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Epitaxial graphene on SiC(0001) presents a promising platform for device 

applications and fundamental investigations.  Graphene growth on SiC(0001) can 

produce consistent monolayer thickness on terraces and good electronic properties.  

In exfoliated graphene on SiO2, random charged impurities in the SiO2 surface are 

thought to be the dominant scatterers, explaining the observed transport properties as 

well as the spatial charge inhomogeneity seen in scanned-probe experiments.  In 

contrast, the scattering mechanisms and charge distribution in epitaxial graphene 

remain relatively unexplored.   

Here I use Kelvin probe microscopy (KPM) in ambient and UHV conditions 

to directly measure the surface potential of epitaxial graphene on SiC(0001).  

Ambient-environment KPM on graphene/SiC(0001) shows surface potential 

variations of only 12 meV.  Taken together with transport measurements, the data 



  

suggest that the graphene samples in ambient are in the low-doped regime, near the 

minimum conductivity of 4e2/h.   

I am also able to use UHV KPM of graphene/ SiC(0001) to identify the 

discrete surface potentials of monolayer and bilayer graphene as well as the insulating 

interfacial carbon layer and bare SiC, correlated with scanning electron micrographs 

of the same location.  The surface potential differences between monolayer and 

bilayer graphene and between IFL and monolayer graphene are both suggestive of 

low doping (1012 cm-2).  The surface potentials of monolayer and bilayer graphene 

are relatively smooth, while the IFL and bare SiC, in contrast, showed larger 

variations in surface potential suggesting the presence of unscreened charged 

impurities present on the IFL that are later screened by the overgrown graphene.  I 

model the potential variations for unscreened and graphene-screened charged 

impurities using the self-consistent theory of graphene developed by Adam et al.  The 

results show that although surface potential variations are, as expected, larger in the 

IFL than in graphene, both surfaces display surface potential variations 10-40 times 

smaller than predicted by theory.  While ambient electronic transport data and surface 

potential steps suggest our samples are only lightly doped (1012 cm-2), in a regime 

dominated by electron-hole puddles, we do not observe these puddles in UHV.  The 

absence of puddles in UHV leaves the source of doping in these samples an open 

question.   
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Preface 

 This dissertation represents four years of work performed under the guidance 

of Dr. Michael Fuhrer in the physics department of the University of Maryland in 

College Park.  Although my first year of graduate school took place in State College, 

PA, I returned to Maryland in 2007 for the research portion of my graduate career.  

While in Dr. Fuhrer’s group, I was funded by the Material Research Science and 

Engineering Center and had the opportunity to collaborate with and receive my 

samples from the Gaskill group at the Naval Research Laboratory. 

The work presented here uses Kelvin probe microscopy to provide insight into 

the charge distribution environment of epitaxial graphene samples.  Chapter 1 

introduces the band structure of graphite and graphene monolayers.  Charge transport 

in exfoliated graphene devices is discussed from experimental and theoretical 

perspectives, outlining the self-consistent theory of charged impurity scattering.  

Further experimental support of the charged impurity scattering model is presented as 

evidence of the formation of electron-hole puddles.  Chapter 2 presents the 

experimental methods of atomic force microscopy and Kelvin probe microscopy used 

in this work.  Chapter 3 outlines four methods of fabricating graphene films, with a 

focus on epitaxial growth on SiC.  Chapters 4, 5, and 6 discuss Kelvin probe data 

collected on epitaxial graphene samples grown on SiC(0001).  Specifically, Chapter 4 

presents ambient data showing carrier concentration variation over (10 m)2 sample 

regions.  Chapter 5 focuses on capability of the Kelvin probe technique to distinguish 

between graphene layers.  I return to the question of charge distribution in Chapter 6 

as measured by UHV Kelvin probe microscopy.  The predicted electron-hole puddles 
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are not observed in the UHV data, suggesting that the charged impurities of the self-

consistent theory may not be at the graphene/substrate interface as previously 

thought. 
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Chapter 1: An Introduction to Graphene Theory 

 

Introduction 

Graphene is a single atomic layer of carbon atoms arranged in a honeycomb 

lattice and may be thought of as a single atomic plane of graphite.  Recently, 

graphene has generated a lot of interest as a truly two-dimensional (2D) material and 

for its massless dispersion relation for charge carriers.[1]  

As the experimental body of work on graphene has grown over the past six 

years, obstacles remain relating to the fabrication of clean, undoped, large-scale 

graphene samples.  Small samples of graphene exfoliated from graphite onto SiO2 

substrates have received the most attention in transport experiments, which have 

probed the effects of charged impurities, substrate effects and environmental dopants.  

The experiments point to a model of graphene on SiO2 in which transport is governed 

to a large extent by charged-impurity scattering due to trapped charges in the SiO2 

substrate.[2]  The impurity potential of random charged impurities also induces 

electron and hole puddles in net-charge-neutral graphene, resulting in an 

inhomogeneous charge distribution throughout the material[3], [4] with a 

characteristic length scale of a single charge puddle (20 nm).[2]  

The future of graphene in industry relies on the success of large-scale growth 

of graphene.  Among methods for growing large-area graphene, epitaxial growth on 

the Si-face of SiC has emerged as a means of consistently producing continuous 

monolayer growth.  While the wafer-scale growth is promising for device 
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applications, much remains to be learned about how the epitaxial growth process 

affects the doping and transport properties of devices made from these films.   

Scanning tunneling spectroscopy (STS) and scanning single-electron 

transistor (SSET) measurements of exfoliated graphene on SiO2 are consistent with 

the puddle theory.[3-5] However, these methods are limited in length-scale to tens of 

nanometers, frequently only imaging a single puddle.[4] As I began work on this 

thesis, transport measurements on graphene on SiC had indicated, in contrast, large 

variation in carrier concentration in samples over much larger areas (tens of 

micrometers).[5] At this time scanned probe studies of charge inhomogeneity had not 

yet been performed on epitaxial graphene on SiC.   

The work presented here investigates the charge inhomogeneity of graphene 

on silicon-face SiC and the underlying carbon-rich interfacial layer (IFL) of the SiC 

substrate using scanning Kelvin probe microscopy under ambient and ultra-high 

vacuum (UHV) conditions, and over length scales ranging from millimeters to 

nanometers.  The beginning of this chapter (Chapter 1) will introduce the atomic and 

electronic structure of graphene.  Chapter 1 will then briefly describe the various 

methods for fabricating graphene explored by experimental groups to date, before 

focusing on the epitaxial growth of graphene films by silicon sublimation from SiC 

substrates.  Chapter 1 will next review the current theoretical and experimental 

understanding of charge transport in graphene in the presence of random charged- 

impurity potential.  Chapter 2 will outline the experimental techniques used to collect 

the surface potential data presented in chapters 3, 4, and 5.  The precise details of 

graphene growth will be outlined for the samples used in the work, and the principles 
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of Kelvin probe microscopy will be discussed in detail.  Chapter 3 will detail Kelvin 

probe data collected under ambient conditions sampling widely-separated areas of a 

sample of graphene on Si-face SiC and relate these measurements to previously 

collected electron transport data.  The results indicate a much more uniform carrier 

density in graphene on Si-face SiC than previously thought, and the transport 

measurements are reinterpreted in this light.  Chapters 4 and 5 extend the Kelvin 

probe technique to study graphene on Si-face SiC in UHV at higher spatial resolution.  

Chapter 4 will demonstrate that both KPM performed under ambient and UHV 

conditions differentiates between monolayer and bilayer graphene as well as two 

distinct IFLs.  The results corroborate scanning electron microscopy (SEM) and 

Raman spectroscopy data from my collaborators at the Naval Research Laboratory.  

Chapter 5 will explore the nature of microscopic surface potential variation within the 

graphene monolayer on Si-face SiC and how this variation relates to charge puddling 

and the charge environment in the SiC substrate and IFL.   

Graphene Atomic Structure and Electronic Properties 

Figure 1 shows the atomic structure of graphene.  The unit cell of graphene 

has two atoms arranged on a trigonal lattice.  This honeycomb structure appears also 

in the planes of graphite and in rolled up form as carbon nanotubes.   The electronic 

structure of graphene was studied theoretically as early as 1947 by Wallace.[6]  The 

band structure was calculated for a single layer of carbon atoms in a hexagonal lattice 

and expanded to apply to the stacked configuration of graphite.  Wallace performed a 

tight-binding calculation for the carbon -orbitals including nearest-neighbor overlap, 

0, and next-nearest-neighbor overlap, 1.  The eigenvalue is 
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 From Wallace, S = N, the number of unit cells.[6]  Using the symmetry of the crystal, 

one can reduce the number of matrix elements labeled in equation 1.1 and write  
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The interaction of the nearest neighbors, atoms A and B, is given by 0.  

  0  X* rAB  U V X r dr  (1.4)[6] 

and the interaction of nearest neighbors among only the atoms of a single type, A, is 

given by 0 to be 

  0
'  X* r '  U V X r dr  (1.5)[6] 

Here U is the potential of the isolated atom and V is the potential of the lattice.  

X(r) is the 2pz wave function for a single carbon atom.  Taking only the nearest 

neighbor interactions, one obtains the following expression for the band structure: 

 E(k)  E0  0 14cos 3kxa
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Figure 1:  Graphene unit cell 

 

Figure 2: Band structure of graphene.  Figure courtesy of Michael Fuhrer. 

 

Figure 2 shows the dispersion of the -bands given by equation 1.6  There are 

two bands that may be thought of as having bonding and anti-bonding character.  The 

corners of the first Brillouin zone of the two-dimensional hexagonal lattice are 

denoted K in the usual notation for high symmetry points.  There are two 

distinguishable K points, which I will denote K and K’.  The bonding and anti-

bonding bands touch at the K points in the Brillouin zone.[7]   

Returning to the single layer, at low energy, a k·p expansion around the K 

point in momentum gives the Hamiltonian [8] 
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,

, 

(1.7)  

with the corresponding Hamiltonian at K’ given by [8] 

  (1.8)  

where v  3 0a
2

  is the Fermi velocity,  is Planck’s constant, and  are the Pauli 

matrices.  The Hamiltonians operate on a two-component vector wavefunction, where 

the two components represent the magnitude and phase of the -orbital on each atom 

in the two-atom unit cell.  The eigenvectors, k, are [7-9] 

 k,  k, A  ei k, B  (1.9)  
 
where   tan-1( kx/ky ) and A and B now denote the two distinct atoms in the unit cell. 

The eigenvalues are 

 Ek,   v k .  (1.10) 

Equation 2.7 is similar to the Dirac equation for massless relativistic particles.  

In graphene, the role of the electron spin is played by the direction of the two-

component wavefunction, which is termed the pseudospin.  The pseudospin is 

coupled to momentum and points parallel to k around the K point and antiparallel to k 

at the K’ point.  (The real electron spin in graphene is considered to be uncoupled to 

orbital motion since there is little spin-orbit coupling in carbon).[10]  The pseudospin 

ensures that electrons with opposite momenta about a given K point are orthogonal 

and therefore backscattering is forbidden for long wavelength perturbations.[7] 

As a side note, the band structure of graphene above also forms the basis for 

understanding carbon nanotubes.  The electronic band structure of carbon nanotubes 
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is constrained by the periodic boundary conditions imposed by wrapping the 

honeycomb lattice around the circumference of the nanotube.  The wrapping angle 

and number of unit cells counted around the circumference of a nanotube can make 

the tube either metallic or semiconducting; if the wave vector K is commensurate 

with the nanotube circumference, then the nanotube is metallic; if not, it is 

semiconducting.  Thus, for one-dimensional (1D) transport along the length of the 

nanotube, the band structure is semiconducting for two-thirds of tubes and metallic 

for the remaining one third.  Similar effects are expected in graphene nanoribbons, 

where the hard-wall boundary conditions at the ribbon edge can result in metallic or 

semiconducting 1D dispersions.[17], [18] 

The linearity of the band structure near the K-points, high Fermi velocity, 

small electron-phonon coupling, and absence of backscattering due to the pseudospin 

of the electrons are predicted to lead to extremely high mobilities (upwards of 

200,000 cm2/Vs) at room temperature.[11-13]  This would put graphene at the top of 

the semiconductor hierarchy for room temperature performance, out-pacing silicon by 

two orders of magnitude.  This incredible performance, coupled with the relatively 

low cost of obtaining graphene's precursors—highly-oriented pyrolitic graphite 

(HOPG), for instance—has pushed experimentalists to explore a variety of methods 

of graphene device fabrication in the hope of achieving large-scale production.  

Along the way, many phenomena unique to graphene systems have come to light. 
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Electron Transport in Graphene 

In experimentally realistic conditions (i.e. graphene on SiO2 or similar 

substrate exposed to a lab environment), graphene generally exists in a doped state.   

Since 2007, the Fuhrer group has performed a series of transport measurements on 

exfoliated graphene devices on Si/SiO2 substrates.  To make graphene FETS, 

exfoliated flakes are contacted with Cr/Au contacts using electron-beam lithography.  

Four probe and Hall bar configurations are common.  The devices are gated through 

the Si substrate, with the 300 nm oxide layer acting as the gate dielectric.  Figure 3 

shows an example of a graphene FET fabricated in the Fuhrer group for transport 

measurements.  

 

Figure 3:  From reference [4].  A typical graphene FET fabricated from an exfoliated flake on an Si 

substrate with 300 nm oxide layer.  The contacts are evaporated Cr/Au patterned by electron-beam 

lithography. 

 
The material retains its linear dispersion relation, but the Fermi energy lies 

somewhere in the conduction or valence bands of the Dirac cone.  Random charged 

impurities, present at the SiO2/graphene interface, and also possibly on top of the 

graphene as a result of processing, limit the mobility of graphene due to charged- 
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impurity scattering.  These impurities also give rise to a random potential that will 

cause graphene to be locally doped n- or p-type, forming electron or hole puddles.   

Conductivity measurements of graphene FETs on SiO2 substrates have 

consistently shown a linear relation between the conductivity, , and the charge 

carrier density (or carrier concentration), n.  Since not all contributing factors to the 

conductivity obey a linear relation, this trend allows for the isolation of the dominant 

scattering sources.  Theoretical predictions give charged-impurity scattering a linear 

relation 

 ci(n)  Ccie
n

nimp

,              (1.11) 

      
where e is the electronic charge, n is the carrier concentration, nimp is the 

concentration of charged impurities, and Cci is a constant calculated from the screened 

Coulomb potential to be 5 x 1015 V-1 s-1.[14], [15]   

 Equation 1.11 is expected to be valid at carrier densities high enough that 

inhomogeneities in the carrier density are negligible.  At low carrier density, the 

inhomogeneity in carrier density due to the random Coulomb potential itself becomes 

important.  A self-consistent model of graphene transport including both the 

minimum conductivity at low-carrier density and the linear (n) at high-carrier 

density was developed using a random phase approximation (RPA)-Boltzmann 

formalism.[2], [16]  Induced charge impurities in our current graphene devices will 

always induce a carrier density that makes the Dirac point experimentally 

inaccessible.   

 There are two regimes to consider for graphene transport, both revolving 

around charged-impurity scattering.  The two regimes, low and high density, are 
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defined by the relation of the gate-induced average carrier density, n, to the residual 

carrier density n*.   

  (nn ) 

Ccie
n*

nimp

if nn  n*

Ccie
n

nimp

if nn  n*.













  (1.12) [2] 

Here n  is related to the shift in min that is experimentally observed in [2].  The 

residual carrier density n* arises from spatial fluctuations in the carrier density in the 

sample, and may be thought of as the rms carrier density when the average carrier 

density n = 0.  Here, n* is dependent on the charged-impurity density nimp following 

the relation 

 n*

nimp

 2rs
2C0

RPA rs, a4d  n* , n 
nimp

2

4n*   (1.13) [2] 

where Co
RPA is the voltage fluctuation calculated using the RPA for screening.  The 

RPA expansion is done about rs, which is  0.8 for SiO2.  The constant a = 4kF
*d for 

purposes of the RPA method.[2]  The distance, d, is between the graphene and the 

plane of charged impurities and is taken to be  1 nm.   

 The minimum conductivity min is simply the conductivity of graphene at a 

carrier density n*: min = n*eµ.[3-5]   The low-density regime occurs when n* > n 

and for typical graphene samples with nimp =  3 to 10 x 1011 cm-2, n* = 1 to 4 x 1011 

cm-2.   In the low density regime, charged impurities induce electron-hole puddles in 

the plane of the graphene.[3], [4]  As the carrier density increases so n > n*, the 

electron puddles grow and hole puddles shrink, resulting in an inhomogeneous 

screened Coulomb potential and a conductivity that is linear in n.   
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 The theory of charged impurity scattering has been verified experimentally 

by doping graphene with potassium and measuring the conductivity in situ in ultra-

high vacuum (UHV) at low temperature.[15]  Figure 4 shows the carrier-density-

dependent conductivity of graphene with various concentrations of potassium, 

which acts as a charged impurity.  The experiment verified quantitatively the 

relation in equation 3.1, and also qualitatively the behavior in equation 3.4, that n* 

is roughly proportional to nimp, giving min roughly independent of nimp.   

 

 

Figure 4:  Conductivity () vs. gate voltage (Vg) for graphene on SiO2 for four different K dosing 

levels from Chen et al. (from reference [5]).  K-dosing results in a shift in Vg,min, a decrease in min, 

broadening of the minimum conductivity region and increased linearity of the conductivity curve as 

charged-impurity scattering is increased.  The fit lines here are generated using equation 1.11. 

 

To further study scattering sources, particularly the balance between long- and 

short-range range sources as controlled by screening, the dielectric environment of 

graphene FETs on SiO2 was varied by the introduction of an ice layer in UHV at low 
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temperature.[15]  The introduction of ice, with a relative dielectric constant  = 3.2, 

has two effects.  First, the Coulomb scattering potential is directly reduced since it is 

inversely proportional to the average dielectric constant (1 + 2)/2, where are 1 and 

2 are the dielectric constants of the materials above (ice or vacuum) and below 

(SiO2) the graphene. Second, the electron-electron interaction is reduced, which 

results in a reduction in screening of the impurity potential 

The linear dispersion relation for graphene gives rise to a dimensionless 

coupling constant, , which is the ratio between the graphene Coulomb potential 

energy and kinetic energy.  The dielectric environment around the graphene mediates 

the screening of charged impurities, altering the Coulomb potential energy.   may be 

written as: 

  
2e2

1  2  vF

 (1.14) [2] 

 
where 1 and 2 are the top and bottom dielectric constants.  In this case, 2 is roughly 

3.8, the dielectric constant for SiO2.  In air, 1 is 1, giving   0.81.  Introducing the 

ice layer, with 1  3.2, lowers  to 0.56.  Changing the coupling constant in this 

manner affects the conductivity in two ways: (1) it improves the mobility, L, due to 

long-range scattering by reducing the interactions of electrons with charged 

impurities, and (2) it decreases the short-range conductivity, because the more weakly 

interacting ice system no longer screens short-range scattering due to charged 

impurities as effectively.  The experimental (n) curves are fit to  

 (n)1 
1

neL

  s
1

     (1.15)
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where µL = Cci/nimp corresponds to charged impurity scattering, and s corresponds to 

scattering by short-range impurities (delta-function correlated disorder).[2], [17] 

These effects may be seen in Figure 5 with the change in slope of the conductivity 

curve upon the addition of six layers of ice.  The data are in good agreement with the 

Boltzmann transport theory put forth by Adam et al. including screening.[2]  For 

short-range scatterers, the only effect is the reduction in screening, and the addition of 

the ice reduces the screening of these puddles, causing the decrease in s. 

 

Figure 5:  From reference [4].  sym (corresponding to µL in text; blue squares), sym (corresponding to 

s in text; red squares), and min (black squares) with respect to an increasing number of ice layers.  The 

labels sym and sym here refer to the symmetric portion of the electron and hole sides of the 

conductivity curve.  The mobility increases and short-range conductivity decreases while minimum 

conductivity remains constant.  The predicted changes (arrows) are calculated from theory and are in 

good agreement with the data.  
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 The experiments described above provide strong evidence for graphene’s 

mobility being limited by charged impurities of a concentration a few 1011 cm-2.   The 

random impurity potential gives rise to another effect: at the charge neutrality point, 

graphene will break into electron and hole puddles.  These puddles, in turn, screen the 

impurity potential; hence a self-consistent theory of the puddles is necessary. 

