
ABSTRACT

Title of dissertation: ESSAYS ON PACKAGE AUCTIONS

Oleg V. Baranov, Doctor of Philosophy, 2011

Dissertation directed by: Professor Lawrence Ausubel

Department of Economics

The recent auctions literature has devoted much attention to mechanisms that

allow package bidding: all-or-nothing bids for sets of items. Introducing package

bids can improve efficiency by reducing the bidders “exposure” risk of winning un-

desirable combinations of items. However, package bids can also create a free-rider

problem for relatively small bidders since they need to compete jointly against their

larger opponents, potentially reducing efficiency. The inherent asymmetry among

different package bids significantly complicates an equilibrium analysis of the costs

and benefits of allowing package bids in auctions.

The first chapter makes progress in solving for Bayesian-Nash equilibria of

the first-price package auction. We develop a new computational method which is

based on a complementarity formulation of the system of equilibrium inequalities.

Additionally, we establish existence of equilibrium for special cases. Our analysis

shows that introducing package bidding can significantly improve efficiency when the

exposure risk faced by bidders is large, but it can reduce efficiency otherwise. We



also compare the first-price package auction with other leading package alternatives.

Surprisingly, in the environment considered, the first-price package auction performs

reasonably well, with respect to both revenue and efficiency, despite the presence of

a strong free-rider problem.

The second chapter studies the core-selecting auctions that were proposed

recently as alternatives to the famous Vickrey-Clarke Groves (VCG) mechanism

for environments with complementarities. The existing literature on core-selecting

auctions is limited to only a complete-information analysis. We consider a simple

incomplete-information model which allows us to do a full equilibrium analysis, in-

cluding closed-form solutions for some distributions, for four different core-selecting

auction formats suggested in the literature. Our model also admits correlations

among bidders values. We find that the revenues and efficiency from core-selecting

auctions improve as correlations among bidders values increase, while the revenues

from the Vickrey auction worsen. Thus, there may be good reasons for policymak-

ers to utilize a core-selecting auction rather than a VCG mechanism in realistic

environments.
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Introduction to Package Auctions

What are package auctions?

Package auctions are auctions in which bidders are allowed to place bids on

combinations of items, or “packages”. A “package” bid is interpreted as an all-or-

nothing offer to buy (or sell) all items that compromise the package at the specified

price. Various forms of package auctions have been in active use for decades. In

estate and bankruptcy auctions, for example, a typical procedure is to sell all lots

one by one with the understanding that in the end, these lots are offered again as

part of larger packages. In case the package bid on a combination of items exceeds

the sum of individual bids on items in the package obtained earlier, the items are

sold as a package. Auctions where bidders can bid on packages are also known as

combinatorial auctions.

Despite the straightforward package idea, up until recently, package auctions

have been used only in trivial applications. This is quite understandable. While such

auctions allow bidders to fully express and accommodate their preferences over all

possible combinations of items, they also bring extremely high level of complexity. It

is quite instructive to think about a simple auction with just 10 heterogeneous items.

In such auction, any bidder can easily submit up to 210 = 1024 different mutually-

exclusive package bids! Then, even a simple task, faced by the auctioneer, of finding

the winners and their corresponding winning packages is highly unattractive and

elaborate endeavor. One can only imagine the size of computations required to

perform such calculation when hundreds or thousands of objects are involved. The
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obvious question is then why we need to overcome such complexity and use package

auctions instead of well-known non-package alternatives where all calculations that

have to be made by the auctioneer are trivial. For example, auctioneer can easily sell

all items separately one after another or simultaneously using a sealed-bid auction

format.

The fundamental reason behind the growing interest to package auctions is the

superior ability of package bids to fully express bidders’ preferences over any set of

items. Any bidder who demands many items and has no value for smaller sets will

find package bids highly attractive as she can not be forced into buying undesired

allocations. Equally plausible, package bids will allow a bidder who is indifferent

among several items but needs only one of them to submit an appropriate set of

package bids that makes it impossible to win more than one object. In a non-package

alternative, such bidder will be unable to express her indifferences without running

a risk of winning too many items. The former situation is the leading example of

the environment for which auction experts strongly recommend the use of package

bids in practical applications. Such environments are characterized by the presence

of strong complementarities ( i.e., synergetic valuations for combinations of items

that exceed the sum of valuations of the standalone components) that differ across

bidders.

The numerous examples of such environments include radio spectrum, truck-

load transportation, industrial procurement, public transportation and airport de-

parture/arrival slots. In spectrum domain, complementarities that bidders face can

be exceptionally severe. For example, a bidder can be a new entrant for the telecom-
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munication industry that needs to win a large amount of bandwidth. Winning any

smaller amount of bandwidth can be completely worthless for this bidder since it

will not be enough to achieve the minimum scale of operations. At the same time,

incumbents would not mind winning smaller amounts of spectrum that will add

capacity to their current holdings. Accommodating bidders’ preferences in such

applications is extremely important as the combined value of the items auctioned

sometimes can be as high as tens of billions of dollars.

Fortunately, recent advancements in technology and science made it possible to

overcome some complexity of package auctions. As a result, the package designs that

can allocate hundreds of items at once are a materialized reality that rapidly spreads

around the globe. Several countries including Austria, Denmark, Netherlands, UK,

Canada and Australia1 have already adopted a state of the art package clock design2

to allocate spectrum that will be used for the next generation LTE (4G) wireless

networks.

Literature review

Literature on package auctions is extensive and quite diverse as researchers

from several fields including economics, computer science and operations research

tackle it from different angles. Economists are primarily interested in auctions (and

package auctions in particular) as market mechanisms that can allocate objects effi-

1Canada and Australia are in the review process of adopting a package design at the time of

this writing.
2Package clock auction is also referred to as combinatorial clock auction.
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ciently. Computer science studies different approaches to express bidder preferences

over the large number of objects in the most economical way. Finally, optimiza-

tion algorithms from operations research are used to solve the winner-determination

problem which is the cornerstone of any package design.

A volume edited by Peter Cramton, Yoav Shoham and Richard Steinberg

(2006) [19] is an excellent source for a unified treatment on combinatorial auctions.

It contains a series of articles from economics, computer science and operations

research literature with the state of the art contributions. The book also provides

deep discussion on the recent practical applications of combinatorial auctions.

The current thesis looks at the package auctions from an economist perspec-

tive. Starting with the seminal work of William Vickrey (1961) [52], economists

traditionally are interested in incentives, revenue and efficiency characteristics of

different auction procedures. There are several general treatments that talk about

auction theory and package auctions in particular. Krishna (2002) [37], Klemperer

(2004) [36] and Milgrom (2004) [44] give a thorough comprehensive review of the

current state of the auction theory.

More detailed literature review related to the specific research question of each

chapter can be found in the introduction sections 1.1 and 2.1. The overall structure

of the thesis and a short preview of contributions are outlined next.
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Summary of contributions and the organization of the thesis

The current thesis contributes to the growing body of literature on package

auctions in several important ways. First of all, all equilibrium analysis is done

within incomplete information environment. Except for a few notable examples,

the majority of game-theoretic treatments of package auctions has been routinely

done using complete information framework, i.e., assuming that all auction partic-

ipants know the intrinsic structure of preferences and exact values of ALL auction

participants. This is quite understandable given the level of complexity the large

number of possible package bids create even in the smallest non-trivial environ-

ments. However, economists traditionally prefer incomplete information models for

auctions as it allows for a much better fit with the reality and provides compelling

motivation for the use of auctions as a market allocation mechanism.

Given the multiplied complexity of package auctions with incomplete informa-

tion, a simple model is considered that, on the one hand, allows tractable equilibrium

analysis of multiple package designs and, on the other hand, contains several realis-

tic features like complementarity and correlation of values. The main contribution

is the comprehensive comparison of different package auctions among themselves

and some of their non-package alternatives in terms of bidder incentives, seller rev-

enue and overall economic efficiency. Our analysis allows to identify the important

elements and features of package environments that can be extremely important in

applications. There are also some methodological contributions that include new

numerical and analytical techniques for finding solutions of package auctions.
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The content of the thesis is organized in two separate chapters that are based

on Baranov(2010) [12] and Ausubel and Baranov (2011) [5]. Chapters do not rely

on each other and can be read on its own in any order.

The first chapter considers the first-price package auction and compares it with

the first-price auction where package bids are not allowed. We solve for Bayesian-

Nash equilibria of both auctions by developing a new computational method which

is based on a complementarity formulation of the system of equilibrium inequalities.

Additionally, we establish existence of equilibrium for special cases.

The second chapter looks at the “second price like” core-selecting auctions

that were proposed recently as alternatives to the famous Vickrey-Clarke Groves

(VCG) mechanism for environments with complementarities. We perform a full

equilibrium analysis, including closed-form solutions for some distributions, for four

different core-selecting auction formats suggested in the literature. Then we compare

all designs with each other and discuss how our findings can be used in applications.
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Chapter 1

Exposure vs. Free-Riding in Auctions with Incomplete

Information

by Oleg V. Baranov

1.1 Introduction

The recent auction literature has devoted a lot of attention to auction mecha-

nisms that can be used to allocate multiple items simultaneously. Such strong inter-

est is not surprising since the majority of recent high-stake auctions involved selling

many items at once to participants with non-trivial interests in different combina-

tions of these items. For example, in spectrum auctions, governments sell licenses to

use the airwave spectrum in many geographical regions to telecommunication com-

panies whose business plans only match some particular subsets of licenses. Other

examples include treasury auctions, bankruptcy auctions and numerous private and

public procurement auctions.

Bidders in these auctions can often have very specific preferences for some

bundles of items offered in the auction. For example, a buyer’s value for a pair

of objects can be higher than the standalone values of the individual components

because the combination of items generates additional synergetic value. In other

words, a bidder may value some objects as complements. In such environments,
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standard independent single-item auctions might fail to produce an efficient allo-

cation because they do not allow bidders to express their possible synergies across

multiple items.

For the ease of exposition, consider a simple illustrative example with just two

items, “East” and “West” (which might represent spectrum licenses for the Eastern

and Western parts of a country), offered for sale and three bidders. The “global”

bidder regards both East and West as perfect complements, receiving positive value

from the package {East, West} but obtains no value from either item when acquiring

them individually. The other bidders, usually referred to as “local” bidders, obtain

value only from one item. Local Bidder 1 is interested only in East and obtains

no value for West while the local bidder 2 obtains value only for West and has no

interest in East. In case the auctioneer decides to sell the items by means of two

independent auctions, the global bidder is exposed to a positive chance of being

forced to buy just East or just West when she wins only in one auction but loses

in the other one. Since the global bidder views both items as perfect complements,

acquiring just one of them is totally worthless for her.

This phenomenon, known as the exposure problem, can negatively affect effi-

ciency of the auctions because exposed bidders will strategically underbid or overbid

in an attempt to avoid paying positive prices for good-for-nothing packages.

The auctioneer can easily accommodate bidders with synergies and avoid the

exposure problem altogether by simply auctioning all items simultaneously and al-

lowing bidders to submit package bids, i.e., all-or-nothing bids for subsets of items

specified by bidders themselves. In the example from the previous paragraph, the

8



global bidder will be able to submit a package bid for the actually desired combi-

nation of items, i.e., for both East and West bundled together. Such package bid

completely eliminates any exposure risk because the global bidder can win either

both items or no items at all with zero probability of getting just one of them.

However, while package bids solve all exposure concerns, they also can in-

troduce a free-rider problem, sometimes referred to as the threshold problem in the

auction literature. The issue can be easily demonstrated using the illustrative exam-

ple introduced above. Consider a first-price auction where the global bidder submits

a package bid B for the bundle of East and West while local bidders bid b1 and b2

on the corresponding items. The local bidders win their items whenever their total

bid is higher than the package bid of the global bidder (b1 + b2 > B). Without an

ability to explicitly coordinate their actions, both local bidders have incentives to

free ride on each other by reducing their individual bids. Observe that it is possible

for a local bidder to get the desired item for free when the other local bidder out-

bids the package bid of the global bidder alone1. Such free-riding motives can easily

mitigate any possible efficiency and revenue gains achieved by the package bidding

and further degrade the performance of the package design.

Therefore, the overall effect of the package bidding on the auction performance

characteristics is ambiguous. On the one hand, package bids might increase efficiency

and revenue by eliminating the exposure problem for bidders who view objects as

complements. On the other hand, the presence of package bids might negatively

1Consider the following bid data: B = 5, b1 = 0, b2 = 6. The local bidder 1 wins her item and

pays zero since b1 + b2 = 6 > 5 = B.
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affect efficiency and revenue when some bidders without a fundamental conflict of

interest have incentives to free ride on other bidders’ bids.

The most widely used package design in applications is the sealed-bid first-

price package auction. Virtually all procurement auctions which allow bidders to

submit at least some package bids use the pay-as-bid pricing rule. Examples include

auctions of bus routes in London,2 auctions for milk providers in Chile3 and IBM-

Mars procurement auctions.4 Such features as resistance to collusion, participation

encouragement and transparency (winners pay what they bid) explain the popularity

of the sealed-bid pay-as-bid auctions.5 Therefore, the first-price auction is the most

relevant auction format to study the consequences of package bidding from a policy-

making perspective. However, an inherent structural asymmetry between bidders’

values and bids is crucial for having non-trivial versions of both the exposure and

free-rider problems. This requirement is unfortunate since a general theoretical

analysis of first-price auctions in asymmetric environments has proved to be very

tedious.

In this paper, we consider a simple stylized model with two items in which

one bidder values them as perfect complements. First, we perform a Bayesian-Nash

equilibrium analysis for both the package and non-package versions of the first-

price auction, including existence proofs for some instances of the model. Second,

we develop a novel numerical technique that is used to approximate equilibrium

2See Cantillon and Pesendorfer (2006) [14].
3See Epstein, Henŕıques, Catalán, Weintraub and Mart́ınez (2002) [26].
4See Hohner, Rich, Ng, Reed, Davenport, Kalagnanam, Lee and An (2003) [35].
5See Cramton (1998) [17] for discussion.
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bidding functions in both auctions. Finally, we investigate the impact of package

bidding on the performance of the first-price auctions and compare the first-price

package auction with other leading package alternatives.

Results on existence of the monotone Bayesian-Nash equilibrium in the first-

price package auctions are related to the large body of literature on existence of the

equilibrium in first-price auctions for a single item (Maskin and Riley (2000) [43],

Lebrun(1999) [40])6 and in games of incomplete information in general ( Radner

and Rosenthal (1982) [49], Milgrom and Weber (1985) [45], Athey (2001) [3]). The

numerical technique developed here in order to approximate equilibrium strategies

is related to the literature on numerical methods designed to solve asymmetric first-

price auctions (Marshall et al (1994) [42], Riley and Li (1997) [50], Bajari (2001) [11])

and general games of incomplete information (Armantier and Richard (1997) [1]).

This paper is a contribution to the literature on package auctions. The best-

known package auction is the Vickrey-Clarke-Groves (VCG) mechanism, which was

introduced in the classic theory of auctions and public choice. Vickrey (1961) [52]

looked into multiple-unit auctions for homogeneous goods while Clarke (1971) [16]

and Groves (1973) [33] studied public choice models in potentially heterogeneous

environments.

Other auction formats with package bids have been extensively studied in

complete information settings. Bernheim and Whinston (1986) [13] developed a

general theory of the first-price package auctions. Day and Raghavan (2007) [24]

and Day and Milgrom (2008) [23] introduced a class of alternative package designs

6See also Lebrun(1996) [39], Bajari(1997) [10], Lizzeri and Persico (2000) [41].
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which came to be known as core-selecting auctions. A particular interesting subclass

of core-selecting auctions are auctions that minimize seller’s revenue subject to the

core constraints. They showed that such minimum-revenue core auctions maximize

bidders’ incentives for truthful reporting7. One recently-proposed example of such

mechanisms is the nearest-Vickrey package auction suggested by Day and Cramton

(2009) [22]. Despite its relatively short existence, this rule has already been used

in several important applications.8 The “ascending proxy auction” introduced by

Ausubel and Milgrom (2002, 2006)9 [8] [9] does not explicitly minimize revenue but

often can result in a price vector that corresponds to the minimum-revenue outcome.

Some recent papers have begun to explore the comparison among core-selecting

auctions in an incomplete information environment using the simple model similar

to the one used in this paper. Erdil and Klemperer (2010) [27] focused on a sub-

class of minimum-revenue core payment rules, which are referred to as “reference

rules,” and argued that such payment rules perform better than any other minimum-

revenue core rules because they minimize bidders’ marginal incentives to deviate.

Sano (2010) [51] analyzed the “ascending proxy auction” in a simple setup with in-

7Note that the first-price package auction belongs to the class of core-selecting auctions, but in

this case the seller’s revenue is maximized subject to the core constraints, unlike in “second-price-

like” minimum-revenue core auctions.
8The package clock (or “combinatorial clock”) auction with the nearest-Vickrey pricing rule

has been used for spectrum auctions in the UK (two auctions: February and May 2008), the

Netherlands (April 2010), Denmark (May 2010) and Austria (September 2010).
9A closely related auction procedure was developed independently by Parkes and Ungar (2000)

[48] and Parkes (2001) [47].
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dependent values. Goeree and Lien (2009) [31] showed that in general environments

with complementarities a core-selecting auction that shares the dominant strategy

property of the VCG does not exist. Ausubel and Baranov (2011) [5] compared a va-

riety of minimum-revenue core payment rules and showed that a positive correlation

among bidders’ values can have a dramatic impact on the magnitude of the simi-

lar free-rider problem which also plagues all core-selecting auctions in environments

with complementarities.

