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The estimation of equilibrium free energy differences is an important problem

in computational thermodynamics, with applications to studies of ligand binding,

phase coexistence and phase equilibrium, solvation of small molecules, and compu-

tational drug design, among others. Recent advances in nonequilibrium statistical

mechanics, in particular the discovery of exact nonequilibrium work fluctuation re-

lations, have made it possible to estimate equilibrium free energy differences from

simulations of nonequilibrium processes in which a system of interest is driven irre-

versibly between two equilibrium states.

Estimates of ∆F obtained from processes in which the system is driven far

from equilibrium often suffer from poor convergence as a consequence of the dis-

sipation that typically accompanies such processes. This thesis is concerned with

this problem of poor convergence, and studies methods to improve the efficiency of

such estimators. A central theoretical result that guides the development of these

methods is a quantitative connection between dissipation and the extent to which



the system “lags” behind the actual equilibrium state, at any point in time of the

nonequilibrium process.

The first strategy involves generating “escorted” trajectories in the nonequi-

librium simulation by introducing artificial terms that directly couple the evolution

of the system to changes in the external parameter. Estimators for ∆F in terms of

these artificial trajectories are developed and it is shown that whenever the artificial

dynamics manage to reduce the lag, the convergence of the free energy estimate is

improved. We demonstrate the effectiveness of this method on a few model systems.

In particular, we demonstrate how this method can be used to obtain efficient es-

timates of solvation free energies of model hard sphere solutes in water and other

solvents. In the second strategy,“protocol postprocessing”, the trajectories normally

generated in the course of a nonequilibrium simulation are used to construct esti-

mators of ∆F that converge faster than the usual estimators. Again, the connection

between dissipation and lag guides the development of this method. The effective-

ness of this strategy is also demonstrated on a few model systems.
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Chapter 1

Introduction

Computer simulations are routinely used in condensed matter physics, statis-

tical mechanics, and computational chemistry to investigate the properties of many-

body systems, especially model systems not amenable to theoretical treatment or

direct experimentation [24, 59]. Simulations of such systems have provided impor-

tant insights into topics such as phase coexistence and phase equilibria [78], critical

phenomena [59], and the protein folding problem [77, 79]. Computing the thermo-

dynamic properties of the model system is the central goal of many such computer

studies, and in this context the estimation of equilibrium free energy differences,

∆F , becomes very important [13]. Such estimates of ∆F are crucial for example in

identifying stable configurations of proteins [13], computing the excess chemical po-

tential of a molecule in a solvent fluid [103], protein-ligand binding studies [13], and

studying fluid-solid and solid-solid phase [23] equilibria. Moreover, by estimating

∆F between a thermodynamic state of interest and an analytically tractable refer-
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ence state, the absolute free energy of the state of interest can be determined. Given

the importance of free energy calculations in computational studies, there is a need

to develop techniques that can provide efficient estimates of ∆F from simulations.

Free Energy Perturbation (FEP) [108] and Thermodynamic Integration (TI) [57]

were among the first methods developed to estimate ∆F from computer simulations

and remain popular to this day [13]. Imagine a system whose equilibrium states at

some temperature T are parameterized by the value of an external parameter vector

λ. We will generically be interested in computing the free energy difference between

the equilibrium states corresponding to λ = A and λ = B, ∆F = FB − FA. For

instance, if the system of interest is a lattice of Ising spins in a magnetic field h,

with nearest neighbor couplings J [10], the external parameter vector can be defined

as λ ≡ {h, J}. The equilibrium state of the system at a particular temperature T

is then parametrized by λ and we may be interested in computing the free energy

difference ∆F between the states A = {hA, JA} and B = {hB, JA}. Henceforth for

simplicity, we will refer to λ as the “external parameter” instead of the “external

parameter vector”.

The FEP method is based on the following identity by Zwanzig [108]

�e−β∆H�A = e
−β∆F

, (1.1)

where ∆H = HB − HA denotes the change in the energy of system when λ is

switched from A to B (we will use Hλ to denote the Hamiltonian that describes

the system when the external parameter is at λ), β−1 = kBT , and �. . . �λ denotes

an average over the canonical distribution that describes the equilibrium state λ.
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The thermodynamic integration method on the other hand is based on the following

identity by Kirkwood [57]
�
∂H

∂λ

�

λ

=
∂F

∂λ
, (1.2)

which can be integrated to give

� B

A

dλ

�
∂H

∂λ

�

λ

= ∆F, (1.3)

where the integral is performed over a path in parameter space connecting λ = A

to λ = B.

While many of the methods in use to estimate ∆F rely either on the TI

(Eq. 1.2) or the FEP (Eq. 1.1) identity (or variants thereof) and involve sampling

from a thermal ensemble, or a “biased” thermal ensemble in the case of umbrella

sampling [98], there has been recent interest in the use of methods that estimate ∆F

from simulations in which the system is driven irreversibly between two equilibrium

states. These estimators are based on the nonequilibrium work fluctuation rela-

tions [17,18,48,49] and are valid in principle for systems driven arbitrarily far from

equilibrium. In this approach, one repeatedly simulates a thermodynamic process

during which the parameter λ is “switched” at a finite rate from A to B, with initial

conditions sampled from equilibrium. ∆F is then estimated using the identity [49]

e
−β∆F =

�
e
−βW

�
≈ 1

Ns

Ns�

n=1

e
−βWn . (1.4)

Here angular brackets denote an ensemble average over realizations of the process,

Wn is the work performed on the system during the n’th of Ns such simulations, and

the approximation becomes an equality as Ns → ∞. This relation reduces to Eq. 1.1
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and Eq. 1.3 in the opposite limits of sudden switching and quasi-static isothermal

switching, respectively. The nonequilibrium approach is especially relevant in the

context of single molecule force spectroscopy [9,14,42,43,64]. In these experiments

and analogous simulations [46], one end of a molecule or a molecular complex is

anchored while a force is applied to the other end (using laser tweezers or atomic

force microscopes in experiments and using constraint potentials in simulations).

This nonequilibrium process is used to induce and probe rare events such as pro-

tein and nucleic acid unfolding and ligand dissociation. Nonequilibrium fluctuation

relations [17, 18, 49] such as Eq. 1.4 can then be used to extract equilibrium ther-

modynamic information, for example the potential of mean force along a reaction

coordinate, from the data obtained in such processes [42, 43, 80].

While Eq. 1.4 can in principle be used to estimate ∆F from simulations of

arbitrarily short duration (“fast switching” [36]), in practice we pay a penalty in the

form of poor convergence [33,51,58], as the number of simulations needed to obtain

a reliable free energy estimate using Eq. (1.4) increases rapidly with the dissipated

work,

Wdiss ≡ �W � −∆F ≥ 0, (1.5)

that accompanies fast switching simulations. This dissipation is a consequence of

the second law of thermodynamics, and reflects the lag that develops as the system

pursues – but is unable to keep pace with – the equilibrium state corresponding to

the continually changing value of the work parameter, λ (Fig 1.1) [37, 82, 99, 104].

We can diminish the lag by running longer simulations in which λ is varied slowly,
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Figure 1.1: The axes schematically represent phase space (z-space). The unshaded

ovals denote the statistical state of the system, ρt, and the shaded ovals denote the

equilibrium state, ρeqt , corresponding to the value of external parameter, λ, at various

instants of time. As the work parameter λ is switched from A to B, a lag builds up

as the state of the system, ρt, pursues the equilibrium distribution corresponding to

the changing work parameter, ρeqt .

but this increases the computational cost per simulation.

This thesis is concerned with this problem of poor convergence of ∆F esti-

mates from fast switching nonequilibrium simulations due to dissipation and lag.

General strategies to improve the efficiency of these estimates are introduced. The

next chapter reviews the theoretical underpinnings of Eq. 1.4, and discusses other

nonequilibrium estimators of ∆F . We will elaborate on the reasons behind the poor

5



performance of fast switching nonequilibrium estimators and revisit the assertion

that fast switching nonequilibrium estimates of ∆F are inefficient due to high dis-

sipation. Chapter 3 presents an exact quantitative relation between dissipation and

lag for systems driven away from equilibrium. This relation allows us to correlate

the poor performance of fast-switching nonequilibrium simulations with the lag. In

the subsequent chapters, methods aimed at improving the efficiency of∆F estimates

by reducing the lag are introduced. In particular, Chapter 4 introduces a method,

escorted free energy simulations, in which the equations of motion ordinarily used to

simulate the evolution of the system are modified with artificial terms that couple

the evolution of the system to changes in the external parameter λ. A general-

ization of Eq. 1.4 that allows us to estimate the free energy difference in terms of

these artificial trajectories is derived. Using the connection between dissipation and

lag, we show that whenever these artificial terms manage to reduce the lag, the

method provides an improved estimator of the free energy difference. We illustrate

the effectiveness of our method by (a) estimating the free energy difference in a one

dimensional model system, (b) estimating the free energy difference associated with

growing a hard sphere solute in a fluid, and (c) estimating the free energy difference

associated with introducing an electric field in a model dipole fluid. The free energy

estimation problem described in (b) is rather important in computational thermo-

dynamics. Hence in Chapter 5 this problem is considered in detail. In particular we

compute the free energy cost of growing hard sphere solutes in water and Lennard-

Jones fluids and compare the effectiveness of the free energy estimates obtained

using the new method to that obtained from Eq. 1.4. Chapter 6 develops another
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method, protocol postprocessing, in which the trajectories normally generated in the

course of a nonequilibrium simulation are used to construct estimators of ∆F that

converge faster than the estimator obtained from Eq. 1.4. Again, the connection

between dissipation and lag becomes useful in the development of this method. We

end the thesis by suggesting directions for future research.

Chapters 3, 4, 6 are based in full or in part on the following publications.

• Chapter 3: S. Vaikuntanathan, C. Jarzynski “Dissipation and Lag in Irre-

versible Processes”, Euro. Phys. Lett, 87, 600005 , 2009.

• Chapter 4: S. Vaikuntanathan, C. Jarzynski “Escorted Free Energy Simu-

lations: Improving Convergence by Reducing Dissipation”, Phys. Rev. Lett

100, 190601 , 2008, and S. Vaikuntanathan, C. Jarzynski “Escorted Free

Energy Simulations”, J. Chem. Phys 134, 054107 , 2011.

• Chapter 6: D. D. L. Minh, S. Vaikuntanathan “Density-Dependent Analysis

of Nonequilibrium Paths Improves Free Energy Estimates II. A Feynman-Kac

Formalism ”, J. Chem. Phys 134, 034117 , 2011.

Research work described in the following publications is not described in this

thesis.

• J. M. Horowitz, S. Vaikuntanathan “Nonequilibrium Detailed Fluctuation

Theorem for Repeated Discrete Feedback”, Phys. Rev. E 82, 061120 , 2010

• S. Vaikuntanathan, C. Jarzynski “Modeling Maxwells demon with a micro-

canonical Szilard engine”, Phys. Rev. E 83, 061120 , 2011
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Chapter 2

Background

For the purpose of illustrating the general ideas discussed in this chapter, it

is useful to imagine a system of Np gas particles confined inside a container with

a piston (see Fig 2.1), in contact with a thermal reservoir. Consider a process in

which the system is prepared in a state of thermal equilibrium, after which the pis-

ton is moved from its initial location to a predetermined final location at a speed

v, compressing the gas in the process. If the piston is moved quasi-statically and

the gas remains in equilibrium with the reservoir throughout the process, the sec-

ond law of thermodynamics stipulates that the average work performed on the gas,

�W �, is equal to ∆F , the free energy difference between the equilibrium states cor-

responding to the final and initial positions of the piston [60]. When the piston is

moved at a finite rate, driving the system out of equilibrium in the process, ther-

modynamics does not provide a prescription to obtain an estimate of ∆F . Rather,

the second law of thermodynamics just tells us that �W � > ∆F . However, recent
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β−1

Figure 2.1: A gas of particles inside a container, in contact with a thermal reservoir

(not shown) is driven out of equilibrium by switching the position of the piston

(compression in this schematic, the dashed lines denote the final position of the

piston) at a finite rate. The work performed, averaged over many repetitions of the

nonequilibrium process, �W �, exceeds the free energy difference ∆F between the

equilibrium states corresponding to the final and initial positions of the piston.

advances in nonequilibrium statistical mechanics have shown that it possible to es-

timate equilibrium free energy differences from such nonequilibrium processes (see

for example Eq. 2.5) [17,18,48,49,53]. Besides providing a method to compute ∆F

from nonequilibrium processes, these results are interesting in their own right as

they have clarified important issues regarding irreversibility, and the applicability

of the second law of thermodynamics to microscopic systems. In this chapter, we

briefly review these results and show how they can be of use in computational ther-

modynamics in the context of free energy estimation. We will end this chapter with

a discussion on the efficiency of nonequilibrium estimators of ∆F .
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2.1 Nonequilibrium work free energy theorem

We begin by specifying the framework that we will use to describe processes

such as the one illustrated in Fig. 2.1, and we discuss an exact relation, Eq. 2.5, that

is valid for these processes. This framework will be used throughout this thesis.

Consider a classical system described by a Hamiltonian H(z;λ), or Hλ(z),

where z specifies a point in many dimensional phase or configuration space and λ

denotes an external parameter. For example, in the system described in Fig 2.1, λ

specifies the position of the position. At a temperature T , the equilibrium state of

this system is parameterized by λ and described by the distribution

ρ
eq(z,λ) =

1

Zλ
exp[−βH(z,λ)], (2.1)

with free energy Fλ = −β
−1 lnZλ, where as usual β−1 = kBT . We are interested in

the difference ∆F = FB − FA between two equilibrium states at the same temper-

ature T but at different parameter values, λ = A and λ = B. To estimate ∆F , we

will imagine a process in which the system is initially prepared in the equilibrium

state A by allowing it to equilibrate with a thermal reservoir at a temperature T ,

after which λ is switched from λ(0) = A to λ(τ) = B according to a specific protocol

λ(t). The system may be either isolated or in contact with the thermal reservoir

while the value of λ is switched. Note that in general the system will be out of

equilibrium at time t = τ , that is, its statistical state will not correspond to the

distribution ρ
eq(z, B).

When the system in question is macroscopic, the second law of thermodynam-

ics predicts that the work performed on the system during this process will be no
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less than the free energy difference ∆F = FB − FA, even if the system ends the

process out of equilibrium:

W ≥ ∆F. (2.2)

To establish this, let us imagine that from t = τ to some later time t = τ
∗, the

parameter is held fixed at λ = B, allowing the system to re-equilibrate with the

reservoir 1. Thus we now have a process during which the system begins in the

equilibrium state A (at t = 0) and ends in equilibrium state B (at t = τ
∗). During

this process the change in the entropy of the system is ∆S = SB − SA, while the

change in the entropy of the reservoir is −Q/T , where Q is the heat absorbed by

the system from t = 0 to t = τ
∗.

Since the combined change in the entropy must be non-negative, we get

∆S − Q

T
≥ 0. (2.3)

We can now use the first law of thermodynamics, ∆E = W +Q, where ∆E denotes

the change in the internal energy of the system, and the macroscopic definition of

Helmholtz free energy, F = E−TS, to rewrite Eq. 2.3 in the form given by Eq. 2.2.

Finally, since no work is performed on the system during the re-equilibration

state (τ ≤ t ≤ τ
∗) we can simply interpret W in Eq. 2.2 as the work performed

during the process from t = 0 to t = τ .

When the system is microscopic, we expect Eq. 2.2 to hold on average,

�W � ≥ ∆F, (2.4)

1If the system was isolated from the reservoir during the switching interval 0 ≤ t ≤ τ , we

assume that it is brought back into contact with the reservoir during the interval τ ≤ t ≤ τ∗.
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where �. . . � denote an average over infinitely many repetitions of the process. Thus

the average work places an upper bound on the free energy difference ∆F . However,

when the full statistical distribution of work values is considered, it is possible to

obtain an estimate for ∆F (not just an upper bound) using the identity [48, 49]

e
−β∆F =

�
e
−βW

�
. (2.5)

In both Eqs. 2.4 and 2.5, we use the following expression for the work performed on

the system during a particular realization of the process:

W =

� τ

0

λ̇
∂Hλ

∂λ
(zt,λ(t)) dt, (2.6)

where the trajectory γ = {zt} describes the microscopic evolution of the system

during this realization. The definition of work in the equation above can be con-

nected to the mechanical definition of work (product of force and displacement) by

interpreting λ as a generalized coordinate and ∂H/∂λ as its conjugate generalized

force. Eq. 2.5 is commonly referred to as the nonequilibrium work relation and re-

lates the distribution of nonequilibrium work values to the equilibrium free energy

difference ∆F . The second law of thermodynamics, Eq. 2.4, follows from Eq. 2.5

using Jensen’s inequality [15], which states that for any convex function f , and a

random variable x,

�f(x)� ≥ f(�x�) (2.7)

where �. . . � denotes an average over values of the random variable. Applying Eq .2.7

to the nonequilibrium work relation, we obtain the second law.
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In the limit of infinitely fast switching, λ̇ → ∞, the system does not have time

to respond to the external perturbation. Thus the work performed is given by W =

∆H = H(z, B)−H(z, A), where the point z is sampled from the equilibrium state

A, and the average �. . . � in Eq. 2.5 is simply an average over the initial equilibrium

state A. In other words, Eq. 2.5 reduces to the FEP identity Eq. 1.1. In the opposite

limit of quasi-static isothermal switching, the work performed along any trajectory

is equal to

W =

� τ

0

λ̇ �∂Hλ/∂λ� dt, (2.8)

due to adiabatic averaging [49,100]. Eq. 2.5 then reduces to the TI identity, Eq. 1.3.

When λ is switched slowly (but not quasi-statically), and the system remains

near equilibrium throughout the process, the distribution of work values obtained in

the process is Gaussian [49,93]. In this near-equilibrium limit, Eq. 2.5 is equivalent

to a fluctuation-dissipation relation [37,49]

�W � −∆F =
β

2
σ
2
W , (2.9)

where σ2
W ≡ �(W −�W �)2�. Eq. 2.9 relates the work dissipated in a near equilibrium

process to the fluctuations in the work values.

When dealing with processes in which systems are driven out of equilibrium,

and especially when one is interested in simulating such processes, it becomes nec-

essary to explicitly model the evolution of the system. For example if the system

is isolated and not in contact with the thermal reservoir when the external param-

eter is being switched, the evolution of the system can be modeled by Hamilton’s

equations. On the other hand, if the system remains in contact with the thermal
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reservoir, other dynamics such as Langevin dynamics, Monte-Carlo dynamics, and

the Andersen and Nosé-Hoover thermostats [24] are more appropriate choices to

model the evolution. One may then wonder whether the nonequilibrium work rela-

tions and related results discussed below are valid only for a particular choice or a

restrictive set of dynamics.

The validity of Eq. 2.5 hinges on the condition that the dynamics used to

model the evolution of the system must preserve the canonical distribution when λ

is held fixed [48]. This is not a restrictive condition [53]. Consider for example the

case that the system is isolated and its dynamics are Hamiltonian. An ensemble of

trajectories evolving under Hamilton’s equations at fixed λ with initial conditions

sampled from the equilibrium distribution Eq. 2.1 continue to be described by the

same equilibrium distribution at later times [49]. On the other hand, if the system

is in contact with a thermal reservoir, the dynamics that are commonly used to

model the evolution of a system (Langevin, Monte-Carlo dynamics for example)

are designed to generate phase space points, z, eventually distributed according

to Eq. 2.1 when λ is held fixed. In other words, the equilibrium distribution is a

stationary solution of the dynamics for fixed λ thus ensuring that the aforementioned

condition is satisfied [54].

2.2 Fluctuation Relation

Irreversible thermodynamic processes are both dissipative (�W �−∆F ≥ 0) and

asymmetric under time reversal. It is useful to illustrate this point with a concrete
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Compression Expansion

2

Figure 2.2: Snapshots of typical configurations observed in the course of forward

(rapid compression) and reverse (rapid expansion) of a gas with Np � 1. In forward

process, the gas particles stack up against the piston as the gas is compressed rapidly.

On the other hand, in the time reversed process, the gas is expanded rapidly and

the region around the piston quickly becomes devoid of gas particles. The conjugate

twin of a typical trajectory in the forward process is practically never observed in

the reverse process. This schematic depicts the time reversal asymmetry inherent

to processes with high dissipation.
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example. Consider again the system composed of Np gas particles enclosed inside a

container with a piston and imagine a pair of forward (F) and reverse (R) processes.

The system starts from equilibrium in both processes. In the forward process, the

piston is moved from A to B at a speed v, while in the reverse process the piston

is moved from B to A at the same speed. The trajectories in these processes occur

in conjugate pairs. If a trajectory γF is a solution of the equations of motion in

the forward process, its conjugate twin, γR, obtained by running γF backwards (see

Fig 2.3 and Eq. 2.10), is a solution of the equations of motion in the reverse process.

Let us now consider the case that the number of gas particles is macroscopic,

Np � 1, and imagine a pair of forward and reverse processes in which the position

of the piston is switched rapidly. The dissipation in this process is macroscopic.

Let γtypical
F denote a typical trajectory of the forward process. While its conjugate

twin is a solution of the equations of motion of the reverse process, it is practically

never observed in the reverse process (see Fig 2.2). In other words the process is

asymmetric under time reversal. On the other hand, if the process is carried out

quasi-statically (v → 0) and isothermally, dissipation is eliminated, W = ∆F , and

conjugate twin of γtypical
F is in turn typical to the reverse process: the process is

symmetric under time reversal.

If the system is microscopic, statistical fluctuations become important and it

might be possible to observe the conjugate twin of γtypical
F in the reverse process

even for high switching speeds v. The notion of time reversal asymmetry can be

generalized in such cases and can be quantified by computing the likelihood that
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the conjugate twin of a typical trajectory in the forward process is observed in the

reverse process. This likelihood decreases (time reversal asymmetry increases) with

increasing dissipation. At the heart of this connection between dissipation and time-

reversal asymmetry is the Fluctuation Theorem, Eq 2.11 below, which relates the

probability densities associated with observing a pair of conjugate trajectories in

the forward and reverse processes.

Before stating this theorem, we will formally define the reverse (R) process as

one where the system is initially prepared in the state B, after which the value of

λ is varied according to the protocol λ̃(t) ≡ λ(τ − t) from λ̃(0) ≡ B to λ̃(τ) ≡ A.

Let γF = {zF (t)} denote a trajectory in the forward process starting from zF (0)

and ending at zF (τ), and let the trajectory γR ≡ γ
∗ = {zR(t)} denote its conjugate

twin [51,53], with

zR(t) = zF
∗(τ − t), (2.10)

where z∗ is obtained from z by reversing the signs of the momentum degrees of

freedom (Fig 2.3).

Let PF (γ) (PR(γ)) denote the probability density in trajectory space in the for-

ward (reverse) process. The pair of densities, PF (γ) and PR(γ), satisfy the following

fluctuation theorem by Crooks [17, 18]

PF (γF )

PR(γR)
= e

β(W−∆F )
, (2.11)

where W denotes the work done on the system as it evolves along the trajectory γF .

If λ is switched quasi-statically and isothermally, the system remains in equilibrium

throughout and W = ∆F for every trajectory. Eq. 2.11 then tells us that the

17
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q

z (0)F

F

R

z ( )F

z (0)Rz ( )R

Figure 2.3: An illustration of a pair of conjugate trajectories in phase space. The

trajectory γR was obtained by reflecting γF along the q axis. The arrows indicate

the direction of time.
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distributions PF (γF ) and PR(γR) are identical. As the process becomes dissipative,

W
typical
F − ∆F � β

−1, where W
typical
F denotes the work performed along a typical

trajectory γ
typical
F of the forward process, and it is difficult to observe the conjugate

twin of γtypical
F in the reverse process. In other words, the asymmetry between the

forward and reverse processes increases with dissipation. We note in passing that

the fluctuation theorems of the form Eq. 2.11 reduce to the well known Green-Kubo

relations, and Onsager reciprocity relations in the near equilibrium limit (slow rate

of driving) and can be viewed as their extensions to processes occurring far from

equilibrium [2,61].

2.3 Other far from equilibrium estimators of ∆F

Eq. 2.11 leads to the following fluctuation theorem for the distribution of work

values observed in the forward and reverse processes

PF (W )

PR(−W )
= e

β(W−∆F )
. (2.12)

This is commonly referred to as the Crooks’s fluctuation relation and allows us to

construct a number of far from equilibrium estimators of ∆F . In particular, if f(W )

is some function of W , Eq 2.12 implies [18]

�f(W )�F
�f(−W )e−βW �R

= e
−β∆F

. (2.13)

The nonequilibrium work relation Eq 2.5 is now a special case of the theorem Eq

2.13 (with f(W ) = exp(−βW ) ). Bennett [6] studied similar generalizations of the

FEP identity and solved for the functional form of f which minimizes the variance
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of the ∆F estimator. The same analysis can be used for Eq. 2.13. In particular,

given nF work values from the forward simulation, and nR work values from the

reverse simulation, Bennett showed that∆F can be optimally estimated by choosing

f(W ) = 1/(1 + exp(βW +K))

e
−β∆F =

�1/(1 + e
β(W+K))�F

�1/(1 + eβ(W−K))�R
e
βK

, (2.14)

where

K = −∆F + β
−1 lnnF/nR. (2.15)

The footnote referenced following Eq. 2.20 explains why Bennett’s approach is better

than the conventional unidirectional estimators. Eq. 2.14 and Eq. 2.15 need to be

solved recursively to obtain an estimate of ∆F [6]. In addition to estimating ∆F

from the various identities, it is possible to estimate ∆F graphically from the work

distributions. To do so, we follow Bennett’s prescription [6], and obtain from Eq

2.12:
�
lnPR(−W ) + β

W

2

�
−

�
lnPF (W )− β

W

2

�
= β∆F (2.16)

Hence, by plotting L2(W ) ≡ [lnPR(−W ) + βW/2], and L1(W ) ≡ [lnPF (W )− βW/2]

as functions of W , it is possible to graphically estimate L2(W )−L1(W ) = ∆F . This

is also a useful and stringent consistency check for the fluctuation theorem, as it re-

quires the difference of L2(W )− L1(W ) to be constant over the range of W values

sampled in the simulation.

