∑

j∈D ai(j)j +
∑
{i,j}∈T bij, where i(j) is the facility which serves

demand node j (note that aii = 0 when demand node i is used as a facility), and

T is the Steiner tree connecting all the open facility nodes. The data distribution

and management applications introduced by Karger and Minkoff (2000) and Havet

and Wennink (2004) are actually instances of the ROB problem. In a different

setting, Nuggehalli et al. (2003) considered the problem of energy-conscious cache

placement in wireless ad hoc networks. The objective is to find an effective strategy

to cache the server information at some nodes distributed across the network while

optimally considering the trade-off between energy consumption and access latency.

11

Interestingly, this problem is also an instance of the ROB problem (Ljubić 2007)

indicating the widespread application of the ConFL and ROB problems.

All four problems—STS, GSTS, ConFL, ROB—are of significant interest from

a practical perspective; both in the telecommunications/virtual private network de-

sign context as well as in the data distribution and management context. There has

been a considerable amount of research devoted to these four problems from an ap-

proximation algorithms perspective, but somewhat limited study of these problems

from a mathematical programming perspective.

Clearly, all four problems combine a facility location problem with a Steiner

tree problem. In this chapter, we exploit the similarity between the four problems

and define a slightly more general version of the ConFL problem that we call the

general ConFL (or GConFL) problem. In the next chapter, we devise a high-quality

dual-based local search heuristic for the GConFL problem that provides both tight

lower and upper bounds. Our heuristic solution strategy consists of first formu-

lating the GConFL problem as a directed Steiner tree problem with a unit degree

constraint on the root node. We then implement a dual-ascent procedure to obtain

a lower bound and an upper bound (feasible solution) to the optimal solution. We

then apply a set of local improvement steps on the feasible solution obtained by the

dual-ascent procedure to significantly improve the quality of the solution. We con-

ducted an extensive set of computational experiments (reported on the next chapter)

that demonstrated the efficacy and efficiency of our DLS heuristic. These results

included instances on complete graphs as well as non-complete graphs. Across the

four problems over the set of test instances our DLS heuristic consistently found

12

solutions of very high quality. Over the 2748 problems tested the DLS heuristic

found solutions that were on average at most 1.07% from optimality.

2.2 Literature Review

2.2.1 Steiner tree-star (STS) and General STS problem

The STS problem was introduced by Lee et al. (1993). Later, Lee et al.

(1996) described valid inequalities and facets for the STS polytope (polytope of

integer feasible STS solutions) and developed a branch-and-cut procedure for the

STS problem. Their procedure was able to solve Euclidean test problems with less

than 200 nodes in up to 3 hours of computational time.

Xu et al. (1996a) and Xu et al. (1996b) proposed two tabu search heuristics for

the STS problem which they tested in a small sample of random and grid problems

with up to 600 nodes. Subsequently, Chu et al. (2000) proposed a genetic algorithm

for the STS problem. Their computational experiments indicated that their genetic

algorithm is of similar quality to Xu et al. (1996a). For the same set of problems,

they find no difference in performance between the two heuristics; however, their

genetic algorithm required less computational time. Note, however, that since nei-

ther heuristic computes a lower bound to the optimal solution, no optimality gaps

were reported in neither of these papers. Khuller and Zhu (2002) introduced the

GSTS problem and gave two approximation algorithms with approximation ratios

of 5.16 and 5, respectively.

13

2.2.2 Connected Facility Location (ConFL) problem

Gupta et al. (2001) arrived at the ConFL problem when considering a virtual

private network design with demand uncertainty. Here, a set of demand nodes

are to be connected using a virtual private network. One is given the maximum

incoming and outgoing traffic from each demand node, but one does not know the

actual traffic matrix between the nodes. One wishes to construct a minimum cost

tree network and provision sufficient capacity on its edges so that the tree network

can support any traffic matrix where the aggregate incoming and outgoing demands

respect the maximum limits for each node. Gupta et al. (2001) reduced this virtual

private network design problem to the ConFL problem. They then gave a 10.66

approximation algorithm for the ConFL problem by adapting a rounding technique

of Shmoys et al. (1997) on an integer programming formulation of the problem with

an exponential number of constraints.

Swamy and Kumar (2004) described a primal-dual approximation algorithm

for the ConFL problem. Their algorithm works in two phases and has an approxi-

mation ratio of 8.55. The first phase is a facility location phase where they decide

which facilities to open, connect demands to facilities, and cluster the demands at

each facility. In this phase, demands are clustered so that each open facility serves at

least a certain minimum number of demand points. (In Swamy and Kumar (2004)

the ratio between the costs bij and aij is constant, and
bij
aij

is treated as the mini-

mum number of demand points to cluster at a facility node.) The second phase is a

Steiner phase where the open facilities are connected by a Steiner tree. Jung et al.

14

(2008) improved upon Swamy and Kumar’s algorithm (by making changes in phase

1) and devised a 6.55 approximation algorithm for the ConFL problem.

Recently Eisenbrand et al. (2008) presented a randomized algorithm that im-

proves the approximation ratio for the ConFL problem to 4. In their algorithm the

idea is to (i) run an approximation algorithm for the UFL problem, (ii) randomly

sample demand nodes, and open the facilities serving sampled customers in the

approximate solution (all the demands are now assigned to these open facilities),

and (iii) compute an approximate Steiner tree on the opened facilities. The authors

showed that the approximation ratio degrades slightly to 4.23 when the algorithm

is derandomized.

The theoretical computer science community has focused on developing ap-

proximation algorithms for the ConFL problem. In all of these papers no computa-

tional results are presented for any of the proposed approximation algorithms, and

thus their effectiveness in practice is unknown.

The ConFL problem has only recently gained attention in the operations re-

search community. Ljubić (2007) introduced a variable neighborhood search (VNS)

heuristic that is combined with reactive tabu search. She also proposed a branch-

and-cut (B&C) approach for solving the ConFL problem to optimality. She con-

structed ConFL test problems by combining Steiner tree problem instances from

OR-Library 1 and UFL problem instances from UflLib 2. She reported that the

VNS heuristic found solutions that were up to 10% from the lower bound provided

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
2http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

15

by the branch-and-cut algorithm. It is our understanding (Ljubić 2009) that due to

a computational error the values of the lower bounds described in Ljubić (2007) are

incorrect and in some instances may be lower than the ones reported in the paper.

We should note that the approaches used by Swamy and Kumar (2004), Ljubić

(2007), and Jung et al. (2008) assumed that one of the facilities in the optimal

solution is known a priori. We find that interpretation of the ConFL somewhat

restrictive. If one does not know a priori one of the facilities in the optimal solution,

then their solution procedures need to be applied |F | times (once for each facility

node) and the best solution selected. In this chapter, we will assume that we do not

have any a priori knowledge of an open facility in the optimal solution.

Tomazic and Ljubić (2008) proposed a greedy randomized adaptive search

procedure (GRASP) algorithm for the ConFL problem. (Here the authors do not

assume a priori knowledge of an open facility in the optimal solution.) The pro-

posed heuristic is a multi-start iterative approach, where for each start a greedy

construction defines a starting solution. Then, local improvements consisting of

moves where a single facility is opened or closed are applied. Finally, a shortest

path Steiner tree heuristic is applied to find a Steiner tree on the open facilities.

The procedure was tested on three sets of randomly generated graphs with varying

topologies and cost structures. On those instances, the GRASP procedure provided

results whose average gaps were as large as 10% from the optimal solution.

16

2.2.3 Rent-or-Buy (ROB) problem

Since the ROB problem may be viewed as a special case of the ConFL prob-

lem, some of the heuristics proposed for the ConFL problem can be applied to

the ROB problem with no deterioration in the approximation ratio, and in many

cases with an improvement in the approximation ratio. Gupta et al. (2001) found

that their rounding heuristic is a 9.002-approximation algorithm for the ROB prob-

lem while Swamy and Kumar (2004) showed that their primal-dual-approach is a

4.55-approximation algorithm. Nuggehalli et al. (2003) provided a 6-approximation

algorithm for the ROB problem. Gupta et al. (2003) proposed a 3.55-randomized

approximation algorithm for the ROB problem. The best known approximation

algorithm for the ROB problem is due to Eisenbrand et al. (2008), who proposed a

randomized approximation algorithm with a performance bound of 2.92 that when

derandomized has an approximation ratio of 3.28.

2.3 General Connected Facility Location Problem

One of the key differences between the STS and the ConFL problems is that

in the STS problem a facility node in the network design that does not serve a

customer incurs a facility opening cost, fi, while in the ConFL problem a facility

incurs a facility opening cost only if it serves a customer. To create a generalization

that encompasses all four problems, we slightly alter the original definition of the

ConFL problem (with some additional changes) and require that a facility node in

T incurs a facility opening cost regardless of whether it serves a customer or not.

17

Specifically, we define the GConFL problem as follows. Given a graph G =

(V,E) and a disjoint partition of V into three subsets of nodes: namely, D, the

set of demand nodes; F , the set of potential facilities; and S, the set of potential

Steiner nodes; we seek a minimum cost tree solution such that (i) a set of facility

nodes is opened, (ii) every demand node is assigned to an open facility, and (iii) open

facilities are connected through a Steiner tree T constructed on G(F ∪ S) = (F ∪

S,E(F ∪ S)). Each facility i used in T incurs a facility opening cost, fi ≥ 0; the

cost of assigning demand node j ∈ D to facility i ∈ F is given by aij (as before

we refer to these edges as assignment edges and the remaining edges as tree edges);

and the cost of tree edges is given by bij. The network design cost is defined by∑
j∈D ai(j)j +

∑
i∈V (T)∩F fi +

∑
{i,j}∈T bij (where as before i(j) denotes the facility

serving demand node j).

Observe that the graph for the GConFL problem has some special charac-

teristics. Since each node takes a unique role, the only edges from demand nodes

(D) are to potential facility nodes (F) (i.e., there are no edges between any pair of

demand nodes, and there are no edges in the graph between any demand node and

any Steiner node (S)). Further, use of a facility node necessarily incurs a facility

opening cost, while there are no opening costs associated with using a Steiner node.

Clearly, the STS problem is a special case of the GConFL problem with S =

∅ and sets F and D defined identically to the STS problem. Here the cost for

assignment edges and tree edges remains unchanged. On the other hand, to see that

the GSTS, ConFL and ROB problems are special cases of the GConFL problem, we

must apply a set of graph transformations.

18

(a) (b)

Facility node

Demand node

Dual-role node

(c)

i i i i i i'

j j

i

j' jj j' j jj'

a
ij
, b

ij
a

ij
, b

ij
a

ij
b

ij
a

ij
a

ij

a
ij

 b
ij

a
ij

0

000

Figure 2.4: GSTS problem transformation to GConFL problem

In each of these three problems, a node can have multiple roles. For example,

in the GSTS problem a node can be a demand node as well as a facility node.

Similarly, in the ConFL problem a node can be a facility node (serving demand

nodes and incurring a facility installation cost) or a Steiner node (not serving any

demand nodes and not incurring a facility installation cost). The transformations

are based on a node splitting strategy where each node has a unique role (either

demand node, facility node, or Steiner node). For ease of exposition (and brevity)

we illustrate each of these transformations graphically.

2.3.1 Transforming the GSTS problem to the GConFL problem

In an instance of the GSTS problem, the node sets F and D are not disjoint

(F ∩D 6= ∅) and there are no potential Steiner nodes (S = ∅). To address the fact

that the node sets are not disjoint, we duplicate every node i ∈ (F ∩D) creating an

additional copy i′. One copy, i, is treated as a facility node in the GConFL problem

and the other copy, i′, is treated as a demand node in the GConFL problem. Further,

nodes i and i′ are connected by a zero cost edge, and the edge {i, j} in GSTS that

has a dual-role node adjacent to it (i.e., if either i, j ∈ (F ∩ D)) is replaced as

19

(b)

(e)

Facility node

Demand node

Steiner node

i i

i ii'

j j

j j'

b
ij

a
ij b

ij

b
ij

(a)

i i'i

j j'

b
ij

j

a
ij
, b

ij

j

(c)

i i

j j'

b
ij

b
ij

j

(d)

i i'

j j

a
ij

a
ij

0
i

a
ij
, b

ij

0

a
ij

(f)

i ii'

j j

b
ij

a
ij
, b

ij

0

a
ij

a
ij

0j'

i ii'

j j

b
ij

b
ij

0 i ii'

j j

b
ij

a
ij
, b

ij

0

a
ij

j'

(g) (h)

Figure 2.5: Transformations that allow us to assume D, F , and S form a partition
in the ConFL problem

indicated in Figure 2.4. There are three cases: (i) either one of the end points is in

F ∩ D and the other in F which is shown in Figure 2.4(a), or (ii) one of the end

points is in F ∩D and the other is in D which is shown in Figure 2.4(b), or (iii) both

of the end points are in F ∩D which is shown in Figure 2.4(c). Observe that while

in the original GSTS problem instance some edges have different costs depending

on the role of the edge (i.e., whether it is an assignment edge or a tree edge), in the

transformed GConFL problem each node has a unique role and thus each edge has

a unique cost.

2.3.2 Transforming the ConFL problem into the GConFL problem

We first illustrate how an instance of the ConFL problem where D ∩ F 6= ∅

or D ∩ S 6= ∅ can be transformed into a ConFL instance where D, F , and S form

20

a partition. If a demand node can also be used as a Steiner node, we simply create

two copies of the node with one copy representing the node as a demand node and

the other copy representing the node as a Steiner node. Similarly, if a demand node

can also be used as a facility node, we create two copies of the node with one copy

representing the node as a demand node and the other copy representing the node

as a facility node. With this duplication, the edges between the duplicated nodes

and the remaining nodes in the graph are updated as shown in Figure 2.5. (There

are 8 possible cases that are illustrated in the figure). Consequently, without loss of

generality, we can assume that in the ConFL problem D, F , and S form a partition.

We now show how to transform an instance of the ConFL problem into an

instance of the GConFL problem. In the definition of a ConFL problem instance,

the facility opening cost is only incurred when a demand node is assigned to it.

To address this situation we duplicate every facility node F in the ConFL problem

creating an additional copy i′ for every node i ∈ F . The copy i is treated as a

facility node in the GConFL problem and the other copy i′ is treated as a Steiner

node in the GConFL problem. Further, nodes i and i′ are connected by a zero

cost edge. Edges between a facility i and a node j ∈ V in the ConFL problem are

replaced as shown in Figure 2.6 to transform it into a GConFL problem. There are

three cases: (i) either j ∈ D which is shown in Figure 2.6(a), or (ii) j ∈ S which is

shown in Figure 2.6(b), or (iii) j ∈ F which is shown in Figure 2.6(c). We should

note that it is possible to use fewer edges in this transformation. For example, an

alternate transformation with fewer edges is to delete edge {i, j} in Figure 2.6(b),

and delete edges {i, j}, {i, j′}, and {i′, j} in Figure 2.6(c). However, in terms of our

21

(a)

Facility node

Demand node

Steiner node

(c)

i i'i i i i'

j j j'j j

0 0

0

a
ij

a
ij

b
ij

b
ij

(b)

i i'i

j j

0

b
ij

b
ij

b
ij

b
ij

b
ij

b
ij

Figure 2.6: ConFL problem transformation to GConFL problem

local search heuristic (described in the next chapter) we found it convenient to use

the transformations described in Figure 2.6, since they have the property that if the

graph on G(F ∪ S) is complete for the ConFL problem, then the graph induced on

G(F ∪ S) after transformation to the GConFL problem is also complete.

2.3.3 Transforming the ROB problem into the GConFL problem

The ROB problem is a special case of GSTS with fi = 0, ∀i ∈ F . Hence, we

apply the transformation described for the GSTS problem in §2.3.1 to convert the

ROB problem into a GConFL problem.

2.4 Conclusions

Though the four problems arise in very different settings and so far they have

received individual treatment, we have shown that they are special cases of a more

general problem and can in fact be treated as one problem. The distinctive and

unifying characteristics of these problems are (i) that all of them combine facility

location decisions with connectivity requirements and (ii) that demand nodes are

22

connected through assignment edges dangling from the core tree.

Being able to define a more general problem that encompasses all of them

allows us to develop heuristics with broader applicability. Furthermore, it allows

us to observe that many of the approximation algorithms and heuristics proposed

for some of these problems may in fact be transferable and applicable to the other

problems within the family with minimum or no adjustments.

In the following chapters, we use this observation to focus our attention on

the GConFL problem with the computational focus on the ConFL problem. How-

ever, the heuristics and methodologies developed throughout this dissertation are

applicable to the whole family of problems discussed in this chapter.

23

Chapter 3

Heuristics for the General Connected Facility Connected Problem

3.1 Introduction

In this chapter we propose a powerful heuristic that combines traditional math-

ematical programming with local search procedures to yield high-quality solutions

rapidly for the GConFL problem and consequently for the four related problems.

Our heuristic has two significant advantages over the approximation algorithms and

heuristics discussed in the literature and reviewed in Chapter 2. The main feature

is that it yields a solution within seconds for instances with up to 200 nodes, and

within minutes for larger instances with up to 500 nodes, as opposed to within

hours for either case as the best-known exact methods. The second advantage of

our heuristic is that with each solution it provides a quality measurement in per-

cent, α, that specifies how far the solution is from optimality. In other words, given

a solution one knows that the solution is at most α% from optimality. This is a

distinctive characteristic that sets it apart from any of the other heuristics in the

literature. While approximation algorithms do have a constant worst-case ratio

from optimality, it is often very loose (up to 4.23 times the optimal solution value

with the best-known approximation algorithm for the ConFL problem) and it does

not provide any concrete information to the decision-maker about the particular

solution at hand. Furthermore, our computational results show that the solutions

24

obtained by our heuristic are consistently within less than 5% from optimality.

Our proposed heuristic, dual-based local search (DLS) heuristic, works in a

sequence of stages. In the first stage we transform the problem into a pure directed

network design problem with all its costs at the arc level. We specifically model the

GConFL problem as a directed Steiner tree problem with a unit degree constraint

on the root node. We exploit this transformation to formulate the problem as a

multicommodity network flow problem and incorporate the unit degree constraint

into the objective function with a sufficiently large Lagrangian multiplier. Next, we

use a dual-ascent procedure, which has been shown to be successful for the directed

Steiner tree problem, to obtain an initial solution to the problem and a lower bound

to the optimal solution. Finally, we improve upon dual-ascent’s initial solution by

local search movements; closing open facilities and reconstructing the tree on the

remaining open facilities, and repeat this process until we cannot find any further

improvements in the solution total cost.

As an alternative we present another heuristic that combines mathematical

programming and local search procedure. Some of the approximation algorithms

found in the literature for the ConFL problem rely on decomposing the problem into

two subproblems: uncapacitated facility location problem and Steiner tree problem.

Consequently, we devise a heuristic that first solves the facility location problem

to optimality disregarding connectivity requirements; secondly, constructs a Steiner

tree on the open facilities using dual-ascent; and lastly, improves upon the solu-

tion by local search movements. We called this heuristic the uncapacitated facility

location (UFL) heuristic. Furthermore, the UFL heuristic allows us to determine

25

whether the high-quality solutions yielded by the DLS heuristic could be largely at-

tributed to the local search phase. In our computational experiments, we find that

even though this seems a reasonable strategy, the solutions are consistently and sig-

nificantly worse than the solutions yield by the DLS heuristic. We conclude that it

is the combination of dual-ascent (on the entirety of the problem) with local-search

that produces high-quality solutions.

3.2 Modeling the GConFL Problem as a Directed Steiner Tree Prob-

lem with a Unit Degree Constraint on the Root Node

We now discuss how to model the GConFL problem as a directed Steiner tree

(DST) problem with a unit degree constraint on the root node. We will use this

transformation to apply a dual-ascent strategy to obtain lower and upper bounds

for the GConFL problem. We first construct a directed graph H = (V,A) from the

graph G = (V,E) of the GConFL problem as follows.

1. Replace every edge {i, j} ∈ E(F ∪S) by two directed arcs (i, j) and (j, i) with

cost cij = bij, if j ∈ S (and cji = bij, if i ∈ S), or cost cij = bij + fj, if j ∈ F

(and cji = bij + fi, if i ∈ F).

2. Replace every assignment edge {i, j} between facility i and demand node j by

an arc (i, j) with cost cij = aij.

3. Create an artificial root node s, and create an arc from s to every node i ∈ F

with cost csi = fi.

26

Facility node

Demand node

(b)(a)

Artificial root node

(c)

Dual-role node

Figure 3.1: Transforming a GConFL instance, derived from the ROB problem, into
a directed Steiner tree problem

Figure 3.1 illustrates the transformation for a GConFL instance, derived from a

ROB problem. Figure 3.1(b) shows the transformation of the ROB problem into a

GConFL problem, and Figure 3.1(c) the transformation to a directed graph. We

can now view the GConFL problem as a DST problem on H. On H we would like

to construct a minimum cost DST rooted at node s and connected to all demand

nodes D (i.e., s has a directed path to every node in D) with the condition that

the outdegree of node s is equal to one. (We note that we do not actually need to

explicitly introduce an artificial root node s. Instead, we can use any of the demand

nodes D as the root node. We will refer to this problem as the unit degree directed

Steiner tree (UDDST) problem.) The unit outdegree of node s ensures that the

graph obtained after deleting (the artificial root node) s is connected. Notice that on

H no costs are associated with any of the nodes, as the facility costs are now included

in the arc costs on H. It is easy to see that every feasible solution to GConFL on G

can be converted into a feasible UDDST on H with the same cost (simply connect

the root node s to one of the facility nodes in the solution, and direct the tree

solution to the GConFL problem away from s). Likewise, every feasible solution

to the UDDST problem on H corresponds to a feasible solution to the GConFL

27

problem on G with identical cost (simply delete the root node s, the resulting tree

in an undirected sense provides a feasible solution to the GConFL problem). We now

provide two formulations for the UDDST problem. Both formulations follow from

well-known directed formulations for the Steiner tree problem, with an additional

constraint for the unit degree constraint on the root node. The first model is a

directed cut model, while the second model is a multicommodity flow model. Both

models assume that arc costs are non-negative.

z = Minimize
∑

(i,j)∈A

cijyij (3.1)

subject to:
∑

(i,j)∈δ−(R)

yij ≥ 1 for all R ⊂ V , s 6∈ R, R ∩D 6= ∅ (3.2)

∑
j∈F

ysj ≤ 1 (3.3)

yij ≥ 0 and integer for all (i, j) ∈ A. (3.4)

In the above model yij is an integer variable denoting the number of copies of arc

(i, j) in the solution. (We note that since arc costs are non-negative it is sufficient to

define yij as integer instead of binary.) Constraints (3.2) are the standard directed

cut constraints, and constraint (3.3) is the degree constraint on the root node.

Since there must be at least one arc out of the root node, it is sufficient to define

the constraint as an inequality instead of a strict equality. Alternatively, for each

node j ∈ D, we create a commodity with the origin as the root node s and node j

as the destination node. Let K denote the set of commodities, and D(k) denote the

28

destination node of commodity k.

z = Minimize
∑

(i,j)∈A

cijyij (3.5)

subject to:
∑

(j,i)∈A

fkji −
∑

(i,l)∈A

fkil =

−1

1

0

if i = s;

if i = D(k);

otherwise;

for all i ∈ V & k ∈ K (3.6)

fkij ≤ yij for all (i, j) ∈ A & k ∈ K (3.7)∑
j∈F

ysj ≤ 1 (3.8)

fkij ≥ 0 for all (i, j) ∈ A & k ∈ K (3.9)

yij ≥ 0 & integer for all (i, j) ∈ A.(3.10)

In the above directed flow formulation for the UDDST problem, constraints (3.6)

are the standard flow balance constraints. Constraints (3.7) are forcing constraints

that require that an arc be in the design, if there is flow on it. Finally, constraint

(3.8) is the unit degree constraint on the root node.

3.3 Dual-Based Local Search Heuristic

Our heuristic can be viewed as a two-phase procedure. The first phase is a

dual-ascent procedure applied to the UDDST problem that yields both a feasible

solution and a lower bound on the optimal solution value. At the conclusion of this

phase, we have a feasible solution to the GConFL problem consisting of a set of

29

open facilities F ⊆ F , a set of Steiner nodes S ⊆ S, and a tree solution on F , S,

and D. The second phase is a local search phase that tries to improve the solution

obtained by the dual-ascent procedure for the GConFL problem. Our local search

heuristic limits itself to improvements that only include nodes in F and S. In other

words, it tries to obtain improvements by finding a better tree on the existing set of

nodes, and by closing open facilities and reassigning demand nodes to facilities as

needed.

3.3.1 Dual-Ascent Phase

If we were to relax the degree constraint on the root node to the UDDST

problem, we obtain the DST problem. Dual-ascent has been a successful solution

strategy for the Steiner tree problem. Our first stage is motivated by the desire to

utilize this solution strategy to obtain a good lower bound for the GConFL problem

as well as a high-quality initial solution for our local search phase. Suppose we relax

constraint (3.8) by dualizing it. Then the resulting Lagrangian problem LR(λ) is

zLR(λ) = Minimize
∑

(i,j)∈A

cijyij + λ(
∑
j∈F

ysj − 1)

subject to: (3.6), (3.7), (3.9), (3.10).

