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We investigated how well finger movements can be decoded from 

electroencephalography (EEG) signals. 18 hand joint angles were measured 

simultaneously with 64-channel EEG while subjects performed a repetitive finger tapping 

task. A linear decoder with memory was used to predict continuous index finger angular 

velocities from EEG signals. A genetic algorithm was used to select EEG channels across 

temporal lags between the EEG and kinematics recordings, which optimized decoding 

accuracies. To evaluate the accuracy of the decoder, the Pearson’s correlation coefficient 

(r) between the observed and predicted trajectories was calculated in a 10-fold cross-

validation scheme. Our results (median r = .403, maximum r = .704), compare favorably 

with previous studies that used electrocorticography (ECoG) to decode finger 

movements. The decoder used in this study can be used for future brain machine 

interfaces, where individuals can control peripheral devices through EEG signals. 
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1. Introduction 

1.1. State of the Art 

Understanding how the human brain controls hand movements presents an 

interest to researchers in neuroscience, engineering, and robotics because of the hand’s 

usefulness and its inherent complexity in its multiple degrees of freedom (Schieber & 

Santello, 2004). Such knowledge could be used to develop control algorithms to 

command hand based prosthetic devices, which would be of great benefit to individuals 

with motor deficiencies such as paralysis or limb amputation. 

Neuroimaging studies such as functional magnetic resonance imaging (fMRI) 

have suggested that the movement of each finger is represented in separate somatotopic, 

but largely overlapping, areas of the primary motor cortex and the supplementary motor 

areas of the human brain (Beisteiner et al., 2001; Indovina & Sanes, 2001). Moreover, 

another fMRI study suggested that the supplementary motor area is activated before the 

primary motor cortex during finger movements (Wildgruber, Erb, Klose, & Grodd, 

1997). Other fMRI studies have found that a wide neural network that incorporates the 

prefrontal cortex and areas in the parietal lobe of the brain are responsible for planning 

different grasping and finger motions (Gallivan, McLean, Valyear, Pettypiece, & 

Culham, 2011; Toni, Schluter, Josephs, Friston, & Passingham, 1999). While these 

studies give a strong sense of which brain areas are active during hand movements, the 

temporal relationship between neural activity and hand movements are difficult to 

understand from these studies. Such fMRI studies usually measure the hemodynamic 

response in the brain, which is suspected to be delayed with respect to neural activations 

(Beisteiner et al., 2001; Wildgruber et al., 1997). Other neuroimaging studies which use 
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modalities with higher temporal resolutions complements the results found in these fMRI 

studies. 

Electroencephalography (EEG) studies have also investigated how hand 

movements change brain activity. Event-related desynchronizations (ERDs), which are 

decreases in power in the brain’s alpha (8-12 Hz) rhythms, were found to occur during 

the execution of hand movements. Event-related synchronizations (ERSs), which are 

increases in power in the brain’s beta (12-24 Hz) rhythms, were found to occur when 

hand movements stop (Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller, Zalaudek, & 

Neuper, 1998). These ERDs and ERSs were found to be more pronounced in faster hand 

clenching movements (Yuan, Perdoni, & He, 2010). Other EEG studies have also shown 

that self-initiated hand movements and tasks involved with moving fingers in particular 

sequences involve brain activity near the frontal regions (Bortoletto, Cook, & 

Cunnington, 2011; Gerloff et al., 1998). While these neuroimaging studies have shown 

generalized brain activity changes related with hand movements, it is desirable to study 

how the brain controls the finer tuning of hand movements such as those involved in 

dexterous grasping or in delicate and timely finger tapping tasks. 

In this regard, neural decoding approaches have been pursued to examine the 

nature of the neural representation for the control of fine finger movements. Neural 

spiking activity and local field potentials (LFPs) recorded with surgically implanted 

microelectrodes on cortical tissue have been used to decode the time course of arm and 

finger movements as well as identifying which digit was moved (Bansal, Vargas-Irwin, 

Truccolo, & Donoghue, 2011; Hamed, Schieber, & Pouget, 2007; Vargas-Irwin et al., 

2010; Zhuang, Truccolo, Vargas-Irwin, & Donoghue, 2010). While these studies have 
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yielded reasonably high decoding accuracies, they have typically focused on recording 

activity from a small population of neurons in the primary motor cortex. Hand 

movements have also been decoded with brain rhythms recorded on a larger spatial scale 

with electrocorticography (ECoG); where researchers have been able to decode the time 

course of the flexion of individual fingers (Kubánek, Miller, Ojemann, Wolpaw, & 

Schalk, 2009), and the position of individual fingers while subjects were engaged in a 

slow and deliberate grasping task (Acharya, Fifer, Benz, Crone, & Thakor, 2010). 