Nonequilibrium estimators of∆F based on generalization of the umbrella sam-

pling approach [98] to trajectories have also been developed. In these approaches,

transition path sampling [8,20] is used to generate a biased ensemble of trajectories.
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The free energy difference ∆F is estimated as an average over this biased trajectory

ensemble [62, 95, 106]. The choice of the biasing function determines the efficiency

of the estimator.

2.4 Computational Efficiency

While Eq. 2.5, and Eq. 2.14 in principle allow estimation of free energy differ-

ences from arbitrarily fast switching simulations, it is often not practically feasible

to do so on account of the poor and slow convergence of Eq. 2.5 and Eq. 2.14 [51,58].

In this section, we will attempt to understand the reasons behind the poor efficiency

of fast switching simulations.

Consider the estimate of ∆F from the forward (F) process using nonequilib-

rium work relation Eq. 2.5. The sampling requirements associated with Eq. 2.5 can

be studied by rewriting it as follows [51]

1 = �e−β(W−∆F )�F =

�
dWPF (W )e−β(W−∆F )

=

�
dWPR(−W )

(2.17)

where we have used Eq 2.12. In order to get a reliable estimate of ∆F from the

nonequilibrium work relation, it is important to sample work values from the region

in which the integrand, PF (W ) exp(−β[W − δF ]) = PR(−W ), is dominant [51, 58].

In other words, in order to obtain a reliable estimate of ∆F , regions typical to the

distribution PR(−W ) should be adequately represented in an ensemble of samples

drawn from the distribution PF (W ). Whenever the distribution PF (W ) has a poor

overlap with the distribution PR(−W ), the work values that dominate the average
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PF(W)

PR(-W)

Figure 2.4: A schematic of work distributions observed in a fast switching sim-

ulation. The vertical line marks the point where the two distributions intersect (

W = ∆F ). In the forward (F) simulation, work values, W , are typically sampled

from the dominant region of PF (W ). However, in order for the estimate of ∆F

to converge, the dominant region of the distribution PR(−W ) needs to adequately

sampled. As the two typical regions are far apart, the estimate of ∆F suffers from

poor convergence.

in Eq. 2.5 are sampled rarely and consequently it becomes difficult to obtain reliable

estimates of ∆F (Fig. 2.4).

The problems with obtaining free energy estimates from fast switching nonequi-

librium simulations are now apparent. As the system is driven further from equilib-

rium (by increasing the rate of switching, ˙λ(t)), the dissipation, �W �F−∆F , �W �R+

∆F , increases in both the forward and reverse processes. , As we discussed previ-

ously, the dissipated work in turn reflects the extent to which realizations in the

forward process differ from those obtained in the reverse process (after accounting

22



for time reversal). In fact, the dissipated work can be related to an information the-

oretic quantification of the extent to which the distributions PF (W ) , PF (γ) differ

from PR(−W ), PR(γ̃) respectively [51].

�W �F −∆F = β
−1
D[PF (W )||PR(−W )] = β

−1
D[PF (γ)||PR(γ̃)], (2.18)

where

D[f ||g] ≡
�

f ln(f/g) (2.19)

denotes the relative entropy or the Kullback Liebler Divergence between the distri-

butions f and g [15]. The relative entropy between two distributions is non-negative

and increases as the distributions become more distinct [15]. Thus, the increase in

dissipation with the rate of switching is accompanied by an increase in the “separa-

tion” between the distributions PF (W ) and PR(−W ) and it becomes progressively

harder to obtain reliable estimates of ∆F from Eq. 2.5. This argument can be made

more quantitative [33,51,58] and it has been argued that the number of realizations

Ns required to obtain a reliable estimate of ∆F from Eq. 2.5 in the forward process

grows exponentially with the dissipation accompanying the time reversed process

Ns ∼ exp β[�W �R +∆F ].

Other far from equilibrium estimators of ∆F such as Eq. 2.14 also converge

poorly when λ is switched rapidly, on account of increasing dissipation and asym-

metry between the forward and reverse processes. The sampling requirements asso-

ciated with Bennett’s Acceptance Ratio method (BAR) can be studied by rewriting

Eq. 2.14 as [84]

�PH(W )/PF (W )�PF (W )

�PH(W )/PR(−W )�PR(−W )
= 1, (2.20)
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where we have set nF = nR, �. . . �PF (W ) denotes an average over W values sampled

from PF (W ), �. . . �PR(−W ) denotes an average over W values sampled from PR(−W ),

PH(W ) ≡ C
−1 PF (W )PR(−W )

PF (W )+PR(−W ) with C =
�
dW

PF (W )PR(−W )
PF (W )+PR(−W ) is the normalized har-

monic mean distribution. Now, following the reasoning outlined in the paragraph

after Eq. 2.17, we can infer that the estimate of ∆F from BAR will converge well

if regions typical to the harmonic mean distribution PH are sampled adequately

from the distributions PF (W ) and PR(−W ) 2. This becomes progressively harder

as dissipation and time reversal asymmetry increase. In the umbrella sampling

approach, an optimal choice of the biasing function is one for which the biased en-

semble has an appreciable overlap with the ensembles corresponding to both PF (γF )

and PR(γR) [62]. Constructing such a biasing function becomes difficult when the

distributions PF (γF ) and PR(γR) grow apart.

2.5 Summary

The connection between dissipation and time reversal asymmetry, two at-

tributes of irreversible processes, has been used to argue that nonequilibrium fast

switching estimates of ∆F suffer from poor convergence. In the next chapter, we

will establish a relation between dissipation and another attribute of irreversible

processes, namely the lag (recall Fig 1.1) that develops between the system and the

2Since the harmonic mean distribution straddles the two distributions (PF (W ) and PR(−W )),

we expect this to be easier than sampling the typical regions of PF (W ) from PR(−W ) and vice

versa. The bi-directional (data from both forward and reverse simulations is used) BAR estimator

is hence generally more efficient than the so called unidirectional estimator Eq. 2.5.
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equilibrium state as the external parameter is varied. This connection will prove

useful in the subsequent chapters, Chapters 4, 6, where we will introduce meth-

ods that attempt to combat the problem of poor convergence due to dissipation by

reducing the lag in nonequilibrium processes.
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Chapter 3

Dissipation and lag

1Irreversible thermodynamic processes are those that cannot be undone me-

chanically: the system of interest and its surroundings never return to their original

states. There are a number of attributes that we typically associate with such pro-

cesses. These include (i) dissipation – the dispersal of energy among many degrees

of freedom; (ii) time-reversal asymmetry – the evident directionality of time’s ar-

row; and (iii) broken equilibrium – either within the system of interest, or between it

and its thermal surroundings. For macroscopic systems these manifestations of irre-

versibility are related through the strict logic of the second law of thermodynamics.

For microscopic systems the second law must be interpreted statistically, mak-

ing allowances for fluctuations around the mean behavior. Far from being uninter-

esting, uninformative “noise”, such fluctuations have in recent years been found to

1This chapter is based on the publication: S. Vaikuntanathan, C. Jarzynski “Dissipation and

Lag in Irreversible Processes”, Euro. Phys. Lett 87, 600005 , 2009.
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satisfy a number of exact and unexpected relations. [9] These in turn have sharp-

ened our understanding of the second law as it applies at the microscopic scale. (see

Ref [53]) Of specific relevance for the present chapter is the discovery of quantita-

tive relations between dissipation and time-reversal asymmetry, two of the above-

mentioned manifestations of irreversibility. We have briefly discussed one such rela-

tion (Eq. 2.18) in the previous chapter and several such relations have appeared in

the literature [26,51,55,65,66]. The central goal of the present chapter is to obtain a

general relation (Eq. 3.1) between dissipation and (iii) the loss of equilibrium during

an irreversible process.

Consider a process in which a system, initially at a temperature T (β−1 =

kBT ), is driven away from equilibrium by varying an external parameter λ from

A to B over a time interval 0 ≤ t ≤ τ . Let ρ
eq
t denote the equilibrium density

corresponding to the value of the external parameter at time t. Although the system

begins in equilibrium (ρ0 = ρ
eq
0 ), at later times ρt �= ρ

eq
t . This was illustrated

schematically in Fig. 1.1: as λ is varied with time, the system tries to keep pace with

– but ultimately lags behind – the continually changing equilibrium distribution. We

can use the relative entropy [15], D[ρt||ρeqt ] =
�
ρt ln ρt/ρ

eq
t , to quantify this lag and

measure the extent to which the system is out of equilibrium at time t. As mentioned

in Sec 2.4 (see discussion following Eq. 2.18), the relative entropy D[f ||g] quantifies

the extent to which the distribution f is distinguishable from the distribution g [15].

The central result of this chapter is the inequality

Wdiss(t) ≥ β
−1

D[ρt||ρeqt ], (3.1)
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where Wdiss(t) is the amount of work dissipated up to time t during the process.

Thus the dissipated work dictates the maximum extent to which equilibrium can be

broken – equivalently, the maximum amount of lag – at a given instant during the

process.

In this thesis, Eq. 3.1 will become important in the context of estimating free

energy differences from nonequilibrium simulations. In particular, we will use Eq. 3.1

in the subsequent chapters to help guide the construction of efficient nonequilibrium

estimators of free energy differences. Note that the connection between dissipation

and lag has been heuristically well established in free energy estimation simula-

tions [37, 104]. However, the relation derived here, is an exact quantitative relation

and not a heuristic one.

We now derive our central result for systems driven arbitrarily far from equi-

librium and then illustrate this result with an exactly solvable model system.

3.1 Theory

Following the framework setup in Sec 2.1, we consider a classical system de-

scribed by a parameter-dependent Hamiltonian Hλ(z) where z denotes a point in

the phase space or coordinate space of the system. At fixed parameter value λ and

temperature T , the equilibrium state of the system is described by the probability

distribution,

ρ
eq(z,λ) =

e
−βHλ(z)

Zλ
, (3.2)

with free energy Fλ = −β
−1 lnZλ.
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Imagine a process during which the system is initially brought to thermal

equilibrium with a heat bath at temperature β
−1, at fixed λ = A, after which the

external parameter is varied from λ(0) = A to λ(τ) = B in a time τ . We will again

assume that the evolution of the system during this process is governed by dynamics

that are Markovian and balanced; that is, the equilibrium distribution (Eq. 3.2) is

conserved when λ is held fixed. The time-dependent density ρt = ρ(z, t) describes

an ensemble of trajectories evolving under these dynamics. This density can be

expressed as

ρ(z, t) = �δ(z− zt)�, (3.3)

where {zt} denotes a trajectory, and �. . . � denotes an average over the ensemble of

trajectories {zt}. An interesting property of such nonequilibrium processes is that

if each trajectory {zt} in the above average is assigned a time dependent statistical

weight exp[−β(W (t) − ∆F (t)] (see equation below) where W (t) denotes the work

performed along the trajectory up to a time t, and ∆F (t) = Fλ(t) − FA, then the

equilibrium distribution ρ
eq
t ≡ ρ

eq(z,λ(t)) is reconstructed [18,42,48]:

ρ
eq(z,λ(t)) ≡ e

−βHλ(t)(z)

Zλ(t)
= �δ(z− zt)e

−β[W (t)−∆F (t)]�, (3.4)

where

W (t) ≡
� t

0

λ̇
∂Hλ(zt�)

∂λ
dt

�
. (3.5)

The above equation can be rewritten as

ρ
eq(z,λ(t)) =

e
−βHλ(t)(z)

Zλ(t)
= ρ(z, t)�e−β[W (t)−∆F (t)]�z,t, (3.6)

where �e−βW (t)�z,t = �δ(z− zt)e−β[W (t)−∆F (t)]�/ρ(z, t) and �. . . �z,t can be interpreted

as an average over all the trajectories that pass through z at t. Taking the logarithm
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of both sides of this equation, then invoking Jensen’s inequality [15]

�e−β[W (t)−∆F (t)]�z,t ≥ e
�−β[W (t)−∆F (t)]�z,t , (3.7)

we get

�W (t)�z,t −∆F (t) ≥ β
−1 ln

ρ(z, t)

ρeq(z,λ(t))
. (3.8)

Finally, multiplying both sides of Eq 3.8 by ρt and integrating with respect to z, we

obtain

�W (t)� −∆F (t) ≥ β
−1

�
dz ρt ln

ρt

ρ
eq
t

≡ β
−1
D[ρt||ρeqt ]. (3.9)

Since the left side of this equation represents the work dissipated to time t, and the

right side is the relative entropy of ρt with respect to ρ
eq
t , we have arrived at the

central result (Eq. 3.1).

We now comment on a few aspects of this result.

First, the relative entropy D[f ||g] is always non-negative, and vanishes only

if the distributions f and g are identical. Next, although the relative entropy is

not symmetric with respect to the distributions f and g, it is useful to think of the

relative entropy as a “distance” between the two distributions [15]. In particular,

Stein’s lemma [15] relates the value of D[f ||g] to the difficulty of statistically dis-

tinguishing between two distributions f and g. Thus D[ρt||ρeqt ] is an information

theoretic measure of the lag, that is the deviation of the state of the system from

the current equilibrium state at time t. By stipulating that the amount of work

dissipated up to time t, Wdiss(t), must be no less than this measure of lag, Eq. 3.9

makes a statement that is stronger than the second law of thermodynamics, Eq. 2.4
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(Wdiss ≥ 0). In effect, the value β
−1
D[ρt||ρeqt ] represents a thermodynamic penalty

for being out of equilibrium at time t [97].

It is worthwhile to discuss the deviation of the system from the equilibrium

state in some detail, for two separate situations.

(a) If the system remains in contact with a heat bath as λ is switched from A to

B, then as suggested by Fig. 1.1 we can picture the deviation of ρt from ρ
eq
t as a lag

that develops because the system cannot keep pace with the changing equilibrium

state [37, 82, 104]. Now Eq. 3.9 tells us that the dissipated work places an upper

bound on this lag. In the special case that the parameter is varied quasistatically,

and the heat bath is much larger than the system, then on general grounds we expect

the system to remain in equilibrium, ρt = ρ
eq
t ; in this case there is no dissipation,

since W (t) = ∆F (t) for a reversible, isothermal process, and both sides of Eq. 3.9

become zero.

(b) If we instead imagine that, after using a heat bath to prepare the system

in an initial state of equilibrium, the heat bath is disconnected prior to the actual

switching process, then during the interval 0 ≤ t ≤ τ the now-isolated system

evolves under Hamilton’s equations. As a result, a unique trajectory passes through

any point z at time t, hence Eq. 3.7 becomes an equality and so does our central

result:

Wdiss(t) = β
−1

D[ρt||ρeqt ]. (3.10)

Since the system is not continually attempting to equilibrate with an external heat

bath, it is not immediately natural to view the deviation of ρt from ρ
eq
t in terms

31



of lag. (Indeed, even if λ is varied quasistatically, the distribution ρt will deviate

from the isothermal, canonical distribution ρ
eq
t [19, 48, 76].) However, we can place

this scenario within the “lag framework” by considering an isolated system to be a

particular, limiting case of a system in contact with an external heat bath, in which

the degree of thermal contact is so weak that the effects of the bath are negligible

over a time interval of duration τ . If the external parameter is held fixed at λ = B

for t > τ , then after a very long time the system does relax to a state of thermal

equilibrium described by ρ
eq(z, B). In this chapter we will adopt this perspective,

and will view the relative entropy D[ρt||ρeqt ] as a quantitative measure of lag, even

in the case of a thermally isolated system.

We finally note that when t = τ , Eq. 3.1 is equivalent to a result derived

by Kawai, Parrondo, and Van den Broeck [55] relating the dissipation to the time-

reversal asymmetry.

3.2 Examples

We now illustrate Eq. 3.1 using a model that involves the quasistatic expansion

or compression of a dilute gas of particles in d spatial dimensions. The model, shown

in Fig. 3.1, is motivated by Refs. [19, 52]. The gas is a two-component mixture, in

which component 1 is confined by the piston (open circles in Fig. 3.1), while the

particles of component 2 pass freely through the piston (filled circles). Let λ denote

the position of the piston, Vλ the volume of space to the left of the piston, V the total

volume of the container, and N1 and N2 the numbers of particles in each component.
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Figure 3.1: A two-component dilute gas, where component 1 (open circles) is

confined by the piston, while component 2 (filled circles) is not.

For simplicity, we assume all particles have the same mass, m.

This mixture is initially allowed to come to thermal equilibrium with an ex-

ternal heat bath at temperature β
−1, with the piston held fixed at λ = A; then

thermal contact between the gas and the external bath is broken; and finally, from

t = 0 to t = τ , component 1 undergoes compression or expansion as the piston is

manipulated quasistatically according to a protocol λ(t). During the latter stage

the mixture evolves under Hamilton’s equations in 2d(N1 +N2)-dimensional phase

space.

This particular model is convenient because it can be used to illustrate both

scenarios (a) and (b) discussed in the previous section. If we define our system of in-

terest to be the entire two-component mixture, then this model illustrates a system

that is thermally isolated during the switching process, as per scenario (b). Alter-

natively, if we take our system of interest to be component 1, and view component 2

as part of a heat bath, then the model illustrates scenario (a). We will analyze these

two cases below. We will solve explicitly for dissipated work and relative entropy
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in each case, and will show that our central result is the equality Eq. 3.10, in the

case of a thermally isolated system of interest, and an inequality when the system

remains in contact with a heat bath as in Eq. 3.1.

3.2.1 Hamiltonian Dynamics

Let z ≡ {z1, z2} denote a point in the full, 2d(N1 + N2)-dimensional phase

space, with z1 and z2 denoting the phase coordinates of components 1 and 2, re-

spectively. The Hamiltonian for this system is Hλ(z). As in Ref. [19], we take the

term “dilute gas” to imply that, while particles do exchange energy via pairwise

collisions, the mean free path between collisions is much greater than the charac-

teristic distance between nearby particles. For practical purposes, we take this to

mean that the particle-particle interaction terms in Hλ(z) can be neglected in the

calculations that follow. Thus Hλ is taken to be a sum of kinetic energies and hard-

wall potentials that confine the two components to volumes Vλ and V . We also

assume that when the piston is held fixed, the Hamiltonian dynamics are ergodic,

i.e. the mixture is able to self-equilibrate via particle-particle collisions. Finally, the

term “quasistatic” is meant to imply that the compression or expansion proceeds

sufficiently slowly for continual self-equilibration to occur.

For fixed λ and positive energy value E, let φλ(E) denote the volume of phase

space enclosed by the energy shell (i.e. surface of constant energy) Hλ(z) = E;

and let us think of gλ(E) ≡ ∂φ/∂E as the “surface area” of this shell. By explicit
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calculation, we have

φλ(E) =

�
dz θ(E −Hλ) = µ

k
V

N1
λ V

N2
E

k

kΓ(k)
(3.11)

gλ(E) =

�
dz δ(E −Hλ) = µ

k
V

N1
λ V

N2
E

k−1

Γ(k)
(3.12)

where

k =
d

2
(N1 +N2) , µ = 2πm , (3.13)

and Γ(k) is the gamma function. In deriving Eq. 3.11, we have used the well know

expression for the volume of a many-dimensional sphere [29]. At temperature β
−1,

the partition function and free energy of the mixture are:

Zλ(β) =

� ∞

0

dE gλ e
−βE = µ

k
V

N1
λ V

N2β
−k (3.14a)

Fλ(β) = −β
−1 lnZλ . (3.14b)

When the piston is moved quasistatically from λ(0) = A to λ(τ) = B, the

value of φλ(Hλ) is an adiabatic invariant [19]. By Eq. 3.11, this implies

V
N1
A E

k
0 = V

N1
λ(t)E

k
t (3.15)

along a trajectory {zt} with energy Et ≡ Hλ(t)(zt). The work performed on the

mixture is given by net change in its energy,

W (t) = Et − E0 =

�
V

N1/k
A

V
N1/k
λ(t)

− 1

�
E0 ≡ α(t)E0. (3.16)

Since W (t) is determined uniquely by the initial energy, E0, and initial conditions

are sampled from the equilibrium distribution at temperature β
−1, we have:

�W (t)� = 1

ZA

� ∞

0

dE0gA(E0)e
−βE0α(t)E0

= α(t) �E0� = kβ
−1
α(t) .

(3.17)
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Finally, from Eq. 3.14 we get

∆F (t) = N1β
−1 ln

VA

Vλ(t)
= kβ

−1 ln [α(t) + 1] . (3.18)

From the first expression on the right is is clear that this quantity depends on N1

but not on N2; effectively, ∆F (t) specifies a free energy difference between two equi-

librium states of component 1, as the equilibrium state of component 2 is unaffected

by the piston.

Combining Eqs. 3.17 and 3.18 yields the following compact expression for the

dissipated work:

Wdiss(t) = kβ
−1 [α− ln(α + 1)] . (3.19)

To computeD[ρt||ρeqt ], we consider a trajectory {zt} evolving under Hamilton’s

equations. By Liouville’s theorem, the value of phase space density is conserved

along this trajectory, hence

ρ(zt, t) = ρ(z0, 0) =
1

ZA(β)
e
−βE0 =

1

ZA(β)
e
−β̄tEt , (3.20)

where β̄t = β/[α(t) + 1], and we have made use of Eq. 3.16. With Eq. 3.14a we can

confirm that ZA(β) = Zλ(t)(β̄t), thus

ρ(z, t) =
1

Zλ(t)(β̄t)
e
−β̄tHλ(t)(z) . (3.21)

In other words, during the quasi-static compression or expansion process the phase

space density is a canonical distribution with a slowly time-dependent temperature,

β̄
−1
t . By contrast, ρeq is defined at a constant temperature,

ρ
eq(z,λ(t)) =

1

Zλ(t)(β)
e
−βHλ(t)(z). (3.22)
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We therefore have

ln
ρt

ρ
eq
t

=
�
β − β̄t

�
Hλ(t)(z)− k ln

�
β/β̄t

�
. (3.23)

Multiplying both sides by Eq. 3.21 and integrating, we get

D[ρt||ρeqt ] =
�
β − β̄t

�
kβ̄

−1
t − k ln(α + 1)

= k [α− ln(α + 1)] .

(3.24)

Comparing with Eq. 3.19, we see that Eq. 3.10 is satisfied.

3.2.2 Stochastic dynamics

Now let us view component 1 of our mixture as the system of interest, and

component 2 as part of the heat bath. 2 The phase space of the system of interest

is now 2dN1-dimensional, and evolution in this space is stochastic rather than de-

terministic, as the variables z2 have been projected out. We will use a carat (ˆ) to

denote reduced phase space densities describing the system of interest (component

1):

ρ̂t = ρ̂(z1, t) =

�
dz2 ρ(z, t)

ρ̂
eq
t = ρ̂

eq(z1,λ(t)) =

�
dz2 ρ

eq(z,λ(t)) .

(3.25)

The relative entropy D [ρ̂t||ρ̂eqt ] quantifies the degree to which the system of interest

is out of equilibrium (as before, “equilibrium” is defined by the temperature β
−1

2Thus the entire heat bath is composed of both the external bath used to prepare the initial

state of equilibrium, and the particles of component 2, which remain in contact with the system

of interest during the process.
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and the current value of λ) and we wish to compare this with the dissipated work,

Wdiss(t) = �W (t)� −∆F (t).

Before proceeding further, we note that the stochastic evolution of the system

of interest is non-Markovian, thus it is not immediately obvious that the analysis of

Section 3.1 can be applied to this situation; see the assumptions stated after Eq. 3.2.

To address these concerns, we verify in the following that Eq. 3.6 remains valid for

the reduced densities, even though the evolution is non-Markovian. In the full phase

space, z = (z1, z2), of system (z1) and bath particles (z2), Eq. 3.6 can be rewritten

as

ρ
eq(z,λ(t))e−β∆F (t) = ρ(z, t)e−βW (t)

, (3.26)

where W (t) is the work performed along the unique trajectory that passes through

z at time t. Integrating both sides with respect to z2, we get

ρ̂
eq(z1,λ(t))e

−β∆F (t) = ρ̂(z1, t)
�
e
−βW (t)

�
z1,t

, (3.27)

where we have used the fact that particles of the component 2 pass freely through the

piston, and work performed depends only on the z1 degrees of freedom. Rearranging

terms we see that the reduced densities satisfy Eq. 3.6.

Since the particles of component 2 pass freely through the piston, the values

of �W (t)� and ∆F (t) are the same as before (see comment following Eq. 3.18). By

contrast, since the reduced densities are obtained by projecting from the full phase

space to that of component 1, there will be a reduction in the value of the relative

entropy [15]: D [ρ̂t||ρ̂eqt ] < D [ρt||ρeqt ], as we now confirm by direct evaluation.

Because ρt and ρ
eq
t are canonical distributions in the full phase space (Eqs. 3.21,
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3.22), the reduced densities are also canonical:

ρ̂t =
1

Ẑλ(t)(β̄t)
e
−β̄tH

(1)
λ(t)(z1) (3.28)

ρ̂
eq
t =

1

Ẑλ(t)(β)
e
−βH(1)

λ(t)(z1), (3.29)

where H
(1) is the Hamiltonian for component 1, and

Ẑλ(β) = µ
k1V

N1
λ β

−k1 , k1 = dN1/2. (3.30)

We now have

ln
ρ̂t

ρ̂
eq
t

=
�
β − β̄t

�
H

(1)
λ(t)(z1)− k1 ln

�
β/β̄t

�
. (3.31)

Multiplying by Eq. 3.28 and integrating, we obtain

D[ρ̂t||ρ̂eqt ] =
�
β − β̄t

�
k1β̄

−1
t − k1 ln(α + 1)

= k1 [α− ln(α + 1)]

=
N1

N
βWdiss(t) =

N1

N
D[ρt||ρeqt ],

(3.32)

where N = N1 +N2 is the total number of particles in the mixture. 3 As expected,

our central result (Eq. 3.1) now holds as a strict inequality.

