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A combination of experiments and modeling are used to address the vibration 

durability of structures subjected to different random vibration environments.  Presented 

in this work are a set of experimental data comparing the rate of change of the first 

natural frequency and the measured time to failure, of simple structural members under 

repetitive shock (RS) vibration, single-axis electrodynamic (ED) vibration and multi-axis 

ED vibration. It was found that multi-axis testing is more severe than single-axis testing 

at the same level.  In addition the RS system low frequency amplitude is often too weak 

to efficiently propagate the crack.  Smoothing of the input power spectral density (PSD) 

or poor line resolution was also shown to change the time to failure of a test.  A poor 

correlation was shown between the PSD and the rate of natural frequency change (RFC) 

over a wide frequency shift. The change in natural frequency caused the initial PSD to be 

  



ineffective in determining the total time to failure.  A predictive, analytic methodology to 

quantify the RFC was developed to predict the fatigue life of a structure experiencing 

random vibration excitation.  This method allows the estimation of fatigue life using the 

frequency domain, where only the input power spectral density, damping factor and 

structural information are required.  The methodology uses linear elastic fracture 

mechanics for fatigue crack propagation and accounts for the frequency shifting that 

occurs due to fatigue crack evolution.  The analytic model has been shown to compare 

favorably to both finite element analysis (FEA) and experimental results, for mild-steel 

cantilever beams.  Monte Carlo simulations have been conducted to assess the sensitivity 

of the model predictions to uncertainties in the input parameters.  In addition a semi-

empirical model was developed whereby the input PSD and damping factor are measured 

from life tests, and the resulting time to failure and the acceleration factors between 

different vibration environments can be determined. The improved modeling 

methodology developed by this work are of value not only to structural designers who 

wish to design for dynamic environments, but also to test engineers who wish to qualify 

products through accelerated life testing, and to vibration engineers who wish to compare 

the relative severity of different random vibration environments, in terms of their 

potential to cause fatigue damage accumulation. 
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Chapter 1 Introduction 

 Within industry random vibration environments have long been the cause of 

many fatigue induced failures.  As such, vibration has long been an area of study.  This 

work will extend on the available knowledge base for analyzing complex random 

vibration environments 

1.1 Background and Motivation 

 Random vibration environments have long been specified in terms of the power 

spectral density (PSD).  This method of specification is widely accepted as a convenient 

way to compare different vibration environments.  It’s very beneficial to designers and 

engineers therefore, if the PSD can be successfully used in predictive models to assess 

vibration durability.  However, as this study demonstrates, there are several limitations 

in traditional approaches for using the PSD for life prediction.  This study aims to 

develop a methodology to overcome these limitations and present a viable methodology 

for accurate life prediction.  

 Historically most random vibration testing has been done on single-axis vibration 

systems.  For requirements where the frequency range is up to 2000 Hz, this is almost 

exclusively done on electrodynamic shakers. In recent years the capability to perform 

simultaneous multi-axis testing has increased.  Multi-axis testing is becoming common 

place in labs around the country in the form of both repetitive shock (RS) vibration and 

electrodynamic (ED) vibration [1] (note hydraulic vibration systems generally do not test 

up to 2000 hz).  Each vibration system uses different methods to excite the test item.  RS 

vibration systems use pneumatic hammers that impact a specially engineered plate that 

the test specimen is mounted on. This plate then resonates, introducing vibration into the 



 

test specimen.  Although the vibration is multi-axis in nature and can excite all 6 degrees 

of freedom (DOF), the amplitude between 20 and 500 Hz is too low.  In the case of ED 

vibration, an internal driver coil is powered by an electronic amplifier. One characteristic 

difference is that RS vibration has many peaks and valleys at adjoining frequencies due 

to the resonances of the table [1].  This is unlike ED vibration, which can have very 

smooth profiles.  Another characteristic difference is that ED vibration systems can 

control the shape and the amplitude of the PSD.  For an RS vibration system, only the 

amplitude can be controlled.  

 With multiple environments available for testing, methods to compare these 

environments have become important.  Many different methods have been proposed in 

engineering communities. Many of these methods focus on the 1st mode response [2,3] 

of the test specimen.  This comes from an underlying assumption that damage occurs in 

a narrow band around the 1st resonant frequency [4]. Stress at the failure site is estimated 

by calculating the response amplitude of the 1st mode and accounting for item geometry.  

As failure occurs, however, the propagation of fatigue induced cracks causes a decrease 

in the natural frequency of vibration.  Recent work in manufacturing practices and 

equipment reliability has focused on using resonant mode shifting to detect possible 

failure points before catastrophic failure occurs [5-9].  Despite these advances, the 

shifting of the natural frequency is not taken into account in traditional durability 

analysis.  In addition, when analyzing random vibration input profiles, peaks and valleys 

that are “far” from the resonant frequency are often ignored.  Analysis of vibration 

failures are further complicated by plasticity near final fracture and large scatter in 

available fatigue data. Often times material properties and geometry limitations make the 
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development of analytic life models cost prohibitive.  In this case, engineers often turn to 

semi-empirical life models.  In a semi-empirical model, a physics of failure model is 

identified, and then a set of experimental variables are determined by an accelerated life 

test.  The validity of the accelerated life test is highly dependent on the underlying 

physics of failure model. The purpose of this investigation was to develop a frequency 

domain physics of failure based predictive model, as well as a semi-empirical model, to 

predict time to failure of a simple structural member for different vibration 

environments.  Although the model developed here will be for single-axis vibration 

environments that have the characteristics of RS and ED vibration, the experimental data 

that is presented and ongoing research should allow a predictive model to be developed 

for multi-axis vibration. 

1.2 Research Objectives 

The objectives of this research are as follows: 

 Experimentally investigate the effect of notches in the power spectral density 

profile, on time to failure for a simple structural member under random vibration 

excitation. 

 Experimentally investigate the effectiveness of using the PSD as an indicator of 

test severity, where time-to-failure is used as a severity metric. 

 Develop a predictive, frequency domain, physics of failure, analytic model, which 

accounts for frequency shifting during vibration fatigue. 

 Analyze the effects of different methods for determining and modeling damping, 

on the accuracy of the model predictions. 
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 Develop a semi-empirical life model that accounts for frequency shifting and can 

be calibrated with accelerated test data for life prediction under different vibration 

conditions. 

1.3 Dissertation Overview 

 This dissertation is structured into individual chapters, with each chapter 

comprising a stand-alone publication.  Consequently, there is some amount of necessary 

redundancy across the chapters, in the interest of completeness, to make each chapter 

self-contained.  Chapter 2 is a paper that was published in the Journal of the Institute of 

Environmental Sciences and Technology (IEST), and it describes an experimental 

investigation into the effect of notches in the input PSD on the fatigue durability of 

structures subjected to random vibration excitation.  Chapter 3 is an article which has 

been submitted for review to the Journal of Shock and Vibration.  This article presents 

an experimental data set which compares repetitive shock vibration, 3-axis 

electrodynamic vibration and single-axis electrodynamic vibration, in terms of their 

relative effectiveness in causing fatigue damage accumulation.  Chapter 4 is an article 

formatted for publication which develops a physics of failure (PoF) model to predict 

time to failure in the frequency domain using linear elastic fracture mechanics (LEFM).  

The goodness of the model is tested against the experimental results presented in 

Chapter 3.  Chapter 5 is an article formatted for publication which explores the 

uncertainties associated with the model developed in Chapter 4, because of the 

variabilities of the input parameters.  Chapter 6 is an article formatted for publication 

which simplifies the model of Chapter 4 to a 2 parameter semi-empirical life model 

where the 2 parameters can be determined experimentally.  Chapter 7 presents the 
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overall conclusions and contributions of this dissertation, discusses its limitations and 

suggests relevant future work.  Appendix A provides a detailed flow of the calculation 

method used in Chapter 4. 
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Chapter 2 Effect of Resonant Frequency Shifting on 
Time to Failure of a Cantilevered Beam under 
Vibration 

Published in the Journal of the IEST, V. 53. No. 1 2010. 
  

2.1 Background 

 With increasing recognition of the value of highly accelerated life testing/highly 

accelerated stress screen (HALT/HASS), the use of repetitive shock (RS) vibration has 

greatly increased. RS vibration uses pneumatic hammers that impact a plate. This plate 

then resonates, introducing vibration into the test specimen. In the case of 

electrodynamic (ED) vibration, an internal driver coil is powered by an electronic 

amplifier. One characteristic difference is that RS vibration has many peaks and valleys 

at adjoining frequencies [1].  This is unlike ED vibration, which can have very smooth 

profiles. The existence of the peaks and valleys in RS raises a question as to their effect 

on the severity of the vibration environment.  

2.2 Purpose 

 During equipment design, many methods focus on the 1st mode of vibration 

[2,3]. This comes from an underlying assumption that damage occurs in a narrow band 

around the 1st resonant frequency [4].  Stress is computed by calculating the response of 

the 1st mode and accounting for item geometry. Shifting of the natural frequency is 

never taken into account.  

 In comparing vibration environments, the power spectral density (PSD) values at 

the resonant frequency are often used to express equivalence. Sine testing goes so far as 

to find the resonant modes, and then dwell at those resonance points during testing. In 
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addition, many random tests ignore peaks and valleys that are “far” from the resonant 

frequency. Recent work in manufacturing practice and equipment reliability studies has 

focused on using resonant mode shifting to detect possible failure points before 

catastrophic failure has occurred [5–9]. Resonant mode shifting has also been used to 

capture manufacturing problems in sheet material [10].  The resonant shifting during 

failure challenges the fundamental assumption of examining a single frequency for 

computing damage due to a vibration spectrum. This study will show the effect of 

resonant frequency shifting on the time to failure of a cantilevered beam. In addition, it 

will demonstrate cautions that should be considered when performing testing where the 

PSD has large valleys and peaks, sine-on-random testing is used, or sine dwells are used. 

2.3 Experiment 

 To evaluate the effect of the peaks and valleys, a cantilevered beam was 

subjected to five vibration profiles while measuring the time to failure. In addition, the 

natural frequency was monitored during the crack growth. The cantilevered beam was 

manufactured from 4.763 mm  15.88 mm (.1875 in.  .625 in.) 1018 bar stock. A notch 

was cut, as illustrated in Fig. 1. 

 7 
 



 

 

Fig. 1. Cantilevered beam dimensions. 
 

On the end of the beam, a 430-g (.95-lb) mass was secured. Fig. 2 shows the beam 

attached to the exciter.  
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Fig. 2. Experimental setup of resonant beam with end mass. 
 

A control accelerometer was mounted on the fixture as illustrated in Fig. 2. In addition, a 

response accelerometer was attached as close as possible to the end. The response 

accelerometer was used to measure the natural frequency of the beam. A sine sweep was 

performed to measure the resonant modes, as illustrated in Fig. 3. 
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Fig. 3. Resonant frequency search. 
 

The resonant frequencies were 110 Hz and 985 Hz. These were the 1st and 2nd bending 

modes of a cantilevered beam. 

 Each vibration profile was developed based on the resonant frequencies. The 

profiles are illustrated in Fig. 4 and described in Table 1. 
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Fig. 4. Input profiles with Grms and average time to failure. 
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Profile Description 
White noise 
profile 

This white noise profile will be used as a baseline. 

Low pass profile There was concern as to whether the energy input (G^2/Hz) at the 2nd mode 
(985 Hz) would affect the time to failure. This profile was run to demonstrate 
the difference in time to failure between exciting the 1st mode and exciting 
the 1st and 2nd mode simultaneously. 

RS sim profile This profile incorporates data that was measured on an RS system and 
simulated on an ED system. 

Low pass-notch 
profile 

This profile was used to examine the effects of a 20-Hz notch starting 20 Hz 
below the natural frequency of 110 Hz. 

Narrowband 
profile 

This profile was used to examine the effect of not having any input outside of 
a 40-Hz bandwidth of the 1st natural frequency. The energy around the 2nd 
mode was shown to be insignificant by the low pass profile. 