However, to the best of our knowledge, no decoding studies have been pursued to 

investigate whether finger trajectories can be inferred from noninvasive signals acquired 

with scalp EEG. Table 1 summarizes finger decoding studies and their decoding 

accuracies. 
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Table 1: Summary of finger movement decoding studies 

Task Decoding accuracy 

(Pearson’s 

correlation 

coefficient) 

Signal modality, 

pre-processing 

and number of 

subjects 

Reference 

3D Reach-to-

grasp  
Monkey C: r = 0.72 

Monkey G: r = 0.74 

(medians) 

Microelectrode; 

Neuron firing 

rates; 

Vargas-Irwin 

et al., 2010 

Monkeys C, G 

3D Reach-to-

grasp 
: r = 0.46 

(average) 
Microelectrode; 

LFP data;  
Zhuang et 

al., 2010 

:  r = 0.62 

(average) 
Monkeys C, G 

3D Reach-to-

grasp 
Position: r = 0.65 

(average)         

Velocity: r = 0.75 

(average) 

Microelectrode; 

0.3-2 Hz LFP 

data;        

Monkeys C, G 

Bansal et al., 

2011 

  

Slow and 

deliberate 

grasping task 

r = 0.51 (median) ECoG; 2 s 

moving average 

filter; 4 patients 

Acharya et 

al, 2010 

Flexion of 

individual 

fingers 

Thumb, r = 0.56  ECoG; 100 ms 

average window; 

frequency bins 

from 8 to 175 Hz, 

excluding 35-70 

Hz, 5 patients 

Kubánek et 

al.,  2009  Index, r = 0.60 

Middle: r = 0.54 

Ring: r = 0.50 

Little: r = 0.42 
(averages) 

 

Table 1. Summary of studies where finger movements were decoded from brain signals. 

The table indicates the decoding accuracy, which modality was used, and what features 

were used for decoding the finger movements. Decoding accuracies are measured as the 

Pearson correlation coefficient between the predicted and observed trajectories. The ‘’ 

and ‘’ symbols in Zhuang et al.’s (2010) study correspond to decoding accuracies 

obtained from using delta (.3-4 Hz) and high gamma (200-400 Hz) frequencies to decode 

grasp motion. 
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The previously mentioned LFP and ECoG studies have found that slow cortical 

potentials contributed largely to the decoding of hand movements (Acharya et al., 2010; 

Bansal et al., 2011; Kubánek et al., 2009; Zhuang et al., 2010). These slow cortical 

potentials are found to modulate in amplitude with hand kinematics. The slow cortical 

potentials are often extracted from the recorded brain activity by low pass filtering or 

using a moving average filter on the recorded signals. In the ECoG studies, these slowly 

oscillating signals are referred as local motor potentials (LMP), which are typically found 

to be close to the primary motor cortex (Acharya et al., 2010; Kubánek et al., 2009). 

 

1.2. Knowledge Gaps 

To our knowledge, there are very few studies where the kinematics of fine 

individual finger movements have been decoded from brain signals. While these 

decoding studies have high accuracies, they are inherently limited by the lack of coverage 

over the entire brain. Microelectrodes typically record neural activity from a few neurons 

in the primary motor cortex while ECoG studies are limited to electrode placements that 

are used to monitor brain health in epileptic patients. As indicated by the previously 

mentioned fMRI and EEG studies, other areas of the brain are involved in finger 

movements, which could be used to decode finger trajectories. There is a poor 

understanding on how the entire brain as a whole can be used to decode finger 

movements. 

It is also of interest to see if noninvasive methods, such as EEG, can be used to 

decode the fine movement of individual fingers. In the scope of neuroprosthetic devices, 

implementing microelectrode arrays or ECoG to record brain activity presents surgical 



6 

 

risks to the patient. Using noninvasive methods like EEG can provide a more practical 

and safer alternative, making the neuroprosthetic device more applicable to clinical 

populations at risk such as children and the elderly.  

 

1.3. Hypothesis 

In this study, we investigated the hypothesis that brain signals recorded 

noninvasively through scalp electroencephalography (EEG) can be used to decode fine 

finger trajectories. 

The hypothesis is based on the rationale that as slow cortical potentials measured 

with LFPs and ECoG can be used to decode finger trajectories (Acharya et al., 2010; 

Bansal et al., 2011; Kubánek et al., 2009; Zhuang et al., 2010), it is likely that the 

information about finger movement can also be extracted from slow neural activity 

measured with EEG with minimal distortion. In this regard, the invasive studies 

previously reviewed indicate that detailed information about finger movement is carried 

in amplitude modulations of the smoothed ECoG or LFP signals in the delta (0.1-4 Hz) 

bands originating from a small group of neurons in specific and detailed brain regions. 

Although EEG recordings represent the activity from large and separated groups of 

neurons, it can be argued that these amplitude modulations can also be recorded from 

EEG as low-frequency, delta band signals. EEG signals in the delta band are unlikely to 

be significantly affected by the conductivity of the brain tissues, and are less susceptible 

to alterations caused by eye or muscular artifacts. Studying these slow cortical potentials 

with EEG provides the added benefit of being able to record over the entire scalp, 

capturing brain activity across the entire cortical area. Thus, a secondary aim of this study 
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is to examine the neural representation of finger movements at the macro-scale of scalp 

EEG.  

 

1.4. Objectives 

In this ‘proof-of-principle’ study, a linear decoder with memory was designed to 

translate the derivative of the EEG signal into the angular velocity of the metacarpal-

phalangeal (MCP) joint of the index finger. The objectives behind this study were as 

follows: 

1) Evaluate the performance of decoding finger movements with EEG signals recorded 

from the scalp. 

2) Provided that the first objective was fulfilled, to find the neural representations 

involved in the finger movements. 
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2. Methods 

2.1. Recording and Behavioral Task 

Five healthy right-handed subjects participated in this study (age 25 ± 2 years, 4 

male and 1 female) after giving informed consent as approved by the University of 

Maryland Institutional Review Board. Since an objective of this study was to compare the 

decoding accuracy and representation of finger movements at the macro-scale of EEG 

with respect to ECoG, the experimental protocol followed that as described in Kubánek et 

al.’s study (2009). Specifically, subjects were instructed to tap their right index finger 

three times in succession while seated behind a table with their forearms comfortably 

resting flat on the table. Each trial (consisting of a series of three taps) was self-initiated. 