Chernomaz and Levin (2010) [15] studied the effects of package bidding on

the sealed-bid first-price auctions in the experimental setting. They considered a

similar model with the global bidder, who has positive synergies, and two local bid-

ders. Regretfully, they made a simplifying assumption about the perfect correlation

between local bidders’ values. While this assumption significantly simplifies their

theoretical analysis, it also effectively eliminates the exposure problem10 from their

consideration. As has been noted above, the exposure worries arising from synergies,

not synergies without exposure risks, are the leading motivator for using package

designs. For that reason, our model explicitly allows exposure outcomes to be part

of the equilibrium.

The model adapted here is a variation of the original model introduced by

Krishna and Rosenthal (1996) [38] to study the exposure problem in second-price

auctions with synergies. The main model of the paper is an incomplete-information

10The exposure problem still exists in the experiment part of their paper. However, the lack of

the exposure problem in the underlying theoretical model provides an alternative explanation for

their main results.
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version of the illustrative example model used throughout this introduction. The

global bidder obtains value u from winning both items but gets zero value from

getting only one of them. Each local bidder i values her corresponding item at vi

and obtains no value from the other item. As in Ausubel and Baranov (2011) [5], the

local bidders’ values are perfectly correlated with probability γ and independently

distributed with probability 1 − γ. Moreover, local bidders only get to observe

their values, but they are unaware of whether their values are perfectly correlated

(v1 = v2) or independent. Thus, γ parameterizes a family of distributions that

permits the correlation between local bidders’ values to be varied continuously from

zero to one.

There are several reasons for considering a class of models with positive cor-

relation among bidders’ values. First, in important applications such as spectrum

auctions, the correlations among bidders’ values can be significant since similar

bidders are likely to use spectrum licenses to deploy the same telecommunication

technology. Second, Ausubel and Baranov (2011) [5] found that positive correlation

can considerably affect the performance of different package-bidding designs. Final-

ly, when package bids are not allowed, the positive correlation can also mitigate the

exposure problem. For instance, in case the values of local bidders are perfectly cor-

related (γ = 1) and both local bidders follow the same bidding strategy11, the global

bidder can completely avoid any exposure risk by submitting the same bid in both

11The solution concept is Bayesian-Nash equilibrium. Since the joint distribution of values will

be symmetric with respect to the two local bidders, and we will limit attention to Bayesian-Nash

equilibria that are symmetric with respect to the two local bidders.
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auctions even though her preferences exhibit the extreme form of complementarities.

The model clearly demonstrates the mechanics of the trade-off between the

exposure and free-rider problems. When the exposure concerns are weak, package

bids can significantly hurt efficiency, but they can sharply improve it when the

exposure risk is relatively high. Further, we show that package bids can substantially

improve efficiency, even when there is no exposure problem at all, simply because

the bid asymmetries introduced by package bids might compensate for the prior

distributional asymmetries. Surprisingly, the first-price package auction is more

efficient when the global bidder has a distributional advantage over the local bidders.

Finally, several examples demonstrate that the package auction can also generate

higher revenues in more competitive environments.

The paper proceeds as follows. The model is described in Section 1.2. Sec-

tion 1.3 contains results of the Bayesian-Nash equilibrium analysis of the first-price

auction with and without package bids. The numerical approach which is used

to approximate equilibrium bidding functions is described in Section 1.4. Several

examples that compare the relative performance of the package and non-package

versions of the first-price auction are presented in Section 1.5. We compare the

first-price package auction with the other leading package alternatives in Section

1.6. Section 1.7 concludes. Most proofs are relegated to the Appendix 1.A.
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1.2 Model

The model used here closely follows the model developed in Ausubel and Bara-

nov (2011) [5]. It consists of two items offered for sale, two local bidders and one

global bidder. Local bidders, denoted 1 and 2, are interested only in one item and

receive no extra utility from acquiring the second item. Their private values are

denoted v1 and v2, respectively. The global bidder wants to acquire two items and

gets zero utility from owning just one item. The value she receives in case she gets

both items is denoted u. All bidders are risk-neutral with quasilinear preferences.

Thus, the payoff of the local bidder i if she wins an item at price pi, is vi − pi. The

payoff of the global bidder, if she wins two items for a total price p, is u− p; while,

if the global bidder wins only one item at price p, her payoff is simply −p.

With probability γ ∈ [0, 1], both local bidders have exactly the same value v,

which is drawn from the distribution on [0, v̄] defined by a cumulative distribution

function F (v) with atomless probability density function f(v). With probability

1 − γ, the values, v1 and v2, of the local bidders are drawn from the same distri-

bution F (v) independently from each other. The value of the global bidder, u, is

independently drawn from the distribution on a [0, ū] described by a cumulative

distribution function G(u) with atomless density g(u). For the ease of exposition,

we assume that ū = 2v̄.

The assumption of independence between values of the global bidder and local

bidders is reasonable since many bidder-specific characteristics such as cost struc-

ture and the scale of operations may be substantially different for the global bidder
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and local bidders. Meanwhile, both local bidders are alike in a sense of demand-

ing only one item, so it is likely that their values are similar. For example, in a

spectrum auction, the local bidders might be two firms that plan to put the same

telecommunication technology in operation in two different geographic areas with

similar demographic characteristics.

Parameter γ controls the amount of correlation between local bidders’ values.

For example, γ = 0 and γ = 1 correspond to the cases of independent values

and perfectly correlated values respectively. The local’s bidder value model can be

summarized by the conditional cumulative distribution function of the local bidder

i that defines her probability assessment of bidder’s j valuations given her value vi:

FL(vj|vi = s) =


(1− γ)F (vj) 0 ≤ vj < s

(1− γ)F (vj) + γ s ≤ vj ≤ v̄

i 6= j

Without loss of generality, our attention is limited to the first-price package

auction where any bidder is allowed to submit only one bid. While impractical

in general environments, this limitation has no implications for the analysis of the

model because of the perfect complementarity nature of the bidders’ preferences12

in our model. For example, the global bidder values only a bundle of two items and

her bid B is interpreted as a package bid for two items13. Each local bidder i is

interested only in one item and her bid bi expresses her willingness to pay bi for that

item.

12All bidders weakly prefer to bid for their desired bundles.
13Since the global bidder can only submit one bid, there are no inefficiencies arising from the

strategic price discrimination in the sense of Cantillon and Pesendorfer (2006) [14].
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The first-price package auction proceeds in the following manner. First, all

bidders submit their bids to the auctioneer who then chooses an allocation which

maximizes total welfare with respect to the bids. In this simple model, only two

outcomes are possible. If the package bid of the global bidder is greater than the sum

of the local bidders’ bids (B > b1 + b2), the global bidder receives both items and

pays B. The local bidders win the auction and receive one item each whenever the

sum of their bids is higher than the package bid of the global bidder (B < b1 + b2).

In this event, both local bidders are required to pay their respective bids. Ties are

resolved using a fair randomizing device.

When package bids are not allowed, both items are auctioned simultaneously

using two independent first-price auctions (or, equivalently, a pay-as-bid auction

where bidders submit demand curves in case items are homogeneous). Naturally,

the global bidder participates in both auctions by submitting two separate bids,

bg1 and bg2, each for the corresponding item. There are several possible outcomes.

First, the global bidder can win both items when her bids are higher than the

corresponding bids of the local bidders ( bg1 > b1 and bg2 > b2 ) and pay bg1 + bg2.

Second, the global bidder can end up winning only one item, in which case she

receives no value from the acquired item but pays the amount of her winning bid.

Finally, the global bidder can lose in both auctions and pay nothing if both of her

bids are smaller than that of local bidders (bg1 < b1 and bg2 < b2 ). A local bidder i

wins the desired item when her bid bi is higher than the corresponding bid of the

global bidder bgi and pays bi. Ties are resolved independently across auctions using

a fair randomizing device.
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The majority of proofs in Section 1.3 and the numerical technique discussed

in Section 1.4 are based on the discrete bidding regime. In the discrete bidding

regime all bids by the global bidder are constrained to a countable set of points

∆G = B0 < B1 < . . . < Bj < . . . and bids by local bidders are restricted to a

similar countable set of points ∆L = b0 < b1 < . . . < bi < . . . where B0 = b0 = 0.

In most applications, the bidding sets ∆G and ∆L are equally spaced bid grids

characterized by a certain increment, like a dollar or a penny. However, it is possible

that the global bidder, when bidding for a package of items, is restricted to bid in

larger increments, say twice the minimum increment on any individual item. It is

also assumed that ∆G and ∆L are unbounded.

Some proofs are based on a continuous bidding regime where ∆G = [0,+∞)

and ∆L = [0,+∞).

We proceed with the equilibrium analysis of the first-price package auction.

1.3 Equilibrium Analysis

This section develops the equilibrium existence results for the first-price auc-

tion with and without package bids.

1.3.1 Equilibrium Analysis of the First-Price Package Auction

Since the bidding sets ∆G and ∆L are unbounded, sufficiently high bids

from these sets will never be a part of any equilibrium of the first-price auc-

tion. Without loss of generality, the global bidder selects her bid from a finite
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set SG = {B0, B1, ..., BkG} and local bidders choose their actions from a finite set

Sl = {b0, b1, ..., bkl} where kG and kl are defined as follows:

kG = {j ∈ N : Bj ≤ ū, Bj+1 > ū} kl = {i ∈ N : bi ≤ v̄, bi+1 > v̄}

A pair of functions, B(u) : [0, ū]→ SG and β(v) : [0, v̄]→ Sl, forms a pure

symmetric Bayesian-Nash equilibrium if the following two conditions hold:

∀v ∈ [0, v̄] ∃i ∈ N : πL(v, bi) ≥ πL(v, bk) ∀k ∈ N

(i.e. β(v) = bi)

(1.3.1)

∀u ∈ [0, ū] ∃j ∈ N : πG(u,Bj) ≥ πG(u,Bk) ∀k ∈ N

(i.e. B(u) = Bj)

(1.3.2)

where πL(v, bi) denotes the expected payoff of a local bidder with value v and bid

bi and πG(u,Bj) denotes the expected payoff of the global bidder with value u and

a package bid Bj.

Conditions (1.3.1) and (1.3.2) are incentive compatibility (IC) constraints for

local bidders and the global bidder respectively. Note that since πL(v, b0) ≥ 0 for any

v ∈ [0, v̄] and πG(u,B0) ≥ 0 for any u ∈ [0, ū] individual rationality (IR) constraints

follow naturally from the IC constraints.

1.3.1.1 Independent Values (γ = 0)

When values of local bidders are independent, the expected probability of

winning depends only on the bidder’s bid since her value does not provide any

inference about her opponents’ values. The expected profits in this case are given
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by:

πL(v, bi) = (v − bi)Pr(Locals win|bi) = (v − bi)PriL

πG(u,Bj) = (u−Bj)Pr(Global wins|Bj) = (u−Bj)PrjG

(1.3.3)

For a fixed profile of the opponents’ strategies, an increase in a bidder’s bid

never reduces her probability of winning. Therefore, the following inequalities hold:

PriL ≤ Pri+1
L ∀i ∈ N

PrjG ≤ Prj+1
G ∀j ∈ N

(1.3.4)

Lemma 1.1 establishes the monotonicity property for equilibrium bidding func-

tions.

Lemma 1.1. If local bidders’ values are independent (γ = 0), equilibrium bidding

functions β(v) and B(u) are nondecreasing.

Proof. See Appendix 1.A.

Note that Lemma 1.1 guarantees that sets bi = {v ∈ [0, v̄] : β(v) = bi} ∀i

and Bj = {u ∈ [0, ū] : B(u) = Bj} ∀j are convex.

Lemma 1.2 characterize a Bayesian-Nash equilibrium in pure monotone strate-

gies.

Lemma 1.2. If local bidders’ values are independent (γ = 0), a pure-strategy

Bayesian-Nash symmetric equilibrium is characterized by a pair of step-functions

with the following functional forms:

21



β(v) =


bi if v ∈ [si, si+1) 0 ≤ i ≤ r

br if v = sr+1

(1.3.5)

and

B(u) =


Bj if u ∈ [tj, tj+1) 0 ≤ j ≤ q

Bq if u = tq+1

(1.3.6)

where

1. 0 = s0 < s1 ≤ ... ≤ sr+1 = v̄

0 = t0 < t1 ≤ ... ≤ tq+1 = ū

2. 0 ≤ r ≤ min[kL, r
∗(q)] where r∗(q) = {i ∈ N : bi−1 ≤ Bq, bi > Bq}

0 ≤ q ≤ min[kG, q
∗(r)] where q∗(r) = {j ∈ N : Bj−1 ≤ 2br, Bj > 2br}

Proof. By Lemma 1.1, any equilibrium involves a pair of nondecreasing functions.

Giving finite discrete strategy sets, the step function is the only possible functional

form. Note that we have fixed the actions of all bidders at “jump” points. Tech-

nically, there are a lot of equilibria that assign other actions to “jump” points but

otherwise they are equivalent to the one described in (1.3.5) and (1.3.6) since densi-

ties f(v) and g(u) are atomless. Indexes r and q are the highest bid levels played in

the equilibrium with positive probability. Indexes r∗(q) and q∗(r) are defined such

that the bidder with the highest type never bids above the bid that outbids the

maximum possible bid from the opposing side. This is a standard conclusion for

the first-price auctions. The fact that all probabilities of winning, PriL and PrjG are

strictly positive is reflected in strict inequalities: s0 < s1 and t0 < t1.
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Proposition 1.1 (Discrete Bidding). There exists a symmetric (across local bid-

ders) Bayesian-Nash equilibrium of the first-price package auction in pure nonde-

creasing strategies when values of the local bidders are independent, i.e., γ = 0.

Proof. Existence of the equilibrium when local bidders draw their values indepen-

dently is readily established by application of Theorem 1 from Athey (2001) [3] since

the case of independent locals (γ = 0) is the only instance of the model when the

Single Crossing Condition for games of incomplete information (SCC) is satisfied.

However, this theorem cannot be applied directly since it does not guarantee exis-

tence of the symmetric equilibrium for symmetric players. In order to tackle this

challenge, a modified game where one of the locals is replaced with a player with the

same strategy set but with a different objective has to be considered. The modified

game satisfies all assumptions from Athey (2001) [3] required to apply existence

theorem for games of incomplete information. The equilibrium strategies of the

modified game form a symmetric equilibrium of the actual game. See appendix for

the complete proof.

Rough intuition behind the single crossing condition is as follows: whenever

all opponents of a player use nondecreasing strategies (in the sense that higher types

select higher actions), the player’s best response strategy is also nondecreasing.

Clearly, when the correlation between local bidders’ values is positive, the

SCC is not satisfied. A nondecreasing strategy of the local bidder 1 implies a higher

probability of winning for the local bidder 2. As a result, the local bidder 2, when

she gets a higher value, might prefer to bid lower since the local bidder 1 is already
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likely to bid higher. Therefore, the single crossing condition is an exceptionally

strong property for the environments such as the one considered here.

Fortunately, as shown in the next section, the existence of a Bayesian-Nash

equilibrium in monotone strategies when local bidders’ values are perfectly correlat-

ed can be established using other methods developed in the literature on existence

of the equilibrium in the asymmetric first-price auctions for a single-item.

1.3.1.2 Perfectly Correlated Values (γ = 1)

Chernomaz and Levin (2010) [15] discussed existence of the equilibrium for

the model of the first-price package auction where local bidders always have the

same value that corresponds to the case of perfect correlation in our model.

In order to prove the existence of the equilibrium in the case of perfect cor-

relation, we consider the continuous bidding regime and also assume that F and G

are differentiable over (0, v̄] and (0, ū] respectively, and that their derivatives , f and

g are locally bounded away from zero on these intervals.

Some additional notation is convenient. A per-unit value of the global bidder

when she acquires both items is denoted s, i.e., s = u/2. Note that v and s are

distributed on the same interval [0, v̄]. Then, the distribution of s is described by a

CDF Ĝ(s) = G(2s) with density ĝ(s) = 2g(2s). The strategy of the global bidder

is B̂(s) - a per-unit bid giving her per-unit value s. The actual package bid is then

B(u) = 2B̂(u/2) = 2B̂(s).

Lemma 1.3 states that a pair of bidding functions that satisfy first-order con-

24



ditions do form a Bayesian-Nash equilibrium for the first-price package auction.

