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Rural landscapes in the United States have changed dramatically in recent decades due to 
the rapid development of private rural lands into low-density residential exurban 
development. This land conversion is a rising cause of concern due to its potential effects 
on biodiversity and ecosystem processes. Although exurbanized area is thought to have a 
significant increase in eastern deciduous forests, a rigorous assessment of exurban trends, 
drivers, and ecological consequences has yet to be undertaken. First, I develop a novel 
analytic approach to identify exurban areas and assess how much land has been converted 
to exurban development in the Mid-Atlantic region. The approach describes mixed pixels 
containing exurban development as a combination of land covers and uses decision-tree 
classification and morphological spatial pattern analysis to further separate exurban 
development from other forest disturbing events. The results indicate that exurban 
development is a pervasive and fast-growing form of land use in the region. Second, I 
evaluate the effectiveness of two contrasting modeling approaches in capturing exurban 
growth at a local and county scale. Exurban growth was effectively captured by the 
spatially-explicit econometric model at both scales and the pattern-based model only 
performed well at the county scale. Thus, pattern-based models like SLEUTH can 
forewarn potential coarse-scale losses of natural resources in exurban areas, but are less 
useful at finer scale or for assessing potential impacts of implementing land-use policies. 
Third, I assess whether exurban development degrades avian breeding territories over 
time and forest birds’ response to those changes. I conclude that exurban development is 
degrading breeding habitats by reducing forest cover and increasing habitat 
fragmentation. Forest birds exhibited a threshold response to deteriorating breeding 
habitats in the vicinity of breeding territories and adjacent foraging areas being forest 
specialists the most sensitive group. To avoid the likelihood of sudden bird population 
declines amongst further habitat loss and fragmentation, a synergy among land managers, 
planners, and decision-makers will become increasingly important to mitigate the impacts 
of exurban development in the Mid-Atlantic region. 
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PREFACE 

This dissertation contains an overall abstract and five chapters. Chapter II, III, and 

IV are presented in manuscript form; therefore, the study area may be repeated, pronouns 

reflect manuscript authorship, and tables and figures appear at the end. A single reference 

section occurs at the end for literature cited throughout the dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iii 
 

DEDICATION 

A Swen, Mami, Papa, y Santi 

 

  

 



 

 iv 
 

ACKNOWLEDGEMENTS 

I would like to thank my advisor Dr. Todd Lookingbill for his guidance, constant 

support, and patience. I would also thank my committee members, Drs. Andrew Elmore, 

Robert Gardner, Peter Leimgruber, and Lisa Wainger for their ideas and collaboration. I 

am grateful to Dr. Peter Marra for his advice in the study design of Chapter IV and Dr. 

Scott Wilson for his assistance with the Hierarchical Bayesian models. Thanks to Dr. 

Robert Hilderbrand for the fruitful discussions about the threshold analysis presented in 

Chapter IV.  

Thanks to Dr. Peter Vogt for his support with morphological spatial pattern 

analysis, Dr. Claire Jantz for providing access to SLEUTH-3r and her valuable advice 

with SLEUTH, and Rich Iovanna for his guidelines on creating the surface based on the 

complementary log-log hazard model. I would also like to thank the thousands of 

volunteers who have collected Breeding Bird Survey Data and Dave Ziolkowski and 

Keith Pardieck from the USFWS for providing the bird data, the topographic maps, and 

the description of the BBS stops.  

Many thanks to Steven Guinn for his assistance with imaging preprocessing, 

spectral mixture analysis, and with the travel cost layer; J. B. Churchill for his endless 

help with GIS; and Joe Ferrari for his assistance with R and Perl. Additional thanks to the 

administration at AL for assisting with my questions and the Appalachian Lab travel 

awards committee for supporting my attendance to national and international 

conferences.  

 



 

 v 
 

TABLE OF CONTENTS 

PREFACE.......................................................................................................................... ii 

DEDICATION.................................................................................................................. iii 

ACKNOWLEDGEMENTS ............................................................................................ iv 

TABLE OF CONTENTS ................................................................................................. v 

LIST OF TABLES .......................................................................................................... vii 

LIST OF FIGURES ......................................................................................................... ix 

CHAPTER I: INTRODUCTION .................................................................................... 1 
Research objectives and dissertation format................................................................ 4 

CHAPTER II: EXURBAN DEVELOPMENT FROM 1986 TO 2009 
SURROUNDING THE DISTRICT OF COLUMBIA, USA ...................................... 13 

Abstract...................................................................................................................... 13 
Introduction................................................................................................................ 14 
Methods ..................................................................................................................... 17 

Study site ............................................................................................................ 17 
Landsat data and preprocessing.......................................................................... 18 
Spectral mixture analysis.................................................................................... 19 
Selection of training data.................................................................................... 21 
Decision-tree classification ................................................................................ 22 
Morphological spatial pattern analysis ............................................................... 23 
Final maps of exurban development................................................................... 24 
Accuracy assessment .......................................................................................... 25 

Results........................................................................................................................ 25 
Discussion.................................................................................................................. 29 

Mapping approach .............................................................................................. 29 
Extent of exurban development.......................................................................... 31 
Rate of expansion of exurban development ....................................................... 32 

Conclusion ................................................................................................................. 33 

CHAPTER III: MODELING EXURBAN DEVELOPMENT: COMPARISON OF  
A PATTERN-BASED MODEL AND A SPATIALLY-EXPLICIT 
ECONOMETRIC MODEL ........................................................................................... 47 

Abstract...................................................................................................................... 47 
Introduction................................................................................................................ 48 
Methods ..................................................................................................................... 51 

Study area ........................................................................................................... 51 
Pattern based-model: SLEUTH.......................................................................... 51 

Overview of the SLEUTH model................................................................ 51 
Database development................................................................................. 52 
Calibration and model execution................................................................. 53 

Spatially-explicit econometric model: complementary log-log hazard model... 55 
Model overview........................................................................................... 55 



 

 vi 
 

Database development................................................................................. 56 
Complementary log-log hazard model ........................................................ 60 

Model assessment ............................................................................................... 60 
Results........................................................................................................................ 61 

SLEUTH............................................................................................................. 61 
Complementary log-log hazard model ............................................................... 62 

Discussion.................................................................................................................. 64 

CHAPTER IV: FOREST BIRDS RESPOND TO DETERIORATED BREEDING 
HABITAT AROUND EXURBAN AREAS .................................................................. 75 

Abstract...................................................................................................................... 75 
Introduction................................................................................................................ 76 
Methods ..................................................................................................................... 79 

Study area ........................................................................................................... 79 
Breeding Bird Survey ......................................................................................... 80 
Landscape structure around Breeding Bird Survey stops................................... 81 

Analysis ..................................................................................................................... 83 
Results........................................................................................................................ 86 

Breeding Bird Survey ......................................................................................... 86 
Landscape structure around Breeding Bird Survey stops................................... 87 
Threshold response of bird species to landscape structure................................. 88 

Discussion.................................................................................................................. 91 
Conclusion ................................................................................................................. 94 

CHAPTER V: CONCLUSION.................................................................................... 109 
Future directions and recommendations.................................................................. 117 

REFERENCES.............................................................................................................. 119 
 



 

 vii 
 

LIST OF TABLES 

Table 1. Summary of effects of exurban development found in previous studies.............. 7 

Table 2. Dates of satellite imagery and aerial photography acquisition ........................... 35 

Table 3. Separability of training data. Values under forest (no change class), 
exurban development (small change class −from forest to exurban), and urban 
(large change class −from forest/field to urban) represent the sample size (i.e., 
number of polygons) and in parenthesis the total number of pixels per class per 
year. JM1 indicates Jeffries Matusita distance between forest and exurban 
development, JM2 between exurban development and urban, and JM3 between 
urban and forest................................................................................................................. 36 

Table 4. Overall accuracy, kappa, user’s, and producer’s accuracy for decision 
tree classification and for upper and lower bound estimates of final maps of 
exurban development ........................................................................................................ 37 

Table 5. Descriptive statistics for variables included in the complementary log-log 
hazard model. .................................................................................................................... 68 

Table 6. Complementary log-log hazard model of conversion. Bold indicates 
significant variables at a 0.05 level................................................................................... 69 

Table 7. Hierarchical-model estimates based on Breeding Bird Survey stops for 
forest specialist, forest generalists, and forest edge species. American 
Ornithologist´s Union alpha codes for English common names are in parenthesis. 
For each species, the number of total detections (percentages), adjusted 
abundance (mean ± sd), trend coefficient (slope on a log scale of abundance over 
time), and percent change per year are shown. Values in bold font indicate 95% 
credible intervals not over-lapping zero. .......................................................................... 96 

Table 8. Descriptive statistics of landscape structure variables surrounding 
selected Breading Bird Survey stops (n = 125) at 400m- and 1 km-radius buffer 
(mean ± sd) for 1986, 1993, 2000, and 2009. ................................................................... 97 

Table 9. Threshold Indicator Taxa ANalysis (TITAN) results for forest specialist, 
forest generalists, and forest edge species for 400 m- and 1 km-radius buffer. 
Only significant species at a 0.05 significant level are shown. ........................................ 99 

Table 10. Percent of Breeding Bird Survey (BBS) stops (n = 125) that were above 
exurban development threshold values. Positive response (z+) indicates high 
frequency and abundance for sites above threshold. Negative response (z-) 
indicates low frequency and abundance for sites above threshold. ................................ 115 

Table 11. Percent of exurban development per county and exurban development 
threshold values for the 1 km-radius buffer surrounding Breeding Bird Survey 



 

 viii 
 

stops. Bird species responded positive (z+) or negative (z-) to exurban 
development threshold values......................................................................................... 116 

 



 

 ix 
 

LIST OF FIGURES 

Figure 1. Dissertation flow diagram. ................................................................................ 12 

Figure 2. The delineated area over the Landsat TM image represents the study 
region which encompasses nine counties in north and central Virginia and two 
counties in western Maryland. .......................................................................................... 38 

Figure 3. Density-shaded scatter plot show the mixing space of a spectrally 
diverse subscene. The mixing space is bounding by selected endmembers: 
substrate (SUB), vegetation (VEG), non-photosyntetic vegetation (NPV), and 
shade (SHD)...................................................................................................................... 39 

Figure 4. Image derived spectra of four selected endmembers used in the spectral 
mixture analysis. ............................................................................................................... 40 

Figure 5. Representation of the morphological spatial pattern analysis (MSPA). 
Input consists of a binary raster map (background and foreground). Through 
logical operators such as union, intersection, complementation, and translation, 
the software package allocates each pixel to one of a mutually exclusive set of 
structural classes. .............................................................................................................. 41 

Figure 6. Ternary plots based on training data endmember fractions. Fractions 
were derived from spectral mixture analysis. The diagrams show the signature of 
pixels that have not changed (i.e., remain as forest or urban), had small changes 
(from forest to exurban development), and had large changes (from forest/fields to 
urban) between 1986-1993 (gray) and 2000-2009 (black). The shade endmember 
was omitted for representation purposes........................................................................... 42 

Figure 7. Structure of the decision tree used to classify 2000-2009 exurban 
development using substrate endmember difference between 2000 and 2009 
(SUB_DIFF) and 2009 endmember fractions: vegetation (VEG), substrate (SUB), 
shade (SHD), and non-photosynthetic vegetation (NPV). Gray-shaded ovals 
illustrate the branching pattern toward exurban development terminal node. Any 
given pixel within the highlighted terminal node has a 90% probability of being 
exurban development. In the bar charts, proportion of exurban development (E), 
forest (F), and urban (U) classes are represented. All splits are significant at a 0.05 
level................................................................................................................................... 43 

Figure 8. Map of the distribution of exurban development in north and central 
Virginia and western Maryland from 1986-2009. SCBI stands for Smithsonian 
Conservation Biology Institute. ........................................................................................ 44 

Figure 9. Extent of exurban development (A) and average annual rate (B) of total 
area, western Maryland, and northern Virginia between 1986 and 2009. ........................ 45 



 

 x 
 

Figure 10. Mean annual rate in exurban development in different counties of 
western Maryland and northern Virginia for three time periods: 1986-1993, 1993-
2000, and 2000-2009. ....................................................................................................... 46 

Figure 11. The study region encompasses nine counties in north and central 
Virginia and two counties in western Maryland (shaded area)......................................... 70 

Figure 12. Schematic representation of growth types and controlling coefficients 
in parenthesis simulated by SLEUTH (Adapted from Clarke et al. 1997). ...................... 71 

Figure 13. Probability of conversion to exurban development simulated using (A) 
SLEUTH and (B) complementary log-log hazard model for for north and central 
Virginia and western Maryland. Zoom in windows illustrate the difference in the 
spatial pattern between models. ........................................................................................ 72 

Figure 14. Receiver-operating characteristic (ROC) curves to evaluate SLEUTH 
and the complementary log-log hazard model performance. ROC close to the 
diagonal indicates the performance of the model is no better than random. .................... 73 

Figure 15. Percent of each county’s exurban developed area: (A) observed in 
2009, (B) simulated by SLEUTH, and (C) estimated by the complementary log-
log hazard model for north and central Virginia and western Maryland.......................... 74 

Figure 16. The study region (shaded area) includes nine counties in north and 
central Virginia and two counties in western Maryland. From the North American 
Breeding Bird Survey (BBS) routes located in the study area, 125 survey stops 
(circles) were uniformly selected. Zoom-in window shows an example of a 
landscape within a 1 km radius circular area around one of the selected survey 
stops. ............................................................................................................................... 103 

Figure 17. Time series of mean abundance adjusted for missing observations and 
observer differences. The lines indicate the posterior median (line nearly 
coincident with the circles) with 95% confidence intervals. .......................................... 104 

Figure 18. Threshold Indicator Taxa ANalysis (TITAN) using landscape variables 
as a predictor of threshold changes in individual bird species in 400 m (top panel) 
and 1 km circular area (bottom panel) between 1986 and 2009 in north and central 
Virginia and western Maryland. Only indicator taxa (purity ≥ 0.95 and reliability 
≥ 0.95) are plotted in increasing order with respect to their observed change point. 
Solid circles correspond to negative (z-) indicator taxa and open circles 
correspond to positive (z+) indicator taxa. Circles are size in proportion to z 
scores. Lines overlapping each circle represent 5th and 95% percentiles among 
250 bootstrap replicates. Landscape variables evaluated were (A) forest, (B) forest 
interior, (C) area-weighted averaged patch size, (D) exurban development, (E) 
forest fragments, (F) number of forest patches, (G) proximity index, and (H) 
forest edge. Taxa IDs correspond to the American Ornithologist´s Union alpha 
codes for English common names. ................................................................................. 105 



 

 1

CHAPTER I 

INTRODUCTION 

The world's human population have been growing very rapidly over the 20th 

century resulting in the conversion of natural landscapes into pastures, agriculture, and 

urban development  (Vitousek et al. 1997, Foley et al. 2005, Lepczyk et al. 2007, United 

Nations Population Fund 2007, Szlavecz et al. 2011). Residential housing development 

has outpaced population growth even in areas were human population has declined (Liu 

et al. 2003). For example, in countries with biodiversity hotspots between 1985 and 2000, 

annual growth in housing units was much higher (1.7 to 10.0%) than those of the 

population (0.5% to 7.0%). This rapid increase of housing units is often manifested as 

sprawl. Sprawl ensues higher per-capita resource consumption (Ewing et al. 2002) and 

thus, poses serious challenges to the provision of ecosystem services (Millennium 

Ecosystems Assessment 2005). 

 The rapid increase of housing development has not only occurred in urban fringes 

but also in rural areas (Riebsame et al. 1996, van den Berg and Wintjes 2000, Heimlich 

and Anderson2001, Hansen et al. 2005, McKenzie et al. 2011). Residential development 

beyond the urban fringe (i.e. exurban development) is characterized by low-density, 

scattered housing units further away from the suburbs but within commuting distance to 

an urban center (Lamb 1983, Nelson 1992, Daniels 1999, Theobald 2001, Berube et al. 

2006). In the conterminous United States, development in rural landscapes has been 

prominent since the 1950s (Brown et al. 2005). Exurban development has been growing 

at a rate of about 10-15%, from 159 million acres in 1960 to 333 million in 1990 to 378 
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million acres in 2000 (Theobald 2001). By 2000, 25% of the nation was already 

considered exurbia (Brown et al. 2005). 

 The development of rural land has been driven by peoples’ attraction to natural 

amenities (Hansen et al. 2002). Natural amenities such as scenery, environmental quality, 

outdoor recreation, and climate have been found to be important reasons for migrating to 

exurban areas (McGranahan 1999, Rasker and Hansen 2000). However, the ability of an 

amenity to attract exurban migrants changes both over time and by region (Nelson 2006, 

Larsen et al. 2011). For example, exurban residents of the state of Colorado are attracted 

by varied topography (McGranahan 1999, Gude et al. 2006) whereas residents in exurban 

Indiana and Illinois are seeking relatively affordable housing and privacy, compared to 

urban and suburban areas (Johnson 2008). This migration is driving large changes in the 

landscape. 

 Conversion of natural landscapes into exurban development is a rising cause of 

concern due to its potential effects on biodiversity and ecosystem processes (Sampson 

and DeCoster 2000, Hansen et al. 2005, Hansen and DeFries 2007, Wade and Theobald 

2010). There have been a number of studies investigating the ecological repercussions of 

exurban development (Nilon et al. 1995, Miller et al. 2003, Fraterrigo and Wiens 2005, 

Phillips et al. 2005, Bock et al. 2008). However, the impacts of exurban development are 

not as well understood as effects from forestry and agriculture (Miller and Hobbs 2002). 

General findings suggest that as housing density increases, abundance of specialist 

species tend to decrease and human adapted species increase. In addition, species 

densities, richness, and community assemblages change (Odell and Knight 2001, 

Merenlender et al. 2009, Suarez-Rubio et al. 2011). Human activity also affects the 
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behavior and habitat use of various species for example, by interrupting wildlife 

migration and movement (Gabrielson and Smith1995, Miller et al. 1998, Lepczyk et al. 

2004). Moreover, exurban development may elevate wildfire risks, and propitiate 

invasive exotic species (USDA and USDI 2001, Hansen et al. 2005, Gavier-Pizarro et al. 

2010). Besides affecting private lands, exurban development may also have an impact on 

adjacent protected areas (Hansen et al. 2002, Wade and Theobald 2010). The 

mechanisms behind these patterns are less understood but are generally associated with 

habitat loss and fragmentation, modification of disturbance regimes, and changes in 

biotic interactions (Hansen et al. 2005, Hansen and DeFries 2007; Table 1). 

 The Eastern Temperate Forest Ecoregion has experienced high population growth 

since 1970 (Brown et al. 2005) and is thought to have a significant increase in exurban 

areas since 1950 (Brown et al. 2005, Theobald 2005). However, a rigorous assessment of 

trends of exurban development has yet to be undertaken for this area of the country. 

Understanding historical trends of exurban development is critical to comprehend the 

causes and consequences of this type of development and make useful and reliable 

projections across temporal and spatial scales. In addition, considering that exurban 

development is relatively new, and that exurban areas are expanding and transforming the 

landscape (Johnson 2008), evaluation of avian response to habitat alteration is imperative 

to understand the effects of exurban development. Birds may be particularly sensitive to 

habitat loss and fragmentation (Rolstad 1991, Andrén 1994, Cornelius et al. 2000, 

Donovan and Flather 2002, Castelletta et al. 2005) and can react rapidly to changes in 

their environment (Reynaud and Thioulouse 2000). Birds are also attractive as ecological 

indicators because they are easy to identify and sample and their habitat affinities are well 
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known (Canterbury et al. 2000, O'Connell et al. 2000). In addition, birds are conspicuous 

attracting interest by the public (Niemi and McDonald 2004). Therefore, birds provide a 

good model to study species response to exurban development. 

 The overall goal of this dissertation was to determine the historical magnitude and 

rate of exurban development in north and central Virginia and western Maryland, 

evaluate the appropriate modeling approach to project exurban development, and assess 

its effects on breeding forest birds. I focused on this study region because it has 

experienced high population growth since 2000 (Weldon Cooper Center 2010). In 

addition, its proximity to the Washington DC metropolitan area, the well-maintained 

transportation infrastructure, and natural amenities around this area (e.g., Shenandoah 

National Park) suggest that this region may attract exurban development. However, 

unlike other regions of North America where patterns of exurban development have been 

clearly documented (e.g., Gonzalez-Abraham et al. 2007a), it is uncertain whether this 

area of high population growth has also experienced an increase in exurban areas.  

Research objectives and dissertation format 

The main goals of my dissertation were to (1) develop a novel analytic approach 

to map exurban development and to assess its magnitude and rate in north and central 

Virginia and western Maryland, (2) evaluate a popular pattern-based model (SLEUTH) 

and a spatially explicit econometric model in predicting exurban development, and (3) 

assess whether exurban development significantly deteriorates suitability of avian 

breeding habitats (Figure 1). 