EEG and hand kinematics were recorded simultaneously while subjects performed the 

finger tapping task. EEG signals were recorded over the entire scalp using a 64 channel 

HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, Oregon). The 

recorded EEG signals were amplified and digitized at 500 Hz with Net Amps 300 

(Electrical Geodesics, Inc., Eugene, Oregon). Trajectories of 18 joint angles were 

recorded with a wireless data glove (CyberGlove, Immersion Inc., San Jose, California) 

at a resolution of 0.93° at a non-uniform sampling rate of 35-70 Hz. The glove was 

calibrated once for each subject by manually adjusting the gain and offset of each glove 

sensor’s raw value and by visually verifying that the joint angles between the virtual hand 

and the actual hand matched. Subjects were recorded for approximately 10 minutes each, 

which recorded ~100-200 trials. The first 100 trials that were completed correctly (which 

did not include trials where subjects accidently tapped more or less than three times) were 
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used in the following decoding steps. The experimental set up and examples of the glove 

recordings while the subject performed the task are shown in figure 1. 

 

 

Figure 1. Experimental set up for the behavioral task and examples of glove recordings. 

A) Photograph of a subject wearing the EEG cap (Electrical Geodesics, Inc., Eugene, 

Oregon) and the data glove apparatus (CyberGlove, Immersion Inc., San Jose, California) 

while performing the finger tapping task. B) Examples of the angular trajectories 

recorded from the glove sensor located at the index metacarpal-phalangeal (MCP) joint. 

 

2.2. Data Synchronization 

To synchronize the EEG recordings with the kinematics recordings, a video of the 

session was recorded at 30 frames per second. The video was assumed to be 

synchronized with the EEG internally by the recording software (NetStation 4.3, 

Electrical Geodesics Inc.). The video, along with the glove software, simultaneously 

recorded the on and off status of a red LED, which was mounted on the glove. Manually 
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turning the LED on and off three times consecutively served as event markers to 

synchronize the glove data and the video.  

The raw synchronized EEG and kinematics recordings were resampled at 100 Hz 

in the following manner. A Chebychev II antialiasing filter at 40 Hz was applied to the 

raw EEG signals followed by a down-sampling to 100 Hz. The raw kinematics signals 

were interpolated with a piecewise cubic hermite interpolating polynomial and up-

sampled to 100 Hz. 

 

2.3. Kinematics Analysis 

To observe the variation of the finger tapping motion across subjects, different 

measures of the finger tapping motion were calculated for each trial including: trial 

length, tapping speed, resting position, extension angle, and range of motion. The 

average, standard deviation, and coefficient of variance of these measures were 

calculated across all trials for each subject. The statistics of these measures are shown in 

Table 2. 

Temporal properties of the finger tapping motion were measured by calculating 

the trial lengths and tapping speed of each trial. The trial length was approximated by 

finding when the tapping motion started, called the movement onset time, and finding 

when the tapping motion ended, called the movement offset time. Movement onsets were 

determined to be time points at which the joint angle speed exceeded 5% of the 

maximum velocity for the first time during a trial. Similarly, movement offsets were 

determined to be time points at which the joint angle speed was within 5% of the 

maximum speed for the last time near the end of the trial. Subtracting the movement 
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onset time from the movement offset time of each trial yielded the trial length. For each 

trial, dividing the number of taps (three) by the trial length yielded the approximate 

tapping speed. 

The angular properties of finger tapping motion were measured by calculating the 

resting position, the extension angle, and the range of motion of each trial. The resting 

position of each trial was approximated by taking the average of the finger positions in a 

one second segment located before the beginning of each trial and after the end of each 

trial. To find the extension angle of each trial, the three local maxima in the low pass 

filtered finger trajectories were located to extract the time points of full finger extensions 

(Smoothing the trajectories with a low pass filter facilitated the process in finding the 

locations of the local maxima). The amplitudes of the unfiltered finger trajectories at 

these time points were extracted as the extension angle (The local maxima in the filtered 

trajectories were not used because they were often lower in magnitude than the local 

maxima in unfiltered trajectories). The three local maxima were averaged, giving the 

approximate extension angle for that trial. The range of motion of each trial was 

calculated by subtracting the resting position from the extension angle. 

The power spectral density (PSD) of the kinematics was also calculated. First, the 

index finger trajectory data across the recording session containing the first 100 trials was 

detrended from the mean. The PSD of the data was calculated by using the Thomson 

Multitaper method PSD function in MATLAB (MathWorks, Inc., Natick, 

Massachusetts). A time bandwidth product of 4 and the Fourier transform window length 

of 512 were used. 
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2.4. Preprocessing  

Before designing and calibrating the decoder using the index finger’s trajectories 

and the EEG data, both data sets were preprocessed. A flow chart of the preprocessing 

steps is shown in Figure 2. 

 

  

Figure 2. Flow chart indicating the preprocessing steps used in this study. 

 

First, EEG recordings were re-referenced from a Cz reference to the mastoids. 

EEG signals from eighteen peripheral channels along frontal and temporal sites were 
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rejected. The rejected channels are shown as red labels in figure 3B. These channels were 

removed because they were most likely to be strongly influenced by eye artifacts or 

muscular artifacts due to head movements. The EEG recordings were then high pass 

filtered at 0.1 Hz with a zero-phase 4th order Butterworth filter. Only the data from the 

metacarpal-phalangeal (MCP) joint of the index finger was used in the study, so the 

kinematics data from the other channels were removed. The sensor associated with the 

metacarpal-phalangeal joint of the index finger is indicated with a red circle in figure 3C. 