Table 1. Description and purpose of each profile 
 
A minimum of four trials were used for each profile, with the exception of the RS sim 

and the narrowband profile. Due to the nature of the frequency shift, fewer trials were 

necessary for those profiles. All of the profiles were run using a Jaguar controller from 

Spectral Dynamics with the  clipping set to “off.” The random signal-generation 

algorithm, however, only allows peaks of 4. The profiles were controlled from 20–

2000 Hz using 120 DOF. All of the profiles except the RS sim profile had a frequency 

resolution of 2.5 Hz. For the RS sim profile, a frequency resolution of 0.625 Hz was 

used. These profiles were run using breakpoints to develop a PSD. The abort limits were 

±3 db, although in most cases the controller was more accurate. 

2.4 Results 

 Fig. 5 illustrates the time to failure for each of the various profiles. The time to 

failure values are indicative of the damage potential for each of the input profiles. 

Confidence levels (CL) of 90% were also calculated and plotted. 
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Fig. 5. Time to failure for various profiles. 

 

Fig. 5 illustrates that despite having PSD values that are the same (within a 10-Hz 

bandwidth around natural frequency) the time to failure was statistically different for 

each profile. For those profiles where the time to failure was 120 minutes, the time 

indicated termination of the test, not failure. The low pass profile and the white noise 

profile showed statistically equivalent times to failure. Since the low pass profile only 

excited the 1st mode, it was demonstrated that the 2nd vibration mode effect was smaller 

than the experimental error and fatigue scatter. The RS sim profile showed a longer time 

to failure than the white noise profile and the low pass profile. As fatigue cracks 

propagated through the material, the 1st mode resonant frequency of the beam shifted. 

As the shift occurred, it aligned with the peaks and valleys of the input profile. When the 

1st mode aligned with the valleys of the input, the natural frequency shift would slow 
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down, indicating a reduced crack propagation speed. When the 1st mode aligned with 

the peaks of the input, the natural frequency shift would speed up, indicating an increase 

in crack propagation speed. 

 An extreme case of this was demonstrated by the narrowband profile. The 

narrowband profile did not fail, despite having an initial PSD input at the 1st mode that 

was equivalent to the low pass profile and the white noise profile, and higher than the RS 

sim profile. The resonant frequency shifted at the same rate as the low pass profile and 

the RS sim profile, but stopped once the natural frequency got to an area of low energy 

input. At this point, the 1st mode frequency remained constant, and no failure occurred.  

The low pass-notch profile behaved similarly to the narrowband profile. The frequency 

of the 1st mode shifted up to the valley and then stayed there until about 90 minutes. At 

this point, some of the test samples began to experience a shift in the natural frequency. 

One item failed at 1 hr 56 min, which shows that an item may get stuck in a valley for a 

significant amount of time, but still is able to move through that area if there is enough 

energy below the natural frequency. Fig. 6 depicts the 1st mode frequency shifting as a 

function of time. The natural frequency was determined in real time and no sine sweeps 

were performed during the random excitation. Furthermore, data for all of the samples 

were averaged. 
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Fig. 6 shows that both the slope of the 1st mode frequency shift and the frequency of the 

1st mode vary with time. This change in slope illustrates the changing crack propagation 

speed. This is evident as the natural frequency goes through the peaks and valleys of the 

RS sim, low pass-notch and narrowband profiles. Although not recorded, it was noted 

that as the natural frequency shifted, the damping value increased. 

 The change in natural frequency is problematic for evaluation of damage 

potential. Using methods such as those discussed in Ref. 2, 3, and 11 requires knowledge 

of the rate at which the natural frequency is shifting. This may not be known a priori, 

but must be determined experimentally. These results lead to some startling conclusions. 



 

2.5 Conclusions 

 Due to resonant frequency shifting during crack propagation, the frequency band 

of excitation below the natural frequency becomes important. In this particular case, the 

initial resonance was 110 Hz. The amount of input excitation at frequencies between 50 

Hz and 110 Hz was statistically significant to the time to failure of the component. 

Secondly, this data shows that crack propagation will be accompanied by a change in the 

natural frequency. This analysis could be extended to testing of items where a natural 

frequency shift during vibration has occurred. The natural frequency shift may be 

indicating that fatigue failure has started and should be addressed. In more complex 

systems, it is possible that the change in natural frequency could be due to other factors, 

but crack propagation should be considered. This would be particularly important in a 

HALT/HASS or design test. A resonant frequency change may indicate that a failure is 

starting to occur that would be propagated to a patent defect if testing was allowed to 

continue. 

 Finally, some test methods may be called into question. Tests where there are 

large valleys and peaks might not propagate a defect to failure. The crack would grow 

until the frequency shift made the natural frequency coincident with a valley. At this 

point, the crack would stop growing, or would slow significantly, and the failure would 

not occur. However, this same test, when subjected to a smoother profile, would 

propagate the defect to failure. This is of particular concern in RS testing, especially at 

frequencies below 1000 Hz. Sine dwells would also be suspect as the natural frequency 

may simply shift out of the sine dwell range, and no further damage would occur. Sine-

on-random vibration profiles would also be suspect if the test environment was not an 
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exact replication of a field environment. The sine peaks could cause a crack initiation 

that would go undetected as the natural frequency shifted into a random-only section. It 

may be advantageous to use random-on-random instead. 
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Chapter 3 Limitations of the Power Spectral Density 
as an Indicator of Test Severity 

 In the previous chapter notches below the initial natural frequency were shown to 

drastically effect the time to failure.  This effect was linked to the change in natural 

frequency that occurred during failure.  This next chapter will directly compare RS 

vibration systems and ED vibration systems and their ability to cause fatigue related 

damage   

3.1 Introduction 

 Random vibration environments have long been specified in terms of the power 

spectral density (PSD).  This method of specification is widely accepted as a way to 

compare vibration levels.  Historically most testing has been done on single-axis 

vibration systems.  For requirements where the frequency range is up to 2000 Hz, this is 

almost exclusively done on electrodynamic shakers. In recent years the capability to 

perform simultaneous multi-axis testing has increased.  Multi-axis testing is becoming 

common place in labs around the country in the form of both repetitive shock (RS) 

vibration and electrodynamic (ED) vibration [1,2].  With multiple environments 

available for testing, methods to compare these environments have become important.  

Many different methods have been proposed in engineering communities. Many of these 

methods focus on the 1st mode of vibration [2,3].  This comes from an underlying 

assumption that damage occurs in a narrow band around the 1st resonant frequency [4].  

Stress is computed by calculating the response of the 1st mode and accounting for item 

geometry.  Recent work in the manufacturing practices and equipment reliability studies 

 19 
 



 

has focused on using resonant mode shifting to detect possible failure points before 

catastrophic failure has occurred [5-9].  The shifting of the natural frequency is not taken 

into account in traditional analysis.  In addition many random tests ignore peaks and 

valleys that are “far” from the resonant frequency.  Analysis of vibration failures is 

further complicated by plasticity near final fracture and large scatter in available fatigue 

data.  The purpose of this investigation was to analyze the effectiveness of using the 

power spectral density in combination with the Grms level to compare vibration 

environments.  This investigation will focus on single-axis ED, multi-axis ED and RS 

vibration.  In addition an experimental data set will be generated that will allow 

comparison of the effectiveness of various analytic models at predicting vibration 

severity, as indicated by time to failure. 

3.2 Background 

 Repetitive Shock Vibration is generated by pneumatically driven hammers that 

impact a plate.  This plate responds according to its modal properties, imparting a 

vibration to the unit under test (UUT) mounted on the plate.  The vibration is generally 

found to contain energy in all 6 degrees of freedom (3 rotation and 3 translation 

motions).   The vibration generated by these types of machines produces a significantly 

nonuniform response on the mounting plate, thus making the test condition vary 

significantly between different locations on the mounting plate.  In addition, there is 

large variation between different sizes of machines as well as between manufacturers.  

The only control parameter is the Grms in the out-of-plane direction, over the entire 

frequency spectrum that is being excited.  In general that is about 500-10,000 Hz.  The 

shape of the PSD profile cannot be controlled and is driven by the table and hammer 
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dynamics.  Many of the RS machines also experience high energy peaks during the 

impact of each hammer, followed by low levels in between impacts [10]. As such for 

any RS test it is unique to the particular table, at a particular location and at a particular 

G-Level.  ED vibration on the other hand is very controllable.  Nearly any PSD can be 

run on nearly any ED vibration system (assuming it can handle the load).  This 

controllability is the only way to simulate real world environments.  ED vibration is 

generally limited to 5-2000 Hz, although some systems can provide vibration excitation 

at higher frequencies.   In recent years multi-axis ED vibration systems have become 

available.  It is now possible to procure an off-the-shelf 6 degree of freedom (DOF) 

multi-axis vibration system.  Testing has been conducted to compare single-axis ED 

vibration and multi-axis ED vibration [11,12].  These tests have found that multi-axis 

testing will cause a test specimen to fail in a shorter time compared to single-axis testing.  

In addition Himelblau and Gregory performed separate investigations regarding the 

response of a test item to multi-axis vibration [13,14].  They outfitted a test item with 

accelerometers or strain gages and measured the strain or acceleration response.   

3.3 Experimental Development 

 In order to compare the vibration environments two test specimens were built. 

The first test specimen was primarily sensitive in the Z-axis (See Fig. 3) and is depicted 

in Fig. 1 (all dimensions in inches). 
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Fig. 1. Test Beam 1. 

 
The second test specimen was sensitive in two directions, although it had a primary 

sensitivity in the Z-direction.  This is illustrated in Fig. 2 (all dimensions in inches). 

 
Fig. 2. Test Beam 2 

 
The first bending mode of Beam 1 in the vertical direction was 415 Hz.  In the transverse 

direction the first bending mode was 3520 Hz.  For Beam 2 the first bending mode in the 
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vertical direction was 330 Hz.  In the transverse direction the 1st bending mode was also 

330 Hz.  The beam was mounted for vibration as follows.  

 

Catastrophic 
Failure Point 

X 

Y

Z

Fig. 3. Beam mounted on shaker 
 

It should be noted that the test was continued until catastrophic failure of the beam.  

Catastrophic failure was determined to occur when the test specimen interacted with the 

member located just below the beam.  The beam was made of cold rolled 1018 steel.  As 

a result of the cold roll process the grain structure was different between production 

runs.  In order to minimize the difference between lots the beams were annealed.  After 

machining, the beams were heated to 1650 F for 2 hours and then allowed to slowly 

cool.  This allowed recrystallization within the material and made the samples more 

uniform.  In order to ensure that the data was unbiased the profiles were ran in random 

order, the machined beams were randomized for testing, and all test were run on the 

same vibration system in the same location.  Each profile was tested using 5 samples. 

 The beams were subjected to 10 different profiles.  To determine the profiles, the 

repetitive shock chamber PSD level was measured in the Z-Axis.  All profiles in the RS 

system were designated by RS-XX, where the XX was the Grms level that was indicated 

on the controller.  In the case of the particular controller that was used it measured from 
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10-8,000 Hz in the z-axis only, near the center of the table.  ED SIM RS-40 was created 

for the ED system by matching the PSD of the RS-40 Profile.   The simulation profile 

used 3200 lines from 0-2000 Hz to describe the PSD. ED SMOOTH RS-40 was created 

by smoothing ED SIM RS-40.  This was done by simply taking the time history and 

sampling it at 5120 Hz with 200 Lines.   These profiles are depicted in Fig. 4. 
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Fig. 4. RS-40 and electrodynamic simulation 

 
WHITE-HIGH was developed by using a flat line profile to match the Grms level of the 

RS-40 profile from 20-2000 Hz.  These profiles are depicted in Fig. 5.   
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Fig. 5. Electrodynamic simulation and flat line profiles 

 
The RS-60, ED SIM RS-60 and ED SMOOTH RS-60 were developed in the same 

manner as RS-40, ED SIM RS-40 and ED SMOOTH RS-40 respectively.  These profiles 

allowed a comparison of each type of profile at two different levels.  These profiles are 

depicted in Fig. 6. 
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Fig. 6. RS-60 and electrodynamic simulation 
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A comparison was also made between ED single-axis vibration and ED multi-axis 

vibration. Due to limitations in the controllability of the 3 axis ED system at frequencies 

above 1000 Hz, the profiles were only run out to 1000 Hz.  Two single-axis ED profiles 

were developed that were also tested in 3-axes  They were WHITE-LOW which was -

6db down from WHITE-HIGH and WHITE-MED which was -3db down from WHITE-

HIGH.  This allowed two levels to be tested on the 3 axis ED system.  The 

corresponding 3-axis profile 3ED WHITE-LOW and WHITE-MED were also 

developed.  For the 3-axis ED test all of the axes had the same PSD, with a low control 

coherence of .05.  These profiles are depicted in Fig. 7. 
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Fig. 7. Single-axis and 3-axis ED 
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A Summary of the profiles is included in Table 1. 

