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In this dissertation, we investigate two problems: constructing optimal vari-

ance swaps portfolios and estimating Greeks for options with underlying assets

following a Variance Gamma process. By modeling the dependent non-Gaussian

residual in a linear regression model through a Lévy Mixture (LM) model and a

Variance Gamma Correlated (VGC) model, and running some optimizations, we

construct an optimal variance swap portfolio. By implementing gradient estimation

techniques, we estimate the Greeks for a series of basket options called Mountain

Range options.

Constructing an optimal variance swap portfolio consists of two steps: evalu-

ations and optimization. Each variance swap has two legs: a fixed leg (also called

the variance strike) and a floating leg (also called the realized variance). The value

of a variance swap is the discounted difference between the realized variance and



the variance strike. For the latter, one can use an option surface calibration to

evaluate. For the former, the procedure is complicated due to the non-negligible

residuals from a linear regression model. Through LM and VGC, we can estimate

the realized variance on different sample paths and obtain the payoff of a variance

swap numerically. Based on these numerical results, we can apply the optimization

method to construct an optimal portfolio.

In the second part of this dissertation, we consider gradient estimation for

Mountain Range options including Everest options, Atlas options, Altiplano/Annapurna

options and Himalayan options. Assuming the underlying assets follow a Variance-

Gamma (VG) process, we derive estimators for sensitivities such as Greeks through

Monte Carlo simulation. We implement and compare using numerical experiments

several gradient estimation approaches: finite difference methods (forward differ-

ence), infinitesimal perturbation analysis (IPA), and likelihood ratio (LR) method

using either the density function or the characteristic function.
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2.1 Introduction to the Lévy Process . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

1.1 Financial Models

The most well-known continuous stochastic model for option pricing is the

classical Black-Scholes-Merton (BSM) model (Merton [69], Black and Scholes [10]),

in which the underlying stock price is assumed to follow a geometric Brownian

motion process. This widely applied model has some drawbacks. Firstly, the BSM

model is based on some crucial assumptions, for example, no taxes or transaction

costs, etc. Secondly, empirical evidence suggests that the classical Black-Scholes

model does not describe the statistical properties of financial time series well. It is

observed that log returns of market prices do not behave as a normal distribution.

They are skewed and have excess kurtosis. Thirdly, volatilities or parameters of

estimated uncertainty change stochastically over time and are clustered, but they

are assumed to be some constant in the BSM model.

In order to define a stochastic process with independent and stationary incre-

ments, a good model with an infinitely divisible probability distribution is necessary

to price and hedge derivative securities. One candidate with such desirable prop-

erties is a Lévy process (Bertoin [9], Sato [75], Applebaum [2]), named in honor of

Paul Lévy the pioneer of the theory. A variety of Lévy models whose distributions

are infinitely divisible and can represent skewness and excess kurtosis were proposed
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and studied in a vast literature during the 1980s and 1990s, for example, the Vari-

ance Gamma (VG) distribution, the normal inverse Gaussian (NIG) distribution,

the CGMY (named after Carr, Geman, Madan and Yor) (Carr, Geman, Madan and

Yor [18]) distribution, and the generalized hyperbolic distribution. Corresponding

to these distributions, a wide variety of univariate financial models to price financial

data have been proposed and studied. The VG model was introduced to the finance

community as a model for log-price returns and option pricing in Madan and Seneta

[60], and was developed in Madan and Milne [59] and Madan, Carr, and Chang [57];

the normal inverse Gaussian (NIG) model was studied in Barndorff-Nielsen [7]; the

CGMY model was proposed in Carr, Geman, Madan and Yor [18]; the hyperbolic

model was introduced in Eberlein and Keller [28]. The successes with these uni-

variate models indicate that they are capable of explaining the unconditional return

densities on asset prices.

However, multivariate models are required in many financial applications, such

as basket option pricing, portfolio optimization and simulation of risk scenarios for

portfolios. Thus, multidimensional models with dependence between components

are more applicable in the finance community, and there has been an increasing

interest in the multivariate Lévy process modeling. Similar to univariate models,

jumps in the market price must be taken into account. However, multidimensional

models with jumps are much more difficult to construct. Many tools have been pro-

vided to build multivariate dependent models with jumps. The copula method is

one of the most popular techniques for extending univariate Lévy processes to multi-

variate processes; many copulas including Gaussian, Student-t, Clayton copula have

2



been successfully introduced and applied in the mathematical finance world. For

example, the Lévy copula model was introduced in Tankov [81], in which the joint

law of the multivariate Lévy process is characterized by the copula method on the

Lévy measure. The multivariate time-changed Brownian motion subordinated by a

common subordinator is studied and tested in Cont and Tankov [24], Luciano and

Schoutens [51]; for a similar model with multivariate subordinators, see Semeraro

[78] and Luciano and Semeraro [52]. The copula methods have proved useful and

applied widely, for example in pricing credit derivatives, and structural models (see

Burtschell, Gregory and Laurent [15], Laurent and Gregory [50], Madan, Konikov

and Marinescu [58], Berd, Engle and Voronov [8], etc).

1.2 Simulation and Financial Engineering

Monte Carlo simulation is a method broadly used in the financial commu-

nity for derivatives pricing and hedging. Gradient estimation, which is required

for hedging, is a technique to estimate gradients of financial derivatives based on

Monte Carlo simulation. It has proved useful in sensitivity analysis, as input to

optimization, and has been employed in financial engineering.

1.2.1 Gradient Estimation

Gradient estimates play an important role in measuring and managing risks.

Sensitivities estimated from gradient estimation measure the effect of change of

parameters on the price of derivatives, so that the investors or the holders of the

3



derivative can adjust their hedging strategy corresponding to market changes.

Gradient estimation techniques were first applied to option pricing focusing

on infinitesimal perturbation analysis (IPA) estimation for European and Ameri-

can options by Fu and Hu [31]. Both IPA and the likelihood ratio (LR) method

were applied to European and Asian options by Broadie and Glasserman [14]; see

also Glasserman [38]. Fu [34] provided a general survey of gradient estimation in

stochastic simulation. Fu [33] explained more details on Monte Carlo simulation

for financial engineering and various methods for estimating the Greeks using sim-

ulation. Glasserman and Liu [39] provided a new estimation method similar to LR

which relies only on the characteristic function and does not require the explicit

probability density function of the transition. This method is especially relevant

for the simulation of Lévy processes, where the characteristic function is readily

available and the density function is complicated.

Fu [35] gave a general introduction to the VG process in the context of stochas-

tic (Monte Carlo) simulation and showed how to simulate the stock price and price

derivative securities. Hall [41] considered gradient estimation for a class of financial

derivatives on a basket of stocks called Mountain Range options under an asset price

model of geometric Brownian motion.

Most of the literature above assumes that the underlying asset price follows a

geometric Brownian motion process, also called the BSM model. It turns out that

the BSM model has some shortcomings in describing the statistical properties of

empirical results of market stock prices, such as: (1) the stock price is continuous

in the BSM model but discontinuous in the real market; (2) the volatility of stock

4



price is assumed to be a constant in the BSM model but stochastically changing

in real market. If we use the market price to estimate the volatility, a volatility

smile will appear, in which the volatility obtained from market is not a constant,

contradicting a key BSM model assumption. Based on the imperfections of the BSM

model, the Greeks estimated fromMonte Carlo-based gradient estimation would lead

to errors in estimating the sensitivities of the financial derivatives, possibly resulting

in inefficient hedging. Empirical results indicate that log-returns of stock prices are

not normally distributed and have fat tails; thus a model whose distribution is non-

Gaussian and has fat tails seems more reasonable. Therefore, we estimate Greeks

of mountain range options by assuming the stock prices follow a VG process in the

first essay of this dissertation.

1.3 Variance Swaps

Variance swaps have been used to trade equity-index volatility and have demon-

strated some advantages over other volatility-based assets. A variance swap is an

instrument that allows investors to trade future realized (or historical) volatility

against current implied volatility. Through a variance swap, investors can achieve

long or short exposure to market volatility. For example, when a stock investor

wants to speculate on the possible change direction of the stock market, or a bond

investor thinks he can foresee the probable change direction of interest rates, he can

buy or sell the stocks or bonds. Similarly, investors may also have some thoughts

about the change direction of the volatility.
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We briefly review some literature on variance swaps. Demeterfi, Derman,

Kamal and Zou [26] showed how to replicate and value variance swaps from the

perspective of the Black-Scholes-based account of the fundamental strategy, as well

as how to dynamically hedge a variance swap and analyze the imperfections of

replications. Bossu, Strasser, and Guichard [11] explained hedging strategies of

variance swaps both from an intuitive view and from theoretical insights; see also

Gairat [36]. Carr and Lee [19] showed how to develop trading strategies for volatility

derivatives in a nonparametric setting. They found nonparametric formulas to price

variance swaps and other volatility derivatives and claimed that their results were

valid if the volatility satisfies an independent condition. Madan [54] provided an

introduction to the variance swap contract and proved how to calculate the price

of variance strike. Although variance swaps have been traded in the market for a

period of time and studied a lot, there was no work in the literature showing how to

construct an optimized portfolio of variance swaps until Madan [55] first proposed

the variance swap portfolio theory, which shows how to construct optimal portfolios

of variance swaps considering both autocorrelation and cross asset dependencies, for

which a regression model and a full rank Gaussian copula model is employed. The

portfolio is obtained by maximizing the index of acceptability given some distortion

function.
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1.3.1 Multidimensional Non-Gaussian Models

The description of the joint law of asset returns has drawn a lot of interest

in the area of financial modeling. However, a vast literature (such as Boyarchenko

and Levendorskii [12], Menn, Fabozzi and Rachev [68], McNeil, Frey and Embrechts

[66], and Jondeau, Poon, and Rockinger [48]) provided some examples in which

the marginal distribution of each asset return taken separately is not Gaussian. A

number of applications call for the study of non-Gaussian multivariate return distri-

butions, and a lot of studies have been done on this topic. These could be applied

in many areas, such as pricing options on a basket of stocks where the return dis-

tribution is risk neutral, or designing optimal portfolios where the interest is in the

physical multivariate return distribution. There are many kinds of multivariate el-

liptical distributions, such as the multivariate t−distribution (Kotz and Nadarajah

[49]) or the multivariate VG (Madan and Seneta [60], Schoutens and Cariboni [77]),

any of which can be applied to model multidimensional non-Gaussian distributed

models. We introduce three multidimensional dependent non-Gaussian models: full

rank Gaussian copula, a Lévy mixture and a correlated Variance Gamma. The par-

ticular advantage of these three models is that one can estimate high-dimensional

models by reducing the problem to a suitable sequence of univariate estimation prob-

lems. Thus, modeling the high-dimensional non-Gaussian returns can be simplified

to a univariate non-Gaussian modeling problem.

The full rank Gaussian copula (FGC) model was proposed and studied in

Malevergne and Sornette [63], where they correlated the set of standard normal
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variates generated from a linear transform of each asset return. They provided a

simple representation of multivariate distributions of returns which can describe

the non-Gaussian fat-tailed properties of the empirical distribution with a nonlinear

dependence between each single asset. Moreover, they provided analytical results

on the moments and cumulants of the distributions of returns for the portfolio based

on a class of multivariate Weibull distributions to parameterize the non-Gaussian

properties. Madan [55] used the FGC model to take cross asset dependencies into

account. In this dissertation, we present the first essay “Constructing Portfolios of

Variance Swaps” based on the other two multidimensional non-Gaussian models:

Variance-Gamma Correlated (VGC) and Lévy Mixture (LM).

The VGC model was proposed in Eberlein and Madan [30], where the Lévy

process is written as a time-changed Brownian motion and the correlation is put

in the Brownian motions part. This is a relatively simple approach to correlate

unit period returns resulting from a Lévy process. They first evaluated the model

statistically at the level of explaining pairwise joint daily returns. They showed that

when the marginal laws have been estimated by the univariate densities, the pairwise

joint law only requires an estimation of the correlation between the two Brownian

motions that were marginally subjected to a time change. They also showed that

sample correlations understate the correlation between the Brownian motions; the

correlation between the two Brownian motions is in absolute value always greater

than the sample correlation between the asset returns. A chi-squared test of model

performance in terms of p-values for the time-changed model was conducted to

verify that the model makes a significant improvement in explaining the pairwise
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joint structure of daily asset returns. Finally, a exact sample correlation is provided

through laws of marginal time changes. The VGC model was employed in Madan

[55] to study option pricing on a basket of stocks.

The Lévy Mixture (LM) model is a linear mixture of independent but non-

Gaussian variates, which are infinitely divisible and associated with the unit time

distribution of a Lévy process. This model was proposed in Madan and Yen [61]

to design portfolios for asset allocation. They employed a signal processing tech-

nique called independent component analysis (ICA) (Hyvärinen [45], and Hyvärinen,

Karhuen and Oja [46]) for multivariate financial time series. They first decomposed

the observed time series into statistically independent components (ICs), and assume

the ICs follow the VG process. A portfolio is then constructed through application

of this model.

1.4 Two Essays

In this dissertation, we present two essays: “Optimal Variance Swaps Portfolios

by Lévy mixture and Variance Gamma Correlated” and “Estimating Greeks for

Variance-Gamma”.

In the first essay, we focus on introducing the variance swaps and constructing

optimal portfolios following the theory proposed in Madan [56]. The variance swap

contract contains two legs; one is the fixed leg, also called the variance strike; the

other is the floating leg, also called the realized variance. The variance strike is

calculated from the option surface calibration. The realized variance is calculated
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through the Hardy-Littlewood-Gauss transform, and a linear regression model con-

sidering the highly correlated autocorrelation and dependencies of cross assets. Two

non-Gaussian models: Lévy Mixture and Varanance Gamma Correlated (VGC) are

employed to describe the residuals in the regression model. Optimal portfolios of

variance swaps are constructed in a new performance measure called acceptability

indices.

In the second essay, assuming the underlying assets follow a VG process, we

consider the problem of estimating sensitivities, also called the Greeks, of options

on a basket of assets by Monte Carlo simulation. We focus on a class of derivatives

called Mountain Range options, including the Atlas option, the Everest option, the

Altiplano option, the Annapurna option and the Himalayan option. Estimators of

gradients are calculated through indirect methods (finite difference techniques such

as forward differences) and two direct methods: infinitesimal perturbation analysis

(IPA) and the likelihood ratio (LR) method, where the LR is also implemented

via a recently proposed numerical technique developed in Glasserman and Liu [39]

(the GL method). We carry out numerical simulation experiments to evaluate the

efficiency of the different estimators and discuss the strengths and weakness of each

method.

1.5 Outline of the Dissertation

The remainder of the dissertation is organized as follows.

In Chapter 2, we give an introduction to the Lévy process and the VG process.
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A Fast Fourier Transform (FFT) method of pricing options through characteristic

functions is also introduced.

In Chapter 3, we provide an introduction to multidimensional dependent non-

Gaussian models including FGC, LM and VGC.

In Chapter 4, we introduce gradient estimation techniques, including FD, IPA,

LR and GL.

In Chapter 5, we present the first essay on constructing optimal portfolios of

variance swaps by FGC, LM and VGC.

In Chapter 6, we present the second essay on estimating Greeks of options

with underlying assets following a VG process.

Some derivations, mathematical calculations and computer codes are included

in the Appendices for completeness.
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Chapter 2

Preliminaries

2.1 Introduction to the Lévy Process

A Lévy process is a superposition of a Wiener process and a number of inde-

pendent Poisson processes. In this section, we give a brief introduction to the Lévy

process and its properties.

2.1.1 Lévy Process and Infinitely Divisible Distribution

Let D(f) be the domain of f(x). A function f(x) that has a limit from left

and is continuous from right is called a cádlág function, i.e., for x ∈ D(f),

• the left limit f(x−) := lim
t→x−

f(t) exists.

• the right limit f(x+) := lim
t→x+

f(t) exists and equals f(x).

In other words, f is cádlág if it is right-continuous with left limits.

Definition 1 (Lévy Process). A cádlág stochastic process (Xt)t≥0 on probability

space (Ω,F,P) starting with X0 = 0 is a Lévy process if it satisfies the following

properties:

• Xt has independent increments, i.e., for any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ ... ≤ tn,

the random variables Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.
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• Xt has stationary increments, i.e., the law of Xt+h−Xt does not depend on t.

• Xt has stochastic continuity, i.e., for any ǫ > 0, lim
h→0

P (|Xt+h −Xt| ≤ ǫ) = 0.

The sample paths of a Lévy process are almost surely continuous from the

right and have left limits, which is easily verified for the Poisson process. Moreover,

if we sample a Lévy process at any fixed time intervals with equal increments, that

is at 0,∆t, 2∆t, ..., we obtain a random walk.

Example 1. A Gamma process γ
(µ,ν)
t is a Lévy process with independent Gamma

increments. It is a pure-jump increasing process which make it possible to be a sub-

ordinator. The marginal distribution of a Gamma process is a Gamma distribution

with mean µt and variance νt.

Lévy processes can also be defined through the properties of infinitely divisible

distributions. Let’s first define the infinite divisibility.

Definition 2 (Infinite divisibility). A probability distribution function F defined

on Rd is infinitely divisible if for any integer n ≥ 2, there exists n i.i.d random

variables Z1, Z2, . . . , Zn such that

Z1 + Z2 + · · ·+ Zn

has distribution F .

Example 2. Let X ∼ N(µ, σ2) and let Zk, k = 1, . . . , n, be i.i.d random variables

with distribution N(µ/n, σ2/n). Thus,

X
d
=

n
∑

k=1

Zk.
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In other words, the normal distribution is infinitely divisible.

Example 3. Let X ∼ Unif(0, 1), i.e., X is uniformly distributed on (0, 1). There

do not exist i.i.d random variables Zk, k = 1, . . . , n, such that

X
d
=

n
∑

k=1

Zk.

In other words, the uniform distribution is not infinitely divisible.

Two propositions taken from Cont and Tankov [24] are shown as follows.

Proposition 2.1.1 (Lévy process and infinite divisibility). Let Xt be a Lévy

process. Then for every t, Xt has an infinite divisible distribution. Conversely, if a

probability distribution F is infinitely divisible, then there exists a Lévy process Xt

such that the distribution of X1 is given by F .

More precisely, if Xt is a Lévy process and φX(u) is called the characteristic

function of the random variable X1, then for s, t ≥ 0, the characteristic function of

Xt+s−Xs is (φX(u))
t and it turns out that there is ψX(u), called the characteristic

exponent of X, such that

φX(u) = exp[ψX(u)].

The equation above established at time t = 1 can be generalized to any time

point t > 0 of the process.

Proposition 2.1.2. Let (Xt)t≥0 be a Lévy process on Rd. Then there exists a

continuous function ψ : Rd → R called the characteristic exponent of X such that

φXt
(u) = E

[

eiuXt
]

= etψX1
(u), z ∈ Rd.

14



2.1.2 Lévy-Khintchine Representation

The Lévy-Khintchine Representation connects the property of infinitely divis-

ible distribution and the Lévy processes. From the representation, we can study

the Lévy processes simply from these infinitely divisible distributions which can be

represented in the form of characteristic functions. Such representation is called the

Lévy-Khintchine formula.

Theorem 2.1.3 (Lévy-Khintchine). Let (Xt)t≥0 be a Lévy process on Rd. There

exists γ ∈ Rd, a positive definite matrix A and a measure ν̂ such that

E[exp(iu ·Xt)] = exp(tψ(u)),

for u ∈ Rd. The triplet (A, ν̂, γ) is the characteristic triplet of (Xt)t≥0, and

ψ(u) = −1

2
uTAu+ iγ · u+

∫

Rd

(eiu·Xt − 1− iu · x1|x|≤1)ν̂(dx).

Conversely,

let F be an infinitely divisible distribution on Rd. Its characteristic function can be

represented as:

E[eiu·Xt ] = etψ(u), u ∈ Rd

with ψ(u) = −1

2
uTAu+ iγ · u+

∫

Rd

(eiu.Xt − 1− iu · x1|x|≤1)ν̂(dx),

where A is a symmetric positive d × d matrix, γ ∈ Rd and ν̂ is called the Lévy

measure of the distribution F satisfying:

∫

|x|≤1

|x|2ν̂(dx) <∞,

∫

|x|≤1

ν̂(dx) <∞.

15



Recall that the total variation of a function f : [a, b]→ Rd is defined by

sup
a=t0≤t1...≤tn=b

n
∑

i=1

|f(ti)− f(ti−1)|.

Although a compound Poisson process is of finite variation, a general Lévy process

may be of infinite variation without further conditions added.

Proposition 2.1.4. A Lévy process is of finite variation if and only if its charac-

teristic triplet (A, ν̂, γ) satisfies:

A = 0 and

∫

|x|≤1

|x|ν̂(dx) <∞.

2.1.3 Lévy-Itô decomposition

Theorem 2.1.5 (Lévy-Itô decomposition). Let Xt, t ≥ 0 be a Lévy process on Rd.

Then there exist a vector γ and a Brownian motion Bt, t ≥ 0 in Rd with covariance

matrix A such that the Lévy process Xt can be decomposed into three parts

Xt = XB
t +X l

t + lim
ǫ↓0

Xǫ
t . (2.1)

Here XB
t = γt+Bt is a d−dimensional continuous Gaussian Lévy process with

drift γ and covariance matrix A;

X l
t =

∫

|x|≥1,s∈[0,t]

xN(ds, dx)

is a compound Poisson process with jump sizes |x| ≥ 1; N(ds, dx) is a Poisson

random measure on R+ × (Rd\{0});

X̃ǫ
t =

∫

ǫ≤|x|≤1,s∈[0,t]

xÑ(ds, dx)
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is a compensated compound Poisson process, where Ñ(ds, dx) = N(ds, dx)−ν̂(dx)ds,

and ν̂ is a Lévy measure on Rd\{0} satisfying
∫

Rd\{0}
(1 ∧ |x|2)ν̂(dx) <∞.

The Lévy-Itô decomposition implies that every Lévy process consists of two

parts: a Brownian motion with drift and a possibly infinite sum of independent

compound Poisson processes. The component X l
t is a discontinuous compound

Poisson process incorporating with finite number of “large jumps” whose absolute

value is greater than 1. Thus X l
t can be written as a summation of an almost surely

finite number of jumps; that is,

X l
t =

∆Xs≥1
∑

0≤s≤t
∆Xs.

The component Xǫ
t is a discontinuous compound Poisson process with possibly in-

finitely many “small jumps”; that is,

Xǫ
t =

ǫ≤∆Xs≤1
∑

0≤s≤t
∆Xs =

∫

ǫ≤|x|<1,s∈[0,t]

xN(ds, dx).

The summation may not converge in general. To make the compound Poisson

process be a martingale, one needs to compensate it so that the summation will not

explode. Therefore, we get the compensated compound Poisson process X̃ǫ
t in the

decomposition (2.1).

2.2 Variance Gamma Process

The Variance Gamma (VG) process was introduced to the finance community

as a model for pricing assets returns and option pricing in Madan and Seneta [60].

The VG process is a Lévy process of finite variation with infinite but relatively low
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activity of small jumps. It is a pure jump process with infinite activity, which was

first introduced as a Gamma-time-changed Brownian motion by Madan and Seneta

[60] and developed in Madan, Carr and Chang [57] as a difference of two independent

Gamma processes.

2.2.1 Definition of VG Process

The VG process is a Lévy process which can be expressed as a Gamma-time-

changed Brownian motion or a difference of two independent Gamma processes. Let

γ
(µ,ν)
t be the Gamma process with drift parameter µ and variance parameter ν. The

VG process can be defined in the following two ways.

The VG process can be defined by setting the subordinator to be a Gamma

process.

Definition 3 (Variance Gamma). The VG process can be defined as Gamma-

time-changed Brownian motion with the subordinator being a Gamma process.

Let Wt denote the standard Brownian motion, B
(µ,σ)
t = µt+ σWt denote the Brow-

nian motion with constant drift rate µ and volatility parameter σ, γ
(ν)
t = γ

(1,ν)
t be

the Gamma process with drift parameter µ = 1 and variance parameter ν. The

representation of the VG process is:

Xt = B
(θ,σ)
γνt

= θγ
(ν)
t + σW

γ
(ν)
t

. (2.2)

Alternatively, the VG process can be defined as a difference of two Gamma

processes.
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Definition 4 (Variance Gamma). The VG process is the difference of two Gamma

processes. The representation of the VG process could be defined as:

Xt = γ
(µ+,ν+)
t − γ(µ−,ν−)

t , (2.3)

where µ± = (
√

θ2 + 2σ2/ν ± θ)/2, and ν± = µ2
± · ν.