Next, both EEG and kinematics recordings were low-pass filtered at 3 Hz (i.e., 

within the delta band) with a zero-phase 1st order Butterworth filter. The EEG signals 

were low pass filtered to remove noise and other high frequency brain activity unrelated 

to finger movements. The kinematics signals were low pass filtered to smooth the step-

like structure introduced by the glove’s resolution limits. The low pass cut off frequency 

for the EEG and kinematics was determined by estimating the fastest speed of the tapping 

motion across all subjects, which was found to be approximately 2.5 Hz. This was further 

confirmed by visually inspecting the power spectral densities of the MCP joint 

kinematics and by inspecting the index finger trajectories after the filter was applied. A 

cut off frequency of 3 Hz was found to reasonably preserve the tapping trajectories. After 

the data was filtered, the numerical derivative of the EEG and the kinematics recordings 

were calculated. 

After filtering, the EEG and kinematics were transformed into their derivatives. 

Using the derivative of the EEG and kinematics in preliminary decoding attempts was 

found to increase decoding accuracy. 
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The continuous EEG and kinematics were then extracted into segments consisting 

of the movement period from 0.1 seconds before the beginning of each trial to 0.1 

seconds after the end of each trial (The beginning and end of each trial correspond to 

movement onsets and movement offsets as described in section 2.3). Across subjects, the 

average length of the trial was found to be 1.84 seconds (giving an average segment 

length of 2.04 seconds across subjects). Any data outside of the movement periods were 

not used for further analysis. The segmentation provided a balanced representation of 

movement and rest for the decoder. The segmented kinematics data was baseline 

corrected by the mean of the segment -0.1 to 0 seconds with respect to the beginning of 

the trial. This was done to reduce the effects of the gradually increasing magnitudes 

found in the kinematics data throughout the recording session. After segmenting, the data 

was concatenated and standardized with respect to the means of each channel. Examples 

of the data are shown below in figure 3. 
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Figure 3. Examples of the preprocessed EEG and kinematics signals used in the study. 

A) The EEG signals are plotted as a thick black line while the index finger trajectory is 

plotted as a thin black line. Signals are preprocessed as mentioned in the steps above. B) 

Locations of the EEG channels are plotted as shown. The black and red labeled channels 

are channels which were respectively included and removed from the study. C) 

Photograph of the data glove apparatus (CyberGlove, Immersion Inc., San Jose, 

California) used in the study. The circled area indicates the sensor used to record the 

angles of the index MCP joint. 

 

2.5. Decoding Kinematics from EEG  

2.5.1. Linear Decoder 

A linear decoder was used to decode the index MCP joint angular velocity from 

the derivative of the EEG signals. The overall paradigm involved using the magnitudes 

from EEG signals from certain channels at different temporal points in the past to 

calculate the present joint angular velocity. EEG sensors to be chosen for decoding were 

selected through a genetic algorithm that found an optimal set of channels which 

maximized decoding accuracies (see section 2.5.3 for further details). The index MCP 

joint angular velocities were modeled as a linear combination of data from the selected 

sensors: 

              
      

 

   

 

   

 

 

where ϴ’(t) is the angular velocity of the index MCP joint at time t, i corresponds to a 

certain ith sensor where N is the total number of sensors (N=47), k is the temporal lag in 
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milliseconds which creates an offset between the EEG and kinematics signal where L is 

the total number of lags (L=7), bik is the weight which is the coefficient that is multiplied 

by the magnitude of the ith sensor at a certain time lag k, Si’(t-k) is the magnitude of the 

EEG sensor’s derivative from ith sensor at time t-k, and t is the time in milliseconds. The 

data was decoded with multiple lags where k = 0, 50, 100, 150, 200, 250, and 300 ms in 

the past. 

 

2.5.2. Model Training and Validation       

The performance of the model was evaluated using the 10-fold cross validation 

scheme. The flow chart for the scheme is shown in figure 4. 

 

 

Figure 4. Flow chart of the cross validation scheme. To maximize generalization, the 

collected data was divided in training and testing data for purposes of decoder calibration 

and decoder cross-validation (see text for details). 
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100 trials of each subject were used to train and test the linear decoder. For each fold, the 

data was split into 10 groups, 9 of which were used to train the linear decoder while the 

remaining group was used to test the decoder. Each group consisted of 10 trials. The 

weights bik of each channel from each lag were calculated as the coefficients which fit a 

linear model between the EEG signals and the kinematics signals from the training trials. 

The weights bik were calculated using GLM (Generalized Linear Model) functions in 

MATLAB (MathWorks, Inc., Natick, Massachusetts). Using the calculated weights from 

the training data, the linear decoder was used with the EEG data from the remaining 

training group to predict the observed joint velocities in the same training group. The 

predicted trajectories were then standardized and low pass filtered according to the 

preprocessing steps. The Pearson correlation coefficient, which was used as the 

performance metric, was calculated between the predicted trajectories and the observed 

trajectories. This is repeated for each fold, each of which consisted of different training 

and testing groups of trials. 

 

2.5.3. Channel Selection 

Previous decoding studies have found that an ideal number of electrodes or 

neurons were needed to fully decode the trajectories of hand movements (Acharya et al., 

2010; Bradberry et al., 2010; Hamed et al., 2007). In a previous study from our lab, we 

found that decoding accuracies begin to decrease after an optimal set of channels were 

used, possibly due to overfitting of data in the training sets (Bradberry et al., 2010). In 

this study, we decided to explore the use of the genetic algorithm to find an optimal set of 

channels to be used in decoding. Genetic algorithms are widely used for numerical 
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optimization purposes (Haupt, R & Haupt, S., 2004). In the context of this study, the 

genetic algorithm found the optimal set of channels, which yielded the highest decoding 

accuracy. To implement the genetic algorithm, an individual within a population was 

designated to be a set of EEG channels to be used in the decoding. Individuals whose 

channel sets yielded the highest decoding accuracy were preserved throughout the next 

generation. The genetic algorithm was implemented with the genetic algorithm functions 

in MATLAB (MathWorks, Inc., Natick, Massachusetts). An example of the how the 

population evolves throughout the generations is shown below in figure 5. Initially, 

individuals began with a random combination of channels to use. As the genetic 

algorithm progressed through the generations, the decoding accuracies of the populations 

increased, and few channels were selected by most of the individuals. The fitness value of 

an individual, which determined if its channel set was preserved through the next 

generation, was calculated as the median of the correlation coefficients across the 10 

folds used in the cross validation scheme (as discussed in section 2.5.2). 

 It should also be noted that the genetic algorithm also selected which temporal 

lags should be used for each channel. Thus, each individual selected 329 different 

channels and lags (arising from the use of 47 channels and 7 lags for each channel) to 

potentially be used as part of the decoding. Technical parameters used for the genetic 

algorithm are shown in table 3 in the appendix. 
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Figure 5. Example of the progression of the genetic algorithm, showing the evolution of 

channels selected for one temporal lag across generations. A) Number of times each 

channel was selected across individuals from each generation. Darker colors indicate that 
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more individuals within a generation selected that particular channel. B) The median 

fitness value across all individuals increases through the progression of generations. C) 

Scalp map depicting how many times a channel is selected by all individuals in the last 

generation. As shown in A), darker channels indicate that more individuals in the last 

generation selected a channel. 

 

2.6. EEG correlations with finger trajectories 

To gain a better understanding of the weights found in the decoding, an analysis 

was done to determine which channels had slow cortical potentials that modulated in 

amplitude with the finger trajectories. The Pearson correlation coefficient was calculated 

between preprocessed EEG signals from each channel and the finger tapping trajectories. 

This was repeated with the same temporal lags used in the decoding methods stated 

above. 
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3. Results 

3.1. Kinematics Statistics 

 Table 2 shows the statistics of the tapping task performed by the subjects. We 

note the wide variability across subjects on the full range of motion (ROM) and in the 

tapping speeds. Figure 6 shows the power spectral densities of the raw finger trajectory 

data. The calculated tapping speeds as well as the power spectral density suggest most of 

the variation in the raw finger trajectories was less than 3 Hz, justifying the low pass 

filter cut off frequency for both the EEG and the finger kinematics in the preprocessing 

steps. 

 

Table 2. Statistics of the finger tapping task. For each subject, the average values are 

shown at the top, the standard deviation is shown in the middle in parenthesis, and the 
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coefficients of variation is shown in the bottom and underlined. The data glove apparatus 

measures the index MCP joint angle such that when the index finger is parallel with the 

palm, the joint is measured as 0 degrees. When the finger extends away from the palm, it 

is measured in positive degrees. When the finger flexes towards the palm, it is measured 

in negative degrees. 

 

 

Figure 6. Power Spectral Densities of the index finger MCP joint trajectories throughout 

the recording session. The plots are smoothed over 5 samples to help visualization.  

 

3.2. Decoding Performance 

The EEG decoder was able to infer movement of the MCP index finger velocities 

from the derivative of the EEG signals. Figure 7 shows examples of the observed and 

predicted joint velocity kinematics. The predicted trajectories appear to follow the 
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general path of the observed trajectories. As shown in figure 8, the decoding performance 

varied across subjects with a median of r = 0.403 and a maximum of r = 0.704. All 

correlation coefficients between the predicted and observed trajectories were found to be 

significant (p<0.001). 

 

Figure 7. Examples of observed and predicted trajectories taken from the fold with the 

highest decoding performance (r=.704, Subject 3). The decoded trajectory is shown as a 

dotted line while the observed trajectory is plotted as a solid line. The plotted trajectories 

were standardized and low pass filtered.  
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Figure 8. Boxplots of Pearson correlation coefficients of the decoder's predicted 

trajectories against the observed trajectories across the 10 folds for all subjects. 

Individual r-values from the 10 folds are plotted as dots overlaid over the boxplots. The 

boxplot on the right describes the distribution of r-values from all subjects. 

 

3.3. Channel Weights 

The decoding scheme involved creating an optimal set of channels across all lags 

to predict the joint velocity from the EEG data. Different weights were placed on 

different channels, where the signals from certain channels contributed more to the 

decoded trajectories than other channels. Shown in figure 9 are the weights of the 

channels across all subjects. Within each subject, the channel weights were normalized to 

show which channels contributed the most to decoding the finger trajectories. To observe 
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the overlap of the channels weights across lags and subjects, the normalized weights were 

averaged. The scalp maps on the right column and bottom row, respectively, show the 

normalized weights averaged across the subjects and across the lags. The scalp map on 

the bottom right shows the gross average of the normalized channel weights across both 

lags and subjects. Channels which were removed by the genetic algorithm were plotted as 

white points. To calculate the contribution of the EEG signals from each lag to the 

decoding, the weights within each lag were summed for each subject, and the sum of the 

weights of each lag were divided by the total sum. The lag contributions are plotted in 

figure 10. 