Profile Name Profile Description 
ED SIM RS-40 Single-axis ED simulation of RS-40 Z-axis 
ED SIM RS-60 Single-axis ED simulation of RS-60 Z-axis 
ED SMOOTH 
RS-40 

Smoothed version of ED SIM RS-40 

ED SMOOTH 
RS-60 

Smoothed version of ED SIM  RS-60 

WHITE-HIGH Match the Grms level of the RS-40 profile from 20-2000 Hz 
RS-40 Z-axis of repetitive Shock System set to 40 Grms 
RS-60 Z-axis of repetitive Shock System set to 60 Grms 
3ED WHITE- 
LOW 

3-axis ED at White Low level in all axes 

WHITE-LOW Single-axis ED -6db of WHITE-HIGH ran from 20-1000 Hz 
3ED WHITE- 
MED 

3-axis ED at WHITE MED level in all axes 

WHITE-MED Single-axis ED -3db of WHITE-HIGH ran from 20-1000 Hz 
Table 1. Summary description of profiles 

 
The repetitive shock system that was used did not display the peaks and valleys in the 

time history that is typical for a RS system.  In addition the kurtosis of this signal was 

3.4 compared with a pure Gaussian signal which has a kurtosis of 3 [15]. Due to the 

small discrepancy, the signal is assumed to be Gaussian.   Furthermore the Y axis 

component, although uncontrolled, had a PSD that was nearly identical to the z-axis.  

 

3.4 Results 

 Typical evaluation of the severity of a test profile is undertaken by analyzing the 

PSD value at the natural frequency [2].  A simple comparison of three of the profiles is 

depicted in Fig. 8. 
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Fig. 8. Time to failure for different profiles 
 

From Fig. 8 ED SIM RS-40 has a higher initial PSD level than WHITE-HIGH, yet takes 

approximately 2 times as long to fail.  This discrepancy was due to a change in natural 

frequency (first bending mode) as the beam under went failure.    This change in natural 

frequency has been reported by other researchers [4,5].  In their particular cases the 

natural frequency shift was not as important because they were comparing the same 

profile for multi-axis vs. single-axis testing.  The frequency shifting becomes much more 

important when trying to compare different profiles.  A sample of the frequency shift 

data is depicted in Fig. 9. 

 28 
 



 

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

Time(min)

F
n

 (
H

z)

ED SIM RS-40

ED SMOOTH RS-40

White-High

RS-40

 
Fig. 9. Example of natural frequency shift during failure 

 
From Fig. 9 it can be seen that the slope of natural frequency vs. time changes as the 

beams go through failure.  It can also be seen that the slope changes from profile to 

profile.  Characterization of this effect is done by calculating the rate of natural 

frequency change (RFC) in accordance with the following, 

 
1ii

1ii
i tt

fnfn
RFC








  [Hz/min] (1) 

where Eq. 1 allows examination of the RFC at a given natural frequency.  The RFC can 

be combined with the frequency spacing to yield the total time to failure as, 

 
startncf

failncf ncdf
RFC

TTF
_

_

1
[min] (2) 

where fnc_start is the starting cracked natural frequency, fnc_fail is the natural frequency at 

failure and TTF is total time to failure.  As the frequency changes, the excitation level 

may go up or down depending on the local trend of the nonuniform PSD profile.  This 

change in excitation level changes the RFC.  This concept is illustrated in Fig. 10. 
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Fig. 10. Comparison of slope change 

 
Over a small change in natural frequency the change of the RFC can be shown to follow 

the changing input levels.  Upon examination of a larger frequency change, the PSD 

does not follow the RFC as illustrated in Fig. 11. 
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Fig. 11. RFC compared to PSD 

 
It is apparent from the lack of relation between the PSD input and the RFC that the total 

time to failure would not be well correlated to input PSD or Grms.   As the test specimen 

fails when subjected to WHITE-HIGH, the RFC increases.  This is not captured by the 

input PSD or Grms.  The above factors combined with the plasticity near catastrophic 

failure makes analytical evaluation of the time to failure problematic at best. 
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Fig. 12. Beam 1 time to failure with 90% confidence intervals 
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Fig. 13. Beam 2 time to failure with 90% confidence intervals 

 
The ED simulation of the RS-40 profile was ED SIM RS-40, and the ED simulation of 

the RS-60 profile was ED SIM RS-60.  From Fig. 14 the RS system fails the test item 

faster than the corresponding ED simulation.  For both beam configurations the multi-

axis test was more severe.  Furthermore, when the specimen was sensitive in two 

directions, the multi-axis case had even more advantage than if the specimen was only 
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sensitive in one direction.   Examination of the single-axis ED and multi-axis ED yields 

similar results.  For Beam 1 and 2 the 3-axis ED system fails the test specimens faster 

than the single-axis simulation.  Once again for both cases the multi-axis test was more 

severe, although only slightly so for Beam 1.  From this it can be concluded that a multi-

axis test of the same PSD as the single-axis version will be more severe.  It was 

interesting to note that the multi-axis effect of the RS system was more pronounced than 

the multi-axis effect of the ED system.  The variability between axes of the RS system 

was believed to account for this difference.   These results are depicted graphically in 

Fig. 14. 
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Fig. 14. Multi-axis time to failure 

 
 Although a multi-axis test is more severe than the corresponding single-axis test, 

at the same level, a comparison needs to be made to a profile that exhibits more white-

noise characteristics.  Note that the RS-40 was used to create WHITE-HIGH based on 

Grms.  It follows from Fig. 15 that the flat line WHITE-HIGH was more severe than the 

multi-axis RS-40 test.  It also follows that WHITE-HIGH was substantially more severe 

than the ED simulation (ED SIM RS-40) of RS-40. All three of these tests had the same 
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Grms level from 20-400 Hz.  For Beam 2 similar results were also obtained, except that 

the multi-axis test was slightly more severe than the flat line profile.  These observations 

imply that the Grms is a very poor indicator of the test severity.  In addition the low 

frequency input is very important in the overall time to failure.  This is due to the natural 

frequency shift that happens during failure.  It follows that profiles with inadequate low 

frequency energy should be avoided if full failure is desired. 
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Fig. 15. Comparison of time to failure between WHITE-HIGH and RS system 

 
The effect of smoothing the data was addressed in ED SMOOTH RS-40 and ED 

SMOOTH RS-60.  Although the smoothing technique is not necessarily an advisable 

method, it does show the effect of smoothing as well as analyzing data with too few lines 

of resolution.  Examination of Fig. 16 shows that by smoothing the profile, the severity 

of the test was increased.  This is particularly important in the lower frequency range, 

where the difference between the peaks and valleys was more significant. 
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Fig. 16. Examination of data smoothing 

 

3.5 Conclusions 

 Presented in this work is a set of experimental data comparing repetitive shock 

(RS) vibration, single-axis ED vibration and multi-axis ED vibration. The multi-axis 

effect of the RS system was shown to be more pronounced than the multi-axis effect of 

the ED system. Furthermore, multi-axis testing is more severe than single-axis testing at 

the same level.  This severity is amplified when a component is tested which has 

sensitivity to vibration in more than 1 axis.  In addition weaknesses were found in the RS 

system at low frequency.  A white noise profile of similar Grms was found to be more 

severe than the RS test.  This was due to the lack of input energy below 150 Hz, even if 

the starting natural frequency was higher.    In addition, smoothing of the data or poor 

line resolution can change the overall severity of a test.  A poor correlation was shown 

between the PSD and the rate of natural frequency change (RFC) over a wide frequency 

shift. The change in natural frequency caused the initial PSD to not be an effective 

indicator of test severity.  Quantification of the severity of the test profile can be 
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accomplished through characterization of the RFC. Currently there are no good 

analytical models available to deal with this in the frequency domain.   
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Chapter 4 Life Estimation Model of a Cantilevered 
Beam Subjected to Complex Random Vibration                        

 In the previous chapter a detailed experimental investigation directly compares 

RS and ED vibration.  It was determined that defining the stress state by using only the 

starting natural frequency was inadequate.  A characterization of the rate of frequency 

change as a function of input vibration profile was necessary.  This chapter will develop 

a model which accounts for the rate of frequency change and uses a frequency domain 

method to compute the time to failure. 

4.1 Introduction 

 Random vibration testing is common in test labs for assessing high-cycle fatigue 

durability of structures.  Often the relative severity of two different random vibration 

environments must be assessed.   Examples of the need for comparison include 

comparison of field data to lab data, comparison of two specified vibration environments 

for equivalence and accelerated testing.  One common method for examining 

equivalence is to look at the fatigue damage accumulation rate for each environment.  

Numerous articles have been published regarding fatigue models that can be applied to 

vibration environments [1,2,3].  Many approaches use the power spectral density (PSD) 

and the Grms, combined with the natural frequency of vibration and S-N curves, to 

estimate the life of the item [2,4].  Some techniques use equivalent damage models, 

which were summarized in Ref. 2.   

 It is widely known that when an item undergoes vibration, a fatigue crack may 

eventually develop and the natural frequency and mode shapes of the system will 

change, when the crack becomes appreciably large, compared to the size of the 
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specimen.  This change in natural frequency has been investigated by numerous authors 

[5-7].  In addition, extensive health assessment work has been done by using the change 

in natural frequency as an indicator for detecting developing cracks, prior to catastrophic 

failure [8-10].  In order to make a meaningful life prediction under random vibration, the 

change in natural frequency must be accounted for.   

 This paper will present a new analytic method in the frequency domain, which 

directly takes into account the change in natural frequency and gives reasonably accurate 

prediction of the time to failure.  Strain energy will be used to develop stress equations.  

The theoretical development, experimental data and finite element analysis (FEA) are 

presented in this paper. 

4.2 Theoretical Development 

 The fundamental methodology in this paper is general, but the specific 

implementation details are developed and demonstrated in the context of a uniform 

cantilevered beam.  Other geometries and configurations would follow by analogy.  For 

the cantilevered beam shown in Fig. 1, w(t) is the input displacement of the base, y(x,t) is 

the relative displacement along the length of the beam (relative to the base) and x is 

measured from the base to the tip where x=0 at the base. 
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Fig. 1. Cantilever beam [11] 

x 

Fatigue crack growth under constant amplitude, completely reversed loading (with zero 

mean stress) can be modeled using Paris’ Law as [12]   

 
m

IKC
dN

da
)(      [in/cycle] (1) 

where da/dN is the rate of crack growth per cycle, C and m are material constants and 

ΔKI is the stress intensity factor for mode I crack growth (K will be used in place of KI 

for simplicity).   The stress intensity factor can be calculated using 

      [kpsi*in^.5]     (2) YaK r
2/1)(

where Δσr is the far-field nominal stress range, a is the crack depth and Y is a geometric 

factor to account for size effects.  The geometric factor for simple geometries can be 

found in handbooks or by FEA [12].  Note that Δσr is the stress range that would have 

existed at the crack location, but for the initial uncracked beam.  Under constant 

amplitude loading conditions this would stay constant.  During vibration the natural 

frequency and mode shapes and response of the structure will change as the fatigue 

crack progresses through the material.  This change in the response spectrum needs to be 
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considered as many random vibration inputs have significant peaks and valleys within 

the range of frequencies of interest. The maximum stress at any cross-section in a beam 

can be calculated by, 

 I

Mc
   (3) 

where M is the bending moment at the cross section of interest (at the base x=0 of the 

cantilever beam, in this example), c is the half height of the rectangular cross-section and 

I is the moment of inertia of the cross-section about the neutral axis.  The bending 

moment can be determined from 

 2

2

)()(
dx

yd
xEIxM   (4) 