Finally, let us consider what happens when component 2 is much larger than

component 1; formally, N2 → ∞ with N1 fixed. By straightforward evaluation we

find

β̄t = β +O(1/N)

Wdiss(t) ∼ 1/N

D[ρ̂t||ρ̂eqt ] ∼ 1/N2
.

(3.33)

3Eq. 3.32 is easy to understand: D[ρt||ρeqt ] is a sum of equal contributions from each of the N

particles in the mixture, but only N1 particles contribute to D[ρ̂t||ρ̂eqt ].

39



 

 10
 -6

 

 

 

 0.01

 

 

 

 100

 1   100   10000N2

Dissipation ~ 1/N

Lag ~ 1/N2

Lag
Dissipation

Figure 3.2: Dissipation (βWdiss(t)) and lag (D[ρ̂t||ρ̂eqt ]) are plotted as functions of

N2, with N1 = 10, d = 3, V0/Vλ(t) = 5, and β = 1. The isothermal limit is achieved

as N2 → ∞.

Physically, this limit describes the reversible (λ̇ → 0) and isothermal compression

or expansion of component 1, with component 2 playing the role of an infinite heat

bath. We see that both Wdiss(t) and D[ρ̂t||ρ̂eqt ] approach zero, but at different rates,

as illustrated in Fig. 3.2.

3.3 Summary

When a system is driven away from equilibrium by the variation of external

parameters, the relative entropy D[ρt||ρeqt ] quantifies the degree to which the cur-

rent state of the system, ρ(z, t), lags behind the instantaneous equilibrium state,

ρ
eq(z,λ(t)). Our central result, Eq. 3.9, shows that the dissipated work, Wdiss(t),

provides an upper bound on the value of this lag. In the special case that the dynam-

ics of the system are Hamiltonian, the dissipation fully specifies the lag (Eq. 3.10).
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These results complement analogous results obtained for the relationship between

dissipated work and time-reversal asymmetry [55].

As we saw in the previous chapter, fast switching nonequilibrium estimates

of ∆F suffer from poor convergence due to dissipation. Eq. 3.9 in turn relates the

dissipation to the lag between the state of the system and the equilibrium state. In

the subsequent chapters, we will use Eq. 3.9 to guide the development of methods

that seek to improve the efficiency of nonequilibrium estimates of ∆F by reducing

the lag in the nonequilibrium process.
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Chapter 4

Escorted free energy simulations

4.1 Introduction

1 In Chapter 2, we saw how estimators of ∆F based on nonequilibrium fluctu-

ation theorems typically suffer from poor convergence whenever the external param-

eter is switched rapidly. The poor convergence is a consequence of high dissipation

which, as we saw in Chapter 3, in turn reflects the lag that develops as the system is

unable to keep pace with the equilibrium distribution corresponding to the changing

external parameter. This chapter introduces a general strategy, escorted free energy

simulations, for improving the efficiency of fast switching free energy estimates by

reducing the lag. In our approach, the “physical” dynamics ordinarily used during

1This chapter is based on the following papers: S. Vaikuntanathan, C. Jarzynski “Escorted

Free Energy Simulations: Improving Convergence by Reducing Dissipation”, Phys. Rev. Lett

100, 190601 , 2008, and S. Vaikuntanathan, C. Jarzynski “Escorted Free Energy Simulations”,

J. Chem. Phys 134, 054107 , 2011.
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a simulation are modified by the addition of artificial terms that directly couple the

evolution of the system coordinates z to variations in the external parameter, λ.

The central results are identities for ∆F in terms of trajectories generated with the

modified dynamics. While these results are valid for an arbitrary choice of artificial

dynamics (reducing to the usual nonequilibrium estimators of∆F discussed in Chap-

ter 2 when no artificial terms are used), the method is particularly effective when

these dynamics are constructed so as to escort the system along a near-equilibrium

path and reduce the lag. In particular, if the artificial dynamics entirely eliminates

the above-mentioned lag, then our method provides a perfect estimator of the free

energy difference: W = ∆F for every realization of the nonequilibrium process.

We begin by describing our strategy for nonequilibrium molecular dynamics

simulations and deriving a generalization (Eq. 4.5) of the nonequilibrium work rela-

tion, Eq. 2.5. The idea is then extended to nonequilibrium Monte-Carlo simulations

(see Eq. 4.39). In Section 4.4, we show that the escorted simulations satisfy a gen-

eralized version of Crooks’s fluctuation theorem. This in turn allows us to combine

our method with Bennett’s Acceptance ratio method [6] which provides an optimal

asymptotically unbiased estimator of ∆F (Eq. 4.64) [34, 92]. In Section 4.5, we

show that while Eqs 4.5, 4.39, 4.64 are identities for all escorted simulations, they

are particularly effective as estimators of ∆F when the modified dynamics success-

fully reduce the lag described above. In particular, we will demonstrate that if these

terms eliminate the lag entirely, then Eqs 4.5, 4.39, 4.64 provide perfect (zero vari-

ance) estimators: W = ∆F for every realization. Finally in Section 4.6, we illustrate

the effectiveness of our approach on three model systems.
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4.2 Molecular dynamics

As in Section 2.1, we will consider a classical system described by a parameter

dependent HamiltonianHλ(z) and imagine a process in which the system is prepared

in a state of equilibrium at λ = A and temperature T , kBT = β
−1, (see Eq. 3.2)

after which λ is switched from λ(0) = A to λ(τ) = B in a time τ according to

a specific protocol λ(t). We will again be interested in computing the free energy

difference ∆F = FB − FA.

Let us suppose that we have a preferred set of equations of motion for simu-

lating the evolution of the system, which we write in the generic form

ż = ṽ(z,λ), (4.1)

where ż = dz/dt, and ṽ(z,λ) typically contains both deterministic and stochastic

terms. Eq. 4.1 can be either stationary or explicitly time-dependent, according to

whether we hold λ fixed or vary it with time. An ensemble of trajectories evolving

under Eq. 4.1 will again be described by a phase space density ρ(z, t) satisfying a

Liouville-type equation,

∂ρ(z, t)

∂t
= Lλ · ρ(z, t). (4.2)

For example, if Eq. 4.1 represents Hamilton’s equations, then Lλρ(z, t) = {Hλ, ρ}

where { , } denotes a Poisson bracket [32], and if Eq. 4.1 represents Langevin dy-

namics, then Lλ is the Fokker-Planck operator [54].

We will assume that Lλ · e−βHλ = 0 [42, 48], i.e. the dynamics preserve the

equilibrium state when λ is fixed. We will use the term physical dynamics to refer

to the evolution described by Eq. 4.1 at the single-trajectory level, or Eq. 4.2 at the
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ensemble level, to emphasize that these dynamics are intended to model, to some

degree of realism, the microscopic evolution of our system of interest. For a system

evolving according to some physical dynamics, the nonequilibrium work relation,

Eq. 2.5, can be used to relate the work performed on the system in the process

described above to the free energy difference ∆F .

Let us now suppose that we modify the “physical” equations of motion used

to simulate the evolution of the system by adding a term proportional to λ̇ = dλ/dt:

ż = ṽ + λ̇u, (4.3)

where u = u(z,λ) is an arbitrary, continuous vector field on phase space.2 With

this additional, artificial term, every small increment of the work parameter, dλ,

induces a phase-space displacement, dz = u dλ. Under these modified dynamics,

the phase-space density ρ(z, t) satisfies

∂ρ

∂t
= Lλρ− λ̇∇ · (uρ) ≡ L�

λ,λ̇
ρ, (4.4)

rather than Eq. 4.2, where the continuity term −λ̇∇ · (uρ) accounts for the flow

λ̇u. Our aim is to use these modified dynamics to reduce lag and dissipation, and

ultimately improve the efficiency of the free energy estimate.

When the system evolves under the artificial dynamics, Eq. 4.3, as λ is switched

from λ(0) = A to λ(τ) = B according to the protocol λ(t), we will show that the

following equality can be used to estimate ∆F :

e
−β∆F =

�
e
−βW

�
u

, (4.5)

2If u is not bounded, we must also impose a modest condition “at infinity”, namely,

limz→∞ ue−βHzd−1 = 0.
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where

W =

� τ

0

λ̇

�
∂H

∂λ
+ u ·∇H − β

−1∇ · u
�
dt, (4.6)

is interpreted as the work performed on a system evolving under Eq. (4.3), and

�· · · �u indicates an average over an ensemble of trajectories generated in the process,

with initial conditions sampled from equilibrium.

It is instructive to derive this result first for the case in which the physical

dynamics are Hamiltonian i.e. ṽ describes Hamilton’s equations of motion,

dq

dt
= ṽq = ∇pHλ(t), (4.7)

dp

dt
= ṽp = −∇qHλ(t), (4.8)

where z ≡ (p,q), ṽ = (ṽq, ṽp), q = (. . . qi . . . ) is a vector composed of the position

degrees of freedom qi, p = (. . . pi . . . ) is a vector composed of the momentum degrees

of freedom pi, ∇p = (. . . ∂/∂pi . . . ), and ∇q = (. . . ∂/∂qi . . . ). We present this

derivation in Eqs 4.11- 4.17 below, after which we extend the result to other choices

of physical dynamics.

Let {zt} = {qt,pt} denote a trajectory evolving under the modified dynamics,

dq

dt
= ∇pHλ(t) + λ̇uq, (4.9)

dp

dt
= −∇qHλ(t) + λ̇up, (4.10)

where uq(q,p,λ) and up(q,p,λ) specify the components of the flow field u =

(uq,up) that act on the position and momentum degrees of freedom respectively,

as λ is varied from A to B. The modified dynamics are deterministic, allowing us

to treat the final conditions as a functions of the initial conditions, zτ = zτ (z0).

46



However, unlike Hamilton’s equations, they do not preserve phase space volume:

the degree of phase space expansion or compression along a trajectory is given by

the Jacobian
����
∂zτ
∂z0

���� = exp

� τ

0

λ̇∇ · u(zt,λ(t)) dt, (4.11)

where ∇ = (∇q,∇p). This Jacobian need not be unity. The total rate of change in

the energy of the system as it evolves along this trajectory is

d

dt
Hλ(zt) = λ̇

∂H(zt)

∂λ
+ (ṽ + λ̇u) ·∇H(zt) = λ̇

�
∂H(zt)

∂λ
+ u ·∇H(zt)

�
, (4.12)

where we have used

ṽ ·∇H = ṽu ·∇Hu + ṽp ·∇Hp = 0 (4.13)

when ṽ describes Hamilton’s equations, Eqs. 4.7,4.8 [32]. Integrating Eq. 4.12 along

the trajectory {zt} relates the total change in the energy of the system along that

trajectory to the integral of the first two terms in the definition of work in Eq. 4.6 3.

Hλ(τ)(zτ )−Hλ(0)(z0) =

� τ

0

λ̇

�
∂H(zt)

∂λ
+ u ·∇H(zt)

�
dt (4.14)

Let us now explicitly consider the ensemble average �e−βW �u in Eq. 4.5. Since

the dynamics are deterministic, and a trajectory can be uniquely specified by its

initial point, this can written as

�e−βW �u =

�
dz0ρ(z0, 0)e

−β
�
τ

0 λ̇ [ ∂H
∂λ

+u·∇H−β−1∇·u]. dt
, (4.15)

3As the system does not exchange any heat with its surroundings in the process - the physical

dynamics are Hamiltonian - this change in energy can be interpreted as the sum of the work done by

switching the external parameter λ̇∂H
∂λ , and the work done by the artificial dynamics (λ̇u) ·∇H(zt)
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where the integral in the exponent is performed over the trajectory zt. Using

ρ(z0, 0) = exp(−βHλ(0)(z0))/Z0, and Eq. 4.14, we can rewrite Eq. 4.15 as

�e−βW �u =

�
dz0

e
−βHλ(τ)(zτ )

Z0
e

�
τ

0 λ̇∇·u. dt
. (4.16)

Finally, changing the variable of integration from z0 to zτ and considering the asso-

ciated Jacobian factor, Eq. 4.11, we get Eq. 4.5

�e−βW �u =

�
dzτ

e
−βHλ(τ)(zτ )

Z0
= e

−β∆F
. (4.17)

We will now extend this derivation of our central result, Eq. 4.5, to physical

dynamics that satisfy Lλ · e−βHλ = 0, by generalizing the analysis of Hummer and

Szabo [42] to include the λ̇-dependent terms in Eqs. 4.3 and 4.4. From Eq. 4.4, we

have

L�
λ,λ̇

e
−βH = βλ̇

�
u · (∇H)− β

−1(∇ · u)
�
e
−βH

. (4.18)

Consider a density g(z, t) with initial condition g(z, 0) = ρ
eq(z,λ(0)), which satisfies

the so-called sink equation,

∂g

∂t
= L�

λ,λ̇
g − βλ̇

∂/H

∂/λ
g, (4.19)

where we have introduced the compact notation

∂/H

∂/λ
(z,λ) ≡ ∂H

∂λ
+ u ·∇H − β

−1∇ · u. (4.20)

Using Eq. 4.18 we verify by inspection that the function

g(z, t) =
1

ZA
e
−βH(z,λ(t)) (4.21)

48



is a solution of Eq. 4.19. Independently, sink equations of the kind Eq. 4.19 can be

solved using the Feynman-Kac theorem, which provides a path-integral solution for

g(z, t) [27, 42,43],

g(z, t) =
�
δ(z− zt) exp(−βwt)

�

u
, (4.22)

where wt =
� t

0 dt
�
λ̇ (∂/H/∂/λ). Again, {zt} denotes a trajectory evolving under Eq. 4.3

as λ is varied from A to B; the integrand λ̇ ∂/H/∂/λ is evaluated along this trajectory.

Equating these two solutions, we get

1

ZA
exp [−βH(z,λ(t))] =

�
δ(z− zt) exp(−βwt)

�

u
, (4.23)

Setting t = τ and integrating Eq. 4.23 over phase space, we obtain Eq. 4.5.

We have derived Eq. 4.5 by equating two solutions of the sink equation (Eq. 4.19):

one obtained by inspection (Eq. 4.21), the other via path integration (right side of

Eq. 4.23). An alternative derivation proceeds by first defining g(z, t) = �δ(z −

zt) exp(−βwt)�u, then showing that this function satisfies Eq. 4.19, whose solution

is in turn given by Eq. 4.21. See Refs. [45, 48] for analogous derivations of Eq. 2.5.

Eq. 4.5 implies we can estimate ∆F by taking the exponential average of

W (Eq. 4.6), over trajectories evolving under the modified dynamics (Eq. 4.3).

This generalizes the usual fast switching method: we recover Eq. 2.5 by choosing

u = 0. Our approach also contains elements of both the metric scaling [67] and

targeted perturbation [50, 63] strategies, reducing to a variant of the former in the

case of linear flow fields, u = α(λ) z, and to the latter in the limit of instantaneous

switching, τ → 0. In that limit, the term ṽ in Eq. 4.3 becomes negligible, and the

trajectory evolves by integration along the flow field: dzλ/dλ = u(zλ,λ). We will
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revisit this point in the following section where we will be concerned with Monte-

Carlo switching simulations.

4.3 Monte Carlo dynamics

Let us suppose that instead of Eq. 4.1, the evolution of the system is described

by a discrete-time Monte Carlo algorithm, parametrized by the value of λ and defined

by the transition probability Pλ(z|z0): if z0 represents the microstate of the system

at one time step 4 then the next microstate z is sampled randomly from Pλ(z|z0).

We assume this algorithm satisfies the conditions of detailed balance,

Pλ(z|z0)
Pλ(z0|z)

=
e
−βHλ(z)

e−βHλ(z0)
(4.24)

and ergodicity [54]. Routinely used Monte Carlo schemes such as the Metropo-

lis algorithm [24] satisfy these conditions. Eq. 4.24 implies the somewhat weaker

condition of balance,

�
dz0 Pλ(z|z0) e−βHλ(z0) = e

−βHλ(z) (4.25)

which we will use in the analysis below. With this Monte Carlo algorithm in place,

we first describe a standard procedure for estimating ∆F using nonequilibrium

simulations, Eq. 4.26 below, and then we introduce our modified version of this

approach.

Imagine a process in which the system is initially prepared in equilibrium, at

λ = A and temperature β
−1, and then the system evolves under the Monte Carlo

4In a typical Monte-Carlo simulation, momentum degrees of freedom are not simulated. Hence,

in the context of Monte-Carlo simulations, z will be used to denote a point in configuration space.
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dynamics described above, as the value of λ is switched from A to B in N steps

according to some pre-determined protocol. This evolution generates a trajectory

γ = {z0, z1, . . . , zN−1} that can be represented in more detail using the notation

[z0,λ0] ⇒ [z0,λ1] → [z1,λ1] ⇒ · · · → [zN−1,λN−1] ⇒ [zN−1,λN ]. (4.26)

Here, the symbol ⇒ denotes an update in the value of λ, with the microstate held

fixed, while → denotes a Monte Carlo step at fixed λ, e.g. the microstate z1 is

sampled from the distribution Pλ1(z1|z0). Moreover,

λ0 ≡ A , λN ≡ B, (4.27)

and the initial point z0 is sampled from ρeq(z0, A).

Because it is specified by the sequence of microstates z0, · · · zN−1, the trajec-

tory γ can be viewed as a point in a dN -dimensional trajectory space, where d is

dimensionality of phase (or configuration) space, with dγ = dz0 · · · dzN−1. For the

process described in the previous paragraph, the probability density for generating

this trajectory is

p[γ] = PλN−1(zN−1|zN−2) · · ·Pλ2(z2|z1)Pλ1(z1|z0) ρeq(z0, A) (4.28)

where the factors Pλi
(zi|zi−1) in this equation (read from right to left) correspond

to the symbols → in Eq. 4.26 (read from left to right). The work performed on

the system during this process is the sum of energy changes due to updates in

λ, [16, 44, 48, 85]

W [γ] =
i=N−1�

i=0

δWi ≡
i=N−1�

i=0

�
Hλi+1(zi)−Hλi

(zi)
�
. (4.29)
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Using Eqs. 4.24, 4.28 and 4.29, we arrive at the nonequilibrium work relation for

Monte Carlo dynamics, Eq. 2.5 [16, 48]. As mentioned previously, however, this

average converges poorly when the process is highly dissipative.

To address the issue of poor convergence, let us now assume that for every

integer 0 ≤ i < N , we have a deterministic function Mi : z → z� that takes

any point z in configuration space and maps it to a point z�. We assume that

each of these functions is invertible (M−1
i exists), but otherwise the functions are

arbitrary. These Mi’s then constitute a set of bijective mappings, which we use to

modify the procedure for generating trajectories, as follows. When the value of the

work parameter is switched from λi to λi+1, the configuration space coordinates are

simultaneously subjected to the mapping Mi. These deterministic functions play

the role of the flow fields introduced in the previous section. This connection is

apparent for instance when the consecutive values of the external parameter, λi and

λi+1 differ by an infinitesimal amount, λi+1 − λi = δλ. Then the mapping Mi can

be generically written as

z� = Mi(z) = z+ u(z,λi)δλ, (4.30)

where u again denotes a vector flow field. In other words, changes in λ induce

a phase-space displacement of uδλ just like in the escorted equations of motion,

Eq. 4.3.

With the mapping transformations Mi, Eq. 4.26 becomes

[z0,λ0]
M0⇒ [z�0,λ1] → [z1,λ1]

M1⇒ · · · → [zN−1,λN−1]
MN−1⇒ [z�N−1,λN ] (4.31)
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where

z�i ≡ Mi(zi), (4.32)

as indicated by the notation
Mi⇒. (As before, the symbol → denotes a Monte Carlo

move at fixed λ.) The bijective maps effectively escort the system by directly cou-

pling increments in λ to changes in the microstate.

In the escorted trajectory (Eq. 4.31), the system visits a sequence of 2N points

in configuration space: the N “primary” microstates z0, · · · zN−1, alternating with

the N “secondary” microstates z�0, · · · z�N−1. Since each z�i is uniquely determined

from zi (Eq. 4.32), the sequence of primary microstates γ = {z0, · · · zN−1} fully

specifies the trajectory; that is, trajectory space remains dN -dimensional, with dγ =

dz0 · · · dzN−1. The probability density for generating a trajectory γ is given by the

following modification of Eq. 4.28:

p[γ] = PλN−1(zN−1|z�N−2) · · ·Pλ2(z2|z�1)Pλ1(z1|z�0) ρeq(z0, A) (4.33)

Taking a cue from Refs [50,67], and following Eq. 4.6, we define the work performed

on the system as it evolves along the escorted trajectory Eq. 4.33 as

W [γ] =
N−1�

i=0

δWi ≡
N−1�

i=0

�
Hλi+1(z

�
i)−Hλi

(zi)− β
−1 ln Ji(zi)

�
, (4.34)

where Ji(z) = |∂z�/∂z| is the Jacobian associated with the map Mi : z → z�.

Averaging exp(−βW [γ]) over the ensemble of trajectories, we have

�e−βW � =

�
dγ p[γ] e−βW [γ]

=
1

Zλ0

�
dzN−1 · · ·

�
dz0 e

−β
�

N−1
i=0 δWi PλN−1(zN−1|z�N−2)× . . .

× . . . Pλ1(z1|z�0) e−βHλ0
(z0)

53



To evaluate this expression, we first identify all factors in the integrand that do not

depend on z0 or z�0, and we pull these outside the innermost integral,
�
dz0, which

gives us (for that integral):

�
dz0 e

−βδW0 Pλ1(z1|z�0) e−βHλ0
(z0) (4.35)

=

�
dz0 J0(z0)Pλ1(z1|z�0) e−βHλ1

(z�0) (4.36)

=

�
dz�0 Pλ1(z1|z�0) e−βHλ1

(z�0) = e
−βHλ1

(z1) (4.37)

We have used Eq. 4.34 to get to the second line, followed by a change in the variables

of integration to get to the third line, dz0 J0(z0) → dz�0, and we have invoked Eq. 4.25

to arrive at the final result. This process can be repeated for the integrals
�
dz1 to

�
dzN−2, which brings us to:

�e−βW � =
1

Zλ0

�
dzN−1 e

−βδWN−1 e
−βHλN−1

(zN−1)

=
1

Zλ0

�
dzN−1 JN−1(zN−1) e

−βHλN
(z�

N−1) (4.38)

=
1

Zλ0

�
dz�N−1 e

−βHλN
(z�

N−1) =
ZλN

Zλ0

,

and therefore

�e−βW � = e
−β∆F

. (4.39)

This equation is an identity for ∆F in terms of escorted trajectories, gener-

ated as per Eq. 4.31. For the special case in which each mapping is the identity,

Mi = I, we recover the usual scheme, Eq. 4.26, and then Eq. 4.39 reduces to the

nonequilibrium work relation, Eq. 2.5.

When N = 1, i.e. when the external parameter is switched in one step (sudden
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switching), the escorted trajectory described in Eq. 4.31 reduces to

[z0,λ0]
M0⇒ [z�0,λ1] (4.40)

where λ0 = A and λ1 = B. Since z�0 is uniquely determined by z0, the average

in Eq. 4.39 when N = 1 is simply an average over the initial points z0 which are

sampled from the equilibrium ensemble A,

�exp
�
−β

�
HB(z

�
0)−HA(z0)− β

−1 ln J0(z0)
��
�A = e

−β∆F
, (4.41)

where as before �. . . �A denotes an average over the equilibrium state A. The above

relation was first derived by Jarzynski [50] and is referred to as the Targeted Free

Energy Perturbation identity (TFEP). This identity is a generalization of the FEP

identity much in the same way as Eq. 4.39 (and Eq. 4.5) is a generalization of the

nonequilibrium work relation, Eq. 2.5. Indeed, when M0 = I, the TFEP identity,

Eq. 4.41, reduces to the FEP identity.

4.4 Fluctuation Theorem

Let us now consider not only the switching process described by Eq. 4.3, which

we will henceforth designate the forward process, but also its time-reversed analogue,

the reverse process. In the reverse process, the system is prepared in equilibrium

at λ = B and temperature β
−1. The work parameter is then switched to λ = A

according to the time reversed protocol, λ̃(t) = λ(τ − t). The equations of motion

now read

ż = ṽ + ˙̃
λu = ṽ − λ̇u, (4.42)
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where we have used ˙̃
λ = −λ̇. 5 In this section, we will compare distributions of W

in the forward and reverse processes and show that they also satisfy the Crooks’s

fluctuation theorem (Eq. 2.12). Again, we will begin by deriving the result for the

case when the physical dynamics are Hamiltonian (Eq. 4.43-4.49 below).

We start by considering the work performed on the system as it evolves along

a trajectory γ̃ ≡ {z̃t} in the reverse process:

WR(z̃0) =

� τ

0

˙̃
λ

�
∂H

∂λ
+ u ·∇H − β

−1∇ · u
�
dt, (4.43)

where the integral is along the trajectory {z̃t}. In general, the work performed

on the system will depend on the entire trajectory. However, since the dynamics

are deterministic, specifying the initial conditions is sufficient to describe the entire

trajectory.