Ideally, we would like to obtain the best possible lower bound on z by solving the

Lagrangian dual problem zLD = maxλ≥0 zLR(λ). It is well-known that zLR(λ) is

piecewise linear and concave. Further, since λ(
∑

j∈F ysj − 1) ≥ 0 for every feasible

solution that satisfies constraints (3.6), (3.7), (3.9), and (3.10), zLR(λ) is a non-

30

decreasing function of λ. Intuitively, zLR(λ) increases with λ, until it reaches a

plateau (i.e., it is flat) for sufficiently large λ. In other words, we can solve the

Lagrangian dual problem by solving LR(λ) for a sufficiently large value of λ. Further,

when zLR(λ) is at a plateau, the solutions to LR(λ) have unit degree (otherwise

zLR(λ) would not have a slope of 0 at that point) implying that zLD = z. Rather

than working with the primal problem, we will obtain a lower bound on z by working

with the dual of the linear programming relaxation of the directed flow formulation

for the UDDST problem. This dual may be stated as follows.

t(λ) = Maximize
∑
k∈K

vkD(k) − λ (3.11)

subject to vkj − vki ≤ wkij for all (i, j) ∈ A and k ∈ K (3.12)∑
k∈K

wkij ≤ cij for all (i, j) ∈ A, i 6= s (3.13)∑
k∈K

wksj − λ ≤ cij for all (s, j) ∈ A (3.14)

wkij ≥ 0 for all (i, j) ∈ A and k ∈ K (3.15)

λ ≥ 0. (3.16)

Observe that for a given value of λ, t(λ) ≤ zLR(λ). (In fact if we were to move λ to

the right hand side of constraint (3.14), the above dual may be viewed as the dual

to the linear relaxation of LR(λ).) Solving for t(λ) for any choice of λ ≥ 0 provides

a lower bound on zLR(λ), and in particular solving for t(λ) for a sufficiently large

value of λ provides a lower bound on z. Thus, our strategy to obtain a lower bound

is to choose a sufficiently large value of λ and apply the dual-ascent procedure for

31

the Steiner tree problem. Notice that the Lagrange multiplier λ may also be viewed

as an artificial cost that is added to the cost of the arcs out of the root node to

ensure that the solution has outdegree 1 at the root node. We apply the dual-ascent

procedure for the Steiner tree as described in Wong (1984) and Balakrishnan et al.

(1989), and refined in Raghavan (1995). If we are given values for the w variables

and λ, the dual problem separates by commodity. The subproblem corresponding

to commodity k is the dual to the directed shortest path problem between the root

node and node D(k), with arc lengths wkij. Dual-ascent iteratively increases the value

of the w variables to improve the dual objective until no further increase is possible.

This is achieved in the following fashion. Every arc for which either constraint (3.13)

or (3.14) is satisfied at equality is called a tight arc. Any commodity k, that has a

directed s–D(k) cut with no tight arcs across it, is a candidate for improving the

dual objective. (We denote the nodes in the destination side of this cut as Uk and

refer to them as an ascent set, and to the arcs across this cut as δ−(Uk).) The

dual objective can be increased by increasing all the wkij variables in δ−(Uk) until

one of the arcs across becomes tight. This is called a basic dual-ascent step. Our

dual-ascent implementation uses the commodity cycling rule of Balakrishnan et al.

(1989) to choose the commodity and directed cut on which a dual-ascent iteration

is performed. This iteratively grows the ascent sets for each commodity Uk, starting

from Uk = D(k). It maintains the property that every node in Uk has a directed

path to D(k) consisting solely of tight arcs. Raghavan (1995) shows this rule to be

equivalent to considering minimal ascent sets (a set is a minimal ascent set if it does

not contain an ascent set as a strict subset) in the dual-ascent iterations. At the

32

conclusion of the dual-ascent procedure, we have an approximate dual solution, i.e.,

a lower bound, and a network of tight arcs (referred to as the auxiliary network)

on which there is a directed path from the root node to every demand node. A

feasible solution (upper bound for the DST problem) consisting solely of tight arcs

is obtained by iteratively deleting arcs in the reverse order in which they become

tight, if their deletion from the auxiliary network does not result in a network where

there is no directed path from s to a demand node. (A feasible solution consisting

solely of tight arcs satisfies the primal complementary slackness conditions.) In our

implementation, we add a sufficiently large cost λ to all of the arcs out of the root

node. We then apply the dual-ascent procedure for the DST problem to obtain a

lower bound and a Steiner tree. If this Steiner tree has outdegree 1 at the root node,

it is also a feasible upper bound for the UDDST problem. For a sufficiently large λ,

we now argue this is precisely the case. As the value of λ increases, the cost of the

arcs out of the root node effectively increases. Thus for a sufficiently large λ, each

of the nodes in F will belong to the ascent sets Uk for k ∈ D before any of the arcs

out of the root node s become tight in the dual-ascent procedure. In the next set of

dual-ascent steps, one or more arcs out of the root node will become tight, and the

dual-ascent procedure will terminate (as there will now be a path from s to all of

nodes in D in the auxiliary network). Observe now in the reverse delete procedure

to obtain an upper bound, we first delete arcs out of the root node as they became

tight last. Consequently, all of the tight arcs out of the root node except for one will

be deleted in the reverse delete step, and the upper bound produced by dual-ascent

will have outdegree 1.

33

We make a few final notes before proceeding to the local search phase. Setting

λ ≥ |F ∪ S|max(i,j)∈A cij ensures that the upper bound is feasible to the UDDST

problem (notice that the longest acyclic path from s to a node in D has at most

|F ∪ S| intermediate nodes, from which the above value is computed). Also, since

z(λ) and t(λ) have −λ in the objective function, to obtain upper and lower bounds

for the UDDST problem, we should subtract λ from the upper and lower bounds

obtained by applying dual-ascent for the DST problem (once the arcs out of the

root node have their cost increased by λ).

Following we illustrate this dual-ascent procedure with an example.

Dual-Ascent Example

We consider the example shown in Figure 3.2. Figures 3.2(a) shows the arcs

costs, node s is the source node, and D = {1, 4}. The cost of the arcs out of the

artificial source node, s, have already been increased by λ = 20. Initially, Z = {∅},

(v,w) = (0,0), and L = 0.

The sets {1} and {4} are minimal ascent sets. The algorithm first performs a

basic dual-ascent set step on {1}. As a result arc (2, 1) becomes tight and is added

to Z. The dual objective function increases by 2 units to L = 2. The algorithm

then performs a basic dual-ascent step on {4}. As a result arc (3, 4) becomes tight

and is added to Z. The dual objective function increases by 1 unit to L = 3. Figure

3.2(b) shows the digraph at the conclusion of the first two iterations.

At this point, sets {1, 2} and {3, 4} are minimal ascent sets. The algorithm

first performs a basic dual-ascent step on {1, 2}. As a result arc (5, 1) and (3, 1)

become tight and are added to Z. The dual objective function increases by 1 unit to

34

L = 4. The algorithm then performs a basic dual-ascent step on {3, 4}. As a result

arc (2, 4) becomes tight and is added to Z. The dual objective function increases

by 2 units to L = 6. Figure 3.2(c) shows the digraph at the conclusion of these two

iterations.

At this stage, sets {1, 2, 3, 5} and {2, 3, 4} are minimal ascent sets. The al-

gorithm performs a basic dual-ascent set step on {1, 2, 3, 5}. As a result arc (s, 3)

becomes tight and is added to Z. The dual objective function increases by 18

units to L = 24. The algorithm then tries to perform a basic dual-ascent step on

{2, 3, 4}. However, the arc (s, 3) is already tight.Figure 3.2(d) shows the digraph at

the conclusion of these two iterations.

At this point, the network has no ascent set. Therefore, we apply the LIFO

drop heuristic. The arcs of Z in the order they were added are (2, 1), (3, 4), (5, 1),

(3, 1), (2, 4), and (s, 3). If we delete arc (s, 3) the network defined by the arcs in

Z does not contain a path from the source node to the demand nodes 1 and 4.

Therefore, we retain arc (s, 3). Following we delete arc (2, 4) and observe that the

network defined by the remaining arcs in Z contains a path from the source node

to the demand nodes 1 and 4. We continue to proceed in this fashion, deleting arcs

in LIFO order from Z and checking that the network defined by remaining arcs

contains a path from the source node and the demand nodes 1 and 4. We find the

solution shown in Figure 3.2(e). The total cost of this solution is 24 units. Since the

lower bound is 24 units, we have obtained the optimal solution to the DST problem.

Now, we verify that the out degree of the source node is 1, and consequently, we drop

the artificial source node from the solution. We have found the optimal solution to

35

the ConFL problem with total cost equal to 4 (that is, 24 - λ).

3.3.2 Local Search Phase

In the second phase, we implement a basic version of local search to improve

upon the solution yielded by dual-ascent. We search the neighborhood of the dual-

ascent solution through a set of improvement steps for a solution of lower cost.

If such a solution is found after the improvement steps have been completed, it

replaces the current solution, and the search continues. In the search of a lower cost

neighboring solution, we implement a set of steps that reconstructs the tree on the

set of Steiner nodes S, open facilities F , and demand nodes; closes open facilities;

and reassigns demand nodes as needed. Recall, at the conclusion of the dual-ascent

phase, we have a feasible solution to the GConFL problem consisting of a set of open

facilities F ⊆ F , a set of Steiner nodes S ⊆ S, and a tree solution on F , S, and D.

Our local search phase works on the undirected graph associated with the GConFL

problem. It tries to improve the solution provided by the dual-ascent procedure

by using two types of improvement steps: (1) sequential improvements that try

to delete Steiner nodes in S; and (2) local improvements that at each iteration

strategically close a facility in F . In the sequential improvements, we construct a

minimum spanning tree T on the set of open facility nodes, F , and Steiner nodes,

S. Next, we iteratively remove any Steiner node from S that has degree 2 or less

and reconstruct the minimum spanning tree, T . When the graph on (F ∪ S) is

complete and edge costs satisfy the triangle inequality, this cannot deteriorate the

36

Facility node

Demand node

Artificial root node

5

1 2 3 4

S

3

3 3

4

4

4

6
65

5

20

20 20

2 1

5

1 2 3 4

S

1

1 2

3

4

4

6
65

5

20

20 20

0 0

5

1 2 3 4

S

0

0 0

1

2

3

6
45

4

20

19 18

0 0

5

1 2 3 4

S

0

0 0

1

2

3

6
4

5
4

2

1 0

0 0

5

1 2 3 4

S

(a) (b)

(c) (d)

(e)

Figure 3.2: Dual-Ascent Example

37

objective. When the graph on (F ∪ S) is not complete or the edge costs do not

satisfy triangle inequality, we verify that the cost of the minimum spanning tree T

does not increase before removing the Steiner node. (An alternate procedure is to

compute all pairs of shortest paths on G(F ∪ S) taking into account facility costs,

and to (i) complete the graph G(F ∪ S), and (ii) set the cost of an edge to the cost

of the shortest path between the two end points. This results in the situation where

the graph on (F ∪ S) is complete and edge costs satisfy the triangle inequality.)

At the end of the sequential improvements no Steiner nodes from S can be deleted

without increasing the cost of T . Subsequently, in the local improvements we list

open facility nodes first in order of node degree in the tree T and next by the

number of demand nodes it serves (obviously, each demand node is connected to

the closest open facility on the tree T). Then we move through the list at each

iteration removing the next facility node from the solution, reassigning its demand

nodes, recomputing the minimum spanning tree on the remaining open facilities and

Steiner nodes, and computing the change in the solution cost, that we denote by ∆.

If we observe a saving in the solution cost, the facility node is permanently closed

and removed from F ; otherwise, the facility node is restored to the solution. We

iteratively repeat this process for each facility in the list.

In the local improvements, the order in which open facilities are considered

for removal is critical. Ordering the nodes in increasing order of node degree in T

and number of demand nodes assignments seeks to maximize the savings with each

removal based on the two roles that a facility node plays in the final solution. The

rationale is to aggressively remove facilities that serve the least number of demand

38

Figure 3.3: Pseudocode for local improvements

nodes and that are farther out in the tree, T . Consequently, we first remove facilities

that are leaf nodes in the core tree in increasing order of their number of assigned

demand nodes; and then, we move gradually into the tree attempting to close facil-

ities with higher node degree in the tree, T . Our local improvements are described

in pseudocode in Figure 3.3. For the local improvements, we tested three somewhat

different implementations (and thus definitions of neighboring solutions) that yield

solutions with successively greater improvements. In the first implementation, the

set of Steiner nodes S is not updated until the completion of the local improvements.

Hence, the local search phase cycles back and forth through sequential improvements

followed by local improvements until there are no more improvements. In the sec-

ond implementation, when ∆ is less than or equal to zero, at the time of updating

39

the set of open facility nodes F and the tree T ; in addition, we also eliminate any

Steiner node that has degree 2 or less as specified in the sequential improvements.

Hence, in this case at this step the set of Steiner nodes S is also updated, and the

actual improvement is greater than or equal to ∆. The third implementation tries

to look ahead and computes ∆ by incorporating cost reductions by removing any

Steiner node with degree 2 or less from the minimum spanning tree T obtained as

a result of removing the facility node under consideration.

Each of these implementations provides successively better solutions (although

the improvements are very slight) on average. In terms of running time, we expected

each of the implementations to take successively longer times, though we did not

observe any time differences on smaller graphs. Thus, we used the third implemen-

tation in our local search phase.

3.4 Computational Experiments

We now report on an extensive set of computational experiments with our DLS

heuristic on the STS, GSTS, ConFL, and ROB problems. We coded our heuristics

in Visual Studio 2005 (C++). We conducted all runs on an AMD AthlonTM 62 X2

Dual, 2.61 GHz machine with 3GB of RAM.

3.4.1 Problem Generation and Characteristics

For the four problems, we generated a large set of Euclidean test problems

with varying characteristics. We created five sets of graphs in Euclidean space with

40

different characteristics in terms of number of D, F , and S nodes, facility opening

costs, edge costs, and network density. We generated problems by first selecting

nodes randomly located on a 100 x 100 square grid. The Euclidean distances rounded

up to the next integer (to preserve triangle inequality) were used as a based for the

edge lengths. This problem generation method leads to the most difficult problem

instances from a computational standpoint in the context of the STS problem (see

Lee et al. 1996). The assignment edge costs are equal to the edge lengths between

demand nodes and facility nodes, while tree edge costs are equal to the edge lengths

multiplied by an M factor. The M factor illustrates the significantly higher (in

terms of cost per unit distance) connection cost of edges in the tree T . The number

of demand nodes and facility nodes vary between 10 and 90 in steps of 10, with

the total number of demand and facility nodes equal to 100. In an instance of the

problem, the facility opening costs are the same for all the facility nodes. For the

STS, GSTS and ConFL problems, we generated two sets of “complete” instances

with common variations. In Set 1 the facility opening cost varies between 0 and 30

in steps of 10 while the M factor is fixed at 3. In Set 2 the M factor takes values 1,

3, 5 and 7, while the facility opening cost is kept fixed at 30. In the GSTS problem

instances, any demand node may host a facility. In the ConFL problem instances,

an additional 20 pure potential Steiner nodes were created. Edges were created

between the pure Steiner nodes and all of the facility nodes. Since demand nodes

cannot be assigned to pure Steiner nodes, no edges were created between demand

nodes and pure Steiner nodes. For the ROB problem we used test instances from

Set 2 for the GSTS problem and set the facility opening cost to zero. We refer to

41

this set of instances as Set 3. Notice, in these three sets of instances, any demand

node may be assigned to any facility node and the graph G(F ∪ S) is complete.

Since our DLS heuristic performed exceedingly well on these complete instances,

to test the effect of sparsity on the performance of our heuristic, we generated an

additional set of test instances, Set 4, for the ConFL problem. We focused on the

ConFL problem since we found, from our experiments on Sets 1-3, that they were

the hardest to solve amongst the four problems. In this test set the assignment edges

and the tree edges were created with a given probability. In addition, to ensure that

the instances were connected we randomly constructed a cycle of tree edges through

all the facility and potential Steiner nodes; and finally, we verified that there was

at least one assignment edge for each demand node. We varied the sparsity of the

test instances by using edge creation probabilities of 0.25, 0.50 and 0.75. As in the

previous sets of ConFL instances, the number of facility nodes varies between 10

and 90 in steps of 10, and the number of demand nodes is 100 minus the number of

facility nodes and the number of pure Steiner nodes is 20. The facility opening cost

was 30 and the M factor was set to 7.

As we noted earlier by recomputing edge costs and completing the graph on

G(F ∪ S), we can in general assume that the graph G(F ∪ S) is complete. Thus

we hypothesized that in terms of sparsity, the sparsity between demand and facility

nodes is more problematic than sparsity between facility nodes. To test this assertion

we created a new ConFL test set, Set 5, where the bipartite graph between demand

nodes and facility nodes is complete while the graph between facility nodes and

potential Steiner nodes is sparse. We varied the sparsity by using edge creation

42

probabilities of 0.25, 0.50, and 0.75, for the tree edges. The problem instances in

Set 5 are always feasible; however, to ensure that they were somewhat equivalent

in characteristics to Set 4 (i.e., that all facility and Steiner nodes are potential

candidates for the final solution) we randomly create a cycle of tree edges through

all the facility and pure Steiner nodes. The remaining characteristics are identical

to Set 4.

3.4.2 UFL Heuristic

We were interested in knowing whether the high-quality of the DLS heuristic

could be largely attributed to the local search phase. In other words, we wanted to

see if the dual-ascent phase provided a high quality initial solution by its selection of

facilities to open and Steiner tree T connecting them, or whether any other reason-

able choice of a starting solution followed by the local search phase would produce

solutions of similar quality to the DLS heuristic. Consequently, we proposed the

following UFL heuristic to compare against the DLS heuristic. We first ignore the

requirement that the open facilities must be connected to each other by a Steiner

tree, and solve the UFL problem (between demand nodes and facility nodes) opti-

mally to obtain a set of facilities to open and the demand nodes assigned to them.

We then find a Steiner tree T connecting the open facility nodes by applying dual-

ascent for the DST problem to obtain a Steiner tree on G(F ∪ S) connecting the

set of open facilities. We then use this solution as the starting solution to our local

search phase. To solve the uncapacitated facility location problem to optimality

43

we used CPLEX 10. To obtain the Steiner tree connecting the open facilities, we

transformed the graph G = (V,E) to a directed graph H = (V,A) as described in

§3.2 except that (i) we use one of the open facilities as the root node and do not

create an artificial node (thus no degree constraint is necessary), (ii) all D nodes

were deleted, and (iii) the remaining open facilities are the required nodes in our

directed Steiner tree.

3.4.3 Results on Complete Graphs

We are now ready to discuss our computational experiments on the different

problems. We compare the upper bounds provided by only applying dual-ascent

(DA), the DLS heuristic, and the UFL heuristic. We compare the quality of these

results by reporting the gaps between the upper bounds provided by the three

heuristics and the lower bound obtained by the dual-ascent phase. Each entry in

the tables represents the average over 10 instances.

3.4.3.1 STS Problem

Tables 3.1 and 3.2 present our computational results on Set 1 and Set 2,

respectively. DA yields relatively good solutions with average gaps below 8.01% for

each combination of parameters. However, in some instances the gap can be quite

large, and in one instance this reaches 39.72%. Our local search phase is extremely

effective and reduces this gap considerably. Our DLS heuristic yields solutions with

average gaps below 1.51% and for this specific instance it lowered the gap to 2.80%.

44

From Table 3.1 it appears that the average percentage gap decreases when the

facility opening cost increases. Table 3.2 indicates that the average percentage gap

decreases when the M factor increases. The average percentage gap increases at

first as the proportion of demand nodes increases, before it decreases again. The

location of this peak seems to increase as the M factor is increased. Overall, the

performance of our heuristic is stable to a wide range of problem parameters. The

average gaps are below 1.51%. The highest gap out of the 630 instances is 3.68%

and the average gap computed over all 630 instances is 0.39%. The DLS heuristic

is extremely fast and took less than 2 seconds in all instances. In contrast to the

DLS heuristic, the UFL heuristic performed quite poorly. The average gaps of the

UFL heuristic are significantly larger than the average gaps from the DLS heuristic.

This indicates that the dual-ascent phase of the DLS heuristic does a significantly

better job identifying which facilities to open than the UFL heuristic does.

45

|D
|
|F
|

f i
=

0
f i

=
10

f i
=

20
f i

=
30

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

3.
36

%
0.

03
%

4.
82

%
0.

00
%

0.
00

%
3.

10
%

0.
00

%
0.

00
%

7.
49

%
0.

00
%

0.
00

%
5.

69
%

20
80

7.
27

%
0.

91
%

5.
38

%
0.

69
%

0.
02

%
5.

41
%

2.
87

%
0.

43
%

4.
62

%
0.

98
%

0.
04

%
4.

12
%

30
70

5.
39

%
1.

51
%

6.
00

%
6.

66
%

1.
14

%
5.

39
%

8.
01

%
0.

93
%

5.
36

%
4.

02
%

0.
72

%
4.

26
%

40
60

3.
66

%
0.

95
%

4.
62

%
3.

51
%

0.
78

%
4.

35
%

2.
79

%
0.

51
%

5.
27

%
3.

77
%

0.
79

%
5.

44
%

50
50

2.
17

%
0.

82
%

3.
72

%
2.

23
%

0.
61

%
4.

04
%

4.
19

%
0.

48
%

4.
27

%
5.

29
%

0.
74

%
4.

12
%

60
40

1.
91

%
0.

69
%

3.
24

%
1.

91
%

0.
46

%
3.

62
%

2.
30

%
0.

47
%

2.
97

%
2.

24
%

0.
48

%
3.

56
%

70
30

0.
56

%
0.

26
%

1.
50

%
1.

22
%

0.
41

%
1.

66
%

2.
12

%
0.

50
%

2.
76

%
1.

30
%

0.
40

%
2.

52
%

80
20

0.
28

%
0.

17
%

0.
35

%
0.

69
%

0.
40

%
0.

79
%

0.
56

%
0.

31
%

0.
83

%
1.

04
%

0.
23

%
1.

30
%

90
10

0.
05

%
0.

02
%

0.
06

%
0.

25
%

0.
05

%
0.

11
%

0.
07

%
0.

03
%

0.
05

%
0.

10
%

0.
02

%
0.

20
%

T
ab

le
3.

1:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

S
T

S
p
ro

b
le

m
on

S
et

1.
M

=
3,

an
d

fa
ci

li
ty

op
en

in
g

co
st

s
ar

e
va

ri
ed

|D
|
|F
|

M
=

1
M

=
3

M
=

5
M

=
7

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

1.
45

%
0.

37
%

5.
87

%
0.

00
%

0.
00

%
5.

69
%

0.
00

%
0.

00
%

15
.3

4%
0.

00
%

0.
00

%
15

.3
4%

20
80

5.
78

%
0.

75
%

2.
76

%
0.

98
%

0.
04

%
4.

12
%

0.
00

%
0.

00
%

4.
69

%
0.

00
%

0.
00

%
5.

69
%

30
70

4.
43

%
0.

98
%

3.
22

%
4.

02
%

0.
72

%
4.

26
%

1.
59

%
0.

01
%

3.
26

%
0.

00
%

0.
00

%
2.

82
%

40
60

3.
43

%
0.

43
%

1.
36

%
3.

77
%

0.
79

%
5.

44
%

4.
11

%
0.

40
%

5.
25

%
3.

68
%

0.
13

%
3.

36
%

50
50

2.
97

%
0.

47
%

1.
08

%
5.

29
%

0.
74

%
4.

12
%

5.
26

%
0.

55
%

3.
71

%
6.

66
%

0.
37

%
5.

00
%

60
40

2.
97

%
0.

44
%

1.
13

%
2.

24
%

0.
48

%
3.

56
%

3.
56

%
0.

55
%

4.
59

%
4.

10
%

0.
59

%
3.

15
%

70
30

1.
17

%
0.

25
%

0.
50

%
1.

30
%

0.
40

%
2.

52
%

2.
81

%
0.

43
%

3.
10

%
2.

72
%

0.
24

%
4.

07
%

80
20

0.
16

%
0.

09
%

0.
19

%
1.

04
%

0.
23

%
1.

30
%

1.
56

%
0.

19
%

2.
59

%
3.

13
%

0.
28

%
2.

38
%

90
10

0.
00

%
0.

00
%

0.
03

%
0.

10
%

0.
02

%
0.

20
%

0.
17

%
0.

17
%

0.
23

%
1.

39
%

0.
45

%
0.

23
%

T
ab

le
3.

2:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

S
T

S
p
ro

b
le

m
on

S
et

2.
f i

=
30

,
an

d
M

fa
ct

or
is

va
ri

ed

46

3.4.3.2 GSTS Problem

Our results for the GSTS problem are as promising as the results for the STS

problem. Tables 3.3 and 3.4 present our computational results on Set 1 and Set 2.

Recall, in these instances any demand node may host a facility. Compared to the

STS problem the gaps for all three upper bound heuristics increase slightly on the

GSTS problem. For DA, the highest average gap is 12.82% and the worst gap over

630 instances is 31.93%. Once again the local search phase achieves a significant

improvement and the average gaps fell below 1.47%. The DLS continues to show

a very consistent performance. Out of 630 instances, the worst gap for the DLS

heuristic is 4.00% and the average gap over all instances is 0.74%. As the proportion

of demand nodes and facility nodes is varied, it appears that instances with a low

proportion of demand nodes (10%) are easier, while the remaining instances show

similar gaps. Again the DLS heuristic is extremely fast taking at most 3 seconds to

obtain a solution for an instance.

47

|D
|
|F
|

f i
=

0
f i

=
10

f i
=

20
f i

=
30

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

0.
00

%
0.

00
%

5.
50

%
0.

00
%

0.
00

%
5.

27
%

0.
00

%
0.

00
%

5.
08

%
0.

00
%

0.
00

%
13

.0
1%

20
80

2.
82

%
0.

72
%

3.
23

%
5.

77
%

0.
29

%
3.

80
%

3.
05

%
0.

16
%

4.
77

%
2.

55
%

0.
20

%
3.

84
%

30
70

3.
20

%
0.

81
%

2.
92

%
9.

33
%

1.
47

%
3.

22
%

8.
77

%
1.

01
%

6.
09

%
7.

32
%

0.
70

%
4.

78
%

40
60

3.
40

%
0.

89
%

2.
93

%
8.

48
%

1.
16

%
5.

17
%

8.
01

%
0.

78
%

4.
85

%
8.

30
%

1.
05

%
5.

62
%

50
50

4.
13

%
0.

93
%

2.
79

%
9.

28
%

1.
28

%
4.

42
%

12
.8

2%
1.

46
%

4.
31

%
10

.6
2%

0.
99

%
4.

72
%

60
40

2.
07

%
0.

59
%

3.
02

%
8.

38
%

0.
98

%
4.

53
%

9.
35

%
1.

12
%

4.
22

%
8.

55
%

1.
25

%
3.

63
%

70
30

2.
85

%
0.

99
%

2.
83

%
7.

59
%

1.
34

%
5.

33
%

9.
93

%
1.

06
%

4.
20

%
9.

01
%

1.
22

%
4.

15
%

80
20

2.
39

%
0.

77
%

3.
50

%
9.

61
%

1.
33

%
4.

85
%

10
.6

7%
1.

22
%

5.
00

%
10

.3
2%

1.
31

%
5.

00
%

90
10

2.
22

%
0.

83
%

3.
45

%
7.

82
%

1.
06

%
4.

33
%

10
.8

8%
1.

14
%

4.
15

%
8.

77
%

0.
74

%
5.

14
%

T
ab

le
3.

3:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

G
S
T

S
p
ro

b
le

m
on

S
et

1.
M

=
3,

an
d

fa
ci

li
ty

op
en

in
g

co
st

s
ar

e
va

ri
ed

|D
|
|F
|

M
=

1
M

=
3

M
=

5
M

=
7

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

2.
06

%
0.

42
%

5.
10

%
0.

00
%

0.
00

%
13

.0
1%

0.
00

%
0.

00
%

20
.6

6%
0.

00
%

0.
00

%
20

.6
6%

20
80

12
.6

3%
1.

42
%

3.
77

%
2.

55
%

0.
20

%
3.

84
%

0.
00

%
0.

00
%

3.
95

%
0.

00
%

0.
00

%
6.

00
%

30
70

5.
81

%
0.

63
%

2.
88

%
7.

32
%

0.
70

%
4.

78
%

2.
57

%
0.

11
%

4.
90

%
0.

00
%

0.
00

%
4.

03
%

40
60

7.
91

%
0.

60
%

2.
11

%
8.

30
%

1.
05

%
5.

62
%

6.
10

%
0.

69
%

3.
68

%
2.

26
%

0.
16

%
2.

22
%

50
50

6.
97

%
0.

59
%

2.
27

%
10

.6
2%

0.
99

%
4.

72
%

4.
22

%
0.

55
%

5.
28

%
4.

85
%

0.
58

%
4.

71
%

60
40

7.
22

%
0.

42
%

1.
48

%
8.

55
%

1.
25

%
3.

63
%

9.
78

%
1.

21
%

4.
68

%
6.

12
%

1.
18

%
5.

53
%

70
30

5.
18

%
0.

48
%

1.
79

%
9.

01
%

1.
22

%
4.

15
%

11
.0

9%
1.

11
%

5.
01

%
3.

90
%

0.
44

%
5.

57
%

80
20

5.
17

%
0.

40
%

1.
86

%
10

.3
2%

1.
31

%
5.

00
%

5.
62

%
0.

89
%

5.
81

%
7.

65
%

0.
94

%
5.

20
%

90
10

5.
86

%
0.

58
%

1.
55

%
8.

77
%

0.
74

%
5.

14
%

8.
82

%
0.

96
%

5.
57

%
12

.2
3%

1.
13

%
5.

01
%

T
ab

le
3.

4:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

G
S
T

S
p
ro

b
le

m
on

S
et

2.
f i

=
30

,
an

d
M

fa
ct

or
is

va
ri

ed

48

The solutions obtained by the UFL heuristic on the GSTS problem are quite

poor. Again, we can state that the dual-ascent phase does an excellent job finding a

subset of facility nodes to open (and Steiner nodes to use). The difference between

the DLS and UFL heuristics is more marked when the number of facility nodes in

an instance is large. Here the problem of identifying the set of facility nodes to open

is combinatorially more challenging, and in these instances the UFL heuristic does

very badly.

3.4.3.3 ROB Problem

We now focus our attention on the ROB problem. Table 3.5 summarizes

our results. The ROB problem with M = 1 is essentially a Steiner tree problem.

Consequently, for M = 1 DA yields high-quality solutions for all combinations of

demand nodes and facility nodes, which our local search phase improves even further.

As the M factor increases, on average the average gap for DA and the DLS heuristic

increase. The average gap for DA is less than 8% for all combinations of parameters.

With the addition of the local search phase the results are even better. Our DLS

heuristic has average gaps below 0.5% for M = 1, and below 2.02% for all other

combinations of parameters. Over the entire set of 360 instances, the average gap

is below 0.70% for the DLS heuristic. At the instance level, the highest gap for the

DLS heuristic remains below 4%, while the worst gap for DA over the 360 instances

is 22.29%. Once again, the consistency of the results obtained by the DLS heuristic

is quite compelling. Again the DLS heuristic is extremely fast taking at most 3

49

seconds to obtain a solution for an instance.

Recall, in the case of the ROB problem facilities can be opened at any node

in the graph including demand nodes and the facility opening cost is zero. Con-

sequently, for the UFL heuristic, the optimal solution to the uncapacitated facility

location problem is to open a facility at each demand node. Thus, the starting

solution for the UFL heuristic is simply the set of facilities at the demand nodes,

which later is enhanced by dual-ascent to include Steiner nodes and by the local

search to improve the total solution cost. Again, the average gaps obtained by UFL

are consistently worse than the ones achieved by the DLS heuristic. Specifically, at

the instance level in 351 out of 360 instances the solution from the DLS heuristic

was superior to the UFL heuristic.

50

|D
|
|F
|

M
=

1
M

=
3

M
=

5
M

=
7

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

2.
30

%
0.

35
%

1.
93

%
0.

00
%

0.
00

%
5.

50
%

0.
00

%
0.

00
%

6.
17

%
0.

00
%

0.
00

%
6.

17
%

20
80

0.
90

%
0.

15
%

0.
66

%
2.

82
%

0.
72

%
3.

23
%

2.
51

%
0.

48
%

3.
08

%
0.

00
%

0.
00

%
3.

95
%

30
70

0.
49

%
0.

00
%

0.
58

%
3.

20
%

0.
81

%
3.

04
%

3.
94

%
1.

02
%

3.
65

%
1.

26
%

0.
07

%
3.

46
%

40
60

0.
38

%
0.

04
%

0.
43

%
3.

40
%

0.
89

%
2.

93
%

2.
69

%
1.

39
%

4.
21

%
7.

94
%

1.
14

%
4.

79
%

50
50

0.
33

%
0.

08
%

0.
22

%
4.

13
%

0.
93

%
2.

79
%

5.
52

%
1.

19
%

4.
21

%
5.

13
%

1.
19

%
3.

73
%

60
40

0.
09

%
0.

02
%

0.
16

%
2.

07
%

0.
59

%
3.

02
%

4.
35

%
1.

37
%

5.
79

%
5.

74
%

1.
62

%
4.

93
%

70
30

0.
10

%
0.

02
%

0.
18

%
2.

85
%

0.
99

%
2.

83
%

4.
55

%
1.

33
%

4.
19

%
3.

55
%

1.
37

%
4.

51
%

80
20

0.
02

%
0.

00
%

0.
11

%
2.

39
%

0.
77

%
3.

50
%

4.
40

%
1.

21
%

5.
04

%
5.

95
%

1.
74

%
5.

40
%

90
10

0.
00

%
0.

00
%

0.
06

%
2.

22
%

0.
83

%
3.

45
%

2.
95

%
1.

04
%

4.
62

%
5.

43
%

2.
02

%
6.

00
%

T
ab

le
3.

5:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

R
O

B
p
ro

b
le

m
on

S
et

3.
M

fa
ct

or
is

va
ri

ed

51

3.4.3.4 ConFL Problem

Tables 3.6 and 3.7 summarize our computational results for Set 1 and Set 2,

respectively. The gaps for DA exhibit a concave behavior as the fraction of demand

nodes increases. For a low proportion of demand nodes the gaps are low. They

rapidly jump as the proportion of demand nodes increases before decreasing again

as the proportion of demand nodes gets higher. For DA the average percentage gaps

get as high as 16%. On the other hand, the average percentage gaps for the DLS

heuristic are always below 4.27%. In all cases the local search phase significantly

improved the upper bounds obtained from the dual-ascent phase. Over 630 instances

the worst gap for the DLS heuristic was 7.72%, in contrast to a worst gap of 29.67%

for DA. Averaged over the 630 instances the average gap for the DLS heuristic was

1.74%. We observed that as the facility opening costs increase the average gaps

for the DLS heuristic increase. In contrast, as the M factor increases the average

gap for the DLS heuristic first increases but later decreases reaching the maximum

at M = 3. In summary, our results continue to indicate that the DLS heuristic’s

performance is stable over a wide range of parameters. We note that the DLS

heuristic took at most 4.74 seconds to solve an instance of the ConFL problem.

The performance of the UFL heuristic on the ConFL instances was significantly

worse than the DLS heuristic. As before, it appears the dual-ascent phase is quite

consistent in identifying a good starting solution for the local search phase.

52

|D
|
|F
|

f i
=

0
f i

=
10

f i
=

20
f i

=
30

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

0.
54

%
0.

08
%

1.
76

%
2.

30
%

0.
48

%
4.

49
%

2.
18

%
0.

30
%

8.
43

%
0.

00
%

0.
00

%
10

.5
9%

20
80

6.
79

%
0.

91
%

5.
52

%
12

.4
1%

3.
16

%
4.

94
%

11
.3

8%
3.

05
%

5.
17

%
15

.6
2%

3.
95

%
7.

90
%

30
70

4.
86

%
1.

57
%

5.
32

%
9.

95
%

2.
80

%
5.

33
%

14
.2

4%
4.

27
%

5.
71

%
14

.1
3%

3.
70

%
5.

35
%

40
60

5.
31

%
1.

80
%

4.
83

%
9.

80
%

2.
63

%
6.

19
%

8.
97

%
3.

02
%

6.
69

%
14

.1
3%

3.
97

%
6.

17
%

50
50

3.
83

%
1.

43
%

3.
37

%
7.

90
%

2.
45

%
3.

94
%

8.
73

%
2.

94
%

5.
55

%
10

.0
8%

3.
27

%
4.

85
%

60
40

3.
50

%
0.

96
%

2.
63

%
5.

51
%

1.
80

%
3.

77
%

6.
86

%
2.

29
%

4.
31

%
7.

54
%

3.
04

%
4.

93
%

70
30

1.
28

%
0.

81
%

1.
69

%
2.

70
%

1.
13

%
1.

93
%

4.
88

%
1.

57
%

3.
46

%
5.

44
%

1.
89

%
3.

23
%

80
20

0.
53

%
0.

28
%

14
.9

8%
1.

02
%

0.
57

%
1.

18
%

1.
84

%
0.

79
%

1.
24

%
3.

24
%

1.
08

%
1.

28
%

90
10

0.
23

%
0.

17
%

0.
17

%
0.

23
%

0.
02

%
0.

13
%

0.
43

%
0.

05
%

0.
30

%
0.

09
%

0.
04

%
0.

28
%

T
ab

le
3.

6:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

C
on

F
L

p
ro

b
le

m
on

S
et

1.
M

=
3,

an
d

fa
ci

li
ty

op
en

in
g

co
st

s
ar

e
va

ri
ed

|D
|
|F
|

M
=

1
M

=
3

M
=

5
M

=
7

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

D
A

D
L

S
U

F
L

10
90

10
.3

0%
3.

25
%

5.
83

%
0.

00
%

0.
00

%
10

.5
9%

0.
00

%
0.

00
%

10
.5

9%
0.

00
%

0.
00

%
10

.5
9%

20
80

12
.2

1%
3.

15
%

4.
22

%
15

.6
2%

3.
95

%
7.

90
%

8.
29

%
1.

11
%

5.
76

%
0.

94
%

0.
01

%
6.

08
%

30
70

7.
90

%
2.

47
%

2.
93

%
14

.1
3%

3.
70

%
5.

35
%

7.
74

%
2.

97
%

5.
72

%
3.

17
%

1.
36

%
6.

67
%

40
60

7.
18

%
1.

92
%

3.
24

%
14

.1
3%

3.
97

%
6.

17
%

12
.2

3%
3.

76
%

5.
37

%
8.

22
%

2.
73

%
6.

43
%

50
50

5.
32

%
1.

63
%

1.
53

%
10

.0
8%

3.
27

%
4.

85
%

7.
83

%
3.

03
%

5.
93

%
7.

69
%

3.
01

%
7.

56
%

60
40

4.
78

%
1.

40
%

2.
12

%
7.

54
%

3.
04

%
4.

93
%

9.
05

%
3.

54
%

5.
56

%
8.

39
%

2.
41

%
6.

57
%

70
30

2.
59

%
0.

84
%

0.
75

%
5.

44
%

1.
89

%
3.

23
%

4.
83

%
2.

08
%

4.
66

%
6.

17
%

2.
24

%
6.

14
%

80
20

1.
56

%
0.

33
%

0.
32

%
3.

24
%

1.
08

%
1.

28
%

3.
06

%
1.

49
%

2.
27

%
4.

43
%

1.
64

%
3.

19
%

90
10

0.
00

%
0.

00
%

0.
19

%
0.

09
%

0.
04

%
0.

28
%

0.
30

%
0.

28
%

0.
47

%
1.

14
%

0.
56

%
0.

51
%

T
ab

le
3.

7:
C

om
p
ar

is
on

of
h
eu

ri
st

ic
s

fo
r

th
e

C
on

F
L

p
ro

b
le

m
on

S
et

2.
f i

=
30

,
an

d
M

fa
ct

or
is

va
ri

ed

53

3.4.4 Results on Sparse Instances

Table 3.8 summarizes our computational results on Set 4. Recall that Set 4

was created to understand the performance of the DLS heuristic for sparse instances,

and that we focussed our attention on the ConFL problem as it was the hardest (in

terms of gaps) of the four problems to solve on complete graphs. Table 3.8 indicates

that as the graph gets sparser the average gaps increase considerably for all three

upper bound heuristics. Average gaps for DA go up to 18.12% and for the DLS

heuristic increase to 14.36%. For individual instances, the worst case gap for DA is

37.16% while the worst case gap for the DLS heuristic is 22.38%. Notice, however,

that both heuristics yield significantly better solutions than the UFL heuristic which

is disastrous. Its worst case gap for individual instances is 151.04% and the average

gap gets as high as 76.74%.

In interpreting the results in Table 3.8 we wanted to understand whether the

large gaps for the DLS heuristic on sparse instances were due to the quality of the

upper bounds or the lower bounds produced by the dual-ascent phase. To address

this issue we were very fortunate to access Dr. Ljubić’s state of the art B&C code

(Ljubić 2007) as an alternate method of generating lower bounds. We limited the

running time of the B&C code to 1 hour for each instance, and use the better lower

bound from both the B&C code and the dual-ascent procedure to recalculate the

average gaps for our DLS heuristic. These recomputed average gaps are shown

in Table 3.9. The column DLS indicates the average gaps obtained using the dual-

ascent phase’s lower bound, while the column DLS’ indicates the recomputed average

54

Probability of Edge Creation

|D| |F | 0.25 0.50 0.75

DA DLS UFL DA DLS UFL DA DLS UFL

10 90 10.63% 9.72% 74.71% 5.48% 5.17% 76.74% 3.71% 2.57% 43.29%
20 80 18.12% 14.36% 50.45% 7.15% 5.44% 38.55% 4.51% 2.90% 34.48%
30 70 12.36% 10.44% 38.68% 12.64% 7.92% 25.71% 10.50% 4.99% 25.04%
40 60 16.15% 12.28% 32.09% 11.18% 7.31% 24.40% 10.52% 4.54% 15.66%
50 50 12.87% 8.86% 24.41% 8.75% 5.33% 16.87% 10.85% 4.86% 12.03%
60 40 9.28% 7.06% 20.31% 9.47% 5.45% 14.78% 9.53% 4.77% 10.59%
70 30 7.69% 4.81% 14.56% 7.25% 4.26% 11.34% 8.00% 3.49% 8.42%
80 20 3.98% 3.06% 5.06% 4.50% 2.73% 5.57% 4.69% 2.20% 4.88%
90 10 0.30% 0.11% 0.16% 0.29% 0.22% 1.46% 1.34% 0.56% 1.09%

Table 3.8: Comparison of heuristics for the ConFL problem on Set 4

Probability of Edge Creation

|D| |F | 0.25 0.50 0.75

DLS’ DLS Imp DLS’ DLS Imp DLS’ DLS Imp

10 90 1.81% 9.72% 9 1.26% 5.17% 9 1.42% 2.57% 4
20 80 4.78% 14.36% 10 0.38% 5.44% 10 0.20% 2.90% 9
30 70 3.03% 10.44% 10 3.09% 7.92% 10 2.48% 4.99% 7
40 60 4.50% 12.28% 10 2.92% 7.31% 9 2.82% 4.54% 5
50 50 1.48% 8.86% 10 0.74% 5.33% 10 2.59% 4.86% 7
60 40 1.52% 7.06% 10 1.26% 5.45% 10 2.01% 4.77% 8
70 30 0.29% 4.81% 10 1.04% 4.26% 10 0.66% 3.49% 10
80 20 0.50% 3.06% 10 0.45% 2.73% 10 0.31% 2.20% 10
90 10 0.11% 0.11% 0 0.05% 0.22% 4 0.14% 0.56% 8

Table 3.9: Performance of the DLS heuristic computed using the best lower bound
on Set 4

gaps. The column Imp indicates the number of times over the 10 instances B&C was

able to improve the lower bound. In most cases average gaps decrease to one third

of their previous value. B&C is able to obtain tighter lower bounds in practically

all of the very sparse (probability 0.25) instances except for those with 90 demand

nodes. However, as the network becomes more dense it becomes a little harder for

B&C to improve the lower bound and even when the lower bound is improved the

relative improvement is much smaller. We note that the running times of the B&C

code increase as the density of the graph increases.

55

The analysis in Table 3.9 indicates that DLS heuristic performs quite well and

is consistent. As the density of the graph increases its performance improves. The

average gaps are always lower than 4.78%. Over the 270 instances, the average

gap of the DLS heuristic is 1.55%. The worst gap over the 270 instances for the

DLS heuristic drops to 16.43%. Incidentally, the instance with the 16.43% gap is

one where the lower bound from B&C is worse than the dual-ascent lower bound

(meaning that even after 1 hour of running time it is unable to improve the dual-

ascent lower bound). In summary, the quality of the solutions obtained by the DLS

heuristic are consistently of high quality, even for sparse problems. We now report

on our computational experience with Set 5. Recall instances in Set 5 are sparse

problems where the bipartite graph between demand nodes and facility nodes is

complete. Table 3.10 summarizes the results of the three heuristics with the gaps

computed using the dual-ascent lower bound. These results are quite similar to

those for the three heuristics on Set 1 and Set 2. In other words, the quality of the

solutions provided by the DLS heuristic are quite high. In particular, the average

gap of the DLS heuristic is below 2.46% (or 2.05% when computed using the best

lower bound). Over the 270 instances the worst gap for the DLS heuristic is 5.09%

(or 4.72% with the best lower bound) in contrast to the worst gap for DA which is

34.58%. The average gaps for the DLS heuristic increase as the instances become

denser. Averaged over the 270 instances the DLS heuristic has a gap of 1.12% (or

0.46% with the best lower bound).

Table 3.11 shows the gaps for the DLS heuristic gaps recomputed using the

best of the lower bounds from the B&C code and dual-ascent. The results in the

56

Probability of Edge Creation

|D| |F | 0.25 0.50 0.75

DA DLS UFL DA DLS UFL DA DLS UFL

10 90 0.00% 0.00% 14.39% 0.00% 0.00% 11.91% 0.00% 0.00% 10.59%
20 80 0.00% 0.00% 12.48% 0.00% 0.00% 9.15% 0.00% 0.00% 5.59%
30 70 2.54% 0.80% 5.99% 3.43% 0.72% 5.50% 3.38% 1.18% 4.43%
40 60 7.23% 0.96% 8.74% 5.59% 1.47% 7.36% 9.91% 2.46% 7.30%
50 50 4.31% 1.47% 7.02% 7.52% 1.94% 6.10% 6.98% 1.78% 6.18%
60 40 2.56% 1.30% 11.57% 6.01% 2.19% 8.98% 8.62% 2.43% 6.34%
70 30 4.07% 1.42% 6.41% 4.94% 1.74% 6.10% 5.27% 2.32% 5.35%
80 20 2.71% 1.24% 4.57% 6.50% 1.55% 4.34% 3.72% 1.90% 3.77%
90 10 1.00% 0.48% 3.08% 0.64% 0.29% 2.21% 1.28% 0.72% 1.02%

Table 3.10: Comparison of heuristics for the ConFL problem on Set 5

Probability of Edge Creation

|D| |F | 0.25 0.50 0.75

DLS’ DLS Imp DLS’ DLS Imp DLS’ DLS Imp

10 90 0.00% 0.00% 0 0.00% 0.00% 0 0.00% 0.00% 0
20 80 0.00% 0.00% 0 0.00% 0.00% 0 0.00% 0.00% 0
30 70 0.29% 0.80% 7 0.24% 0.72% 5 0.71% 1.18% 5
40 60 0.34% 0.96% 10 0.64% 1.47% 6 2.05% 2.46% 4
50 50 0.44% 1.47% 10 0.86% 1.94% 10 0.96% 1.78% 4
60 40 0.20% 1.30% 10 1.04% 2.19% 10 1.08% 2.43% 8
70 30 0.35% 1.42% 10 0.60% 1.74% 10 0.69% 2.32% 9
80 20 0.43% 1.24% 9 0.35% 1.55% 10 0.75% 1.90% 9
90 10 0.14% 0.48% 7 0.10% 0.29% 7 0.23% 0.72% 10

Table 3.11: Performance of the DLS heuristic computed using the best lower bound
on Set 5

table indicate that B&C yielded a slightly smaller number of improvements, and

at the same time the improvements in the lower bound were less pronounced. In

summary, we can conclude that sparsity between demand nodes and facility nodes

causes a weaker dual-ascent lower bound and hence a wider gap when it is used to

compute the average gaps. In other words, ConFL problems with sparsity between

demand nodes and facility nodes are hardest for our DLS heuristic.

57

3.4.5 Large-Scale Instances and Comparison to Ljubić’s VNS heuris-

tic

We tested the DLS heuristic on a set of large-scale instances introduced by

Ljubić (2007) for the ConFL problem. She constructed ConFL test problems by

combining Steiner tree problem instances from OR-Library and UFL problem in-

stances from UflLib (see Ljubić (2007) for more details about these test instances).

These instances are representative for each type of problem. However, their com-

bination departs from the typical convention that we have seen in the literature on

the four problems in that tree edges are typically more expensive per unit length

than assignment edges. In the instances constructed in Ljubić (2007) the cost of

tree edges is given by the Steiner tree instances while the cost of the assignment

edges is determined by the UFL instances with no attempt to scale these costs (and

thus the per unit length cost of tree edges is cheaper than the per unit length cost of

assignment edges). However, testing the DLS heuristic on these instances gives us

the opportunity to evaluate its performance on larger instances (up to 1300 nodes)

that are on non-Euclidean graphs, and compare their performance against a vari-

able neighborhood search (VNS) heuristic that was used in Ljubić (2007). In these

instances knowledge of an open facility in the solution was assumed a priori. Con-

sequently, we modified our DLS heuristic to incorporate this knowledge. Hence, in

the dual-ascent phase we simply use the open facility as the root node, and do not

create an artificial source node s or impose a unit degree constraint. In addition, in

the local search phase this open facility is never removed even if its removal would

58

result in a lower cost solution.

Table 3.12 shows the results obtained by DA, the DLS heuristic, and Ljubić’s

VNS procedure. (To compute the gaps we use dual-ascent’s lower bounds since it is

our understanding that there is an error (Ljubić 2009) in the lower bounds reported

on Ljubić (2007).) Over the 48 test instances reported in Table 3.12, the worst gap

of DA is 17.23%, VNS’s worst gap is 21.16%, while the DLS heuristic’s worst gap

is 8.63%. Averaged over the 48 instances, the average gap of the DLS heuristic is

3.83%, while VNS’s average gap is 5.75%. The DLS heuristic finds a better solution

than the VNS procedure in 36 out of the 48 instances. The average computational

time required by VNS (these are as reported in Ljubić 2007) and our DLS heuristic

appear to be quite similar and around 500 seconds. The running times reported in

Ljubić (2007) are the average over ten runs of the VNS procedure, and the solution

reported is the best over the ten instances. So a more accurate assessment of the

running time of the VNS procedure would be a tenfold increase in the running times

reported. However, our heuristic shows a lot more variability with running times as

high as 5422.2 seconds. On the other hand the gaps of the DLS heuristic are lower,

have much less variability, and are quite stable to a wide range of parameters. We

should note that the excessive running times for the DLS heuristic seem to occur

in the last group of 16 instances. If we use the second implementation of the local

improvements in the local search phase instead, the running time goes down consid-

erably and the performance actually does not deteriorate. For example, the instance

that takes 5422.2 seconds takes 1640.5 seconds with the second implementation, and

its gap increases from 0.45% to 0.46%. Consequently, when computational time is

59

important and the instance has a large number of nodes, we could either impose a

time limit to the DLS heuristic, or use an alternate implementation (i.e., the second

implementation).

3.5 Conclusions

In this chapter we considered a family of four important network design prob-

lems that combine facility location with connectivity requirements. We provided a

common framework and methodology to address these four problems. In particular,

we devise a DLS heuristic that works in two phases. In the first phase it applies

dual-ascent to obtain both a lower bound and an initial solution to the problem. In

the second phase it applies local search, limiting its attention to the set of facilities

and Steiner nodes selected in the first phase. From a broad algorithmic perspec-

tive our work is closely related to the primal-dual algorithm by Swamy and Kumar

(2004), with approximation ratio 8.55. However, while Swamy and Kumar’s focus is

to develop approximation algorithms with provable worst case bounds, our goal is to

find tight formulations that combined with local search perform effectively in prac-

tice. In that sense our approach is more comprehensive. Although the first phase

of Swamy and Kumar’s heuristics attempts to incorporate some of the connectivity

requirement costs in the selection of open facilities (by insisting that each facility

serve a minimum number of demand points), the final cost of the core tree network

is only considered in the second phase when facilities have already been selected.