Neglecting the higher modes, the deflection of a uniform cantilevered beam can be 

written in terms of the first mode as [13]  

 















 )sin()sinh(
)cosh()sin(

)cosh()cos(
)cos()cosh()( 11

11

11
11

1 xx
LL

LL
xx

LA

Y
xy t 




  (5) 

where Yt is the tip deflection, Г1 is the modal participation of the first mode, ρ is the 

mass density per unit length of the beam, A is a constant to allow y(x) to be expressed in 

terms of tip displacement, and β1 for the first mode is represented as 

 EI


2

14
1   (6) 

The 1st eigenvalue for a uniform cantilevered beam is  

 8751.11 L  (7) 

The corresponding modal participation factor for the first mode is  

 L7830.1   (8) 
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Evaluating the ratio in Eq. 5 for the 1st mode (and dropping subscript 1 for convenience), 

the following simplification can be made, 

  )sin()sinh(73410.)cos()cosh()( xxxx
LA

Y
xy nt 
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Differentiating Equation 9 twice yields, 
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where A is defined as, 

    566.1)sin()sinh(7341.)cos()cosh()( 
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Combining Eq. 4, 10 and 11 and evaluating at the base (x=0) 

  (12) 
2)0( tEIYM 

It remains to compute the tip deflection, Yt.  Note that the tip deflection must be for a 

cantilevered beam, without a crack.  The frequency, however, shifts with crack growth 

and therefore an equivalent uncracked tip displacement is needed.  This will be 

accomplished through use of the strain energy.  The strain energy in a uniform 

uncracked cantilevered beam can be estimated by 
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Evaluation of the integral using the above equations and simplifying yields, 
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   (14) 

For a uniform cantilevered beam, noting that the 1st natural frequency is defined as, 
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solving for EI, 
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Combining Eq. 14 and 16 yields, 
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The energy for the first mode of vibration of this beam can be equated to the energy of 

an equivalent single degree of freedom (SDOF) lumped-parameter system, where the 

equivalent lumped mass for this mode shape can be defined as 
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 (18) 

Assuming that the equivalent mass is the same for a cracked beam (i.e. the change in 

equivalent mass due to change in mode shape is not significant, as the crack grows), the 

energy in the cracked beam can be represented as  

 
22

2

1
tcncec YmU   (19) 

where the subscript c represents the cracked condition.  Combining Eq. 17, 18 and 19 

and substituting f [hz] for ω [rad/s] results in 
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Substitution into Eq. 12 yields  
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from which the tensile stress can be written as  
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and an equivalent tip load, 
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where fnc is the cracked natural frequency and fn is the natural frequency of an 

uncracked, uniform, cantilevered beam. The equivalent SDOF relative displacement of 

the cracked beam (Ytc) can be computed using the vibration response spectrum [14] 
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where f ranges over the frequency of input, and fn is the input natural frequency in Hz, 

and  is the base excitation power spectral density (PSD). It follows that the root 

mean square stress range is. 

PSDw

 c
f
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E

n

rmsnc
rms

2   (25) 

Many authors have claimed that Paris’ law can be applied to random vibration through 

the use of an equivalent K [2,3].  For random vibration the equivalent K is generally 

modeled as C1Krms where C1 is an equivalent damage constant. There, however, is not 

 44 
 



 

general agreement in the literature upon specific values of C1.  Rewriting Paris’ law with 

C1 replaced by Cray yields 

 
m

rmsray YaCC
dN

da
))(( 2/1  (26) 

The constant Cray represents a correction factor for the statistical distribution of the 

random vibration response.  Steinberg uses a similar approach for crack initiation called 

the 3 band technique [2].  Determination of Cray will be done using statistical methods 

that will be discussed in detail later.  

 During failure the natural frequency and the mode shape will change as the crack 

grows.  The frequency shift is quantified by calculating the rate of natural frequency 

change (RFC) in accordance with the following, 
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Eq. 27 allows examination of the RFC at a given natural frequency.  The RFC can be 

combined with the frequency spacing to yield the total time to failure as, 

 
startncf

failncf ncdf
RFC

TTF
_

_

1
[min] (28) 

where fnc_start is the starting cracked natural frequency, fnc_fail is the natural frequency at 

failure and TTF is total time to failure.  Often times this equation is used in discrete form 

as presented in Appendix A.  It is therefore desirable to have Eq. 26 written in terms of 

the RFC.  Realizing that the natural frequency is linearly related to the crack depth over 

a narrow frequency range [15], and assuming that the response of the item is dominated 

by its fundamental mode, 

 TnfdN   (29) 
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and 
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where δt is the incremental time, δΔfn is the incremental change in natural frequency, af 

is the final crack depth ΔfT is the total change in natural frequency and fn is the 

instantaneous fundamental natural frequency.  This linearity assumption is verified later, 

through computational modeling, in Section 4.7. Noting that  
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and combining the above equations yields, 
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Using Equation 26, the RFC can be written as, 
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4.3 Statistical Characterization of Response 

 In the proceeding section, determination of the RFC allowed calculation of the 

time to failure and degradation for a beam subjected to a random vibration input.  The 

equivalent damage constant Cray was not determined, but left to statistical means.   The 

most common frequency domain method used for fatigue calculations is the Rayleigh 

fatigue approximation [16].   According to Lutes [16] the distribution of peaks in a 

narrow band random process has a Rayleigh distribution, with the rate of occurrence of 

peaks equal to the natural frequency.  Using the Rayleigh fatigue approximation for 

frequency domain calculations approaches the rainflow analysis technique for time 
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domain analysis in the limit as the process becomes very narrow band [16].  Accuracy of 

this technique is dependent on the response characteristics of the system.  By assuming a 

SDOF lumped parameter systems, much of the inaccuracy has been removed that can be 

present in bimodal systems [16].  For systems with a narrowband response, the accuracy 

of the approximation is a function of the bandwidth.  Using WHITE-HIGH and beam 2 

the rainflow analysis method and the Rayleigh fatigue approximation method were used 

to estimate the rate of occurrence of peaks and the mean amplitude of the response.  It 

was determined that there was a maximum difference of 10% on both rate of occurrence 

of peaks and mean amplitude between the two methods.  It was important to note that 

most of the deviation was present in low amplitude peaks, and would not be expected to 

effect the fatigue predictions.  This comparison did not account for the ability of the 

rainflow method to account for any mean stress effects.  For a complete discussion of the 

limitations in applying the Rayleigh approximation the reader is referred to Lutes [16].  

 The use of an equivalent damage constant Cray allows the statistical nature of the 

stress to be accounted for in one step.  This simplifies computation of Eq. 33 since the 

stress distribution does not need to be maintained throughout the calculation.   The 

equivalent damage value (Dray) can be determined from Eq. 33 as, 

  (34) 
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From Lutes [15] the damage of a narrowband process can be written as, 

 





0

22

2

2
dxe

x
xD

x

m
ray



  (35) 

where m is the Paris Law Exponent, x is the stress amplitude and σ is the shape 

parameter of a Rayleigh distribution.  Note that for a stationary, narrow band,  Gaussian 
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signal, the Rayleigh shape parameter is the same as the standard deviation of the 

Gaussian signal, therefore σ = Δσrms.   Combining Eq. 34 and 35 and simplifying yields,  
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where Γ(ּ) is the gamma function [16].  As can be seen the equivalent damage constant 

is only a function of the Paris’ law exponent.   For this system where m=3,  
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4.4 Model Limitations Due to Plastic Deformation 

 As the fatigue crack progresses through the cross-section of the beam, there will 

be plastic yielding ahead of the crack tip.  After some initial growth there was large scale 

plastic yielding.  LEFM and Paris’ Law assumes that the plastic zone size is small at the 

tip of the crack.  In order to ensure that the underlying assumptions of LEFM and Paris’ 

Law are not violated, the plastic zone size must be estimated.  According to Stephens [3] 

the limit of the plastic zone size where Paris’ law still applies is  

 8
'

at
ry


  (38) 

where ry’ is the cyclic plastic zone radius, t is the thickness, and a is the crack length.  

The cyclic plastic zone size for plane strain can be approximated by, 
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where Sy is the yield strength.  For plane stress, 
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As discussed later, this limit on the plastic zone size can be used to define a range of 

validity of the proposed model in terms of a max allowable crack size (and hence, a max 

allowable frequency shift) for the tested beams. 

4.5 Experimental Data 

 In order to assess the validity of the above model, time to failure data was 

recorded for two beams subjected to stationary, Gaussian, random vibration inputs [7].  

An outline of the data will be provided here.  Details of the particular vibration 

environments will be discussed later.  In order to compare the vibration environments, 

two test specimens were built from cold rolled 1018 steel [7].  The specimens are 

cantilever beams with specific notches cut into the side walls.  The first test specimen 

had well separated modes and is depicted in Fig. 2.  The first bending mode of Beam 1 

in the vertical direction was 415 Hz.  In the transverse direction the first bending mode 

was 3520 Hz. 
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Fig. 2. Test Beam 1 

 
The second test specimen, illustrated in Fig. 3, had first and second modes that were 

closely spaced, although the stress concentration was higher in the Z-direction.  For 

Beam 2 the first bending mode in the vertical direction was 330 Hz.  In the transverse 

direction the 1st bending mode was also 330 Hz.   

 
Fig. 3. Test Beam 2 

 
The beam was mounted for vibration testing, as shown in Figure 4 
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Catastrophic 
Failure Point 

X 

Y

Z

Fig. 4. Beam mounted on shaker 
 

It should be noted that the test was conducted until ‘catastrophic failure’ of the beam.  

Catastrophic failure was defined to occur when the test specimen tip made contact with a 

limit-bar located approximately 1 inch below the tip of the beam, as shown in Figure 4.     

Details of the test data are presented elsewhere [7] and a brief assessment of the data is 

provided below. Selected samples of the vibration profiles are displayed in Fig. 5, with a 

full summary in Table 1.  Several of the profiles had large peaks and valleys due to the 

simulation of the repetitive shock vibration system.  These large peaks and valleys 

drastically alter the response as the natural frequency changes. 
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Fig. 5. RS-40 level vibration profiles 

 
Profile Name Profile Description 
RS-40* Z-axis of repetitive Shock System set to 40 Grms* 

RS-60* Z-axis of repetitive Shock System set to 60 Grms* 
ED SIM RS-40 Single-axis ED simulation of RS-40 Z-axis 
ED SIM RS-60 Single-axis ED simulation of RS-60 Z-axis 
ED SMOOTH 
RS-40 

Smoothed version of ED SIM RS-40 

ED SMOOTH 
RS-60 

Smoothed version of ED SIM  RS-60 

WHITE-HIGH Match the Grms level of the RS-40 profile from 20-2000 Hz 
WHITE-LOW Single-axis ED -6db of WHITE-HIGH ran from 20-1000 Hz 
WHITE-MED Single-axis ED -3db of WHITE-HIGH ran from 20-1000 Hz 

Table 1. Summary description of profiles 
*These profiles were not used in this analysis as they are multi-axis profiles 
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4.6 Experimental Results 

The constants used for each beam are as follows, 

 
Cons Value-Beam 1 Value- Beam 2 Units 
C 2.70E-10 2.70E-10  
m 3 3  
Sy 30e3 30e3 psi 
L 2.5 2.5 in 
b 1.25 1.25 in 
h .1875 .1875 in 
E 30E6 30E6 psi 

Tf  330-37=293 415-40=375 hz 

fa  0.1875-0.022=.1655 .1875-.003=.1845 in 

Notch 
Depth 

.0525 .1275 in 

Table 2. Constants used for calculation 
 
During fatigue crack growth both plane strain and plane stress will be present along the 

crack front [12].  Using Eq. 40 for conservativeness, the maximum plastic zone size can 

be determined.  Using the limit of Eq. 38, LEFM should apply at least through a 1 octave 

frequency shift.  Note that the any plastic zone size effect on mode shape was not 

considered with this limitation.    