Let us now construct the density PF (W ), where just as before (see Section 2.3),

PF (W ) denotes the probability distribution of work values in the forward process,

PF (W ) =

�
d z0ρ

eq(z0,λ(0))δ(WF (z0)−W ), (4.44)

where z0 is the initial point of the trajectory {zt}. Using Eq. 4.11 to change the

variables of integraion, we can rewrite Eq. 4.44 as

PF (W ) =

�
d zτρ

eq(z0,λ(0))δ(WF (z0)−W )e−
�
τ

0 λ̇∇·u(zt,λ(t)) dt. (4.45)

5We will assume that the Hamiltonian is invariant under time reversal. This invariance is

broken for instance when the system evolves in the presence of a magnetic field. In such cases,

the appropriate time reversed process is one where the signs of both λ̇ and the magnetic field are

inverted.
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Using ρ
eq(z0,λ(0))/ρeq(zτ ,λ(τ)) = e

β(Hλ(τ)(zτ )−Hλ(0)(z0)−∆F ) and Eq. 4.14 we obtain

PF (W ) =

�
d zτρ

eq(zτ ,λ(τ))δ(WF (z0)−W )eβ(WF (z0)−∆F )
. (4.46)

If a trajectory γ is a solution of the equations of motion in the forward process, its

conjugate twin γ
∗ = {z∗τ−t} is solution of the time reversed equations of motion in

the reverse process 6.The work performed along the conjugate trajectory γ∗ = {z∗τ−t}

in the reverse process, WR(z∗τ ), is related to the work performed along the trajectory

γ in the forward process by

WF (z0) = −WR(z
∗
τ ). (4.47)

Finally, changing the variables of integration in Eq. 4.46 from zτ to z∗τ (the Jacobian

for this transformation is unity) we obtain

PF (W ) = e
β(W−∆F )

�
d z∗τρ

eq(z∗τ ,λ(τ))δ(−WR(z
∗
τ )−W ) (4.48)

The integral in the above equation is simply PR(−W ), where PR(W ) denotes the

distribution of work values in the reverse process. Rearranging the terms, we obtain

the Crooks’s fluctuation relation for escorted simulations,

PF (W )

PR(−W )
= e

β(W−∆F )
. (4.49)

In Appendix A we sketch a general derivation of this fluctuation relation for escorted

simulations.
6The notation γ∗ refers to the conjugate trajectory of γ and is obtained by both reversing the

order of phase-space points visited in γ and inverting the momentum degrees of freedom in each

of these phase-space points. The notation z∗t refers to the phase-space point obtained by inverting

the momentum degrees of freedom in the phase-space point zt.
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In the case of Monte-Carlo simulations, the work parameter is switched to λ =

A from λ = B inN steps in the reverse process, following a sequence {λ̃0, λ̃1, · · · , λ̃N}

that is the reversal of the protocol used during the forward process:

λ̃i ≡ λN−i (4.50)

During the reverse process, changes in λ are coupled to the system’s evolution

through the inverse mapping functions, M̃i ≡ M
−1
N−1−i, generating a trajectory

[z̃�N−1, λ̃N ]
M̃N−1⇐ [z̃N−1, λ̃N−1] ← · · · M̃1⇐ [z̃1, λ̃1] ← [z̃�0, λ̃1]

M̃0⇐ [z̃0, λ̃0] (4.51)

where z̃�i ≡ M̃i(z̃i), and the initial state z̃0 is sampled from ρ
B
eq. The direction of

the arrows indicates the progression of time. The probability density for obtaining

a trajectory γ̃ = {z̃0, z̃1, . . . , z̃N−1} is

p[γ̃] = Pλ̃N−1
(z̃N−1|z̃�N−2), · · ·Pλ̃2

(z̃2|z̃�1)Pλ̃1
(z̃1|z̃�0) ρeq(z̃0, B) (4.52)

with dγ̃ = dz̃0 · · · dz̃N−1. Following Eq. 4.34, the work performed during this process

is

WR[γ̃] =
N−1�

i=0

�
Hλ̃i+1

(z̃�i)−Hλ̃i
(z̃i)− β

−1 ln J̃i(z̃i)
�
, (4.53)

where J̃i(z̃) = |∂z̃�/∂z̃| is the Jacobian for the mapping M̃i.

To establish Eq. 4.49 for Monte-Carlo escorted simulations, we will again need

to consider a conjugate pair of trajectories, γ and γ
∗ 7, related by time-reversal.

7In Monte-Carlo simulations, zi represents a point in configuration space which is invariant

under time reversal and not full phase space. Hence, we have not used the notation z∗i in the

conjugate trajectory.
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Specifically, if γ = {z0, · · · zN−1}F is a trajectory generated during the forward

process, that visits the sequence of microstates

z0
M0⇒ z�0 → z1

M1⇒ z�1 → · · · → zN−1
MN−1⇒ z�N−1 , (4.54)

then its conjugate twin, γ∗ = {z�N−1, · · · z�0}R, generated during the reverse process,

visits the same microstates, in reverse order:

z0
M̃N−1⇐ z�0 ← z1

M̃N−2⇐ z�1 ← · · · ← zN−1
M̃0⇐ z�N−1 (4.55)

that is z̃i = z�N−1−i and z̃�i = zN−1−i (see Eq. 4.51). Note that the primary mi-

crostates of γ are the secondary microstates of γ∗, and vice-versa, and the work

function is odd under time-reversal:

WF [γ] = −WR[γ
∗]. (4.56)

We wish to evaluate the quantity

PF (W ) e−β(W−∆F ) =

�
dγ pF [γ] e

−β(WF [γ]−∆F )
δ(W −WF [γ]) (4.57)

with pF [γ] given by Eq. 4.33. To this end, we first decompose WF [γ] as follows:

WF [γ] = ∆EF [γ]−QF [γ]− β
−1
SF [γ], (4.58)

where

∆EF [γ] ≡ HλN
(z�N−1)−Hλ0(z0) (4.59a)

QF [γ] ≡
N−1�

i=1

�
Hλi

(zi)−Hλi
(z�i−1)

�
(4.59b)

SF [γ] ≡
N−1�

i=0

ln Jλi
(zi) = ln

N−1�

i=0

����
∂z�i
∂zi

���� = ln

����
∂γ

∗

∂γ

���� (4.59c)

59



Here ∆EF [γ] is the total change in the energy of the system as it evolves along

the trajectory γ, QF [γ] can be interpreted as the heat transfered to the system

from the reservoir [67], and SF [γ] is an entropy-like term, which arises because the

mappings Mi need not preserve volume. The quantities defined in Eq. 4.59 satisfy

the properties

PλN−1(zN−1|z�N−2) · · ·Pλ1(z1|z�0) = PλN−1(z
�
N−2|zN−1) · · ·×

× · · · Pλ1(z
�
0|z1) e−βQF [γ]

ρ
eq(z0,λ0) = ρ

eq(z�N−1,λN) e
β(∆EF [γ]−∆F )

where we have used the detailed balance condition Eq. 4.24. These properties then

give us

pF [γ] = PλN−1(zN−1|z�N−2) · · ·Pλ1(z1|z�0) ρeq(z0,λ0)

= PλN−1(z
�
N−2|zN−1) · · ·Pλ1(z

�
0|z1) e−βQF [γ]

× ρ
eq(z�N−1,λN) e

β(∆EF [γ]−∆F )

= pR[γ
∗] eβ(WF [γ]−∆F )

e
SF [γ]

(4.61)

hence

pF [γ] e
−β(WF [γ]−∆F ) = pR[γ

∗]

����
∂γ

∗

∂γ

���� (4.62)

Substituting this result into the integrand on the right side of Eq. 4.57, then changing

the variables of integration from dγ to dγ
∗, and invoking Eq. 4.56, we finally arrive

at the result we set out to establish.

PF (W ) e−β(W−∆F ) = PR(−W ) (4.63)
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We have explicitly used the stronger detailed balance condition in this proof. When

the Monte-Carlo dynamics only satisfy the weaker balance condition, Eq. 4.25, the

steady state at a particular value of λ supports a nonzero current [54]. In such

cases, the time reversed process should be performed with Monte-Carlo dynamics

that support a steady state current with the same magnitude but opposite sign [17].

The fluctuation theorem, Eq. 4.63, then remains valid [17].

As we have seen in Section 2.3, the fluctuation theorems allow us to construct

a number of far-from-equilibrium estimators of ∆F . In particular, given nF work

values from the forward escorted simulation, and nR work values from the reverse es-

corted simulation, we can optimally estimate ∆F using Bennett’s Acceptance Ratio

(BAR) method (Eq. 2.14) just as we would in the case of the usual nonequilibrium

simulations. Also, we can use Eq. 2.16 as a means to both graphically estimate ∆F

and as a consistency check for the fluctuation theorem. Since we repeatedly use

Eq. 2.14 and Eq. 2.16 in next sections, we have reproduced the equations (Eq. 4.64

is the BAR estimator and Eq. 4.66 describes the procedure to graphically estimate

∆F ) below for convenience.

e
−β∆F =

�1/(1 + e
β(W+K))�F

�1/(1 + eβ(W−K))�R
e
βK

, (4.64)

where

K = −∆F + β
−1 lnnF/nR. (4.65)

Eq. 4.64 and Eq. 4.65 need to be solved recursively to obtain an estimate of ∆F .

The free energy difference can be graphically estimated using

L2(W )− L1(W ) = β∆F, (4.66)
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where L2(W ) ≡ {lnPR(−W ) + βW/2}, and L1(W ) ≡ {lnPF (W )− βW/2}.

4.5 Computational efficiency and figures of merit

While Eqs 4.5, 4.39, Eq. 4.64 are valid for any set of flow fields or bijec-

tive mapping functions (depending on whether the simulation uses continuous time

molecular dynamics or discrete time Monte-Carlo) the efficiency of using escorted

simulations to estimate ∆F depends strongly on the choice of these functions. In the

previous chapter, we established a relation between dissipation and lag for systems

driven away from equilibrium (Eq. 3.9). Starting from Eq. 4.23 (and its analogous

version in escorted Monte-Carlo simulations), that result can be derived even for

escorted free energy simulations. We reproduce the result below (in the context of

the forward process) for convenience,

�W �F −∆F ≥ β
−1
D[ρf ||ρeqB ] (4.67)

where �W �F −∆F measures the total dissipation in the forward escorted simulation,

ρf denotes the density of the system at the end of the switching process, and ρ
eq
B

denotes the equilibrium density corresponding to the value of λ at the end of the

switching process. The relative entropy D[ρf ||ρeqB ] quantifies the lag between the

state of the system and equilibrium state at the end of the process. Eq. 4.67 is an

equality if the dynamics are deterministic or if lag is eliminated and the system is

in equilibrium throughout (see below).

Since the convergence of exponential averages such as Eq. 4.5 and Eq. 4.39,

deteriorates rapidly with �W � [33, 51, 58], which as a result of Eq. 4.67 can be
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correlated to the lag, it is reasonable to speculate that a choice of dynamics that

decreases the lag will improve the convergence of estimator of ∆F .

To pursue this idea, let us imagine for a moment that we are able to construct

a perfect flow field, u∗, that eliminates the lag entirely. In this case the distribution

ρ(z, t) = ρ
eq(z,λt) is a solution of Eq. (4.4). Substituting this solution into Eq.

(4.4), we get, using Lλ · ρeq = 0,

∂ρ
eq

∂λ
+∇ · (u∗

ρ
eq) = 0. (4.68)

Setting ρ
eq = e

β(F−H), we obtain

dF

dλ
(λ) =

∂H

∂λ
+ u∗ ·∇H − β

−1∇ · u∗ ≡ ∂/H

∂/λ
, (4.69)

therefore

WF =

� τ

0

λ̇
∂/H

∂/λ
dt =

� τ

0

λ̇
dF

dλ
dt = ∆F (4.70)

for every trajectory zt. Thus, for a perfect flow field u∗, there is no dissipation

(Wdiss = 0) and a single trajectory provides the correct free energy difference.

In the case of Monte-Carlo simulations, a perfect set of mappings {M∗
i } that

eliminate the lag also eliminate dissipation. Under this set of mappings, the equilib-

rium distribution ρ
eq(z,λi) transforms to the distribution ρ

eq(z�,λi+1) [50], in other

words

ρ
eq(z�,λi+1) =

ρ
eq(z,λi)

J
∗
λi
(z)

(4.71)

[Under a bijective map M : x → y, a distribution f(x) is transformed to the dis-

tribution η(y) = f(x)/J(x), where J(x) = |∂y/∂x|.] Using ρ
eq(z,λ) = e

β(Fλ−Hλ(z)),

and taking the logarithm of both sides of Eq. 4.71, we obtain (for a perfect set of
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mappings)

δWi ≡ Hλi+1(z
�)−Hλi

(z)− β
−1 ln J∗

λi
(z) = Fλi+1 − Fλi

, (4.72)

hence WF [γ] = ∆F for every trajectory γ (Eq. 4.34) and dissipation is eliminated 8.

Although on general grounds we expect that perfect flow fields and a perfect set

of mapping functions typically exist,9 it seems unlikely we will be able to solve for u∗

or {M∗
i } analytically, apart from a few simple systems. Indeed, Eq. 4.69 (Eq. 4.71)

suggests that an expression for dF/dλ (Fλi+1 −Fλi
) is required to obtain u∗ ({M∗

i }).

However, by revealing that elimination of the lag results in a zero-variance estimator

of ∆F , Eq. 4.70 and Eq. 4.72 support our earlier speculation: if we can construct

artificial dynamics that reduce the lag, then we should expect improved convergence

of the exponential average. In such cases the dissipation accompanying the escorted

simulations is less than that for the unescorted simulations, leading to improved

convergence of the free energy estimate.

As an example of a strategy that can be used to construct good flow fields

and mappings, consider a system of identical, mutually interacting particles, in an

external potential Uλ(r):

Hλ(z) =
�

k

Uλ(rk) +
�

k<l

V (rk, rl) (4.73)

The probability distribution of a single, tagged particle is then given by the single-

8It is straightforward to show that when escorted dynamics eliminate the lag and dissipation in

the forward process, the lag and dissipation are also eliminated in the reverse escorted processes.
9Since Eq. (4.68) is of the form ∇ · A = q(z,λ), a formal solution can be constructed using

Green’s functions.
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particle density

ρ
(1)
λ (r) =

1

Zλ

�
dz δ[rk(z)− r] e−βHλ(z) (4.74)

where rk(z) specifies the coordinates of the tagged particle as a function of the

microstate z. Now consider a reference system of non-interacting particles, described

by a Hamiltonian

H̄λ(z) =
�

k

Ūλ(rk) (4.75)

with a similarly defined single-particle density ρ̄
(1)
λ (r); and imagine that Ūλ is chosen

so that these single-particle densities are identical or nearly identical: ρ
(1)
λ (r) ≈

ρ̄
(1)
λ (r). In this case a set of mappings {Mi} or flow fields that are perfect or near-

perfect for the reference system (H̄λ), might be quite effective in reducing lag in

the original system (Hλ). We will illustrate this mean-field-like approach in Section

4.6.3, and we note that a similar strategy was explored by Hahn and Then in the

context of targeted free energy perturbation [34].

It will be useful to develop a figure of merit, allowing us to compare the ef-

ficiency of our method for different sets of mappings or flow fields. One approach

would be simply to compare the error bars associated with the statistical fluctuations

in the respective free energy estimates. Unfortunately, estimates of ∆F obtained

from convex nonlinear averages such as the one obtained from Eq. 4.39, are system-

atically biased for any finite number of realizations [33,104,107]. Following [104,107],

consider for example the estimate of ∆F , ∆FNs
, obtained from a particular set of

Ns simulations,

∆FNs
= −β

−1 ln
1

Ns

Ns�

i=1

e
−βWi . (4.76)
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The average ∆FNs
≡ �∆FNs

� over all such sets of Ns simulations is systematically

biased for any finite Ns whenever the simulation is performed irreversibly, ∆FNs
>

∆F . This can be easily verified by applying Jensen’s inequality to Eq. 4.76 above.

This bias can be large, and as a result the statistical error bars by themselves might

not be sufficiently reliable to quantify the efficiency of the mapping. In the following

paragraphs we discuss alternative figures of merit.

We begin by noting that when the unidirectional estimator, Eqs. 4.5, 4.39

is used in conjunction with simulations of the forward process, then the number

of realizations (Ns) required to obtain a reliable estimate of ∆F is roughly given

by [51,58]

Ns ∼ e
β(�W �R+∆F ) (4.77)

where �W �R +∆F is the dissipation accompanying the reverse process. While this

provides some intuition for the convergence of Eqs. 4.5, 4.39, its usefulness as a

figure of merit is somewhat limited as it requires simulations of both the forward

and the reverse processes, and in that case we are better off using a bidirectional

estimator such as Eq. 4.64.

When we do have simulations of both processes, then an easily computed figure

of merit is the hysteresis, �Wdiss�F + �Wdiss�R = �W �F + �W �R. The value of this

quantity is zero if the mappings or flow fields are perfect, otherwise it is positive. It

is interesting to note that the hysteresis can be related to an information-theoretic

measure of overlap between the forward and reverse work distributions PF (W ) and
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PR(−W ): [22]

D[PF ||PR] +D[PR||PF ] = β(�W �F + �W �R). (4.78)

HereD[p||q] ≡
�
p ln(p/q) ≥ 0 denotes the relative entropy between the distributions

p and q, and the symmetrized quantity D[p||q] +D[q||p] (also known as the Jeffreys

divergence [15]) provides a measure of the difference, or more precisely the lack of

overlap, between the distributions. The right side of Eq. 4.78 can be estimated

from a modest sample of forward and reverse simulations. If the artificial dynamics

reduce the hysteresis, �W �F + �W �R, then this indicates increased overlap between

the work distributions, and therefore improved convergence [51].

When nF = nR = Ns � 1, the mean square error of the Bennett estimator

is [6, 34, 35, 92]

�(F est
BAR −∆F )2� = 2

β2Ns

�
1

2C
− 1

�
. (4.79)

Here F
est
BAR denotes the estimate of ∆F obtained from Eq. 4.64, and

C ≡
�

dW
PF (W )PR(−W )

PF (W ) + PR(−W )
=

�
1

1 + exp[β(W −∆F )]

�

F

=

�
1

1 + exp[β(W +∆F )]

�

R

(4.80)

(This result can be generalized to the case nF �= nR [34].) As discussed by Bennett [6]

and Hahn and Then [34, 35], the value of C measures the overlap between PF (W )

and PR(−W ), and provides a rough figure of merit for the Bennett estimator. When

lag is eliminated and the two distributions coincide, then C attains its maximum

value, C = 1/2, whereas when there is poor overlap, C ≈ 0. Thus we expect that the

higher the value of the overlap function C, the smaller the number of realizations Ns

required to estimate ∆F from Eq. 4.64 with a prescribed accuracy. Indeed, Eq. 4.79
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suggests a lower bound on the number of realizations needed to achieve a mean

square error less than β
−2: Ns > 1/C. Note that since C is an ensemble average

(Eq. 4.80), it can readily be estimated from available simulation data.

In Appendix B, we derive an upper bound on the number of realizations needed

to obtain a reliable estimate of ∆F using Bennett’s method, Ns (Eq. B.7). Com-

bining these bounds gives us

1

C
< Ns <

1

C2
(4.81)

While Eq. 4.81 does not provide a good estimate for Ns
10, it does allow us to argue

heuristically that whenever the artificial dynamics succeed in increasing the value

of C, the convergence of the Bennett estimator is improved. We will illustrate this

point in the following section.

4.6 Examples

4.6.1 One dimensional model system

Consider Sun’s one-dimensional model system [95],

H(p, q,λ) =
p
2

2m
+ q

4 − 16(1− λ)q2 =
p
2

2m
+ V (q,λ). (4.82)

For A ≡ 0 ≤ λ < 1 ≡ B, the potential energy profile V (q,λ) is a double well,

with minima at ±q0(λ) ≡ ±
�
8(1− λ) separated by a barrier of height 64(1 − λ)2

10For C << 1, the upper and lower bounds in Eq. 4.81 can be orders of magnitude apart.

Nevertheless, Eq. 4.81 can serve as a good consistency check for the quality of the estimates. For

example an estimate of ∆F using Bennett’s method from a data set of size Ns ∼ 106 is reliable if

C ∼ 0.001.
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Figure 4.1: The potential energy landscape for λ = 0 (solid line) and λ = 1

(dashed line). Also depicted are the equilibrium distribution and the flow field, at

λ = 0.

(Fig. 4.1). Setting β = 1, the equilibrium distribution is bimodal and sharply peaked

around ±q0; as λ → 1 the two peaks coalesce as V becomes a single, quartic well.

Analytical evaluation of the partition functions gives ∆F = FB −FA = 62.94... [63].

The direct application of nonequilibrium work relation, Eq. 2.5, to this model

gives poor results when the switching is performed rapidly [76, 95]. A typical sim-

ulation begins with the system near ±q0(0); then, as λ is varied from 0 to 1, the

two minima at ±q0(λ) approach one another, but the system lags behind, resulting
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in large dissipation and poor free energy estimates. This is illustrated by the open

circles in Fig. 4.2, obtained from simulations during which the system evolved under

Hamilton’s equations, integrated using the velocity Verlet algorithm. Only for τ = 1

does Eq. (2.5) provide an accurate estimate of ∆F . (The systematic error evident

in Fig. 4.2 arises after taking the logarithm of both sides of Eq. (2.5) [107]; see the

discussion following Eq. 4.76.)

To illustrate the application of Eq. (4.5), let us take

u(q,λ) =
dq0
dλ

tanh [64(1− λ)q0q] , (4.83)

with q0 = q0(λ) as given above. This field acts only on the coordinate q, and not

on the momentum p. We arrived at Eq. (4.83) by using crude approximations to

estimate the solution of Eq. (4.69), modeling p
eq as a pair of Gaussians. Omitting

the details of this calculation, we note that near either peak of peq, u(q,λ) displaces

the system toward the origin at a speed λ̇|u| ≈ λ̇ dq0/dλ (see Fig. 4.1). This is

the speed at which the two minima of V (q,λ) approach the origin. Intuitively, we

expect this flow to reduce the lag between ρ and p
eq. Moreover, the dynamics are

deterministic and the connection between dissipation and lag in Eq. 4.67 is expressed

as an equality. Consequently any reduction in lag will directly lead to a reduction

in dissipation.

We repeated the simulations described above, now adding the term λ̇ u to the

dynamics. The resulting estimates of ∆F , obtained using Eq. (4.5) and depicted as

filled circles in Fig. 4.2, are remarkably accurate over the entire range of switching

times. Indeed, for all τ = 0.01, · · · , 1.0, the work values W were sharply peaked
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Figure 4.2: Comparison of estimates of ∆F using Eqs. 2.5 and 4.5. We performed

simulations for switching times ranging from τ = 0.01 to τ = 1.0. Each ∆Fest

was obtained using 106 trajectories, evolving under either Eq. 4.1 (open circles)

or Eqs. 4.3, 4.83 (filled circles). Error bars were computed using the bootstrap

method [21]; for the filled circles these were smaller than the symbols, and are not

shown.
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around ∆F (data not shown), confirming that dissipation is greatly reduced and

that the flow field escorts the system through a sequence of near-equilibrium states,

even when λ is switched rapidly. We stress, however, that this choice of flow field is

neither perfect (u �= u
∗) nor unique. In particular, we expect it could be improved

near λ = 1, where the approximations made on the way to Eq. (4.83) break down.

4.6.2 Cavity Expansion

As a second example, we estimate the free energy cost associated with growing

a hard-sphere solute in a fluid. Consider a system composed of np point particles

inside a cubic container of volume L3 (L is the length of a side of the cube), centered

at the origin with periodic boundaries. The particles are excluded from a spherical

region of radius R, also centered at the origin. The particles interact with one an-

other via the WCA pairwise interaction potential [24] which is denoted by V (rk, rl).

The energy of the system at a microstate z = (r1, r2, . . . , rnp
) is given by

HR(z) = Θ(z, R) +

np−1�

k=1

np�

l>k

V (rk, rl) (4.84)

where Θ(z, R) = 0 whenever |rk| > R for all k = 1, · · ·np, that is when there are

no particles inside the spherical cavity; and Θ(z, R) = ∞ otherwise. The function

Θ(z, R) ensures that particles are excluded from the spherical region around the

origin. We wish to compute the free energy cost, ∆F , associated with increasing

the radius of the cavity from RA to RB.

A hypothetical estimate of ∆F using unescorted nonequilibrium simulations

(Eq. 4.26) involves “growing out” the spherical cavity in discrete increments, as
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Figure 4.3: A schematic of the cavity expansion problem

follows. Starting with a microstate z0 sampled from equilibrium at R = RA, the

radius of the sphere is increased by an amount δR0. If all np fluid particles remain

outside the enlarged sphere, then δW0 = 0; but if one or more particles now finds

itself inside the sphere (rk < RA + δR0) then δW0 = ∞. One or more Monte Carlo

steps are then taken, after which the radius is again increased by some amount, δR1,

and δW1 is determined in the same fashion as δW0. In principle this continues until

the radius of the sphere is RB, and then the work is tallied for the entire trajectory:

W =
�

i δWi. In practice the trajectory can be terminated as soon as δWi = ∞ at

some step i, since this implies W = ∞. For this procedure, Eq. 2.5 can be rewritten

as

P (W = 0) = e
−β∆F

, (4.85)

where P (W = 0) is the probability of generating a trajectory for which W = 0; that

is, a trajectory in which the sphere is successfully grown out to radius RB, without
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overtaking any fluid particles along the way. The quantity P (W = 0) is estimated

directly, by generating a number of trajectories and counting the “successes” (W =

0). For a sufficiently dense fluid, however, a successful trajectory is a rare event,

P (W = 0) � 1, and this approach converges poorly. Note also that this approach

does not give the correct free energy difference in the reverse case of a shrinking

sphere (from R = RB to R = RA), since W = 0 for every trajectory in that

situation.

For the hypothetical procedure just described, Eq. 4.85 implies that the prob-

ability to generate a successful trajectory does not depend on the number of incre-

ments used to grow the cavity from RA to RB. Therefore the most computationally

efficient implementation is to grow the sphere out in a single step, which corresponds

to the free energy perturbation method (FEP) [13, 24]. In this case P (W = 0) is

just the probability to observe no particles in the region RA < r < RB, for an equi-

librium simulation at cavity radius RA. Since we are interested in the probability

that the region RA < r < RB is vacant, we will use the more suggestive notation

P (n = 0) instead of P (W = 0).