2.2.2 Properties of VG Process

For the VG process with corresponding parameters (σ, ν, θ), the Lévy density

is provided by

k(x) =
1

ν|x| exp
(

θ

σ2
x− 1

σ

√

2

ν
+
θ2

σ2
|x|
)

,

where ν, σ > 0.

Let φX(u) = E[eiuX ] denote the characteristic function of a random variable

X. The characteristic function for the VG process VG(σ, ν, θ, t) at time t is

φV G(u, σ, ν, θ, t) = (1− iuθν + 0.5σ2νu2)−t/ν , (2.4)

which can be expressed in two forms

φXt
(u) =

(

(1− iuνµ+)(1 + iuνµ−)

)−t/ν
,

φXt
(u) =

(

1− iν(uθ + iσ2u2/2)

)−t/ν
,

reflecting the two representations above.

Under the risk-neutral measure, with no dividends and with constant risk-free

interest rate r, the stock price is given by

St = S0exp((r + ω)t+Xt),
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where ω = ln(1 − θν − σ2ν/2)/ν is the parameter that makes the discounted asset

price a martingale, such that E[e−rtSt] = S0.

Theorem 2.2.1. (Madan, Carr and Chang [57]) The density function of the log-

price z = ln(St/S0) is

h(z) =
2 exp(θx/σ2)

υt/υ
√
2πσΓ( t

υ
)

(

x2

2σ2/υ + θ2

)
t
2υ

− 1
4

K t
ν
− 1

2

(

1

σ2

√

x2(2σ2/ν + θ2)

)

, (2.5)

where K t
ν
− 1

2
is the modified Bessel function of the second kind, and x = z − rt −

t/ν ln(1− θν − σ2ν/2).

A closed-form expression for pricing the European call option under VG with

strike K is derived in Madan, Carr and Chang [57]. The form of the option price for-

mula is similar to the Black-Scholes formula but requires calculation of the modified

Bessel function of the second kind.

Theorem 2.2.2. Assuming the stock price follows a VG process, the European call

option price on the stock under the risk-neutral measure (with risk neutral parameters

σ, ν, θ) is

C(S0; k, t) = S0K̂

(

d

√

1− c1
ν

, (α + s)

√

1− c1
ν

,
t

ν

)

− K exp(−rt)K̂
(

d

√

1− c2
ν

, αs

√

ν

1− c2
,
t

ν

)

, (2.6)

where

d =
1

s

(

ln

(

S0

k

)

+ rt+
t

ν
ln

(

1− c1
1− c2

))

,

α = − θ

σ
√

1 + (θ/σ)2ν/2
,

c1 =
ν(α + s)2

2
,
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c2 =
να2

2
,

and K̂ is defined as the modified Bessel function of the second kind.

Though the option price under the VG model can be calculated through this

closed form, it would be time-consuming and complicated. A more efficient way to

price the option is a numerical method called the Carr-Madan FFT method, which

is calculated simply from the characteristic function of the VG process. This method

will be introduced in the next section.

2.2.3 Simulation of the VG Process

There are two main techniques to simulate the VG process: sequential sam-

pling and bridge sampling. The sequential sampling technique is called incre-

mental path construction in Jäckel [47], whereas bridge sampling is described in

Avramidis and L’Ecuyer [5]. Fu [33] reviewed several ways to simulate the VG

process including sequential sampling and bridge sampling.

Sequential Sampling

In this paper, we only introduce the two main methods of simulating the

VG process, which are based on the two representations presented in the previous

sections. We present two algorithms for sequential sampling of the VG process.

Algorithm 1 is based on the representation of the VG process as a Gamma time-

changed Brownian motion; Algorithm 2 is based on the representation of the VG

process as a difference of two Gamma processes.
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Algorithm 1 Simulating VG as Gamma Time-Changed Brownian Motion

Input: the VG parameters (σ, ν, θ); time increments ∆t1, ...,∆tN s.t.
∑N

i=1 ∆ti = T.

Initialize: X0 = 0, t0 = 0.

Loop: for i = 1 to N :

• Generate ∆Gi ∼ Γ(∆ti/ν, ν).

• Generate a standard normal random variable Zi ∼ N(0, 1).

• Return ti = ti−1 +∆ti and Xti = Xti−1
+ σ
√
∆GiZi.

Algorithm 2 Simulating VG as Differences of two Gamma processes

Input: the VG parameters (σ, ν, θ); time increments ∆t1, ...,∆tN s.t.
∑N

i=1 ∆ti = T.

Initialize: X0 = 0, t0 = 0.

Loop: for i = 1 to N :

• Generate ∆γ−i ∼ Γ(∆ti/ν, νµ−).

• Generate ∆γ+i ∼ Γ(∆ti/ν, νµ+).

• Return ti = ti−1 +∆ti and Xti = Xti−1
+∆γ+i −∆γ−i .
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Bridge Sampling

Ribeiro and Webber [72] introduced bridge sampling for the time-changed

Brownian motion representation along with stratified sampling and quasi-Monte

Carlo to further reduce variance. Avramidis and L’Ecuyer [5] introduced bridge

sampling for the difference of Gammas representation combined with randomized

quasi-Monte Carlo. We present two algorithms for sampling the VG process. Algo-

rithm 3 is based on the representation of the VG process as a Gamma time-changed

Brownian motion; Algorithm 4 is based on the representation of the VG process as

a difference of two Gamma processes.

2.3 The Fast Fourier Transform Method and Option Pricing

The Black-Scholes model provides a closed-form solution for the European call

option price. However, for the Lévy models, the density functions are complicated

and it is not easy to calculate the option price through the density function. Carr

and Madan [20] first described a new approach for numerically determining the

option price through the characteristic function, which is designed to to value the

option price by the fast Fourier transform (FFT) method efficiently. The analytical

characteristic function of the risk-neutral density is assumed to be known. Using a

simple analytic expression for the Fourier transform of the option value or its time

value, the fast Fourier transform (FFT) can be applied to solve numerically the

option price. We refer to this method as Carr-Madan FFT method.
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Algorithm 3 Simulating VG via Brownian (Gamma-Time-Changed)

Bridge

Input: the VG parameters (σ, ν, θ); number of bridges N = 2M(T = tN).

Initialize: X0 = 0, γ0 = 0, t0 = 0.

Generate γtN ∼ Γ(tN/ν, ν), XtN ∼ N(θγtN , σ
2γtN ) independently.

Loop: for k = 1 to M : n← 2M−k;

Loop from j = 1 to 2k−1 :

• i← (2j − 1)n;

• Generate Yi ∼ β((ti− ti−n)/ν, (ti+n− ti)/ν) independent of past random vari-

ables;

• γti = γti−n
+ [γti+n

− γti−n
]Yi;

• Generate Zi ∼ N(0, [γti+n
− γti ]σ2Yi) independent of random variables;

• Return Xti = YiXti+n
+ (1− Yi)Xti−n

+ Zi.
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Algorithm 4 Simulating VG via Difference-of-Gammas Bridge

Input: the VG parameters (σ, ν, θ); number of bridges N = 2M(T = tN).

Initialize: γ+0 = γ−0 = 0

Generate γ+tN ∼ Γ(tN/ν, νµ+), γ
−
tN
∼ Γ(tN/ν, νµ−) independently.

Loop: for k = 1 to M : n← 2M−k;

Loop from j = 1 to 2k−1 :

• i← (2j − 1)n;

• Generate Y +
i , Y

−
i ∼ β((ti − ti−n)/ν, (ti+n − ti)/ν) independently;

• γ+ti = γ+ti−n
+ [γ+ti+n

− γ+ti−n
]Y +
i , γ−ti = γ−ti−n

+ [γ−ti+n
− γ+ti−n

]Y −
i ;

• Return Xti = γ+ti − γ−ti .

2.3.1 The Carr-Madan FFT Method

Much literature has successfully applied Fourier analysis to determine options

price, for example, Bakshi and Chen [6], Scott [76], Heston [43], etc. The Carr-

Madan FFT method evaluates the value of an option by taking an inverse Fourier

transform of the characteristic function of the log price. This method is much faster

and easier than the analytic formula which contains a modified Bessel function of

the second type. It should be pointed out that this method introduces a dampening

factor to deal with the singularity of the integrand by multiplying the call pricing

function. A sketch of the Carr-Madan FFT method is presented in the following.

Let k be the log of the strike value K, let CT (k) be the value of a call option

with maturity T and strike price exp(k), and let the risk-neutral density of the log
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price be qT (s). The characteristic function of this density is

φT (u) =

∫ ∞

−∞
eiusqT (s)ds.

To make the call option price function square integrable, we modify the call price

by multiplying a damping factor exp(αk) where α > 0. Let ψT (v) be the Fourier

transform of the modified call price cT (k) = exp(αk)CT (k):

ψT (v) =

∫ ∞

−∞
eivkcT (k)dk.

Integration gives

ψT (v) =
e−rTφT (v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
.

Therefore, the call price is

CT (k) =
exp(−αk)

π

∫ ∞

0

ψT (v)dv, (2.7)

where α > 0.

Using the trapezoidal rule for the integral in (2.7), the call price can be ap-

proximated by

CT (k) ≈
exp(−αk)

π

N
∑

j=1

e−ivjkψT (vj)η. (2.8)

The approximation is described as follows. First substitute a for the upper limit for

the integral in (2.7) and set vj = (j − 1)η, then N = a/η. By choosing the step size

of the log strike k = λ, i.e., ku = −b+λ(u−1), for u = 1, ..., N, we can approximate

the call price as

CT (ku) ≈
exp(−αk)

π

N
∑

j=1

exp[−iλη(j − 1)(u− 1)]eibvjψT (vj)η. (2.9)
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Moreover, assuming λη = 2π
N

and applying Simpson’s rule, we can write the call

price as

CT (ku) ≈
exp(−αk)

π

N
∑

j=1

e−i
2π
N

(j−1)(u−1)eibvjψT (vj)η
3 + (−1)j − δj−1

3
, (2.10)

where δn is the Kronecker delta function which equals 1 for n = 1 and 0 otherwise.

Recall that the FFT is an efficient algorithm to compute the sum

ω(k) =
N
∑

j=1

e−i
2π
N

(j−1)(k−1)x(j),

where N is a power of 2. Thus we could employ the FFT to calculate the call price

in (2.10). By choosing the appropriate α and η, the Carr-Madan FFT method can

calculate the call price efficiently. For a single run, this method compute the option

prices across all the strikes. One more benefit of this method is that it only requires

the characteristic function to calculate the option price.
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Chapter 3

Multidimensional Dependent Non-Gaussian Models

3.1 Overview

It is well known that joint laws of asset returns are required in many appli-

cations of financial engineering. It is generally recognized in a vast literature (Jon-

deau, Poon and Rockinger [48], Menn, Fabozzi and Rachev [68], Boyarchenko and

Levendorskii [12]) that the marginal distribution of each asset individually is non-

Gaussian. As a result, many studies of multidimensional dependent non-Gaussian

models have been conducted, and several models and methods have been proposed.

In this chapter, we provide an introduction to three multidimensional depen-

dent non-Gaussian models: (1) the full rank Gaussian copula (FGC) proposed by

Malevergne and Sornette [63]; (2) the Lévy Mixture implemented by Madan and Yen

[61]; (3) the Variance Gamma correlated model proposed in Eberlein and Madan

[30] and employed in Madan [55] in pricing options on a basket of stocks. The par-

ticular advantage of these models is their capability of estimating high dimensional

non-Gaussian models by reducing the problem to a suitable sequence of univariate

estimations.
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3.2 Full Rank Gaussian Copula (FGC)

The key point of the FGC model is to transform the data which is assumed

to follow a multidimensional non-Gaussian distribution to a series of dependent

Gaussian variates with a possibly full rank correlation matrix. In this section, the

FGC model is introduced first, and then the procedure of how to estimate through

this model is explained.

3.2.1 Introduction to the FGC model

The closed form of the joint probability law of the multidimensional dependent

non-Gaussian variates is difficult to obtain, even though the correlation or covariance

of the variates can be calculated without any difficulty.

In the full rank Gaussian copula (FGC) model, each asset return is assumed to

be a nonlinear transform of a set of standard normal variates which are correlated

with each other. Based on this assumption, we transform the data into standard

normal variates, and then calculate the covariance. Accordingly, the joint multivari-

ate law of the transformed standard normal variates, which are correlated with each

other due to the correlation of the original non-Gaussian variates, can be obtained

easily.

Let X = (X1, X2, ..., XN ) be an N−dimensional vector. Let FXi
(x), i =

1, 2, ..., N, be the corresponding marginal distributions for Xi, i = 1, 2, ..., N . That

is P (Xi ≤ x) = FXi
(x). Assume the FXi

are continuous. Let Zi be a standard

normal variate, and let Φ be the cumulative distribution function of a standard
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normal random variable.

By setting the probability integral transforms of Xi and Zi equal to each other,

that is,

Φ(Zi) = FXi
(Xi),

we can transform continuous non-Gaussian variates Xi to standard normal variates

Zi. Due to the difficulty of calculating the value of cumulative distribution function

(c.d.f.) of VG vairate Xi, we employ the Carr-Madan FFT method to calculate the

c.d.f from the characteristic function. Simple integration leads to the proposition

below:

Proposition 3.2.1. Let X be a random variable with characteristic function ψ(x),

and exp(−αx) be the dampening factor. Thus the cumulative distribution function

FX(x) can be calculated from:

FX(x) = exp(αx)
1

2π

∫ ∞

−∞
exp (−iux)ψ(u+ iα)

−iu+ α
du.

It turns out that the Carr-Madan FFT method can be applied to approximate

the c.d.f. using the characteristic function.

Moreover, this transform is nonlinear and can be written as

Zi = Φ−1[FXi
(xi)]. (3.1)

Since the non-Gaussian variates Xi, i = 1, 2, ..., N, are correlated with each other,

so are the transformed standard normal variates Zi. The correlation matrix of Zi

is required to calculate the joint multivariate normal law. On top of that, the joint
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density function of X can be calculated through the joint density function of Z by

a change of variables. In contrast, the transform from Zi to Xi takes the inverse of

the transform from Xi to Zi, that is,

Xi = F−1
Xi

(Φ(Zi)). (3.2)

To calculate the inverse of the c.d.f. of FXi
(·) in equation (3.2), we employ the

Carr-Madan FFT method to calculate a series of grids of values of FXi
(s), where

0 ≤ s ≤ 1 and then use interpolation to estimate the Xi from Φ(Zi) by equation

(3.2).

3.2.2 Estimation Procedures for FGC

Assume we have T dependent N−dimensional data Xt = (X1t, X2t, ..., XNt),

t = 1, ..., T . After transforming the data Xt to have a zero mean value (also called

centering), we apply maximum likelihood estimation (MLE) to estimate the corre-

sponding parameters σi, νi, θi from the univariate data on each component of Xt.

Accordingly, we obtain a series of estimated marginal Variance Gamma parameters

in a matrix:

σ̂i, ν̂i, θ̂i, i = 1, ..., N.

Applying the transform in (3.1) to Xit, one can obtain the standard normal variates

Zit, that is,

Zit = Φ−1(FVG(Xit; σ̂i, ν̂i, θ̂i)). (3.3)

It is easy to see that the covariance of Zit can be estimated directly.
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With the covariance of Gaussian variates Zt, we can easily simulate correlated

multidimensional standard normal variates Zs = (Z1s, Z2s, ..., ZNs), s = 1, 2, ...,M

onM = 10000 sample paths. Then by plugging newly generated normal distributed

data Zs back into the transform in (3.3), we can get newly generated correlated

Variance Gamma distributed data Xis, i = 1, 2, ..., N , for s = 1, 2, ...,M by

Xjs = F−1
VG(Φ(Zjs), σj , νj, θj). (3.4)

The inverse of FVG can be approximated through interpolation by Carr-Madan FFT

method.

3.3 Lévy Mixture (LM)

The main idea of the LM model is derived from the independent component

analysis technique to multidimensional dependent non-Gaussian variates to a trans-

form or a linear mixture of independent non-Gaussian variates. In this section, the

LM model is introduced first, and then the procedure of how to estimate through

this model is explained.

3.3.1 Introduction to the LM model

Recogning the fact that multivariate Gaussian variates with a nonsingular

covariance matrix can be viewed as a linear combination of an equal number of

independent standard normal random variates, we generalize the Gaussian variates

to a linear mixture of independent non-Gaussian variates that are infinitely divisi-

ble. In this dissertation, we only consider the case that non-Gaussian variates are
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assumed to follow a Variance Gamma distribution. This model has been employed

by Madan and Yen [61] to optimize portfolios for asset allocation.

Let X = (X1, X2, ..., XN ) be an N−dimensional vector. It is postulated that

there exist a mixing matrix A and independent variables Yi such that the non-

Gaussian vectors X is a transform (or a linear mixture) of independent variables Y ,

that is,

X = AY. (3.5)

As mentioned earlier, we assume the independent variates Yi follow a VG process.

The main difficulty of this model lies in how to identify the transform (mixing)

matrix A and independent components Y . Madan and Yen [61] used a technique

called independent components analysis (ICA) developed in the signal processing

(Hyvärinen, Karhuen and Oja [46]), in particular the fast ICA algorithm developed

in Hyvärinen [45]. The fast ICA algorithm can help to find the mixing matrix A and

independent variates Y . The main idea of ICA is to decompose the observed time

series of data into stationary independent components (ICs). Given the observed

data, generally ICA contains two main steps: centering and whitening. The fast

ICA algorithm employ a fixed point iteration to solve for the optimization problem.

Details of the ICA can be found in Madan and Yen [61].

Since Yi follows a VG distribution, it is straightforward to get the characteristic

function of Yi. The characteristic functions of independent variates Yi are

ΨYj(u) = E[exp(iuYj)].
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From equation (3.5), the joint characteristic function of X is

ΨX(u) =
N
∏

j=1

ΨYj((A
′u)j),

for j = 1, 2, ..., N.

3.3.2 Estimation Procedure for LM

Assume we haveN−dimensional dependent data vectorsXt = (X1t, X2t, ..., XNt),

t = 1, ..., T.We have a T×N matrix of data Xt. Through the fast independent com-

ponent analysis (ICA), we can generate new independent non-Gaussian distributed

variates Yt. Here we assume Yt follow a VG distribution and the corresponding

mixing matrix be A. We have

Xt = AYt.

After that, we can apply the MLE method to estimate corresponding parameters

(σj, νj, θj) for the VG variates Yj in each dimension, respectively. Next, we simulate

10000 sample paths new VG variates Ys. By substituting back into equation (3.5),

we can get the newly generated correlated variates Xs.

3.4 Variance Gamma Correlated (VGC)

In the VGC model, the non-Gaussian variates are assumed to follow a VG dis-

tribution, and the VG variates can be written as a Gamma-time-changed Brownian

motion. Moreover, the correlation of VG variates is set in the Brownian motion

part. In this section, the VGC model is introduced first, and then the procedure of

how to estimate the parameters of this model is explained.
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3.4.1 Introduction to the VGC model

Assume the marginals follow the law of VG. Thus, each asset Xi can be written

as a Gamma-time-changed Brownian motion at unit time. We put the correlation of

Xi in the Brownian motion part. Let the Gamma process Gi(t), t ≥ 0, i = 1, ..., N be

the subordinator of the VG process Xi(t). We assume that the Gi(1) are a sequence

of independent Gamma variates with unit mean at time t = 1, that is, E[Gi(1)] = 1

and ν2i = Var[Gi(1)]. Under these assumptions, the multidimensional dependent

non-Gaussian variates Xi(t) could be written as:

Xi(t) = θi(Gi(t)− t) + σiWi(Gi(t)), (3.6)

where θi, σi ≥ 0, and the Brownian motion (Wi(t), t ≥ 0) is independent of the

subordinator Gi(t). Then the density of the Gi(t) at time t = 1 is:

f(x) =
1

ν
1
νi

i Γ( 1
νi
)
x

1
νi

−1
e
− x

νi .

If Xi(t) are independent random variables when t = 1, then the Xi(t) are the

independent Variance Gamma processes.

Now we consider the dependent case, where Xi(t), i = 1, . . . , N, are correlated

processes. There are many kinds of multidimensional dependent models. But in

this chapter, we only consider the dependence which can be introduced by only

correlating the Brownian motion part while keeping the time changing subordinators

independent. The correlated Lévy processes Xi(t) at unit time, Xi(1) = Xi, can be

written as

Xi(1) = θi(Gi(1)− 1) + σiWi(Gi(1)), (3.7)
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where Gi = Gi(1), i = 1, . . . , N are independent, Wi(Gi(1)), i = 1, . . . , N are corre-

lated, and standard variates Zi = Wi(1) are correlated. Let Zi be standard normal

variates with zero mean and correlation ρij between Zi and Zj for i 6= j, i.e.,

E[Zi] = 0

and

ρi,j = Corr(Zi, Zj) = Cov(Zi, Zj). (3.8)

Therefore, equation (3.7) can be written as

Xi = θi(Gi − 1) + σi
√

GiZi. (3.9)

By equation (3.9), Xi, i = 1, · · · , N have zero means, i.e., E[Xi] = 0 for each i. The

covariance of Xi and Xj can be simplified as

Cov(Xi, Xj) = E[XiXj]

= σiσjE[
√

Gi]E[
√

Gj] · E[ZiZj],

where E[ZiZj ] = Cov(Zi, Zj) + E[Zi]E[Zj] = Cov(Zi, Zj). Thus,

Cov(Xi, Xj) = σiσj · ρij · E[
√

Gi]E[
√

Gj]. (3.10)

The expectation of the square root of the Gamma process at unit time can be

calculated through

E[
√

Gi] =

∫ ∞

0

1

ν
1/νi
i Γ( 1

νi
)

√
xx

1
νi

−1
e
− x

νi dx

=

√
νiΓ(

1
νi
+ 1

2
)

Γ( 1
νi
)

,

where

Γ(x) =

∫ ∞

0

ux−1e−udu.
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3.4.2 Estimation Procedures for VGC

Assume we have N−dimensional data Xt = (X1t, X2t, ..., XNt), t = 1, ..., T .

After centering the dataXt, we employ the maximum likelihood ratio (MLE) method

to estimate corresponding parameters σi, νi, θi for the univariates in each dimension

of Xit. Then, the covariance matrix of Xi and Xj can be calculated directly. Fur-

thermore, the correlation ρij of Zi and Zj can be calculated by equation (3.10).

Thus the correlated standard variates Zs with correlation ρij can be simulated on

10000 sample paths. By substituting the simulated Zs back into equation (3.9), we

can get the newly generated multidimensional correlated non-Gaussian variates Xs.
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Chapter 4

Monte Carlo Simulation and Gradient Estimation

4.1 Overview

Monte Carlo simulation is a widely-used technique to study the impact of

risk and uncertainty in financial engineering or other forecasting models. Monte

Carlo methods were introduced to finance community in Hertz [42] in the context

of corporate finance and first applied to derivative valuation in Boyle [13]. A review

of gradient estimation techniques in financial engineering is given in Fu [33].

Gradient estimates are useful in hedging risks in markets in the finance commu-

nity. Generally, the Monte-Carlo based gradient estimation technique contains the

following several approaches: finite difference (for example: forward difference), in-

finitesimal perturbation analysis (IPA) and the likelihood ratio (LR) method, as well

as the GL method (similar to the LR method) proposed and tested in Glasserman

and Liu [39], which numerically approximates density functions from characteristic

functions.

4.2 Gradient Estimation Techniques

Gradient estimation techniques can be applied to estimate gradients of differ-

ent options, such as a European call option, or options based on a basket of options
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(Mountain Range options). Gradients play an important role in hedging strategies

since they in fact measure sensitivities of options with respect to corresponding pa-

rameters. For instance, Delta measures the sensitivity of option prices to spot prices

and determined how many shares of stocks required to purchase or sell to offset risks

from changes of stock prices. To calculate gradient estimates, we need to calculate

the derivative of option prices with respect to these parameters separately.