 The geometric factor Y (in Equation 2) is computed from this specimen geometry 

from Srawley [17] as, 
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The damping ratio ζ is computed from the amplification factor by 
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1
  (42) 

where Q is computed using the half power points [18, 19] as 
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with fu and fl being the upper and lower half power points respectively.  In order to 

account for the notch that was machined into the test specimens, the notch depth plus the 

physical crack depth (Fig. 6) was considered to be the effective crack depth a in 

accordance with Ref. 20. 

 a

Fig. 6. Effective crack depth 
 
Furthermore for Beam 2 the side notches required the use of a stress concentration factor 

to determine the far-field stress to be used for stress intensity factor estimation.  Using 

FEA it was determined that the average stress concentration factor from notch root to 

notch root was 9.7.  Using the preceding development, the predicted time for a one 

octave frequency shift is compared to the measured time for a one octave frequency shift 

(see Appendix A for more detailed flow chart of calculation method).  This is being 

defined here as the time to failure (TTF). 
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Fig. 7. Comparison of measured and predicted TTF for 1 octave shift 
 
The results are found to be promising for both tested beams. This is particularly good, 

given the simplicity of the proposed model.  The model was also applied to the entire 

frequency shift including the zone of excessive plasticity.  No plastic zone correction 

was used, with reasonable results. 
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Fig. 8. Comparison of measured and predicted TTF for full frequency shift 

 
Figure 9 shows the Predicted-RFC vs. the Measured-RFC for Beam 2.  The prediction is 

found to be best in this case only between 165-330 Hz, below which, the model fidelity 

drops off, possibly due to excessive plastic deformation at the crack-tip.  As expected, 
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once the frequency has shifted more than one octave, the prediction and measured RFC 

begin to diverge.  As can be seen the ED-SIM profiles seem to be less susceptible to that 

divergence.  Examination of Fig. 5 shows that the input energy for these two profiles is 

lower.  It is believed that this causes it to be less susceptible to divergence when the 

plastic zone size is large. 
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Fig. 9. Beam 2 RFC predicted vs. measured 
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4.7 FEA Comparison 

 Computation of the stress intensity factor and natural frequency was performed 

analytically and by FEA.  (A complete discussion of the FEA results presented here is 

detailed in Ref. 21).   A comparison between the two techniques was done using Beam 2 

(most complex case).  The beam was modeled including the clamping fixture as depicted 

in Fig. 10.  

 
 

Fig. 10. FEA model 
 

As discussed previously, the natural frequency was assumed to vary linearly as function 

of crack depth in the analytic model. To verify this assumption, a modal analysis was 

performed at varying crack depths and compared to the computed natural frequency.  

Although a slight bias is apparent, the FEA modal analysis showed a linear relationship 

between natural frequency and crack depth. 
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Fig. 11. Comparison of FEA modal analysis to analytic linear model   

 
The mode shapes were also compared for the 0” crack depth case.  The static deflection 

shape and the 1st mode are nearly identical.  For this case, however, the mode shape is no 

longer that of a uniform cantilevered beam, but instead appears to behave like a hinged 

member as seen in Fig. 12.    

No Physical Crack

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

Distance from Support (in)

N
o

rm
a

liz
e

d
 

D
is

p
la

ce
m

e
n

t 
(i

n
/in

) 

3

Static Deflection FEA

1st mode deflection-FEA

Uniform Cross Section 1st Mode Analytical

 
Fig. 12. Comparison of mode shapes 

 
Furthermore the effect of crack growth on mode shape as predicted by FEA can be seen 

in Fig. 13  
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Fig. 13. Comparison of dynamic mode shapes from FEA 

 
Very little change in mode shape was apparent in the range of interest.  The RMS stress 

intensity was calculated by applying a static load at the tip of the beam that was 

equivalent to the RMS dynamic load.  Good agreement was shown as illustrated in Fig. 

14 
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Fig. 14.  Stress intensity comparison between analytical and FEA models 
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4.8 Conclusions 

 During vibration induced fatigue, the natural frequency shifts due to evolution of 

structural damage.  This natural frequency shift changes the stress state of the structure.  

This is particularly significant when the input vibration PSD profile has large peaks and 

valleys as in repetitive shock vibration.  Using linear elastic fracture mechanics and 

equivalent energy, an analytical model was developed which accounts for the natural 

frequency shifting.  Assuming the response is narrowband Gaussian, the time to failure 

can be directly calculated from the frequency domain input (PSD), without knowledge of 

the specific time history.  For the specific geometries considered in this study, the model 

was accurate for a frequency shift of about 1 octave.  Beyond frequency shifts of 1 

octave, excessive plasticity was present at the crack tip, which invalidates the 

assumptions of LEFM and introduces errors in the assumed mode shapes, leading to less 

accurate results.  A good correlation was found between the experimental data and the 

model.  Two different cantilevered beam geometries were compared with similar results.  

In addition Beam 2 was analyzed using static FEA.  The equivalent static load of the 

RFC model was used to compute the stress intensity value.  Good agreement was seen 

between the FEA and the analytical models.  Furthermore the FEA analysis performed 

on the simple cantilevered beam demonstrated the ability to compute the stress intensity 

factors for complex geometries.  This technique could be utilized when the geometric 

correction factor and the subsequent stress intensity cannot be obtained from handbooks 

as was done in presented model.  This model has many applications in accelerated life 

testing. It can be used as a degradation model, accelerated life model and used to analyze 

the relative severities of complex vibration environments. 
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Chapter 5 Rate of Frequency Change Model 
Uncertainty Analysis 

 In the previous chapter a frequency domain model was developed to predict the 

time to failure of a cantilevered beam subject to random vibration.  This model was 

found to agree well with experimental measurements and with FEA results.  In this 

chapter the model sensitivity to uncertainties of the input parameters will be evaluated.  

Specific error contributions in the measured data will be examined.  In addition different 

damping models will be examined. 

5.1 Introduction 

 Fatigue induced vibration in structural members is a common cause of vibration 

failures.  During vibration induced failures, the natural frequency of the structural 

member will shift as the crack grows through the material [1-3].  The change in natural 

frequency leads to a change in the stress state. This is particularly prevalent when the 

input vibration is random, where the power spectral density (PSD) has large peaks and 

valleys.  Analysis of the instantaneous stress state requires knowledge of the 

instantaneous response of the cracked member, in view of the changing natural 

frequency.  In Ref. 1, a methodology was developed whereby the natural frequency was 

used to characterize the stress state in a cantilever beam under random vibration 

excitation.  The methodology allowed characterization of the stress state in the frequency 

domain without knowledge of the specific time history.  This is of particular value as 

random vibration environments are often reported in the frequency domain.  There were 

many simplifying assumptions that were made during the development of the rate of 

natural frequency change (RFC) model [1].  One limitation to the new model is the need 
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for an accurate damping factor, which may require extensive experimental work.  This 

paper will assess the relative importance of the input parameters and assess the accuracy 

of several damping models. 

5.2 Background 

A brief summary of the RFC model and data will be presented here in the context of a 

cantilever beam subjected to random excitation.  For a full description see Refs. 1 and 2.  

The time to failure of the cantilevered beam can be expressed as 

 
startncf

failncf ncdf
RFC

TTF
_

_

1
 [min] (1) 

where fnc_start is the starting cracked natural frequency, fnc_fail is the natural frequency at 

failure and TTF is total time to failure.  The RFC can be calculated for each frequency 

as, 

 
m

rmsray
f

ncT
nc YaCC

a

ff
fRFC ))(()( 2/1


  (2) 

where fnc is the cracked natural frequency in Hz, ΔfT is the total change in natural 

frequency, af is the corresponding final crack depth, C and m are constants of the Paris’ 

Law, Cray is a damage equivalent constant, a is the crack depth, Y is the geometric 

correction factor and Δσrms  is root mean square stress amplitude.  The stress amplitude 

is calculated by 

 c
f

yf
E

n

rmsnc
rms

2   (3) 

where E is the modulus of elasticity, yrms is the relative displacement in a SDOF 

representation of the cracked beam, fn is the uncracked natural frequency βL=1.8751 is a 
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system constant and c is the distance from the neutral axis to the edge of the beam.  

Furthermore, the uncracked natural frequency is defined as, 
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1 3
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  (4) 

where I=wh3/12  is the moment of inertia, mass is the mass of the beam, L is the length 

of the beam, w is the width of the beam and h is the height of the beam.   The SDOF 

relative displacement can be calculated as, 
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where f ranges over the frequency of input,  is the base excitation power spectral 

density (PSD) and ξ is the damping ratio computed using the half power points [4].   

PSDw

 Time to failure data was taken for 2 cantilever beams subjected to stationary 

random vibration inputs [2].  An outline of the data will be provided here.  The details of 

the vibration environments will be discussed later.  In order to compare the vibration 

environments, two test specimens were built from cold rolled 1018 steel [2].  The 

specimens are cantilever beams with specific notches cut into the side walls.  The first 

test specimen had well separated modes and is depicted in Fig. 1.  The first bending 

mode of Beam 1 in the vertical direction was 415 Hz.  In the transverse direction the first 

bending mode was 3520 Hz.   
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Fig. 1. Test Beam 1. 

 
The second test specimen, illustrated in Fig. 2, had first and second modes that were 

closely spaced, although the stress concentration was higher in the Z-direction.  For 

Beam 2 the first bending mode in the vertical direction was 330 Hz.  In the transverse 

direction the 1st bending mode was also 330 Hz.   

 
Fig. 2. Test Beam 2 

 
The beam was mounted for vibration testing, as shown in Figure 3 
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Fig. 3. Beam mounted on shaker 
 

It should be noted that the test was conducted until ‘catastrophic failure’ of the beam.  

Catastrophic failure was defined to occur when the test specimen tip made contact with a 

limit-bar located approximately 1 inch below the tip of the beam, as shown in Figure 4.     

Details of the test data are presented elsewhere [2] and a brief assessment of the data is 

provided below. Selected samples of the vibration profiles are displayed in Fig. 4, with a 

full summary in Table 1.  Several of the profiles had large peaks and valleys due to the 

simulation of the repetitive shock vibration system.  These large peaks and valleys 

drastically alter the response as the natural frequency changes. 
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Fig. 4. Example vibration profiles 

 
Profile Name Profile Description 
RS-40* Z-axis of repetitive Shock System set to 40 Grms* 

RS-60* Z-axis of repetitive Shock System set to 60 Grms* 
ED SIM RS-40 Single-axis ED simulation of RS-40 Z-axis 
ED SIM RS-60 Single-axis ED simulation of RS-60 Z-axis 
ED SMOOTH 
RS-40 

Smoothed version of ED SIM RS-40 

ED SMOOTH 
RS-60 

Smoothed version of ED SIM  RS-60 

WHITE-HIGH Match the Grms level of the RS-40 profile from 20-2000 Hz 
WHITE-LOW Single-axis ED -6db of WHITE-HIGH ran from 20-1000 Hz 
WHITE-MED Single-axis ED -3db of WHITE-HIGH ran from 20-1000 Hz 

Table 1. Summary description of profiles 
*These profiles were not used in this analysis as they are multi-axis profiles 
 

5.3 Sensitivity to Parameters 

 The first comparison performed was the sensitivity of the model to changes in 

input parameters.  Each parameter was varied as described in Table 2 while the 

remaining parameters were held constant.  
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Parameter Lower value Upper Value 
WHITE-LOW PSD 

[G^2/Hz] 
0.00726 0.00803 

WHITE_MEDIUM PSD 
[G^2/Hz] 

.0144 .0159 

WHITE_HIGH PSD 
[G^2/Hz] .0327 .0362 

Damping Factor .9ξ * 1.1ξ * 

Length of Beam [in] 2.49 2.51 
Modulus of Elasticity [psi] 29000000 30000000 

Width of Beam [in] 1.246 1.254 
Height of Beam [in] 0.1845 0.1905 

Mass of Beam [slugs] 0.004980745 0.005081366 
Final Crack Length [in] 0.103 0.123 
Initial Crack Length [in] 0.0515 0.0535 
C [Paris Law Constant] 3.60E-10 1.80E-10 
M [Paris Law Exponent] 2.85 3.15 
Stress Concentration [] 9.215 10.185 

Table 2. Monte Carlo input parameters 
* The equivalent viscous damping factor ξ is a measured value and varies as a function of 
frequency 
 
The resulting variations in the time to failure values for Beam 2 are illustrated in Fig. 5. 
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Fig. 5. Effect on time to failure with of parameter uncertainty 

 
As can be seen the Paris’ Law exponent m and constant C have the largest effect.  The 

damping ratio is also a significant contributor.  This analysis, however, does not take 

into account the variation of the damping factor with frequency.  This variation with 

frequency will be discussed in detail in Section 5.4.  If simplifying models are used for 
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the damping factor the time to failure would be more significantly effected than depicted 

by Fig. 5. 