Lemma 1.3. When local bidders’ values are perfectly correlated (γ = 1), a pair of

strictly increasing bidding functions β(v) and B̂(s) forms a Bayesian-Nash equilib-

rium of the first-price package auction if there exists b̄ ∈ (0, v̄) such that the inverses

α = β−1, A = B̂−1 form a solution of the following system of differential equations

over (0, b̄]:

d
db
α(b) = F (α(b))

(A(b)−b)f(α(b))
d
db
A(b) = 2Ĝ(A(b))

(α(b)−b)ĝ(A(b))

α(b̄) = v̄ α(0) = 0 A(b̄) = v̄ A(0) = 0

(1.3.7)

Proof. See Appendix 1.A.

Proposition 1.2 (Continuous Bidding). There exists a symmetric (across local

bidders) Bayesian-Nash equilibrium of the first-price package auction in pure strictly

increasing bidding strategies when values of the local bidders are perfectly correlated,

i.e., γ = 1.

Proof. See Appendix 1.A.

The central idea of the proof is straightforward. First, observe that the system

of differential equations (1.3.7) also defines an equilibrium of the certain single-item

asymmetric first-price auction with two bidders. Then, using the existence results

from the extensive literature on existence in the first-price auctions, the existence

of the solution to the system (1.3.7) can be established and, by Lemma 1.3, this

solution is an equilibrium of the first-price package auction.
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1.3.1.3 Positively Correlated Values (γ ∈ [0, 1])

Unfortunately, the methods developed in the equilibrium existence literature

can not be applied in general case. However, the existence on both extremes and

visual continuity of the approximated bidding functions strongly suggest that the

equilibrium exists for any level of correlation between local bidders’ values.

In general cases, we provide some equilibrium characterizations for continu-

ous bidding regime assuming that the symmetric equilibrium exists and that the

equilibrium bidding functions B(u) and β(v) satisfy the following conditions:

1. B(u) = B− = 0 ∀u ∈ [0, û) 0 ≤ û < ū

2. β(v) = b− = 0 ∀v ∈ [0, v̂) 0 ≤ v̂ < v̄

3. B(u) is strictly increasing on [û, ū]

4. β(v) is strictly increasing on [v̂, v̄]

Conditions 1 - 4 state that equilibrium bidding functions have to be strict-

ly increasing except for maybe having flat segments starting at the lowest value.

Lemma 1.4 shows that in any equilibrium that satisfies these properties, the global

bidder always has a strictly increasing strategy while the local bidders equilibrium

strategy always includes a non-trivial flat segment unless local bidders’ values are

perfectly correlated (γ = 1).

Lemma 1.4 (Continuous Bidding). In any equilibrium satisfying conditions 1-4,

the following properties hold:

1. B(u) is strictly increasing on [0, ū] (i.e. û = 0).
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2. If γ = 1 then β(v) is strictly increasing on [0, v̄] (i.e. v̂ = 0).

3. If γ < 1 then β(v) = 0 on [0, v̂] where v̂ > 0.

Proof. See Appendix 1.A.

The next section provides the existence result for the first-price auction with-

out package bids.

1.3.2 Equilibrium Analysis of the First-Price Auction without Pack-

age Bids

When package bids are not available, the global bidder has to compete for

items separately in two simultaneous first-price auctions using two separate bids, bg1

and bg2. However, Lemma 1.5 shows that as long as the local bidders follow the same

bidding strategy the global bidder is always better off by submitting exactly the

same bid in both auctions. Intuitively, such bidding strategy reduces her exposure

risk by reducing probability of winning just one item but not both of them.

Lemma 1.5. If local bidders follow the same nondecreasing strategy βl(v), the global

bidder prefers to submit the same bid in both auctions, i.e., bg1 = bg2.

Proof. See Appendix 1.A.

Similar to the first-price package auction considered in the previous section,

we are unaware of any results on the existence of the equilibrium in such an en-

vironment. The model is complicated by the possibility of the ex post negative

payoff of the global bidder. This is a very distinctive feature since in the model

27



where complementarities are not extreme, like in Chernomaz and Levin (2010) [15],

the global bidder can guarantee nonnegative ex-post payoff similar to the standard

setup of the first-price auctions.

However, it is straightforward to establish existence of the Bayesian-Nash equi-

librium in this model for the discrete bidding regime. Unlike the first-price package

auction, a positive correlation between local bidders’ values does not lead to a failure

of the single-crossing condition in this game since local bidders have to win their

items independently from each other. Therefore, monotonicity, characterization and

existence results can be easily established for any correlation between local bidders’

values (∀γ ∈ [0, 1]). The proofs are omitted since they are virtually the same as in

section 1.3.1.1 where the single-crossing condition for games of incomplete informa-

tion holds because local bidders’ values are independent (γ = 0).

Without loss of generality, local bidders choose their actions from a finite

set Sl = {b0, b1, ..., bkl} and the global bidder selects her bid from a finite set

Sg = {B0, B1, ..., Bkg} where kg = {j ∈ N : Bj ≤ v̄, Bj+1 > v̄}. By Lemma 1.5, in

a symmetric equilibrium the global bidder submits the same bid in both auctions.

Her equilibrium bid function is denoted βg(u) where u is the value she obtains if she

wins both items.

Lemma 1.6. In a symmetric equilibrium, both bidding functions βl(v) and βg(u)

are nondecreasing.

Proof. Similar to the proof of Lemma 1.1.

Lemma 1.7. A pure-strategy Bayesian-Nash symmetric equilibrium is characterized
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by a pair of step-functions with the following functional forms:

βl(v) =


bi if v ∈ [si, si+1) 0 ≤ i ≤ r

br if v = sr+1

and

βg(u) =


Bj if u ∈ [tj, tj+1) 0 ≤ j ≤ q

Bq if u = tq+1

where

1. 0 = s0 < s1 ≤ ... ≤ sr+1 = v̄

0 = t0 < t1 ≤ ... ≤ tq+1 = ū

2. 0 ≤ r ≤ min[kl, r
∗(q)] where r∗(q) = {i ∈ N : bi−1 ≤ Bq, bi > Bq}

0 ≤ q ≤ min[kg, q
∗(r)] where q∗(r) = {j ∈ N : Bj−1 ≤ br, Bj > br}

Proof. Similar to the proof of Lemma 1.2.

Proposition 1.3 (Discrete Bidding). There exists a symmetric (across local bid-

ders) Bayesian-Nash equilibrium of the first-price auction without package bids in

pure nondecreasing strategies.

Proof. Similar to the proof of Proposition 1.1.

In the next section we describe the numerical approximation technique which

can be effectively used to solve both versions of the first-price auction.
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1.4 Numerical Approach

There are a lot of numerical methods suggested in the literature for solv-

ing first-price auctions for a single-item. A pioneering contribution was made in

Marshall et al. (1994) [42], and further, this topic was expanded by Riley and Li

(1997) [50] and Bajari (2001) [11]14.

One way to compute equilibrium bidding functions is a simple best-response

iteration technique. The method provides a certain degree of robustness but tends

to be very slow and the convergence is not guaranteed. Other methods approximate

equilibrium bidding functions by assigning them some flexible parametric functional

forms such as low-order polynomials or piece-wise linear functions and solving the

first-order conditions. They are often found to produce highly accurate approxima-

tions for the unknown bidding functions in view of their typical smoothness and can

be reasonably fast, especially with a good starting guess.

One of the most effective ways to solve the asymmetric first-price auction for

a single-item is the backward shooting algorithm, which does not rely on any func-

tional form assumptions. The only disadvantage of the backward shooting routines

in a single-item environment is the need for the explicit search for the starting value

(the maximum bid), which often results in a slow convergence.

However, in the package environment, any effective use of the shooting meth-

ods is highly unlikely. Consider our model of the first-price package auction. The

system of equations, which defines a pair of unknown bidding functions, is no longer

14See also Armantier and Richard (1997) [1] and Gayle and Richard (2008) [30].
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formed by ordinary differential equations15, which is the crucial part of the backward

shooting algorithms. The key idea behind any shooting routine is the possibility to

recover unknown bidding functions from the system of equations in a step-by-step

manner relying exclusively on the information received at the previous steps of the

routine. In contrast, the system of equations for the first-price package auction

modeled in the paper necessarily includes integral terms that represent the two-way

nature of the optimal bidding decision on the local side of the market. Thus, any

shooting-type routine requires an initial guess for the unknown bidding functions as

well as an explicit search for several variables (b̄, B̄ and v̂). While the explicit search

only affects the computational speed, the need for the initial guess of the unknown

bidding functions makes the shooting algorithms completely impractical even in the

simple package environments such as ones studied in this paper.

We suggest a new numerical technique that makes use of the discrete formu-

lation of the model16. According to lemmas 1.2 and 1.7, any symmetric equilibrium

bid functions for local bidders and the global bidder are just step functions that are

fully characterized by two sets of “jump” points (values at which a bidder prefers to

switch from one bidding level to a higher bidding level), s = (s0, s1, ..., sr, sr+1) and

t = (t0, t1, ..., tq, tq+1).

The main challenge associated with the system of equilibrium equations and

15According to Lemma 1.4, the system can be represented as a system of ODEs in case of perfect

correlation (γ = 1)
16The best-response iteration method based on a discrete bidding regime for solving asymmetric

first-price auctions for a single-item was suggested in Athey (1997) [2] and used in Athey, Coey

and Levin (2011) [4].
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inequalities is the possibility that some bid levels are not played in equilibrium.

For example, some bidding levels (bi > br for local bidders and Bj > Bq for the

global bidder) are not part of the equilibrium just because they are too high. The

maximum equilibrium bid levels (br and Bq) have to be determined simultaneously

with calculation of vectors s and t. Another complication might arise when a bidder

skips a bidding level (or several bidding levels) that is smaller than the maximum

bid level ( bi < br for local bidders and Bj < Bq for the global bidder). Such jumps

are difficult to handle since there is no way to know which levels are skipped in the

equilibrium. We are going to ignore such possibility and look for an equilibrium

where all bidding levels up to br and Bq are played with positive probability, i.e.,

si < si+1 for 0 ≤ i ≤ r and tj < tj+1 for 0 ≤ j ≤ q. While this assumption is

restrictive, the typical bidding functions in first-price auctions do satisfy it.

The usual equilibrium system for the local bidders consists of r equations,

which determine a vector of “jump” points s, and one inequality, which ensures that

the maximum-type local bidder does not profit from bidding br+1.


πL(si, b

i−1) = πL(si, b
i) 1 ≤ i ≤ r

πL(v̄, br) ≥ πL(v̄, br+1)

(1.4.1)

One way to solve for the equilibrium of the system (1.4.1) is the “guess and

verify” method used in the backward-shooting algorithms where the initial guess for

maximum bid is updated until convergence. In the discrete version, it is equivalent

to an explicit search for br. The novelty of our numerical technique is the way to

endogenize the search for the maximum bids br and Bq by using a complementarity
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formulation instead of the standard one. There are numerical methods specifically

designed to solve complementarity problems17. We have used NEOS Server [21] [32]

[25] facility to perform all numerical approximations.

The complementarity formulation of the equilibrium system for the local bid-

ders consists of 2kl inequalities that complement each other pairwise. The bid level

bkl is the maximum bid level the local bidders can use in any equilibrium.


π(si, b

i−1)− π(si, b
i) ≥ 0

complements

v̄ ≥ si

1 ≤ i ≤ kl

or


π(si, b

i−1)− π(si, b
i) ≥ 0

v̄ − si ≥ 0

[π(si, b
i−1)− π(si, b

i)] [v̄ − si] = 0

1 ≤ i ≤ kl

(1.4.2)

Note that the system (1.4.2) does not depend on r, but instead depends on

kl which is given. Thus, the whole system for both types of bidders can be solved

directly without guessing maximum bids br and Bq.

Examples of the equilibrium bidding functions in the package and non-package

first-price auctions when bidders’ values are uniformly distributed (F (v) = v on

17For example, the PATH solver developed by Steven Dirkse, Michael Ferris and Todd Munson

and the FilterMPEC solver by Roger Fletcher and Sven Leyffer
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[0, 1] and G(u) = u/2 on [0, 2]) are provided in Figure 1.1 and Figure 1.2. Both

bidding grids ∆L and ∆G are uniform with 200 bidding levels on [0, 1] interval.

While approximated bidding functions are step-functions, the examples, as shown,

are smoothed for a better exposition.

Figure 1.1: Equilibrium Bids: First-Price Auction with Package Bids

As can be seen from Figure 1.1, all bidding functions are in perfect accord

with the Lemma 1.4 which describes the shapes and patterns of the equilibrium

bid functions in the first-price package auction. When local bidders’ values are

independent, a local bidder bids zero when her type is sufficiently low expecting a

high enough bid from the other local bidder. With an increase in correlation, the

size of the zero-bid interval decreases. Intuitively, when correlation is high, a local

bidder with low value no longer expects a sufficiently high bid from the other local

bidder since with high probability the other local bidder has the same low value.

Also, observe that that the maximum total bid from local bidders is around 0.9

while the global bidder maximum bid is around 0.7 when local bidders’ values are
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independent (γ = 0). However, as correlation between local bidders’ values goes up

(γ ↑), the distance between maximum bids diminishes quickly.

Figure 1.2: Equilibrium Bids: First-Price Auction without Package Bids

Figure 1.2 demonstrates equilibrium bid functions for the first-price auction

without package bids. When package bids are not allowed, the global bidder has to

compete for items separately and face the exposure risk. When local bidders’ values

are independent, the global bidder underbids when her value is low and bids more

aggressively when her value is high in an attempt to avoid winning just one out

of two items. However, with substantial positive correlation between local bidders’

values, the impact of the exposure problem is limited. For example, when values of

the local bidders are perfectly correlated, the global bidder is never exposed and so

she bids accordingly.

The quantitative analysis of the free-rider and exposure problems is presented

in the next section.
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1.5 Free-Rider Problem versus Exposure Problem

This section presents several illustrative examples that show the mechanics of

the trade-off between the free-rider and exposure problems. The numerical tech-

nique developed in the previous section is used to approximate equilibrium bidding

functions in all considered examples. Various relevant auction characteristics, such

as revenue and efficiency, are calculated using simulations.

In addition to the two first-price auctions discussed in the paper, we also

consider a first-price auction where both items are sold together as one lot and both

local bidders are replaced with one bidder whose value for items is exactly the sum

of the local bidders’ values, v1 + v2. Formally, with probability γ, this bidder values

both items at 2v where v is drawn from F (v) and with a probability 1−γ, her value

is v1 + v2 where v1, v2 are drawn from F (v) independently from each other. This

auction is a standard first-price auction for a single object. It provides a convenient

benchmark for evaluating the impacts of the exposure and free-rider problems since

it is completely immune to both of them.

The following distributions are assumed for all examples of this section. The

global bidder’s value is uniformly distributed on [0,2]. The underlying distribution

function for local bidders’ values is F (v) = vα, α > 0 on [0, 1]. When α = 1

(uniform distribution), the value distributions are symmetric in a sense that for any

γ, the value distribution of the global bidder is the mean-preserving spread of the

total value distribution of local bidders. For example, when γ = 0, the total value

v1 + v2 is distributed according to the triangular distribution on [0, 2], and if local
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bidders’ values are perfectly correlated (γ = 1), the total value v1 + v2 is distributed

uniformly on [0, 2].

The parameter α can be interpreted in the following way. When α is less

than 1, the sum of the local bidders’ values is expected to be small in comparison

with the expected value of the global bidder, implying that the local bidders lose

more frequently under full efficiency. When α is greater than 1, the situation is

reversed, with the global bidder winning less frequently under truthful bidding. In

other words, a high α makes the local bidders’ distribution more advantageous in

comparison with that of the global bidder.

The first example, based on the model with uniform distributions (α = 1),

demonstrates the mechanics of the efficiency trade-off between the free-rider and

exposure problems (the right panel of Figure 1.3). When γ is high, the global bidder

easily avoids any exposure risk by submitting the same bid in both markets since

local bidders’ bids are likely to be very close to each other. In such environments,

the first-price auction without package bids achieves high efficiency similar to the

efficiency of the benchmark first-price auction. Meanwhile, the first-price package

auction is relatively inefficient because of the local bidders’ free-riding incentives.

Therefore, package bids can hurt efficiency when the exposure risk faced by bidders

with complementarities is relatively small.

However, the bids submitted by local bidders can be extremely unequal when

their values are slightly correlated or independent from each other (γ = 0). If this

is the case, the exposure risk of the global bidder is high. In the equilibrium, she

adjusts her bidding strategy accordingly, by underbidding when her value is low
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and overbidding when her value is high (see Figure 1.2). Despite these adjustments,

she often wins only one item. Such an outcome is the major inefficiency driver

in the first-price auction without package bids.18 Meanwhile, the package auction

is completely immune to such outcomes. Changes in γ do affect the equilibrium

bid functions, but the overall efficiency of the first-price package auctions stays

relatively constant at high levels. Therefore, package bids can significantly improve

efficiency performance of the first-price auction, especially in environments with a

high exposure risk.

Figure 1.3: Seller Revenue and Efficiency: F (v) = v (α = 1)

A differential bid shading, an inevitable property of all first-price auctions, is

responsible for inefficiencies arising from bidder asymmetries. In the standard first-

price auctions for a single-item the numerous dimensions of asymmetry are limited

to a simple distributional asymmetry. Package bids introduce yet another degree of

18When local bidders’ values are independent (γ = 0), nearly 26% out of 28% of inefficiencies

arise from outcomes where the global bidder wins in one auction but loses in the other one.
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asymmetry to the first-price auctions by allowing bidders with different value struc-

tures to choose package bids that better fit their preferences. Such bid asymmetries

can reduce or increase inefficiencies generated by other forms of asymmetries.