Our approach selects the open facilities and constructs a Steiner tree among open

60

facilities simultaneously ensuring a global treatment of the problem. Our exten-

sive computational experiments show that across the family of problems, our DLS

heuristic obtains high quality solutions rapidly. Further, the results are quite consis-

tent in the sense that the variance of the performance gap is quite low, and smaller

than the other heuristics considered for the problem. Among the four problems, the

ConFL problem seems to be the hardest to solve for the DLS heuristic. In particular

ConFL instances with higher sparsity between demand nodes and facility nodes are

harder for our DLS

Our heuristic can be viewed as one that successfully partners mathematical

programming approaches (i.e., dual-ascent) with local search. As our experiments

show both phases of the heuristic strategy contribute to its success. When we

replaced the DA solution by an initial solution from the UFL heuristic, the local

search phase found solutions that were significantly worse. The local search phase

also significantly improves the solution obtained from the dual-ascent phase. We

should note that on the large scale ConFL problem instances our DLS procedure

significantly outperformed a state-of-the-art VNS procedure. In contrast to other

heuristic methodologies, another significant advantage of our DLS heuristic is that

it provides a high-quality lower bound along with each solution; thus providing a

guarantee on the quality of the solution.

61

Instances Gap Time (sec)

UFLP STP DA DLS VNSbest DA DLS VNSaverage

mp1 c5 5.88% 4.29% 13.14% 68.03 69.34 98.60
mp2 c5 9.84% 5.34% 9.95% 87.44 89.61 363.10
mp1 c10 5.76% 4.59% 9.58% 61.55 63.00 389.00
mp2 c10 5.41% 5.13% 5.85% 78.34 79.05 187.20
mp1 c15 5.45% 4.94% 7.75% 77.91 79.58 406.40
mp2 c15 9.34% 6.59% 9.18% 84.41 85.00 186.10
mp1 c20 5.35% 4.66% 6.05% 128.30 128.95 300.30
mp2 c20 9.28% 4.21% 5.72% 95.38 95.66 305.20
mq1 c5 11.08% 6.78% 21.16% 355.73 357.52 177.70
mq2 c5 12.74% 5.32% 16.20% 413.98 416.00 353.00
mq1 c10 10.79% 6.62% 10.67% 332.91 334.61 365.00
mq2 c10 17.23% 4.79% 10.29% 387.47 392.13 340.10
mq1 c15 10.63% 7.06% 12.21% 346.64 347.89 528.90
mq2 c15 11.96% 4.50% 6.01% 367.23 367.81 250.50
mq1 c20 10.48% 7.15% 10.83% 376.11 376.75 401.20
mq2 c20 16.65% 4.73% 7.40% 667.44 668.59 375.50

mp1 d5 6.00% 4.06% 5.52% 62.36 65.88 402.90
mp2 d5 15.70% 5.64% 5.32% 84.08 87.61 482.30
mp1 d10 5.73% 4.25% 6.19% 78.80 82.39 366.80
mp2 d10 9.70% 5.08% 3.01% 107.34 111.03 365.00
mp1 d15 5.44% 4.97% 6.62% 65.52 68.25 328.50
mp2 d15 14.28% 6.37% 5.02% 86.92 90.89 379.00
mp1 d20 5.31% 4.22% 4.83% 118.86 120.86 453.40
mp2 d20 9.27% 6.66% 2.86% 359.92 361.61 321.90
mq1 d5 10.88% 7.11% 9.12% 339.34 346.48 508.10
mq2 d5 8.81% 5.24% 11.52% 391.75 395.56 460.70
mq1 d10 10.87% 5.88% 8.78% 360.88 364.67 511.10
mq2 d10 12.30% 4.31% 6.43% 422.13 430.11 593.80
mq1 d15 10.68% 6.42% 6.77% 354.23 358.02 652.80
mq2 d15 12.15% 4.64% 7.45% 482.49 488.17 627.00
mq1 d20 10.59% 7.32% 10.47% 474.31 477.78 490.40
mq2 d20 16.57% 8.62% 6.47% 535.13 536.89 495.50

gs250a 1 c5 0.73% 0.52% 0.36% 10.41 292.81 523.50
gs250a 2 c5 0.59% 0.37% 0.30% 5.58 364.83 458.30
gs250a 1 c10 0.57% 0.37% 0.39% 6.09 272.66 668.50
gs250a 2 c10 0.69% 0.54% 0.38% 6.61 406.28 341.70
gs250a 1 c15 0.66% 0.45% 0.34% 15.13 218.06 548.60
gs250a 2 c15 0.55% 0.38% 0.27% 16.75 103.16 598.30
gs250a 1 c20 0.67% 0.41% 0.36% 140.13 160.53 598.00
gs250a 2 c20 0.67% 0.41% 0.28% 121.28 144.88 697.40
gs500a 1 c5 0.58% 0.41% 0.68% 36.42 2312.39 838.10
gs500a 2 c5 0.66% 0.45% 0.72% 40.73 5422.21 845.90
gs500a 1 c10 0.51% 0.41% 0.63% 27.55 1595.16 881.10
gs500a 2 c10 0.52% 0.37% 0.66% 29.28 1373.59 939.50
gs500a 1 c15 0.60% 0.39% 0.61% 84.63 1081.00 928.00
gs500a 2 c15 0.51% 0.36% 0.60% 138.77 837.94 871.20
gs500a 1 c20 0.58% 0.38% 0.55% 568.05 717.47 943.80
gs500a 2 c20 0.57% 0.36% 0.51% 111.27 216.88 906.00

Table 3.12: Comparison of the DLS heuristic with the VNS procedure on large-scale
instances

62

Chapter 4

The Stochastic Connected Facility Location Problem

4.1 Introduction

Most of the applications presented in Chapter 2 have associated uncertainty

which is often simplified in the abstraction of the problem. For example, in the

caching problem described by Krick et al. (2003), the exact number of read and

write requests is unknown at the time that the network is designed. Similarly, in

the problem described by Nuggehalli et al. (2003) the assignment cost might not

be revealed until the last moment when the assignment edges are rented. In both

problems the literature assumes average values as an approximation; however, under

some circumstances we might wish to obtain the solution of the stochastic problem,

perhaps to assess the validity of the approximation.

In this chapter we seek to explore the value of explicitly modeling uncertainty

into the ConFL problem. Here we introduce a variant of the Connected Facility

Location (ConFL) problem that addresses these uncertainties and we call it the

Stochastic ConFL (SConFL) problem. When uncertainties exist, the objective is to

minimize the expected cost of the network.

In an instance of the SConFL problem, there are certain and uncertain costs.

The facility opening costs and the connection costs between them is assumed to

be known beforehand while the assignment costs are unknown and dependent on a

63

random scenario that causes them to be uncertain. This type of problem is known as

a two-stage stochastic problem with fixed recourse as originated by Dantzig (1955)

and described by Birge and Louveaux (1997). The two stages of the problem are as

follows. In the first stage, a set of facilities must be opened and a Steiner tree that

connects them constructed. In the second stage, uncertainty on the assignment costs

is unveiled (i.e., one scenario is realized) and customers must be assigned to open

facilities. The objective is to minimize the network design cost including the core

network—opening of facilities and their connection—and the expected assignment

cost. This sequence of events clearly describes the problem introduced by Krick

et al. (2003) in the data management setting where for operational reasons the

construction of the core network must be performed ahead of time while the actual

requests to read and/or write data from the servers come later in time.

In the SConFL problem we can identify two types of uncertainty: (i) each

customer’s demand quantity and (ii) each customer’s location (or travel time to

potential facilities). Both types of uncertainty affect the assignment costs; however,

they have a very different impact that requires independent treatment. When de-

mand quantities are unknown, we show that the SConFL problem can be optimally

solved by replacing all random variables by their expected values. The two-stage

stochastic problem can be nicely reduced into a one stage problem without recourse.

The reason is that demand quantities affect all assignment costs in the same way.

Hence, once facilities have been opened, demand nodes are assigned to the closest

(per unit of demand) facility, regardless of the actual demand quantity. Conse-

quently, there is no recourse in the second stage and the problem can be solved in

64

one stage. The value of the stochastic solution is null (i.e., using average demand

values as in Krick et al. (2003) actually solves the problem).

Another source of uncertainty in assignment costs is the customer locations.

In this category we also include other sources of uncertainty in assignment costs

that have a similar effect and do not affect all assignment costs in the same direc-

tion (i.e., some costs can increase and some can decrease). For example, when a

network provider offers discounts or special rates on certain links in the network

to balance out the overall flow, the customer location may be known beforehand

but the closest or cheapest facility (per unit of demand) may change overtime tied

to the traffic flow on the network. For the ConFL problem one can specify three

different types of probability distributions on the scenarios: (i) the polynomial-

scenario model, where one assumes that there is only a polynomial number of sce-

narios that occur with positive probability, and these are explicitly enumerated, (ii)

the independent-activation model, where each assignment edge has an independent

probability distribution, and (iii) the black-box model, where nothing is assumed

about the probability distribution.

In this chapter our analysis focuses on the polynomial-scenario model and the

independent-activation model. While in theory one can use the same methodol-

ogy proposed here for the polynomial-scenario model for the independent-activation

model; in practice our solution approach devised for the polynomial-scenario model

becomes impracticable because the number of scenarios grows rapidly when assign-

ment edges vary independently.

The method proposed for the polynomial-scenario model is based on construct-

65

ing a deterministic equivalent of the stochastic problem. We propose a set of trans-

formations to obtain a deterministic ConFL problem that coupled with our DLS

heuristic yields high-quality solutions. Furthermore, we use this strategy to obtain

high-quality solutions for the independent-activation model within a Monte-Carlo

simulation framework such as Sample Average Approximation (SAA) (see Kleywegt

et al. (2002)). We report computational results on a comprehensive set of randomly

generated instances for both the polynomial-scenario model and the independent-

activation model using the SAA framework. The novelty of our implementation of

the SAA framework is that we use a heuristic to solve the sample average problems.

The SAA framework relies on the fact that sample average problems are solved to

optimality. However, here we show how to implement SAA using a lower bounding

procedure jointly with a heuristic and yet obtain tight confidence bounds on the

optimal solution.

4.2 Literature Review

The introduction of uncertainty in linear programming dates back to 1955

when Dantzig (1955) introduced a computation procedure for two-stage linear pro-

gramming models and a set of convexity theorems on the objective function of

multiple stage models. Real world applications are flooded with uncertainty, which

stochastic optimization allows us to model into the decision process as probabil-

ity distributions to better represent the problem under consideration. As a result

the stochastic models provide significant value to the decision process because they

66

better capture the nature of problem. In many situations it has been shown that

just replacing uncertain input values for their expected values is not necessarily a

good strategy. For a good introduction to the field of stochastic optimization see

Ruszczynski and Shapiro (2003), Birge and Louveaux (1997) and Kall and Wallace

(1994).

There have been several papers in the literature that deal with facility location

or network design with uncertain demands or link lengths in various contexts. How-

ever, to our knowledge there is no prior work on the stochastic connected facility

location problem. Mirchandani (1975) and Mirchandani and Odoni (1979) extend

the concept of p-median location to networks whose edge costs are random vari-

ables. Their main motivation is the deployment of a service vehicle in a city when

the travel times vary randomly and throughout the day due to traffic congestion.

The objective of the problem is to minimize the expected travel time to any destina-

tion node in the network. Weaver and Church (1983) address the same problem and

develop a computational procedure. There is no recourse in this problem. Berman

(1978) and Berman and Odoni (1982) add the option of relocating the service vehicle

once travel times are revealed. Berman (1978)’s heuristic is generalized to multiple

facilities by Berman and Odoni (1982).

In another set of facility location problems, the uncertainty element relies in-

stead on the customer demands. Snyder (2006) provides a comprehensive review

on stochastic and robust facility location models. Laporte et al. (1994) analyze

the capacitated facility location problem with uncertain demand. They state the

problem as a two-stage program with recourse where the first stage decisions define

67

the location of the facilities and their capacity and the second-stage decisions de-

termine the quantities delivered to each demand node. The paper by Louveaux and

Peeters (1992), which deals with a more general version of the problem that models

uncertain demands and edge costs, is very relevant to our study in this chapter in

terms of methodology. They propose a dual-based heuristic for a two-stage stochas-

tic program with recourse when there is uncertainty on demands, selling prices, and

production and transportation costs. In the first stage, decisions regarding location

and capacities of the plants are taken. And in the second stage, after demands,

prices and costs are revealed, the allocation of demands is determined. The optimal

capacity of the facilities arises from the trade-off between the cost of increasing the

capacity and the net profit at the various random demand levels. They extend the

dual-based procedure of Erlenkotter (1978) for the uncapacitated facility location

problem and once again prove the effectiveness of dual-ascent schemes for facility lo-

cation problems. Although the problem setting and algorithmic strategy is different;

we also exploit the known virtues of a dual-ascent scheme to generate a dual-solution

(and lower bound) and a primal solution that later improves with local search.

The SConFL problem is different from these two types for facility location

problems in that we assume no capacity limits on the edges. Capacity limits call

for a trade-off between the first stage and second stage decisions as some demand

might be lost due to capacity decisions taken at an earlier stage. In the SConFL

problem demands are always met; however, the facility node that serves the demand

may change according to the realized edge costs. The trade-off lies between the cost

of the core network and the realized assignment cost. Installing more facilities and

68

locating them closer to the demand nodes would increase the cost of the core network

while potentially decreasing the assignment cost of the second stage decisions.

Another vein of research that relates to our problem are network design prob-

lem in telecommunications. Sen et al. (1994) study the problem of private-line

services with random demands. They define a two-stage problem where the first-

stage decision variables correspond to the installation of capacity on the edges of a

network and the second stage decision variables deal with routing demand between

origins and destinations. The objective in that problem is to minimize unmet de-

mand. Riis and Andersen (2003) discuss the same problem and develop a procedure

based on an L-Shaped algorithm (Van Slyke and Wets 1969).

A different path of research has been the development of approximation heuris-

tics for these problems. Gupta et al. (2004) find a constant factor approximation

heuristic for the stochastic Steiner tree problem and single sink network design prob-

lem. Ravi and Sinha (2006) consider two-stage finite scenario stochastic versions of

various combinatorial optimization problems among them the facility location prob-

lem. In the first-stage facilities are opened while in the second-stage open facilities

can be modified at a higher cost. They find an 8-approximation heuristic for this

problem, which Swamy (2004) improve with a 4.127 + ε-approximation algorithm.

In this chapter, we do not seek to devise approximation algorithms. Instead our

objective is to develop a heuristic that performs efficiently in practice.

All the previously discussed problems have some aspect of the SConFL prob-

lem; yet none of the methods proposed for these problems easily extends to the

SConFL problem. There has been considerable research on two-stage stochastic

69

problem with recourse (see, Birge and Louveaux (1997)); however, most of these

methods assume linearity on the decisions of the first and second stage decision

variables. Integer (and binary) decisions on both stages makes the stochastic prob-

lem even harder to solve. We present in this chapter a heuristic that exploits the

characteristics of the SConFL problem and obtains high-quality solutions to a two-

stage stochastic integer programming problem.

4.3 A Note on Two-Stage Linear Programs with Fixed Recourse

Stochastic linear programs are linear programs in which some problem data

may be considered uncertain. Recourse programs are those in which some decisions

or recourse actions can be taken after the uncertainty is revealed. That means

that some of the problem parameters can be represented as random variables. We

represent by ω the random event such as market conditions that determines some of

our problem parameters such as demand quantities di(ω) or assignment costs aij(ω),

and we denote by ξ the set of problem parameters that are tied to the random event

ω. We represent by ξ = ξ(ω) the relationship between the uncertain event and the

parameters of our problem. Although this relationship is not a functional relation

between the random event and the problem inputs; we assume that each scenario

ω ∈ Ω fully determines the problem parameters in ξ. The realization of the random

event divides the set of decisions into two groups:

• Decisions that have to be taken before the realization of the random event are

called first-stage decisions and take place during the first stage.

70

• Decisions that take place after uncertainty is unveiled are second-stage deci-

sions or recourse decisions. These decisions take place during the second-stage.

Within the stochastic optimization literature, it is customary to represent first-

stage decisions by x and second-stage decisions by y(x, ω). Then, the classical two-

stage stochastic linear program with fixed recourse (introduced by Dantzig (1955)

and Beale (1955)) is the problem of finding

Minimize z = cTx+ Eω[min q(ω)Ty(x, ω)] (4.1a)

subject to

Ax = b (4.1b)

T (ω)x+W (ω)y(x, ω) = h(ω) (4.1c)

x ≥ 0, y(x, ω) ≥ 0. (4.1d)

Each component q, T , W , and h is a possible random variable determined by

a realization of ω. Then ξ is the set of these random components, ξ(ω) = {q(ω)T ,

h(ω)T , T (ω),W (ω)}. We assume that Ξ is the support of ξ. In addition, for the

SConFL we assume that Ξ is finite.

The objective function (4.1a) contains a deterministic term, cTx, and the ex-

pectation of the second-stage objective, q(ω)Ty(x, ω). In many stochastic program-

ming problems, this second-stage term is usually hard to compute because for each

71

ω the value of y(x, ω) is the solution of an optimization problem. In other words, for

each ω and first-stage decisions x, we must solve the following optimization program

Q(x, ξ(ω))= Minimize q(ω)Ty (4.2a)

subject to

W (ω)y = h(ω)− T (ω)x (4.2b)

y ≥ 0. (4.2c)

Q(x, ξ(ω)) is referred as the second-stage value function. Suppose we denote

the expected second-stage value function as Q(x) = EωQ(x, ξ(ω)), then the deter-

ministic equivalent program (DEP) of the stochastic programming problem is:

Minimize z = cTx+Q(x) (4.3a)

subject to

Ax = b (4.3b)

x ≥ 0 (4.3c)

This representation of a stochastic program shows that the main difference

from a deterministic formulation is in the expected second-stage value function.

If we can find a closed form representation for the second-stage value function,

72

which could be nonlinear, the stochastic program becomes an ordinary nonlinear

program. For the SConFL problem we find this second-stage value function when

Ξ has polynomial size, and furthermore, show that it is linear. This allow us to

apply our DLS heuristic on the deterministic equivalent program to find high-quality

solutions.

In the SConFL the first-stage decisions are the set of open facilities, z, and

the Steiner tree that connects them, y, and the second-stage decisions involve the

allocation of customers to open facilities, x. We represent second-stage decisions

by x(z, ω) to emphasize their dependence on the first-stage decisions, z, and the

realized scenario, ω.

4.4 Problem Formulation

In this section we explore the formulation of the Stochastic ConFL and show its

transformation into a deterministic ConFL problem (i.e. its deterministic equivalent

program) such that our dual-ascent local search heuristic, introduced in Chapter 3,

can be used to obtain high-quality solutions as well as assisting lower bounds.

We first define a cutset formulation for the deterministic ConFL, i.e. a ConFL

problem with known demand quantities and assignment costs. The objective func-

tion (4.4a) has three terms: the opening facility cost, the core tree cost and the

assignment cost. Constraints (4.4b) and (4.4c) impose the condition that the open

facilities are connected by a Steiner tree, while constraints (4.4d) and (4.4e) ensure

that each demand node is assigned to an open facility.

73

Cutset formulation for the deterministic ConFL problem:

Minimize
∑
i∈F

fizi +
∑

(i,j)∈(S∪F)

cijyij +
∑

i∈D,j∈F

aijxij (4.4a)

subject to∑
(i,j)∈(S∪F)

yij =
∑

l∈(S∪F)

zl − 1 (4.4b)

∑
(i,j)∈R

yij ≤
∑
l∈R

zl − 1, ∀R ⊂ (S ∪ F) (4.4c)

∑
j∈F

xij ≥ 1, ∀i ∈ D (4.4d)

xij ≤ zj, ∀i ∈ D, ∀j ∈ F (4.4e)

xij, yij, zi ∈ {0, 1} (4.4f)

In the stochastic version of the ConFL problem, assignment costs, aij, are

uncertain and depend on the realization of a random variable ω or scenario. In

general terms, ξ pieces together the stochastic components of the problem. We

assume that the random variable ξ has discrete and finite support in Ξ. In other

words, there is a finite set of known possible scenarios and P (Ξ) = 1. Then, aij(ω)

represents the assignment cost under scenario ω and pω the probability of occurrence

of scenario ω. The following formulation shows the analogous cutset formulation of

this problem as a two-stage stochastic program with fixed recourse.

74

Cutset formulation for the Stochastic ConFL problem:

Minimize
∑
i∈F

fizi +
∑

i,j∈(S∪F)

cijyij + Eω(Q(z, ξ(ω))) (4.5a)

subject to∑
(i,j)∈(S∪F)

yij =
∑

l∈(S∪F)

zl − 1 (4.5b)

∑
(i,j)∈R

yij ≤
∑
l∈R

zl − 1, ∀R ⊂ (S ∪ F) (4.5c)

yij, zi ∈ {0, 1} (4.5d)

In the stochastic version of the ConFL problem, the assignment cost is un-

known in the first stage and hence we replace the third term in the objective function

(4.4a) by its expected value, (i.e. the expected value of the second stage decision

problem), yielding the objective function (4.5a). In other words, the assignment

decision for each demand node is delayed until the second stage when the recourse

minimization problem (4.6) is solved.

75

Q(z, ξ(ω)) = Minimize q(z, ξ(ω))(x) =
∑

i∈D,j∈F

aij(ω)xij (4.6a)

subject to∑
i∈F

xij ≥ 1, ∀j ∈ D (4.6b)

xij ≤ zj, ∀i ∈ D, ∀j ∈ F (4.6c)

xij ∈ {0, 1} (4.6d)

Clearly, once open facilities are defined in the first stage, the recourse problem

reduces to an assignment problem where demand nodes are assigned to the closest

open facility. To determine the closest open facility for each demand node we must

wait until assignment costs are realized; consequently, the solution to the assignment

problem may vary for each scenario.

4.4.1 SConFL with Uncertain Demands

In the case where uncertainty on assignment costs is due to unknown demand

quantities, we assume that the per unit assignment cost (denoted by bij) is fixed and

known before hand. Here when scenario ω is unveiled, we mean that the demand

quantity di(ω) is discovered for each demand node i, and hence the assignment cost

aij(ω) = di(ω)bij is revealed. In this setting, the assignment cost matrix, A, is the

only random input parameter in the problem; then, ξ(ω) = (A(ω)). For this specific

76

realization of events, we show that the value of the stochastic solution is null. In

other words, the optimal solution for this stochastic ConFL is the optimal solution

of a deterministic ConFL problem when average demands are assumed.

Theorem 4.4.1. The optimal solution of the stochastic ConFL with uncertain de-

mands is equal to the optimal solution of the deterministic ConFL obtained by re-

placing all random variables by their expected values.

Before we can prove Theorem 4.4.1, we need to show the following two lemmas.

Lemma 4.4.2. Given a first-stage decision, z, the optimal allocation solution, x∗,

to the recourse problem, Q(z, ξ(ω)), for the SConFL with uncertain demands is

invariant to demand realizations.

Proof of Lemma 4.4.2

We must show that if x∗ is an optimal solution for Q(z, ξ(ω̃)) for some ω̃ ∈ Ω,

then x∗ is an optimal solution for Q(z, ξ(ω)) for all ω ∈ Ω.

Let Xz be the feasible region defined by z, and x∗ ∈ Xz be an optimal solution

for Q(z, ξ(ω̃)) for some ω̃ ∈ Ω. Note that the feasible region Xz is not dependent

on ω. Then,

q(z, ξ(ω̃))(x∗) =
∑

i∈D(
∑

j∈F aij(ω̃)x∗ij)

=
∑

i∈D(
∑

j∈F di(ω̃)bijx
∗
ij)

=
∑

i∈D di(ω̃)(
∑

j∈F bijx
∗
ij) ≤

∑
i∈D di(ω̃)(

∑
j∈F bijxij), ∀x ∈ Xz.

77

In vector notation,

∑
i∈D

di(ω̃)(bT
i x∗i) ≤

∑
i∈D

di(ω̃)(bT
i xi),∀x ∈ Xz. (4.7)

From inequality (4.7) we can show1 that not only the inequality holds for the

summation, but also for each individual term in it. That is,

di(ω̃)(bT
i x∗i) ≤ di(ω̃)(bT

i xi),∀i ∈ D, ∀x ∈ Xz; (4.8)

which implies,

bT
i x∗i ≤ bT

i xi,∀i ∈ D, ∀x ∈ Xz. (4.9)

We know that x∗ ∈ Xz and hence x∗ is a feasible solution for Q(z, ξ(ω)),∀ω ∈

Ω. Now, assume that x∗ is not an optimal solution to Q(z, ξ(ω)) for some ω ∈ Ω.

Then, there exists an x′ 6= x∗ ∈ Xz such that q(z, ξ(ω))(x′) < q(z, ξ(ω))(x∗).

q(z, ξ(ω))(x′) =
∑

i∈D di(ω)(bT
i x′i) <

∑
i∈D di(ω)(bT

i x∗i)

⇒ di(ω)(bT
i x′i) < di(ω)(bT

i x∗i), ∃i ∈ D

⇒ bT
i x′i < bT

i x∗i ,∃i ∈ D ⇒⇐

This contradicts equation (4.9) and proves by contradiction our Lemma 4.4.2 �.

1If there exists a demand node i ∈ D, such that di(ω̃)(bT
i x∗i) > di(ω̃)(bT

i x′i) for some x′i. Then
we could replace i’s assignment in x∗ and obtain a lower objective function. This would contradict
our assumption that x∗ is an optimal solution.