 To further understand the model uncertainties, a Monte Carlo simulation was 

carried out with 1000 combinations of input values [5].  This furthered the understanding 

of the specific effect of each parameter on the predicted time to failure.  The ranges of 

the input parameters were based on the measured data [2] defined in Table 2.  The input 

parameters were assumed to have uniform distributions of uncertainty within these 

limits. 

 Due to approximations introduced by plastic deformations at the crack tip, the 

modeling results are limited to a 1 octave frequency shift.  For Beam 2 the starting 

natural frequency was 330 Hz, and the ending natural frequency was 165 Hz.  The time 

to failure data was analyzed using maximum likelihood estimate (MLE) with Kaplan-

Meier ranking method, and the results were expressed with lognormal distributions.  The 

PDFs of the measured TTF are compared to the Monte Carlo simulations in Figure 6.  

The failure data PDF was computed using 5 samples for each input level profile for a 

total of 15 samples. 
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Fig. 6. PDF of Monte Carlo prediction and measured data for TTF of Beam 2 
 

As can be seen above, the predicted time to failure (TTF) distribution using the Monte 

Carlo Simulation was wider than the measured TTF distribution. This illustrates the 

sensitivity of the model to uncertainties of input parameters.  Examination of 20th and 

80th TTF failure percentile in the Monte Carlo simulations shows that with the given 

uncertainties, the resulting difference between the 20th and 80th percentile is a factor of 

1.7.  This can be seen in the Figure 7. 

 72 
 



 

Monte Carlo Simulation

0

10

20

30

40

50

60

70

Monte Carlo-WHITE-HIGH Monte Carlo-WHITE-LOW Monte Carlo-WHITE-MEDIUM

Profile

T
T

F
 (

m
in

)

Mean

80th Percentile

20th percentile

 
Fig. 7. TTF distribution of Monte Carlo 

 
This implies that even with relatively well known input parameters the model would be 

expected to have an uncertainty of about a factor of 2. 

5.4 Uncertainty of Damping Factor 

 Up to this point the uncertainty associated with the damping factor has been 

associated with the overall accuracy of the damping factor independent of natural 

frequency. For this study it will be assumed that the viscous damping ratio is sufficiently 

small that the following relationship holds, 

 Q2

1
  (6) 

where Q is the quality factor.  Three methods for estimating the quality factor will be 

compared.  Method 1 will be to measure the response PSD at each natural frequency and 

computing Q using the half power points [1].  The second method will be to allow Q to 

vary as a function of natural frequency as suggested by Steinberg [6], 

 nfQ 2  (7) 
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The third method will be to assume that Q decreases linearly from the starting Q value of 

an uncracked beam, to the ending values of Q=0 at fn=0. 
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Fig. 8. Amplification factor for Beam 2 

 
From the proceeding figure it is immediately obvious that Steinberg’s relationship 

nfQ 2  is not representative of the measured Q values.  In particular it can be seen 

that Q is a function of both the input amplitude and the natural frequency.  In addition, it 

can be seen that the effect of the crack causing a change in natural frequency causes the 

shape of the Q curve to be different.  Obtaining values for Q at all the cracked natural 

frequencies requires that a component be tested through full failure.  This is often time 

and cost prohibitive.  If a linear relationship is assumed between Q and fn for a given 

input profile, only the uncracked Q needs to be measured. Using the different Q values, 

time to failure estimates were made using Eqs. 1-5 and compared against the 

experimental data.  These results are included below. 
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Fig. 9. Comparison of Q formulations 
 
In order to evaluate the inaccuracy of each Q model, a linear least squares regression 

(LLSQ) was performed between the predicted TTF and the measured TTF.  It was 

assumed that the constant coefficient (y intercept) was zero.  The results for the 3 

formulations for Q are presented for each beam in Fig. 10 

 75 
 



 

 

y = 0.8746x
R2 = 0.9728

0

50

100

150

200

250

0 100 200 300
Predicted Time (min)

A
ct

ua
l T

im
e 

(m
in

) Model Q=Measured
Beam 1 LLSQ

y = 1.113x

R2 = 0.991

0

10

20

30

40

50

60

0 20 40
Predicted Time (min)

M
ea

su
re

d 
T

im
e 

(m
in

)

60

Model Q=Measured
Beam 2 LLSQ

y = 1.227x

R2 = 0.9874
0

50

100

150

200

250

0 100 200
Predicted Time (min)

M
e

a
su

re
d

 T
im

e
 (

m
in

)

Model Q=Linear

Beam 1 LLSQ

y = 1.0467x

R2 = 0.9162
0

10

20

30

40

50

60

0 20 40
Predicted Time (min)

M
e

a
su

re
d

 T
im

e
 (

m
in

)

60

Model Q=Linear
Beam 2 LLSQ

y = 0.2645x

R2 = 0.9878
0

50

100

150

200

250

0 500 1000
Predicted Time (min)

A
ct

u
a

l T
im

e
 (

m
in

)

Model Q=2sqrt(fn)
Beam 1 LLSQ

y = 0.5772x

R2 = 0.8879
0

10

20

30

40

50

60

0 40 80 120
Predicted Time (min)

M
ea

su
re

d 
T

im
e 

(m
in

)

Model Q=2sqrt(fn)

Beam 2 LLSQ

Fig. 10. Comparison of fit for Q models 
 
The R2 value represents how good the fit is for the determined β1 coefficient where the 

LLSQ is defined as  

 TTFPredictedTTFActual *1  (8) 

If the model perfectly predicted the TTF, β1 would be 1.  Defining the offset error as 
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 11 offset  (9) 

a summary of results is presented in Table 3. 

 Beam 1 Beam 2 
Q model R2 offset R2 offset 
Measured .9728 0.1254 .991 0.113 
Linear .9874 0.227 .9162 0.0467 
2*sqrt(fn) .9878 0.7355 .8879 0.4228 

Table 3. Summary of comparison of fit 
 
From Table 3 and Fig. 10 important conclusions can be drawn.  Changing from the 

measured Q values to a linear model for Q the offset of the predicted time to failure is 

primarily effected.  Even when Steinberg’s formulation for Q is used, the residual 

remains reasonable while the offset becomes very large.  This is particularly important 

when trying to compute acceleration factors, as an offset will be canceled out during the 

calculation of acceleration factor  

 A Chi-Square test was performed for the various formulations to asses the overall 

goodness of fit for different Q values.  The χ2 statistic is defined as [5],    
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where oi is the ith measured data and ei is the ith prediction using the RFC model.  A 

summary of the results is included in the following table. 

 
Q model W-Beam 1 W-Beam 2 
Measured 191 53 
Linear 180 79 
2*sqrt(fn) 2988 141 

Table 4. Chi-Squared statistic for various Q formulations 
 

From Table 4, use of a linear function for Q results in a slight improvement of the 

goodness of fit for Beam 1 and a slight decrease for Beam 2.  Despite these errors, the 
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error associated with using a linear function for Q is much less than the geometric and 

material uncertainty that was demonstrated by the Monte-Carlo (factor of 2).   

5.5 Uncertainty When Used as an Acceleration Factor 

 When using the RFC model to predict the acceleration factor (AF) between 

vibration environments several simplifications can be made.  Let the subscript 1 

represent vibration input 1 and the subscript 2 represent vibration input 2.  The AF factor 

can be represented by 
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Simplify yields 
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Simplification of Eq. 13 
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where yrms depends only on the damping factor.    Combining Eq. 12 and Eq. 14 yields 
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From Eq. 15 the AF prediction between two vibration profiles is a function of equivalent 

viscous damping and m only.  This increases the importance of accurately knowing these 

values.  The coefficient of variation can be calculated by 

 U

S
Vx   (16 

where S is the standard deviation and Ū is the mean value.  The uncertainty on AF 

between WHITE-HIGH and WHITE-LOW was determined using a Monte Carlo 

simulation with the inputs presented in Table 2.  The resulting coefficient of variation for 

Beam 2 is tabulated for the failure data, the Monte Carlo simulation and the AF. 

Description Coefficient of Variation 

Failure Data WHITE-HIGH 0.020 

AF Monte Carlo WHITE-
HIGH to WHITE-LOW 

0.029 

Failure Data WHITE-LOW 0.033 

Monte-Carlo WHITE-LOW 0.080 

Monte-Carlo WHITE-HIGH 0.134 

Table 5. Comparison of coefficient of variation 
 
From table 5 the lower the coefficient of variation the less uncertainty is present.  The 

AF Monte Carlo shows less uncertainty that the prediction of either WHITE-HIGH or 

WHITE-LOW.  This is accounted for by alleviating offset errors. 

5.6 Conclusions 

 Use of the RFC model has uncertainties associated with it.  The primary 

contributors to error are the Paris’ Law constants m and C.  Particular attention should be 

 79 
 



 

paid to these two values when performing analysis.  Given uncertainties detailed 

previously, the Monte Carlo simulation predicts a total error of a factor of 2.  Further 

analysis of the uncertainty shows that using a linear function for Q provides sufficient 

accuracy for many engineering situations.  By utilizing a linear Q, a minimal amount of 

experimental data is needed to characterize the components time to failure.  In particular 

a component does not need to be taken to full failure to predict life for any vibration 

environment.  This is particularly advantageous where expensive or hard to get 

components are tested.  Finally it was shown that the relative severity of two vibration 

environments can be characterized given the equivalent viscous damping ratio, the Paris’ 

law exponent and the starting natural frequency are known. 
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Chapter 6 Semi-Empirical Life and Degradation 
Model of a Cantilevered Beam Subject to Random 
Vibration 

 In the previous two chapters the RFC model was developed.  This was a physics 

of failure based model that allowed prediction of the time to failure of a structural 

member when subjected to a random vibration environment.  This chapter will develop a 

semi-empirical approach where 1-3 parameters can be determined experimentally. 

6.1 Introduction 

 Development of accelerated life testing models is important within the structural 

and defense community.   Vibration life tests for qualifying new designs must be 

accelerated within the lab due to cost and time constraints.  Reference 1 describes a life 

model based on the power spectral density (PSD) inputs.  Many models, including the 

methods in Refs, 1 and 2, rely on fatigue S-N curves.  More advanced models have been 

developed, but without a large increase in widespread accuracy [3].    These models 

generally evaluate the severity of the vibration environment at the initial natural 

frequency.  It is widely known and the subject of much investigation that as structural 

components begin to fail their fundamental frequency will decrease due to accumulated 

damage.  This has been reported by many investigators in machinery monitoring as well 

as in multi-axis vibration testing [4-7].  Many structures can withstand some change in 

natural frequency before failure.  Furthermore, during testing cracks may not be 

detectable until full failure has occurred.  The shift of natural frequency can sometimes 

cause the damage progression to be arrested despite having high initial natural 

frequencies [4,7].  To this end a model was developed by Paulus et. al. [8] where the 
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natural frequency shift was taken into account.  A frequency domain calculation allowed 

prediction of time to failure.  This method required knowledge of the damping and input 

PSD.  This paper will build on this model by eliminating the need for a detailed stress 

analysis in favor of an empirical approach. 

6.2 Test Specimen 

 In order to assess the validity of the subsequent model, time to failure data was 

recorded for two beams subjected to stationary, Gaussian, random vibration inputs [4].  

An outline of the data will be provided here.  Details of the particular vibration 

environments will be discussed later.  In order to compare the vibration environments, 

two test specimens were built from cold rolled 1018 steel [4].  The specimens are 

cantilever beams with specific notches cut into the side walls.  The first test specimen 

had well separated modes and is depicted in Fig. 1.  The first bending mode of Beam 1 

in the vertical direction was 415 Hz.  In the transverse direction the first bending mode 

was 3520 Hz. 
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Fig. 1. Test Beam 1. 