The next example demonstrates that the free-rider problem in the first-price

package auction can actually improve efficiency of the benchmark first-price auc-

tion. Consider an environment where the underlying value distribution of the local

bidders, say F (v) =
√
v (α = 0.5), is comparatively worse than the uniform value

distribution of the global bidder. The efficiency performance of all auctions in this

environment can be found in the right panel of Figure 1.4. Both the benchmark

first-price auction and the non-package first-price auction are inefficient because of

the distributional asymmetry. Meanwhile, the bidding asymmetry of the package

auction induces the free-rider problem that helps mitigate the distributional dif-

ferences. As a result, the first-price package auction is highly efficient in spite of

the distributional asymmetry. In fact, in this particular example it is fully effi-

cient when local bidders’ values are perfectly correlated (γ = 1). Intuitively, the

free-rider problem between local bidders results in a significant bid shading on their

part. Using terminology from Maskin and Riley (2000) [43], the global bidder is a

weak bidder who bids more aggressively while both local bidders together represent

a strong bidder who bids less aggressively.19 Therefore, a more advantageous val-

ue distribution of the global bidder evens out the differential shading incentives by

making the bidding of the global bidder less aggressive while also promoting more

19In Maskin and Riley (2000) [43], a strong bidder bids less aggressively because her value

distribution first-order stochastically dominates the value distribution of the weak bidder.
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competitive bidding from the local bidders by reducing their free-rider incentives.

Figure 1.4: Seller Revenue and Efficiency: F (v) =
√
v (α = 0.5)

Note that such asymmetric environments might be empirically relevant. For

example, in procurement auctions, big (global) suppliers might have a better cost

distribution than small (local) suppliers.

In both examples considered above, the first-price package auction generates

significantly lower revenue than the other two formats. Intuitively, the free-rider

problem negatively affects revenue since all bidders have incentives to bid lower in

comparison with the benchmark first-price auction. Local bidders reduce their bids

in an attempt to free-ride on each other, while the global bidder submits a lower

bid in response. Meanwhile, the exposure problem can potentially lead to either an

increase or a decrease in revenue. On the one hand, the global bidder shades her

bid when her value is low since the probability that she wins both items is small.

On the other hand, she can substantially overbid when her value is high in order

to reduce her exposure risk. Figures 1.3 and 1.4 provide examples when the non-
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package first-price auction generates lower and higher revenues than the benchmark

first-price auction. However, as the next example shows, the revenue performance

of the first-price package auction highly depends on the environment.

Consider the following modification of the original model. It consists of two

homogeneous items, one global bidder and three local bidders. With homogeneous

items, local bidders do not care which particular items they win. However, all

local bidders still have value only for one unit and the global bidder still needs

both units. In this setup, the first-price auction without package bids is a simple

pay-as-bid auction where bidders submit demand curves.

In such environments, the negative revenue impact of the free-rider problem is

relatively small since local bidders have to compete not only with the global bidder

but also with each other. This competition among local bidders partially mitigates

free-rider incentives and substantially improves revenues.

Under the continuous bidding regime, this model does not have a pure

Bayesian-Nash equilibrium if local bidders’ values are positively correlated20 in the

same way as in the original model of Section 1.2. Therefore, it is assumed that all

values are independent (γ = 0). For the distribution functions used in the previous

example, the first-price package auction achieves almost 4% higher revenue and 23%

higher efficiency than the first-price auction without package bids.

To sum up, the first-price package auction in environments with sufficient

20With probability γ > 0 a local bidder can perfectly predict the exact bids of the other local

bidders and can easily increase her bid by a small amount such that she always gets an item

whenever the local bidders win.
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competition among free-riding bidders seems to result in revenue and efficiency

improvements. Thus, the frequent use of the first-price package design in practical

applications can be explained not only by its simple description but also by its

performance characteristics.

In the next section we compare the first-price package auction with other

package alternatives suggested in the literature.

1.6 Core-Selecting Auctions

Core-selecting auctions have recently been suggested as alternatives to the

Vickrey-Clarke-Groves (VCG) mechanism. While the mechanism has the attractive

property that truth-telling is a dominant strategy — and truth-telling by all partic-

ipants in the VCG mechanism implies full efficiency — there are several problems

with the VCG in environments with complementarities. This is ironic since exactly

these environments are used to motivate the use of package bids. The list of prob-

lems includes a possibility of extremely low revenue for the seller (sometimes even

zero revenue!), a non-monotonicity of the seller revenue with respect to the bidders’

values and high vulnerability to exotic bidders’ strategies such as shill-bidding. The

main reason for all mentioned disadvantages of the VCG mechanism in environments

with complementarities is that sometimes its payment vector falls outside the core

in a sense that there exists a coalition of bidders who cumulatively offered to pay

more for the same subset of items.

Such practical flaws of the VCG mechanism have trigged both theoretical and
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applied interests in alternative mechanisms that came to be known as core-selecting

auctions. The main ingredient of the novel auction design is the core property, which

guarantees that the payments collected by the auctioneer are always “sufficiently

high.” In general, payments greater than those of the VCG mechanism are unable

to support truthful bidding as the dominant strategy equilibrium and potentially

may lead to substantial underbidding. In order to minimize bidders’ incentives to

deviate from truthful bidding, Day and Raghavan (2007) [24] and Day and Milgrom

(2008) suggested to minimize seller’s revenue subject to the core constraints. Core-

selecting auctions that minimize the seller’s revenue are known as minimum-revenue

core auctions.21 The total payment to the seller in such auctions necessarily coincides

with that of the VCG when the VCG payment vector belongs to the core22 and is

strictly greater when it lies outside the core.

As has been noted above, even the minimum-revenue core auctions, in general,

cannot induce truth-telling incentives to all bidders in environments with comple-

mentarities. Consider our model where the global bidder submits a package bid B

for both items and local bidders bid b1 and b2 on individual items. In minimum-

revenue core auctions, local bidders have to pay the global bidder’s bid B whenever

21Sometimes minimum-revenue core auctions are referred to as core-selecting auctions.
22In environments without complementarities, the VCG payment vector is always in the core.

For example, consider a simple single-item private-value environment with several bidders. In this

setup, a core-selecting auction is an auction that allocates the item to the highest bidder and

requires the winner to pay an amount between her bid and the second-highest bid. Also note

that the minimum-revenue core auctions, VCG mechanism and the second-price auction are all

equivalent in this environment.
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they win. However, the exact split of the total payment B between local bidders

necessarily depends on their individual bids b1 and b2. As a result, local bidders

face the free-rider problem, which is similar to the one they have in the first-price

package auction.

Intuitively, the free-rider problem in first-price package auctions is worse.

First, bidders have stronger incentives to free-ride on each other since any decrease

in the bidder’s bid is matched one-to-one by a decrease in the bidder’s payment if she

wins. Meanwhile, payments in minimum-revenue core auctions are either unaffected

or decrease partially (50 cents per a $1 drop) in response to bid reductions. Second,

the free-rider problem in the first-price package auction triggers optimal response by

other bidders who try to take advantage of their opponents’ low bids. In the context

of our model, the global bidder bids less competitively because of the free-rider prob-

lem between local bidders. In contrast, in minimum-revenue core auctions the global

bidder incentives are not distorted.23 However, the stronger free-rider problem of

the first-price package auction does not necessarily imply lower revenue because of

the usual difference between first-price and second-price auctions. The global bid-

der is more likely to win in “second-price-like” minimum-revenue core auctions and

pay very little because her payment is a sum of local bidders’ bids affected by their

free-rider problem. Therefore, revenue generated by minimum-revenue auctions can

be extremely low (sometimes even zero revenue) while revenues in the first-price

package auctions are always positive.

23Truth-telling is a weakly dominant strategy for the global bidder in minimum-revenue core

auctions.
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Several core-selecting auction rules have been analyzed by Ausubel and Bara-

nov (2011) [5] in an incomplete information environment using the same model

with two items and three bidders. Under some distributional assumptions, authors

derived closed-form solution for all considered minimum-revenue core auctions in-

cluding the proxy rule introduced by Ausubel and Milgrom (2002, 2006) [8] [9] and

the nearest-Vickrey rule suggested by Day and Cramton (2009) [22]. Using their

solutions, we can compare the revenue and efficiency performance of the first-price

package auction with those of the leading minimum-revenue core designs. The re-

sults are summarized in Figure 1.5.

Figure 1.5: Seller Revenue and Efficiency: CSA and First Price Package Auction

The first-price package auction performs reasonably well in comparison with

the proxy auction and the nearest-Vickrey auction, in terms of both revenue and

efficiency, despite the more serious free-rider problem. For example, the first-price

package auction generates higher revenue and efficiency than the nearest-Vickrey

auction for any γ. At the same time, the proxy rule generates higher revenue
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and achieves higher efficiency than the first-price package auction when correlation

between local bidders’ values is sufficiently high. This is due to the fact that a

substantial positive correlation effectively mitigates the free-rider problem in the

proxy auction. Corresponding numbers for revenue, efficiency and profits of bidders

for all auction rules can be found in Table 1.1.

γ Statistics VCG Proxy* N-VCG* FP Pack FP Non-Pack

Revenue 0.5833 0.5360 0.5327 0.5471 0.6940

γ = 0 Efficiency 1 0.8679 0.8431 0.8762 0.7126

Profit Global 0.2916 0.4642 0.4673 0.4269 0.2027

Profit Local 0.2087 0.1342 0.1335 0.1498 0.1501

Revenue 0.5417 0.5852 0.52 0.5412 0.6857

γ = 0.5 Efficiency 1 0.9261 0.8356 0.9039 0.8236

Profit Global 0.3126 0.4148 0.4798 0.4304 0.2604

Profit Local 0.2295 0.1523 0.1415 0.1647 0.1555

Revenue 0.5 0.6667 0.5185 0.5445 0.6666

γ = 1 Efficiency 1 1 0.8334 0.9073 1

Profit Global 0.3335 0.3335 0.4816 0.4270 0.3324

Profit Local 0.2499 0.1666 0.1481 0.1754 0.1665

* - Based on Ausubel and Baranov (2011) [5]

Table 1.1: Revenue, Efficiency and Profits

1.7 Conclusion

This paper contributes to the quickly expanding literature on the use of com-

binatorial bids in multi-object auctions. In environments with complementarities,
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non-package auction designs can easily fail to achieve efficient allocations and gen-

erate low revenues for the seller because they do not allow bidders to express their

synergies across items. At the same time, package auctions easily handle comple-

mentarities of any complexity, but instead introduce free-riding incentives that can

decrease or completely mitigate any gains attained from exploiting synergies. More-

over, combinatorial auctions are also more complex technically and computationally,

mainly because of the large number of possible packages even for a small number of

items. Therefore, a careful cost-benefit analysis of package designs is an important

market design question.

The impact of package bids on first-price auctions is of substantial interest

since they are the most frequently used package auctions in applications, especially

in the public procurement. Unfortunately, an inherent asymmetry among bidders’

bids and values, required for a non-trivial comparison between package and non-

package designs, complicates the analysis of first-price auctions which are proved to

be exceptionally tedious in asymmetric environments.

In the simple model with two types of bidders, we demonstrate the impact of

the package bids on the first-price auction. The model, while simple and intuitive,

includes a number of realistic features that motivate the use of package auctions,

such as the presence of substantial complementarities in bidders’ preferences and a

positive correlation of bidders’ values.

We perform a Bayesian-Nash equilibrium analysis of the first-price auction

with and without package bids. For the package auction, we prove the existence

of the equilibrium in the case when all bidders’ values are independent and also

47



when some bidders’ values are perfectly correlated. For the non-package auction,

we provide a general equilibrium existence result for our model. A discrete bidding

regime, i.e., all bids are restricted to some discrete bidding grids, is used in the

majority of the proofs.

We also develop a novel numerical technique, based on the discrete bidding

regime, which can be effectively used to approximate equilibrium bidding strategies

in first-price auctions. The key element of this procedure is the complementarity

formulation for the system of equilibrium inequalities. Our experience suggests that

this technique can also be successfully applied in other areas. For example, it is

a well-behaved and exceptionally fast alternative for a lot of different numerical

methods developed for approximating unknown bidding strategies in asymmetric

single-item first-price auctions.

Armed with the numerical method, we take a close look at the forces be-

hind the exposure and free-rider problems in the first-price auctions. Using several

examples, we demonstrate the exact mechanics of the efficiency trade-off between

package and non-package designs. Even in the environments with extreme forms of

complementarities, package bids can be very harmful in terms of revenue and effi-

ciency when the exposure risk faced by the bidders with complementarities is rather

small. However, when bidders face a high probability of exposure, package bids can

dramatically improve efficiency.

Moreover, a flexibility of package bids introduces bid asymmetries in the first-

price auction. Such bid asymmetries can also increase efficiency of the package

auction by reducing inefficiency of the non-package design related to the distribu-
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tional asymmetries. For example, the first-price package auction is highly efficient

when bidders with large demands have a more advantageous per-unit distribution

than the bidders with small demands.

Finally, we show that in environments that are more competitive than the

one considered in the paper, the first-price package auction can be superior to the

first-price non-package auction in both revenue and efficiency. We also compare

the first-price package auction with the leading package alternatives such as the

Vickrey-Clarke-Groves mechanism and core-selecting auctions. In the environment

considered, the first-price package auction demonstrates very strong performance

characteristics.

These findings suggest that in multi-object environments with complementar-

ities, package designs, and the first-price package auction in particular, indeed can

deliver a better performance in comparison with their non-package alternatives.
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1.A Appendix A - Proofs

1.A.1 Proof of Lemma 1.1

We prove that β(v) is nondecreasing. The proof for B(u) is similar. First,

observe that the probabilities of winning with the lowest possible bids (b0 or B0)

are strictly positive for all bidders in any equilibrium, i.e., Pr0L > 0 and Pr0G >

0. Therefore, in any equilibrium all probabilities of winning are strictly positive

according to (1.3.4).

Now suppose that β(v) = bi. Then, using IC constraints (1.3.1), for all k ∈ N

we get:

πL(v, bi) ≥ πL(v, bk)

(v − bi)PriL ≥ (v − bk)PrkL

v(PriL − PrkL) ≥ biPriL − bkPrkL

Note that above inequalities still hold if v is replaced with v′ > v as long as
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PriL ≥ PrkL. Thus, ∀k ∈ N : k ≤ i

v′(PriL − PrkL) ≥ biPriL − bkPrkL

(v′ − bi)PriL ≥ (v′ − bk)PrkL

πL(v′, bi) ≥ πL(v′, bk)

It is easy to argue that a stronger version of the last inequality holds, i.e.:

πL(v′, bi) > πL(v′, bk) ∀k ∈ N : k < i

Suppose that expected profits from playing bi and bk : bk < bi at v′ are the same,

but then πL(v, bi) < πL(v, bk) since PriL > PrkL > 0 which contradicts our initial

assumption that β(v) = bi. Consequently, β(v′) ≥ bi = β(v) ∀v′ ≥ v.

2

1.A.2 Proof of Proposition 1.1

Consider a modified model with the following payoffs where the global bidder

and one of the local bidders have exactly the same payoff functions while the other

local bidder has a different payoff function.
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πG(B, u) = (u−B)Pr(β1(v1) + β2(v2) < B) B ∈ SG

π1
L(b1, v1) = (v1 − b1)Pr(b1 + β2(v2) > B(u)) b1 ∈ SL

π2
L(b2, v2) = −(β1(v2)− b2)2 b2 ∈ SL

(1.A.1)

The idea behind the last payoff in (1.A.1) is that the local bidder two just tries to

match the strategy of the local bidder 1 at her value. Thus, in any equilibrium of

the modified game: β1(v) = β2(v) ∀v ∈ [0, v̄] by construction. By Theorem 1 from

Athey (2001), the modified game has an equilibrium since all conditions required by

this theorem, including SCC, are satisfied. Any equilibrium of the modified game is

an equilibrium of the original game since in the original model the local bidders are

symmetric. Therefore, there exists a symmetric equilibrium of the original game.

2
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1.A.3 Proof of Lemma 1.3

A local bidder solves the following optimization problem:

πL(v, b) = (v − b)Pr(b+ β(v) ≥ 2B̂(s)) =

= (v − b)Pr
(
s ≤ A

(
b+β(v)

2

))
=

= (v − b)Ĝ
(
A
(
b+β(v)

2

))

F.O.C.:

dA(b) = 2Ĝ(A(b))
(α(b)−b)ĝ(A(b)) A(b̄) = v̄ A(b−) = 0 (1.A.2)

The global bidder faces the following optimization problem:

πG(s, b) = (2s− 2b)Pr(2b ≥ 2β(v)) =

= 2(s− b)Pr(v ≤ α(b)) =

= 2(s− b)F (α(b))

F.O.C:

dα(b) = F (α(b))
(A(b)−b)f(α(b)) α(b̄) = v̄ α(0) = 0 (1.A.3)
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Rewrite (1.A.2) and (1.A.3) as:

d
db

lnF (α(b)) = 1
A(b)−b

d
db

ln Ĝ
(
A
(
b+β(v)

2

))
= 1

α(b)−b

for all b ∈ (0, b̄]

(1.A.4)

First, a bid larger than b̄ is never a best response for both types of bidders.

