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The precursory phenomena associated with dilatancy have been extensively studied as a 

potential means of earthquake prediction.  It is known that microstructural damage induced 

dilatancy precedes macroscopic failure of a rock. However, the quantitative relationship between 

microstructural damage and fault development is not clearly understood. To better understand the 

mechanics of brittle faulting of rock and the association of precursory phenomena with faulting, a 

detailed microstructural study was conducted on porous sandstone deformed to different post-

failure stages at different strain rates. A lateral relaxation loading configuration was adopted in 

which a cylindrical sample is deformed under decreasing radial stresses while the axial load 

remains constant.  This loading path was proven to successfully map out the brittle failure 

envelope.  Compared to conventional triaxial deformation testing, the relaxation loading 

configuration greatly increases the stability of fault growth.  A suite of samples were deformed 

and subsequently unloaded at different post-failure stages, before macroscopic faulting occurred. 

Progressive microstructural damage was investigated via quantitative characterization of crack 

damage indices, crack density, and changes in porosity.  Ultimately, this research will lead to an 

improved comprehension of the relationship between microscopic damage and macroscopic 

fracture development, providing a better insight into the brittle failure process.   
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Chapter 1: Introduction 

 

Earthquakes, along with the secondary effects of earthquakes such as tsunamis, 

landslides, and soil liquefaction, are natural hazards that often cause large scale damage 

to human society. Earthquake prediction has long been the “holy grail” of seismology 

(e.g., Gilbert, 1909).  Most common earthquakes result from sudden motions caused by 

unstable slip (rupture) along the fault surface. The connection between earthquakes and 

dynamic faulting led to Reid’s elastic rebound theory, where an earthquake cycle is 

analyzed by strain accumulation and release around the fault (Reid, 1910). Based on 

Reid’s conception, the recurrence of large earthquakes is time predictable.   

Considerable progresses have been made for long-term prediction in 

determination of the recurrence time of earthquakes on a specific fault segment (e.g., 

Shimazaki and Nakata, 1980; Bakun and McEvilly, 1984).  However, short-term 

prediction would require the identification of precursory phenomena marking the 

impending earthquakes.  Seismogenic faulting can be modeled as dynamic crack 

propagation (e.g., Haskell, 1964; Andrew, 1976; Das, 1981).  Searching for precursory 

phenomena associated with earthquake cycles focuses on different aspects of the 

observable preliminary effects of faulting.  For instance, monitoring of terrestrial gases in 

groundwater and soil reveals anomalously high concentrations of gasses such as radon, 

helium, and several other volatiles along some active faults, which suggests that the 

cracks within the rock may be paths of least resistance for the terrestrial gases generated 

or stored in the earth to escape to the surface (Scholz et al., 1973; King, 1986).  Scholz et 

al. (1973) reports that the radon content in deep well water increased several fold prior to 

earthquakes. They hypothesize that in this specific environment, rocks along the fault 
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begin to dilate in response to tectonic stresses, due to opening up of cracks in their 

interior.  Crack opening releases radon gas and the process continues until an earthquake 

occurs.  

The loading and rupture of water-saturated crustal rocks during earthquakes, 

together with fluid/gas movement, stress redistribution, change in material properties, has 

long been expected to generate associated magnetic and electric field perturbations.  The 

detection of related perturbations prior to fault rupture has thus been proposed as a simple 

and inexpensive method for monitoring the state of crustal stress and perhaps providing 

tools for predicting crustal failure (Brace and Orange, 1968; Park, 1991; Fenoglio, 1995; 

Johnston, 1997).  The primary mechanisms for generation of electric and magnetic effects 

with crustal deformation and earthquakes effects include piezomagnetism, 

stress/conductivity, electrokinetic effects, charge generation and dispersion, and 

magnetohydrodynamic effects.  During the past few decades, there has been a remarkable 

increase in the quality and quantity of electromagnetic data recorded before and during 

earthquakes (Johnston, 1997), but more work needs to be done to convincingly 

demonstrate to the international geophysical community, causality, or lack thereof, 

between electromagnetic signals and earthquakes.  

Such precursory phenomena seem to be anomalous signals associated with 

seismogenic faulting. Without quantitative understanding of the physical mechanisms 

operative during the imminent stage of an earthquake, none of these methods could be 

used reliably in earthquake mitigation.  

An earthquake results from a buildup of energy followed by a sudden release of 

energy during the rupture of the fault (e.g., Scholz, 2002).  The rupture due to the release 
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of energy can also be observed in individual rocks.  This macroscopic failure can occur 

on the centimeter scale as can be seen in a hand specimen of a deformed rock or it can 

occur on a much larger scale, i.e., natural faults in the earth’s lithosphere up to hundreds 

of kilometers long, such as the San Andreas Fault.   

The goal of this study is to advance the understanding of the mechanics of brittle 

faulting, with a focus on an improved comprehension of the relationship between 

microscopic damage and macroscopic fracture development. To accomplish this task, an 

integrated approach consisting of laboratory deformation experiments and quantitative 

microstructural analysis has been adopted.   

Previous studies on brittle faulting processes show that dilatancy, the inelastic 

volume increase during deformation, is ubiquitous prior to rupture propagation (e.g., 

Brace, 1964).  In the context of earthquake precursory phenomena, many efforts were 

made to constrain the point at which materials become dilatant.  It is shown that the onset 

of dilatancy varies considerably among different rock types (e.g., Brace, 1978; Fredrich 

et al., 1989; Wong et al., 1997).  

Despite the importance of brittle faulting in seismogenic processes, quantitative 

details of nucleation and propagation of brittle failure are not clearly understood (e.g., 

Scholz, 2002).  This is partly due to the unstable nature of crack propagation.  Once the 

conditions of brittle failure are met, fault propagation proceeds rapidly and is difficult to 

observe (e.g., Wawersik and Brace, 1971; Lockner et al., 1992).  To circumvent this 

problem, I adopted an experimental loading configuration which differed from the 

conventional loading configuration (Zhu et al., 2003).  
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Using this new loading configuration, I conducted a suite of deformation 

experiments on Darley Dale sandstone samples.  Chapter 2 features a description of the 

principals of a triaxial deformation apparatus and the calibrations of the sensors that are 

attached to the apparatus.  Chapter 3 focuses on the experiments that were run and 

subsequently unloaded at different post-failure stages, while the focus of chapter 4 is 

reporting results from the microstructural analysis that was performed.  This includes 

quantitative characterization of the progressive microstructural damage in the samples 

performed by examining crack density and crack damage indices to determine 

characteristic failure patterns.  The appendices contain tables that include the specific 

details of each of the samples and plots which compare the results from all of the 

experimental runs.   

  



5 
 

Chapter 2: Experimental Setup: Triaxial Deformation 

Apparatus and Sample Preparation  

 

Understanding the nucleation and propagation of brittle fracture in rocks is critical 

in studying earthquake mechanics because of the close correlation between the rupture 

propagation and the seismogenic faulting process, (Scholz, 2002). Rock deformation is 

controlled by the confining pressure (overburden), tectonic stress, and temperature. At 

pressure and temperature conditions pertinent to seismogenic zone in the crust (i.e., <15 

km), stress-induced volume changes are an important aspect of deformation. Volume 

changes come from elastic deformation of the minerals, compaction (volume reduction) 

of the void space, and dilatancy, increase of void space (e.g., Brace, 1978). By varying 

pressure and temperature conditions, mechanisms that control the failure process can be 

isolated and investigated in laboratory experiments. 

A programmable, servo controlled conventional triaxial deformation apparatus is 

used for conducting deformation tests on cylindrical samples (Figure 2.1). Using servo 

controlled hydraulically powered intensifiers, the confining pressure, axial load and pore 

fluid pressure can be applied under servo feedback control. Complete servo control 

minimizes fluctuations in experimental conditions which significantly improves the 

precision of collected data.  In this chapter, I will first introduce the different sensors used 

for signal control, and then I will summarize the operation and calibration of the triaxial 

deformation apparatus as well as sample preparation and data acquisition.   
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Figure 2.1: Triaxial deformation apparatus with confining and pore pressure intensifiers 
shown.  Axial (red) and radial (yellow) stresses shown on enlarged sample view. 
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2.1 Operating Principle of Transducers  

 
The servo control system is managed via feedback between sensors strategically 

placed on the intensifiers or in line with the intensifier system.  The two types of sensors 

that are used on the intensifier systems are LVDTs (Linear Variable Differential 

Transducers) and pressure transducers. 

2.1.1 Linear Variable Differential Transducers (LVDTs) 

 
LVDTs operate on the principal that a ferromagnetic core will couple a primary 

coil, driven by an oscillating voltage, to a secondary coil that is wrapped around the first 

coil.  This coupling will induce a voltage in the secondary coil.  To measure displacement 

(or position of the ferromagnetic core within the coil assembly), the ferromagnetic core is 

attached to a non magnetic rod, which will pass through the primary coil freely.  This rod 

with ferromagnetic tip is attached to the part that moves and is to be measured.  The coil 

assembly is attached to a stationary part of the assembly and positioned so that movement 

of the hydraulic ram causes the rod with ferromagnetic tip to pas freely through the coil 

assembly.  The difference in voltage between the two secondary coils results in an output 

voltage that is proportional to the position of the core within the coil assembly, with an 

output of 0 volts indicating a central or null position within the two secondary coils 

(Wilson and Kester, 2009).  By attaching the rod with the ferromagnetic core on the 

equipment requiring displacement measurement, a change in output voltage of the 

secondary coils accurately and precisely indicates the change in displacement of the core 

(which is also the same displacement as the part it is attached to).  The advantages of 

using LVDTs for measurement is that they have a theoretical infinite life because there is 

no contact between moving parts, output is analog with infinite resolution and allows for 
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easy signal conditioning, and the system will retain the position (output voltage) even if 

the instrument is powered off and on again.   