 Chapter II focuses on developing an analytic approach to map exurban 

development and assessing its magnitude and rate in north and central Virginia and 
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western Maryland. The primary question was how much land has been converted from 

forest/agriculture to exurban development in north and central Virginia and western 

Maryland, and at what rate this conversion is occurring? I combined spectral mixture 

analysis, decision-tree classification, and morphological spatial pattern analysis to 

identify exurban areas. I used the consistent, long time series medium-resolution Landsat 

imagery that is broadly, and now, freely available. I described mixed pixels containing 

exurban development as a combination of land conversion and then used morphological 

spatial pattern analysis to further separate exurban development from other forest 

disturbing events. I also quantified the magnitude and rate of exurban development to 

determine whether this region, that has experienced high population growth since 2000 

(U.S. Census Bureau 2010), has also been subject to the same rate of exurban 

development as other regions in the nation. Quantifying the extent of exurban 

development in eastern United States informed us about the pressure that eastern 

deciduous forests are facing. 

Chapter III assesses two different approaches to project exurban development: a 

pattern-based model and a spatially-explicit econometric model. The question to address 

was what modeling approach effectively captures exurban growth? Pattern-based 

models are a common approach to model land-use change in urban environments. 

However, they do not account for individuals’ decisions on the land conversion process 

and it is unclear whether these models would be useful to predict exurban spatial patterns. 

In contrast, spatially-explicit econometric models focus on land transactions based on 

individuals’ decisions and profit maximization. However, econometric models are data 

hungry and do not easily incorporate accessible raster data because they often rely on 



 

 6

parcel information. In the context of exurban development, individuals’ living 

preferences play a major role in decisions regarding where to live (Fuguitt and Brown 

1990). Therefore, the ability to effectively project exurban development requires an 

understanding of the role of both historical patterns and individuals’ decisions. 

Chapter IV focuses directly on the effects of exurban development on forest birds. 

The primary question was do forest birds respond, and if so in a nonlinear fashion, to 

changes in breeding habitat due to exurban growth? Forest birds are particularly 

susceptible to human settlement even at low housing densities typical of exurban areas 

and little is known about forest birds’ response to changes in breeding habitat as exurban 

growth progresses. I evaluated breeding habitat composition (amount) and configuration 

(arrangement) for forest specialists, forest generalists, and forest edge species around 

North America Breeding Bird Survey stops between 1986 and 2009. In addition, I 

assessed whether selected bird species showed thresholds in both occurrence frequency 

and relative abundance and whether the response differed according to the spatial extent 

considered. Understanding how forest birds respond to breeding habitat alteration in 

exurban areas may guide planners and managers in mitigating effects of exurban 

development. 

 Chapter V summarizes the results, discusses general implications, and suggests 

future research directions. 
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Table 1. Summary of effects of exurban development found in previous studies 

Study Study area Response variable(s) Explanatory 
variable(s) 

Effects 

Friesen et al. 1995 Waterloo, 
southwestern 
Ontario 

Neotropical migrant 
birds’ diversity and 
abundance 

Forest size and the 
number of houses 
surrounding a forest 

- Neotropical migrants decreased in diversity and 
abundance as the level of adjacent development 
increased, regardless of forest size. 

Nilon et al. 1995 Camden, Miller, 
and Morgan 
Counties, 
Missouri 

Forest birds 
community 
composition and 
abundance  

Wildland, dispersed 
and cluster 
development 

- Forest interior migrant species were most abundant in 
wildland sites and least abundant in cluster 
development sites.  

- Cluster development sites were dominated by species 
generally found in urban areas. 

- Nest predators and brood parasites were more abundant 
in cluster sites than wildland sites. 

Engle et al. 1999 Rural 
landscapes 
surrounding 
eastern edge of 
the Great Plains 

Birds occurrence Area with low-
density urban 
sprawl and area 
with greater level 
of urban sprawl 

- Birds associated with forests and forest edge decrease 
regardless sprawl level.  

- Dickcissel, a grassland bird, increases in the area of low 
sprawl. 

- Species associated with intense development (e.g., 
house sparrow) increase in the area with a greater level 
of urban sprawl.  

Garrison and 
Wakeman 2000 

Waukesha 
County, 
Wisconsin 

Water quality and 
diatom communities 

Exurban 
development 
around lakeshores 

- Once-seasonal homes along lakeshores were converted 
to year-long use, the amount of impervious surface 
increased and consequently run-off and sediment load 
to the lakes also increased.  

- Increased levels of phosphorous, iron, and aluminum 
were tied to a shift from benthic to mainly planktonic 
diatoms and an increase in diatom taxa indicative of 
eutrophic conditions. 
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Kluza et al. 2000 Hampshire and 
Franklin 
Counties, 
Massachusetts 

Forest interior, avian 
nest predators, and 
brood parasites 
abundance  

Forests with 
different housing 
densities 

- Abundances of ground/shrub nesting birds were greater 
in forest of low housing density.  

- Blue jays were more abundant in forest of moderate 
housing density. 

- As the amount of forest/rural development edge 
increased within a forested landscape, abundances of 
avian nest predators and brown-headed cowbirds 
increased. 

Odell and Knight 
2001 

Pitkin County, 
Colorado 

Songbirds and 
medium-sized 
mammals 

Sites with different 
housing densities 
and  along a 
distance gradient, 
and undeveloped 
sites 

- For both groups, densities of individual species were 
different between the 30- and 180-m sites.  

- Six bird species were classified as human-adapted, and 
six were classified as human-sensitive for the house-
distance effect.  

- Most avian densities did not differ significantly 
between high- and low-density developments, but were 
different from undeveloped sites.  

- Dogs and house cats were detected more frequently 
closer to homes than farther away, and in high-density 
developments. Red foxes and coyotes were detected 
more frequently farther away from houses and in 
undeveloped sites.  

Hansen et al. 2002  Upper Gallatin, 
Madison, and 
Henry’s Fork 
watersheds in 
the Greater 
Yellowstone 
Ecosystem 

Bird species 
richness and 
abundance 

Biophysical factors - Distribution of rural homes overlaps significantly with 
hotspots for birds.  

- Bird species that either prey upon other birds or are 
brood parasites were more abundant near rural 
residential development. 

- Avian nest predators and brood parasites were 
significantly associated with density of homes within 6 
km of bird hot spots. 
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Bosch et al. 2003 Back Creek 
watershed, 
Virginia 

Watershed 
hydrology, land 
values, and local 
government costs 
and revenues. 

Residential 
development forms  

- Low density development has the greatest hydrological 
impact due to highest per capita impervious area.  

- Low-density development has the highest estimated 
land value and property tax receipts and largest 
increase in estimated net revenues.  

- Concentrated high-density development has higher 
increases in net revenues than evenly distributed high-
density development because of lower water, and sewer 
costs. 

Miller et al. 2003 Front Range of 
Colorado 

Birds community 
composition 

Lowland riparian 
sites with different 
levels of 
development on 
adjacent lands 

- Migrant and low-nesting species were associated with 
lower-than-average levels of development. 

- Resident and cavity-nesting species tended to increase 
with urbanization.  

- Species that nested or foraged low for insects or seeds 
were the most sensitive to human trail use.  

- Bird communities and local habitats in riparian areas 
were both affected by development in the surrounding 
landscape. 

Lepczyk et al. 
2004 

Southeastern 
Michigan 

Landowner 
activities 

Rural and urban 
landowners 

- Landowners carried out at least one activity on their 
land and the average landowner carried out 4 activities.  

- Rural landowners have more bird houses and apply 
pesticides or herbicides in greater frequency. 

- Urban landowners had a greater density of bird feeders 
and houses, but planted or maintained vegetation in the 
lowest frequency. 
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Fraterrigo and 
Wiens 2005 

Rocky 
Mountains of 
north-central 
Colorado 

Birds species 
richness, 
occurrence, and 
abundance 

Gradient of exurban 
development 

- Abundance increased with building density.  
- The community was strongly associated with road and 

building density.  
- Incidence of some generalist species increased with 

building density, whereas the incidence of specialists 
decreased.  

Phillips et al. 2005 Rural southern 
Ontario 

Wood Thrush 
nesting success, 
rates of brood 
parasitism, and 
seasonal 
productivity 

Woodlots with 
embedded or 
adjacent houses and 
undeveloped 
woodlots  

- Individuals breeding in woodlots with embedded 
houses experienced higher rates of parasitism than 
individuals breeding in woodlots with adjacent houses, 
or undeveloped woodlots.  

- Individuals breeding in woodlots with embedded or 
adjacent houses experienced increased rates of nest 
predation compared to individuals breeding in 
undeveloped woodlots.  

- The increased nest predation resulted in significant 
reductions in seasonal productivity in developed 
woodlots. 

Bock et al. 2008 Sonoita Valley, 
southeastern 
Arizona 

Bird species 
richness, community 
composition, and 
abundance  

Grasslands and 
savannas grazed by 
livestock, 
embedded in 
exurban 
developments 

- Richness and abundance were higher in exurban 
neighborhoods than in undeveloped areas, independent 
of livestock grazing.  

- Richness on the exurban areas was negatively 
correlated with the number of homes nearby.   

- Positive influence of exurban development on 
abundance was greatest at the lowest housing densities. 

Lepczyk et al. 
2008 

Midwestern US Bird species 
richness and 
abundance 

Anthropogenic land 
cover and housing 
units, as indices of 
human influence 

- Native avian richness was highest where anthropogenic 
land cover was lowest and housing units were 
intermediate.  

- 40% were negatively associated with human influence 
measures, 6% were positively associated, and 7% 
showed an intermediate relationship. 
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Merenlender et al. 
2009 

Sonoma 
County, 
California 

Bird community 
composition 

Exurban 
development, 
suburban, and 
undeveloped 
natural areas. 

- The proportion of tree-and-shrub feeders was similar 
between exurban and natural areas, whereas 
proportions of temperate migrants showed significant 
reductions at both suburban and exurban sites.  

Gavier-Pizarro et 
al. 2010 

Vermont, 
Connecticut, 
New 
Hampshire, 
Rhode Island, 
Maine, and 
Massachusetts 

Invasive exotic 
plants distribution 

Housing patterns - Invasive exotic plant richness was equally or more 
strongly related to housing variables than to other 
human and environmental variables.  

- Richness was positively related to area of wildland–
urban interface, low-density residential areas, change in 
number of housing units between 1940 and 2000; it was 
negatively related to forest area and connectivity 

Wade and 
Theobald 2010 

Conterminous 
United States 

Structural context of 
protected 
conservation areas 

Residential 
development 

- Residential housing development has occurred 
preferentially near some cores. 

- If encroachment near cores continues at projected rates, 
the amount of buffer zone will have been reduced by a 
total of 12% by 2030. 

Suarez-Rubio et 
al. 2011  

Warren County, 
Virginia 

Bird community 
composition and 
abundance 

Forests and exurban 
development sites 

- Species composition differed significantly between 
forest and exurban areas.  

- Relative abundance for forest specialist species 
changed significantly in exurban development versus 
forest. 

- Three species (e.g., Northern Cardinal) were indicators 
of exurban development and three species were 
indicators of forest (e.g., Wood Thrush). 
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Figure 1. Dissertation flow diagram.  
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CHAPTER II 

EXURBAN DEVELOPMENT FROM 1986 TO 2009 SURROUNDING THE 

DISTRICT OF COLUMBIA, USA  

Abstract 

People’s preference for living in rural areas is converting rural landscapes into 

low-density residential development (i.e., exurban development). To assess the 

environmental impacts of exurban development (e.g., habitat fragmentation, threats to 

wildlife, and increased demand for natural resources) accurate maps of its spatial extent 

and change over time are needed. Mapping technologies that are based on spectral data 

alone have generally failed to separate exurban development from the surrounding 

landscape and from other mixed pixels with similar spectra. Although deciduous forests 

in the eastern United States are thought to have experienced a significant increase in 

exurbanized area, a rigorous assessment of exurban trends has yet to be undertaken. The 

purpose of this study was to develop a novel analytic approach to map exurban 

development and to assess its magnitude and rate in north and central Virginia and 

western Maryland. We applied spectral mixture analysis to Landsat TM images from 

1986 to 2009 at 4 time steps to estimate the fractional cover of vegetation, shade, 

substrate, and non-photosynthetic vegetation endmembers within each image. Using 

training data based on aerial photos, we classified the resulting endmember fraction 

images using a decision tree. Finally, terminal nodes from the decision tree that did not 

differentiate between exurban and urban areas were analyzed using morphological spatial 

pattern analysis to assess the shape and form of landscape elements. Scattered, isolated 
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pixels were considered representative of exurban development. Overall classification 

accuracies ranged from 93 to 98%, an improvement of up to 34% over the decision tree 

alone. Our mapping approach effectively identified 7.3% of north and central Virginia 

and western Maryland as exurban development. Exurban development had a substantial 

expansion in the region, increasing on average 6.1% per year between 1986 and 2009. 

The information about land-cover changes beyond urban fringe provided by this 

classification procedure will inform policymakers, planners, and land managers in 

drafting policies to direct future growth, and to manage and mitigate potential adverse 

consequences.  

Introduction 

Rural landscapes in the United States have changed dramatically in recent 

decades due to the rapid development of private rural lands into low-density residential 

development (i.e., exurban development). Based on US Census data, it has been 

estimated that exurban areas grew more than twice as fast as metropolitan areas in the 

1990s (Berube et al. 2006) and cover 25% of the contiguous US (Brown et al. 2005). The 

preference to live in rural areas is threatening wildlife and degrading ecosystem services 

(Liu et al. 2003, Hansen et al. 2005, Huston 2005). Evaluation of exurban development 

growth has been done for the United States (Brown et al. 2005, Theobald 2005), in the 

Midwest (Radeloff et al. 2005a, Gonzalez-Abraham et al. 2007b), and in the Mountain 

West (e.g., Theobald et al. 1996, Gude et al. 2006). Although the eastern deciduous forest 

region is thought to have had a significant increase in exurbanized area from 1950-2000 

(Brown et al. 2005, Theobald 2005), a rigorous assessment of exurban trends has yet to 

be undertaken for this region of rapid population growth. 
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Exurban development occurs in relatively less altered landscapes, often adjacent 

to or nearby protected lands, and land-use activities tend to be less intensive than in urban 

areas (Theobald 2005). All these characteristics make exurban development difficult to 

detect and map with conventional land-use mapping technologies (Ward et al. 2000, 

McCauley and Goetz 2004). For example, National Land Cover Data (NLCD) is thought 

to underestimate the total amount of developed land use for the Mid-Atlantic region by 

around 5% and low-density development is not recorded at all (Irwin et al. 2007). One 

reason is that NLCD is based on medium-resolution sensors (i.e., Landsat 30-m data) that 

detect exurban areas as a mixture of different surfaces (i.e., mixed pixels). When 

traditional classification techniques are used, mixed pixels are misclassified (Small 2003, 

Xian and Crane 2005). Exurban areas, where the average cleared land area is a quarter of 

a pixel (Maryland Department of Planning 2008), are usually classified as forest. To 

avoid the mixed pixels problem when mapping exurban development, high spatial 

resolution satellite sensors (e.g., IKONOS 4-m data) offer an alternative. High resolution 

sensors can provide reliable land-cover classification and change detection results at a 

local level. However, high spatial resolution imagery generally lack long-term time series 

and the huge amount of data required to analyze large areas present challenges of 

processing loads, time, and cost (Ward et al. 2000, Lu et al. 2004). Therefore, medium-

resolution imagery (e.g., Landsat 30-m data) remains the standard for regional to 

continental assessments of land-use change (including exurbanization) despite the 

analytical shortcomings of using these products. 

Several methods used to quantify exurban development have used human 

population density (Theobald 2001, 2005) and housing density information (Radeloff et 
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al. 2005a, b), both based on data from US Census Bureau. While these approaches have 

been important in estimating the extent of exurban development nationally (Theobald 

2001, Brown et al. 2005, Theobald 2005), and regionally (e.g., Theobald et al. 1996, 

Radeloff et al. 2005b), there are some limitations. Due to privacy issues, data from the 

US Census Bureau are aggregated in census block groups. Block groups change with 

each census, vary in shape and size, and become larger and larger beyond the urban 

fringe (Clark et al. 2009). The variable-sized block groups cause possible inaccuracies, 

but there is no easy and practical solution to these difficulties (Longley et al. 2001). In 

addition, population data from the US Census Bureau are tied to the primary place of 

residence; therefore, measures based on population underestimate exurban development 

because housing units in the form of vacation and second homes are not represented 

(Theobald 2005). Housing density is a more complete and consistent measure of exurban 

development than population density (Theobald 2005), but issues about disaggregating 

block groups still persist (Radeloff et al. 2005b).  

Another approach to quantify exurban development uses tax property data 

(McCauley and Goetz 2004) and maps of impervious surface (Xian and Crane 2005). 

Although tax property data provide digitized property-specific information, not all 

counties have this information available and each county has a different system to store 

these data. Impervious surface is quantified as a continuous field as opposed to discrete 

categories, is a well accepted indicator of urbanization (Goetz et al. 2003, Dougherty et 

al., 2004, Jantz et al. 2005), and has been used to estimate development in urban and 

suburban areas (Xian and Crane 2005). Whereas impervious surface indicates human 

alteration and the amount of impervious surface increases with density of development, 
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there is a significant overlap in the amount of impervious surface among urban, suburban, 

and exurban areas, which makes threshold selection problematic when mapping exurban 

development. In addition, the estimate of impervious surface is greatly influenced by the 

type of imagery used, exurban development does not always include a large portion of 

impervious surface (Yang et al. 2003, Irwin et al. 2007), and mixed pixels spectra in 

exurban areas are likely to be very different from mixed pixels in suburban or urban areas 

(i.e., formed by a different mixture of spectra).  

To enhance the understanding of exurban development in the eastern US, we 

developed a novel analytic approach (using spectral mixture analysis and morphological 

spatial pattern analysis) to map exurban development and assess its magnitude and rate in 

north and central Virginia and western Maryland. We used the consistent, long time 

series of medium-resolution Landsat imagery that is broadly, and now, freely available. 

This study is unique in that it describes mixed pixels containing exurban development as 

a combination of land covers and then uses morphological spatial pattern analysis to 

further separate exurban development from other forest disturbing events. Quantifying 

the pervasiveness of exurban development in eastern United States provides an important 

perspective on the land-use pressure facing eastern deciduous forests. 

Methods 

Study site 

 This study was conducted in 9 counties in north and central Virginia, US and 2 in 

western Maryland, US: Virginia – Clarke, Culpeper, Fauquier, Frederick, Madison, Page, 

Rappahannock, Shenandoah, and Warren Counties; Maryland - Washington and most of 
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Frederick (Figure 2). Virginia has the 12th largest population in the nation with an annual 

growth rate of 11% since 2000, and this growth is driven mostly by northern Virginia 

(Weldon Cooper Center 2010). For example, Loudoun County alone has experienced a 

population increase of 78% since 2000, and accounts for one-sixth of the total population 

increase for the entire state. Counties included in the study area had growth rates ranging 

from 40% (Culpeper County) to 4% (Page County) between 2000 and 2009 (U.S. Census 

Bureau 2010). In Maryland, Frederick County has also increased its population, with a 

growth rate of 17% between 2000 and 2009, whereas Washington County had an 11% 

increase (U.S. Census Bureau 2010). One reason for the growth is the easy access and 

connectivity to the metropolitan Washington, DC area, which provides employment 

opportunities even within the current economic climate (Weldon Cooper Center 2010).  

Landsat data and preprocessing 

Eight Landsat Thematic Mapper images (WRS path16 row 32 and path16 row 33) 

were acquired from 1986 to 2009 at 4 time steps (1986, 1993, 2000, and 2009; Table 1). 

Image dates were selected from relatively cloud-free scenes (<10%) acquired during late 

spring or early summer. Georeferencing was performed at the USGS prior to 

downloading the data (L1T level of systematic geometric accuracy) and no further 

refinement was deemed necessary. Two preprocessing steps were performed on Landsat 

TM data sets: atmospheric correction and topographic correction. The primary goal of 

atmospheric correction was to adjust the multitemporal dataset to a common radiometric 

scale (Song et al. 2001), therefore we employed a dark object subtraction to remove 

scene-by-scene variation in atmospheric scattering (Chavez 1989, Song et al. 2001). This 

technique assumes the existence of dark objects (i.e., zero or small surface reflectance) 
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throughout a scene and a horizontally homogeneous atmosphere. The minimum DN value 

in the histogram from the entire scene is attributed to the effect of the atmosphere and is 

subtracted from all the pixels. This relatively simple correction method has been shown 

to improve classification and change detection accuracies at least as well as more 

complicated algorithms (Song et al. 2001). Topographic correction was performed to 

compensate for direction and illumination effects due to terrain and sun angle (Campbell 

2002). Because topographic shading is not only due to slope but also to shadowing of one 

tree crown over another, we used sun-canopy-sensor correction (SCS; Gu and Gillespie 

1998). The SCS method normalizes the sunlit area as a function of the geometry among 

the sun, sensor, and terrain slope. We did not apply exoatmospheric correction because 

all image data were from the same sensor (L5 TM) and the dark object subtraction put all 

the multitemporal dataset in the same radiometric scale (Song et al. 2001, Chander et al. 