78

Lemma 4.4.3. Given a first-stage decision, z, the expected value of the recourse

program, Q(z, ξ(ω)), for the SConFL with uncertain demands equals the objective

function value of the recourse program with expected demands.

Proof of Lemma 4.4.3

We must show that Eω(Q(z, ξ(ω))) = Minimizex∈Xz

∑
i∈D

∑
j∈F Eω(di(ω))bijxij.

Eω(Q(z, ξ(ω))) =
∑
ω∈Ω

pωQ(z, ξ(ω)) (4.10)

=
∑
ω∈Ω

pω Minx∈Xz

∑
i∈D,j∈F

di(ω)bijxij (4.11)

By Lemma 4.4.2, we can take the minimization outside the first summation. More-

over, we can rearrange the order of summations. Then,

Eω(Q(z, ξ(ω))) = Minx∈Xz

∑
ω∈Ω

pω
∑

i∈D,j∈F

di(ω)bijxij (4.12)

= Minx∈Xz

∑
i∈D,j∈F

(
∑
ω∈Ω

pωdi(ω))bijxij (4.13)

= Minx∈Xz

∑
i∈D,j∈F

Eω(di)bijxij (4.14)

This proves Lemma 4.4.3�.

Proof of Theorem 4.4.1

Finally, the mean value problem of the recourse problem solves the recourse

problem, and consequently Theorem 4.4.1 directly follows from Lemma 4.4.3 �.

79

4.4.2 SConFL with Uncertain Locations

When variability on assignment costs is due to uncertainty on customers’ loca-

tion or other factors that do not affect assignment costs proportionally, simplifying

the problem by replacing the random variables by their expected value does not

necessary lead to good solutions. This is because the location of the closest open

facility depends on the realized scenario. In this case we show that even though

we cannot replace random variables by their expected values, we can transform the

SConFL problem into a deterministic ConFL problem with multiple copies of de-

mand nodes that our dual-ascent local search heuristic can successfully solve. We

assume the polynomial-scenario model such that there exists a limited number of

scenarios, ω ∈ Ω, that determine the whole set of assignment costs, aij(ω) ∀i ∈ D

and j ∈ F .

Theorem 4.4.4. The SConFL problem is equivalent to a deterministic ConFL prob-

lem with |Ω| copies of each demand node—one copy for each scenario and with

assignment cost equal to pωaij(ω).

Proof of Theorem 4.4.4

Recall the second stage recourse problem,

Q(z, ω) = Min x∈Xz

∑
i∈D,j∈F

aij(ω)xij(ω). (4.15a)

Hence, the expected value of the recourse problem is the weighted sum of each

scenario given the decisions of the first stage problem, z. Here, we have to specify

80

that the allocation solution xij is a function of ω.

Eω(Q(z, ξ(ω))) =
∑
ω∈Ω

pω Minx∈X
∑

i∈D,j∈F

aij(ω)xij(ω) (4.16a)

= Minx∈X
∑
ω∈Ω

pω
∑

i∈D,j∈F

aij(ω)xij(ω) (4.16b)

= Minx∈X
∑
ω∈Ω

∑
i∈D,j∈F

pωaij(ω)xij(ω) (4.16c)

In other words, given equation (4.16c) we can explicitly introduce the expected

value into our two-stage linear problem with recourse formulation. The resulting

formulation (4.17), hence, is equivalent to our original cutset formulation for the

ConFL problem when assignment costs are known, see formulation (4.4). There are

as many copies of the demand nodes as scenarios there exist, and the assignment

costs are given by the product of the probability of the scenario and the original

assignment cost.

This finalizes our proof of Theorem 4.4.4 �.

81

Cutset formulation for the Stochastic ConFL problem:

Minimize Z =
∑
i∈F

fizi +
∑

i,j∈(S∪F)

cijyij +
∑
ω∈Ω

∑
i∈D,j∈F

pωaij(ω)xij(ω) (4.17a)

subject to∑
i∈F

xij(ω) ≥ 1, ∀j ∈ D, ∀ω ∈ Ω (4.17b)

xij(ω) ≤ zj, ∀i ∈ D, ∀j ∈ F, ∀ω ∈ Ω (4.17c)∑
(i,j)∈(S∪F)

yij =
∑

l∈(S∪F)

zl − 1 (4.17d)

∑
(i,j)∈R

yij ≤
∑
l∈R

zl − 1, ∀R ⊂ (S ∪ F) (4.17e)

xij(ω), yij, zi ∈ {0, 1} (4.17f)

While our transformation is also applicable to the independent-activation

model, it suffers from what is often referred to as the curse of dimensionality. For

example, a problem with only two facilities, |F | = 2, and three demand nodes,

|D| = 3, with two assignment cost levels each, |L| = 2, where any demand node

can be assigned to any facility node would have a total of 64 scenarios to consider,

|L||D||F | . When the location of demand nodes are independent from each other, the

number of scenarios increases rapidly and to simply solve the deterministic equiva-

lent problem with multiple demand node copies is impractical and computationally

infeasible. However, taking advantage of the deterministic equivalent problem, we

can obtain high-quality solutions using Monte Carlo simulation for the independent-

82

activation model. Furthermore, the lower bounding procedure allows as to assess

the quality of the heuristic solution and construct tight confidence bounds for the

optimal solution value.

4.5 Sample Average Approximation Method

The sample average approximation (SAA) method is an approach for solv-

ing stochastic optimization problems by using Monte Carlo simulation. Kleywegt

et al. (2002), Verweij et al. (2003), and Shapiro and Philpott (2007) provide good

introductions to this approach. In this technique the expected objective function

of the stochastic problem is approximated by a sample average estimate derived

from a random sample. The resulting sample average approximation problem, a de-

terministic variant of the problem, is then solved by optimization techniques. The

process is repeated with different samples to obtain candidate solutions along with

statistical estimates of their optimality gaps.

Unlike the approach followed in the literature in the SAA method, here we

solve the sample problems with a heuristic coupled with a lower bounding method.

We show that it is possible to construct tight confidence intervals on the optimal

value function even if the sample problems are not solved to optimality. This result

is particularly important for problems such as the ConFL problem that are costly to

solve to optimality (see Ljubić (2007)). Certainly, the quality of the solution yielded

will depend on the quality of the solution obtained by the heuristic for the sample

problems; and the width of the confidence interval will also depend on the sample

83

problem size, the quality of the lower bounds, and the variability of the solution

values.

In the SAA method the expected value function E[Q(x, ξ(ω))] is approximated

by the sample average function
∑N

n=1Q(x, ξ(ωn))/N , where a sample {ω1, ω2, ..., ωN}

of N sample scenarios is generated from Ω according to probability distribution P .

The SAA problem

zN = min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn)), (4.18)

corresponding to the original two-stage stochastic problem is then solved using a

deterministic optimization algorithm. The optimal value zN and an optimal solution

x̂ to the SAA problem provide estimates of their true counterparts in the stochastic

program. By generating R independent samples, each of size N , and solving the

associated SAA problems, objective values zN1, zN2, ..., zNR and candidate solutions

x̂1, x̂2, ..., x̂R are obtained. Let

z̄N =
1

R

R∑
m=1

zNm (4.19)

denote the average of the R optimal values of the SAA problems.

This procedure produces up to R different candidate solutions. Out of these

R different candidate solutions, we have to select one as the approximation to the

optimal solution of the original stochastic program. One generally accepted strategy

is to generate a sample problem with a significantly large number of scenarios,

84

N ′ >> N . Then, it is natural to take x̂∗ as one of the optimal solutions x̂1, x̂2, ..., x̂R

of the R SAA problems that has the smallest estimated objective value, that is,

x̂∗ ∈ arg min{ẑN ′(x̂)|x̂ ∈ {x̂1, x̂2, ..., x̂R}} (4.20)

where {ω1, ω2, ..., ωN
′} is the sample of scenarios chosen to evaluate the candidate

solutions.

Using the DLS heuristic, we generateR heuristic candidate solutions x1
H , x

2
H ,...,

xRH with their corresponding objective values, zN1
H , zN2

H , ..., zNRH and lower bounds,

zN1
LB, z

N2
LB,..., z

NR
LB . Similarly, we take as the heuristic solution to the stochastic pro-

gram the heuristic solution xiH that has the smallest estimated objective value in

the sample problem with N ′ scenarios.

4.5.1 Quality of the Solution

Kleywegt et al. (2002) provides performance bounds on the quality of the

solution yielded by the SAA method to the stochastic program. Following and

extending their argument, in this section we provide performance bounds on the

quality of the solution yielded by the SAA method using the DLS heuristic.

Given a feasible solution x ∈ X, we have to evaluate the quality of this point

viewed as a candidate for solving the true problem. Since the point x is feasible,

we clearly have that g(x) ≥ v∗, where v∗ = minx∈X g(x) is the optimal value of the

stochastic problem, and g is the true stochastic objective function. The quality of

85

x can be measured by the optimality gap

gap(x) := g(x)− v∗. (4.21)

The true value of g(x) can be estimated by Monte Carlo sampling. That is, an iid

random sample ωj, j = 1, ..., N ′, of ω is generated and g(x) is estimated by the

corresponding sample average ḡN ′(x) = cTx+ q̄N ′(x). At the same time the sample

variance

σ2
N ′(x) :=

1

N ′(N ′ − 1)

N ′∑
j=1

[Q(x, ωj)− q̄N ′(x)]2 (4.22)

of q̄N ′(x) is calculated. Then we can calculate an approximate 100(1−α)% confidence

upper bound for g(x) by

UN ′(x) := ḡN ′(x) + zασN ′(x). (4.23)

This bound is justified by the Central Limit Theorem with the critical value zα =

Φ−1(1−α), where Φ(z) is the cumulative distribution function (cdf) of the standard

normal distribution.

In order to calculate a lower bound for v∗ we proceed as follows. Denote by

zNLB the lower bound yielded by the DLS heuristic for the SAA problem based on

a sample of size N . Note that zNLB is a function of the (random) sample and hence

is random. To obtain a lower bound for v∗ observe that E[ḡN(x)] = g(x), i.e., the

sample average ḡN is an unbiased estimator of the expectation g(x). We also have

that for any x ∈ X the inequality ḡN(x) ≥ infx′∈X ḡN(x′) ≥ zNLB holds, so for any

86

x ∈ X, we have

g(x) = E[ḡN(x)] ≥ E[inf
x′∈X

ḡN(x′)] ≥ E[zNLB]. (4.24)

By taking the minimum over x ∈ X of the left hand side of the above inequality we

obtain v∗ ≥ E[zNLB].

We can estimate E[zNLB] by solving the SAA problems several times and av-

eraging the lower bounds calculated by dual ascent. That is, the SAA problems

based on independently generated samples, each of size N , are solved to obtain a

dual-ascent bound R times. Let zN1
LB, z

N2
LB, ..., z

NR
LB be the computed lower bound

values for these SAA problems. Then,

z̄NRLB :=
1

R

R∑
j=1

zNjLB (4.25)

is an unbiased estimator of E[zNLB], the dual-ascent lower bound yield for SAA prob-

lems with N scenarios. Since the samples, and hence zN1
LB, z

N2
LB, ..., z

NR
LB , are indepen-

dent, we can estimate the variance of z̄NRLB by

σ2
NR :=

1

R(R− 1)

R∑
j=1

(zNjLB − z̄
NR
LB)2. (4.26)

A confidence 100(1− α)% lower bound for E[zNLB] is then given by

LNR := z̄NRLB + tα,νσNR, (4.27)

where ν = R−1 and tα,ν is the α-critical value of the t-distribution with ν degrees of

87

freedom. Since v∗ ≥ E[zNLB], we have that LNR gives a valid lower statistical bound

for v∗ as well. Consequently,

ˆgap(x) := UN ′(x)− LNR (4.28)

gives a statistically valid (with confidence at least 1 - 2α) bound on the true gap(x).

Alternatively, we can express this gap as a percentage by

ˆgap(x)[%] :=
UN ′(x)− LNR

LNR
× 100[%], (4.29)

with the following interpretation: the heuristic solution is within x% from the true

optimal solution with confidence at least 1 - 2α. It can be noted that the lower bound

LNR is somewhat conservative and depends on the quality of the lower bounding

mechanism.

4.6 Proposed Heuristic

Our proposed heuristic relies on the fact that the SConFL problem with a

polynomial number of scenarios can be formulated as a deterministic ConFL problem

with multiple copies of the demand nodes and assignment costs equal to the original

assignment cost multiplied by its probability of occurrence. Once the problem has

been transformed into a deterministic ConFL problem, we apply our DLS heuristic

to obtain a high-quality solution and lower bound as described in Chapter 3.

88

4.7 Computational Experiments

In this section we solve a set of SConFL problems and explore the benefits

of solving the stochastic problem as an integer linear two-stage recourse problem.

We report on a set of computational experiments with our DLS heuristic on the

SConFL problem.

We report on results for both: (i) the polynomial-scenario model and (ii) the

independent-activation model. We use the insights from our polynomial-scenario

computational experiments to generate the sample average problems for the inde-

pendent-activation computational experiments. We note that the sample average

problems are simply SConFL problems with a preset number of scenarios. For the

polynomial-scenario problem, we also solve the associated mean value problem and

report the duality gap of the expected value solution. We coded our heuristics in

Visual Studio 2005 (C++). We conducted all runs on an AMD AthlonTM 62 X2

Dual, 2.61 GHz machine with 3GB of RAM.

4.7.1 Expected Value Solutions

In order to calculate the Expected Value Solution (EVS) we need to first find

the solution that solves the associated mean value problem (MVP). That is, the

deterministic ConFL problem whose random assignment costs, aij(ω), have been

replaced by their expected value, āij. We denote this solution as x(ω̄) and we use

89

it to calculate the EVS as,

EV S =
∑
ω∈Ω

pωZ(x(ω̄), ω) (4.30)

where Z(x(ω̄), ω) is the objective function of the SConFL model for the value of

the decision variables x(ω̄) and a realization of the random variable ω. Therefore,

the EVS is the expected value yielded by implementing the solution obtained by

assuming expected values on the random inputs. In many settings this solution is

not even guaranteed to be feasible; however, for the ConFL problem the solution

obtained by solving the average problem is always feasible.

The Value of the Stochastic Solution (VSS) is then given by,

V SS = EV S − Z (4.31)

where Z is the objective of the stochastic solution.

In our computational experiments we use a heuristic to solve the MVP and

the stochastic problem; consequently, we cannot precisely compute the value of the

stochastic solution. However, we can compare the quality of both solutions and

compute the lower bound gap of the MVP solution using the lower bound yielded

by DA for the SConFL problem.

90

4.7.2 Problem Generation and Characteristics

In this section we describe how we generated instances for both the polynomial-

scenario model and sample average approximation problems. We generated in-

stances by first selecting nodes randomly located on a 100 x 100 square grid. The

location, i.e. x- and y-coordinates, of each facility, Steiner node and demand node

is randomly generated on the grid. Furthermore, to represent the uncertainty in

the assignment costs we assume that the exact location of each demand node is

uncertain and generate as many copies as scenarios of each demand node varying

its location. As a first step we generated a base location for each demand node;

secondly, we disturbed that location by an error term, e, in the x- and y-coordinates

drawn from a discrete uniform distribution according to a given variability, v. In

our first set of instances, v ranges from 5 to 30 in steps of 5; i.e. if v = 5 then

e ∼ U [−5, 5].

The Euclidean distances rounded up to the next integer (to preserve triangle

inequality) were used as a basis for the edge lengths. The assignment edge costs

are equal to the edge lengths between demand nodes and facility nodes, while tree

edge costs are equal to the edge lengths multiplied by an M factor. The M factor

illustrates the significantly higher (in terms of cost per unit distance) connection

cost of edges in the tree T . We set M = 7 for the polynomial-scenario instances and

M = 3 for the sample average problems.

The number of demand nodes and facility nodes vary between 10 and 90 in

steps of 10, with the total number of demand and facility nodes equal to 100. The

91

number of Steiner nodes is 20 for all the instances. In an instance of the problem,

the facility opening costs are equal to 30 and the same for all the facility nodes.

Finally, the number of scenarios considered for the polynomial-scenario instances is

5.

For the polynomial-scenario instances to compare the performance of our DLS

heuristic on the SConFL with respect to its performance on the average represen-

tation of the problem, we generate an “average instance” where the assignment

costs for each demand node equal its average assignment cost. In these instances

assignment costs are no longer integer.

For the sample approximation method, we set the number of scenarios N for

the sample average problems to 20, and the number of replications R to 10. Lastly,

we set the number of scenarios N ′ to 2000 to compute the sample variance of the

solution yielded by the heuristic.

4.7.3 Polynomial-Scenario Model Results

Tables 4.1 and 4.2 present our computational results of the dual-ascent heuris-

tic and the DLS heuristic on the MVP and the stochastic formulation. The MVP

results were calculated using the original assignment costs; that is, after the DLS

heuristic yielded a solution using the average assignment costs, we use that solution

(set of open facilities) to calculate the real assignment costs with recourse.

DA yields relatively good solutions with average gaps below 11.01% for every

range of variability on the location of the demand nodes and proportion of demand

92

and facility nodes. However, in some instances the gap can be quite large, and in

one instance this reaches 23.74%. The local search is quite effective to reduce the

gaps on either formulations and yields in all cases solutions with gaps below 9.25%

on the MVP and 7.70% on the stochastic formulation. The DLS heuristic yields

solutions with average gaps below 5.22% and 4.07% on the MVP and stochastic

formulation, respectively, for all the combinations of parameters.

There are no considerable differences between the solutions yielded by DLS on

the MVP and on the stochastic formulation for low values of variability. This result

was expected. When there is low variability on the assignment costs, to obtain a

solution using the average assignment costs seems quite reasonable given that the

DLS takes a fraction of the time on this formulation with respect to the time it

requires on the complete formulation of the problem. However, as the variability on

the assignment costs increases, DLS finds better solutions when run on the stochastic

formulation of the problem. Nevertheless, we must note that neither formulation

yields the best solution for all combinations of parameters or variability. Even when

the variability on the assignment costs is high, in a few instances the DLS heuristic

found a better solution using the MVP formulation.

4.7.4 SAA Results (Independent-Activation Model)

Tables 4.3, 4.4 and 4.5 show our computational results for the SConFL problem

using the SAA method and the DLS heuristic. Each entry in Table 4.3 shows

the average gap over ten instances, while Tables 4.4 and 4.5 show the minimum

93

|D| |F | v = 5 v = 10 v = 15

DA MVP DLS DA MVP DLS DA MVP DLS

10 90 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04%
20 80 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%
30 70 3.05% 1.37% 1.39% 4.88% 1.21% 1.11% 4.27% 1.64% 1.25%
40 60 7.63% 2.38% 2.64% 8.59% 3.02% 3.03% 8.47% 3.38% 2.69%
50 50 7.20% 3.50% 3.70% 8.40% 3.72% 3.52% 10.28% 4.49% 3.68%
60 40 8.55% 3.27% 3.53% 9.58% 3.34% 3.84% 9.84% 4.30% 4.07%
70 30 6.22% 2.71% 2.77% 6.79% 3.06% 2.89% 7.12% 3.38% 2.66%
80 20 2.87% 1.30% 1.53% 3.16% 1.68% 1.47% 3.59% 1.87% 1.46%
90 10 1.66% 0.38% 0.38% 1.38% 0.47% 0.48% 1.53% 0.61% 0.57%

Table 4.1: Comparison of heuristics for the Stochastic ConFL. fi = 30, M = 7, and
v factor is varied

|D| |F | v = 20 v = 25 v = 30

DA MVP DLS DA MVP DLS DA MVP DLS

10 90 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04%
20 80 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%
30 70 6.15% 1.28% 1.47% 4.56% 1.91% 1.73% 5.98% 1.67% 1.63%
40 60 7.01% 3.24% 2.93% 8.91% 3.16% 2.55% 8.40% 4.08% 2.79%
50 50 7.67% 3.59% 3.32% 9.67% 4.11% 3.74% 11.01% 4.85% 3.67%
60 40 10.61% 3.33% 3.98% 9.11% 5.22% 3.82% 8.43% 4.29% 3.21%
70 30 6.77% 3.57% 3.02% 8.74% 3.83% 2.81% 9.35% 4.54% 3.42%
80 20 4.10% 2.53% 1.83% 5.40% 2.31% 1.62% 5.32% 2.98% 2.33%
90 10 1.15% 0.66% 0.41% 1.82% 1.23% 0.32% 1.72% 1.50% 0.51%

Table 4.2: Comparison of heuristics for the Stochastic ConFL. fi = 30, M = 7, and
v factor is varied

and maximum gap within those ten instances, respectively. The values reported

are 98% confidence gaps. That is, with 98% confidence the optimal value of the

true stochastic problem is x% from the lower bound. Overall, these gaps follow

the behaviour observed for the deterministic instances and the polynomial-scenario

instances. Lower gaps are observed for either high proportions of demand nodes or

facility nodes. On the contrary, higher gaps are observed for balanced instances with

similar numbers of demand nodes and facility nodes. Furthermore, these confidence

94

|D| |F | v

5 10 15 20 25 30

10 90 0.59% 1.03% 1.96% 2.47% 2.64% 2.67%
20 80 2.58% 2.93% 3.55% 3.60% 4.25% 4.75%
30 70 2.69% 2.95% 3.51% 4.59% 5.01% 5.17%
40 60 2.59% 3.08% 4.14% 4.48% 5.00% 5.42%
50 50 3.08% 3.39% 3.76% 4.51% 4.75% 5.25%
60 40 2.91% 3.31% 3.42% 3.90% 4.17% 4.78%
70 30 1.76% 2.12% 2.53% 2.83% 3.23% 3.35%
80 20 0.82% 1.20% 1.75% 1.91% 2.26% 2.52%
90 10 0.36% 0.80% 0.95% 1.09% 1.36% 1.19%

Table 4.3: Average 98% confidence gaps for the SConFL, fi = 30, M = 3, and v
factor is varied

|D| |F | v

5 10 15 20 25 30

10 90 0.33% 0.43% 1.08% 1.48% 1.40% 0.74%
20 80 1.27% 1.54% 2.17% 2.06% 1.71% 3.04%
30 70 1.01% 1.69% 1.57% 2.66% 3.29% 3.18%
40 60 0.83% 1.22% 3.13% 3.09% 3.55% 4.17%
50 50 1.75% 2.23% 2.64% 3.81% 3.39% 4.25%
60 40 1.40% 1.76% 2.71% 3.08% 3.14% 2.82%
70 30 0.80% 1.19% 1.63% 1.77% 2.01% 1.89%
80 20 0.30% 0.59% 1.28% 1.39% 1.65% 1.53%
90 10 0.20% 0.32% 0.48% 0.69% 1.05% 0.44%

Table 4.4: Minimum 98% confidence gaps for the SConFL, fi = 30, M = 3, and v
factor is varied

gaps increase for higher levels of uncertainty. We can outline two explanation for

this behaviour. First, as the uncertainty level increases, the duality gaps obtained

by DLS increase. We observe this behaviour for the polynomial-scenario instances.

Secondly, as the uncertainty level increases, the sample variance increases as well,

and the width of the confidence interval increases.

Tables 4.4 and 4.5 show that there are no large disparities in the gaps for a

particular set of parameters. The smallest gap corresponds to an instance with 90

95

|D| |F | v

5 10 15 20 25 30

10 90 1.14% 1.60% 3.34% 3.85% 3.99% 4.53%
20 80 3.77% 6.20% 6.11% 5.48% 6.81% 7.82%
30 70 4.49% 4.21% 5.15% 7.85% 8.28% 8.84%
40 60 4.12% 4.19% 5.38% 5.15% 6.53% 6.45%
50 50 4.91% 6.03% 5.63% 5.76% 5.80% 6.44%
60 40 4.29% 4.08% 4.40% 4.65% 5.19% 6.02%
70 30 3.66% 3.61% 4.42% 3.94% 4.42% 4.25%
80 20 1.55% 1.87% 2.40% 2.48% 3.65% 3.59%
90 10 0.80% 1.45% 1.57% 1.58% 1.73% 2.00%

Table 4.5: Maximum 98% confidence gaps for the SConFL, fi = 30, M = 3, and v
factor is varied

customer nodes, 10 facility nodes and the lowest variability (v = 5). On the other

hand, the highest gap is observed for an instance with 30 demand nodes, 70 facility

nodes and the highest variability (v = 30).

In terms of computational time, to solve one sample average problem with

20 scenarios takes approximately 90 seconds. Consequently, to obtain a confidence

interval on the optimal function value of the true stochastic problem with 10 replica-

tions takes approximately 900 seconds plus approximately 100 seconds for post pro-

cessing. One could attempt to find better solutions for the true stochastic problem

and tighter confidence intervals increasing the number of scenarios in each sample

average problem, the number of replications for each sample average problem or the

number of scenarios to evaluate each solution. However, any of these alternatives

would indisputably require a longer computational time. There is a natural trade-

off between the performance of the SAA and the computational effort to produce

tighter performance bounds.

96

4.7.5 Sample sizes N and N ′ and number of replications R

In this section we explore the trade-off between sample size N (i.e., number

of scenarios per sample average problem) and the number of replications R (i.e.,

number of sample average problems). In addition, we describe how we determine

the number of scenarios N ′ selected to test each of the solutions generated by the

sample average problems for our computational experiments.

Earlier we mentioned that we can use a large number of scenarios to assess

the quality of a solution, x, and calculate an approximate 100(1 − α)% confidence

upper bound for g(x) by equation (4.28). Clearly, the sample variance is one of the

key factors that determines the width of such bound. Figure 4.1 shows how the

sample variance of q̄N ′(x) changes as the number of scenarios, N ′, increases. This

figure corresponds to one instance with 50 demand nodes, 50 facility nodes, M = 3,

facility opening cost equal to 30 and variability up to ±10 in the demand nodes

coordinates. The sample variance decreases abruptly at the beginning but later it

level offs reaching a plateau at around 2000 scenarios. This behavior was represen-

tative for the whole set of problems. Based on this observation, we determined that

N ′ = 2000 was an appropriate number of scenarios for our computational experi-

ments. Evaluating more scenarios would increase our computational time with very

little gain in terms of the quality of the bound.