Although the outputs from the LVDTs are reproducible, it is still necessary to 

calibrate them to be sure that there is not a region of nonlinearity present within the full 

stroke of the LVDT.  There is currently no inexpensive device available to perform this 

necessary calibration, instead the LVDT must be sent in to the manufacturer to be 

calibrated.  To resolve this conundrum a calibration tool was developed to perform this 

task.  A constant rate syringe injection pump was modified to hold the coil assembly 

stationary while the ferromagnetic rod was attached to the injection mechanism of the 

syringe pump.  Because the injection rate and therefore displacement rate of the injection 

mechanism could be controlled, the pump would advance the ferromagnetic core through 

the coils of the LVDT at a constant rate.  This data could be recorded with the data 

acquisition software and plotted as time converted to displacement in microns vs. voltage.  

Since the pump advances the ferromagnetic core at a constant rate time is directly related 

to position.  The calibrator will be run at a constant rate moving the core one full stroke 

through the LVDT.  This information can be recorded and plotted to observe any 

nonlinearities in the LVDT. These regions of the LVDT can either be corrected for 

during the experiment or the LVDT positioned on the apparatus so that they are not used.    

There is a LVDT attached to each of the pore pressure intensifiers, the piston for 

the confining pressure intensifier, and also to the main hydraulic ram applying the axial 

load to the sample, respectively.  Calibration for the LVDT of the main ram shows that 

the central region is linear throughout the entire stroke of the LVDT except for the very 

ends of the displacement where there is a slight deviation from linearity (Figure 2.2).  As 
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a result the LVDT was positioned on the main ram so that the displacement region of the 

experiment will lie within central region of the LVDT stroke, ensuring all recorded 

measurements will be within the linear region.   

Displacement (mm) vs. Output Voltage  LVDT Main Ram
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Figure 2.2: Main hydraulic ram LVDT calibration.  Slope of best fit line is used to 
determine displacement from output voltage during experimental runs.   

  

2.1.2 Pressure transducers 

 

The second type of sensor used on the intensifier system is a pressure transducer.  

Pressure transducers are devices that are typically connected to the pressure system via 

high pressure tubing.  The construction of the transducer involves application of a strain 

gauge, a device that changes resistance when deformed, to a metal diaphragm that 

elastically deforms as the pressure of the system changes (Dobie and Isaac, 1950).  Early 

strain gages were constructed from a thin wire but modern gauges are photo etched from 

metalized film deposited onto a polyester or plastic backing (Figure 2.3).  When the gage 

is strained, its resistance changes because the cross sectional area of the wires in the 

active portion of the gage becomes smaller when the gage is in tension and becomes 



10 
 

larger when the gage is in compression (Dobie and Isaac, 1950). The conductor wire is 

woven back and forth to increase the length of the wire and therefore enhances the 

sensitivity (gauge factor) of the strain gauge (Figure 2.3).  These modern gauges can 

experience up to 10,000 micro strain without damage and the sensitivity of modern gages 

to a given strain is typically 1% or better (Wilson and Kester, 2009).   

The strain gage function within a pressure transducer is to indicate the amount of 

deformation that the metal diaphragm experiences as a result of a change in pressure of 

the system the transducer is connected to.  The relationship between the deformation and 

the pressure change is calibrated and determined at the factory.  Amplification electronics 

contained within the pressure transducer convert the change of resistance of the strain 

gauge with change in system pressure, to a voltage.  This voltage can then be converted 

to a pressure via the factory determined linear voltage-pressure relationship factor.  To 

validate experimental pressure conditions during machine operation, the pressure readout 

from the pressure transducer is compared with the mechanical, bourdon pressure tube, 

Heise gauge during the duration of the experiment.  This ensures that the experiment is 

proceeding as intended.   

Using a pressure transducer, the main ram can be controlled via load cell feedback 

where the machine will advance the ram until the load cell (and therefore sample) reaches 

a preset load in the servo control system.  Alternatively the main ram can be controlled 

via displacement feedback through LVDT where the ram will advance a distance equal to 

the preset displacement in the servo controller.  The confining pressure system is 

controlled via feedback from the pressure transducer, but there is also a LVDT attached 

to the intensifier to indicate whether intensifier piston advancement takes place during a 
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constant pressure system (Figure 2.1).  A piston displacement during constant pressure 

servo control would indicate a net volume change, which could become handy for trouble 

shooting a leak in the system.   

 

Figure 2.3: Labeled diagram of a typical strain gage (Image from Vishay, 2003) (Active 
grid length of gauges used is 0.95 cm (0.375 inches)). 

 

2.2 Triaxial Deformation Apparatus 

 

In a conventional triaxial deformation test, the axial stress σ1 is applied to the 

sample via a steel piston and the radial stresses σ2 and σ3 are applied via a high pressure 

fluid surrounding the sample (Figure 2.1).  Among these 3 principal stresses, σ1, σ2, and 

σ3, only 2 of them are independent (i.e., radial stresses σ2 ≡ σ3) due to the axisymmetric 

nature of the sample. A loading configuration with 3 identical principal stresses, i.e., 
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σ1=σ2=σ3, is called hydrostatic loading. Deformation is induced when σ1>σ2=σ3 (triaxial 

compression) or σ1<σ2=σ3 (triaxial extension).  

2.2.1 Load Cell  

 
A custom load cell was designed and constructed based on a cylindrical load-

bearing member that is bored out to make a thick walled cylindrical tube (Figure 2.4).  

The load cell is designed to be very rugged and strong and allows an accentuated amount 

of elastic deformation during application of the load when compared to a load cell 

constructed out of a solid cylinder of material.  The material that is typically used is a 

beryllium copper alloy or 17-4 PH stainless steel because of its high strength and similar 

thermal expansivity properties (Davis and Allen, 1990) to the rest of the triaxial 

deformation apparatus.   

 

Figure 2.4: Top and side view of custom hollow load cell. 
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The load cell measures the amount of load applied by changes in resistance of 4 strain 

gages applied centrally around the circumference of the cylindrical load-bearing member 

(Figure 2.4).  Two of the four strain gages are applied axially and the other two are 

applied radially.  The four strain gages are then connected to a Wheatstone bridge 

electronic circuit (Figure 2.5a).  The Wheatstone bridge is a simple electronic circuit that 

enables the user to measure the change in resistance of one of the resistors of the circuit, 

Rgage.  R1, R2, and R3 will be the constant resistance arms and Vo is the voltage gauge 

(Figure 2.5b) reading the voltage across the bridge (Dobie and Isaac, 1950).  The balance 

in the bridge is maintained by altering R3, a potentiometer, so Rgauge/R3=R1/R2 to 

generate a zero or null value output on Vo (Figure 2.5b).  Any subsequent change in the 

resistance of Rgage, due to strain change or other environmental factors, will result in a 

corresponding change in output voltage Vo.  Nearly all methods of determining 

resistance change are based on this simple fundamental circuit. The result is that a change 

in resistance in the strain gages due to an application of a load will generate a change in 

the output voltage. 

a)               b)  

Figure 2.5: Schematic representation of an a) full bridge Wheatstone bridge circuit 
composed of 4 strain gages; two in compression and two in Tension and b) a quarter 
bridge Wheatstone bridge circuit. Adapted from Horowitz and Hill (1989).   
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The correlation between the applied load and the output voltage can be made 

through a standard load cell, significantly larger and bulkier than the custom load cell.  

With the assistance of a separate test frame and hand operated hydraulic cylinder the 

standard load cell, which is factory calibrated, is placed in series with the custom load 

cell and the hydraulic cylinder inside of the test frame.  The hydraulic cylinder pressure is 

increased slightly and the system is allowed to reach thermal equilibrium.  Imparting 

energy (pressure) to the system causes a slight temperature increase in the hydraulic fluid, 

which will cause a slight decrease in pressure as the system cools to thermal equilibrium.  

This equilibrium typically takes about 15 minutes.  Once the system reaches thermal 

equilibrium the voltage output from the standard load cell and the custom load cell are 

recorded and then the pressure to the hydraulic ram is increased slightly and the process 

is repeated.  After the output voltages of the two load cells have been recorded up to the 

maximum desired pressure, the process is reversed by venting the hydraulic pressure in a 

stepwise manner and recording the output voltages of the two load cells.  The output 

voltage of the standard load cell is converted to a load using the factory calibrated 

conversion factor to obtain a useful load measurement in MPa.  The slope of the best fit 

line between the standard load cell measurements in MPa to the output voltages of the 

custom load cell provides a conversion factor to convert output voltage to MPa.  This 

procedure allows the user to determine the linearity of the load cell and the comparison of 

the loading slope verses the unloading slope provides the user with confidence that there 

is no hysteresis in the system as long as the slopes are the same.   

2.2.2 Main Hydraulic Ram  

The flow of high pressure, 18.6 MPa (2700 psi), hydraulic fluid to the 3 

independently controlled hydraulic driven intensifiers of the triaxial deformation 
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apparatus is regulated via servo control (Figure 2.1).  The axial stress is controlled via the 

main hydraulic ram, which is in series with the cylindrical sample.  The main ram 

consists of a 35.56 cm (14 inch) diameter (dram) hydraulic ram, connected to a 3.81 cm 

(1.5 inch) diameter (dpiston) piston and then further necked down to the final 2.54 cm (1 

inch) diameter (dsample) sample.  The stress ratio can be calculated for any intensifier 

using the following formula: Stress ratio =(dram/ dsample)
2. Thus the application of 18.6 

MPa (2700 psi) to the diameter main ram hydraulic piston results in a maximum axial 

stress (σ1) that can be applied to the 2.54 cm (1 inch) diameter sample of 3647 MPa 

(529,000 psi).     

2.2.3 Confining Pressure Intensifier 

 

The radial stresses (σ2=σ3) are applied to the sample generated by pumping high 

pressure confining medium into the load cell through a pressure intensifier (Figure 2.1).  