 We found that the distributions of the channel weights varied considerably across 

subjects. For subjects 1 and 4, the higher weights appeared to be concentrated near the 

ipsilateral side of the frontal lobe and weighed most heavily at lags -50 and 0 ms. For 

subject 2, the higher weights were found on the contralateral side of the scalp near the 

frontal lobe: near the central part of the brain at a lag of -50 ms, and around the frontal 

part of the brain at a lag of -200 ms. In subject 3, the heaviest weights were scattered in 

the medial part of the brain, with a concentrated cluster on the contralateral side of the 

frontal lobe. The weights were concentrated heavily at 0 ms. In subject 5, the heaviest 

weights were found at in the middle of the frontal lobe at a lag of -300 ms. 

 For subjects 1 and 3, the 0 ms lag contributed most to decoding. For subjects 2 

and 4, the 50 ms lag contributed the most to decoding. For subject 5, the -300 ms lag 

contributed the most to decoding. 
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Figure 9. Raster plot of scalp maps plotting the normalized weights of all the channels. 

The right column and bottom row show the averages of the normalized channel weights 

respectively across subjects and lags. The bottom right scalp map shows gross average of 

all the normalized channel weights. All plotted values are normalized with respect to the 

maximum weight across all scalp maps enclosed within the lines. Darker points indicate a 

higher weight on the channel.  
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Figure 10. Weight contributions of each lag across subjects. Darker colors indicate a 

larger sum of channel weights for that lag, implying a larger contribution of that lag to 

decoding. 

 

3.4. Channel Correlations with finger trajectories 

 Figure 11 shows the raster plot of Pearson correlation coefficients between the 

preprocessed EEG signals from each channel with different lags and the finger 

kinematics. The scheme where values were averaged across lags and subjects, as well as 

the normalizations, were the same as that used in plotting the decoder weights in figure 9. 

For subject 1, the most correlated channels were found on both sides of the frontal site at 

lags -150 and -200 ms. For subject 2, the most correlated channels were located on the 
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contralateral side of the motor cortex centered at lags -200 ms and 0 ms. For subject 3, 

the most correlated channels appeared at both sides of the motor cortex across at lag 0 ms 

and at the contralateral motor area at lag -300 ms. For subject 4, the most correlated 

channels appeared at both sides of the motor cortex, being most heavily correlated at lags 

-100 and -50 ms. For subject 5, the most correlated channels were found on the 

contralateral side of the motor cortex, at lags -150 ms and -100 ms. 
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Figure 11. Raster plot of scalp maps plotting the normalized Pearson correlation 

coefficient between each channel from each lag and the index finger trajectories. The 

right column and bottom row show the averages of the normalized correlation 

coefficients respectively across subjects and lags. The bottom right scalp map shows 

gross average of all the normalized correlation coefficients. All plotted values are 
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normalized with respect to the maximum weight across all scalp maps enclosed within 

the lines. Darker points indicate a higher correlation coefficient. 
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4. Discussion 

 The main finding of this study is that the finger joint velocities of the MCP joint 

during finger tapping can be inferred from a plurality of noninvasive scalp EEG signals 

with the same degree of accuracy as invasive approaches that record brain activity under 

the dura or intra-cortically using microelectrode arrays (Acharya et al., 2010; Bansal et 

al., 2011; Kubánek et al., 2009; Vargas-Irwin et al., 2010; Zhuang et al., 2010). 

 

4.1. Decoding Performance 

The decoding accuracies found in this study are comparable to that of other 

studies which decoded finger movements through ECoG and microelectrode recordings 

(Acharya et al., 2010; Bansal et al., 2011; Kubánek et al., 2009; Vargas-Irwin et al., 

2010; Zhuang et al., 2010). Factors which may have contributed to decoding performance 

variability included movement variability, changes in internal states (e.g., fatigue, lack of 

attention or motivation, boredom), and the presence of eye or head movement artifacts. 

Such factors may have interfered with predicting the trajectories accurately and may also 

have compromised the ability of the genetic algorithm to select the subset of optimal 

channels. The results in the study present a realistic situation where these factors may 

influence the EEG signals. 

We also found the subjects with the slowest tapping speeds had the highest 

decoding accuracies. This has also been observed by Acharya et al. (2010) where the 

LMPs recorded from ECoG correlated more with slower grasping motions. It is not clear 

why this trend occurs and presents a limitation to the theory that certain brain activity 

oscillations modulate in amplitude with finger movements. It suggests that these 
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matching modulations between brain activity and movements are only prevalent for 

slower movements. 

Based on the coefficients of variations in the kinematic measures, there did not 

appear to be a trend between the consistency with which each subject performed the 

finger tapping movement and the decoding accuracies. 

 

4.2. Use of the Genetic Algorithm 

This study used a genetic algorithm to test a variety of sensor combinations across 

different temporal lags to predict finger kinematics from EEG. This was done to take 

advantage of possible synergies between different EEG electrodes and temporal lags, 

which may increase decoding performance. Previous decoding studies utilized a neuron 

or sensor dropping analysis, showing that trajectories can be decoded with a few neurons 

or sensors (Acharya et al., 2010; Bradberry et al., 2010; Hamed et al., 2007). In our 

previous work with decoding reaching hand movements from EEG, we found that an 

ideal number of sensors were needed to have optimal decoding performance; where more 

sensors were needed to provide sufficient amount of information to the decoder, while 

having too many sensors compromised decoding performance due to overfitting of the 

input data (Bradberry et al., 2010). While the genetic algorithm in this study provided a 

set of channels that yielded the highest decoding performance, it is uncertain if all the 

channels in the optimal set were necessary to maintain the performance. As shown in 

figure 9, only a few channels were weighed heavily, while many others were weighed by 

a small amount. 
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4.3. Channel weight distributions 

We found that the decoders had a general tendency to weigh channels the heaviest 

near the -50 to 0 ms lags. This is consistent with Kubánek et al.’s (2009) study, where the 

optimal temporal lag to decode from was at -50 ms. However, previous ECoG studies 

which decoded finger movements tended to weigh their predictions heavily on electrodes 

placed on the primary motor cortex on the contralateral side of the hand movements. In 

this study, only subject 2 had this kind of spatial distribution. The other subjects tended to 

have frontal lobe channels weighted heavily. This difference in spatial distribution may 

be due to the fact that the behavioral task involved in this study was self-initiated and 

involved tapping in a consistent sequence (a burst of three taps). Previous EEG studies 

have found that the frontal lobes tend to become more activated when subjects were 

required to self initiate finger movements, or when they were instructed to perform 

specific finger movement sequences (Bortoletto et al., 2011; Gerloff et al., 1998). We 

also note that the measured brain activity in this study may have been affected by 

feedback associated with the task such as the tactile feedback of the finger hitting the 

table or the auditory tapping noise. 

We note however, that in calculating the correlation coefficients between the EEG 

channels with the finger trajectories, it was found that the most correlated channels 

tended to cover the contralateral side of the motor cortex. The distribution of the decoder 

weights did not appear to match such a distribution. One potential explanation is that as 

nearby electrodes in contralateral motor cortex are likely to be highly correlated to each 

other due to EEG volume conduction (due to signal propagation in a conductive 
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medium), the genetic algorithm was able to remove those channels with highly mutual 

information, resulting in a sparse network for decoding. 

 Overall, the weight distributions vary widely among subjects. It can be argued 

that the neural representations between individuals should vary because of physiological 

differences between individuals. Each subject may have also used different cognitive 

strategies to perform the task. In any case, the variations in the weight distributions found 

in this study make it difficult to ascertain which brain areas are consistently involved with 

finger movements. 

 

4.4. Applications to brain machine interfaces 

A brain-machine interface (BMI) is a communication pathway between the brain 

and an external device, which can restore motor function in an individual (Hochberg et 

al., 2006; Leuthardt et al., 2004). A BMI system requires a neural interface that can 

translate brain activity into movement intentions. The results of this study can readily be 

implemented in a BMI. Designing a BMI system that decodes movement trajectories 

from scalp EEG presents its advantages. As others have previously argued, BMIs that can 

decode trajectories of limb movements are a favorable alternative to BMI that rely on 

operant conditioning or biofeedback because they provide a more intuitive approach for 

patients training with the BMI (Acharya et al., 2010; Bradberry et al., 2010). The use of 

noninvasive scalp EEG signals also removes the surgical risks found in other brain 

activity recording techniques like ECoG or microelectrode implantations. While the 

results of this study show feasibility for an EEG-based BMI that can control a hand-based 

prosthesis, further decoding studies should involve tasks that involve the whole hand in 
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naturalistic conditions. Thus, behavioral tasks that study more natural and dexterous hand 

movements need to be investigated as well. 

 

4.5. Future Studies 

4.5.1. Closed-loop BMI with a hand prosthesis 

 To assess whether the results of this study can be used for BMI, the performance 

of a fully realized system where the subject attempts to control a hand-like prosthesis 

device in real time should be studied. A generic flow chart showing an example of such a 

system is shown in figure 12. 

 

Figure 12. Flow chart of the closed-loop BMI system where the subject controls a 

robotic hand. 

 

 In this closed-loop system, the subject would attempt to move the robotic hand 

solely through brain activity. As the subject performs the task, EEG signals would be 

recorded from the subject. The EEG signals can be preprocessed in a similar manner as 
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was done in this study. These preprocessed signals, which would be re-referenced, 

bandpass filtered, and transformed into the derivative, would contain the relevant delta 

wave activity to serve as the appropriate input for the linear decoder. The linear decoder 

would then multiply the preprocessed EEG signals with the weights found in the training 

steps from this study. The weights to be used in this study could come from the cross 

validation fold that performed the best as they may reflect the most relevant neural 

representation involved with finger movements. (While the weights in this study reflected 

standardized EEG signals, they can readily be converted to reflect raw signals from the 

mean and standard deviations of the raw signals). The predicted trajectories would then 

be transformed into a signal which drives the motors or actuators that move the robotic 

hand. The subject can then observe the movements of the robotic hand, providing visual 

feedback which may be necessary for finger movements. 

 Unlike this study, the performance of the closed-loop BMI system cannot be 

evaluated by comparing predicted trajectories with observed trajectories since the 

intended trajectories would not exist. Instead, the performance could be evaluated by 

observing how accurately the subject can perform the behavioral task. Performing the 

task correctly could involve goals such as tapping exactly three times, extending the 

finger past a certain angle, or starting and stopping the tapping motion at correct temporal 

points. With respect to these goals, performance accuracy can be measured as the number 

of times the robotic finger taps, the angle of the robotic finger extensions during the 

tapping motion, and the time duration of how long the robotic finger performs the tapping 

motion. Comparing these measures with the values set by the goal can quantify how well 
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the subject can control the prosthetic hand. Lastly, an overall survey on the subject’s 

comfort with the prosthetic limb can be documented. 