 

Scanned Probe Measurements of Charge Inhomogeneity in Graphene 

Since 2008, scanned probe techniques have been used to characterize the 

nature of charge puddles on the graphene surface.  Most of these works have relied on 

STM technology to measure charge variation over regions comparable to the length 

scale of a single puddle.[3], [4]  An exception to this was the early work by Martin et 

al. that employed a scanning single electron transistor (SSET) to measure the inverse 

compressibility of the graphene.[5]  

In terms of the chemical potential, , the inverse compressibility is the 

inverse of the compressibility, or density of states D(E) = dn/dEF, and can be 

measured locally by measuring the surface potential as a function of carrier 

density as tuned by varying the gate voltage: 

 dn
dEF







1

  e  total

n
. (1.16) 

 
The linear dispersion in graphene results in and .  The 

divergence of the inverse compressibility at the Dirac point is smeared by fluctuations 

in carrier number, resulting in a finite peak in .  The local value of the Dirac 

/ n 

total

1/2n  1/2/ n n   

/ n 
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point potential can also be mapped by tracing the peak in  spatially.  Figure 6 

shows a map of the Dirac point along a 2.5-micron line scan from Martin et al.   

To map charge puddles, the SSET mapped potential fluctuations over areas of 

a few square micrometers.  From the potential map, charge density fluctuations were 

extracted to produce the data shown in Figure 7.  The density values were plotted as a 

histogram and fit to a Gaussian curve.  The density fluctuations averaged over the 

SSET area are extracted to be n  =  3.9 x 1010 cm-2.   

 

Figure 6:  SSET measurements of the inverse compressibility of graphene on SiO2 from Martin et al. 

(from reference [5])  The inverse compressibility of graphene is measured along a 2.5 m line as a 

function of back-gate voltage.  The change in position of the peak represents a shift in the Dirac point.  

The smallest features resolved in this line are 150 nm. 

 

/ n 
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Figure 7:  SSET measurements of surface potential of graphene on SiO2 from Martin et al. (from 

reference [5])  Above (a) shows a map of the charge density as extracted from measurements of inverse 

compressibility.  Below, in (b), the carrier density is plotted into a histogram and the carrier density 

fluctuations are extracted from the width of the histogram to be ±3.9 x 1010 cm-2. 

 

The SSET experiment was largely limited by its spatial resolution.  The transistor had 

a diameter of 100 nm and was lifted 50 nm above the surface, approximating a spatial 

resolution of 150 nm.[3], [4]  This value is considerably longer than theoretical 

puddle length scales.  Martin et al. suggested that the actual density fluctuations were 
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of larger amplitude on a short length scale than measured using the SET.  To correct 

for this, the carrier density dependence of the inverse compressibility was measured 

at high magnetic field (B = 11 T).  In a field of 11 T, Landau levels are evident, and 

the broadening of the Landau levels gives n  = 2.3 x 1011 cm-2.[5]  Comparison of 

n  =  3.9 x 1010 cm-2 obtained from the histogram of the Dirac point spatial map and 

n  = 2.3 x 1011 cm-2 obtained at high magnetic field (which should approximate the 

actual density fluctuations) indicates that the SSET resolution of 150 nm is 5x larger 

than the puddle correlation length which is 30 nm.  

After the SSET work by Martin et al. was published, STM work further 

confirmed the size scale for a single charge puddle.  In 2009 the LeRoy group at the 

University of Arizona and a collaboration of the University of California at Berkeley 

and the Lawrence Berkeley Laboratory both performed STM and scanning tunneling 

spectroscopy (STS) measurements on exfoliated graphene samples.[3]  Both 

experiments were performed in UHV STM systems at 4.5-4.8 K.  The STS method 

applies a DC bias voltage and small ac modulation to the tip and maps the variation in 

the differential conductance dI/dV over the sample surface.  The variation in the 

location of the Dirac point as shifted by local potential variations is also measured at 

select locations.  Both groups reported successful mapping of the graphene 

topography both at a scan size of 30 x 30 nm2 and at atomic resolution. A sample 

measurement from Berkeley is shown in Figure 8.  Zhang et al. measured dI/dV as a 

function of sample voltage and position over 40 x 40 nm2 areas at sample voltages of 

-0.2 V, 0 V, 0.2 V, and 0.4 V and observed the effect of sample voltage on charge 

puddle size.[4]  The sample voltage was applied by lithographically-fabricated metal 
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contacts on the graphene.  The dI/dV mapping was performed in constant current 

mode, causing the tip-sample distance to vary as the tip traveled over more or less 

conductive regions on the graphene surface.  From the dI/dV map, the charge density 

fluctuation was extracted to be n  = 4.3 x 1011 cm-2.[4]  This is in good agreement 

with both the theory and the earlier SSET measurement done in high magnetic field.  

The paper does not commit to a conclusion as to the origin of these density 

fluctuations, although it does note that there is no correlation between the surface 

topography and the charge puddles.[18]  The presence of charged impurities is 

suggested as a source of the charge inhomogeneity. 

 

Figure 8:  Topography and STS of graphene on SiO2 from Zhang et al. (from reference [4])  Top left 

(a) shows a topography image of a mechanically exfoliated graphene sample.  The inset shows the 

carbon lattice.  (b) shows the dI/dV with respect to bias voltage taken at two points 17 nm apart.  (c)  

The map of the Dirac-point energy is extracted from the dI/dV map, shown here in (d) at a fixed gate 
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voltage of 15 V and fixed bias voltage of 0.25 V.  The data in (a) and (c) are taken over the same 

sample area, showing that there is no correlation between the topography data and the dI/dV map.  The 

puddle length scale may be seen here to be 20 nm. 

 

 
Figure 9:  Topography and STS of graphene on SiO2 from Deshpande et al. (from reference [3])  The 

boxes in the topography image (a) correspond to spatially average dI/dV spectra taken as a function of 

sample voltage and plotted in (f).  (b) – (e) show dI/dV maps at four different sample voltages.  Scale 

bar is 8 nm. 

 

The LeRoy work, shown in Figure 9 also credits charged impurities, likely 

between the substrate and the graphene, as the source of the puddle behavior.  The 

Berkeley group agrees with LeRoy’s work in finding charge-density fluctuations of 

n   4 x 1011 cm-2.  They map the Dirac point over an area of 30 x 30 nm2 and find 
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that the charge puddles are 20 nm in diameter.  This is in agreement with the value 

extracted by the SSET work at high magnetic field.  In addition to observing charge 

puddles, quasi-particle interference patterns were also observed to be caused by the 

same scattering centers that caused the charge puddles.  Rather than looking for a 

correlation between the graphene topography and the charge puddles, then, Zhang et 

al. used the imaging of quasi-particle interference patterns to associate individual 

scattering centers with charge puddles.[19]  

Recently, the use of hexagonal boron nitride (hBN) as a substrate for graphene 

exfoliation has been of some interest, as hBN provides a flat, low-impurity platform 

for graphene devices.  Both the LeRoy group at the University of Arizona and the 

Crommie group at Lawrence Berkeley National Laboratory have extended their STS 

studies to graphene on hBN.[20], [21]  By mapping dI/dV on gated graphene/hBN 

devices, both groups report on lower surface roughness and lower carrier 

concentration variation compared with graphene/SiO2 devices.  In particular, the 

graphene conforms to the flat crystalline surface of exfoliated hBN flakes to give a 

surface roughness of 30.2+/- 0.2 pm, roughly eight times flatter than graphene on 

SiO2.  Figure 10(a) shows the topography for graphene on hBN.  Figure 10(b) and(c) 

show a map of the tip voltage at the Dirac point for graphene on hBN and graphene 

on SiO2, respectively, as extracted from dI/dV maps collected by STS.  A histogram 

for the graphene/hBN data is shown Figure 10(d) in the main image and for the 

graphene/SiO2 in the inset.  The histograms for both data sets appear Gaussian but 

where the width of the graphene/SiO2 distribution  point voltage distribution 

corresponds to a low variation in carrier concentration for graphene samples on hBN 
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substrates.  The low carrier concentration corresponds to larger charge puddles, as 

predicted for graphene with a lower charged impurity density.[21], [22]  Work by the 

Crommie group similarly finds a lower charge-density roughness for graphene on 

hBN compared to graphene on SiO2.[20] 

 

Figure 10:  From reference [21].  (a) STM topography of graphene on hBN.  (b)  A map of the tip 

voltage at the Dirac point taken from dI/dV curves on graphene/hBN.  (c)  A map of the tip voltage at 

the Dirac point taken from dI/dV curves on graphene/SiO2.  The scanned area in panels (a), (b), and (c) 

are (100 nm)2.  The scale bar for panels (b) and (c) is 10 nm.  (d) Histograms of Dirac point data for 

graphene/hBN (main graph) and graphene/SiO2 (inset) 

 

 
The lower charge density variation or Dirac point variation reported by the both 

the LeRoy group and the Crommie group is presumed to be due to the crystalline 

nature of the hBN substrate.  The amorphous SiO2 substrate serves as a source of 
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charge impurities that dominate scattering and limit mobility for exfoliated graphene 

devices on SiO2 substrates.  The hBN surface is flatter and more inert, without any 

dangling bonds that act as a source for charged impurities.  As a result, graphene 

devices on hBN are strikingly similar to suspended graphene devices in their 

electronic properties, without the fabrication and fragility issues involved in working 

with a suspended device.  From an applications standpoint, graphene on hBN is still 

hampered by the exfoliation problems common to graphene on SiO2.  Nevertheless, 

these recent studies of graphene on hBN provide good contrast for existing data on 

charge puddling in graphene on SiO2.  The larger puddle size and lower carrier 

concentration variation seen in these devices are indicative of the strong effect of 

substrate and dielectric environment on graphene charge puddling.  

 

Conclusions 

The existing body of experiment on graphene on SiO2 points to charged 

impurities as a dominant source of static disorder.  Graphene on hBN shows 

improved mobility, and lower charge inhomogeneity, suggesting reduced charged 

disorder is responsible for the mobility increase.  Comparatively little is known about 

charge disorder in graphene on SiC.  This thesis discusses the use of Kelvin probe 

microscopy as a tool to study the macroscopic and microscopic charge inhomogeneity 

of graphene on SiC.  Chapter 2 discusses the experimental techniques of atomic force 

microscopy and Kelvin probe microscopy, and the synthesis and characterization of 

graphene on SiC samples used in this study.  Chapter 3 outlines common methods for 

fabricating graphene samples, including original work done on chemically-derrved 
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graphene samples and current methods for fabricating the epitaxial graphene samples 

used later in this work.  Chapter 4 describes an ambient-environment study of the 

macroscopic surface potential variations in graphene on Si-face SiC, and the results 

are also found in reference [23]. Chapters 5 and 6 discuss Kelvin probe microscopy of 

graphene on Si-face SiC  in ultra-high vacuum (UHV).  Chapter 5 discusses the layer-

to-layer variations in the surface potential of graphene on Si-face SiC, while Chapter 

6 discusses variations in surface potential within a layer due to disorder. 
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Chapter 2: Experimental Techniques 
 

 

Atomic Force Microscopy – An Introduction to Scanned Probe Techniques 

Kelvin probe microscopy (KPM) is the primary technique used in this work to 

study the charge distribution in epitaxial graphene samples by direct measurement of 

the local surface potential variations over the sample surface.  KPM is a variation on 

atomic force microscopy (AFM), a technique which itself was developed in 1986 as a 

modification of early scanning tunneling microscopy (STM) methods.  The first paper 

describing AFM was published in 1986 by Binnig and Quate in Physical Review 

Letters.[24]  This was the same year that Binnig and Rohrer received the Nobel Prize 

in physics for their 1981 invention of the STM.[25], [26]  Derived from the STM, the 

first AFM did not use the optical methods for beam deflection detection used today.  

Instead, the method of detection relied on the current tunneling loop as in STM to 

detect the deflection of a cantilever.   

In its simplest form, the STM mapped the topography of a conducting surface 

by measuring and maintaining a constant tunneling current between the sample 

surface and a sharp tip.  The first obvious limitation of this method was that it was not 

suited to measuring insulators.  Other methods of surface measurement at the time 

included stylus profilometers and scanning capacitance microscopes, which were 

limited to 100 nm in spatial resolution and could not resolve atomic steps.   
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Binning and Quate’s AFM used a handmade probe fabricated from a gold foil 

cantilever beam with a sharp diamond tip glued to the end of it.  The STM tip was 

then placed above the cantilever, measuring a tunneling current between the tip and 

the gold foil.  As the diamond tip passed over the sample surface, the cantilever was 

deflected, allowing for measurement of the surface characteristics through the STM 

feedback loop. 

 

Figure 11:  From reference [24].  (a) shows the setup for the AFM prototype developed by Binnig and 

Quate.  The AFM cantilever, D, and diamond tip, B, were sandwiched between the sample, A, and the 

STM tip, C.  Panel (b) shows the design for the handmade AFM probe. 

 
 

The original work used the tunneling method of feedback to suggest four 

different modes of operation.  The most successful mode of operation was to apply 

the ac modulation again to the AFM cantilever but to have it also attached to the 

tunneling current feedback loop.  Previous methods used two separate feedback 
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loops, the traditional STM loop controlling the tunneling current and a second one 

modulating either the sample or AFM cantilever.  By using just one feedback loop, 

the signal applied to the AFM cantilever is modulated specifically to maintain a 

constant tunneling gap between the cantilever and the tip. 

The resolution of the first AFM was reported in terms of the smallest 

measurable force on the cantilever rather than in terms of topographical step heights, 

and was 10-15 N for the cantilever design described in Binnig et al.[24]  To put this 

number in perspective, consider that the van der Waals bonds between atoms, the 

weakest interatomic bonds, are 10-11 – 10-12 N.[24]  This means that the force 

sensitivity of even the earliest AFM cantilever was good enough to easily resolve 

interatomic forces. Binnig et al. estimated in their original work that a vertical 

resolution below 1 Å should be achievable.[24] 

Shortly after the publication of the Binnig paper, further tailoring of the AFM 

was performed by Martin et al. at the IBM T. J. Watson Research Center.[27]  In this 

work the method of cantilever deflection detection used was optical, relying on an 

optical heterodyne to measure the vibration of the cantilever.  The optical heterodyne 

falls into the interferometry family of AFM detection methods.  Optical methods 

currently used today do include interferometry, but laser beam deflection methods are 

simpler to implement and more commonly used.[24], [26], [27]  The major advantage 

of optical detection was that it eliminated the need for the STM tip completely, 

consequently eliminating any perturbation of the force data by roughness on the back 

surface of the AFM cantilever.   
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 As mentioned earlier, the AFM is a tool for measuring tip-sample forces as a 

means of characterizing a solid surface of arbitrary electronic properties.  The 

interaction between the tip and the sample is the product of many forces, including 

the atomic bonds on the surface of the sample, but is most simply discussed in terms 

of van der Waals forces between the tip and the surface.  To refer back to a familiar 

form from solid-state physics, the long-range potential between the AFM tip and the 

sample can be written as the Lennard-Jones potential for a chemical bond of strength 

Ebond  

 
12 6

6 122Lennard Jones bondV E
r r
 



 
  

  .
 (2.1) [25] 

 
Here, the first term describes the attractive van der Waals potential that is 

proportional to 1/r6 and the second term is repulsive and proportional to 1/r12.  

Modeling the interaction of a conical AFM tip with this potential gives a tip-sample 

force that follows a 1/r force curve.  At smaller r , the potential due to surface 

chemical bonds is described in terms of the Morse potential such that:  

  ( ) 2 ( )2 r r
Morse BondV E e e         (2.2)[25] 

In both equations,  represents an equilibrium distance, r is the tip-sample distance, 

and  is the decay length for the Morse potential.  A plot of the tip-sample forces is 

shown in Figure 12.  It is interesting that while the van der Waals potential is short 

range at first glance, the forces add up to have a long-range effect.  Electrostatic 

forces also have a strong effect on the tip; however, the overall shape of the force 

curve from Figure 12 holds true. 
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Figure 12:  From reference [25].  The total tip-sample force is a sum of forces described by 

contributions from the long-range van der Waals potential and short-range Morse potential.   

 

 The force curve versus tip-sample distance is the primary guide for 

determining the mode of operation for AFM.  At very small r, the tip experiences 

repulsive contact with the surface.  This is the operating region for static AFM or 

“contact mode” AFM, the oldest of AFM methods.  In contact mode, the deflection of 

the tip due to surface topography is directly measured.  At further distances from the 

sample, the AFM may operate in intermittent, or “tapping,” mode or noncontact 

mode; this is known generally as dynamic AFM.  Tapping mode is today the most 

commonly used method for ambient AFM measurements.  In tapping mode, the tip 

remains in the attractive force regime in the force curve but intermittently hits (or 

taps) the repulsive region close to the sample.  Tapping mode is implemented by 

driving the cantilever with an ac signal.  The deflection of the tip is measured while 

the perturbation of the driving signal by the surface forces is monitored by a variety 

of feedback loops. 



 

 
 

Figure 13:  A simple cartoon of the force experienced by the AFM vs. tip

circles highlight the force conditions for contact mode, tapping mode, and noncontact imaging.
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experiments described in Chapter 4.  AM
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The methods described by the IBM group for tuning the resonance frequency 

of the cantilever and selecting a desirable operating frequency closely resemble the 

methods used currently.[27]
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achieved for a particular tip

29 

A simple cartoon of the force experienced by the AFM vs. tip-sample distance (z).  The 

circles highlight the force conditions for contact mode, tapping mode, and noncontact imaging.

Within oscillating cantilever methods of AFM, there are two modes of 

operation: amplitude modulation and frequency modulation.  The frequency 

modulation mode has several advantages over amplitude mode, including improved 

scanning speed in vacuum, but is largely restricted to noncontact UHV applications.  

Amplitude modulated AFM (AM-AFM) is the common method used in most ambient 

AFMs and is the mode of operation for the Veeco D5000 microscope used in the 

experiments described in Chapter 4.  AM-AFM is also the older of the two operating 

s and is described thoroughly in Martin et al.[27] 

The methods described by the IBM group for tuning the resonance frequency 

e cantilever and selecting a desirable operating frequency closely resemble the 

[27]  In this work, and on the D5000, the operating frequency 

of the cantilever is not the resonance frequency at which the greatest tip deflection is 

achieved for a particular tip-sample force.  The operating frequency of the AFM is 

 

sample distance (z).  The 

circles highlight the force conditions for contact mode, tapping mode, and noncontact imaging. 
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 30 
 

chosen such that the derivative of the amplitude with respect to frequency,  is 

positive and maximized.  This provides the strongest signal for measurement for two 

reasons. (1) As the tip approaches the surface, attractive forces shift the resonance 

frequency negative; thus, choosing the operating frequency to be below the resonance 

frequency means the signal at the operating frequency will increase with the shift.  

And (2) operating at the maximum of the derivative ensures the largest laser beam 

deflection due to the maximized change in amplitude with change in tip-sample 

interaction.   

When the AFM tip is far from the surface, the amplitude of oscillation 

depends on the frequency of oscillation in the following manner: 

 A 
A0 (0 / )

1Q2  / 0  0 / 
.  (2.3)[27] 

 
Here A0 is the amplitude of oscillation of the tip at the resonance frequency 0 and Q 

is the quality factor of the tip.  The derivative is maximized by the condition 

 A



4A0Q

3 3 0

.  (2.4)[27] 

 
The resonance frequency is shifted by tip interaction with the van der Waals forces of 

the surface by an amount  0
' 0 1 f '/ k where f’ is the force derivative normal to 

the surface and k is the spring constant of the tip.[27]  The desired operating 

frequency is then given by 

  d  0 (1 8Q) 1 f '/ k.  (2.5)[27] 
 
At this frequency of maximum sensitivity, measurable amplitude shifts are 

 A 
A
f '

 f '  2A0Q
3 3(k  f ')

 f '.  (2.6)[27] 
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The IBM group notes that the smallest measurable force derivative is 

dependent on the spring constant and quality factor of the tip and the temperature and 

environment in which the measurement is performed. 

On our equipment—the  Veeco D5000—I select the operating frequency to be 

5-10% lower than the resonance frequency.  This offset puts the operating frequency 

toward in the region of maximum positive slope on the tuning curve (amplitude vs. 

frequency).  The resonance frequency itself will be shifted lower as the tip approaches 

the surface; thus, it is important to operate on the positive slope side of the curve to 

ensure that the shift does not result in a loss of signal.  The autoengage routine 

common to Veeco microscopes (and previously Digital Instruments microscope) 

approaches the surface by measuring the damping of the tip oscillation amplitude by 

van der Waals forces.  The set point chosen by the autoengage routine is 

representative of the fractional damping of the tip oscillation.  A lower set point 

indicates a greater damping and therefore harder tapping force on the AFM tip. 