Before calculating gradient estimators, we first set up the problem. We begin

with V (ξ), the objective function which depends on the parameter ξ. The gradients

with respect to the parameter ξ can be calculated as

dV (ξ)

dξ
,

which is the derivative of the objective function with respect to the corresponding

parameter.

It is assumed that the performance measure must be estimated in this context.

Accordingly, we will assume that the performance measure is an expectation of some

sample performances. Therefore, the objective function of interest is assumed to be

an expectation of the sample performance measure J , that is,

V (ξ) = E[J(ξ)] = E[J(X1, X2, · · · , Xn; ξ)], (4.1)

where X = X1, X2, · · · , Xn depends on ξ, n is the fixed number of random variables,

and J is referred to as the sample performance. From the fact that Monte Carlo

simulation is based on the law of large numbers, we can get a good estimate of the

performance measure of interest by taking the average of the sample performance J
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over many simulations. Therefore, the problem of gradient estimation is to estimate

dE[J(ξ)]

dξ
. (4.2)

By law of the unconscious statistician, the expectation can be written as:

E[J(X)] =

∫

ydFJ(y) =

∫

J(x)dFX(x), (4.3)

where FJ is the distribution of J and FX is the distribution of the input random

variables X. Generally, FJ is not known explicitly; for other cases, simulation is not

needed. Nevertheless, the distribution FX is always known in the simulation since

it is required to generate input processes to the simulation model.

The parameter of interest ξ can occur in two places: one is in the input random

variables X; the other is the density function fX of X. To be specific, we express

the right hand side of equation (4.3) as:

E[J(X)] =

∫ 1

0

J(X(ξ; u))du, (4.4)

E[J(X)] =

∫ ∞

−∞
J(x)fX(x; ξ)dx, (4.5)

where fX is the probability density function of X. In the first case as shown in

equation (4.4), the dependence of parameter ξ is path-wise from the input random

variables X; while in the second case shown in equation (4.5), the dependence on

the parameter ξ is in the distribution FX . Considering that the dependence of the

parameter ξ can be in two different ways, we have two different kinds of methods

(called direct and indirect methods) to estimate the objective function.

A “brute-force” finite difference can be obtained by taking additional simula-

tions at parameter value (ξ + ∆ξ). A forward difference estimate of (4.2) can be
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calculated by subtracting simulated estimates of J at ξ + ∆ξ from simulated esti-

mates of J at ξ, and dividing by the perturbation ∆ξ. However, this would require

additional simulations. Moreover, a suitable perturbation ∆ξ must be selected to

trade off between variance and bias, since larger ∆ξ means lower variance but higher

bias.

In this section, we provide an introduction to indirect methods and direct

methods for estimating gradients.

4.2.1 Indirect Methods

Indirect methods for estimating a gradient at ξ is simply to use finite differ-

ences, i.e., perturbing the value of each component of θ separately while holding

all the other components still. As mentioned before, there is a trade-off between

bias and variance when selecting the appropriate value of perturbation ∆ξ. If the

perturbation is too small, the resulting estimator may be noisy, whereas a large

perturbation is likely to lead to a large bias.

Assume for each ξ, after substituting the generated random variable X(ξ)

into the deterministic function J(X, ξ), we can calculate the expectation Ĵ(x) =

Ĵ(x, ξ) = E[J(X, ξ)]. The objective is to get the simulation estimate of d/dξĴ(x, ξ).

From the definition of finite difference including forward difference, backward
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difference, and central difference, we can get the following formulas:

d

dξ
Ĵ(ξ) = lim

h→0

Ĵ(ξ + h)− Ĵ(ξ)
h

(4.6)

= lim
h→0

Ĵ(ξ)− Ĵ(ξ − h)
h

(4.7)

= lim
h→0

Ĵ(ξ + h/2)− Ĵ(ξ − h/2)
h

(4.8)

From equation (4.6), the one-sided forward difference gradient estimator in

the i-th direction is:

J(ξ + ciei)− J(ξ)
ci

,

where ci is the scalar of perturbation in the i−th direction and ei is the unit vector

in the i-th direction.

From equation (4.7), the one-sided backward difference gradient estimator in

the ith direction is:

J(ξ)− J(ξ − ciei)
ci

,

where ci is the scalar of perturbation in the i−th direction and ei is the unit vector

in the i−th direction.

From equation (4.8), the two-sided symmetric difference estimator, or central

difference estimator is given by

J(ξ + ciei)− J(ξ − ciei)
2ci

.

An additional gradient estimation technique designed for stochastic approxi-

mation is called the simultaneous perturbation (SP) estimator. The i−th component

of the SP gradient estimator is given by:

J(ξ + c∆i)− J(ξ − c∆i)

2c∆i

,
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where c is the set of differences for each component, ∆ = (∆1, · · · ,∆d) is a d

dimensional vector of perturbations, which are generally assumed i.i.d. In fact, c is

a diagonal matrix with the differences ci on the diagonal.

4.2.2 Infinitesimal Perturbation Analysis

Infinitesimal perturbation analysis (IPA) estimates the sample path derivative

of the parameters of interest.That is for J(X(ξ, ω)) on the sample path ω,

dJ(X(ξ, ω))

dξ
= lim

h→0

J(X(ξ + h, ω))− J(X(ξ, ω))

h
w.p.1

To derive direct gradient estimators for IPA, we express the expectation as in

equation (4.4), i.e.,

E[J(X)] =

∫ 1

0

J(X(ξ; u))du.

After taking the derivative of the equation with respect to the parameter ξ, we can

derive the estimates for IPA. However, it should be pointed out that IPA estimates

require the interchangeability condition which is easily satisfied when the perfor-

mance function is continuous with respect to the given parameter. Assume that we

can interchange the expectation and differentiation, the IPA estimate is:

dE[J(X)]

dξ
=

∫ 1

0

dJ(X(ξ; u))

dξ
du =

∫ 1

0

dJ

dX

dX(ξ)

dξ
du.

Hence, the IPA estimator is:

dJ

dX

dX(ξ)

dξ
. (4.9)

From the theorem, the condition of uniform integrability of dJ
dX

dX(ξ)
dξ

must

be satisfied to make the interchangeability possible. In other words, in order to
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make the IPA estimator be an unbiased stochastic gradient estimator, we need the

interchangeability of the derivative and expectation, i.e.,

dE[J(X)]

dξ
= E

[

dJ(X)

dξ

]

, (4.10)

which is the condition for the unbiased IPA estimator exists. Let X = (X1, ..., XN ).

To make it easy to explain, we start by assuming the parameter ξ only appears inX1,

which is independently of other input random variables. Thus, the IPA estimates

can be written as:

dE[J(X)]

dξ
=

∫ 1

0

dJ(X1(ξ; u), X2, ..., XN )

dξ
du

=

∫ 1

0

dJ

dX1

dX1(ξ)

dξ
du.

Hence, the IPA estimator is:

dJ

dX1

dX1(ξ)

dξ
.

From the definition of derivative, the condition for making IPA estimator

unbiased can be expressed as:

lim
∆ξ→0

E[g∆ξ] = E[ lim
∆ξ→0

g∆ξ],

where g∆ξ =
J(ξ+∆ξ)−J(ξ)

∆ξ
.

Then one question appears: how do we check interchangeability of the expec-

tation and differentiation? Before answering this question, we recall the Dominated

Convergence Theorem, given here in the form presented in Fu and Hu [31].

Theorem 4.2.1. (Dominated Convergence Theorem). If lim
∆ξ→0

g∆ξ = g with

probability 1, and there exits ǫ > 0, such that |g∆ξ| ≤ K with probability 1, for any
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∆ξ ∈ [0, ǫ] with E[K] <∞ and K is independent of ξ, then

lim
∆ξ→0

E[g∆ξ] = E[g].

By the dominated convergence theorem, the following lemma (also taken from

Asmussen and Glynn [4]) makes the interchange possible.

Lemma 4.2.2. Assume that J(X) = J(X, ξ) is almost surely differentiable at ξ0

and that J(X) satisfies the Lipschitz condition

|J(X, ξ1)− J(X, ξ2)| ≤ |ξ1 − ξ2|M

for ξ1, ξ2 in a non-random neighborhood of ξ0, where E[M ] < ∞. Then equation

(4.10) holds at ξ = ξ0.

Proof. We write Ĵ(x) = Ĵ(x, ξ) = E[J(ξ)] for some random variable J(X, ξ) de-

pending on ξ. Note

Ĵ ′(x, ξ0) = lim
h→0

Ĵ(x, ξ0 + h)− Ĵ(x, ξ0)
h

= lim
h→0

E[
J(X, ξ0 + h)− J(X, ξ0)

h
]

≤ lim
h→0

E[M ].

Since

lim
h→0

J(X, ξ0 + h)− J(X, ξ0)
h

= J ′(ξ0),

almost surely, we can get

d

dξ

(

E[J(ξ)]
)∣

∣

∣

ξ0
= E

[ d

dξ
J(ξ)

∣

∣

∣

ξ0

]

,

by the dominated convergence theorem.

45



4.2.3 Likelihood Ratio Method

The likelihood ratio (LR) method constructs estimators by taking the deriva-

tive of the probability density function with respect to the parameter of interest.

The probability density function fX ofX is assumed to be differentiable with respect

to the parameter of interest.

To derive direct gradient estimators for LR method, we have to express the

expectation as in (4.5), i.e.,

E[J(X)] =

∫ ∞

−∞
J(x)fX(x; ξ)dx.

After taking the derivative of the equation with respect to the parameter ξ, we can

derive the estimates for LR. However, it should be pointed out that the conditions

for interchangeability required for LR differ from those for IPA.

Assuming we can interchange the expectation and differentiation, the LR es-

timate is:

dE[J(X)]

dξ
=

∫ ∞

−∞
J(x)

df(x; ξ)

dξ
dx =

∫ ∞

−∞
J(x)

d ln f(x; ξ)

dξ
f(x; ξ)dx

and the estimator is

J(x)
d ln f(x; ξ)

dξ
,

where d ln f(x;ξ)
dξ

is called the score function.

Let X = (X1, ..., XN ) be an N -dimensional input process. Assume that X1

has marginal probability density function f1(·; ξ) and that the joint p.d.f for the re-

maining input random variables (X2, ..., XN ) is given by f−1(·) which is independent

46



of ξ. Accordingly, the corresponding LR estimate is:

dE[J(X)]

dξ
=

∫ ∞

−∞
J(x)

df1(x1; ξ)

dξ
f−1(x2, ..., xN )dx

=

∫ ∞

−∞
J(x)

d ln f1(x1; ξ)

dξ
f(x)dx

and the corresponding estimator is

J(X)
d ln f1(X1; ξ)

dξ
.

By dominated convergence theorem, the following lemma makes the inter-

change possible. See previous sentence.

Lemma 4.2.3. Let (fξ(x))θ∈Θ be a family of densities on R such that, fξ(x) is

continuously differentiable in ξ with derivative f ′
ξ(x) for x, almost everywhere. Then

d

dξ

∫

J(x)fξ(x)dx =

∫

J(x)f
′

ξ(x)dx,

for all ξ in a given open subintegral Θ0 ⊂ Θ provided that there exist p, q with

1/p+ 1/q = 1 such that

x ∈ Lq, and |f
′

ξ(x)| ≤M(x),

for some M ∈ Lp and for all θ ∈ Θ0 and for x almost everywhere.

Proof. Assume (ξ − ǫ, ξ + ǫ) ⊆ Θ0. For |h| < ǫ, we have

1

h

[

∫

J(x)fξ+h(x)dx−
∫

J(x)fξdx

]

=

∫

J(x)
fξ+h(x)− fξ(x)

h
dx

=

∫

J(x)f
′

ξ+h∗(x)(x)dx,
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for some h∗(x) ∈ (−h, h). We also have

lim
h→0

J(x)f
′

ξ+h∗(x)(x)dx = J(x)f
′

ξ(x),

and

||J(x)f ′

ξ+h∗(x)(x)dx||L1 ≤ ||J(x)M(x)||L1 .

Then, we can apply the dominated convergence theorem to complete the proof.

4.2.4 GL method

An approach based on the LR method to estimate gradients was proposed in

Glasserman and Liu [39], abbreviated here as the GL method. Unlike the LR method

which directly uses the density function, the GL method numerically approximates

the density function gξ(x) and the derivative (d/dξ)gξ(x) through the characteristic

function or the Laplace transform.

Let Gξ be the distribution function associated with the density function gξ.

The main idea of the GL method is to sample the input X from the distribution

function through the inverse transform method, that is,

X = G−1
ξ (U),

where U is uniformly distributed on [0, 1]. Once the density function and its deriva-

tive are numerically approximated, we can estimate the gradients similar to LR

method.

The general steps of this GL method are follows: Pick a finite grid of x values,

and pre-compute values of Gξ, gξ, ġξ, through numerical transform inversions.
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• Using the Abate-Whitt algorithm [1], each transform inversion is approximated

using a finite weighted sum of transform values, given by

IN,hξ,x (Lg) =
heσx

2π
Lg(σ) +

heσx

π

N
∑

k=1

(

Re[Lg(σ + ikh)] cos(khx)

−Im[Lg(σ + ikh)] sin(khx)

)

,

where N is the truncation point, and Lg is the characteristic function of g.

• To calculate Gj on the grid, we pick σ+ ∈ (0, σu) and σ− ∈ (σl, 0). Let

Gj =















IN,hσ+,xj
(LGξ

), if xj ≤ 0;

1− IN,hσ−,xj
(LḠξ

), if xj > 0.

(4.11)

Let x0 = −d/dξLgξ(0) and calculate G0 by (4.11). Let xj = x0 + jδ and

x−j = x0 − jδ. Compute Gj by (4.11). If Gj < Gj−1, set Gj = Gj−1; if

G−j > G−(j−1), set G−j = G−(j−1). Continue for j = 1, 2, ... until we find

jmax > 0 and jmin < 0 such that Gjmax ≈ 1 and Gjmin
≈ 0. Then we set

J = {jmin, jmin + 1, ..., jmax − 1, jmax}. Then {xj , j ∈ J} are our grids.

• At each simulation step, we approximate gξ and ġξ through Gj as:

ĝξ(x) =















(Gj −Gj−1)/δ, if x ∈ [xj−1, xj), j ∈ J

0, if x < xmin or x > xmax

˙̂gξ(x) =















(Ġj − Ġj−1)/δ, if x ∈ [xj−1, xj), j ∈ J

0, if x < xmin or x > xmax

where Ġj ≈ Ġξ(xj) is calculated through Ġξ =
dGξ

dξ
. Then we can estimate the

approximated score function Ŝξ = ˙̂gξ/ĝξ at X.
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• We generate X̂ from the approximation Ĝξ by setting X = Ĝ−1
ξ (U), where

U ∼ Unif(Gmin, Gmax) as in

X̂ =
Uδ + xj−1Gj − xjGj−1

Gj −Gj−1

.

• At the end of each path, the LR estimator of the derivative of Eξ[V (X))] is

V (X̂)Ŝξ(X̂).

The two-sided Laplace transform of a function g is given by

Lg(u) =

∫ ∞

−∞
e−uxg(x)dx,

where u is a complex variable. Assume the region of convergence in the complex

plane includes a real interval σl, σu, where σl < 0 and σu > 0 for the Laplace

transform Lgξ of gξ.

We have

LGξ
(u) =

Lgξ(u)

u
,

for Re(u) ∈ (0, σu) and

LḠξ
(u) = −Lgξ(u)/u,

for Re(u) ∈ (0, σu), where Ḡξ = 1−Gξ. For the VG process in this dissertation, the

Laplace transform of the density function is

Lg(u) = (1− iuθν + 1

2
σ2νu2)−t/ν .

Again, the interchangeability can be guaranteed by the following lemma in

Glasserman and Liu [39] or Asmussen and Glynn [4] as follows:
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Lemma 4.2.4. If there is an integrable function H for which e−σx|g′ξ(x)| ≤ H(x)

for all real x and for any ξ in a neighborhood of ξ0, then we have the following result:

Lg′
ξ
(u) =

∫ ∞

−∞
e−ux

∂

∂ξ
gξ(x)dx

=
∂

∂ξ

∫ ∞

−∞
e−uxgξ(x)dx

=
∂

∂ξ
Lgξ(u)

at ξ = ξ0, where Re(u) = σ ∈ (σl, σu).
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Chapter 5

Constructing Optimal Portfolios of Variance Swaps by Lévy Mixture

and Variance Gamma Correlated

5.1 Overview

A variance swap is a forward contract on annualized variance in which two

parties agree to buy or sell the realized variance of an index or a single stock on a

fixed future day for a fixed price. This fixed price is called a variance strike or strike

price.

This chapter focuses on constructing optimal portfolios of variance swaps.

Our approach follows the classical portfolio theory for stock investment proposed in

Markowitz [64]. Madan [54] provided an introduction of a variance swap contract

and explained the determination of the variance strike price. According to the

result, the variance strike equals the spot value of the realised variance at maturity

from the fact that the market values of the variance swap contract is zero. Madan

[56] proposed the portfolio theory of variance swaps. However, his implementation

to handle the residuals of a linear regression model for the realized variance is

based on a full rank Gaussian copula (FGC) model, proposed in Malevergne and

Sornette [62] and developed in Madan and Khanna [53]. In this chapter, we study

the variance swap from a different viewpoint. More precisely, we employ two other
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multidimensional dependent non-Gaussian models: the variance Gamma correlated

model (VGC), developed in Eberlein and Madan [30], and the Lévy Mixture model

(LM), proposed in Madan and Yen [61].

Madan and Khanna [53] analyzed and compared three non-Gaussian depen-

dent models: FGC, VGC and LM, and concluded that (i) all three models are

comparable; (ii) generally LM has a superior performance to VGC and FGC except

that occasionally VGC and FGC may dominate.

Cherny and Madan [22] introduced an optimization theory of performance

evaluation and several distortion functions. Several optimization methods were used

in Eberlein and Madan [29] and Madan [55], such as maximizing the index of accept-

ability and maximizing the expected distortion given a fixed acceptable index. In

this chapter, we seek a portfolio of variance swaps using a new performance measure

called acceptability indices. We employed some function to distort the distribution

to add more weights to losses and discount weights to gains. Then, we maximize

the expected value of the cash flow using distorted distribution function given some

fixed acceptability indices.

The remainder of this chapter is organized as follows. Section 5.2 presents the

definition of variance swaps and gives a brief introduction to calculating the cash

flow of the variance swap. Section 5.3 explains how to price the variance strike of

a contract. A calibration on the option surface through a Variance Gamma Spe-

cific Self Decomposable (VGSSD) model is conducted to estimate the strike price.

Section 5.4 investigates the simulation method of the realized variance by a linear

regression model. Recognizing the difficulty in keeping the terms of the realized
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variance in a regression model always positive, we employ a transform called the

Hardy-Littlewood-Gauss transform. Moreover, considering the residuals from the

regression model have excess kurtosis and skewness, we employ three multidimen-

sional dependent non-Gaussian models: full rank Gaussian copula (FGC), Lévy

Mixture (LM) and Variance Gamma Correlated (VGC) to handle cross-dependencies

between residuals of different assets. Section 5.5 explains the construction of port-

folios of variance swaps. For this purpose, we optimize by maximizing the expected

distortion given some fixed indices of acceptability. Section 5.6 shows the numer-

ical results during the implementation. Several results of portfolios with different

acceptable indices and different non-Gaussian models are also provided.

5.2 Definition of Variance Swaps

A variance swap is an over-the-counter financial derivative that allows one to

speculate on or hedge risks associated with the magnitude of movement, that is,

the volatility of some underlying product, like an exchange rate or interest rate.

Through a variance swap, investors could achieve long or short exposure to market

volatility. It is not really a swap in the traditional sense; it is in fact a kind of

forward contract signed by two parties who agree to exchange cash flows based on

the measured variance of a specified underlying asset during a certain time period.

More precisely, on the trading day specified by the contract, the two parties trade

the variance swap according to the variance strike, the realized variance and the

notional amount. This contract allows them to gain exposure to changes in the
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variance of the underlying index, so that they can trade the variance swap to hedge

off exposure from other areas of their business or to profit from anticipated changes

in the variance of an asset.

The features of a variance swap include the variance strike, which is also called

the fixed leg, the realized variance, that is, the floating leg and the notional amount.

The floating leg of the swap is the amount paid based on the realized variance of

the price changes of the underlying product. The fixed leg of the swap is the fixed

amount, which is also the strike quoted at the deal’s inception paid on the maturity.

Therefore, the payoff of a variance swap at expiration or maturity is

Payoff of a Variance Swap

= Notional Amount× (Realized Variance− Variance Strike).

Let P be the notional principal, let σ2
r be the realized variance, and let σ2

k be

the variance strike. The payoff of a variance swap can be expressed as:

P × (σ2
r − σ2

k).

Due to the fact that each year has 252 trading days, the realized variance σ2
r can be

written (Madan [54]) as

σ2
r =

252

T

T
∑

t=1

x2t ,

and the strike price can be written as

σ2
k = k2,

where xt = log(St/St−1), St is the stock price of the underlying asset at the end of

day t, and k is the annualized volatility quotation. Hence, the payoff of a variance
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swap at the end of day T is:

P ×
(

252

T

T
∑

t=1

(

log(
St
St−1

)

)2

− k2
)

. (5.1)

5.3 Fixed Leg (Variance Strike)

5.3.1 Calculation of the Variance Strike

Let us start from calculating the strike price of a variance swap. We select

10 assets, of which the tickers whose ticker symbols are: xom, aapl, mmm, c, adbe,

amzn, gs, coh, goog, bac on the S&P 500 index. The corresponding companies to

the tickers are shown in Table 5.1. On the portfolio construction date, we need to

calculate the strike price for each asset. From Appendix A, the fixed swap payment

is

k =

√

252erT/365

T
R,

where

R = MVO. (5.2)

by setting the interest rate r = 0 and the dividend rate q = 0 (proposed by Madan

[56]).

The market value of options (MVO) can be calculated from an option surface

calibration. We use a model called Variance Gamma Scaled Self-Decomposable

(VGSSD) to calibrate the option surfaces. Let’s define the γ-self-similar process

first.

Definition 5 (γ-self-similar process). A stochastic process (Y (t), t ≤ 0) is called a

56



Table 5.1: Tickers and Companies

ticker Company

xom Exxon Mobil Corp.

aapl Apple Inc.

mmm 3M Co.

c Citigroup Inc.

adbe Adobe Systems Inc.

amzn Amazon Com Inc.

gs Goldman Sachs Groups Inc.

coh Coach Inc.

goog Google Inc.

bac Bank of America Corp.

γ-self-similar process, if it satisfies that for any λ > 0, and all time t, such that

Y (λt)
law
= λγY (t).

The additive process is called as an additive process with inhomogeneous and

independent increments. In particular, when the increments are time homogeneous,

the process is called a Lévy process. A law is self-decomposable if and only if it is

the the law at unit time of an additive process, which is also a self-similar process.

Consequently, such processes are called as Sato processes in Sato [74]. If Y (t) is the

value at time t of a self-similar additive process with paths of bounded variation.

If the law of the self-similar additive process at unit time be the self-decomposable
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law of the random variable X:

Y (1)
law
= X.

By the scaling property, we let the law of Y (t) equals the law of tγX(1), i.e.,

Y (t)
law
= tγX(1),

where X(1) is a VG process at time t = 1. Such Y (t) is said to follow a VGSSD

process.

If Y (t) follows a (VGSSD) model, Carr, Geman, Madan and Yor [18] showed

that the law of Y (t) is equivalent to the law of tγX(1) by the scaling property. Thus,

the characteristic function of Y (t) is:

φY (t)(u) = E[eiuY (t)]

= E[eiut
γX(1)]

= (1− iuθνtγ + 1

2
σ2νu2t2γ)−

1
γ .

The stock price S(t) under the risk-neutral measure can be expressed as:

S(t) = S(0)ert
eY (t)

E[eY (t)]
. (5.3)

The price of a variance swap contract σ2
k = k2 can be calculated from

σ2
kt = 2i

∂φM(u, t)

∂u

∣

∣

∣

∣

u=0

, (5.4)

where

φM(u, t) = EQ[exp(iu ln(M(t)))].