2009). We further tested whether the preprocessing steps effectively removed the 

atmospheric/illumination effects by selecting low and high albedo pseudoinvariant targets 

(PIV; Schott et al. 1988) in the corrected data. We quantified any residual temporal 

variability by regressing all PIVs (n = 128) for each band from each pair of years (e.g., 

1986 vs. 1993). 

Spectral mixture analysis 

In areas of exurban development, individual pixels do not resemble the 

reflectance of a single land cover class (e.g., forest, impervious surface) but rather a 

mixture of reflectance of two or more classes (Small 2004, Xian and Crane 2005). The 

assignment of a mixed pixel to a single homogeneous class produces inaccuracies in the 

resulting thematic map (Small 2001). Spectral mixture analysis (SMA) quantifies spectral 



 

 20

mixtures (Smith et al. 1990) by estimating the fractional cover of each ‘endmember’ 

material necessary to form (through linear addition) the pixel spectra (Adams et al. 1986). 

Endmembers are spectra that are representative of physical components of the surface 

and are not mixtures of other components. Because SMA describes mixed pixels as a 

combination of spectral endmembers, it has been successfully applied to detect selective 

logging and deforestation in tropical forests (Souza and Barreto 2000, Monteiro et al. 

2003, Asner et al. 2004), to quantify regrowth rates and forest health in temperate forests 

(Sabol et al. 2002), to quantify vegetation change in semiarid environments (Elmore et al. 

2000), and to estimate vegetation abundance in urban areas (Small 2001), and to map 

urban land cover (Rashed et al. 2003, Powell et al. 2007, Franke et al. 2009). To our 

knowledge this is the first application of this technique to recognize and discriminate 

exurban development. 

A key step in SMA is the selection of appropriate endmembers. Endmembers 

were identified in and extracted from the 2009 image (i.e., image endmembers) using 

scatter plots, in which each point represented the position of the pixel in the space defined 

by the spectral response of different band pairs (Figure 3). The vertices of a simplex that 

enclosed all the points were assumed to represent the purest pixels in the images and 

were selected as our endmembers (Asner et al. 2003). The endmembers selected were 

vegetation (VEG), non-photosynthetic vegetation (NPV), substrate (SUB), and shade 

(SHD; Figure 4). We selected our endmembers from the image as opposed to reference 

endmembers (i.e., endmembers derived from reflectance spectra measured in the 

laboratory) because reference endmembers can suffer temporal variability in reflectance 

properties of cover types and can be troublesome in change detection analyses (Asner et 
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al. 2003). The same endmember set (Figure 4) was used across the entire set of images to 

facilitate the comparison of endmember fractions between dates. In this way, areas that 

have not changed will have the same endmember fractions and areas of change are a 

direct function of changes in the relative coverage of materials represented by 

endmembers. It is important to note that SMA is a linear transformation of the data just 

like reflectance retrival, therefore as long as the data are spectrally aligned (Table 2) the 

same image endmembers can be used across multitemporal images (Elmore et al. 2000). 

Selection of training data 

We generated a training dataset based on aerial photos to supervise a 

classification of areas of no-change, change to exurban development (0.4-16.3ha/unit; 

Brown et al. 2005, Theobald 2005), and change to suburban or urban areas (<0.4ha/unit; 

Brown et al. 2005). We used true color photos from 1984, 2003, and 2008 (Table 2). 

These dates were selected based on the correspondence of photo availability and years of 

interest. Photos from 1984 and 2003 were georeferenced to the third year through a 

simple polynomial using 11 ground control points (RMSE = 2.1, 1.9, respectively). 

Because exurban areas in the eastern US occur in areas surrounded by forest, we were 

specifically interested in detecting the degradation of forested habitats due to exurban 

development. We visually examined aerial photos to identify areas that did not change or 

had undergone small or large change. No changes represented areas that were forest in 

the previous time step and remain forest in the next time step (hereafter forest). Spatially 

small changes represented areas that were forest in the previous time step but were 

exurban areas in the next time step (hereafter exurban development). Large changes 

represented areas that were forest or agricultural fields in the previous time step and 
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change to suburban or urban areas in the next time step (hereafter urban). Exurban areas 

were distinguished in the aerial photos as isolated, scattered housing units outside cities 

and towns surrounded by forests (Daniels 1999) with housing densities between 0.4-16.3 

ha/unit (Brown et al. 2005, Theobald 2005). The training data (i.e., polygons delineated 

in the aerial photos) were then overlaid on Landsat images to evaluate spectral 

differences between the classes. The spectral separability of the classes was evaluated 

using Jeffries Matusita (JM) distance (Richards 1993). JM distance ranges from zero to 

two, with values closer or equal to two indicating classes that are spectrally different. We 

plotted the training data on ternary diagrams to identify spectral characteristics of 

exurban development based on endmembers fractions. Twenty-five percent of the 

training data were reserved as an independent sample for validation purposes and 

subsequent accuracy assessment. 

Decision-tree classification 

We built a decision tree for each pair of image dates to rigorously classify change 

to exurban development using endmember fractions derived from SMA for the entire 

study area. An unbiased recursive partitioning algorithm using a conditional inference 

framework (Hothorn et al. 2006) was used to build the decision-tree classification. 

Conditional inference partitioning was used because it takes into account the distribution 

of dependent data in each split of the data. Thus, the method does not require 

bootstrapping from pooled data, results in smaller unbiased trees, and provides statistical 

significance of each split (P < 0.05). Training data (forest, change to exurban, and change 

to urban) were used as the dependent variable. Explanatory variables included 

endmember fractions for the latest time-period considered (e.g., 2009 VEG, NPV, SUB, 
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and SHD fractions when the 2000-2009 time period was evaluated), difference in each of 

the endmembers (e.g., 2009-2000), change of all endmembers, and change statistics of all 

endmembers for 4 and 8 surrounding pixels (min, max, range, median, mean, sum, 

standard deviation). We included both 4 and 8 neighboring pixels to account for different 

definitions of exurban development (see below). Change of all endmembers was 

calculated using the equation (Parmenter et al. 2003): 

 

 

where, Ei are the endmember fractions, and t1 and t2 are the prior and posterior dates. This 

equation created gray scale images showing the Euclidean distance in endmember 

fractions space between the two dates compared. From this image we calculated change 

statistics of all endmembers for the 4 and 8 surrounding pixels. The decision trees were 

then applied to the entire study area.  

Morphological spatial pattern analysis 

Terminal nodes from the decision tree that were a mixture of exurban 

development and urban were disentangled using morphological spatial pattern analysis 

(MSPA; Soille 2003, Vogt et al. 2007a, b). MSPA is a technique for analyzing the shape 

and form of map elements using a binary or thresholded map (foreground and 

background). The method applies structural elements to define pixel connectivity and 

logical operators such as union, intersection, complementation, and translation to allocate 

each pixel to one of a mutually exclusive set of structural classes (Figure 5). For 

interpretability purposes, the structural classes can be named in any number of ways 

depending on the input data (Vogt et al. 2009). In the context of exurban development, 
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we focused on ‘islet’ which indicated unclustered, scattered, and isolated pixels. In this 

way, we were able to discriminate exurban development from the urban class.  

Given that there is no consensus on the definition of exurban development (see 

for example, Marzluff et al. 2001, Brown et al. 2005, Hansen et al. 2005, Theobald 

2005), we produced two maps of exurban development to represent lower and upper 

bound estimates of exurban housing density (Small et al. 2005, 2011). The maps used 

different inputs and connectivity rules for creating the analytical structural element for 

MSPA. To create an upper bound estimate, we generated an input map with foreground 

corresponding to urban areas and mixed classes (exurban and urban) as classified by the 

decision tree. We used an 8-neighborhood rule as our structural element (i.e., both 

cardinal directions and diagonal neighbors are considered) to represent (Theobald 2005) 

definition of exurban development (1 unit/0.68ha ~ 8 pixels = 0.72 ha). The lower bound 

estimate was produced by also including the exurban development class of the decision 

tree into the input map for MSPA. In this case, our input map was composed of urban, 

mixed, and exurban classes from the decision tree. We used a 4-neighborhood rule (i.e., 

only cardinal directions are considered), which resulted in more isolated pixels to 

approximate housing density consistent with the definition of exurban development 

provided by Brown et al. (2005; 1 unit/0.4ha ~ 4 pixels = 0.36ha).  

Final maps of exurban development 

We refined the upper and lower bound estimates of exurban development by 

removing exurban development that was inside protected areas (GAP level 1 to 3; 

Conservation Biology Institute 2010). This resulted in reclassifying between 0.3% and 

1.8% of exurban development pixels to forest. We also applied a non-reversal rule 



 

 25

(Powell et al. 2008) to make sure that once a pixel became exurban or urban, it could not 

revert to forest through the remainder of the time series. This resulted in increasing the 

number of exurban development pixels by up to 1.4%. Lastly, we estimated the 

magnitude and rate of exurban development in our time series. We created a 1986 map as 

an exurban development baseline. For this map, we focused on existent exurban and 

urban areas detected in the 1986 image instead of change. We followed the same 

procedure described above but the independent variables included in the decision tree 

were 1986 endmembers fractions and endember fractions for the 4 and 8 surrounding 

pixels. 

Accuracy assessment 

Accuracy assessment was performed to evaluate the quality of change detection 

results. We randomly selected 25% of the training data collected from aerial photographs 

for the assessments. Using an error matrix, we calculated overall accuracy, producer’s 

accuracy (1 – omission error), user’s accuracy (1 – commission error), and the kappa 

statistic (Congalton 1991).  

Results 

 In applying spectral mixture analysis, four endmembers (VEG, NPV, SUB, and 

SHD) were selected to model the heterogeneous land cover of north and central Virginia 

and western Maryland. The selection of endmembers was appropriate as expressed by 

RMSE and the speckle of residual images. RMSE values were close to the measurement 

precision of the data (±1-2 DN; Elmore et al., 2000) and ranged from 1.07 to 1.77 (mean 

± s.d.: 1986 - 1.77 ± 3.76, 1993 - 1.28 ± 1.14, 2000 - 1.18 ± 1.10, 2009 - 1.07 ± 1.28). 
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Although most of the images were cloud free, the 10% cloud cover of the 1986 image 

induced a higher RMSE than the other images. 

The spectral separability of the training data (Table 3) illustrated that the three 

classes (forest, exurban development, and urban) are spectrally different in all pair of 

years. Forest and urban were highly distinct classes in all years (JM = 1.99). Urban and 

exurban development were generally more similar (mean JM = 1.56) than forest and 

exurban development (mean JM = 1.71). Separability of the same class (e.g., exurban was 

similar among pair of years as well as the separability of the no change class (i.e., forest, 

JM= 0.08). 

Ternary diagrams (Figure 6) showed the spectral characteristics of forest, exurban 

development, and urban based on endmember fractions. Forest was characterized by 15-

30% VEG, 25-60% SUB, and 70-85% NPV. Both 1986-1993 and 2000-2009 periods had 

similar spectral characteristics. Exurban development in 1986-1993 was characterized by 

20-30% VEG, 25-60% SUB, and 70-80% NPV. In 2000-2009, the spectral signature of 

exurban development moved towards more SUB (20-75%) and less VEG (10-20%). 

Urban class in 1986-1993 had 10-20% VEG, 30-90% SUB, and 75-90% NPV. In 2000-

2009, there was a large increase in SUB (30-95%) and NPV (75-95%), and a decrease in 

VEG (2-25%). 

 Decision trees were generated for each time period (see Figure 7 for decision tree 

example) and terminal node probabilities were interpreted as prediction accuracies (sensu 

Vayssiéres et al. 2000). Predictive accuracy is the ability to correctly classify new cases 

fitting the set of conditions described by the terminal node. For example, it is 90% 

accurate to state that any given pixel within the “90% exurban probability class” is 
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exurban development (terminal node following the shaded area in (Figure 7). When 

decision trees for all the time periods were compared, vegetation endmember fraction of 

the latest year was consistently the strongest explanatory variable (i.e., first split 

variable). Substrate endmember fraction of the latest year and the difference in substrate 

endmember fractions also were common variables in all time periods. Decision trees 

varied in their use of shade fraction (important to 2000-2009 decision tree only) and 

change statistics for 8 surrounding pixels. The branching pattern to classify exurban 

development differed among the different time periods although some variables were 

common in all trees (i.e., vegetation fraction of the latest year and substrate fraction). For 

example in 2000-2009 (Figure 7), 90% prediction probability for exurban development 

was achieved for pixels with 2009 vegetation fraction of less than 0.333, 2009 substrate 

fraction of more than 0.014 but less than 0.048, and 2009 shade fraction of less than 

0.236. In addition to vegetation and substrate fractions, in 1993-2000 and 1986-1993 

exurban development was described by the sum and variability of endmember fraction 

changes in the surrounding 8 pixels, respectively.  

 Overall classification accuracy for exurban development using only the decision 

trees varied by years and ranged from 59 to 92% (kappa 0.31 to 0.86; Table 4). User’s 

accuracy ranged from 0.46 to 1.00 and producer’s accuracy ranged from 0.52 to 0.91. 

Using MSPA (Figure 5) to improve upon these accuracies, overall classification 

accuracies for upper bound estimates ranged from 93 to 98% (kappa 0.87 to 0.96), an 

improvement of up to 34% over the decision tree alone. Of the area labeled as exurban 

development, more than 69% actually corresponded to exurban development on the aerial 

photos (user’s accuracy ranged from 0.69 to 1.00). However, more than 52% of exurban 
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development pixels were correctly mapped (producer’s accuracy range from 0.52 to 

0.79). For example, 21% of exurban development in 1993-2000 was omitted and 

erroneously classified as forest. For lower bound estimates, the overall accuracy ranged 

from 92 to 96% (kappa 0.86-0.93). More than 89% of the area labeled as exurban 

development was designated as such in the aerial photos (user’s accuracy ranged from 

0.89 to 1.00). However, more than 38% of exurban development pixels were correctly 

mapped (producer’s accuracy ranged from 0.38 to 0.57). 

 The extent of exurban development comprised 246.0 km2 (2.3%) in 1986 and 

782.5 km2 (7.3%) of the region in 2009 (Figure 8). Our estimates of the extent of exurban 

development in western Maryland ranged from 14.0 km2 (0.1%) to 35.7 km2 (0.3%) in 

1986 and from 69.2 km2 (0.6%) to 142.9 km2 (1.3%) in 2009 (Figure 9A). Frederick and 

Washington counties had similar magnitude of exurban development for the lower bound 

estimates, but Frederick County had more exurban development than Washington County 

for the upper bound estimates especially in earlier years. North and central Virginia had a 

greater extent of exurban development than western Maryland in all time periods for both 

the lower and upper bound estimates. Lower bound estimates of exurban development 

increased from 81.6 km2 (0.8%) in 1986 to 366.1 km2 (3.4%) in 2009, whereas upper 

bound estimates increased from 210.3 km2 (2.0%) in 1986 to 639.6 km2 (6.0%) in 2009. 

Fauquier County was the county with the highest amount of exurban development with 

upper bound estimates of 53.75 km2 (25.6%) in 1986 and 143.0 km2 (68.0%) in 2009. 

Clarke County had the lowest amount of exurban development throughout the study 

period.  
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  Annual rates of exurban development varied among time periods and regions 

(Figure 9B). The overall mean annual rate for western Maryland and north and central 

Virginia was 6.1% between 1986 and 2009, and was higher for western Maryland (7.8%) 

than for northern Virginia (5.8%). However, regional patterns seem to be shifting in 

recent years. In 2000-2009, the annual rate slightly decreased in western Maryland 

(6.9%) compared to the previous time period (9.9%), and for the first time, was lower 

than the rate in north and central Virginia (9.3%). At the county level, both Maryland 

counties decreased their annual rate between 2000 and 2009 (Figure 10). Although 

Frederick County, Maryland had a greater extent of exurban development than 

Washington County, the latter had higher annual rates in all periods. In north and central 

Virginia, Fauquier County had the lowest mean annual rate (5.0%). Rappahannock 

County had the highest mean annual rate over the entire study period (8.2%); however, 

Frederick County, Virginia had the highest annual rate for the 2000-2009 time period 

(15.1%). 

Discussion  

Mapping approach 

By combining spectral mixture analysis, decision-tree classification, and 

morphological spatial pattern analysis, our approach effectively identified exurban 

development, overcoming many of the obstacles previously associated with mapping this 

increasingly common land-use class. Spectral mixture analysis effectively characterized 

the mixed space of exurban areas, lead to an accurate classification of exurban 

development, and facilitated the understanding of the physical properties of exurban 

development and change over time (Figure 6). In the study area, the spectral 
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characteristics of exurban development shifted towards more substrate and less 

vegetation between 1986-1993 and 2000-2009 time periods possibly because more 

vegetation removal, bright roofing, and ageing asphalt. This pattern suggests that exurban 

development is moving towards a more urban spectral signature in the region (Figure 6). 

A separate decision tree was produced for each pair of years. Decision trees 

selected by the conditional partitioning algorithm varied regarding the number of 

variables, type of variables included, and split values. One pattern that emerged for all 

time periods was that substrate fraction greater than at least 0.014 was an important 

classifier. Vegetation fraction of the latest year also was consistently used as a criterion to 

classify exurban development. Higher vegetation fractions were required to discriminate 

exurban development from urban in 1986-1993 and 1993-2000, and low vegetation 

fractions were needed to discriminate exurban development from other classes in 2000-

2009. This pattern may indicate that prior to 2000; exurban areas had greater proportion 

of vegetation while in recent years the proportion of vegetation has decreased. Taken 

together with the shifting spectral signature toward a more urban spectrum, these results 

suggest exurban areas may be transforming from isolated scattered settlements with high 

vegetation cover to more contiguous and concentrated settlements with low vegetation 

cover (though not yet reaching the density to be considered urban). This trajectory would 

be consistent with trends observed by (Clark et al. 2009) in their analysis of urban 

decentralization and spatial characteristics of exurban development. 

Morphological spatial pattern analysis improved the accuracy of the decision tree 

classification by identifying isolated, scattered pixels from the mixed classes (mixture of 

exurban development and urban) generated by the decision-tree classification. Another 
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advantage of MSPA is its ability to generate lower and upper bound estimates (Small et 

al., 2005, 2011) of the magnitude of exurban development in the region. We achieved this 

by modifying the input data and structural elements within the morphological analysis to 

consider alternative definitions rather than having to rely upon a sole estimate of housing 

density for defining exurban development. Although our final maps were overall highly 

reliable, our choice of input data for the morphological analysis did not allow us to 

separate mixed classes of exurban development and forests. In addition, some forested 

areas of the study region were defoliated by gypsy moths (Lymantria dispar) and are now 

regenerating. Given that these areas may have more non-photosynthetic vegetation and 

exposed substrate and less vegetation cover than other forest pixels, we could have 

misclassified these areas as exurban development. Including a range of upper and lower 

bound estimates as part of the morphology analysis is useful in addressing some of this 

uncertainty. 

Extent of exurban development 

Our results indicate substantial expansion of exurban development between 1986 

and 2009. Exurban development occupied 7.3% of the study region in 2009, as urban 

boundaries of towns and small cities expanded and entirely new communities were built 

(Figure 8). We also found high levels of exurban development along protected areas, 

which supports the perception that this type of development is encroaching and 

threatening US protected areas (Wade and Theobald 2010). This trend may be at least 

partially responsible for the greater extent of exurban development observed for north 

and central Virginia than western Maryland. North and central Virginia has 7% more 

protected areas than western Maryland. The greater extent may also simply be a function 
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of the high population growth experienced by north and central Virginia and domestic in-

migration (i.e., county-to-county migration) in the last decade (Berube et al. 2006). Urban 

counties such as Arlington and Alexandria in Virginia experienced population loss due to 

net migration to suburbs (Berube et al. 2006). In turn, suburbs also experienced losses 

due to people moving to exurban areas like Fauquier County, which had the highest 

amount of exurban development in the study region.  