The third regime for performing AFM is the noncontact mode.  Originally 

attempted for both AM-AFM and frequency modulation AFM (FM-AFM) methods in 

ambient conditions, this type of AFM was proven to be most successful in UHV 

environments.[25]  In noncontact mode, the primary interactions between the tip and 

the sample are due to the long-range van der Waals and electrostatic forces.  In an 

ambient environment, this means that the presence of water and other adsorbates 

would cause a noncontact AFM image to look very different from a contact mode 

image and interferes with accurate surface measurements.[25]  For this work, FM-

AFM was implemented on a JEOL combination AFM/STM with an attached SEM for 
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location targeting.  Unlike AM-AFM, the FM-AFM method maintains a constant tip 

oscillation amplitude during the approach.  That is, a tip tuned to a 4-nm oscillation 

amplitude away from the sample surface will maintain that oscillation amplitude even 

in the presence of van der Waals forces.  Where the frequency shift due to tip-sample 

interaction was accounted for in AM-AFM by a rough offsetting of the operating 

frequency, it is exactly this shift that becomes the measureable quantity in FM-AFM.  

The frequency shift is measured as a phase shift between the driving and detected 

signals.  A phase shift of 90o is equivalent to a null frequency shift.[25]  For small 

oscillation amplitudes and assuming a simple tip-sample interaction potential, the tip 

frequency shift is described as f = fo + f.  Then f is dependent on the second 

derivative of the tip-sample potential as follows: 

 kts 
2V
z2 and f  kts

2k
f0.   (2.7)[25] 

 
Here k is the spring constant of the cantilever, and fo is the resonance frequency.  If 

the tip-sample force gradient (kts) is not constant over the distance z between the tip 

and the sample, then the force must be accounted for in an integral over the tip 

oscillation period.  To do this, the oscillation of the tip is described by a Fourier series 

 q '(t)  am cos(m2 f t)
m0



  (2.8)[25] 

 
with an amplitude A, such that the frequency shift is now 
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The quantity  is then just a time average of the tip-sample forces over an 

oscillation period of the tip. 

 For noncontact FM-AFM on the JEOL AFM, I monitor the tip deflection 

signal using a phase-locked-loop (PLL) setup.  The combination of the PLL and FM-

AFM methods allows for lower noise and greater scan speed in UHV than AM-

AFM.[25]  The JEOL microscope used cantilevers similar to those used under 

ambient conditions in the D5000.  For AFM only, silicon cantilevers may be used.  

Because this work was focused on collecting Kelvin probe data, I used Ti/Pt-coated 

silicon cantilevers with a resonance frequency of 300 kHz and Q of 8000-9000.  

The tip bias for normal imaging was set to be equal to the contact potential difference 

(CPD) minimum as found by sweeping the sample bias at low set point (-0.5-1 Hz) 

and finding the peak in frequency shift.  By operating at the CPD minimum for 

noncontact imaging we eliminate the contribution of the previously mentioned long-

range electrostatic forces.  The set point for imaging was determined by taking Z 

spectroscopy curves.  The ideal set point values had a slope of -(10-20) Hz/nm on the 

Z curve. 

 With the feedback properly optimized, both ambient AM-AFM and UHV FM-

AFM can easily resolve atomic steps in the vertical direction.  Although atomic 

resolution has been achieved by AFM methods, our images tend to have a lateral 

resolution of roughly 20 nm depending on tip radius of curvature.  The metal-coated 

tip used in both ambient conditions and UHV for KPM have a somewhat larger size 

than the equivalent uncoated cantilever. 

'tsF q
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 AFM is used throughout our work to provide accurate imaging of graphene 

surfaces.  While the next section will discuss KPM methods separately, every surface 

potential image collected for this project was collected alongside a topographical 

image, either simultaneously (UHV) or by interleave scan lines (ambient).   
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Kelvin Probe Microscopy 

The common implementations of KPM allow for the simultaneous collection 

of topographical and surface potential data for samples of varying electronic 

characteristics, presenting a variety of interfaces, and with a wide range of 

dimensions.  Because the Kelvin probe technique is performed using an AFM, scan 

sizes are not limited as they are in scanning tunneling techniques.  The large scan size 

is coupled with good tip-dependent spatial resolution, making KPM preferable to 

SSET, photoemission electron microscopy (PEEM), and other methods of measuring 

surface electronic properties.  In its UHV implementation, the lateral spatial 

resolution of the surface potential is generally comparable to the tip radius.  In 

ambient implementations employing a LiftMode™ technique, resolution is somewhat 

worse and depends on the lift height used during the Kelvin loop.  When applied to 

measuring charge puddles in epitaxial graphene on SiC(0001), KPM is a powerful 

technique, with a spatial resolution of 20 nm (smaller than the predicted puddle size) 

and the capability to scan over several micrometers, measuring multiple puddles and 

microscopic variations in charge distribution.  This section will present the details of 

KPM, discussing in particular the difference between KPM in ambient and UHV 

environments and how the resolution of these techniques is determined. 

The first discussion of adapting existing AFM techniques to local surface 

potentiometry originated at IBM’s T. J. Watson Research Center in 1991.[28], [29]  

Introduced by Nonnenmacher et al. as “Kelvin probe force microscopy,” the name of 

the technique came from the non-local measurement from which it was derived.[28]  

The Kelvin force describes the force between two materials arranged as a parallel 
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plate capacitor.  By mechanically vibrating one of the two plates, an oscillating 

current is generated between the two plates as follows: 

i(t) VCPDC cos( t)    (2.10)[28] 

 Here VCPD is the contact potential difference (CPD) between the two plates.  It 

is this quantity that is locally measured in KPM.  The vibrating signal is applied at the 

frequency , and C is the change in capacitance between the two plates.  This 

capacitance will be addressed in a different manner when the local probe 

measurement is discussed.   

In the parallel plate configuration, the Kelvin force measurement measures the 

CPD between the different materials of the two plates without giving any information 

about local variation within a material.  The CPD is representative of the difference in 

work functions between the two materials; thus, a local measurement of CPD 

between a known and unknown material would give a measurement of the local work 

function variation over a surface.  Measuring spatial variations in a surface by local 

probe techniques, then, provides insight into the nature of charge distribution across a 

surface; and, in the case of graphene, allows for the characterization of charge 

puddling.   

For the adaptation of the Kelvin force measurement to a local probe 

technique, the measured quantity to be considered is the force between the AFM 

cantilever and the sample surface.  In its simplest form, the force is derived from the 

potential 

U 
1
2

CV 2 such that


U
z

 F  
1
2

V 2 C
z

  (2.11)[29] 
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where F is the force on the tip, V is the voltage on the tip and is the change in 

tip-sample capacitance as the tip-sample distance varies.  Weaver et al. note that in 

ambient this last quantity is poorly defined, effectively throwing a wrench into the 

idea that the force F is proportional to amplitude of tip oscillation.[29]  The term 

is dependent on the dielectric environment between the tip and the sample, 

which may be affected by different surface adsorbates, in addition to the tip-sample 

distance. 

There are a variety of methods in practice to accomplish the KPM 

measurement.  In common implementations, a dc voltage Vtip,dc and an ac voltage 

Vtip,ac() at frequency  are applied to a conducting tip.  The technique employs two 

lock-in amplifiers, one to control the loop collecting topographical data and the 

second to measure the CPD between the tip and the sample and nullify the force on 

the tip.  A more explicit form of equation 3.11 is given by 

 Fac    C
z







tip surface Vtip,ac   1
2

Vtip,ac
2 2 




,  (2.12) 

  
where z is the tip-sample distance, and tip and surface are the local electrostatic 

potential of tip and surface when in electrochemical equilibrium (Vtip = 0).    

The Kevin probe method of surface potential measurement uses the first term 

in the force at frequency . This term drives oscillations at frequency  resulting 

from mixing of the ac potential with the dc electrostatic CPD which results from 

different work functions for the two surfaces.  The potential feedback loop is used to 

zC 

zC 
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apply a dc bias Vtip,dc to the tip to nullify the CPD such that the force and the 

amplitude of oscillation is zero such that  

 Vtip,dc  surface tip  (2.13) 
  
and Vtip,dc maps local variations in surface potential.   

Both the original IBM work and current interpretations of KPM data tie the 

lateral variation in surface potential to the local variation in work function.  The work 

function is the difference between the vacuum level and the chemical potential:   

 tip  vac Wtip ; surface  vac Wsurface  (2.14) 
 
where Wtip is the tip workfunction.  The electrostatic potential of tip and surface are 

related to the vacuum chemical potentials for electrons by 

 tip  Vtip,dc 
vac,tip

e
; surface  

vac,surface

e
.  (2.15) 

 
The feedback condition then gives 

 
vac,tip  vac,surface

Vtip,dc  tip surface  Wtip Wsurface  e
 (2.16) 

 
and Vtip,dc maps local variations in -Wsurface.   

The frequency  of operation for the ac signal varies from method to method 

and system to system.  For this work, KPM was performed in an ambient 

environment using a Veeco D5000 scanning probe microscope with an internal lock-

in amplifier was used.  The ac signal is applied at the resonance frequency of the tip 

in LiftMode™.  Each tapping mode scan line is interleaved with a LiftMode™ scan 

line.  During the LiftMode™, tapping feedback was turned off, and the lock-in 

measures an oscillation resulting from a force at frequency .  The feedback loop 
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applies the nullifying dc voltage Vtip,dc such that the oscillation amplitude is zero.  The 

interleaving of tapping and LiftMode™ scan lines means that topography and 

potential data are taken in alternating lines, mapping out exactly the same area for 

both channels of data.   

Kelvin probe on the D5000 is implemented using a standard silicon AFM 

cantilever that has been coated with Co/Cr.  The metal-coated tip provides a more 

uniform work function than bare silicon, allowing for a precise measurement of the 

sample surface potential variation without any question about the homogeneity of the 

tip work function itself.  The Co/Cr tips used in this work had a resonance frequency 

of 60-90 kHz, somewhat lower than a standard silicon tapping cantilever with 

resonance at 300 kHz.  The primary disadvantage in using a coated tip is that the 

metal coating increases the radius of curvature on the cantilever.  While a bare 

cantilever may have a tip radius of < 20 nm, the Co/Cr tips like the one shown in 

Figure 14 tend to be in the 20-40-nm range.  The lateral resolution of the 

topographical data is roughly the same as the tip radius, while the lateral resolution of 

the Kelvin measurement is the tip radius plus the particular lift height used.  This 

work was performed using Co/Cr tips produced by both NanoWorld and Veeco, with 

similar results.  It is worth noting that Veeco also produces Pt/Ir coated tips with 

improved radius of curvature; however, the Pt/Ir coating was found to be not as 

robust under repeated scanning, causing frequent tip failure.   
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Figure 14:  From the Bruker (formerly Veeco) probes catalog.  An SEM image of a Co/Cr coated 

AFM cantilever with a tip radius of 20-40 nm. 

 

The vertical resolution of all AFM techniques, both for height data and 

surface potential measurement, is much better than the lateral resolution.  While the 

lateral resolution for AFM with our tips is quoted at 20-40 nm for topographical data 

and 20-100 nm for surface potential data, depending on lift height, the vertical 

resolution is much more sensitive to changes in tip-sample interaction.  In normal 

AFM operation, the vertical resolution of the D5000 is sub-nanometer, easily 

resolving single graphite (0.33 nm), SiC (0.25 nm) and atomic steps.  The surface 

potential resolution during Kelvin probe operation is dependent on different factors 

depending on the implementation of the method.  For ambient measurements on the 

D5000, the limiting factor is thermal noise.  The surface potential resolution of a tip is 

affected by thermally induced noise and may be calculated from the tip properties via 

[28] 

 VCPD,min 
2kBT k B
 3Q fres

1
0 VAC







d
R

.  (2.17) 

 
Here VCPD,min is the minimum CPD resolvable by the cantilever, k is the spring 

constant of the cantilever, B is the bandwidth of the feedback loop, Q is the quality 

factor of the tuned cantilever, fres is the resonance frequency, VAC is the ac signal 
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applied to the tip (Vtip,ac), d is the tip-sample distance, and R is the radius of curvature 

of the tip.  For a 60 kHz cantilever operating in ambient conditions in our D5000, 

VCPD,min is  2 mV.  The variation in Q from ambient to UHV means that VCPD,min 

should be orders of magnitude better in UHV.  However, using values for the 300 

kHz tips used in the JEOL UHV system, the surface potential resolution at resonance 

is again  2 mV.  In our UHV system, the Kelvin loop operates away from fres, 

resulting in a lower thermal noise contribution.  We suggest further that in the case of 

the JEOL UHV system, thermal noise may take a backseat to noise introduced by the 

phase-locked loop setup responsible for data collection.  For our purposes it turns out 

that a resolution of 1 mV is about an order of magnitude below the standard 

deviation in surface potential within an image collected in ambient conditions in the 

D5000.  This will be discussed later, but for now this figure shows that I am able to 

collect meaningful surface potential data on our samples with good resolution. 

The surface potential measurement is performed by applying a 1500-mV ac 

voltage, Vtip,ac, to the tip at resonance frequency, , with the tip lifted 2-20 nm above 

the graphene surface and the piezo driver turned off.  The tip voltage Vtip,dc is 

controlled by a feedback loop such that the amplitude of the tip at the ac frequency is 

zero.  For graphene, I expect that Wsurface = Wcnp – EF, where Wcnp is the work function 

of charge-neutral graphene on SiC (0001).  Hence Vtip,dc directly tracks variation in 

EF, and I take the standard deviation in Vtip to be equal to EF,rms/e.   

Other methods of simultaneous data collection rely on applying the ac signal 

at an off-resonance frequency and using the lock-in to separate the at-resonance 

topography data from the off-resonance potential data.  The UHV implementation of 
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KPM as performed for this work is conducted on a JEOL combination AFM/STM 

with an SEM attached.  The UHV analog of traditional tapping mode AFM is 

noncontact mode AFM.  To perform KPM in noncontact mode, the ac voltage is 

applied to the tip at an off-resonance frequency kelvin simultaneous with the 

topographical loop running at the tip resonance frequency res.   

Performing KPM in UHV carries several distinct advantages over ambient 

KPM.  The first is simply due to the difference in implementation.  The noncontact 

mode methods employed in UHV eliminate the need for a lift height as employed in 

the interleaved ambient scan.  Because the tip is closer to the sample surface during 

the CPD measurement, the spatial resolution is improved over ambient values.   

The lateral resolution of UHV KPM is better than that of ambient KPM.  The 

resolution of ambient KPM is roughly the tip radius plus the necessary lift height.  

The choice of lift height is determined primarily by surface topography.  During 

LiftMode™ operation, the side of the AFM cantilever may interact with step edges 

and features if the lift height is smaller than the tallest features.  The lift height must 

be chosen so that the tip is never closer to the side of a step or feature than to the 

surface itself.  For graphene on SiC(0001), the lift height used may be small, as noted 

previously because the sample surface is devoid of tall steps and abrupt surface 

features.  The small tip-sample distance of the non-contact KPM implementation 

allows for lateral surface potential resolution comparable to the lateral resolution of 

the topographical data.   

The third advantage of UHV KPM over ambient KPM lies in the adequate 

description of . The tip-sample capacitance in an ambient environment is zC 
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affected by a variety of factors, particularly the dielectric environment between the tip 

and the sample.  At first glance, the primary difference between ambient and UHV 

techniques is simply the difference in dielectric constant between air and vacuum.  

However, in an ambient environment, the question of surface adsorbates becomes 

much more important.  Samples used in UHV KPM have been heated at 420 oC for 

15 minutes to clean off most surface contamination.  This, combined with the UHV 

environment, means the sample surface is cleaner than in ambient conditions.  In an 

ambient environment, it can be assumed that there is a layer of adsorbates on the 

sample.  If this layer is homogeneous, all measurements of variation in surface 

potential are unaffected.  However, graphene on SiC(0001) samples does not present 

a completely homogeneous surface for these adsorbates.  Epitaxial graphene samples, 

in addition to monolayer graphene, have bilayer and exposed IFL regions that may 

have different surface energies and may attract adsorbates differently.  The simplest 

evidence of this is that Al2O3 top gate dielectrics deposited by atomic layer deposition 

(ALD) does not stick equally well to monolayer and bilayer graphene regions on a 

single sample, with the film “beading up” and not adhering to bilayer regions.[30]  

Different adsorbed layers on monolayer and bilayer regions of the sample could skew 

the ambient measurement of surface potential differences on the two surfaces.  While 

this work will look at the matter of distinguishing graphene layers by KPM in 

ambient and UHV conditions, it may be the case that ambient results across different 

surfaces cannot provide conclusive surface potential steps unless supported by UHV 

work.  That there is a surface potential step between layers is clear, but the height of 

this step may not be absolutely determined in ambient conditions.  Variations within a 
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single graphene layer or single surface do not have this same problem; nevertheless, 

the inherent variability in  gives strong motivation for performing 

measurements in UHV. 

In the JEOL tool, an ac voltage of 300 mV amplitude is applied at kelvin = 450 

Hz, much lower than the typical res.  The cantilevers used in the JEOL are multi-

purpose metal-coated AFM cantilevers similar to those used in ambient conditions.  

The particular cantilevers used in this work are MikroMasch Pt-coated silicon AFM 

cantilevers with a resonance frequency of 300 kHz.  The topographical data are 

collected using a phase-locked loop operating at res while the surface potential data 

is collected at kelvin.  The limitation of this method is that the scan speed must be 

slow enough to allow the PLL to follow the 450 Hz Kelvin signal.  Scan speeds in 

UHV are in general much slower than in ambient.  Ambient AFM and KPM scan 

speeds used in this work are general several microns/s, while ambient images are 

generally captured at 100-550 nm/s.  Scan speeds for UHV KPM are slower than 

UHV AFM because the operating bandwidth of the PLL has to be widened from 200 

Hz to 500 Hz to accurately measure the 450 Hz Kelvin oscillation.  The quality factor 

for AFM cantilevers is boosted in UHV to be 8000 for the Mikromasch tips.  

Finally, the simultaneous operation of the Kelvin probe loop and the topographical 

loop in UHV decouples the topography data from any electrostatic variation in the 

sample surface due to variation in the charge environment.  The Kelvin loop nullifies 

the electrostatic force on the tip, allowing for the topographical data to be a true 

measurement of the van der Waals interaction in the noncontact regime. 

 

zC 
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Chapter 3: Methods for Fabricating Graphene 
 

 

Introduction 

 This chapter provides a summary of the current common methods for 

fabricating graphene.  While exfoliated graphene flakes have provided an adequate 

platform of study for much of the fundamental research characterizing graphene since 

2004, the low-yield and size limitations of doing experiments on flakes makes them 

poorly-suited for large-scale applications.  Before focusing my work on epitaxial 

graphene samples, I briefly worked on depositing graphene flakes on SiO2 using 

solution-phase methods.  The techniques involved in fabricating graphene by 

mechanical exfoliation (the “Scotch tape method”), solution-phase processing, 

chemical vapor deposition, and epitaxial growth on SiC substrates are discussed here.   

 

Mechanical Exfoliation 

The first fabrication method widely used for making graphene electronic 

devices was mechanical exfoliation or micromechanical cleavage.[12]  Graphite is 

cleaved using double-stick tape and tweezers and placed on a SiO2/Si substrate.  The 

cleaved graphite is in the form of ultra-thin flakes 1 to 2 mm long.  The flakes are 

rubbed or pressed with tweezers or another piece of substrate until the bulk of the 

material is removed, leaving behind many small flakes of graphene and thin graphite.   
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Figure 15:  Optical micrograph of monolayer graphene and thicker graphite flakes on 300-nm SiO2.  

The central graphene flake is folded, revealing mono- (yellow arrow), bi- (red line), and trilayer (green 

line) regions as well as thicker areas. 

 

Figure 15:  shows an optical micrograph of graphene debris on a substrate of 

300-nm SiO2 over Si.  The visibility of monolayer graphene on SiO2 of varying 

thicknesses has been well documented and is largely dependent on the wavelength of 

the light used.[12]  Monolayer graphene is visible on 300-nm oxide with the peak in 

the contrast spectrum occurring in the green light range (550 nm).[13]  Graphene on 

200-nm oxide is not visible at this commonly used wavelength or under normal white 

light.[12]  The primary effect of changing oxide thickness, then, is to shift the 

wavelength at which maximum contrast appears.[13]  Graphene may be made visible 
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on a wide range of SiO2 thicknesses by the application of the correct light filters.  The 

200-nm oxide thickness, for example, requires a filter in the blue light range.[11]  The 

visibility of graphene on any dielectric is relatively surprising, given that it only 

increases the optical path by 0.34 nm.  Graphene is made visible by two 

mechanisms: (1) the phase shift that occurs in any interfering light when passing 

through a medium of different refractive index and (2) the opacity of the graphene, 

which is commonly discussed with reference to its extinction coefficient.[11-13]   

Experimental observations agree with models calculating the index of refraction of 

graphene to be 2.0 – 1.1i.[31]  The use of 300-nm oxide is ideal because of its wide 

availability and because optimum contrast is easily reached using normal microscopy 

light.  The maximum contrast reported for graphene on SiO2 is 10% using white or 

green light.[31]  Flakes thicker than monolayer appear darker and more opaque and 

are easily observed on the SiO2/Si substrate.   

Wiring transistors from these samples is most commonly done using electron 

beam lithography.  Alignment markers are put down around the graphene flake, and 

contacts are designed to accommodate the particular geometry of the flake and the 

measurement being performed.  While mechanical exfoliation is one of the most 

widely used graphene fabrication techniques, it is not ideal for transistor fabrication.  

Only about one to three in ten wafer chips will yield graphene flakes.  The process of 

locating these flakes using an optical microscope is time-consuming, and there is no 

guarantee that flakes will be isolated enough or that they will be large enough to wire.  

Experimentalists continue to rely on this method of fabrication because it is still the 

cheapest and cleanest way to get graphene flakes, and exfoliated graphene on SiO2 
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exhibits high quality, with low-temperature charge carrier mobility typically in the 

range of 10000 -20000 cm2/Vs. 

 

Solution-phase Methods of Obtaining Graphene 

The impetus to seek out methods for fabricating graphene via solution 

processing had its roots in two previous areas of experimental work.  Work done by 

Hongjie Dai and others had already shown that it was possible to dissolve carbon 

nanotubes in solution without damaging their unique electronic properties.  More 

specifically, dissolving carbon nanotubes with long-chain polymers such as poly(m-

phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV) was ideal because 

the polymer bonded non-covalently to the nanotube.[32], [33]   

To put graphite in a form suitable for solution processing, maximum surface 

area had to be exposed and made available to the dissolving polymer.  The history of 

functionalizing graphite as a means of generating expandable graphite dates back to 

1859.[33]  To create expandable graphite, graphite is intercalated with sulfuric and 

nitric acids, causing the oxide groups to bond between graphite layers, effectively 

exfoliating the material.  Upon rapid heating, oxide groups burn off, and the acid-

intercalated or acid-washed graphite expands to 500 times its original volume, greatly 

enlarging the space between individual layers.  In the past, acid-intercalated graphite 

has been used as a flame retardant and is widely available from commercial sources.  

Uniting these two techniques, expandable graphite is well suited to dissolving in 

solution, while long-chain polymer methods hold promise for preserving the desirable 

electronic properties of graphene. 
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In January 2008 the Dai group at Stanford reported the fabrication of 

semiconducting graphene nanoribbons from solutions of acid-washed graphite and 

PmPV.[34]  Dai’s process produced graphene nanoribbons ranging in width from less 

that 10 nm up to 50 nm and with lengths around 1-1.8 m.  SiO2 substrates pre-

patterned with alignment markers were soaked in graphene/PmPV/dichloroethylene 

(DCE) solutions for 20 min, rinsed with isopropyl alcohol (IPA), and blown dry with 

Ar gas.   Chemical residues from the solution were further removed by annealing the 

sample in air at 350oC for 10 min and in vacuum at 600oC for 10 min.  Nanoribbons 

were found and characterized using AFM and TEM techniques.  The use of AFM to 

measure nanoribbons requires an accurate measurement of the microscope tip size to 

deduce true nanoribbon width from apparent width.   Dai’s discovery of nanoribbons 

by this method does not address the low yield of the process.  Only 0.5% of the 

expanded graphite pieces was retained in solution with PmPV and dichloroethylene 

(DCE).  The group started with 10 mg of graphite and while they characterized >100 

ribbons, this was only a tiny fraction of the starting mass.   

In my search for chemically derived graphene, I attempted to replicate the 

method published by the Dai group.  Expandable or acid-washed graphite was 

obtained commercially from Anthracite Industries, Inc.  The expandable graphite was 

first annealed at 1000oC in forming gas for about 1 min.  This annealing process 

caused the desired 500-fold expansion in the graphite, creating large gaps between 

graphene layers and making the material easier to dissolve into solution.  The 

resulting pieces of expanded graphite were put in 10 mL of the aforementioned 

PmPV/DCE solution and sonicated for 30 min to create an even solution and further 
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break up the graphite.  The suspension of graphite in PmPV/DCE was centrifuged for 

5 min in ten 1-mL containers to allow larger pieces of graphite to separate out.  The 

top portion of the liquid was then drawn off and spin-coated at low speed (1000 rpm) 

onto SiO2 substrates.  Drop-casting was also experimented with, but the rings of 

material produced by this method were too dirty to perform detailed characterization.   

 

Figure 16:  AFM images of chemically derived graphene flakes.  The flakes were placed on SiO2 

substrates by spin-coating a solution of DCE/PmPV/expanded graphite that had been centrifuged and 

sonicated to facilitate the splitting of graphene layers.  The vertical scale here is 30 nm for all the 

flakes except the top left figure where the scale is 20 nm. 

 



 

 52 
 

Spin-coated samples showed a homogeneous covering of the SiO2 surface 

with flakes of graphite and graphene from several to 20 m in width.  There was 

considerable variation in flake thickness from graphite-like thickness down to 

monolayers.  Graphene and graphite flakes from spin-coating covered the SiO2 

substrate much more densely than anything produced by mechanical exfoliation. 

The samples I generated on SiO2 were first inspected in an optical microscope 

for likely monolayer and few-layer candidates.  Further characterization of these 

flakes was done via AFM.  Figure 16 shows a collection of monolayer and few-layer 

graphene flakes deposited on 300-nm SiO2 using the PmPV method developed by the 

Dai group.[19]  While individual nanoribbons were not found, flakes such as these 

were prevalent over the substrate surface.  AFM characterization revealed several 

features: (1) monolayer and few-layer flakes, much like those made by mechanical 

exfoliation, frequently had folds and thicker regions; (2) flakes were characterized by 

wrinkles or pleating, possibly due to the deposition process; (3) flakes and the 

surrounding substrate were contaminated by small dots of chemical residue.  Of the 

features observed by AFM, the problem of chemical cleanliness was the most 

troublesome.  Although the PmPV is supposed to be bonded noncovalently to 

graphene, the exact nature of the observed residues is unknown, and their effect on 

graphene band structure is unmeasured. 

While I was pursuing chemically derived graphene dissolved using PmPV, 

additional work was published indicating that this process was in no way unique to 

PmPV.  Organic solvents (without polymers), such as N-methylpyrrolidone (NMP), 
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have also been shown to be effective in dissolving expanded graphite in solution.[19], 

[35-38] 

In spite of the versatility of this method and the low cost of solution-processed 

methods in general, chemically derived graphene is still hampered by problems of 

yield and chemical contamination.  Although graphene nanoribbons provide us with a 

platform for interesting physics, graphene flakes are much more observable.  Still, the 

problem of properly cleaning chemically derived graphene flakes makes them less 

well suited to device fabrication than flakes produced by mechanical exfoliation.  For 

this reason, chemically derived methods are currently considered more useful for 

work on graphene oxides and other graphene derivatives than for the production of 

pristine graphene samples.    

 

Chemical Vapor Deposition of Graphene on Metals 

Before the interest in 2D graphene peaked in the last six years, thin graphite 

was grown epitaxially on various metal and insulator surfaces as far back as 

1966.[31]  Growth of graphene on metal substrates by chemical vapor deposition 

(CVD) was first explored as an option for thin graphite film growth as early as 

1974.[19], [35-38]  While the original process involved annealing single-crystal Ni in 

UHV conditions, newer methods relied on polycrystalline substrates at easily 

attainable low vacuum pressure or atmospheric conditions.[36]   

The recent work on CVD growth of graphene on nickel has focused on 

polycrystalline Ni as a substrate with the goal of obtaining large-area graphene.[19], 

[35]  The substrates—either 300-nm thick films grown by electron-beam 
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evaporation [35], [36] or 0.5-mm thick foils [19]—are  annealed in precursor gases.  

The gas composition is usually some combination of CH4 or C2H2 gas and H2 gas.  

Introduction of the hydrocarbon gas is usually preceded by a H2 etch.[19], [35], [36]  

Two competing methods have emerged, the first requiring only atmospheric pressures 

[19], [35], [36] and the second operating at tens of mTorr [35].  Extensive work has 

been done to optimize the growth temperature, cooling process, and gas 

concentrations for both of these methods.  For both atmospheric and low-pressure 

methods, a growth temperature of 900-1000oC is used.[36]   

Growth studies measuring graphene quality with increasing temperature from 

700 to 1,000C indicated that, while graphene does grow at lower temperatures, the 

Raman D peak (only present in graphene and graphite with point disorder[39]) is 

prominent for samples grown at lower temperatures.  In Figure 17:   Raman studies 

show that as the temperature increases from 700oC to 1000oC, the D peak intensity 

decreases, indicating fewer point defects and higher quality graphene.[19]  The G’ 

peak has an full width at half maximum (FWHM) of only 33 cm-1.   
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Figure 17:  Raman spectroscopy of graphene grown by CVD on Ni substrates from reference [5].  (a) 

The evolution of the G’ peak with increasing temperature shows that optimum growth occurs at 

1,000C.  Similarly, the increase in temperature causes a decrease and eventual disappearance of the D 

peak.   (b) The G’ peak is shown to depend on the C2H2/H2 ratio.  The G’ peak is strongest for a 

concentration of 2:45, and approaches that of HOPG with increasing C2H2.  (c) Growth time is 

similarly optimized and viewed in relation to the G’ peak for HOPG.  (d) The position of the G’ peak 

and the ratio of the G to G’ peak are shown to depend on gas concentration.  The inset shows these 

values to be dependent on growth time as well.  

 

 Although the growth of graphene on Ni is called “chemical vapor deposition,” 

the growth mechanism is not a typical CVD process and should probably be referred 

to as a vapor-solid solution-solid process in analogy to vapor-liquid-solid (VLS) 
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growth.  During the heating process, carbon is incorporated into the Ni lattice from 

the precursor gas, creating a solid solution of carbon in the metal. The solubility of 

carbon in nickel drops during the cooling process, causing the carbon to precipitate 

out and allowing for the controlled growth of several layers of graphene. This method 

of carbon precipitation is called carburization and is characteristic of growth on 

nickel.   

In May 2009, the Ruoff group published work on CVD of graphene on Cu 

foils.[38]  The Cu growth process differed from the previous work on Ni in two key 

ways: (1) because the solubility of carbon in Cu is much lower than that in Ni, the 

carbon does not become incorporated into the metal lattice; and (2) perhaps as a 

consequence of this, the growth process is more like traditional CVD, with carbon 

atoms adsorbing onto the Cu surface.  These two factors combine to produce a growth 

process that is self-limiting, making monolayer coverage of 95% or better more easily 

attainable. 

The self-limiting nature of the graphene-on-Cu growth process is tied to a 

substantial difference in the growth mechanism from the carburization that takes 

place on Ni.  Because of the low solubility of carbon in Cu, the carbon from precursor 

gases does not become incorporated in the 25-m-thick foils.  Once the graphene 

fully covers the Cu surface, surface catalyzation is not possible, and the reaction stops 

after 10 min.  Raman spectra of the grown graphene show good monolayer features 

with a strong G’ peak at 2680 cm-1.   

 To help answer some of the questions surrounding the various growth 

processes, the Ruoff group grew graphene on both Ni and Cu substrates using an 



 

 57 
 

alternating sequence of a conventional CH4 precursor gas and a precursor gas 

containing 13C isotopes.[14]  For the growth on Cu, 12CH4 and 13CH4 sequencing 

could be distinguished in the resulting graphene by Raman microscopy, consistent 

with surface adsorption as in the CVD growth process.  Ni-grown samples showed a 

homogenous mixing of carbon isotopes consistent with the carburization or 

precipitation process.   

Methods for fabricating CVD graphene into isolated electronic devices 

revolve around the acid-etching of the metal growth substrate.  Ni foils and films may 

be completely etched away using solutions of HNO3 or sulfuric acid.  Prior to the acid 

etch, graphene is spin-coated with poly(methyl methacrylate) (PMMA), 

polydimethylsiloxane (PDMS), or other polymers.  The resulting membrane floats 

and is relatively easy to deposit onto Si/SiO2 substrates.  Some samples have been 

successfully transfer printed onto transparent plastics to eliminate any folding or 

buckling that may occur.  Top-gated field-effect transistors (FETs) were produced 

from graphene grown on Cu foils with an electron mobility of 4,050 cm2/Vs.[16]  

This is well within the range of acceptable mobilities for current graphene devices 

and cements CVD graphene in the field of plausible graphene production methods. 

 

Epitaxial Graphene on SiC 

The first large-scale graphene production arrived in the form of epitaxial 

growth on SiC crystals.  The first intentional forays into the graphitization of SiC in 

vacuum were published as early as 1960.[40]  Interest in graphene, and the naming of 



 

 58 
 

the single carbon layer, came later in 2002.[41]  The first electronic transport 

experiments on graphene on SiC, however, came in 2004.[42] 

While Geim and Novoselov were publishing transport data on an exfoliated 

graphene flake, Walt deHeer and Claire Berger were patterning and measuring a 

single layer of graphene grown on SiC.[42]  While much of the fundamental physics 

of graphene, most notably transport work, has been carried out on exfoliated flakes, 

work on epitaxial growth has to date provided the highest-quality large-area films. 

Today, complimentary transport experiments have shown that epitaxial graphene 

possesses the anomalous quantum Hall behavior, Raman G’ peak, linear dispersion 

relation, and other electronic properties unique to graphene and measured on 

exfoliated flakes, meaning that the epitaxial film is just as much a true graphene as 

the exfoliated flake.[41-47] 

Of the many different crystal polytypes for SiC crystals, the 4H and 6H 

configurations are most commonly used.  The crystal structure for these polytypes is a 

hexagonal structure similar to wurzite.  The 4H and 6H polytypes are distinguished 

by the relative rotation of successive layers of Si atoms.  As shown in Figure 18, the 

4H polymorph is characterized by an ABCB orientation, where the C and B layers 

have atoms in the voids of the A lattice, and the C and B layers are rotated 60o with 

respect to each other, so that the three voids in the A layer left open by the C layer are 

aligned with atoms in the B layer.  The 6H crystal structure is characterized by an 

ABCACB stacking.  Epitaxial growth experiments carried out on both 4H and 6H 

crystal polytypes have seen no differences in graphene quality or electronic 
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properties.[43-45]  The crystal face, and not the polytype, is the dominant factor in 

determining the topographical and electronic properties of the graphene.   

 

Figure 18:  Crystal structure of 4H and 6H SiC.  The 4H and 6H morphologies are characterized by 

ABCB and ABCACB stacking, respectively.  Here the color points on the lattice each represent a 

single Si-C unit cell as shown in the top left box. Each layer in the lattice represents a bilayer 

containing these two elements. 

 

Before graphene is grown, SiC substrates have to be prepared to create a 

smooth, growth-friendly surface.  To achieve a good growth surface, mechanically 

polished SiC is etched in H2 gas.  The hydrogen etch produces slightly different 

results on the carbon and silicon crystal faces.  In both cases the surface is etched into 

single step edges, but on the Si-face the steps are more closely spaced.[45]  After the 

hydrogen etch, graphene is grown by annealing the SiC crystals at 1500-1600oC.  
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Originally, the high-temperature sublimation of silicon from the SiC surface took 

place in UHV.  Samples grown by these methods were predominantly monolayer but 

had relatively poor surface morphology compared with later samples.  In recent work, 

various methods have been employed to provide a gas overpressure to the growth 

environment.  Tedesco et al. documents the successful growth of graphene in low-

vacuum and argon environments using a CVD reactor.[45]   

The CVD reactor method of Si sublimation employs an Ar flow ranging from 

low vacuum pressures up to 200 mbar.  Under these conditions the growth rate of 

graphene is better controlled, producing Si-face films of monolayer thicknesses.  On 

both crystal faces, the early stages of growth involve the formation of a carbon 

nanostructure coupled to the underlying SiC crystal.[18]  The exact nature of this 

buffer layer is not well known.  On the Si-face, the 0th layer or interfacial layer (IFL) 

is a disordered 63 x 63 reconstruction of carbon atoms.  A large area percentage of 

this layer is sp2 hybridized, although the pi-bands do not appear in ARPES data due to 

substrate-overlayer interactions.[46]  The IFL is, in fact covalently bonded to the 

dangling bonds of the underlying SiC.[47]  With further annealing, this layer becomes 

the sp2-hybridized lattice that is a graphene monolayer, and the underlying layer 

develops the 63 reconstruction symmetry.  With each successive layer of growth, 

there remains an IFL of carbon between the SiC and the honeycomb lattice of 

graphene.    

 Graphene growth characteristics on the C-face, SiC(000-1), and Si-face, 

SiC(0001), of the substrate are distinctly different in surface morphology and 

electronic properties.  The early epitaxial graphene papers of 2004 from Georgia Tech 
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focused on the Si-face of the substrate since monolayer results were more readily 

achievable.  Since then, however, the group has done the bulk of its work on C-face 

growth.  In the past six years, FETs have been patterned and measured on both sides 

of 4H and 6H substrates and the differences in growth on either side have been 

further distinguished. 

On the C-face, growth typically proceeds rapidly to a thickness of many 

layers, destroying the ordered SiC steps left by the H2 etch.  Additionally, there is 

rotational disorder on the C-face, which causes decoupling of the layers.[18] Because 

of this, the top layer of C-face growth may appear electronically and 

spectroscopically similar to monolayer graphene although the actual graphene film 

thickness is tens of layers. 

 To explain further the role of rotational disorder in the growth of graphene on 

the C-face of SiC crystals, it is worth looking first at stacking in graphene flakes from 

mechanically exfoliated graphite.  Exfoliated graphene from Kish graphite is Bernal 

stacked.  If the graphene unit cell contains carbon atoms of type A and B, then in 

Bernal stacking, atoms of type A from the top layer are aligned over atoms of type B 

in the next layer down.  Atoms of type B in the top layer are aligned over the hexagon 

center (empty space) in the lattice of the next layer down.  The alignment of atoms in 

Bernal stacking gives bilayer graphene its unique parabolic band structure and Raman 

G’ peak distinct from that of monolayer graphene.[18]  Graphene growth on the Si-

face follows Bernal stacking.[18]  Bernal stacking is observed in some portion of C-

face samples, but it is not prevalent.  When graphene grows on the C-face, subsequent 

layers have a twist showing preferred angles near ±30o or +/-2o.[48-50]  The twist 
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destroys Bernal stacking, destroying any coupling between the pi-orbitals of type-A 

atoms in the top layer and type-B atoms in the next layer down.  This rotational 

stacking may be compared to that of turbostratic graphite and results in a decoupling 

of the graphene layers.  Electronically, this means two things for graphene grown on 

the C-face.  First, the increased thickness of the graphene combined with the 

decoupling twist decreases the screening in the top layers generated by impurities in 

the SiC.  Second, Raman spectra taken on the C-face do not resemble the spectra for 

thick graphene or bulk graphite.  A C-face sample tens of layers thick may exhibit a 

Raman spectrum similar to that of monolayer graphene if the top layer is twisted 

relative to the underlying layers.   

The Raman signature for C-face graphene has a G’ peak at 2720 cm-1, 

distinct from Si-face and other forms of Bernal stacked graphene.  Figure 19 shows a 

comparison of monolayer growth on the Si-face to rotationally disordered growth on 

the C-face, as well as a comparison of Bernal-stacked Raman spectra to bulk graphite.  

Where AB-stacked growth occurs, C-face graphene will have a G’ peak that fits to a 

sum of two Lorentzians, similar to bulk graphite.[18]  Thick graphene growth that is 

rotationally disordered will follow the single-Lorentzian behavior of other forms of 

monolayer graphene.   