Let r be the risk-free interest rate and q be the dividend rate. We can express the

stock price in the risk-neutral measure by

S(t) = S(0)e(r−q)tM(t).
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This implies that the characteristic function ofM(t) is related to that of S(t), which

can be calculated from Equation (5.3). Consequently,

σ2
kt = −2E[lnM]

= −2E[lnSt − lnS0 − (r − q)t]

= −2qt− 2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ),

where r = 0, q = 0 to make Equation (5.5) equivalent to the variance strike as

proposed in Madan [54]. Therefore, the variance strike is

σ2
k = (−2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ))t−1.

Using the data of option prices of the ten assets mentioned above on October

19 2007, from Wharton Research Data Services (WRDS), we employ the VGSSD

model to calibrate the option surface for each asset. More precisely, by choosing

difference parameters, we employ the VGSSD model to estimate the corresponding

option prices for different strike prices and maturities, which can be considered the

model price. Then we can estimate the corresponding parameters that minimize

the root mean square error (RMSE) of the model prices to the market prices. The

RMSE is defined as

RMSE =

√

√

√

√

∑

options

(

market price−model price
)2

number of options
.

To measure the overall quality fit, we use model price calculated from the estimated

parameters to calculate the APE, which is the average absolute error as a percentage

of the mean price. The APE is defined as

APE =
1

mean of option price
·
∑

options

|market price−model price|
number of options

.
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Table 5.2: VGSSD Parameters on 20071019

ticker σ ν θ γ RMSE APE

xom 0.2511 0.3708 -0.2480 0.4961 0.0511 0.0320

aapl 0.4207 0.0648 -0.3021 0.3912 0.2460 0.0413

mmm 0.2013 0.1177 -0.4167 0.4685 0.0518 0.0395

c 0.2978 0.3147 -0.3405 0.4427 0.0348 0.0432

adbe 0.3182 0.2501 -0.2370 0.5628 0.0277 0.0289

amzn 0.4711 0.1265 -0.6917 0.4135 0.1993 0.0492

gs 0.3236 0.4495 -0.3659 0.4406 0.1526 0.0241

coh 0.3566 0.1027 -0.7032 0.4132 0.0658 0.0372

goog 0.3006 0.3513 -0.1737 0.4954 0.3885 0.0341

bac 0.2540 0.5081 -0.2585 0.5405 0.0425 0.0419

Table 5.3: One Month Variance Strike on 20071019

ticker xom aapl mmm c adbe amzn gs coh goog bac

0.26305 0.53385 0.22557 0.36647 0.27097 0.59576 0.37237 0.48358 0.33763 0.24381

The calibrated parameters are presented in Table 5.2, and the corresponding cali-

brated option surfaces are depicted in Figure 5.1−5.10, respectively. The quotations

of prices of the variance strike are presented in Table 5.3.
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Figure 5.1: Graph of Fitted Option Surface of XOM on 20071019
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Figure 5.2: Graph of Fitted Option Surface of AAPL on 20071019
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Figure 5.3: Graph of Fitted Option Surface of MMM on 20071019
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Figure 5.4: Graph of Fitted Option Surface of C on 20071019
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Figure 5.5: Graph of Fitted Option Surface of ADBE on 20071019
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Figure 5.6: Graph of Fitted Option Surface of AMZN on 20071019
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Figure 5.7: Graph of Fitted Option Surface of GS on 20071019
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Figure 5.8: Graph of Fitted Option Surface of COH on 20071019
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Figure 5.9: Graph of Fitted Option Surface of GOOG on 20071019
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Figure 5.10: Graph of Fitted Option Surface of BAC on 20071019
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5.4 Floating Leg (Realized Variance)

We consider the one month variance swap based on the 10 assets whose ticker

symbols are: xom, aapl, mmm, c, adbe, amzn, gs, coh, goog, bac on the S&P500

index matured on November 18, 2007.

Let Si,t denote the stock price of asset i at market close on day t for i = 1, ..., 10.

The daily realized variance for asset i on day t defined as vi,t is:

vi,t =

[

ln(
Si,t
Si,t−1

)

]2

. (5.5)

From equation (5.1), the cash flow of a variance swap on day t0 + T entered on day

t0 is calculated as:

P ×
(

252

T
·
t0+T
∑

t=t0+1

vi,t − k2i,t
)

. (5.6)

In this dissertation, we consider the one month variance swap. Thus T = 21 and

ki,t is annualized volatility for asset i on day t.

Taking the high autocorrelation of vi,t into account, we fit a linear auto-

regressive model to vi,t, the daily squared log returns calculated from the time series

data from stock prices of the 10 assets. It is obvious that the squared log returns

vi,t are positive; However, it is difficult to keep the predicted vi,t always positive in

the regression model. Hence, we seek a transform to map vi,t from positive numbers

to all real numbers such that the regression model can be applied. Due to this, one

may consider the log transform, i.e. taking log of vi,t. Obviously, log(vi,t) could be

positive or negative.

However, this would cause a double exponential on the returns and poor re-

turns on residuals. Madan [56] employed a transform called the Hardy-Littlewood
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transform behaving almost like a linear function, which would not cause any unpre-

dictable problems. In the following sections, we introduce this transform and the

linear regression model.

5.4.1 Hardy-Littlewood Transform and Linear Regression Model

Recognizing squared log returns are highly autocorrelated and subject to some

levels of clustering, we follow Madan [56] and apply the Hardy-Littlewood transform

to the squared daily log returns. This transform can deal with highly correlated

auto-correlations, as well as transform vi,t’s from positive values to all real values

required by the linear regression model because of the difficulty of keeping vi,t in

the linear regression model positive in the future simulations. We considered the

log transform of the vi,t, but this would make a double exponent and result in bad

effects.

Definition 6 (Hardy-Littlewood Transform). Let f(x) be a symmetric density

function on the real line having finite expectation of absolute value of x. The Hardy-

Littlewood transform is defined as:

g(x) =

∫∞
x
uf(u)du

∫∞
x
f(u)du

. (5.7)

As x → −∞, g(x) would be close to 0; when x is large enough, g(x) would

behave like x, which indicates this transform is close to “linear”. Since g(x) is always

positive, the inverse of g(x) will transform the positive squared log returns vi,t to

all real values. In this chapter, we set the density f(x) to be a standard normal

density function, i.e., f(x) = 1√
2π
e−

x2

2 , and get the so-called Hardy-Littlewood-
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Gauss transform (also known as the Mills ratio):

gHLG(x) =

∫∞
x
u/
√
2π exp(−u2

2
)du

∫∞
x

1/
√
2π exp(−u2

2
)du

=
fnorm(x)

1− Fnorm(x)

=
1/
√
2π exp(−u2

2
)

∫∞
x

1/
√
2π exp(−u2

2
)du

, (5.8)

where fnorm(x) is the density function and Fnorm(x) is the cumulative distribution

function of a standard normal distributed variable. Thus, the definition of the

Hardy-Littlewood-Gauss transform is shown as follows.

Definition 7 (Hardy-Littlewood-Gauss Transform). Let x be a real value. The

transform defined as

gHLG(x) =
1/
√
2π exp(−u2

2
)

∫∞
x

1/
√
2π exp(−u2

2
)du

is called the Hardy-Littlewood-Gauss transform.

By taking the six-month historical data of stock prices from the 10 assets from

Mar.18, 2007 to Nov.18, 2007 into equation (5.5), we get the squared log-returns vi,t.

Then we employ the inverse of Hardy-Littlewood-Gauss transform defined above to

map vi,t’s to all real values xi,t’s, i.e.,

xi,t = g−1
HLG(vi,t),

where xi,t’s are newly generated data which are all real numbers.

To handle the highly correlated auto-correlations of the series of data xi,t into

account, we fit a 5-lag linear auto-regressive model to data xi,t, that is,

xi,t = ai +
5
∑

j=1

bi,jxi,t−j + ui,t, (5.9)

68



Table 5.4: Linear Regression Results

ticker Constant Lag1 Lag2 Lag3 lag4 Lag5

xom -3.0442 0.1229 -0.0228 0.1332 0.0342 0.0120

aapl -2.7226 0.0780 -0.0223 0.0903 0.1602 0.0150

mmm -4.6246 -0.0619 0.1056 -0.0015 -0.0569 -0.0326

c -2.2779 -0.0688 0.0501 0.1408 0.1890 0.1441

adbe -4.4866 -0.1239 -0.0198 0.0488 0.0286 -0.0014

amzn -2.9798 0.1353 -0.0407 0.1019 0.1125 -0.0511

gs -2.6134 -0.0168 0.0634 0.2381 0.1593 -0.0886

coh -2.8390 0.0439 0.0903 0.0030 0.2077 -0.0610

goog -3.7481 0.0254 -0.0263 0.0812 -0.0984 0.1390

bac -2.8081 0.1144 0.1606 0.0322 0.0054 0.04023

where ai’s are constant terms, bi,1, bi,2, bi,3, bi,4, bi,5 are the corresponding five coeffi-

cients in the regression model, and ui,t are residuals. The regression results of the

five lags and the constant terms by taking xi,t into the linear regression model are

provided in Table 5.4.

However, it should be pointed out that time series data of residuals ui,t cal-

culated from the regression model in (5.9) do not follow a Gaussian distribution.

Instead, they have skewness and excess kurtosis. Hence, we can not ignore this and

seek some multidimensional dependent non-Gaussian models to study them. In the

following sections, we introduce the LM model and VGC model and explain the

implementation of them to investigate the residuals.
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5.4.2 Lévy Mixture

Considering that the residuals ui,t have heavy tail and skewness, we cannot

ignore the residuals ui,t in the linear regression. We have to take the residuals into

account and apply a multidimensional non-Gaussian model called the Lévy Mixture

introduced in Section 3.3.

The Lévy Mixture model is conducted by transforming correlated multidi-

mensional non-Gaussian variates to independent non-Gaussian variates, so that the

parameters of each independent non-Gaussian variate can be estimated by maximum

likelihood estimation (MLE).

To estimate the realized variance, we suggest the estimation procedures as

follows:

• Take historical data of stock prices of the 10 assets from Mar.18, 2007 to

Nov.18, 2007 to calculate the series of real data of squared log-return vi,t

through equation (5.5).

• Take the inverse of Hardy-Littlewood-Gauss transform to the historical data

of vi,t

xi,t = g−1(vi,t)

to get series of newly generated data xi,t.

• Considering highly correlated autocorrelations of the series of data xi,t, set a

linear regression to the newly generated time series data xi,t :

xi,t = ai +
5
∑

j=1

bi,jxi,t−j + ui,t.
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• Applying ICA to the time series data U = {ui,t, i = 1, ..., N ; t = 1, ..., T̄}, we

get the mixture matrix A and independent variates Y , which are assumed to

follow an independent Variance Gamma process.

• Applying MLE to the N -dimensional data Y, of which all assets are inde-

pendent and follow variance Gamma distribution, we get the corresponding

parameters σi, νi, θi.

• Employ the estimated parameters σi, νi, θi to simulate the independent vari-

ables Ŷi following a variance Gamma distribution.

• Through Û = AŶ , we can get the simulated dependent residual series of data

Û .

The results of the lags of the linear regression model are displayed in Table 5.4.

The estimated parameters of the independent VG variates Y are shown in Table 5.5,

and the mixing matrix A is presented in Table 5.6.

5.4.3 Variance Gamma Correlated Model

Another model we will employ to deal with the residual data ui,t is Variance

Gamma Correlated (VGC) introduced in section (3.4). We write the residual data

ui,t as multidimensional correlated non-Gaussian distributed Ui(t), i = 1, ..., N .

We use the series of ui(t) derived from the historical data and estimate the

parameters σi, νi, θi and calculate the covariance from

Cov(Ui, Uj) = σiσjE(
√
gi)E(

√
gj)ρi,j (5.10)
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Table 5.5: VG estimates for independent variates Y for LM

ticker σ ν θ

xom 0.9761 0.0745 -0.1299

aapl 0.9456 0.7436 0.0908

mmm 0.9903 0.3091 0.2364

c 0.9033 0.0561 -0.0240

adbe 0.9774 0.5718 -0.2177

amzn 0.9972 0.3658 0.0417

gs 0.8817 0.0077 -0.1546

coh 1.0024 0.5754 -0.0295

goog 0.9871 0.2984 0.3349

bac 1.0282 0.00000029 0.0657

shown in section (3.4). Then we could simulate the multidimensional non-Gaussian

process Ui(t) which are correlated with each other. The estimating procedure for

applying the VGC model to the residual variates is summarized as following:

• Apply MLE to the time series data U = ui,t, i = 1, ..., N, in each dimension

separately; each would follow the VG distribution with the corresponding pa-

rameters σi, νi, θi.

• Apply the calculated covariance of ui,t to equation (5.10) to get the correlation

ρi,j of the standard normal variable Zi.

• Simulate the N -dimensional correlated standard normal variable Ẑ with the

correlation ρi,j between different assets.
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Table 5.6: The Mixing Matrix A for LM

-0.0203 0.0759 -0.3521 -0.2047 0.0121 -0.2031 0.1630 0.0586 -0.0717 0.1436

0.2988 0.1018 -0.1435 0.1439 0.3072 -0.0333 -0.0078 -0.2397 -0.2112 -0.0606

-0.1122 -0.1979 0.0957 -0.0214 0.2095 -0.2476 0.1331 -0.0417 -0.1386 -0.0355

0.2398 0.0222 0.0901 -0.0280 -0.0455 -0.3031 0.0501 -0.04865 0.1470 0.1090

0.2167 -0.0748 0.0530 -0.0004 0.1353 0.0742 0.1883 0.2467 -0.1074 0.1763

0.0445 0.4342 0.0486 0.0201 0.2601 -0.2437 0.0261 0.1074 0.0234 -0.1286

0.1310 0.1026 0.0848 -0.0490 -0.2381 -0.2462 -0.0085 0.0087 -0.3350 0.03909

0.0773 0.0103 -0.0279 0.1338 -0.1566 -0.0899 0.3803 0.0275 0.0222 -0.2656

0.2302 -0.0849 0.0135 -0.2598 0.0498 -0.1008 -0.0264 0.1243 -0.0246 -0.2664

0.1226 0.0968 0.1723 -0.2785 0.0290 -0.0916 0.2261 -0.1695 -0.0344 0.1009

• By the estimated parameters and the newly simulated Zi, and plugging back

into

Ui(t) = θi(Gi(t)− t) + σiWi(Gi(t)) (5.11)

shown in section (3.4). we can get the newly simulated series data Û .

The estimated parameters of the independent VG variates Y are in Table 5.7, and

the covariance matrix of the standard normal variable Z are in Table 5.8.

5.4.4 Simulations

Following the procedures mentioned above, we simulate 10000 sample paths.

The annualized unit realized variance of the asset i on day t on sample path s is

σ2
i,t,s =

252

21

t+21
∑

j=t+1

vi,j,s. (5.12)

It should be pointed out that we are using calendar of trading days, which means

that each year has 252 days and each month has 21 days.
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Table 5.7: VG estimates for variates Y for VGC

ticker σ ν θ

xom 0.3462 0.1181 -1.0660

aapl 0.4027 0.2765 -0.8307

mmm 0.3991 0.1179 -0.6366

c 0.5070 0.3379 -0.1823

adbe 0.1812 0.1576 -1.0970

amzn 0.5842 0.4243 -0.1553

gs 0.2868 0.1080 -1.3080

coh 0.3933 0.4173 -0.5764

goog 0.4962 0.0540 -0.4227

bac 0.2112 0.0883 -1.4846

The simulated cash flow to asset i on the variance swap on path s is then

obtained by

ci,s = σ2
i,t,s − k2i,t,s. (5.13)

5.5 Optimization

Having the simulated cash flow to asset i on the variance swap, we then con-

struct the optimal portfolios of ω = (ωi, i = 1, ..., N). The magnitude ωi for asset i

is a dollar notional amount that could be positive or negative depending on whether

the swap is purchased or sold. More precisely, ωi is positive, if the variance swap is

purchased; ωi is negative, if the variance swap is sold. With portfolio weights ω, we
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Table 5.8: The Covariance Matrix for Standard Normal Variates Z

2.3313 0.1848 0.2617 0.2570 0.5993 0.2871 0.6386 0.1729 0.1490 0.9059

0.1848 2.2776 0.2799 0.1420 0.5811 0.5530 0.2907 0.0289 0.1640 0.4178

0.2617 0.2799 1.3459 0.1469 0.4177 0.1317 0.2606 0.1992 0.1948 0.6956

0.2570 0.1420 0.1469 0.8496 0.3184 0.2681 0.6036 0.2162 0.2105 1.0608

0.5993 0.5811 0.4177 0.3184 6.9588 0.0314 0.3632 0.2397 0.4339 1.3021

0.2871 0.5530 0.1317 0.2681 0.0314 1.1467 0.2536 0.1850 0.1943 0.4705

0.6386 0.2907 0.2606 0.6036 0.3632 0.2536 3.3790 0.3895 0.3428 1.3985

0.1729 0.0289 0.1992 0.2162 0.2397 0.1850 0.3895 1.9780 0.2554 0.3340

0.1490 0.1640 0.1948 0.2105 0.4339 0.1943 0.3428 0.2554 0.9470 0.5116

0.9059 0.4178 0.6956 1.0608 1.3021 0.4705 1.3985 0.3340 0.5116 5.3622

can write the corresponding portfolio of cash flow on sample path s as

cs(ω) =
N
∑

i=1

ωici,s.

5.5.1 A New Performance Measure

Modern portfolio theory proposed by Markowitz [64, 65] provided selection

principles to maximize the portfolio’s expected return while fixing the variance, or

minimize the variance while fixing the expected return. These two pcriteria define

the efficient frontiers. Thus, an investor’s preference is a trade-off between risk

(represented by the standard deviation of return) and gain (the expected return).

Diversification is another important concept. Due to the correlations between assets,
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a suitable portfolio’s variance is smaller than the sum of the variances of all the

assets. Consequently, the risk can be reduced with a diversified portfolio in different

assets.

Several optimization strategies can be employed to estimate optimal portfolios.

If we employ the optimal portfolio strategy which maximizes the Sharpe ratio (the

ratio of mean of return over standard deviation of mean), the selection in the non-

Gaussian context here will diverge from the multivariate Gaussian model. This

is due to the recognition that investors are not indifferent to other aspects of a

return distribution. Moreover, the Sharpe ratio measure does not actually respect

risks; for example, for positive cash flows with finite means but infinite variance,

the Sharpe ratio is zero while there is an arbitrage. Another popular portfolio

strategy called Gain-Loss Ratio has the limitation that small losses and large losses

are considered equally with the same weights. Hence, we choose a new performance

called acceptability indices which take risks into consideration and are suitable for

the non-Gaussian context. More precisely, we maximize the expected distortion

which is considered as a utility function given some fixed indices of acceptability.

We employ the arbitrage consistent performance measures developed in Madan

[55], generalized from the Sharpe ratio. These measures directly measure the quality

of cash flow distributions whose cost is zero. The zero-cost cash flow is a random

variable X. First, we define the convex set containing all non-negative cash flows.

For an investor who prefers to maximize the expected utility, the zero-cost random

variables X’s in the convex set satisfy the condition: for any random variable X,
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there exists

E[u(W +X)] ≥ E[u(W )],

given a random initial position W and the utility function u. We can model the

acceptable cash flows by the smallest convex cone containing all the convex sets

satisfying the definition above. Such cones of acceptable cash flows are supported

by a set of probability measures and these cash flows have the positive expectation

under all supporting probability measures. These measures are connected with the

acceptability indices. The measure of performance means a map α from L∞ to the

extended positive half-line [0,∞]. Let X ∈ L∞ be the terminal cash flow from a

trading strategy, and α(X) be the performance or quality of X. Let’s first define the

set Ax containing all trades acceptable at level x as those with performance above

x:

Ax = {X : α(X) ≤ x}, x ∈ R+.

The following four properties must be satisfied for a performance measure α(x) to

define an acceptability index.

1. Quasi-Concavity: If α(X) ≥ x and α(Y ) ≥ x, then α(λX + (1− λ)Y ) ≥ x

for any λ ∈ [0, 1] .

2. Monotonicity: If X ≤ Y almost surely, then α(X) ≤ α(Y ).

3. Scale Invariance: The level of acceptability of X does not change under

scaling, that is, α(λX) = α(X) for λ > 0.

4. Fatou Property: This property requires that if (Xn) is a sequence of random
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variables such that |Xn| ≤ 1, α(Xn) ≥ x, andXn converges toX in probability,

then α(X) ≥ x.

It is recognized that the higher the index is, the smaller the set of acceptable cash

flow distributions at this level is. The law of invariant cones of acceptability for the

purpose of constructing operational cones of acceptability is developed in Cherny

and Madan [22]. These invariant cones are related to a series of concave distortion

functions Φγ(y), which distort the distribution function by adding more weights

to losses and discounting weights to gains. y = F (x) and F (x) is the cumulative

distribution function of the cash flow X. The decision of acceptability of the cash

flow depends on the the distribution function for each concave distortion function.

The concave distortion function Φγ(y) is defined on the unit interval with

values in the unit interval which is point wise increasing in the level of the distortion

γ. A random variable X with distribution function F (x) is accepted at level γ if

∫ ∞

−∞
xdΦγ(F (x)) ≥ 0, (5.14)

which means that the expected value of the cash flow under the distortion function

Φγ is nonnegative. The index of acceptability of cash flow X is the highest level of

index that the distorted expectation of the cash flow is nonnegative, i.e.,

γ∗(X) = sup{γ
∣

∣

∫ ∞

−∞
xdΦγ(F (x)) ≥ 0}.

Cherny and Madan [22] considered four kinds of distortion functions: MAX-

VAR, MINMAXVAR and MAXMINVAR, based on four different types of stressed

sampling. They are defined as follows:
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• The distortion function Φγ of MINVAR at level γ is

Φγ(u) = 1− (1− u)1+γ ,

for which one constructs a stressed sample on forming the expectation of the

minimum of (1 + γ) independent draws from the cash flow distribution.

• The distortion function Φγ of MAXVAR at level γ is

Φγ(u) = u
1

1+γ ,

in which one constructs a distribution from which one draws numerous times

and takes the maximum to get the cash flow distribution being evaluated.

• The distortion function Φγ of MINMAXVAR at level γ is

Φγ(u) = 1− (1− u 1
1+γ )1+γ, 0 ≤ u ≤ 1.

• The distortion function Φγ of MAXMINVAR at level γ is

Φγ(u) = 1− (1− u1+γ) 1
1+γ , 0 ≤ u ≤ 1.

The distortion functions MAXMINVAR and MINMAXVAR combine the prop-

erties of MINVAR and MAXVAR. A notable feature for MAXMINVAR and MIN-

VAR is that these two distortions can reweight large losses to infinitely large and

reweight large gains to zero.

In this chapter, the portfolios ωi are constructed so that the distorted expec-

tation in equation (5.14) is maximized given some acceptable index γ. A random

variable X with distribution function F (x) is accepted at level γ if

∫ ∞

−∞
xdφγ(FX(x)) ≥ 0,
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which means that the expected value of the cash flow under the distortion Φγ is

nonnegative. We optimize the portfolios by maximizing the distorted expectation

in equation (5.14), given some acceptable index γ. Given the portfolio of cash flows

C, the distorted expectation would be

∫ ∞

∞
cdφγ(F (c)), (5.15)

where FC is the cumulative distribution function of C. The computation of distorted

expectation is facilitated in terms of an ordered sample from the relevant distribution

with c(1) < c(2) < ... < c(N) as:

N
∑

i=1

c(i)(φ(
i

N
)− φ( i− 1

N
)).

During the optimization, we restrict the portfolios to the unit sphere. That is they

satisfy the condition that
51
∑

i=1

ω2
i = 1.

Moreover, the aggregated portfolio is zero dollar:

51
∑

i=1

k2i,tωi = 0.

In addition, we have to impose a zero Vega constraint as

51
∑

i=1

ki,tωi = 0.

Therefore, we can apply the restrictions to construct the optimization.