Figure 4.1 gives further insights regarding the solutions yielded by each repli-

cation. In theory each distinct sample average problem (or replication) would yield

a distinct solution. However, in this case we can observe that the 10 replications

97

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Number of scenarios

S
am

pl
e

V
ar

ia
nc

e

Solution 1
Solution 2
Solution 3
Solution 4
Solution 5
Solution 6
Solution 7
Solution 8
Solution 9
Solution 10

Figure 4.1: Sample variance of q̄N ′(x) for increasing number of scenarios, N ′

provide only 7 distinct solutions. This is an important observation at the time of

deciding the number of replications. Increasing the number of replications does not

necessarily produce more candidate solutions.

Another reason to increase the number of replications, R, is to produce a

tighter lower bound. In order to improve the lower bound defined by equation

(4.27), one must decrease the sample variance of E[zNLB] either increasing the number

of scenarios, N , for each sample average problem, or the number of replications, R.

The results reported in the previous section were calculated using N = 20 and

R = 10. If we had twice the computational time available, we could increase either

N from 20 to 30, or R from 10 to 20. Table 4.6 shows the sample variance and total

computational time for either 20 or 30 scenarios and 10 or 20 replications. Each

98

N = 20 N = 30

Instance R = 10 R = 20 R = 10

variance time (sec) variance time (sec) variance time (sec)

1 3.4922 805.76 1.8242 1589.31 2.7715 1512.27
2 2.7314 837.45 1.2617 1656.42 2.7534 1586.78
3 8.8446 801.28 3.7902 1582.86 5.7064 1510.22
4 6.1019 769.58 3.5685 1521.37 6.2817 1464.41
5 2.7945 804.11 2.6196 1587.08 3.0258 1501.25
6 6.1907 826.36 2.3549 1639.23 3.1859 1581.80
7 2.7922 817.08 2.4721 1614.63 3.3145 1561.22
8 3.4815 792.14 2.3656 1568.42 5.9125 1523.25
9 3.1519 869.80 1.7980 1721.59 0.7566 1670.31
10 1.7649 811.98 1.3088 1600.97 2.5983 1519.61

Table 4.6: Sample variance of E[zNLB] and computational time for various N and R
values.

row represents the results for an instance with 50 demand nodes, 50 facility nodes,

M = 3, facility opening cost equal to 30 and variability up to ±10 in demand node

coordinates. Interestingly, while we observed earlier that increasing the number

of replications does not improve the quality of the upper bound, it does decrease

the lower bound sample variance and consequently improve the lower bound. Such

improvement is greater than the one obtained by increasing the number of scenarios

per sample average problem. These results indicate that increasing the number of

replications might be the preferred strategy to produce tighter confidence interval

around the true optimal cost and improve the quality of the lower bound. Once

again these results were representative for the whole set of instances.

99

4.8 Conclusions

In this chapter we have extended the ConFL problem to address two types of

uncertainties: demand quantities and assignment edge costs. Furthermore, we have

considered two types of models: polynomial-scenario and independent-activation.

In either of these models, for demand quantities we show that the problem can

be solved optimally by the mean expected value problem. That is, the probability

distribution of demands can be ignored as long as the risk of the solution is not

considered. As the linear program proposed is optimizing expected values, we do

not make any assumptions on the variability of the total cost of the solution. How-

ever, we could introduce a constraint that limits the maximum cost of the recourse

problem to control for very unfavorable scenarios which would invariably change the

problem at hand.

In the more general case, where variability occurs on the assignment edges,

we show how to transform the problem into a deterministic equivalent formula-

tion on a larger graph and apply our dual-ascent local search heuristic. We tested

successfully this approach on a set of randomly generated instances with varying

network structures and uncertainty levels. We find this strategy especially valuable

for the polynomial-scenario model and for the independent-activation model within

the sample average approximation method. We find that the stochastic solution has

significant value. The value of the stochastic solution obtained by the DLS heuris-

tic, as expected, depends on the variability level on the assignment costs. As the

uncertainty is higher, the value of the stochastic solution is higher.

100

Lastly, we show how to use sample average approximation with a heuristic and

a lower bounding procedure. Furthermore, we find that the DLS heuristic within the

SAA method yields tight confidence intervals for the SConFL problem under a wide

range of parameters. We explore the trade-offs between the number of scenarios

and number of replications; and conclude that in general increasing the number

of replications yields tighter performance confidence bounds for the true stochastic

optimal value.

101

Chapter 5

Robust Optimization for the Connected Facility Connected Problem

5.1 Introduction

In this chapter we attempt to address the uncertainty in the ConFL problem

by robust optimization, and search for solutions that perform well under varying

customer realizations. One example that motivates this approach is the fiber-to-

the-nodes (FTTN) technology, which the ConFL problem models (Gollowitzer and

Ljubic 2011). There is growing interest to ensure broadband accessibility to every

household (see Economist 2009a, Frenzel 2010); and consequently, to upgrade and

extend fiber optic networks. However, there is limited information regarding which

customers will subscribe to the service and their demand. On the other hand,

demand ranges and coverage areas are easily identifiable.

From a broad perspective the FTTN layout is as follows. Serving offices dis-

tribute the signal to neighborhoods or homes through fiber optic connections. Fiber

optic cables run from the serving offices to a cabinet serving a neighborhood, where

end users connect using their existing copper (or even fiber optic, Economist 2009b)

connections. Switching devices stored in these cabinets and fiber optic cables are ex-

pensive. Consequently, the problem is to determine how many cabinets (and hence

switches) to deploy, where to place them, which customers to connect to them, and

how to reconnect cabinets among each other and to the backbone.

102

A considerable amount of time elapses between the moment that cabinets (or

facilities) are installed and interconnected and customers are assigned to each facil-

ity. Consequently, decision makers have to determine the “optimal” location of these

cabinets with partial or limited information based on best estimates and forecasts

of the location of future customers and their demand. Furthermore, to explicitly

incorporate information on the location of each individual customer might not be

possible or even practical. Evidence of the difficulty to estimate the location of

customers is the fact that while AT&T can provide broadband access to 22 million

of household, today only 2.5 millions are current subscribers of the U-verse service.

Under this premise we propose a robust optimization approach that would explicitly

incorporate the uncertainty of customer locations and provide a solution that mit-

igates the adverse effects of specific realizations. As we highlighted in the previous

chapter, the ConFL problem models other similar problems that combine facility

location decisions with connectivity requirements that face similar uncertainty.

We follow the optimization approach introduced by Bertsimas and Sim (2003)

to search for robust solutions to the original problem. Under Bertsimas and Sim’s

approach, a robust solution is an optimal solution that satisfies an uncertainty bud-

get constraint determined by the decision-maker. For robust optimization problems

with uncertainty limited to the objective function coefficients, the budget constraint

determines the number of such coefficients that can take their highest value at any

solution and the objective function becomes a minimax function. Bertsimas and

Sim proposed an algorithmic procedure to solve this minimax optimization problem

that consists of solving a family of deterministic, called nominal, optimization prob-

103

lems. These nominal problems are deterministic versions of the original problem yet

their cost matrices do not necessarily have the same structure and properties as the

original problem. The main algorithm focuses on finding the optimal solution to

the nominal problems and therefore an optimal solution to the robust optimization

problem. For the case where the nominal problems are not solved to optimality,

Bertsimas and Sim (2003) also show that an α-approximation algorithm for the

deterministic problem can be used to obtain an α-approximation algorithm for the

robust problem. We extend their approach to heuristics that do not necessarily have

a known worst case approximation ratio but where it is possible to calculate lower

bounds on the optimal solutions of the nominal problem.

For the ConFL problem, we look for network designs that are insensitive to

different customer realizations yet exhibit low cost under different environments. We

define customer location within an area. The final location of a customer may fall

anywhere within this area. This strategy is specially appropriate for the broadband

network problem, where neighborhoods can be described by geographic regions.

Furthermore, this approach can be easily extended to assign range demand values

for each customer or group of customers in a given region. We examine how such

uncertainty affects the optimal network design and propose an efficient strategy to

obtain high-quality solutions to the robust ConFL problem.

In summary, the contributions of this chapter are threefold. First, we in-

troduce the ConFL problem under customer uncertainty and formalize its robust

counterpart. Secondly, we extend Bertsimas and Sim’s robust optimization solution

approach to situations where one has a heuristic upper bound and a lower bound on

104

the optimal solution objective value for each nominal problem. In other words as

long as we have a heuristic and a lower bounding mechanism for the deterministic

problem, we can use them to find a heuristic solution for the robust problem to-

gether with a lower bound on the optimal objective value of the robust optimization

problem. And finally, we propose an algorithm based on a DLS heuristic that yields

high-quality solutions to the ConFL problem’s robust counterpart.

In the next section we explore the black-box model for uncertainty and ana-

lyze how the formulation in (4.4) is affected by incertitude in the location and/or

demand quantity of customers. The robust ConFL problem belongs to the family

of robust problems whose uncertainty takes place only in the objective function (as

opposed to the feasibility set). Consequently, we focus on a model that exploits

this characteristic and specifically applies to problems with box uncertainty in the

objective function.

5.2 Robust Optimization and The ConFL Problem

When the location of demand nodes or their demand is unknown and there

is limited information regarding the probability distribution of this uncertainty,

it is not possible to implement an expected value approach that minimizes the

expected value of the objective function. Furthermore, optimizing over the expected

value might lead to solutions that are very expensive under certain realizations,

although they have the minimum expected value. Since this may not be desirable for

the decision maker, the robust optimization approach provides a more appropriate

105

solution strategy in these situations.

Under the robust optimization framework one optimizes against the worst in-

stances that might arise by using a min-max objective. In the ConFL problem,

uncertain customer locations and/or demand quantities translate to uncertain as-

signment costs. Hence, one robust approach is to optimize against the worst-case

scenario (i.e., worst-case analysis) and assume the highest assignment cost for each

pair of demand node and facility node. However, indisputably this strategy yields

a very conservative and most likely a very expensive solution. Alternatively, Bertsi-

mas and Sim (2003) propose a robust optimization method that allows the decision

maker to adjust the conservatism level of the solution sought. For the case where

uncertainty exists only on the coefficients of the objective function, as it is the case

in the ConFL problem under customer uncertainty1, each solution is penalized by

a weighted deviation term that incorporates the uncertainty cost of the solution.

In the ConFL problem under customer uncertainty, we consider two sources of

uncertainty: customer location and demand quantities. To model customer location

uncertainty we assume that demand node locations are unknown on a plane and

consider two types of uncertainty regions: circular and rectangular. For the circular

uncertainty region the location of each demand node is described by a circular

disk defined by two parameters: center coordinates and radius (or diameter). For

the rectangular uncertainty region the location is defined by a set of parameters:

center coordinates and distinct deviation ranges for each axis direction. Then, the

1We use the expression customer uncertainty to refer jointly to location and/or demand quantity
uncertainty

106

assignment costs range between the closest Euclidean distance between the facility

node and the demand node uncertainty region, aij, and the longest distance between

them, aij +dij; that is, the uncertain assignment cost, ãij ∈ [aij, aij +dij]. When the

facility node falls within the uncertainty region, aij = 0. Our analysis here easily

extends to other shapes for the uncertain region. However, within this chapter

we focus our attention to only these two shapes, circular and rectangular, as they

model the uncertainty generally seen in practice. It turns out that the circle is

simple enough to derive theoretical results, and the rectangle is sufficiently irregular

to convey general characteristics pertaining to other shapes.

On the other hand, when demand quantities are uncertain we assume that

they also range within a predetermined range. Let q̃i ∈ [qi, qi + δi] be the random

demand quantity for customer i, and αij be the per unit demand assignment cost

for customer i to facility j. Then, the random assignment cost is given by ãij ∈

[αijqi, αijqi + αijδi] = [aij, aij + dij], where aij = αijqi and dij = αijδi.

In both cases uncertainty translates into interval uncertainty as unknown as-

signment costs vary between a minimum and a maximum value without reference

to a probability distribution. Note that if there is uncertainty on both location and

demand, it is easy to see that the result is indeed uncertainty in the assignment

costs.

107

5.2.1 Bertsimas and Sim’s Robust Optimization Model

In general terms, given the following nominal combinatorial optimization prob-

lem

Minimize c̃Tv (5.1)

subject to v ∈ X

where X ⊆ {0, 1}n, Bertsimas and Sim (2003) define the robust counterpart, where

each entry c̃j, j ∈ N = {1, 2, ..., n} takes values in [cj, cj + dj], dj ≥ 0, and X is a

discrete set, as follows

Z = Minimize cTv + max
{R|R⊆N,|R|≤Γ}

∑
j∈R

djvj (5.2)

subject to v ∈ X.

The interpretation of this formulation is that at most Γ of the uncertain values

in any solution will take their highest value. Consequently, the decision maker wants

to minimize the maximum cost of a solution with at most Γ coefficients at their

highest (or wort case) values. In other words, Γ represents a budget constraint that

allows the decision maker to adjust the conservatism level of the solution sought.

The deviation term (or penalty term), max{R|R⊆N,|R|≤Γ}
∑

j∈R djvj, represents

the sum of the maximum deviation of a specified number, Γ, of uncertain coeffi-

cients in the solution. The decision maker can select the conservatism parameter Γ

between zero and the maximum number of uncertain coefficients in the problem, n.

108

A parameter of Γ = 0 corresponds to the optimistic case solution, which completely

disregards the deviation terms in the cost coefficients, and assumes the best-case

scenario with the minimum coefficient cost for each decision variable. A value of

Γ = n yields the worst-case scenario solution and each cost coefficient includes the

deviation term.

Bertsimas and Sim (2003) propose an algorithm to find a solution to problem

(5.2). They show that one can find the optimal solution to problem (5.2) by solving

at most n + 1 nominal (deterministic) problems. To apply this method one must

first identify the values of the deviation coefficients, dj, and label them in decreasing

order such that d1 ≥ d2 ≥ ... ≥ dn ≥ dn+1 = 0. Then for each deviation coefficient,

dl, one defines a nominal problem, Gl, given by

Gl = Γdl+ Minimize cTv +
l∑

j=1

(dj − dl)vj (5.3)

subject to v ∈ X.

Note that for equal dl values, one must solve only one Gl nominal problem.

Consequently, the number of nominal problems is at most n+ 1.

The problem Gl−Γdl is a deterministic instance of the original problem (5.1)

with cost coefficients equal to cj + max(dj − dl, 0). Then, G1 − Γd1 represents the

best-case scenario problem and Gn+1−Γdn+1 yields the worst-case scenario problem.

Theorem 5.2.1. [Bertsimas and Sim (2003)] The optimal function value, Z, to

problem (5.2) is given by Z = minl=1,...,n+1 Gl and the optimal solution, v∗ =

109

arg minl=1,...,n+1 Gl.

Below we restate a sketch of the proof of Theorem 5.2.1 in Bertsimas and Sim

(2003). This will be helpful in our subsequent analysis of using upper and lower

bounds instead of solving the nominal problems to optimality.

Proof of Theorem 5.2.1

For a given value of v, we can alternatively express the inner maximization

problem in (5.2) as the following:

ζ(v) = Maximize
∑
j∈N

(djvj)uj (5.4)

subject to uj ≤ 1, ∀j ∈ N∑
j∈N

uj ≤ Γ

uj ≥ 0, ∀j ∈ N.

Note that ζ(v) has an integral solution for uj (i.e., the polyhedron has integer

extreme points). The values uj represent whether a certain value dj in the solution

(i.e., with vj = 1) belongs to the set of the Γ highest deviations in the solution v.

The dual problem to ζ(v) is given by the following minimization problem:

ω(v) = Minimize Γθ +
∑
j∈N

πj (5.5)

subject to πj + θ ≥ djvj, ∀j ∈ N

θ, πj ≥ 0

where πj are the dual variables to the first set of constraints and θ to the conservatism

110

budget constraint. By strong duality ζ(v) = ω(v) and consequently we can replace

ζ(v) by ω(v) in problem (5.2), which leads to the following minimization problem

Z = Minimize Γθ +
∑
j∈N

cjvj +
∑
j∈N

πj (5.6)

subject to v ∈ X

πj + θ ≥ djvj, ∀j ∈ N

θ, πj ≥ 0.

We can observe that constraint πj + θ ≥ djvj is binding at the optimal so-

lution. If for a given j this constraint were non-binding in the solution, we can

improve its total cost by decreasing the value of πj. Consequently, πj satisfies

πj = max (djvj − θ, 0) = max (dj − θ, 0)vj. Note that we can only take vj outside

the maximization function because vj ∈ {0, 1}. Then we can substitute πj in the

formulation, rearrange the terms and rewrite the problem as

Z = Minimize Γθ +
∑
j∈N

(cj + max (dj − θ, 0))vj (5.7)

subject to v ∈ X, θ ≥ 0.

We define as Z(θ) problem (5.7) for a given value of θ. Then to find the

optimal solution to the robust counterpart, we have to find the optimal solution

θ∗ ∈ <+ that minimizes Z(θ). In other words, Z = minθ∈<+ Z(θ).

Z(θ) is neither a convex or concave function; however, Z(θ) is linear over

111

Input: Problem instance and Γ.
Output: Solution, vB, and Solution value, ZB

foreach dl do
Find an α-approximate solution vlH using Algorithm H for the nominal
problem: Gl − Γdl = minv∈X c

′v +
∑l

j=1(dj − dl)vj.
Let ZH

l = c′vHl + max{R|R⊆N,|R|≤Γ}
∑

j∈R dj(v
H
l)j.

end
Let l∗ = arg minl=1,...,n+1 Z

H
l .

ZB = ZH
l∗ ; vB = vHl∗ .

Figure 5.1: Bertsimas and Sim’s Algorithm B

θ ∈ [dl+1, dl]. The optimal solution to Z(θ) for θ ∈ [dl, dl+1] must lie on one

of the end points of the interval [dl, dl+1]. In other words, minθ∈[dl,dl+1]Z(θ) =

min (Z(dl),Z(dl+1)). In a similar way, if we extend the interval such that θ ∈

[dl, dl+2], then minθ∈[dl,dl+2]Z(θ) = min (Z(dl),Z(dl+1),Z(dl+2)). Lastly, for θ ∈ <+,

Z∗(θ) = minl=1,2,...,n+1Z(dl) (and θ∗ = arg minl=1,2,...,n+1Z(dl)). Furthermore,

Z(dl) = Gl. This concludes the proof of Theorem 5.2.1.�

5.2.2 Extending Bertsimas and Sim’s Robust Approximation Algo-

rithm

We first describe Bertsimas and Sim’s robust approximation algorithm. Figure

5.1 depicts the algorithm, which is referred to as Algorithm B in their paper. First,

one finds an α-approximate solution, vHl , to the nominal problem Gl−Γdl, for each

deviation term, dl. Following that one computes the total cost of the α-approximate

solution, vHl , in the robust counterpart problem (5.2). Lastly, the solution that yields

the lowest total cost is the algorithmic solution to the robust counterpart problem.

112

Bertsimas and Sim show that given a polynomial time α-approximation algo-

rithm capable of solving the nominal problems, Algorithm B yields a polynomial

time α-approximate solution to its robust counterpart. The approach is predicated

on having an approximation algorithm available for the combinatorial optimization

problem. We show that this approach can be extended to any heuristic procedure

if we are able to generate a lower bound for each nominal problem. In cases where

the nominal problem is hard to solve, the approach we outline can be used to obtain

high quality heuristic solutions to the robust combinatorial optimization problem.

We point out that for certain problems even though there might exist a high quality

approximation algorithm to solve the deterministic version of the problem, the same

algorithm might not be suitable to solve the nominal problems. That is the case with

the 3/2-approximation algorithm for the traveling salesman problem (Christofides

1976), which requires that the cost matrix satisfies the triangle inequality.

We modify Algorithm B to use any heuristic (as opposed to an approximation

algorithm) together with a lower bounding procedure for the nominal problems,

Gl − Γdl. Figure 5.2 depicts this modified Algorithm B, which we will call Robust

Combinatorial Optimization Heuristic (RCOH), and finds a lower bound for each

nominal problem in conjunction with a heuristic solution.

For each deviation coefficient, dl, we first find a heuristic solution, vHl , and a

lower bound, ΩLB
l , using Heuristic H and a lower bounding procedure for the nominal

problem Ωl = Gl−Γdl = minv∈X c
′v+

∑l
j=1(dj−dl)vj. Let ΩH

l be the objective value

of the heuristic solution, vHl . Let αl be the lower bound gap of solution vHl ; i.e.,

113

Input: Problem instance and Γ.
Output: Solution, vB, solution value, ZB, and a solution quality assessment,

β
foreach dl do

Find a heuristic solution vHl and lower bound ΩLB
l using Heuristic H and

a lower bounding procedure for the nominal problem:
Gl − Γdl = minv∈X c

′v +
∑l

j=1(dj − dl)vj.
Let ZH

l = c′vHl + max{R|R⊆N,|R|≤Γ}
∑

j∈S dj(v
H
l)j.

end
Let l∗ = arg minl=1,...,n+1 Z

H
l .

Let ZLB = minl=1,...,n+1 Γdl + ΩLB
l .

ZB = ZH
l∗ ; vB = vHl∗ .

β = ZB−ZLB

ZLB

Figure 5.2: Robust Combinatorial Optimization Heuristic (RCOH)

αl =
ΩH

l −ΩLB
l

ΩLB
l

and let α = maxl=1,...,n+1 αl. Then we show that the solution yielded

by RCOH using Heuristic H for the robust counterpart problem, ZB, has a lower

bound gap β, less than or equal to α. In other words, ZLB ≤ Z ≤ ZB ≤ (1+β)ZLB

and β ≤ α.

Theorem 5.2.2. If α = maxl=1,...,n+1 αl, where αl is the a bound gap for nominal

problem Ωl, then the solution yielded by RCOH for the robust counterpart has a

lower bound gap β, which is less than or equal to α.

In order to prove Theorem 5.2.2 we need the following four lemmas.

Lemma 5.2.3. Let GLB
l = Γdl + ΩLB

l be a lower bound to nominal problem, Gl,

then ZLB = minl=1,...,n+1G
LB
l is a lower bound to Z.

Proof.

Let Z = Gl̄, where l̄ is the nominal problem that solves (5.2) to optimality,

then GLB
l̄

is a lower bound to Z. Furthermore, ZLB = minl=1,...,n+1 G
LB
l ≤ GLB

l̄
;

and consequently, ZLB is a lower bound to Z.�

114

Lemma 5.2.4. For all v ∈ X and θ ∈ <+,

max
{R|R⊆N,|R|≤Γ}

∑
j∈R

djvj ≤
∑
j∈N

max(dj − θ, 0)vj + Γθ. (5.8)

Before we present a formal proof for Lemma (5.2.4), we discuss a simple ex-

ample to illustrate and understand the meaning of this lemma. Figure 5.3(a) shows

ten deviation values in decreasing order. Each bar represents one dl value with unit

width and height equal to dl. In this example, θ is equal to 52 and Γ equals 6.

Then, the light blue area in Figure 5.3(b) highlights the region that corresponds

to the left-hand side of equation (5.8). On the other hand, the light blue area in

Figure 5.3(c) depicts the area that corresponds to the right-hand side of equation

(5.8). By comparing both light blue areas, we can conclude that inequality (5.8)

strictly holds. Furthermore, we can conclude that inequality (5.8) holds strictly for

θ > 43.18 and θ < 40.62, and holds at equality for θ ∈ [40.62, 43.18].

Proof of Lemma 5.2.4.

Given a solution v ∈ X, we denote by Dv the subset of deviations, dj, whose

corresponding vj element is non-zero in the solution. Furthermore, we label the

elements in Dv in decreasing order such that d1 ≥ d2 ≥ ... ≥ d|Dv|. Then, we can

calculate the left-hand side maximization term by adding up the highest Γ deviations

in Dv. That is,

max
{R|R⊆{1,...,|Dv|},|R|≤Γ}

∑
j∈R

dj =
Γ∑
j=1

dj. (5.9)

115

89.51
83.81

65.00

52.73
44.54 43.18 40.62

29.06 25.70

7.62

0.00

25.00

50.00

75.00

100.00

1 2 3 4 5 6 7 8 9 10

89.51
83.81

65.00

52.73
44.54 43.18 40.62

29.06 25.70

7.62

0.00

25.00

50.00

75.00

100.00

1 2 3 4 5 6 7 8 9 10

89.51
83.81

65.00

52.73
44.54 43.18 40.62

29.06 25.70

7.62

0.00

25.00

50.00

75.00

100.00

1 2 3 4 5 6 7 8 9 10

Ɵ = 52

Γ = 6

(a)

Ɵ = 52

Γ = 6

(b)

Ɵ = 52

Γ = 6

(c)

Figure 5.3: Example for Lemma 5.2.4

116

Without loss of generality, we assume that Γ ≤ |Dv|. Otherwise, the summation on

the right-hand side of (5.9) goes up to min{Γ, |Dv|}.

We have to consider three situations depending on the value of θ:

Case (A): θ > d1

In this case
∑

j∈|Dv|max(dj − θ, 0) = 0, and clearly,
∑Γ

j=1 dj ≤ Γθ.

Case (B): θ ≤ d|Dv|

In this case,

|Dv|∑
j=1

max(dj − θ, 0) =

|Dv|∑
j=1

(dj − θ)

≥
Γ∑
j=1

(dj − θ)

=
Γ∑
j=1

dj − Γθ.

In other words, by reordering the terms, we observe that

Γ∑
j=1

dj ≤
|Dv|∑
j=1

max(dj − θ, 0) + Γθ.

Case (C): θ ∈ (d|Dv|, d1]

Without loss of generality, assume that θ ∈ (dl+1, dl]. Then, we have to consider

two cases: (i) Γ ≥ l (and dΓ ≤ dl) and (ii) Γ < l (and dΓ ≥ dl). Note that all of the

deviations, dj’s, do not need to be distinct. Given θ ∈ (d|Dv|, d1], we can always find

an l such that the interval (dl+1, dl] contains θ.