 

 63 
 

 

Figure 19:  Raman spectroscopy of graphene on SiC from reference [15]. (a) Monolayer graphene (red 

peak) on the SiC(0001) surface fits a single Lorentzian, while the bilayer (olive peak) is fitted by four 

Lorentzians.  The two-Lorentzian fit (blue peak) is provided for comparison.  TEM may be used to 

resolve monolayer (b) and bilayer (c) growth along with the accompanying buffer layer.  (d) On the 

(0001) crystal face, graphene growth is generally many tens of layers thick.  Rotational disorder can 

lead to electronic decoupling, resulting in a single Lorentzian peak (pink curve).  In the presence of 

Bernal stacking, however, C-face growth exhibits a Raman peak similar to that of bulk graphite (green 

and gold curves).   

 

The rotational disorder of graphene on the C-face is not uniform across the 

entire sample.  The characteristically multi-layer growth nucleates at the threading 

screw dislocations that are prevalent across the C-face of the substrate.[51]  The 

screw acts as a source, allowing easy sublimation of silicon atoms.  Growth proceeds 

outwards from the center of the screw in spiral fashion.  Frequently, the spiral will 

encounter a substrate step edge and proceed outward in an arm.  Because of the many 

screw dislocations over the substrate surface, graphene on the C-face grows in many 

islands that eventually contact each other to achieve complete coverage.  Since the 

screws are not identical, different graphene islands may have different layer 
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thicknesses and different rotational ordering.[51]  Because of this, it is possible to 

have a mix of Bernal stacked and completely decoupled, twisted monolayers on the 

films’ surface when growth is completed. 

The G’ peak for monolayer graphene on the Si-face looks like that of an 

exfoliated graphene flake, with similarly narrow FWHM < 45 cm-1.  When bilayer 

growth occurs on the Si-face, the Raman G’ peak is the sum of four Lorentzians, as it 

is with other Bernal stacked bilayers.[33]  Because of the distinct Lorentzian G’ peak, 

2D Raman mapping may be used to identify high-quality monolayer graphene films 

on SiC(0001).[43]   

The self-limiting nature of graphene grown on SiC(0001) is due to the 

different growth mechanism on this face of the substrate.  On the Si-face, the screw 

dislocations do not appear to play a strong role in growth except in cases where their 

density per unit area is exceptionally high.[47]  In these anomalous cases, many 

screw dislocations may be observed in a (100 m)2 area by AFM.[30]  On “good” Si-

face substrates with straight step terraces and a low density on screw dislocations, Si 

is most easily sublimated from step edges.  These two types of growth are compared 

in Figure 20.  The step edge is the primary source of Si sublimation and growth 

nucleation for Si-face substrates.  Even poor substrates with a high screw dislocation 

density show a mixture of spiraling island growth and edge-nucleated growth.   



 

 
 

Figure 20:  (a) An SEM image of graphene grown on SiC(0001).  This substrate is an example of a 

sample with a high density of screw dislocations, resulting in poor, anomalous graphene growth.  

Graphene is located in the darker regions of contrast.  The light grey regions are IFL.  (b) An ambient 

AFM scan of graphene grown on SiC(0001).  This substrate is an example of a normal arrangement of 

SiC steps. 
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SiC, totaling 0.75 nm deep, must be removed from the substrate.  Si removal is 

thought to progress from the step edge “uphill” until the next step is reached.
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limiting films to predominantly monolayer thickness.  Depending on growth rate and 
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progress in “fingers” toward the next step.[52]  This dendritic growth may be what 

causes IFL regions to be left behind after the majority surface is covered with 

monolayer graphene.  

In spite of dendritic growth in the presence of wavy SiC step terraces, the Si-

face produces good monolayer growth with fewer few-layer regions and 

topographical irregularities than graphene grown on the C-face.  While C-face 

graphene samples have been shown to have very high electronic quality [54] , the 

ease of production of monolayer graphene on Si-face SiC makes it a good model 

system to understand the interaction of epitaxial graphene with its substrate.  

Furthermore, due to the true monolayer nature of graphene on SiC(0001), I am able to 

compare transport and scanned probe studies of our graphene films.  This is not 

possible on the C-face, where the conduction channel is thought to be the bottom, 

highly doped graphene layer, and is not accessible by microscopy techniques.  This 

work will therefore focus exclusively on monolayer graphene films grown on 

SiC(0001). 

To date, monolayer graphene devices grown on SiC(0001) have been touted 

for their high mobilities and for applications to high frequency devices (transistors 

with cutoff frequencies >100 GHz have been demonstrated[55].)  Fundamental 

questions remain, however, as to the nature of charge transport in epitaxial graphene 

grown on SiC.  The role of the IFL in doping monolayer graphene films on SiC(0001) 

has been studied,[47] but it is not yet clear as to whether the model of charged-

impurity scattering that applies to exfoliated flakes on SiO2 may be easily adapted to 

the case of epitaxial growth.   
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Samples Used in this Work 

The samples used in this work are predominantly monolayer graphene films 

grown on SiC(0001) in an Axitron/Epigress VP508 Hot-Wall CVD reactor tool by the 

Power Electronics group at the Naval Research Laboratory in Washington, DC.  As 

noted briefly in the previous section, the methods for growing graphene on SiC have 

evolved somewhat since its step into the limelight in 2004.[7]  Our samples were 

grown on semi-insulating, on-axis (+/-0.5o) 4H- and 6H-SiC substrates of both silicon 

(0001) and carbon (000-1) crystal faces.[8]  The SiC substrate was cut down from 

50.8-mm and 76.2-mm wafer to 16- by 16-mm squares prior to being loaded in the 

reactor.  To remove the scratches from mechanical polishing, the samples were first 

cleaned by an H2 etch.  The samples were annealed at 100 mbar in 80 standard liters 

per minute at 1600oC for 5-20 minutes.[8]  The chamber was then flushed with argon 

prior to beginning the growth step.  Samples grown in 2008 and the beginning of 

2009 were grown in high vacuum.  During growth, the reactor pressure would range 

from 10-4-10-6 mbar while the temperature was held steady.[8]  Early growth 

experiments were conducted at temperatures ranging from 1225 to 1700oC, but that 

range was quickly narrowed to 1500-1620oC.[8], [9]  Growth times for samples 

grown in vacuum ranged from 10-120 minutes.  After preliminary AFM imaging of 

both C-face and Si-face samples, I continued to work exclusively with Si-face 

samples because of the smooth surface and predominantly monolayer growth.  As 

previously discussed, and as shown in Figure 21, the C-face of SiC produced samples 

that were many layers thick and covered with pleats and large topographical 
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variations.  Growth on the Si-face, in contrast, preserved the step terraces of the 

original substrate.  In addition to the smooth surface of graphene on SiC(0001) being 

better suited to microscopy techniques, it is worth noting that the conduction channel 

in C-face graphene devices is thought to be in the lower layers, near the substrate, and 

as such, a local probe measurement of the charge distribution in the surface would not 

provide insight into the transport characteristics of C-face film.   

 

Figure 21:  From reference [8].  AFM images of graphene grown on the Si-face (left) and C-face 

(right) of SiC.  The vertical scale, in nm, shows the step bunching on the Si-face film and the presence 

of tall pleats on the C-face film.  Left inset shows transmission electron microscopy image showing 

graphene and SiC layers. 

 
 Monolayer graphene regions on the SiC(0001) surface were identified by 

Raman spectroscopy.  While work done at NRL included extensive Raman mapping, 

I performed a cursory check on many of our early samples to confirm the presence of 

a narrow, single Lorentzian 2D peak.  Figure 22 shows a sample 2D Raman peak 

from a monolayer graphene sample grown on SiC(0001).  The 2D peak is the 

definitive peak for monolayer identification, as the SiC background peaks obscure the 

D and G peaks to some extent. 
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Figure 22:  A sample 2D peak from a vacuum-grown graphene sample on SiC(0001).  The 2D peak 

occurs at 2649 cm-1 and is fit to a Lorentzian with FWHM = 44 cm-1. 

 
 The growth morphology and monolayer area percentage of graphene on 

SiC(0001) was greatly improved when, in 2009, growth methods began to incorporate 

an Ar overpressure during the Si sublimation part of the growth process.  After  

chamber was flushed with argon to remove H2 used in the etch process, an argon 

overpressure of 100-150 mbar was maintained during graphene growth.  The argon 

over pressure had two notable effects on graphene growth: (1) the growth time had to 

be extended because the Si sublimation process was retarded, and (2) graphene 

growth did not begin until 1500oC on the C-face and 1550oC on the Si-face.[9]  The 

growth temperature was optimized to 1620oC, and growth times were extended to be 

90-150 minutes.[10]  Because growth was slower, less bilayer and multi-layer 

nucleation occurred at step edges.  The quality of the film was seen to rely on regular 

substrate steps with straight edges prior to growth.  Figure 23 shows Nomarski optical 

images and AFM images of graphene grown on SiC(0001) in vacuum and argon.[9]  

While the surface morphology of the argon-grown sample is more regular than that of 
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the vacuum-grown sample, perfectly straight step edges would have produced a 

higher quality film.  The rippling in the step edge as seen in Figure 23(d) effects the 

step bunching during growth.[11]  The rippling SiC step terraces are a characteristic 

of the substrate as it is received from Cree (4H substrates) and II-VI (6H substrates) 

and cannot be corrected for during the H2 etch process. 

 

Figure 23:  From reference [9].  Nomarski micrograph (a, c) and AFM image (b, d) of graphene grown 

on SiC(0001) in vacuum and in argon respectively. 

 
The primary characterization work performed on the NRL samples in 2008 

and 2009 was a series of transport measurements.[9], [12]  On the 16- by 16-mm 

samples, van der Pauw measurements were performed to extract carrier density and 

mobility at 77 K and 300 K.  Additionally, some samples were patterned by 

photolithography with an array of two-probe and four-probe ungated devices with 
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Au-evaporated contacts.  The mask used for this patterning is shown in Figure 24.  

From this array of devices, a selection of 10-m Hall crosses was measured also to 

extract mobility and carrier concentration.  The Hall crosses were only measured at 

300 K.  The transport measurements were performed on both C-face and Si-face 

samples, with the C-face samples generally showing higher mobility.  A selection of 

these measurements is shown in Figure 25.  In total 44 van der Pauw measurements 

were performed on different samples, and 386 Hall crosses across several patterned 

samples were measured.   

 

Figure 24:   From NRL.  The photolithography mask used to pattern graphene devices for transport 

measurements.  The die shown here is 4- by 3-mm.  Each 16- by 16-mm sample was patterned with 12 
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of these die.  The eight 4-probe devices in the top left quadrant are the Hall crosses presented here.  All 

devices were ungated. 

 

Figure 25:  From reference [12].  (a) van der Pauw measurements conducted on 16- by 16-mm 

samples and (b) Hall measurements conducted on 10-m patterned crosses.  In both graphs, red and 

black symbols are for C-face samples.  Red circles are p-type, and black squares are n-type.  Green and 

blue triangles are for Si-face samples.  Green upward triangles are n-type ,and blue downward triangles 

are p-type.  Open symbols in panel (a) are devices measured at 77 K.  The green samples in panel (b) 

refer to samples from other references measure at low temperature.  ( and ) Data from n-type C-
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face samples measured at 1.4 K.  () Data from n-type C-face samples at 180 K.  The open green 

hexagon is for n-type Si-face samples measured at 4 K.  See original reference for sources. 

 

Of particular interest was the fact that the apparent Hall carrier density of the 

Si-face samples spans several orders of magnitude with both p-type (hole) and n-type 

(electron) doping.  While this might have been explained by different growth 

conditions for the van der Pauw measurements on different samples, the large 

variation in sheet carrier density was also seen within sets of Hall crosses measured 

on the same sample.  This suggests that the samples grown by NRL had a large 

variation in carrier concentration on micron length scales.  This assumption is 

revisited in Chapter 4. 

The application of KPM to graphene on SiC(0001) can provide insight into 

the nature of charge distribution and puddling in these films.  Angle-resolved 

photoemission spectroscopy (ARPES)[56], [57], STM[58] and transport [59], 

[60]experiments have left the door open for a surface potential measurement such as 

KPM to properly characterize carrier concentration variation and possible puddling in 

epitaxial graphene.   The remainder of this work will detail ambient and UHV KPM 

measurements that seek to address the problem of carrier concentration variation in 

epitaxial graphene with the aim of forming a model of graphene on SiC(0001) 

analogous to the model of charged-impurity scattering that describes graphene on 

SiO2. 
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Chapter 4: Ambient KPM of Graphene on SiC(0001) 

 

Introduction 

This chapter discusses ambient-environment surface potential measurements 

taken on a single 16- by 16-mm argon-grown Si-face epitaxial graphene sample using 

KPM to understand the macroscopic (i.e. between locations millimeters apart) 

variations in surface potential.  The following chapters will discuss measurements on 

additional samples grown in vacuum and samples grown in argon, performed in 

ambient and in UHV, to understand the microscopic variations in surface potential 

due to differences in number of graphene layers, and within a layer type due to 

disorder.  The work described in this chapter closely follows our manuscript 

published in Applied Physics Letters.[23]   

Growth on “Si-face” SiC (0001) has produced graphene films of highly 

uniform thickness, consisting almost exclusively of single-layer graphene (SLG), as 

evidenced by Raman spectroscopy [18], [44], [61] and the half-integer quantum Hall 

effect unique to SLG.[59], [60], [62], [63]  However, questions remain as to the 

electronic uniformity of these films.  Photoemission, [56], [57] STM, [58] and 

transport [59], [60] experiments report a wide range of Fermi energies +90  EF  

+500 meV relative to the charge-neutral point (CNP) for SLG on SiC (0001).  A 

recent transport study [64] of a large number of similar ungated devices, both (16 

mm)2 chips and multiple (10 m)2 Hall crosses fabricated on the same chip, found 

large variations in carrier concentrations; electron and hole concentrations exceeding 
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3 x 1013 cm-2 were observed, corresponding to a standard deviation in Fermi energy 

EF,rms > 500 meV.   

Here I use ambient KPM to probe variations of surface potential, and hence 

Fermi energy, in SLG grown on 6H-SiC (0001).  In contrast with the Hall-cross 

measurements,[64] KPM of multiple (10 m)2 areas shows an EF,rms of only 12 meV, 

indicating highly uniform doping on a macroscopic scale.  Transport measurements 

on this sample and many nominally identical samples[64] reveal that the conductivity 

 is clustered about a value of 4 e2/h, which is consistent with the predicted 

minimum conductivity for graphene on SiC with a charged-impurity density nimp on 

order of 1013 cm-2. This impurity density is also consistent with the mobility on order 

1000 cm2/Vs observed for the few highest-conductivity samples with  >> 4 e2/h 

which are presumably doped outside the minimum conductivity regime.  I conclude 

that our samples, and the majority of the samples in reference [11], are in the low-

doped minimum conductivity regime, where the small Hall coefficient was 

misinterpreted to indicate a high carrier density and large doping variations. 

 

Sample Growth and KPM Procedure 

As discussed in more depth in the previous chapter, epitaxial growth of 

graphene on SiC has been performed in vacuum and argon environments at 

temperatures ranging from 1150oC to 1620oC.[43], [46], [65], [66]  These conditions 

have produced graphene of varying quality, with early reports of many-layer graphitic 

growth on both the Si-face and C-face of SiC.  Recently it has been shown that the 

use of a gas overpressure improves the quality of the graphene, allowing for higher 
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growth temperatures and slower growth times and producing a larger area percentage 

of SLG.[67], [68]   For this work, samples were grown on semi-insulating SiC 

substrates in argon at a pressure of 150 mbar at 1620oC for 90 minutes.  Extensive 

Raman mapping of graphene surfaces shows that the majority of the sample surface is 

monolayer.[18], [69] 

I performed KPM in ambient conditions using a Co/Cr-coated silicon tip with 

radius of curvature of 50 nm.  As implemented on the Veeco D5000 scanning probe 

microscope, the Kelvin probe method uses the lifted tip to perform surface potential 

measurements interleaved with traditional tapping AFM.  The surface potential 

measurement is performed by applying a ac voltage, Vtip,ac, with an amplitude of 1500 

mV to the tip at resonance frequency, , with the tip lifted 2-20 nm above the 

graphene surface and the piezo driver turned off.  The tip voltage Vtip is controlled by 

a feedback loop such that the amplitude of the tip at the ac frequency is zero; at this 

condition eVtip = Wtip – Wsurface, where Wtip and Wsurface are the work functions of 

surface and tip respectively.  For graphene, I expect that Wsurface = Wcnp – EF, where 

Wcnp is the work function of charge-neutral graphene on SiC (0001).  Hence Vtip 

directly tracks variation in EF, and I take the standard deviation in Vtip to be equal to 

EF,rms/e.  A simple schematic of the KPM setup is shown in Figure 26. 
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Figure 26:  KPM is performed in ambient conditions by applying an ac voltage to a metal-coated 

cantilever in LiftMode™.  This cartoon provides a summary of ambient KPM as discussed in more 

detail in Chapter 2. 

 

Ambient KPM of Graphene on Si-face SiC 

To address the transport measurements of Tedesco et al., I focused this ambient 

KPM study on measuring the carrier concentration variation within monolayer 

regions.  The argon-grown samples were especially well-suited to this, as I was able 

to measure many regions over a (16 mm)2 sample without encountering multilayer 

regions or multiple surfaces.  Over the course of this work, one sample in particular 

appeared to have the highest monolayer coverage, and was therefore most extensively 

measured.  I performed KPM over seven (10 µm)2 regions of this (16 mm)2 sample.  

All the data shown were taken with a single tip over a single session of data collection 

to eliminate any changes due to ambient doping variation, tip condition, temperature, 

etc. Figure 27(a) shows topography and Figure 27(b) shows the surface potential of a 

single (10 m)2 scan that was typical of the majority of the sample surface; 

occasionally a clearly multimodal surface potential distribution was observed (see 

discussion below).  A histogram of the potential observed over the scanned area is 



 

 78 
 

shown in Figure 27(c).  The potential variation over the surface is smooth with no 

sharp steps correlated to topographical features or otherwise.  Figure 28 shows the 

mean and standard deviation of the surface potential for seven widely separated (10 

µm)2 scan areas over a 16- by 16-mm sample.   For the data taken at these locations, I 

found the standard deviation in peak position to be EF,rms = 12 meV, with  EF,rms 

within each individual (10 µm)2 area ranging from 5 to 16 meV.   

 

 

Figure 27:  Topography (a) and surface potential (b) collected by KPM on a typical (10 m)2 region of 

epitaxial graphene on SiC(0001).  The dark regions in the surface potential data suggest there may be 

bilayer regions along the edge of the SiC step.  (c) Histogram of the potential data from (b).   
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Figure 28:  The mean surface potential of seven (10 m)2 regions and their standard deviation (error 

bars).  The average and standard deviation over all locations are given by the black line and pink box 

respectively. 

 
 

I occasionally observed multimodal surface potential images, with clearly 

defined regions of different surface potential with boundaries that correspond to 

topographic steps.  I interpret the regions of different surface potentials as regions of 

different graphene layer thicknesses, e.g. IFL or bilayer grpahene, previously 

observed to have different surface potentials by Filleter et al.[70]  The fact that I 

rarely observe these sharp step in surface potential suggests that our sample is 

homogeneous in layer number.  However, in Figure 27(b) there appears to be regions 

of slightly lower surface potential near step edges.  This could indicate the presence 

of BLG at the step edges, though the potential difference (25 meV) is much smaller 

than that observed between monolayer and bilayer graphene by Filleter et al. (100 
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meV).[70]  A much more detailed look at layer distinction by KPM will be presented 

in the next chapter.  For now I simply note that that lack of well-defined steps further 

supports the conclusion that our sample is almost entirely covered in monolayer 

graphene. 

 

Discussion 

To extract information about the charge carrier concentration variation over the 

graphene, I relate the peak positions variation plotted in Figure 28 to a variation in EF, 

and thus a variation in the carrier density of the sample.  Near the charge neutrality 

point, the carrier concentration variation is 

 n  EF,rms vF 2
 ,  (4.1) 

 
where vF = 1.1 x 108 cm/s is the Fermi velocity in graphene,[71] and  is 

Planck’s constant.  The macroscopic variation EF,rms = 12 meV then corresponds to a 

variation in carrier concentration of 1010 cm-2.  If the sample is highly doped, the 

carrier concentration variation is approximated by:  

 n  dn
dE

EF,rms  D(E)EF,rms 
2
vF

n


EF,rms  (4.2) 

 
where D(E) is the density of states in graphene.  For a doping of n = 1013 cm-2, the 

variation EF,rms = 12 meV would correspond to n = 5 x 1011 cm-2.  The variations in 

carrier density measured by KPM are therefore much smaller than the apparent 

variations measured by Hall resistivity.   