To improve convergence by means of escorted simulations (Eq. 4.31), we con-

structed mapping functions Mi that move the fluid particles out of the way of the

growing sphere, to prevent infinite values of δWi. Specifically, as the cavity radius

R is increased from Ri to Ri+1, the location of the n
th particle, rn, is mapped to

r�n = mi(rn), where [50]

mi(rn) =

�
1 +

(R3
i+1 −R

3
i )(L

3 − 8r3n)

(L3 − 8R3
i )r

3
n

�1/3
rn if rn ≤ L/2 (4.86)
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and mi(rn) = rn if rn > L/2. The notation mi : rn → r�n denotes a single-particle

mapping; the full mapping Mi : z → z� is obtained by applying mi to all np fluid

particles. To picture the effect of this mapping, let Si denote the region of space

defined by the conditions Ri ≤ r ≤ L/2, that is a spherical shell of inner radius

Ri and outer radius L/2 (just touching the sides of the cubic container). Under

the mapping mi : r → r�, the shell Si is compressed uniformly onto the shell Si+1,

leaving the eight corners of the box r > L/2 untouched. 11 In this manner, the

particles that would otherwise have found themselves inside the enlarged sphere are

pushed outside of it, resulting in a finite contribution to the work (Eq. 4.34),

δWi =

np−1�

k=1

np�

l>k

[V (r�k, r
�
l)− V (rk, rl)]− n0β

−1 ln γ (4.87)

where n0 = n0(z) is the number of particles found within the shell Ri ≤ r ≤ L/2

(before the mapping is applied), and γ = (L3 − 8R3
i+1)/(L

3 − 8R3
i ) < 1 is the

ratio of shell volumes, |Si+1|/|Si|. The first term on the right side of Eq. 4.87 gives

the net change in the energy of the system associated with the escorted switch

[zi, Ri]
Mi⇒ [z�i, Ri+1], while the second is the Jacobian term −β

−1 ln Ji(zi).

Unlike the unescorted approach or free energy perturbation, the escorted ap-

proach with the mapping given by Eq. 4.86 is applicable in both the forward (grow-

ing spherical cavity) and reverse (shrinking cavity) directions. In the reverse direc-

tion, as the solute radius is decreased from Ri+1 to Ri, the shell Si+1 is uniformly

11An even better mapping would uniformly compress the entire region r > Ri, including the

eight corners, onto the region r > Ri+1. However, due to the geometric mismatch between the

spherical inner surface and cubic outer surface of these regions, such a mapping is not represented

by a simple formula such as Eq. 4.86, and would need to be constructed numerically.
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Figure 4.4: Running estimate of the probability that the region RA ≤

r ≤ RB is devoid of fluid particles, P (n = 0) = exp(−β∆F ), from

escorted free energy simulations in which R is switched from RA to RB,

plotted as a function of the number of trajectories used to obtain the

estimate. The (green) horizontal line is the estimate of exp(−β∆F )

obtained using Bennett’s Acceptance ratio (BAR) method with nF =

nR = 50000 trajectories. Observe that the running estimate converges

to the BAR estimate in 50000 trajectories.
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�W �F 22.288± 0.012

�W �R -14.458± 0.013

�W �F + �W �R 7.830± 0.018

∆F
est
F 18.487± 0.085

∆F
est
R −18.334± 0.078

∆F
est
BAR 18.456± 0.011

C 0.120± 0.001

Table 4.1: Estimates and figures of merit. Here ∆F
est
F denotes the estimate of

∆F ≡ FB−FA from the forward process (RA → RB) and∆F
est
R denotes the estimate

of −∆F from the reverse process (RA ← RB). ∆F
est
BAR denotes the estimate of ∆F

obtained from Bennett’s Acceptance Ratio method.

expanded onto the shell Si. The corresponding increment in work is given by a for-

mula similar to Eq. 4.87. As a result, one can combine work values from forward and

reverse escorted simulations using Bennett’s Acceptance Ratio (BAR), Eq. 4.64.

We have performed both forward and reverse simulations of this system using

Np = 1000 WCA particles, with L = 10.42σ, RA = 2.0σ, RB = 2.05σ, and at a

reduced temperature T
∗ ≡ kBT/� = 1, where the WCA parameters σ and � set the

units of length and energy, respectively. Minimum image convention and periodic

boundary conditions were used [24].

Fig. 4.4 shows a running estimate of exp(−β∆F ) obtained from escorted sim-
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ulations in which the solute radius was switched from RA to RB in N = 10 steps,

with each increment in R alternating with one Monte Carlo sweep 12. The horizontal

line denotes the final estimate of exp(−β∆F ) obtained using Bennett’s Acceptance

Ratio (BAR) method with nF = nR = 50000 escorted trajectories. Fig. 4.4 clearly

shows that the running estimate of exp(−β∆F ) converges to the final BAR esti-

mate. Using a total of Ns = 50000 independent escorted trajectories, estimates of

∆F and the figures of merit were obtained, and are summarized in Table 4.1 (The

value of C and ∆F
est
BAR were estimated using nF = nR = Ns = 50000 trajectories).

Statistical error bars were computed using the bootstrap method [21]. While an an-

alytical expression for ∆F is not available for this example, the agreement between

the estimates obtained by growing the solute (F ), shrinking it (R), and applying

BAR gives us confidence in the result, ∆F ≈ 18.4 kBT .

As an additional consistency check, in Fig. 4.5 we verify that the escorted

simulations satisfy the fluctuation theorem Eq. 4.63 using Eq. 4.66. The flatness of

the difference L2−L1 over the region for which we have good statistics is in agreement

with Eq. 4.66, and provides a useful and stringent consistency check [13,24], which

gives us further confidence in our estimates.

While the highly accurate estimates listed in Table 4.1 were generated using

Ns = 50000 escorted trajectories, we found that we were able to obtain estimates

of ∆F with error bars around 1 kBT using only Ns = 100 realizations for the

12Because the quantity exp(−β∆F ) has a particularly simple interpretation in this context - it

is the probability P (n = 0) to find no particles in the region between RA and RB - it is convenient

to plot the running estimate of exp(−β∆F ) rather than ∆F itself.
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unidirectional estimators, and Ns = 10 realizations for the bidirectional estimator

(data not shown).

To compare the escorted method with unescorted free energy perturbation

(FEP), we first sampled Ns = 100000 independent configurations from the canonical

ensemble with cavity radius R = RA, by generating a single, long equilibrium Monte

Carlo trajectory and sampling one configuration per 10 Monte Carlo sweeps. This

involved a total computational time approximately equal to that of generating 50000

escorted trajectories. Among these 105 configurations we did not observe a single

one in which the region RA ≤ r ≤ RB was spontaneously devoid of particles (W =

0), in other words we were unable to obtain an estimate of ∆F using free energy

perturbation. This is consistent with the result P (n = 0) ≈ e
−18.4 ≈ 10−8 (Fig. 4.4,

Table 4.1), which suggests that roughly 108 independent configurations are needed

to observe one for which W = 0.

For a more efficient implementation of FEP, we divided the interval [RA, RB]

into ten stages (sub-intervals), and then used FEP to estimate the free energy change

for each stage, keeping the total computational time fixed. This provided a final

estimate of ∆F with error bars comparable to those of the unidirectional escorted

estimators in Table 4.1, but still considerably larger than those of the bidirectional

estimates (data not shown). 13

13Of course, even after dividing the problem into stages, one can apply escorting by separately

treating each stage as a switching simulation with one step, N = 1, and using the mappings given

by Eq. 4.86. We found that this further reduces the error bars by nearly a factor of six.
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ratio method (Table 4.1).
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4.6.3 Dipole Fluid

As our third example, we consider np point Lennard-Jones dipoles in a cubic

container of size L with periodic boundaries, and we compute the free energy cost

associated with introducing a uniform electric field in the container. The energy of

the system in an external electric field E = Eêz, where êz denotes a unit vector

along the z-axis, is given by

HE,γ(z) = −
np�

k=1

pk · E+

np−1�

k=1

np�

l>k

VLJ(rk, rl)− γ
pk · pl

|rk − rl|4
(4.88)

where z = {r1,p1, . . . rnp
,pnp

}, pk denotes the dipole moment vector of the k
th

particle, and VLJ(rk, rl) denotes the Lennard-Jones pairwise interaction potential.

The parameter γ controls the strength of the dipole-dipole interaction. We set

|pk| = 1 for all k. In spherical polar coordinates, pk = (1, θk,φk), and the measure

on z space is hence dz = Πnp

k=1drkd cos(θk)dφk.

Taking the electric field to be the external parameter, we wish to compute the

free energy difference between the ensembles corresponding to E = 0 and E = Ef

at some temperature β−1 by performing nonequilibrium switching simulations. Our

first task is to construct a mapping function that escorts the system along a near

equilibrium path as E is switched. Following Eq. 4.75, we consider the energy

function H̄E(z) ≡ HE,0(z) (i.e. γ = 0 in Eq. 4.88), which describes a reference

system of non-interacting Lennard-Jones dipoles in a field of strength E. The change

in free energy as the field is switched from Ei to Ei+1 can be solved analytically and
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is given by

F̄Ei+1 − F̄Ei
= −np

1

β
ln

�
sinh(βEi+1)

sinh(βEi)

Ei

Ei+1

�
(4.89)

We now use this result to solve for a perfect set of mappings for this system of

non-interacting dipoles.

Let mi : ζ ≡ cos(θ) → ζ
� denote a mapping that acts on the ζ = cos(θ) degree

of freedom of a dipole when the external field is switched from Ei to Ei+1. The full

mapping Mi is obtained by applying the mapping mi to all np particles. We look for

the perfect mapping Mi that transforms the canonical distribution corresponding

to H̄Ei
(z) to the canonical distribution corresponding to H̄Ei+1(z

�). The following

equation for the perfect single particle mapping mi can be obtained from Eq. 4.72

by using Eqs. 4.88 and 4.89 and by noting that pk · E = Eζk:

Ei+1mi(ζ)− Eiζ −
1

β
ln

dmi(ζ)

dζ
= − 1

β
ln

sinh(βEi+1)

sinh(βEi)

Ei

Ei+1
(4.90)

This differential equation has the solution

mi(ζ) =
1

βEi+1
ln

�
sinh(βEi+1)

sinh(βEi)
(eβEiζ − e

βEi) + e
βEi+1

�
(4.91)

While Eq. 4.91 is a perfect mapping only when there are no dipole-dipole interac-

tions (γ = 0) we expect this mapping to work reasonably well for small values of γ.

We will use the term simple mapping in reference to Eq. 4.91.

We also constructed a set of mapping functions using mean field [10] arguments

as follows. In the absence of long range order, mean field theory suggests that the

interacting dipole-fluid system (γ �= 0) in an electric field of strength E can be
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approximated by a system of non-interacting dipoles (γ = 0) in an effective field

of strength E
�. We obtained approximate values for this effective electric field by

first simulating a fluid of interacting dipoles (γ �= 0), and numerically evaluating the

single-dipole distribution P (ζ) , ζ = cos(θ), at E = Ef . The thermal distribution

of ζ for a non-interacting dipole in a field of strength E
�
f , is P0(ζ) ∝ exp(βE �

fζ).

Hence E
�
f can be estimated by fitting P0 to the numerically obtained distribution

P (ζ). For all other values of E, we calculate the effective fields by linear scaling,

E
� = EE

�
f/Ef . Again, using Eq. 4.72 with H̄E(z) = HE�,0(z) we obtain a new set

of mapping functions. In particular, when the E field is switched from Ei to Ei+1,

the ζk = cos(θk) degree of freedom of the kth dipole is transformed according to Eq.

4.92

mi(ζk) =
1

βE
�
i+1

ln

�
sinh(βE �

i+1)

sinh(βE �
i)

(eβE
�
i
ζk − e

βE�
i) + e

βE�
i+1

�
(4.92)

We will refer to Eq. 4.92 as a mean field mapping. Since the single-dipole distri-

butions for the interacting system at field strength E are (by construction) closely

approximated by the single-particle distributions for the non-interacting system at

E
�, we expect the mean field mappings to perform better than the simple mappings

of Eq. 4.91.

We performed numerical simulations of the fully interacting dipole fluid with

np = 800 particles. The parameters σ, � of the Lennard-Jones potential set the

length and the energy scale of the system, and we took L = 10σ and T
∗ = kBT/� = 1.

Minimum image convention and periodic boundary conditions [24] were used. We

performed Ns = 104 forward and reverse simulations to estimate the free energy
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difference between the ensembles corresponding to E = 0 and E = 1, switching the

field strength in N = 10 equal increments. Ten Monte Carlo sweeps were performed

between these updates in E. We obtained estimates of ∆F using: (1) unescorted

switching simulations (Eq. 2.5), (2) escorted simulations with the simple mappings

(Eq. 4.91), and (3) escorted simulations with the mean field mappings (Eq. 4.92). For

the latter, the effective fields were obtained as described in the previous paragraph.

In particular, we found E
�
f ≈ 1.5Ef and therefore we took E

�
i = 1.5Ei in Eq. 4.92.

Fig. 4.6 shows the work distributions PF (W ) and PR(−W ) for these sets of

simulations, and reveals a progression from virtually no overlap for the unescorted

simulations, to some overlap for the simulations with the simple mappings, to nearly

perfect overlap when using the mean field mappings. This trend is in agreement with

the expectations mentioned above, and provides direct evidence that the mappings

we have constructed substantially reduce the lag and dissipation. The first three

rows of Table 4.2 quantify these observations. In particular, row 3 gives the dis-

tance between the means of PF (W ) and PR(−W ), and shows that this measure of

hysteresis proceeds from nearly 250kBT to about 24kBT to less than 1kBT in the

three cases. Rows 4 to 6 illustrate the effect of this trend on the efficiency and ac-

curacy of the free energy estimates. The estimates of ∆F (that is, ∆F
est
F , −∆F

est
R ,

and ∆F
est
BAR) obtained from the unescorted simulations differ substantially from one

another, indicating a high degree of bias. The estimates corresponding to the simple

mappings are markedly better, though they still suggest a degree of bias on the order

of 1kBT . Finally, the simulations with the mean field mappings are in agreement to

within about 0.05kBT , indicating excellent accuracy and efficiency. These findings
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No mapping Mapping Mean field mapping

�W �F −60.409± 0.126 −177.074± 0.039 −189.079± 0.010

�W �R 302.958± 0.132 200.607± 0.045 189.971± 0.010

�W �F + �W �R 242.549± 0.182 23.533± 0.060 0.892± 0.014

∆F
est
F −114.189± 3.913 −187.612± 0.405 −189.552± 0.011

∆F
est
R 262.232± 0.711 191.877± 0.310 189.502± 0.0140

∆F
est
BAR −128.215± 3.324 −189.599± 0.110 −189.530± 0.008

C ∼ 0 0.011± 0.001 0.407± 0.001

Table 4.2: Estimates and Figures of Merit for γ = 0.1. Note that the simulations

with the mapping are much more efficient than those without. The forward and

reverse work histograms obtained from the simulations without any mappings were

so far apart that a reliable estimate of C could not be obtained.

are also in agreement with the values of the overlap integral C, shown in row 7.

This was too low to be estimated using the unescorted simulations, and approaches

its maximal value of 1/2 when using the mean field mappings. Using escorted simu-

lations with the mean field mappings, with the acceptance ratio method (BAR), we

found that we were able to generate estimates of ∆F with error bars on the order

of 0.2kBT , with about Ns ∼ 1/C2 ∼ 10 (data not shown).
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4.7 Summary

Nonequilibrium fast switching estimates of free energy differences often per-

form poorly due to dissipation (see Fig 1.1). The strategy developed here seeks to

address this issue. By modifying the dynamics with additional terms that serve to

escort the system along a near equilibrium trajectory and consequently reduce dis-

sipation, we obtain efficient fast switching estimators (Eq. 4.5, Eq. 4.39, Eq. 4.64)

for the free energy difference. The success of the strategy depends crucially on the

choice of the escorting functions: the more effectively these reduce the dissipation,

the more efficient the resulting estimator of ∆F .

The examples presented in Section 4.6 illustrate this point. In the example

of a particle in the one dimensional Sun potential [95], the key to success with

our method is a flow field u that reduces lag, and therefore dissipation, by mim-

icking the effect of a variation of λ on the distribution p
eq. For the hard sphere

solute, we used a simple mapping function that uniformly compresses the solvent,

vacating the region into which the hard sphere expands (Eq. 4.86). With this es-

corting function we were able to estimate ∆F directly from single-stage switching

simulations, which would not have been feasible without escorting. In the example

of the Lennard-Jones dipole fluid, we used a reference system of non-interacting

dipoles to construct a reasonable set of mapping functions (Eq.4.91), and then we

further refined these mappings using mean field arguments (Eq. 4.92). Figure 4.6

and Table 4.2 illustrate the correlation between reduced dissipation and increased

computational efficiency. Because mean field theory often provides a reasonable de-
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scription of many-body systems, we speculate that this approach will prove effective

for more complex problems of physical interest.

We have also discussed figures of merit, specifically the dissipation in the

forward and reverse processes, and the overlap integral C (Eqs. 4.77, 4.78, 4.80).

For the two examples in Section 4.6, we found that these quantities indeed track

the effectiveness of the mapping functions. This suggests that these figures of merit

might be useful to iteratively improve the performance of the mapping functions.

Our method might also be combined with steered molecular dynamics [47,80],

in which a constraining potential is used to drag a coordinate ξ along a desired path

ξ̃t. By adding a flow field that acts on this coordinate and others coupled to it, one

might be able to reduce the lag between ξ and ξ̃t. For free energy calculations along

a reaction path for which we do not have good intuition, transition path sampling [8]

could provide information useful for designing an effective flow field.

The method we propose is distinct from path-space sampling schemes [28,95,

105,106], in which the convergence of Eq. (2.5) is improved by modifying the prob-

abilities with which physical trajectories are generated, for instance by biasing in

favor of small work values. In our approach, by contrast, we modify the equations

of motion themselves, thereby sampling from an entirely different set of trajecto-

ries. (For example in the one dimensional example, we generated non-Hamiltonian

trajectories, rather than a statistically re-weighted sampling of Hamiltonian trajec-

tories.) The distinction is particularly evident in the case of a perfect flow field u∗,

when every trajectory gives W = ∆F .

Finally, it would be interesting to combine our approach with Hummer and
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Szabo’s approach for computing the potentials of mean force [42], and the large time

step [75] and optimal protocol [89] strategies, recently proposed for improving the

efficiency of free energy estimates.
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Figure 4.6: Work histograms obtained from forward and reverse simulations per-

formed at γ = 0.1. The degree of overlap between PF (W ) (right) and PR(−W ) (left)

provides an indication of the efficiency of the free energy estimate. For unescorted

simulations (no mapping) we see no overlap, reflecting considerable dissipation and

poor efficiency (Table 4.2). With the mapping given by Eq. 4.91 the overlap is

much improved, and with the mean field mapping, Eq. 4.92 the forward and reverse

distributions are nearly identical.
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Chapter 5

Estimating solvation free energies

using escorted free energy

simulations

5.1 Introduction

Solvation free energies, i.e. the free energy differences associated with intro-

ducing a solute molecule into a solvent, are important quantities in computational

thermodynamics, especially in the context of computer studies of phase equilib-

ria [24, 103], and the hydrophobic effect [11, 30, 73, 81, 101]. To set up this free

energy estimation problem, we again consider a system composed of Np solvent

molecules. Let us suppose that we are interested in computing the solvation free

energy of a solute particle which interacts with a solvent molecule centered at rk
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according to the spherically symmetric potential Vrs(|rk − rs|), where rs describes

the position of center of the solute particle. The solvation free energy, ∆Fsol, is the

free energy difference between the equilibrium state with Np solvent molecules, and

the equilibrium state with Np solvent molecules and one solute molecule 1.

This solvation free energy can be written as a sum of two components, an

ideal component, ∆F
id
sol, that describes the free energy difference associated with

introducing the solute in an ideal gas under the same conditions (which can be eval-

uated analytically), and an excess component, ∆F
ex
sol [24]. The free energy difference

∆F
ex
sol can be evaluated from computer simulations by imagining a process in which

a point r inside the simulation box (with the solvent fluid) is chosen randomly after

which the potential Vr is gradually turned on. It is useful to think of this as a

process in which the “size” of a solute particle centered at r is gradually increased

as in the cavity expansion example discussed in Chapter 4. The work performed in

this process can be used to estimate ∆F
ex
sol using the nonequilibrium work relation

Eq. 2.5 2 [24]. Such free energy calculations can be time consuming and inefficient

due to the high dissipation and lag which will result if the the solvent molecules are

not given sufficient time to re-equilibrate around the solute as it is grown out.

One possible strategy to alleviate this problem is to use the escorting functions,

Eq. 4.86, introduced in the cavity expansion example. As we saw in Section 4.6.2,

1As usual, we have assumed that the bulk properties of the solvent molecules are the same in

the two equilibrium states.
2In constant pressure simulations, the volume of the simulation box should also be included in

the calculation, see for example Section 7.2.2 of Ref [24].
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these escorting functions can be quite effective in simulations in which a hard sphere

solute is grown in a WCA fluid. Given the success of the escorting functions in that

example problem, it is interesting to investigate the effectiveness of the escorting

functions in other general settings, such as growing a solute in a fluid of Lennard-

Jones or water molecules. To this end, in this chapter we describe simulations of a

solvent fluid in the presence of a radially symmetric potential with a hard repulsive

core and short ranged dispersive interactions, and compute the free energy cost

associated with increasing the size of the hard core excluded volume region. This is

meant to model a calculation in which the size of a solute centered at the origin is

increased.

We compute this free energy difference by suddenly switching the size of the

hard core region, and compare the efficiency of free energy estimates obtained with-

out the escorting functions to those obtained with the escorting functions. The

nonequilibrium work relation and its escorted generalization reduce to the Free

Energy Perturbation (FEP) identity and the Targeted Free Energy Perturbation

(TFEP) identity [50] (see Eq. 4.41) respectively in the limit of sudden switching. It

is easier to investigate the effectiveness of the escorting functions in this limit and

hence we refrained from performing the usual switching simulations in which the

size of the hard core region would have been grown at a finite rate. The use of the

FEP identity to compute solvation free energies (and excess chemical potentials) is

commonly referred to as Widom’s particle insertion method [103].
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Figure 5.1: A sketch of the potential V R
O (r) at R = RA. As mentioned in the text,

we have set σ2 = RA − 2(1/6)σ1. The potential has an excluded volume interaction

for r < R. A positive value of �1 sets the strength of the short-ranged solute-solvent

attractions. We are interested in estimating the free energy difference associated

with changing R, the radius of the excluded volume interaction, from RA to RB

while keeping the short-ranged attractions constant.
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Figure 5.2: The solute-solvent radial distribution function g(r) as a function of

the distance r from the center of the solute at different values of P ∗. Notice the

occurrence of drying at P ∗ = 0.022. The density of solvent at the point of contact

with solute increases with the reduced pressure P ∗. The distances are in units of σ.
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5.2 Model and simulations

As we mentioned in the previous section, we will simulate a system of solvent

molecules (either particles interacting according to the Lennard-Jones potential in

Sec 5.2.1 or SPC/E water molecules in Sec 5.2.2) in the presence of a solute particle

placed in the origin. The interactions between the solute and the solvent particles

are modeled using the potential in Eq. 5.1 below. In particular, a solvent molecule

whose center is at a distance r from the origin interacts with the solute via the

potential

V
R
O (r) =






4�1((
σ1

r−σ2
)12 − ( σ1

r−σ2
)6) if r ≥ R

∞ if r < R

(5.1)

where R > σ2 > σ1 > 0 and �1 ≥ 0. The potential described in Eq. 5.1 has

a hard sphere excluded volume interaction for r ≤ R and models a solute with

a highly repulsive core. We will be interested in computing the free energy cost

(∆F ) associated with increasing R from RA to RB. The value of σ2 is set to

σ2 = RA − 21/6σ1 in both the ensembles. The potential is illustrated in Fig 5.1.

A positive value of �1 sets the strength of a short-ranged solute-solvent attraction,

and σ1 determines the range of these attractive interactions. We will compute ∆F

using both TFEP and FEP and compare the effectiveness of the two estimates in

various settings. We will use the escorting transformation in Eq. 4.86 for the TFEP

calculations.

Since we are growing the radius of the hard sphere excluded volume and are not

changing the short-ranged solute-solvent attractions, the FEP calculations will only
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involve estimating the probability P (n = 0) that the region RA ≤ r ≤ RB is devoid

of particles in ensemble A. The free energy difference ∆F is then estimated using

the relation ∆F = −β
−1 lnP (n = 0). Also recall that the free energy perturbation

method can only be applied in switching simulations where the radius of the hard

sphere increases and hence we cannot use FEP in the reverse simulations (where

R is switched from RB to RA). TFEP on the other hand has no such limitation

and hence we will obtain estimates of ∆F using both forward and reverse TFEP

simulations.

5.2.1 Simulations with a Lennard-Jones Fluid

We first consider the free energy cost associated with growing a hard solute

(�1 = 0 in Eq. 5.1 above) in a Lennard-Jones fluid (i.e. the solvent molecules

interact according to the Lennard-Jones potential). The length and the energy

scales respectively of the Lennard-Jones fluid is set by �, σ.

We performed Monte-Carlo simulations with Np = 864 Lennard-Jones parti-

cles in a cubic box with minimum image periodic boundary conditions. The solute

modeled by the potential Eq. 5.1 was placed in the center of the simulation box at

the origin. We used this setting in all our simulatons. We performed simulations

at three different bulk (reduced) pressures, P ∗ = Pσ
3
/� = 0.022, 0.22, 2.2, and a

(reduced) temperature T
∗ = kBT/� = 0.85. The two hard sphere radii were chosen

to be RA = 2.0σ and RB = 2.05σ and we set σ1 = σ. The length of the simulation

box in a particular realization was used in the mapping transformation Eq. 4.86 for
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that realization. We followed this procedure in all the NPT simulations.

At the lowest value of the pressure, P ∗ = 0.022, and at T ∗ = 0.85, the Lennard-

Jones fluid is close to liquid-vapor coexistence. These bulk conditions were chosen

as they can cause the solvent to recede from the surface of the solute (drying) [40] 3.