Rate of expansion of exurban development 

Exurban development increased on average 6.1% per year between 1986 and 

2009 in the study region. Similar growth rates have been found in other forested regions 

of the US Midwest (Radeloff et al. 2005a, Gonzalez-Abraham et al. 2007b). Although 

growth rates of exurban development in our study region are not as high as rates in 

counties on the periphery of the Greater Yellowstone Ecosystem (7.6 to 12.1% per year; 

Hansen et al. 2002, Gude et al. 2006), the rate of expansion of exurban development 

observed in our study should be a cause of concern for the eastern deciduous forests of 

the region. Habitat loss and fragmentation, introduction of exotic species, increases in 

predation and parasitism, declines in water quality, and alteration of biotic interactions 

are some recognized effects of human settlements (Hansen et al. 2005), even at the lower 

housing densities that define exurban development. 

Western Maryland experienced higher rates than north and central Virginia 

between 1986 and 2000. These higher rates may be related to population growth and in-

migration (Berube et al. 2006). However, even with the higher rates in those years, 

western Maryland had six times lower extent of exurban development than north and 

central Virginia. In 1986, 0.3% of western Maryland was exurban development whereas 
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2.0% of north and central Virginia was already in this land-use class suggesting that north 

and central Virginia experienced higher rates of exurban development prior to 1986. In 

recent years (2000-2009), the rate of expansion of exurban development in western 

Maryland decreased, and north and central Virginia has once again overtaken western 

Maryland in the rate of exurban growth. The decline of the exurban growth rate in 

western Maryland may be related to differences in rule of government and land-use 

policies such as Smart Growth law, an initiative that started with the 1992 planning Act 

(Maryland Department of Planning 2010). In contrast, the exurban growth rate in north 

and central Virginia increased by 3.8% between 2000 and 2009. Such increase was 

driven by Frederick County which had a population increase of 26.6% during that period 

(U.S. Census Bureau 2010). In response to increasing development pressures in rural 

areas, the County created a Rural Areas Subcommittee to evaluate and formulate 

recommendations to manage rural areas growth (Frederick County Board of Supervisors' 

Rural Areas Subcommittee 2009).  

Conclusion 

Using traditional land-use mapping technologies to detect and map exurban 

development is problematic. Our approach of using spectral mixture analysis, decision-

tree classification, and morphological spatial pattern analysis proved to be a powerful 

tool that decomposed mixed pixels into endmember fractions with physical meanings, 

characterized exurban development, refined the classification based on the shape and 

form of landscape elements, and developed lower and upper bound estimates of this 

problematic land-use class. Multitemporal Landsat images allowed us to measure land-

use change to exurban development over time. Our findings suggest that exurban 
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development is expanding into rural landscapes of the Mid-Atlantic at high rates and that 

eastern deciduous forests of the region are confronting high development pressures.  
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Table 2. Dates of satellite imagery and aerial photography acquisition  

 

 

Type of imagery Year Day Month Resolution (m) 
Landsat TM 1986 21 June 30 

 1993 24 June 30 
 2000 26 May 30 
 2009 29 May 30 

Aerial  1984 11 April 2 
photography 2003 6 June 1 

 2008 13 October 0.5 
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Table 3. Separability of training data. Values under forest (no change class), exurban 
development (small change class −from forest to exurban), and urban (large change class 
−from forest/field to urban) represent the sample size (i.e., number of polygons) and in 
parenthesis the total number of pixels per class per year. JM1 indicates Jeffries Matusita 
distance between forest and exurban development, JM2 between exurban development 
and urban, and JM3 between urban and forest. 

Pair of years Forest JM1 Exurban development JM2 Urban JM3 

1986 - 1993 13 (1384) 1.57 61 (224) 1.64 13 (967) 1.99 
1993 - 2000 13 (1384) 1.69 30 (245) 1.42 11 (879) 1.99 
2000 - 2009 13 (1384) 1.71 44 (252) 1.47 10 (1134) 1.98 
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Table 4. Overall accuracy, kappa, user’s, and producer’s accuracy for decision tree classification and for upper and lower bound 
estimates of final maps of exurban development 

 1986-1993  1993-2000  2000-2009 

 
Decision 

tree 
Upper 
bound 

Lower 
bound 

 Decision 
tree 

Upper 
bound 

Lower 
bound  

Decision 
tree 

Upper 
bound 

Lower 
bound 

Overall  
accuracy 0.59 0.93 0.92 0.82 0.98 0.95 0.92 0.94 0.96 
Kappa 0.31 0.87 0.86 0.64 0.96 0.90 0.86 0.91 0.93 
User’s 0.63 1.00 1.00 1.00 0.98 1.00 0.46 0.69 0.89 
Producer’s 0.91 0.52 0.38 0.72 0.79 0.38 0.52 0.52 0.57 
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Figure 2. The delineated area over the Landsat TM image represents the study region 
which encompasses nine counties in north and central Virginia and two counties in 
western Maryland. 
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Figure 3. Density-shaded scatter plot show the mixing space of a spectrally diverse 
subscene. The mixing space is bounding by selected endmembers: substrate (SUB), 
vegetation (VEG), non-photosyntetic vegetation (NPV), and shade (SHD). 
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Figure 4. Image derived spectra of four selected endmembers used in the spectral mixture 
analysis. 
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Figure 5. Representation of the morphological spatial pattern analysis (MSPA). Input 
consists of a binary raster map (background and foreground). Through logical operators 
such as union, intersection, complementation, and translation, the software package 
allocates each pixel to one of a mutually exclusive set of structural classes. 
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Figure 6. Ternary plots based on training data endmember fractions. Fractions were 
derived from spectral mixture analysis. The diagrams show the signature of pixels that 
have not changed (i.e., remain as forest or urban), had small changes (from forest to 
exurban development), and had large changes (from forest/fields to urban) between 1986-
1993 (gray) and 2000-2009 (black). The shade endmember was omitted for 
representation purposes. 
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Figure 7. Structure of the decision tree used to classify 2000-2009 exurban development 
using substrate endmember difference between 2000 and 2009 (SUB_DIFF) and 2009 
endmember fractions: vegetation (VEG), substrate (SUB), shade (SHD), and non-
photosynthetic vegetation (NPV). Gray-shaded ovals illustrate the branching pattern 
toward exurban development terminal node. Any given pixel within the highlighted 
terminal node has a 90% probability of being exurban development. In the bar charts, 
proportion of exurban development (E), forest (F), and urban (U) classes are represented. 
All splits are significant at a 0.05 level. 
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Figure 8. Map of the distribution of exurban development in north and central Virginia 
and western Maryland from 1986-2009. SCBI stands for Smithsonian Conservation 
Biology Institute. 
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Figure 9. Extent of exurban development (A) and average annual rate (B) of total area, 
western Maryland, and northern Virginia between 1986 and 2009. 
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Figure 10. Mean annual rate in exurban development in different counties of western 
Maryland and northern Virginia for three time periods: 1986-1993, 1993-2000, and 2000-
2009. 
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CHAPTER III 

MODELING EXURBAN DEVELOPMENT: COMPARISON OF A PATTERN-

BASED MODEL AND A SPATIALLY-EXPLICIT ECONOMETRIC MODEL 

Abstract 

The conversion of private rural lands into developed uses can significantly 

fragment landscapes, with potentially negative consequences on ecosystem services. 

Pattern-based models have been widely used to model urban growth but one criticism is 

that these models do not explicitly account for individual decision-making thereby 

making it difficult to model policies aimed at changing land use decisions. These models 

usually have been applied in urban environments and it is unclear whether they would be 

useful for predicting exurban growth. In contrast, spatially-explicit econometric models 

focus on land transactions and profit maximization. However, econometric models are 

data hungry and do not easily incorporate accessible raster data because they often rely 

on parcel information. The objective of this study was to compare a pattern-based model 

and a spatially-explicit econometric model for modeling exurban development in north 

and central Virginia and western Maryland. We used SLEUTH as our pattern-based 

model and forecasted exurban growth over a 24-year period. We parameterized a 

complementary log-log hazard model as our econometric model and used risk of 

conversion to create a map of development pressure. We compared model predictions to 

actual exurban conversion at two scales. The econometric model performed well at both 

local and county scales, whereas SLEUTH captured exurban growth only at a county 

scale. The results imply that pattern-based models like SLEUTH can forewarn potential 
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coarse-scale losses of natural resources in exurban areas, but are less useful at finer scale 

or for assessing potential consequences of how land use policy may change behavior. 

Introduction 

The rapid increase in exurban development (i.e., low-density residential 

development) in recent decades has been driven by people’s preference for living in rural 

areas close to recreational and natural amenities, coupled with an extensive urban-to-rural 

transportation infrastructure (Hansen et al. 2002, Huston 2005, Gude et al. 2006). 

Exurban development has been growing more than twice as fast as development in 

metropolitan areas (Berube et al. 2006) and by 2000, this style of growth had increased to 

nearly 2% (93,538 km2) of total land use and covered up to 25% of the contiguous United 

States (Brown et al. 2005). Rural land conversion to exurban development has resulted in 

loss of open space, habitat fragmentation, and deterioration in ecosystem services 

(Hansen et al. 2002, Bosch et al. 2003, Hansen et al. 2005, Gonzalez-Abraham et al. 

2007b). Evaluating land conversion trends through modeling can be used to recognize 

spatial and temporal patterns, to understand the causes and consequences of exurban 

development, and to assist community leaders, planners, and natural resource managers 

to make informed decisions (Turner et al. 2001, Pocewicz et al. 2008).  

The number of models and variety of approaches used to predict land-use change 

also have expanded greatly in recent years (Veldkamp and Lambin 2001, Agarwal et al. 

2002, Berling-Wolff and Wu 2004). One popular approach is pattern-based models in 

which algorithms are developed to match patterns produced by the model to patterns 

found in time series of land use and then project those patterns into the future (e.g., White 

et al. 1997, Jenerette and Jianguo 2001, Herold et al. 2003, Fragkias and Seto 2007). 
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These models indirectly represent the outcome of socioeconomic processes by matching 

locations of new development to spatial data of drivers such as transportation networks 

(Wainger et al. 2007). Some advantages of pattern-based models include the ability to 

easily incorporate available spatially-explicit and remote sensing data (Jantz et al. 2003) 

and to easily visualize and quantify changes using GIS tools. However, such models do 

not directly model the behavior or decision-making of individuals, but rather assume that 

future decisions will follow historic patterns (Agarwal et al. 2002). Thus, pattern-based 

models do not explicitly account for the processes driving land-use change and have 

limited ability to represent changes in drivers other than those that can be mapped such as 

roads or septic development. The absence of a socioeconomic foundation limits the 

usefulness of these models for planning and policy-making purposes because they cannot  

respond directly to certain types of changes in incentive policies or drivers such as gas 

prices (Wainger et al. 2007). Nevertheless, these models have been widely used for 

predicting development trends in urban environments (Jenerette and Jianguo 2001, Fang 

et al. 2005, Geertman et al. 2007). 

Econometric models of land-use change provide an alternative approach that 

focuses on land transactions and profit maximization by directly modeling multiple 

factors that affect land-use conversion such as expected value in new use and costs of 

conversion (Chomitz and Gray 1996, Pfaff 1999, Bell and Irwin 2002). The purpose of 

these models is to apply socioeconomic drivers to understand and project land-use 

change, often under alternative policy scenarios (Wear and Bolstad 1998, Seto and 

Kaufmann 2003, Bockstael and Irwin 2003). Spatially-explicit econometric models 

evaluate individuals’ decisions at the parcel scale and aggregate many decisions to 
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describe the resulting changes in regional pattern (Parks and Schorr 1997, Irwin and 

Geoghegan 2001, Wainger et al. 2007), however, data accessibility can constrain the 

ability to model large regions (Vance and Geoghegan 2002, Wainger et al. 2007). 

Econometric models have a greater ability than pattern-based models to include the 

effects of policies by evaluating their influence on the profitability of land use 

conversion, but still have limitations for modeling conditions that deviate from historic 

observations (Kline et al. 2001). Historically, econometric models have used parcel-based 

data which has the advantage of providing a direct link between the unit of observation 

(i.e., parcel) and management policies such as zoning. However, to ease data 

development for such models and to take advantage of time-series imagery of land use, 

econometric models have transitioned to the use of pixel-based approaches (e.g., Vance 

and Geoghegan 2002, Iovanna and Vance 2004). 

Modeling exurban development requires an understanding of the role of historical 

exurban patterns and individuals’ decisions in capturing exurban growth. Due to the 

sprawling aspect of exurban development, it is unclear whether pattern-based models 

would be as useful for modeling exurban growth as they are for urban environments. The 

aim of this study was to evaluate a popular pattern-based model (SLEUTH) and a 

spatially-explicit econometric model in predicting exurban development in north and 

central Virginia and western Maryland. We used the TM pixel as the unit of observation 

to allow comparison between both models and compared predictions from both models to 

actual land conversion at a local and county scale. 
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Methods 

Study area 

The study area comprised multiple counties of north and central Virginia (Clarke, 

Culpeper, Fauquier, Frederick, Madison, Page, Rappahannock, Shenandoah, and Warren 

Counties) and western Maryland (Washington and most of Frederick County; Figure 11). 

Virginia has had an annual population growth rate of 11% since 2000 and has the 12th 

largest population in the nation. Counties close to Washington, DC are experiencing the 

majority of this growth (Weldon Cooper Center 2010). For example, Loudoun County 

alone accounts for one-sixth of the total population increase for the entire state with a 

population increase of 78% since 2000. Counties included in the study area had growth 

rates ranging from 4% (Page County) to 40% (Culpeper County) between 2000 and 2009 

(U.S. Census Bureau 2010). Much of this growth is in the form of exurban development 

in the region. For example, since 1986 north and central Virginia and western Maryland 

have increased in exurban areas by 6% (Chapter II). One reason for the expansion in 

exurban development is the transportation infrastructure and easy access to the 

metropolitan Washington, DC area, which provides employment opportunities even 

within the current economic climate (Weldon Cooper Center 2010). 

Pattern based-model: SLEUTH 

Overview of the SLEUTH model 

SLEUTH is a cellular automaton model that has been widely used to represent 

and simulate the complexity of urban growth and land-use changes (Clarke et al. 1997, 

Herold et al. 2003, Mahiny and Gholamalifard 2007). SLEUTH is the acronym for the 
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input layers required: Slope, Land use, Exclusion, Urban extent, Transportation, and 

Hillshade. An exclusion layer is used to constrain growth in areas where development is 

considered impossible or limited, such as in water bodies or along streams. At least two 

urban extent layers are needed in the most recent version of the model (Jantz et al. 2010), 

one to initialize the model and one or more “control years” to calibrate it. Transportation 

data are necessary to show the evolution of the transportation network through time and 

to illustrate the tendency of development to be attracted to locations of increased 

accessibility (Clarke et al. 1997, Dietzel and Clarke 2007). SLEUTH is implemented in 

two general phases: 1) a calibration phase, where the model is trained to replicate historic 

development trends and patterns, and 2) a prediction or forecasting phase, where 

historical trends are projected into the future.  

The simulation of urban growth in SLEUTH is based on transition rules. The 

transition rules that are implemented involve taking a cell at random, assessing the spatial 

properties of that cell’s neighborhood, and then deciding whether or not to develop the 

cell depending on local characteristics (Dietzel and Clarke 2007). Through the transition 

rules and five coefficients determined through the calibration procedure (diffusion, breed, 

spread, road gravity, and slope resistance), SLEUTH simulates four types of development 

during each growth cycle (e.g., year): spontaneous growth, new spreading center growth, 

edge growth, and road influenced growth (Figure 12; Clarke et al. 1997, Jantz et al. 

2003). The model output consists of annual maps of development probability per pixel.  

Database development 

Data were developed from existing databases and through analysis of remote 

sensing imagery. Because we focused on exurban development, the urban extent layer 
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comprised exurban areas only. Exurban development was identified from Landsat TM 

imagery for 1986, 1993, 2000, and 2009 by combining spectral mixture analysis, 

decision-tree classification, and morphological spatial pattern analysis (Chapter II). Three 

time steps for transportation were also prepared using TIGER roads layers for 1992, 

2000, and 2008 from the Census Bureau. The exclusion layer consisted of water and 

protected areas derived from USGS/EPA National Hydrography Dataset and 

Conservation Biology Institute’s Protected Areas Database, respectively. Slope and 

hillshade layers were derived from DEM data (U.S. Geological Survey 2010). All input 

files had 30m resolution.  

Calibration and model execution 

The four time-steps of exurban data (1986-2009) were used to calibrate the five 

growth coefficients (diffusion, breed, spread, road gravity, and slope resistance) which 

control the type of growth simulated. One of the components of the diffusion coefficient 

is the diffusion multiplier DM, which controls the number of pixels that the model selects 

for potential new spontaneous growth in undeveloped areas that are not close to existing 

development, i.e., number of urbanization attempts (Dietzel and Clarke 2007). DM was 

fixed in SLEUTH versions 1 and 2, which led to a deficiency of the model to capture 

dispersed settlement. The new SLEUTH-3r version allows the DM value to be modified to 

increase or decrease the number of urbanization attempts for spontaneous growth (Jantz 

et al. 2010). To assign the DM value for modeling exurban growth, growth coefficients 

were set to produce the maximum level of spontaneous growth allowed, i.e., all 

coefficients were set to zero except for the diffusion coefficient which was set to 100. 

Each simulation tested a different DM value by running the model in calibration mode 



 

 54

with seven Monte Carlo iterations until the amount of spontaneous growth produced by 

the model equaled the dispersed growth observed in the calibration time series. Seven 

Monte Carlo iterations were used because prior modeling found this number to be 

sufficient to capture historic dispersed patterns in the Chesapeake Bay area (Jantz et al. 

2010). 

Once the DM value was determined, ‘brute-force’ calibration – in which every 

possible combination of potential values is compared – was initiated to identify the best 

values of growth coefficients (Jantz et al. 2003). Brute-force calibration may be 

performed at three levels. We conducted the calibration only to the coarse level because 

performance gains by doing fine and final calibration has been shown to be minimal 

(Jantz  et al. 2005). To select the best coefficient values, we assessed population 

fractional difference (PFD) and cluster fractional difference (CFD) statistics. PFD and 

CFD are new metrics calculated by SLEUTH-3r that quantify the model’s ability to 

simulate rates and patterns of observed development (Jantz et al. 2010). The best fit of 

the coefficients from the calibration were tested by running the model in calibration mode 

for 25 Monte Carlo iterations as suggested by previous work (Jantz et al. 2010). Using 

the output from the calibration, each candidate coefficient set was compared to the 

historical data and coefficients that matched PFD and CFD statistics within +/- 10% were 

selected.  

To generate the SLEUTH forecast for 2009, the model was initialized with the 

1986 urban extent map, the best fit coefficients, and an exclusion layer based on water 

and conservation protected areas. We ran the model in predict mode for 23 years with 25 

Monte Carlo iterations to produce development probabilities for 2009. 
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Spatially-explicit econometric model: complementary log-log hazard model 

Model overview  

Spatially-explicit econometric models are used to estimate probability of land 

conversion as a function of site and location characteristics (e.g., accessibility) which 

may affect individuals’ decisions to convert their land. These models describe the optimal 

timing of land conversion to residential use (Irwin and Bockstael 2002), i.e., when a 

parcel is likely to be developed. Individuals’ optimal decisions depend on a complex 

multiplicity of site and location factors including market value of land in alternative uses 

(i.e., agriculture or forest), expectations about the future use of neighboring lands, and the 

surrounding composition of land ownership (Iovanna and Vance 2004). 

The optimal timing for development was estimated here in the form of a survival 

or hazard model. Linear or logistic regression has also been used in these contexts, but 

they are poorly equipped to handle time-varying explanatory variables and censoring or 

truncation of the dependent variable (Iovanna and Vance 2007). A hazard model is based 

on the probability that in any given time period an event will occur, given it has not 

already occurred by the beginning of that time period. In the case of land conversion, it is 

the probability that a given parcel that is still undeveloped at time T will be converted by 

T+1, i.e. the parcel will fail to survive the period as an undeveloped parcel. To reconcile 

the temporal continuity of the conversion process with the discrete timing of 

measurement, a complementary log-log hazard (CLLH) model was used (Vance and 

Iovanna 2006, Iovanna and Vance 2007). The CLLH model is the discrete analogue of 

Cox’s partial likelihood (Cox 1972) and assumes that the underlying process is 

continuous but that the data are grouped into discrete intervals (Allison 1999) to better 
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match model predictions to data. The complementary log-log hazard model can be 

expressed as: 

 

where Pi,t is the probability that development occurs in parcel i in interval t given that the 

parcel was not converted in any earlier periods, at is the complementary log-log 

transformation of the baseline hazard (i.e., the hazard for parcel i when all explanatory 

variables equal zero), Xi,T  are parcel attributes, and β is the vector of corresponding 

coefficients. The CLLH model allows time-varying variables to be accommodated and 

requires no assumptions on the functional form of the baseline hazard rate (at) or on the 

unobserved factors that may change this rate over time (εi; Iovanna and Vance 2007). 

This enables the focus to be specifically on the effect of explanatory variables (i.e., parcel 

characteristics) on the hazard of land conversion. Using this approach, we estimated 

which parcels are most likely to convert within a given time frame and which parcels will 

be subject to the most development pressure.  

Database development 

The CLLH model was estimated using Landsat TM satellite data for the 

dependent variable and static and time-varying covariates as explanatory variables. The 

dependent variable was generated by taking maps of exurban development for 1986, 

1993, 2000, and 2009 (Chapter II) and creating binary maps where 1 represented 

conversion from forest to exurban development between two dates and 0 otherwise. For 

model estimation, we systematically drew a sample of 14,859 pixels 1.5 km apart that 

provided 566,665 observations (up to 4 observations per pixel depending on whether and 

in what year the pixel was converted). Systematic sampling is a commonly applied 

(2)iTitti XaP1 εβ ++=−− ,, )]log(log[
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technique to address spatial autocorrelation of unobserved variables due to shared 

attributes of neighbor pixels (Kline et al. 2001, Iovanna and Vance 2007) which can 

cause biased estimates (Irwin and Bockstael 2001). Because exurban development is 

characterized by dispersed, isolated housing units and the average property size is 213 m2 

(Maryland Department of Planning 2008), 1.5 km pixel separation was considered an 

appropriate distance to minimize the likelihood of spatial autocorrelation.  

Explanatory variables described site and location characteristics of the pixel that 

could influence the likelihood of land conversion and included accessibility, landscape 

configuration surrounding a pixel, environmental amenities, cost of conversion, and 

county-level socio-demographic indicators (Table 5). Accessibility represented travel 

cost and proximity to transportation infrastructure and cities. Travel cost increased with 

distance from the Washington, DC beltway and was weighted based on road types as a 

proxy for travel time. Travel cost was expected to have a negative effect on the 

conversion hazard because exurban residents commute to center of employment (Berube 

et al. 2006). Euclidean distance to the nearest highway and Euclidean distance to roads 

(primary, secondary, and neighborhood roads) was expected to have a negative effect 

given higher access costs. Euclidean distance to major cities (i.e., Washington, DC, 

Alexandria, Fairfax, Fall Church, Manassas, and Winchester in Virginia) was also 

expected to exert a negative effect on the exurban conversion hazard because these 

residents are looking for a semi-rural lifestyle (Berube et al. 2006).  

Landscape configuration surrounding a pixel was derived for the four time 

periods (i.e., time-varying variable) and was calculated for a 0.15 km radius to depict 

immediate pixel surroundings and between 0.15 and 1 km radius to represent a larger 
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region within easy walking distance from the house. For each distance class, we 

calculated the percent of exurban development and fragmentation index (perimeter to 

area ratio; Geoghegan et al. 1997) to capture individuals’ perception of the extent and 

pattern of forests surrounding the focal pixel. Percent of exurban development within 

0.15 km radius was expected to have a positive effect in the hazard of conversion given 

agglomeration effects associated with immediate housing units (Irwin and Bockstael 

2002). On the contrary, percent of exurban development between 0.15 and 1 km radius 

was expected to have a negative effect given the repelling effects associated with the 

character of exurban development (i.e., low-density residential development; Irwin and 

Bockstael 2002). Fragmentation in immediate pixel surroundings was expected to have a 

positive effect because fragmented habitat reduces the cost of conversion by reducing 

cost associated with clearing the land for development, whereas fragmentation between 

0.15 and 1 km radius was expected to have a negative effect due to repelling effects. 

Six time-invariant variables were included to capture environmental amenities: 

percent of protected area, surface water, and forest; and proximity to the nearest protected 

areas, surface water, and forest. Percent protected areas (Gap 1-3; Conservation Biology 

Institute 2010) and percent surface water (USGS/EPA 1999) were measured in both 

within 0.15 km radius and between 0.15 and 1 km radius of the focal pixel. Percent 

protected areas in both buffers and percent water between 0.15 and 1 km were 

hypothesized to increase the amenity value of the pixel and have positive effects, whereas 

percent water within 0.15 km radius was expected to have negative effects due to the 

likelihood of flooding. Euclidean distance to nearest protected areas and surface water 

were expected to have negative effects because conversion to exurban development is 
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more likely near natural and recreational amenities (Rasker and Hansen 2000, Radeloff et 

al. 2005a). Other time-varying variables included were percent forest within 0.15 km and 

distance to forest. These two variables were hypothesized to have positive and negative 

effects, respectively, through their effects on the scenic amenities of the pixel. 

Seven time-invariant variables measured in the focal pixel were included in the 

model to capture the cost of conversion, including pixel characteristics of elevation, 

slope, wetland land use (USGS/EPA 1999), agriculture land use (Homer et al. 2004), and 

if the pixel was forested, forest economic ranking (Chesapeake Bay Program 2009). In 

addition, neighborhood characteristics thought to influence costs were distance to the 

nearest agricultural field and distance to nearest hazardous waste sites (U.S. 

Environmental Protection Agency 2010). Forest economic ranking identifies forested 

lands with the highest potential for future economic benefits associated with timber 

management activities. All these variables were expected to have negative effects due to 

higher conversion costs.  

Four county-level and time-varying variables were also included in the model to 

capture socioeconomic drivers affecting profitability of land use conversion. Agriculture 

returns captured the opportunity costs of commodity uses and was calculated as county 

total farm receipts less costs, divided by farm acreage (USDA 2002). This metric was 

expected to have a negative effect on the conversion hazard. Population density, median 

household income (U.S. Census Bureau 2010), and gas prices (U.S. Energy Information 

Administration 2010) were included to represent demand for developed land. Population 

density and median household income were expected to have positive effects, whereas 

gas prices a negative effect. Socioeconomic indicators (except for gas prices which were 
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calculated for the entire study area) were estimated at the county level and all pixels 

falling in a county were assigned that county’s estimate. The county where the pixel was 

located was also included in the model to control for differences in quality of services 

(e.g., better public schools, lower crime rates). 

Complementary log-log hazard model 

The CLLH model estimated the likelihood that a pixel will be converted to 

exurban development within a given time frame based on the 27 explanatory variables 

(Table 5). From that model, we produced a map of development pressure to depict 

estimated conversion probabilities between 1986 and 2009. The development pressure 

map was created from the modeled pixels using a natural neighbor algorithm (Sibson 

1981, Childs 2004) to avoid selecting an arbitrary distance to establish the influence of 

surrounding pixels.  

 Before using the output of the CLLH model, we transformed the estimated 

coefficients β (eq. 2) of the CLLH model to risk ratios for easier interpretation. Risk 

ratios represent the percent change in the hazard rate for a unit increase in a continuous 

explanatory variable. The risk ratio was calculated by subtracting one from eβ and 

multiplying by 100. For dummy variables, the risk ratio is equal to eβ and can be 

interpreted as the ratio between the estimated hazard for observations with a value of one 

over the estimated hazard for observations with a value of zero (Allison 1995). 

Model assessment 

We compared observed exurban development for 2009 against the SLEUTH 

forecast and the map of development pressure derived from the CLLH model. To 
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evaluate the performance of the models at a local scale, we used Goodman and Kruskal’s 

gamma (Goodman and Kruskal 1954, 1959, 1963) and receiver-operating characteristic 

(ROC) curves (Pontius and Schneider 2001). The Goodman and Kruskal’s gamma is a 

non-parametric measure of correlation based on the difference between concordant and 

discordant pairs of predicted and observed conversion as percentage of all pairs ignoring 

ties. Gamma can be interpreted as the contribution of the independent variables in 

reducing the errors of predicting the rank of the dependent variable. ROC curves visually 

present the percentage of converted pixels correctly forecast (i.e., true-positive rate) 

against the percentage of non-converted pixels incorrectly forecast (i.e., false-positive 

rate). ROC aggregates into a single index of agreement the success of several models 

(Pontius and Schneider 2001). The area under the ROC curve can be interpreted as the 

proportion of correct forecasts for all possible prediction thresholds (Pontius and 

Schneider 2001). ROC was also used to determine the threshold that maximized the true 

positive rate of conversion and to aggregate both model predictions to the county level. 

We used t-tests and Spearman rank correlation coefficients to assess model performance 

at the county scale. ROC curves (Package ROCR; Sing et al. 2005), t-tests, and Spearman 

correlation were calculated in R. 

Results 

SLEUTH 

The SLEUTH calibration procedure allowed us to determine the best fit for the 

diffusion multiplier (DM) and growth coefficients. The DM value determined for the study 

region was 0.035. This value was similar to values determined by Jantz et al. (2010) in 

sub-regions of central and south-central Virginia. The other calibrated coefficients were 



 

 62

diffusion = 100, breed = 25, spread = 15, slope = 100, and road growth = 50. The road-

growth coefficient was highly variable during the calibration procedure. We selected a 

value of 50 because it complied with the estimated value by Jantz et al. (2010) for the 

region. 

When we compared the simulation with the observed data, we found that 

SLEUTH overestimated growth and suggested patterns that were not evident in the data. 

Simulated exurban development was spread throughout the study region (Figure 13A). 

SLEUTH overestimated the observed amount of exurbia by 5.8% (828 km2 of exurban 

development were simulated compared to 783 km2 observed amount for 2009). SLEUTH 

also overestimated the number of exurban clusters by 22.2% for the 24-year period 

(227,609 were forecast compared to 186,191 measured from data). The gamma value for 

SLEUTH was 0.47 and the area under the ROC curve was 0.67 (Figure 14). At the 

county level (Figure 15), observed and simulated percent of exurban development were 

similar (t = -0.002, df = 10, p = 0.9) and significantly correlated (rs = 0.77, p = 0.006). 

Mean prediction error for all counties was 2.0%. Frederick was the worst underpredicted 

county (error = 4.1%), and Frederick in Maryland was the worst overpredicted county 

(error = 4.2%).  

Complementary log-log hazard model 

The estimated coefficients of the CLLH model were generally of the expected 

sign (Table 6) and the model fit was robust based on the fit statistics. The statistically 

significant variables that had the biggest positive influence on hazard of conversion (risk 

ratio > 5%) were fragmentation index (risk ratio = 1,689%), percent exurban (risk ratio = 

13.3%), and percent of forest (risk ratio = 5.2%) all in immediate pixel surroundings (i.e., 
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within 0.15 km radius). Statistically significant variables that had the foremost negative 

effect on the hazard of conversion were distance to forest (risk ratio = 100%), distance to 

water (risk ratio = 11.5%), and percent water between 0.15-1 km radius (risk ratio = 

6.9%). Some variables had apparently a large influence on the hazard of conversion but 

were not statistically significant (e.g., distance to roads). Slope within the pixel and forest 

economic ranking had an unexpected significant positive effect on the hazard of 

conversion. Slope increased the hazard by 2.4%, whereas forest economic ranking 

increased the hazard by 0.7%. Finally, the county location of the pixel significantly 

affected the conversion hazard (Table 6), with Frederick in Virginia (risk ratio = 0.55%), 

Shenandoah County (risk ratio = 0.53%, and Fauquier County (risk ratio = 0.41%) having 

the top three highest hazards. 

The model-predicted patterns of the highest hazards of development pressure 

were sparse and isolated (Figure 13B). We found a high correspondence between the 

CLLH high probability regions and observed exurban conversions. The gamma value for 

the CLLH model was 0.90 and the area under the ROC curve was 0.94 (Figure 14). At 

the county level (Figure 15), observed and estimated exurban development were similar 

(t = -0.003, df = 10, p = 0.9) and significantly correlated (rs = 0.91, p < 0.001). The 

CLLH model estimated similar percentage of observed exurban land (error of < 1%) for 

half of the counties and mean prediction error for all counties was 1.4%. Fauquier County 

was the worst underestimated (error = 4.4%) and Washington County the worst 

overpredicted (error = 2.4%).  
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Discussion 

Our results indicate that the spatially-explicit econometric (CLLH) model 

effectively estimated land conversion to exurban development at both local and county 

scales and that the pattern-based (SLEUTH) model only captured exurban growth 

adequately at a county scale (Figure 15). The better performance of the CLLH model at 

the local scale reflect the importance of capturing drivers of individual behavior at this 

scale rather than relying on historic land patterns to predict exurban growth. The adequate 

performance of SLEUTH at the county scale suggests that the need to capture local 

drivers may be less critical at the regional scale, although aggregating the CLLH model 

results to the county scale still performed somewhat better than SLEUTH.  

The different accuracy of results at multiple scales highlights the challenge of 

capturing low-density land conversion using a pattern-based model. The SLEUTH 

calibration was able to successfully replicate the percentage of exurban development at 

the count level (Figure 15), but it was not able to accurately predict the conversion of 

land to exurban development at the local scale (Figure 14). Similar results were found by 

others who applied the SLEUTH model to the Chesapeake Bay watershed (Jantz et al. 

2003, 2010). The model overestimated areas of dispersed development for rural 

landscapes at a pixel scale but its accuracy improved greatly when results were 

generalized to the watershed scale (Jantz et al. 2010). 

There are strengths and limitations associated with both pattern-based and 

econometric modeling approaches. SLEUTH and other pattern-based models are highly 

dependent on the calibration procedure to generate reasonable projections, therefore 

having adequate control over calibration parameters is important. The new ability to 
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calibrate the diffusion multiplier in the SLEUTH-3r version (Jantz et al. 2010) has made 

a significant improvement in the model’s ability to simulate spontaneous growth, which 

is especially important for representing dispersed exurban settlement patterns. When we 

ran SLEUTH simulations using the previous default diffusion multiplier value (0.005), 

SLEUTH underestimated the number of exurban clusters by 62%, whereas with our 

calibrated value (0.035), the estimate deviated from the observed by only 22% for the 

study region.  

The CLLH model did a better job capturing exurban conversion at both local and 

county scales but requires more effort to develop input data and model-results may be 

biased by variable selection. Caution should be exercised when identifying variables that 

may affect individuals’ motivation to convert their land (Irwin and Geoghegan 2001) 

because of temporal dynamics in behavioral drivers. Selecting variables that change with 

time due to changes in land use can lead to inconsistent coefficient estimates. Another 

drawback to this approach is that input data should vary enough to serve as effective tests 

of their importance as drivers of land-use change. For example, the lack of a significant 

effect of distance to roads and to highways on the hazard of conversion may be because 

pixels were uniformly close to roads. Distance to roads has been documented to be a 

strong determinant on land development in agriculture and urban landscapes (Wear and 

Bolstad 1998). However, in exurban areas, where residents commute long distances to 

employment centers (Berube et al. 2006), travel cost (which was a significant factor in 

our model) might have a greater influence on the hazard of conversion than proximity to 

roads. 
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Similarly, other variables may not have had sufficient range to show effects or 

had an unexpected effect. Socioeconomic factors were generally not strong influences on 

exurban development predictions in the CLLH model, because these variables did not 

vary substantially among counties during the time period considered or they 

unexpectedly increased in the last period analyzed such as gas prices. Abrupt changes in 

gas prices may take time to induce behavioral changes (Lane 2010), thus it was difficult 

to capture the influence of gas prices on the hazard of conversion in the time frame 

considered. Two variables representing cost of conversion (e.g., forest economic ranking) 

had an unexpected positive effect on the hazard of conversion. The positive effect of 

future forest economic benefits on the conversion hazard suggests that economically 

attractive forest lands are also highly desirable for exurban development. A direct 

measure of opportunity costs from forest management would improve the model’s ability 

to capture any tradeoffs.  

Both modeling approaches provided insights into the land conversion process. 

SLEUTH growth coefficients derived during the calibration phase manifested the growth 

pattern of exurban development. The high value of the diffusion coefficient reflected a 

high likelihood of dispersive growth which was expected given the dispersiveness of 

exurban development. Low values of the breed and spread coefficients corresponded to 

the low probability of new detached settlements and already established exurban 

settlements to grow or expand like urban centers, which reinforced the typical 

characteristics of exurban areas. Slope had a high value which corresponds to the 

tendency of exurban development to occur in more hilly areas of the study region. 
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The spatially-explicit econometric model also informed about the drivers of land 

conversion. Landscape configuration (e.g., percent exurban) and environmental amenities 

(e.g., percent forest within 0.15 km) were important determinants of the land conversion 

process. Parcel-level analysis in central Maryland (Geoghegan et al. 1997, Irwin and 

Bockstael 2002) and pixel-level analysis in central North Carolina (Vance and Iovanna 

2008) support the importance of amenity-driven decisions and spatial effects in the land 

conversion process. There are some commonalities between these two interpretations. 

Both models showed the positive association of exurban development with slope 

confirming the importance to include slope when modeling exurban growth in the study 

region.  

Modeling exurban development may inform land-use change assessments at both 

local and coarse-scale. Even though SLEUTH did not perform as well as the CLLH 

model, SLEUTH can serve to highlight potential coarse-scale losses in natural resources 

(Jantz  et al. 2005) and inform decisions about protection priorities in exurban areas. In 

contrast, an econometric model can be used to assess possible impacts of implementing 

land-use policies. The CLLH model is better able to capture individual choices and 

behavioral responses under alternative policy scenarios at a local and county scale, 

although it will be important to have appropriate variability in the input data to capture 

the influences of various drivers.  
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Table 5. Descriptive statistics for variables included in the complementary log-log hazard 
model. 

Variable Units Mean 
Standard 
deviation

Dependent variable (1 = conversion) 0, 1 0.019 0.136
Accessibility    
   Travel cost index 39.238 6.434
   Distance to highways km 8.511 6.344
   Distance to all roads  km 0.170 0.212
   Distance to major cities km 44.574 21.289
Landscape configuration    
   Percent exurban within 0.15 km radius  % 3.902 7.056
   Percent exurban between 0.15-1 km radius  % 3.959 3.680
   Fragmentation index within 0.15 km radius  index 0.063 0.102
   Fragmentation index 0.15-1 km radius  index 1.992 1.453
Environmental amenities    
   Percent forest within 0.15 km radius  % 41.857 40.043
   Distance to forest  km 0.092 0.142
   Percent protected areas within 0.15 km radius % 15.160 33.636
   Percent protected areas between 0.15-1 km radius % 14.989 25.732
   Distance to protected areas km 1.356 1.421
   Percent water within 0.15 km radius % 0.614 4.459
   Percent water between 0.15-1 km radius % 0.630 1.905
   Distance to water km 1.509 1.130
Cost   
   Elevation m 248.732 160.742
   Slope % 8.064 7.918
   Wetlands (dummy) 0, 1 0.018 0.134
   Agriculture (dummy) 0, 1 0.412 0.492
   Distance to agriculture km 0.269 0.586
   Distance to undesirable land use km 6.849 4.300
   Forest economic ranking %  33.820 31.831
County-level socio-demographic variables    
Agricultural returns $1/acre 68.29 105.85
   County population density people/km2 24.820 17.772
   County median household income $ 51597.04 16263.68
   Gas price  $/barrel 36.42 33.24
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Table 6. Complementary log-log hazard model of conversion. Bold indicates significant 
variables at a 0.05 level. 

Explanatory variables 
Estimated 

coefficient
Likelihood-ratio 

chi-square Risk ratio
Travel cost 0.044 8.08 4.467
Distance to highways 0.013 3.10 1.319
Distance to all roads  -0.277 0.90 -24.187
Distance to major cities -0.027 25.28 -2.664
Percent exurban within 0.15 km radius  0.125 1269.09 13.326
Percent exurban between 0.15-1 km radius  -0.041 14.26 -3.979
Fragmentation index within 0.15 km radius  2.884 15.23 1688.925
Fragmentation index between 0.15-1 km radius  -0.186 1.66 -16.956
Percent forest within 0.15 km radius  0.050 478.29 5.148
Distance to forest  -13.673 66.75 -100.000
Percent protected areas within 0.15 km radius 0.001 0.39 0.140
Percent protected areas between 0.15-1 km radius 0.008 5.44 0.833
Distance to protected areas -0.001 0.00 -0.130
Percent water within 0.15 km radius -0.015 1.81 -1.528
Percent water between 0.15-1 km radius -0.072 8.61 -6.900
Distance to water -0.123 7.03 -11.547
Elevation 0.000 0.05 -0.010
Slope 0.024 10.47 2.439
Wetlands (dummy) -0.435 2.80 0.647
Agriculture (dummy) -0.725 48.13 0.484
Distance to undesirable land use -0.036 10.19 -3.546
Distance to agriculture -0.258 1.46 -22.702
Forest economic ranking 0.007 17.79 0.682
Agricultural returns -0.001 0.37 -0.050
County population density -0.035 0.00 -3.439
County median household income 0.000 5.40 0.001
Gas price 0.004 0.00 0.361
Constant -6.268   
Chi2 county dummies 58.08  
Chi2 year dummies 0.00  
Deviance 3848.465   
Log likelihood -1924.2326   
Number of observations 56665   
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Figure 11. The study region encompasses nine counties in north and central Virginia and 
two counties in western Maryland (shaded area). 
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Figure 12. Schematic representation of growth types and controlling coefficients in 
parenthesis simulated by SLEUTH (Adapted from Clarke et al. 1997). 
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Figure 13. Probability of conversion to exurban development simulated using (A) 
SLEUTH and (B) complementary log-log hazard model for for north and central Virginia 
and western Maryland. Zoom in windows illustrate the difference in the spatial pattern 
between models. 
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Figure 14. Receiver-operating characteristic (ROC) curves to evaluate SLEUTH and the 
complementary log-log hazard model performance. ROC close to the diagonal indicates 
the performance of the model is no better than random. 
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Figure 15. Percent of each county’s exurban developed area: (A) observed in 2009, (B) 
simulated by SLEUTH, and (C) estimated by the complementary log-log hazard model 
for north and central Virginia and western Maryland. 

.
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CHAPTER IV 

FOREST BIRDS RESPOND TO DETERIORATED BREEDING HABITAT AROUND 

EXURBAN AREAS  

Abstract  

Exurban development is often embedded within a matrix of protected areas and 

natural amenities, which has raised concern about its ecological consequences. Forest 

birds are particularly susceptible to human settlement even at low housing densities 

typical of exurban areas. However, few studies have examined the response of forest 

birds to this increasingly common form of land conversion. The aim of this study was to 

assess whether forest birds respond, and if so in a nonlinear fashion, to changes in 

breeding habitat due to exurban growth. We evaluated changes in breeding habitat 

composition (amount) and configuration (arrangement) for forest specialists, forest 

generalists, and forest edge species around North America Breeding Bird Survey (BBS) 

stops in north and central Virginia and western Maryland between 1986 and 2009. We 

used a new method (Threshold Indicator Taxa Analysis) to detect change points in 

species occurrence. We also evaluated whether species responded differently to changes 

of breeding habitats at two spatial extents (400 m- and 1 km-radius buffer). Our results 

show that exurban development is degrading breeding habitats around BBS stops by 

reducing forest cover and increasing habitat fragmentation. Forest birds responded 

nonlinearly to most measures of breeding habitat deterioration at both extents. However, 

for number of forest patches and proportion of forest edge, the direction of the response 

changed with the extent. Forest specialists were most sensitive to habitat deterioration 

followed by forest generalists. The positive responses of forest edge species to changes in 
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the landscape generally agreed with their perceived habitat preferences. These differences 

in habitat preferences together with the range at which forest birds exhibited strong 

threshold response to habitat loss and fragmentation in exurban areas may guide planners 

and managers in mitigating effects of exurban development to these declining forest 

resources. 

Introduction 

The expansion of human settlement in the urban-rural fringe has received 

considerable global attention in recent decades (Burnley and Murphy 1995, Struyk and 

Angelici 1996, van den Berg and Wintjes 2000, Liu et al. 2003, Theobald 2005). In the 

United States, conversion of privately owned rural lands into low-density residential 

development (i.e., exurban development) has expanded dramatically in recent decades 

(Hansen et al. 2002, Theobald 2005). Nationally, exurban development increased five- to 

sevenfold between 1950 and 2000 (Brown et al. 2005). In the Mid-Atlantic region of the 

United States, the dispersed, isolated housing units typical of exurban areas are embedded 

within a forest matrix, often close to protected areas (Wade and Theobald 2010) and 

natural amenities (McGranahan 1999, Kwang-Koo et al. 2005). Understanding the 

impacts of exurban development on wildlife is crucial to successful conservation 

planning within this region (Miller and Hobbs 2002, Hansen et al. 2005). 

Human settlements generally remove, fragment, and degrade natural habitats 

(Donnelly and Marzluff 2006, McKinney 2008, Evans et al. 2009). Both habitat loss and 

fragmentation modify the spatial pattern of remnant habitats, creating smaller and 

isolated fragments, thus compromising habitat quality and quantity. Bird species respond 

in a variety of ways depending on species traits and life histories (Marzluff 2001, 



 

 77

McDonnell and Hahs 2008). Some species thrive in these environments whereas others, 

such as forest birds, decline rapidly (e.g., Blair 2001, Chace and Walsh 2006). Possible 

reasons for long-term reductions of forest-bird species in these environments include 

predation (Newhouse et al. 2008), brood parasitism (Chace et al. 2003), and competition 

with human-adapted species (Engels and Sexton 1994). Forest birds have been shown to 

be particularly susceptible to human settlement even at housing densities as low as 0.095 

house/ha (Friesen et al. 1995, Engle et al. 1999, Odell and Knight 2001, Fraterrigo and 

Wiens 2005, Merenlender et al. 2009, Suarez-Rubio et al. 2011). 

Exurban development (as a specific case of land cover conversion) is fragmenting 

eastern temperate forests of the Mid-Atlantic at unprecedented rates (Brown et al. 2005, 

Chapter II). Understanding how exurban development degrades forest bird breeding 

habitat over time is a conservation priority. Forest birds are generally positively related to 

proportion of forest cover (e.g., Pidgeon et al. 2007,Valiela and Martinetto 2007) but the 

spatial distribution of suitable habitat also affects their occurrence and fecundity (Jones et 

al. 2000, Donovan and Flather 2002). Declines of forest birds have been well documented 

in eastern North America, and these declines have been highly associated with habitat 

loss and fragmentation due to roads, power lines, and residential development (Askins 

1995, Mancke and Gavin 2000, Hansen et al. 2005). However, few studies have 

examined the response of species through time as residential development progresses 

(Chace and Walsh 2006).  

In addition, species may respond nonlinearly to habitat loss and fragmentation 

(reviewed by Swift and Hannon 2010). Theoretical models predict the existence of a 

change point or threshold in which an abrupt reduction in occupancy occurs despite the 
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presence of sufficient suitable habitat (Gardner et al. 1987, Andrén 1994, With and Crist 

1995, Fahrig 2001). Some studies show empirical evidence for threshold existence 

(Radford et al. 2005, Betts et al. 2007, Poulin et al. 2008, Zuckerberg and Porter 2010) 

although others have not found any evidence to support threshold responses 

(Lindenmayer et al. 2005). It is uncertain whether threshold declines in forest birds apply 

to exurban development. If these relationships are appropriately characterized by 

threshold models, determining the range at which exurban development induces 

population crashes may provide guidance for landscape planning, management, and 

conservation. 

The aim of this study was to assess how exurban development deteriorates the 

suitability of breeding habitats in north and central Virginia and western Maryland. We 

evaluated breeding habitat composition (amount) and configuration (arrangement) for 

selected bird species (forest specialists, forest generalists, and forest edge) around North 

America Breeding Bird Survey stops between 1986 and 2009. The approach accounted 

for year-to-year variability in species abundances and investigated species responses to 

both breeding habitat loss and fragmentation as exurban development increased since 

1986 in the study region. In addition, we assessed whether selected bird species showed 

thresholds in both occurrence frequency and relative abundance. We used a new method 

(Threshold Indicator Taxa Analysis; Baker and King 2010) to detect change points in 

species occurrence. We evaluated two spatial extents (400 m- and 1 km-radius buffer) to 

determine if species responded differently to changes at the local and landscape scales. 

We expected that forest specialists and forest generalists would exhibit a strong negative 

response to breeding habitat degradation due to exurban development at both extents, 
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whereas forest edge species would, if anything, respond positively to high levels of 

exurban land cover.  

Methods 

Study area 

The study area encompassed 11 counties in north and central Virginia (Clarke, 

Culpeper, Fauquier, Frederick, Madison, Page, Rappahannock, Shenandoah, and Warren) 

and two counties in western Maryland (Washington and most of Frederick; Figure 16). 

The region has experienced a remarkable population growth. Virginia has the 12th largest 

population in the nation with an annual population growth rate of 11% since 2000. For 

example, Loudoun County alone accounts for one-sixth of the total population increase 

for the entire state with a population increase of 78% since 2000 (Weldon Cooper Center 

2010). Counties included in the study area had growth rates ranging from 4% (Page 

County) to 40% (Culpeper County) between 2000 and 2009 (U.S. Census Bureau 2010). 

In Maryland, Frederick County has increased its population by 17% between 2000 and 

2009, and Washington County had an 11% increase (U.S. Census Bureau 2010). Beside 

the population growth, the region has also experienced an increase in exurban areas since 

1986 (6.1% per year; Chapter II) and by 2009, north and central Virginia and western 

Maryland had 7.3% of its territory occupied by exurban development (Chapter II). One 

reason for the increased exurban development is the easy access and well-maintain 

transportation infrastructure to the metropolitan Washington, DC area which provides 

employment opportunities even within the current economic climate (Weldon Cooper 

Center 2010). 
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Breeding Bird Survey 

We used the North America Breeding Bird Survey (BBS; Peterjohn and Sauer 

1994, Sauer et al. 2003) to gather bird species relative abundance data. The BBS is a 

large-scale annual roadside survey to monitor the status and trend of breeding bird 

populations in the United States and southern Canada since 1966. The survey is 

performed along secondary roads by experienced volunteer observers in late May to early 

July, the peak of the breeding season. Routes are 39.4 km long and consist of 50 survey 

stops located at 0.8 km intervals. During the survey, observers record all birds heard or 

seen within 0.4 km in a 3-min period. We focus our analysis on survey stops instead of 

the entire route because our interest was on local characteristics of breeding territories 

and routes might vary in local environmental conditions (Sauer et al. 1995, Veech and 

Crist 2007). From the 16 routes located in the study area, we uniformly selected at most 

10 survey stops per route (every fifth stop along the route). We only considered survey 

stops that had detailed direction descriptions and fell within the study region (125 survey 

points in total; Figure 16). This information was important for geocoding and 

characterizing site-specific features of selected survey stops. A maximum of 10 stops per 

route was chosen to reduce overlap between circular areas around survey stops and 

decrease the likelihood of spatial autocorrelation. 

We focused on 11 forest-nesting passerine species whose habitat preferences 

included forest specialists ─Ovenbird (Seiurus aurocapilla), Red-eyed Vireo (Vireo 

olivaceus), American Redstart (Setophaga ruticilla); forest generalists ─Wood Thrush 

(Hylocichla mustelina), Scarlet Tanager (Piranga olivacea), Eastern Wood-Pewee 

(Contopus virens), Eastern Phoebe (Sayornis phoebe); and forest edge species ─Eastern 
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Towhee (Pipilo erythrophthalmus), Gray Catbird (Dumetella carolinensis), Northern 

Cardinal (Cardinalis cardinalis), and Indigo Bunting (Passerina cyanea; Poole 2005). 

We defined forest specialists as species that favor interior forested habitats. Forest 

generalists are birds that utilized a wide variety of deciduous and mixed deciduous-

coniferous forest types. Forest edge species are those species that are strongly associated 

with forest edges and open habitats (Mikusiñski et al. 2001). These species were selected 

to represent a range of habitat preferences and because they were detected on at least 5% 

of surveys during the 1986-2009 interval. In addition, many of these species have 

experienced population declines or reduced fecundity in their distribution range due to 

habitat loss or fragmentation (Hagan 1993, Sherry and Holmes1997, Donovan and 

Flather 2002, U.S. NABCI Committee 2009). Our study was designed to determine if the 

specific land conversion process of exurban development resulted in population changes 

for these species. 

Landscape structure around Breeding Bird Survey stops 

We established circular areas of 400 m and 1 km radius around selected BBS 

stops. These areas were chosen to characterize both breeding bird territories (Bowman 

2003, Mazerolle and Hobson 2004) which were assumed to be in the immediate 

surroundings of survey stops and areas feasibly visited during bird daily movements 

(Krementz and Powell 2000, Lang et al. 2002). To quantify landscape structure around 

selected survey stops over time at these two extents, we used Landsat TM imagery for 

1986, 1993, 2000, and 2009 and combined spectral mixture analysis, decision-tree 

classification, and morphological spatial pattern analysis to identify exurban development 

in the study region (Chapter II). This procedure allowed us to distinguish exurban areas 
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from forest and urban areas and create a land-cover map that was used to characterize 

areas around survey stops.  

We used FRAGSTATS 3.3 (2002) and GUIDOS 1.3 (Soille 2003, Vogt et al. 

2007a) to estimate both landscape composition and configuration within the two circular 

areas around selected survey stops for 1986, 1993, 2000, and 2009. Landscape 

composition variables described the amount of habitat and included proportion of area 

occupied by forest and exurban development. Landscape configuration variables 

described the arrangement of forest habitat and included area-weighted average patch 

size, number of forest patches greater than 0.45ha, and proximity index (Gustafson and 

Parker 1992). Proximity index is a measure of isolation that considers both patch size and 

proximity of a focal patch to all forest patches around. We only considered forest patches 

≥ 100ha within 2500m of the focal patch. A 2500m range was selected to reflect dispersal 

patterns of most songbirds (dispersal median distance range: 0.3 - 7.3 km; Sutherland et 

al. 2000). The proximity index increases as the neighborhood is increasingly occupied by 

forest patches and as those patches become closer and more contiguous or less isolated. 

GUIDOS was used because it identifies and graphically depicts the different aspects of 

the fragmentation process (Vogt et al. 2007a). The software package analyzes the 

geometry of map elements by applying mathematical morphological operators to allocate 

each pixel to one of a mutually exclusive set of classes. We used the proportion of forest 

interior (core class), forest fragments (islet class), and forest edge (edge and perforation 

classes). 

We also estimated change in the amount of forest and exurban development 

between years to assess whether bird species responded to the change in landscape 
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composition or to the proportion of habitat. Although some of these variables are not 

necessarily independent, many have been shown to affect abundance of birds (Ambuel 

and Temple 1983, Blake and Karr 1987, van Dorp and Opdam 1987, Robinson et al. 

1995, Donovan and Flather 2002) and represent different aspects of potential breeding 

habitat degradation. 

Analysis 

BBS data have unknown precision due to observers' differences (Sauer et al. 

1994), first-year observers’ skills (Erskine 1978, Kendall et al. 1996), environmental 

conditions (Robbins et al. 1986), and habitat features (Sauer et al. 1995). We used a 

hierarchical Bayesian model to adjust BBS counts and account for these limitations. We 

modeled count data as hierarchical over-dispersed Poisson variables and fit models using 

Markov Chain Monte Carlo (MCMC) methods in WinBUGS 1.4.3 (Lunn et al. 2000). 

Hierarchical Bayesian models are frequently applied to BBS data (LaDeau et al. 2007, 

Link and Sauer 2002, Sauer and Link 2011) and are better able to account for variability 

in complex time series than previous, largely frequentists, methods (Clark 2005). We 

specified Cit as the count for each species on stop i and time t where i =1,..., N; t = 1,…, 

T; and N and T were the number of stops and the number of years species was observed, 

respectively. Conditioned on the model, counts (Cit) were independent across years and 

stops, and these conditional distributions for Cit were assumed to be Poisson with mean 

μit: 

Cit ~ Pois(μit)                                                              (3) 

The full model was then: 

( ) itititit2tstop1stop0it NoiseObserverRouteFirstyearYear +++∗+∗+= βββμlog   (4) 
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where each stop was assumed to have a separate intercept (β0) and time trend (β1). The 

model also included several sources of variability including unknown route level effects 

(Routei,t), observer effects (Observeri,t), and an additional noise component (Noisei,t) to 

help account for over-dispersion in the data. BBS observers tend to over or under-record 

certain species in their first year relative to subsequent years (Link and Sauer 2002, Link 

and Sauer 2007) and to incorporate this effect we treated an individual’s first year (First 

yearit) as a binary indicator variable (β2). The precision parameters (τ2) for β0-2, observer, 

route, and noise effects were assigned vague inverse gamma prior distributions (Berger 

1985) with parameters (0.001, 0.001). 

We used two Markov chains for each model and examined model convergence 

and performance through Gelman-Rubin diagnostics and the individual parameter 

histories (Gelman 2004, Link and Barker 2010). Time to convergence varied among 

species depending on the amount of data for that species (30,000 – 200,000 iterations 

required). Once convergence was reached we obtained derived estimates of the count at 

each stop and in each year, and these adjusted counts were then used for the threshold 

analysis. In addition, we estimated for each selected species the linear trend coefficient 

(i.e., the slope of abundance over time on a log scale) and percent annual change (the 

expected count in the last year divided by the expected count in the first year raised to 

1/number of years). For trend coefficients (slope and percent annual change), we 

interpreted significance based on values with 95% credible intervals not overlapping 

zero. 

We estimated potential species thresholds to landscape variables in space and 

time using Threshold Indicator Taxa ANalysis (TITAN; Baker and King 2010). TITAN 
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identifies abrupt changes in both occurrence frequency and relative abundance of 

individual taxa along an environmental gradient. It is able to distinguish responses of 

individual taxa with low occurrence frequencies or highly variable abundances and does 

not assume linear response along all or part of an environmental gradient. TITAN uses 

normalized indicator species taxa scores (z) to establish a change-point location that 

separates the data into two groups and maximizes association of each taxon with one side 

of the partition. Z scores measure the association of taxon abundance weighted by their 

occurrence and is normalized to facilitate cross-taxa comparison. Thus, TITAN 

distinguishes negative (z-) and positive (z+) indicator response taxa. 

To measure the quality of the indicator response and assess uncertainty around 

change-point locations, TITAN bootstraps the original dataset and recalculates change 

points with each simulation. The uncertainty is expressed as quantiles of the change-point 

distribution. Narrow intervals between upper and lower change-point quantiles (i.e., 5 

and 95%) indicate nonlinear response in taxon abundance whereas broad quantile 

intervals are characteristic of taxa with linear or more gradual response. Diagnostic 

indices of the quality of the indicator response are purity and reliability. Purity is the 

proportion of bootstrap replicates that agree with the direction of the change-point for the 

observed response. Pure indicators (purity ≥ 0.95) are those that consistently assign the 

same response direction during the resampling procedure. Reliability is the proportion of 

change-point individual value scores (IndVal) among the bootstrap replicates that 

consistently have p-values below defined probability levels (0.05). Reliable indicators 

(reliability ≥ 0.95) are those with consistently large IndVal. Because purity and reliable 

indices did not differ for most metrics, we only reported the reliable index. We ran 
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TITAN for the 11 selected bird species and each of the landscape variables in R 2.11.1 (R 

Development Core Team 2011). We used five as the minimum number of samples on 

each side of a threshold split and 250 permutations to compute z scores and diagnostic 

indices. Five is the minimum number of observations required by TITAN to compute 

IndVal, z scores, and associated statistics and more than 250 permutations seem to be 

unnecessary to obtain precise individual taxa z scores in large dataset such as ours (Baker 

and King 2010). 

Results 

Breeding Bird Survey 

There were 2481 counts on selected survey stops where at least one individual of 

the selected species was observed between 1986 and 2009. The Indigo Bunting was the 

most detected species (44.7% of surveys) and the Eastern Phoebe was the least detected 

(7.7%; Table 7). Forest edge species were the most abundant group (4374 individuals, 

adjusted mean 1.83) followed by forest generalists (2143, 0.90), and forest specialists 

(1535, 0.64). Annual mean adjusted abundances (i.e., posterior means) showed 

population trends of selected species between 1986 and 2009 accounting for differences 

in route, observer, and detection year (Figure 17). The Gray Catbird, Northern Cardinal, 

American Redstart, Ovenbird, and Red-eyed Vireo showed a significant increase in 

estimated abundance between 1986 and 2009 (Table 7). American Redstart had the 

highest percent change per year (3.1%). For the other six species, the estimated 

abundance did not significantly change through the 24-year period. 
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Landscape structure around Breeding Bird Survey stops 

Landscape composition and configuration varied among years (Table 8). For the 

400 m-radius buffer, amount of forest decreased from 49.2% in 1986 to 41.1% in 2009 

whereas, the amount of exurban development increased from 1.7% in 1986 to 6.0% in 

2009. The greatest change in the amount of forest and exurban development was between 

2000 and 2009 (forest decreased by 5.0% and exurban development increased by 2.8%). 

Configuration of forest patches also differed among years. Although the number of forest 

patches greater than 0.45ha remained nearly constant, area-weighted average patch size 

decreased by an average of 2.1ha in the last time period. This decrease in patch size was 

accompanied by a 3.8% decrease in forest edge. As the amount of forest decreased from 

1986 to 2009, forest interior declined from 39.8% to 29.3%, proportion of forest 

fragments rose by 8.5%, and proximity index decreased from 25,156.8 to 9884.6. In 

general, all metrics changed much more in later time periods than early years reflecting 

the increasing rate of exurban development in the study region. 

Similar patterns were observed for the 1-km radius buffer except for the 

magnitude of some of the configuration variables. More forest patches greater than 

0.45ha were found in the larger 1 km-radius buffer (1 km: 5.2 vs. 400 m: 1.6 mean 

number of patches), and these patches were generally bigger (125.3 vs. 20.7ha mean 

area-weighted patch size). The larger buffer also contained fewer forest fragments (19.9 

vs. 31.9% in 2009), but underwent a greater loss in forest interior from 1986 to 2009 

(6.5% for 1-km buffer vs. 4.4% for 400-m buffer). 



 

 88

Threshold response of bird species to landscape structure 

In general, forest specialists exhibited threshold responses to both landscape 

composition and configuration as expected (Figure 18). For the 400 m-radius buffer for 

example, forest specialists (American Redstart, Ovenbird, and Red-eyed Vireo) were 

positive indicator taxa for the amount of forest (mean change point: 30.6%), forest 

interior (21.2%), area-weighted average patch size (7.1ha), and proximity index (9078.9). 

In contrast, they were negative indicator taxa for the amount of exurban development 

(0.3%), proportion of forest fragments (9.0%), and number of forest patches (1.5 

patches). American Redstart was the only forest specialist that responded negatively to 

forest edge (change point: 29.1%), whereas Red-eyed vireo and Ovenbird responded 

positively (16.1%). Red-eyed Vireo also responded positively to increased exurban 

development (11.9%) and to the number of forest patches and was the only forest 

specialist species that responded negatively to the rate of change in the amount of forest 

between 1986 and 2009 (1.26%; Table 9). 

Forest generalists had relatively consistent threshold responses. For the 400 m-

radius buffer for example, three of the forest generalist species (Wood Thrush, Scarlet 

Tanager, and Eastern Wood-Pewee) were positive indicator taxa for the amount of forest 

(mean change point: 18.0%), forest interior (9.2%), area-weighted average patch size 

(4.3ha), proximity index (9817.6), and forest edge (10.3%). In contrast, they were 

negative indicator taxa for the amount of exurban development (0.1%), proportion of 

forest fragments (30.4%), and number of forest patches greater than 0.45ha (0.8 patches). 

Scarlet Tanager and Eastern Phoebe were the only forest generalists that were negatively 

impacted by the magnitude of forest reduction (1.2%). In addition, Eastern Phoebe was 
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the only forest generalist that declined with 100% amount of forest, proportion of forest 

interior (76.7%), and area-weighted average patch size (49.3ha). This species 

unexpectedly responded positively to the amount of exurban development (1.4%), 

proportion of forest fragments (0.2%), and number of forest patches (Table 9). 

Forest edge species varied in their threshold response to landscape composition 

and most of the configuration metrics at both extents (Figure 18). For the 400 m-radius 

buffer for example, all forest edge species responded positively to the number of forest 

patches (mean change point: 0.6 patches). Gray Catbird and Northern Cardinal increased 

sharply with amount of exurban development and proportion of forest fragments (Table 

9). These two species responded negatively to the amount of forest (97.3%), forest 

interior (47.3%), area-weighted average patch size (46.7ha), and proximity index 

(23725.3). Eastern Towhee and Indigo Bunting were positive indicator taxa for the 

amount of forest (13.5%), forest interior (25.2%), area-weighted average patch size 

(3.7ha), proximity index (6621.0), and forest edge (2.4%), and were negative indicator 

taxa for the proportion of forest fragments (23.0%). Eastern Towhee was the only forest 

edge species that responded negatively to the amount of exurban development (0.2%) and 

had similar change points to those exhibited by forest specialists. 

Although selected bird species exhibited threshold responses, the quality of the 

indicator and certainty around change-point locations varied for some landscape structure 

variables. For example, the forest specialist Red-eyed Vireo responded positively to the 

amount of exurban development. However, the indicator was moderately reliable for the 

400 m-radius buffer (reliability = 0.70; Table 9). Reliability also changed with extent of 

analysis for some species and indicators. For example, the forest generalist Eastern 
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Phoebe was moderately reliable indicator for the proximity index within 400 m-radius 

buffer (reliability = 0.74) but was unreliable for 1 km-radius buffer (reliability = 0.38). 

Gray Catbird, an edge species, had a positive response for the number of forest patches 

greater than 0.45ha within the 400-m radius buffer and a negative response within the 1-

km radius buffer. However, the reliability for the 1 km-radius buffer was poor (reliability 

= 0.32). In general, where there were differences in reliability at different extents, the 

400-m relationships were more reliable. 

Regarding certainty around change-point locations, forest specialists had 

relatively narrow bootstrapped change-point distributions for most landscape structure 

characteristics indicating confidence about the existence of a threshold. For some 

landscape structure characteristics, forest generalists exhibited variable bootstrapped 

change-point distribution width. For example, some species (e.g., Eastern Wood-Pewee) 

had a sharp response to the amount of forest whereas others (e.g., Eastern Phoebe) had a 

more gradual response. In general, forest edge species (except for Eastern Towhee) had 

broad bootstrapped change-point distribution suggesting a more gradual response for 

most landscape structure characteristics. 

Similar patterns in threshold response were observed for the two buffer widths 

except for number of forest patches greater than 0.45ha and proportion of forest edge. In 

the case of these two variables, the direction of the response for roughly half of the 

species changed with the extent. In most cases, the direction of the response was positive 

for the 400 m-radius buffer but negative for the 1 km-radius buffer. However, the quality 

of indicators for the proportion of forest edge was moderately reliable for the 1 km-radius 
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buffer. None of the selected species had a reliable threshold response to change in the 

amount of exurban development in any of the extents. 

Discussion 

Our results demonstrate that exurban development deteriorated breeding 

territories by reducing forest cover and increasing habitat fragmentation. In addition, 

selected forest bird species exhibited threshold responses to breeding habitat deterioration 

in both the immediate surroundings and adjacent foraging areas. Responses to changes in 

landscape structure varied according to species’ habitat preferences. For example, species 

that positively responded to the amount of exurban development (e.g., Northern Cardinal) 

are often found throughout a range of habitats from shrubby sites in logged and second-

growth forests to plantings around buildings (Halkin and Linville1999). Sensitive species 

who responded negatively to amount of exurban development (e.g., Wood Thrush) are 

more frequently found in well-developed deciduous and mixed forests (Evans et al. 

2011). However, none of the selected species responded to the change in amount of 

exurban development. This suggests that for the time period considered the magnitude of 

change was marginal when compared to the changes induced to the landscape structure. 

Our results support the existence of nonlinear responses to habitat loss and fragmentation 

(Andrén 1994, Betts et al. 2007, Zuckerberg and Porter 2010) and that the variation in 

sensitivity to alteration of landscape structure depends on species habitat specificity 

(Andrén et al. 1997, Betts et al. 2007). 

Despite breeding habitat deterioration (e.g., loss of forest and increase of exurban 

development), populations significantly increased during the 24-year period for five of 

the 11 species analyzed. Two of the forest edge species (Northern Cardinal and Gray 
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Catbird) increased their population between 1986 and 2009. These species are known to 

be found in forest edges and clearings, fencerows, abandoned farmland, or residential 

areas. Thus, larger population in exurban areas may indicate that these species have been 

taking advantage of the increased availability of suitable breeding habitats and 

supplemental feeding provided by landowners (Lepczyk et al. 2004). Although we did 

not expect to find a threshold response, the direction of the response showed by these 

species corresponded with their habitat preferences. In other words, these species were 

indicators of habitat fragmentation due to exurban development (e.g., increased in 

abundance with increase in forest fragments and decrease in forest interior). The species 

also had broad change-point distributions indicating gradual responses to the land cover 

change. 

The other three species that experienced population increases were forest 

specialists (American Redstart, Red-eyed Vireo, and Ovenbird). This was surprising 

given documented population declines for the Red-eyed Vireo and the Ovenbird due to 

habitat loss and fragmentation (e.g., Donovan and Flather 2002, U.S. NABCI Committee 

2009). The population increase of American Redstart and Red-eyed Vireo is likely 

related to the forest opening created by exurban development. American Redstart and 

Red-eyed Vireo are forest birds but seem to occur more frequently in early and mid-

successional forest habitats and even start to decline as forests mature (Graber et al. 1985, 

Hunt 1998, Holmes and Sherry 2001). Thus, the type of forest disturbance associated 

with exurban development may benefit these species. The regrowth of eastern forests due 

to farmland abandonment since the early twentieth century (Matlack 1997, Smith et al. 

2004, Bowen et al. 2007) may explain the slight increase of Ovenbird populations. 
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However, this species showed a strong threshold response to amount of forest, suggesting 

that the species is sensitive to reduced forest cover. It seems that population increase in 

the region is occurring disproportionately in relatively old-growth forests adjacent to 

exurban areas and dispersal among these areas can confound the negative effects that 

forest degradation (Donovan and Flather 2002) in exurban areas may have. 

Although species showed similar response patterns at both extents, for two of the 

landscape configuration variables (number of patches and forest edge), the direction of 

the response changed with the extent. Similar results were found by Smith et al. (2011) 

who demonstrate that fragmentation effects depend on the landscape extent considered. 

Thus, the extent should be explicitly accounted for when evaluating the effects of these 

two metrics on forest birds. 

Some notable differences in group sensitivity to landscape composition and 

configuration occurred. In general, forest specialists were most sensitive to habitat loss 

and fragmentation followed by forest generalists. Although the majority of species 

responses were consistent with our classification regarding habitat preferences, there 

were two species (Eastern Phoebe and Eastern Towhee) whose response did not 

correspond to the assigned group. Eastern Phoebe is generally a woodland species (Hill 

and Gates 1988) and was classified as a forest generalist. However, this species had 

threshold responses similar to those exhibited by forest edge species for most of the 

landscape structure variables. This may be explained by nest placement preferences. 

Eastern Phoebe is mostly constrained by availability of suitable nest sites (Hill and Gates 

1988) and nests are often located on bridges, culverts, buildings, and rock outcrops in the 

vicinity of water (Weeks 2011). Thus, change in landscape structure due to exurban 
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development may benefit this species but further monitoring of its population is 

recommended. In contrast, Eastern Towhee exhibited a response similar to those showed 

by forest specialists. This species is thought of as an edge-associated generalist and 

places its nests on or above ground, usually at 1.5 m in shrubby areas (Greenlaw 1996). 

However, these results suggest that Eastern Towhees may be more sensitive to breeding 

habitat degradation due to exurban development than previously expected. 

The threshold responses that we detected for selected forest bird species indicate 

that species were affected in a nonlinear fashion by breeding habitat deterioration. 

However, the thresholds observed may not necessarily be similar for forest bird 

communities as a whole. In addition, threshold responses detected should not be used as a 

point below which a population will not persist (Betts et al. 2010) but rather as guidelines 

for management practices in areas prone to exurban development. 

Conclusion  

Rural private lands in the Mid-Atlantic region are being converted to exurban 

development at high rates and present a potentially serious threat to eastern deciduous 

forest ecosystems (Chapter II). Moreover, this trend is likely to continue into the future 

(Theobald 2005). Our results show that exurban development is degrading breeding 

habitats and that forest birds exhibited a threshold response to landscape structure 

alteration in both the immediate vicinity of breeding territories and adjacent foraging 

areas. The majority of forest birds’ responses could be predicted by their habitat 

preferences indicating that management practices in exurban areas need to consider 

species requirements. In addition, the range at which forest birds exhibited strong 
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threshold response to habitat loss and fragmentation in exurban areas may guide planners 

and managers in mitigating effects of exurban development.
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Table 7. Hierarchical-model estimates based on Breeding Bird Survey stops for forest specialist, forest generalists, and forest edge 
species. American Ornithologist´s Union alpha codes for English common names are in parenthesis. For each species, the number of 
total detections (percentages), adjusted abundance (mean ± sd), trend coefficient (slope on a log scale of abundance over time), and 
percent change per year are shown. Values in bold font indicate 95% credible intervals not over-lapping zero.  

Species 
Number of total 

detections 
Mean adjusted 

abundance 
Trend 

coefficient 
Percent  

change/year
Forest specialists     
   American Redstart (AMRE) 225 (9.1) 0.132 ± 0.015 0.042 3.10 
   Ovenbird (OVEN) 248 (10.0) 0.137 ± 0.016 0.029 2.70 
   Red-eyed Vireo (REVI) 632 (25.5) 0.373 ± 0.027 0.024 2.70 
Forest generalists     
   Eastern Phoebe (EAPH) 190 (7.7) 0.090 ± 0.014 0.005 1.80 
   Eastern Wood-Pewee (EAWP) 490 (19.8) 0.237 ± 0.018 -0.001 -0.20 
   Scarlet Tanager (SCTA) 364 (14.7) 0.180 ± 0.018 -0.004 0.30 
   Wood Thrush (WOTH) 618 (24.9) 0.396 ± 0.027 0.008 1.10 

Forest edge species   
  

   Eastern Towhee (EATO) 526 (21.2) 0.313 ± 0.025 0.007 1.00 
   Gray Catbird (GRCA) 509 (20.5) 0.401 ± 0.048 0.025 2.80 
   Indigo Bunting (INBU) 1108 (44.7) 0.657 ± 0.031 -0.006 0.50 
   Northern Cardinal (NOCA) 808 (32.6) 0.461 ± 0.027 0.022 1.50 
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Table 8. Descriptive statistics of landscape structure variables surrounding selected Breading Bird Survey stops (n = 125) at 400m- 
and 1 km-radius buffer (mean ± sd) for 1986, 1993, 2000, and 2009. 

Variables 1986 1993 2000 2009 
400 m-radius buffer 
   Forest (%) 49.2 ± 39.3 48.3 ± 39.3 46.2 ± 39.4 41.2 ± 39.2
   Exurban  
   development (%) 1.7 ± 2.5 2.1 ± 2.6 3.1 ± 3.4 6.0 ± 6.8
   Change in forest (%) - -0.9 ± 1.7 -2.1 ± 2.8 -5.0 ± 6.1
   Change in exurban  
   development (%) - 0.4 ± 0.9 1.0 ± 1.4 2.8 ± 4.1
   Forest interior (%) 39.8 ± 32.2 38.1 ± 31.9 35.8 ± 31.8 29.3 ± 32.4
   Area- weighted    
   average patch size (ha) 22.2 ± 20.8 21.7 ± 20.7 20.6 ± 20.6 18.5 ± 20.5

   Forest fragments (%) 23.4 ± 35.7 23.5 ± 35.6 25.1 ± 37.9 31.9 ± 40.9
   Number of forest  
   patches (> 0.45 ha) 1.7 ± 1.1 1.7 ± 1.2 1.6 ± 1.2 1.6 ± 1.4
   Forest edge (%) 24.1 ± 14.7 24.3 ± 14.8 24.5 ± 16.4 20.7 ± 16.2
   Proximity index  25156.8 ± 071.5 23165.1 ± 749.6 14763.0 ± 2712.3 9884.6 ± 4949.1
1 km-radius buffer 
   Forest (%) 51.0 ± 35.7 50.0 ± 35.6 47.9 ± 35.7 42.7 ± 35.8
   Exurban  
   development (%) 1.8 ± 1.6 2.2 ± 1.9 3.2 ± 2.6 6.2 ± 5.6
   Change in amount  
   of forest (%) - -1.0 ± 1.3 -2.7 ± 2.4 -5.2 ± 5.0
   Change in exurban  
   development (%) - 0.5 ± 0.7 1.0 ± 1.2 3.0 ± 3.4
   Forest interior (%) 55.6 ± 28.9 53.1 ± 28.9 49.4 ± 30.2 40.1 ± 32.4
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   Area- weighted    
   average patch size (ha) 134.4 ± 123.5 131.8 ± 123.1 123.2 ± 121.7 111.6 ± 121.3
   Forest fragments (%) 10.2 ± 17.8 11.2 ± 19.6 14.4 ± 24.5 19.9 ± 28.8
   Number of forest  
   patches (> 0.45 ha) 5.0 ± 4.2 5.0 ± 4.2 5.3 ± 4.3 5.4 ± 4.4
   Forest edge (%) 23.6 ± 11.3 24.5 ± 11.8 24.4 ± 12.6 22.5 ± 12.8
   Proximity index 25957.0 ± 205.7 23906.8 ± 060.7  15272.4 ± 1243.6 10533.3 ± 4917.0 
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Table 9. Threshold Indicator Taxa ANalysis (TITAN) results for forest specialist, forest generalists, and forest edge species for 
400 m- and 1 km-radius buffer. Only significant species at a 0.05 significant level are shown.  

 400m-radius buffer 1km-radius buffer 
   Change point     Change point  
  Indicator z Obs. 5% 95% Reliability  Indicator z Obs. 5% 95% Reliability

Forest (%)             
AMRE z+ 14.91 33.15 28.23 69.35 1.00  z+ 15.98 37.45 24.79 57.14 1.00
OVEN z+ 18.46 24.69 16.97 49.69 1.00  z+ 18.18 29.41 25.12 54.55 1.00
REVI z+ 22.08 33.93 15.16 49.69 1.00  z+ 22.85 36.79 19.27 43.45 1.00
EAPH z- 10.52 100.00 11.14 100.00 0.94  z- 9.75 99.95 12.59 100.00 0.71
EAWP z+ 19.50 9.64 8.11 17.67 1.00  z+ 15.26 16.22 12.10 38.36 1.00
SCTA z+ 26.69 24.64 14.75 39.52 1.00  z+ 26.40 28.36 22.85 41.30 1.00
WOTH z+ 19.93 19.61 4.57 28.17 1.00  z+ 18.20 21.97 16.67 37.91 1.00
EATO z+ 19.68 24.64 14.97 68.77 1.00  z+ 18.80 55.04 29.21 69.74 1.00
GRCA z- 5.65 95.57 12.32 94.27 0.99  z- 5.42 16.22 14.98 84.17 1.00
INBU z+ 14.72 2.32 1.16 6.08 1.00  z+ 11.70 9.98 2.99 12.94 1.00
NOCA z- 26.62 98.93 89.88 100.00 1.00  z- 25.56 98.68 88.77 100.00 1.00
Exurban development (%)           
AMRE z- 12.35 0.36 0.18 1.43 1.00  z- 12.97 1.40 1.21 1.89 1.00
OVEN z- 14.21 0.18 0.00 0.85 1.00  z- 13.85 1.35 0.28 1.71 1.00
REVI z+ 5.46 11.94 0.00 12.31 0.70  z+ 6.59 4.50 0.19 7.97 0.87
EAPH z+ 11.72 1.44 0.18 3.28 1.00  z+ 12.52 0.71 0.57 3.08 1.00
EAWP z- 5.86 0.00 0.00 8.63 0.86  z- 5.82 0.31 0.00 4.40 0.92
SCTA z- 9.68 0.18 0.00 0.18 0.99  z- 9.83 0.29 0.00 1.03 0.98
WOTH z- 7.62 0.18 0.00 4.11 0.94  z- 8.70 0.83 0.22 1.28 1.00
EATO z- 13.50 0.18 0.00 0.36 1.00  z- 14.14 0.22 0.02 1.17 1.00
GRCA z+ 3.02 0.00 0.00 9.01 0.84  z+ 4.01 0.11 0.00 3.76 0.98
INBU z+ 4.61 2.14 0.71 9.09 0.94  z+ 2.73 4.41 0.11 7.81 0.62
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NOCA z+ 17.07 0.00 0.00 0.18 1.00  z+ 27.10 0.00 0.00 0.29 1.00

Change in amount of forest (%)           
REVI z- 4.61 -1.26 -4.10 -1.07 0.98  z- 6.05 -2.24 -3.87 -1.40 1.00
EAPH z- 7.90 -5.48 -6.42 -0.36 1.00  z- 7.87 -3.32 -5.42 -0.37 1.00
SCTA z- 5.65 0.00 -2.39 0.00 0.83  z- 5.54 -1.38 -2.51 0.00 0.88
Forest interior (%)            
AMRE z+ 14.90 29.35 17.28 51.58 1.00  z+ 15.44 51.57 33.32 62.69 1.00
OVEN z+ 16.61 29.51 8.31 50.86 1.00  z+ 16.34 46.55 38.31 66.01 1.00
REVI z+ 17.78 5.88 3.29 28.07 1.00  z+ 17.58 32.01 29.28 47.99 1.00
EAPH z- 9.73 76.69 66.39 81.55 0.99  z- 10.13 83.51 80.60 92.37 1.00
EAWP z+ 19.64 10.53 1.98 16.30 1.00  z+ 12.53 31.48 10.86 63.11 1.00
SCTA z+ 23.17 6.85 4.96 25.12 1.00  z+ 21.29 40.08 31.06 57.38 1.00
WOTH z+ 20.72 10.20 1.48 20.36 1.00  z+ 14.84 33.81 11.19 62.51 1.00
EATO z+ 18.10 50.49 2.00 56.02 1.00  z+ 16.97 62.58 54.54 70.31 1.00
GRCA z- 5.95 15.67 12.28 81.49 1.00  z- 5.07 27.88 23.42 81.74 1.00
INBU z+ 11.68 0.00 0.00 10.50 1.00  z+ 10.39 11.91 7.12 23.46 1.00
NOCA z- 27.08 78.87 67.28 81.61 1.00  z- 26.64 83.02 79.14 92.44 1.00
Area-weighted average patch size (ha)          
AMRE z+ 15.24 6.55 7.26 29.42 1.00  z+ 15.43 28.30 36.48 125.34 1.00
OVEN z+ 18.16 9.13 4.77 26.44 1.00  z+ 16.87 27.85 33.63 150.75 1.00
REVI z+ 21.27 5.69 3.46 20.04 1.00  z+ 21.24 71.36 21.01 98.24 1.00
EAPH z- 9.70 49.28 19.57 50.11 0.95  z- 9.89 295.16 11.54 313.66 0.87
EAWP z+ 17.78 2.40 1.94 7.46 1.00  z+ 14.40 25.49 9.33 99.18 1.00
SCTA z+ 24.75 5.69 3.59 13.37 1.00  z+ 23.51 52.89 17.56 109.40 1.00
WOTH z+ 22.31 4.89 2.02 7.49 1.00  z+ 17.28 89.31 19.02 113.37 1.00
EATO z+ 19.47 7.12 2.74 31.99 1.00  z+ 17.47 129.26 69.60 165.96 1.00
GRCA z- 5.77 43.79 3.01 48.96 0.99  z- 6.20 177.78 8.62 234.90 1.00
INBU z+ 12.54 0.33 0.19 1.69 1.00  z+ 9.31 6.18 1.17 7.95 1.00
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NOCA z- 26.81 49.55 44.66 49.86 1.00  z- 25.91 309.60 264.68 312.12 1.00
Forest fragments (%)            
AMRE z- 14.77 3.22 0.60 7.67 1.00  z- 15.74 7.09 1.79 8.64 1.00
OVEN z- 16.26 2.33 0.65 15.53 1.00  z- 17.11 2.67 1.16 6.72 1.00
REVI z- 19.09 21.51 3.79 35.60 1.00  z- 21.57 2.98 2.71 10.98 1.00
EAPH z+ 6.97 0.20 0.00 0.61 0.98  z+ 9.78 0.02 0.00 19.40 0.83
EAWP z- 16.01 38.00 4.22 55.40 1.00  z- 14.31 2.98 2.03 19.36 1.00
SCTA z- 21.71 27.63 4.99 42.86 1.00  z- 21.97 14.01 3.36 18.08 1.00
WOTH z- 18.53 25.68 15.96 53.97 1.00  z- 17.97 14.76 2.94 18.21 1.00
EATO z- 16.44 1.30 0.59 39.88 1.00  z- 16.78 1.32 0.91 9.79 1.00
GRCA z+ 6.65 3.97 0.00 26.11 1.00  z+ 5.45 2.52 0.16 19.40 1.00
INBU z- 7.98 44.77 15.40 100.00 0.99  z- 12.97 26.75 17.50 31.77 1.00
NOCA z+ 17.03 0.21 0.00 0.58 1.00  z+ 25.06 0.02 0.00 0.12 1.00
Number of forest patches           
AMRE z- 12.47 2.00 1.00 2.00 0.99  z- 14.48 6.00 3.45 7.00 1.00
OVEN z- 14.32 1.00 1.00 2.00 1.00  z- 16.29 2.00 2.00 6.00 1.00
REVI z+ 14.27 0.00 0.00 1.00 1.00  z- 16.05 5.00 4.00 6.28 1.00
EAPH z+ 8.79 2.00 1.00 2.00 1.00  z+ 6.26 2.00 1.00 3.00 1.00
EAWP z+ 11.96 1.00 0.00 1.00 0.98  z- 9.00 3.00 1.00 6.00 1.00
SCTA z+ 14.62 0.00 0.00 1.00 1.00  z- 17.05 5.00 3.00 6.00 1.00
WOTH z+ 16.24 0.00 0.00 1.00 1.00  z- 9.56 3.00 1.00 6.00 0.99
EATO z+ 11.23 0.50 0.00 2.00 0.85  z- 14.78 5.00 2.00 5.00 1.00
GRCA z+ 4.27 1.00 1.00 4.00 0.78  z- 5.44 13.00 1.00 13.00 0.32
INBU z+ 13.93 0.00 0.00 1.00 1.00  z+ 3.28 0.00 0.00 14.00 0.92
NOCA z+ 9.11 1.00 1.00 2.00 1.00  z+ 17.72 1.00 1.00 2.00 1.00
Forest edge (%)            
AMRE z- 12.16 29.12 24.18 35.78 0.98  z- 14.97 28.02 23.19 29.16 1.00
OVEN z+ 13.72 16.08 0.00 25.58 0.84  z- 15.51 23.94 16.01 30.38 1.00
REVI z+ 16.36 16.08 0.00 16.87 1.00  z- 9.43 28.27 6.81 32.85 0.87
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EAPH z+ 9.75 23.53 18.31 25.72 1.00  z+ 11.49 12.03 9.68 16.06 1.00
EAWP z+ 16.84 16.73 0.00 16.88 1.00  z- 6.83 27.73 0.00 36.53 0.82
SCTA z+ 19.79 15.42 0.00 16.76 1.00  z- 13.53 24.16 22.91 30.61 0.97
WOTH z+ 18.41 11.60 0.00 16.75 1.00  z+ 8.80 5.96 0.00 28.55 0.46
EATO z+ 16.11 0.00 0.00 16.70 1.00  z- 14.06 13.02 9.42 26.19 1.00
INBU z+ 10.33 4.73 0.00 17.46 0.98  z+ 5.33 2.93 0.00 34.48 0.98
NOCA z+ 11.41 19.83 18.35 25.94 0.98  z+ 18.68 13.02 7.56 16.01 1.00
Proximity index           
AMRE z+ 8.45 9075.3 9008.0 23749.3 0.92  z+ 8.08 8910.6 8688.6 9108.2 0.97
OVEN z+ 9.03 9075.3 8993.5 9108.2 1.00  z+ 7.65 9108.2 8711.5 23749.3 0.96
REVI z+ 7.71 9086.1 8829.7 12855.1 0.94  z+ 6.14 9023.7 8737.5 19193.7 0.46
SCTA z+ 10.46 9075.3 8993.5 9108.2 1.00  z+ 8.65 9023.7 8610.9 9108.2 1.00
WOTH z+ 7.45 0.0 0.0 9076.1 0.97  z+ 2.74 23739.6 8409.9 36803.3 0.53
EATO z+ 6.66 8865.9 0.0 9108.2 0.97  z+ 5.38 8688.6 8637.5 27322.3 0.84
GRCA z- 5.72 23749.3 9108.2 25507.3 0.98  z- 6.01 24914.9 9108.2 27801.1 1.00
INBU z+ 7.21 4376.1 0.0 25811.3 0.78  z- 3.10 8449.8 8394.4 32095.0 0.98
NOCA z- 6.36 23701.4 9048.2 25674.9 0.99  z- 7.12 23747.8 8820.7 25780.0 1.00

Note: TITAN observed change points (obs.) and bootstrap confidence intervals (among 250 simulation iterations) correspond 
to the value of independent variables resulting in the largest z scores for each taxon. Purity is the mean proportion of correct 
response direction (z- or z+) assignments and reliability is the mean proportion of p-values ≤ 0.05 among 250 simulation 
iterations. 
Taxa IDs correspond to the American Ornithologist´s Union alpha codes for English common names.
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Figure 16. The study region (shaded area) includes nine counties in north and central 
Virginia and two counties in western Maryland. From the North American Breeding Bird 
Survey (BBS) routes located in the study area, 125 survey stops (circles) were uniformly 
selected. Zoom-in window shows an example of a landscape within a 1 km radius 
circular area around one of the selected survey stops. 
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Figure 17. Time series of mean abundance adjusted for missing observations and 
observer differences. The lines indicate the posterior median (line nearly coincident with 
the circles) with 95% confidence intervals. 
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Figure 18. Threshold Indicator Taxa ANalysis (TITAN) using landscape variables as a 
predictor of threshold changes in individual bird species in 400 m (top panel) and 1 km 
circular area (bottom panel) between 1986 and 2009 in north and central Virginia and 
western Maryland. Only indicator taxa (purity ≥ 0.95 and reliability ≥ 0.95) are plotted in 
increasing order with respect to their observed change point. Solid circles correspond to 
negative (z-) indicator taxa and open circles correspond to positive (z+) indicator taxa. 
Circles are size in proportion to z scores. Lines overlapping each circle represent 5th and 
95% percentiles among 250 bootstrap replicates. Landscape variables evaluated were (A) 
forest, (B) forest interior, (C) area-weighted averaged patch size, (D) exurban 
development, (E) forest fragments, (F) number of forest patches, (G) proximity index, 
and (H) forest edge. Taxa IDs correspond to the American Ornithologist´s Union alpha 
codes for English common names. 
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Figure 18 continued 
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Figure 18 continued 
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CHAPTER V 

CONCLUSION 

Exurban development is a prevalent form of land-use change in the contiguous 

United States and is increasing faster than metropolitan areas (Brown et al. 2005, Hansen 

et al. 2005). The location of exurban development is correlated with natural and 

recreational amenities that humans desire, raising concerns about its effects on 

biodiversity and ecosystem processes. However, exurban development characteristics of 

scattered, isolated housing units within a landscape dominated by native vegetation have 

hindered the assessment of its effects. In an effort to enhance our understanding of land 

conversion to exurban development in the Mid-Atlantic region, I have developed a new 

approach to map exurban development (Chapter II), evaluated exurban historical trends 

to comprehend drivers of this type of development (Chapter III), and assessed whether 

forest birds respond, and if so in a nonlinear fashion, to changes in breeding habitats due 

to exurban growth (Chapter IV).  

The identification and quantification of exurban development was estimated here 

by the development of a novel analytical approach which identified mixed pixels 

containing exurban development (Chapter II). This approach then used decision-tree 

classification and morphological spatial pattern analysis to separate exurban development 

from other forest disturbing events, overcoming many of the obstacles previously 

associated with mapping this increasingly common land-use class. The methodology was 

found to be robust and can be used in other regions depending on the availability of 

reference data sources (e.g., aerial photos) for the development of the training data 

required to interpret changes. However, as for any application using remote sensing data, 
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the pre-processing step is critical to ensure that the change recorded is not due to changes 

in spectral properties of pixels throughout the imagery (Kennedy et al. 2009).  

Exurban development has become a pervasive and fast-growing form of land-use 

change in the Mid-Atlantic region. As in other regions of the country, exurban 

development is expanding into rural landscapes and along protected areas at high rates. 

By 2009, total exurban land cover was 7% in north and central Virginia and western 

Maryland. The rate of exurban expansion (6% per year) was much higher than the 

national average (2% per year; Theobald 2005) but similar to other areas of the US 

experiencing high population growth (e.g. Mountain West: 8% per year; Hansen et al. 

2002). This suggests that eastern deciduous forests of the Mid-Atlantic are facing high 

pressure from exurban development and there is a danger of losing these diverse and 

valuable habitats. The improved understanding of the spatial and temporal patterns of 

exurban development I have provided offer the potential for land managers and 

conservation practitioners to better manage growth in rural residential development areas. 

Understanding the drivers of this land conversion and establishing which 

analytical tools make reliable projections across temporal and spatial scales can help 

anticipate future exurban development and its effects (Chapter III). Once the spatial and 

temporal patterns of exurban development were identified, I could determine factors that 

have been driving exurban growth since 1986 and analyze the role of historical spatial 

patterns and individuals’ decisions in shaping exurban patterns. Human preference for 

certain attributes on the landscape (i.e., environmental amenities and landscape 

configuration surrounding landowners’ land) played a major role in the hazard of 

conversion. Land conversion to exurban development was effectively captured by the 



 

 111

spatially-explicit econometric model at both local and county scales and the pattern-based 

model only performed well at the county scale. Thus, pattern-based models like SLEUTH 

can forewarn potential coarse-scale losses of natural resources in exurban areas, but are 

less useful at finer scale or for assessing potential consequences of land-use policy on 

people’s behavior. This knowledge can be used by local and regional governments to 

guide land-use planning schemes and evaluate the effects of land-use policies prior to 

their implementation in an effort to foresee indirect policy results. 

Most insights about the effects of exurban development on wildlife have been 

transferred from research in urban and suburban areas. Some studies have addressed 

explicitly the effects of exurban development on bird communities (Friesen et al. 1995, 

Engle et al. 1999, Odell and Knight 2001, Fraterrigo and Wiens 2005, Merenlender et al. 

2009, Suarez-Rubio et al. 2011) but few studies have examined the response of species 

through time as residential development progresses (Chace and Walsh 2006). I assessed 

whether exurban development degrades avian breeding territories over time and 

estimated forest birds’ response to those changes (Chapter IV). I learned that exurban 

development is indeed degrading breeding habitats by reducing forest cover and 

increasing habitat fragmentation around Breeding Bird Survey stops. Selected forest birds 

exhibited a response to deteriorating breeding habitats in the vicinity of breeding 

territories (400 m-radius buffer) and adjacent foraging areas (1 km-radius buffer). Forest 

specialists were most sensitive to habitat deterioration followed by forest generalists. 

Forest edge species also responded to breeding habitat deterioration but the magnitude of 

the response varied according to their habitat preferences. The results suggest that species 

were affected by deteriorating breeding habitats in a nonlinear fashion.  
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Taken together, these results indicate that exurban development has increased in 

recent decades and has occurred disproportionately in areas with high natural amenities 

and around the boundaries of protected areas. Therefore, exurban development not only 

affects private lands, but also erodes habitat quality close to and inside protected areas.  

The knowledge gained from this study regarding drivers of exurban development 

and the modeling approach that best captures exurban growth at local and county scales is 

highly relevant for land-use planning. Reliable projections can support the planning 

process. By simulating future growth, planners can visualize different growth scenarios 

and estimate the impacts that are likely to emerge from new or changed policy. In 

addition, the spatially explicit econometric model can inform the extent to which relevant 

parameters influence exurban growth. This information could guide the drafting of 

policies and assist the design of programs to redirect growth. 

My findings show that exurban development has been degrading the quality of 

avian breeding habitats and that forest birds are responding to this habitat degradation. 

Alarmingly low levels of exurban development around breeding territories (400m- and 

1km-radius buffer) corresponded to sharp declines of forest specialists (except Red-eyed 

Vireo) and forest generalists (except Eastern Phoebe), whereas some forest edge species 

increased with exurban development.  

The prevalence of thresholds (Chapter IV) to this relative novel and fast-growing 

form of land use (i.e., exurban development; Chapter II) suggests that ecological effects 

of exurban development will be seen in the study area. Of the125 BBS stops located in 

the study area, 74.4% of BBS stops (for the 400 m-radius buffer) have already passed 

levels of exurban development associated with reduced frequency and abundance of the 
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Ovenbird, Scarlet Tanager, Wood Thrush, and Eastern Towhee (Table 10). Sixty percent 

of BBS stops have levels of exurban development associated with the frequency and 

abundance of the forest edge species, Indigo Bunting. Overall, exurban development is 

favoring forest edge species over forest specialists and generalists. 

The counties driving this trend are those with more than 0.5% of exurban land 

cover (i.e., Fauquier, Frederick, and Shenandoah in Virginia; Frederick and Washington 

in Maryland; Table 11). Based on the thresholds identified for the 1 km-radius buffer 

surrounding BBS stops, the amount of exurban development in Fauquier County (1.3%) 

has already reached the level at which forest specialists and generalists would be 

expected to have negative responses. Forest specialists, Ovenbird and American Redstart, 

exhibited threshold declines in frequency and abundance in response to 1.4% exurban 

development surrounding breeding habitats. In contrast, the proportion of exurban 

development in Page and Clarke Counties (0.31%) is below the threshold exhibited for 

the Ovenbird and American Redstart but close to the threshold exhibit by forest 

generalists, Eastern Wood-Pewee and Scarlet Tanager (0.30%). 

Exurban development is differentially affecting forest bird species. Species that 

require large and continuous tracts of forests may not be able to persist in exurban areas 

(e.g., Ovenbird). In contrast, species taking advantage of more open and disturbed 

habitats would thrive in these environments (e.g., Northern Cardinal). These results 

emphasize the importance of protecting forest interior from exurban development in an 

effort to conserve forest specialist species. In addition, the range at which forest birds 

exhibited strong negative threshold response to habitat loss and fragmentation in exurban 
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areas may be used to guide land management plans and design effective mitigation 

strategies to minimize the likelihood of sudden bird population declines. 
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Table 10. Percent of Breeding Bird Survey (BBS) stops (n = 125) that were above 
exurban development threshold values. Positive response (z+) indicates high frequency 
and abundance for sites above threshold. Negative response (z-) indicates low frequency 
and abundance for sites above threshold. 

Species Response
Threshold value 

(% exurban) 
Percent of BBS 
above threshold  

400 m-radius buffer   
OVEN, SCTA, 
WOTH, EATO z- 0.18 74.4 
AMRE z- 0.36 72.0 
EAPH z+ 1.44 63.2 
INBU z+ 2.1 60.0 
REVI z+ 11.94 19.2 
1 km-radius buffer   
GRCA z + 0.11 84.8 
EATO z - 0.22 84.8 
SCTA z - 0.29 84.0 
EAWP z - 0.31 84.0 
EAPH z + 0.71 82.4 
WOTH z - 0.83 82.4 
OVEN z - 1.35 78.4 
AMRE z - 1.40 78.4 
INBU z + 4.41 59.2 
REVI z + 4.50 59.2 

Note: Species IDs correspond to Ovenbird (OVEN), Scarlet Tanager (SCTA), Wood 
Thrush (WOTH), Eastern Towhee (EATO), American Redstart (AMRE), Eastern Phoebe 
(EAPH), Indigo Bunting (INBU), Red-eyed Vireo (REVI), Gray Catbird (GRCA), and 
Eastern Wood-Pewee (EAWP). 
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Table 11. Percent of exurban development per county and exurban development 
threshold values for the 1 km-radius buffer surrounding Breeding Bird Survey stops. Bird 
species responded positive (z+) or negative (z-) to exurban development threshold values.  

County 
Percent of  exurban 

per county Species Response 
Threshold value 

(% exurban) 
Clarke 0.28 NOCA z + 0.00 
Page 0.33 GRCA z + 0.11 
Madison 0.43 EAPH z + 0.71 
Rappahannock 0.45 INBU z + 4.41 
Warren 0.46 REVI z + 4.50 
Washington  0.64 EAWP z - 0.31 
Frederick, MD 0.70 EATO z - 0.22 
Shenandoah 0.79 SCTA z - 0.29 
Culpeper 0.81 WOTH z - 0.83 
Frederick 1.09 OVEN z - 1.35 
Fauquier 1.34 AMRE z - 1.40 

Note: Species IDs correspond to Northern Cardinal (NOCA), Gray Catbird (GRCA), 
Eastern Phoebe (EAPH), Indigo Bunting (INBU), Red-eyed Vireo (REVI), and Eastern 
Wood-Pewee (EAWP), Eastern Towhee (EATO), Scarlet Tanager (SCTA), Wood Thrush 
(WOTH), Ovenbird (OVEN), and American Redstart (AMRE). 
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Future directions and recommendations 

Although this study examines multiple perspectives of exurban development, it is 

by no means comprehensive. There are several topics that could be expanded and many 

gaps in our knowledge about the effects of exurban development that require further 

investigation, including: 

• Improve information about sensitivity of SLEUTH growth coefficients. 

Evaluating the relative importance of growth coefficients would guide the 

selection of best-fitting coefficients. 

• Simulate alternative policy scenarios and forecast exurban growth. Assessing 

possible outcomes of policy implementation could provide input about their 

effectiveness and highlight conservation priority areas. 

• Assess the relative effects of habitat loss and fragmentation beyond the 1km-

radius buffer. Understanding the footprint of habitat degradation due to exurban 

development will inform conservation and planning decisions.  

• Increase knowledge about the ecological mechanisms that underlie the response 

of forest birds to exurban development. Understanding ecological mechanisms 

will enhance our ability to manage and mitigate negative impacts of exurban 

development on forest birds. 

In order to maintain a balance between future exurban growth, environmental 

quality, and avian ecological requirements, local policy decisions will become 

increasingly important. Incentives to encourage growth near existing towns could 

minimize the continued subdivision of large, privately owned woodland parcels. 

Identifying large areas of forests and purchasing development rights before they become 
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fragmented by rural residential development can be an effective way to conserve forest 

specialist species. Synergy among local governments, counties, and agencies in 

developing a comprehensive regional plan (Daniels 1999) can move forward biodiversity 

conservation and reduce ecological impacts of exurban development. Individual 

landowners also have a role to play in how they manage their lands; for example, by 

landscaping with native plant species, to mitigate impacts of exurban development. I have 

shown exurban development to be an increasingly pervasive form of land use in the Mid-

Atlantic with tangible ecological consequences. Coordination among all relevant 

stakeholders will become increasingly important to conserve and mitigate the future 

impacts of this landscape change. 
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