To address this discrepancy, I reexamined the transport data in Tedesco et al.  

Figure 29(a) and (b) show transport data from nominally identical samples prepared 
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in argon, as well as from samples grown in vacuum and reported in reference 11, 

replotted as sheet conductivity versus apparent Hall carrier density 1/RHe, where RH is 

the Hall coefficient of each sample.  The conductivity is seen to cluster around a 

value of 4 e2/h over a wide range of carrier densities, with the exception of the 

vacuum-grown 10 µm Hall crosses [Fig. 4(b)] where for an intermediate carrier 

density range of (0.5-1.5) x 1013 cm-2 there is a cluster of points whose conductivities 

rise rapidly with carrier density.  The data point circled in red in Figure 29(a) 

corresponds to the sample in this study (imaged in Figure 27), which has a 

conductivity of 5.3 e2/h and an apparent Hall carrier density of 2.8 x 1012 cm-2. 
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Figure 29:  (a-b) Conductivity vs. apparent Hall carrier density for (a) 16- by 16-mm van der Pauw 

samples and (b) 10- by 10-m Hall crosses of epitaxial graphene on SiC(0001), grown in argon (filled 

symbols) and vacuum (open symbols, Ref. 11).  Upward-pointing triangles (green) are p-type and 

downward-pointing triangles (blue) are n-type.  The data point circled in red represents the sample 

studied in this work.  The dashed lines in (a) and (b) are at a conductivity of 3.5 e2/h.  The solid line in 

(b) is a guide to the eye, discussed in the text.  (c-d) Conductivity (c) and apparent Hall carrier density 

1/RHe (d) vs. average carrier density, n, within the self-consistent theory of Adam et al.   
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I interpret the data in Figure 29(a) and 2(b) within the self-consistent 

Boltzmann theory for graphene dominated by charged impurities put forth by Adam 

et al.[2]  Figure 29(c) and (d) show qualitatively how  and 1/RHe are expected to 

vary with average carrier density, n.  At high n (solid blue lines), the conductivity is 

proportional to n (constant mobility) and the apparent Hall carrier density 1/RHe 

asymptotically approaches the average carrier density n.  For n < n*, graphene is 

dominated by electron and hole puddles with an rms carrier density n* caused by the 

random charged impurity potential (red dashed lines).  The conductivity is roughly 

constant around a minimum value min of a few e2/h, and the apparent Hall carrier 

density diverges as n  0.  The apparent Hall carrier density always overestimates 

the average carrier density n and is never less than n*.  

In Figure 29(b) the highest conductivity devices have   50 e2/h.  I assume 

that these devices are in the high-density regime, and n  1/RHe  1013 cm-2, 

indicating a mobility   1000 cm2/Vs.  Applying the self-consistent theory of Adam, 

et al to the case of graphene on SiC (  9.6), this corresponds to a charged impurity 

density of nimp  8 x 1012 cm-2, n*  8 x 1011 cm-2, and min  3.5 e2/h.[2]  I observe a 

large number of samples (50% of vacuum-grown, and nearly all argon-grown 

samples) with conductivities of 3.5 e2/h, and 1/RHe > 7 x 1011 cm-2  n*, and I 

conclude that these samples are in the low density minimum conductivity regime n < 

n* 8 x 1011 cm-2 and were previously mis-identified as being highly doped.  This 

indicates that our SLG on SiC (0001) in ambient conditions has much lower doping 

than has been previously reported.   
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The very small spread in surface potential measured by KPM indicates a 

uniform doping level on a macroscopic scale.  The transport data are inconsistent with 

a uniform, high doping level n > n*: in this case one would expect all the samples to 

be outside the minimum conductivity regime, and display high conductivity and a 

narrowly distributed Hall carrier density which reflects the true carrier density.  I 

conclude that the samples as probed by KPM are uniformly doped in the minimum 

conductivity regime |n| < n*  8 x 1011 cm-2.  I further conclude that the previously 

reported [11] large spread in carrier densities from Hall measurements on similar 

samples is an artifact of electron-hole puddling in the minimum conductivity regime. 

Our conclusion is consistent with top-gated FETs fabricated on similar SLG on 

SiC (0001) showing low threshold voltages.[55]  The microscopic fluctuations within 

a single surface potential image,  EF,rms = 5-16 meV are approximately one order of 

magnitude smaller than the expected electron-hole puddle fluctuations EF,rms = 110 

meV for n*  8 x 1011 cm-2.  I assume that the discrepancy results from the puddle 

correlation length of 10-20 nm being an order of magnitude smaller than the 

resolution of the Kelvin probe measurement.  Chapter 5 discusses higher-resolution 

KPM measurements on similar samples in UHV.  It is not clear why some previous 

experiments [4,8,9,11] on SLG on SiC(0001) show much higher doping.  In Ref. 11, 

high doping was inferred incorrectly from Hall measurements in the minimum 

conductivity regime, but ARPES [56], [57] and some transport measurements 

performed in vacuum[59] clearly show highly and uniformly doped SLG (n  1013 

cm-2).  It is possible that the samples in this work are low-doped as-grown in contrast 

to many previous reports due to different substrate chemical potentials.  These 
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samples were prepared on semi-insulating SiC substrates produced by vanadium 

doping which creates deep levels, while other reports of graphene on semi-insulating 

SiC likely used SiC with compensated dopants.[72]   Also, at least one report in the 

literature showed very low doping (confirmed by quantum Hall effect) for graphene 

on Si-face semi-insulating SiC (though prepared at much higher temperature than the 

samples used here), indicating that low-doped as-grown samples are possible in 

principle.[60]  These ideas will be discussed more in Chapters 5 and 6. 

 UHV measurements discussed in the following chapters will provide further 

insight into charge distribution in epitaxial graphene samples.  In particular, the 

observation of discrete surface potential steps will be discussed in terms of 

diagnosing layer thickness and doping level.  I also use KPM in UHV to investigate 

the nature of the IFL in contrast to the graphene monolayer.  Kelvin probe results on 

the exposed IFL will allow for the mapping of the charge environment that exists 

under the as-grown graphene.  These measurements will be compared again with the 

self-consistent theory for graphene transport and with similar measurements collected 

on bare SiO2. 
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Chapter 5:  Distinguishing Graphene Layers by KPM 

 

 

Motivation 

Ambient KPM has shown the surface potential of graphene to be smooth 

within monolayer regions, with a standard deviation in surface potential voltage of 

<16 meV (Chapter 4).  While this low variation in surface potential was characteristic 

of the majority of the sample surface, surface potential steps were observed in some 

images corresponding to topographical steps in the AFM data.  For the argon-grown 

sample discussed in the previous chapter, one of the eight 10- by 10-m regions 

showed correlated surface potential and topographical steps.  Figure 30 shows the 

stepped region.  The area highlighted in the blue box of Figure 30(b) has been plotted 

in the histogram shown in Figure 30(c).  The histogram shows a multimodal 

distribution corresponding to three distinct surface potentials.  Previous work on 

exfoliated and epitaxial graphene samples points to these distinct surface potential 

regions as being due to different surfaces and graphene thicknesses.[70], [73], [74] 
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Figure 30:  Topography (a) and surface potential (b) data collected by KPM on a rare (10 m)2 region 

of epitaxial graphene on SiC(0001) which shows a multimodal potential distribution.  (c)  Histogram of 

the potential data in the area indicated by the blue box in (b).   

 

 In 2009, the Kim group published Kelvin probe data on SLG and BLG 

devices on Si/SiO2 substrates patterned with Cr/Au contacts.[74]  The paper noted 

that previous studies of the work function of graphene devices had concluded that it is 

close to the 4.6 eV value for graphite.  The Kim group took the measurement a step 

further, exploiting the ability of the Si back gate to tune the carrier density in the 

graphene device.  Measurements were performed in ambient and nitrogen 

environments using an interleaved KPM method as described in Chapter 2 with a lift 

height of 10-30 nm and an ac voltage to the tip of 300-500 mV applied off resonance 

at a frequency of 16 kHz.  On several separate devices, the variation in graphene 

work function with change in gate voltage was measured on both SLG and BLG 

samples.  Figure 31(a) plots the work function of a SLG device (in red, closed points) 

and of a BLG device (in blue, open points) vs. varying gate voltage.   The gate 
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voltage here has been offset about the Dirac point for each device and is written as Vg 

– VD.  Since the quantity directly measured by KPM is the CPD between the tip and 

the samples, the work function of the sample is extracted to be: 

 sample tip CPDW W e V    (5.1)[74] 
 
Here the Wsample is the sample work function, Wtip is the tip work function, and 

eVCPD is the measured CPD times the fundamental charge.  To properly determine 

Wsample, the work function of the tip was calibrated on the gold electrodes of each 

device and found to be Wtip = 4.82 +/- 0.08 eV.[74]   

Figure 31:  (b) provides a cartoon of how the measurement of VCPD is related 

to Wsample and to the Fermi energy EF of the graphene.  The measurement of Wsample 

with varying gate voltage then tracks the change in EF with the change in carrier 

concentration, n.   

The carrier density, n, is related to EF through the momentum kF by 
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where vF 
1 E
k

is the Fermi velocity of 1.1 x 108 cm/s and  is Planck’s constant.  

Equations 5.2 establish the relationship between EF and n that is proportional to n1/2.  

For the bilayer device, the energy dispersion relation is different and is given by: 
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To rewrite  as , I first find k to be: E (k) E (n)
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which produces the result 
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where the constant  1  = 0.39 eV.  If I take equation 1.5 in the high-momenta limit 

where E(n) is much larger than  1  , then the bilayer device follows a linear relation 

between n and EF.  
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The data presented in Figure 31 follows these curves, with the SLG device data 

showing the predicted n1/2 dependence and the BLG device data showing the 

predicted linear dependence.  

Figure 31(c) shows the calculated change in Fermi energy with change in gate 

voltage extracted from the variation in Wsample shown in Figure 31(a).  The work 

clearly shows the difference in the Fermi energy dependence of SLG and BLG 

devices on carrier concentration.  The work also indicates a shift in the work function 

at charge neutrality, with BLG having a work function approximately 100 meV 

higher than that of SLG.  However, this observation relies on proper calibration of the 

tip work function in each case.  None of the devices allowed for the measurement of 
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adjacent SLG and BLG graphene regions on the same sample, which would have 

provided a much more convincing measurement of the workfunction offset.   

 

Figure 31:  From reference [74].  (a) The change in the work function of the sample is plotted against 

varying gate voltage for five devices.  The three SLG devices are shown in the red area (closed 

symbols).  The two BLG devices are shown in the blue area (open symbols).  The data are centered 

about the point Vg – VD = 0. (b) The Fermi energy and Wsample may be extracted from the measurement 
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of VCPD and the calibration of the work function of the tip, Wtip.  (c) From the measurement of Wsample, 

the change in Fermi energy with gate voltage may be calculated. 

 
 A 2008 paper by Filleter et al. addressed the measurement of adjacent SLG 

and BLG regions on epitaxial graphene with measurement of KPM by sample biasing 

in UHV.[70]  Figure 32 shows sample topographical (a) and Kelvin probe (b) data 

from measurements collected on graphene grown on SiC(0001).  Unlike the samples 

grown for our work, these graphene samples were grown in 1 atm of argon and then 

subjected to a 600oC anneal in UHV for surface cleaning.[70]  The histogram in 

Figure 32(c) clearly shows three peaks in the measured CPD, while STM scans are 

used to confirm identification of the SLG (d) and BLG (e) regions.  An important 

difference between all other KPM data presented here is that Filleter et al. followed 

the typical STM convention of applying the bias to the sample, i.e. the ac signal was 

sent through the SiC substrate. This means two things: (1) In Filleter et al. the contact 

potential difference is (apparently) defined as CPD sample tip tip samplee V e e W W     

in contrast to equation 5.1.  The relative differences between SLG and BLG regions 

and SLG and IFL regions are flipped in sign or direction.  To make sure it is 

unambiguous, I report my data as surface potential.  To make a comparison to my 

data or the data from the Kim group, the data in Filleter et al. should be flipped in 

sign.  (2) Because of the semi-insulating nature of the substrate, some information 

about surface potential features may be lost since the IFL may not respond to changes 

in the voltage applied to the sample.  While the surface potential steps are clearly 

shown, variation within a layer may be under-resolved.   
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Figure 32:  From reference [70].  (a) Topographical data and (b) KPM data of epitaxial graphene on 

SiC(0001).  (c) A histogram of the potential data shows three distinct peaks tied to SLG, BLG, and IFL 

regions. (d) STM image of the SLG and (e) BLG regions.  STM scale bar was not provided in original 

image. 

 

Lacking the ability to vary the carrier concentration in the sample by applying 

a gate voltage, Filleter et al. relied on topographical step heights and STM images for 

layer identification.  The identification of graphene layers by topographical steps on 

SiC depends on the particular growth characteristics in the surrounding region.  To 

grow one 0.35-nm thick layer of graphene or IFL, the removal of three 0.25-nm SiC 

layers is necessary, placing the first layer of growth, the covalently-bonded IFL, 0.4 

nm below the surrounding SiC.  The true graphene monolayer sits another 0.4 nm 
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lower than this.  However, if the sample surface has SiC steps near the graphene or 

IFL regions, then it is possible to have graphene sitting above neighboring IFL or 

SiC.  Figure 33 shows seven possible cases for observing topographical steps between 

neighboring SiC, IFL, SLG, and BLG surfaces.[70]  These figures do not represent all 

possible combinations but, rather, provide some examples of commonly occurring 

surface features. 

 

Figure 33:  From reference [70].  The topographical steps measured in epitaxial graphene samples 

may be attributed to a variety of layer combinations.  Here SiC layers (0.25 nm high) are shown as 

light grey, IFL (0.35 nm high) is shown as hashed, and graphene (0.35 nm high) is dark grey.  Each 

column shows the step configuration, theoretical step height and measured step height for a particular 

combination of adjacent surfaces. 

 
In the work by Yu et al., exfoliated SLG and BLG were positively identified 

by micro-Raman spectroscopy, and the variation in Fermi energy with carrier 

concentration agreed with the expectations for SLG and BLG.[74]  I became aware of 

the work by Filleter et al. after considering the Yu paper and performing our own 

measurements on epitaxial samples.  Because neither the Filleter samples nor our 

samples could be back-gated due to the semi-insulating nature of the SiC, and 

because performing Raman microscopy on the exact region probed by KPM is 

exceedingly difficult, I (and Filleter) could not directly distinguish SLG and BLG 

regions.  Like Filleter, I relied on our knowledge of step heights in graphene growth 

on SiC to suggest layer identification on our own samples. The data present in Figure 
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30 were seen on an argon-grown sample in conjunction with the smooth monolayer 

data presented in Chapter 3; however, earlier samples grown in vacuum showed more 

surface variation. 

 

Distinguishing Graphene Layers by Ambient KPM 

I first performed ambient KPM on epitaxial graphene samples on SiC(0001) 

that were grown at the Naval Research Laboratory in a high-vacuum environment.  

These samples were not as uniform in growth as the argon-grown samples presented 

in the previous chapter.  Figure 34 shows a (10 m)2 region of a vacuum-grown 

sample with typical surface morphology.  While the surface potential data does not 

show variation across the SiC steps where graphene growth is continuous, several 

raised regions in the topographical data stand out in the Kelvin probe data as being at 

higher surface potential.   



 

 
 

Figure 34:  Topography (left) and surface potential (right) data for a (10 

graphene grown in vacuum on SiC(0001).  The bright surface potential features are correlated to raised

features in the topographical data.

 
 One particular feature from the large

resolution scan, shown in 

(Fig. 34a) corresponds to an area of surface potential feature (Fig. 34b) elevated 

mV above the surrounding region.  The majority of the sample (and presumably the 

majority of the image which is at low s

Raman spectroscopy confirms that the sample is predominantly SLG, and a simple 

multimeter check confirms that the sample was conducting (i.e. should consist of a 

continuous SLG area).  A histogram of the entire

bimodal distribution.  By considering the high region (blue box) and the low region 
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Topography (left) and surface potential (right) data for a (10 m)2 region of epitaxial 

graphene grown in vacuum on SiC(0001).  The bright surface potential features are correlated to raised

features in the topographical data. 

One particular feature from the large-area scan was chosen for a higher

resolution scan, shown in Figure 35.  The raised feature in the topographical data 

(Fig. 34a) corresponds to an area of surface potential feature (Fig. 34b) elevated 

mV above the surrounding region.  The majority of the sample (and presumably the 

majority of the image which is at low surface potential) is identified as SLG, since 

Raman spectroscopy confirms that the sample is predominantly SLG, and a simple 

multimeter check confirms that the sample was conducting (i.e. should consist of a 

continuous SLG area).  A histogram of the entire region (Fig 34c, top) shows a 

bimodal distribution.  By considering the high region (blue box) and the low region 

 

region of epitaxial 

graphene grown in vacuum on SiC(0001).  The bright surface potential features are correlated to raised 

area scan was chosen for a higher-

.  The raised feature in the topographical data 

(Fig. 34a) corresponds to an area of surface potential feature (Fig. 34b) elevated 100 

mV above the surrounding region.  The majority of the sample (and presumably the 

urface potential) is identified as SLG, since 

Raman spectroscopy confirms that the sample is predominantly SLG, and a simple 

multimeter check confirms that the sample was conducting (i.e. should consist of a 

region (Fig 34c, top) shows a 

bimodal distribution.  By considering the high region (blue box) and the low region 
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(white box) from Figure 35(b) separately, one sees that there is a sharp single-moded 

surface potential distribution associated with each boxed region.  The middle and 

bottom histograms in Figure 35(c) show the box of low surface potential and high 

surface potential, respectively.   

A closer look at the topographical step in the form of an averaged step profile 

(Figure 35(d)) shows that the region of higher surface potential sits 0.19 nm above the 

surrounding region.  The 100 mV surface potential step, combined with the positive 

topographical step from the surrounding region to the feature, leads us to believe that 

the feature corresponds to a region of IFL plus two bilayer SiC units surrounded by a 

region of IFL plus SLG.  The height difference for this arrangement would nominally 

be 2 × 0.25 nm – 0.335 nm = 0.165 nm, close to the observed 0.19 nm.  Given the 

direction of the surface potential step for the blue box feature, it is reasonable to 

conclude that this feature and the other surface potential features shown in the larger 

Figure 34 are regions of IFL or carbon buffer layer. 
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Figure 35:  (a) Topography and (b) surface potential data from a zoomed-in region contained in Figure 

34.  (c) A histogram of the surface potential is shown to be bimodal (top).  The middle histogram is 

taken from the region in the white box in figure (b), and the bottom histogram is generated from the 

region in the blue box.  (d) An average profile of the step marked in (a) is shown to have a height of 

0.19 nm. 
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Layer Identification by UHV KPM 

Ambient KPM data collected on graphene samples grown in both vacuum and 

argon environments hint at the possibility of using KPM as a tool for distinguishing 

monolayer and bilayer graphene and IFL regions.  Ambient results have shown clear 

steps between different graphene thicknesses and regions of exposed IFL, but our 

ability to draw conclusions about the height of these surface potential steps is 

hampered by limitations in the ambient technique.  In particular, samples measured in 

air may be covered with adsorbates that affect the doping level, as discussed in 

Chapter 4. 

Performing KPM in UHV provides many advantages to previous ambient 

measurements.  In addition to eliminating the problem of adsorbates, the UHV setup 

allows for better lateral spatial resolution and potential resolution and improved 

topographical measurements.  The improved lateral resolution is in part due to the 

purely incidental fact that the MikroMasch Pt/Ir coated Si cantilevers used in the 

UHV microscope have a smaller tip radius, 20 nm, than the Co/Cr coated Si 

cantilevers used in ambient, 20-50 nm.  The topographical data, however, is further 

improved by the simultaneous running of the primary AFM loop and the Kelvin loop.  

While the topography loop operates at the 300 kHz resonance frequency of the tip, 

the Kelvin loop operates at 450 Hz.  This limits scan rate to a speed slow enough to 

collect accurate surface potential data without attenuating the signal; however, it also 

ensures that the Kelvin loop is constantly nullifying the electrostatic component of the 

force on the tip, preventing work function or surface potential variations from 



 

 
 

interfering with the accurate collection of topographical data in noncontact mode.  

This advantage was previously mentioned in Chapter 2.  

I performed KPM in UHV on a JEOL combination AFM/STM with an 

attached scanning electron microscope (SEM).  

check tip condition and perform simple x

quickly discovered that at an accelerating voltage of 2.0 kV, the SEM could resolve 

detail and layer differences on the graphene samples.  Thi

observed at the Naval Research Laboratory at 2.0 kV on an SEM with an in

detector.  Our own JEOL XL

30.0 kV could not resolve this detail.  When I discovered the imaging

the UHV JEOL AFM/STM system, I quickly began correlating SEM contrast levels 

with Kelvin probe surface potential steps.  The JEOL UHV system requires a long 

working distance SEM due to space constraints within the imaging chamber.  

Because of this, the images presented here are not as well resolved as SEM data 

collected at NRL.  The Gaskill group at NRL has done further work to correlate their 

own SEM images with Raman mapping.

Figure 36:  (a) and (b) both show SE

JEOL AFM/STM.  The image (a) shows charging of zoomed regions similar to that shown in (b).  The 
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interfering with the accurate collection of topographical data in noncontact mode.  

This advantage was previously mentioned in Chapter 2.   

I performed KPM in UHV on a JEOL combination AFM/STM with an 

attached scanning electron microscope (SEM).  The SEM was used originally to 

check tip condition and perform simple x-y locating of the tip over the sample.  I 

quickly discovered that at an accelerating voltage of 2.0 kV, the SEM could resolve 

detail and layer differences on the graphene samples.  This result had previously been 

observed at the Naval Research Laboratory at 2.0 kV on an SEM with an in

detector.  Our own JEOL XL-30 SEM operating at a typical lithography voltage of 

30.0 kV could not resolve this detail.  When I discovered the imaging capabilities of 

the UHV JEOL AFM/STM system, I quickly began correlating SEM contrast levels 

with Kelvin probe surface potential steps.  The JEOL UHV system requires a long 

working distance SEM due to space constraints within the imaging chamber.  

of this, the images presented here are not as well resolved as SEM data 

collected at NRL.  The Gaskill group at NRL has done further work to correlate their 

own SEM images with Raman mapping. 

(a) and (b) both show SEM images collected at 2.0 kV with the SEM portion of the UHV 

JEOL AFM/STM.  The image (a) shows charging of zoomed regions similar to that shown in (b).  The 

interfering with the accurate collection of topographical data in noncontact mode.  

I performed KPM in UHV on a JEOL combination AFM/STM with an 

The SEM was used originally to 

y locating of the tip over the sample.  I 

quickly discovered that at an accelerating voltage of 2.0 kV, the SEM could resolve 

s result had previously been 

observed at the Naval Research Laboratory at 2.0 kV on an SEM with an in-lens 

30 SEM operating at a typical lithography voltage of 

capabilities of 

the UHV JEOL AFM/STM system, I quickly began correlating SEM contrast levels 

with Kelvin probe surface potential steps.  The JEOL UHV system requires a long 

working distance SEM due to space constraints within the imaging chamber.  

of this, the images presented here are not as well resolved as SEM data 

collected at NRL.  The Gaskill group at NRL has done further work to correlate their 

 

M images collected at 2.0 kV with the SEM portion of the UHV 

JEOL AFM/STM.  The image (a) shows charging of zoomed regions similar to that shown in (b).  The 
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blue box in (b) shows a rough estimate of the location of the Kelvin probe data collected in Figure 36.  

The SEM image is tilted due to the angle of the SEM gun.  The resolution is best possible for the long 

working distance of the tool.   

 
Figure 37 shows two sets of AFM and KPM data with topographical and 

surface potential data taken simultaneously.  The UHV KPM data clearly shows 

surface potential steps distinguishing SLG and BLG regions, as well as steps 

separating two different insulating layers (see below for evidence that these layers are 

insulating) that may represent different stages of growth of the IFL.  Figure 37(a) and 

(b) show topographical and surface potential data collected over a small (2 m)2 

region that was later expanded to the (5 m)2 area shown in Figure 37(c) and (d).  

While this clearly shows four different surface potentials, the insulating layers are 

further distinctly different from the graphene layers.  The IFL, labeled as the two 

insulating layers “IL1” and “IL2,” displays a unique roughness both in topographical 

data and surface potential data.  



 

 
 

Figure 37:  Topographical data (a) and surface potential data (b) collected over a (2 

scan region was expanded to the (5 

(c) and (d).  The four distinguishable surfaces are labeled as SLG, BLG, and insulating layer 1 and 2 

(IL1 and IL2) that correspond to different surfaces within the interfacial layer.

 

Filleter et al. report a BLG to SLG contact potential 

with the BLG having higher work function, i.e. lower surface potential (see Fig. 31; 

note that the convention for contact potential difference used by Filleter 

that the image in Fig. 31 is inverted in sign relative to my

average step profile across the monolayer and bilayer graphene regions labeled in 

Figure 37.  The step in the white box in 

Figure 38(b).  The step height between the two regions is 100 mV,

than 130 meV reported in Filleter 
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Topographical data (a) and surface potential data (b) collected over a (2 m)

scan region was expanded to the (5 m)2 region to show the topographical and surface p

(c) and (d).  The four distinguishable surfaces are labeled as SLG, BLG, and insulating layer 1 and 2 

(IL1 and IL2) that correspond to different surfaces within the interfacial layer. 

. report a BLG to SLG contact potential difference of 130 meV, 

with the BLG having higher work function, i.e. lower surface potential (see Fig. 31; 

note that the convention for contact potential difference used by Filleter et al

that the image in Fig. 31 is inverted in sign relative to my data).  Figure 38

average step profile across the monolayer and bilayer graphene regions labeled in 

.  The step in the white box in Figure 38(a) is displayed as the black line in 

(b).  The step height between the two regions is 100 mV, slightly smaller 

than 130 meV reported in Filleter et al.  The discrepancy between the two 

 

m)2 region.  The 

region to show the topographical and surface potential data in 

(c) and (d).  The four distinguishable surfaces are labeled as SLG, BLG, and insulating layer 1 and 2 

difference of 130 meV, 

with the BLG having higher work function, i.e. lower surface potential (see Fig. 31; 

et al. means 

38 shows the 

average step profile across the monolayer and bilayer graphene regions labeled in 

(a) is displayed as the black line in 

slightly smaller 

.  The discrepancy between the two 



 

 
 

measurements is possibly ascribed to differences in doping between the two samples.  

If the work function difference between SLG and BLG (120 meV) measured by Yu 

al. is correct, then a surface potential difference of 100

nearly undoped SLG and BLG, with small differences in doping (< 10

perhaps accounting for the difference between our measurement and that of Filleter 

al.  I found the 100 mV step height shown in Figure 9 to be common to samples 

measured in ambient conditions and in UHV.   Such doping differences could result 

from different growth conditions; in Filleter 

atmospheric pressure argon, while our samples were grown in 100 mbar argon.

Figure 38:  Surface potential data (a) with an

The average profile is taken, and the difference between the averages of the left

of the step is found to be 100.3 mV.  In (b) the right

left-hand side is the bilayer. 
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measurements is possibly ascribed to differences in doping between the two samples.  

If the work function difference between SLG and BLG (120 meV) measured by Yu 

is correct, then a surface potential difference of 100-130 meV would correspond to 

nearly undoped SLG and BLG, with small differences in doping (< 1012 cm

perhaps accounting for the difference between our measurement and that of Filleter 

found the 100 mV step height shown in Figure 9 to be common to samples 

measured in ambient conditions and in UHV.   Such doping differences could result 

from different growth conditions; in Filleter et al. the sample was grown under 

gon, while our samples were grown in 100 mbar argon.

Surface potential data (a) with an SLG to BLG step highlighted in the white box, top right.  

The average profile is taken, and the difference between the averages of the left- and right

of the step is found to be 100.3 mV.  In (b) the right-hand side of the curve is the monolaye

 

measurements is possibly ascribed to differences in doping between the two samples.  

If the work function difference between SLG and BLG (120 meV) measured by Yu et 

130 meV would correspond to 

cm-2) 

perhaps accounting for the difference between our measurement and that of Filleter et 

found the 100 mV step height shown in Figure 9 to be common to samples 

measured in ambient conditions and in UHV.   Such doping differences could result 

the sample was grown under 

gon, while our samples were grown in 100 mbar argon.[70] 

 

SLG to BLG step highlighted in the white box, top right.  

and right-hand sides 

hand side of the curve is the monolayer, and the 
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KPM Surface Potential Steps 
 

Further insight into the 100 mV surface potential step between the IFL and 

graphene regions may be gathered from considering the work function difference 

between graphene and bare SiC.  A comparison of the work function of grahene (4.6 

eV) [74] and the electron affinity for SiC (3.7 eV for the 4H polytype) gives a 

potential drop of almost 1 eV.[76]  It has been suggested that the observed shift of 

graphene’s Fermi level by +300-400 meV as reported from ARPES is due to electron 

transfer from the IFL to graphene of 5.5x 1012 cm-2 to 1.5 x 1013 cm-2.[47], [76], [77]  

If I consider the IFL/graphene potential step as being due to charge transfer from the 

IFL, then the potential field between the two layers may be calculated as: 

 
2

0

ne dV


   (5.7) 

 
where d is the distance between the IFL and the graphene, and n is the carrier 

concentration.  Generally we take d to be 1 nm, putting the charged impurities 

directly below the graphene layer. For n = 1013 cm-2, I find that the potential step 

measured should be 600 mV.   

Our measured 100 mV step corresponds instead to a charge density of 1.6 x 

1012 cm-2 indicating that if the IFL is the origin of graphene doping, then the doping 

in our samples must be small.  This is consistent with the conclusion drawn from the 

SLG-BLG step height, which suggests that our graphene grown on semi-insulating 

SiC may only be lightly doped or undoped, with n  1012 cm-2.  This is consistent 

with the conclusions of Chapter 4 where ambient-environment transport and KPM 

measurements indicated low doping. 
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The discrepancy between our results and ARPES measurements may come 

from the doping level of the SiC starting substrate.  The large values of EF (300-400 

meV) seen in ARPES were measured on samples grown on n-doped epitaxial SiC 

layers.[76]  It is unclear what substrate was used for the work of Filleter et al.; they 

reference another paper for the growth procedure which describes growth on both n-

type and semi-insulating substrates.  Our samples were prepared on semi-insulating 

SiC with lower Fermi energy.  If the doping of graphene results from charge transfer 

from the SiC substrate, it is reasonable that SiC samples with higher or lower Fermi 

energy will result in higher or lower n-doping for graphene.   

   

Quantifying UHV KPM Resolution 
 

In the next chapter, I discuss UHV KPM measurements over distinct 

monolayer and IFL regions, with the aim of better understanding the charge 

environment under the graphene.  To put the following results in the proper 

framework, I first quantify the lateral resolution of our surface potential 

measurement.  In order to better resolve the fine features of the surface (particularly 

the IFL), I switched from a sample-biased mode of operation to a tip-biased mode.  

Sample biasing is the typical mode of operation for most STM systems and was the 

default configuration of the JEOL tool.  However, because the SiC(0001) substrate is 

semi-insulating and the Kelvin probe measurement relies on an ac signal to measure 

surface potential variation, sample biasing may not provide the best optimization for 

performing UHV KPM.  I switched to tip biasing so that the ac Kelvin signal would 

be directly applied to the tip, and thus the surface potential measurement would be a 
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more accurate surface measurement without smearing or attenuation due to poor 

conduction through the substrate.  Figure 39 shows an image of UHV KPM after 

reconfiguring the JEOL microscope for tip biasing.  The IFL in the right side on of 

each image shows sharper detail in both topographical and surface potential data.  All 

KPM data presented hereafter was measured by tip biasing.  

 

Figure 39:  Topographical data (a) and surface potential data (b) taken with the JEOL UHV 

microscope reconfigured for tip biasing.  Both images are (1.50 m)2.  Panel (a) has a z-range of 5 nm 

and panel (b) has a surface potential range of 377.4 mV. 

 
To further analyze the quality of my UHV KPM data, I considered surface 

potential steps perpendicular to the fast scan direction of the tip.  Figure 40 shows 

KPM data collected over a region with a surface potential step conveniently 

positioned parallel to the slow scan axis.  An average profile of the step was taken for 

the region highlighted in the orange box in Figure 40(a).  The profile was fit in IDL 

software to a step function convoluted with a Gaussian.  The resulting fit function is 
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shown as the red line in Figure 40(c) superimposed over the average profile of the 

data, shown in black.  The width of the Gaussian is calculated from the IDL fit to be 

18.4 nm.  This fit was performed for each tip used in the KPM study.  All tips used 

were MikroMasch Ti/Pt-coated Si cantilevers with a calculated lateral resolution of 

18-19 nm.  I am able to achieve lateral surface potential resolution equal to lateral 

topographical resolution and comparable to the tip radius because the UHV KPM 

method allows for simultaneous topographical and surface potential data collection 

without lifting the tip. 

 

Figure 40:  Surface potential data (a) and topographical data (b) collected using a MikroMasch Pt/Ir 

coated Si cantilever.  The region in the orange box in (a) outlines a surface potential step between two 

distinct IFLs.  The surface potential step is then averaged, and the step width of the average profile is 

shown in (c) to be 18.4 nm as calculated by the IDL software.  The raised features in the surface 

potential image are likely bare SiC.  They appear as peaks in the average of the potential scan lines, but 

as they do not occur at the potential step we analyzed, they do not effect the calculation of resolution. 
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The high lateral resolution in surface potential imaging indicates that KPM may be a 

useful technique for imaging electron-hole puddles in graphene.  The correlation 

length for charge puddles in graphene on SiO2 have been measured to be on the order 

of 20-30 nm.  A clear measurement of charge puddles in graphene on SiC could 

provide insight into the nature of transport and charged-impurity scattering for 

epitaxial graphene on SiC(0001).  The following chapter will explore in more detail 

the fine structure in the surface potential of SLG and IFL regions with the aim of 

imaging charge puddles and the potential disorder in the underlying carbon layer.  

The results of these measurements form a picture of charge distribution in epitaxial 

graphene analogous to the model for charged impurity scattering for exfoliated 

graphene flakes on SiO2. 
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Chapter 6:  UHV KPM of Microscopic Charge Inhomogeneity 
in SLG and IFL on SiC(0001) 
 

Introduction 

Chapter 5 presented data showing that UHV KPM could distinguish between 

SLG, BLG and two IFL surfaces both in surface texture (in the case of the 

graphene/IFL boundary) and in surface potential steps.  I also found that UHV KPM 

techniques provide improved lateral resolution (19 nm) compared to the ambient-

environment KPM technique employed in Chapter 4.  The spatial resolution is 

comparable to or lower than the size of electron-hole puddles observed by STM and 

STS on exfoliated graphene flakes on SiO2.[3-5]  The self-consistent theory for 

graphene with random charged impurity disorder[2] predicts that the correlation 

length  for the potential in graphene to scale as 
2

av

impn


   where av is the average 

dielectric constant of the substrate and vacuum, and nimp is the impurity density.[78]   

For SiO2, av = 2.5, while for SiC, av is 5.3, indicating a larger correlation length, i.e. 

larger electron-hole puddles, might be seen in epitaxial graphene on SiC.  In this 

chapter I explore the microscopic potential inhomogeneity in SLG and IFL, with a 

focus on attempting to image charge puddles in SLG. 

 



 

 
 

UHV KPM of Monolayer Graphene on SiC(0001)

Figure 41 shows a (500 nm)

KPM.  This region was determined to be monolayer by both its dark contrast 

appearance in SEM relative to IFL regions and by its su

neighboring bilayer regions.  

surface potential data respectively.  In an attempt to hi

features in Figure 41(b), I low

shown in Figure 41 (c).   Th

the potential that have a length scale on order 60 nm or larger.  

filtered image for qualitative examin

one-dimensional (line-by line

length for the surface potential features. 

 

Figure 41:  Topographical data (a) and surface poten

graphene.  In (c) the surface potential data is low

enhance the hills and valleys visible in (b).
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KPM of Monolayer Graphene on SiC(0001) 

shows a (500 nm)2 region of monolayer graphene imaged by UHV 

KPM.  This region was determined to be monolayer by both its dark contrast 

appearance in SEM relative to IFL regions and by its surface potential relative to 

neighboring bilayer regions.  Figure 41(a) and (b) show the raw topographical and 

surface potential data respectively.  In an attempt to highlight surface potential 

I low-pass filtered the data at a length of 60 nm; t

(c).   The filtered image shows that there are persistent features in 

the potential that have a length scale on order 60 nm or larger.   I present the low

filtered image for qualitative examination only; below I analyze the raw data using a 

by line) autocorrelation function to extract the correlation 

length for the surface potential features.  

Topographical data (a) and surface potential data (b) for a (500 nm)2 region of monolayer 

graphene.  In (c) the surface potential data is low-pass filtered at 60 nm.  This smoothing is done to 

enhance the hills and valleys visible in (b). 

region of monolayer graphene imaged by UHV 

KPM.  This region was determined to be monolayer by both its dark contrast 

rface potential relative to 

(a) and (b) show the raw topographical and 

ghlight surface potential 

; the result is 

ed image shows that there are persistent features in 

I present the low-pass 

ation only; below I analyze the raw data using a 

autocorrelation function to extract the correlation 

 

region of monolayer 

pass filtered at 60 nm.  This smoothing is done to 
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An Introduction to Autocorrelation Functions 

The autocorrelation function is a standard method for data analysis that is well 

suited to picking out features from the surface potential images collected by UHV 

KPM.  My choice of a line-by-line autocorrelation function was made to eliminate the 

influence of the line-to-line rastering of several millivolts observable in Figure 41:  

(b).  Specifically, the autocorrelation function compares the surface potential at a 

point pN with the average surface potential of a pair of points a fixed distance r from 

pN.  This comparison is taken for all points along every line of data.  To get the 

autocorrelation function value C(R) for a line of data averaged at the length scale R, 

consider 

 
V pN , r   V r pN R 

D pN , r  V pN  V pN , r .
 (6.1) 

 

Here V(pN,r) is the average surface potential of two points in the line a 

distance R from the point pN.  I then compare the quantity D(pN,r) to the average 

potential of the data line to get the final result, 

 C(R)  D pN , r 
N
 V pN 2

N
, , (6.2) 

 

where the second term describes the average of the square of the surface potential at 

every point.  For the purposes of implementation and reasoning, another way to 

present the autocorrelation function is 
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D ' pN , r   V pN V  V pN , r V 

C R   D ' pN , r 
N

.

 (6.3) 

 

Now the average surface potential,V of the data line is subtracted from both the 

surface potential at each point V(pN) and from the point pair average at distance R 

from pN.   

Averaging all C(R) over a range of radii or length scales gives the full 

autocorrelation function output C(r) of the data as a function of the radius, or point 

pair separation.  By convention r is taken to be positive.  However, below I plot C(r) 

reflected about the y-axis to present a more intuitive picture of feature size and 

correlation length.  The width of the autocorrelation function corresponds to the 

correlation length of the data.  Figure 42 displays the output of the autocorrelation 

routine as applied to the data from Figure 41(b).  The spike at the center of the curve 

is likely an artifact due to the pixelation of the image.  The length scale limit was 

chosen based on the number of pixels in the data.  For a 512 x 512 pixel image such 

as this one, the quality of the function output degraded as the distance between points 

in each pair past 256 pixels.  After this limit, there were not enough complete sets of 

points for averaging.  Large radii data is unphysical since correlations across these 

large distances (r > 200 nm or half the image size) are also suspect since there is 

limited data at large r. 

 



 

 
 

Figure 42:  The autocorrelation function of the surface potential from Figure 40(b) (shown in inset).  

The function output is shown on the positive axis but is reflected onto the negative axis.  The width of 

the autocorrelation function is 64

corresponds to the variance of the voltage. The rms voltage, or surface potential variation is 4 mV.

  

 The height of the 

variance of the voltage (V

4 mV.  A similar number may be obtained from plotting the surface potential data in a 

histogram and extracting the width of the fit curve.  As discussed earlier in Chapter 4, 

the rms voltage corresponds to a variation in carrier concentration over the sample 

surface.  The value of 4 mV is even lower than the value measured in ambient 

(though here the spatial resolution is better), corresponding to an extremely low 

variation in carrier concentration.  
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The autocorrelation function of the surface potential from Figure 40(b) (shown in inset).  

The function output is shown on the positive axis but is reflected onto the negative axis.  The width of 

the autocorrelation function is 64 nm.  The height of the function output has units (mV)

corresponds to the variance of the voltage. The rms voltage, or surface potential variation is 4 mV.

The height of the autocorrelation function output at r = 0 represents

Vrms)2.  For the region considered in Figures 40 and 41, 

4 mV.  A similar number may be obtained from plotting the surface potential data in a 

histogram and extracting the width of the fit curve.  As discussed earlier in Chapter 4, 

oltage corresponds to a variation in carrier concentration over the sample 

surface.  The value of 4 mV is even lower than the value measured in ambient 

(though here the spatial resolution is better), corresponding to an extremely low 

oncentration.   

 

The autocorrelation function of the surface potential from Figure 40(b) (shown in inset).  

The function output is shown on the positive axis but is reflected onto the negative axis.  The width of 

nm.  The height of the function output has units (mV)2 and 

corresponds to the variance of the voltage. The rms voltage, or surface potential variation is 4 mV. 

represents the 

.  For the region considered in Figures 40 and 41, Vrms is 

4 mV.  A similar number may be obtained from plotting the surface potential data in a 

histogram and extracting the width of the fit curve.  As discussed earlier in Chapter 4, 

oltage corresponds to a variation in carrier concentration over the sample 

surface.  The value of 4 mV is even lower than the value measured in ambient 

(though here the spatial resolution is better), corresponding to an extremely low 
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The surface potential data for the IFL was measured to be substantially 

rougher than for the graphene monolayer.  Figure 43(a) and (b) show height and 

surface potential data respectively for a region on the sample containing adjacent 

graphene (left) and IFL (right) regions.  The boxed region in Figure 43(b) is shown 

magnified in Figure 43(c) and is the region over which the autocorrelation analysis 

was applied.  The result of the analysis in shown in Figure 43(d).  The height of the 

autocorrelation function output for the IFL is higher than for the graphene, giving a 

Vrms of 32 mV.   

 

 



 

 
 

Figure 43:  (a) and (b) show height and surface potential data for a region containing both graphene 

(left) and IFL (right) regions.  The boxed region in (b) is shown again in (c) as the region over which 

the autocorrelation analysis was performed.  The resu

The height of the autocorrelation function

width of the peak gives a correlation length of 
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(a) and (b) show height and surface potential data for a region containing both graphene 

(left) and IFL (right) regions.  The boxed region in (b) is shown again in (c) as the region over which 

the autocorrelation analysis was performed.  The result of the autocorrelation function is shown in (d).  

autocorrelation function output at r = 0 corresponds to a Vrms of 32 mV, while the 

width of the peak gives a correlation length of 34 nm.   

 

(a) and (b) show height and surface potential data for a region containing both graphene 

(left) and IFL (right) regions.  The boxed region in (b) is shown again in (c) as the region over which 

function is shown in (d).  

of 32 mV, while the 
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Analysis  

 To compare the measured C(r) to theory, I used the following expression 

describing the C(r) for randomly distributed charges located in a plane a distance d 

from the plane in which the potential is measured. 

C(r)

e
 avgrimp








2 
2qe2qd J0 (qr)

q(q) 2 dq
1/l



    (6.4) 

where , and (q) is the relative dielectric function.  For the case of 

random charges on an insulating substrate such as SiO2 or the IFL on SiC, (q) = 1 

(the dielectric effect is subsumed in the  in the prefactor).  In the case of graphene, 

(q) is the screening function for graphene (see below).  The quantity J0(qr) is the 0th 

spherical Bessel function and can be substituted as sin(qr)
qr

.   

The expression 6.4 has been successfully applied to the analysis of Kelvin 

probe data on SiO2.  I choose d = 1 nm as the distance between the substrate and 

impurities, an l = 300 nm as a long wavelength cutoff which described the cutoff of 

the 1/r Coulomb potential at long distances due to the presence of a gate electrode 

(groupnd plane) at a distance of 300 nm from the surface.. The dielectric constant  is 

for the insulating substrate.  UHV KPM data similar to the data presented here on the 

IFL was collected by Kristen Burson and Dr. Bill Cullen on SiO2 substrates.  Then 

C(r) was fit using equation 6.4.  The autocorrelation function for SiO2 is shown in 

Figure 44(a), and the fit is shown in Figure 44(b).  The height of the autocorrelation 

function fit is scaled by the prefactor  2

avg impe r . 

rimp  nimp 1/2



 

 
 

Writing the amplitude of the fit function in terms of the above prefact

nimp to be 2.12 x 1011 cm

graphene on SiO2 to 24000 cm

The functional form of C(

impurity model provides a good description of potential disorder on the SiO

substrate. 

 

Figure 44:  Experimental autocorrelation function

UMD by Kristen Burson and Dr. Bill Cullen.  The line is a fit to equation 

 
 I now turn to the autocorrelation function 

compare the model to the IFL data, I calculated the 

values similar to those for impurities on SiO

nm (physically this would indicate surface charges located in the IFL, and 

reflect the tip-sample distance) 

of a gate electrode imposing a long

IFL case was changed to 

value, nimp was chosen as 1 x 10
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Writing the amplitude of the fit function in terms of the above prefactor, I calculated 

cm-2.  This impurity concentration would limit the mobility in 

24000 cm2/Vs, close to the maximum observed values.

(r) is also reasonable, indicating the random charged 

impurity model provides a good description of potential disorder on the SiO

autocorrelation function (points) for UHV KPM data on SiO2

UMD by Kristen Burson and Dr. Bill Cullen.  The line is a fit to equation 6.4. 

I now turn to the autocorrelation function C(r) for the insulating IFL.  To 

model to the IFL data, I calculated the C(r) using equation 6.4

values similar to those for impurities on SiO2; the impurity distance d was kept at 1 

nm (physically this would indicate surface charges located in the IFL, and 

sample distance) and l was extended to 1000 nm to reflect the absence 

of a gate electrode imposing a long-distance cutoff.  The dielectric constant for the 

  = 5.3 for SiC.  To fix the prefactor at a physically relevant 

was chosen as 1 x 1013 cm-2 in keeping with values quoted by ARPES for 

or, I calculated 

.  This impurity concentration would limit the mobility in 

/Vs, close to the maximum observed values.[79]  

) is also reasonable, indicating the random charged 

impurity model provides a good description of potential disorder on the SiO2 

 

2 collected at 

) for the insulating IFL.  To 

6.4 using 

was kept at 1 

nm (physically this would indicate surface charges located in the IFL, and d would 

was extended to 1000 nm to reflect the absence 

distance cutoff.  The dielectric constant for the 

 = 5.3 for SiC.  To fix the prefactor at a physically relevant 

in keeping with values quoted by ARPES for 



 

 
 

the doping level in epitaxial graphene samples grown on SiC measured in UHV.  This 

assumes that the doping reported in epitaxial graphene is due to charge in the 

substrate or IFL.  The computed 

in Figure 45.  The variance of the potential, given by 

corresponding to a Vrms of approximately 500 mV, an order of magnitude larger than 

the experimentally obtained value of 32 mV.  Conversely, the measured 

corresponds to nimp = 6.4 x 10

than the experimental curve.  The resul

bare IFL is likely significantly (perhaps an order of magnitude) lower than 10

and (2) the charges in the IFL are likely highly correlated, as reflected in the much 

narrower experimental C(

to quantitatively understand the experimental 

Figure 45:  The computed autocorrelation function

l = 1000 nm,  = 5.3, and nimp 

 
 
 To understand the variations in potential seen on graphene on SiC, I consider 

two cases.  First, if the graphene is undoped, I might expect a variation in carrier 

density n* = 8 x 1011 cm-

nimp = 1 x 1013 cm-2 as calculated in Chapter 4.  The observed 
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the doping level in epitaxial graphene samples grown on SiC measured in UHV.  This 

assumes that the doping reported in epitaxial graphene is due to charge in the 

computed autocorrelation function curve for the IFL is shown 

.  The variance of the potential, given by C(r=0), is 250000 mV

of approximately 500 mV, an order of magnitude larger than 

the experimentally obtained value of 32 mV.  Conversely, the measured V

= 6.4 x 1011 cm-2. The model AC(r) is also significantly wider 

than the experimental curve.  The result indicates that (1) the impurity density on the 

bare IFL is likely significantly (perhaps an order of magnitude) lower than 10

and (2) the charges in the IFL are likely highly correlated, as reflected in the much 

narrower experimental C(r) compared to the model.  However, more work is needed 

to quantitatively understand the experimental C(r). 

 

autocorrelation function curve using equation 6.4, with values of 

 = 1 x 1013 cm-2.  

To understand the variations in potential seen on graphene on SiC, I consider 

two cases.  First, if the graphene is undoped, I might expect a variation in carrier 

-2, corresponding to Vrms = 105 mV, for an impurity density 

as calculated in Chapter 4.  The observed Vrms is 26 times smaller, 

the doping level in epitaxial graphene samples grown on SiC measured in UHV.  This 

assumes that the doping reported in epitaxial graphene is due to charge in the 

curve for the IFL is shown 

250000 mV2, 

of approximately 500 mV, an order of magnitude larger than 

Vrms 

) is also significantly wider 

t indicates that (1) the impurity density on the 

bare IFL is likely significantly (perhaps an order of magnitude) lower than 1013 cm-2, 

and (2) the charges in the IFL are likely highly correlated, as reflected in the much 

d to the model.  However, more work is needed 

curve using equation 6.4, with values of d = 1 nm, 

To understand the variations in potential seen on graphene on SiC, I consider 

two cases.  First, if the graphene is undoped, I might expect a variation in carrier 

rity density 

is 26 times smaller, 
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corresponding to n*  109 cm-2, comparable to values observed in ultra-clean 

suspended graphene, which I consider unlikely especially considering the low charge 

carrier mobilities measured in graphene on SiC. 

If the graphene is considerably doped, the potential fluctuations will be 

smaller due to larger screening by the conduction carriers.  I calculated this case using 

Eqn. 3.1, with (q) changed to reflect the screening of the impurity charges by the 

graphene membrane.  I used the RPA result for graphene’s dielectric function [2], 

[80]:  

q) 
1 4kF rs

q
for q  2kF

1  rs

2
for q  2kF









    (6.5) 

Here rs = 0.37 is the fine structure constant for SiC, smaller than the value of 0.81 for 

SiO2.  I assumed a kF = 0.398 nm-1 calculated from the Fermi energy of 300 mV for 

epitaxial graphene.  This value of Fermi energy is consistent with the majority 

ARPES and transport measurements for epitaxial samples.[56], [57], [59], [60], [81]  

For this highly-doped case, it is reasonable to take kF as a constant instead of doing a 

self-consistent calculation for kF.  As discussed in Chapter 4, there was some 

variation in the reporting of this number, but I consider 300-400 meV to be the most 

commonly agreed upon figure, corresponding to the widely reported 5 x 1012 cm-2 to 

1 x 1013 cm-2 n-doping.  The integral in equation 3.1 now takes the form: 

C(r) 
e

 rimp








2
2qe2qd J0 (qr)

1 4kFrs

q






2

q2

dq 
2qe2qd J0 (qr)

1 rs

2






2

q2

dq
2k



1/l

2k























  (6.6) 
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In lieu of extracting an analytical form for the autocorrelation function fit curve for 

graphene over SiC, I instead calculate the magnitude of the curve at r = 0.  Again I 

use the values d = 1 nm (here corresponding physically to the impurity-graphene 

spacing), l = 1000 nm, nimp = 1013 cm-2.  I then arrive at Vrms = C(r=0)1/2  125 mV.  

This again is much larger than the experimentally measured value of 4 mV.  Since for 

high doping the variance of the potential scales proportionally to nimp, I can identify 

the measured Vrms as corresponding to nimp = 3.2 x 1011 cm-2.  This impurity level 

would correspond to a charge carrier mobility of 16000 cm2/Vs, about an order of 

magnitude higher than observed for similar samples to ours.  It would also require a 

mechanism to produce the high doping without corresponding high impurity level. 
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Chapter 7:  Conclusions 

 
 

Ambient electronic transport data (Chapter 4), and ambient (Chapter 4) and 

UHV (Chapter 5) Kelvin probe microscopy indicate that our epitaxial graphene 

samples grown on SiC(0001) are low-doped, at or near the minimum conductivity 

regime where electron-hole puddles dominate electronic transport.  In Chapter 6 I 

discussed measurements of the microscopic potential fluctuations on graphene on SiC 

(as well as the bare carbon-rich interfacial layer of SiC), which should directly 

measure the potential depth and the spatial correlation of the electron-hole puddles.  

The autocorrelation functions of the potentials have widths of 32 and 64 nm 

respectively, and the rms potential variations are 32 and 4 mV respectively, for IFL 

and monolayer graphene.  While the width of the autocorrelation function is plausible 

for the correlation length for electron-hole puddles in graphene on SiC, the observed 

small magnitude of the potential variations is difficult to explain.  

As discussed in Chapter 6, the potential variations are inconsistent with a 

model of random charged impurities located in a plane near the surface of the SiC, a 

model which works well to describe the potential near the SiO2 surface, and also 

describes well the electronic transport properties of graphene on the SiO2.  In the 

previous chapter I compared the surface potential variation measured on both the IFL 

and graphene to surface potential variations calculated from the expected charged 

impurity density of nimp = 1013 cm-2; the observed potential variations in the IFL and 

graphene are 10 and 30 times smaller, respectively, than predicted.  The results are 



 

 121 
 

truly unanticipated and require a new understanding of potential disorder in substrate-

bound graphene.   

I can also look at the problem in reverse.  Since the ambient KPM 

measurements and the measured surface potential step between monolayer and 

bilayer regions in UHV both strongly suggest that our samples are only lightly doped, 

it may be more meaningful to work from the UHV KPM measurements of the surface 

potential variations on the IFL and on monolayer graphene regions to estimate nimp 

and n* for out samples.  The measured rms surface potential variation for the IFL, 

Vrms = 32 mV, corresponds to nimp = 5.7 x 1010 cm-2 (here I used equation in 6.4 with 

C(0) equal to (Vrms )2, d = 1 nm and l = 1000 nm).  The self-consistent theory from 

Adam et al. further allows for the calculation of the predicted variation in carrier 

concentration, n* from nimp for the IFL.[2]  From this, I find n*
  109 cm-2, which 

predicts a Vrms for the graphene of 16 mV.  The experimental number from the 

graphene surface potential data was reported in the last chapter to be only 4 mV, 

considerably lower than predicted.    

The ambient KPM measurements discussed in Chapter 4 point to the bulk of 

samples being lightly doped in the minimum conductivity regime with n*  8 x 1011 

cm-2 and a minimum conductivity of 3.8 e2/h.  Other samples with   1000 cm2/Vs 

have a larger range of measured Hall resistances and suggest a value of nimp of  8 x 

1012 cm-2.  The surface potential step of 100 mV between monolayer and bilayer 

graphene discussed in Chapter 5 is in good agreement with the work function 

difference measured by Yu et al, also supporting the conclusion that the samples are 

only lightly doped.[74]   
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There are several possibilities to explain the discrepancies in the observations 

of Chapters 4 and 5 and Chapter 6.  The charged-impurity model relies on 

assumptions that may be incorrect.  One assumption is that the charged impurities are 

located very near the graphene plane.   The impurities could instead be distributed 

throughout the SiC substrate.  A variety of SiC substrates have been used for 

graphene growth, ranging from N-doped to semi-insulating.  This may account for the 

wide range of N-doping reported for graphene samples grown on SiC(0001) of 90-

500 meV; the doping could be due to donation of charge from bulk traps in the SiC, 

resulting in a depletion layer.  Our samples were grown on semi-insulating samples, 

while n-doped graphene samples may have been grown on higher doped SiC 

substrates.   

For the case of N-doped SiC substrates, the carrier density is reported to be 

between 3 x 1018 and 9 x 1018 cm-3.[72]  By considering the SiC/graphene surface 

potential step of 100 meV, I can estimate the depletion width in SiC as 0
2

2 Ul
e






 4 nm, where U is the Schottky barrier height,  = 9.6, and   6 x 1018 cm-3 is the 

bulk doping.  For the semi-insulating substrates used for our samples, the bulk doping 

is much lower,  108-1012 cm-3, producing much longer depletion lengths.[72]  While 

the calculation suggests depletion lengths for semi-insulating substrates 1 m, the 

physical meaning of this is unclear. Qualitatively, however, longer depletion lengths, 

corresponding to a deeper distribution of charged impurities in the substrate produce 

smoother surface potential variations, similar to what is experimentally observed.  If I 

calculate C(0) again for epitaxial graphene on SiC replacing d with a value of 50 nm, 

the predicted Vrms drops to 4 mV for an impurity concentration of 5 x 1012 cm-2; hence 
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remote impurities could easily explain the small potential fluctuations observed on 

graphene on SiC.  Moving the impurities farther from the graphene plane has a small 

effect on the mobility (at least in the regime where dn1/2  1; d is the impurity-

graphene separation) but a much larger effect on the electron-hole puddle carrier 

density.[2]  

A second possibility is that the charged impurities are located in a plane near 

the graphene but are correlated.  If the impurities are located in the interfacial layer 

itself, then the doping is established through electrochemical equilibrium between the 

IFL charge traps and the graphene.  A comparison may be made between the bulk 

doping necessary and equivalent surface charge density needed to produce the 

frequently-measured Fermi energy of 400 meV.  It has been shown that a surface 

density of 1013 cm-2 surface charges at the graphene interface replicates the Fermi 

energy and band structure of a substrate with a 1019
 cm-3 bulk doping.[82]  This 

alternate explanation allows for the case of doping in graphene being caused by bulk 

impurities (e.g. nitrogen) buried in the substrates, surface impurities, or some 

combination of the two.  For the surface case, it may be that the Si dangling bond of 

the substrate at the IFL/substrate interface produces a density of charge traps larger 

than the impurity density, and the partially-filled charge trap population may be 

correlated through Coulomb repulsion among the traps.  Some theoretical and 

experimental work has been done on correlated impurities in graphene.[83], [84]  The 

experimental results suggest that the puddles carrier density is significantly reduced 

by impurity correlations.[83]   
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A last possibility is that IFL is highly polarizable, leading to a much higher 

effective dielectric constant for the IFL/SiC substrate than expected.  This is 

consistent with recent experimental work by Walter et al using ARPES to examine 

plasmarons in graphene on SiC substrates which compared graphene/IFL/SiC(0001) 

to graphene that was decoupled from the underlying substrate by a variety of 

intercalation methods.[85]  The ARPES spectra collected on graphene/IFL/SiC 

samples (similar to those used in this work) showed a kink near the Dirac point with 

small hole-plasmon band separation.  From these spectra, Walter et al found a 

graphene fine structure constant   0.1 and   = 22 for graphene on IFL, compared to 

our assumed value of  = 0.36 calculated from a substrate  of 9.6, or effective  = 

5.3. This supports the claim of higher dielectric screening due to the high 

polarizability of the IFL, where the origin of this polarizability again lies with the 

dangling Si bonds in the IFL.  The electron-hole puddle carrier density scales as 2, so 

a smaller fine structure constant due to a more-polarizable IFL could explain the 

smaller electron-hole puddle carrier density.   

The above suggestions all point to the IFL as playing a strong role in altering 

the dielectric environment of epitaxial graphene from the simple case of the film on a 

bare SiC substrate.  Although several explanations have been offered for the observed 

data, more measurements are needed to precisely determine the doping of graphene 

grown on semi-insulating SiC(0001).  Currently being pursued, STS measurements of 

graphene could provide a doping value for epitaxial samples by directly measuring 

the Fermi energy.[86]  A better understanding of graphene doping by a direct 

comparison of samples grown by the same methods on SiC substrates of different N-
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doping would greatly illuminate the situation.  These samples could be easily 

compared again with KPM and STS without device processing.  Finally, UHV 

transport experiments could also be valuable, both on clean samples to determine 

doping, and on K-dosed or otherwise perturbed samples to better understand the 

smooth surface potential distribution measured on clean graphene by UHV KPM. 

Until further steps have been taken, the lack of puddles in the UHV surface potential 

data remains a surprising result in an otherwise cohesive picture of lightly doped 

epitaxial graphene samples on SiC(0001).   
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