Second, a bid of 0 is a best response for any bidder with value 0. Third, if bidders

value is above 0, bidding above bidder’s value is strictly dominated by bidding , say,

b = (v + 0)/2.

Suppose a local bidder has a value of v > 0 and bids b < v. Then the logarithm

of her positive expected profit ant its derivative are:

lnπL(v, b) = ln(v − b) + ln Ĝ
(
A
(
b+β(v)

2

))

lnπL(v, b)′ = −1
(v−b) + 1

α(b)−b

(1.A.5)

Note that the derivative is strictly negative when v < α(b) (or β(v) < b) and

it is strictly positive when α(b) < v (or b < β(v)). Therefore, b = β(v) is the global

maximum.

Same technique can be used to show that bid b = B̂(s) is the global maximum

for the global bidder with per unit value s.

2
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1.A.4 Proof of Proposition 1.2

Now define H(x) =

√
Ĝ(x) and h(x) = ĝ(x)

2
√
Ĝ(x)

and note that:

H(x)

h(x)
=

2Ĝ(x)

ĝ(x)
(1.A.6)

Plugging (1.A.6) into (1.A.2) and (1.A.3) we get the following system of dif-

ferential equations:

dA(b) = H(A(b))
(α(b)−b)h(A(b)) A(b̄) = v̄ A(b−) = 0

dα(b) = F (α(b))
(A(b)−b)f(α(b)) α(b̄) = v̄ α(0) = 0

(1.A.7)

Observe that the system of ODEs formed by (1.A.7) is a standard system for

a single item first-price auction with two bidders with their valuations distributed

according to cumulative distribution functions F (.) and H(.). Consequently, the

existence results from asymmetric first-price literature can be applied.

By Theorem 3 from Lebrun (1997), there exists equilibrium of the asymmetric

first-price auction. This is equivalent to the existence of the solution of the system

(1.A.7) by Theorem 2 from the same paper.

Since G is atomless, so does H. All assumptions of Theorem 3 in Lebrun (1997)

are satisfied, and consequently, the system (1.A.7) has a solution. By Lemma 1.3,

this solution is an equilibrium of the first-price package auction when values of local

bidders are perfectly correlated.
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2

1.A.5 Proof of Lemma 1.4

1. B(u) is strictly increasing on [0, ū] (i.e. û = 0)

By characterization assumptions, B(u) is strictly increasing on [û, ū] and con-

stant on [0, û). The only way B(u) is strictly increasing on the whole interval

is when û = 0. Assume that û > 0. When v̂ > 0, a tie at the minimum

bid (B− = 2b− = 0) occur with positive probability which can not be part of

equilibrium by standard arguments. When v̂ = 0 the global bidder with value

0 < u < û has a profitable deviation since bidding anything above minimum

bid and below his value generates a strictly positive expected payoff while

bidding minimum bid delivers zero.

2. If γ = 1, β(v) is strictly increasing on [0, v̄] (i.e. v̂ = 0)

Similar to the previous case, I need to show that v̂ = 0. Assume that v̂ > 0.

A local bidder with value 0 < v < v̂ has zero probability of winning since the

total bid from the local side is 2b− = 0. Bidding anything above minimum bid

and below her value gives a strictly positive expected payoff.

3. If γ < 1, β(v) = 0 on [0, v̂] where v̂ > 0

Denote Φi(bi, vi) and φi(bi, vi) the probability of winning and marginal prob-

ability of winning for a local bidder who submits a bid assuming all other

bidders follow their equilibrium strategies, i.e.:
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Φi(bi, vi) = γ
∫

bi+β(vi)>B(u)

g(u)du+ (1− γ)
∫∫

bi+β(vj)>B(u)

f(vj)g(u)du

φi(bi, vi) =
∂Φi(bi, vi)

∂bi

If γ < 1, the probability of winning for the local bidder with the lowest bid b−

is greater than zero for all values, i.e. Φ(b−, v) > 0 ∀v ∈ [0, v̄].

Consider the Taylor expansion of Φ(b−, v) around b− for all v:

Φ(b, v) = Φ(b−, v) + φ(b−, v)(b− b−) + o((b− b−)2)

Then the problem of the local bidder is as follows:

πL(v, b) = (v − b)Pr(b+ β(vj) > B(u)) = (v − b)Φ(b, v)

πL(v, b) = (v − b) ∗ (Φ(b−, v) + φ(b−, v)(b− b−) + o((b− b−)2))

The unrestricted optimal bid b∗ is given by:

b∗ ≈ b− +
(v − b−)φ(b−, v)− Φ(b−, v)

2φ(b−, v)
(1.A.8)

Since φ(b−, v) is positive and bounded, there exist v > 0 such that the second

term in (1.A.8) is negative. Thus, the unconstrained optimal bid b∗ is less

then b− = 0 since the term (v − b−)φ(b−, v) goes to zero when v → 0 while the

term Φ(b−, v) converges to a positive number.

2
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1.A.6 Proof of Lemma 1.5

Denote F1 = F (βl
-1(bg1)) and F2 = F (βl

-1(bg2)). Without loss of generality,

assume that bg1 ≥ bg2 such that F1 ≥ F2. Further denote p1 and p2 expected payments

of the global bidder in case she wins either item. The proof is general and does not

have to for the first-price auction only. For the first-price auction p1 = bg1 and

p2 = bg2.

Expected profit of the global bidder when she submits bids bg1 and bg2 is given

by:

Π(u, bg1, b
g
2) = γ [(u− p1 − p2)F2 − p1(F1 − F2)] +

+(1− γ) [(u− p1 − p2)F1F2 − p1F1(1− F2)− p2F2(1− F1)]

= γ [uF2 − p1F1 − p2F2] + (1− γ) [uF1F2 − p1F1 − p2F2]

Then, the following inequality holds:

Π(u, bg1, b
g
1) + Π(u, bg2, b

g
2)− 2Π(u, bg1, b

g
2) =

= γ [u(F1 − F2)] + (1− γ)
[
u(F1 − F2)

2
]
≥ 0

Or, equivalently:

Π(u, bg1, b
g
1) ≥ Π(u, bg1, b

g
2) or Π(u, bg2, b

g
2) ≥ Π(u, bg1, b

g
2)
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Therefore, the expected profit from submitting equal bids is higher then sub-

mitting different bids.

2
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Chapter 2

Core-Selecting Auctions with Incomplete Information

Lawrence M. Ausubel and Oleg V. Baranov

2.1 Introduction

Core-selecting auctions have recently been proposed as alternatives to the

Vickrey-Clarke-Groves (VCG) mechanism. In the VCG mechanism, the items are

allocated so as to maximize revenues subject to the feasibility of the selected bids

and each bidder is charged the opportunity cost of receiving the allocated items.

While the mechanism has the attractive property that truth-telling is a dominant

strategy – and truth-telling by all participants in the VCG mechanism implies effi-

cient outcomes – there are several reasons to be wary of VCG in environments with

complementarities. First, the VCG mechanism may generate low revenues (and, in

environments with extreme complementarities, the revenues may equal zero). Sec-

ond, VCG outcomes may be non-monotonic in the sense that increasing the number

of bidders or increasing their valuations may reduce the seller’s revenues. Third, the

VCG mechanism may be especially vulnerable to unusual forms of collusive behavior,

including collusion by losing bidders and shill bidding.

The simplest environment in which these issues can arise has just two items,

“East” and “West” (which may be thought of as spectrum licenses for the Eastern
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half and Western half of a country), and three bidders. The “global” bidder views

East and West as perfect complements, valuing the package {East, West} at 1,

but obtaining no value from either item individually. Meanwhile, local bidder 1

values East at 1, but obtains no value from West; and local bidder 2 values West

at 1, but obtains no value from East. Observe that the VCG mechanism1 allocates

East to local bidder 1 and West to local bidder 2, maximizing social surplus at 2.

However, the mechanism charges a price of zero to each bidder.2 The VCG outcome

is non-monotonic in that, if each of the local bidders’ values declined from 1 to

1/2, the seller’s revenues would increase from 0 to 1. The explanation for this non-

monotonicity, as well as for the opportunities present for loser collusion and shill

bidding, is that the VCG outcome may lie outside the core;3 with the data of this

paragraph, a coalition of the seller and the global bidder can block the allocation at

zero prices to the local bidders.4

Observe that the potential deficiencies of the VCG mechanism are likely to be

empirically relevant. In the first place, much of the motivation for allowing pack-

1The VCG mechanism was developed in the work of Vickrey (1961) [52], Clarke (1971) [16] and

Groves (1973) [33]. Throughout this paper, we will use the terms “VCG mechanism” and “Vickrey

auction” interchangeably.
2Observe that the total surplus when local bidder 1 is absent equals 1, and so the incremental

surplus created by local bidder 1 equals 1. Similarly, local bidder 2’s incremental surplus also

equals 1. In the VCG mechanism, each bidder is permitted to retain the entire incremental surplus

that she creates, implying that the price paid by each local bidder is zero.
3The core is the subset of allocations in payoff space that are feasible and unblocked by any

coalition.
4See Ausubel and Milgrom (2002) [8].
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age bidding in auctions arises from environments where there appear to be strong

complementarities among items. Furthermore, in the area of telecommunications

spectrum auctions, empirical work suggests that there exist substantial synergies

among licenses covering different geographic areas.5 Similarly, there is a growing

interest in auctions with package bidding for financial assets, and this again occurs

in environments where there are apparent complementarities among assets.

As a result of this critique, researchers and auction practitioners recently be-

gan to explore a class of alternative mechanisms that have become known as core-

selecting auctions. As in the VCG mechanism, buyers submit bids associated with

various subsets of the set of all items, and the auctioneer determines the combination

of bids which maximizes total revenues subject to feasibility. However, as seen two

paragraphs above, applying the VCG payment rule in a complements environment

may yield a profit allocation that lies outside the core. Instead, a core-selecting

auction uses a different pricing rule – a rule always requiring the same or higher

payments – which assures that the outcome is always in the core relative to the

reported values.

Despite the very recent development of core-selecting auctions, they have al-

ready been selected for some important applications. At this writing, five major

spectrum auctions have been conducted using a “package clock” auction format: a

two-stage auction procedure in which a simultaneous ascending clock phase is fol-

lowed by a sealed-bid package auction. For the second stage, these auctions have

5See, for example, Ausubel, Cramton, McAfee and McMillan (1997) [6] and Fox and Bajari

(2009) [29].
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utilized a core-selecting auction with the nearest-Vickrey pricing rule.6,7 Package

clock auctions have also been suggested for the US Federal Aviation Administra-

tion (FAA) recently planned slot auctions for landing rights at the three New York

City airports. While these auctions were stopped by an airline-industry lawsuit, the

published regulations included the use of a core-selecting auction with the nearest-

Vickrey pricing rule.8

However, to date, most studies of package bidding have been limited to

complete-information analyses. This is not a particularly satisfying state of affairs,

as much of the motivation for using VCG or other package-bidding mechanisms is

that bidders possess incomplete and asymmetric information. At the same time,

it is easy to understand why the shortcut of assuming complete information has

typically been taken: analyses of auctions under incomplete information can be ex-

tremely intricate, except when truth-telling is an equilibrium. Moreover, the typical

sort of environment motivating package bidding inherently includes asymmetries,

as some bidders desire smaller sets of items and other bidders desire larger sets of

items. Researchers have found that asymmetric auctions are particularly difficult

to analyze.

A few contemporaneous papers have introduced explicit incomplete-

information analyses of package bidding, but they are limited to considering in-

6The package clock (or “combinatorial clock”) auction has been used for spectrum auctions in

the UK (two auctions: February and May 2008), the Netherlands (April 2010), Denmark (May

2010) and Austria (September 2010).
7See Cramton (2009) [18].
8See Federal Aviation Administration (2008) [28].
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dependent valuations. Independence is an extremely confining assumption in an

auction environment. In many of the most important applications of package bid-

ding, such as spectrum auctions, we would expect there to be significant correlations

among bidders’ signals - and correlation among bidders’ signals has been one of the

important ingredients in the theory of auctions of single items. Moreover, a cen-

tral message of auction theory and mechanism design is that, when correlations are

present, particular choices of auction format may enhance the ability of the seller

to extract revenues from bidders.9

The current paper seeks to advance the analysis of package bidding. We con-

sider a very simple and stylized class of models in which one bidder values the items

as perfect complements. We compare and contrast a variety of package bidding

formats, including the core-selecting auctions in the literature, as well as the VCG

mechanism.

Our model is an incomplete-information version of the auction environment

with two items and three bidders that is described in the second paragraph of this

Introduction. The global bidder obtains value u from winning both the Eastern and

Western licenses, but gets zero value from having only East or West. Local bidder 1

values East at v1, but obtains no value from West; while local bidder 2 values West

at v2 , but obtains no value from East. The game is a standard Bayesian game in

which each player knows the realization of her own value, but only the distribution

from which her opponents’ values were drawn. The players simultaneously and

independently submit bids, where b1 denotes the bid submitted by local bidder 1 for

9See, for example, Milgrom and Weber (1982) [46] and Crémer and McLean (1985) [20].
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East, b2 denotes the bid submitted by local bidder 2 for West, and B denotes the

package bid submitted by the global bidder for {East, West}. The solution concept

is Bayesian-Nash equilibrium.10

One of the novel aspects of our analysis is the family of distributions that we

treat. The local bidders’ values are perfectly correlated with probability γ and inde-

pendently distributed with probability 1− γ. (Moreover, at the time that the local

bidder selects her bid, she is unaware of whether the values are perfectly correlat-

ed or independent.) Thus, we consider a parameterized family of distributions that

permits the correlation between local bidders’ signals to be varied continuously from

zero to one. Surprisingly, despite the private information and correlated signals, we

are able to obtain explicit closed-form solutions for the core-selecting auction for-

mats considered - for all γ ∈ [0, 1]. And the possibility of positive correlation has a

quite substantial impact on our comparison of the various package-bidding formats.

To see the various package-bidding mechanisms that we compare and contrast,

suppose that the bids submitted by the respective bidders are b1 = 6, b2 = 8 and B =

10. In any of the mechanisms, the auctioneer first solves the winner determination

problem of finding the allocation which maximizes revenues subject to the feasibility

constraint. This bid data clearly results in local bidder 1 winning East and local

10Further, the joint distribution of values will be symmetric with respect to the two local bidders,

and we will limit attention to Bayesian-Nash equilibria that are symmetric with respect to the two

local bidders. In addition, in all of the core-selecting auctions, the global bidder will have a weakly-

dominant strategy, and we will then limit attention to Bayesian-Nash equilibria in which the global

bidder plays her weakly-dominant strategy.
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bidder 2 winning West, as 6 + 8 = 14 > 10. The payments, p1 and p2, of local

bidders 1 and 2, respectively, remain to be defined. The various mechanisms to be

discussed in this paper will differ in their payment rules. Our analysis will consider

the following package-bidding mechanisms:

VICKREY-CLARKE-GROVES (VCG): Payments are determined such that

each winner receives a payoff equal to the incremental surplus that she brings

to the system. The incremental surplus of local bidder 1 equals 4, as surplus

(evaluated using the bidders’ bids) equals 14 if local bidder 1 is present, and

10 (the global bidder’s value) if local bidder 1 is absent. Thus, b1 − p1 =

4 ⇒ p1 = 2. Similarly, the incremental surplus of local bidder 2 equals 4, so

b2−p2 = 4⇒ p2 = 4. Thus, the VCG payments are (p1, p2) = (2, 4). However,

this outcome is not in the core, as the seller and the global bidder form a

blocking coalition: together, they can realize surplus of 10 (the global bidder’s

value), while in the VCG outcome, the seller receives payoff of 6 = p1 +p2 and

the global bidder receives payoff of 0.

NEAREST-VICKREY: Payments are determined such that the profit alloca-

tion is the bidder-optimal core allocation that minimizes the Euclidean dis-

tance from the VCG outcome. In order to avoid the presence of any block-

ing coalitions, the payments, p1 and p2, must sum to at least 10; and in a

bidder-optimal core allocation, the payments must sum to exactly 10. The

payments that minimize the distance from the VCG payments of (2, 4) are

(p1, p2) = (4, 6).
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PROXY AUCTION: Payments are determined that reflect the outcome of

“proxy agents” competing in a simultaneous ascending auction with package

bidding and arbitrarily small bid increments, ε. The bids b1, b2 and B are

reinterpreted as limit prices that the bidders have given their respective proxy

agents. Each proxy agent must bid in the “virtual auction” whenever it is

not a provisionally-winning bidder. In the initial round, all three proxy agents

submit bids of ε, making the two local bidders provisional winners. In round

two, the proxy agent for the global bidder raises its bid to 3ε, making the global

bidder the provisional winner; in round three, the proxy agents for each of the

local bidders raise their bids to 2ε, making the two local bidders provisional

winners; and the process repeats until the proxy agent for the global bidder

drops out of the auction at a price of essentially B = 10. Thus, the local

bidders win the virtual auction at prices of essentially (p1, p2) = (5, 5), an

alternative bidder optimal core outcome.

PROPORTIONAL PRICING: Payments are determined such that the bids

are scaled down, proportionally, until the bidder-optimal frontier of the core is

reached. In the above example, the bids of the local bidders sum to 14, and so

they can each be scaled down by a factor of 5/7 in order to sum to 10. Thus,

the payments are (p1, p2) = (30/7, 40/7).

NEAREST-BID: Payments are determined such that the profit allocation

is the bidder-optimal core allocation that minimizes the Euclidean distance

from the vector of winning bids. In the above example, the bidder-optimal
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core payments that minimize the distance from the winning bids of (6, 8) are

(p1, p2) = (4, 6), coinciding with the nearest-Vickrey outcome in this example.

FIRST-PRICE PACKAGE: Payments simply correspond to the amounts of

the winning bids. That is, the auctioneer first solves the winner determination

problem of finding the allocation which maximizes revenues subject to the

feasibility constraint; and the winning bidders’ required payments are simply

the amounts of their winning bids. If the same bids were submitted as in

the above example, then the payments would be (p1, p2) = (b1, b2) = (6, 8) .

Obviously, since this is a “first price” rather than a “second price” auction

format, it should be expected that bids would be substantially different from

those in the other core-selecting auctions.

Each of these package-bidding pricing rules, as applied to the bid data b1 =

6, b2 = 8 and B = 10, is illustrated in Figure 2.1. Observe that the set of prices

associated with core allocations is the shaded triangle of this figure, while the set of

bidder-optimal core prices is the hypotenuse of this triangle.

For all but the last of the core-selecting auctions listed above, if the marginal

distribution of each bidder’s value is the uniform distribution, then we are able to

derive explicit closed-form solutions for equilibria, for all γ ∈ [0, 1]. However, for

the first-price package auction, the methodology of this paper does not yield a solu-

tion. To compare the performance of the first-price package auction with the other

core-selecting auctions, we report the revenues and efficiency as computed using

a numerical technique for approximating equilibria that is introduced in Baranov
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Figure 2.1: Package-Bidding Pricing Rules (as applied to example bid data)

(2010) [12].

The VCG mechanism was introduced in the classic theory of auctions and

public choice. William Vickrey (1961) [52] treated auctions with multiple units of

a homogeneous product, while Edward Clarke (1971) [16] and Theodore Groves

(1973) [33] treated public choice problems. The Clarke-Groves treatment subsumed

the environment that Vickrey studied as well as auctions of multiple heterogeneous

objects. We use the terminology “VCG mechanism” and “Vickrey auction” inter-

changeably.

The study of second-price-like auction mechanisms generating core allocations

originated with Ausubel and Milgrom (2002, 2006) [8] [9]. They described an “as-

cending proxy auction” mechanism which was proven to yield core allocations with
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respect to bidders’ reports and whose complete-information equilibrium allocations

(subject to a refinement) coincided with the set of bidder-optimal core allocations. A

closely-related auction procedure was developed independently by Parkes and Ungar

(2000) [48] and Parkes (2001) [47]. Stated somewhat imprecisely, the outcome of the

ascending proxy auction coincides with that of the VCG mechanism if and only if all

bidders have substitutes preferences.11 Ausubel, Cramton and Milgrom (2006) [7]

then proposed a two-stage auction procedure comprising a (multi-round) ascending-

clock auction followed by a single proxy auction round. This became the basis for the

“package clock” (or “combinatorial clock”) auction design recently adopted by the

UK and other governments for spectrum auctions (Cramton, 2009) [18]. Hoffman,

Menon, van den Heever and Wilson (2006) [34] introduced acceleration techniques

for computing the proxy auction.

Day and Raghavan (2007) [24] and Day and Milgrom (2008) [23] independently

introduced the notion of core selecting auctions. Each pair of authors proposed a

generalization of the proxy auction where the “virtual” auctions of the proxy are

superseded by a direct consideration of core allocations relative to bidders’ reports,

and each demonstrated the incentive advantages of selecting the bidder-optimal core

allocation. Day and Raghavan introduced a core constraint generation algorithm

11More precisely, if all bidders have substitutes preferences, then the VCG allocation is in the

core. Conversely, if there are at least four bidders, if the set of each bidder’s possible valuations

includes the additive valuation functions and if at least one bidder’s possible valuations includes

non-substitutes preferences, then there exists a profile of bidder valuations such that the VCG

allocation is not in the core. (See Ausubel and Milgrom (2002) [8].)
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which is an especially effective method for calculating bidder-optimal core allocations

and, in particular, advocated the bidder-optimal core allocation that minimizes the

maximum deviation from the VCG payments. Day and Milgrom proved important

economic properties, including that an efficient direct mechanism is immune from

shill bidding if and only if it is a core-selecting auction, and that bidder-optimal

core selecting auctions (in contrast to the Vickrey auction) exhibit monotonicity of

revenues in the number of bidders and their bids. Meanwhile, Day and Cramton

(2009) [22] proposed the nearest-Vickrey pricing rule and demonstrated how to

compute it efficiently.

Three other recent papers have begun to explore the comparison among core-

selecting auctions. Erdil and Klemperer (2010) [27] define a class of payment rules

referred to as “reference rules” - the proxy auction’s payment rule is one example,

while the nearest-Vickrey rule is not – and they argue that reference rules reduce

the marginal incentive to deviate as compared to other payment rules. While their

paper does not explicitly contain incomplete-information analysis, their conclusions

foreshadow the results of the current paper. Goeree and Lien (2009) [31] consider

the incomplete-information game with a global bidder and two local bidders whose

valuations are independent and uniformly-distributed. Simultaneously and indepen-

dently from the current paper, they solve for the Bayesian-Nash equilibrium of the

nearest-Vickrey pricing rule for independent uniform distributions and they find that

the VCG mechanism dominates it in expected revenues as well as efficiency. Sano

(2010) [51] considers the incomplete-information game with a global bidder and two

local bidders whose valuations are independent and uniformly-distributed. Simulta-
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neously and independently from the current paper, he solves for the Bayesian-Nash

equilibrium of the proxy auction under independence, finding that high-value local

bidders submit almost their true values, while low-value local bidders shade consid-

erably.

In the current paper, we too analyze incomplete-information games with a

global bidder and two local bidders. We formulate the game and solve for equilibria,

allowing independence (γ = 0) or correlation (γ > 0) between the local bidders’

values. We consider four different core-selecting auctions – the nearest-Vickrey, the

proxy, the proportional and the nearest-bid pricing rule - and for each γ ∈ [0, 1],

we are able to obtain explicit closed-form solutions under certain assumptions on

the distributions.12 For the case where the marginal distributions are uniform, we

obtain Figure 2.2, which summarizes the expected seller revenues and efficiency in

the equilibrium.

Counter to Goeree and Lien [31], we find that the choice between a core-

selecting auction or the VCG mechanism is sensitive to the information structure.

As shown in Figure 2.2, the relative performance of the alternative mechanisms

changes substantially as the correlation γ increases from zero to 1. When γ = 0, the

VCG mechanism raises 8.9% higher expected revenues than the proxy auction, and it

achieves 9.6% higher revenue than the nearest-Vickrey rule, despite achieving greater

efficiency. However, at the opposite extreme, when γ = 1, the proxy auction attains

33.3% higher expected revenues than the VCG mechanism while also realizing full

12Only three solutions are required, as the equilibrium for the proportional pricing rule coincides

with the equilibrium for the nearest-Vickrey rule in the model we consider.
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Figure 2.2: Seller Revenue and Efficiency for α = 1 and all γ ∈ [0, 1]

efficiency. Clearly, the choice of whether to use the VCG mechanism or a core-

selecting auction depends on the likely informational environment.

We also consider the effect of varying the uniform distribution on the local

bidders’ values. While the distribution F (v) = vα does not generally admit a closed-

form solution, it does when α = 2. Stable numerical simulations can be found for

other α - for symmetry with α = 2, we also consider α = 1/2. In this formulation,

α controls the relative frequency of local bidders’ winnings under full efficiency. For

example, when α = 1 (uniform distribution) local bidders are expected to win with

probability 1/2 while they only expected to win with probability 1/3 when α = 1/2.

We find that the comparison among the VCG mechanism and the various core-

selecting auctions changes in α. In particular, the case of α = 2 reverses the revenue

ranking of the proxy auction and the VCG mechanism, while the case of α = 1/2

enhances the revenue advantage of VCG emphasized by Goeree and Lien [31].

This paper proceeds as follows. In Section 2.2, we present the model, in-
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cluding the family of distributions that allow partial correlation, and we detail the

package-bidding mechanisms to be considered. In Section 2.3, we introduce the piv-

otal pricing property and we establish Lemma 2.3, which provides local optimality

conditions for local bidders in any mechanism satisfying the pivotal pricing prop-

erty. We solve for explicit closed-form solutions for the various mechanisms under

consideration, for all correlation parameters, in Section 2.4. In Section 2.5, we dis-

cuss extensions to the basic model, and we conclude in Section 2.6. Most proofs are

relegated to Appendix 2.A, and the solutions for different values of parameters γ

and α are summarized in Appendix 2.B.

2.2 Model

Two items are offered for sale. There are two local bidders, 1 and 2, who are

interested in only one item and receive no extra utility from acquiring the second

item. Their values are denoted v1 and v2, respectively. There is one global bidder

who wants to acquire both items and obtains no utility from owning just one item.

Her value for the pair of items is denoted u. The bidders are risk neutral and have

quasilinear utilities: the payoff of local bidder i, if she wins one unit at price pi, is

vi− pi; and the payoff of the global bidder, if she wins both units at a total price of

p, is u− p.

The value, u, of the global bidder is independently drawn from the distribu-

tion on [0, 2] described by a cumulative distribution function G(u) with atomless

probability density function g(u). With probability γ, the values, vi(i = 1, 2), of
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local bidders are perfectly correlated and drawn from a distribution on the interval

[0, 1], defined by a cumulative distribution F (v) function with atomless density f(v).

With probability 1 − γ , the values of the local bidders are independently drawn

from the same distribution F (v).

The assumption of independence between value realizations of the global bid-

der versus the local bidders seems reasonable enough - the scale of operations, cost

structure and other bidder-specific characteristics of the global and local bidders may

be substantially unrelated. However, it seems likely that there might be positive

correlation between one local bidder’s value and another. For example, in a spec-

trum auction, the local bidders might be two firms that intend to deploy identical

telecommunications technologies in different geographic regions.

Parameter γ controls the amount of correlation between the local bidders’

values. The local bidders’ value model is summarized by the conditional cumulative

distribution function of the local bidder i given her value vi:

FL(vj|vi = s) =


(1− γ)F (vj) 0 ≤ vj < s

(1− γ)F (vj) + γ s ≤ vj ≤ v̄

i 6= j

It is interesting to observe that vi and vj are not affiliated random variables for

any γ > 0.13 Nevertheless, for y ≥ x, FL(•|y) (first-order) stochastically dominates

FL(•|x) . The failure of affiliation would prevent some of the results in the theory

of single-item auctions from going through, but note that the structure of winning

13Consider x > y > z and let Ξ(·, ·) denote the joint probability of vi and vj . Then (y, y)∨(x, z) =

(x, y) and (y, y) ∧ (x, z) = (y, z), but Ξ(x, y)Ξ(y, z) < Ξ(y, y)Ξ(x, z), contradicting the affiliation

inequality.

75



is different in the current package-bidding context: local bidder 1’s bid need not

exceed the bid of local bidder 2; rather the sum of the bids of local bidders 1 and 2

needs to exceed the bid of the global bidder.

Our model handles both homogeneous and heterogeneous environments. In

the former interpretation, local bidder i derives positive utility vi from winning

either item.14 In the latter interpretation, there are two heterogeneous items, East

and West; local bidder 1 obtains positive utility only from East and local bidder

2 obtains positive utility only from West.15 Our equilibrium solutions are fully

consistent with either interpretation.

All of the auction mechanisms that we analyze in this paper, other than the

VCG mechanism, satisfy the following definition:

Definition 2.1. A core-selecting auction is a mapping from bids to allocations and

payments such that the payoffs resulting from every bid profile are elements of the

core.16

Without loss of generality we limit our attention to the restricted auctions in

which each bidder is allowed to submit only one bid. While impractical in a general

environment, this limitation does not affect efficiency in any way because of the

perfect complementarity nature of the bidders’ preferences in the model we consider

here. For example, the global bidder has value for a package of two items and her

14Then the global bidder exhibits classic increasing returns to scale.
15Then the global bidder is intending to implement a technology which (for technical or marketing

reasons) is only economical if deployed on a nationwide basis.
16This definition is taken from Day and Milgrom (2008) [23].
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bid B is interpreted as a package bid for two items. Each local bidder i is interested

only in one item and her bid bi expresses her willingness to pay up to bi for the one

item.

All auctions considered in the paper proceed in the following manner. First,

all bidders submit their bids to the auctioneer who then chooses an allocation which

maximizes total welfare with respect to the bids. In our simple model, only two

outcomes are possible. If the package bid of the global bidder is greater than the

sum of the local bids, i.e., B > b1 + b2 , the global bidder wins the auction and

receives both items. The local bidders win the auction and receive one item each

whenever the sum of their bids is higher than the package bid of the global bidder,

i.e., B < b1 + b2. Ties are resolved using a fair randomizing device. The payment

each winner is required to make depends on a specific pricing rule.

We consider the VCG mechanism and several core-selecting pricing rules.

Denote V1 and V2, the VCG payments of local bidders in case of winning, i.e.,

V1 = max{0, B − b2}, V2 = max{0, B − b1}. Additionally, we use p(b1, b2, B) to de-

note a payment vector associated with the corresponding bids b1, b2 by local bidders

and a bid B by the global bidder.

Without loss of generality, we will assume that b1 ≥ b2.

(1) VCG Mechanism (Benchmark Rule)

This is a well-known pricing rule which is motivated by its dominant strategy

property. Under this rule, the payment of the particular bidder does not depend
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upon her bid and only affects the allocation.

p(b1, b2, B) =


(V1, V2, 0) if B ≤ b1 + b2

(0, 0, b1 + b2) if B > b1 + b2

(2) Proxy Auction

The ascending proxy auction was suggested by Ausubel and Migrom (2002) [8].

Given our simple model, it can be summarized using the following formula:

p(b1, b2, B) =


(1
2
B, 1

2
B, 0) if B < 2b2

(B − b2, b2, 0) if 2b2 ≤ B < b1 + b2

(0, 0, b1 + b2) if B > b1 + b2

(3) Nearest-VCG Rule

The nearest-VCG pricing rule was introduced by Day and Cramton (2009) [22],

superseding Day and Raghavan’s (2007) [24] suggestion of minimizing the max-

imum deviation from the VCG payments. The central idea of this rule is to

select the bidder-optimal core allocation that minimizes the Euclidean distance

to the VCG point:

p(b1, b2, B) =


(V1 + ∆, V2 + ∆, 0) if B ≤ b1 + b2

(0, 0, b1 + b2) if B > b1 + b2

where ∆ =
B − V1 − V2

2

(4) Proportional Rule

This is a natural rule to consider in this environment. Whenever the local side

wins the auction, they split the amount they are required to pay proportionally
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to their bids.

p(b1, b2, B) =


(

b1
b1 + b2

B,
b2

b1 + b2
B, 0

)
if B ≤ b1 + b2

(0, 0, b1 + b2) if B > b1 + b2

(5) Nearest-Bid Rule

The “nearest-bid” description corresponds to the point in a minimum-revenue

core which is the closest to the winners’ bids. This rule can be motivated by

a simple description of the payment procedure. In case of winning each local

bidder pays her bid and then gets a refund. The amount of the refund is just

half of the “money left on the table”, i.e., b1 + b2 − B. As with Proxy Rule, if

bids are too different, the amount of refund might be higher than the smallest

of the locals’ bids. Since payments can not be negative, the local bidder i with

the small bid (bi << bj) is reimbursed completely while the local bidder j pays

the global bidder’s bid alone. This rule is intuitive and easy to explain to the

bidders.

p(b1, b2, B) =


(B, 0, 0) if B < b1 − b2

(b1 −∆, b2 −∆, 0) if b1 − b2 ≤ B < b1 + b2

(0, 0, b1 + b2) if B > b1 + b2

where ∆ =
b1 + b2 −B

2

2.3 Initial Analysis

Definition 2.2. A bid b by bidder i is pivotal if, for any ε > 0, a bid b + ε yields

bidder i a non-empty set of items, while a bid of b− ε yields bidder i the empty set.
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Note that, in auctions with pricing rules (1) - (5), any bid (b1, b2, B) is pivotal

if and only if b1 + b2 = B.

Definition 2.3. An auction satisfies the pivotal pricing property with respect to a

given bidder if, whenever the bidder’s bid is pivotal, the price that she pays (if she

wins) equals her bid.