K-10 kerosene is chosen for the confining fluid in the confining fluid intensifier system 

because of its low vapor pressure, low viscosity, non corrosive properties, and relatively 

minimal compressibility (e.g., Bridgman 1958; Scholz and Koczynski, 1979).  

The confining pressure intensifier is a piston cylinder system with a 1.27 cm (½ 

inch) diameter piston placed atop a 10.16 cm (4 inch) diameter hydraulic ram. The ram 

pushes on the piston, via servo control, compressing the fluid in the piston cylinder 

intensifier system. The confining pressure system has a potential of generating a 

maximum pressure of 1191 MPa (172,800 psi) when 18.6 MPa (2700 psi) of hydraulic 

pressure is applied to hydraulic ram, based on the ratio of the two cross sectional areas. 

2.2.4 Pore Pressure Intensifier 
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The final major component of the triaxial deformation apparatus is the pore 

pressure intensifier, which is identical in function and appearance to the confining 

pressure system (Figure 2.1.) The intensifier piston diameter of the pore pressure 

intensifier is approximately 2.54 cm (1 inch) in diameter.  With the 2.54 cm (1 inch) 

diameter intensifier piston and 10.16 cm (4 inch) hydraulic ram, a maximum pore 

pressure of 296.5 MPa (43,000 psi) can be obtained. Compared to the confining pressure 

intensifier, a larger diameter of the piston allows for a larger volume of pore fluid and 

lower maximum pressure.  Although only one pore pressure intensifier was used for this 

study, there are two pore pressure intensifiers connected to the triaxial deformation 

apparatus for flow through experiments.  One intensifier (pore pressure top) is connected 

to the sample via the top of the triaxial deformation apparatus (This is what was used for 

this suite of experiments), and the other (pore pressure bottom) enters the sample via the 

bottom of the machine (Figure 2.1).   

The precision of the different sensors used on the triaxial deformation apparatus 

are shown in Table 2.1. 

Sensor Range and Precision 

confining pressure: 345 ± 0.9 MPa (50,000 ± 125 p.s.i.) 

main ram 
displacement: 

154 ± 0.8 mm (6 ± 0.03 in) 

load cell-main ram: 3647± 4 MPa (529,000 ± 500 p.s.i.) 

pore fluid pressure: 69±0.08 MPa (10,000 ± 11 p.s.i.) 

pore volumometer: 61.86± 0.31 cm3 (3.775 ± 0.019 in3) 

strain gauge: 350 ± 1.05 ohm 

 

 Table 2.1 List of sensors on the triaxial deformation apparatus and the corresponding 
ranges and precisions. 
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2.3 Sample Assembly  

 

2.3.1 Application of Copper Foil 

 
The samples tested in this study are right cylinders with a diameter of 2.54 cm (1 

inch) and a length of 5.08 cm (2 inches).  All surfaces were precision ground to strict 

tolerances to ensure the ends are parallel and the edges are square.  A copper foil jacket is 

used to prevent confining fluid entering the pore space of the sample.  The copper foil is 

0.0127 cm (0.005 inches) thick and is cut so that it will wrap around the sample, be flush 

at the top and bottom of the cylindrical sample and with a small overlap along the length 

of the sample.  The seam is then soldered together to ensure a pressure tight seal along 

the length of the sample.  Any extra solder is removed mechanically either by filing or by 

sanding to be sure that the transition between copper foil and solder joint is smooth and 

will not effect proper sealing of the rubber jacketing material. At this point, all of the 

exposed copper is rinsed with a solvent such as acetone or isopropyl alcohol to remove 

any grease or foreign contamination from the surface of the copper.  The surface of the 

copper foil is lightly roughed up with 600 grit wet dry sanding paper and then rinsed 

again with solvent to remove any sanding particulates.  Next, the midline of the sample is 

marked along the circumference of the cylinder by lightly scribing a line into the copper 

foil.  Then, two vertical lines are scribed into the copper foil approximately 1/3 of the 

circumference apart from each other. The sample has now been properly prepped for 

strain gage attachment.   
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2.3.2 Attachment of Strain Gages 

  

Two strain gages were attached to the sample to measure deformation: one 

parallel (referred to as the axial strain gage) with the long axis of the sample, and the 

other (radial) strain gage goes around the circumference of the cylindrical sample (Figure 

2.6).  To apply the strain gage, a piece of scotch tape is laid out sticky side up on a clean 

lab bench.  Using a clean pair of tweezers a new strain gage is removed from the package 

and carefully applied centered on the scotch tape with the matte side of the strain gage 

facing up.  The entire tape-strain gage assembly is then picked up and placed on the 

copper foil wrapped around the sample so that the strain gage alignment tabs are aligned 

to the scribed marks on the copper foil.  The tape allows for repositioning to ensure that 

the strain gage is properly aligned.  Any misalignment of the gage induces errors in axial 

strain measurements.   Once the strain gage is properly aligned the tape can be peeled 

back just enough so that the entire strain gage is lifted off of the copper foil but one edge 

of the tape is still stuck on the foil to retain the proper positioning of the strain gage.  

Cyanoacrylate glue made by micro-measurements (M bond 200) is used to permanently 

attach the gage to the copper foil.  Two drops of the glue are placed on the strain gage, 

one at the leading edge of the gage closest to the portion of tape that is still stuck to the 

copper foil and the other in the middle of the gauge.  The tape/gage are then re-applied to 

the sample using a squeegee action with a finger to ensure that there are no air bubbles 

under the strain gage, no excess glue under the strain gage, and ensuring that there is 

complete coverage of glue on the underside of the gage.  At this point the gage is held in 

place with application of pressure using a forefinger or thumb on top of the gage, being 

sure that none of the glue has squeezed out and has the potential of gluing a finger to the 
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sample.  The gage is held in place with slight finger pressure for about 2 minutes.  At this 

point the glue has begun to set up and can be tested by starting to pull the tape back.  The 

gage should be well adhered to the sample and should not pull away.  Slowly pull the 

tape away from the gage/sample by pulling the tape parallel with the surface of the 

sample to prevent pulling the gage off of the sample.  Once the tape is removed the same 

procedure is repeated for the radial strain gage.  Once the second gage is attached, the 

sample is allowed to sit for a minimum of 2 hours to let the glue cure but overnight is 

best.  Once the glue is cured leads are soldered to the strain gage, resistance recorded 

ensuring a solid and correct solder joint, and the sample column can then be assembled.   

   

 Figure 2.6: Cylindrical 2024 aluminum sample (2.54 cm in diameter) with axial and 
radial strain gages attached.  

 

2.3.3 Strain Gage Conditioning 

 
The working principle of strain gages is discussed early in this chapter. To 

convert the output voltage of the Wheatstone bridge circuit into a useful strain value, the 

circuit must be calibrated.  One of the simpler ways to perform this calibration is to use a 

shunt resistor of known resistance into the Wheatstone bridge circuit to unbalance the 

bridge a known amount and observe the change in output voltage.  The amplifier that was 



20 
 

used for the suite of deformation experiments was a Vishay 2100 series strain gage 

conditioner and amplifier system.  This system comprises a factory installed 174.8 

κΩ ±0.1% resistor, which can be inserted into the bridge circuit via a toggle switch to 

simulate 1000 micro-strain at a gage factor of 2 (Measurement Group Inc., 1992).  

During the start and end of the experiment this resistor is inserted into the circuit via a 

toggle switch and the output voltage change is recorded, thus providing a conversion 

factor that a given change in voltage is equal to 1000 micro-strain and the strain change 

during the experiment can be converted from voltage to a useful strain value.   

2.4 Calibration of Stress and Strain Measurements  

 
The final calibration that is performed is to elastically deform a right cylinder of 

uniform material that has zero porosity and has been extensively studied before.  The 

chosen material is 2024 Aluminum with known values; bulk modulus (K) of 78 GPa, 

Young’s modulus (E) of 73 GPa, and Poisson ratio (ν) of 0.33 (Davis and Allen, 1990).   

A calibration test was conducted on a 2024 aluminum cylindrical sample (25.4 

mm in diameter and 50.8 mm in length) using the triaxial deformation apparatus. A 

confining pressure of 40 MPa was applied to the aluminum sample and the axial (εa) and 

radial (εr) strains are recorded (Figure 2.7a). Note that the convention for strain 

measurements is that shortening is positive whereas elongation is negative. It is shown 

that during hydrostatic loading (σ1= σ2= σ3) the axial (εa) and radial (εr) of the aluminum 

sample shorten at comparable rate (isostatic compaction). The volumetric strain (e) can 

be calculated as e= εa+2εr (Figure 2.7b), where volume loss (compaction) is positive and 

volume increase (dilation) is negative. The bulk modulus K=∆P/∆e=87.5 GPa is 
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determined, where the effective mean stress P=(σ1+ σ2+ σ3)/3  (Figure 2.7b). The 

discrepancy between this measured value and the value of K=78 GPa for the bulk 

modulus from the literature (Davis and Allen, 1990), is believed to be due to work 

hardening of the sample during machining as well as the cyclic hydrostatic loading prior 

to deformation.  

At confining pressure of 40MPa the radial stresses (σ2= σ3) were kept constant 

whereas the axial stress σ1 was increased by advancing the main hydraulic ram at a 

constant displacement rate of 2.78x10-4 mm/s (1mm/hour), which corresponds to a strain 

rate of 5.5x10-6 s-1 for a 50.8 mm long sample. The differential stress (Q = σ1- σ3) as a 

function of axial strain is plotted in Figure 2.7c. The Young’s modulus has been 

determined to be E= ∆Q/∆εa =76.6 GPa. The Poisson ratio ν =-εr/εa has been determined 

to be 0.33 (Figure 2.7a). All of the measured elastic moduli, bulk modulus K, Young’s 

modulus E, and Poisson ratio ν are in satisfactory agreements with published data (Davis 

and Allen, 1990), indicating that the strain gage and other sensors on the apparatus are 

working properly with acceptable precisions.   