5.6 Numerical Experiments and Conclusions

We conduct several numerical experiments and employ two different kinds of

objective functions to construct optimization under the LM and VGC models. We
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design the portfolio to maximize the expected distortion for various acceptable index

values, namely, γ = 0.3, γ = 0.6, and γ = 0.8. The results of portfolios of variance

swaps by maximizing the MinMaxVar expected distortion through LM model are

presented in Table 5.9; the results for the MaxMinVar expected distortion through

LM model are displayed in Table 5.10. The results of portfolios of variance swaps by

maximizing the MinMaxVar expected distortion through VGC model are presented

in Table 5.11; the results for the MaxMinVar expected distortion through VGC

model are displayed in Table 5.12. The corresponding realized results are shown in

Table 5.14 and Table 5.13.

Through the same methodology presented in this chapter, we construct the

portfolios of variance swaps by maximizing the expected distortion for γ = 0.6 each

month in 2007, and the realized results are shown in Table 5.15.

From Table 5.14 and Table 5.13, we find that when the acceptable index is

smaller, the realized results, i.e. the profits from holding the one-month variance

swap would be bigger. We also notice that for the same acceptable index, the profits

from the variance swap by MaxMinVar distortion function are always bigger than

the profits by MinMaxVar distortion function. From Table 5.15, we find that the

profits using the VGC model exceed the profits using the LM model in almost all

the cases.
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Table 5.9: Portfolio by Maximizing the MinMaxVar Expected Distortion by LM

γ xom aapl mmm c adbe amzn gs coh goog bac

0.3 0.3913 0.0186 -0.1898 -0.4835 0.1705 -0.0182 0.5947 0.0330 -0.4309 -0.0827

0.6 0.4840 0.0118 -0.3215 -0.4377 0.2258 -0.0131 0.5062 0.0283 -0.3901 -0.1008

0.8 0.5678 0.0043 -0.4225 -0.3844 0.2059 -0.0135 0.4430 0.0163 -0.3084 -0.1309

Table 5.10: Portfolio by Maximizing the MaxMinVar Expected Distortion by LM

γ xom aapl mmm c adbe amzn gs coh goog bac

0.3 0.2745 0.1481 -0.1890 -0.4364 0.0663 -0.1986 0.6660 0.1394 -0.3907 -0.1307

0.6 0.2812 0.1764 -0.1993 -0.4386 0.0796 -0.2357 0.6239 0.1856 -0.3915 -0.1374

0.8 0.2869 0.1824 -0.2038 -0.4414 0.0894 -0.2444 0.6050 0.2017 -0.3927 -0.1391

Table 5.11: Portfolio by Maximizing the MinMaxVar Expected Distortion by VGC

γ xom aapl mmm c adbe amzn gs coh goog bac

0.3 -0.1670 -0.1208 -0.2435 0.3016 0.0328 -0.0044 0.7888 -0.1813 -0.3498 -0.1698

06 -0.1584 -0.1187 -0.2532 0.2937 0.0700 0.0024 0.7776 -0.1848 -0.3749 -0.1618

0.8 -0.1514 -0.1170 -0.2604 0.2909 0.0945 0.0067 0.7672 -0.1867 -0.3927 -0.1559

Table 5.12: Portfolio by Maximizing the MaxMinVar Expected Distortion by VGC

γ xom aapl mmm c adbe amzn gs coh goog bac

0.3 -0.1735 -0.1220 -0.2349 0.3090 -0.0011 -0.0109 0.7965 -0.1773 -0.3277 -0.1762

06 -0.1723 -0.1220 -0.2350 0.3005 0.0034 -0.0100 0.7997 -0.1768 -0.3291 -0.1754

0.8 -0.1717 -0.1220 -0.2353 0.2972 0.0061 -0.0094 0.8005 -0.1767 -0.3303 -0.1750

Table 5.13: Realized Results of One-Month Variance Swaps by MinMaxVar

γ LM VGC

0.3 0.0798 0.3000

0.6 0.0757 0.2988

0.8 0.0708 0.2977
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Table 5.14: Realized Results of One-Month Variance Swaps by MaxMinVar

γ LM VGC

0.3 0.0808 0.3003

0.6 0.0792 0.3001

0.8 0.0786 0.3000

Table 5.15: Realized Results of One-Month Variance Swaps by MinMaxVar in 2007

Dates LM VGC

20070319 0.1244 0.4730

20070420 0.1257 0.2314

20070518 0.1322 0.1929

20070618 0.1219 0.2902

20070719 0.1179 0.1984

20070820 0.1279 0.1584

20070917 0.1316 0.1165

20071019 0.0757 0.2988

20071119 0.1153 0.3349

20071219 0.1211 0.0932
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Chapter 6

Estimating Greeks for Variance-Gamma Processes

6.1 Overview

Simulation-based derivative estimates are useful in financial engineering, espe-

cially in estimating the Greeks, which are critical for hedging financial derivatives.

Gradient estimation techniques were first applied to option pricing using in-

finitesimal perturbation analysis (IPA) for both European and American options

by Fu and Hu [31]. Broadie and Glasserman [14] applied both IPA and likelihood

ratio (LR) method to European and Asian options; see also Glasserman [38], which

reviews various Monte Carlo methods for financial engineering. Fu [33] reviewed var-

ious methods of gradient estimation in stochastic simulation, including both direct

and indirect methods; see also Fu [34] for more details on Monte Carlo simulation

for financial engineering and various methods for estimating the Greeks through

simulation.

In this chapter, we consider gradient estimation for Mountain Range options

by assuming the dynamics of aseet prices is a VG process. We first price several

mountain range products and then turn to gradient estimation of Greeks. We derive

IPA and LR estimators for the various sensitivities where applicable, and compare

them in numerical experiments to each other and to finite difference estimates.

We also compare these estimates to GL estimates. The GL estimates are especially
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relevant for simulation of Lévy processes, where the characteristic function is readily

available. We then analyze the strengths and weaknesses of each method.

The remainder of the chapter is organized as follows. We outline some back-

ground in section 6.2. In section 6.3, we introduce several gradient estimation meth-

ods. In section 6.5, we provide a European call example. In section 6.6, we conduct

numerical experiments on independent Mountain Range options. In section 6.7,

we introduce a multivariate VG model. In section 6.8, we present conclusions and

future work.

6.2 Background

6.2.1 Greeks

Greeks are the quantities representing the sensitivities of derivatives, such as

options as in [44]. Each Greek letter measures a different dimension of the risk in

an option position and the aim of a trader is to manage the Greeks so that all risks

are acceptable. In this section, we provide several examples of the Greeks: Delta,

Rho and Theta, defined as follows:

• Delta: ∆ is the rate of change of the value of the portfolio of options with

respect to the underlying asset price. In general,

∆ =
∂V

∂S
.

• Vega is the rate of change of the value of the portfolio of options with respect
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to the volatility of the underlying asset price. That is

vega =
∂V

∂σ
.

• Rho ρ is the rate of change of the value of the portfolio of options with respect

to the interest rate. It is defined as:

ρ =
∂V

∂r
.

• Theta: Θ is the rate of change of the value of the portfolio of options with

respect to the passage of time (maturity time) with all else remaining the

same. It is defined as:

Θ =
∂V

∂t
.

6.2.2 Mountain Range Options

Mountain ranges are exotic options originally marketed by Société Générale

in 1998; see also Overhaus [70], Quessette [71], and Meaney [67]. These options

combine characteristics of basket options and range options by basing the value of

the option on several underlying assets, and by setting a time frame for the option.

We first consider the case where the underlying assets are independent, and then

turn to the case where the underlying assets are dependent. We subdivide the

Mountain Range options into four types, depending on the specific terms of the

options.

• Atlas : a long-term option in which the best and worst-performing securities

are removed from the basket prior to execution of the option.
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• Everest : a long-term option in which the option holder gets a payoff based on

the worst-performing securities in the basket.

• Altiplano: a long-term option in which a vanilla option is combined with a

compensatory coupon payment if the underlying security never reaches its

strike price during a given period.

• Annapurna: a long-term option in which the option holder is rewarded if all

securities in the basket never fall below a certain price during the relevant

time period.

• Himalayan: a long-term option which is based on the performance of the best

asset in the portfolio.

6.3 Gradient Estimation

Gradient estimates have been broadly applied in the finance community, for

example hedging risks which depend on sensitivities of corresponding parameters of

derivatives. In order to calculate gradient estimates, we just take derivatives of the

price with respect to these parameters separately.

We begin with V (ξ), the objective function which depends on the parameter

ξ, and calculate

dV (ξ)

dξ
.

Suppose the objective function is an expectation of the sample performance measure
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L, that is:

V (ξ) = E[J(ξ)] = E[J(X1, X2, · · · , Xn; ξ)], (6.1)

where X = X1, X2, · · · , Xn are dependent on ξ, and n is the fixed number of random

variables. By law of the unconscious statistician, the expectation can be written as:

E[J(X)] =

∫

ydFJ(y) =

∫

J(x)dFX(x), (6.2)

where FJ is the distribution of J and FX is the distribution of the input random

variables X.

To make sense of the right hand side of (6.2),

E[J(X)] =

∫ 1

0

J(X(ξ; u))du, (6.3)

E[J(X)] =

∫ ∞

−∞
J(x)fX(x; ξ)dx, (6.4)

where fX is the probability density function of X. The parameter ξ dependence

can be path-wise from the input random variables X, as shown in (6.3), or in the

distribution FX , as shown in (6.4). Considering that the parameter ξ dependence

can be in two different ways, we have two different kind of ways to estimate the

objective function. Therefore, we have three different direct methods, i.e. IPA, LR

and GL, to estimate the gradient of the objective function sections. We apply both

the indirect methods and direct methods to calculate the gradient in the following.

6.3.1 Indirect Methods

The indirect methods for estimating a gradient at ξ is simply to use finite

difference, i.e., perturbing the value of each component of θ separately while hold-
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ing all the other components still. Assuming for each ξ, we generate a random

variable X(ξ), get the value of deterministic function J(X, ξ) with expectation

Ĵ(x) = Ĵ(x, ξ) = E[J(X, ξ)]. The objective is to get the simulation estimate of

d
dξ
Ĵ(x, ξ).

The one-sided forward difference gradient estimator in the ith direction is:

J(ξ + c)− J(ξ)
c

,

where c is the scalar perturbation in the i−th direction.

The one-sided backward difference gradient estimator in the ith direction is:

J(ξ)− J(ξ − c)
c

,

where c is the scalar perturbation in the i−th direction.

The two-sided symmetric difference estimator, i.e., central difference estimator

is given by

J(ξ + c)− J(ξ − c)
2c

.

6.3.2 Direct Methods

Depending on where the dependence of the parameter ξ is, either in the input

random variables as in (6.3), or in the density function as in (6.4), we have two

gradient estimation methods IPA and LR. It should be pointed out that when we

take the derivative of the objective function E[J(X)], we have to make sure that the

interchangeability condition must be satisfied, i.e., we can interchange the derivative

and the integral. The dominated convergence theorem can be employed to check

the condition of interchangeability.
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IPA

The method of infinitesimal perturbation analysis (IPA) is to estimate the

sample path derivative of the parameters of interest, i.e., for J(X(ξ, ω)), on the

sample path ω,

dJ(X(ξ, ω))

dξ
= lim

h→0

J(X(ξ + h, ω))− J(X(ξ, ω))

h
,

with probability 1.

IPA estimates require the integrability condition which is easily satisfied when

the performance function is continuous with respect to the given parameter. Assume

the we can interchange the expectation and differentiation, the IPA estimate is:

dE[J(X)]

dξ
=

∫ 1

0

dJ(X(ξ; u))

dξ
du

=

∫ 1

0

dJ

dX

dX(ξ)

dξ
du,

and the estimator is:

dJ

dX

dX(ξ)

dξ
. (6.5)

According to the dominated convergence theorem, the condition of uniform integra-

bility of dJ
dX

dX(ξ)
dξ

must be satisfied to make the interchangeability feasible. In order

to make the IPA estimator an unbiased stochastic gradient estimator, we need the

interchangeability of the derivative and expectation, i.e.,

dE[J(X)]

dξ
= E

[

dJ(X)

dξ

]

, (6.6)

which can be considered as the condition for the unbiased IPA estimator exists.
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LR

Estimating through the method of likelihood Ratio (LR) is to construct the

estimators from the derivatives of the probability density function through simula-

tion. The probability density function f of X is differentiable. The calculation of

gradients through likelihood ratio method is:

dE[J(X)]

dξ
=

∫ ∞

−∞
J(x)

df(x; ξ)

dξ
dx

=

∫ ∞

−∞
J(x)

d ln f(x; ξ)

dξ
f(x)dx

and the estimator is

J(x)
d ln f(x; ξ)

dξ
, (6.7)

where d ln f(x;ξ)
dξ

is the score function. The required condition for making interchange-

ability feasible of LR is placed on the density function.

6.3.3 GL Method

From the LR estimator shown in (6.7), we have to calculate the derivative of the

log of the density function. However, the closed form of the density function either

does not exist or exists butcomplicated. For example, the density function of the

VG process is complicated, so is the derivative of the density function. To overcome

this difficulty, Glasserman and Liu [39] propose a similar to “LR” method, referred

as GL method, where the density or the derivative of the density are numerically

approximated by the characteristic function or Laplace transform.

In the GL method, we use a set of grids to approximate the density function

gξ(x) and the derivative of the density function
dgξ(x)

dξ
. The main idea of the algorithm
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is as follows: Pick a finite grid of x values, we pre-compute values of Gξ, gξ, ġξ,

through numerical transform inversions. Then we can follow the general idea to

approximate the estimators.

• Use the Abate-Whitt algorithm [1], each transform inversion is approximated

using a finite weighted sum of transform values, given in:

IN,hξ,x (Lf ) =
heσx

2π
Lf (σ) +

heσx

π

N
∑

k=1

(

Re[Lf (σ + ikh)] cos(khx)

−Im[Lf (σ + ikh)] sin(khx)

)

,

where N is the truncation point, and Lf is the characteristic function. Then

we try to calculate Gj on the grid, pick σ+ ∈ (0, σu) and σ− ∈ (σl, 0) and let

Gj =















IN,hσ+,xj
(LGξ

), if xj ≤ 0;

1− IN,hσ−,xj
(LḠξ

), if xj > 0.

• We generate X̂ from the approximation Ĝξ by setting X = Ĝ−1
ξ (U), U ∼

Unif(0, 1) as in

X̂ =
Uδ + xj−1Gj − xjGj−1

Gj −Gj−1

.

• At each simulation step, we approximate gξ and ġξ through Gj as in:

ĝξ(x) =















(Gj −Gj−1)/δ, if x ∈ [xj−1, xj), j ∈ J

0, if x < xmin or x > xmax

˙̂gξ(x) =















(Ġj − Ġj−1)/δ, if x ∈ [xj−1, xj), j ∈ J

0, if x < xmin or x > xmax

where Ġj ≈ Ġξ(xj) is calculated through Ġξ =
dGξ

dξ
. Then we can estimate the

approximation score function Ŝξ =
˙̂gξ
ĝξ

at X.
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• At the end of each path, the LR estimator of the derivative of Eξ[V (X))] is

V (X̂)Ŝξ(X̂).

To distinguish this from the general LR estimator, we will henceforth refer to

it as the GL estimator. The two-sided Laplace transform of a function g is given by

Lg(u) =

∫ ∞

−∞
e−uxg(x)dx,

where u is a complex variable.

In this chapter, we apply the GL method to the VG process whose character-

istic function is

Lg(u) = (1− iuθν + 1

2
σ2νu2)−t/ν .

The required condition for interchangeability provided in the previous chapters has

to be satisfied to make GL method feasible.

6.4 Problem Setting

The objective is to estimate the sensitivity

∂V

∂ξ
,

where V is the value (or price) of the financial derivative and ξ is the parameter of

interest. For example, if V is the price of an option written on a single underlying

stock and ξ is the current stock price, then this sensitivity would correspond to

estimating perhaps the most well-known financial Greek, the Delta.

In this chapter, the derivative price will take the following form:

V = e−rtE[Jt],
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where t is the maturity or expiration date, r is the risk-free interest rate (assumed

deterministic and constant), and Jt is an option payoff function. Two other sensi-

tivities of interest are the Rho and Theta given by ∂V/∂t and ∂V/∂r, respectively.

The setting assumes that the expected payoff E[Jt] cannot be easily computed, ne-

cessitating Monte Carlo simulation to estimate it. This chapter focuses on options

written on a basket of underlying assets following a VG process. However, it is

difficult to verify the condition for interchangebility. We use a European call to get

some heuristic idea on implementation to Mountain Range options.

6.5 A European Call Example

A call option gives the buyer the right, not the obligation, to buy a certain

amount of financial instrument from the seller at a certain time for a certain price.

The payoff function of the European Call option with expiration time T , strike price

K and risk free interest rate r is

JT = (ST −K)+ ,

and the price (value) of the European call option is

VT (K) = e−rT (ST −K)+ ,

where ST = S0exp((r + ω)T +XT ), and XT follows the VG process. We have two

different ways to represent the VG process XT , as a Gamma-time-changed Brownian

motion, or as a difference of two Gamma processes. Hence, the gradients can be

calculated in these two ways.
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6.5.1 IPA for European Call Option

Using Representation 1 of VG process XT

In the representation 1 of a VG process, the VG process XT is a Gamma-time-

changed Brownian motion, that is, XT = θγ
(ν)
T + σW

γ
(ν)
T

.

1. Delta (gradient w.r.t S0):

dVT (K)

dS0

=
d(e−rT (ST −K)+)

dS0

= e−rT1{ST≥K}
dST
dS0

,

where (d/dS0)ST = exp((r + ω)T +XT ) = ST/S0.

2. Rho (gradient w.r.t r):

dVT (K)

dr
= −Te−rT · (ST −K)+ + e−rT1{ST≥K} ·

dST
dr

,

where (d/dr)ST = TST .

3. Gradient with respect to σ:

dVT (K)

dσ
= e−rT · 1{ST≥K} ·

dST
dσ

,

where

dST
dσ

= ST (
dXT

dσ
+ T

dω

dσ
),

dω

dσ
= −σ(1− θν − 1

2
σ2ν)(−1),

and

dXT

dσ
= W

γ
(ν)
T

.
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4. Theta (gradient w.r.t T ):

dVT (K)

dT
= −re−rT (ST −K)+ + e−rT · 1{ST≥K} ·

dST
dT

,

where

dST
dT

= ST ·
(

(r + ω) +
dXT

dT

)

,

and

dXT

dT
= θ · dγ

(ν)
T

dT
+ σ ·

dW
γ
(ν)
T

dT
.

5. Gradient with respect to ν:

dVT (K)

dν
= e−rT I{ST≥K}

dST
dν

,

where

dST
dν

= ST

(

T
dω

dν
+
dXT

dν

)

,

dω

dν
= −

(

θ + σ2/2

1− θν − σ2ν/2
+ ω

)/

ν,

and

dXT

dν
= θ

dγ
(ν)
T

dν
+ σ

1

2
(γ

(ν)
t )−1/2Z

dγ
(ν)
T

dν
.

6. Gradient with respect to θ,

dVT (K)

dθ
= e−rT1{ST≥K}

dST
dθ

,

where

dST
dθ

= ST (T
dω

dθ
+
dXT

dθ
),

dω

dθ
= −(1− θν − σ2ν/2)−1,

and

dXT

dθ
= γ

(ν)
t = ν · Y.
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In the above, Y is a Gamma process with mean t/ν and variance t/ν, Z

is a standard normal distributed random variable with mean 0 and variance 1,

and W
γ
(ν)
T

is time-changed Brownian motion with mean 0 and variance γ
(ν)
T . The

detailed calculation of (d/dT )W
γ
(ν)
T

and (d/dT )γ
(ν)
T is in the Appendix B.1, and the

calculation for (d/dν)γ
(ν)
T is in the Appendix B.2.

Using Representation 2 of VG process XT

In the representation 2 of a VG process, the XT is a difference of two Gamma

processes, i.e., XT = γ
(µ+,ν+)
T − γ(µ−,ν−)

T .

1. Delta:

dVT (K)

dS0

= e−rT1{ST≥K}
ST
S0

.

2. Rho:

dVT (K)

dr
= −Te−rT · (ST −K)+ + e−rT1ST≥K ·

dST
dr

= −Te−rT (ST −K)+ + e−rT1{ST≥K} · TST .

3. Gradient with respect to σ:

dVT (K)

dσ
= e−rT1{ST≥K}

dST
dσ

,

where

dST
dσ

=
dXT

dσ
+ T

dω

dσ
,

and

dXT

dσ
=
dγ

(µ+,ν+)
T

dσ
− dγ

(µ−,ν−)
T

dσ
.
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Since γ
(µ+,ν+)
T = µ+ · νY and γ

(µ−,ν−)
T = µ− · νY, one has

dXT

dσ
= µY (

dµ+

dσ
− dµ−

dσ
) = 0.

It implies

dVT (K)

dσ
= e−rT1{ST≥K}T

dω

dσ
,

where dω
dσ

= −σ · (1− θν − 1
2
σ2ν)(−1).

4. Theta:

dVT (K)

dT
= −re−rT (ST −K)+ + e−rT1{ST≥K}

dST
dT

,

where

dST
dT

= ST

(

(r + ω) +
dXT

dT

)

,

and

dXT

dT
=

dγ
(µ+,ν+)
T

dT
− dγ

(µ−,ν−)
T

dT

= (µ+ · ν)
dY

dT
− (µ− · ν)

dY

dT
.

The calculation of (d/dν)Y is shown in the Appendix (B.1).

5. Gradient with respect to ν:

dVT (K)

dν
= e−rT1{ST≥K}

dST
dν

.

We can get that

dST
dν

= ST (T
dω

dν
+
dXT

dν
),

where

dXT

dν
=

dγ
(µ+,ν+)
T

dν
− dγ

(µ−,ν−)
T

dν

= µ+Y + µ+ν
dY

dν
− µ−Y − µ−ν

dY

dν
.
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The detailed calculation of (d/dν)Y is shown in the Appendix B.2.

6. Gradient with respect to θ:

dVT (K)

dθ
= e−rT1{ST≥K}

dST
dθ

,

where

dST
dθ

= ST · (T
dω

dθ
+
dXT

dθ
),

and

dXT

dθ
=
dγ

(µ+,ν+)
T

dθ
− dγ

(µ−,ν−)
T

dθ
= νY (

dµ+

dθ
− dµ−

dθ
).

Since

dµ+

dθ
=

1

2
θ · (θ2 + 2σ2/ν)(−

1
2
) +

1

2

and

dµ−
dθ

=
1

2
θ · (θ2 + 2σ2/ν)(−

1
2
) − 1

2
,

we have

dµ+

dθ
− dµ−

dθ
= 1.

Hence,

dXT

dθ
= νY.

6.5.2 LR for European Call Option

Let h(z) be the density function of Z = ln(ST/S0). Since h(z) does not con-

tain S0, we use the Jacobian transform to get the density of ST and calculate the

derivative with respect to S0. Let

fST
(s) ·

∣

∣

∣

∣

∂ST
∂Z

∣

∣

∣

∣

= h(z).

99



Then the density function of ST is

fST
(s) = h(ln s− lnS0)×

1

s
.

To calculate Delta, we use fST
(s) to implement the LR method. The other gradients

can be calculated through the density function h(z) as follows:

1. Delta:

dE[VT ]

dS0

=

∫ ∞

0

e−rT (s−K)+ · d ln fST
(s)

dS0

· fST
(s)ds.

2. Rho:

dE[VT ]

dr
=

∫ ∞

0

e−rT (S0e
z −K)+ ·

(

− T +
d lnh(z)

dr

)

· h(z)dz.

3. Gradient w.r.t σ:

dE[VT ]

dσ
=

∫ ∞

0

e−rT (S0e
z −K)+ · d lnh(z)

dσ
· h(z)dz.

4. Gradient w.r.t. θ:

dE[VT ]

dθ
=

∫ ∞

0

e−rT (S0e
z −K)+ · d lnh(z)

dθ
· h(z)dz.

5. Gradient w.r.t ν:

dE[VT ]

dν
=

∫ ∞

0

e−rT (S0e
z −K)+ · d lnh(z)

dν
· h(z)dz.