The pivotal pricing property is very natural and is satisfied for the most of

the reasonable auction formats. Consider standard single-item auction with at least

three bidders. First-price and all-pay auctions necessarily satisfy the pivotal pricing

property since the winner always pays her bid. In a second-price auction a winning

bid is pivotal only if top two bids are equal to each other in which case the winner

pays her bid precisely. However, some auctions do not satisfy this property. For

example, in a third-price auction a winner with pivotal bid in general pays less then

her bid.

Lemma 2.0. VCG mechanism satisfies the pivotal pricing property with respect to

all bidders.

Proof. If bidder i’s bid, bi, is pivotal, then the incremental surplus contributed by

bidder i is zero. By the specification of the VCG mechanism, bidder i’s payoff in

the mechanism equals zero. Consequently, bidder i pays a price of bi.

Lemma 2.1. Every core-selecting auction satisfies the pivotal pricing property with

respect to all bidders.

Proof. Let pi denote the price paid by bidder i when her bid, bi, is pivotal, and let

Si denote the set of winning bidders if bidder i had instead submitted a bid of bi− ε.
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By the definition of a pivotal bid, i /∈ Si. Suppose that pi < bi. Then the allocation

can be blocked by the coalition comprising the seller and set Si. Suppose instead

that pi > bi. Then the allocation can be blocked by the coalition comprising bidder

i alone. We conclude that pi = bi.

Lemma 2.2. The global bidder has a weakly dominant strategy to bid her value in

auctions with pricing rules (1) - (5).

Proof. For each of these pricing rules, the global bidder wins if and only if her

package bid, B, satisfies B ≥ b1 +b2, and her payment is then b1 +b2. Consequently,

the exact same argument holds as in the standard second-price auction for a single

item.

In what follows, we assume that the global bidder bids according to her weakly

dominant strategy, i.e., B(u) = u.

With a slight abuse of notation let β(.) denote the symmetric equilibrium bid

function of the local bidders for all pricing rules. Additionally, denote Φi(bi, vi) and

φi(bi, vi) the probability of winning and marginal probability of winning for a local

bidder i who submits a bid bi assuming all other bidders follow their equilibrium

strategies, i.e.:

Φi(bi, vi) = Pr(bi + bj > B)

= γ
∫

bi+β(vi)>B(u)

g(u)du+ (1− γ)
∫∫

bi+β(vj)>B(u)

f(vj)g(u)dvjdu

= γG(bi + β(vi)) + (1− γ)
∫
vj
f(vj)G(bi + β(vj))dvj

φi(bi, vi) =
∂Φi(bi, vi)

∂bi

= γg(bi + β(vi)) + (1− γ)
∫
vj
f(vj)g(bi + β(vj))dvj
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Let Pi(bi, vi) and MPi(bi, vi) denote the expected payment and the expected

marginal payment, respectively, for a local bidder who submits a bid bi assuming all

other bidders follow their equilibrium strategies, i.e.:

Pi(bi, vi) = Epi(bi, bj, B)

= γ
∫
u

pi(bi, β(vi), B)g(u)du+ (1− γ)
∫∫
u,vj

pi(bi, β(vj), B)f(vj)g(u)dvjdu

MPi(bi, vi) = Ep′i(bi, bj, B)

= γ
∫
u

p′i(bi, β(vi), B)g(u)du+ (1− γ)
∫∫
u,vj

p′i(bi, β(vj), B)f(vj)g(u)dvjdu

Lemma 2.3. For an auction satisfying the pivotal pricing property, the optimality

conditions for a local bidder i are given by:

(vi − bi)φi(bi, vi) ≤MPi(bi, vi) bi ≥ 0

bi [(vi − bi)φi(bi, vi)−MPi(bi, vi)] = 0

Proof. See Appendix 2.A

Lemma 2.3 just simplifies the Karush-Kuhn-Tucker conditions for the local

bidders’ profit maximization problem taking into account the pivotal pricing prop-

erty. Intuitively, an infinitely small increase in a bid affects costs by increasing

expected payment in non-pivotal states and adding a new payment in the pivotal

state (when the increase results in a pivotal bid, or the state in which bidder wins

only because she increased her bid by a small amount ). The latter payment equals

to the player’s bid according to the pivotal pricing property.

In case φi(bi, vi) > 0 , the optimality conditions in Lemma 2.3 can be rewritten

as:

bi = max

(
0, vi −

MPi(bi, vi)

φi(bi, vi)

)
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Note that a local bidder shades her bid when the expected marginal payment is

positive. We formalize this general functional form of the equilibrium local’s bidder

bid function in a Corollary 2.1.

Corollary 2.1. The general functional form of the locals’ equilibrium bid function

is:

β(v) =


0 v ≤ d(γ)

c(v) v > d(γ)

where

•

d(γ) = d γ < 1

d(1) = 0 γ = 1

• d ≥ 0 such that φ(0, d)d = MP (0, d)

• c(v) is strictly increasing on [d(γ), 1]

The equilibrium bid function potentially has a flat segment in the beginning.

Intuitively, the local bidder might find it optimal to free-ride on the other local

bidder because the probability of winning is strictly greater than zero for a local

bidder with a zero bid.

Proposition 2.0. The equilibrium bid function of local bidders under the VCG

pricing rule is given by β(v) = v.

Proof. Well known.

83



2.4 Main Results

This section contains our main results. In order to derive equilibrium bids

explicitly, we assume uniform distributions for all values. Namely, f(.) is a uniform

density on [0, 1] and g(.) is a uniform density on [0, 2]. Under this assumption,

there is symmetry between global and local sides of the market because under full

efficiency the global and local sides are expected to win equally often.

We start by considering the Proxy Rule.

Proposition 2.1. The equilibrium bid function of local bidders (in symmetric

Bayesian-Nash equilibria) under the Proxy Rule is given by:

β(v) =


0 v ≤ d(γ)

1 +
ln(γ + (1− γ)v)

1− γ
v > d(γ)

if γ < 117

and

β(v) = v if γ = 1

where d(γ) =
e−(1−γ) − γ

1− γ
> 0 ∀γ < 1.

Proof. See Appendix 2.A.

Figure 2.3 (left panel) provides examples of equilibrium bid functions for the

proxy rule. In equilibrium, local bidders with low values prefer to bid zero in an

attempt to free-ride. Moreover, the size of the zero-bid interval is magnified by

the proxy rule itself because a local bidder with a sufficiently small bid would be

17A symmetric Bayesian-Nash equilibrium for the Proxy Rule with local bidders having inde-

pendent values, i.e., γ = 0, was derived independently in Sano (2010) [51]

84



required to pay her bid whenever the locals win with the other local bidder paying

the rest. To put it differently, a local bidder with a small bid in the proxy auction

has shading incentives which are similar to that of the first-price package auction. In

sharp contrast, a high-type local bidder bids almost truthfully because she expects

to be the highest bidder from the local side in which case her payment is independent

from her bid.

With the increase in correlation, the zero-bid interval vanishes since a low-type

local bidder no longer expects a sufficiently high bid from the other local bidder.

Instead she expects a comparably low bid which makes her reluctant to shade. At the

extreme case of perfect correlation, both local bidders bids truthfully in a symmetric

equilibrium. The case of perfect correlation is very interesting since the proxy rule

is able to achieve the first-best by combining equilibrium truthful-bidding property

with the core property.

However, the proxy rule model with perfect correlation also has a multiplicity

of other, asymmetric equilibria where revenue and efficiency performance is under-

mined. Specifically, one of the asymmetric equilibria results in truthful bidding by

one of the local bidders and bidding zero by the other local bidder.

Proposition 2.2. The equilibrium bid function of local bidders under the Nearest-

Vickrey Rule is given by:

β(v) =


0 v ≤ d(γ)

k(γ)v − d(γ) v > d(γ)

if γ < 118

and
18A symmetric Bayesian-Nash equilibrium for Nearest-Vickrey Rule with local bidders having
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β(v) = 2/3v if γ = 1

where k(γ) =
2

2 + γ
d(γ) =

2(
√
−γ2 + 2γ + 8− 3)

γ2 + γ − 2
> 0 ∀γ < 1.

Proof. See Appendix 2.A.

The equilibrium bid functions for the nearest-Vickrey rule are shown in Figure

2.3 (central panel). The size of the zero-bid interval is smaller when comparing to the

proxy rule which, as was mentioned above, induces first-price incentives to bidders

with low valuations. In contrast with the proxy rule, a high-type local bidder has no

incentive to bid truthfully anymore since her bid affects the price considerably. It

is worth highlighting a nice linear functional form of the equilibrium bids in case of

nearest-Vickrey rule where correlation parameter γ defines the slope and intercept

coefficients. For example, a local bidder shades uniformly across all values when

there is no correlation between local bidders, i.e., γ = 0. Positive correlation has an

ambiguous effect on revenue and efficiency since it reduces bid-shading for low-type

bidders and increases bid-shading for high-type bidders.

Proposition 2.3. The equilibrium bid function of local bidders under the Propor-

tional Rule is given by:

β(v) =


0 v ≤ d(γ)

k(γ)v − d(γ) v > d(γ)

if γ < 1

and

β(v) = 2/3v if γ = 1

where k(γ) =
2

2 + γ
d(γ) =

2(
√
−γ2 + 2γ + 8− 3)

γ2 + γ − 2
> 0 ∀γ < 1.

independent values, i.e., γ = 0, was derived independently in Goeree and Lien (2009) [31]
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Proof. See Appendix 2.A.

Surprisingly, the equilibrium bid strategies for our model are the same under

the nearest-Vickrey pricing rule and the proportional pricing rule. This result is

mainly driven by two of our modeling assumptions: uniform distribution of the

global bidder’s value with the zero lower bound and the number of local bidders. In

a model with more than two items for sale (discussed in greater detail in Section ?),

this rule results in different equilibrium bid functions.

Proposition 2.4. The equilibrium bid function of local bidders under the Nearest-

Bid Rule is given by:

β(v) =
1

1− γ
[ln(2)− ln(2− (1− γ)v)] if γ < 1

and

β(v) = 1/2v if γ = 1

Proof. See Appendix 2.A.

Figure 2.3 (right panel) demonstrates examples of equilibrium bid functions

for the nearest-bid rule. The bidding behavior under this rule is very different

from the rules already considered. First, the equilibrium bid functions are strictly

increasing for all correlation levels. The absence of the zero-bid interval for low-type

local bidders is easily explained by the nature of the nearest-bid rule. Conditional

on winning, the expected payment of a low-type local bidder is close to zero since

the half of the refund to which the bidder is entitled almost surely exceeds the

amount of her bid. At the same time, a high-type bidder shades substantially, since
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her payment depends heavily on the amount of her bid. Second, correlation has a

strong negative impact on the equilibrium bidding functions.

Figure 2.3: Equilibrium Bids: Proxy Auction Rule(left), Nearest-Vickrey(center) and

Nearest-Bid (right)

Figure 2.2, already seen in the Introduction, summarizes the expected revenue

and efficiency results for all pricing rules. The revenue of the VCG rule is negatively

affected by positive correlation. By contrast, the performance of the proxy rule

improves rapidly as the correlation increases, allowing the proxy rule to outperform

the VCG rule in terms of revenue for a substantial range of values. Moreover, the

proxy rule achieves full efficiency when the locals’ values are perfectly correlated.

The performance of the nearest-Vickrey rule seems to be robust to correlation. This

suggests that the seller interested in stable revenue and efficiency outcome across

different correlation levels might have a good reason to use the nearest-Vickrey rule.

However, for this particular model and distributions the proxy rule dominates other

core-selecting rules including nearest-Vickrey rule. The performance of the nearest-

bid rule falls with correlation, which makes the rule inferior and impractical for this

environment. Corresponding numbers for revenue, efficiency and profits of bidders
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can be found in Table 2.1. Expressions used to compute revenue and efficiency for all

pricing rules are provided in Appendix A. We use simulation results from Baranov

(2010) [12] in order to compare all mechanisms considered here with the first-price

package auction. Interestingly, the first-price package auction consistently beats the

nearest-Vickrey and nearest-bid formats in terms of both revenue and efficiency for

any positive correlation value. However, its expected revenue is lower than that of

VCG and proxy auction for low and high correlation values respectively.

γ Statistics VCG Proxy Nearest-VCG Nearest-Bid First Price*

Revenue 0.5833 0.5360 0.5327 0.5 0.5471

γ = 0 Efficiency 1 0.8679 0.8431 0.8069 0.8762

Profit Global 0.2916 0.4642 0.4673 0.5 0.4269

Profit Local 0.2087 0.1342 0.1335 0.1253 0.1498

Revenue 0.5417 0.5852 0.52 0.4521 0.5412

γ = 0.5 Efficiency 1 0.9261 0.8356 0.7739 0.9039

Profit Global 0.3126 0.4148 0.4798 0.5479 0.4304

Profit Local 0.2295 0.1523 0.1415 0.1252 0.1647

Revenue 0.5 0.6667 0.5185 0.4167 0.5445

γ = 1 Efficiency 1 1 0.8334 0.75 0.9073

Profit Global 0.3335 0.3335 0.4816 0.5834 0.4270

Profit Local 0.2499 0.1666 0.1481 0.125 0.1754

* - Based on Baranov (2010) [12]

Table 2.1: Revenue, Efficiency and Profits
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2.5 Some Extensions

2.5.1 Non-Uniform Model

The main results of this paper were derived under the assumption of uniform

distributions for bidders’ values. In this subsection we consider a more general

model where the underlying distribution for the local bidders’ values allows varying

the full-efficiency frequency of winning between the global bidder and local bidders.

Specifically, we assume that the cumulative distribution function for local bidders

is F (v) = vα, α > 0 on the interval [0, 1]. We continue to assume that the values

of the local bidders are perfectly correlated with probability γ and that the global

bidder draws her value independently from the uniform distribution on [0, 2].

The parameter α of the local bidders’ distribution function can be interpreted

in the following way. When α is less than one, the sum of the local bidders’ values

is expected to be small in comparison with the expected value of the global bidder,

implying that the local bidders lose more frequently under full efficiency. When α

is greater than one, the situation is reversed, with the global bidder winning less

frequently under truthful bidding. In other words, a high α makes the local bidders

the stronger side in terms of their expected value.

In general, there are no closed-form solutions for this model, but it can be

easily solved by appropriate numerical methods. For example, the equilibrium bid-

ding function for the nearest-Vickrey rule, as in the uniform model, is linear with

the slope coefficient being derived explicitly while the intercept term is determined

from a non-linear equation which can be solved by a standard numerical proce-
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dure like the Newton method. The equilibrium bidding functions for the proxy rule

and nearest-bid rule can be easily approximated by numerical methods for solving

ODEs. Appendix B contains some equilibrium bidding functions and correspond-

ing equations for numerical approximations for all pricing rules and all correlation

levels.

For the various second-price-like core-selecting auction formats, an increase in

α leads to an increase in bid shading by the local bidders. Intuitively, a local bidder

expects a higher bid from the other local bidder and tries to free-ride, reducing her

bid accordingly. Symmetrically, smaller α results in more truthful bidding since

opportunities for free-riding are reduced.

Figures 2.4 and 2.5 contain revenue and efficiency calculations for scenarios

where α = 2 and α = 0.5, respectively. As can be seen in Appendix B, the calcu-

lations for α = 2 for the proxy auction and nearest-bid rule are based on explicit

closed-form solutions and for the nearest-VCG rule are based on “almost-closed-

form” solutions. Meanwhile, the value α = 0.5 was chosen for symmetric comparison

with α = 2; most of the associated calculations are based on numerical simulations.

Even though a low value for α generates more sincere bids by local bidders, the

expected total bid from them is smaller than in case of α = 1 (uniform distribution)

and so expected seller revenue is lower. The seller revenue is affected positively by

an increase in α for all core-selecting rules. On the other hand, an increase in α

negatively affects revenue of the VCG auction since it leads to an increase in the

probability of low revenue and zero revenue outcomes. As can be seen from Figures

2.4 and 2.5, the revenue performance of Vickrey rule relative to any core-selecting
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rule falls with α. For example, the proxy rule and the nearest-Vickrey rule generate

higher revenues for any correlation level (∀γ) when α = 2.

Figure 2.4: Seller Revenue and Efficiency for α = 2 and all γ ∈ [0, 1]

2.5.2 Number of Bidders

Here we look into a question of robustness of our results with respect to an

increase in the number of bidders. There are several interesting modifications of our

model one can consider.

First of all, an increase in the number of global bidders can be modeled as

a replacement of the distribution function of the global bidder with the extreme

value distribution function of values. For example, if there are two global bidders

who draw their values from distribution described by a function H(u) independently

from each other and local bidders, a version of the model with one global bidder can

be used instead with distribution function of the global bidder being equal to the
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Figure 2.5: Seller Revenue and Efficiency for α = 0.5 and all γ ∈ [0, 1]

product of individual distributions, i.e., G(u) = H(u)2 . This replacement works

because global bidders still have a weakly dominant strategy to bid truthfully. Since

the distribution of this pseudo global bidder is no longer uniform, the equilibrium

bidding functions of local bidders in general have to be approximated numerically.

Another interesting comparative statics exercise is to increase the number of

local bidders together with the number of items offered for sale. For example,

consider an auction where three items are offered, with three local bidders who

only wish to acquire one item each and a global bidder who is interested only in

winning all three items. Keeping a similar value structure, it is possible to solve

this model for some correlation levels and some pricing rules. For example, for the

proportional rule this model can be solved in closed form for all levels of correlation

among local bidders’ values. Unfortunately, some pricing rules such as the nearest-

Vickrey rule become inherently complex in this environment. Luckily, the solution

for the proportional rule sheds some light on the revenue and efficiency performance
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of the core-selecting rules relative to that of the Vickrey rule. An increase in the

number of local bidders leads to a more severe coordination problem among them,

more bid shading, and lower seller revenues and efficiency in comparison with the

Vickrey rule. This finding suggests that any core-selecting rule may be a poor choice

for environments where the presence of a coordination problem is significant.

Finally, one can think of increasing the number of local bidders without in-

creasing the number of products offered in the auction. In such environments, local

bidders face competitors for their own item or market and they bid more aggres-

sively. For example, a zero-bid interval (interval of values for which local bidder

submits zero bid) no longer exists.

2.5.3 Robustness Check

In this subsection we demonstrate numerically that the partial correlation

model for local bidders’ values used in this paper results in equilibrium bidding

functions which are qualitatively very general. Consider the following modification

to the original model of Section 2.2. Let M be a common unknown distributional

factor for local bidders which is distributed on the interval [0, 1] with some positive

density fM(m). Conditional on a particular realization, m, of the distributional

factor, values for local bidders are drawn independently from a truncated logit dis-

tribution on [0, 1] with parameters (m,σ), where σ > 0 is a known scale factor,

i.e.:
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fL(vj|M = m) =
A(m,σ)e−(vj−m)/σ

σ(1 + e−(vj−m)/σ)2
for vj ∈ [0, 1]

where A(m,σ) is a normalizing constant.

Since m is not observable, both local bidders make inferences about the dis-

tribution of the other local bidder’s value using their own values as signals about

m. It is not hard to show that the conditional density takes the following form:

fL(vj|vi = s) =

∫ 1

0
fL(vj|m)fL(s|m)fM(m)dm∫ 1

0
fL(s|m)fM(m)dm

Figure 2.6 contains approximations of conditional densities for different values

of the signal and different levels of parameter σ which controls the correlation in

this model (taking the role of γ in the main model of this paper). Levels of σ are

chosen such that the correlation between local bidders’ values in the main model

with gamma values 0, 0.5 and 0.9 and the model considered here are approximately

equal to each other.

Figure 2.6: Conditional Densities

Given conditional densities, we approximate first-order conditions for differ-
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ent pricing rules derived in Lemma 2.3. The corresponding equilibrium bidding

functions can be found at Figure 2.7. The numerical solutions exhibit qualitatively

similar shapes and patterns as the closed-form equilibrium bidding functions derived

in Section 2.4 (i.e., Figure 2.3). These results are very encouraging for the future

use of this paper’s partial correlation model in other contexts, since in some envi-

ronments it allows us to generate closed-form solutions or extremely stable and easy

numerical solutions without introducing any qualitative distinctions from smoother

and more plausible partial-correlation models.

Figure 2.7: Approximations of Equilibrium Bids

2.6 Conclusion

The past literature has shown the VCG mechanism to have a variety of short-

comings in environments with complementarities, including the possibility of low or

even zero revenues, non-monotonicity of revenues with respect to bids and number

of bidders, and vulnerability to unusual forms of collusion such as shill-bidding and

collusion by losing bidders. This list of drawbacks may help to explain why this
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auction format - despite its attractive dominant-strategy property - is seldom used

in practice: to date, we are not aware of any examples of auctions employing the

Vickrey payment rule in an environment with multiple heterogeneous items. At the

same time, interest in core-selecting auctions appears to be rising, with two high-

stakes auctions already conducted using a two-stage version of the nearest-Vickrey

pricing rule. Nevertheless, the existing literature on core-selecting auctions primar-

ily studies complete-information environments and, to the extent that incomplete

information is introduced, bidders’ values are assumed to be independent.

This paper develops a model of package auctions in an environment with pri-

vate information. The model considered, while simple and intuitive, includes a

number of realistic features that motivate the use of package auctions, such as the

presence of substantial complementarities in bidders’ preferences and a positive cor-

relation of bidders’ values. We were able to derive explicit closed-form solutions for

all considered payment rules and all correlation levels, under certain assumptions on

distributions. Our analysis shows that core-selecting payment rules create strong in-

centives for bidders without a conflict of interests to shade their bids in equilibrium.

At first glance, this equilibrium property might discourage the use of core-selecting

auctions, since they do not achieve full efficiency and their expected revenue might

be even smaller than the revenue of the corresponding VCG auction. However,

the presence of positive correlation may dramatically improve the performance of

core-selecting auctions relative to the VCG mechanism. In fact, positive correlation

significantly improves the performance of the proxy rule while affecting negatively

the performance of the VCG. The nature of the proxy rule makes shading profitable
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only if the local bidder expects a sufficiently high complementary bid from the other

local bidder, which becomes increasingly unlikely as the correlation increases. On

the other hand, positive correlation increases the probability of low-revenue or zero-

revenue outcomes in the VCG mechanism - these occur when both local bidders’

are a substantial fraction of the global bidder’s value.

Furthermore, the VCG mechanism has a lot of other potential drawbacks for

practical applications. The full efficiency property of the VCG is actually a result

of the best-case scenario analysis in a more general model of package auction where

bidders can effectively use several identities (or shills) to represent their interests. If

the seller has no control over identities of the bidders, the efficiency and revenue of

the VCG may be significantly lower. For example, in a simple model with two items,

two global bidders and a VCG pricing rule, the truth-telling strategies no longer form

equilibria when one or both global bidders can enter the auction using two local

shills. In contrast, any bidder-optimal core-selecting auction has an equilibrium in

sincere strategies with full efficiency, while VCG does not. Moreover, in important

applications such as spectrum auctions, it is very likely that substantial correlations

in bidders’ valuations may be present. Thus, unlike Goeree and Lien (2009) [31], we

conclude that there may be good reasons for policymakers to select a core-selecting

auction rather than a VCG mechanism.

A curious reader might notice that our paper only considers the case of positive

correlation between local bidders’ values without considering the case of negative

correlation. This treatment seems to be satisfactory since we are not aware of any

reasonable practical application for an auction model with negative correlations.

98



The received wisdom in auction theory is that the higher the value of the object to

one bidder, the higher the value of the object to any other bidder. Nevertheless, from

a methodological viewpoint, a similar model of negative correlation between local

bidders’ values can be easily constructed. We envision that the presence of negative

correlations will improve the performance of the VCG and nearest-bid pricing rules

while hurting the proxy rule. This conclusion is based on the intuition developed

in Section 4 on the effect of increasing the correlation, only applied in the opposite

direction.
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2.A Appendix A - Proofs

2.A.1 Proof of Lemma 2.3

The profit function of a local bidder i is given by:

πi(bi, vi) = viΦi(bi, vi)− Pi(bi, vi)

The first-order optimality conditions are:

∂πi(b
∗
i , vi)

∂bi
≤ 0 b∗i ≥ 0 b∗i

(
∂πi(b

∗
i , vi)

∂bi

)
= 0 ∀vi ∈ [0, 1]

In order to get the desired form of the first-order conditions, we first compute

the marginal cost of winning with a bid bi:

∂Pi(bi, vi)

∂bi
= γ

∂

∂bi

( ∫
bi+β(vi)>u

pi(bi, β(vi), u)g(u)du

)

+ (1− γ)
∂

∂bi

( ∫∫
bi+β(vj)>u

pi(bi, β(vj), u)f(vj)g(u)du

)
or

∂Pi(bi, vi)

∂bi
= γ pi(bi, β(vi), bi + β(vi))g(bi + β(vi))

+ γ
∫

bi+β(vi)>u

p′i(bi, β(vi), u)g(u)du

+ (1− γ)
∫
vj

pi(bi, β(vj), bi + β(vj))f(vj)g(bi + β(vj))dvj

+ (1− γ)
∫∫

bi+β(vj)>u

p′i(bi, β(vj), u)f(vj)g(u)du

Note that by Lemma 2.2 and the pivotal pricing property we have the following:

pi(bi, β(vi), bi + β(vi)) = pi(bi, β(vj), bi + β(vj)) = bi ∀vi, vj
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Plugging the last equality back to the marginal cost of winning we get a short

and intuitive form for this term:

∂Pi(bi, vi)

∂bi
= bi

[
γg(bi + β(vi)) + (1− γ)

∫
vj

f(vj)g(bi + β(vj))dvj

]
+MPi(bi, vi)

= biφi(bi, vi) +MPi(bi, vi)

Finally, the desired form of the first-order optimality conditions:

∂πi(b
∗
i , vi)

∂bi
= viφi(b

∗
i , vi)−

∂Pi(b
∗
i , vi)

∂bi
= (vi − b∗i )φi(b∗i , vi)−MPi(b

∗
i , vi)

(vi − b∗i )φi(b∗i , vi)−MPi(b
∗
i , vi) ≤ 0 b∗i ≥ 0

b∗i [(vi − b∗i )φi(b∗i , vi)−MPi(b
∗
i , vi)] = 0 ∀vi ∈ [0, 1]

2

2.A.2 Proof of Proposition 2.1

The following table summarizes marginal payments for a local bidder in all

possible situations:

β(vj), β(vi) u ≤ 2β 2β < u ≤ β(vi) + β(vj) u > β(vi) + β(vj)

Perfect Correlation 0 N/A 0

(vi = vj)

Independence 0 1 0

(vi < vj)

Independence 0 0 0

(vi ≥ vj)

(∗β = β(min(vi, vj)))
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The expected marginal payment for a local bidder in equilibrium is:

MP (β(v), v) = 1−γ
2

∫ 1

v
(β(vj)− β(v))dvj

(v − β(v)) = (1− γ)
∫ 1

v
(β(vj)− β(v))dvj

Note that β(v) = v in case of γ = 1. The associated expected revenue and

efficiency are

RProxy = 2/3 EfProxy = 1

For the case of γ < 1 the equivalent differential equation and the terminal

condition are given by:

β′ =
1

γ + (1− γ)v
β(1) = 1

The solution for this differential equation yields the equilibrium bid function.

The associated expected revenue and efficiency for γ < 1 are given by:

RProxy =
6e( − (1− γ)− e( − 2(1− γ)− (1 + 5γ − 2γ2 + γ3)

2(1− γ)3

EfProxy =
2e( − (1− γ) + (1− 4γ + γ2

2(1− γ)2

2

2.A.3 Proof of Proposition 2.2

The following table summarizes marginal payments for a local bidder in all

possible situations:
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β(vj), β(vi) u ≤ β(vi) β(vi) < u ≤ β(vi) + β(vj) u > β(vi) + β(vj)

Perfect Correlation 0 1/2 0

(vi = vj)

Independence 0 1/2 0

The expected marginal payment for a local bidder in equilibrium is:

MP (β(v), v) = 1
4

[
γβ(v) + (1− γ)

∫ 1

0
β(vj)dvj

]
(v − β(v)) = 1

2

[
γβ(v) + (1− γ)

∫ 1

0
β(vj)dvj

]
Note that β(v) = 2

3
v in case of γ = 1. The associated expected revenue and

efficiency are

RNearest−V CG = 14/27 EfNearest−V CG = 5/6

For the case of γ < 1 :

β(v) =
2

2 + γ

[
v − 1− γ

2

∫ 1

0

β(vj)dvj

]
= k(γ)v − d(γ)

The associated expected revenue and efficiency are given by:

RNearest−V CG =
(d− 1)(−3d2(1− γ)(1 + γ)2 + 13d2(1 + γ) + d(7 + 25γ + 12γ2)− 11γ − 17)

6(2 + γ)2

EfNearest−V CG =
2d2(1 + γ)− 2d(2 + γ) + γ + 4

2(2 + γ)

where d(γ) =
2(
√
−γ2 + 2γ + 8− 3)

γ2 + γ − 2
and γ < 1

2
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2.A.4 Proof of Proposition 2.3

The following table summarizes marginal payments for a local bidder in all

possible situations:

β(vj), β(vi) 0 ≤ u ≤ β(vi) + β(vj) u > β(vi) + β(vj)

Perfect Correlation
β(vi)u

4β(vi)2
0

(vi = vj)

Independence
β(vj)u

(β(vi) + β(vj))2
0

The expected marginal payment for a local bidder in equilibrium is:

MP (β(v), v) =
1

4

[
γβ(v)

(2β(v))2

4β(v)2
+ (1− γ)

∫ 1

0

β(vj)
(β(v) + β(vj))

2

(β(v) + β(vj))2
dvj

]
= 1

4

[
γβ(v) + (1− γ)

∫ 1

0
β(vj)dvj

]
Note that the expected marginal payment is exactly the same as the one for

Nearest-VCG Payment Rule. Therefore, equilibrium bid function, expected revenue

and efficiency are exactly the same.

2

2.A.5 Proof of Proposition 2.4

The following table summarizes marginal payments for a local bidder in all

possible situations:
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β(vj), β(vi) u ≤ β − β β − β < u ≤ β(vi) + β(vj) u > β(vi) + β(vj)

Perfect Correlation N/A 1/2 0

(vi = vj)

Independence 0 1/2 0

(∗β = β(min(vi, vj)) β = β(max(vi, vj)))

The expected marginal payment for a local bidder in equilibrium is:

MP (β(v), v) = γ
2
β(v) + 1−γ

2

[∫ v
0
β(vj)dvj +

∫ 1

v
β(v)dvj

]
= γ

2
β(v) + 1−γ

2

[∫ v
0
β(vj)dvj + β(v)(1− v)

]
(v − β(v)) = γβ(v) + (1− γ)

[∫ v
0
β(vj)dvj + β(v)(1− v)

]

Note that β(v) = 1/2v in case of γ = 1. The associated expected revenue and

efficiency are

RProxy = 5/12 EfProxy = 3/4

For the case of γ < 1 the equivalent differential equation and the terminal

condition are given by:

β′ =
1

2− (1− γ)v
β(0) = 0

The solution for this differential equation yields the equilibrium bid function.

The associated expected revenue and efficiency for γ < 1 are given by:

RProxy =
1 + γ(γ(5 + 4 ln 2)− 6 + 4 ln 2)− 4γ(1 + γ) ln(1 + γ)

2(1− γ)3

EfProxy =
3− 4γ + γ2 + 2(1 + γ)(ln(1 + γ)− ln 2)

2(1− γ)2
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2

2.B Appendix B - Solution Summary

Notation reminder:

• α - parameter of the distribution function for local bidders’ values

(F (v) = vα, α > 0)

• γ - correlation parameter of the joint distribution for local bidders’ values

(0 ≤ γ ≤ 1)
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2.B.1 Proxy Pricing Rule

α > 0 0 ≤ γ ≤ 1 Equilibrium Bid Function β(v)

α > 0 γ = 1 β(v) = v

α = 1 0 ≤ γ < 1 β(v) = max
(

0, 1 + ln (γ+(1−γ)v)
1−γ

)
α 6= 1 γ = 0 β(v) = max

(
0, v

1−α−α
1−α

)
α = 2 0 < γ < 1 β(v) = max

(
0, 1√

γ(1−γ)
tan−1

(√
1−γ
γ
v + C

))
C = 1− 1√

γ(1−γ)
tan−1

(√
1−γ
γ

)
α 6= 1, α 6= 2 0 < γ < 1 No Closed-Form Solution

Differential Equation for approximations:

β′ = 1
γ+(1−γ)vα β(1) = 1
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2.B.2 Nearest-Vickrey Pricing Rule (and Proportional Pricing Rule)

α > 0 0 ≤ γ ≤ 1 Equilibrium Bid Function β(v)

α > 0 γ = 1 β(v) = 2
3
v

α = 1 0 ≤ γ < 1 β(v) =


kv − d v > d

k

0 v ≤ d
k

k = 2
2+γ

d = 3k2−2k
√
3k−1

3k−2

α 6= 1 0 ≤ γ < 1 Almost Closed-Form Solution:

β(v) =


kv − d v > d

k

0 v ≤ d
k

k = 2
2+γ

d is defined by the equation:

dα+1

(1+α)kα
− 3k

3k−2d+ αk
α+1

= 0
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2.B.3 Nearest-Bid Pricing Rule

α > 0 0 ≤ γ ≤ 1 Equilibrium Bid Function β(v)

α > 0 γ = 1 β(v) = 1
2
v

α = 1 0 ≤ γ < 1 β(v) = 1
1−γ [ln (2)− ln (2− (1− γ)v)]

α = 2 0 ≤ γ < 1 β(v) = 1√
2(1−γ)

∣∣∣∣ (1−γ)v+√2(1−γ)

(1−γ)v−
√

2(1−γ)

∣∣∣∣
α 6= 1, α 6= 2 0 < γ < 1 No Closed-Form Solution

Differential Equation for approximations:

β′ = 1
2−(1−γ)vα β(0) = 0
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