The goal of this study is to better understand faulting that occurs in the Earth’s 

lithosphere because the quantitative knowledge of the mechanical processes involved in 

brittle faulting could aid in earthquake mitigation. At low confining pressures, a rock fails 

by dilatancy and brittle fracture when stressed beyond its elastic limit (e.g., Handin et al., 

1963; Fredrich et al., 1989; Wong et al., 1997). This experimental study focuses on the 

effect of confining pressure and deviatoric stress on microcracking and the inelastic 

volume changes in porous rocks precede brittle faulting.   
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Figure 2.7a:  Deformation of a 2024 aluminum sample: Poisson ratio 0.33 (confining 
pressure=40 MPa). 
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Figure 2.7b: Hydrostatic compaction of a 2024 aluminum sample: Bulk modulus 87.5 
GPa. 
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Figure 2.7c: Deformation of a 2024 aluminum sample: Young’s modulus 76.6 GPa. 
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Chapter 3: Progressive Development of Brittle Faulting: 

Deformation Tests 

 
Deformation experiments conducted under controlled conditions provide a useful 

tool to study the brittle failure phenomenon. The current understanding of brittle fracture 

generation in rocks is summarized in Figure 3.1.  Using a simple classification, the stress-

induced brittle deformation process can be divided into 5 stages (e.g., Wawersik and 

Brace, 1971, Scholz, 2002).  The non-linear region (stage I) that is present at the 

initiation of stress application is due to crack closure caused by increasing effective 

pressure.  The cracks of high aspect-ratio (i.e., ratio of crack length to its width) are more 

compliant (Walsh, 1965) and will be the first to close.  At a certain stress level, most of 

the crack closure has occurred and the sample enters stage II, where the deformation is 

dominantly elastic (Brace et al., 1966).  Ideally, the deformed sample could be unloaded 

at any point in this region and no permanent deformation or damage incurred.  A further 

increase in stress results in growth of micro cracks within the sample, which defines the 

onset of irreversible plastic deformation of the sample.  Stage III of the brittle 

deformation process is marked by the onset of dilatancy, an inelastic volume increase 

caused by stress induced microcrack growth, frictional sliding, and distortion of the 

grains (Brace et al., 1966). At high stress most rocks and granular aggregates dilate 

(Brace, 1978).  The maximum stress that the sample can withstand is the brittle yield 

strength represented by stage IV.  And finally in stage V, the development of 

macroscopic brittle failure is manifested by a stress drop associated with a yield softening 

material.  Stage V is where microscopic damage coalesces into macroscopic fracture of 
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the sample.  In porous materials the transition from fully brittle to fully plastic generally 

occurs over some range of pressure, temperature and strain rates (Brace 1978). 

 

Figure 3.1: A typical differential stress- axial strain curve of a rock undergone brittle 
failure with the failure process divided into 5 different stages showing yield 
softening behavior (after Wawersik and Brace, 1971; Scholz, 2002). 

 
The sample material used in this study is Darley Dale sandstone, carboniferous in 

age and quarried in England (Duff and Smith, 1992). Darley Dale sandstone is chosen 

because of its uniformity and reproducibility in mechanical behaviors (e.g., Wong et al., 

1997; Baud et al., 2000; Heap et al., 2008).  The grain size ranges from 0.08 to 0.8 mm in 

this poorly sorted quartz sandstone (Read et al. 1995), consisting of about 67% quartz, 

14% feldspar, small amount of mica and siliceous and clay cement. The initial porosity of 

an intact sample is ~13% (e.g., Ismail, 1976).   

3.1: Conventional Loading Path 

 
In a conventional triaxial deformation test, a rock sample is first compressed 

hydrostatically (σ1=σ2=σ3=Pc) to a desired effective pressure P0=Pc-Pf, where constant 

pore fluid pressure (Pf) is maintained (i.e., fully drained condition). Subsequently, 
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deformation is achieved by keeping the radial stresses σ2=σ3=Pc, while advancing the 

axial piston at a constant strain rate through servo control (Figure 3.2). The mechanical 

behavior of Darley Dale sandstone deformed using the conventional triaxial compression 

loading shows the typical 5 stages failure process (Figure 3.3). The Young’s modulus is 

determined to be 13.2 GPa. The reduction in compaction rate marks the onset of dilatancy 

(Figure 3.3b). Macroscopic shear fracture developed right after peak stress destroyed the 

strain gages, resulting in an abrupt stop in strain data recording (Figure 3.3b).  

3.2: Lateral Relaxation Loading Path 

 
To investigate the relationship between microscopic damage and macroscopic 

faulting, a new compressional loading configuration is adopted in this study. Under the 

new loading configuration, deformation is achieved by keeping the axial stress σ1= Pc 

constant while decreasing the radial stresses σ2=σ3 at a constant strain rate (Figure 3.2). 

In a conventional triaxial compression test, both the effective mean stress 

P=(σ1+σ2+σ3)/3-Pf and the differential stress Q=(σ1-σ3) increase concomitantly during 

deformation. In contrast, the stress path of the new compression loading is such that the 

increase in differential stress Q is accompanied by a decrease in effective mean stress P 

(Figure 3.2). This so-called lateral relaxation loading configuration is shown to be an 

effective way to stabilize the post-yielding failure development thus allow the 

observation of changes that take place during faulting (Zhu et al., 2003).   
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Figure 3.2: Comparison of a conventional loading path to that of the lateral relaxation 
loading path used in this study (after Zhu et al. 2003). 
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Figure 3.3: a) Stress-strain curve of a Darley Dale sandstone sample (dd-17) deformed at 
effective pressure of 70MPa using the conventional loading configuration. The 5 
deformation stages are indicated;  b) Volumetric strain as a function of axial strain 
during deformation. The onset of dilatancy is marked by the change in compaction 
rate (C’). Strain gages were destroyed by the shear fracture developed in stage V, 
shortly after sample reached its peak stress. 
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3.2.1: Mohr’s Circle 

a) conventional triaxial compression loading 

 

b) lateral relaxation triaxial compressional loading 

 

Figure 3.4: Stress states in a rock sample deformed a) under conventional triaxial 
compression loading; b) under lateral relaxation triaxial compressional loading, 
using Mohr’s circle. The Coulomb-Mohr failure criterion is also shown. Dashed 
Mohr’s circles represent intermediate stress state during deformation. Solid Mohr’s 
circle represents the stress state at failure.  

 
 

The difference between a conventional loading test and a lateral relaxation test is 

evident when the stress states are expressed using Mohr’s circle.  The Mohr’s stress circle 
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is a graphical means of representing the shear stress (τ) and normal stress (σn) 

relationship.  This relationship was discovered by Culmann (1866) and developed in 

detail by Mohr (1882), after whom the graphical method is now named. Combined with 

the Coulomb-Mohr brittle failure criterion, the Mohr’s circle provides an excellent way to 

visualize the stress change as the sample approaches brittle fracture.   

In Figure 3.4, the x-axis is the normal stress σn and the y-axis represents the shear 

stress τ.  Due to the axisymmetric characteristics of the sample configuration (i.e., σ2 = 

σ3), the complete state of three dimensional stress is represented by all points on the 

circle.  The center of the circle is at point σ0= (σ1+σ3)/2 and τ=0 where the principal 

stresses, σ1 and σ3, are given by the points where the circle crosses the τ=0 axis (Parry, 

1995).   For both the conventional and lateral relaxation loading experimental runs, the 

sample is initially loaded hydrostatically to a point of σn=P0 and τ=0.  Following the 

conventional loading path (Figure 3.2), the radial stresses σ2 and σ3 are held constant at 

P0 while the axial load is steadily increased.  This results in the expansion of the Mohr’s 

circle with its left side σ3 fixed at P0.  Failure occurs once the Mohr’s circle intersects the 

Coulomb-Mohr failure envelope represented by the inclined line in Figure 3.4a.  In a 

lateral relaxation test, following hydrostatic stress state of σn=P0 and τ=0, radial stresses 

σ2 and σ3 are gradually decreased while the axial stress σ1 is held constant at P0 . This 

loading configuration results in the expanding of the Mohr’s circle with its right side σ1 

fixed at P0. Just as in a conventional test, failure occurs when the Mohr’s circle 

eventually intercepts the failure envelope in Figure 3.4b.   

Sample dd-05 was deformed at effective pressure of 190MPa under a nominal 

strain rate of 5.5 x10-6 s-1 under the new lateral relaxation loading path. Comparison of 
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the mechanical data of dd-05 (relaxation loading path) dd-17 (conventional loading path) 

is shown in Figure 3.5.  During deformation stages I-IV, as seen in Figure 3.5a, tests 

using different loading paths yield very similar Young’s Modulus (slope of the linear 

portion of the stress-strain curve), yield stress (stress at the onset of dilatancy) and the 

brittle yield strength (i.e., peak stress).  From the strain data, the Poisson ratio and the 

amount of dilatancy observed under different loading paths are also in good agreement. 

However, stage V deformation exhibits considerably larger gradual strain softening 

before shear fracture developed in samples deformed under the lateral relaxation loading 

(Figure 3.5).  Using the new loading configuration, I am able to observe the gradual 

changes taken place before shear fracture is fully developed. 

3.3: Strain Rates 

 
 A total of 6 successful experiments were performed at 3 different strain rates; 1.8 

x10-6 s-1, 2.5 x10-6 s-1 and 5.5 x10-6 s-1 (Table 3.1). All of the experiments are conducted 

at an effective pressure P0=190MPa, with a constant pore pressure of 10MPa maintained 

during deformation. Once the P0  reaches its desired value, the confining pressure (σ2 and 

σ3) is decreased at a constant rate of 3.6 MPa/s. Samples dd-05, dd-08 and dd-10 were 

deformed at a constant axial stress σ1, with the main hydraulic ram advancing at a 

constant displacement rate of ~4x10-4 mm/s , which corresponds to a nominal axial strain 

rate of 5.5 x10-6 s-1 (Figure 3.6).   