6. Gradient w.r.t T :

dE[VT ]

dT
=

∫ ∞

0

e−rT (S0e
z −K)+ ·

(

− r + d lnh(z)

dT

)

· h(z)dz.

The calculations of the derivatives of lnh(z) are in the Appendix B.3.
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Table 6.1: Simulated European Option Price

VG1 VG2 GL

Price 0.2948 0.2921 0.3060

StdErr 0.0033 0.0032 0.0034

6.5.3 GL for European Call Option

Recall the characteristic function of VG process at a fixed time t, VG(σ, ν, θ,

t) is given by

φVG(u, σ, ν, θ, t) = (1− iuθν + 0.5σ2νu2)−t/ν . (6.8)

Using this equation (6.8), and applying GL method, we can get the estimators above

to estimate the gradients.

6.5.4 Numerical Experiments

Using the formulas of the estimators above, we apply Monte Carlo to do the

estimation on 10000 sample paths. By selecting spot value S0 = 10, K = 10,

r − δ = 0.057, ν = 0.2686, θ = −0.1436, σ = 0.1213 and T = 0.2, we get the

numerical results of simulated European call option price in Table 6.1, and simulated

results of gradients of European call option in Table 6.2.

From the numerical results in Table 6.1, we find that the European call op-

tion price from representation 1 of VG (VG1) and representation of VG (VG2) are

closer than the one from the GL. representation 1. Numerical results in Table 6.2

indicate that both IPA and LR are applicable to most gradients, and are close to
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the results from forward difference (FD), which is considered to be the benchmark

of true values, with small standard errors; The FD can get good results but require

additional simulations and takes a longer time. The results obtained from IPA in dV
dT

and dV
dν

are far away from the results from forward difference (FD) methods, which

may due to the failure of interchangeability. The results obtained from LR in dV
dθ

are

far away from the results from FD, which may due to the failure of interchangeabil-

ity. Moreover, the results of LR in dV
dν

have large standard errors, thus additional

simulations are required. The GL method get similar results to the LR method, and

have advantage over dV
dν

because the standard errors are smaller.

6.6 Independent Mountain Range Options

Mountain range options are exotic options originally marketed by Société

Générale in 1998; see also Overhaus [70], Quessette [71] and Meaney [67]. The

options combine characteristics of basket options and range options by basing the

value of the option on several underlying assets, and by setting a time frame for the

option. In this section, we only consider the case where the underlying assets are

independent, and treat four types of mountain range options: Everest, Atlas, Alti-

plano/Annapurna, and Himalayan. To price these options, we take (X1(t), X2(t))
T

as a two-dimensional independent VG process. Since they are independent, we can

deal with them separately. Two different ways of representing Xi are as follows:
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• Gamma-time-changed Brownian motion

Xj(t) = B
(θj ,σj)

γ
(νj)

j (t)

= θjγ
(νj)
j (t) + σjW

γ
(νj)

j (t)
,

for j = 1, 2.

• Difference of two Gamma processes

Xj(t) = γ
(µ+j ,ν

+
j )

j (t)− γ(µ
−

j ,ν
−

j )

j (t),

where µ±
j = (

√

θ2j + 2σ2
j/νj ± θj)/2 and ν±j = (µ±

j )
2 · νj , for j = 1, 2.

The characteristic function of VG process Xj(t) is given by

φVG(u, σj , νj, θj , t) = (1− iuθjνj +
1

2
σ2
j νju

2)−t/νj . (6.9)

Under the risk-neutral measure, the stock price would be

Stj = St0 exp((r + ωj)t+Xj(t)),

where ωj =
1
νj
log(1− θjνj − σ2

j νj/2), for j = 1, 2.

The density function of log-price zj = ln(Stj/S
t
0) is:

hj(zj) =
2 exp(θjxj/σ

2
j )

ν
t/νj
j

√
2πσjΓ(

t
νj
)

(

x2j
2σ2

j/νj + θ2j

)
t

2νj
− 1

4

κ t
νj

− 1
2

(

1

σ2
j

√

x2j(2σ
2
j/νj + θ2j )

)

,

(6.10)

where κ is the modified Bessel function of 2nd kind, and

xj = zj − rt−
t

νj
ln(1− θjνj − σ2

j νj/2),

for j = 1, 2.
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6.6.1 Everest Option

Given n stocks S1, S2, · · · , Sn, the payoff for an Everest option is given by

JT = min
i=1,··· ,n

(

STi
S0
i

)

. (6.11)

Notice that the payoff function is a continuous and monotonically non-decreasing

piecewise linear function of STi .

IPA for Everest Option

For ξ be σi, νi, θi, the IPA estimator is

exp(−rT )dJT
dξ

.

For ξ be T , the IPA estimator is

exp(−rT ) · dJT
dT
− rJT · exp(−rT ).

For ξ be r, the IPA estimator is

−TJT · exp(−rT ),

this is zero.

Taking the derivative with respect to ξ, we get that

dJT
dξ

=
n
∑

i=1

dJT
dSTi

dSTi
dξ

=
n
∑

i=1

(

1

S0
i

dSTi
dξ
− STi

(S0
i )

2

dS0
i

dξ

)

1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
.

Notice that (as pointed out in Hall [41])

∆ =
dJT
dS0

i

=
n
∑

i=1

(
1

Si0

STi
S0
i

− STi
(S0

i )
2
) = 0. (6.12)
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Obviously, dS0
i /dξ = 0, where ξ could be σi, νi, θi, T. Therefore

dJT
dξ

=
1

S0
i

dSTi
dξ

1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
, (6.13)

for ξ = σi, νi, θi, T.

Fu [35] provided the IPA estimators of the derivative of STi with respect to

different parameters ξ, which can be written as:

dSti
dr

= tSti ,

dSti
dt

= Sti (r + ωi +
dX t

i

dt
),

dSti
dθi

= Sti (t
dωi
dθi

+
dX t

i

dθi
),

dSti
dσi

= Sti (t
dωi
dσi

+
dX t

i

dσi
),

dSti
dνi

= Sti (t
dωi
dνi

+
dX t

i

dνi
),

for i = 1, 2. By taking derivative of ω, we have

dωi
dθi

= −
(

1− θν − σ2ν/2

)−1

,

dωi
dσi

= −σi ×
(

1− θiνi − σ2
i νi/2

)−1

,

dωi
dσi

= −
[

(θi + σ2
i /2)× (1− θiνi − σ2

i νi/2)
−1 + ωi

]

,

where i = 1, 2. Moreover, for the independent mountain range options, we have

dSti
dθj

= 0,

dSti
dσj

= 0,

dSti
dνj

= 0,

for i 6= j.
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LR for Everest Option

The LR estimator is

exp(−rT ) · min
i=1,··· ,n

(

STi
S0
i

)

d ln f(XT
1 , X

T
2 , · · · , XT

n ; ξ)

dξ
. (6.14)

We consider n = 2 in this chapter, the density function for the 2-dimensional case

is

f(XT
1 , X

T
2 ; ξ) = h1(z1) · h2(z2),

where h1(z1) and h2(z2) are the density functions of XT
1 , X

T
2 in equation (6.10)

for j = 1, 2 respectively. The detailed calculation of
d ln f(XT

1 ,X
T
2 ;ξ)

dξ
are presented in

Appendix (B.4).

GL for Everest Option

The GL estimators are the same as the LR estimators in equation (6.14).

However, for the GL method, we approximate hi(zi) and
dhi(zi)
dξ

numerically through

the characteristic functions shown in equation (6.9).

Numerical Results

To compare the performance of the IPA, LR, GL and FD estimators for the

Everest option, 10000 independent replications were simulated, by setting parame-

ters as spot values S0
1 = 10, S0

2 = 10, srike price K = 10, T = 0.2 years, ν1 = 0.2686,

ν2 = 0.2976, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213, σ2 = 0.1532, and r = 0.0570.

The numerical results are shown in Table 6.4, where VG1 and VG2 represents to
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the two representations the VG processes, respectively. From the numerical results

in Table 6.3, we find that the independent Everest option price from VG1, VG2 and

GL are similar with very small standard errors. The numerical results in Table 6.4

indicate that both IPA and LR are applicable to most gradients, and are close to the

results from FD method with small standard errors; The FD can get good results

but require additional sample paths and cost a longer time. The numerical results

indicate that the IPA estimator matches the FD estimator with smaller standard

errors. The results obtained from IPA in dV
dT

and dV
dνi

are far away from the results

from FD method, which may due to the failure of interchangeability. The results

obtained from LR in dV
dθi

are far away from the results from FD methods, which may

due to the failure of interchangeability. Moreover, the results of LR in VG2 have

larger standard errors compared other estimates in other methods. The results of

estimates dV
dνi

by LR have large difference with ones by other methods with very

large standard errors, thus additional simulations are required. The GL method get

similar results to the LR method, and have advantage in dV
dνi

with small standard

errors.

6.6.2 Atlas Option

Given two positive integers n1, n2 where n1+n2 < n, and n stocks S1, S2, · · · , Sn,

with strike K, the payoff for an Atlas option is

JT =

(

n−n2
∑

j=1+n1

RT
(j)

n− (n1 + n2)
−K

)+

, (6.15)
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where Rt
(i) =

St
(i)

S0
(i)

is the ith smallest return from
{

St
1

S0
1
,
St
2

S0
2
, · · · , St

n

S0
n

}

, i.e.,

St(1)
S0
(1)

≤
St(2)
S0
(2)

≤ · · · ≤
St(n)
S0
(n)

.

IPA for Atlas Option

For ξ be σi, νi, θi, the IPA estimator is

exp(−rT )dJT
dξ

.

For ξ be T , the IPA estimator is

exp(−rT ) · dJT
dT
− rJT · exp(−rT ).

For ξ be r, the IPA estimator is

−TJT · exp(−rT ).

Through calculation, we can get that

dJT
dξ

=
dJT
dSTi

dSTi
dξ

1{1+n1≤i≤n−n2}

=
1

(n− (n1 + n2))S0
(i)

1
{
∑n−n2

j=1+n1

RT
(j)

n−n1−n2
>K}

dSTi
dξ

1{1+n1≤i≤n−n2},

for ξ = σi, νi, θi, T. Note that
dST

i

dσj
,
dST

i

dνj
,
dST

i

dθj
,
dST

i

dr
,
dST

i

dT
are the same as in the Everest

option.

LR for Atlas Option

The LR estimator is

exp(−rT ) ·
(

n−n2
∑

j=1+n1

RT
(j)

n− (n1 + n2)
−K

)+
d ln f(XT

1 , X
T
2 , · · · , XT

n ; ξ)

dξ
. (6.16)
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For n = 2, the density function is f(XT
1 , X

T
2 ; ξ) = h1(z1) · h2(z2). The calculation of

dlnf(XT
1 ,X

T
2 ;ξ)

dξ
is the same as the one in the Everest option.

GL for Atlas Option

For the GL method, we use the same estimator as the one of the LR method

in (6.16), but approximate hi(zi) and
dhi(zi)
dξ

through the characteristic function as

in (6.9) instead of the density function directly.

Numerical Results

Again, the performance of the IPA, LR, GL and FD estimators are compared

through 10000 independent replications of simulations, with spot values S0
1 = 10,

S0
2 = 10, strike price K = 0.95 and n1 = 0, n2 = 1 and using the same values as

in the Atlas option for the other parameter settings: T = 0.2 years, ν1 = 0.2686,

ν2 = 0.2976, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213, σ2 = 0.1532, and r = 0.0570.

From the numerical results in Table 6.5, we find that the Atlas option price

from VG1, VG2 and GL are similar with very small standard errors. The numerical

results in Table 6.6 indicate that both IPA and LR are applicable to most gradients,

and are close to the results from FD methods with small standard errors; The FD can

get good results but require additional sample paths and cost a longer time. Again

IPA is generally closer to the FD results, with smaller standard error than the LR

and GL method. The numerical results indicate that the IPA estimator matches

the FD estimator with smaller standard errors. The results obtained from IPA in
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dV
dT

and dV
dν

are far away from the results from FD methods, which may due to the

failure of interchangeability. The results obtained from LR in dV
dθ

are far away from

the results from FD methods, which may due to the failure of interchangeability.

Moreover, the results of LR and GL are a little different from the ones of FD in

dV
dT

but with smaller standard errors. The results of dV
dσi

by LR method are different

from the results from the GL and FD methods and with large standard errors. In

most cases, the GL method will gain better results than the lR method and with

smaller standard errors.

6.6.3 Altiplano/Annapurna Option

Given n stocks S1, S2, · · · , Sn, a coupon amount C, a limit L and strike K,

the barrier period from t1 to t2, the payoff for Altiplano option is

JT =























C if max
(

St
i

S0
i

)

≤ L, ∀i, ∀t ∈ (t1, t2)
(

n
∑

j=1

ST
j

S0
j

−K
)+

otherwise

. (6.17)

If the limit is a floor rather than a ceiling, the option is Annapurna.

Due to the discontinuities in the payoff functions, IPA is not applicable for

Altiplano or Annapurna options.

LR for Altiplano/Annapurna Option

The LR estimator is

exp(−rT ) · JT ·
d ln f(XT

1 , X
T
2 , · · · , XT

n ; ξ)

dξ
. (6.18)
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For n = 2, the density function is f(XT
1 , X

T
2 ; ξ) = h1(z1) · h2(z2). The calculation of

dlnf(XT
1 ,X

T
2 ;ξ)

dξ
is the same as the one in the Everest option.

GL for Altiplano/Annapurna Option

Again, we use the LR estimator in equation (6.18), but approximate hi(zi)

and dhi(zi)
dξ

through the characteristic function as in (6.9).

Numerical Results for Altiplano Option

Again, 10000 independent replications were simulated to compare the perfor-

mance of the LR, GL and FD estimators, with spot values S0
1 = 10, S0

2 = 10, strike

price K = 1.8, boundary levels L = 0.75, C = 0.75, barrier period t1 = 0, t2 = 1/3,

ν1 = 0.2686, ν2 = 0.2976, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213, σ2 = 0.1532,

and risk-free interest rate r = 0.0570. Again, the results in Table 6.7 indicate that

the option price calculated from VG1, VG2 and Gl are similar. The results in Ta-

ble 6.8 indicate similar conclusions as before, with the LR estimates have similar

results with FD estimates except in the dJ
dσi

. But FD methods require additional

simulation work and cost more time. Furthermore, not surprisingly the GL method

is computationally far more intensive than the usual LR method, so knowing the

density saves a lot of computational burden.
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6.6.4 Himalayan Option

Define

Ri =

{

St1
S0
1

,
St2
S0
2

, · · · , S
t
n

S0
n

}

i∗1 = argmaxR1

i∗2 = argmaxR2\
{

Sti∗1
S0
i∗1

}

i∗3 = argmaxR3\
{

St1i∗1
S0
i∗1

,
St2i∗2
S0
i∗2

}

Given a basket of n stocks and a number of time points {t0, t1, · · · , T}, first construct

{

Rt1
i∗1
, Rt2

i∗2
, · · · , RT

i∗n

}

,

the payoff of a Himalayan option is given by

JT =



























(

n
∑

j=1

(R
tj
i∗j
− 1)

)+

if globally floored,

n
∑

j=1

(R
tj
i∗j
− 1)+ if locally floored.

(6.19)

Again, since the Himalayan option has a discontinuous payoff, IPA is not

applicable.

LR for Himalayan Option

The LR estimator is

exp(−rT ) · JT ·
d ln f(XT

1 , X
T
2 , · · · , XT

n ; ξ)

dξ
. (6.20)

For n = 2, the density is f(XT
1 , X

T
2 ; ξ) = h1(z1)·h2(z2). The calculation of

d ln f(XT
1 ,X

T
2 ;ξ)

dξ

is the same as the one in the Everest option.
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GL for Himalayan Option

For the GL method, we use the same estimator as the one of the LR method

in equation (6.20), but approximate hi(zi) and dhi(zi)
dξ

through the characteristic

function as in equation (6.9) instead of the density function directly.

Numerical Results for the Himalayan Option

Again, 10000 independent replications were simulated to compare the perfor-

mance of the LR, GL and FD estimators, using a local floor over 0.2 year with strike

price K = 1.8, with spot values S0
1 = 10, S0

2 = 10, strike price K = 1.8, bound-

ary levels ν1 = 0.2686, ν2 = 0.2976, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213,

σ2 = 0.1532, and risk-free interest rate r = 0.0570.

Again, the results in Table 6.9 indicate that the option price calculated from

VG1, VG2 and Gl are similar. The results in Table 6.10 indicate similar conclusions

as before, with the LR estimates all having much larger standard error than the FD

estimates except in the dJ
dνi

. The results of GL method are closer than ones from

LR method. But GL costs much more time. The FD method has much smaller

standard error but requires additional number of simulations. The LR method here

is very effective.

Numerical Results for t > νi

Dr. Madan requested that for options on the VG process to be well behaved,

it is generally necessary to have T > νi. Thus, we provide numerical results with
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parameters satisfying t > νi.

For the Everest option, 10000 independent replications were simulated, by

setting parameters as spot values S0
1 = 10, S0

2 = 10, srike price K = 10, T = 0.2

years, ν1 = 0.1686, ν2 = 0.1576, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213, σ2 =

0.1532, and r = 0.0570. The numerical results are shown in Table 6.11.

For independent Atlas options, we conduct 10000 independent replications

of simulations, with spot values S0
1 = 10, S0

2 = 10, strike price K = 0.95 and

n1 = 0, n2 = 1 and using the values as follows for the other parameter settings:

T = 0.2 years, ν1 = 0.1686, ν2 = 0.1576, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213,

σ2 = 0.1532, and r = 0.0570. The numerical results are shown in Table 6.12.

Again, 10000 independent replications were simulated for independent Alti-

plano options, with spot values S0
1 = 10, S0

2 = 10, strike price K = 1.8, boundary

levels L = 0.75, C = 0.75, barrier period t1 = 0, t2 = 1/3, ν1 = 0.1686, ν2 = 0.1576,

θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213, σ2 = 0.1532, and risk-free interest rate

r = 0.0570. The results are shown in Table 6.13.

Again, 10000 independent replications were simulated to compare the perfor-

mance of the LR, GL and FD estimators, using a local floor over 0.2 year with strike

price K = 1.8, with spot values S0
1 = 10, S0

2 = 10, strike price K = 1.8, bound-

ary levels ν1 = 0.2686, ν2 = 0.2976, θ1 = −0.1436, θ2 = −0.1033, σ1 = 0.1213,

σ2 = 0.1532, and risk-free interest rate r = 0.0570. The results are shown in Table

6.14.
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6.7 Dependent Mountain Range Options

The payoff of dependent mountain range options is based on a basket of stocks

which are correlated with each other, therefore the main difficulty in pricing such

products lies in the correlation of the assets within the basket. To price these

dependent options, we define the multi-dimensional VG model shown in Wang[W1].

Assume X1 and X2 are two correlated marginal VG processes,

X1 ∼ VG(θ1, σ1, ν1), and X2 ∼ VG(θ2, σ2, ν2).

We build the dependence with two additional parameters ρ and ν0 as follows:

Xi = Ai + Yi,

Ai ∼ VG(θi
νi
ν0
, σi

√

νi
ν0
, ν0),

Yi ∼ VG

(

θi(1−
νi
ν0
), σi

√

1− νi
ν0
,

1
1
νi
− 1

ν0

)

,

where (A1, A2), Y1 and Y2 are independent. (A1, A2) is a 2-dimensional ρ−correlated

Brownian motion with associated mean and covariance matrix subordinated by a

common gamma process Γ(t; 1, ν0), where ν0 > max(ν1, ν2). Moreover, the pairwise

correlation between Xi and Xj is:

Corr(Xi, Xj) =
θiθjνiνj/ν0 + σiσjρ

√
νiνj/ν0

√

θ2jνj + σ2
j ·
√

θ2i νi + σ2
i

.

The joint characteristic function of the 2-dimensional correlated VG process
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is:

φX1(t),X2(t)(u1, u2) = (
1

1− iu1θ1ν1 − iu2θ2ν2 + uTΣu/2
)

t
ν0

·( 1

1− iθ1u1ν1 + (σ2
1ν1/2)u

2
1

)
t
ν1

− t
ν0 (6.21)

·( 1

1− iθ2u2ν2 + (σ2
2ν2/2)u

2
2

)
t
ν2

− t
ν0 ,

where u = (u1, u2)
T , and the covariance matrix

Σ =









σ2
1ν1 σ1σ2ρ

√
ν1ν2

σ1σ2ρ
√
ν1ν2 σ2

2ν2









. (6.22)

Wang [82] designed an algorithm to simulate the dependent multi-dimensional

Variance Gamma process as in Algorithm 5.

Under the risk-neutral measure, the stock price would be

Sti = S0
i exp(rt+Xi(t) + ωit),

where Xi = Ai + Yi with ωi =
1
νi
log(1− θiνi − σ2

i νi/2), for i = 1, 2.

6.7.1 Everest Option

The payoff function JT of an Everest Option is given by equation (6.11).

IPA for Everest Option

The IPA gradient estimators dJT
dξ

is similar to the estimators in section (6.6.1).

We also can see that ∆ = 0 as in equation (6.12). The other Greeks are calculated

as follows:
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Algorithm 5 Algorithm to Simulate Multivariate VG process

Input: the VG parameters (σj, νj, θj), j = 1, 2; time spacing ∆t1, ...,∆tN s.t.

∑N
i=1 ∆ti = T.

Initialize: X1(0) = X2(0) = 0.

Loop: for i = 1 to N :

• Generate ∆∆G0
i ∼ Γ(∆ti/ν0, ν0).

• Generate ∆∆Gj
i ∼ Γ(∆ti/(1/νj − 1/ν0), 1/1/νj − 1/ν0), for j = 1, 2.

• Generate a multi-dimensional normal distributed vector, ∆Wi ∼ N(0,Σ),

where Σ is defined in equation (6.22).

• Generate normal distributed variables Yj,i ∼ N(0, σj
√

1− νj/ν0), for j = 1, 2.

• Return Xj(ti+1) = Xj(ti) +
θjνj
ν0
G0
i +
√

G0
i∆Wi,j + θj(1− νj/ν0)Gj

i +
√

Gj
iYj,i.
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1. Rho:

dJT
dr

= T
STi
S0
i

1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
.

2. Vega:

dJT
dσi

=
STi
S0
i

· (dXi

dσi
+
dωi
dσi

T )1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
,

where

dωi
dσi

= −σi(1− θiνi − σ2
i νi/2)

−1,

and

dXi

dσi
=
dAi
dσi

+
dYi
dσi

.

3. Gradient w.r.t νi:

dJT
dσi

=
STi
S0
i

· (dXi

dνi
+
dωi
dνi

T )1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
,

where

dωi
dνi

= − 1

ν2i
log(1− θiνi − σ2

i νi/2) +
1

νi

−θi − 1
2
σ2
i

1− θiνi − σ2
i νi/2

,

and

dXi

dνi
=
dAi
dνi

+
dYi
dνi

.

4. Gradient w.r.t θi:

dJT
dθi

=
STi
S0
i

· (dXi

dθi
+
dωi
dθi

T )1
{ sT

i

s0
i

≤
sT
j

s0
j

,∀j 6=i}
,

where

dωi
dθi

=
−1

1− θiνi − 1
2
σ2
i νi

,
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and

dXi

dθi
=
dAi
dθi

+
dYi
dθi

.

5. Theta:

dJT
dT

=
STi
S0
i

· (r + dXi

dT
+ ωi),

where dXi

dT
= dAi

dT
+ dYi

dT
.

The calculations of
dXT

i

dξ
= dAi

dξ
+ dYi

dξ
for ξ = σi, νi, θi, T refer to Appendix (B.5).

GL Method

The LR/SF estimator is

min
i=1,··· ,n

(

STi
S0
i

)

d ln f(ST1 , S
T
2 , · · · , STn ; θ)
dθ

Applying the 2-dimensional characteristic function in equation (6.21) and using the

fact that

dµi
dσj

= −σiTδij,
dµi
dr

= T,
dµi
dT

= r − 1

2
σ2
i ,

we could apply the GL method to a 2-dimensional dependent case. The detailed

calculations are in Appendix (B.6).

Numerical Results

We apply the IPA method and FD method to the dependent Everest option.

We simulate 1000 paths for a period of one year. We set the strike price K = 1.0,
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ρ = 0.002 and the other parameters are the same as in the independent Everest

option. The numerical results are given in Table 6.15.

The numerical results indicate that for the dV
dθi

, both IPA and FD have similar

results with relatively small standard errors; for the dV
dνi

, the results from IPA have

larger difference with smaller standard errors than the ones from the FD method.

Thus, FD methods require additional sample paths.

6.7.2 Atlas Option

The payoff function JT of the Atlas Option is given by (6.15).

IPA Estimates

The IPA gradient estimator is

dJT
dξ

=
dJT
dSTi

dSTi
dξ

1{1+n1≤i≤n−n2}

=
1

(n− (n1 + n2))S0
(i)

1
{∑n−n2

j=1+n1

RT
(j)

n−n1−n2
>K}

dSTi
dξ

1{1+n1≤i≤n−n2},

where
dST

i

dσj
,
dST

i

dr
,
dST

i

dT
are calculated in the dependent Everest option.

GL Method

The LR estimator is

(

n−n2
∑

j=1+n1

RT
(j)

n− (n1 + n2)
−K

)+
d ln f(XT

1 , X
T
2 , · · · , XT

n ; θ)

dθ
.

The numerical approximation of the score function is the same as the one in the

Everest option.
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Numerical Results

We apply the IPA , LR method and FD method to the dependent Atlas option.

We simulate for 1000 paths for a period of one year. We set the strike price K = 4.0,

n1 = 0, and n2 = 1. The numerical results in the Table 6.16.

The numerical results indicate that for both IPA and FD have similar results

and small errors. But for generally, standard errors from FD are larger than the

ones from IPA, and FD estimators require additional sample paths.

For the dependent Altiplano/Annapurna and Himalaya options, since IPA

can’t be implemented and the joint law is difficult to obtain. Future work includes

applying the GL method to this setting.

6.8 Conclusions and Future Work

The IPA method performs well where applicable, but it is not applicable in

all cases. When the density is available, the direct LR method is preferred to the

numerical approximation, as they have essentially the same statistical properties in

most cases, but the numerical approximation is computationally intensive.

From the numerical results, we offer the following conclusions:

• When applicable, the IPA estimator should be the choice for Mountain Range

Options.

• Indirect methods are easy to implement, but need additional sample paths,

which increases simulation costs.
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• The LR and GL method has almost the same result; but GL method costs

longer time and smaller standard errors; when the density function is hard

to get, then the GL method can be used to approximate the density and

derivative of density funtion.

• Once the pricing algorithm is implemented, the LR/SF estimator can be com-

pleted by re-using of the score function.

In the future, we will do the following work:

• Try to resolve and/or explain the apparent discrepancies in the reported nu-

merical experiments, such as Theta by IPA, dV
dνi

by IPA, and dV
dθi

by LR.

• Provide a theoretical proof or check of the interchangeability for the IPA and

LR method. More precisely, prove and disprove unbiasedness of dV
dT

and dV
dνi

for IPA, as well as dV
dθi

in LR.

• Generalize the GL method to the dependent Mountain Range Options.

• Estimate the Greeks for the Mountain Range Options using other Lévy process

models, such as the normal inverse Gaussian.
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Table 6.2: European option simulation results

VG1 Delta Rho Vega Theta dV
dθ

dV
dν

FD 0.6967 1.3481 1.1086 0.9908 -0.548 0.2715

StdErr 0.0045 0.0045 0.046 0.4584 0.044 0.4513

IPA 0.7053 1.3578 1.1432 -1.539* -0.4273 0.5417*

StdErr 0.0048 0.0092 0.031 0.1632* 0.0147 0.1207*

LR 0.6997 1.3589 1.4035 1.0623 1.4482* 0.24

StdErr 0.0048 0.0099 0.0889 0.0344 0.0594* 0.6801

VG2

FD 0.7027 1.3506 1.2254 1.1208 -0.4304 0.2269

StdErr 0.0048 0.0091 0.0297 0.4545 0.0099 0.4494

IPA 0.6995 1.3404 1.2644 -2.922* -0.4693 2.835*

StdErr 0.0048 0.0092 0.0335 0.0476* 0.0085 0.0356*

LR 0.6995 1.3579 1.5357 1.0741 1.8176* 0.259

StdErr 0.0048 0.0066 0.1252 0.0346 0.0341* 0.121

GL 0.6994 1.3568 1.4035 1.0167 1.245* 0.2754

StdErr 0.0047 0.0011 0.097 0.0003 0.0283* 0.0083

Table 6.3: Simulated Everest Option Price

VG1 VG2 GL

Price 0.9665 0.9655 0.9681

StdErr 0.0006 0.0006 0.0006
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Table 6.4: Independent Everest option simulation results

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD -0.054 -0.099 -0.112 -0.0139 -0.020 0.0233 0.0111

StdErr 0.0027 0.0027 0.0025 0.0666 0.0694 0.0017 0.0017

IPA -1.339* -0.096 -0.116 0.4401* 0.3221* 0.0243 0.0121

StdErr 0.1164* 0.0026 0.0026 0.0603* 0.0547* 0.0016 0.0017

LR -0.048 -0.092 -0.111 -0.0165 -0.0187 0.1944* -0.1187*

StdErr 0.0743 0.0027 0.0025 0.0024 0.0043 0.027* 0.017*

VG2

FD -0.063 -0.107 -0.118 -0.014 -0.0201 0.0230 0.0229

StdErr 0.0605 0.0025 0.0025 0.088 0.0301 0.0013 0.0012

IPA -0.1594* -0.103 -0.115 -0.137* -0.101* 0.0251 0.0219

StdErr 0.0229* 0.0001 0.0002 0.0156* 0.0126* 0.0017 0.0018

LR -0.058 -0.112 -0.146 -0.053 -0.075 -0.1889* 0.1164*

StdErr 0.087 0.0273 0.014 0.098 0.097 0.0268* 0.0171*

GL -0.057 -0.105 -0.116 -0.017 -0.021 -0.3418* -0.2316*

StdErr 0.0232 0.0008 0.0028 0.0004 0.0004 0.0269* 0.0253*

Table 6.5: Simulated Atlas Option Price

VG1 VG2 GL

Price 0.0426 0.0425 0.0440

StdErr 0.00035 0.00035 0.00036
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Table 6.6: Independent Atlas option simulation results

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD -0.016 -0.0208 -0.0282 0.0149 0.0583 -0.0086 -0.0189

StdErr 0.025 0.0015 0.0012 0.0322 0.0334 0.0011 0.0012

IPA 0.3483* -0.0206 -0.0285 0.0848* 0.0575* -0.0084 -0.0185

StdErr 0.0312* 0.0016 0.0012 0.0129* 0.0045* 0.0011 0.0012

LR -0.033 -0.6823 -0.3185 0.0159 0.0575 0.1154* 0.1106*

StdErr 0.0025 0.1032 0.0591 0.0013 0.0045 0.0025* 0.0017*

VG2

FD -0.0151 -0.0245 -0.0286 0.0176 0.0541 -0.0107 -0.0180

StdErr 0.0262 0.0013 0.0018 0.0493 0.0494 0.0701 0.0008

IPA -0.208* -0.0285 -0.0211 0.0361* 0.0268* -0.0066 -0.0121

StdErr 0.0023* 0.0001 0.0002 0.0009* 0.0007* 0.0007 0.0082

LR -0.0478 -0.7414 -0.3755 0.0183 0.0542 0.1906* 0.1152*

StdErr 0.0019 0.1230 0.0763 0.0015 0.0012 0.0027* 0.0019*

GL -0.046 -0.0279 -0.0272 0.0191 0.0571 -0.007* -0.005*

StdErr 0.0027 0.0014 0.0011 0.0037 0.0038 0.0002* 0.0001*

Table 6.7: Simulated Independent Altiplano Option Price

VG1 VG2 GL

Price 1.00083 0.9833 0.9982

StdErr 0.00016 0.00056 0.00035
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Table 6.8: Independent Altiplano options simulation results

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD -0.0067 0.00031 0.00037 -0.0102 -0.016 -0.0013 -0.0014

StdErr 0.0217 0.00079 0.00079 0.0214 0.0210 0.00037 0.00004

LR -0.0047 0.04467 0.00053 -0.0238 -0.0178 0.0032* 0.0101*

StdErr 0.0085 0.013 0.0087 0.042 0.034 0.0024* 0.0065*

VG2

FD -0.0061 0.0071 0.0012 -0.0341 -0.032 -0.0011 -0.0010

StdErr 0.0792 0.0024 0.026 0.0784 0.0394 0.0033 0.0054

LR -0.0043 0.0099 0.00503 -0.0094 -0.064 2.3141* 1.0956*

StdErr 0.0353 0.0024 0.0671 0.0109 0.011 0.0416* 0.0313*

GL -0.0063 0.0081 0.00034 -0.0246 -0.0268 0.4542* 0.387*

StdErr 0.0106 0.0233 0.0216 0.0092 0.0095 0.0105* 0.0116*

Table 6.9: Simulated Himalayan Option Price

VG1 VG2 GL

Price 0.8967 0.8967 0.8654

StdErr 0.0031 0.0031 0.0037
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Table 6.10: Independent Himalayan option simulation results

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.0239 0.0081 0.0107 -0.0118 -0.0216 -0.0025 -0.0082

StdErr 0.0409 0.0023 0.0023 0.0392 0.0403 0.0018 0.0105

LR 0.0278 0.0084 0.0175 -0.0339 -0.0228 0.0759* 0.0395*

StdErr 0.0047 0.0062 0.035 0.0031 0.0021 0.0021* 0.0015*

VG2

FD 0.0343 0.0084 0.0109 -0.0096 -0.012 -0.003 -0.0083

StdErr 0.0063 0.0020 0.0023 0.0558 0.0533 0.0015 0.0014

LR 0.0282 0.0074 0.0179 -0.0341 -0.0229 0.0816* 0.0403*

StdErr 0.0047 0.0061 0.0037 0.0031 0.0021 0.0015* 0.0016*

GL 0.0261 0.0081 0.0169 -0.0161 -0.0157 0.1817* 0.1847*

StdErr 0.0134 0.0150 0.0119 0.0068 0.0069 0.0080* 0.0076*

Table 6.11: Independent Everest option simulation results for t > νi

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD -0.5570 -0.0834 -0.1483 -0.8667 -0.6209 0.4161 0.3523

StdErr 0.0102 0.0054 0.0043 0.0164 0.0143 0.0072 0.0078

IPA -1.232* -0.0793 -0.1466 0.5401* 0.4122* 0.4136 0.3506

StdErr 0.1221* 0.0055 0.0044 0.1102* 0.0952* 0.0071 0.0077

LR -0.582 -0.0906 -0.1428 -0.8769 -0.6801 -2.961* -1.8446*

StdErr 0.0784 0.0247 0.1111 0.0247 0.0470 0.0552* 0.0353*
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Table 6.12: Independent Atlas option simulation results for t > νi

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.0384 0.0409 0.0154 -0.0408 -0.0121 0.0770 0.0694

StdErr 0.0014 0.0024 0.0015 0.0017 0.0023 0.0024 0.0033

IPA 0.1732* 0.0413 0.0162 -0.1227* -0.1977* 0.0461 0.0403

StdErr 0.1262* 0.0024 0.0015 0.1421* 0.2125* 0.0019 0.0022

LR 0.0092 0.0307 0.0210 -0.0328 -0.0097 0.0733 0.0551

StdErr 0.0036 0.0109 0.0071 0.0018 0.0038 0.0026 0.0019

Table 6.13: Independent Altiplano options simulation results for t > νi

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.0024 0.00011 0.00019 0.0135 0.0109 -0.00014 -0.0001

StdErr 0.0199 0.0007 0.0007 0.0197 0.0196 0.0003 0.00031

LR 0.0849 0.0015 0.00020 0.0019 0.0399 0.2532* 0.1338*

StdErr 0.0199 0.0098 0.0113 0.0111 0.0125 0.0021* 0.0022*

Table 6.14: Independent Himalayan option simulation results for t > νi

VG1 Theta dV
dσ1

dV
dσ2

dV
dν1

dV
dν2

dV
dθ1

dV
dθ2

FD 0.0281 0.0096 0.0126 -0.0112 -0.0233 -0.0021 -0.00016

StdErr 0.0333 0.0022 0.0022 0.0317 0.0341 0.0012 0.0014

LR 0.0234 0.1012 0.0156 -0.0195 -0.0198 -0.1287 -0.0832

StdErr 0.0212 0.0293 0.2927 0.0586 0.0818 0.0087 0.0052
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Table 6.15: Dependent Everest option simulation results

Multi VG dV
dσ1

dV
dσ2

dV
dθ1

dV
dθ2

FD -0.0931 -0.0635 -0.0080 -0.0267

StdErr 0.0211 0.0253 0.0028 0.0037

IPA -0.0122 -0.0049 -0.0081 -0.0267

StdErr 0.0037 0.0062 0.0029 0.0038

Table 6.16: Dependent Atlas option simulation results

Multi VG dV
dσ1

dV
dσ2

dV
dθ1

dV
dθ2

FD -0.191 -0.0152 -0.0544 -0.0138

StdErr 0.0229 0.0511 0.0039 0.0099

IPA -0.172 -0.0121 -0.0594 -0.0152

StdErr 0.0163 0.0082 0.0098 0.0018
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Appendix A

Derivation of the Variance Strike

The variance strike is determined such that the variance swap has a market

value of 0 initially, which indicates that the initial market value of

P (
T
∑

t=1

x2t
T
252− σ2

k). (A.1)

is zero. In other words, the variance strike σ2
k must equal the spot value of the

annualized realized variance, i.e.,

σ2
k = spot value of

T
∑

t=1

x2t
T
252. (A.2)

252 is due to the fact that one year has 252 trading days. For simplicity, let R be

the spot value of
T
∑

t=1

x2t . Following Madan [54], we start with the Taylor expansion

of ex up to the second order, i.e.,

ex = 1 + x+
x2

2
+ O(x) ≈ 1 + x+

x2

2
.

Then, we have

x2 = 2× ex − 2− 2× x.

By substituting x by xt, we have

x2t = 2× ext − 2− 2× xt, (A.3)

and,
T
∑

t=1

x2t ≈ 2×
T
∑

t=1

(ext − 1− xt).
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Hence, equation (A.2) is simplified as

σ2
k = R

= spot value of
252

T
× 2×

T
∑

t=1

(ext − 1− xt). (A.4)

In order to obtain R, we need to figure out the spot value of 2 ×
T
∑

t=1

(ext − 1 − xt).

By substituting xt by log St

St−1
, we have

2×
T
∑

t=1

(ext − 1− xt) = 2×
T
∑

t=1

(
St
St−1

− 1− log
St
St−1

)

= 2×
T
∑

t=1

(
St
St−1

− 1)− 2×
T
∑

t=1

(log
St
St−1

).

Since

2×
T
∑

t=1

log
St
St−1

= 2×
T
∑

t=1

(log(St)− log(St−1))

= 2× (log(ST )− log(S0)),

we have

T
∑

t=1

x2t ≈ 2
T
∑

t=1

(
St
St−1

− 1)− 2 log(ST ) + 2 log(S0)

=
T
∑

t=1

(

2

St−1

(St − St−1)

)

− 2 log(ST ) + 2 log(S0). (A.5)

Consequently,

σ2
k = Spot Value of

{

252

T

×
[ T
∑

t=1

(

2

St−1

(St − St−1)

)

− 2 log(ST ) + 2 log(S0)

]}

.

For simplicity, we split the equation (A.5) into three parts:

M1 =
T
∑

t=1

(
2

St−1

(St − St−1)),
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M2 = −2 log(ST ),

M3 = 2 log(S0).

Therefore the variance strike σ2
k can be expressed as

σ2
k =

252

T
× Spot Value of

{

M1 +M2 +M3

}

. (A.6)

In the following sections, we focus on deriving the spot values.

A.1 Spot Value of M1

In order to get the spot value of M1, we construct the portfolio as follows:

from t = 1, 2, ..., T − 1,

• On day t− 1, we buy a bond with face value a and maturity T ;

• On day t−1, we borrow certain amount of cash which is required to be repayed

on day T to buy b shares of stock at the stock price St−1;

• On day t, we sell the stocks.

• On day T , we pay back all the cash borrowed at a risk-free interest rate r.

Consequently, the cash flow on day T from the portfolios above, i.e., from

bonds, stocks and paying back the borrowed money would be

a+ bSt exp(r
(T − t)
365

)− bSt−1 exp(r
(T − t+ 1)

365
). (A.7)

We construct these portfolios daily from day t = 0 through day t = T − 1. Since

only the bond has a current cost, the spot value of these series of trades would equal
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the spot value of the summation of the series of all the bonds we bought during

these days. Hence, we buy a total of T shares of bonds, and each has the face value

a.

By setting a = 2(exp( r
365

)−1) and b =
2 exp(

−r(T−t)
365

)

St−1
, we find that the cash flow

in equation (A.7) is equal to M1, i.e.,

a+ bSt exp(
r(T − t)

365
)− bSt−1 exp(

r(T − t+ 1)

365
) = 2

(St − St−1)

St−1

.

Therefore, the spot value of M1 at T would equal the spot value of total of T shares

of bonds whose face value is a = 2(exp( r
365

) − 1) with maturity T . Since the spot

value of equation (A.7) is

2(exp(
r

365
)− 1)× e− rT

365 ,

it implies that

Spot Value of M1 = 2(e
r

365 − 1)× e− rT
365 .

A.2 Spot Value of M2

The spot value of the cash flow 2logS0 at the T is 2logS0e
−rT
365 .

A.3 Spot Value of M3

Madan [54] shows the value of −2log(ST ) is

−2 log(S0)e
−rT/365 − 2(1− e−rT/365)

+ market value of options bought (MVO). (A.8)
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In conclusion, we can get the spot value R of
T
∑

t=1

x2t as

R = 2(e
r

365 − 1)× e− rT
365 + 2logS0e

−rT
365

−2log(S0)e
−rT/365 − 2(1− e−rT/365) + MVO

= MVO+ 2T (er/365 − 1)e−rT/365 − 2(1− e−rT/365).

It should be noted that if the risk-free interest rate is 0, the spot value R can be

simplified as

R = MVO.

134



Appendix B

Some Calculations

B.1 Calculation of dγ
(ν)
t

dt
and

dW
γ
(ν)
t

dt

γ
(ν)
t is a Gamma process with unit drift, mean t and variance νt. W

γ
(ν)
t

is

a time-changed Brownian motion, which is normally distributed with mean 0 and

variance γ
(ν)
t . Assuming Z is a standard normal distributed random variable with

mean 0 and variance 1, we can write W
γ
(ν)
t

as:

W
γ
(ν)
t

=

√

γ
(ν)
t · Z.

Therefore, the derivative of W
γ
(ν)
t

with respect to t is:

dW
γ
(ν)
t

dt
=

1

2
· (γ(ν)t )(−

1
2
)Z · dγ

(ν)
t

dt
.

Everything reduces to calculating
dγ

(ν)
t

dt
.

In our dissertation, we apply the inverse transform method to generate γ
(ν)
t ,

with the shape parameter t
ν
and the scale parameter ν. Let the cumulative distri-

bution function (c.d.f.) of γ
(ν)
t be F (x, t

ν
, ν), then

F (x,
t

ν
, ν) =

∫ x
ν

0
s

t
ν
−1e−sds

∫∞
0
s

t
ν
−1e−sds

.

Let γ
(ν)
t = νY, where Y is a Gamma process with mean t

ν
and variance t

ν
, then

dγ
(ν)
t

dt
= ν · dY

dT
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and the c.d.f. of Y is

FY (y) =

∫ y

0
s

t
ν
−1e−sds

∫∞
0
s

t
ν
−1e−sds

.

It implies that the derivative of Xt with respect to t is

dXt

dt
= θ · dγ

(ν)
t

dt
+ σ

1

2
· (γ(ν)t )(−

1
2
) · Z · dγ

(ν)
t

dt
,

where

dγ
(ν)
t

dt
= ν

dY

dt
.

According to the inverse transform method, we generate a random variable u which

is uniformly distributed on [0, 1], and set u equals the c. d. f. of Y .

Thus, by setting

u = FY (Y ) =

∫ Y

0
s

t
ν
−1e−sds

∫∞
0
s

t
ν
−1e−sds

,

we have
∫ Y

0

s
t
ν
−1e−sds = u ·

∫ ∞

0

s
t
ν
−1e−sds.

Taking the derivative with respect to t on both sides, we get:

∫ Y

0

s
t
ν
−1e−s ln s

1

ν
ds+ Y

t
ν
−1e−Y

dY

dt
= u ·

∫ ∞

0

s
t
ν
−1e−s

1

ν
ds.

Finally, we have

dY

dt
= eY Y 1− t

ν
1

ν
·
(

u

∫ ∞

0

s
t
ν
−1e−s ln sds−

∫ Y

0

s
t
ν
−1e−s ln sds

)

. (B.1)

B.2 Calculation of dγ
(ν)
t

dν

For the calculation of
dγ

(ν)
t

dν
, we have

dγ
(ν)
t

dν
= Y + ν

dY

dν
.
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Apply the same method as in the section (B.1). Generating a uniformly dis-

tributed random variable u between 0 and 1, and setting

u = FY (Y ) =

∫ Y

0
s

t
ν
−1e−sds

∫∞
0
s

t
ν
−1e−sds

,

we have
∫ Y

0

s
t
ν
−1e−sds = u ·

∫ ∞

0

s
t
ν
−1e−sds.

Taking the derivative with respect to ν on both sides, we get:

∫ Y

0

s
t
ν
−1e−s ln s(− t

ν2
)ds+ Y

t
ν
−1e−Y

dY

dν
= u ·

∫ ∞

0

s
t
ν
−1e−s ln s(− t

ν2
)ds.

Finally, we get

dY

dν
= Y 1− t

ν eY
t

ν2
(−u

∫ ∞

0

s
t
ν
−1e−s ln sds+

∫ Y

0

s
t
ν
−1e−s ln sds). (B.2)

Denote I1 =
∫∞
0
s

t
ν
−1e−s ln sds and I2 =

∫ Y

0
s

t
ν
−1e−s ln sds. As in Section

(B.1), we need to test whether the integrals I1 and I2 are integrable or not, if not,

the derivative dY
dt

can not be calculated; if exist, then the derivative above could be

approximated numerically. Therefore, we provide the two lemmas to show that I1

and I2 are integrable, as well as the proof.

Lemma B.2.1. For t > 0, ν > 0, the integral I1 =
∫∞
0
s

t
ν
−1e−s ln sds are integrable.

Proof. Let’s separate the integral I1 into two parts,

I1 =

∫ ∞

0

s
t
ν
−1e−s ln sds

=

∫ 1

0

s
t
ν
−1e−s ln sds+

∫ ∞

1

s
t
ν
−1e−s ln sds

For the 2nd term, it is easy to see that

∫ ∞

1

s
t
ν
−1e−s ln sds <

∫ ∞

1

s
t
ν e−sds.
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For t > 0 and ν > 0, there exists M > 1 such that, for all s > M , we have

s
t
ν < e

s
2 .

Then,

∫ +∞

1

s
t
ν e−sds =

∫ M

1

s
t
ν e−sds+

∫ +∞

M

s
t
ν e−sds

≤
∫ M

1

s
t
ν e−sds+

∫ +∞

M

e−
s
2ds

< +∞,

Therefore,

0 <

∫ +∞

1

s
t
ν e−s ln sds < +∞.

For the 1st term, it is easy to see that, there exists a constant l,

0 >

∫ 1

0

s
t
ν
−1e−s ln sds > −l

∫ 1

0

1

s1−
t
2ν

ds > −∞.

Therefore, the summation of 1st term and 2nd term I1 is convergent.

Lemma B.2.2. For t > 0, ν > 0, the integral I2 =
∫ Y

0
s

t
ν
−1e−s ln sds converges.

Proof. The proof is similar to lemma (B.2.1).