The free energy calculations described below were performed by simulating a long

equilibrium trajectory (at the appropriate equilibrium state) and sampling points

every 200 Monte-Carlo sweeps. We used nF = nR = Ns = 1000 such configurations

in the calculation. Fig 5.2, shows the solute-solvent radial distribution function,

g(r) = g(r) = �
�Np

k=1 δ(rk − r)�/ρ,where ρ denotes the bulk density of the solvent,

and we have used the fact that g is spherically symmetric in our case and only

depends on the distance r between the centers of the solvent and the solute, at the

three different values of pressure and with RA = 2.0σ. At P ∗ = 0.022, the solvent

begins to recede from surface of the solute indicating the onset of drying. Drying

is not favored at the higher values of pressure, and the density of solvent molecules

at the surface of the solute, the contact density, increases with pressure. As the

contact density increases, sampling a realization from the state A in which the region

RA ≤ r ≤ RB is devoid of particles becomes increasingly difficult. Consequently,

we anticipate that it will be tougher to estimate ∆F using FEP. Indeed, the error

bars on the estimate of ∆F from FEP in Table 5.1 bear out this trend. In fact,

with Np = 1000 equilibrium samples, we were not able to obtain an estimate of ∆F

using FEP at P ∗ = 2.2.

The estimates of ∆F from TFEP in both the forward and reverse process, the

3This simulation was suggested by Prof. John D. Weeks
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estimate using Bennett’s Acceptance ratio (BAR), and the average work performed

in the forward and reverse TFEP processes are also tabulated in Table 5.1 4.Unlike

in the example discussed in the previous chapter where the escorted approach is sig-

nificantly better than the usual method, we note that FEP performs slightly better

than TFEP at the lowest value of pressure. However, the efficiency of the TFEP

calculation decreases only modestly with pressure and TFEP starts to outperform

FEP as the pressure (and the contact density) is increased. The improvement in

the efficiency of the TFEP calculation with respect to the FEP approach is re-

flected in the error bars and also in the estimates of average work performed in

the TFEP calculation. For example, at P
∗ = 2.2, the dissipation in the reverse

process is �Wdiss�R ∼ 3.4. Recall that the convergence of the forward TFEP es-

timator is controlled by the dissipation in the reverse process, and the number of

realizations required to obtain a reliable estimate of ∆F grows exponentially with

�Wdiss�R, Ns ∼ exp(β�Wdiss�R). This rough consideration tells us that Ns ∼ 100

realizations are sufficient to obtain a reliable estimate of ∆F . On the other hand,

the probability that the region RA ≤ R ≤ RB is vacant at this value of P
∗ is

P (n = 0) = exp(−β∆F ) ∼ 2.5 × 10−4. This implies that we will need at least

Ns ∼ 1/P (n = 0) ∼ 4000 realizations to observe a realization in which the afore-

mentioned region is vacant and obtain an estimate of ∆F from FEP. This simple

4The estimates of ∆F from forward and reverse simulations are mutually consistent (and com-

parable to the estimate of ∆F from FEP in the first two instances). This gives us confidence in our

∆F estimates. Moreover, our data satisfies the graphical test of the fluctuation theorem, Eq. 4.66.

This gives us further confidence in our ∆F estimates.
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P
∗ FEP TFEP(F) TFEP(R) �W �F -�W �R BAR

0.022 1.473± 0.060 1.338± 0.079 1.466± 0.099 2.477 0.048 1.422± 0.031

0.220 2.278± 0.072 2.213± 0.095 1.945± 0.099 3.576 0.742 2.109± 0.025

2.200 −− 7.355± 0.169 6.628± 0.224 10.616 3.621 7.025± 0.071

Table 5.1: Estimates of ∆F obtained using FEP, and the forward (F) and reverse

(R) TFEP calculations along with error bars at different values of P ∗ and at T ∗ =

0.85 for a hard sphere solute. The BAR column has estimates of ∆F obtained using

Bennett’s acceptance ratio method. Observe that the TFEP becomes more efficient

than FEP as P
∗ and the contact density increase. At the highest value of P ∗, we

did not observe a single realization where the region between RA and RB is vacant.

All estimates of ∆F and �W � are in units of �.

analysis clearly shows that the TFEP estimator becomes more efficient than the

FEP estimator as the pressure and consequently the contact density is increased.

The trends observed in this example, i.e. the improvement in the relative

efficiency of the TFEP estimator with contact density, will be observed in the other

free energy calculations described below where we will increase the contact density

by increasing �1. In Section 5.3, we will analyze these trends.

For our next set of simulations, we considered a system of Np = 864 Lennard-

Jones particles at P ∗ = 0.022 and T
∗ = 0.85 with �

∗
1 = �1/� = 0, 1, 2, 4 respectively

(as the value of �1 is increased, the attraction between the solute and solvent in-
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Figure 5.3: The solute-solvent radial distribution function g(r) as a function of the

distance r from the center of the solute at different values of �1. Notice the onset of

drying at �1 = 0. The density of solvent at the point of contact with solute increases

with �1. The distances are in units of σ.
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creases and the contact density increases). R was set to RA = 2.0σ in ensemble A

and to RB = 2.05σ in ensemble B. The free energy calculations described below

were again performed by simulating a long equilibrium trajectory (at the appropri-

ate equilibrium state) and sampling points every 200 Monte-Carlo sweeps. We used

nF = nR = Ns = 1000 such configurations in this calculation.

The solute solvent radial distribution functions g(r) at various values of �1 are

plotted in Fig 5.3. As the value of �1 is increased the contact density increases. We

computed the free energy difference using both FEP and TFEP (in the forward and

reverse directions). The results are tabulated in Table 5.2. We again observe that the

FEP method performs well at the lower values of �1 but quickly becomes inefficient

as �1 is increased. On the other hand, just as in the previous example, the efficiency

of the TFEP calculation decreases only by a modest amount. In particular, for the

highest value of �1, we would have required Ns = 1/P (n = 0) ∼ 30, 000 realizations

to obtain an estimate using FEP while the TFEP method provides a reasonably

accurate estimate with just Ns = 1000 points.

In the next section, Sec 5.2.2, we report results from similar simulations per-

formed with a model of water as the solvent fluid. We will find that the general

characteristics observed in the simulations with the Lennard-Jones fluid hold for

water also.
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�1/� FEP TFEP(F) TFEP(R) �W �F -�W �R BAR

0 1.473± 0.060 1.338± 0.079 1.466± 0.099 2.477 0.048 1.422± 0.031

1 3.740± 0.169 3.859± 0.115 3.769± 0.078 5.437 2.472 3.882± 0.034

2 −− 7.324± 0.164 7.108± 0.096 9.426 5.252 7.276± 0.044

4 −− 14.609± 0.174 15.099± 0.210 17.511 11.932 14.726± 0.062

Table 5.2: Estimates of ∆F obtained using FEP, and the forward (F) and reverse

(R) TFEP calculations along with error bars at different values of �1 and at P ∗ =

0.022, T ∗ = 0.85. The BAR column has estimates of ∆F obtained using Bennett’s

acceptance ratio method. Observe that the TFEP becomes more efficient than FEP

as �1 increases. At the highest values of �1, we did not observe a single realization

where the region between RA and RB is vacant. All estimates of ∆F and �W � are

in units �.
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5.2.2 Water Simulations

In this section, we describe results from simulations in which the solute de-

scribed by Eq. 5.1 is solvated in a fluid of water molecules. We used the popular

SPC/E [7] model to simulate the water molecules. The SPC/E model is a tetrahedral

water model with an oxygen-hydrogen bond distance of 1Å and with point charges

of +0.4238 e and −0.8476 e (e denotes electronic charge units) on the hydrogen and

oxygen respectively. The oxygen atoms of water molecules interact according to a

Lennard-Jones potential with � = 0.650KJ/mol and σ = 3.166Å.

In the simulations with the Lennard-Jones fluid, the solvent-solvent interac-

tions are short-ranged, and can be safely truncated 5 beyond a cutoff distance Rc.

Consequently, minimum-image [24] periodic boundary conditions can be used to

simulate the fluid. In simulations with water however, long-ranged Coulomb (1/r)

interactions have to be considered. A naive truncation scheme in which the Coulomb

interactions are truncated beyond a cutoff distance Rc is not reasonable [24]. Hence,

either more careful truncation schemes need to be used (see for example Chapter 4 of

Ref [86]), or the long-ranged interactions need to be accounted, for example by sum-

ming over all the periodic images using Ewald sums [24] or using mean field methods

such as Local Molecular Field theory [12, 87, 101, 102]. The simulations described

in this section were performed using the Gaussian truncation scheme [86, 87]. We

briefly discuss this scheme and its limitations below before proceeding to describe

the free energy simulations.

5The effects of the neglected components of the potential (after truncation) can be accounted

for perturbatively.
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The Gaussian truncation scheme involves splitting the 1/r potential as fol-

lows [87]

1

r
= v0(r) + v1(r) =

erfc( r
σc
)

r
+

erf( r
σc
)

r
, (5.2)

where erf(r), and erfc(r) denote the error function and the complementary error func-

tion respectively. In this decompostion, v0(r) captures the rapidly varying short-

ranged component of the Coulomb potential and v1(r) captures the slowly varying

long range component. The range of the potential v0(r) is set by σc. In the Gaus-

sian truncation scheme, simulations are performed only with v0(r). The long-ranged

effects due to v1(r) are ignored. This truncation works rather well in homogenous

liquids provided σc is large enough to capture all the rapidly varying short-ranged

forces. In particular, the structural properties (e.g. pair correlation functions)

obtained from simulations with this truncation compare reasonably [87] 6to those

obtained from simulations in which the long-ranged components v1(r) are explicitly

considered using Ewald sums [24].

While the fluid in our simulations is inhomogenous due to the presence of the

solute, the solutes we consider are relatively small in size: RA = 6Å is the largest

solute simulated. Under these conditions, we expect the trends observed in the free

energy calculations with Gaussian truncated water, to hold even in simulations that

explicitly include the long-ranged components. To justify this assertion, we used

Local Molecular Field (LMF) theory which is a method developed by Weeks and

co-wokers [12,87,101,102] as an alternative to methods such as Ewald summation to

6However, the thermodynamic properties of spherically truncated water (P , �H�, and the free

energy F ) differ from those of water with long-ranged interactions.
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account for long-ranged interactions. The central idea of the LMF theory involves

splitting the inter-particle potential into short-range and long-range components.

Simulations are then performed using only the short-ranged potential. The effects

of the long-ranged components are taken into account through the imposition of a

mean-field external potential, ψ(r). The LMF theory provides a method to compute

self-consistently the potential ψ(r). As the effects of the long-ranged forces are only

taken into account in a mean-field fashion, simulations using the LMF method tend

to be much faster than those in which the long-ranged components are considered

explicitly.

For Coulomb interactions, the decomposition in Eq. 5.2 can again be used to

separate the potential into short and long-ranged parts [12, 86, 87]. We computed

the self-consistent field 7, ψ(r), using the recently introduced perturbation method

of Hu and Weeks [39]. While the introduction of these fields does indeed modify the

properties of the system, they do not significantly alter the trends in the free energy

calculations for the solute sizes considered in this thesis. Hence, in subsequent dis-

cussions, we simply report results from simulations with Gaussian truncated water.

We performed Monte-Carlo simulations withNp = 1000 SPC/E water molecules

at T = 300K and P = 1atm and with σc = 4.25Å, σ2 = 6Å, σ1 = 1.5Å. The en-

semble A was simulated with RA = 6.0Å and ensemble B with RB = 6.05Å. The

simulations were performed at four different values of �1, �1/(kBT ) = 0, 1, 2, 4. We

computed ∆F using both FEP and TFEP simulations and compared their efficiency

7We gratefully acknowledge help from Rick Remsing and Prof. John D. Weeks in performing

the LMF calculations.
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Figure 5.4: The solute-oxygen radial distribution function g(r) as a function of

the distance r of center of the water molecule (oxygen atom) from the center of the

solute at different values of �1. The density of solvent at the point of contact with

solute increases with �1. The length of the simulation box was around L ∼ 30Å.

as the value of �1 is increased. In the TFEP simulations, the center of each water

molecule is subject to the mapping transformation in Eq. 4.86. The solute-oxygen

radial distribution functions, g(r), are plotted in Fig 5.4. Just as in the Lennard-

Jones simulations, we find that the contact density increases as �1 is increased and

the solute is made more hydrophilic.

The results from the free energy calculations are tabulated in Table 5.3 and the
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β�1 FEP TFEP (F) TFEP(R) BAR C

0 2.492± 0.070 2.54± 0.056 2.22± 0.09 2.359± 0.054 0.345

1 5.845± 0.121 5.883± 0.121 6.00± 0.112 5.971± 0.048 0.325

2 12.050± 0.561 12.09± 0.129 11.98± 0.107 12.081± 0.058 0.294

4 −− 27.252± 0.207 27.29± 0.194 27.250± 0.073 0.239

Table 5.3: Estimates of ∆F along with error bars at different values of �1 at

RA = 6.0Å, RB = 6.05Å, P = 1atm and T = 300K in water . Observe that TFEP

becomes more efficient than FEP as �1 increases. At the highest values of �1, we did

not observe a single realization where the region between RA and RB is vacant. All

estimates of ∆F are in units kJ/mol. At T = 300K, β−1 = 2.5 kJ/mol. The symbol

C has been defined in Eq. 4.80 in Sec 4.5.
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trends are identical to what was observed in the previous simulations. ∆F increases

with �1 and the efficiency of the FEP method decreases rapidly. Consequently, while

FEP is more efficient than TFEP for �1 = 0, it becomes more efficient to use TFEP

at higher values of �1. Indeed, at the highest value of �1, we were not able to obtain an

estimate of ∆F using FEP from Ns = 3000 realizations 8 (P (n = 0) ∼ 10−5), while

TFEP provides a rather good estimate of ∆F from the same number of equilibrium

samples.

We also performed the same set of simulations at a lower value of the initial

solute radius, RA = 4Å. The results from these simulations are given in Table 5.4.

Here too we find that the TFEP method starts to become more efficient (relatively)

as the value of �1 is increased.

5.3 Discussion

In the previous sections we observed that the relative effectiveness of the TFEP

approach (in comparison to FEP) increases as contact density increases 9. This can

be attributed to the fact that the efficiency of the FEP approach depends sensitively

on the contact density. In particular, recall that in the FEP approach we seek to

compute the probability P (n = 0) that the region between RA ≤ r ≤ RB is vacant.

This probability decreases dramatically with increase in contact density, and conse-

8Again, a long equilibrium trajectory was generated and points were sampled every 200 Monte-

Carlo sweeps.
9Unless explicitly stated, we will only be concerned with free energy calculations of the kind

described in the previous sections where the radius of the excluded volume interaction is increased.
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β�1 FEP TFEP

0 1.628± 0.022 1.658± 0.039

1 3.189± 0.045 3.232± 0.047

2 5.601± 0.060 5.548± 0.050

4 12.048± 0.259 11.801± 0.073

Table 5.4: Estimates of ∆F along with error bars at different values of �1 at

RA = 4.0Å, RB = 4.05Å, P = 1 atm and T = 300K in water . Observe that the

TFEP becomes more efficient that FEP as �1 increases. All estimates of ∆F are in

units kJ/mol. At T = 300K, β−1 = 2.5kJ/mol.

quently the number of realizations required to obtain an estimate of P (n = 0) (and

∆F ) from FEP, Ns ∼ 1/P (n = 0), becomes rather large. On the other hand, in the

TFEP calculation, the mapping transformation compresses the fluid particles in the

region RA ≤ r ≤ L/2 into the region RB ≤ r ≤ L/2. Thus the solvent molecules do

not encounter the hard sphere component of the solute as it is grown out and the

work values are never infinite. While there is a penalty for this mapping transfor-

mation - the solvent particles might be compressed into energetically unfavorable

configurations after the mapping transformation, thus resulting in high W values

- both fluid particles in the region close to the solute and in the bulk contribute

to this penalty. Thus one can argue that the efficiency of the TFEP approach will

not depend as sensitively on the contact density as that of FEP, and using TFEP
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can become beneficial as the contact density is increased. In the following, we will

present calculations that support this speculation. In particular, we will compare the

efficiencies of the TFEP and FEP approaches by analytically deriving an expression

for the variance of the free energy estimators in the two approaches.

5.3.1 Comparing the effectiveness of the FEP and TFEP

approaches

We begin by considering the easier of the two, FEP. In the limit of a large

of equilibrium samples, Ns, the variance of the free energy estimate obtained from

FEP, ∆FNs
is [33]

�(∆FNs
− �∆FNs

�)2� = 1/(P (n = 0))

β2Ns
(5.3)

where P (n = 0) = e
−β∆F .

We will derive an estimate for the variance of the TFEP estimator in the limit

that RA and RB differ by some infinitesimal amount, RB = RA + δR (see Eq. 5.10).

In this limit, the mapping transformation Eq. 4.86 can be rewritten as

m(r) = r+ ū(r)δR, (5.4)

where

ū(r) =






R
2
A · (L3 − 8r3)/(r2 · (L3 − 8R3

A))êr if r ≤ L/2

0 if r > L/2

(5.5)

where L denotes the length of the simulation box (in a particular realization in

case of constant pressure simulations). Using Eq. 5.4, the expression for the work
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performed in the TFEP simulations (see Eq. 4.87) can be rewritten as

W = 1
2

�Np

k �=l [V (rk + ū(rk)δR, rl + ū(rl)δR)− V (rk, rl)]

−β
−1 ln(1 +

�Np

k=1 ∇ · ū(rk)δR)

Performing a Taylor expansion to first order in δR, we get

W = δR

Np�

k=1

�
−ū(rk) · Fk(rk)− β

−1∇ · ū(rk)
�

(5.6)

where

∇ · ū =






− 24R2
A

L3−8R3
A

if r ≤ L/2

0 r > L/2

(5.7)

and Fk(rk) denotes the force on the kth solvent particle due to the solute and all the

other solvent particle. In the case of molecular solvents, Fk denotes the force on the

k
th molecule (sum of the forces on all the atoms in the molecule) and rk denotes the

position of the center of the k
th molecule. We have suppressed the dependence of

the force on the positions of all the other fluid particle for convenience. Finally in

this limit, the TFEP identity for ∆F is equivalent to the following equation (again

using a Taylor expansion to first order in δR)

�−
Np�

k=1

�
ū(rk) · Fk(rk) + β

−1∇ · ū(rk)
�
�δR = ∆F. (5.8)

We note in passing the similarity [1] between the expression for ∆F on the L.H.S

of Eq. 5.6 and the virial expression for pressure [10] (for a discussion of other such

“hyper virial” expression, see [1]). In fact, in the limit RA → ∞, growing out the

solute is locally equivalent to moving a hard wall. The free energy cost ∆FHW

associated with displacing a hard wall with surface area A by δR is related to the
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bulk pressure P , P = ∆FHW/(δRA) = 1/A(∂FHW/∂R). This connection between

P and ∆FHW becomes apparent if we consider the free energy cost associated with

a process in which one of the faces of the simulation box (assume constant volume

simulation for now), say the face on the y-z plane at x = −L/2, is displaced by δR to

x = −L/2 + δR. ∆FHW can be computed using the TFEP method by constructing

a mapping transformation like Eq. 5.4, with ū(r) = ūHW (r) = (L/2−x)êx/L acting

on all particles inside the simulation box. Substituting this expression into Eq. 5.8,

and after some algebra, we obtain

1

L3
�
Np�

k=1

[xkêx · Fk(rk)]�+ β
−1Np

L3
=

∆FHW

δRL2
. (5.9)

The L.H.S of Eq. 5.9 the usual virial expression for the pressure.

The variance of the estimate of ∆F obtained from Ns equilibrium samples

using Eq. 5.8 is given by

σ
2(Ns) =

�(−
�Np

k=1 [ū(rk) · Fk(rk) + β
−1∇ · ū(rk)] δR−∆F )2�

Ns
. (5.10)

Using ∆F = (∂F/∂R)δR, we rewrite the above equation as

σ
2(Ns) = ∆F

2
�
��Np

k=1 ū(rk) · Fk(rk) + β
−1∇ · ū(rk)

�2
� − (∂F∂R)

2

(∂F∂R)
2Ns

. (5.11)

In the following, we will separately consider the contributions to the sum

(
�Np

k=1 [. . . ]) in the numerator of the equation above from the molecules in the bulk,

which we denote will denote by xb, and the molecules close to the solute, which we

will denote by xs. This allows us to write

Np�

k=1

�
ū(rk) · Fk(rk) + β

−1∇ · ū(rk)
�
= xs + xb. (5.12)
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The bulk is defined to be the region in which the influence of the solute is not felt

and the fluid is homogenous and uniform. The R.H.S of Eq. 5.11 can then be written

as

σ
2(Ns) = ∆F

2 �x2
s�+ �x2

b�+ 2�xsxb� − (∂F∂R)
2

(∂F∂R)
2Ns

(5.13)

Ignoring for the moment correlations between xs and xb, we will rewrite the product

�xsxb� as �xs��xb�.

In the thermodynamic limit, Np → ∞, L → ∞, Np/L
3 = ρ, where ρ is the

bulk density of the solvent, the average force on any particle in the bulk is zero from

symmetry considerations. Hence, the terms ū(rk) · Fk(rk) do not contribute to the

bulk average. Further, from Eq. 5.7, we get

�
�
�

bulk

β
−1∇ · ū(rk)

�
� = −β

−124�Nbulk/(L
3 − 8R3

A)�, (5.14)

where Nbulk denotes the number of solvent particles in the bulk region in a particular

realization. In the thermodynamic limit, this average can be be written in a simpler

form using

�Nbulk/(4/3π(L/2)3)� = ρ

�[
�

bulk β
−1∇ · ū(rk)]� = −β

−14R2
Aπρ.

Hence,

�xb� = −β
−14R2

Aπρ. (5.15)

Eq. 5.15 then implies that �xs� ≡ −∂F/∂R− �xb� = −∂F/∂R + β
−14πR2

Aρ. These
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relations allow us to rewrite Eq. 5.13 as 10

σ
2(Ns) +

∆F
2

Ns
= ∆F

2 �x2
s�+ �x2

b�+ 2(β−14R2
Aπρ)

2 + 2∂F
∂Rβ

−14R2
Aπρ

(∂F∂R)
2Ns

. (5.16)

Let us now consider estimating the free energy difference, ∆F = FB − FA,

with many solutes at different values of �1 ≥ 0. Assume that we have adjusted

RB − RA = δR such the value of ∆F is the same in each case and therefore the

variance of the estimate of ∆F obtained from FEP remains the same in all the cases

(see Eq. 5.3). Next, consider the variance of the estimate obtained from TFEP

(Eq. 5.11) as the value of �1 is increased. Scaled particle theory [94] tells us that

∂F/∂R is proportional to the the density of solvent at the point of contact with

solute, ρc, ∂F/∂R = β
−14πR2

ρc. As ρc increases with �1, so does ∂F/∂R.

Since the quantities �x2
b� and 2(β−14R2

Aπρ)
2 are bulk properties and will not

change (appreciably) when �1 is increased, the increase in contact density with �1

implies that the ratio (�x2
b� + 2(β−14R2

Aπρ)
2)/(Ns(∂F/∂R)2) in Eq. 5.16 decreases

with �1. It is easy to see that the last ratio in the R.H.S of Eq. 5.16 also decreases

with �1. We are then only left with the quantity �x2
s�/(Ns(∂F/∂R)2).

To study the behavior of this quantity at various of �1, we analyzed the statis-

tics of xs
11 and computed estimates of �x2

s�/�xs�2. The results are plotted in

Fig 5.5. In these, we see a clear drop in the value of this quantity as �1 is increased.

These results empirically suggest that �x2
s�/(Ns(∂F/∂R)2) decreases with increasing

10We have obtained expressions for �x2
s� and �x2

b� in the thermodynamic limit. However, they

are not central to the analysis presented below and hence have been omitted.
11Only the solvent particles in the shell RA ≤ r ≤ RA + 2.5σ1 were considered for the xs

calculation.
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�1. Hence it is reasonable to speculate that in general, the variance of the TFEP

estimate of ∆F will decrease as �1 is increased, and as we observed in the previous

section, at some point it might be more beneficial to use TFEP rather than FEP to

estimate the same free energy difference. Even in the case of simulations at increas-

ing values of bulk pressure (as with the first set of simulations performed in this

chapter), we find that the relative fluctuations in xs decrease with increasing contact

density. In such instances, while the bulk quantities in numerator of Eq. 5.16 also

grow with pressure, we do not expect them to grow faster than ρ
2
c . Consequently,

we expect our hypothesis to hold true even here.

The decrease in the relative fluctuations of xs with increasing contact density ρc

is interesting in the light of recent results obtained by Hummer, Chandler, Garde and

co-workers [30,73,81]. In their studies, they considered various model solutes, both

hydrophobic and hydrophilic, solvated in water, and studied the properties of water-

solute interface. In particular they observed that the interfacial region between a

large hydrophobic solute and water is wide, highly compressible and resembles a

liquid vapor interface [94]. As the solute is made more hydrophilic, the interface

becomes well defined (the interfacial width decreases), the relative fluctuations in

the particle numbers in the interfacial region decrease, and the interfacial region

begins to resemble the bulk liquid in its properties. In our simulations, we make the

solute more hydrophilic (we use this term in an extended sense to include fluids like

the Lennard-Jones fluid) by increasing �1 or by increasing the pressure and as we

observed in Fig 5.5, this reduces the relative fluctuations in xs. It will be interesting

to see if this decrease can be directly related to the change in the nature of the
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Figure 5.5: Plots of �x2
s�/�xs�2 at different values of β�1 for the solute described

by Eq. 5.1 in a) Lennard-Jones (LJ) solvent with RA = 2σ, b) spherically truncated

SPC/E water with RA = 6Å, and c) spherically truncated SPC/E water with RA =

4Å. We did not plot the value corresponding to �1 = 0 in case (a) because xs was

negative in this instance. When xs becomes negative, the trends in �x2
s�/�xs�2 do

not accurately represent the trends in �x2
s�/(Ns(∂F/∂R)2).
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solute-solvent interface as the solute becomes more hydrophilic.