In a lateral relaxation test, the effective mean stress steadily decreases (moves to 

the left in Figure 3.4b), while the differential stress increases. After the sample reaches its 

brittle yield strength (the peak stress), the shear localization begins to develop (Stage V).  
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As the failure slowly progresses the differential stress decreases as well as the confining 

pressure and therefore effective mean stress, until the experiment is stopped.   
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Figure 3.5: Comparison of the mechanical data between sample dd-05 deformed under 
the lateral relaxation loading configuration (at effective pressure P0=190 MPa) and 
sample dd-17 deformed under the conventional loading configuration (at P0=70 
MPa). a) stress-strain curve; b) radial strain vs. axial strain; c) volumetric strain vs. 
axial strain.  

 

The axial strain is plotted in Figure 3.6b against time.  As can be seen the strain is 

initially linear and then changes slope where the sample starts to become dilatant.  The 

volumetric strain versus axial strain is plotted in Figure 3.6c. The onset of dilatancy 

marks the transition from dominantly elastic deformation to inelastic deformation.  
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Sample dd-10 was unloaded just beyond its peak strength (Figure 3.6a). While dilatancy 

and strain softening are observed in both dd-08 and dd-10, visual examination of 

deformed samples reveal an obvious shear fracture in dd-08 (Figure 3.7) and no visible 

shear fracture is detected in dd-10.  
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Figure 3.6: Comparison of mechanical data of dd-08 and dd-10, deformed at a strain rate 
of 5.5 x10-6 s-1. Sample dd-08 underwent considerable strain soften and a 
macroscopic shear fracture is developed, whereas sample dd-10 was unloaded 
shortly after reaching the peak stress, no macroscopic shear fracture is observed. a) 
stress strain curve; b) axial strain over time; c) volumetric strain vs. axial strain.  

 
 

Sample dd-06 and dd-09 were conducted using a slower main hydraulic ram 

advancement rate 2x10-4 mm/s, which corresponds to a nominal axial strain rate of 

2.5x10-6/s. For sample dd-04, the main hydraulic ram was locked, rendering the slowest 
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strain rate of 1.8x10-6/s. Given the same confining pressure release rate of 3.6 MPa/s in 

all 6 tests, the axial stress σ1 in deformation tests on dd-04, dd-06, and dd-09 was not kept 

constant during deformation.  

 

 

Figure 3.7: a) Post failure sample (dd-08) with obvious shear localization and b) 
schematic diagram showing the relations between the orientation of shear fracture 
plane and the principal stress directions.   

 

The effect of strain rate on brittle deformation is observed (Figure 3.8). 

Mechanical data of samples dd-05 and dd-06, deformed at 2 different strain rates, 2.5 

x10-6 s-1 and 5.5 x10-6 s-1, respectively, are shown in Fig. 3.8.  Sample dd-05 deformed at 

a higher strain rate, reaches a higher yield stress and peak stress, compared to sample dd-

06. However, the amount of dilatancy is comparable (Figure 3.8) 
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Figure 3.8: Mechanical data from sample dd-05 (strain rate of 5.5x10-6 s-1) and dd-06 
(strain rate of 2.5x10-6 s-1)  a) stress-strain curve; b) axial strain over time c) 
volumetric strain vs. axial strain. 

 

3.4: Faulting Energy 

When a shear fracture is developed presenting the deformed sample (Figure 3.7), 

the angle of failure can be directly measured (Table 3.1).  Using the strain data, the 

amount of slip occurring along the macroscopic fracture can be derived (Wong 1982): 

∆u=∆l/cos(θ) 

Furthermore, shear and normal stresses along the fracture can also be calculated 

(Wong 1982): 

τ =((σ1-σ3)/2)sin(2θ) 

Since strain data was monitored continuously during the experiment we can back 

out the change in length of the sample due to faulting and then divided by the cosine of 
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the failure angle to determine the slip that has occurred along the fault.  The plot of the 

shear stress vs. fault slip is shown in Figure 3.9.  The area under this curve is the 

calculated fracture energy. 

 

     

Figure 3.9:  Transformation of a) experimental deformation data to infer b) the shear 
stress verses relative fault slip allowing the fracture energy to be measured as the 
area under the shear vs. fault slip curve. 

 

  dd-04 dd-05 dd-06 dd-08 dd-09 dd-10 dd-17 

strain rate (s-1) 1.8x10-6  5.5x10-6  2.5x10-6  5.5x10-6  2.5x10-6  5.5x10-6  5.5x10-6  

brittle strength (MPa) 76.5 100.3 86.9 102.6 86.0 103.2 107 

Young’s modulus E (GPa) 15.9 12.9 14.6 12.9 15.7 12.9 13.2 

fracture energy (Jm-2) 5100 14100 3100 12900 n/a n/a 4700 

fracture angle (°°°°) 37.9 36.9 37.1 38.6 n/a n/a 39.8 

 

Table 3.1: Experimental results from lateral relaxation loading of Darley Dale sandstone 
at two different strain rates.  dd-09 and dd-10 were removed prior to macroscopic fault 
development and dd-17 is the only sample run using the conventional loading path.    
 

The results from all of the experimental runs are shown in table 2.  The fracture 

energy ranges from 3100 J/m2 to 14100 J/m2.  These results are comparable to the 

fracture energy of other experiments using a conventional loading path (Wong, 1982) and 

these results fit well with the empirical envelopes that have been shown to be applicable 

to other porous sandstones (Klein et al.2001, Baud et al. 2000 and Wong et al. 1997). 
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This confirms that the lateral relaxation loading path is an effective technique to study the 

onset and propagation of brittle failure. 

The effective pressure controls the deformation of rocks based on changes in 

confining pressure and pore pressure.  The conventional loading path uses an increase in 

axial load (σ1) while maintaining a constant confining pressure (σ2 and σ3).  Since failure 

occurs so quickly with conventional loading, the inelastic behavior and failure mode have 

been difficult to investigate.  The lateral relaxation loading path allows the failure to be 

slowed down so that the details of the failure process can be observed.  Since the lateral 

relaxation loading path fracture energy is comparable to the conventional loading path, 

the slower energy release rate will be useful to investigate the inelastic behavior of 

failure.   
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Chapter 4: Progressive Development of Brittle Faulting: 

Microstructural Analysis 

 
The precursory phenomena such as volatile release from crustal rocks and 

magnetic and electric field perturbations have been studied for earthquake prediction 

(Brace and Orange, 1968; Scholz et al. 1973; King, 1986; Park, 1991; Fenoglio, 1995; 

Johnston, 1997). Precursory phenomena are generally linked to crack opening in fault 

rocks during interseismic strain accumulation in an active tectonic environment (e.g., 

Reid, 1910;  Scholz, 2002). 

It is known that dilatancy, caused by changes in packing of the grains and the 

generation of micro cracks within the grains (Patterson and Wong, 2005), precedes 

macroscopic fracture development in rocks during brittle failure (e.g., Brace et al., 1966; 

Wong, 1982; Lockner et al., 1992; Menéndez et al. 1996).  Slip at grain contact and 

intergranular microcracking can generate high frequency (from kHz to hundreds of MHz) 

acoustic events (e.g., Lockner et al., 1992). Locating the acoustic emission activity during 

deformation, Lockner et al. (1992) showed that at deformation stages I to III the stress-

induced microstructural damage is randomly distributed, with the locations likely dictated 

by the pre-existing defects. Beyond stage IV, microstructural damage becomes localized 

to form a macroscopic fracture (Figure 4.1 A-E). During stage V, the nascent fault 

continues to grow and steepen which leads to a shear fracture at an acute angle across the 

sample (Figure 4.1 D-E).   
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Figure 4.1: Plots of acoustic emissions during shear localization of sample (Lockner et al. 
1992)  

 

However, acoustic emission activity probably accounts for less than 10% of actual 

microstructural damage occurred during deformation (Lockner et al., 1992). Quantitative 

understanding of fault growth requires systematic microstructural analysis on deformed 

samples.  To better understand the relationship between dilatancy, microcracking and 

fault initiation and propagation, we have conducted a quantitative microstructural 

analysis on post-failure Darley Dale sandstones samples, at various stages of macroscopic 

faulting development. 

Samples from two different suites of experiments were used for microstructural 

analysis.  The first suite, the DDL series, consists of 4 samples. These four samples were 

deformed using the triaxial deformation apparatus in the rock mechanics lab at the Stony 

Brook University.  The loading path is identical to the experiments described in Chapter 

3.  The DDL samples were deformed at a constant nominal strain rate of ~5x10-5 /s. 

Sample DDL45 was deformed at an effective pressure of 80 MPa (with distilled water as 

pore fluid at Pf=10MPa). Sample DDL46 was deformed at an effective pressure of 150 
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MPa (with Pf=10MPa). Samples DDL47 and DDL49 were both deformed at the same 

effective pressure of 200 MPa (with Pf=10MPa).  The difference between DDL47 and 

DDL49 is that DDL47 was unloaded (i.e., release of axial stress and confining pressure) 

at a higher stress level (before the stress drop associated with faulting was completed) 

compared to DDL49. The second suite of samples, the dd series, were deformed using the 

triaxial deformation apparatus in the rock physics lab at the University of Maryland.  All 

of the experiments were conducted at a constant effective pressure of 190MPa (with 

Pf=10MPa) with various strain rates, ranging from 1 .8 x10-6 s-1 and 5.5 x10-6 s-1. Detailed 

description of the loading configuration, experimental procedure and elastic and inelastic 

behaviors of the samples can be found in Chapter 3.     

4.1 Characterization of Microscopic Damage: Damage Index  

  

Reflected light images of the four DDL thin sections made from the deformed 

samples are shown in Figure 4.2. While the mechanical data indicate that all 4 samples 

have undergone dilatancy and strain softening during deformation (Zhu et al., 2003), no 

macroscopic shear fracture is observed in DDL45, but a shear fracture can be clearly 

identified in DDL46 and DDL49, respectively. Compared to DDL49, the macroscopic 

shear fracture in DDL47 is not as pronounced.  While these samples are deformed at 

comparable strain rate, DDL45 was deformed at the lowest effective pressure of 80 MPa. 

Samples DDL47 and DDL49 were deformed under identical conditions (Figure 4.3), 

however, DDL47 was unloaded before the post-yield stress drop was completed. The 

contrast between DDL47 and DDL49 provides further evidence that the post-yielding 

deformation under the new loading configuration is stable enough to allow detailed 

investigation of brittle fracture process.  
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Figure 4.2: A reflected light image of the four DDL thin sections.  Corresponding 
effective pressure used in the deformation test for that sample is indicated next to 
sample label. Nominal strain rate is ~5x10-5 /s.  

 

 

Figure 4.3: Loading paths for DDL45, DDL46, DDL47 and DDL49.  Deformation stages 
I-V (see Figure 3.1) are indicated (After Zhu et al. 2003). 

 

To analyze the damage present in each sample, we followed a damage index 

developed by Menéndez et al.(1996), shown in Figure 4.4.  An index value of zero 

represents a grain with no damage. Increasing in index values from 1 to 4 indicates higher 
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intergranular micro crack density. An index value of 1 represents grains with 1 visible 

micro crack. At the maximum value of 4, 4 or more micro cracks can be seen within a 

grain.  

 

Figure 4.4: Damage index developed by Menéndez et al.(1996) and associated color 
scheme used. 

 

We assigned each of these index numbers to a specific color value and these 

colors were then plotted to give a damage map of the thin section (Figure 4.5).  The blue 

regions represent areas of minimum damage, damage index of zero, and red regions 

indicate areas of maximum grain damage, a damage index of 4 (Tamarkin and Zhu, 

2009). Damage index analyses were performed over the entire thin section for each 

sample (Figures 4.5a). For reference, damage index map of an undeformed sample dd-00 

is also shown (Figure 4.5b).  
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a)  b)  

Figure 4.5a: Reflected light image of the 4 experimental DDL runs with corresponding 
damage index all 4 DDL samples have a 1.84 cm (0.725 inch) diameter (shorter 
dimension of thin section).  b) Reflected light image of dd-00 the undeformed 
control with 2.54 cm (1 inch) diameter (shorter dimension of thin section). 

 

The macroscopic fractures observed in samples DDL46 and DDL49 under 

reflected light are well represented in the damaged index analyses of the thin sections, 

with the highest crack density (damage index of 4) located within the shear fractures. In 

comparison, sample DDL47, shows no obvious shear fracture in the reflected light image 

and also shows intense red regions with a damage index of 4.  The damage index 

indicates that there is a similar amount of damage incurred by the grains of DDL47 and 

DDL49 (Figure 4.5), however, the high crack density regions in DDL47 spread 

considerably wider so that the shear band is not as steep as in DDL49. Samples DDL47 

and DDL 49 were deformed at the same strain rate and under the same effective pressure, 

with DDL47 unloaded at earlier stage during the fault propagation. The damage index 

analysis confirms that microscopic damage becomes progressively more correlated at 
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stage V, in agreement with the steepening trend of acoustic emission observed by 

Lockner et al. (1992) (Figure 4.1).  

Sample DDL45 has the lowest damage index and no clear localized deformation 

zone is identified. While deformation stages I-IV are similar in all DDL samples, the 

stage V deformation in DDL45 is much limited compared to the other 3 DDL samples, 

due to the restriction of the low effective pressure (Figure 4.3). This observation provides 

further evidence that shear fracture develops during stage V. The lack of macroscopic 

fracture in DDL45 implies that a critical amount of post-yielding deformation must be 

attained before shear fracture propagates.   

4.2 Quantification of Microcrack Density  

 
To further investigate the relationship between the extent of microscopic damage 

and the development of macroscopic fracture, I conducted new deformation tests on 

Darley Dale sandstone samples. A total of six more samples were deformed at an 

effective pressure of 190 MPa.  Based on results from DDL series, it is clear that 

comparison of samples with different degrees of post-failure deformation provides 

important information on the links between progressive microscopic damage and 

macroscopic fracture development. Two approaches were used to achieve different 

degrees of post-failure deformation in different samples. First, different strain rates were 

used so that different yield stresses were achieved (Figure 4.6). Second, for a fixed strain 

rate, deformation of samples was stopped at different post-yielding stress levels during 

stage V (Figure 4.6).  A reflected light image of the six thin sections made from the 

deformed samples (dd-04, dd-05, dd-06, dd-08, dd-09, and dd-10) show varying degrees 
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of microstructural and macrostructural damage (Figure 4.7). Again, the undeformed 

sample dd-00 is shown as a reference.   

 

Figure 4.6: Loading paths for dd-04, dd-05, dd-06, dd-08, dd-09, and dd-10. Deformation 
stages I-V (see Figure 3.1) are indicated. 

 

a)  b) c)  

Figure 4.7: Reflected light image of the 6 experimental runs a) dd-00 undeformed control 
b) dd-04 run at a strain rate of 1.8x10-6 s-1: dd-06, and dd-09 run at a strain rate of 
2.5x10-6 s-1 and c) dd-05, dd-08, and dd-10 run at a strain rate of 5.5x10-6 s-1 with 
corresponding damage index. All samples have a 2.54 cm (1 inch) diameter (shorter 
dimension of thin section) 
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The suite of experiments was run at two different strain rated as indicated in 

Figure 4.7.  Sample dd-04 was run at a strain rate of 1.8x10-6 s-1, dd-06 and dd-09 were 

run at a strain rate of 2.5x10-6 s-1 while dd-05, dd-08 and dd-10 were all run at a strain 

rate of 5.5x10-6 s-1.  Sample dd-09 shows a zig zag in the first stages of sample loading.  

This is a result of a piece of the viton jacketing material being caught between the sample 

and end cap.  This change in strain rate is the point at which the viton yields plastically.  

As soon as the small piece of viton has completely yielded (extrudes from under the 

sample) the loading returns to the desired strain rate.  Within each strain rate two of the 

samples were allowed to fail completely (dd-04 for a strain rate of 1.8x10-6 s-1 and dd-06 

for a strain rate of 2.5x10-6 s-1 as well as dd-05 and dd-08 for a strain rate of 5.5x10-6 s-1).  

The final two samples, dd-09 (2.5x10-6 s-1) and dd-10 (5.5x10-6 s-1), were stopped at a 

maximum differential stress, just before the initiation of failure.  This allows for the 

microstructural analysis of the samples just prior to the onset of macroscopic failure and 

allows this information to be compared to the undeformed sample dd-00 and the other 

deformed samples.   

To further quantify the amount of damage present in each one of these samples, a 

crack density analysis, developed by Tamarkin and Zhu (2009), was performed.  To do 

this, a high-resolution image of the thin section was obtained via stitching together many 

individual reflected light images taken through a microscope and a matlab code was 

developed and used to analyze the image.  To perform the image analysis, a 2000 pixel 

diameter area of the thin section was analyzed independently from the rest of the image, 

Figure 4.8.  A circular image was used for the simple reason that it was symmetrical and 
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had the same number of pixels independent of the angle of examination as long as this 

examination took place along a line that passes through the center of the circular image.  

A diameter of 2000 pixels was chosen to optimize the locations that could be analyzed in 

the image of the thin section.  The dimensions of the entire thin section image were 

approximately 5050 x 10500 pixels or 1.84 cm x 3.81 cm (0.725 inches x 1.5 inches) for 

the DDL samples, and approximately 7000 x 11000 pixels or 2.54cm x 4.06 (1 inch x 1.6 

inches) for the dd samples.  The original 2.54 cm x 5.08 cm (1 inch x 2 inches) dd 

samples were trimmed by the company that made the thin sections to ensure the sample 

fit on the glass slide.  The portion of the sample opposite the failure (Figure 4.9) was 

chosen to be removed to minimize loss of important areas of grain failure.  Although this 

procedure was not requested, there was no apparent loss of information by this action.  

An additional feature of using an examination size of 2000 pixels was that this 

examination size allowed investigation of the corners of the image without losing part of 

the image or unwanted incorporation of material from the center of the image.   

The circular image of the region of interest, chosen based on the areas of 

maximum and minimum damage as indicated by the damage index, was placed on a 

square black background of 2000 x 2000 pixels and Matlab was used to convert this 

image to a binary array where black pixels represent “0”s and white pixels represent “1”s 

(See appendix for the Matlab code that was used).  The amount of damage in that region 

of interest is determined with the aid of a second image composed of a single, one pixel 

width, white line at the angle of interest on a square black background that has a size of 

2000x2000 pixels.  These two images (the same size) image were then converted to a 

binary array, the same way that the image of the thin section was, and then these two 
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arrays were summed.  Whenever the white line (“1”s) would overlap with a grain (grains 

are white and therefore ones as well) it would sum to “2” and the rest of the array 

remained “0”s and “1”s.  A simple count of the number of “2”s in the newly created array 

would give a value as to the area of grains that were present along that line of a given 

angle.  This analysis was performed for all angles at 5° increments and indicated the grain 

area along these angles can then be examined and compared. 

 

 

Figure 4.8: Crack density analysis and image binarization.  Black pixels are converted to 
binary “1”s and white to “0”s.  Sum array is made from circular image and white 
line at a desired angle of investigation.  Then search for the number of “2”s in the 
newly created array.   

 

Since a 1-pixel width line in a 2000 x 2000 array will have 2000 pixels in it, 

independent of the angle that it is positioned at, the count had to be normalized to 

compensate for the decreased area analyzed for angles not equal to 0° or 90°.  This 

normalization was based the projection of the pixel count magnitude onto the ratio of the 
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side of the triangle that lies along the arbitrary horizontal axis to the length of the 

hypotenuse.  Validation of this normalization technique is provided in the appendix.   

 

Figure 4.9: Example of location where samples were trimmed by the thin section 
company.  None of the areas with obvious failures were trimmed away.   

 

To further quantify the damage of each sample, the number of grains present 

would need to be known.  To do this, the feature boundaries of the grains (grain edges 

and fractures) were identified using the built in Matlab function “edgeimage” as shown in 

Figure 4.10.  By analyzing the feature boundaries of the same 2000 diameter pixel area 

analyzed for grain area, a new array was made, composing the outline of all of the feature 

boundaries.  The same technique of summing this array with the 1 pixel width line at a 

given angle was performed.   The resulting feature boundary analysis was used in 

conjunction with the grain area analysis to calculate the crack density along a given 

angle.  Since the grain area encountered by each of these lines is known, and the number 

of feature boundaries encountered is known, an assessment of the estimated number of 

cracks per grain could be made by dividing the feature boundary count by the grain area 



49 
 

along a given angle and then multiplying by an average grain size.  The average grain 

size was determined via point counting to be 0.17 ±0.01 mm (Error based on Poisson 

counting statistics).  The results of these calculations are shown in Figure 4.11. 

 

 

Figure 4.10: Matlab function “edgeimage” identifies the edges of grains and cracks 
within the grains.   

 
 

The analyses were performed on both the most and the least damaged areas of the 

thin sections as indicated by the damage index.  The areas of maximum damage were 

analyzed at all angles and the maximum crack densities of all of these values were plotted 

in Figure 4.11 with red diamonds.  Both the DDL and dd samples had a measured 

macroscopic fracture of 37°-39°  for those samples that had an obvious shear localization 

that formed.  The minimum values for each sample were plotted with blue squares in 

Figure 4.11.   
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Figure 4.11: Nominal crack density of all samples. The areas of maximum damage were 
analyzed at all angles and the maximum crack density of all of these values was 
chosen to identify the maximum amount of damage in that portion of the thin 
section. In regards to the minimum values for each sample, a crack density of 2 
indicates that there is no damage to the grain since this represents 2 edges per grain.  
The minimum damaged areas were averaged over all angles since there was no 
preferred damage orientation.  The shaded area is the undeformed sample dd-00 
(Tamarkin and Zhu, 2009).  

 

A crack density of 2 indicates that there is no damage to the grain since this 

represents 2 edges per grain.  It is also important to note that the minimum damage value 

have larger error bars than the maximum damaged areas.  This is because the minimum 

damaged areas were averaged over all angles since there was no preferred damage 

orientation.  While all of the samples have areas of damage, the maximum amount of 

damage within the DDL samples is associated with DDL49, deformed at 200 MPa.  

While DDL47 was also deformed at 200 MPa it was unloaded at a higher differential 
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stress and as a result it incurred less damage and has a lower maximum crack density.  

Within the dd samples, dd-04, dd-05, dd-06 and dd-08 had the maximum amount of 

damage and were all allowed to fail completely.  Samples dd-04 (deformed at a strain rate 

of 1.8x10-6 s-1) and dd-06 (2.5x10-6 s-1) show greater maximum damage density when 

compared to samples dd-05 and dd-08 which were strained at a rate of 5.5x10-6 s-1.  This 

indicates that the slower the strain rates the greater the maximum amount of damage the 

sample experiences.  As for samples dd-09 and dd-10, which were stopped at peak 

differential stress, their maximum damage was comparable with the control dd-00, but 

the damage index shows that although there was no coalescence of microscopic failures 

into a macroscopic failure, there is a much more widespread amount of microstructural 

damage. 

The lack of macroscopic shear fracture in samples dd-09 and dd-10 (Figure 4.7) in 

conjunction with the low crack density observed in these 2 samples (Figure 4.11) implies 

that the macroscopic failure may be associated with a critical extent of microscopic 

damage.  Damage parameters such as crack density obtained in this study provide useful 

constraints in modeling brittle faulting process (i.e., Hamiel et al. 2005), which may lead 

to new physical insights into the precursory phenomena associated with earthquakes.   
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Chapter 5: Conclusions 

 
Dilatancy seems to be a key feature to better understand the point at which a rock 

will fail macroscopically.  In granular materials, dilatancy can be attributed to the 

changes in packing of the grains during their relative movement and also the generation 

of microcracks within the grains.  To investigate the brittle deformation of porous 

sandstones, a new lateral relaxation loading path was used and proven to be an effective 

tool to study the post-yielding behavior of rocks damaged by brittle failure.  This loading 

path improves upon the conventional loading path by controlling the failure of the sample 

so that the post-yielding deformation process can be analyzed.  The microstructures of a 

total of ten samples, deformed under the new loading path, were analyzed using a damage 

index and an automated crack density analysis which was developed specifically for this 

study.   These analyses allowed successful mapping of the brittle failure envelope, and 

will allow further investigation of precursory phenomena in porous rocks.  The 

experimental data implied that there was a critical dilatancy parameter that marks the 

onset of macroscopic failure.  The results from these experiments indicate that the 

development of macroscopic fracture is associated with a damage threshold and could 

prove useful in advancing the understanding of the mechanics of brittle faulting of rock.  

The crack density parameter obtained in this study may assist other researchers and 

modelers by providing them with experimentally determined constraints on the damage 

parameters used in theoretical models.  

This new loading path will be useful to represent some Earth processes where the 

effective pressure increases as a result of a decrease in confining pressure and an increase 
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in pore pressure such as rapid uplift or pore pressure increase in an accretionary wedge 

due to impermeability within the wedge.  

It is known that pressure seals can form within a rock by the redistribution of 

fluids within the solution.  If this were to occur at or near the boundary of a fault fluid 

within the fault cannot communicate with the pore space of the surrounding rock and 

result in an undrained condition.  The over pressurized fluids within the fault would 

effectively reduce the amount of shear stress required for the rock to fail (Blanpied et al. 

1992 and Rice 1992).  A key geologic location to study this potentially undrained and 

high pore pressure environment is in subduction environments.  During a great 

earthquake in a subduction environment, the outer wedge is pushed into a compressively 

critical state where there is a general increase in the basal and internal stresses as well as 

an increase in the pore fluid pressure (Wang and Hu, 2006). While the plate is 

subducting, the base of the overriding plate is eroded but the subduction of a seamount 

would entrain large quantities of fluid rich sediment.  The damage caused by erosion may 

prevent the accumulation of elastic strain energy and elevated pore pressure may reduce 

the effective normal stress (Mochizuki et al. 2008 and Von Huene 2004) potentially 

forcing the rock to failure. 

This mechanism is believed by some researchers to cause tremors and silent slip 

along subduction zones such as Cascadia and Japan.  The undrained fluids contained 

within the sediment can cause an increase in the pore pressure (Rogers and Dragert 2003, 

and Dragert et al. 2001) as the loading conditions of the sediment within the wedge 

change, thus successfully decreasing the effective mean stress and slowly forcing the 

material into the failure criterion.   
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Considering the long duration and mobility of the tremor activity, the generation 

of tremors may also be related to the movement of fluid in the subduction zone.  The 

fluids may be carried down with the slab in the aqueous state or the subducting slab may  

liberate aqueous fluid by dehydration.  This may result in large amounts of fluid moving 

to the slab surface.  Depending on the depth, the presence of fluid at the slab surface can 

change the fracture criterion of the rock by increasing the pore pressure and/or create new 

cracks through hydraulic fracturing.  (Obara, 2002).  

Continuous motion of the converging plates of the Cascadia margin produces 

tectonic loading of the locked sediment, eventually leading to earthquake rupture.  But 

GPS data suggests that there is a seismic slip of large areas of deeper Cascadia 

subduction interface, below the seismogenic zone, between great earthquakes (Dragert et 

al. 2001).  It is also important to note that there has been no obvious seismic trigger 

identified with these slow slip earthquakes.  Some possible mechanisms relate to fluid 

movement within the subducting slab material.  If the conditions of the tremor generation 

are unstable, the additional supply of fluid to an almost saturated system, or stimulation 

by nearby earthquake shaking, might trigger the observed tremor (Obara, 2002). Another 

possible tremor-generating mechanism is flow induced oscillation in channels 

transporting magmatic fluid (Obara, 2002). It is believed by Dragert et al. (2001) that 

these slow slip events may continue to propagate updip and evolve into a trigger 

mechanism for a great subduction earthquake.   

The lateral relaxation loading path of this experimental study is intended to 

represent the geologic environments just described where an increase in pore pressure 

forces the material into the failure criterion by decreasing the effective mean stress.   
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Appendices  

 

A.1 LVDT Calibration Plots 
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Figure A-1: Pore pressure intensifier LVDT calibration plot 
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A.2 Nominal Crack Density Calculation 

NCD =
Feature Boundary Count

Whole Grain Pixel Count
×

avg grain diameter

grain
×

1 pixel

# micron

 
Figure A-2: Formula for calculation of nominal crack density 
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A.3 Standardization and Verification of Matlab technique 

 

a)  b)  
Figure A-3 a) and 3b: Random area selected for technique verification.  b) Figure A-3a 

rotated 45˚ (Both on a black back ground). 

 
Figure A-3c: Comparison of image analysis from Figures A-3a and b    Results are 

consistent indicating orientation of image does not affect crack counting software.     
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Figure A-4a: 2000 Pixel radius white circle.   

 

 
Figure A-4b: Matlab image analysis of 2000 Pixel radius white circle indicating 2000 

pixels counted at all angles from 0-180˚ 
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A.4 Matlab code for image analysis: Grain Area 

%Linehistogram creator 
%Sums the number of times the line at a given angle crosses 
white area 
%in the image to be analyzed.   
  
tic 
  
%Request user input fir image to be analyzed 
reply=input('Pick a file (reply must be in single quotes)')   
  
  
Image=imread(reply);  %Convert image into matrix 
[x,map]=rgb2ind(Image,2); %Map image into two colors 
binaryimage=logical(x);  %Convert image to binary matrix 
edgeimage=edge(binaryimage);  %find the edges of the grains 
in the matrix 
  
  
  
%SAMPLE=edgeimage;      %Pick between the edges or the 
binary image (Wholegrains)  
SAMPLE=binaryimage; 
  
% 0=z 
% 1=o 
% 2=t 
% 3=h 
% 4=f 
% 5=v 
% 6=s 
% 7=g 
% 8=e 
% 9=n 
 
%test## is the array that contains the line at angle (XX) 
%in degrees 
  
  
M=SAMPLE+test0; 
z=sum(M(:)==2); 
  
M=SAMPLE+test5; 
v=sum(M(:)==2); 
  
M=SAMPLE+test10; 
oz=sum(M(:)==2); 
  
M=SAMPLE+test15; 
ov=sum(M(:)==2); 
  



60 
 

M=SAMPLE+test20; 
tz=sum(M(:)==2); 
  
M=SAMPLE+test25; 
tv=sum(M(:)==2); 
  
M=SAMPLE+test30; 
hz=sum(M(:)==2); 
  
M=SAMPLE+test35; 
hv=sum(M(:)==2); 
  
M=SAMPLE+test40; 
fz=sum(M(:)==2); 
  
M=SAMPLE+test45; 
fv=sum(M(:)==2); 
  
M=SAMPLE+test50; 
vz=sum(M(:)==2); 
  
M=SAMPLE+test55; 
vv=sum(M(:)==2); 
  
M=SAMPLE+test60; 
sz=sum(M(:)==2); 
  
M=SAMPLE+test65; 
sv=sum(M(:)==2); 
  
M=SAMPLE+test70; 
gz=sum(M(:)==2); 
  
M=SAMPLE+test75; 
gv=sum(M(:)==2); 
  
M=SAMPLE+test80; 
ez=sum(M(:)==2); 
  
M=SAMPLE+test85; 
ev=sum(M(:)==2); 
  
M=SAMPLE+test90; 
nz=sum(M(:)==2); 
  
M=SAMPLE+test95; 
nv=sum(M(:)==2); 
  
M=SAMPLE+test100; 
ozz=sum(M(:)==2); 
  
M=SAMPLE+test105; 
ozv=sum(M(:)==2); 
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M=SAMPLE+test110; 
ooz=sum(M(:)==2); 
  
M=SAMPLE+test115; 
oov=sum(M(:)==2); 
  
M=SAMPLE+test120; 
otz=sum(M(:)==2); 
  
M=SAMPLE+test125; 
otv=sum(M(:)==2); 
  
M=SAMPLE+test130; 
ohz=sum(M(:)==2); 
  
M=SAMPLE+test135; 
ohv=sum(M(:)==2); 
  
M=SAMPLE+test140; 
ofz=sum(M(:)==2); 
  
M=SAMPLE+test145; 
ofv=sum(M(:)==2); 
  
M=SAMPLE+test150; 
ovz=sum(M(:)==2); 
  
M=SAMPLE+test155; 
ovv=sum(M(:)==2); 
  
M=SAMPLE+test160; 
osz=sum(M(:)==2); 
  
M=SAMPLE+test165; 
osv=sum(M(:)==2); 
  
M=SAMPLE+test170; 
ogz=sum(M(:)==2); 
  
M=SAMPLE+test175; 
ogv=sum(M(:)==2); 
  
  
DST=[z/cosd(0) v/cosd(5) oz/cosd(10) ov/cosd(15) tz/cosd(20) 
tv/cosd(25) hz/cosd(30) hv/cosd(35) fz/cosd(40) fv/cosd(45) 
vz/sind(50) vv/sind(55) sz/sind(60) sv/sind(65) gz/sind(70) 
gv/sind(75) ez/sind(80) ev/sind(85) nz/sind(90) nv/cosd(5) 
ozz/cosd(10) ozv/cosd(15) ooz/cosd(20) oov/cosd(25) 
otz/cosd(30) otv/cosd(35) ohz/cosd(40) ohv/cosd(45) 
ofz/sind(50) ofv/sind(55) ovz/sind(60) ovv/sind(65) 
osz/sind(70) osv/sind(75) ogz/sind(80) ogv/sind(85)] 
  
x=[0:5:175]; 
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mean(DST) 
std(DST) 
  
bar(x,DST) 
xlabel('Degrees','FontSize',16); 
xlim([-5 180]); 
ylabel('White Pixel Count','FontSize',16); 
ylim([0 1800]); 
title('White Pixel Count (Whole Grain) SAMPLE vs 
Degrees','FontSize',20); 
toc 

 
 
 
 
 

A.5 Matlab code for image analysis: Feature Boundary  

 
%Linehistogram creator 
%Sums the number of times the line at a given angle crosses 
white area 
%in the image to be analyzed.   
  
tic 
  
%Request user input fir image to be analyzed 
reply=input('Pick a file (reply must be in single quotes)')   
  
  
Image=imread(reply);  %Convert image into matrix 
[x,map]=rgb2ind(Image,2); %Map image into two colors 
binaryimage=logical(x);  %Convert image to binary matrix 
edgeimage=edge(binaryimage);  %find the edges of the grains 
in the matrix 
  
  
  
SAMPLE=edgeimage;      %Pick between the edges or the binary 
image (Wholegrains)  
%SAMPLE=binaryimage; 
  
% 0=z 
% 1=o 
% 2=t 
% 3=h 
% 4=f 
% 5=v 
% 6=s 
% 7=g 
% 8=e 
% 9=n 
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M=SAMPLE+test0; 
z=sum(M(:)==2); 
  
M=SAMPLE+test5; 
v=sum(M(:)==2); 
  
M=SAMPLE+test10; 
oz=sum(M(:)==2); 
  
M=SAMPLE+test15; 
ov=sum(M(:)==2); 
  
M=SAMPLE+test20; 
tz=sum(M(:)==2); 
  
M=SAMPLE+test25; 
tv=sum(M(:)==2); 
  
M=SAMPLE+test30; 
hz=sum(M(:)==2); 
  
M=SAMPLE+test35; 
hv=sum(M(:)==2); 
  
M=SAMPLE+test40; 
fz=sum(M(:)==2); 
  
M=SAMPLE+test45; 
fv=sum(M(:)==2); 
  
M=SAMPLE+test50; 
vz=sum(M(:)==2); 
  
M=SAMPLE+test55; 
vv=sum(M(:)==2); 
  
M=SAMPLE+test60; 
sz=sum(M(:)==2); 
  
M=SAMPLE+test65; 
sv=sum(M(:)==2); 
  
M=SAMPLE+test70; 
gz=sum(M(:)==2); 
  
M=SAMPLE+test75; 
gv=sum(M(:)==2); 
  
M=SAMPLE+test80; 
ez=sum(M(:)==2); 
  
M=SAMPLE+test85; 
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ev=sum(M(:)==2); 
  
M=SAMPLE+test90; 
nz=sum(M(:)==2); 
  
M=SAMPLE+test95; 
nv=sum(M(:)==2); 
  
M=SAMPLE+test100; 
ozz=sum(M(:)==2); 
  
M=SAMPLE+test105; 
ozv=sum(M(:)==2); 
  
M=SAMPLE+test110; 
ooz=sum(M(:)==2); 
  
M=SAMPLE+test115; 
oov=sum(M(:)==2); 
  
M=SAMPLE+test120; 
otz=sum(M(:)==2); 
  
M=SAMPLE+test125; 
otv=sum(M(:)==2); 
  
M=SAMPLE+test130; 
ohz=sum(M(:)==2); 
  
M=SAMPLE+test135; 
ohv=sum(M(:)==2); 
  
M=SAMPLE+test140; 
ofz=sum(M(:)==2); 
  
M=SAMPLE+test145; 
ofv=sum(M(:)==2); 
  
M=SAMPLE+test150; 
ovz=sum(M(:)==2); 
  
M=SAMPLE+test155; 
ovv=sum(M(:)==2); 
  
M=SAMPLE+test160; 
osz=sum(M(:)==2); 
  
M=SAMPLE+test165; 
osv=sum(M(:)==2);  
  
M=SAMPLE+test170; 
ogz=sum(M(:)==2); 
  
M=SAMPLE+test175; 
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ogv=sum(M(:)==2); 
  
  
 DST=[z/cosd(0) v/cosd(5) oz/cosd(10) ov/cosd(15) 
tz/cosd(20) tv/cosd(25) hz/cosd(30) hv/cosd(35) fz/cosd(40) 
fv/cosd(45) vz/sind(50) vv/sind(55) sz/sind(60) sv/sind(65) 
gz/sind(70) gv/sind(75) ez/sind(80) ev/sind(85) nz/sind(90) 
nv/cosd(5) ozz/cosd(10) ozv/cosd(15) ooz/cosd(20) 
oov/cosd(25) otz/cosd(30) otv/cosd(35) ohz/cosd(40) 
ohv/cosd(45) ofz/sind(50) ofv/sind(55) ovz/sind(60) 
ovv/sind(65) osz/sind(70) osv/sind(75) ogz/sind(80) 
ogv/sind(85)] 
 
x=[0:5:175]; 
mean(DST) 
std(DST) 
bar(x,DST) 
xlabel('Degrees','FontSize',16); 
xlim([-5 180]); 
ylabel('White Pixel Count','FontSize',16); 
ylim([0 150]); 
title('White Pixel Count (Edge) SAMPLE vs 
Degrees','FontSize',20); 
toc 
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