 

4.5.2. Studies for a clearer neural representation 

   The findings of the neural representation in this study are weak because of the 

variations in the channel weights found across subjects. A stronger interpretation of what 

brain areas are involved could be found if more subjects were included in the study. 

Multiple sessions for each subject could also be performed to help control the variation in 

internal states within each subject. Statistical methods can then be used with the repeated 

studies to ascertain which channel locations are picked consistently. Channel locations 

which are used more frequently would then give a stronger sense of which brain areas are 

involved with finger movements. Observing which lags are used most often for each 

channel location can also give a stronger sense of the temporal order of when each brain 

area is active, yielding a framework for the neural network involved with finger 

movements. 
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5. Conclusion   

In conclusion, we find that EEG signals can be used with a linear decoder with 

memory to predict the trajectories of repetitive finger movements with fair decoding 

accuracies that are comparable to those from invasive neural interfaces. However, 

gathering how the finger tapping task is represented in the brain yielded inconsistent 

results across subjects, making the interpreted neural representations uncertain. The 

conviction behind the neural representations would have been stronger if the distributions 

in the channel weights were similar between subjects. 



40 

 

Appendix 

IRB Approval letter 

Renewal Application Approval 

________________________________ 

To:     Principal Investigator, Dr. Jose L. Contreras-Vidal, Kinesiology 

Student, Trent Jason Bradberry, Kinesiology 

Student, Harsha Agashe, Kinesiology 

From:   James M. Hagberg 

IRB Co-Chair 

University of Maryland College Park 

Re:     IRB Protocol: 06-0031 - Non-invasive neural prosthetics for reaching 

Approval Date:  January 11, 2011 

Expiration Date:        January 11, 2012 

Application:    Renewal 

Review Path:    Expedited 

________________________________ 

 

The University of Maryland, College Park Institutional Review Board (IRB) Office 

approved your Renewal IRB Application. This transaction was approved in accordance 

with the University's IRB policies and procedures and 45 CFR 46, the Federal Policy for 

the Protection of Human Subjects. Please reference the above-cited IRB Protocol number 

in any future communications with our office regarding this research. 

 

Recruitment/Consent: For research requiring written informed consent, the IRB-approved 

and stamped informed consent document will be sent via mail. The IRB approval 

expiration date has been stamped on the informed consent document. Please note that 

research participants must sign a stamped version of the informed consent form and 

receive a copy. 

 

Continuing Review: If you intend to continue to collect data from human subjects or to 

analyze private, identifiable data collected from human subjects, beyond the expiration 

date of this protocol, you must submit a Renewal 

Application<http://www.umresearch.umd.edu/IRB/renewal%20app.html> to the IRB 

Office 45 days prior to the expiration date. If IRB Approval of your protocol expires, all 

human subject research activities including enrollment of new subjects, data collection 

and analysis of identifiable, private information must cease until the Renewal Application 

is approved. If work on the human subject portion of your project is complete and you 

wish to close the protocol, please submit a Closure 

Report<http://www.umresearch.umd.edu/IRB/closure%20app.html> to 

irb@umd.edu<mailto:irb@umd.edu>. 

 

Modifications: Any changes to the approved protocol must be approved by the IRB 

before the change is implemented, except when a change is necessary to eliminate an 
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apparent immediate hazard to the subjects. If you would like to modify an approved 

protocol, please submit an Addendum 

request<http://www.umresearch.umd.edu/IRB/addendum%20app.html> to the IRB 

Office. 

 

Unanticipated Problems Involving Risks: You must promptly report any unanticipated 

problems involving risks to subjects or others to the IRB Manager at 301-405-0678 or 

jsmith@umresearch.umd.edu<mailto:jsmith@umresearch.umd.edu> 

 

Additional Information: Please contact the IRB Office at 301-405-4212 if you have any 

IRB-related questions or concerns. Email: irb@umd.edu<mailto:irb@umd.edu> 

 

The UMCP IRB is organized and operated according to guidelines of the United States 

Office for Human Research Protections and the United States Code of Federal 

Regulations and operates under Federal Wide Assurance No. FWA00005856. 

 

0101 Lee Building 

College Park, MD 20742-5125 

TEL 301.405.4212 

FAX 301.314.1475 

irb@umd.edu<mailto:irb@umd.edu> 
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Parameters of the Genetic Algorithm 

Population Type Bit String 

Population Size 20 

Creation Function Uniform 

Crossover Function Crossover Scattered 

Crossover Fraction 0.5 

Elite Count 2 

Mutation Function Uniform 

Fitness Value 
Median correlation 

coefficient across 10 folds 

Fitness Scaling 

Function 
Rank 

Selection Function Stochastic 

Stall Generations 50 

Function Tolerance 1*10^-12 

Maximum Number of 

Generations 
500 

 

Table 3. Parameters used in the Genetic Algorithm. Parameters and options are relevant 

to the genetic algorithm functions in MATLAB (MathWorks, Inc., Natick, 

Massachusetts). Each individual was designed to be a string of logical elements, which 

indicated which channel from which lag was to be used in the decoding. The fitness value 

was the median of the correlation coefficients across 10 folds from the cross validation 

scheme. The genetic algorithm was designed to stop when it reached 500 generations or 

when the improvement in the population fitness value did not improve by 1*10^-12 over 

50 generations.  
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