We have not investigated the effectiveness of the TFEP estimator as a func-

tion of the size of the solute in this chapter. We can however make some rough

predictions in this direction using an analytical expression for the variance of the

TFEP estimator (obtained from Eq. 5.16). In particular, we find that the variance

is proportional to 1/RA. This suggests that the TFEP method will be more efficient

for larger solutes. In the limit of an infinite solute, RA → ∞, the variance of the

TFEP vanishes implying that TFEP will always be more efficient 12. This result is

not very surprising given the connection between the virial expression for pressure

and the TFEP estimator when RA → ∞. As we discussed previously, the pressure

is related to the ∂F/∂R in this limit. Hence the pressure can either be computed

by estimating the contact density which is equivalent to the FEP approach or by

using the virial expression which is equivalent to the TFEP estimator. It is a well

established fact that it is a beneficial to estimate P using the virial expression rather

than by estimating the contact density directly.

The simulations performed in this chapter involved sudden switching of the

solute radius. These simulations allowed us to analyze the effectiveness of the map-

pings in Eq. 4.86. We believe that the conclusions of this analysis will also be valid

for escorted simulations in which the radius of the solute is grown gradually.

The analysis presented here (and the results discussed in this chapter) assume

12We have performed some preliminary simulations in which we compared the effectiveness of

FEP and TFEP for hard sphere solutes of various sizes in a WCA fluid. We find that the TFEP

approach becomes more efficient as the size of the hard sphere solute increases.
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Figure 5.6: Schematic of the QCT calculaiton.

a hard solute with attractive interactions. A more realistic solute will not have hard

sphere repulsions and will be better modeled by a potential with soft repulsions

(say for example Eq. 5.1 without the hard repulsion). We have performed some

preliminary simulations with such potentials and we find that the escorted method

begins to become more efficient than usual nonequilibrium work relation as the

solute becomes more hydrophilic.

5.3.2 Quasi Chemical Theory

The model calculations considered here can also be of use in Quasi Chemical

Theory (QCT) developed by Pratt and coworkers [96]. In the QCT approach, a

solute molecule with radius R is introduced into the solvent in three steps. First,

in step (1) a spherical cavity with radius γ is created in the solvent and free energy

cost of creating a spherical excluded volume of radius γ with the solvent in state

118



A is computed. This is equivalent to computing the solvation free energy of a hard

sphere solute with radius γ in the fluid. Next, in step (2) the solute particle is

placed inside the hard sphere (the solute particle and the hard sphere solute do not

interact) and the interactions between the solute and the solvent are switched on.

Finally, in step (3), the hard sphere solute is removed. In the final equilibrium state,

the particle is solvated in the solvent fluid. The solvation free energy is calculated as

the sum of the free energy differences in the three intermediate steps (see illustration

in Fig 5.6).

This result does not immediately alleviate the problems associated with esti-

mating solvation free energies using Eq. 2.5. If the radius of the hard sphere solute

(γ) is much lesser than that of the actual solute, the free energy differences in Steps

1 and 3 contribute negligibly to the sum. Using Eq. 2.5 to compute the free energy

difference in Step 2 when the interactions between the solute and the solvent are

switched on will invariably be tough as we will encounter the same problems that

plague the usual estimator of of the solvation free energy. If the size of the hard

sphere solute is comparable or greater than the actual solute, computing the free

energy difference associated with switching on interactions between the solvent and

the solute in Step 2 will be relatively easy as overlaps between solute and solvent

cores are avoided. Computing the free energy differences in Steps 1, 3 will still be

hard. However, the free energy difference in Step 1 is independent of the interactions

between the actual solute and solvent as we are simply solvating a hard sphere par-

ticle in the fluid. These can presumably be computed once and tabulated for future

reference. The problem then reduces to computing the free energy difference in Step
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3, or equivalently computing the free energy difference associated with creating a

region of size γ around the solute from which the solvent molecules are excluded. In

the ∆F calculation with the potential in Eq. 5.1, the radius of the excluded volume

region is changed while holding other aspects of the potential fixed. This is analo-

gous to the calculations one would perform in Step 3, and as we saw the mappings

can be effective in such calculations.

5.4 Summary

In this chapter we compared the effectiveness of the FEP and TFEP methods

in providing estimates of the free energy cost associated with growing a hard sphere

solute with short range dispersive interactions (Eq. 5.1) in solvents composed of (a)

Lennard-Jones particles (Sec. 5.2.1) and (b) water molecules (Sec. 5.2.2). The FEP

identity is a limiting case of the nonequilibrium work relation, Eq. 2.5, when the

external parameter is switched infinitely fast while the TFEP identity (see Eq. 4.41)

is a limiting case of the escorted generalization of the nonequilibrium work relation,

Eq. 4.39. Comparing the effectiveness of the FEP and TFEP approaches allows us to

study the effectiveness of the escorting transformations, Eq. 4.86, in this free energy

estimation problem. In our analysis, we found that the TFEP approach starts to

outperform the FEP approach as the number of solvent molecules in contact with

the solute particle increases. We expect this trend to hold in general and anticipate

that it will be beneficial to use the escorted approach in such regimes.
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Chapter 6

Protocol Postprocessing

1 The previous chapters described a strategy, escorted free energy simulations,

to improve the convergence of ∆F = FB − FA estimates obtained from nonequi-

librium simulations in which a system of interest is driven irreversibly between two

equilibrium states A, B by varying an external paramter λ at a finite rate λ̇ us-

ing a protocol λ(t). This method involved generating artificial trajectories with

reduced lag and dissipation. In this chapter, we consider an alternative strategy,

protocol postprocessing. This strategy involves introducing a function λ
∗(t) with

λ
∗(0) = λ(0), which we will refer to as the analysis protocol, and constructing an

estimator (see Eq 6.7 below) for the free energy difference ∆F
∗(t) ≡ Fλ∗(t) − Fλ(0)

1This chapter is based on the publication: D. D. L. Minh, S. Vaikuntanathan “Density-

Dependent Analysis of Nonequilibrium Paths Improves Free Energy Estimates II. A Feynman-Kac

Formalism ”, J. Chem. Phys 134, 034117 , 2011. The paper was jointly written by Minh and

Vaikuntanathan. The central result Eq. 6.7 was derived by Vaikuntanathan. The simulation codes

were written by Minh and the results were jointly analyzed by Minh and Vaikuntanathan.
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Lag

A

B
ρt

ρeqλ∗(t)

ρeqλ(t)

Figure 6.1: Lag in driven nonequilibrium processes. Consider a system driven

from state A to state B in a finite-time process. In the above schematic, the ovals

represent regions of phase space. The darkly shaded ovals are regions of phase space

containing most of the density ρ
eq
λ(t) of the equilibrium state corresponding to the

value of the external parameter at time t. The unshaded ovals denote the phase

space regions containing most of the density ρt actually accessed by the system

during the process. In a reversible process, the two would be indistinguishable.

Since the system is driven out of equilibrium, however, a lag builds up between ρt

and ρ
eq
λ(t). This lag is correlated to dissipation and is ultimately responsible for the

poor convergence of free energy estimates based on nonequilibrium processes. If one

is able to obtain a function λ
∗(t) with λ

∗(0) = A such that the equilibrium states

ρ
eq
λ∗(t) are closer to the ρt (e.g. the lightly shaded ovals), then the convergence of free

energy estimates may be improved using Eq. 6.7.
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using trajectories generated in the original, i.e. unescorted, process. While this re-

sult is valid for any choice of λ∗(t) and reduces to the nonequilibrium work relation

Eq 2.5 for λ∗(t) = λ(t), we will argue that Eq. 6.7 provides efficient estimates of the

free energy difference ∆F
∗(t) whenever the equilibrium densities corresponding to

the analysis protocol λ∗(t) have a high degree of overlap with density of the system

(see Fig 6.1).

Protocol postprocessing was previously introduced by Minh [68] in the context

of importance sampling in path-space. [3–5, 74, 76, 95, 106] In the present work, we

utilize an alternative mathematical formalism, the Feynman-Kac theorem. [27, 42,

90]. The new formalism has at least two advantages over the previous method:

first, in certain special cases, it is analytically a zero-variance estimator. Secondly,

for a few simple model systems, we find that the bias and variance of free energy

estimates are substantially reduced.

6.1 Protocol Postprocessing strategy

As usual, we are interested in driven nonequilibrium processes in which the

system is first prepared in equilibrium with λ = λ(0) and temperature β
−1, after

which the external parameters are switched according to the protocol λ(t). Just as

in Chapter 2, we will assume that the dynamics of the system preserve the canonical

distribution when λ is held fixed. Each realization of the nonequilibrium process

will again be described by the trajectory {zt}. The phase space density ρ(z, t) of

an ensemble of such trajectories evolves according to the Liouville-type equation,
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Eq 4.2 which we reproduce here for convenience,

∂ρ(z, t)

∂t
= Lλ(t) · ρ(z, t), (6.1)

where the operator Lλ has the property Lλ · e−βHλ(z) = 0 [42,48], i.e. the dynamics

preserve the equilibrium distribution.

In the protocol postprocessing strategy, trajectories are first generated ac-

cording to the sampling protocol λ(t). Next, a potentially distinct analysis protocol

λ
∗(t), with λ

∗(0) = λ(0), is introduced. This analysis protocol is not used to gen-

erate any new trajectories. Rather, the previously generated trajectories are used

as samples for estimating the free energy difference ∆F
∗(t) ≡ Fλ∗(t) − Fλ∗(0). The

standard form of nonequilibrium work relation can be seen as a special case where

the sampling and analysis protocols are identical. While the formalism described

below is valid for any λ
∗(t), it will not always be advantageous. In Section 6.3,

however, we will describe how to choose a protocol λ∗(t) that leads to an efficient

free energy estimate.

We begin the derivation by formally separating the evolution operator into

two terms,

Lλ(t) = Lλ∗(t) +A(t), (6.2)

where the auxiliary operator A(t) represents the difference between the evolution

operators given the sampling and analysis protocols.

Following Hummer and Szabo’s approach [42], consider a density g(z, t) that

satisfies a “sink” equation analogous to Eq. 4.19,

∂g(z, t)

∂t
= Lλ(t) · g(z, t) + w

∗(z, t)g(z, t), (6.3)
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where the function w
∗(z, t) includes not only a time-derivative of the Hamiltonian,

but also a term containing the operator A(t), explicitly,

w
∗(z, t) = −β

�
∂Hλ∗(t)(z)

∂t
+

A(t) · e−βHλ∗(t)(z)

βe
−βHλ∗(t)(z)

�
. (6.4)

Here, the operator A(t) only acts on the factor e−βHλ∗(t)(z) in the numerator. One

solution to Eq. 6.3 is g(z, t) = Z
−1
λ(0)e

−βHλ∗(t)(z) as verified by explicit substitution.

By equating this solution to the path integral solution obtained from the

Feynman-Kac theorem [27,42], we obtain an equation analogous to Eq. 4.23, namely

e
−βHλ∗(t)(z)

Zλ(0)
=

�
δ(z− zt)e

−βW∗
t

�
Λ
. (6.5)

where the angled brackets �...�Λ denote a path-ensemble average, or expectation,

over all possible realizations of the driven nonequilibrium process with the protocol

λ(t); the protocol λ∗(t) has nothing to do with sampling and the work W∗
t has the

modified form,

W∗
t =

� t

0

ds

�
∂Hλ∗(s)(zs)

∂s
+

A(s) · e−βHλ∗(s)(zs)

βe
−βHλ∗(s)(zs)

�
. (6.6)

Integrating over z, we obtain a protocol postprocessing form of nonequilibrium work

relation, namely,

e
−β∆F ∗(t) =

�
e
−βW∗

t

�
Λ
. (6.7)

As a specific example, let us consider a system moving with overdamped

Langevin (Brownian) dynamics in a one-dimensional potential Uλ(t)(q). The density

ρ(q, t) evolves according to the Smoluchowski equation,

∂ρ

∂t
= Lλ(t)ρ =

1

ζ

∂

∂q

�
U

�
λ(t)(q)ρ

�
+D

∂
2

∂q2
ρ, (6.8)
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where D
−1 = βζ is the diffusion coefficient and the prime symbol represents a

derivative with respect to q.

Given an analysis protocol λ∗(t), the auxiliary operator A(t) for this example

system is defined as,

A(t) · f ≡ −βD
∂

∂q
(∆U

�(q, t)f) , (6.9)

where

∆U(q, t) ≡ Uλ∗(t)(q)− Uλ(t)(q). (6.10)

Substituting this expression into Eq. 6.6, we obtain a modified form of the work,

W∗
t =

� t

0

ds

�
∂Uλ∗(s)(qs)

∂s
−

βD
∂
∂q

�
∆U

�(qs, s)e−βUλ∗(s)(qs)
�

e
−βUλ∗(s)(qs)

�

=

� t

0

ds

�
∂Uλ∗(s)(qs)

∂s
+ β

2
D∆U

�(qs, s)U
�
λ∗(s)(qs)− βD∆U

��(qs, s)

�
(6.11)

Using this expression for W
∗
t in Eq. 6.7, we can now estimate the free energy

difference Fλ∗(t) − Fλ(0) from trajectories generated in the process in which external

parameter is switched according to the protocol λ(t).

6.2 Importance Sampling Formalism

Section 6.1 is not the first description of protocol postprocessing; it was pre-

ceded by a formalism based on importance sampling by Minh [68]. In this section,

we describe the previous formalism in the current notation and compare it with the

present results.

Explicitly in terms of path integrals, we may rewrite Eq. 2.5 as,

e
−β∆F ∗(t) =

�
e
−βW ∗

t

�
Λ∗ ≡

�
dγ e

−βW ∗
t Pλ∗(t)[γ]�

dγ Pλ∗(t)[γ]
(6.12)
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where γ ≡ {zt} denotes a trajectory, W ∗
t ≡

� t

0 ds

�
∂Hλ∗(s)(zs)

∂s

�
denotes the work

performed on the system as it evolves along a particular trajectory in which the

external parameter is changed according to the protocol λ∗(t), Pλ∗(t)[γ] is the prob-

ability density associated with the trajectory γ, when the external parameter is

switched according to the protocol λ∗(t), and dγ is a measure over paths.

Now suppose that the external parameter is changed according to the protocol

λ(t) for which the associated probability density of a trajectory γ is Pλ(t)[γ]. The

same free energy difference may be computed by estimating different path integrals,

[68, 106]

e
−β∆F ∗(t) =

�
dγ e

−βW ∗
t

�
Pλ∗(t)[γ]

Pλ(t)[γ]

�
Pλ(t)[γ]

�
dγ

�
Pλ∗(t)[γ]

Pλ(t)[γ]

�
Pλ(t)[γ]

≡
�
re

−βW ∗
t

�
λ

�r�λ
(6.13)

where r = Pλ∗(t)[γ]/Pλ(t)[γ] is the ratio of densities. If the two protocols sampling

are identical, then r = 1.

This expression differs from Eq. 6.7 in that it includes two expectations, the

definitions of work are different, and it requires a ratio of probabilities, r. The ratio

is different from a “modification” to the work term. For example, in overdamped

Langevin dynamics, this ratio is, [68, 70]

r = exp

�
−β

2

�
∆U(qt, t) +

� t

0

ds

�
βD∆U

�(q2s)

2
−D∆U

��(qs, s)−
∂∆U(qs, s)

∂s

���

Now suppose that we break down W∗
t in Eq. 6.11, into one term with W

∗
t and

a “modification” term. If we multiply this modification term by −β and take the

exponent, we obtain a term which is used similarly to r,

exp

�
−β

�� t

0

ds
�
βD∆U

�(qs, s)U
�
λ∗(s)(qs)−D∆U

��(qs, s)
���

, (6.14)
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but is quite distinct.

In later sections, we will describe several advantages of the new formalism.

6.3 Dissipation and Lag

As protocol postprocessing is merely another mathematical formalism for com-

puting free energies, there is no a priori reason to expect that it will perform any

better or worse than the usual nonequilibrium work estimator, Eq. 2.5. For clever

choices of the analysis protocol, however, we can show that Eq. 6.7 leads to a highly

efficient estimator for ∆F
∗(t). In this section, we will follow the approaches outlined

in Section 4.5 to establish this result.

6.3.1 Exactly solved models

Suppose that we construct a “perfect” analysis protocol λ∗(t) whose instan-

taneous equilibrium density is equivalent to the nonequilibrium density, so that

ρ(z, t) = ρ
eq(z,λ∗(t)), where ρ

eq(z,λ) = F
−1
λ e

−βHλ(z) = e
−β(Hλ(z)−Fλ) denotes the

equilibrium distribution corresponding to β
−1 and λ. When a perfect analysis pro-

tocol is used, then

W∗
t = ∆F

∗(t) (6.15)

for every trajectory. This may be seen by first substituting ρ(z, t) = e
−β(Hλ∗(t)(z)−F

λ
∗
t
)

in the evolution equation,

∂ρ(z, t)

∂t
= Lλ(t) · ρ(z, t) = Lλ∗(t) · ρ(z, t) +A(t) · ρ(z, t) (6.16)
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where we have used Eq. 6.2. Since Lλ∗(t) · ρ(z, t) = 0 for this ρ(z, t), we obtain,

−β

�
∂Hλ∗(t)(z)

∂t
−

∂Fλ∗
t

∂t

�
e
−βHλ∗(t)(z)−F

λ
∗
t = A(t) · e−β(Hλ∗(t)(z)−F

λ
∗
t
)

∂Fλ∗
t

∂t
=

∂Hλ∗(t)(z)

∂t
+

A(t) · e−β(Hλ∗(t)(z))

βe
−βHλ∗(t)(z)

By substituting this into the modified work, Eq. 6.6 and integrating, we obtain

Eq. 6.15. As this equation is valid for every trajectory, Eq. 6.7 is a zero variance

estimator of ∆F
∗(t).

As a demonstration of this principle, consider two exactly solved [68] models:

a Brownian particle in a one dimensional harmonic oscillator that either (i) has its

center moving at a constant velocity, or (ii) has a time-dependent natural frequency.

In both cases, the potential has the general time-dependent form Uλ(t)(q) =
k(t)
2 (q−

q̄(t))2 where the vector λ(t) = {k(t), q̄(t)} denotes the set of external parameters.

The Smoluchowski equation describing the evolution of the phase space density

ρ(q, t) can be solved to give [68,70]

ρ(q, t) =

�
βkT (t)

2π
e

−βkT (t)
2 (q−qT (t))2

, (6.17)

where

qT = �q�,

kT (t) = 1/(�q2 − �q�2),

where �. . . � denotes an average over the distribution ρ(q, t). In case (i), the spring

coefficient k(t) is held fixed at k while q̄(t) is switched according to q̄(t) = vt

(λ(t) = {k, vt}). In this case, the free energy difference is always zero and kT (t) is
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a constant, k, and,

qT (t) = vt− v

βDk
(1− e

−βDkt). (6.18)

In case (ii), q̄(t) is held fixed at q̄(t) = 0 and the spring coefficient k(t) is switched

according to k(t) = vt (λ(t) = {vt, 0}). In this case, qT (t) = 0, and

kT (t) =
k(0)e2βD

�
t

0 ds k(s)

1 + 2βDk(0)
�� t

0 du e
2βD

�
u

0 ds k(s)
� . (6.19)

In either case, we may choose the analysis protocol λ∗(t) ≡ {kT (t), qT (t)} such

that Uλ∗(t)(q) = kT (t)
2 (q − qT (t))2. With this choice, the Boltzmann distribution

corresponding to the analysis protocol is equal to ρ(q, t). Hence, the modified work

calculated from Eq. 6.11 is always equal to the free energy difference ∆F
∗(t). In

contrast, the importance sampling form of protocol postprocessing yields different

work values for each trajectory.

6.3.2 Dissipation Bounds Lag

In general, it is not feasible to find a perfect analysis protocol. Indeed, in most

cases, the nonequilibrium densities ρ will not belong to the family of equilibrium

distributions indexed by λ, ρ
eq(z,λ). However, Eq. 6.15 suggests that efficient

estimators of free energy energies can be obtained if we can find an analysis protocol

λ
∗(t) such that ρeq(z,λ∗(t)) closely resembles the nonequilibrium density ρ(z, t). In

the following paragraphs, we will make this argument more rigorous.

The convergence of the protocol postprocessing form of nonequilibrium work

relation will depend on a criterion analogous to that in the original form [51, 58].

To see this, consider the distribution associated with W∗
t , P (W∗

t ) and construct
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the distribution Q(W∗
t ) = P (W∗

t ) exp[−β(W∗
t − ∆F

∗(t))]. The distribution Q is

normalized thanks to Eq. 6.7. If we now study the convergence requirements of

Eq 6.7, (just as we studied the convergence requirements of Eq 2.5), we will find

that in order for the estimate of ∆F
∗(t) to converge reliably, values of W∗

t near the

peak of Q need to adequately sampled from the distribution P . Thus, when the

distributions P and Q are far apart, the estimate of FΛ∗(t) converges poorly. We

can use the relative entropy D[P ||Q] =
�
P ln(P/Q) [15] to quantify the extent to

which P and Q differ from each other. The “average dissipation” in the protocol

processing, W∗
d ≡ �W∗

t �Λ −∆F
∗(t) is related to this relative entropy,

�W∗
t �Λ −∆F

∗(t) = β
−1
D[P ||Q]. (6.20)

Hence, whenever the dissipation is lowered, the convergence of the free energy

estimate is improved. This dissipation can in turn be related to the relative entropy

between the distributions ρ(z, t) describing the state of the system and the equi-

librium state corresponding to λ
∗(t), ρeq(z,λ∗(t)) 2. This relative entropy can be

interpreted as a measure of the “lag” in the protocol postprocessing formalism,

�W∗
t �Λ −∆F

∗(t) ≥ β
−1
D[ρ(z, t)||ρeq(z,λ∗(t))]. (6.21)

Eq. 6.21 suggests, but does not prove (the inequality goes the wrong way),

that a reasonable strategy for reducing dissipation and improving the convergence

of the free energy estimator is to choose an analysis protocol in which the “analysis”

density closely resembles the evolving state of the system.

2This relation can be derived starting from Eq 6.5 and following the procedure outlined in

Chapter 3
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6.4 General Case

Based on the results in Section 6.3, we speculate that a reasonable strategy

for minimizing dissipation and improving the efficiency of the free energy estima-

tor is to choose an analysis protocol λ∗(t) so that the Kullback-Leibler divergence

D[ρ(z, t)||ρeq(z,λ∗(t)))] is small for all t. Obtaining such a protocol will usually

entail a search over the space of λ to find an equilibrium distribution ρ
eq(z,λ∗(t)))

that is similar to ρ(z, t). While the nonequilibrium distribution is not analytically

tractable for most systems, it is possible to use sampled trajectories to compare the

relative entropy between ρ(z, t) and ρ
eq(z,λ) for different values of λ. Specifically,

given a set of trajectories {γ1, γ2, ..., , γNs
} and several candidate values of λ, the rel-

ative entropy D[ρ(z, t)||ρeq(z,λ∗(t)))] is minimized by the parameter vector λ that

minimizes �Hλ(z)�ρ(z,t) − Fλ, which may be estimated by the sample average, [68]

DTest(γ, t) =
1

Ns

�
Ns�

n=1

Hλ(znt)

�
− Fλ. (6.22)

where znt denotes the state of system in phase space at time t as it evolves along

the trajectory γn. It is sufficient to minimize DTest(γ, t) as the other integral in

D[ρ(z, t)||ρeq(z,λ∗(t)))],
�
dz ρ(z, t) ln ρ(z, t) does not depend on λ. A reasonable

choice for the search space of λ is the range of the sampling protocol λ(t). This

choice has the advantage that Fλ(t) − Fλ(0) may be estimated via nonequilibrium

work relation; for distributions that are not accessed during the sampling protocol,

it may be more difficult to estimate corresponding free energies.

As noted in Section 6.1, the flexibility in choosing λ
∗ means that the free

energy ∆F
∗(t) may be different from ∆F (t). Indeed, unless there is no lag, an
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analysis protocol that minimizes the lag will always have different states than the

sampling protocol. Since we are typically interested in free energies between the

end states of the sampling protocol (A ≡ λ(0) and B ≡ λ(T )), this discrepancy was

addressed by introducing an adaptive algorithm, nonequilibrium density-dependent

sampling (NEDDS). [68] NEDDS is equally applicable to the current formalism.

In brief, NEDDS entails running all Ns desired simulations of the nonequi-

librium process simultaneously. The sampling protocol initially involves an inter-

polation between the desired end states A and B. After reaching state B, the

protocol extrapolates past it until an adaptively determined stopping time. (While

such an extrapolation may not always be physically meaningful, it is nearly always

computationally feasible.) Without loss of generality, let us assume that A < B.

The stopping time is decided by performing the following calculations while the

simulations are in progress:

1. The free energy difference, Fλ(t)−Fλ(0), between the initial and instantaneous

state at the current time step, t, is estimated using the nonequilibrium work

relation.

2. DTest is evaluated with λ values from the current state and all preceding states

using Eq. 6.22.

3. If the choice of λ that minimizes DTest, λmin, is between A and B, A < λ
min

<

B, then it is appended to the analysis protocol, λ∗(t) = λ
min. Otherwise, if it

is at or beyond B, λmin ≥ B, then the final value of the analysis protocol is

set to B, λ∗(t) = B.
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4. Lastly, W∗
t is incremented and ∆F

∗(t) is evaluated by protocol postprocessing.

This procedure ensures that protocol postprocessing estimators can compute the

free energy difference between the states A and B.