117

Case (i). Γ ≥ l, then

max
{R|R⊆{1,...,|Dv|},|R|≤Γ}

∑
j∈R

dj =
l∑

j=1

dj +
Γ∑

j=l+1

dj + lθ − lθ

=
l∑

j=1

(dj − θ) +
Γ∑

j=l+1

dj + lθ

By assumption ∀j ≥ l + 1, θ > dj, thus

≤
l∑

j=1

(dj − θ) +
Γ∑

j=l+1

θ + lθ

=
l∑

j=1

(dj − θ) + (Γ− l)θ + lθ

=
l∑

j=1

(dj − θ) + Γθ

Note that max(dj − θ, 0) = dj − θ for j ≤ l, and

max(dj − θ, 0) = 0 for j ≥ l + 1, thus

max
{R|R⊆{1,...,|Dv|},|R|≤Γ}

∑
j∈R

dj ≤
|Dv|∑
j=1

max(dj − θ, 0) + Γθ.

(5.10)

118

Case (ii). Γ < l, then

max
{R|R⊆{1,...,|Dv|},|R|≤Γ}

∑
j∈R

dj =
l∑

j=1

dj −
l∑

j=Γ+1

dj + lθ − lθ

=
l∑

j=1

(dj − θ) + lθ −
l∑

j=Γ+1

dj

=
l∑

j=1

(dj − θ) + Γθ + (l − Γ)θ −
l∑

j=Γ+1

dj

=
l∑

j=1

(dj − θ) + Γθ +
l∑

j=Γ+1

θ −
l∑

j=Γ+1

dj

=
l∑

j=1

(dj − θ) + Γθ +
l∑

j=Γ+1

(θ − dj)

By assumption θ ≤ dj ∀j ≤ l, then
l∑

j=Γ+1

(θ − dj) ≤ 0, and

≤
l∑

j=1

(dj − θ) + Γθ

max
{R|R⊆{1,...,|Dv|},|R|≤Γ}

∑
j∈R

dj ≤
|Dv|∑
j=1

max(dj − θ, 0) + Γθ

Now we can reintroduce the decision variables vj with its zero terms and conclude

that

max
{R|R⊆N,|R|≤Γ}

∑
j∈R

djvj ≤
∑
j∈N

max(dj − θ, 0)vj + Γθ for all v ∈ X. (5.11)

This finalizes our proof of Lemma 5.2.4.�

We now use Lemma 5.2.4 to show our next lemma. Lemma 5.2.5 states that

the total cost of any solution in the robust optimization problem (5.2) is less than

119

its total cost in the nominal problem defined by any θ value in <+ and Γ ∈ Z+.

Lemma 5.2.5. Given v ∈ X, Z(v) ≤ Γθ + Ω(v, θ) for all θ ∈ <+ and Γ ∈ Z+.

Proof.

By definition,

Z(v) = c′v + max
{R|R⊆N,|R|≤Γ}

∑
j∈R

dj(v)j

By Lemma 5.2.4,

≤ c′v +
∑
j∈N

max(dj − θ, 0)(v)j + Γθ

By definition of Ω(v, θ) = c′v +
∑
j∈N

max(dj − θ, 0)(v)j,

= Ω(v, θ) + Γθ

Consequently,

Z(v) ≤ Γθ + Ω(v, θ).�

Lastly, Lemma 5.2.6 states that the heuristic solution obtained for the robust

problem (5.2) by RCOH has a total cost less than the total cost of any heuristic

solution in the nominal problems, Gl, for all l ∈ N .

Lemma 5.2.6. ZB ≤ Γdl + ΩH
l for all l ∈ N .

Proof.

Since ZB ≤ ZH
l for all l ∈ N , by Lemma 5.2.5 ZB ≤ Γdl + ΩH

l . �

Finally, we can prove Theorem 5.2.2 that says that the lower bound gap of the

robust solution yielded by RCOH is less than the worst lower bound gap for any

120

individual nominal problem, Gl − Γdl.

Proof of Theorem 5.2.2.

Let β be the lower bound gap of the robust solution yielded by RCOH. That

is,

β =
ZB − ZLB

ZLB
.

(5.12)

Let ZLB = ΩLB
j + Γdj for some j ∈ N . Then, by Lemma 5.2.6

β ≤
ΩH
j + Γdj − (ΩLB

j + Γdj)

ΩLB
j + Γdj

=
ΩH
j − ΩLB

j

ΩLB
j + Γdj

=
αjΩ

LB
j

ΩLB
j + Γdj

≤ α

[
ΩLB
j

ΩLB
j + Γdj

]

since Γdj ≥ 0, 0 ≤
ΩLB
j

Γdl + ΩLB
j

≤ 1, thus (5.13)

β ≤ α.�

Based on this result one would be tempted to conclude that β decreases for higher

values of Γ. While that is the behavior that we observe in the majority of our

computational experiments, it is not necessarily true in all cases. The value of dj

varies for different Γ values. Consequently, β does decrease for higher values of Γ as

long as the decrease in dj does not outperform the change in Γ and Γdj increases.

121

5.2.3 The ConFL problem robust counterpart

The ConFL problem is an NP-complete problem costly to solve to optimality,

Ljubić (2007). Consequently, a series of approximation algorithms and heuristics

have been proposed to address the ConFL problem (see Swamy and Kumar 2004,

Tomazic and Ljubić 2008, Eisenbrand et al. 2008, Gollowitzer and Ljubic 2011, Jung

et al. 2008, Ljubić 2007). The question remains whether a heuristic (as opposed to

an approximation algorithm with a performance guarantee) can be implemented

to solve the nominal problems within Theorem 5.2.1 framework and yet find high-

quality solutions to its robust counterpart.

In Bardossy and Raghavan (2010) we propose a high quality heuristic based on

dual-ascent and local search (DLS) and here we show that the same DLS heuristic

can be implemented within a variant of Algorithm B to find high-quality solutions

for the robust counterpart and lower bound gaps for the solution.

The robust counterpart of the ConFL problem concerns the problem where

each assignment cost ãij, {i, j} ∈ E(D), takes values in [aij, aij+dij], dij ≥ 0, {i, j} ∈

E(D), but the set of feasible solutions (x, y, z) ∈ X that satisfy constraints (4.4b)-

(4.4f) does not change for different realizations.

Using Bertsimas and Sim (2003) definition of the robust counterpart, we would

like to find a solution (x, y, z) ∈ X that minimizes the maximum cost
∑

i∈F fizi +∑
{i,j}∈E(S∪F) bijyij +

∑
i∈F,j∈D ãijxij such that at most Γ of the coefficients ãj are

allowed to change. In other words, we want to minimize a deterministic ConFL prob-

lem objective function,W(x, y, z) =
∑

i∈F fizi+
∑
{i,j}∈E(S∪F) bijyij+

∑
i∈F,j∈D aijxij,

122

plus the maximum deviation in Γ assignment edges. The robust ConFL is given by

the following formulation.

Z = Minimize W(x, y, z) + max
{R|R⊆E(D),|R|≤Γ}

∑
{i,j}∈R

dijxij (5.14)

subject to: (x, y, z) ∈ X .

In any solution to a ConFL instance there is a deviation term for each demand

node; consequently, the penalty term incorporates the uncertainty in the location

or demand quantity of each demand node. In other words, the optimal solution of

the robust problem is determined by the uncertainty level of the Γ most uncertain

demand nodes.

The added term in the objective function weighs in the uncertainty of the

Γ highest possible deviations in the assignment costs for each feasible solution.

Alternatively, we can interpret this term as a buffer or protection term in the total

cost solution, Z. Let (x∗, y∗, z∗) be the optimal solution to problem (5.14). The

realized total cost will always be higher than or equal to W(x∗, y∗, z∗) and with

some probability below Z∗. The probability that the realized cost is less than Z∗ is

directly proportional to Γ.

Once we have selected solution (x∗, y∗, z∗), that is, opened facilities z∗, con-

nected them using tree y∗, and assigned customers to open facilities according to

x∗; when the assignment costs are known, we may observe with some probability

a total cost greater than Z. However, depending on the value of Γ the probability

123

Input: ConFL instance: G = (V,E), deviation matrix, D, and Γ.
Output: Total cost, ZB, (xB, yB, zB) solution to robust ConFL problem,

lower bound, ZLB, and lower bound gap, β.
Initialize ZB =∞+, and ZLB =∞+;
foreach dl ∈ D do

Use the DLS heuristic to obtain a solution, (xl, yl, zl), and lower bound,
ΩLB
l , to the ConFL problem, Ωl;

Calculate ZH
l ;

if ZH
l < ZB then
Update robust solution: ZB = ZH

l and (xB, yB, zB) = (xl, yl, zl);
end
if Γdl + ΩLB

l < ZLB then
Update robust lower bound: ZLB = Γdl + ΩLB

l ;
end

end

Calculate solution lower bound gap: β = ZB−ZLB

ZLB ;

Figure 5.4: RCOH for the Robust ConFL problem

that the total cost realized will be less or greater than Z will vary. The higher Γ

yields a higher Z and also ensures that the probability of experiencing a cost higher

than Z decreases. Higher Γ values put higher weight to costly realizations and cap

the total cost under more unfavorable scenarios.

Figure 5.4 depicts how we implement RCOH using our DLS heuristic for the

robust ConFL problem. This algorithm uses the DLS heuristic to find a solution

to each nominal problem, computes the total cost of each solution in the objec-

tive function of problem (5.14), and stores the minimum cost solution. Lastly, the

algorithm provides the lower bound gap, β of the robust solution.

One

124

5

4 2

1

3

Facility Node

Customer Node

Uncertainty Disk

(2,6)

(7,8)

(6,3)

(4,8)

(3,5)3

4

3

Figure 5.5: Example of robust ConFL problem

5.3 An Example of RConFL problem using RCOH

In this section we provide an example to show how we apply RCOH using

a small RConFL instance. Figure 5.5 depicts an instance with two facility nodes

and three customer nodes where each customer has an uncertainty location within a

disk. For this example we set the facility opening cost equal to 1 and the M factor

equal to 2. Table 5.1 shows the coordinates for each nodes’ center and the radius of

the demand nodes’ uncertainty disk.

Next we calculate assignment costs, that is, minimum assignment cost and

maximum possible deviation, for each pair of facility and customer nodes, and tree

edge costs. Table 5.2 shows these costs.

The minimum assignment cost is given by aij = max{
√

(i1 − j1)2 + (i2 − j2)2−

ri, 0} and the maximum deviation by dij = min{
√

(i1 − j1)2 + (i2 − j2)2 + ri, 2ri},

125

Customer Nodes

Node x-coord y-coord radius

1 2 6 3
2 7 8 3
3 6 3 4

Facility Nodes

Node x-coord y-coord

4 4 8
5 3 5

Table 5.1: Coordinates for nodes in the example

where (i1, i2) are coordinates of node i.

We observe that there are five distinct deviation values, dl; consequently, fol-

lowing Bertsimas and Sim (2003)’s algorithm we need to solve six distinct nominal

problems, one for each deviation value, plus an additional problem for dl = 0,

D = {8.00, 7.61, 6.00, 5.83, 4.41, 0}.

Table 5.3 depicts the assignment costs for each nominal problem l, Gl − Γdl.

We use our dual-ascent local search (DLS) heuristic to obtain a solution, (x, y, z)l,

for each nominal problem. Table 5.4 shows the lower bounds obtained for each

nominal problem using dual-ascent (DA), the best solution value yielded by DLS

(note that for this small example the solutions by DA and DLS are equal), and

lastly the total cost yielded by the solution (x, y, z)l in the robust formulation for

Γ = 2. Based on these results, we observe that ZLB = 16.385 and ZB = 16.385 and

can conclude that the best and optimal solution is to open facility 4. In this case,

DA’s lower bound proves that the solution obtained by the heuristic is the optimal

solution.

126

Assignment Costs

Customer Facility Minimum Cost Deviation

1 4 0.00 5.83
1 5 0.00 4.41
2 4 0.00 6.00
2 5 2.00 6.00
3 4 1.39 8.00
3 5 0.00 7.61

Tree Edge Cost

Facility Facility Cost

4 5 6.32

Table 5.2: Assignment and tree edge costs in the example

Assignment Costs

Deviation dl
Customer Facility 8.00 7.61 6.00 5.83 4.41 0.00

1 4 0.00 0.00 0.00 0.00 1.41 5.83
1 5 0.00 0.00 0.00 0.00 0.00 4.41
2 4 0.00 0.00 0.00 0.17 1.59 6.00
2 5 2.00 2.00 2.00 2.17 3.59 8.00
3 4 1.39 1.78 3.39 3.56 4.97 9.39
3 5 0.00 0.00 1.61 1.78 3.19 7.61

Table 5.3: Assignment costs for each nominal problem in the example

Γ = 2

dl ΩLB
l GLB

l GH
l ZH

l Solution

4.41 7.777 16.605 16.605 16.605 Open Facility 5
5.83 4.729 16.386 16.386 16.385 Open Facility 4
6.00 4.385 16.385 16.385 16.385 Open Facility 4
7.61 2.780 17.991 17.991 16.385 Open Facility 4
8.00 2.385 18.385 18.385 16.385 Open Facility 4
0.00 21.020 21.020 21.020 16.605 Open Facility 5

Table 5.4: Preliminary results for the example

127

Γ

Solution 0 1 2 3

Open Facility 4 2.385 10.385 16.385 22.214
Open Facility 5 3.000 10.606 16.606 21.020

ZLB 2.385 10.385 16.385 21.020

Table 5.5: Example results for 0 ≤ Γ ≤ 3

We initially set Γ equal to 2. However, we could vary Γ between 0 and 3 and

observe how the optimal solution changes. A nice feature of this robust optimization

approach is that one can easily vary Γ and observe whether the optimal solution

changes. Once we obtain a lower bound and feasible solution for each nominal

problem using DLS, we can quickly recalculate the lower bound, ZLB, for a different

Γ value by adding the term Γdl to each ΩLB
l , and reassessing each solution cost in

Problem (5.2).

When Γ = 0 we obtain the best-case scenario solution, while when Γ = 3

we obtain the worst-case scenario solution. (Any Γ > 3 yields the same solution

and total cost than Γ = 3.) We observe that the six nominal problems, Gl − Γdl,

produced only two distinct solutions; that is, to either open facility 4 or facility 5.

Table 5.5 shows the lower bound for each problem and the value function for each

solution in the robust optimization formulation. To open facility 4 is optimal for

every Γ value except 3. In other words, to open facility 4 is a robust solution under

a wide range of realizations except when the worst-case scenario takes place.

128

5.4 Special Case

The ConFL problem is related to the Weber problem under location uncer-

tainty introduced in Cooper (1978), where the location of demand nodes is uncertain

and within an uncertainty disk. The centered problem refers to the Weber problem

that assumes that demands are located in the center of the uncertainty disk. Cooper

(1978) found (and later Juel (1981) correctly noted) that if the optimal solution to

the centered problem on the Euclidean norm lies outside of all of the uncertainty

circular disks, then the optimal solution to the worst-case problem is the solution to

the centered problem and its optimal solution value is equal to the optimal solution

value for the centered problem plus a constant term.

We can use a similar argument to note that if none of the potential facilities

falls within an uncertainty circular disk, one can find the optimal solution for the

whole family of Γ robust problems by solving only the best-case scenario problem.

Furthermore, the optimal solution is the same for all Γ parameters.

This result does not hold when the optimal solution to the best-case scenario

includes at least one facility node within a customer uncertainty disk. That was the

case in our earlier example, where facility node 4 falls within the uncertainty disk

for demand node 1.

The only difference between the robust ConFL formulation and the ConFL

formulation lies in the objective function—specifically, in the penalty term, that is,

the maximization term in the objective function. When this term is constant and

equal to max{D|D⊂D,|D|≤Γ}
∑

i∈D di, it does not depend on the assignment decision

129

xij and the optimal solution to the best-case scenario problem is an optimal solution

to the robust problem. We can show that this result holds for the disk uncertainty.

Theorem 5.4.1. Let (x∗, y∗, z∗)BC be an optimal solution to the best-case problem,

and F be the set of open facilities in the solution, that is, F = {j|y∗j = 1}. Now, if

every facility node j ∈ F , falls outside the uncertainty disk for every demand node

i ∈ D, then (x∗, y∗, z∗)BC is also an optimal solution to the robust problem (5.14)

for any value Γ.

Proof.

By assumption j ∈ F lies outside the uncertainty disk with diameter di for

all i ∈ D, and assignment cost ãji ∈ [aji, aji + dji]. Since any j ∈ F lies outside i’s

uncertainty disk, dji = di,∀j ∈ F . Hence, we can rearrange the order of summation

in equation (4.4a) as follows:
∑

i∈D
∑

j∈F dijxij =
∑

i∈D di
∑

j∈F xij. However, at

optimality
∑

j∈F xij = 1. (While constraint (4.4d) enforces that this sum is greater

than or equal to zero, the non-negative coefficients, aij, ensure that the constraint is

satisfied with equality in the optimal solution.) Then,
∑

i∈D
∑

j∈F dijxij =
∑

i∈D di.

Clearly, the penalty term max{D|D⊂D,|D|≤Γ}
∑

i∈D di is a constant dependent on Γ but

unaffected by the problem solution. Thus, the optimal solution to problem (5.14) is

obtained by solving the best-case problem.�

Corollary 5.4.2. If every j ∈ F falls outside the uncertainty disk for any demand

node i ∈ D, then the optimal solution to the best-case problem is the optimal solution

to the robust problem (5.14).

Proof.

130

Clearly, F ⊆ F and the rest follows from Theorem 5.4.1. �

5.5 Computational Experiments

We now report on a set of computational experiments with our DLS heuris-

tic on the robust ConFL problem. The purpose of these experiments is to assess

the effectiveness of DLS, in terms of solution quality and computational time, to

solve the RConFL problem under various uncertainty levels and uncertainty regions.

Furthermore, these experiments allow us to observe whether the proposed solution

changes under different conservatism parameters Γ. We coded our heuristic in Vi-

sual Studio 2005 (C++). We conducted all runs on an AMD AthlonTM 62 X2 Dual,

2.61 GHz machine with 3GB of RAM.

5.5.1 Problem Generation and Characteristics

We generated problems by first selecting nodes randomly located on a 100 x

100 square grid. The Euclidean distances were used as a basis for the edge lengths.

The assignment edge costs are equal to the edge lengths between demand nodes and

facility nodes, while tree edge costs are equal to the edge lengths multiplied by an

M factor. The M factor illustrates the significantly higher (in terms of cost per

unit distance) connection cost of edges in the tree T . For our test instances, we set

the M factor equal to 3 and 7, respectively. Bardossy and Raghavan (2010) found

in their extensive computational experiments that as the M factor increases the

average gap for the DLS heuristic first increases but later decreases, reaching the

131

maximum at M = 3. In addition, we expect that the uncertainty in the assignment

costs to have a higher impact on the overall cost of the solution for smaller values

of M , and consequently, we anticipate to observe smaller optimality gaps for the

instances with M = 7 than for M = 3.

Each of the instances has 50 demand nodes, 50 facility nodes and 20 pure

potential Steiner nodes. Bardossy and Raghavan (2010) found that instances with

equal number of demand and facility nodes are usually the most difficult one. Lastly,

the facility opening cost was set to 30, which leads to the most difficult instances.

In summary, these problem characteristics lead to a set of hard ConFL instances in

terms of the difficulty for the DLS heuristic of Bardossy and Raghavan (2010).

In order to evaluate how the shape of the uncertainty region affects the DLS

heuristic performance, in particular the computational times, we generated three

sets of instances with various uncertainty regions: circular, square and rectangu-

lar. In Set 1 the location of demand nodes is represented by an uncertainty disk

whose radius is randomly generated. To evaluate the effect of uncertainty on the

heuristic and the solutions obtained, we considered various ranges for the disk ra-

dius and generated them between 0 and 2, 5, 10 or 20 (i.e., radii were randomly

generated in the ranges: [0,2], [0,5], [0,10] and [0,20]) on each subset of instances.

Consequently, for each demand node, i, we defined a center location (i1, i2) and

an uncertainty radius ri. Then the minimum assignment cost for demand node

i from facility j, aij, is the maximum of (1) the Euclidean distance between the

two nodes minus the radius and (2) zero (since the minimum assignment cost is

bounded by zero when they are collocated). On the other hand, the maximum de-

132

Facility node

Demand node

Uncertainty region

(a)

ε
1

ε
2

1

23

III III

VIV VI

VIIIVII IX

a

Figure 5.6: Example of rectangular uncertainty region

viation in the assignment cost, dij, is the minimum of (1) the Euclidean distance

between the two nodes plus the radius, and (2) the disk diameter (i.e., twice the

radius). In mathematical notation, aij = max{
√

(i1 − j1)2 + (i2 − j2)2 − ri, 0} and

dij = min{
√

(i1 − j1)2 + (i2 − j2)2 + ri, 2ri}.

In Set 2 the location of demand nodes is represented by a square uncertainty

region. Also to evaluate the effect of uncertainty, we created instances with various

εi1 and εi2 deviations for each coordinate axis, which were uniformly generated

between 0 and 2, 5, 10 and 20. For each demand node we defined a center location

(i1, i2) and an uncertainty deviation εi (i.e., for square uncertainty region εi1 = εi2.)

Similarly to Set 1, we then calculate the minimum assignment cost and maximum

deviation for each pair of demand nodes and facility node. To define the minimum

assignment cost, we had to determine the location of each facility node with respect

to the nine regions around the demand node location as shown in Figure 5.6.

Table 5.6 provides the coordinates of the closest possible location of demand

133

Region Closest

I (a1 − ε1, a2 + ε2)
II (j1, a2 + ε2)
III (a1 + ε1, a2 + ε2)
IV (a1 − ε1, j2)
V (j1, j2)
VI (a1 + ε1, j2)
VII (a1 − ε1, a2 − ε2)
VIII (j1, a2 − ε2)
IX (a1 + ε1, a2 − ε2)

Table 5.6: Facility node location and closest possible demand node location

Region Farthest

A (a1 + ε1, a2 − ε2)
B (a1 − ε1, a2 − ε2)
C (a1 + ε1, a2 + ε2)
D (a1 + ε1, a2 − ε2)

Table 5.7: Facility node location and farthest possible demand node location

node a, when a facility node j falls within a given region with respect to demand

node a as highlight in Figure 5.6.

Then, to determine the maximum deviation in assignment cost, dij, we calcu-

late the maximum possible assignment cost and take the difference from the mini-

mum. To calculate the maximum assignment cost we find the farthest point within

the uncertainty region from the facility node. Figure 5.7 shows the four quadrants

used to determine the farthest location for the demand node and Table 5.7 the

coordinates of the farthest demand location given the location of the facility node.

In Set 3 the location of demand nodes is represented by a rectangular uncer-

tainty region with different variations on each coordinate axis, (i.e., εi1 6= εi2.)

For the example shown in Figure 5.6 and 5.7 with three facility nodes, the

134

Facility node

Demand node

Uncertainty region

(a)

ε
1

ε
2

1

23

D

A B

C

a

Figure 5.7: Example of rectangular uncertainty region

Facility aij dij

Node

1
√

(11 − (a1 − ε1))2 + (12 − (a2 + ε2))2
√

(11 − (a1 + ε1))2 + (12 − (a2 − ε2))2 − a1a

2
√

(21 − (a1 + ε1))2
√

(21 − (a1 − ε1))2 + (22 − (a2 + ε2))2 − a2a

3 0
√

(21 − (a1 − ε1))2 + (22 − (a2 + ε2))2

Table 5.8: Assignment costs for the example shown in Figure 5.6 and 5.7

assignment costs are as shown in Table 5.8.

We used various levels of conservatism or Γ to assess its effect on the solution

and the performance of the heuristic. As we noted earlier, one advantage of this

heuristic is that Γ does not enter into the solution procedure until the last step.

Once the nominal problems have been solved, considering various levels of Γ re-

quires simple computations that do not involve resolving the nominal problems. We

considered Γ values between 0 and 50 in steps of 10. We generated 10 instances for

each combination of problem characteristics.

Note that the final location of a demand node may fall outside the 100 x 100

135

Γ

Radius 0 10 20 30 40 50

2 2.04% 1.98% 1.94% 1.92% 1.90% 1.90%
5 2.47% 2.29% 2.18% 2.10% 2.04% 2.03%
10 2.73% 2.35% 2.02% 1.88% 1.79% 1.77%
20 3.34% 2.61% 1.75% 1.63% 1.48% 1.43%

Table 5.9: Average Gaps for Set 1 (M = 3)

grid. While the demand node center location will always fall within the 100 x 100

grid by construction, the uncertainty area may extend outside the predefined grid,

and consequently, the final location of a demand node may fall outside the grid.

5.5.2 Results on the RConFL Problem

Here we report on our computational experiments on the three sets of prob-

lems. Each entry in the tables represents the average over ten instances. The

percentage gaps represent the percentage difference of the RCOH solution over the

lower bound obtained by DA. That is, [%] = UB−LB
LB

. For each instance we must solve

a significant number of nominal problems (up to |F ||D| = (50)(50) = 2500). DA

provides a lower bound for each nominal problem and the minimum of the nominal

problems’ lower bounds is the lower bound for an instance.