 
The second test specimen, illustrated in Fig. 2, had first and second modes that were 

closely spaced, although the stress concentration was higher in the Z-direction.  For 

Beam 2 the first bending mode in the vertical direction was 330 Hz.  In the transverse 

direction the 1st bending mode was also 330 Hz.   

 
Fig. 2. Test Beam 2 
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The beam was mounted for vibration testing, as shown in Fig. 3. 

 

Z

X 

Y

Catastrophic 
Failure Point 

Fig. 3. Beam 2 mounted on shaker 
 

It should be noted that the test was conducted until ‘catastrophic failure’ of the beam.  

Catastrophic failure was defined to occur when the test specimen tip made contact with a 

limit-bar located approximately 1 inch below the tip of the beam, as shown in Fig. 3.     

Details of the test data are presented elsewhere [4] and a brief assessment of the data is 

provided below. Selected samples of the vibration profiles are displayed in Fig. 4, with a 

full summary in Table 1.  Several of the profiles had large peaks and valleys due to the 

simulation of the repetitive shock vibration system.  These large peaks and valleys 

drastically alter the response as the natural frequency changes. 
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Fig. 4. RS-40 Level vibration profiles 

 
Profile Name Profile Description 
RS-40* Z-axis of repetitive Shock System set to 40 Grms* 

RS-60* Z-axis of repetitive Shock System set to 60 Grms* 
ED SIM RS-40 Single-axis ED simulation of RS-40 Z-axis 
ED SIM RS-60 Single-axis ED simulation of RS-60 Z-axis 
ED SMOOTH 
RS-40 

Smoothed version of ED SIM RS-40 

ED SMOOTH 
RS-60 

Smoothed version of ED SIM  RS-60 

WHITE-HIGH Match the Grms level of the RS-40 profile from 20-2000 Hz 
WHITE-LOW Single-axis ED -6db of WHITE-HIGH ran from 20-1000 Hz 
WHITE-MED Single-axis ED -3db of WHITE-HIGH ran from 20-1000 Hz 

Table 1. Summary description of profiles 
*These profiles were not used in this analysis as they are multi-axis profiles 
 

6.3 Theory 

 During random vibration, Ungar and others [8,9] have proposed that the pseudo 

velocity is proportional to stress.  This applies to cantilevered beams as well as other 

geometries.  From Ref. 9, it can be concluded that stress in a cantilevered beam can be 

determined by, 

 PVC *1  (1) 
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where C1 is a constant and PV is the pseudo velocity. The pseudo velocity can be written 

as  

 nzPV   (2) 

where z is the relative displacement and ωn is the first natural frequency.  Computation 

of the relative displacement can be accomplished by use of the vibration response 

spectrum (VRS) [10].  Relative displacement throughout this paper will be computed by 

assuming an equivalent single degree of freedom (SDOF) system.  Fatigue crack growth 

under constant amplitude loading in the elastic regime can be modeled using the Paris 

Law as [11], 

 
m

IKC
dN

da
)(      [in/cycle] (3) 

where da/dN is the rate of crack growth per cycle, C and m are material constants and 

ΔKI is the stress intensity factor for mode I crack growth.   The stress intensity factor can 

be calculated using 

      [ksi*in^.5]     (4) YaK rI
2/1)(

where Δσr is the stress range, a is the crack depth and Y is a geometric factor.  Many 

authors have claimed that the Paris law can be applied to random vibration through the 

use of an equivalent K [2,11].  For random vibration the equivalent K is generally 

modeled as C1Krms where C1 is an equivalent damage constant. There, however, is not 

general agreement in the literature upon specific values of C1.  Equation 3 can be 

rewritten as, 

 
m

nrms YazC
dN

da
))(( 2/1

2   (5) 
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where C2 is a constant that includes C and C1.  The equivalent SDOF lumped parameter 

system relative displacement of the cracked beam (zrms) can be computed using the 

vibration response spectrum [10] 
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where f ranges over the frequency of input, and fn is the input natural frequency in Hz, 

and  is the base excitation power spectral density (PSD).  Over a limited frequency 

shift the following relationship holds [12] 

PSDw

 na   (7) 

Assuming that the geometric factor Y can be approximated by a power law relationship, 

  (8) 
r

nY 

where r is the power law exponent.  It follows that Eq. 5 may be rewritten as  
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where C3 is a proportionality constant and p and n are experimentally determined 

exponents. As discussed earlier, during fatigue damage evolution the natural frequency 

shifts.  A more thorough discussion is presented in Ref. 8.  The rate of natural frequency 

change (RFC) can be expressed as 
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Equation 10 allows examination of the RFC at a given natural frequency.  The total time 

to failure (TTF) can be computed as, 

 
startncf

failncf ncdf
RFC

TTF
_

_

1
 [min] (11) 

where fnc_start is the starting cracked natural frequency and fnc_fail is the natural frequency 

at failure.  It is desirable to have Eq. 9 expressed in terms of RFC so that Eq. 11 could be 

used to calculate the total time to failure.  Assuming that the response of the item is 

dominated by its fundamental mode,  

 TnfdN   (12) 

and 
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where δT is the incremental time δΔfn is the incremental change in natural frequency, af 

is the final crack depth ΔfT is the total change in natural frequency at failure and fn is the 

fundamental natural frequency.  Noting that  
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and substituting Eq.12 & 13 into Eq. 14 it follows that 
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Combing Eq. 15 and Eq. 9 noting that ΔfT and af are constants yields 

  (16) 
n

n
p

rmszCRFC 4

Equation 16 now represents a model that can be used to fit experimental data.  The 

purpose of this model will be to fit a minimal number of data points.  To this end n will 
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be set to equal 1.  This reduces flexibility in the model but allows fewer data points to be 

used in the fitting process.  As will be seen later, there exists a strong correlation 

between zrms and ωn.  The following set of equations will be used to predict time to 

failure. 

  [Hz/s] (17) n
p

rmsCzRFC 
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where zrms is determined from equation 6.  Use of the model is based on the following 

key assumptions: 

1) The model was developed for an elastic system.  The data presented here is from 

test data that contain both plastic and elastic deformations, but the theory 

assumes strictly elastic deformations only.  The applicability to plastic 

deformations during crack propagation is believed to be indirectly accounted for 

by the change in damping factor. 

2) Fatigue crack propagation is the primary means of failure.  This model should 

only be used when the dominant failure mode is crack propagation.  If the crack 

initiation time is large relative to the crack propagation time, errors will result.  

Input amplitude is accounted for through the VRS. 

3) It is assumed that the applied load will generate a stress intensity factor that is 

above the stress intensity threshold. 
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6.4 Model Assessment 

 Statistical analysis of the model will be done on 1/RFC at each natural frequency.  

This will allow various frequency shift intervals to be evaluated.  Furthermore the 

experimental parameters (C and p) will be determined using data from a single profile 

(WHITE-HIGH) and then evaluated at other profiles.  Note that experimental 

measurements of the RFC and equivalent viscous damping as a function of natural 

frequency are required.  The input PSD is specified by the analyst.  This methodology 

would simulate a single test in the lab, and prediction of failure in other vibration 

environments.  It was assumed that 1/RFC would follow a lognormal distribution.  This 

assumption was based on the fact that the RFC should always be positive and would 

have a larger scatter at larger time to failures.   A comparison was made between the 

Weibull, Exponential and Lognormal distribution using a maximum likelihood 

estimation (MLE).  The results showed that Lognormal provided the best fit to the data.  

Fig. 5 is a plot of the failure probability for WHITE-HIGH for frequencies between 36 

and 330 Hz. 

 
Fig. 5. Lognormal probability plot of WHITE-HIGH for all frequencies 
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Using the data of WHITE-HIGH a MLE was performed on the LN likelihood function,  
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resulting in σt=.5091, p=2.8331, C=3789.    The resulting Covariance matrix is  
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The large values of the off diagonal of the covariance matrix suggest a strong 

dependence between the relative displacement and the natural frequency. The 

uncertainties of the parameters are contained in Table 2. 

Parameter mean 90% Confidence LL 90% confidence UL 
σt .509 .471 .547 
p 2.833 2.695 2.972 
C 3789 816 6762 

Table 2. MLE of parameters based on WHITE-HIGH data 
 
The uncertainty on the natural log (LN) mean is defined as  
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Defining the mean time at each frequency as [13] 
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The confidence limits can be expressed as, [14] 
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where Kγ is the 2 sided z estimate at the appropriate confidence.  For this study a 90% 

confidence will be used where Kγ =1.65.  A comparison of the mean RFC of the 

measured data verse the prediction of Eq. 17 for WHITE-HIGH are plotted as follows, 
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Fig. 6. Predicted RFC verse the measured RFC for WHITE-HIGH Beam 2 

 
The predicted RFC follows the measured RFC quite well.  Although there is some 

discrepancy at individual natural frequencies, the overall trend is quite good.  From the 

RFC the lognormally distributed mean time to failure (MTTF) can be calculated using 

Eq. 18. This model has been developed where the input stress is the PSD.  The 

prediction of model should, therefore be accurate over a wide range of PSD shapes and 

amplitudes for a given test specimen.  The independence of the model parameters from 

the PSD amplitude and shape is what makes the model useful as life estimation model.  

In order to asses the accuracy of the model, the parameters from the MLE of WHITE-

HIGH were used to evaluate the time to failure (TTF) of the remaining profiles.   It was 
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assumed that the input PSD and equivalent viscous damping ratio are available.  In 

particular the damping ratio must be known as function of frequency and input 

amplitude.  Effects of different damping ratio formulations were explored in Ref. 15.   

For these profiles the specified input PSD and measured Q values were used. This 

allowed conclusions to be drawn on the ability to extrapolate the model to different input 

PSDs, without making measurements at that particular input PSD.  In order to estimate 

the accuracy of the MTTF, Eq. 18 was also applied to the 90% confidence levels on μy 

and plotted as error bars in Fig. 7. 
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Fig. 7. MTTF using WHITE-HIGH MLE parameters for Beam 2 

 
The measured MTTF generally falls within the estimated confidence levels of the 

predicted MTTF.  Given the inherently large scatter of fatigue and the vastly different 

PSDs, this is reasonable.  In addition the model should also predict partial frequency 

shift.  For the most accurate results the model should be developed for the frequency 
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shift that dictates failure, but a partial frequency shift should still yield good predictions 

of time.  The following figure illustrates a one octave natural frequency shift. 
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Fig. 8. MTTF using WHITE-HIGH MLE parameters for Beam 2 (1 octave frequency 

shift) 
 

Although good results are still obtained the effect of the predicted mean and measured 

mean being different at various frequencies (Fig. 6) becomes evident.  Meaningful 

results can still be obtained with this simple model.  In the following figure the RFC is 

plotted vs. the natural frequency for all profiles.  Good results are seen for all profiles. 
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Fig. 9. RFC vs. natural frequency for Beam 2 
 
From previous work detailed in Ref. 8 the plastic zone size is sufficiently large that the 

LEFM assumptions begin to breakdown after about a 1 octave frequency shift.  As can 
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be seen in Fig. 9 even when the plastic zone size is large (40-165 Hz range) the 

prediction of RFC is still accurate.  This is believed to be accounted for by 

experimentally determining p and C.  These experimental parameters account for the 

inaccuracies in generalized Paris’ law constants as well as the limitations in handbook 

calculations of the geometric correction factor Y.  Furthermore measured data was used 

for the equivalent viscous damping term, which indirectly accounts for some of the 

plasticity effects.  An additional beam (Beam 1) was also used to validate the model.  

Beam 1 was subjected to the same profiles as Beam 2.  The empirical parameters 

σt=.5973, p=2.9274 and C=2536 were computed by performing a MLE on WHITE-

HIGH data for Beam 1.  Using the parameters, the time to failure was calculated for the 

remaining profiles.  Good results were obtained as indicated below.   
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Full Frequency Shift  MTTF One Octave Frequency Shift MTTF 
Fig. 10. Beam 1 MTTF using WHIITE-HIGH to compute the MLE values 

6.5 Comparison to existing methods 

 To illustrate the differences between MIL-STD 810 and the proposed model a 

comparison of WHITE-HIGH and WHITE-LOW was performed.  WHITE-HIGH will 

simulate a laboratory environment while WHITE-LOW will simulate the use level.  