B.3 Calculation of d lnh(z)
dξ

The density function of Z = ln( St

S0
) is

h(z) =
2exp( θx

σ2 )

νt/ν
√
2πσΓ( t

ν
)

(

x2

2σ2/ν + θ2

)
t
2ν

− 1
4

κ t
ν
− 1

2

(

√

x2(2σ
2

ν
+ θ)

σ2

)

,

where x = z − rt− tω.
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Taking the natural logarithm of the density function, we get

lnh(z) = ln 2 +
θx

σ2
− t

ν
ln ν − ln

√
2π − ln σ − ln Γ(

t

ν
)

+

(

t

2ν
− 1

4

)

·
(

2 ln(x)− ln(2σ2/ν + θ2)

)

+ ln(κ t
ν
− 1

2

(

√

(x2(2σ2/ν + θ2))

σ2
)

)

.

Let τ =

√

2x2σ2

ν
+x2θ2

σ2 , and let

KB = KB(τ) = κ t
ν
− 1

2
(

√

(x2(2σ2/ν + θ2))

σ2
)

=
1

2
(
τ

2
)

t
ν
− 1

2

∫ ∞

0

e−s−
τ2

4s

s
t
ν
+ 1

2

ds,

where κ is the modified Bessel function of 2nd kind. The calculation of the deriva-

tives of the log-density function lnh(z) w.r.t different parameters is as follows.

• The derivative of log-density with respect to σ is:

d lnh(z)

dσ
= −2θx

σ3
+

θ

σ2
· (−tdω

dσ
)− 1

σ
+ (

t

2ν
− 1

4
)

×
(

2

x

dx

dσ
− 4σ/ν

2σ2/ν + θ2

)

+
1

KB
· dKB
dσ

.

• The derivative of log-density with respect to θ is:

d lnh(z)

dθ
=

x

θ2
+

θ

σ2
(−tdω

dθ
) + (

t

2ν
− 1

4
)

×
(

2

x
(−tdω

dθ
)− 2θ

2σ2/ν + θ2

)

+
1

KB

dKB

dθ
.

• The derivative of log-density with respect to ν is:

d lnh(z)

dν
=

θ

σ2
(−tdω

dν
)− t

ν
+
t ln ν

ν2
− 1

Γ( t
ν
)

dΓ( t
ν
)

dν

− t

2ν2
(2 ln x− ln(2σ2/ν + θ2))

+ (
t

2ν
− 1

4
)(
2

x
(−tdω

dν
) +

2σ2

ν2

2σ2

ν
+ θ2

) +
1

KB

dKB

dν
.
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• The derivative of log-density with respect to maturity time t is:

lnh(z)

dt
=

θ

σ2
(−r − ω)− 1

ν
ln ν − 1

Γ( t
ν
)

dΓ( t
ν
)

dt

+
1

2ν
(2 ln x− ln(2σ2/ν + θ2))

+ (
t

2ν
− 1

4
)(
2

x
(−r − ω)) + 1

KB

dKB

dt
.

Since the Gamma function Γ( t
ν
) =

∫∞
0
s

t
ν
−1e−sds, we have:

• the derivative of Gamma function with respect to ν:

dΓ( t
ν
)

dν
= − t

ν2

∫ ∞

0

s
t
ν
−1e−s ln sds = − t

ν2
× I1,

• the derivative of Gamma function with respect to t:

dΓ( t
ν
)

dt
=

1

ν

∫ ∞

0

s
t
ν
−1e−s ln sds =

1

ν
× I1.

Then we begin to calculate the derivative of KB(τ) w.r.t different parameters.

• The derivative of KB(τ) with respect to σ is:

dKB(τ)

dσ
=
dKB(τ)

dτ
· dτ
dσ
,

where

dτ

dσ
= − 2

σ3

(

2x2σ2

ν
+ x2θ2

)
1
2

+
1

2σ2

(

2x2σ2

ν
+ x2θ2

)− 1
2

·
(

− 2θ2xt
dω

dσ
+

4x2σ

ν
− 4xσ2t

ν
· dω
dσ

)

.

• The derivative of KB(τ) with respect to θ is:

dKB(τ)

dθ
=
dKB(τ)

dτ
· dτ
dθ
,

where dτ
dθ

= 1
2σ2 (

2x2σ2

ν
+ x2θ2)−

1
2 · (−4xσ2

ν
tdω
dθ

+ 2x2θ − 2xθ2tdω
dθ
).
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• The derivative of KB(τ) with respect to ν is:

dKB(τ)

dν
=

1

2

dMt

dν
· Pt +

1

2
Mt ·

dPt
dν

,

where Pt =
∫∞
0

e−s− τ2

4s

s
t
ν +1

2
ds, and Mt = ( τ

2
)

t
ν
− 1

2 .

The derivatives are

dMt

dν
= Mt

[

− t

ν2
ln

(

1

2σ2

√

2x2σ2

ν
+ x2θ2

)

− (
t

ν
− 1

2
)(
2x2σ2

ν
+ x2θ2)−1 · 2x

2σ2

ν2

]

,

and

dPt
dν

=

∫ ∞

0

exp(−s− x2

2sσ2ν
− x2θ2

4sσ4
) ·
(

x2

2sσ2ν2

)

s−
t
ν
− 1

2ds

+

∫ ∞

0

exp(−s− x2

2sσ2ν
− x2θ2

4sσ4
) ·
(

x2

2sσ2ν2

)

s−
t
ν
− 1

2 ln s · ( t
ν2

)ds.

• The derivative of KB(τ) with respect to t is:

dKB(τ)

dt
=

1

2
(
τ

2
)

t
ν
− 1

2 ln(
τ

2
) · 1
ν

∫ ∞

0

e−s−
τ2

4s

s
t
ν
+ 1

2

ds

+
1

2
(
τ

2
)

t
ν
− 1

2

∫ ∞

0

e−s−
τ2

4s s−
t
ν
− 1

2 ln s(−1

ν
)ds.

• The derivative of KB(τ) with respect to τ is:

dKB(τ)

dτ
=

1

4
(
τ

2
)

t
ν
− 3

2 (
t

ν
− 1

2
)

∫ ∞

0

e−s−
τ2

4s

s
t
ν
+ 1

2

ds

+
1

2
(
τ

2
)

t
ν
− 1

2 (−τ
2
)

∫ ∞

0

e−s−
τ2

4s

s
t
ν
+ 1

2

1

s
ds.

B.4 Calculation of of d ln f(Xt
1,X

t
2;ξ)

dξ

Since f(X t
1, X

t
2; ξ) = h1(z1) · h2(z2), we have

d ln f(X t
1, X

t
2; ξ)

dξ
=
d lnh1(z1)

dξ
+
d lnh2(z2)

dξ
.
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If i 6= j, we have

d lnhi(zi)

dσj
= 0,

d lnhi(zi)

dθj
= 0,

d lnhi(zi)

dνj
= 0.

If i = j, the calculation of d lnhi(zi)
dξ

is the same as d lnhi(zi)
dξ

calculated in the last

section for each i.

The density function hi(z) is

hi(z) =
2exp( θix

σ2
i

)

ν
t/νi
i

√
2πσiΓ(

t
νi
)

(

x2i
2σ2

i /νi + θ2i

)
t

2νi
− 1

4

κ t
νi

− 1
2

(

√

x2(
2σ2

i

νi
+ θi)

σ2
i

)

,

where xi = z − rt− tωi.

Taking the natural logarithm of the density function, we get

lnhi(z) = ln 2 +
θixi
σ2
i

− t

νi
ln νi − ln

√
2π − ln σi − ln Γ(

t

νi
)

+

(

t

2νi
− 1

4

)

·
(

2 ln(xi)− ln(2σ2
i /νi + θ2i )

)

+ ln

(

κ t
νi

− 1
2

(

√

(x2i (2σ
2
i /νi + θ2i ))

σ2
i

)

)

.

Let τi =

√

2x2
i
σ2
i

νi
+x2i θ

2
i

σ2
i

, and let

KBi = KBi(τi) = κ t
νi

− 1
2

(

√

(x2i (2σ
2
i /νi + θ2i ))

σ2
i

)

=
1

2
(
τi
2
)

t
νi

− 1
2

∫ ∞

0

e−s−
τ2i
4s

s
t
νi

+ 1
2

ds,

where κ is the modified Bessel function of 2nd kind. The calculation of the deriva-

tives of the log-density function lnhi(z) w.r.t different parameters is as follows.
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• The derivative of log-density with respect to σi is:

d lnhi(z)

dσi
= −2θixi

σ3
i

+
θi
σ2
i

· (−tdωi
dσi

)− 1

σi
+ (

t

2νi
− 1

4
)

×
(

2

xi

dxi
dσi
− 4σi/νi

2σ2
i /νi + θ2i

)

+
1

KBi

· dKBi

dσi
.

• The derivative of log-density with respect to θi is:

d lnhi(z)

dθi
=

xi
θ2i

+
θi
σ2
i

(−tdωi
dθi

) + (
t

2νi
− 1

4
)

×
(

2

xi
(−tdωi

dθi
)− 2θi

2σ2
i /νi + θ2i

)

+
1

KBi

dKBi

dθi
.

• The derivative of log-density with respect to νi is:

d lnhi(z)

dνi
=

θi
σ2
i

(−tdωi
dνi

)− t

νi
+
t ln νi
ν2i
− 1

Γ( t
νi
)

dΓ( t
νi
)

dνi

− t

2ν2i
(2 ln xi − ln(2σ2

i /νi + θ2i ))

+ (
t

2νi
− 1

4
)(

2

xi
(−tdωi

dνi
) +

2σ2
i

ν2i
2σ2

i

νi
+ θ2i

) +
1

KBi

dKBi

dνi
.

• The derivative of log-density with respect to maturity time t is:

lnhi(z)

dt
=

θi
σ2
i

(−r − ωi)−
1

νi
ln νi −

1

Γ( t
νi
)

dΓ( t
νi
)

dt

+
1

2νi
(2 ln xi − ln(2σ2

i /νi + θ2i ))

+ (
t

2νi
− 1

4
)(

2

xi
(−r − ωi)) +

1

KBi

dKBi

dt
.

Since the Gamma function Γ( t
νi
) =

∫∞
0
s

t
νi

−1
e−sds, we have:

• the derivative of Gamma function with respect to νi:

dΓ( t
νi
)

dνi
= − t

ν2i

∫ ∞

0

s
t
νi

−1
e−s ln sds = − t

ν2i
× I(i)1 ,
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• the derivative of Gamma function with respect to t:

dΓ( t
νi
)

dt
=

1

νi

∫ ∞

0

s
t
νi

−1
e−s ln sds =

1

νi
× I(i)1 .

Then we begin to calculate the derivative ofKBi(τi) w.r.t different parameters.

• The derivative of KBi(τi) with respect to σi is:

dKBi(τi)

dσi
=
dKBi(τi)

dτi
· dτi
dσi

,

where

dτi
dσi

= − 2

σ3
i

(
2x2iσ

2
i

νi
+ x2θ2i )

1
2

+
1

2σ2
i

(
2x2iσ

2
i

νi
+ x2θ2i )

− 1
2 · (−2θ2i xt

dωi
dσi

+
4x2iσi
νi
− 4xiσ

2
i t

νi
· dωi
dσi

).

• The derivative of KBi(τi) with respect to θi is:

dKBi(τi)

dθi
=
dKBi(τi)

dτi
· dτi
dθi

,

where

dτi
dθi

=
1

2σ2
i

(
2x2iσ

2
i

νi
+ x2θ2i )

− 1
2 · (−4xiσ

2
i

νi
t
dωi
dθi

+ 2x2i θi − 2xiθ
2
i t
dωi
dθi

).

• The derivative of KBi(τi) with respect to νi is:

dKBi(τi)

dνi
=

1

2

dM
(i)
t

dνi
· P (i)

t +
1

2
M

(i)
t ·

dP
(i)
t

dνi
,

where P
(i)
t =

∫∞
0

e−s−
τ2i
4s

s
t
νi

+1
2
ds, and M

(i)
t = ( τi

2
)

t
νi

− 1
2 .

The derivatives are

dM
(i)
t

dνi
= M

(i)
t

[

− t

ν2i
ln

(

1

2σ2
i

√

2x2iσ
2
i

νi
+ x2i θ

2
i

)

− (
t

νi
− 1

2
)(
2x2iσ

2
i

νi
+ x2θ2i )

−1 · 2x
2
iσ

2
i

ν2i

]

,
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and

dP
(i)
t

dνi
=

∫ ∞

0

exp(−s− x2i
2sσ2

i νi
− x2i θ

2
i

4sσ4
i

) ·
(

x2i
2sσ2

i ν
2
i

)

s
− t

νi
− 1

2ds

+

∫ ∞

0

exp(−s− x2i
2sσ2

i νi
− x2i θ

2
i

4sσ4
i

) ·
(

x2i
2sσ2

i ν
2
i

)

s
− t

νi
− 1

2 ln s · ( t
ν2i

)ds.

• The derivative of KBi(τi) with respect to t is:

dKBi(τi)

dt
=

1

2
(
τi
2
)

t
νi

− 1
2 ln(

τi
2
) · 1
νi

∫ ∞

0

e−s−
τ2i
4s

s
t
νi

+ 1
2

ds

+
1

2
(
τi
2
)

t
νi

− 1
2

∫ ∞

0

e−s−
τ2i
4s s

− t
νi

− 1
2 ln s(− 1

νi
)ds.

• The derivative of KBi(τi) with respect to τi is:

dKBi(τi)

dτi
=

1

4
(
τi
2
)

t
νi

− 3
2 (
t

νi
− 1

2
)

∫ ∞

0

e−s−
τ2i
4s

s
t
νi

+ 1
2

ds

+
1

2
(
τi
2
)

t
νi

− 1
2 (−τi

2
)

∫ ∞

0

e−s−
τ2i
4s

s
t
νi

+ 1
2

1

s
ds.

B.5 Calculation of Derivatives of dXi

dξ

According to the algorithm for sampling the multi-dimensional VG process

Xi(t), we have to generate two-dimensional independent normal distributed ran-

dom variables (Ž1, Ž2)
′. In each simulation step, we can calculate the derivatives as

follows.

• The derivative of Xi(t) with respect to σi is:

dXi(t)

dσi
=
√

Gi
t

√

1− νi
ν0
Z̃ +

√

G0
t

dWt,i

dσi

where dWt,1

dσ1
= Ž1

√
ν1, and

dWt,2

dσ2
= ρ
√
ν2Ž2 +

√

1− ρ2√ν2Ž2.
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For i 6= j, we have

dXi(t)

dσj
= 0.

• The derivative of Xi(t) with respect to νi is:

dXi(t)

dνi
=

θi
ν0
G0
t + θi(1−

νi
ν0
)
dGi

t

dνi
− θi
ν0
Gi
t +

1

2
(Gi

t)
− 1

2σi

√

1− νi
ν0
Z̃
dGi

t

dνi

+
√

Gi
tσi

1

2
(1− νi

ν0
)−

1
2 (− 1

ν0
)Z̃ +

√

G0
t

dWt,i

dνi
,

where dWt,1

dν1
= Ž1σ1

1
2
ν
− 1

2
1 and dWt,2

dν2
= σ2ρŽ1

1
2
ν
− 1

2
2 + σ2

√

1− ρ2Ž2 +
1
2
ν
− 1

2
2 .

For i 6= j, we have

dXi(t)

dνj
= 0.

• The derivative of Xi(t) with respect to θi is:

dXi(t)

dθi
=
νi
ν0
G0
t + (1− νi

ν0
)Gi

t.

For i 6= j, we have

dXi(t)

dθj
= 0.

• The derivative of Xi(t) with respect to t is:

dXi(t)

dt
=

θiνi
ν0

dG0
t

dt
+

1

2
(G0

t )
− 1

2
dG0

t

dt
Wt,i

+ θi(1−
νi
ν0
)
dGi

t

dt
+

1

2
(Gi

t)
− 1

2
dGi

t

dt
σi

√

1− νi
ν0
Ẑ.

Now we calculate
dGi

t

dνi
,
dG0

t

dt
, and

dGi
t

dt
.

Assume G0
t ∼ Γ( t

ν0
, ν0) is Gamma distributed with mean t and variance tν0.

Gi
t is distributed with mean t and variance t

1
νi

− 1
ν0

, i.e. Gi
t ∼ Γ( t

1
νi

− 1
ν0

, 1
1
νi

− 1
ν0

). For

simplicity, we let Y ∼ Γ( t
ν̂
, 1). dY

dt
and dY

dν
can be calculated as in equation(B.1) and

equation (B.2). The steps of calculation are:
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• Since Gi
t = ν · Y = ( 1

νi
− 1

ν0
) · Y, and ν = 1

νi
− 1

ν0
, we get

dGi
t

dνi
= (− 1

ν2i
) · (Y + ν

dY

dτ
).

• Let ν = ( 1
νi
− 1

ν0
), then we get

dGi
t

dt
= (

1

νi
− 1

ν0
)
dY

dt
.

• Let ν = ( 1
νi
− 1

ν0
), then G0

t = ν0 · Y. We get

dG0
t

dt
= ν0

dY

dt
.

B.6 Calculation of Derivatives of φX(t)(u)

Let Xt follow a one-dimensional Variance Gamma process, the characteristic

function is

φX(t)(u) =

∫ ∞

0

eiuxfX(x)dx

= E[exp(iuX)]

=

(

1− iθνu+ σ2νu2/2

)−t/ν

The Laplace transform of the function g is

Lg(u) =

∫ ∞

0

e−uxg(x)dx.

Hence, the Laplace transform of the density function of X(t) is

LfVG
=

∫ ∞

0

e−uxfVG(x)dx

= E[e−uX ]

=

(

1 + θνu− σ2νu2/2

)−t/ν
.
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If the Laplace transform of a density function g is Lg(u), the Laplace transform of

the corresponding distribution function G is

LG(u) = Lg(u)/u. (B.3)

It is easy to see that if Ḡ = 1−G, then the Laplace transform LḠ of Ḡ can also be

calculated from LḠ(u) = −Lg(u)/u. Therefore, the Laplace transform LVG of the

distribution function of X(t) can be calculated from equation (B.3) by

LVG(u) =

(

1 + θνu− σ2νu2/2

)−t/ν/

u.

Consequently, the derivative of the Laplace transform LVG(u) of the distribu-

tion function of X(t) with respect to σ can be expressed as

dLVG

dσ
= σut ·

(

1 + θνu− σ2νu2/2

)−t/ν−1

. (B.4)

The derivative of LVG(u) with respect to θ is

dLVG

dθ
= −t ·

(

1 + θνu− σ2νu2/2

)−t/ν−1

. (B.5)

The derivative of LVG(u) with respect to ν is

dLVG

dν
= LVG ·

(

t

ν2
ln(1 + θνu− σ2νu2/2)− t

ν

θu− σ2u2/2

1 + θνu− σ2νu2/2

)/

u. (B.6)

The derivative of LVG(u) with respect to t is

dLVG

dt
= LVG · ln(1 + θνu− σ2νu2/2) · (−1

ν
)/u. (B.7)

148



Appendix C

C Code

C.1 Implementation of Variance-Gamma process

/* the VG process X */

double VarianceGammaprocess(double tt, double X first)

{

double next, delta G;

if (tt/nu ≥ 1)

delta G = nu*gamma process2(tt/nu);

else

delta G = nu * gamma process1(tt/nu);

W gamma t = sqrt(delta G) * Z;

gamma t = delta G;

gamma temp = gamma t / nu;

next = X first + theta * delta G + sigma * sqrt(delta G) * Z;

gamma temp ips = gamma temp * theta ips;

fprintf(outfile3, %”lf\n”,next);

return next;

}
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C.2 Implementation of Stock Price under VG

/* the stock price S(t) */

double stock process(double sspot, double t, double XX)

{

double next;

next = sspot * exp( (rate + w) * t + XX);

fprintf(outfile2, ”%lf\n”,next);

return next;

}

C.3 Implementation of A European Call Option Price

for (sim num = 0; sim num < sim limit; ++sim num)

{

uniform1 = mcg();

uniform2 = mcg();

Z = boxmuller(uniform1,uniform2);

X t = Variance Gamma process(h, X 0);

stock = stock process(spot, h, X t);

z t = (rate + w) * T + X t;

price temp = ((stock > K) ? exp(- rate * h) * (stock - K) : 0);

price += price temp/sim limit;

fprintf(outfile1,”%lf\n”, price temp);
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}

C.4 Implementation of Uniform Distributed Random Variables

/* Generate uniform random variates */

double mcg()

{

hi = (int)(seed1/q);

lo = seed1 - q * hi;

test = a * lo - r * hi;

if (test > 0.0)

seed1 = test;

else

seed1 = test + m;

rand u = seed1/m;

return rand u;

}

C.5 Implementation of Normal Distributed Random Variables

/* The Box Muller Algorithm */

double boxmuller(double random u1, double random u2)

{

double R; double V;
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R = - 2 * log(random u1);

V = 2 * pi * random u2;

gauss1 = sqrt(R) * cos(V);

gauss2 = sqrt(R) * sin(V);

return gauss1;

}

C.6 Implementation of IPA Estimates

/* (1) w.r.t: S 0 = spot; —Delta*/

delta IPA temp = exp(- rate * h) * stock/spot * ((stock ≥ K)? 1.0:0.0);

delta IPA += delta IPA temp/sim limit;

/* (2) w.r.t: rate; */

rho IPA temp = - h * exp( - rate * h) * ((stock ≥ K) ? (stock - K):0.0)

+ exp( - rate * h) * ((stock ≥ K)? 1.0:0) * h * stock;

rho IPA += rho IPA temp /sim limit;

/* (3) w.r.t: vol = sigma; —-vega */

vega IPA temp = exp(- rate * h) * ((stock ≥ K) ? 1.0:0.0) * stock

* ( h * de w de sigma + de X t de sigma);

vega IPA += vega IPA temp /sim limit;

/* (4) w.r.t: T; */

grad T IPA temp = - rate * exp(- rate * h)* ((stock ≥ K)?(stock - K):0.0)

+ exp( - rate * h) * ((stock ≥ K) ? 1.0:0.0) *
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stock * ((rate-w) + de X t de T);

grad T IPA += grad T IPA temp /sim limit;

/* (5) w.r.t: nu; */

grad nu IPA temp = exp(- rate * h) * ((stock ≥ K)? 1.0:0.0) * stock

* (h * de w de nu + de X t de nu);

grad nu IPA += grad nu IPA temp /sim limit;

/* (6) w.r.t: theta; */

grad theta IPA temp = exp(-rate * h) * ((stock ≥ K)? 1.0:0.0) * stock

* (h * de w de theta + de X t de theta);

grad theta IPA += grad theta IPA temp /sim limit;

C.7 Implementation of LR Estimates

/* (1) w.r.t: S 0 = spot; —Delta*/

delta LR temp = exp(- rate * T) * exp(z t) * ( ((spot * exp(z t)) ≥ K)? 1.0:0.0 );

delta LR += delta LR temp/sim limit;

/* (2) w.r.t: rate; */

rho LR temp = - T * exp( - rate * T) * ( ((spot * exp(z t)) ≥ K)? (spot

* exp(z t) - K) : 0.0);

rho LR += rho LR temp/sim limit;

/* (3) w.r.t: vol = sigma; —-vega */

vega LR temp = exp(- rate * T) * ( ((spot * exp(z t)) ≥ K) ? (spot
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* exp(z t) - K) : 0.0) * de logh de sigma;

vega LR += vega LR temp /sim limit;

/* (4) w.r.t: theta; */

grad theta LR temp = exp(- rate * T) * ( ((spot * exp(z t)) ≥ K)? (spot

* exp(z t) - K) : 0.0) * de logh de theta;

grad theta LR += grad theta LR temp /sim limit;

/* (5) w.r.t: nu; */

grad nu LR temp = exp(-rate * T) * ( ((spot * exp(z t)) ≥ K)? (spot

* exp(z t) - K) : 0.0) * de logh de nu;

grad nu LR += grad nu LR temp /sim limit;

/* (6) w.r.t: T; */

grad T LR temp = exp(- rate * T) * ( ((spot * exp(z t)) ≥ K)? (spot

* exp(z t) - K) : 0.0) * (-rate + de logh de T);

grad T LR +=grad T LR temp /sim limit;
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