5.5.2.1 Results for Set 1 - Disk Uncertainty Area

The DLS heuristic yields high-quality solutions rapidly for the problems in

Set 1 (M = 3 and M = 7). We report average lower bound gaps for different

Γ levels and uncertainty radii in Table 5.9 and 5.10. The average gaps are under

136

Γ

Radius 0 10 20 30 40 50

2 2.83% 2.77% 2.72% 2.69% 2.67% 2.67%
5 1.79% 1.70% 1.63% 1.59% 1.57% 1.56%
10 2.64% 2.39% 2.12% 2.00% 1.94% 1.92%
20 3.23% 2.58% 2.23% 2.03% 1.91% 1.88%

Table 5.10: Average Gaps for Set 1 (M = 7)

Radius Nominal Problems DA Local Search Post-Processing Total

2 52 19.599 0.529 0.009 20.137
5 59 22.253 0.709 0.009 22.971
10 77 29.700 0.855 0.013 30.568
20 141 55.884 1.551 0.022 57.457

Table 5.11: Average Computational Times in Seconds for Set 1 (M = 3)

3.34% and the highest gap for all instances is below 8.76%. Furthermore, we observe

that gaps and average gaps decrease for higher values of Γ (as hinted by Theorem

5.2.1.) On the other hand, for higher levels of uncertainty the average gaps remain

stable. Actually, contrary to our earlier conjecture that gaps would increase for

higher uncertainty levels and lower M factors, the highest gap is observed for an

instance with uncertainty radius equal to 2 and M factor equal to 7. There are no

significant differences across M factors for the average gaps.

Radius Nominal Problems DA Local Search Post-Processing Total

2 52 28.606 0.184 0.009 28.799
5 57 31.425 0.171 0.009 31.606
10 74 39.558 0.274 0.013 39.845
20 128 69.241 0.423 0.022 69.686

Table 5.12: Average Computational Times in Seconds for Set 1 (M = 7)

137

Tables 5.11 and 5.12 show the average number of nominal problems solved for

each instance, dual-ascent (DA)’s computational time, local search’s computational

time and post-processing time. The post-processing time accounts for the time

required to calculate the cost of the solution in problem (5.14) and select the best

solution out of all the solutions obtained for the nominal problems. The post-

processing time observed is infinitesimally different (less than 0.001 second) for

each Γ level. (In theory the post-processing time should be equal for all Γ values.)

The average number of nominal problems increases with uncertainty because as the

radius of the uncertainty disk increases, facility nodes are more likely to fall within

uncertainty disks. Hence, the average heuristic time increases as the number of

nominal problems increases. Regardless, the average time is below 1 minute when

the radii vary up to 10 or less and slightly above 1 minute when the radii go up

to 20. Moreover, the maximum time required to solve one instance was below 2

minutes. Dual-ascent takes the bulk of the heuristic time.

Another advantage of this method is that we can easily observe how the so-

lution changes as the decision-maker increases her conservatism level (i.e., Γ value)

and calculate the cost difference between solutions. Figures 5.8 and 5.9 show the

heuristic solution for each instance for different values of Γ. Each plot corresponds

to ten instances with the same uncertainty level. The x-axis represents the Γ value

and the y-axis the solution that yielded the lowest total cost for the instance. In

other words, each line represents the solution path for an instance as Γ varies. The

plots in these figures show limited changes as a result of changes of Γ. There are

more changes for the lower M factor and for higher levels of uncertainty. In the first

138

0 10 20 30 40 50
0

2

4

Deviation 2

Gamma level
S

ol
ut

io
n

0 10 20 30 40 50
0

2

4

6

Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

15

Deviation 20

Gamma level

S
ol

ut
io

n
Figure 5.8: Solutions for different Γ values for Set 1 (M = 3)

plot for deviation up to 2, for both Figures 5.8 and 5.9, we observe that the solution

does not change as the Γ level increases for any of the instances.

Theorem 5.4.1 implies that under certain circumstances one might be able to

solve the robust problem by solving the best-case problem. We test the effectiveness

of this strategy even when those special conditions do not hold. We use the DLS

heuristic to obtain a solution, (x, y, z)BC , to the best-case problem; we then calculate

its cost for the different Γ levels in problem (5.14); and lastly, we calculate the

percentage cost difference over the robust solution yielded by RCOH. Tables 5.13 and

5.13 show the average percentage difference in cost between the best-case scenario

solution by DLS and the robust solution by RCOH. For every level of uncertainty

the average loss difference is below 1.66%. Out of 480 instances, the highest loss

was 4.37%. In addition, we can note that even though a Γ = 0 corresponds to the

best-case problem in some instances the DLS solution is slightly worse than the

139

0 10 20 30 40 50
0

1

2

3

Deviation 2

Gamma level
S

ol
ut

io
n

0 10 20 30 40 50
0

2

4

Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

1

2

3

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

2

4

Deviation 20

Gamma level

S
ol

ut
io

n
Figure 5.9: Solutions for different Γ values for Set 1 (M = 7)

Γ

Radius 0 10 20 30 40 50

2 0.44% 0.43% 0.42% 0.41% 0.41% 0.41%
5 0.03% 0.02% 0.02% 0.02% 0.02% 0.02%
10 0.47% 0.45% 0.47% 0.44% 0.43% 0.40%
20 0.92% 0.88% 1.30% 1.61% 1.66% 1.64%

Table 5.13: Average best-case solution loss for Set 1 (M = 3)

solution yielded by the RCOH for the same problem (see first column in Table 5.13

and 5.14.) The best-case problem, jointly with many other nominal problems, is

solved as part of the RCOH; consequently, the RCOH solution is at least as good or

better than the solution obtained by DLS. These results show that as the uncertainty

level increases there is a higher value in implementing RCOH to solve the best-case

problem, as RCOH might yield a better solution at a slightly higher computational

cost.

140

Γ

Radius 0 10 20 30 40 50

2 0.33% 0.32% 0.32% 0.32% 0.31% 0.31%
5 0.32% 0.29% 0.28% 0.28% 0.27% 0.27%
10 0.30% 0.32% 0.33% 0.30% 0.29% 0.29%
20 0.28% 0.29% 0.32% 0.32% 0.32% 0.33%

Table 5.14: Average best-case solution loss for Set 1 (M = 7)

Γ

Deviation 0 10 20 30 40 50

2 1.79% 1.71% 1.63% 1.59% 1.58% 1.57%
5 1.98% 1.73% 1.56% 1.51% 1.48% 1.46%
10 2.45% 1.85% 1.69% 1.71% 1.61% 1.58%
20 3.40% 2.03% 1.32% 1.27% 1.18% 1.17%

Table 5.15: Average Gaps for Set 2 (M = 3)

5.5.2.2 Results for Set 2 - Square Uncertainty Area

The RCOH also provides high-quality solutions for Set 2. The average gaps

are under 3.40% and the maximum gap is below 6.55%. The average gaps also

decrease as Γ increases and there is no significant difference in the average gaps for

higher levels of uncertainty. For low values of Γ, the average gap is slightly higher

Γ

Deviation 0 10 20 30 40 50

2 1.95% 1.90% 1.87% 1.87% 1.84% 1.84%
5 2.25% 2.10% 1.94% 1.88% 1.81% 1.80%
10 2.27% 1.82% 1.73% 1.64% 1.57% 1.56%
20 3.38% 2.44% 1.92% 1.71% 1.74% 1.72%

Table 5.16: Average Gaps for Set 2 (M = 7)

141

Deviation Nominal Problems DA Local Search Processing Total

2 2485 958.792 30.116 0.437 989.345
5 2484 960.863 28.764 0.436 990.063
10 2478 968.769 29.190 0.531 998.491
20 2480 1005.351 27.770 0.539 1033.660

Table 5.17: Average Computational Times in Seconds for Set 2 (M = 3)

Deviation Nominal Problems DA Local Search Processing Total

2 2474 1328.071 9.275 0.437 1337.783
5 2473 1288.235 8.263 0.436 1296.934
10 2477 1287.162 9.185 0.531 1296.879
20 2473 1343.423 8.657 0.539 1352.619

Table 5.18: Average Computational Times in Seconds for Set 2 (M = 7)

for higher uncertainty levels. However, this tendency fades away as Γ increases.

There are no significant differences in the average gaps for M = 3 and M = 7.

In regards to computational times, the instances in Set 2 take a significantly

higher amount of time than the instances in Set 1. The main reason is that to solve

the robust problem, we have to solve a significant number of nominal problems.

The average number of nominal problems for each instance in Set 2 is above 2400.

Recall that the maximum number of possible nominal problems in these instances is

2500. Moreover, the number of nominal problems is independent of the uncertainty

level. Consequently, the total computational times are much higher and they aver-

age around 22 minutes. Table 5.17 and 5.18 show the average number of nominal

problems and computational times for instances in Set 2 with M = 3 and M = 7, re-

spectively. Even though the computational times are higher, they are substantially

shorter than the ones required by other methods. Based on the results reported in

142

0 10 20 30 40 50
0

2

4

6

Deviation 2

Gamma level
S

ol
ut

io
n

0 10 20 30 40 50
0

5

10

Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

10

20

30

40

Deviation 20

Gamma level

S
ol

ut
io

n
Figure 5.10: Solutions for different Γ values for Set 2 (M = 3)

Ljubić (2007), one could expect the average computational time for each nominal

problem to be around one hour that would translate in an average of 2400 hours for

each instance! That means that RCOH using DLS takes only 0.015% of the needed

time by the exact method (i.e., Algorithm A of Bertsimas and Sim (2003)).

Figures 5.10 and 5.11 show how the heuristic solution changes for each instance

for each uncertainty level. We observe that there are more changes in the solution

for M = 3 than for M = 7 for all level of uncertainty. One explanation might be that

assignment costs have a higher impact on the overall total cost of the solution when

M is lower; and consequently, the Γ value that determines the number of assignment

cost at their highest in the solution have also a higher effect on determining the best

solution. Similar to what we observed in Set 1, changes in Γ have higher impact on

the solution for higher levels of uncertainty.

Lastly, Tables 5.19 and 5.20 show the average difference between the cost of the

143

0 10 20 30 40 50
0

1

2

3

Deviation 2

Gamma level
S

ol
ut

io
n

0 10 20 30 40 50
0

2

4

6
Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

15
Deviation 20

Gamma level

S
ol

ut
io

n
Figure 5.11: Solutions for different Γ values for Set 2 (M = 7)

Γ

Radius 0 10 20 30 40 50

2 0.54% 0.53% 0.53% 0.54% 0.53% 0.52%
5 0.35% 0.32% 0.42% 0.42% 0.40% 0.39%
10 0.37% 0.75% 0.71% 0.70% 0.75% 0.73%
20 1.17% 1.75% 2.74% 2.83% 2.82% 2.74%

Table 5.19: Average best-case solution loss for Set 2 (M = 3)

Γ

Radius 0 10 20 30 40 50

2 0.20% 0.20% 0.22% 0.22% 0.22% 0.22%
5 0.58% 0.59% 0.69% 0.67% 0.68% 0.68%
10 0.40% 0.49% 0.46% 0.45% 0.42% 0.42%
20 1.35% 1.23% 1.42% 1.39% 1.37% 1.34%

Table 5.20: Average best-case solution loss for Set 2 (M = 7)

144

Γ

Deviation 0 10 20 30 40 50

2 1.72% 1.68% 1.64% 1.61% 1.60% 1.59%
5 1.83% 1.63% 1.62% 1.49% 1.37% 1.42%
10 2.27% 1.87% 1.74% 1.62% 1.64% 1.65%
20 2.62% 1.66% 1.29% 1.30% 1.48% 1.77%

Table 5.21: Average Gaps for Set 3 (M = 3)

Γ

Deviation 0 10 20 30 40 50

2 2.22% 2.17% 2.13% 2.10% 2.05% 2.03%
5 1.91% 1.75% 1.69% 1.63% 1.61% 1.62%
10 2.48% 2.18% 1.99% 2.08% 2.07% 1.91%
20 1.39% 1.26% 1.47% 1.56% 1.73% 1.78%

Table 5.22: Average Gaps for Set 3 (M = 7)

best-case scenario solution and the robust solution. The robust solution is slightly

better than the best-case scenario solution for low levels of uncertainty. However, for

the highest level of uncertainty in our computational results, the best-case scenario

solution is up to 5.39 % more costly than the robust solution. The average loss

reaches up to 2.89%.

5.5.2.3 Results for Set 3 - Rectangular Uncertainty Area

Tables 5.21 and 5.22 show the average gaps for Set 3. RCOH also provides

high-quality solutions for Set 3. The average gaps are under 2.62%. Similarly, the

highest gap in Set 3 is below 5.54%. The average gaps show an overall tendency

to decline as Γ increases with one exception. For high uncertainty levels, they

145

Deviation Nominal Problems DA Local Search Processing Total

2 2494 962.571 28.969 1.638 993.177
5 2494 962.457 29.430 1.569 993.456
10 2489 971.110 28.427 1.039 1000.577
20 2491 1011.519 26.699 1.021 1039.238

Table 5.23: Computational Times for Set 3 (M = 3)

Deviation Nominal Problems DA Local Search Processing Total

2 2483 1278.859 7.727 1.638 1288.223
5 2489 1272.502 9.599 1.569 1283.670
10 2483 1345.038 9.830 1.039 1355.907
20 2485 1357.619 7.875 1.021 1366.514

Table 5.24: Computational Times for Set 3 (M = 7)

first slightly decrease and later increase when Γ increases. There are no significant

differences in average gaps across M factors.

The average number of nominal problems is slightly higher in Set 3; and conse-

quently, the computational times are proportionally higher. The average total time

per instance is approximately 22 minutes but less than 25 minutes for any instance.

Figures 5.12 and 5.13 show how the heuristic solution for each instance changes

for different values of Γ. Again there is slightly more activity for M = 3 than for

M = 7 and for higher values of uncertainty.

Tables 5.25 and 5.26 show the average cost increase of the best-case scenario

solution over the robust solution. The average loss reaches up to 3.21% and the

highest loss for one instance goes up to 5.08%. Once again in the first column

we observe that even for the best-case problem RCOH yields better solutions than

DLS. In one instance that difference reaches 3.34%. Interestingly, average losses are

146

0 10 20 30 40 50
0

2

4

6

Deviation 2

Gamma level

S
ol

ut
io

n
0 10 20 30 40 50

0

10

20

Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

15

20

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

20

40

Deviation 20

Gamma level
S

ol
ut

io
n

Figure 5.12: Solutions for different Γ values for Set 3 (M = 3)

0 10 20 30 40 50
0

2

4

6

Deviation 2

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

Deviation 5

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

Deviation 10

Gamma level

S
ol

ut
io

n

0 10 20 30 40 50
0

5

10

15

20

Deviation 20

Gamma level

S
ol

ut
io

n

Figure 5.13: Solutions for different Γ values for Set 3 (M = 7)

147

Γ

Radius 0 10 20 30 40 50

2 0.53% 0.52% 0.53% 0.54% 0.53% 0.52%
5 0.54% 0.52% 0.56% 0.62% 0.65% 0.65%
10 0.64% 0.60% 0.75% 0.97% 1.02% 0.94%
20 1.00% 1.83% 2.63% 2.97% 3.21% 3.17%

Table 5.25: Average best-case solution loss for Set 3 (M = 3)

Γ

Radius 0 10 20 30 40 50

2 0.27% 0.28% 0.26% 0.25% 0.25% 0.24%
5 0.31% 0.33% 0.31% 0.38% 0.40% 0.40%
10 0.88% 0.82% 0.84% 0.95% 1.09% 1.25%
20 0.81% 0.99% 1.16% 1.52% 1.56% 1.58%

Table 5.26: Average best-case solution loss for Set 3 (M = 7)

slightly higher for Set 2 than Set 3.

5.6 Conclusions

In this chapter we address the uncertainty in the ConFL problem by robust

optimization. Specifically, we extend Bertsimas and Sim’s approach to situations

where one uses a lower bounding mechanism jointly with a heuristic to obtain a

solution to the nominal problems (as opposed to solving the nominal problems to

optimality). We tested this strategy on the ConFL problem using the DLS heuristic

and found high-quality solutions for various levels of uncertainty and budget of

conservatism, which highlights the potential and applicability of the RCOH to other

robust combinatorial optimization problems.

148

In our computational experiments we observe that the computational time of

RCOH is directly proportional to the the number of deviation terms. There is one

nominal problem for each deviation term. Consequently, we leave as future research

to explore and devise strategies to cut down the number of nominal problems neces-

sary to solve to find a high-quality heuristic solution for the robust problem. Notice

that if the set X in problem (5.1) is a convex set then Z(θ) is a convex function of θ.

Suppose we consider the linear relaxation in problem (5.7) and denote the objective

as ZLP (θ), since this function is piecewise linear and convex to determine the mini-

mum value of ZLP (θ) for θ ≥ 0 we need only to consider the nominal problems. Our

dual ascent lower bound for a nominal problem is ZLB(θ) ≤ ZLP (θ). We can use

this fact together with the convexity of ZLB(θ) to prioritize which nominal problem

to solve first or at all. Specifically, if the lower bound in a region is higher than the

best solution (upper bound) in another region, we can disregard any θ value beyond

the value that produced the lower bound. This could significantly reduce the total

computational time of the RCOH.

The following observations relate to the Bertsimas and Sim’s robust optimiza-

tion approach itself and concern a deeper understanding of the method and the

implications derived by its solutions for the ConFL problem. The following are

some interesting questions that might be worth exploring in the future:

1. What does the difference in the total solution cost for different Γ values indi-

cate?

2. What does that difference in cost indicate if the solution changes for adjacent

149

Γ values?

3. What does that difference in cost mean if the solution does not change? Recall

that the Γ value is subjective and determined by the decision-maker. In real

world applications the decision-maker does not have control over how many of

the deviations will in fact take their highest value.

4. How should the decision-maker make a choice for the Γ value for the problem at

hand? Should the uncertainty in the demand nodes be considered to determine

Γ? Should there be a relationship between the number of demand nodes with

the highest uncertainty level and the Γ considered?

Another note worth discussing regarding robust optimization for the ConFL

problem is that in order to calculate the assignment costs and the maximum devi-

ation in assignment costs, we consider one facility node and demand node at the

time. However, one might think of situations where the actual assignment of the de-

mand nodes does not take place until the location of the demand node is revealed.

Consequently, the assignment may change depending on the final location of the

demand node as in a two-stage problem. In such situations, the earlier calculated

maximum deviations in costs might never occur because the demand node may get

routed to a different facility node before reaching the maximum deviation. In other

words, the maximum assignment cost depends on the final set of opened facilities.

These questions and observations may reveal some weaknesses in the method,

specially for the ConFL problem. However, we think that they are actually oppor-

tunities worth understanding and exploring in the future and we look forward to

150

devising stronger robust optimization formulations that would better address the

ConFL problem.

151

Bibliography

Balakrishnan, A., T. L. Magnanti, R. T. Wong. 1989. A dual-ascent procedure for large-
scale uncapacitated network design. Operations Research 37(5) 716–740.

Bardossy, M.G., S. Raghavan. 2010. Dual-based local search for the connected facility
location and related problems. INFORMS Journal on Computing 22(4) 584–602.

Beale, E.M.L. 1955. On Minimizing A Convex Function Subject to Linear Inequalities.
Journal of the Royal Statistical Society. Series B (Methodological) 173–184.

Berman, O. 1978. Dynamic positioning of mobile servers on networks. Ph.D. thesis,
Massachusetts Institute of Technology.

Berman, O., A.R. Odoni. 1982. Locating Mobile Servers on a Network With Markovian
Properties. Networks 12(1) 73–86.

Bertsimas, D., M. Sim. 2003. Robust discrete optimization and network flows. Mathemat-
ical Programming 98(1) 49–71.

Birge, J.R., F. Louveaux. 1997. Introduction to stochastic programming . Springer Berlin.
Christofides, N. 1976. Worst case analysis of a new heuristic for the traveling salesman

problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA.

Chu, C. H., G. Premkumar, H. Chou. 2000. Digital data networks design using genetic
algorithms. European Journal of Operational Research 127(1) 140–158.

Cooper, L. 1978. Bounds on the Weber problem solution under conditions of uncertainty.
Journal of Regional Science 18(1) 87–92.

Dantzig, G.B. 1955. Linear programming under uncertainty. Management Science 1(3)
197–206.

Economist. 2009a. And access for all. The Economist 392(8636) 60–01.
Economist. 2009b. Who pays for the pipes? The Economist 393(8661) 6–8.
Eisenbrand, F., F. Grandoni, T. Rothvoß, G. Schäfer. 2008. Approximating connected fa-

cility location problems via random facility sampling and core detouring. Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms 1174–1183.

Erlenkotter, D. 1978. A dual-based procedure for uncapacitated facility location. Opera-
tions Research 26(6) 992–1009.

Frenzel, L. 2010. Broadband for everyone. Tech. Rep. 7, Electronic Design.
Gollowitzer, S., I. Ljubic. 2011. MIP models for connected facility location: A theoretical

and computational study. Computers & Operations Research 38(2) 435–449.
Gupta, A., J. Kleinberg, A. Kumar, R. Rastogi, B. Yener. 2001. Provisioning a virtual

private network: a network design problem for multicommodity flow. Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing 389–398.

Gupta, A., A. Kumar, T. Roughgarden. 2003. Simpler and better approximation al-
gorithms for network design. Proceedings of the 35th Annual ACM Symposium on
Theory of Computing 365–372.

Gupta, A., R. Ravi, A. Sinha. 2004. An edge in time saves nine: LP rounding approxima-
tion algorithms for stochastic network design. Annual Symposium on Foundations of
Computer Science, vol. 45. IEEE Computer Society Press, 218–227.

Havet, F., M. Wennink. 2004. The push tree problem. Networks 44(4) 281–291.

152

Juel, H. 1981. Bounds in the generalized Weber problem under locational uncertainty.
Operations Research 29(6) 1219–1227.

Jung, H., M. K. Hasan, K. Y. Chwa. 2008. Improved primal-dual approximation algorithm
for the connected facility location problem. Lecture Notes in Computer Science 5165
265–277.

Kall, P., S.W. Wallace. 1994. Stochastic programming . John Wiley & Sons Inc.
Karger, D. R., M. Minkoff. 2000. Building Steiner trees with incomplete global knowl-

edge. Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science 613–623.

Khuller, S., A. Zhu. 2002. The general Steiner tree-star problem. Information Processing
Letters 84(4) 215–220.

Kleywegt, A.J., A. Shapiro, T. Homem-de Mello. 2002. The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization 12(2)
479–502.

Krick, C., H. Räcke, M. Westermann. 2003. Approximation algorithms for data manage-
ment in networks. Theory of Computing Systems 36(5) 497–519.

Laporte, G., FV Louveaux, L. Van Hamme. 1994. Exact solution to a location problem
with stochastic demands. Transportation Science 28(2) 95–103.

Lee, Y., S. Y. Chiu, J. Ryan. 1996. A branch and cut algorithm for a Steiner tree-star
problem. INFORMS Journal on Computing 8(3) 194–201.

Lee, Y., L. Lu, Y. Qiu, F. Glover. 1993. Strong formulations and cutting planes for
designing digital data service networks. Telecommunication Systems 2(1) 261–274.

Ljubić, I. 2007. A hybrid VNS for connected facility location. Lecture Notes in Computer
Science 4771 157–169.

Ljubić, I. 2009. Private communication.
Louveaux, F.V., D. Peeters. 1992. A dual-based procedure for stochastic facility location.

Operations Research 40(3) 564.
Mirchandani, P. B., A. R. Odoni. 1979. Locations of medians on stochastic networks.

Transportation Science 13 85–97.
Mirchandani, P.B. 1975. Analysis of stochastic networks in emergency service systems.

Ph.D. thesis, Massachusetts Institute of Technology.
Nuggehalli, P., V. Srinivasan, C. F. Chiasserini. 2003. Energy-efficient caching strategies

in ad hoc wireless networks. Proceedings of the 4th ACM International Symposium
on Mobile ad hoc Networking & Computing 25–34.

Raghavan, S. 1995. Formulations and algorithms for network design problems with con-
nectivity requirements. Ph.D. thesis, Massachusetts Institute of Technology.

Ravi, R., A. Sinha. 2006. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. Mathematical Programming 108(1) 97–114.

Riis, M., K.A. Andersen. 2003. Capacitated network design with uncertain demand.
INFORMS Journal on Computing 14(3) 247–260.

Ruszczynski, A., A. Shapiro. 2003. Stochastic Programming. Handbook in Operations
Research and Management Science, vol. 40. Elsevier.

Salman, FS, J. Cheriyan, R. Ravi, S. Subramanian. 1997. Buy-at-bulk network design: Ap-
proximating the single-sink edge installation problem. Proceedings of the 8th Annual

153

ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA, 619–628.

Sen, S., R.D. Doverspike, S. Cosares. 1994. Network planning with random demand.
Telecommunication Systems 3(1) 11–30.

Shapiro, A., A. Philpott. 2007. A tutorial on stochastic programming.
Shmoys, D. B., É. Tardos, K. Aardal. 1997. Approximation algorithms for facility location

problems. Proceedings of the 29th Annual ACM Symposium on Theory of Computing
265–274.

Snyder, L.V. 2006. Facility location under uncertainty: A review. IIE Transactions 38(7)
547–564.

Swamy, C. 2004. Approximation algorithms for clustering problems. Ph.D. thesis, Cornell
University.

Swamy, C., A. Kumar. 2004. Primal–dual algorithms for connected facility location prob-
lems. Algorithmica 40(4) 245–269.

Tomazic, A., I. Ljubić. 2008. A GRASP algorithm for the connected facility location
problem. 2008 International Symposium on Applications and the Internet 257–260.

Van Slyke, R.M., R. Wets. 1969. L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics 17(4)
638–663.

Verweij, Bram, Shabbir Ahmed, Anton J. Kleywegt, George Nemhauser, Alexander
Shapiro. 2003. The sample average approximation method applied to stochastic rout-
ing problems: A computational study. Computational Optimization and Applications
24 289–333.

Weaver, JR, RL Church. 1983. Computational procedure for location problems on stochas-
tic networks. Transportation Science 17(2) 168–180.

Wong, R. T. 1984. A dual ascent approach for Steiner tree problems on a directed graph.
Mathematical Programming 28(3) 271–287.

Xu, J., S. Chiu, F. Glover. 1996a. Using tabu search to solve Steiner tree-star problem in
telecommunications. Telecommunications Systems 117–125.

Xu, J., S.Y. Chiu, F. Glover. 1996b. Probabilistic tabu search for telecommunications
network design. Journal of Combinatorial Optimization 1 69–94.

154