Predictions of field life are made using MIL-STD-810 as follows. 

 96 
 



 

   (26) 
4

2112 // WWTT 

where T is the time to failure and W is the power spectral density in G2/Hz.  The 

exponent 4 is the suggested exponent of MIL-STD 810.  It can be determined more 

exactly by using actual S-N data.  Table 3 gives the comparison between MIL-STD-810 

and the proposed model. 

Lab Level PSD 

[G2/Hz] 

Field Level PSD 

[G2/Hz] 

Lab Time 

to Failure 

[min] 

Actual Field Time 

To failure [min] 

Predicted Field 

Life in Accordance 

with MIL-STD 810 

[min] 

Predicted 

Field Life of 

Current 

Model [min] 

.0349 .0088 13 69 3340 66 

   Error 48x  0.96x 

Table 3. Predicted field life vs. lab test data 
 
As can be seen the lab failure time was 13 minutes.  Using MIL-STD 810, the prediction 

of field time to failure was over 3300 min vs. the actual field time of 69 minutes.  This is 

an overestimate of life of 48 times.  In contrast using the current model, a slightly 

conservative field life was arrived at.  Although typical calculations of fatigue using S-N 

data assume that a crack has initiated when the crack is 1mm long, the models do not 

account for any frequency change during the initial phase. 

 Further improvements over Mil-Std 810 can be realized by using the inverse 

power law and experimental data.  The inverse power law is expressed as [13, 14]  

 n
rms

rms
kG

GTTF
1

)(   (27) 

or  

 nkPSD
PSDTTF

1
)(   (28) 
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where TTF is the time to failure, k and n are determined from experimental data, Grms is 

the RMS acceleration of the input and PSD is the power spectral density at the starting 

natural frequency.  Using the data from WHITE-HIGH and WHITE-LOW an MLE was 

performed to determine k and n for Beam 1 and Beam 2.  The resulting coefficients are 

included in table 4. 

Beam Stress 
characterization 

k n 

Beam 1 Grms .0009 1.5315 
Beam 1 PSD .9182 1.1135 
Beam 2 Grms .0037 1.3628 
Beam 2 PSD 1.8468 .9909 

Table 4. Resulting exponent and coefficient using power law 
 
A comparison between the measured data and the predicted data was done for all the 

profiles previously discussed.  This comparison was done using the new model and the 

semi-empirical life (SEL) model of Eqs. 27 and 28.  
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AL Beam 2 using grms
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AL Beam 1 using PSD
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AL Beam 2 using PSD
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Beam 1-SEL Model with 90% CL
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Beam 2-SEL Model with 90% CL
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Fig. 11. Comparison of SEL model and existing life models to predict MTTF 

 
In Fig. 11, some data points lie directly on top of each other, and can’t be seen (i.e. AL 

Beam 1 WHITE-HIGH).  An improvement is realized when using the SEL model over 

existing life models as depicted in Fig. 8.    In particular The ED SIM and ED SMOOTH 

profiles realize the greatest improvement.  This is due to the fact that the SEL model 
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accounts for the change of input spectrum shape that is present in ED SMOOTH and ED 

SIM.  The white noise profiles are adequately modeled using existing methods.  It 

appears from the profiles used here that Grms was a slightly better indicator of stress than 

the PSD level.  This was surprising as the input Grms doesn’t reflect the starting initial 

stress.  It is believed that due to the frequency change, the Grms allowed the lower levels 

at lower frequency to be loosely accounted for through averaging.  It is conceivable 

however, to have a profile where this effect would not be present (large amount of high 

frequency energy).  It is important to note that for the existing life models, two input 

vibration profiles must be measured to develop the constants.  For the semi-empirical 

life model only 1 input vibration profile needs to be used. 

6.6 Conclusions 

 A model has been developed to represent the rate of natural frequency change 

(RFC) as a function of natural frequency (ωn) and relative displacement (zrms).  This 

function can be integrated between the initial and final natural frequency to determine 

the time to failure.  It was found that the RFC and the total time to failure were 

lognormally distributed.  Using the maximum likelihood estimation (MLE) technique the 

experimental constant and exponents can be determined if the single degree of freedom 

(SDOF) lumped parameter relative displacement, cracked natural frequency and rate of 

natural frequency change are known.  An estimate of the relative displacement can be 

obtained directly from the input power spectral density (PSD) by using the vibration 

response spectrum (VRS) and equivalent viscous damping ratio.   Only one input PSD 

shape and amplitude is required to predict the failure time for a PSD of any shape or 

amplitude.  In this study up to 4 decades of variation were evaluated.  Comparison to 
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existing techniques (use of excitation Grms or initial PSD) showed that the accuracy was 

significantly improved over existing models when comparing PSDs of different shape.  

In this work the failure had both elastic and highly plastic failure modes.  The mode of 

failure did not affect the prediction of the model.  It is important to note that when using 

the VRS to predict relative displacement, accurate values of the damping factor must be 

used. Using this method many properties of the material that would affect typical 

handbook calculations (e.g. Mil-Std 810 [1] or RFC model [8]) can be incorporated into 

the empirical portion of the formulation.  
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Chapter 7 Summary 

 This chapter will summarize the results contained in previous chapters, list the 

major contributions of this dissertation, discuss the limitations of this study and 

recommend relevant future work 

7.1 Major Conclusions 

 Experimental data clearly shows that notching of the excitation PSD at 

frequencies below the initial resonant frequency of a vibrating structure can lead to 

reduction (or even complete arrest) of the fatigue damage accumulation.  During 

vibration induced fatigue failure, the natural frequency drops due to accumulating 

fatigue damage, causing the response and stress state to change.  If the input PSD has 

peaks and valleys like in a RS vibration system, this frequency drop is very important 

since the instantaneous natural frequency of the structure may coincide with a valley, 

thus reducing the response amplitude and fatigue damage accumulation rate.   

 Further experimental comparison show multi-axis testing at the same PSD as a 

single-axis test is more severe.  For RS vibration systems this effect was more 

pronounced than ED vibration.  Despite the increased effectiveness of multi-axis testing, 

a single-axis white noise profile was shown to be more severe than a multi-axis RS test 

of the same excitation Grms.  This demonstrates the effect of low frequency notching in 

test severity.  Furthermore it calls into question the validity of sine dwells.  If the natural 

frequency were to change, a sine dwell test could cease to excite the test item. 

 As a result, the traditional approach of considering the PSD level at the initial 

natural frequency or the excitation Grms does not sufficiently characterize the severity of 
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a vibration environment.  Defining the stress state using only the starting natural 

frequency was shown to lead to large errors with heavily notched PSDs.  This error was 

reduced when examining smooth PSDs such as white noise. Furthermore, in the case of 

heavily notched PSDs, it was shown that smoothing of the input profile can drastically 

alter time to failure results.   

 In response to these shortfalls in traditional approaches for assessing vibration 

durability, the rate of natural frequency change (RFC) model was developed.  This 

model allowed prediction of the time to failure using analysis in the frequency domain.  

Use of the frequency domain means that an explicit time history is not needed.  This is 

advantageous when working with many of the military specifications as the vibration 

environment is often provided as a PSD.  In addition, the frequency-domain approach is 

computationally much more efficient than a time-domain approach.  Using a 

cantilevered beam subject to single-axis vibration, the RFC model was compared to both 

FEA and experimental data with good results. 

 The RFC model was determined to be heavily dependent on the Paris’ law 

exponent, the height of the beam cross section and the damping factor for accurate 

predictions.  It was, however, demonstrated that use of a linear function for Q would 

provide sufficient accuracy in many cases.  Furthermore, a geometric correction factor 

was needed which requires the use of FEA, except in simple cases.  In addition, 

computation of stress intensity using FEA requires large amounts of computing time for 

even simple structures.  For this reason, a semi-empirical model was developed.  This 

model allows determination of 2 parameters whereby the RFC could be calculated for 

arbitrary input PSDs.  The semi-empirical model accounts for complex geometries, 
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unknown material properties and plasticity through a life test.  This model was compared 

to experimental results with good success.    In addition, comparison with MIL-STD-

810, and S-N fatigue life models showed a marked improvement, especially with 

complex PSDs. 

7.2 Contributions of this work 

The contributions of this dissertation are as follows: 

 Although there are isolated reports in the literature comparing the effectiveness of 

RS and ED vibration, a comprehensive and direct experimental comparison was 

still lacking.  This work expands the knowledge base by providing one of the 

most detailed experimental comparisons to date of the fatigue damage 

accumulation rates between RS, single-axis ED and 3-axis ED vibration.  The 

experimental work presents qualitative differences between these three types of 

vibration, in regards to fatigue durability.  Design engineers will be able to make 

informed decisions on the type of testing to use and the suitability of Grms and 

input PSD for defining relative severity of proposed testing programs. 

 The analytic and semi-empirical frequency domain models developed in this work 

allow the quantification of the damage accumulation rates due to complex, single-

axis, random vibration environments.  These models are a substantial 

improvement over existing models by accounting for the change in natural 

frequency and the corresponding change in damage accumulation rates.  

Furthermore, the characteristic peaks and valleys in the frequency domain of the 

RS system are able to be accounted for in 1DOF.  This work is the first step 

towards developing a more general 6DOF model. 
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 An alternative method of quantify the damping factor in complex vibration 

environments was presented.  The new method was shown to introduce an 

acceptable amount of error for many engineering applications. 

7.3 Limitations and future work 

 The multi-axis effect of RS vibration was more significant than ED vibration.  It 

is suspected that it had to do with the rotational motion, the high frequency 

energy exciting the 2nd mode, or uneven input in the orthogonal axes.  A 

systematic experimental investigation of these factors would be advantageous. 

 The RS vibration system used in this study produced Gaussian excitation with a 

kurtosis of 3.  It would be valuable to pursue the effect of higher kurtosis inputs 

on time to failure. 

 This study demonstrated that the simple analytic RFC model worked reasonably 

well for elastic response but the accuracy of the model progressively diminished 

as the effect of plasticity increased with increasing fatigue crack length.  This 

needs more detailed investigation in the future, with a goal of developing 

possible correction factors that could be introduced in the analytic model. 

 Generalized values of the Paris’ law constants from the literature were used in 

this study.  However, these values should be experimentally verified in the future 

since a lot of fatigue scatter is present in the data.  Uncertainty analysis clearly 

shows these parameters to be very influential in the accuracy of the life 

prediction. Values specific to the material used would increase the confidence in 

the model. 
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 Damping has been clearly shown to affect the accuracy of the model predictions.  

The methodology for determining and accounting for damping in the model 

should be further investigated.  Employing an instantaneous frequency 

measurement technique may improve the results.  It is also suggested to change 

analysis bandwidth and the number of averages. 

 During crack closure and opening, the natural frequency should vary.  This was 

not accounted for in the RFC model.  Furthermore natural frequency was not 

measured as a function of crack depth.  This relationship was developed in the 

context of FEA and an analytic model.  Experimental verification of the linearity 

of the relationship between crack depth and natural frequency should be 

performed. 

 The Rayleigh Approximation for fatigue analysis in the frequency domain is not 

sufficiently accurate for broadband or bimodal responses.  Investigation into 

improved frequency domain peak approximations would improve the results. 

 During the entire natural frequency shift it was assumed that the notch depth plus 

the physical crack could be used as an equivalent crack depth.  This is not strictly 

true.  During crack initiation, a stress concentration value should be used.  

Alternate methods to address this complicating factor should be explored. 

 The model predictions were found to work well for the excitation levels that were 

used in this study.   Larger acceleration factors should be explored in future to 

examine the range of validity of the model over larger ranges of time to failure. 
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 The RFC model is currently restricted to a 1DOF vibration environment.  The 

analytical and semi-empirical RFC model should be extrapolated to a 3DOF 

vibration environment  

 This model was tested for simple structural beams.  It would be advantageous to 

assess its validity for use in more complex structures, e.g. electronic assemblies 

or complex mechanical systems.  In particular, use of the model for vibration 

durability of solder interconnects, where large amounts of plasticity would be 

present, may prove difficult.  Furthermore use in complex structures where 

multiple cracks may be growing would also be difficult. 
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