6.5 Model Systems

We now demonstrate NEDDS with protocol postprocessing (both importance

sampling and Feynman-Kac) formalisms and compare its efficiency to standard sam-

ple mean estimates from nonequilibrium work relation, Eq. 2.5, on three model

systems. First, consider an overdamped Brownian particle evolving on the one-

dimensional surface,

U(q,λ) = q
4 − 16λq2, (6.23)

as studied by Sun [95]. In this system, the free energy difference between the states

λ = 0 and λ = 1 at β = 1 was analytically found to be Fλ=1−Fλ=0 = −62.9407 [76].

Recall that we studied this model system in Sec 4.6.1.

Simulations of nonequilibrium driven processes were performed in which λ was

switched between 0 and 1 according to the discretized equation of motion,

qj+1 = qj −D∆tU
�
j +

√
2D∆tRj, (6.24)

where qj is the position at the jth time step (or at time j∆t), D = 1 is the diffusion

coefficient, ∆t = 0.0001 is the time step, and Rj is a standard normal random

variable. λ was incremented at each time step by v∆t. NEDDS was used to obtain

the analysis protocol λ∗(t) concluding at λ
∗(t) = 1, and the free energy difference
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Fλ=1 − Fλ=0 was computed using either Eq. 6.7 or Eq. 6.13. For comparison,

the standard nonequilibrium work relation estimate was applied to two types of

simulations taking the same amount of simulation time as the analysis protocol

obtained from NEDDS: either (i) λ was switched between 0 and 1 at a slower velocity,

or (ii) the NEDDS analysis protocol was used as a new sampling protocol.

While the importance sampling formalism [68] was found to be an improve-

ment over the standard form of nonequilibrium work relation, [68] we find that the

estimator based on Eq. 6.7 is even better (Fig. 6.2). Even for the fastest switching

rates, where dissipation is expected to be high, the systematic bias [107] is largely

eliminated. No benefit was found from using the analysis protocol from NEDDS as

a new sampling protocol; in fact, the bias was worse than with the constant velocity

protocol.

We also performed similar tests on another one-dimensional surface,

U(q,λ) = (5q3 − 10q + 3)q +
15

2
(q − λ(t))2, (6.25)

first described by Hummer [41]. Hummer’s surface, a double well potential that

includes a harmonic bias, mimics the setup of a single-molecule pulling experiment,

and hence has been used to demonstrate estimators of free energies [69,71] and other

quantities [72] in the context of these experiments. The simulations were performed

using the same equation of motion, diffusion coefficient, and time step as described

above for Sun’s system and λ was switched from -1.5 to 1.5.

The performance trends with Hummer’s system are similar to those with Sun’s

(Fig. 6.3). The exact free energy difference was calculated numerically [69] and is
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Figure 6.2: Comparison of free energy estimates for Sun’s system: NEDDS simula-

tions were analyzed with importance sampling, Eq. 6.13 (circles), or the Feynman-

Kac formalism, Eq. 6.7 (triangles). Standard nonequilibrium work relation esti-

mates, Eq. 2.5 (squares), were performed on slower simulations with the same total

time as the NEDDS simulations or by using the analysis protocol as a new sampling

protocol (diamonds). The symbols indicate the mean and error bars indicate the

standard deviation of 10000 estimates, each based on 50 trajectories. The simu-

lation time step was ∆t = 0.001 and the rate v indicates that λ was incremented

by v∆t at each time step of the NEDDS simulations. While the switching rates

are equivalent, some points are given a small horizontal offset to prevent error bar

overlap. The exact free energy is shown as a shaded line.
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Figure 6.3: Comparison of free energy estimates for Hummer’s system. The

caption for Fig. 6.2 applies here, except that the potential is Hummer’s rather than

Sun’s and each estimate is based on 250 trajectories.

shown as the shaded line. Results from the standard form of the nonequilibrium

work relation are more biased than with NEDDS and the importance sampling

formalism, which in turn is more biased than the Feynman-Kac formalism. In

contrast to Sun’s system, however, the estimates from Eq. 6.7 are noticeably biased

at the fastest switching rates. Another distinction between the trends from the two

systems is that results obtained using a constant velocity protocol and using the

analysis protocol as a new sampling protocol are rather similar.

As a final demonstration, we consider a two-dimensional surface,

U(x, y,λ) = 5(x2 − 1)2 +5(x− y)2 +
15

2
(x+cos(πλ))2 +

15

2
(y+1− sin(2πλ)− 2λ)2,

(6.26)

in which λ dictates the progress of a harmonic bias along a curve (Fig. 6.4). Sim-

ulations were performed as with the 1D potentials, using Eq. 6.24 along each di-
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Figure 6.4: Potential energy surface for a 2D system. The contour plot is of

5(x2−1)2+5(x−y)2 and the red line traces the equilibrium position of the harmonic

bias 15
2 (x+cos(πλ))2+ 15

2 (y+1− sin(2πλ)−2λ)2 as λ goes from 0 (left) to 1 (right).

mension, as well as the same diffusion coefficient and time step and λ was switched

from 0 to 1. The exact free energy difference is zero from symmetry arguments. The

performance trends in this system are the same as in Hummer’s system (Fig. 6.5).

6.6 Discussion and Conclusion

We have presented a method for analyzing nonequilibrium trajectories which

borrows from a similar philosophy as previous work by Minh [68] but is based on

a distinct mathematical formalism. The new formalism has the advantages that it

analytically is a zero-variance estimator if a “perfect” analysis protocol is obtained,

and it improves the convergence of free energy estimates in all our tested model

systems. Further tests on more complex multidimensional systems are a potential

future research direction.
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Figure 6.5: Comparison of free energy estimates for a 2D system with ∆F = 0.

The caption for Fig. 6.2 applies here, except that the potential is Eq. 6.26 rather

than Sun’s system, each estimate is based on 250 trajectories, and multidimensional

versions of the importance sampling and Feynman-Kac formalisms were used.

We expect that protocol postprocessing will be most useful when (i) there is

little phase space overlap between the end states of interest (otherwise free energy

differences can be computed without nonequilibrium work identities), (ii) estimates

of ∆F from the nonequilibrium work relation suffer from poor convergence for a

given nonequilbrium process in which the system is driven between the end states

of interest and (iii) it is reasonable to speculate that the nonequilibrium driven

process has a nonequilibrium density ρ(z, t) that always resembles an equilibrium

density ρ
eq(z,λ) parameterized by a λ vector along the protocol. Exact convergence

properties, of course, will depend on the system.

Finally, we note that the protocol postprocessing method can readily be com-

bined with the escorted free energy simulation approach described previously and it

might be possible to construct efficient hybrid estimators of ∆F .
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Chapter 7

Summary and future outlook

Nonequilibrium estimates of equilibrium free energy differences, ∆F , typically

suffer from poor convergence due to dissipation. This thesis has developed methods

to improve the efficiency of such estimates by reducing dissipation. The develop-

ment of the methods was guided by an exact relation between the dissipation in a

nonequilibrium process and the “lag”, i.e. the extent to which the system deviates

from the true equilbrium state in a nonequilibrium process.

The first strategy developed, “escorted” free energy simulations, involved mod-

ifying the dynamics ordinarily used to simulate the evolution of the system by adding

artificial terms that couple the evolution to changes in the external parameter, and

constructing estimators for ∆F in terms of these artificial trajectories. Whenever

the artificial terms manage to reduce the lag and dissipation, our method provides

an improved estimator of ∆F . We illustrated this method on a few model systems.

In particular, we demonstrated how prior intuition for the problem, and mean-field
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arguments can be used to construct effective escorting dynamics.

A natural next step in this research will be to apply this approach to other

free energy estimation problems. In the following, we list four free energy estima-

tion problems which we think will be good test cases for the escorted free energy

simulations approach. (1) In the dipole fluid example in Section 4.6.3, the particles

interact via a simple dipole-dipole interaction that favors the alignment of dipoles.

This model system is especially amenable to mean field treatment. In particular,

when the parameter γ controlling the dipole-dipole coupling (see Eq. 4.88) is large,

mean field theory can provide a rather accurate description of the system [31]. We

used this property of the system to construct effective escorting dynamics. It will

be interesting to see whether this approach works when the dipole interactions are

modeled more realistically, say using the Stockmayer model (see [24]), and where

mean field arguments might not be as effective in describing the system. (2) An-

other interesting free energy problem that combines elements of both the cavity

expansion example (Section 4.6.2), and the dipole fluid example is computing the

free energy cost associated with introducing a charged particle in a fluid. Develop-

ing methods to efficiently estimate this free energy is a long standing problem in

computational chemistry 1. In both problems (1) and (2), it might become neces-

sary to improve on the escorted dynamics introduced in this thesis. For example,

the escorted transformation developed for the cavity expansion example is near per-

fect for a reference system of ideal gas particles. The hard sphere fluid is another

reference system whose thermodynamic properties are well established, and it will

1This problem was suggested by Attila Szabo and Gerhard Hummer
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be worth investigating whether such reference systems can be used to develop bet-

ter escorting transformation. (3) A technique used to compute the free energies

of solids involves constructing a protocol in which the solid crystal is transformed

into a Einstein crystal with the same lattice structure. The Einstein crystal is an

analytically tractable system in which mutually non-interacting atoms are tethered

to their respective lattice points by harmonic potentials. The protocol connecting

the actual crystal state to the Einstein crystal state is one where the harmonic po-

tential is gradually switched on by increasing the spring constant. At the end of the

protocol, the harmonic potential is sufficiently strong that the inter-atomic interac-

tions can be ignored and the final state can be treated as an Einstein crystal [23].

One approach to constructing escorting dynamics for this process is to consider the

Einstein crystal as a reference system and construct perfect escorting dynamics for

it. Such dynamics might be effective in providing efficient estimates of free energies

of solids. (4) The escorted free energy approach could also be potentially useful in

obtaining estimates of free energies (and potentials of mean force) from simulations

of single molecule pulling experiments. This problem will also be an ideal test for

the other approach introduced in this thesis, “protocol postprocessing”, in which

the trajectories ordinarily generated in the course of a nonequlibrium simulation

are reprocessed to obtain efficient estimates of ∆F . This approach requires the

construction of an analysis protocol that describes a sequence of equilibrium states

that resemble the states visited by the system in the nonequilibrium process (see

Fig. 6.1). In a single molecule pulling simulation where one end of the molecule of

interest is stretched at some speed v (see the one dimensional analogue, Eq. 6.26),
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analysis protocols corresponding to a lower speed v
∗ might help improve the effi-

ciency of the free energy estimate. One might also like to investigate a hybrid free

energy estimation approach in which the two methods developed here, escorted free

energy simulations and “protocol postprocessing” are used in conjunction to obtain

efficient ∆F estimates.

Finally, there might be some interesting connections between the escorted

free energy formalism developed here, and the recently discovered nonequilibrium

work information fluctuation relations for thermodynamic processes evolving under

feedback [38, 83, 88]. By accounting for the amount of information gained about

the state of the system in a feedback process, these recent results have shown that

nonequilibrium processes evolving under feedback also satisfy fluctuation theorems

of the kind discussed in this thesis. Since the artificial escorted dynamics discussed

in Chapter 4 in some sense model a continual feedback process [56], it will be useful

to clarify the relationship between escorted fluctuation theorems, and fluctuation

theorems for processes with feedback.
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Appendix A

Fluctuation theorem for stochastic

escorted simulations

Chapter 4 presents a fluctuation theorem for escorted Hamiltonian dynamics

(Eq. 4.43-4.49), and for discrete-time Monte-Carlo dynamics (Eq. 4.51-4.63). In

this appendix, we will first sketch a general derivation of the fluctuation theorem

for continuous time escorted stochastic dynamics using the proof presented in the

discrete-time Monte-Carlo case. We then present a derivation in the specific case

of a one-dimensional system with physical dynamics described by an over-damped

Langevin equation [54].

Let us imagine a pair of forward and reverse escorted process of duration τ (as

usual, λ is switched from A to B according to λ(t) in the forward process) with an

escorting flow field u(z,λ), and consider a discretization scheme in which the system

is allowed to evolve under the physical dynamics for a time δt at fixed λ, after which
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λ is switched by ˙λ(t)δt. Updates in λ are accompanied by a displacement of u ˙λ(t)δt

in the phase-space coordinates of the system. In the limit δt → 0, the discretization

scheme described above is equivalent to escorted equations of motion, Eq. 4.3.

It helps to visualize this discretization scheme using Eq. 4.31 (reproduced

below for convenience) with N = τ/δt, and with the mapping functions Mi : z → z�,

[z0,λ0]
M0⇒ [z�0,λ1] → [z1,λ1]

M1⇒ · · · → [zN−1,λN−1]
MN−1⇒ [z�N−1,λN ], (A.1)

where

z� = z+ u(z,λi) ˙λ(t)δt, (A.2)

and λi denotes the value of λ after the i
th time step, λi = λ(0) + i ˙λ(t)δt.

The evolution of the system in the i
th time interval from z�i−1 to zi at fixed

λi can be described by the transition probability Pλi
(zi|z�i−1). As in Eq. 4.24, we

will assume that this transition probability is detailed balanced. Commonly used

equations of motion (such as Langevin, over-damped Langevin) satisfy this criterion.

Following the proof of the fluctuation theorem for Monte-Carlo dynamics in Sec. 4.4,

the trajectories generated according to this discretized scheme satisfy the fluctuation

relation

PF (W )

PR(−W )
= e

β(W−∆F )
, (A.3)

where

W [{zi}] =
N−1�

i=0

�
Hλi+1(z

�
i)−Hλi

(zi)− β
−1 ln Ji(zi)

�
. (A.4)

Taking the limit δt → 0, and using ln Ji(zi) = ∇ · u(zi,λi) ˙λ(t)δt, we can rewrite
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Eq. A.5 as an integral,

W [{zt}] =
� τ

0

λ̇

�
∂H

∂λ
+ u ·∇H − β

−1∇ · u
�
. (A.5)

Eq. A.3 is now a fluctuation theorem for escorted stochastic molecular dynamics

simulations.

We will now derive the fluctuation theorem for a system with one degree of

freedom, x, when the physical dynamics of the system are over-damped Langevin

equations of motion (Eq. A.6 below) without using the discretization scheme de-

scribed above. The physical dynamics of the system are given by

ẋ = −µ
∂Vλ(t)(x)

∂x
+
√
2Dζ(t), (A.6)

where Vλ(x) denotes a one dimensional potential surface, µ ,D denote the friction

and diffusion constants respectively, and ζ(t) denotes a Gaussian white noise process

with �ζ(t)� = 0, and �ζ(t)ζ(t�)� = δ(t − t
�). The physical dynamics satisfy the

fluctuation dissipation relation, D/µ = kBT = β
−1.

Let us suppose we modify the equations of motion by adding an extra term

λ̇u(x,λ),

ẋ = −µ
∂Vλ(t)(x)

∂x
+
√
2Dζ(t) + λ̇u(x,λ). (A.7)

We will discretize Eq. A.7 using the Ito convention [25] with a time step δt,

xi+1 − xi = −δtµ
∂Vλi

(xi)

∂x
+
√
2Dηi + λ̇u(xi,λi)δt. (A.8)

where x0 denotes the initial state of the system and is sampled from the equilibrium

state A, xi ,λi denote the location of the system and the value of the external
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parameter respectively at time iδt, and ηi = ζ(ti)δt is a gaussian random variable

with the properties �ηi� = 0 and �ηiηj� = δtδi,j [25]. For convenience, we will define

f(xi,λi, λ̇) = µFλi
(xi) + λ̇u(xi,λi), where Fλ = −∂Vλ/∂x. We wish to construct

the conditional probability density associated with the path {x0, x1, . . . , xN} given

the initial point, x0, P (x1, x2, . . . , xN |x0). To do so, following Seifert [91], we use

the fact the distribution of {ηi} values is known and perform a transformation of

coordinates from {ηi} to {xi} using Eq. A.8. The two densities are related according

to

P (x1, x2, . . . , xN |x0) = P (η0, η1, . . . ηN−1)/J =
1

J(
√
2πδt)N

exp−
�
N−1�

i=0

η
2
i /(2δt)

�
,

(A.9)

where J denotes the Jacobian for the transformation. For this transformation,

J = (
√
2D)N . Substituting ηi =

�
xi+1 − xi − f(xi,λi, λ̇)δt

�
/
√
2D (from Eq. A.8)

in Eq. A.9, we get

P (x1, x2, . . . , xN |x0) =
1

(
√
4Dπδt)

N exp− 1

4D

�
N−1�

i=0

�
xi+1 − xi

δt
− f(xi,λi, λ̇)

�2

δt

�
,

(A.10)

To obtain the fluctuation theorem, let us consider the conjugate trajectory

{xN , . . . , x0} in the reverse process. We will again use the subscripts F and R to

denote quantities corresponding to the forward and reverse processes. The den-

sity conditional probability density associated with this conjugate trajectory in the

reverse process is given by

PR(xN−1, . . . , x0|xN) =
1

(
√
4Dπδt)

N exp−
�

1

4D

N−1�

i=0

�
xi − xi+1

δt
− f(xi+1,λi+1,−λ̇)

�2

δt

�
.

(A.11)

147



Taking the ratio of Eq. A.11 and Eq. A.10, we get

PF (x1, x2, . . . , xN |x0)

PR(xN−1, . . . , x0|xN)
= exp− 1

D

N−1�

i=0

�
Ki(xi+1 − xi) + µu(xi,λi)Fλi

(xi)λ̇δt
�
,

(A.12)

where Ki ≡ −2µ
�
Fλi

(xi) + Fλi+1(xi+1) + λ̇(u(xi+1,λi+1)− u(xi,λi))
�
. Since we

have used the Ito discretization, the following formula substitutes the normal rules

of differential calculus [25],

g(xi+1,λi+1)− g(xi,λi) = λ̇
∂g

∂λ
δt+D

∂
2
g

∂x2
δt+

∂g

∂x
(xi+1 − xi), (A.13)

where g(x,λ) is some continuous differentiable function. This formula is commonly

referred to as the Ito formula [25]. When D = 0, we recover the normal rules of

calculus. Using Eq. A.13, and (xi+1−xi)2 → 2Dδt as δt → 0, repeatedly, we obtain

the following result,

PF (x1, x2, . . . , xN |x0)

PR(xN−1, . . . , x0|xN)
= exp

�
−β∆V + βλ̇

N−1�

i=0

∂/Vλi
(xi)

∂/λ
δt

�
, (A.14)

where ∆V = VλN
(xN)− Vλ0(x0),

∂/Vλi
(xi)

∂/λ
=

�
∂Vλi

∂λ
(xi) + u(xi,λi)

∂Vλi

∂x
− β

−1∂u(xi,λi)

∂x

�
, (A.15)

and we have used µ/D = β. Using Eq. A.14, we have

PF (x0, x1, x2, . . . , xN) = PF (x1, x2, . . . , xN |x0)ρ
eq(x0,λ0)

= PR(xN−1, . . . , x0|xN)ρ
eq(xN ,λN) exp β

��
λ̇

N−1�

i=0

∂/Vλi
(xi)

∂/λ
δt

�
−∆F

�

= PR(xN , xN−1, . . . , x0) exp β

��
λ̇

N−1�

i=0

∂/Vλi
(xi)

∂/λ
δt

�
−∆F

�
.

Finally, taking the limit δt → 0 and writing the expression in the exponent above

as an integral, we obtain the fluctuation theorem for a conjugate pair of escorted
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trajectories, {xt} and {xτ−t},

PF [{xt}]
PR[{xτ−t}

] = exp β

�� τ

0

λ̇
∂/Vλt

(xt)

∂/λ
dt−∆F

�
. (A.16)

This completes the proof.
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Appendix B

Figures of Merit

Here we derive a relation between Ns and C for the bidirectional Bennett

estimator defined in Eq. 4.64. The Bennett estimator, Eq. 4.64 can be rewritten as

a ratio of two free energy perturbation identities [84]

�PH(W )/PF (W )�PF (W )

�PH(W )/PR(−W )�PR(−W )
= 1, (B.1)

where �. . . �PF (W ) denotes an average overW values sampled from PF (W ), �. . . �PR(−W )

denotes an average over W values sampled from PR(−W ),

PH(W ) ≡ C
−1 PF (W )PR(−W )

PF (W ) + PR(−W )
, (B.2)

with

C =

�
dW

PF (W )PR(−W )

PF (W ) + PR(−W )
, (B.3)

is the normalized harmonic mean distribution. As the averages in the numerator

and the denominator are over different ensembles, let us separately consider the

number of the realizations required for each to converge.
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The dominant contributions to the average in the numerator come from work

values that are typically sampled from the harmonic mean distribution PH [51]. The

probability that these dominant values are observed in the forward process can be

given by

P =

�

Typical

dWPF (W ) =

�

Typical

dWPHPF (W )/PH , (B.4)

where
�
Typical denotes that the integration is performed over the range of W values

that are typically sampled from the harmonic mean distribution, PH(W ).

Following Ref [51], we now write

P ∼
�

Typical

dWPHe
ln

PF

PH ∼ e
�ln PF

PH

�H
�

Typical

dWPH ∼ e
�ln PF

PH

�H (B.5)

The number of realizations Ns required for adequate sampling can be roughly given

by Ns ∼ P
−1 ∼ expD[PH ||PF ], where we have used −�ln PF

PH

�H = D[PH ||PF ]. The

relative entropy D[PH ||PF ] satisfies the following inequality

D[PH ||PF ] =

�
1

C

PRPF

PR + PF
ln

PR

C(PF + PR)

≤ ln

�
1

4C2

4P 2
RPF

(PR + PF )
2

≤ ln
1

4C2

�
PR

= −2 ln 2C

(B.6)

where we have used the Jensen’s inequality [15] for concave functions together with

the identity 4PFPR ≤ (PF + PR)
2. Finally, using Eq. B.6, the number of realizations

required to obtain a reliable estimate of ∆F using Bennett’s method is bounded by

Ns ≤
1

C2
(B.7)
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We have omitted numerical factors and constants in the above relation as it is

already an approximate equation.
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[66] C. Maes and K. Netočný. Time-reversal and entropy. J. Stat. Phys., 110(1-
2):269–310.

[67] M. A. Miller and W. P. Reinhardt. Efficient free energy calculations by vari-
ationally optimized metric scaling: Concepts and applications to the volume
dependence of cluster free energies and to solid–solid phase transitions. J.
Chem. Phys, 113(17):7035–7046, 2000.

[68] D. D. L. Minh. Density-dependent analysis of nonequilibrium paths improves
free energy estimates. J. Chem. Phys., 130:204102, 2009.

[69] D. D. L. Minh and A. B. Adib. Optimized free energies from bidirectional
single-molecule force spectroscopy. Phys. Rev. Lett., 100:180602, 2008.

[70] D. D. L. Minh and A. B. Adib. Path integral analysis of jarzynski’s equality:
Analytical results. Phys. Rev. E, 79:021122, 2009.

[71] D. D. L. Minh and J. D. Chodera. Optimal estimators and asymp-
totic variances for nonequilibrium path-ensemble averages. J. Chem. Phys.,
131(13):134110, 2009.

157



[72] D. D. L. Minh and J. D. Chodera. Estimating equilibrium ensemble averages
using multiple time slices from driven nonequilibrium processes: Theory and
application to free energies, moments, and thermodynamic length in single-
molecule pulling experiments. J. Chem. Phys, 134(2):024111, 2011.

[73] J. Mittal and G. Hummer. Static and dynamic correlations in water at hy-
drophobic interfaces. Proc. Natl. Acad. Sci. U.S.A, 105(51):20130–20135, 2008.

[74] H Oberhofer and C Dellago. Optimum bias for fast-switching free energy
calculations. Comput. Phys. Commun., 179:41–45, 2008.

[75] H. Oberhofer, C. Dellago, and S. Boresch. Single molecule pulling with large
time steps. Phys. Rev. E, 75:061106, 2007.

[76] H. Oberhofer, C. Dellago, and P.L. Geissler. Biased sampling of nonequilib-
rium trajectories: Can fast switching simulations outperform conventional free
energy calculation methods? J. Phys. Chem B, 109:6902, 2005.

[77] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes. Theory of protein
folding: The energy landscape perspective. Ann. Rev. Phys. Chem., 48(1):545–
600, 1997.

[78] A. Z. Panagiotopoulous. Direct determination of phase coexistence properties
of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys., 61:813–826,
1987.

[79] V. S. Pande, A. Y.. Grosberg, and T. Tanaka. Heteropolymer freezing and de-
sign: Towards physical models of protein folding. Rev. Mod. Phys., 72(1):259–
314, 2000.

[80] S. Park and K. Schulten. Calculating potentials of mean force from steered
molecular dynamics simulations. J. Chem. Phys., 120:5946 – 5961, 2004.

[81] A. J. Patel, P. Varilly, and D. Chandler. Fluctuations of water near extended
hydrophobic and hydrophilic surfaces. The Journal of Physical Chemistry B,
114(4):1632–1637, 2010. PMID: 20058869.

[82] D. A. Pearlman and P.A. Kollman. The lag between the hamiltonian and the
system configuration in free energy perturbation calculations. J. Chem. Phys,
91:7831, 1989.

[83] M. Ponmurugan. Generalized detailed fluctuation theorem under nonequilib-
rium feedback control. Phys. Rev. E, 82(3):031129, 2010.

[84] R. J. Radmer and P.A. Kollman. Free energy calculation methods: A theo-
retical and empirical comparison of numerical errors and a new method for
qualitative estimates of free energy changes. J. Comput. Chem, 18:902, 1997.

158



[85] W. P. Reinhardt and J. E. Hunter III. Variational path optimization and
upper and lower bounds to free energy changes via finite time minimization
of external work. J. Chem. Phys, 97:1599 – 1601, 1992.

[86] J. M. Rodgers. Statistical mechanical theory and simulations of charged fluids
and water. University of Maryland, College Park, 2008.

[87] J. M. Rodgers and J. D. Weeks. Interplay of local hydrogen-bonding and long-
ranged dipolar forces in simulations of confined water. Proc. Natl. Acad. Sci.
U.S.A, 105(49):19136, 2008.

[88] T. