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One of the most promising ways to improve clinical diagnostic tools is to use 

microfluidic Lab-on-a-chip devices. Such devices can provide a dense array of fluidic 

components and sensors at the micro-scale which drastically reduce the necessary 

sample volumes and testing time. This dissertation develops a unique electrochemical 

sensor array in a microfluidic device for high-throughput, label-free detection of both 

DNA hybridization and protein adsorption experiments. 

 The device consists of a patterned 3 x 3 grid of electrodes which can be 

individually addressed and microfluidic channels molded using the elastomer PDMS. 

The channels are bonded over the patterned electrodes on a silicon or glass substrate. 

The electrodes are designed to provide a row-column addressing format to reduce the 

number of contact pads required and to drastically reduce the complexity involved in 

scaling the device to include larger arrays. The device includes straight channels of 

100 µm height which can be manually rotated to provide either horizontal or vertical 

fluid flow over the patterned sensors. To enhance the design of the arrayed device, a 



 

 

series of microvalves were integrated with the platform. This integrated system 

requires rounded microfluidic channels of 32 µm height and a second layer of 

channels which act as pneumatic valves to pinch off selected areas of the microfluidic 

channel. With the valves, the fluid flow direction can be controlled autonomously 

without moving the bonded PDMS layer. Changes to the mechanism of detection and 

diffusion properties of the system were examined after the integration of the 

microvalve network.  

 Protein adhesion studies of three different proteins to three functionalized 

surfaces were performed. The electrochemical characterization data could be used to 

help identify adhesion properties for surface coatings used in biomedical devices or 

for passivating sensor surfaces. DNA hybridization experiments were performed and 

confirmed both arrayed and sensitive detection. Hybridization experiments performed 

in the valved device demonstrated an altered diffusion regime which directly affected 

the detection mechanism. On average, successful hybridization yielded a signal 

increase 8x higher than two separate control experiments. The detection limit of the 

sensor was calculated to be 8 nM. 
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1 Introduction 
 

1.1 Motivation 
 

Clinical diagnostic tools have been utilized for decades to help identify disease 

within patients and to discover new drugs for battling a myriad of bacterial and viral 

infections. These tools rely on the ability to provide data for a large array of samples 

with minimal effort required by the technician. On average, the development of a new 

drug costs approximately $400 million and takes 15 years [1]. One factor inhibiting 

the progress of drug discovery or disease identification using these tools is the cost of 

not only the tool itself but also of the reagents required for any given test [2, 3]. 

Furthermore, highly trained scientists are needed to both use and interpret the output 

of these tools correctly which limits where screenings can take place. Thus, there has 

been an interest recently by researchers to improve these diagnostic tools by 

decreasing their cost while making them easier to use all without sacrificing 

sensitivity. 

One of the more promising ways to improve diagnostic tools is through the use 

of lab-on-a-chip devices [4-9]. These devices utilize microfluidic channels to control 

fluid flow to portions of the chip where a variety of procedures can take place 

including reagent mixing, affinity based binding, signal transduction and cell 

culturing [10-13]. Microfluidics provides many advantages over conventional clinical 

diagnostic tools such as the microwell plate reader or electrophoretic gel shift assays. 

Microfluidic devices require 2 to 3 orders of magnitude less reagents to perform 

similar assay experiments (nanoliters as opposed to microliters.) Also, these devices 

can increase the speed by which some biological events occur due to the smaller 



2 

 

confinement of the species within the channels [14, 15]. Thirdly, sensors can be 

integrated within microfluidic devices using lithography and etching techniques 

which can provide label-free detection (this will be explained in further detail in 

section 1.3). Lastly, these devices are inexpensive to produce and require little work 

on the part of the technician to operate.  

This dissertation covers the design, fabrication and testing of an arrayed 

microfluidic device with integrated sensors for the detection of various biological 

compounds. The compounds of interest to be detected are proteins and various DNA 

sequences. The proteins are involved in a study on their adhesion to various surfaces 

while the DNA sequences are detected via hybridization to their complementary 

target.  

The work done with the proteins is influenced by a collaboration our laboratory 

has with other bioengineering and biology labs at the University of Maryland. The 

goal of the collaboration is to develop in-vitro diagnostic tools to discover drugs that 

can combat bacterial biofilm formation. Biofilm formation in the body can cause 

severe infection which may require invasive surgery to remove the infection [16, 17]. 

Specific proteins have been identified from common bacterial species such as E. coli 

that are vital in the production of the biofilm [18-21]. The detection of these proteins 

in vitro provides a platform that can be used to screen for drugs that inhibit the 

production or activity of the proteins thus disrupting the creation of the biofilm.  

DNA hybridization detection is used extensively to diagnose genetic disorders 

[22-24] and various forms of cancer [25-27]. Every year, multiple strains of influenza 

are identified in patients using results from DNA hybridization techniques [28-30]. In 
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fact, 36,000 people die each year in the United States alone from the influenza virus 

[31]. All of these situations could benefit from a bench-top microfluidic device that 

can perform the same assay techniques as a plate reader or gel shift assay at a fraction 

of the cost without sacrificing sensitivity or specificity. Examples of sensitive 

microfluidic devices can be found in section 1.3.2. 

1.2 Summary of Accomplishments 
 

1.2.1 Fabrication and testing of an arrayed label­free sensing platform 
 

The primary focus of this dissertation is the fabrication and testing of a 

prototype device to perform arrayed detection of affinity based binding events. The 

device includes a series of elastomer microfluidic channels with a matrix of 

individually addressable sensors and measurement electrodes. The direction of the 

fluid flow across the sensor matrix can be changed by rotating the channel layer to 

provide either horizontal or vertical channels. Each sensor provides the ability to use 

electrochemical techniques to probe for any binding reactions occurring on the 

surface. Controlling the fluid flow through the device allows the user to pattern 

multiple sensor sites while minimizing any cross-contamination. A unique electrode 

design allows for many sensors to be addressed by only a few peripheral contact pads 

as discussed further in section 2.4.2. Further details about the device are explained in 

chapter 2 of the dissertation. 

To further the study of the microfluidic array platform, microvalves were 

integrated to enhance the fluid control. This integration involved a design change of 

the microfluidic channels themselves and more complicated fabrication procedures. 
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The effects that the valve integration had on the diffusion of the system as well as the 

impedance sensing mechanism concerning DNA hybridization were explored.  

1.2.2 Study of protein adhesion to various functionalized surfaces 
 

As discussed above, detecting the presence of particular proteins is of great 

interest to the drug screening community and was one of the leading factors that lead 

to this research. A common gene regulator protein in E. coli, the cAMP receptor 

protein (CRP), was chosen to focus the protein detection study [32-34]. During the 

course of this study, it was found that CRP displayed adhesion affinity to many 

different types of surfaces. This observation led to the use of the arrayed device to 

analyze adsorption of proteins to various passivated surfaces. To our knowledge, this 

is the first example of a microfluidic device employing electrochemical detection for 

the purpose of characterizing protein adhesion. 

To validate the arrayed capability of the device, two other proteins were 

purchased, tumor necrosis factor α (TNFα) and tumor necrosis factor β (TNFβ). Each 

protein is a commonly known cancer marker and both are widely studied [35-37]. 

Further details regarding how the device was used for this study and what was learned 

from the data can be found in chapter 5.  

1.2.3 DNA hybridization study throughout all stages of device design 
 

Electrochemical analysis was used to observe various DNA oligomers 

successfully hybridizing to their complementary target sequence. This work began by 

performing the detection with the large scale electrodes and continued with the 

microfluidic device, and finally, was demonstrated within the device integrated with 

valves to control the fluid flow direction.  
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The key novelty with this accomplishment is the ability to perform the arrayed 

detection of multiple hybridization events in a single device without the need for 

labeling either of the DNA strands. Typically, experiments require a fluorescent or 

enzymatic label on the target strand in order to receive an output signal [38, 39]. The 

method discussed in this dissertation can detect the DNA hybridization through the 

use of a free redox compound and can do so in an easily arrayed format. 

1.3 Literature Review 
 

This section covers a breadth of published work that is related to this 

dissertation. It is meant to help highlight the novel aspects of this work and how it 

contributes to the field of clinical diagnostics and drug screening. The first section 

covers established techniques used for drug discovery and drug screening as well as 

other examples of recent technology being utilized for this purpose. The next section 

provides an overview of how microfluidic devices specifically have been used for 

diagnostic testing. The final section summarizes the array of literature on 

electrochemical sensing both at the macroscale and at the microscale. 

1.3.1 Conventional drug discovery and screening techniques 
 

There are numerous established techniques for performing drug analysis in the 

laboratory. These include the use of microplate readers, gel shift assays and flow 

cytometers. These instruments provide multivariate analysis for a high number of 

loaded samples. Each of these instruments will be briefly reviewed here including any 

drawbacks that can be addressed by the work presented in this dissertation. 
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1.3.1.1 Microplate readers 
 

 Microplate readers are the most common tools utilized in labs around the 

world for high throughput drug screening. These devices contain an optical detection 

system that can scan multiple solution wells of varying sizes and report absorbance or 

fluorescence data. By using the plate reader, different tests can be performed within 

the solution wells including cell growth assays [40, 41], immunoassays [42, 43] or 

DNA hybridization [44, 45].  

Microwell plates can be purchased in a variety of shapes and sizes. One of the 

most commonly used sizes is the 96-well plate with each well able to hold about 500 

µl of liquid. However, plates exist which can contain over 1000 individual wells with 

each well holding less than 10 µl of fluid. These plates range in price from hundreds 

to thousands of dollars per plate depending on the quality of the plate material and the 

size [46]. Figure 1.1 below displays pictures for both a common 96-well plate and a 

1536-well plate.  

 
Figure 1.1: (a) photograph of a typical 96 well plate and (b) a more dense 1536 well plate. Images 
reproduced from [46]. 

Of the various uses of the microplate reader, one of the most common tests 

performed is known as the enzyme-linked immunosorbent assay or ELISA [47, 48]. 
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ELISA is a technique which binds either enzyme-linked antibodies or fluorescently 

tagged antibodies to particular antigens immobilized in the well. A substrate is further 

added that is then converted by the enzyme linked to the antibody into an optical, 

typically fluorescence, signal. This substrate can also cause a color change in the 

liquid which can be quantified via absorbance measurements at a particular 

wavelength. Although ELISA is one of the leading analysis methods for analyte 

detection, it requires numerous time-consuming incubation and flushing steps and is 

wholly dependent on the activity and availability of the fluorescent label for a 

particular antigen. 

Due to the popularity of plate readers in the lab setting, many groups have 

researched new devices that work in conjunction with the plate reader to improve the 

performance and sampling rate. An example of this is an automated sampling 

microdevice with integrated capillary electrophoresis (CE) and mass spectrometry 

(MS) developed by Zhang et al. [49]. The microdevice contained chemically etched 

channels in glass and was sandwiched between machined polycarbonate containing 

platinum electrodes for CE separation of the sample and pressure inlets for driving 

the fluid flow. A 200 µm inner diameter capillary was fixed to one end of the etched 

fluid channel and an electrospray tip of 25 µm inner diameter was fixed to the output 

end of the fluid channel. A schematic displaying how the device interfaces with the 

microwell plate is seen in Figure 1.2. Pressure was used to draw 500 nL of liquid out 

of a microwell through the capillary, while a high voltage applied to the platinum 

electrodes separated the particles for MS analysis at the output end. A mixture of 

various proteins was used and the presence of each one was detected using the device. 
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The motivation behind this published work was to reduce the sample volume required 

for analysis while quickening the sample preparation pace. 

 
Figure 1.2: Design of the coupling of the microdevice with attached CE and MS components to the 

vertically mounted microwell plate. Reproduced from [49]. 

For certain cell culturing studies, the use of a microwell plate may have 

specific advantages over micro-patterned templates. A recent study by Sakai et al. 

compared the growth of mouse embryonic stem cells cultured in the wells of a 

microwell plate to those cultured in either microfabricated wells or over printed 

gelatin spots [50]. The microfabricated wells were milled to be 600 µm deep and 600 

µm wide and were covered with polyethylene glycol to reduce cell adsorption. The 

gelatin spots of 200 um diameter were fabricated via microcontact printing with the 

surrounding surface passivated with polyethylene glycol. The results demonstrated a 

higher cell growth rate and larger embryonic bodies (clusters of embryonic stem 

cells) with the 96 well plate vs. both micropatterned techniques. Although the stem 

cells would grow and proliferate for all of the cases studied, the environment of the 

96 well plate proved to be more ideal for stem cell research. Although the work 

described in this dissertation does not involve the use of living cells, it is still 
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important to note that such microfluidic devices may not be ideal for all facets of 

clinical research. 

Microwell plate readers have proven to be valuable tools for diagnostic 

research but there are some drawbacks when performing binding affinity assays. Due 

to the external optical measurement equipment required for data collection, a 

fluorescent or enzymatic label on one of the compounds is necessary. This labeling 

procedure requires extra sample preparation steps and in some cases can compromise 

the integrity of the compound being labeled [51]. The microfluidic device presented 

in this dissertation contains integrated sensors to provide label-free analysis of 

various binding events. 

1.3.1.2 Gel Shift Assays 
 

An electrophoretic mobility shift assay, or gel shift assay, is a common 

technique employed primarily to determine protein binding to either DNA [52-54] or 

RNA [55, 56]. The results are based upon the migration of the nucleic acid sequence 

through a polyacrylamide or agarose gel due to an applied electric field. The 

DNA/RNA migrates through the gel towards the positive terminal since it is 

negatively charged. If protein is bound to the DNA/RNA, this migration will be 

slowed. The DNA/RNA is typically tagged with either a fluorescent [53] or 

radioactive [52, 54] marker to determine its location in the gel after a set amount of 

time exposed to the electric field. This concept for a DNA-protein or RNA-protein 

affinity assay was developed in the early 1980’s and has been used extensively ever 

since [57, 58]. This method can also be used to separate molecules based on their size 
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and charge in a process commonly known as gel electrophoresis [59, 60]. The results 

from a typical gel shift assay are shown below in Figure 1.3. 

 
Figure 1.3: Results from DNA tagged with a radioactive label migrating through an acyrlic gel with various 
protein concentrations added to each lane (in nM). The arrow indicates the band which corresponds to the 

shift of DNA with no bound protein. Reproduced from [61]. 

The image result shown in Figure 1.3 displays the distance that the DNA was 

able to travel through the gel in each lane. The first lane on the left contained only 

DNA while each additional lane included increasing protein concentrations with the 

amount shown above the lane in nM. Increased binding of protein to the DNA at 

higher concentrations slows the migration of the complex through the gel, resulting in 

bands appearing in the lanes well before that of the lane with only DNA added. 

The binding properties between specific gene sequences and proteins give 

useful information regarding the effectiveness or creation of new drugs. As such, gel 

shift assays provide a useful tool for this purpose, but improvements can be made. 

Like the microwell plate reader described earlier, gel shift assays require labeling to 

provide a signal. Furthermore, these assays rely heavily on the quality of the gel used 

and the results can be greatly affected by gels of varying pore sizes. 
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1.3.1.3 Flow Cytometry 
 

Flow cytometry is a high throughput analysis technique that is capable of 

analyzing up to thousands of particles every second. The analytes to be studied are 

suspended within a sheath fluid via hydrodynamic focusing [62]. A laser beam is 

focused to intersect the fluid flow and a series of photodetectors are arranged to 

collect both the forward scattered and side scattered light from interaction of each 

analyte in solution as it passes through the beam. Analytes can also be tagged with 

various fluorescent labels with the photodetectors used to collect the emitted light. 

The combination of the collected scattered light plus the fluorescent emission give 

researchers information about the presence of various biomolecules such as DNA [63, 

64], proteins [65-67], and cells [68-70]. Early flow cytometers used impedance 

measurements and the coulter counting principle to make accurate counts of the 

number of different types of cells that were present in a solution [62]. Eventually, the 

use of advanced optics allowed for more data than just the count to be collected from 

the sample.   

A schematic of how flow cytometry works is shown in Figure 1.4. The 

creation of the sheath fluid around the sample fluid is made possible due to laminar 

flow as the channel dimensions reduce to the sub-millimeter scale. The focusing of 

the fluid allows for only a single cell to pass the laser beam at any given time. 

Carefully aligned mirrors and dichroic filters guide the scattered and emitted light to 

each photodetector. 
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Figure 1.4: Schematic displaying how flow cytometry works. The scattering of the laser light coupled with 
the fluorescence emission provide data for each cell passing through the beam. Reproduced from [69]. 

 Recent advances in the field of flow cytometry have attempted to scale down 

the system in order to speed up the sample introduction rate and to reduce the cost. A 

microfluidic chip designed by Sakamoto et al. was recently used for this very purpose 

[70]. Two microfluidic channels in a cross configuration were formed in molded 

polydimethylsiloxane (PDMS) and bonded to a glass substrate using oxygen plasma. 

Samples of various E. coli cell populations were flown between a sheath fluid of PBS 

introduced into the perpendicular channel. The fluorescently stained cells were then 

counted through the use of a fluorescent microscope aimed down at the channel at 

high magnification. The cell counts achieved by the authors for various populations 

showed excellent correlation with conventional counting techniques.  

 An even more recent example of a portable flow cytometry system is 

described by Joo et al. [71]. The system includes both impedance and fluorescence 

detection of particles. Channels were etched in glass and two electrodes facing one 

another in the channel were fabricated using polyelectrolyte gel. A constant DC 

voltage of 0.4 V was applied across the electrodes to observe impedance changes over 



13 

 

time as the analytes passed between the electrode pair. Fluorescence measurements 

were carried out with a blue LED for excitation, a dichroic mirror, and a silicon 

photomultiplier tube for the detection of the emitted light. A schematic of the entire 

system is shown in Figure 1.5.  

 
Figure 1.5: Schematic of the portable flow cytometry and impedance detection system. A DC voltage is 

applied across the microfluidic channel while fluorescence detection is performed using free space optics 
positioned beneath the channel. Reproduced from [71]. 

Collected impedance values were correlated to the size of various beads 

passed through the device while optical data was collected for fluorescently tagged 

beads. Live cells transfected with GFP (green fluorescent protein) were used and the 

emitted light was detected. This published work highlights the recent drive to 

miniaturize conventional laboratory equipment to greatly reduce the cost of not only 

the system but of the required reagents. 

 All three conventional laboratory tools and techniques discussed here 

(microwell plate readers, gel shift assays, and flow cytometry) have the ability to 

perform high-throughput screening for the clinical diagnostic community. However, 
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the need for the sample in all three tools to have some sort of label to be detected is a 

major drawback. This labeling procedure adds extra steps to the sample preparation 

process and can also damage some labile biomolecules [51, 72]. Furthermore, the 

high cost of these systems and the amount of reagents they require to operate can be 

prohibitive to research being performed at lower funded institutions. The unique 

microfluidic device described in this dissertation aims to provide a high-throughput 

drug screening platform without the need of labeling and with drastically reduced 

sample volumes compared to these conventional tools. 

1.3.2 Microfluidic sensors 
 

As discussed in the motivation section of this chapter, microfluidic total 

analysis systems (microTAS) provide numerous advantages in the clinical diagnostic 

field. The inclusion of integrated sensors allows for label-free detection of various 

biomolecules and drastically reduces the reagent volumes required for an experiment. 

This section highlights some of the recent published research involving microfluidic 

devices with integrated optical, mechanical and electrical sensors for the detection of 

biomolecules. 

1.3.2.1 Optical sensors in microfluidics 
 

The abundance of optical detection techniques for conventional laboratory 

equipment has understandably led to the integration of optical components within 

microfluidic devices. These devices can contain integrated photodiodes and light 

sources [73-75] or can be packaged with optical fibers to couple light from external 

optical sources and detectors [76-80]. Specific examples of such devices are 

explained further in this section. 
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Balslev et al. fabricated a lab-on-a-chip device which integrates microfluidic 

and active optical components [73]. The device consists of a silicon substrate with a 

top 3 um layer of silicon dioxide. A 10 µm thick film of SU-8 is patterned to define 

fluidic channels, waveguides, and the Bragg grating for a dye laser. Rhodamine 6G in 

solution was excited to produce a narrow emission at 576 nm thorough each of the 

waveguides. Embedded photodiodes in the doped silicon substrate collect the light 

that passes through the on-chip cuvette. The device also contains a passive mixer for 

the input solutions before they are delivered to the cuvette. A thin layer of PMMA 

sandwiched between the top of the device and a glass plate provided leak-proof 

sealing. The authors demonstrated the operation of the dye laser and the ability to 

measure its output using the photodiodes. Providing such dense integration of 

multiple laboratory components onto a single chip is illustrative of the benefits 

microfluidics provide for drug screening devices, even though this particular work did 

not demonstrate particular sensing capabilities. 

Another recent work by Lee et al. demonstrates an arrayed microfluidic 

chamber for surface plasmon resonance (SPR) detection of bound species to the 

sensor [81]. The device also incorporates on-chip valves, pumps and heaters. A 

schematic of the device is shown below in Figure 1.6. The heaters and temperature 

sensors were both fabricated by patterning platinum on the substrate while the valves 

and pumps were molded in PDMS. 
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Figure 1.6: Schematic of SPR microfluidic device. The incorporation of so many components in a small 

footprint demonstrate an advantage leveraged by microfluidic design. Reproduced from [81]. 

Surface plasmon resonance is an optical technique in which Plasmon waves 

are excited along a metal surface by directing the light at a particular angle through a 

prism. The binding of biomolecules to the surface changes the critical coupling angle. 

Since SPR detection is sensitive to temperature changes in the environment, heaters 

were incorporated to help stabilize the measurements. An immunoassay involving 

IgG antibodies was carried out in the device and the binding was detected through a 

phase shift in the collected light. The limit of detection was found to be 0.67 nM. The 

dense collection of various elements within the device including heaters, pumps, 

valves and sensors highlight the versatility of lab-on-a-chip systems. However, the 

free space optics required for performing label-free SPR detection are bulky and 

greatly complicate testing due to the alignment sensitivity of each component. 

1.3.2.2 Mechanical sensors in microfluidics  
 

The use of mechanical based sensing within microfluidics is less common 

than using either optical or electrical means. Difficulties with the integration include 
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damping of the mechanical structure when in liquid as well as stiction to the substrate 

of any hanging structures during the evaporation phase of the liquid [82, 83]. 

Nevertheless, the high sensitivity afforded by mechanical sensors has still led to 

research performed in this area. Microscale cantilevers [84-86] and bulk piezoelectric 

materials [87-89] have been demonstrated to function with high sensitivity in fluid 

environments. A few recent examples are explained further here.   

    An excellent example of cantilever sensors fabricated within microfluidic 

channels is demonstrated by Koev et al. [85]. The cantilevers were fabricated from 

thin (~2.2 µm) SU-8 and included a layer of gold (~15 nm) on the top surface. The 

stress gradient through the SU-8 polymer caused the cantilevers to bend up off of the 

substrate by 1-2 µm once released. The transparency of the cantilever and the thin 

gold layer allows for interferometric measurements to be taken using a simple 

microscope to determine how far the cantilever bends due to binding of biomolecules 

to the gold surface. Microfluidic channels were molded in PDMS to deliver liquid 

samples containing various concentrations of homocysteine to each fabricated 

cantilever. Homocysteine can bind to the gold surface via its thiol group and cause 

the cantilever to bend further away from the substrate due to the added surface stress. 

The cantilevers also displayed high bending sensitivity to the pH of the solution and 

could double as a pH sensor. The problem of stiction was still a factor in this work, 

however, and the cantilevers had to be immersed in aqueous solution at all times after 

being released from the substrate. 

   Lange et al. demonstrated a single microfluidic channel aligned over a 

surface acoustic wave (SAW) sensor [89].  Two sets of interdigitated electrodes are 
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patterned over a piezoelectric substrate across from one another. A bulk acoustic 

wave is generated through the piezoelectric material via an AC potential applied to 

one set of electrodes and the wave is transduced back into an AC electrical signal at 

the second set of electrodes. The resonant frequency and velocity of the generated 

wave are highly sensitive to mass loading and viscosity changes at the surface. The 

authors create a microfluidic channel in a UV photopolymer and align it over the 

SAW sensor active area. The completed device is shown in Figure 1.7. The 

piezoelectric material used for generating the SAW is lithium tantalate (LiTaO3). The 

authors demonstrated resonant frequency shifts of 23 kHz over a time period of 6 

minutes when injecting a sample containing 4 mg/ml bovine serum albumin. The 

protein adsorbed to the surface and the mass loading caused the resonant frequency of 

the wave to decrease. Although successful integration of the various components was 

shown, consistency between different SAW sensors was difficult to achieve due to 

variable contact pressure on each of the sensor surfaces. 

 
Figure 1.7: Device schematic and photograph demonstrating the packaging of a microfluidic channel over a 

SAW sensing chip. Reproduced from [89]. 
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1.3.2.3 Electrical sensors in microfluidics 
 

There are many advantages to using electrical signals to perform biological 

and chemical detection in microfluidic systems. The fabrication is inherently less 

complicated since these sensors typically only require patterned electrodes to operate. 

In addition, electrical signals can be directly interfaced with most measurement 

equipment while other signal modalities may require a transducer to convert the 

signal. Electrical sensors commonly measure changes in impedance [90-92], 

capacitance [93-95], or the redox activity of enzymes [96-98]. Some recently 

published examples of electrical sensing in microfluidics are discussed here.  

Nashida et al. have designed a microfluidic device with sequential injection 

and flushing functions for conducting immunoassay studies using amperometry [99]. 

Solution moves through the hydrophilic channel due to capillary action, but stops at 

patterned hydrophobic electrodes. By applying a negative potential, the electrode 

surface becomes hydrophilic and the liquid continues on. The channels were formed 

by patterning a dry film photoresist on a glass substrate with a PDMS layer to seal the 

device. The completed device is shown in Figure 1.8.  

 
Figure 1.8: Photograph and schematic of microfluidic device containing integrated electrodes for both 

sensing and fluid control. Reproduced from [99]. 
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An ELISA based study was performed using this device by immobilizing 

either particular antigens or antibodies to a platinum working electrode. An enzyme-

linked secondary antibody is bound to the complex and produces a current when 

voltage is applied. This work demonstrates the use of integrated electrical sensors in 

microfluidics for drug based analysis. It also contains the novel inclusion of electrical 

components to act as valves by creating a hydrophobic surface to impede fluid flow, 

however, the device only contains a single sensor precluding high-throughout 

analysis.  

 A second excellent example of utilizing the advantages of working in the 

microfluidic regime to create a sensor is demonstrated by Frey et al. [100] The device 

contains an input sample reservoir and a buffer reservoir which flows beneath the 

sample channel. Due to laminar flow in the channel, by adjusting the two flow rates 

the authors demonstrate the ability to linearly control the sample concentration 

downstream in the channel. Three sensing electrodes are patterned at the far end of 

the channel with each electrode functionalized individually via a second network of 

smaller microfluidic channels. Redox activity from enzymes patterned on each of the 

electrodes allowed for the detection of various concentrations of glucose and lactate 

in the sample solution. By using the laminar flow control, concentrations as high as 

15 mM could be detected within the linear range vs. only 4 mM in the linear range if 

no additional buffer flow was used. By taking advantage of the laminar flow regime 

in microfluidics, the authors present a unique solution to increase the linear range of 

electrical based sensing for enzymatic catalysis. One drawback to this technique is 

that the minimum level of detection was very high (0.2 mM). 
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Optical, electrical and mechanical sensors have all been integrated with 

microfluidics with success. Of the three, however, electrical sensors are easier to 

fabricate and rely less on the inclusion of labels for analyte detection. Furthermore, 

optical sensors typically require additional, bulky light coupling equipment and 

mechanical sensors suffer from problems of both stiction and damping in liquid. For 

these reasons, electrical sensors have been chosen to use for the device presented in 

this dissertation. Specifically, both cyclic voltammetry (CV) and impedance 

spectroscopy (EIS) will be utilized for biomolecule detection and is discussed more in 

depth in section 2.3. 

1.3.3 Characterization of protein adsorption 
 

One of the targeted applications for the designed microfluidic device is to 

provide an arrayed platform for characterizing protein adhesion to a variety of 

functionalized surfaces. Non-specific binding of various biological compounds is a 

hindrance to producing a selective sensor surface. Typically, the surface is passivated 

with various chemical or biological compounds to help reduce adsorption of 

unwanted proteins or other biomolecules that may be present in the sample. In order 

to characterize many of these adsorption interactions, researchers have used quartz 

crystal microbalance (QCM), electrochemical sensing, atomic force microscopy 

(AFM), and surface plasmon resonance (SPR). This section provides a brief summary 

of each of these techniques. 

The most common technique for measuring protein adsorption to a surface 

with electrical measurements is to use a quartz crystal microbalance (QCM) [101-

104]. Adsorption of proteins to the functionalized surface of the resonator can be 
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detected with very high precision from the change in resonant frequency. Although 

this technique is very sensitive, it uses a single store-bought resonator for one 

measurement making an array of tests a difficult and time-consuming task. Other 

electrical techniques commonly employed are cyclic voltammetry [105] and 

impedance-based methods [106, 107]. However, these techniques typically utilize a 

single enclosed fixture during the experiment, which complicates high throughput 

analysis. 

Direct contact measurements from an AFM probe tip have been demonstrated 

to provide data regarding the adsorption kinetics of various proteins [108, 109]. 

Extremely fine tips are raster scanned over a sample producing an image which can 

portray not only the density of the adsorbed protein, but morphology data as well. 

Although AFM measurements can give nano-scale precision for mapping adsorption 

phenomena, it is a very slow and inherently serial process.  

Optical techniques such as surface plasmon resonance (SPR) have also been 

employed to detect protein adsorption [106, 110, 111]. With this technique, minor 

changes in surface dielectric properties on an electrode change the angle at which 

surface plasmon waves are generated from an incident beam of light. SPR has been 

used for many years for detecting binding and adsorption of various compounds, 

however, it requires expensive free-space optical equipment and difficult alignment 

of all the components. Other optical techniques such as total internal reflection 

fluorescence (TIRF) has been reported for protein adhesion characterization, but it 

requires labeling of the proteins with a fluorescent dye [112]. 
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None of the methods so far discussed in literature for characterizing protein 

adsorption have attempted to do so in an arrayed, microfluidic format. The device 

presented in this dissertation successfully performs this arrayed characterization 

which can drastically reduce the time necessary to screen a large library of proteins 

versus numerous passivation surfaces. Furthermore, the use of electrical 

measurements reduces the fabrication complexity and eliminates the use of bulky 

external measuring equipment as seen with AFM or most optical techniques. 

1.3.4 Electrochemical sensors for DNA hybridization 
 

Beyond characterizing protein adhesion, another goal of this research was to 

detect DNA hybridization by using electrochemical measurements. Electrochemical 

sensors been used extensively over the past decade to analyze the affinity of specific 

DNA sequences to one another. This section gives a brief overview of some of the 

published literature on using electrochemistry for DNA hybridization in both macro-

scale and micro-scale studies. 

1.3.4.1 DNA Hybridization – Macroelectrodes 
 

Due to the many advantages of label-free electrochemical sensing, it has been 

used extensively for detection of DNA hybridization events [113-117]. Macro-scale 

electrodes in the millimeter range in conjunction with beakers of solution can be used 

to provide very sensitive data regarding the binding kinetics of single stranded DNA 

sequences to their matching compliment. Selected research on this topic is presented 

in further detail here. 

  Kukol et al. immobilized single DNA strands onto a store-bought gold 

electrode for detection of influenza virus gene sequences [29]. The gold working 
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electrode was 1 mm in diameter and functionalized with DNA single stranded probes 

of 23 base pairs in length. The DNA formed a self assembled monolayer via an 

affixed thiol group. Electrochemical impedance spectroscopy measurements were 

carried out in a beaker of electrolyte containing a dissolved redox compound before 

and after hybridization to complementary and non-complementary DNA targets. The 

results showed clear impedance increases only in the cases when complementary 

DNA virus sequences were incubated with the DNA probes. A detection limit as low 

as 200 fmol of target DNA was reported. The extremely high sensitivity afforded by 

electrochemical detection is displayed prominently in this work. 

DNA can also be self assembled onto an electrode without the need to add any 

functional groups to the DNA strand itself. Ma et al. demonstrates a procedure of 

assembling a chemical network of p-aminothiophenol first on the electrode, followed 

by SiO2 nanoparticle assembly and finally the unmodified DNA target which shows 

strong binding affinity to the SiO2 nanoparticles [115]. Impedance measurements 

were carried out in the same way as described previously in the work by Kukol et al. 

A DNA gene sequence specific to transgenically modified plants was detected at 

concentrations as low as 100 nM. The sensor also demonstrated the ability to detect 

single base-pair mismatches amongst the gene sequences. A reduction of 59% and 

24% of the hybridization signal occurred for both a single and double base-pair 

mismatch in the sequence.  

Although DNA hybridization has reliably been demonstrated at the macro-

scale, there are drawbacks when the screening of many samples is considered. Each 

electrochemical cell must be prepared individually for the measurement making it a 
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very time consuming process if many samples are to be tested. Furthermore, the 

amount of sample required scales proportionally with the size and spacing of the 

electrodes. A microfluidic testing environment can array numerous sensors over a 

small footprint and the spacing of the micro-sized electrodes in the channels 

drastically reduces the sample volumes necessary for detection. 

1.3.4.2 DNA hybridization – Microfluidics 
 

Recently, there have been a few advances in incorporating electrochemical 

sensing in microfluidics for DNA hybridization. Studies have been performed on the 

hybridization kinetics in microfluidic channels [118-120] and on the integration of 

sensors for detection [121-123]. Further details regarding some of these investigations 

are presented here. 

Pavlovic et al. fabricated a microfluidic flow cell containing more than one 

working electrode for the detection of multiple target DNA sequences related to 

different strains of influenza [30]. The device contains a single channel molded in 

PDMS and bonded over a glass substrate that includes three distinct gold working 

electrodes, a gold counter electrode and a platinum reference electrode. An image of 

the completed device is shown in Figure 1.9. Various DNA probe sequences specific 

to the influenza targets are sequentially bound to the working electrodes by 

selectively applying high voltages to particular electrodes to remove any bound 

biomolecules. Each oligonucleotide also contains a redox intercalator, methylene blue 

(MB), at the opposite end of the thiol group. Upon hybridization, the DNA unwinds 

completely and the MB moves further away from the electrode surface, thus reducing 

the electrochemical signal. 
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Figure 1.9: Photograph of microfluidic device for DNA hybridization. The main chamber has three sensing 

electrodes (S1-3), one reference electrode (R) and one counter electrode (C). Reproduced from [30]. 

The hybridization of the different influenza targets could be determined using 

AC voltammetry and the sensor surface could be regenerated by flushing DI water 

down the channel. This work presents an excellent example of how microfluidic 

devices can allow for dense integration of DNA based sensors. Although three 

separate sensors are included in the device, only one reaction chamber is present 

which makes the process of functionalizing each sensor separately very time 

consuming. 

Goral et al. incorporated an interdigitated electrode finger array in a single 

microfluidic channel for DNA hybridization detection with a dynamic range of 1 – 50 

fmol [124]. Briefly, liposomes containing a redox compound were conjugated with a 

capture probe for synthetic Dengue virus gene sequence and magnetic beads were 

also conjugated with a probe for the same sequence. Upon mixing the three 

compounds, the virus sequence bound to both the liposomes and magnetic beads. The 

entire complex was introduced into the microfluidic channel and a magnet was used 

to capture the bound gene sequence upstream of the electrical sensor. The liposomes 

could then be lysed releasing the redox compound which created a detectable current 
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across the interdigitated electrodes biased at a DC potential of 400 mV. This ultra-

sensitive approach of performing hybridization detection in a microfluidic channel 

does contain the drawback of time intensive sample preparation steps and the single 

channel requires that each assay be performed one at a time. 

For all the techniques described in this section for DNA hybridization 

detection, there still exists a need for an arrayed microfluidic device that can perform 

these tasks quicker. The device presented in this dissertation provides a platform that 

allows for multiple interactions to be screened in parallel and without complicated 

sample preparation steps.  

1.4 Literature Summary 
 

The described techniques and research in this section were presented to convey 

the breadth of work in this field and to highlight the unique aspects of the presented 

device. The drawbacks of conventional diagnostic tools were highlighted to explain 

why there is a growing need for smaller, less expensive lab-on-a-chip devices which 

can perform the same high-throughput assays. Optical, mechanical and electrical 

sensing modalities in microfluidic devices were discussed to justify the choice of 

using electrical based detection based on its relative fabrication ease. Finally, 

literature regarding both protein adsorption and DNA hybridization using electrical 

detection were described to further clarify what the presented research adds to this 

field. 

1.5 Structure of Dissertation 
 

Chapter 1 has introduced the motivation behind this work as well as the 

specific accomplishments of this research and a literature review. Chapter 2 will 
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cover the design and operation of the devices used including specifics regarding the 

electrochemical sensing aspect. Chapter 3 describes the fabrication procedure for the 

devices. Chapter 4 contains all the testing and characterization information for each 

of the device designs. Chapter 5 includes all the data and analysis regarding the 

protein adhesion study to various functionalized surfaces. Chapter 6 covers all of the 

DNA hybridization research performed. Finally, chapter 7 concludes the dissertation 

with a summary and a section on future work that can be used to improve the research 

further. 
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2 Device Operation and Design 
 

2.1 Introduction 
 

This chapter will cover the specific design elements of the microfluidic device 

used in this work for both protein adhesion characterization and DNA hybridization. 

The initial section gives a brief overview of both affinity based binding and 

adsorption with proceeding sections covering the electrochemical detection concept, 

design of the microfluidic channels, and the electrode configuration. The chapter also 

contains the design parameters for the integration of the microvalve network. 

2.2 Interactions between biomolecules 
 

Nearly all reported biosensors take advantage of the binding affinity between 

various types of biomarkers and their specific targets. These biomarkers are used as 

probes to confer selectivity to a sensor. Commonly used probes include antibodies, 

aptamers, and single or double stranded DNA. Antibodies can be engineered to bind 

selectively to other antibodies and proteins. Aptamers are specially designed 

oligonucleotides for binding a specific protein. Single stranded DNA can be used to 

probe for hybridization with the complementary DNA sequence while double 

stranded DNA can probe for protein attachment. The binding of the target to the 

immobilized probe on the sensor produces a signal alerting the user to the presence 

and even the concentration of a particular target.  

Non-affinity based adsorption of a compound to a particular surface is 

governed primarily by hydrophobic-hydrophilic interactions and van der Waals 

forces. These interactions occur often in nature and prove to be a challenge when 
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designing a biosensor since any non-specific adsorption of material can produce a 

false signal or degrade the activity of the probes.  

The microfluidic devices designed in this work include immobilized single 

stranded DNA probes to hybridize a complementary target. The devices are also used 

as a characterization platform for protein adsorption to various surfaces. Further 

details regarding both protein adsorption and DNA hybridization are explained in the 

following subsections. 

2.2.1 Protein Adsorption 
 

The many mechanisms that control the adsorption kinetics of proteins make 

the situation difficult to predict. Some of the parameters to consider include 

hydrophobic-hydrophilic interactions, thermodynamic forces containing both entropic 

and enthalpic effects, electrostatic interactions, pH of the solution and steric repulsion 

of the protein due to compression of the peptide or carbon chains. Positive entropic 

contributions are the dehydration and adsorption of the protein to the surface while a 

negative enthalpic contribution arises when proteins interact directly with a solid 

surface [125]. It has been demonstrated that protein adsorption is at a maximum at the 

isoelectric point (the pH at which the protein carries no net charge). Some affinity 

binding can be observed from proteins interacting with surfaces expressing functional 

head groups such as hydroxyl (-OH), carboxyl (-COOH) or amine (-NH2). 

Most groups use external measurement equipment and a trial-and-error 

methodology to understand what surfaces best resist or enhance the adsorption of 

specific biomolecules like protein. The study on protein adsorption described in this 

work aims to screen for these various interactions in a high-throughput manner to aid 



31 

 

researchers in discovering the optimal surface functionalization to resist adhesion for 

a particular protein. 

2.2.2 DNA hybridization 
 

A single DNA strand consists of a specific sequence of nucleic acid bases 

linked together with a negatively charged phosphate backbone. The nucleic acids 

include adenine, thymine, guanine and cytosine. Adenine binds selectively to thymine 

while guanine binds selectively to cytosine with hydrogen bonds. In this way, two 

strands of DNA each coded with a sequence of bases can exhibit binding affinity to 

one another if the base pairs match. The match does not have to be perfect in order for 

hybridization to occur, but the degree of hybridization among a population will 

depend on the percentage of matching pairs. If the sequence of a target DNA strand is 

known, a probe DNA strand can be engineered as its complement and used in a 

sensor to screen for the target’s presence in a sample. Single stranded DNA is 

commonly abbreviated ssDNA while the hybridized double stranded DNA helix is 

abbreviated dsDNA. These abbreviations will be used from this point on in the 

dissertation. 

Most DNA hybridization sensors immobilize ssDNA probes onto a sensor 

surface. One common technique is to add a functional thiol (-SH) group at one end of 

the ssDNA. The two ends of ssDNA are labeled the 3’ and 5’ end. The thiol is added 

to the 5’ end of the ssDNA probe as a disulfide bond at the end of a chain of six 

methyl groups as shown below in Figure 2.1. Gold is used to pattern the sensing 

electrodes for the microfluidic devices and thiols form strong covalent bonds with 

gold surfaces.  
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Figure 2.1: Structure of the thiol modification conjugated to the 5' end of the ssDNA. 

The S-S disulfide bond protects the free thiol group from oxidation until it is 

ready to use. Once the disulfide is reduced, the free thiol (-SH) is left to bond the 

DNA to a gold surface. The spacer that is created by the 6 methyl (CH2) groups 

between the thiol and the nucleotide sequence is very important. It acts like a hinge 

which allows the DNA to bend freely in the solution as it stands up off of the 

electrode surface. Without this spacer, the movement of the DNA strands would be 

severely restricted which would disrupt the uniform assembly of DNA on the surface 

and make it more difficult to hybridize the target sequence. 

2.3 Device Overview 
 

The arrayed microfluidic device contains 9 individually addressable sensors 

patterned within a series of microfluidic channels. The sensors themselves are thin-

film electrodes patterned onto either a glass or silicon dioxide substrate. The channels 

are designed to form either 3 horizontal channels or three vertical channels depending 

on the orientation of the channel layer. In this way, sensor columns can be 

functionalized separately from each other while sensor rows can be used for 

introducing different samples and for impedance testing as displayed schematically in 

Figure 2.2. 
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Figure 2.2: (a) The PDMS channels are aligned to expose columns of working electrodes to be 

functionalized by different compounds. (b) After functionalization, the PDMS channels are lifted, rotated, 
and placed back down to align counter and reference electrodes within separate rows of working electrodes. 

Note that this figure is not drawn to scale. Each row contains three separately 

functionalized working electrodes and a unique reference and counter electrode for 

impedance measurements. As an example experiment with this platform, each sensor 

column can be functionalized with a different ssDNA probe sequence which will self-

assemble onto each electrode surface in the channel. Afterwards, the PDMS channels 

can be rotated to form channel rows and solutions containing complementary target 

ssDNA sequences are flown in each horizontal channel to interact with each probe 

sequence. Only those sensors containing the correct probe-target pair will register a 

change in impedance. Electrochemical measurements are taken before and after target 

incubation for each sensor for comparison.  

After performing both protein adhesion and DNA hybridization experiments 

using this device, a network of microvalves was integrated with the sensor array to 

provide autonomous control of the fluid flow direction. The valves are used to close 

off areas of the chip to provide either three horizontal or three vertical channels over 

the grid of sensors. The procedure for fabricating these valves including data 

demonstrating how the integration directly affects the measurement results is 

explained in more detail in Chapters 3 and 4. 



34 

 

2.4 Electrochemical Detection Concept  
 

This section describes how electrochemical sensing works in the traditional 

sense and how it will be applied to a microfluidic device. The detection mechanism 

due to DNA hybridization or protein adsorption will be explained along with the 

specific techniques that were utilized for this work. 

2.4.1 The Three Electrode System 
 

Electrochemistry is based on the ability to cause chemical reactions to occur 

in solution through the application of voltage. One can apply an external potential to 

two electrodes immersed in an electrolyte solution and force both oxidation and 

reduction reactions to occur. At the anode, electrons are pulled away from the anions 

in solution. At the cathode, electrons are donated to the cations in solution from the 

electrode. Current can be measured from this movement of electrons based on the 

applied voltage. This relationship can be used to determine the activity or presence of 

electroactive species in the solution as well as yield information regarding any 

assembly of molecules on the electrode surface.  

Because the interest is in the reaction that is created by the applied potential in 

electrochemistry, the reduction of factors that influence the measurement but are not 

related to the reaction is important. One substantial parasitic influence is the potential 

drop that exists from applying voltage and measuring current through the same 

electrodes. The addition of a third “counter” electrode is the answer to this problem. 

By applying the potential between the working and reference electrode and measuring 

current between the working and counter electrodes, the potential drop is greatly 
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reduced since no current flows into the reference electrode. This three electrode 

system is the most commonly used configuration in electrochemistry. 

2.4.2 Detection Mechanism 
 

The interaction of an electroactive species dissolved in an electrolyte solution 

with the electrode surface gives rise to the measured current. A layer of added 

biomolecules to the surface of the electrode will alter the current due to both changes 

in the diffusion rate and any electrostatic interactions.  

The electroactive compound should be a redox species that can be easily 

oxidized and reduced at low applied potentials. The most common redox compounds 

contain an iron atom at their core which is either in its oxidized state, Fe(III), or its 

reduced state, Fe(II), such as ferrocene dimethanol [126, 127] and the 

ferri/ferrocyanide couple [116, 128, 129]. The ferri-ferrocyanide couple is more 

widely used for detecting DNA hybridization on the electrode surface. This is 

attributed to the net negative charge of the redox couple which shows strong 

interaction with the anionic DNA. Characterization experiments with both 

compounds are discussed further in Chapter 4. Equal concentrations of dissolved 

ferricyanide and ferrocyanide are used for all experiments in this work. The structure 

for both the oxidized and reduced forms of the compound is shown in Figure 2.3.  

 
Figure 2.3: Structure for the ferri/ferrocyanide redox couple. 
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The electrolyte that is used during the experiment can have an important 

impact on the results as well. The electrolyte is a concentrated salt solution to allow 

for highly conductive transport of charge. It is typical that the electrolyte has a high 

concentration between 10 to 100 times higher than that of the redox compound. This 

is done for two reasons. The first is to reduce the resistance of the charge as it flows 

between the redox compound and the electrodes. The second is to minimize mass 

transport through migration (this is explained further in section 3.2.1). The most 

commonly employed electrolytes include potassium chloride [39, 130], potassium 

nitrate [131, 132] and phosphate buffered saline (PBS) [116, 133, 134]. For this work, 

the DNA and proteins are all suspended in solutions containing phosphate buffered 

saline. Therefore, in order to keep the solution environment consistent, PBS at a 

concentration of 10 mM is chosen as the electrolyte to use for all experiments. 

 Hybridization of DNA will cause the net negative charge on the electrode to 

increase. This in turn will create an electrostatic repulsion force on the charged 

ferri/ferrocyanide redox couple and hinder its diffusion towards the surface. The 

decrease in the redox concentration close to the electrode surface will decrease the 

measured current which can also be observed as an increase in the impedance of the 

system. This process is shown schematically in Figure 2.4. Equations and simulations 

which are used to predict the electrical changes in the system are found in the 

following sections for both electrochemical techniques utilized in this work.  
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Figure 2.4: Schematic demonstrating the increased negative charge due to DNA hybridization on the 

electrode surface. A decrease in the measured current results from further repulsion of the charged redox 
compound. 

Protein adhesion to the surface is expected to interact with the redox 

compound in a similar fashion as the immobilized DNA. Any net charge expressed on 

the outer amino acid molecules of the protein will have an electrostatic effect on the 

redox compound. One new variable to consider is the size of the proteins being 

adsorbed to the surface. Larger proteins are more capable of creating a physical 

barrier to the diffusion of the redox species close to the electrode surface. More 

details on the protein adhesion study are found in Chapter 5 of the dissertation. 

2.4.3 Cyclic Voltammetry   
 

Cyclic voltammetry (CV) is one of the most commonly used electrochemical 

techniques to probe the activity of an electroactive species. It provides information 

relating to the oxidation and reduction potentials for a given reaction at the working 

electrode surface. Based on the values of those potentials, one can use CV to identify 

compounds or look for changes in how the compound is interacting with the surface. 

CV measurements are used primarily in this research to evaluate reversibility of the 

redox reaction which is related to the cleanliness of the electrodes. They are also used 
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to perform DNA hybridization experiments with macro-scale electrodes in the 

millimeter range. The micro-scale electrodes patterned in the microfluidic devices 

display a much greater response when using impedance spectroscopy (explained 

further in the next section). 

A CV experiment is performed by varying an applied DC voltage between the 

working and reference electrodes while the current is measured between the working 

and counter electrodes. The voltage ramps up from an initial value, Ei, to a final 

value, Ef, and then reverses direction back to Ei. Plotting the current vs. the applied 

voltage provides a graph similar to the one shown in Figure 2.5. Two distinct current 

peaks are observed which correspond to the oxidation and reduction potentials for the 

ferri/ferrocyanide redox couple. Epc is the potential corresponding to the cathodic or 

reduction peak while Epa is the potential associated with the anodic or oxidation peak. 

The concentrations of the reduced form of the compound compared to its oxidized 

form at the electrode surface can be calculated based on the applied potential by using 

the Nernst equation in equation 2.1[132]. 

 
Figure 2.5: Example of a cyclic voltammogram taken on a bare gold electrode surface. 
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Where R is the universal gas constant, F is the faraday constant, n is the number of 

electrons transferred per ion, ao is the concentration of the oxidized form of the redox 

compound while ar is the concentration of the reduced form. Eo is the formal 

reduction potential and is given by equation 2.2. 
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This equation only remains valid if the reaction is reversible. A reaction is considered 

reversible if the total analyte that is oxidized/reduced on the forward scan equals the 

total analyte that is reduced/oxidized on the reverse scan. From the graph, 

reversibility is observed if ipa = ipc. 

The reaction at the electrode surface is limited almost entirely by the diffusion 

of the redox couple from the bulk solution to the surface. Other forms of mass 

transport including migration and convection have little effect on the movement of 

the species in solution due to the high electrolyte concentration and short distances 

between the electrodes. Thus, this diffusion creates a concentration gradient of both 

the oxidized and reduced form of the redox couple as one moves away from the 

electrode surface. 

The magnitude of the current for a given applied potential does not depend on 

the magnitude of the analyte concentration at the electrode surface but rather the 

concentration gradient as shown in equation 2.3 [132]. 
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where A is the area of the electrode (cm2), D is the diffusion coefficient (cm2/s), C is 

the concentration (mol/cm3) and x is the distance from the electrode surface (cm). 

From this equation, it is observed that the current will reach its highest magnitude 

when the slope of the concentration gradient is at a maximum. Equation 2.3 is derived 

from the more complex Butler-Volmer equation for measuring current from the redox 

reaction given below [135]. 
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ೃ೅

ሺாିா೚ሻ቉    (2.4) 

 
Where ko is the heterogeneous rate constant and α is the transfer coefficient (which is 

0.5 for a reversible reaction). The peak current of the forward scan can be used to 

determine variables related to the reaction as described by the Randles-Sevcik 

equation below 

 
݅௣ ൌ ሺ2.69 ൈ 10ହሻ݊ଷ ଶ⁄ ଵܦܣ ଶ⁄ ଵݒܥ ଶ⁄       (2.5) 
 
 
where v is the scan rate of the experiment (V/s). The Randles-Sevcik equation is often 

used to calculate the active surface area of the working electrode. Due to surface 

roughness, it can be difficult to know exactly what surface area is interacting with the 

solution. By performing a CV experiment using a known redox compound 

concentration and scan rate, the area can be estimated using Equation 2.5 with a 

standard diffusion coefficient of 1 x 10-5 for small molecules [136]. 

Cyclic voltammograms were simulated using MATLAB to provide insight 

into how DNA hybridization on the electrode surface might affect the plots. CV 
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measurements were not used to detect protein adhesion. The code utilizes the Butler-

Volmer equation (2.4) as well as discretized forms of Fick’s diffusion laws in order to 

calculate the current due to the changing concentrations at the electrode surface for a 

given applied potential. The code was adapted from [136] and can be found in full in 

Appendix A. 

The simulation was prepared for the redox compound that will be used for all 

measurements, the ferri/ferrocyanide couple. The redox couple has a well accepted 

standard reduction potential of about 0.2 V vs. Ag/AgCl reference electrode [25, 90]. 

The simulation was run three times. The first run assumed a blank electrode. The 

second run included a monolayer of ssDNA coverage. The third run assumes 

hybridization resulting in dsDNA immobilized on the electrode. The results of the 

simulation are shown below in Figure 2.6. 

 
Figure 2.6: MATLAB simulation of CV results for an electrode surface covered with ssDNA and dsDNA. 

The reduction of the peak heights is more pronounced between the blank 

electrode and the ssDNA as compared to the ssDNA and the dsDNA. This is due to 
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the drastic reduction of the exposed electrode surface to the redox compound 

following the assembly of the monolayer of ssDNA. The peak heights only decrease 

slightly following hybridization to dsDNA since the addition of DNA strands to the 

already assembled monolayer will not greatly decrease the exposed electrode area 

further. However, the separation of the peaks for each case is clear. Peak separation 

occurs due to a reduction of the heterogeneous rate constant. This constant represents 

the rate of charge transfer and is directly affected by the electrostatic interactions 

occurring between the assembled DNA and the redox compound. The added negative 

charge from the dsDNA produces a noticeable peak separation from the ssDNA result 

in the CV simulation. 

2.4.4  Impedance Spectroscopy 
 

Impedance Spectroscopy is a commonly used electrochemical technique to 

probe for binding events that occur at the working electrode surface. The same three 

electrode system comprising of a working, reference and counter electrode are 

utilized for the impedance spectroscopy (EIS) experiment. An EIS scan involves 

applying an AC potential between the working and reference electrodes while the AC 

current is measured between the working and counter electrodes. The frequency of 

the applied potential is varied and a Nyquist plot of the impedance is made.  

The measured impedance of the system can be modeled using an electrical 

circuit. The impedance consists of the electron transfer resistance between the redox 

compound and the electrode surface, the capacitance between the electrode and the 

charged ions in the solution, the solution resistance between the electrodes and the 
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impedance due to the rate of diffusion of the redox compound to the electrode. These 

elements are arranged in the circuit shown in Figure 2.7 [137]. 

 
Figure 2.7: Randles equivalent circuit model for the complex impedance of the three electrode system in an 
ionic solution. 

Here, Rs is the solution resistance between the electrodes which is typically 

much smaller than the other components. Rct is the charge transfer resistance which 

accounts for the ability of the redox compound to interact with the electrode surface 

via electron transport. C is the capacitance between the electrode and the charged ions 

in solution. This capacitance is known as the double layer capacitance which exists 

between any metal placed in an electrolyte solution. W is an element called the 

Warburg impedance which accounts for the effects of diffusion in the system. The 

Warburg impedance itself has both a real and imaginary component and is frequency 

dependent.   

 One can calculate the total impedance of this circuit with respect to the values 

of the components and the frequency as shown in equation 2.6. 
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Equation 2.6 has been written in the form shown to clearly separate the real and 

imaginary components of the total impedance. The Warburg impedance W is further 

given by equations 2.7 and 2.8 
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where Cox and Cred are the bulk concentrations for the oxidized and reduced forms of 

the compound respectively and Dox and Dred are the diffusion coefficients for the 

oxidized and reduced forms of the compound respectively. The Warburg impedance 

has the same magnitude for both of its real and imaginary components, so it 

constitutes a 45 degree phase shift in the Nyquist plot as will be seen in the 

simulations. The most critical component in the system is the charge transfer 

resistance Rct. This value is very sensitive to the addition of biomolecules onto the 

surface of the electrode as they disrupt the charge transport between the redox 

compound in solution and the metal. The sensitivity of Rct to the conditions on the 

electrode surface makes impedance spectroscopy one of the best methods to use for 

detection of binding events on the surface of the working electrode. 

Simulations were performed using the software that came with the CHI660 

potentiostat from CH Instruments (Austin, TX). The software allows the user to build 

an equivalent circuit then plot the Nyquist diagram for a range of applied frequencies.  

The circuit in Figure 2.7 was built in the simulation software and the values 

for Rct and C were varied to observe the change in the Nyquist plot. The value of Rs 

was set to be 100 Ohms based on measuring the resistance through the phosphate 

buffer electrolyte using the potentiostat. The Warburg impedance was set to a value 

of 0.0001 which was also determined through testing based on the use of the 
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ferro/ferricyandide couple in phosphate buffer electrolyte. Figure 2.8 below displays 

the Nyquist results for varying the resistor value Rct. 

 
Figure 2.8: EIS simulations performed by varying the charge transfer resistance (Rct). 

The capacitance value was set at 100 nF and the frequency sweep was 

performed from 100000 Hz down to 1 Hz. There are two noticeable regions that exist 

in the Nyquist plot in Figure 2.8. The first is the semicircle region at high frequencies 

followed by a linear region at lower frequencies. The semicircle is formed from the 

effects of the capacitance and the electron transfer resistance while the linear region is 

due to the Warburg impedance. It is clear from Figure 2.8 that increasing the electron 

transfer resistance will respectively increase the diameter of the semi-circle. Also, the 

linear region due to the Warburg impedance becomes smaller as the electron transfer 

resistance increases. This implies that as the resistance at the electrode surface 

becomes very large, due to accumulation of biomolecules as an example, the 

impedance component due to diffusion becomes negligible and the linear portion of 

the plot at lower frequencies will begin to disappear. The presence of the Warburg 

impedance still stretches the semicircle further along the real impedance axis for any 
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simulated value of Rct. If the Warburg impedance were to be neglected completely, 

then the semicircle arc would have a diameter of exactly Rct. 

The capacitance was also varied while the electron transfer resistance 

remained set at 3000 Ohms with the results shown in Figure 2.9. The frequency for 

each scan was once again swept from 100000 Hz to 1 Hz. As the capacitance 

increases, the semicircle becomes lost since more frequencies are able to pass through 

the larger capacitor which contributes to greater imaginary impedance. As lower 

frequency signals become blocked by the capacitor, the Warburg impedance begins to 

dominate and the plot trends upward in a linear fashion at a 45 degree phase angle. 

 
Figure 2.9: Simulated EIS results from a varying double layer capacitance (C). 

Lower values of capacitance tend to tighten the semicircle closer to a diameter 

that exactly matches the electron transfer resistance. Changes to the capacitance are 

not expected to be as dramatic as changes to the charge transfer resistance when 

performing both the DNA hybridization and protein adsorption studies. The double 

layer capacitance is dominated by both the electrode geometry and the ionic strength 
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of the electrolyte, neither of which should change during the hybridization or 

adsorption experiments.  

2.5 Electrode Configuration and Design 
 

The electrodes of the device perform more than one important function. They 

act as sites for the specific functionalization of probe molecules and chemical 

compounds. They are also used to perform the detection itself via electrochemical 

measurements. This section describes the materials used for the electrodes, their 

geometry and their arrangement within the microfluidic device. 

2.5.1 Electrode Materials  
 

When designing an electrochemistry experiment, the choice of materials for 

each of the three electrodes can have a significant impact on the results. Both the 

impact on the measurement itself as well as the compatibility of the material with 

microfabrication techniques for use in the microfluidic device must be considered. 

The working and counter electrodes must be fabricated from an inert metal 

with high conductivity. Both gold and platinum are the best candidates for these 

electrodes due to their high conductivity, compatibility with microfabrication 

techniques, and their high resistance to corrosion. Of the two, gold is chosen to use 

for this work because it has been reported that the thiols from the DNA will self 

assemble more readily onto a gold surface [116, 138-140]. Gold also has a relatively 

high oxidation potential of +1.52 V in comparison to the voltages applied during 

typical electrochemistry experiments (in the range of-0.5 to 0.5 V). This indicates that 

the gold will not be oxidized or reduced during the course of the experiment. 
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The reference electrode is unique in that it must be able to retain its potential 

regardless of the reaction taking place or the pH of the solution. A list of the most 

commonly used aqueous reference electrodes is given in Table 2.1. The electrode 

potentials are given at room temperature and in reference to the standard hydrogen 

electrode (SHE). The silver/silver chloride electrode is chosen to use for all 

experiments performed in a beaker for this research due to its low cost and lack of 

mercury. The reaction between the silver and silver chloride using KCl as an 

electrolyte keeps the potential of the electrode extremely stable at about +0.223 V.  

Table 2.1: List of commonly used aqueous reference electrodes and their potential vs. the standard 
hydrogen electrode at room temperature. 

Name  Formula 
Electrode 
Potential 

Silver/Silver Chloride  Ag/AgCl  0.223 V 

Saturated Calomel Electrode  Hg/Hg2Cl2  0.268 V 

Copper/Copper Sulfate Electrode  Cu/CuSO4  0.314 V 

Silver/Silver Sulfate  Ag/Ag2SO4  0.710 V 

Mercury/Mercury Oxide  Hg/HgO  0.098 V 

 

The aqueous reference electrodes are very difficult to integrate with a 

microfluidic device. Each electrode given in Table 2.1 contains a specific liquid 

electrolyte concentration surrounding the metal in order to maintain a stable electrode 

potential. Some researchers have reported creating a solid Ag/AgCl quasi-reference 

electrode for microscale devices by depositing silver and electrodepositing a layer of 

silver chloride over it [98, 99, 141]. This quasi-reference electrode will have a slightly 

different standard potential than the aqueous Ag/AgCl electrode and it will not remain 

stable for nearly as long. Another approach is to deposit a film of platinum to use as a 

reference electrode. Platinum has a relatively stable potential of +1.188 V and, like 
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gold, is highly resistant to corrosion [4]. Although platinum’s potential can vary over 

time, the measurements performed in this work will take place within minutes of one 

another. The variation in platinum’s potential does not change significantly in that 

time. Due to the greater ease of fabrication, platinum is chosen as the reference 

electrode for the microfluidic devices. 

2.5.2 Electrode Geometry and Placement 
 

The placement and size of the three electrodes is an important factor to 

consider when designing an electrochemistry experiment. Ideally, no current should 

be flowing through the reference electrode, but in practice a very small parasitic 

current will exist, so it is best to minimize the potential drop between the working and 

reference electrodes. This is achieved by placing the reference close to the working 

electrode to minimize the solution resistance between them. For the experiments 

performed in the microfluidic channels, the distances between the reference electrode 

and the various working electrodes has a very minimal effect on the measurement 

since they are all small to begin with (on the order of millimeters). 

More important than the spacing of the electrodes is the size of the counter 

electrode compared to the working electrode.  The counter electrode should have an 

exposed surface area larger than that of the working electrode. This is done to 

minimize the impedance contributions of the counter electrode. The system through 

which current flows between the counter and working electrodes can be roughly 

modeled using the circuit shown in Figure 2.10. 
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Figure 2.10: Circuit model for the current flow between the working and counter electrodes. 

The components Rw and Rc are the resistance of the working and counter 

electrodes respectively. The components Cw and Cc are the capacitance of the 

working and counter electrodes respectively. This schematic is not taking into 

account any solution resistance and the effects of diffusion which were modeled in 

Figure 2.7. Since the reaction of interest is only occurring at the working electrode, 

only the resistance and capacitance of the working electrode are relevant. The 

resistance of the counter electrode is reduced by increasing its area thus maximizing 

the contribution of the working electrode to the total resistance. Conversely, the 

capacitance of the counter electrode is increased by increasing the area. Since 

capacitors in series add like resistors in parallel, the smallest capacitor dominates the 

total capacitance, which in this case, will be from the working electrode. The larger 

counter electrode increases the sensitivity of the electrical measurement being 

performed at the working electrode. The size of the reference electrode does not 

impact any of these values and is typically not considered. 

For the microfluidic device, the gold counter electrode will fill a portion of the 

channel while the working electrode is disk shaped. After the integration with 

microvalves, the working electrodes each lie at the intersection between 

perpendicular channels. The working electrode uses a circular shape in order to avoid 
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sharp corners. These corners can cause fringing effects which intensify the strength of 

the electric field near them and will cause a non-uniform concentration gradient of the 

redox compound above the whole electrode surface. The working electrodes are 

spaced out to provide surfaces for functionalization of probes or other compounds in 

one flow direction and incubation with different target biomolecules in the other flow 

direction. The reference electrode is placed at the end of the channel. The 

configuration for a device containing 9 sensors in a 3 x 3 grid is shown in Figure 

2.11. Note that in this diagram, the light blue layer is the elastomer PDMS and both 

channel orientations (horizontal and vertical) are displayed.  

 
Figure 2.11: Top-down schematic of the electrode configuration in the microfluidic device containing 9 total 

sensors. The blue areas correspond to bonded PDMS with the substrate. Both channel orientations are 
overlaid to show both vertical and horizontal paths. 

From the figure, it can be seen how the working electrodes are linked in a 

column to reduce the number of contact pads needed. The number of contacts needed 

to measure from each sensor is reduced from 9 to 3. The linking of the electrodes 



52 

 

reduces the number of necessary contacts by a factor of N for a sensor array of N x N. 

This design becomes especially important for scaling the device up for future 

iterations to include a higher number of sensors. The configuration will be effective 

as long as the redox compound is only present in one channel at a time.  

Each working electrode has a radius of 100 µm. This size is determined based 

on the designed size for the microfluidic channels discussed in the next section. The 

electrodes could be designed smaller to increase the sensitivity to binding affinity; 

however, this also increases the noise and reduces the magnitude of the current 

output. Smaller sizes of electrodes were not explored in this research since the goal 

was not to obtain the most sensitive result but to demonstrate arrayed sensing using 

electrochemical techniques. 

2.6 Microchannel design 
 

The microfluidic channels are designed to provide three parallel flow paths 

over the sensor array. The cross sectional dimensions of the channels are 500 microns 

wide by 100 microns tall and are chosen to align easily by eye over the electrodes. 

Much greater design considerations must be made when integrating valves with the 

system since the integration requires new channel geometries to function properly. 

The rest of this section will focus on the design of the two-layer valving integration.   

The microfluidic and valve channels are designed to work in conjunction with 

one another. Using two layers of PDMS to create microfluidic channels and 

pneumatic valves has been previously reported by many groups and was pioneered by 

Quake et al. [142, 143]. Briefly, microfluidic channels are patterned in a thin layer of 

PDMS while a second set of pneumatic channels are patterned in a thicker layer of 
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PDMS and aligned over the microfluidic channels. The stack of two PDMS layers are 

cured together and bonded to a substrate. Each intersection between the two channel 

layers acts as a valve when pressure is applied as shown in the Figure 2.12 schematic. 

 
Figure 2.12: Schematic demonstrating valve actuation using pneumatic channel to pinch off the 

microfluidic channel below. 

The microfluidic channels contain 3 vertical and 3 horizontal channels 

crossing in a tic-tac-toe pattern. The valve channels are designed to align over the 

microfluidic channels to shut off sections that form either the three horizontal or the 

three vertical channels with no leakage between them. This concept is displayed 

below in Figure 2.13. 

 
Figure 2.13: Overhead layout of microfluidic channels (blue) and pneumatic valve channels (green). In (a) 
pressure is applied to the top valve inlet and valves are closed to create vertical fluid channels. In (b) the 

pressure is applied to the bottom inlet and three horizontal fluid channels are created. 
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The pneumatic channel layer is designed to be able to close multiple valves 

with only two pressure inlets, one for controlling each fluid flow direction. The width 

of the pneumatic channel is made much thinner than the width of the microfluidic 

channel in certain areas to allow crossing of the two channels without closing off the 

bottom microfluidic channel. The details on the fabrication for each PDMS layer can 

be found in Chapter 3. The following subsections focus on the design aspects for both 

channel layers although many of the dimensions chosen are not critical to the 

operation of the device. 

2.6.1 Valved Microfluidic Channel Design 
 

The dimensions of the microfluidic channels in the device will have an effect 

on the valve sealing efficiency and the pressure in the channel. Each of these aspects 

is considered in choosing the width, height and overall shape of the channel. 

Sufficient sealing from the PDMS membrane above the channel has been 

commonly reported in literature for heights under ~ 35 µm [143, 144]. More 

important than the height is the shape of the channel. Rectangular channels do not 

seal effectively as the sharp corners make it difficult for the PDMS to press tightly 

along all parts of the channel walls. Rounded channels have been demonstrated to be 

highly effective in forming a tight seal even at fairly low actuation pressures of 40 

kPa [143]. Rounded channel molds can be formed by first patterning a photoresist to 

create rectangular shapes, then subjecting the mold to a high temperature in order to 

reflow the photoresist and round the edges. Specific fabrication details are found in 

Chapter 3. 
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The pressure in the channel is directly proportional to the cross-sectional area, 

with smaller areas resulting in higher channel pressures. If the channel pressure is too 

high, it may cause the PDMS to de-bond from the substrate. The pressure for a given 

length in a channel is given by Poiseuille’s Law in Equation 2.9. 
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Where ߥ is the fluid viscosity, Q is the volumetric flow rate and the term d is given by 

the cross sectional area of the channel, A, and its perimeter, U, for a non-circular area. 

From the equation, it is clear that the area of the channel has a dramatic impact on the 

pressure differential along its length. Higher flow rates will also increase the pressure.  

To calculate the area of the rounded microfluidic channel, it is treated as a 

circular segment as shown below in Figure 2.14 with the accompanying equations for 

determining the area. 

 
Figure 2.14: Geometry used for calculating the area of the rounded microfluidic channels. 
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 Channels were chosen with a width of 300 µm and a height of 32 µm. The 

width was chosen based on intuition to allow adequate alignment over patterned 

electrodes on the substrate by eye and the height is chosen based on fabrication 

parameters discussed further in Chapter 3. With these dimensions, equations 2.10 and 

2.11 are used to determine the cross sectional area of the channel to be 6458 µm2. 

Assuming the viscosity of water and a flow rate of 200 µl/hr (a commonly used flow 

rate for microfluidic applications), equation 2.9 is used to determine that the pressure 

along the channel is 0.705 Pa/µm. For a given device channel length of 2 cm, the 

pressure difference along the channel is calculated to be 14.1 kPa. This pressure is 

well below the bond strength of PDMS to a glass substrate which ranges from 200 to 

500 kPa  or to silicon dioxide which was found to be about 70 kPa [145].  

The microfluidic channels are aligned over the electrode network so that an 

electrode lies in each intersection as mentioned previously. Although 300 µm is an 

adequate channel width for aligning a single electrode with a radius of 100 µm, it 

proved almost impossible in practice to align all 9 electrodes simultaneously. Figure 

2.15a and 2.15b illustrate the problem with microscope images taken from two 

electrodes in the same device after bonding the channels.  

 
Figure 2.15: Microscope images showing channel alignment over the patterned electrodes. Both good 
alignment (a) and bad alignment (b) were observed in the same device. The new channel cross section 
design is shown in (c) to provide more alignment tolerance. All scale bars are 100 µm. 
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Further widening of the channels would cause a larger valve surface area 

which could droop low enough to touch the substrate and permanently close the valve 

upon bonding. The misalignment of the electrodes is caused by both the inherent 

elasticity in the PDMS itself and the translational misalignment that occurs in the 

printed transparency masks used to create the patterns. This problem was solved by 

creating a larger fluidic chamber at each intersection to reduce the effect of electrode 

misalignment as shown in Figure 2.15c. 

This larger chamber at each intersection serves another important purpose as 

well. It was found during fluid flow testing in these channels that the stream moving 

in one direction would rarely fill the perpendicular channels when the valves were 

closed. This creates a liquid-air boundary that is prone to evaporation. The boundary 

is displayed graphically in Figure 2.16 below.   

 
Figure 2.16: Fluid flow through the older (a) and updated (b) microfluidic channel design when using 

valves. The liquid-air interface is moved further away from the electrode in (b) which reduces problems 
with evaporation. 

 By increasing the chamber dimensions, the liquid-air interface is moved 

further away from the electrode. This minimizes the effects of evaporation at this 

interface which can pull the solution away from the electrode disrupting biomolecule 
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assembly and changing the exposed surface area during an electrochemical test. 

Although the larger chamber size also increases the surface area of the exposed 

working electrode (since the leads are further exposed), it is still much smaller than 

the surface area of the counter electrode and is an acceptable trade-off to minimize 

the evaporation problem. 

2.6.2 Pneumatic Valve Channels 
 

The channels formed to create pathways for the pressurized air have no 

critical dimensions, except for the areas that overlap the microfluidic channels below 

them. The channels are fabricated to be 100 µm in height and have a rectangular 

profile with a width of 300 µm, the same width as the microfluidic channels. This 

provides valve areas consisting of 300 x 300 µm sections above the microfluidic 

channel. 

 When considering the sealing efficiency of the valve, the applied pressure, 

area of the membrane, thickness of the membrane and material constants must all be 

taken into account. The deflection of the center of an elastic membrane due to a 

pressure difference has been derived by He et al. and is given in Equation 2.12 [146]. 
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,where R is the radius of the membrane, P is the pressure difference across the 

membrane, h is the thickness of the membrane and both ߣ and µ are Lamé constants 

for an elastic material. Although this equation has been derived for a circular 

membrane, the same principal applies to the case for a square one. Larger areas, 

higher pressures and thinner membranes all contribute to greater deflection. The area 
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of the valve is determined by the width of the microfluidic channel (300 µm) and the 

pressure can be increased up to the bond strength of the PDMS to the substrate. The 

thickness of the membrane can be carefully controlled depending on the fabrication 

parameters used for the microfluidic channel layer and are discussed in detail in 

Chapter 3. 

2.7 Summary 
 

This chapter has described the design of each component of the device. The 

hybridization of DNA and a brief overview of protein adsorption kinetics were 

discussed. An overview of the operation of the device including the manipulation of 

the cross-channel design to perform an array of binding assays was explained. Both 

cyclic voltammetry and impedance spectroscopy measurements were performed with 

the device using a micro-patterned three electrode system with platinum as the 

reference electrode and gold for both the working and counter electrodes. Simulations 

provided qualitative changes to be expected for biomolecule assembly for both CV 

and EIS. Changes to the microfluidic channel dimensions were designed to be able to 

include a second layer of valve channels overlaid on top. The dimensions were 

chosen based on literature values to ensure good sealing and adequate bond strength 

to the substrate.   
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3 Device Fabrication 
 

3.1 Introduction 
 

This chapter will cover the fabrication procedure for every stage of device 

design. The designs were fabricated over the course of this research in 4 main stages.  

(1) Macroscale (1 mm diameter) electrodes to be used in a beaker of solution 

(2) Microscale electrodes in close proximity so that a droplet of the electrolyte 

containing the redox compound can be used for testing. 

(3) A microscale electrode array on a chip that includes microfluidic channels but 

no active valves. 

(4) A microscale electrode array on a chip including microfluidic channels and 

valves. 

Each of these four designs will be referenced throughout the chapter. The chip 

fabrication process is described in the first section, followed by the PDMS channel 

fabrication and finally the bonding and packaging of the devices are explained.  

3.2 Chip Fabrication 
 

Both glass and silicon dioxide were used as substrates for the patterning of all 

the chips in this research. Specifically, the chips were fabricated on either 4” 

Borosilicate glass wafers (Promptar, CA) or 4” silicon wafers (Silicon Quest, CA) 

with 1 µm of PECVD silicon dioxide deposited on the surface. Each of these 

substrates provides insulation for the patterned electrodes and also a prime surface for 

bonding the PDMS layers which will be discussed in more detail later in the chapter.  

All of the design stages require the patterning of gold while only stages 2-4 

require platinum patterning. The second stage to be used for the droplet tests also 
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includes a patterned ring of SU-8 5 surrounding the electrodes to create a 

hydrophobic surface and keep a droplet contained over the electrodes. The parameters 

used to perform each of these steps for all of the chips are discussed here. 

3.2.1 Metal Patterning 
 

Both gold and platinum are used as the electrodes in the device. The gold is 

deposited first over the wafer, and patterned using photolithography and wet chemical 

etchant. The platinum is patterned using a metal lift-off process. Both metal 

patterning processes are traditional microfabrication techniques. 

The process flow for the metal patterning steps is shown graphically step-by-

step in Table 3.1. The first chip design only requires steps 1-3 of this process while 

the other 3 designs use all of the steps shown. Note that the pictures depict only the 

design of the arrayed sensors. Specific parameters and discussion for each of the 

process steps are given afterwards. 

Table 3.1: Process flow of metal patterning steps for all design stages. 

Side View    Top View   Description  

(1) 
Begin with a 4” 
wafer. Sputter 20 
nm of chrome, 
followed by 200 
nm of Gold. 

     
 
 

(2) 
Deposit and 
pattern photoresist 
in order to define 
the features for 
the gold 
electrodes. 
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(3) 
Etch the exposed 
gold and chrome 
using Transcene 
etchants. Remove 
the photoresist 
with acetone.  

 
 

(4) 
Deposit and 
pattern photoresist 
on the wafer to 
define areas for 
the platinum 
electrodes (lift-off 
process) 

 

(5) 
Evaporate 200 Å 
of titanium 
followed by 2000 
Å of platinum. 

 
 
 
 

(6) 
Remove the 
photoresist with 
acetone, lifting off 
the platinum with 
it.  

 
 
 

 

The gold has poor adhesion on its own to both glass and silicon dioxide 

substrates. A thin layer of chrome is first deposited under the gold to act as an 

adhesion layer. The processing parameters using a JEOL AJA sputter machine in the 
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Fablab at the University of Maryland for depositing the Cr/Au are given below in 

Table 3.2.  

Table 3.2: Parameters used for sputtering Cr/Au onto the wafer. 

 Chrome Gold 
Chamber Pressure 10 mTorr 10 mTorr 
Argon Flow Rate 20 sccm 20 sccm 
Supplied DC Power 200 W 200 W 
Sputter Rate 10 nm/min 36 nm/min 

Final Thickness 20 nm 200 nm 

 

After the Cr/Au deposition, Shipley 1813 positive photoresist is spun across 

the wafer and used to pattern the gold electrodes. The parameters for the lithography 

process are given in Table 3.3.  

Table 3.3: Table of processing steps and parameters for patterning the Cr/Au electrodes. 

Step   Parameters   Description 
Spin Photoresist 3000 RPM, 30 sec  Achieves thickness of 

1.6 μm across the 
wafer 

    
Bake   100 °C, 60 sec  Evaporates solvent 

from resist 

    
Expose  190 mJ/cm2 @ 405 

nm 
 Expose resist using 

Mask (Appendix B) 

    
Develop  30 sec   Use Microposit 351 

developer, rinse with 
DI water afterwards 

    
Etch Au  2 min, mild agitation  Etch exposed gold 

using Au etchant 

    
Etch Cr  30 sec, mild agitation  Etch exposed chrome 

using Cr etchant 
    
Strip Photoresist    Rinse with acetone, 

methanol, isopropanol 
alcohol (IPA) 

         
Clean Wafer 1 minute  Piranha clean with 4:1 

H2SO4: H2O2   
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The various masks used to pattern the gold for the different stages of the 

device design are given in Appendix B. Each mask is printed on a transparency sheet, 

and taped onto a 5” x 5” glass plate to use with a contact mask aligner. The masks are 

designed in the program L-edit and printed with a minimum resolution of 5080 dpi 

from the company Pageworks in Cambridge, MA.  

After the Au/Cr pattern step, the first design stage consisting of chips 

patterned using Mask 1 in Appendix B is complete and the chips can be individually 

cleaved from the wafer for use. These chips include circular working electrodes and a 

large gold counter electrode to be used for electrochemical testing in a beaker. The 

chips are shown in Figure 3.1. The other three chip designs (chips for droplet tests, 

chips for arrayed sensing in straight microfluidic channels, and chips for arrayed 

testing using valved microfluidic channels) used masks 2-4 in Appendix B to pattern 

the gold electrodes.  

 
Figure 3.1: Photograph of patterned macroscale chips. Left two chips are counter electrodes while right two 

are working electrodes. 

All of the designs except for the first utilize a patterned platinum reference 

electrode. Like gold, platinum has poor adhesion to either glass or silicon dioxide. A 

thin layer of titanium is deposited first under the platinum to promote better adhesion. 

The Ti/Pt is patterned using a conventional metal lift-off process. An image reversal 

photoresist, AZ5214, is spun across the wafer and developed with the procedure 
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shown in Table 3.4. Either one of masks 5-7 in Appendix B are used to pattern the 

photoresist depending on which design is currently being fabricated. 

Table 3.4: Processing parameters for AZ5214 photoresist. 

Step    Parameters    Description 
Spin AZ5214 
Photoresist 

3000 RPM, 30 sec  Achieves thickness 
of 1.4 μm across 
wafer 

    
Bake   100 °C, 60 sec  Evaporates solvent 

from resist 
    
Expose  30 mJ/cm2 @ 405 nm Expose resist using 

either mask 5-7 
(Appendix B) 

    
Bake  125 °C, 45 sec  Post bake step 

    
Flood Expose 1000 mJ/cm2 @ 405 nm Expose across 

whole wafer (no 
mask) 

    
Develop   6:1 AZ400K, 120 

sec 
  Develop patterned 

regions 

 
Once the photoresist has been patterned, 40 nm of Ti followed by 160 nm of 

Pt are deposited across the wafer using a Denton E-beam evaporation system from the 

Fablab at the University of Maryland. The wafer is then placed in an ultrasonicated 

acetone bath for 5 minutes to completely lift off all of the underlying photoresist and 

leave behind the patterned platinum features. 

At this point, the third and fourth chip designs are complete and they can be 

cleaved from the wafer. If the pattern is made on a glass substrate, then the chips must 

be carefully diced out using a dicing saw. Photographs for both chip designs are 

shown below in Figure 3.2. 



66 

 

 
Figure 3.2: Photographs of completed chips for the microfluidic design without valves on silicon dioxide (a),  

and the design with valves on both silicon dioxide (b) and glass (c). 

3.2.2 SU­8 5 Patterning 
 

The second design used for droplet testing requires an additional chip 

fabrication step. In order to effectively confine the droplet of solution, a thin polymer 

material is patterned in a ring around the patterned electrodes. Many polymers are 

hydrophobic which will stop the spreading of the droplet and keep it in place over the 

electrodes. SU-8 5 resist (Microchem, MA) is chosen for this step since it can be 

easily spun to low thicknesses, is chemically resistant, and has a contact angle of 

around 99 degrees [147]. The procedure for the patterning of the SU-8 5 is shown 

below in Table 3.5. 

Table 3.5: Processing parameters for SU-8 5. 

Step    Parameters    Description 
Spin SU-8 5 resist 500 RPM, 5 sec   Achieves thickness of 

2.2 μm across wafer    Ramp: 10 sec  

  5200 RPM, 30 sec 
    
Soft Bake   95 °C   Let wafer cool 

afterwards to 50 °C       Ramp: 300 °C/hr  
      Time: 16 min  
    
Expose  200 mJ/cm2 @ 365 nm Expose resist using 

mask 8 (Appendix B) 

    
Post Bake Same as Soft Bake  Hardens features 
    
Develop   SU-8 Developer, 120 sec Clean with IPA 

following development 

 



67 

 

After the wafer is cleaned, the individual chips for droplet testing can be 

cleaved from the wafer and are shown below in Figure 3.3. A microscope image of 

the patterned sensors within the SU-8 ring is shown in Figure 3.4. 

 
Figure 3.3: Photograph of chips used for droplet tests. 

 

 
Figure 3.4: Microscope image of droplet sensor chip containing 4 working electrodes, 1 counter electrode 

and 1 reference electrode patterned within a ring of SU-8. 

3.3 PDMS Processing 
 

Polydimethylsiloxane (PDMS) is used to create all of the microfluidic 

channels in this work. Briefly, the material consists of an elastomer and curing agent 

mixed in a specific ratio and cured in an oven over a molded surface. The mold 

contains the pattern for the channel design. After curing, the PDMS can be removed 

Working 
Electrodes

Counter 
Electrode

Reference 
Electrode
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from the mold and bonded to the previously fabricated chip to complete the device. 

This section describes the process used to make each of the molds as well as the steps 

taken for preparing the PDMS.  

3.3.1 SU­8 50 Mold Fabrication 
 

The resist SU-8 50 (~100 microns thick) was chosen to fabricate molds for 

both the microfluidic channels used with chip design 3 as well as the valve channels 

for the final chip design. The SU-8 is patterned on a blank 4” silicon wafer. The 

condition of the wafer surface is very important in order to successfully peel the 

PDMS away after it has cured. It was found during the fabrication of numerous molds 

that silicon wafers of test grade quality had surfaces which demonstrated great 

affinity to the PDMS and made it nearly impossible to separate the two. Prime grade 

silicon wafers did not share this problem. It is hypothesized that this may be caused 

by inadequate polishing of the test grade wafers vs. the more carefully prepared prime 

grade. Other wafer surfaces beyond bare silicon could be used as well for the 

substrate, but the SU-8 recipe would have to be optimized to promote better adhesion. 

The processing parameters used for the SU-8 50 are shown in Table 3.6. A 

ramped cooling step down to room temperature is recommended after each heating 

step to reduce any stress cracking in the SU-8 due to the coefficient of thermal 

expansion (CTE) mismatch between the polymer and the silicon substrate. Small 

cracks can be filled by the pre-cured PDMS and cause tearing when trying to peel the 

cured PDMS away from the mold. Photographs of the completed SU-8 molds are 

shown in Figure 3.5. 
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Table 3.6: Processing parameters used for SU-8 50 on silicon. 

Step    Parameters    Description 
Spin SU-8 50 600 RPM Spin parameters 

used to create 
uniform film ~ 100 
μm thick 

      Ramp: 5 sec 
      Time: 10 sec 
  1150 RPM 
      Ramp: 3 sec 
      Time: 27 sec 
    
Pre-Bake 65 °C Used to evaporate 

solvent. Let wafer 
cool to room temp 
afterwards 

      Ramp: 300 °C/hr 
      Hold Time: 10 min 
  95 °C 
      Ramp: 300 °C/hr    

      Hold Time: 30 min    
    

Exposure 2500 mJ/cm2 @ 405 nm Expose using Mask 
9 or 10 (Appendix B) 

  
    
Post-Bake 95 °C Crosslinks resist. Let 

wafer cool to room 
temp afterwards 

      Ramp: 300 °C/hr 
      Hold Time: 10 min 
    

Develop 10 min, agitation Develop in PGMEA 
developer. Rinse 
with IPA afterwards   

         
 

 

 
Figure 3.5: Completed SU-8 molds for (a) straight microfluidic channels and (b) valve channel network. 
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3.3.2 AZ9260 Mold Fabrication 
 

The microfluidic channels in the final device design are designed to have a 

height that lies anywhere in the range of 25 to 35 microns. This is to ensure leak-

proof sealing by the valves as discussed previously. Also discussed is the rounded 

cross section for these channels. The photoresist AZ9260 has the ability to be spun in 

multiple layers to produce heights ranging anywhere from 10 to 80 microns. 

Furthermore, it has been shown in literature that it can be rounded by heating to its 

glass transition temperature after development [148].  

A 4” silicon wafer was used for the substrate and an adhesion promoter 

HMDS (Dow Corning, MA) was first spun to promote better adhesion between the 

silicon and the AZ9260. In order to achieve thorough development of the UV-

exposed areas of the photoresist, the AZ9260 must be adequately hydrated prior to 

exposure. This hydration process is necessary to activate areas of the UV-exposed 

polymer chains with water molecules thus making the area soluble to the developer. 

During the course of this research, the hydration time would change based on the 

relative humidity present in the cleanroom where the lithography process took place. 

In the summer months, the high humidity (40% – 70%) caused the wafer to 

adequately hydrate within 15 minutes after the spinning process. In the winter 

months, the humidity dropped to extremely low levels (5% - 15%) and the wafer 

would need to be exposed to the air for at least 24 hours after the spinning process. 

The hydration of the photoresist is also important for achieving a well-rounded profile 

when reheated to the glass transition temperature.  
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The processing parameters used for ultimately achieving a height of 32 

microns are shown below in Table 3.7. The development time is longer than what is 

suggested by the manufacturer to completely dissolve away residues that remain 

behind due to the use of a transparency mask. The transparent regions on the mask are 

slightly translucent and speckled which interrupts the UV exposure of the underlying 

resist. Care must be taken to not leave the wafer too long in the 3:1 AZ400k 

developer mixture as it will begin to dissolve the pattern away over time. 

Table 3.7: Processing parameters for AZ9260 lithography and rounding. 

Step    Parameters    Description 
Spin HMDS 3000 RPM, 30 sec Adhesion layer, let sit 

on wafer 60 sec 
before spin 

  
  
    
Spin 1st Layer 2400 RPM Creates film ~11 µm 
      Ramp: 3 sec    

      Time: 60 sec    
     
Bake 110 °C, 80 sec Evaporate solvent 
     
Spin 2nd Layer 2100 RPM Creates final film 

thickness ~24 µm       Ramp: 3 sec 
      Time: 60 sec 
     
Bake 110 °C, 210 sec Evaporate solvent 
    
Rehydration 15 min - 24 hr Rehydration time 

based on humidity   
     
Exposure 1200 mJ/cm2 Exposing with Mask 

11 (Appendix B)   
    
Develop 4:1 AZ400k 10 min Two step 

development process 
removes all residues 

  3:1 AZ400k 5 min 
  

Rounding 115 °C, 90 sec Profile rounded on 
hotplate 

 

 Both a microscope and a Dektak 6M contact stylus profilometer (Veeco, NY) 

were used to confirm the rounding of the AZ9260 photoresist. Figure 3.6 below 
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displays both the optical images and profiles before and after the rounding procedure. 

The bending of the light through the curved surface is observed in the microscope 

images while the profilometer scan also gives the final height of the resist. The height 

increases from 23.6 µm to 32.8 µm after rounding. 

 
Figure 3.6: (a) microscope images and (b) profilometer scans of AZ9260 photoresist before and after the 
rounding procedure. Notice the increase in height of the resist from 23.6 µm to 32.8 µm after rounding. 

 Once all of the lithography steps are performed, the mold requires a release 

agent to be evaporated across the whole wafer. During initial testing of these molds, it 

was found that the PDMS would commonly stick too strongly to the mold wafer 
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which could cause tearing of the thin PDMS layer upon peeling it off the mold or 

delamination from the second layer of PDMS on top. 

Two materials have been demonstrated in literature for the purpose of 

providing a non-adhesive surface for PDMS-mold separation. These are 

trimethylchlorosilane [142, 143] and tridecafluoro-(1,1,2,2-tetrahydrooctyl)-1-

trichlorosilane [149-151]. Both compounds work by covering the mold wafer with 

chlorosilane (Si-Cl) groups which do not adhere to the exposed siloxane (Si-O) 

groups of the PDMS. Ultimately, trimethylchlorosilane (Gelest, PA) was chosen due 

to cost considerations.  

The AZ9260 mold wafer was placed into a vacuum desiccator box with the 

surface facing downward. A small dish with a few drops of trimethylchlorosilane was 

placed underneath. The desiccator box was closed and a vacuum pump was used to 

bring the pressure inside down to -27 inches of Hg. The wafer was left in this 

environment for 1 hour to let the trimethylchlorosilane evaporate completely over the 

surface. Trimethylchlorosilane should only be opened and handled under a fume 

hood, since inhalation of even a small amount can be very harmful. Afterwards, the 

box was purged with nitrogen and the wafer was removed and ready to be used as a 

PDMS mold for the microfluidic channels. The trimethylchlorosilane was stored 

under inert nitrogen inside the desiccator box until further use. A photograph of the 

completed AZ9260 mold wafer is shown in Figure 3.7. 
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Figure 3.7: Photograph of the completed AZ9260 mold wafer. 

3.3.3 PDMS processing parameters 
  

Three different formulations of PDMS were mixed to create the various 

channels used in this work. Elastomer to curing agent ratios of 5:1, 10:1 and 20:1 

were employed. Also, a different fabrication procedure is used whether a single layer 

or two layers of PDMS are being fabricated. These details are discussed further here. 

3.3.3.1 Single layer PDMS process 
 

A single layer of PDMS is fabricated to create linear microfluidic channels 

using the mold displayed earlier in Figure 3.5a. The ratio of PDMS elastomer to the 

curing agent is 10:1. Specifically, 20g of elastomer and 2g of curing agent are mixed 

together in large weighing pan then placed in a vacuum bell jar to completely degas 

the mixture for 20 minutes. An enclosure is made around the mold wafer in aluminum 

foil and the uncured PDMS is slowly poured over the mold. The mold is then placed 

in a box furnace with a program set to cure the PDMS at 80 C for 17 minutes with a 5 

minute ramp up to 80 °C from room temperature. After curing, the PDMS can be 
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peeled away from the mold and each individual piece can be cut out using a razor 

blade. The pieces of PDMS are between 2-3 mm thick. 

3.3.3.2 Dual­layer PDMS process  
 

Two distinct PDMS processes are used to create the dual layer PDMS stack 

consisting of microfluidic channels and valve channels. The microfluidic channels are 

formed using the AZ9260 mold shown earlier in Figure 3.7. The PDMS is spun over 

this mold to produce a thin, uniform layer of PDMS covering the wafer. The curing 

ratio for the spun PDMS is 20:1 elastomer to curing agent which creates a less 

viscous material for spinning. The thickness of the spun PDMS will determine the 

thickness of the valve membrane over the microfluidic channel. Thus, it is important 

to tune the spinning parameters to achieve the desired thickness. Figure 3.8 below 

displays the final PDMS thickness measured with a profilometer for different RPM 

speeds for a time of 90 seconds. 

 
Figure 3.8: PDMS thickness vs. spin speed curve. Speeds higher than 1500 RPM display little change to the 

thickness. 
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A polynomial fit has been made to the data in the graph. RPM speeds higher 

than 1500 do not change the thickness while lower RPM speeds increase the 

thickness at a higher than linear rate. The AZ9260 mold height is only 32 microns on 

average, so speeds higher than 1400 RPM do not produce an adequate membrane 

thickness to use for the valves. It is suggested in literature that good valve sealing is 

achieved with membranes on the order of 20 – 30 microns [143]. The lowest spin 

speed in this graph of 1000 RPM produces membranes that are ~24 microns thick. 

These were found to work well during testing and lower speeds to achieve thicker 

valves were not attempted. 

After the PDMS is spun over the wafer, it is cured in the box furnace with the 

same recipe previously mentioned of 80 °C for 17 minutes with a 5 minute ramp. The 

wafer is set aside after curing and the next PDMS process is started. 

The valve channels are formed using PDMS cured over the mold wafer shown 

previously in Figure 3.5b. This PDMS is mixed using a ratio of 5:1 elastomer to 

curing agent. This high curing agent concentration produces more a more rigid layer 

of PDMS which also demonstrates high bonding affinity to PDMS with a lower 

concentration of curing agent i.e. the thin PDMS layer spun over the AZ9260 mold 

which has a 20:1 ratio). The 5:1 mixture of PDMS is poured over the valve channel 

mold and cured using the same heating process in the box furnace. Afterwards, 

individual pieces are cut from the PDMS and aligned over the spun PDMS on the 

AZ9260 mold to form a stack of two layers. This process is shown schematically in 

Figure 3.9 and a photo of the bonded layers is observed in Figure 3.10. 
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Figure 3.9: Dual layer PDMS fabrication process including a spun layer to form microfluidic channels (a) 
and a thicker layer to form valve channels (b). The thicker layer is cut into smaller portions and aligned 

over the spun PDMS as shown in (c). After curing together, the entire stack is cut out and peeled away from 
the mold as shown in (d). 

 
Figure 3.10: Photograph of the two layers of PDMS bonded to one another over the AZ9260 mold wafer. 

Individual pieces from the top valve layer are aligned over the fluidic channel network. The entire stack is 
bonded by placing it back into the box furnace. 
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Once the two PDMS layers have been bonded together, they must be cured 

together to complete the bond. The curing is performed in the box furnace at 80 °C 

for 3 hours. The furnace should also be allowed to cool back down to room 

temperature over another 3 hours. This procedure promotes a stronger bond between 

the two layers since they each contain a different ratio of curing agent.  

3.4 Bonding and Packaging 
 

PDMS is known to bond well with hydrophilic surfaces such as glass and 

silicon dioxide. A reversible bond can be created by simply pressing the PDMS over 

these substrates and will provide leak proof sealing providing the channels are large 

enough and the flow rate is low enough. This bond is used for the microfluidic chip 

design that does not contain valves. The PDMS channels can be peeled away and 

replaced onto the chip with adequate sealing so long as the liquid flow rate remains 

under 200 µl/hr. However, a reversible bond is not sufficient when applying air 

pressure to actuate the valves. A stronger, irreversible bond of the PDMS to the 

substrate is necessary in this case. The procedure for creating a covalent bond 

between the PDMS and substrate is explained here. Also explained are the 

connections for the fluid inlets and outlets. 

3.4.1 Plasma Bonding Procedure 
 

By exposing both the PDMS and the substrate surface to oxygen plasma, a 

strong intermolecular bond can be created between the two. The plasma forms 

functional silane groups (Si-OH) on the surface of both the PDMS and the glass or 

silicon dioxide substrate. When the surfaces are brought into conformal contact with 

one another, the silane groups on each surface condense with each other to form 
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strong intermolecular siloxane (Si-O-Si) bonds. The activated silane groups on the 

surface will relax over time and return to methyl groups so it is important to perform 

the bonding soon after the exposure to the oxygen plasma. 

The exact procedure for performing the bonding is detailed here. The wafer 

containing the four double stacks of cured PDMS (shown earlier in Figure 3.10) is 

brought into a cleanroom environment along with the individual electrode array chips 

on either glass or silicon dioxide. One of the four PDMS stacks is cut out using a 

razor blade and peeled away from the mold. A dermatological punch with a radius of 

1 mm is used to punch holes in the dual layer PDMS stack to create both fluid and 

pneumatic inlets. The electrode chip is cleaned using piranha solution to clean the 

surface of any organic contaminants. The PDMS stack along with the electrode chip 

are placed face up in a reactive ion etch (RIE) machine to expose each surface to the 

oxygen plasma. After exposure, a few drops of methanol are placed on the chip and 

the PDMS stack is aligned carefully over the electrodes. The methanol allows the user 

to slide the PDMS over the chip to provide better alignment. The methanol evaporates 

and the bond is allowed to set for 48 hours. 

The parameters used for the RIE oxygen plasma exposure had to be tailored 

for the machine used in the Fablab. A March Jupiter III O2 plasma system (Nordson 

March, OH) was used for this work. The machine allows the user to set the time of 

the exposure, the RF wattage and the pressure in the chamber. A range of RF 

wattages and pressures were tested to determine the bond strength of PDMS to silicon 

dioxide using this machine. The time was kept constant at 30 seconds. These 

parameters were chosen based on commonly used numbers for PDMS bonding found 
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in literature [145, 149, 152]. PDMS with 3 punched inlets was used for each bonding 

test and air pressure was applied to each of the inlets. The pressure at which the bond 

delaminated was recorded for each trial along with observations concerning what 

percentage of the PDMS bonded strongly with the substrate. This data is given below 

in Table 3.8. 

Table 3.8: Bond strength of PDMS to silicon dioxide for various RIE machine parameters. 

Power (W)  Pressure (mTorr)  Bond Strength (kPa)  Notes 

20  200  20.7  ~1% of PDMS area 
strongly bonded 

         

20  400  96.53  ~70% of PDMS 
area strongly 
bonded 

         

20  600  6.9  0% of PDMS area 
strongly bonded 

         

20  800  6.9  0% of PDMS area 
strongly bonded 

         

50  200  110.3*  ~15% of PDMS 
area strongly 
bonded 

         

50  400  68.9  ~20% of PDMS 
area strongly 
bonded 

         

50  600  6.9  0% of PDMS area 
strongly bonded 

         

50  800  6.9  0% of PDMS area 
strongly bonded 

* Only for 1 inlet. Other two inlets delaminated at < 10 kPa applied pressure

  

 From the table, it is clear that lower pressures work much better than higher 

pressures. Both cases with 800 mTorr demonstrated no bonding at all between the 

PDMS and the silicon dioxide. Also, using higher RF power did not significantly 

increase the bond strength. Based on these results, a recipe of 20 W with a chamber 
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pressure of 400 mTorr was chosen. The pressure utilized for actuating the valves is 

around 35 kPa so a bond strength of 96.53 kPa is well above this value. Furthermore, 

this recipe produced the highest area percentage of PDMS strongly adhered to the 

surface. Bringing this number closer to 100% was achieved by allowing the bond to 

form over a longer period of time (72 hours as opposed to 48 hours). PDMS bonds 

much more strongly to glass than to silicon dioxide and it was found that 20 W at 400 

mTorr produced a leak-proof bond between PDMS and glass without the need for 

further characterization. 

 The fabrication of the valved microfluidic device is complete following the 

plasma bond of the PDMS. Figure 3.11 demonstrates the completed device on a glass 

substrate for better clarity of the various channels. The microfluidic channel network 

is filled with green dye while the two valve channels are filed with red and blue dye. 

 
Figure 3.11: Photograph of completed valved microfluidic device containing microfluidic network (green) 

and valve channel networks (red, blue). 

3.4.2 Fluidic connections 
 

Tubing is attached to each of the hole-punched inlets in the device via plastic 

elbow connectors or straight connectors (Cole-Parmer, IL). The connectors are sized 
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to fit 1/16” tubing. Tygon flexible tubing is used to deliver either liquid samples or 

pressurized air to the inlets. Figure 3.12 shows the tubing-connector assembly. 

 
Figure 3.12: Plastic connectors used to interface tubing with the microfluidic device. Two sizes of tubing are 

used to create a leak-proof seal. 

 Two sizes of tubing are used to make a leak-proof seal with the connector. 

Small pieces of thick tubing with OD .1875” and ID .0625” fit snugly around the 

plastic connector and around thinner lengths of tubing with OD .087” and ID .015”. 

The thinner tubing is used to create a tight fit to the end of a syringe needle which 

supplies the liquid to the device. The elbow connectors were found to work best with 

the microfluidic device without valves while the straight connectors were ideal for 

use with the device containing the valves. 

3.5 Summary 
 

This chapter has covered the fabrication procedure for each of the 4 device 

designs. Metal patterning was performed using both wet chemical etching and lift-off 

techniques. The second design included an extra patterning of SU-8 5 to create a 

hydrophobic region on the chip. Molds for forming the PDMS channels were created 

on silicon wafers with either patterned SU-8 50 for large (100 µm height) channels 
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and AZ9260 for small (25 µm height) channels. Both the spin speed and bonding 

parameters were characterized for the PDMS to produce membranes of ~30 µm 

thickness and a bond strong enough to silicon dioxide and glass to withstand the 

pressures applied during testing. Final packaging of the device was achieved by using 

plastic elbow and straight connectors coupled with plastic tubing to form a snug fit 

around both the connectors and a syringe needle. 
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4 Testing and Characterization 
 

4.1 Introduction 
 

This chapter focuses on the testing set-up utilized for each of the device 

designs as well as observations concerning the electrochemical characteristics of each 

sensor. The first section covers preliminary electrochemical tests performed on the 

macroscale electrode chips as well as the droplet sensing chips. The latter sections 

cover the testing procedure for the microfluidic device designs and characterization of 

the 3 x 3 sensor network. The changes to the diffusion regime in the device after 

integration of the valve network is explored by comparing collected data from the 

sensors both before and after the integration of the valves. 

4.2 Preliminary Electrochemical Tests 
 

Before the construction of the microfluidic device, electrochemical tests were 

performed using both a beaker of electroactive solution and with the chip designed 

for testing the micropatterned electrodes using a droplet of electroactive solution. 

These tests were performed to become familiar with the electrochemical techniques 

and to test the potential stability of platinum as a reference electrode.  

4.2.1 Beaker Experiments 
 

All of the experiments performed with a beaker used 6 mL of electrolyte with 

the added redox compound in a 10 mL beaker. Alligator clips were used to make 

contact to the gold macroscale chips consisting of counter and working electrodes. 

The areas for each electrode were 48.75 mm2 and 3.14 mm2 respectively. An in-house 

device was designed to hold the alligator clips in place suspended above the beaker. 
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A commercially purchased Ag/AgCl reference electrode containing 1 M KCl (CH 

Instruments, TX), was also suspended along with the chips using the designed holder. 

A photograph of the testing set up is shown in Figure 4.1. 

 
Figure 4.1: Photograph of testing set-up used for all beaker experiments. 

The working electrode chip is designed to fit within a 2 mL centrifuge tube so 

that it can be easily incubated with solutions containing the biomolecules of choice. 

The blue platform can be raised or lowered to bring the electrodes down into the 

solution for testing. DNA hybridization experiments using this set up are shown in 

Chapter 6. 

4.2.2 Droplet Testing 
 

The micropatterned chips used with a droplet of solution were made to 

characterize the stability of the platinum reference electrode and also to perform some 

basic biomolecule assembly experiments before the fabrication of the microfluidic 

devices. Probe needles make electrical contact to pads patterned around the edge of 

the chip. A photograph of one of the droplet chips under test is shown in Figure 4.2. 
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Cyclic voltammetry experiments were performed using two different sizes of working 

electrodes and on different days. The data is displayed in Figure 4.3. 

 
Figure 4.2: Photograph of droplet chip under test. A droplet of electroactive solution is placed over the 

electrodes in the center of the chip. 

 

 
Figure 4.3: CV scans using the droplet chip of two electrodes on different days. The redox peaks occur at 

nearly the same value which demonstrates the stable nature of platinum as a reference electrode. 

Using platinum as a reference instead of Ag/AgCl shifts the potential at which 

the peaks occur more negative. The important observation from this data is that the 

redox peak potentials do not change for different days of testing and with different 

Day 1, 50 um electrode

Day 2, 25 um electrode
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working electrodes. This data demonstrates the stability of the platinum reference 

electrode and justifies its inclusion for the microfluidic devices. 

 Several CV scans separated by 10 minute intervals were performed for the 

same electrode and the same droplet of solution to determine short term stability of 

the measurements. The results are shown in Figure 4.4. 

 
Figure 4.4: Repeated scans of same electrode using droplet sensor. Increasing current attributed to constant 

evaporation of the droplet. 

The data demonstrates little change in the potentials of the redox peaks as 

expected, however, the peak amplitude increases over time. It was discovered that 

this effect is due to the slow evaporation of the electroactive droplet. As the liquid 

evaporates, the concentration of the dissolved redox compound increases which 

increases the measured current.  

4.3 Microfluidic Device Testing 
 

The microfluidic device design incorporating straight parallel channels in a 

single layer of PDMS contains 9 working electrodes in a 3 x 3 array. This section 
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covers the testing set-up and procedure for using the device as well as 

electrochemical characterization data for the patterned sensors. 

4.3.1 Testing and Operation 
 

The device contains 6 total fluid inlets/outlets and electrical contact pads 

along one side of the chip for easy probe access. A photograph of the completed 

device under test is shown in Figure 4.5. The device in the picture is patterned on a 

silicon dioxide substrate and uses elbow plastic connectors for each fluid inlet/outlet. 

The probes can be easily manipulated to make electrical contact to any of the 

electrodes patterned within the microfluidic channels. The layer of PDMS is molded 

to be on the order of 2-3 mm thick in order to provide better stability with the inserted 

plastic connectors. 

 

 
Figure 4.5: Photograph of the microfluidic device design without valves under test. 

The spacing of the sensors and the molded channels are designed so that the 

channels can be placed across the sensors exposing each sensor column in its own 

unique channel. Each sensor column can be incubated with a different 
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functionalization compound without any cross-contamination between the other 

channels. Afterwards, the PDMS channels can be peeled off, rinsed, then rotated 90 

degrees in-plane and placed back down over the patterned sensors. In this way, rows 

of sensors are exposed in each channel along with unique counter and reference 

electrodes. This process was discussed previously and demonstrated schematically in 

Chapter 2. 

The manual rotation of the channels is necessary due to the lack of valves to 

control the fluid flow. The surface functionalization consists of different passivation 

compounds for the protein adhesion study and ssDNA probe sequences for the DNA 

hybridization study. DNA or protein samples are incubated in the horizontal channels 

over each of the sensor surfaces. Each channel can be filled sequentially with 

electroactive solution before and after the sample incubation for each of the sensors to 

determine any adsorption or affinity based binding activity.  

4.3.2 Sensor Uniformity 
 

Each of the 9 sensors within the device was tested to determine their overall 

uniformity as well as the potential stability of the platinum reference electrode for 

each channel row. Each channel was filled with electrolyte containing the 

ferri/ferrocyanide redox couple and CV scans were taken of the bare electrode 

surface. Results of these scans are shown in Figure 4.6. Each sensor exhibits very 

similar peak separation (.087 ± .004 V) and peak amplitudes for both the oxidation   

(-799 ± 9.8 nA) and reduction (746 ± 9.8 nA) peaks. The oxidation and reduction 

potentials of the ferri/ferrocyanide couple are 0.037 ± .002 V and -0.05 ± .002 V 

respectively for each of the nine sensors which demonstrates the relative potential 



90 

 

stability of the platinum reference electrodes in each channel. The three sensors in the 

bottom microfluidic channel have less exposed gold due to the design of the leads and 

thus slightly lower peak amplitudes compared to the other six.  

 
Figure 4.6: Cyclic voltammetry plots from the nine sensors in the microfluidic device arranged in a 3 x 3 

grid. The peak heights and peak separation are all very similar for each plot demonstrating excellent 
reproducibility among the patterned sensors. 

4.3.3 Sensor Cleanliness 
 

The cleanliness of the electrode surface can be observed electrochemically 

from how reversible the oxidation and reduction reactions of the ferri/ferrocyanide 

couple are. The peak current from a CV scan should follow the Randles-Sevcik 

equation (2.5) described earlier. According to the equation, the peak current should be 

linearly proportional to the square root of the scan rate if the reaction is reversible. 

Figure 4.7 displays the CV response for one of the sensors at scan rates varying from 

25 - 800 mV/s. The inset graph displays the linear relationship between the peak 

current and the square root of the scan rate with an R2 value near unity. The observed 

slope is 1.2 µA/1/2ߥ where ߥ is the scan rate in (V/s). This value is very close to the 
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expected value of 0.81 µA/1/2ߥ, which has been calculated using the diffusion 

coefficient for ferri/ferrocyanide found in literature [153]. The higher observed slope 

may be due to the roughness of the electrode contributing a higher surface area. It is 

also important to observe from the cyclic voltammograms that the oxidation and 

reduction peak potentials at each scan rate are the same which is further evidence of a 

reversible reaction and a clean electrode surface. 

 
Figure 4.7: Cyclic voltammograms with increasing scan rates from 25 – 800 mV/sec. (inset) Linear 

relationship observed between the reduction current peak amplitude and the square root of the scan rate. 

4.4 Valved Microfluidic Device 
 

The microfluidic device integrated with the PDMS valve layer requires a more 

careful operating procedure. Puncturing any of the valve membranes either from too 

much applied air pressure or liquid flow can ruin the entire device. This section 

details the testing set up and operating procedure for the valved device as well as 

some electrochemical tests.  
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4.4.1 Testing and Operation 
 

The valved device contains 12 fluid inlets/outlets and 2 pneumatic inlets. 

Electrical contact pads are patterned along one side of the chip for probe contact 

similar to the device without valves. The entire testing set-up is shown in Figure 4.8. 

A single channel syringe pump (Kent Scientific, CT) is used to deliver fluid samples 

to the device while a micro centrifuge tube collects the fluid waste. A regulator 

outputs 5 psi of pressurized air and is controlled via the valve shown in the picture. 

 
Figure 4.8: Photograph of testing set-up utilized for the valved microfluidic device. 

 
The pressurized air is either applied to the top left or bottom right inlet to form 

vertical or horizontal microfluidic channels passing over the sensor array. Vertical 

channels are used for sensor surface functionalization while the horizontal channels 

are used for electrochemical testing and sample incubation similar to the device 

without the valves. Figure 4.9 below uses a device with a glass substrate to 

demonstrate the separation achieved between the vertical and horizontal channels 

when pressure is applied to the two inlets.  
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Figure 4.9: (a) vertical channels created in device by applying pressure to top inlet and (b) horizontal 

channels created by applying pressure to the bottom right inlet. 

It can be noticed in the pictures that the liquid also travels a short distance 

down the perpendicular channel in a few instances. However, the flow is always 

stopped at the point where the valve crosses the microfluidic channel. The filling of 

certain perpendicular channels while not filling others is related primarily to minor 

changes in the hydrophobicity of the surface as well as any trapped air that may be in 

the channels at the time of the fluid flow. The more important observation is that the 

liquid from each channel does not cross into the other parallel channels demonstrating 

the effectiveness of the valves. 

4.4.2 Pneumatic vs. Hydraulic Actuation 
 

During the testing of the valved microfluidic device, a problem with the use of 

pressurized air to actuate the valves became apparent. PDMS is permeable to air, in 

fact, this property is one of the reasons why it is so widely chosen for in-vitro 

biological studies [154, 155]. However, the use of pressurized air to depress the thin 

PDMS membranes causes the air to also leak through the membrane and into the 

channel. This causes noticeable bubble formation in the channels within minutes of 

applying the pressure. These bubbles not only disrupt the ability for biomolecules to 
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self assemble on the surface, they also interrupt the fluid connection between the 

electrodes during the electrochemical measurement.  

The solution to this problem was to fill the valve channels slowly with liquid 

and apply pressurized air on the back end. In this configuration, the incompressible 

nature of the fluid is used to press downward on the valve membranes with applied 

pressure. The channels must be filled very slowly otherwise the membranes will 

break under the pressure. The syringe pump was used to fill the valve channels with 

water at a flow rate of 30 µl/hr. Rates faster than this value caused the membranes to 

break during the filling procedure. Each channel takes almost 30 minutes to fill using 

this procedure. Afterwards, pressurized air at 5 psi was applied to the inlet to push on 

the back of the water allowing it to completely fill the channel.  

4.4.3 Sensor Uniformity 
 

A similar sensor uniformity experiment was performed using the valved 

microfluidic device as that performed with the non-valved device. CV scans were 

taken from each of the nine clean sensor surfaces using the valves to control the fluid 

flow in only the horizontal direction. The results are displayed in Figure 4.10 in the 

same 3 x 3 grid as the physical sensor layout. The CV results from the nine sensors in 

the valved device do not display the same level of electrochemical uniformity as the 

non-valved device. The output of the sensors from the same row shows the highest 

similarity to one another. 
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Figure 4.10: CV scans for each of the nine clean working electrodes in the valved microfluidic device. The 

graphs are displayed in the same 3 x 3 grid as the physical sensor layout. 

By examining the rows separately, the top row contained oxidation and 

reduction peak amplitudes of -768 ± 40 nA and 820 ± 36 nA respectively, the middle 

row contained oxidation and reduction peak amplitudes of -987 ± 28 nA and 970 ± 13 

nA respectively, and the bottom row contained oxidation and reduction peak 

amplitudes of -594 ± 69 nA and 571 ± 42 nA respectively. The peak separation for all 

sensors was 116 ± 9 mV so good reference stability was still observed in the valved 

device. The variation in the peak amplitudes between the three different channels is 

primarily explained by the way the liquid fills each of the channels. Due to the valve 

design, trapped air in the system can affect what portions of the channels the liquid 

fills and this can lead to slight variability between the impedances measured between 

the electrodes in each of the channels. This is not a significant problem since most 



96 

 

sensing experiments are only concerned with the change in the signal of one sensor 

and not versus other sensors, but it is still worthy of note. 

4.4.4 Sensor cleanliness 
 

A test on the cleanliness (and reaction reversibility) of the electrode was also 

performed for the valved microfluidic device. CV scans were performed with scan 

rates varying from 25 – 300 mV with the results displayed below in Figure 4.11. 

 

 
Figure 4.11: CV scans of an electrode in the valved microfluidic system at increasing scan rates. The inset 

graph displays the linear correlation between the peak amplitude and the square root of the scan rate. 

The increasing scan rate increases the peak heights as expected, and a high 

linear correlation is observed between the peak amplitude and the square root of the 

scan rate as described by the Randles-Sevcik equation (2.5) for a reversible reaction. 

The observed slope is 2.9 µA/ߥ compared to an expected slope value of 1.4 µA/ߥ. It is 

also observed that the redox peak potentials separate further and further apart as the 

scan rate increases. This can possibly be explained due to the confined geometry of 

the microfluidic channel. As the scan rate increases, the diffusion gradient above the 
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electrode surface cannot be maintained due to insufficient redox compound in the 

vicinity, leading to variation with the half cell potential and increased separation in 

the peak potentials. Another example of this point can be observed at scan rates over 

300 mV/s (not shown in figure) in which the linearity expressed in the Randles-

Sevcik equation no longer holds true due to the quick depletion of the redox 

compound. 

4.4.5 Diffusion Limitation of Valve Integration 
 

In order to integrate valves with the electrode array, the channel geometry has 

to be altered. Without valves, the microfluidic channels have a cross sectional area of 

50,000 µm2, while the valved version contains channels with a cross sectional area of 

6458 µm2. This large reduction in the solution volume above the electrode has a 

noticeable effect on the diffusion properties of each design. The CV plots 

demonstrate this with the broadening of the peak potentials in the case of the valved 

device.  

Further exploration into this limited diffusion regime requires a comparison of 

the total charge that the sensor collects for both the non-valved and valved design. 

The charge can be determined by integrating the current that is collected during the 

CV scans vs. time. The CV scan taken at a scan rate of 100 mV/sec was compared for 

both device designs. The current was integrated in a single potential sweep direction 

until the peak is reached. A comparison of the total charge collected for each design is 

shown in Figure 4.12. The curves demonstrate that the valved device takes longer to 

reach its peak charge due to a slower-forming diffusion gradient. 
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Figure 4.12: Total charge passed through sensor for both the non-valved and valved design. The valved 

device takes longer to form the diffusion gradient. 

With the charge calculated, the ratio of the total number of ferrocyanide 

molecules that are reduced during the scan can be compared to the total number of 

molecules that are available over the sensor in the channel. This interaction ratio 

should be less than 1 for a situation in which the diffusion layer can form without any 

hindrance and is displayed below in equation 4.1.  

 
௡೚

௡
൑ 1          (4.1) 

 
Where no is the number of molecules oxidized/reduced during the scan and n is the 

total number of molecules available. If the ratio is greater than 1, then the diffusion in 

the system cannot maintain the concentration of species required to interact with the 

electrode. Since it is known that each ferrocyanide molecule exchanges a single 

electron with the electrode during both oxidation or reduction, the total charge can 

divided by the charge of an electron (1.6 x 10-19) to provide the value of no for both 

the non-valved and valved devices. By performing this calculation, no for the non-

valved device is 2.19 x 1012 and no for the valved device is 3.34 x 1012. 
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 Calculating the value of n for each case requires first understanding what the 

extent of the diffusion layer is. The diffusion layer describes the distance a molecule 

can diffuse in a certain amount of time. It is calculated from solving Fick’s 1st and 2nd 

laws of diffusion for a linear trajectory and the result is shown below in equation 4.2. 

ߜ ൌ  (4.2)         ݐܦ√2

Where D is the diffusivity of the molecule that is diffusing and t is the time. From 

Figure 4.12, the time over which the charge is collected can be observed for each 

device design and a diffusivity of 0.7 x 10-5 is used for ferrocyanide as calculated in 

literature [153] to determine the diffusion layer to be 56.75 µm and 65 µm for the 

non-valved and valved devices respectively. The volume of solution that interacts 

with each electrode is calculated using the diffusion layer distance to be 2.03 nL and 

1.33 nL for the non-valved and valved devices respectively. From the volume, the 

number of total molecules present (n) can be calculated and these are determined to 

be 3.06 x 1012 and 2.00 x 1012 for the non-valved and valved devices respectively. 

Ultimately, the interaction ratios can be calculated to be 0.72 and 1.67 for the non-

valved and valved devices respectively.  

An interaction ratio greater than 1 is observed after the integration of the valves 

providing evidence of a diffusion limited system which affects the formation of the 

diffusion gradient and will have an effect on the formation of any monolayers. This 

observation of the diffusion limitations in the valved device will ultimately cause a 

change in the detection mechanism when performing DNA hybridization experiments 

and is discussed in more detail in Chapter 6. 
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4.5 Summary 
 

This chapter has discussed the testing procedure and sensor characterization 

for all 4 device designs. Initial testing with the macroscale chips determined that the 

ferri/ferrocyanide couple was a better choice of redox compound vs. ferrocene due to 

its higher charge transfer. Droplet tests were also performed, but were discontinued 

due to uncontrollable changes in the electrochemical response caused by evaporation. 

The micro-patterned sensors of the device before and after valve integration showed 

excellent electrochemical uniformity and redox reversibility. The diffusion limited 

regime created after valve integration was explored in detail and compared to the 

non-valved design. 
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5 Protein Adsorption Study 
 

5.1 Introduction 
 

One major challenge in designing a selective biosensor is the reduction of 

non-specific adsorption onto the sensor surface. Various passivation compounds are 

used for this purpose, but it can be difficult to know how effective the material is at 

resisting adsorption to a wide range of possible proteins. There has also been 

extensive research aimed at observing biomolecule adsorption to passivation 

compounds immobilized onto drug delivery systems and various other biomedical 

devices [111, 156, 157]. The adsorption kinetics of proteins to a vast array of surfaces 

and immobilized compounds has been debated and analyzed by many groups [158-

160]. All purification steps of the cAMP receptor protein (CRP) were performed with 

the help of Varnika Roy from Dr. Bentley’s group at the University of Maryland. 

This chapter discusses all of the data collected regarding protein adsorption to 

various surface compounds using the microfluidic device. To our knowledge, this is 

the first demonstration of electrochemical measurements in a microfluidic device for 

this purpose. The first section covers each of the proteins and surfaces used in the 

study while the proceeding sections will discuss the adhesion data and model fitting. 

5.2 Materials Used 
 

The device’s sensor surfaces are modified using three well-known passivation 

agents: mercaptohexanol (MCH), a thiolated polyethylene glycol (PEG), and bovine 

serum albumin (BSA). MCH is very commonly used to passivate sensing surfaces for 

both protein and DNA sensing while PEG has been widely studied for its ability to 
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resist protein adsorption [109, 116, 117, 161]. BSA has been extensively used to 

passivate surfaces against non-specific binding in a variety of biosensors [162, 163].  

Three different proteins have been chosen to interact with the modified sensor 

surfaces: cAMP (cyclic adenosine monophosphate) receptor protein (CRP), tumor 

necrosis factor α (TNFα), and tumor necrosis factor β (TNFβ). CRP is a common 

gene regulator in bacteria and is the focus of many genetic and biochemical studies 

[164, 165]. Both TNFα and TNFβ are used extensively in cancer related research as 

tumor markers [34, 35]. The proteins are chosen to represent various biological 

applications to highlight the broader impact of this research, and provide a proof-of-

concept operation of the device. 

Tumor necrosis factor α, tumor necrosis factor β, 6-mercapto-1-hexanol and 

bovine serum albumin were each purchased from Sigma-Aldrich (St. Louis, MO) and 

(1-mercapto-11-undecyl)tetra(ethylene glycol) was purchased from Asemblon Inc. 

(Redmond, WA). Both the MCH and PEG were diluted in 10 mM PBS. TNFα and 

TNFβ were each reconstituted in 10 mM PBS with 0.1% BSA. 

The bacterial CRP could not be purchased and had to be purified ourselves. A 

plasmid gene sequence for bacterial synthesis of CRP was given to us by Christopher 

Byrd at the Army Research Lab. The procedure for the creation of the CRP is as 

follows: 

1)  1 liter of E. coli BL21DE3 cells containing a CRP IPTG (Isopropyl β-D-1-

thiogalactopyranoside) inducible plasmid are allowed to express for 6 hours. 

Those cells which do not take in the plasmid are killed using the antibiotic, 

ampicillin (the plasmid also codes for ampicillin resistance). 
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2)  The cells are lysed using an ultrasonic tip for 10 minutes, then placed in a 

falcon tube and spun at 12000 RPM for 10 minutes at 4 °C.  

3)  The supernatant is collected and the pellet is re-suspended, ultrasonicated 

again and spun down. 

4)  The two supernatant solutions are mixed and spun down 3-4 more times. 

5)  The supernatant is filtered through a 0.22 µm Millipore filter to remove any 

remaining cell debris. 

6)  The CRP is extracted from the solution using his-tag based IMAC purification 

(Immobilized Metal Affinity Chromatography) (GE healthcare hi-Trap 

column). 

7)  The sample is carefully pipetted into a dialysis membrane and placed in a 

chilled liter of 10 mM PBS solution for 24 hours at 4 ºC to dialyze out the 

imidazole. 

8)  The sample is removed from the dialysis bag and the protein concentration is 

estimated using (OD280nM) and frozen at -80 ºC in 50 µL aliquots. 

The successful purification of the CRP was tested using a gel shift assay and a 

DNA sequence specific to the binding of CRP when in the presence of the ligand 

cyclic adenosine monophosphate (cAMP). The test was performed by Chris Byrd at 

the Army Research Lab in Adelphi, MD and the results are shown in Figure 5.1. In 

the figure, lanes 1-6 act as controls which contain either DNA only, CRP only, or 

DNA+CRP without the cAMP. Lanes 7 and 8 contain all three and display a clear 

binding reaction vs. the controls. This shift confirms the activity of the CRP and its 

successful purification. 
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Figure 5.1: Gel shift assay confirming CRP activity. Only lanes 7 and 8 display shifting due to the binding 

of the CRP to the DNA sequence in the presence of cAMP. 

5.3 Surface Preparation 
 

Solutions of 1 mM MCH, 1% BSA and 10 µM PEG are dissolved in PBS to 

be used for testing. The PDMS channels are placed on the chip so that the nine 

working electrodes are exposed within the three channels. Using separate 1 mL 

syringes operating at 200 µl/hr, channel 1 is filled with the solution containing the 

MCH while channel 2 is filled with the solution containing BSA and channel 3 is 

filled with the solution containing PEG. The solutions are incubated over the working 

electrodes for 1 hour to allow for the compounds to either bind to the gold surface via 

their thiol group (in the case of MCH and PEG) or adsorb to the surface (in the case 

of the BSA). Previous empirical studies were used to find that 1 hour is a sufficient 

amount of time for the assembly of each of the compounds to the electrode surface. 

Afterwards, the PDMS channels are peeled from the chip and both are gently 

rinsed with PBS followed by de-ionized water, then blown dry with nitrogen. The 

channels are rotated 90 degrees and placed back over the chip so that each channel 

now contains a counter electrode, a platinum reference electrode and 3 working 
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electrodes, each with a different surface functionalization. Refer to Figure 4.6 for a 

visualization of the channel rotation procedure. PBS solutions containing either 50 

µg/ml CRP, 5 µg/ml TNFα, or 5 µg/ml TNFβ are introduced across the sensors and 

allowed to interact with the surfaces for 15 minutes. Afterwards, the channels are 

flushed with PBS solution to remove any loosely adsorbed molecules. Impedance 

spectroscopy data is taken using the same PBS solution containing the 

ferri/ferrocyanide couple at a DC bias potential of -5 mV with an amplitude of 5 mV 

in the range of 10000 – 0.1 Hz. Scans are taken before and after the proteins are 

introduced to the channels. 

5.4 Protein Adsorption Data 
 

5.4.1 Adsorption to MCH 
 

The change in impedance caused by each protein to the MCH surface is seen 

from the Nyquist plots in Figure 5.2. Figure 5.2a displays a clear impedance increase 

after incubation with TNFα. Figure 5.2b displays no measureable impedance change 

after incubation with TNFβ and Figure 5.2c shows a clear decrease in impedance after 

incubation with CRP. Noise can be observed in some of the data at lower frequencies 

and is most likely caused by the long probe leads used to make contact to the chip as 

well as the small size of the electrodes used. These noise variations can be reduced 

through the use of a Faraday cage (a metal mesh) placed around the testing set-up. 

The noise is not significant enough to obscure the characteristic semi-circular shape 

and linear diffusion region and does not impede the ability for the data to be fit to the 

Randles circuit model from Figure 2.7. For these reasons, it was not made a priority 

to reduce the noise further during testing. 
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Figure 5.2: Impedance spectroscopy data for electrodes passivated with MCH followed by incubation for 15 

minutes with (a) TNFα, (b) TNFβ and (c) CRP 

5.4.2 Adsorption to BSA 
 

The change in impedance caused by each protein to the BSA surface is seen 

from the Nyquist plots in Figure 5.3. Each protein yielded only a slight increase in 

impedance after incubation with the BSA surface. This is attributed to BSA’s known 

ability to reduce adsorption of other compounds to its surface and has been utilized by 

many groups for this reason as previously mentioned. It should also be noted that the 

impedance of the BSA surface is much higher (larger Rct value from the Randles 

circuit) than that of the MCH surface from Figure 5.2. This result is to be expected 

since BSA is a much larger compound (MW = 70,000) than MCH (MW = 134) and 

should block more of the redox compound from interacting with the surface. This 

high impedance can also be used to explain the lack of a linear region in the Nyquist 
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plot at lower frequencies. The 45° phase response at low frequencies occurs due to 

diffusion dominated transport of the charge from the redox compound in solution. 

The BSA molecules provide enough of a physical barrier to the penetration of the 

redox compounds that diffusion has little overall effect on the measured impedance 

and thus the linear region is not present at lower frequencies. 

 
Figure 5.3: Impedance spectroscopy data for electrodes passivated with BSA followed by incubation for 15 

minutes with (a) TNFα, (b) TNFβ and (c) CRP. 

5.4.3 Adsorption to PEG 
 

The change in impedance caused by each protein to the PEG surface is seen 

from the Nyquist plots in Figure 5.4. For all three proteins studied, the impedance 

appears to increase greatly after incubation with the PEG functionalized surface. 

However, it should be noted that the PEG formed an unstable monolayer during 

testing as evidenced by the large variation in its initial impedance. All three proteins 
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were able to adsorb strongly to the surface due to this instability. There also appears 

to be another semi-circular region at high frequencies for the PEG layer on two of the 

sensors. This suggests a secondary electron transfer reaction taking place in the 

system from an unknown source. More tests would have to be performed to fully 

investigate these results, and future studies have been planned to utilize PEG 

compounds of various length and with different functional head groups to better 

understand the results obtained in this study. This is discussed in more detail in the 

future work section of Chapter 7. 

 
Figure 5.4: Impedance spectroscopy data for electrodes passivated with PEG followed by incubation for 15 

minutes with (a) TNFα, (b) TNFβ and (c) CRP. 

5.5 Data Discussion 
 

All of the collected impedance data was fitted to the Randles lumped circuit 

model discussed earlier in Chapter 2. The values of Rct and Cd for each surface and 
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protein tested before and after incubation are shown in Table 1. These values were all 

extracted from the raw data presented in Figures 5.2 - 5.4. A higher starting Rct value 

for electrodes covered in BSA vs. those covered with MCH can be can be attributed 

to the greater size of BSA proteins vs. the short carbon-chain compound MCH which 

increases the distance of the redox compound bulk concentration from the electrode 

surface. The higher Cd value for BSA vs. MCH could be attributed to a higher 

dielectric effect caused by the presence of the BSA. The capacitance values show 

little variation following incubation with any of the three proteins for all surfaces. 

Table 5.1: Values for the charge transfer resistance (Rct) and double layer capacitance (Cd) for each protein 
and surface investigated. Values are extracted from the impedance data displayed in Figures 5.2 – 5.4. 

         TNFα     TNFβ     CRP 

Surface  Incubation  Rct*  Cd**  Rct*  Cd**  Rct*  Cd** 

MCH  Before  3.38  6.31  4.16  5.20  2.78  5.46 

   After  6.97  6.48  4.00  4.62  1.76  5.01 
     

BSA  Before  8.17  14.90  7.39  15.20  7.06  12.10 

   After  9.20  12.60  7.66  16.50  8.25  10.30 
     

PEG  Before  1.16  9.43  13.30  4.01  3.59  5.58 

   After     6.63  8.24     41.20  3.62     11.00  4.73 

*Rct (Ω x 10
5)     **Cd (F x 10

‐9) 

 
Repeated measurements of both the MCH and BSA surfaces with all three 

proteins were performed using the device and the percent change in Rct was 

calculated as shown in Figure 5.5. The error bars designate one standard deviation 

with n = 3. This data can be used to discern noticeable trends among the interactions 

between the surfaces and proteins. TNFβ displayed very little impedance change for 

either surface suggesting little to no adsorption occurring while TNFα displayed the 

highest impedance increase for both surfaces. CRP consistently displayed a decrease 

in the impedance with MCH. The BSA surface displays only minor interactions with 
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all three proteins over the course of numerous experiments. The data for the PEG 

surface is not included in this figure due to the instability of the layer. It is difficult to 

compare impedance spectra from various experiments with PEG, as the model could 

not converge for much of the collected impedance data. 

 
Figure 5.5: Percent change in Rct for adsorption of each protein to both MCH and BSA. Clear trends can be 
determined including the large impedance increase for TNFα on MCH and impedance decrease for CRP on 
MCH. All three proteins display roughly the same impedance change for a surface coated with BSA. Error 

bars designate one standard deviation, n = 3. 

The functionalization compounds (MCH, BSA, PEG) and proteins (CRP, 

TNFα, TNFβ) used for this research were chosen to demonstrate the ability of the 

presented device to electrochemically probe an array of binding interactions. The 

device was successful in measuring impedance changes for each interaction. The 

mechanisms regarding both protein adhesion and the effect on the impedance include 

electrostatic interaction and steric stabilization. The impedance of the system is 

directly related to the ability for the charged redox compound to exchange electrons 

with the electrode surface. If the net surface charge is made to be either more positive 

or more negative, this will either better attract or repel the negative redox compound 

(in the case of the ferri/ferrocyanide couple) in solution and affect the measured 
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impedance accordingly. Steric stabilization describes the resistance of polymeric 

chains to being compressed and has been used to explain why PEG has been 

demonstrated to resist protein adsorption [110]. 

The impedance results with MCH from Figure 5 demonstrate the 

aforementioned electrostatic effect well. Incubation with TNFα displays an 

impedance increase while incubation with CRP decreases the impedance. The net 

charge polarity of each protein is different for the conditions used, i.e. the amino 

acids expressed on the surface of TNFα provide a net negative charge at neutral pH 

(isoelectric point of 5.01) while those of CRP provide a net positive charge 

(isoelectric point of 9.2) [32]. The amino acid sequences for each of the three proteins 

including positively (blue) or negatively (red) charged residues at neutral pH are 

displayed below. 

TNF alpha: 

MSTESMIRDVELAEEALPQKMGGFQNSRRCLCLSLFSFLLVAGATTLFCLLNF
GVIGPQRDEKFPNGLPLISSMAQTLTLRSSSQNSSDKPVAHVVANHQVEEQLE
WLSQRANALLANGMDLKDNQLVVPADGLYLVYSQVLFKGQGCPDYVLLTH
TVSRFAISYQEKVNLLSAVKSPCPKDTPEGAELKPWYEPIYLGGVFQLEKGDQ
LSAEVNLPKYLDFAESGQVYFGVIAL 
 
Negative Charge: 10D + 15E 
Positive Charge: 11K + 3H + 7R 
 
Net Charge: -3 
 
TNF beta: 
 
MTPPERLFLPRVCGTTLHLLLLGLLLVLLPGAQGLPGVGLTPSAAQTARQHP
KMHLAHSTLKPAAHLIGDPSKQNSLLWRANTDRAFLQDGFSLSNNSLLVPTS
GIYFVYSQVVFSGKAYSPKATSSPLYLAHEVQLFSSQYPFHVPLLSSQKMVYP
GLQEPWLHSMYHGAAFQLTQGDQLSTHTDGIPHLVLSPSTVFFGAFAL 
 
Negative Charge: 5D + 3E 
Positive Charge: 6K + 11H + 5R 
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Net Charge: +14 
CRP: 
 
MVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIHQGEKAETLYYIVKGSVAVLIK
DEEGKEMILSYLNQGDFIGELGLFEEGQERSAWVRAKTACEVAEISYKKFRQ
LIQVNPDILMRLSAQMARRLQVTSEKVGNLAFLDVTGRIAQTLLNLAKQPDA
MTHPDGMQIKITRQEIGQIVGCSRETVGRILKMLEDQNLISAHGKTIVVYGTR 
 
Negative Charge: 8D + 16E 
Positive Charge: 15K + 6H + 11R 
 
Net Charge: +16 (CRP is a dimer protein containing two identical sub units of this 
sequence) 
 

The net negative charge on TNFα and the net positive charge on CRP are 

observed through their respective amino acid sequences. The impedance changes 

suggest that both proteins interact with the hydroxyl head groups of the MCH and 

bind to the surface, however, the negatively charged TNFα causes repulsion of the 

ferricyanide while the positively charged CRP attracts the ferricyanide explaining the 

opposite impedance changes for each protein. TNFβ also carries a net positive charge, 

however, the protein does not display any interaction with the MCH and so the 

impedance does not change. Comparatively, the negative charge of TNFα may not 

appear high, but the electrostatic repulsion is dominated by the amino acid residues 

expressed on the outer surface of the folded peptide chains. Thus, more of the 

negatively charged amino acids may reside on the outer surface leading to higher 

repulsion and greatly increased impedance. 

The microfluidic device is very useful for helping one discover what surface 

modifications specific proteins show little to no interaction with. TNFβ from Figure 

5.5 does not cause any measureable impedance change to a MCH functionalized 

surface. This is an interesting result given that it shares nearly 28% of its amino acid 
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sequence with TNFα and both versions of TNF bind to the same receptors [166]. 

Neither TNFβ nor CRP adsorb to the electrode surface passivated with BSA. TNFα 

displays some increased impedance with a BSA passivated electrode due to its high 

repulsion of the redox compound, but the effect is far less than that observed with the 

MCH surface. 

The values for the electron transfer resistance and double layer capacitance in 

Table 5.1 for each of the impedance measurements were obtained by fitting the data 

to the Randles model using the potentiostat’s software program. However, this model 

is not always the most accurate way to describe every environmental situation. In this 

study, the electrode surface was densely covered by the passivation compounds used, 

especially when using BSA. This can be observed in the Nyquist impedance plots 

from the lack of a linear region at low frequencies. The absence of this linear region 

suggests that the diffusion of the redox compound has been almost completely 

blocked by the surface passivation. In order to more accurately model this scenario, 

the circuit shown in Figure 5.6 was utilized.  

 
Figure 5.6: Modification of the Randles circuit to more closely model the collected impedance data. The 

same solution resistance (Rs), double layer capacitance (Cd) and Warburg impedance (W) from Figure 2.7 
are used, but the resistance contribution from Rct has now been split amongst R1 and R2. 
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A resistor (R2) has been added in parallel with the Warburg impedance 

element. This resistance reduces the effect that the Warburg impedance has on the 

system and more accurately models a situation in which diffusion is not the dominant 

mechanism at lower frequencies. The modeling of the charge transfer resistance has 

now been split amongst the two resistances R1 and R2. Figure 5.7 displays how the 

circuit model in Figure 5.6 better fits the raw impedance data than the conventional 

Randles circuit from Figure 2.7.  

 
Figure 5.7: Impedance spectra for an electrode passivated with BSA including the fitted curve for two 

circuit models. The solid line displays the fit using the Randles circuit from Scheme 1 while the dotted line 
displays the fit using the improved circuit from Scheme 2. The improved fit results in a 4x reduction of the 

fitting error. 

This impedance data is taken from an electrode passivated with BSA. A 4x 

reduction in the fitting error was achieved when using the circuit from Figure 5.6 vs. 

the circuit from Figure 2.7. The average percent error for fitting all of the data 

collected was reduced from 14.6% to 5.3% for BSA passivated surfaces and from 

8.1% to 6.5% for MCH passivated surfaces by using the improved circuit model. The 

error is calculated by the impedance fitting program by comparing the fit data to the 

experimental data using equation 5.1. 



115 

 

ݎ݋ݎݎ݁ ൌ
ට∑ሺಷషಶሻమ

ಶమ

ே
        (5.1) 

Where F is the fitted data, E is the experimental data and N is the total number of data 

points. This error calculation is very similar to the standard deviation of a population. 

5.6 Sensor Reusability 
 

Another advantage of having integrated electrical sensors is the ability to refresh 

the sensor surface via an applied potential. Typically, an electrode surface is 

electrochemically cleaned by dipping the electrode into a 1 M sulfuric acid solution 

while potential is cycled vs. a Ag/AgCl reference [116]. However, sulfuric acid is too 

caustic for use with PDMS, so a similar cleaning procedure was achieved by cycling 

the potential applied to the working electrode well above and below the formal 

reduction potential of ferricyanide in PBS. Figure 5.8 displays cyclic voltammograms 

of an electrode surface demonstrating passivation with a high concentration (1mM) of 

PEG and subsequent regeneration of the current response due to electrochemical 

cleaning.  

 
Figure 5.8: Cyclic voltammetry measurements of a blank electrode (solid), the response after incubation 

with PEG (dotted), and the final response after applying a high switching potential (0.8 to -0.8 volts) to the 
electrode (dashed). 
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PEG was chosen due to its high packing density at higher concentrations. The 

layer becomes so dense that there is little to no penetration of the ferricyanide to 

reach the electrode surface as evidenced by the lack of any measurable current 

response after PEG binding. After electrochemically cycling the sensor surface 

between -0.8 and 0.8 volts vs. platinum, the current peaks were almost completely 

regenerated. Higher cycling potentials began to anodize the gold which damaged the 

surface. The potentials at which this anodization can occur vary depending on the 

surface area of both the counter and working electrodes. For this reason, it is 

recommended to slowly increase the cycling potential for each sensor until the CV 

plot is recovered. Regeneration was observed for electrodes passivated with MCH 

and BSA as well. 

5.7 Summary 
 

This chapter has covered the use of the microfluidic device for observing 

protein interactions with various surface types. The interaction between a commonly 

studied bacterial gene regulator (CRP) and two cancer marker proteins (TNFα and 

TNFβ) was observed to three modified electrode surfaces (MCH, BSA and PEG) 

using impedance spectroscopy. Each protein repeatably demonstrated a different 

impedance change with the MCH surface, while none of the proteins greatly changed 

the impedance of the surface passivated with BSA. The PEG layer proved to be too 

unstable for any definite conclusion. Re-programmability of the sensor surface by 

applying a high sweeping potential between -0.8 and 0.8 volts vs. platinum has also 

been demonstrated.  
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6 DNA Hybridization Study 
 

6.1 Introduction 
 

The devices fabricated in this research are also used to perform DNA 

hybridization sensing. This chapter covers all aspects of this study starting with 

details about the DNA sequences and buffers used. Attachment procedures specific to 

the DNA study are discussed next. The hybridization data is finally examined for all 

stages of device design including the macroscale electrodes, and the microfluidic 

device both before and after the integration of valves. Experiments using multiple 

target ssDNA concentrations to determine the limit of detection for the microfluidic 

sensor were performed with help from my colleague at the MEMS Sensors and 

Actuators Lab, Hadar Ben-Yoav. 

6.2 DNA Sequences and Buffers 
 

All DNA used in this study was purchased from Integrated DNA 

Technologies (Coralville, IA). One strand for each pair contains a thiol modification 

at the 3’ end for self assembly onto the gold electrode as discussed in Chapter 2. A 

few of the complementary strands contain a fluorescent label to confer visual 

confirmation of hybridization.  

Three unique DNA sequences were created to perform the arrayed 

hybridization sensing. A fourth sequence was also created which included a 

fluorescent probe modification on the 5’ end of the complementary strand in order to 

help characterize the assembly optically. Nucleotide bases consist of adenine (A), 

thymine (T), guanine (G) and cytosine (C) with adenine bonding to thymine and 
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guanine bonding to cytosine via hydrogen bonds. The sequences and their labels are 

listed below. 

ssDNA1_T: 5’-/5ThioMC6-D/AAAGCTCCGATAGCGCTCCGTGGACGTCCC-3’ 
ssDNA1: 5’-GGGACGTCCACGGAGCGCTATCGGAGCTTT-3’ 
 
ssDNA2_T: 5’-/5ThioMC6-D/ACGCGTCAGGTCATTGACGAATCGATGAGT-3’ 
ssDNA2: 5’-ACTCATCGATTCGTCAATGACCTGACCCGT-3’ 
 
ssDNA3_T: 5’-/5ThioMC6-D/ACCTAGATCCAGTAGTTAGACCCATGATGA-3’ 
ssDNA3: 5’-TCATCATGGGTCTAACTACTGGATCTAGGT-3’ 
 
ssDNAop_T: 5’-/5ThioMC6-D/AAAATAGCATAAATTGTGATCTATTCGGAAA 

 TATGTGCAATGTC-3’ 
ssDNAop: 5’ -/5TEX615/GACATTGCACATATTTCCGACGAATAGATCACAAT 

          TTATGCTATTTT-3’ 
 

The label names given to each strand will be used from this point onward in 

the dissertation. The ssDNAop_T and ssDNAop strands contain 47 base pairs each 

while the first three DNA sequences all only contain 30 base pairs. During the early 

stages of this research, longer DNA strands were used but eventually shortened after 

it was determined that the yield from the company was greater for shorter sequences. 

Hybridization of shorter DNA sequences is also less prone to tangling. 

The DNA is shipped as a lyophilized powder and is re-suspended to a 

concentration of 100 µM using a buffer containing: 10 mM Tris, 50 mM NaCl and 1 

mM EDTA. Afterwards, aliquots of 20 µl each are frozen at -15 C. The attachment 

buffer for self assembly of the thiol ssDNA on the electrode contains: 10 mM PBS, 

100 mM NaCl and 10 µM Tris (2-carboxyethyl) phosphine (TCEP). The TCEP is a 

reducing agent that cleaves the disulfide bond at the end of the ssDNA strand and 

expresses the free thiol group. Without this agent, the disulfide bonds of the ssDNA 

will still assemble on the electrode, but the bond is much weaker than the thiol-gold 
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bond and will not remain stable throughout the experiment. The buffer used for 

immobilizing mercaptohexanol (MCH) as a backfilling material contains: 10 mM 

PBS, 100 mM NaCl and 1.395 mM TCEP. Further discussion about the use of MCH 

for backfilling is found in the next section. All DNA hybridization events were 

performed in 4x saline sodium citrate (SSC). This buffer is diluted from a 20x SSC 

stock solution created with 3M sodium chloride and 0.3 M trisodium citrate. 

6.3 Hybridization Testing Procedure    
 

This section describes the procedure used for performing the DNA 

hybridization experiments with both the macroscale electrodes and microfluidic 

device. The three main steps include immobilization of the ssDNA probes, backfilling 

the electrode with MCH, and hybridization with the target sequence. Further 

considerations are explained when using the microfluidic devices due to the diffusion 

limited regime within the channels over the electrodes.  

6.3.1 DNA probe immobilization 
 

6.3.1.1 Macroscale electrodes 
 

A patterned working electrode chip is placed into 500 µL of attachment buffer 

containing 1 µM of thiol ssDNA. The chip should be cleaned using piranha prior to 

any attachment procedure. The ssDNA is allowed to incubate with the working 

electrode surface for at least one hour. Incubation times between one and two hours 

were found to be sufficient for forming a stable ssDNA monolayer for hybridization 

detection and are common incubation periods used by other groups [25, 139]. 
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Afterwards, the electrode is rinsed with PBS solution to remove any unbound 

molecules from the surface. 

A probe ssDNA concentration of 1 µM was chosen based on studies 

performed by other groups demonstrating a high surface density of molecules as 

shown in Figure 6.1 from work performed by Ricci et al. [139]. Intuitively, the figure 

also shows that the separation distance between probes is the lowest for higher 

packing densities. Although an optimized hybridization signal may be obtained for 

lower packing densities due to easier access to the probes, it was not explored in this 

work and hybridization was observed nonetheless for a surface density of 

approximately 3 x 1012 molecules/cm-2. Furthermore, Ricci et al. observed a higher 

hybridization signal for the higher surface densities albeit requiring a longer 

incubation period with the target sequence to achieve equilibrium.  

 
Figure 6.1: Surface density and separation of thiol-DNA probe molecules for a given concentration during 

incubation over a gold electrode for 1 hour. Reproduced from [139]. 

The thiol DNA (by nature of its strong covalent bond with gold) produces a 

much higher monolayer density on the electrode surface vs. passive adsorption of the 

ssDNA. Impedance data for an electrode with either adsorbed ssDNA or thiol bonded 

ssDNA is shown in Figure 6.2. The adsorbed ssDNA molecules increase the 
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impedance slightly from that of the blank electrode, but the thiol ssDNA creates 

nearly an order of magnitude higher impedance due to the formation of a densely 

ordered monolayer. 

 
Figure 6.2: EIS results of a blank macroscale electrode (●) after either adsorbed DNA (○) or thiol-

terminated DNA (▲). 

6.3.1.2 Microfluidic electrodes 
 

The DNA probe immobilization procedure for the microfluidic device is 

similar to the macroscale case. A solution containing 1 µM of the thiol ssDNA is 

introduced into the channel using a syringe at a flow rate of 200 µl/hr. Once the fluid 

has completely filled the channel, the flow rate is stopped and the sample is allowed 

to incubate over the exposed electrodes for 1 hour. It was found through testing that 

any movement of the liquid greatly disrupted the monolayer formation and caused too 

few probes to be strongly bound to the surface. After 1 hour, the channel is flushed 

with PBS at a flow rate of 200 µl/hr for 1-2 minutes to remove any unbound 

molecules from the surface of the electrodes. 
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ssDNA (adsorb)
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6.3.2 MCH backfilling 
 

Once the ssDNA probes have been assembled onto the electrode, a second 

compound is used to passivate any exposed regions on the surface to reduce non-

specific binding effects. Mercaptohexanol (MCH) is commonly used for this purpose 

[29, 116, 117, 167]. The compound consists of a short chain of 6 methyl (CH2) 

groups with a thiol at one end and a hydroxyl (-OH) head group at the other. The thiol 

group allows for self assembly onto the gold and the hydroxyl group reduces non-

specific adsorption of the ssDNA in solution. This passivation is crucial for 

establishing a stable impedance baseline measurement of the sensor, reducing false 

positive signals and removing any weakly bound molecules from the surface.  

The electrode containing the immobilized probe DNA is incubated in a 500 

µL solution containing 1 mM MCH in a buffer of 10 mM PBS, 100 mM NaCl and 

1.395 mM TCEP for 1 hour. For the microfluidic devices, 1 mM of MCH in the same 

buffer is injected into the channel using a syringe and allowed to sit over the 

electrodes with no added flow for 1 hour. The high TCEP concentration is used to 

reduce the thiol groups that may have oxidized to form disulfide bonds. It was 

discovered that without the high TCEP content in the buffer, the MCH would form 

unstable monolayers and the impedance data would vary accordingly. The thiol 

groups of MCH oxidize slowly over time, so the high TCEP content may not be 

required for freshly purchased MCH, however, in this research the MCH was used 

over the course of more than a year necessitating the use of TCEP. 

The MCH has another important function when using it as passivation with 

ssDNA molecules. The oxidative adsorption process of the MCH injects electrons 
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into the electrode and reduces the surface potential. This causes an electrostatic effect 

with the anionic probe ssDNA already immobilized and the ssDNA stands upright 

away from the electrode. This phenomenon has been studied in depth by Arinaga et 

al. [168]. Upright probes greatly increase the hybridization efficiency since the target 

ssDNA strands have much easier access to the entire length of the probe sequence. 

The open circuit potential of the fabricated macroscale gold electrode was measured 

vs. Ag/AgCl before and after MCH immobilization using only 10 mM PBS as the 

electrolyte (no added redox compound). The potential decreased from -38.8 ± 0.05 

mV down to -303.5 ± 4.5 mV after the MCH immobilization. The more negative 

electrode potential will cause the ssDNA probe molecules to stand upright and 

improve the hybridization results. 

6.3.3 Hybridization Reaction 
 

6.3.3.1 Macroscale Electrodes 
 

Following the MCH immobilization, the chip is placed in a 500 µL solution 

containing 1 µM of target DNA in 4x SSC buffer for 20 minutes. The hybridization 

reaction was performed at room temperature and also in an incubator at 37 C. The 

elevated temperature did not change the observed hybridization signal and so all 

experiments have been performed at room temperature. 

In order to receive visual confirmation of the hybridization reaction, the 

sequence ssDNAop_T was immobilized onto a gold electrode and allowed to 

hybridize with its target ssDNAop which included a fluorescent probe. The 

fluorophore chosen was TEX615 due to its low cost and common emission spectra 

around 615 nm. After hybridizing the DNA on the electrode surface, the chip was 
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taken to a fluorescent microscope (Zeiss model 310) in order to capture a picture of 

the assembled DNA. Figure 6.3 below demonstrates how the DNA is only assembled 

onto the gold electrode area. 

 
Figure 6.3: Fluorescent microscope image of TEX615-labeled DNA assembled on gold electrodes outlined in 

white. 

6.3.3.2 Microfluidic electrodes 
 

The hybridization in the microfluidic device was performed using 1 µM 

ssDNA target in 4x SSC buffer. The sample was allowed to incubate over the 

electrodes in the channel for 20 minutes. After the incubation period, the channel was 

flushed using PBS for 1 – 2 minutes at 200 µl/hr. 

The reaction kinetics are quite different in a microfluidic channel versus those 

found with the macroscale electrode in the beaker. A large bulk solution exists over 

the electrode surface when using the beaker and the slow diffusion process dominates 

the transport of the target ssDNA strands to the probes immobilized on the electrode 

surface. Due to the amount of bulk solution, the concentration gradient is easily 

replenished over time as the molecules bind. In the microfluidic device, the 

concentration gradient is severely limited by the enclosed geometry of the channel so 

300 µm 
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a small flow rate is typically added to continually replenish the ssDNA concentration. 

The transport of the ssDNA target to the immobilized probes in solution is now 

governed by two transport mechanisms: molecular diffusion of the molecules and 

convection in the direction of the fluid flow. For this type of transport, the Peclet 

number, Pe, a measure of the relative rate of convective to diffusive transport, is 

given as: 
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         (6.1)  

 
Where Um is the mean fluid velocity, H is the height of the channel and D is the 

diffusion coefficient. The mean fluid velocity can be calculated by dividing the 

volumetric flow rate by the cross sectional area of the channel given as: 
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Where Q is the volumetric flow rate, w is the width of the channel and H is the height 

of the channel. According to a study of DNA hybridization in a microfluidic channel 

performed by Kim et al., the best hybridization results were obtained for Peclet 

numbers that fell between 50 and 100 [119]. It was discovered through testing that 

DNA hybridization was observed in the microfluidic device with no added flow. This 

is attributed to the large channel cross-section dimensions (100 um x 500 um) 

allowing for a large diffusion gradient to exist. Further tests to improve the 

hybridization efficiency via an applied flow rate with the device were not performed, 

but could be the basis for future research. However, after the integration of the valves, 

the microfluidic channel becomes much smaller and diffusion plays a much greater 
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role. Using the cross sectional area from the valved device, a linear flow velocity of 

0.67 mm/s is calculated for achieving the most efficient hybridization based on the 

peclet number. 

In order to achieve a 0.67 mm/s linear flow velocity in the valved microfluidic 

device, a flow rate of 17 µl/hr is required (computed using the cross sectional area of 

the rounded channel). Therefore, hybridization was performed in the valved 

microfluidic device under a continuous flow rate of 17 µl/hr applied over the course 

of 20 minutes.   

6.4 Macroscale DNA Hybridization Results 
 

During a typical experiment, a baseline electrochemical measurement is 

collected of the chip containing the ssDNA probe sequence and MCH backfilling 

followed by incubation with a non-matching target sequence and subsequent 

measurement and ending with incubation of the matching target sequence and a final 

measurement. It is always important to compare the non-matching sequence 

measurement with the baseline to ensure that any change in the signal is not due to 

non-specific adsorption. 

Figure 6.4 below displays CV data and the complementary EIS data for a 

macroscale electrode chip incubated first with non-matching, then matching DNA 

sequences for 20 minutes each. 



127 

 

 
Figure 6.4: (a) CV results and (b) EIS data for a blank electrode (●), after ssDNA probe and MCH 
immobilization (○), after incubation with a non-matching sequence (▲) and after incubation with a 

matching sequence (). The binding event is more clearly observed using EIS. 

The CV data of Figure 6.4a demonstrates good agreement with the simulation 

results discussed in Chapter 2. The first monolayer consisting of probe DNA and 

MCH causes a large reduction in the peak heights and large separation in the peak 

potentials. The addition of charged ssDNA molecules upon hybridization causes a 

further decrease in current and slight separation of the peaks. The change in 

impedance shown in Figure 6.4b displays a greatly increased result upon 

hybridization that is more apparent than the CV data. This clear impedance result 

upon hybridization is related to the high sensitivity of EIS to surface coverage and 

charge. 

Each of the three purchased DNA sequences (ssDNA1, ssDNA2 and 

ssDNA3) were incubated with three separate sensors each containing one of the three 

probe DNA molecules as seen in Figure 6.5. In this way, each probe sequence is 

tested against both non-matching sequences, and ultimately, its matching sequence.  
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Figure 6.5: EIS data for three electrodes immobilized with (a) ssDNA1_T, (b) ssDNA2_T and (c) 

ssDNA3_T. Each sensor is incubated in both mis-matching sequences and the final matching sequence. 

Each sensor demonstrates only a slight change in impedance when incubated 

with both mis-matching target sequences as compared to the large impedance change 

after incubation with the matching target sequence. The various starting impedance 

values for each monolayer should also be noted. Assembly of DNA3_T displayed a 

lower starting impedance than either of the other probe sequences. This is attributed 

to either a poor electrode surface condition or possible degradation of the thiols for 

that particular batch of ssDNA. In either case, hybridization was still observed even 

when the surface coverage is not as high. 

The EIS plots were each fitted to the Randles equivalent circuit (Figure 2.7) in 

order to extract the charge transfer resistance (Rct) for each measurement. Figure 6.6 

ssDNA1_T + MCH

ssDNA2

ssDNA3

ssDNA1

ssDNA2_T + MCH

ssDNA3

ssDNA1

ssDNA2

ssDNA3_T + MCH

ssDNA1

ssDNA2

ssDNA3

(a) (b)

(c)



129 

 

displays the percent change to Rct after each incubation for all three ssDNA targets 

against all three probe sequences. 

 
Figure 6.6: Bar graph displaying % change in Rct following each target DNA incubation for each probe 

sequence. Hybridization events are clearly observed for matching target-probe sequences. 

The error bars designate one standard deviation over three scans. Increases in 

the change transfer resistance of 34%, 75% and 35% are observed when the probe 

sequences (ssDNA1_T, ssDNA2_T and ssDNA3_T) are incubated with their 

matching target ssDNA sequences. Rct decreases in some cases after incubation with a 

non-matching sequence. These decreases could be the result of cationic molecules 

from the salt buffer adsorbing to the surface, however, any decrease seen in Rct is a 

clear indication that no further ssDNA is being immobilized on the surface (since any 

immobilization of  the anionic ssDNA will always cause an increase in Rct with the 

negatively charged ferri/ferrocyanide couple). The larger increase seen in the 

impedance for DNA2 hybridization is interesting and may be related to its random 

base pair sequence having a higher binding affinity than that of the other two 

sequences. 
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6.5 Microfluidic DNA Hybridization Results 
 

Results from DNA hybridization experiments using multiple sequences in the 

same device were performed in the microfluidic device. Hybridization data was also 

collected after the integration of valves with the device. This data is discussed and 

compared to that collected from the device without valves to draw conclusions on 

how changes in the diffusion volume alter the formation of the monolayers and affect 

the impedance measurement. 

6.5.1 Non­valved Microfluidic Device 
 

The three probe ssDNA sequences were incubated over columns of electrodes 

in three separate channels followed by MCH passivation in each channel. After the 

channels were rotated 90 degrees, each of the three target ssDNA sequences were 

flown down the three channel rows. The impedance data for each of the 9 sensors was 

taken before and after the target ssDNA was introduced with the results shown in 

Figure 6.7. The graphs are displayed in the same 3 x 3 grid as the sensor array. Each 

sensor column contains the immobilized probes ssDNA1_T, ssDNA2_T and 

ssDNA3_T in order from left to right. From top to bottom, the target sequences 

ssDNA1, ssDNA2 and ssDNA3 are flown down each sensor row. A clear increase in 

impedance is observed only for the sensors in which a matching probe-target pair is 

made (along the diagonal of the array). These experiments were all performed in 

parallel allowing each row to provide two control non-matching sequences and one 

correct matching sequence for each incubation. 
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Figure 6.7: EIS plots for each electrode surface before (●) and after (▲) incubation with the target ssDNA 

sequence. Each column of sensors is immobilized with a different probe sequence while each row is 
incubated with a different target ssDNA sequence. 

The Randles circuit was used to fit the impedance data collected and the Rct 

value was extracted for each baseline scan and subsequent scan after incubation with 

the target ssDNA. The percent change of Rct in each case is provided in Figure 6.8. 

The error bars designate one standard deviation over 3 measurements. The 

error is much larger when using the microfluidic device as opposed to the beaker 

study and can be attributed to the smaller electrode surface making it more sensitive 

to RF noise especially at low frequencies. Nonetheless, the hybridization events are 

very clear and display large increases of Rct for each of the three target-probe pairs. 

Also of note is the fact that the impedance always increased even upon incubation 

with a non-matching sequence. This result is expected since the ssDNA targets are 

exposed to all three electrodes (working, reference and counter) in the channel and 



132 

 

some adsorption to the counter electrode will occur, causing a slight increase to the 

impedance. 

 
Figure 6.8: Bar graph showing % change in Rct after incubation with each target ssDNA sequence for each 

probe sequence. 

These results from the microfluidic device demonstrate true arrayed detection 

of multiple DNA sequences using a single device. What makes this type of arrayed 

detection unique is the ability to detect the hybridization events without the need for 

labels of any kind. This reduces the time needed to perform the experiment and the 

number of steps required to measure a signal. Qualitative data regarding the 

hybridization efficiency can be determined from the shape of the Nyquist impedance 

plots while quantitative data can be achieved by fitting the measured impedance to a 

circuit model and comparing specific elements. The analysis time depends on the 

software of the potentiostat and the measurement time can be reduced even further by 

using a multi-channel potentiostat capable of measuring numerous 3-electrode 

systems in parallel. 

The dependence of the impedance change on the target ssDNA concentration 

was also determined using the patterned sensors in the device. Probe ssDNA (1 µM) 
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and MCH (1 mM) were immobilized onto a single working electrode. 

Complementary target ssDNA sequences with concentrations of 0.01 µM, 0.1 µM, 1 

µM and 10 µM were sequentially incubated over the sensor for 20 minutes each. EIS 

measurements were taken of the probe monolayer surface and after each incubation 

with the results shown in Figure 6.9. 

 
Figure 6.9: EIS data of a single working electrode in the non-valved microfluidic device. Incubation with 

increasing concentrations of the complementary target ssDNA  causes increasing impedance until 
saturation at 10 µM. 

In order to increase the sensitivity of the measurement (for the binding of low 

target ssDNA concentrations), EIS was performed using 5 mM of the 

ferri/ferrocyanide redox couple as opposed to 2.5 mM. Furthermore, the amplitude of 

the AC signal was increased from 5 mV to 25 mV and the software averaged over 

three collected points for each frequency. The frequency was also swept as low as 0.1 

Hz in order to better visualize the linear diffusion controlled region of the plot.  

The impedance increases after each incubation with a higher target 

concentration. The increase is very small for the lowest concentration used (0.01 µM) 

while the highest concentration (10 µM) does not display as large of an increase from 

baseline
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the previous measured concentration. It appears that the available probe sites on the 

sensor surface have saturated during the 10 µM incubation as evidenced by the slight 

increase for such a large target concentration. This effect is even more observable 

when examining the charge transfer resistance (Rct) from the Randles circuit for each 

concentration as shown in Figure 6.10. 

 
Figure 6.10: (a) Values of charge transfer resistance for each concentration which includes a zero 

concentration data point corresponding to incubation with a non-complementary target. (b) Logarithmic 
dependence of the charge transfer resistance on the target concentration observed via high linear 

correlation on the log scale. 

   The data shown in Figure 6.10a follows the common curve for an affinity 

based binding event. Saturation of the available binding sites occurs for high target 

concentrations and the data follows a logarithmic pattern. Figure 6.10b displays a 

highly linear correlation of the data when plotted on the logarithmic scale as 

expected. 

 The limit of detection for the sensor was calculated by measuring the change 

in the Rct value when incubating with a non-complementary ssDNA target. This value 

was observed to be 3970 Ohms and is considered to be the noise level of the sensor. 

By using this value within the linear regression equation fitted to the plotted data, the 

limit of detection was determined to be 8 nM.  
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6.5.2 Valved Microfluidic Device  
 

Numerous DNA hybridization experiments were performed using the device 

following the integration with valves in order to characterize the binding events 

within the smaller channels. As previously discussed, the microfluidic channels for 

the valved device have a cross sectional area of 6,458 µm2 while the channels used 

for the non-valved device have a cross sectional area of 50,000 µm2. It became clear 

soon after testing that the smaller microfluidic channel geometries made it very 

difficult to achieve stable monolayer assembly on the sensor surface. 

Probe ssDNA was immobilized onto an electrode in the valved device 

followed by MCH incubation, each for 1 hour. The electrode was incubated 

sequentially with two different non-complementary target sequences followed by the 

complementary target sequence for 20 minutes each with no flow. The impedance 

was measured between each incubation. The results are shown below in Figure 6.11. 

 
Figure 6.11: (a) EIS data displaying three scans each for two non-matching DNA incubations and the 

matching DNA incubation. The lowest frequency points are highlighted. (b) The percent change in the fitted 
Rct value after each incubation. 

Three EIS scans are taken for each incubation making a total of nine curves 

displayed in Figure 6.11a. There are two noticeable areas of the curves. The first is 

the smaller semi-circular region at high frequencies which was often observed when 
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taking EIS measurements in the small microfluidic channels. The geometry of the 

channels increases the resistance between the electrodes and may contribute to this 

effect when the applied frequency is high and dominated entirely by charge transport 

(not diffusion). The second region is the lower frequency semi-circular curve which 

displays more noise than the higher frequencies. This noise is reduced in later 

experiments by unplugging the syringe pump and taking multiple scans at each 

frequency. However, even with the noise, it is observed that the incubation with the 

matching DNA sequence slightly increases the impedance. The extracted Rct values 

decreased after incubation with two mis-matching sequences and only showed an 

increase after incubation with the matching sequence. 

The increase seen in the impedance is very low from this early experiment 

with the valved device. In an attempt to achieve higher hybridization efficiency, the 

same experiment was repeated with an added flow rate of 17 µl/hr for each target 

sequence incubation. The flow rate was determined in order to achieve Peclet 

numbers between 50 and 100 as discussed in section 6.2.3.2. The probe sequence was 

ssDNA2_T and the data for the phase change vs. applied frequency is shown in 

Figure 6.12. The phase data from the bode plot is used because it best demonstrates 

the change which occurs after incubation with the matching sequence. The noise from 

the Nyquist data obscures the impedance change. 
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Figure 6.12: Bode plot displaying phase change vs. applied frequency after each incubation with three 

target DNA sequences. The matching DNA2 sequence causes a greater phase change between the 
frequencies of 100 - 1000 Hz indicating an increased capacitance. 

A noticeable peak in the plot occurs around a frequency of 400-500 Hz. This 

peak in the negative phase corresponds to curvature given to the semi-circle at these 

lower frequencies and is related to the capacitance of the electrode-solution interface. 

It appears that the hybridization of the matching DNA sequence increases this 

capacitance which decreases the observed phase angle. The addition of further DNA 

molecules could be increasing the dielectric constant on the surface of the electrode 

which can contribute to a higher capacitance. The increase in the Rct value for each 

incubation of mis-matching DNA1, mis-matching DNA2 and matching DNA3 was 

24%, 6% and 54% respectively.  

The parameters for the formation of the probe DNA and MCH monolayer 

were ultimately adjusted in an attempt to achieve a more stable biological layer. The 

concentration of the probe DNA was increased to 5 µm from 1 µm and the incubation 

time was increased to overnight. The MCH was allowed to incubate for 3 hours. 

These changes were made to allow more molecules to diffuse to the surface of the 

electrode in the constricted geometry of the microfluidic channels. Two different 
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sensors within the same channel were functionalized with ssDNA probes followed by 

MCH. A third sensor was also tested using a separate channel in a different device 

with two non-complementary sequences followed by the complementary sequence. 

The results after the sequential incubation with each of the target ssDNA sequences 

are shown in Figure 6.13. 

 
Figure 6.13: The percent change in Rct for two different sensors in the same channel after incubation with 3 
target ssDNA sequences. Each sensor displayed a clear decrease in Rct after incubation with the matching 

DNA sequence. 

Following incubation with each of the two non-complementary targets, the Rct 

either increased or showed very little change for all three sensors. The increasing 

charge transfer resistance may be due to non-specific adsorption occurring of the 

DNA molecules to the counter electrode in the channel, or to adsorption on the 

working electrode. If adsorption is occurring on the working electrode, then that is an 

indication that the monolayer is not well assembled. Further evidence to support this 

theory is observed by the large decreases in Rct for all three sensors when the 

matching DNA sequence is introduced. While it may seem counterintuitive that the 

charge transfer resistance would decrease upon hybridization, it is possible that the 

DNA probes are lying flat against the MCH layer before the introduction of the 
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matching target. Upon hybridization, the rigidity of the double helix structure causes 

the probes to release from the substrate and stand upright. This change in the DNA 

orientation can create more ion paths for the redox compound to approach the 

electrode surface and consequently result in a reduction of the measured impedance.  

This phenomenon of decreasing impedance upon hybridization has been 

experienced by other research groups [25, 169, 170] and an example from Gooding et 

al. is shown below in Figure 6.14. 

 
Figure 6.14: Schematic example of how DNA hybridization can cause probes to stand upright and allow 

more ions to interact with the electrode. Reproduced from [169]. 

The process described by Gooding et al. is believed to be the same situation 

occurring in the valved device. Providing an ordered assembly of the MCH layer is 

important for keeping the DNA probes from lying on the surface as previously 

mentioned in the chapter. In the valved device compared to the non-valved version, 

the assembly of the MCH layer is affected by the limited diffusion regime due to the 

smaller geometry of the microfluidic channels. This change in the MCH assembly has 

altered the detection mechanism occurring at the surface of the electrodes within the 

valved device.  

6.6 Summary 
 

DNA hybridization experiments were successfully performed across multiple 

stages of the device design. Macro-scale tests confirmed the increase in the measured 



140 

 

impedance for complementary target sequences while non-complementary sequences 

displayed very little change in the impedance. The microfluidic device was used to 

demonstrate the arrayed detection capability provided by the multiple patterned 

electrodes and rotation of the parallel channels. The device with integrated valves was 

also used for DNA hybridization studies, however, the smaller geometry of the 

channels directly affected the monolayer assembly and altered the detection 

mechanism of the sensor to display an impedance decrease upon hybridization. Future 

design changes have been planned which include etching deep pits (~70 microns) 

over the regions where the working electrodes are patterned in order to increase the 

solution volume and provide more bulk solution for the diffusion gradients to form in.    
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7 Conclusion 
 

7.1 Summary 
 

The microfluidic platform demonstrated in this dissertation is meant to 

showcase the possibility of using lab-on-a-chip systems for high-throughput, arrayed 

analysis of biological samples. Unique to this design are the detection methodology 

of electrochemical measurements which allow for label free sensing of affinity based 

binding events on the sensors’ surfaces, and the multi-cross-channel design which 

provides simple loading of various probe molecules and samples to act as a 

combinatorial array. With nearly all current laboratory tools for drug screening and 

drug discovery requiring large, bulky equipment with long testing times and multiple 

laborious steps needing to be performed by highly trained personnel, lab-on-a-chip 

systems offer a beneficial alternative. The reduction in sample volumes, testing time, 

and device footprint can all lead to faster analysis at a lower cost which will 

dramatically improve the research being performed in the pharmaceutical field. 

The microfluidic device designed in this work included an array of gold 

working electrodes patterned in a grid with each row containing a separate gold 

working electrode and platinum reference electrode. The layout is compatible with 

using microfluidic channels molded in PDMS to create either horizontal or vertical 

channels laid over the grid of sensors. One design used channels which had to be 

manually rotated to change the direction while a more integrated system design  

incorporated a second layer of PDMS valves to pinch off areas of the underlying 

channel and control the flow direction. Each design was successfully used for an 
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arrayed characterization of protein adhesion and for performing a binding affinity 

assay.  

7.1.1 Protein Adhesion Study 
 

The ability to screen the interactions between many proteins and surfaces 

using a single microfluidic device is very advantageous for designing the passivation 

layer to be used for a sensor surface. There has also been extensive research aimed at 

observing biomolecule adsorption to passivation compounds immobilized onto drug 

delivery systems and various other biomedical devices. Three proteins (CRP, TNFα, 

TNFβ) were chosen to interact with three different passivation surfaces (MCH, BSA, 

PEG) in the device and electrochemical measurements were used to probe for 

adsorption. Each surface functionalization was allowed to passivate over columns of 

electrodes followed by rotating the channels and allowing each protein to incubate 

with multiple surfaces exposed in the rows.  

The results demonstrated a large amount of interaction with the MCH surface 

and that the charge of the protein caused noticeable electrostatic effects in the 

measurements. BSA showed high resistance to adsorption of the proteins (with only a 

slight impedance increase seen with TNFα). PEG surfaces were not stable enough for 

accurate electrochemical measurements to be made and perhaps the study has 

provided some insight into problems with using PEG as a passivation material for 

electrochemical sensors. Impedance parameters for quantitative comparison of the 

adhesion were extracted from a lumped element circuit model used to fit the collected 

data. The ability to quickly characterize protein interactions with many different 

surfaces in the same device can help future researchers understand how to improve 
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the selectivity and non-adsorption behavior for the next generation of biosensors and 

biomedical devices. 

7.1.2 DNA Hybridization Study 
 

The ability to quickly screen for particular DNA sequences is very beneficial 

in the fields of cancer research, influenza detection and genetic engineering. Most 

arrayed detection methods utilize a label to produce the signal and multiple washing 

and incubation steps. Using the designed microfluidic devices in this work, DNA 

hybridization was performed with numerous sequences in the same device without 

the need for labels of any kind.  

Probe ssDNA sequences were functionalized with a thiol group and self-

assembled onto the gold working electrodes surfaces both in the microfluidic device 

and on the macro-scale electrodes used in a beaker. Complementary ssDNA 

sequences were incubated over various the various probes sequentially in the case of 

the macro-scale electrodes and all at once with the microfluidic device. Both CV and 

EIS results were used to determine any hybridization events. The results conclusively 

demonstrated the sensor’s ability to distinguish between a complementary target 

sequence and a non-complementary sequence. Quantitative comparisons could be 

made by fitting the impedance data to a circuit model for each of the device designs. 

The added negative charge on the electrode due to hybridization with a 

complementary ssDNA sequence greatly increases the charge transfer resistance 

when using a negatively charged redox couple. It is my hope that providing new tools 

for performing DNA hybridization analysis faster and cheaper than currently used 

methods will lead to more efficient diagnosis of disease and genetic abnormalities, 
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especially in parts of the world which do not have the benefit of easy access to large 

laboratories with expensive high-throughput equipment. 

7.2 Future Work 
 

There are many improvements that could be made to the design of the devices 

which could enhance their signal-to-noise ratio and lead to better uniformity among 

the sensor responses. Furthermore, the device could be used for many other assay 

types and to perform more unique studies including single base pair mismatching 

with DNA and characterization of DNA breathing modes. This section provides 

details on these possible future endeavors with this research. 

7.2.1 Microfluidic Design Improvements 
 

As the research progressed, various channel designs were used to help reduce 

evaporation of the liquid as described in Chapter 2. These new designs caused more 

of the working electrode area to be exposed in each channel and made it more 

difficult to expose the exact same area for each of the nine working electrodes. One 

potential solution to this issue is to passivate the entire surface of the chip with an 

insulating material like silicon dioxide and open well defined areas over the 

electrodes. The deposited layer only needs to be a few hundred nanometers thick to 

provide adequate insulation between the solution and the underling electrodes. A 

possible cross section schematic of this new design is shown in Figure 7.1. 
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Figure 7.1: Cross section layer structure of the microfluidic device with a patterned silicon dioxide layer 

used to expose sensor areas. Picture is not drawn to scale. 

Openings would be patterned in the silicon dioxide layer over each of the 

electrodes in the system and for the contact pads on the edge of the chip. This allows 

for precise control over the exposed areas for each of the sensors. However, it must 

be noted that using such a layer design will affect the diffusion profile of the 

biomolecules and the redox compound over the electrodes. This will alter the shape of 

collected CV plots and could also affect the impedance data at low frequencies. A 

more detailed explanation of how these recessed electrodes will affect the diffusion 

properties can be found in [171]. 

By patterning numerous small (~10 um diameter) openings in a cluster over 

the working electrode, an ultra-microelectrode array can be formed. Such arrays have 

been used extensively by other groups in order to increase the sensitivity of the 

measurement while keeping the current amplitude high, thus improving the SNR of 

the system [127, 172]. A local diffusion gradient existing over each electrode opening 

contributes to the high sensitivity while the high overall exposed area between all the 

openings contributes to a greater measured current. These patterned arrays could be 

very beneficial for future studies with the device to further decrease the limit of 

detection for samples with a very low target concentration. 
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Another added advantage to using a patterned passivation layer is that new 

electrode lead designs can be explored. One example is to connect the columns of 

working electrodes in a parallel configuration as opposed to the current series 

configuration. If a high current is accidently passed through one of the working 

electrodes, it can cause annodization and possible damage to the surface. With the 

configuration in series, this damage could affect measurements taken from electrodes 

further down the column, but if a parallel configuration is used, any damage to one 

electrode will not affect the others. 

It became increasingly clear while performing DNA hybridization 

experiments using the valved microfluidic device that the smaller cross-section 

geometry of the microfluidic channels directly affected the assembly of the 

monolayers and caused the detection mechanism to completely change upon DNA 

hybridization. When larger microfluidic channels with a height of 100 microns were 

used, these issues were not present. However, in the valved device design, the 

channel height cannot be made much larger than 35 microns in order to achieve 

efficient valve sealing. One possible solution is to provide deeper “wells” only in the 

regions were the working electrodes are patterned in order to increase the diffusion 

distance above the electrode. This requires a selective etching process in these areas. 

 An Oxford PlasmaLab system was used to provide an inductively coupled 

plasma (ICP) etch of the glass substrate. The recipe used 24 sccm C4F8 and 56 sccm 

He at an ICP power of 1400 W and an RIE power of 85 W. The substrate was also 

heated to 50 °C during the process. A 20 minute etch using a patterned mask of 
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AZ9260 was performed. A contact profilometer was used to provide a depth 

measurement and the result is shown in Figure 7.2. 

 
Figure 7.2: Depth profiles along a pit patterned in glass directly after the ICP etch (a) and after dipping the 
wafer into HF for 15 seconds (b). The depth is around 5 microns with deeper notches observed around the 

inner edge. 

Figure 7.2a displays the profile directly after the etch has been performed. 

There is significant roughness along the bottom of the well and an etch depth of 5 

microns is observed giving an etch rate of about 250 nm/min. In order to reduce the 

roughness, the wafer was dipped into a concentrated hydrofluoric acid (HF) for 15 

seconds which quickly and isotropically etches away glass. The resulting profile in 

Figure 7.2b after the HF dip displays much lower roughness and would be better 

suited for patterning electrodes. Further characterization of the process would still 

need to be performed to achieve deeper wells and to eliminate the deeper notches 

around the inner edge.  

A series of experiments could be performed using the microfluidic device 

before and after the valve integration both with and without the added etched pits. 

However, the electrode area exposed to the solution should be kept constant for each 

test in order to compare only the effects of diffusion on the collected data. The silicon 
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dioxide passivation procedure mentioned earlier in this chapter could be used with 

these tests to precisely control the exposed electrode area. 

7.2.2 Use of Chitosan 
 

Chitosan is a unique amino-polysaccharide material that can be patterned on 

sensor surfaces to confer functionality. This can be achieved either through probe 

compounds covalently bound to the amine groups of the chitosan or through proteins 

co-immobilized within the chitosan during deposition. Chitosan has been used 

extensively at the University of Maryland for a variety of sensing applications in both 

microfluidic devices and for macro-scale study [76, 82, 173-175].  

One of the great advantages of chitosan is its ability to be patterned through 

electrodeposition. By applying a small potential between an anode and cathode in a 

chitosan solution, the pH gradient formed at the cathode causes deprotonation of the 

chitosan amine groups and the chitosan becomes insoluble. Consequently, a solid, 

stable film forms over the cathode. This gives the patternability of chitosan both 

temporal and spatial control while self assembled monolayers like those used in this 

research only have spatial control.  

Chitosan also contains a dense population of exposed amine groups which can 

be covalently bonded to numerous types of biomolecules. In fact, our own lab has 

performed DNA hybridization studies using chitosan to immobilize the probe ssDNA 

[46, 82].  

The microfluidic devices already contain an array of patterned electrodes to be 

used for the chitosan electrodeposition. Chitosan could be deposited on each of the 

nine sensors with a different enzyme co-immobilized over each sensor. In this way, 
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multiple fluid paths can be formed with each one containing a different biosynthetic 

pathway comprised of sequential enzymatic conversion steps. A prime example of 

such a pathway includes the enzymes involved in the production of the bacterial 

signaling molecule AI-2 in E. coli as shown below in Figure 7.3. 

 
Figure 7.3: Biosynthetic pathway for the production of AI-2 converted from the substrate SAH via the 

enzymes Pfs and LuxS. 

In this example, two enzymes found within E. coli convert the substrate SAH 

into AI-2, the concentration of which facilitates quorum sensing behavior amongst the 

bacteria leading to pathogenic biofilm formation. Studies by our group and 

collaborators as part of the Biochip collaborative are aimed at producing 

microsystems and biochemical technology to help understand this pathway and 

developing drugs to inhibit biofilm formation.  

Each enzyme could be immobilized within the device using the chitosan 

electrodeposition while impedance measurements can be made to probe the activity 

of each enzyme and for the production of any specific targets downstream. The 

advantage of the device is the ability to screen more than just one channel containing 

each of these enzymes, and possibly even to screen other types of biosynthetic 

pathways in the neighboring channels. 

7.2.3 Other Assays and Studies 
 

This research demonstrated a protein adhesion study and a DNA hybridization 

study, but many other affinity based binding studies can be performed. These include 

DNA-protein binding assays, aptamer-protein binding assays, and immunoassays. 

SAH SRH AI-2

Adenine Homocysteine

Pfs LuxS



150 

 

Furthermore, unique phenomena of DNA binding including single-base pair 

mismatching and DNA breathing modes may be explored as well. 

 Gene expression or repression can be controlled via proteins bound to specific 

DNA sequences, and the ability to screen for these interactions in-vitro has far 

reaching pharmaceutical implications. Very few research groups have successfully 

used electrochemical measurements to detect protein binding to immobilized dsDNA 

[176, 177], but the field is still young and the platforms described in this work could 

ultimately be used for this purpose. One difficult hurdle to overcome is any hindrance 

the protein may have to accessing the binding site of the DNA if it is immobilized to 

an electrode. 

The majority of electrochemical measurements for detecting specific proteins 

use aptamers as probe compounds. Aptamers are ssDNA sequences that are coded 

specifically to bind to a certain protein. They are extremely sensitive and can be self 

assembled onto electrodes using a thiol group just like the ssDNA used in this 

research. The main drawback of aptamers is that they do not exist for all proteins that 

may be of interest in studying. Nevertheless, if the correct aptamers do exist, their 

inclusion could be an excellent way to use the microfluidic devices for protein 

screening. 

  Immunoassays involving an antibody-antigen reaction are performed 

constantly using conventional laboratory equipment and fluorescent labels. However, 

it has been demonstrated that these assays could also be performed using 

electrochemical measurements [99, 130, 178]. Immobilizing antibodies over various 
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sensors in the device either through the use of chitosan or another protein such as 

biotin would allow for a label-free immunoassay array to be performed. 

The ability to detect small DNA mutations (as small as a single base pair 

defect) along the length of the sequence could greatly benefit genetic research. The 

work demonstrated with the microfluidic devices in this research was able to 

determine whether or not complete hybridization occurred, but it would not be 

sensitive enough in its current state to detect such small mutations in the ssDNA 

target sequence. To perform more advanced hybridization studies, the probe ssDNA 

strand can be intercalated with a redox label so that charge transport occurs through 

the double helix of the DNA. Any mismatches along the length of the helix will cause 

a change in the transport properties.  

A similar phenomenon to single base pair mutations in DNA hybridization is 

the concept of breathing modes. DNA “breathing” refers to a temporary opening 

between matching base pairs which can close and re-open again typically on a time 

scale of nearly 1 second [179]. Researchers believe that these breathing dynamics are 

crucial for biological functioning during transcription and interaction with proteins 

[180]. The microfluidic devices in this research could be utilized for detecting 

breathing events by using the same method described for single base pair mutations; 

by attaching a redox label to the DNA duplex and measuring charge transport 

properties through the helix. The unzipping of base pairs along the duplex will alter 

the transport properties and should be well observed due to the large time scale of 

breathing events compared to the rate of charge transfer.  
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7.3 Conclusion 
 

The ever evolving field of clinical diagnostics and drug screening will always 

have a need for faster, cheaper, and more sensitive tools. It is believed that the 

research performed in this dissertation will help add to the knowledge base for 

developing such tools. By demonstrating operation with both proteins and DNA, the 

devices’ capabilities for performing many different assays and biological studies are 

presented. Furthermore, the effects that the microchannel dimensions have on the 

measurement and assembly mechanism have been explored to highlight a few of the 

challenges involved with designing a more complex system. These devices may be a 

small part of an eventual movement towards widespread use of electrochemical 

arrays for diagnostic research. 
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Appendix A 
 

This Appendix contains the MATLAB source code that used to performed CV 

simulations which are found in Chapter 2.  

% Electrochemical response simulator 
% Definition of variables 
a = .5; % reaction transfer coefficent assumed to be same for both 
ox and red 
kchem = 0; % homogenous reaction rate for chemical reaction (none 
for my case) 
E = 0.245; % Formal reduction potential (for Ferrocene Dimethanol, 
its about 0.25) 
khet = 0.5; % heterogenous rate constant, must be found through 
testing 
R = 8.3145; % Universal gas constant 
n = 1; % number of electrons exchanged per reaction 
F = 96485.34; % Faraday's constant 
D = 1 * 10^-5; % Diffusion coefficent 
ipot = 0.7; % Starting potential for the scan 
fpot = 0.7; % Final scan potential 
spot = -0.3; % Switching potential 
nt = 200; % discrete number of time steps for simulation to run 
area = .03141; % area of 1 millimeter radius electrode 
temp = 298; % Room temperature in K 
scanr = 0.1; % Scan rate in V/s  
T = 2*abs(spot - ipot)/scanr; % Computes total time of the 
experiment 
delt = T/nt; % each time increment is computed 
X = 2 * sqrt(D*T); % Total diffusion layer thickness above electrode 
delx = sqrt(D*delt/0.5); % small spatial increment values 
ns = round(X/delx); % discrete number of spatial increments above 
electrode 
  
% Initialize my matrices and arrays 
C = zeros(3,ns+1); 
Ctemp = zeros(3,ns+1); 
potforward = ipot:(2*(spot-ipot)/nt):spot; 
potreverse = (spot+(2*(fpot-spot)/nt)):(2*(fpot-spot)/nt):(fpot-
(2*(fpot-spot)/nt)); 
pot = [potforward potreverse]; 
current = zeros(3,nt); 
J = [0 0 0]; 
  
for count = 1:1:3 
     
    % Create initial concentration profile above electrode surface 
    for i = 1:1:(ns+1) 
        C(1,i) = 1.0; %contains current oxidation concentration 
        C(2,i) = 0.0; %contains current reduction concentration 
        C(3,i) = 0.0; %reference 
     
        Ctemp(1,i) = 1.0; 
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        Ctemp(2,i) = 0.0; 
        Ctemp(3,i) = 0.0; 
    end 
  
    % Start main program loop 
  
    for i = 1:1:nt 
        for y = 1:1:3 
            for z = 1:1:ns 
                C(y,z) = Ctemp(y,z); 
            end 
        end 
     
        % Calculate current from Butler-Volmer equation based on  

  Surface concentration 
        kf = khet * exp(-a*n*F*(pot(i)-E)/(R*temp)); 
        kr = khet * exp(a*n*F*(pot(i)-E)/(R*temp)); 
     
        J(1) = (kf*C(1,1) - kr*C(2,1))/(1+kf/0.9+kr/0.9); 
        J(2) = -J(1); 
        J(3) = 0.0; 
     
        current(count,i) = J(1)*((sqrt(D*delt/0.5))/delt)*96484*10^- 

  6*area; 
     
        % Calculate concentration change due to diffusion 
        for y = 1:1:3 
            Ctemp(y,1) = C(y,1) + ((delt*D/delx^2)*(C(y,2) –  

C(y,1))) - J(y); 
            for z = 2:1:ns 
                Ctemp(y,z) = C(y,z) + ((delt*D/delx^2)*(C(y,z-1)- 

    2*C(y,z)+ C(y,z+1))); 
            end 
        end 
    end 
    khet = khet/10; 
    D = D/1.5; 
end 
% Output vectors for potential and current 
plot(pot,current) 
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Appendix B 
 

Mask #1 
 
Pattern used for macroscale chips consisting of working and counter electrodes 
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Mask #2 
 
Gold pattern on 1 cm x 1 cm chips used for droplet testing. The mask also has larger 

patterned chips which were not used. 
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Mask #3 
 

Gold pattern used for the non-valved microfluidic design. 
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Mask #4 
 

Gold pattern used for the valved microfluidic design 
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Mask #5 
 

Platinum pattern on 1 cm x 1 cm chips used for droplet testing 
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Mask #6 
 

Platinum pattern used for the non-valved microfluidic design 
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Mask #7 
 

Platinum pattern used for the valved microfluidic design 
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Mask #8 
 

SU-8 5 pattern on the 1 cm x 1 cm chips used for droplet testing 
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Mask #9 
 

Mold for creating straight microfluidic channels to be used with the non-valve design 
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Mask #10 
 

Mold for creating valve channels to be used with the valved chip design 
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Mask #11 
 

Mold used for the microfluidic channels in the valved design 
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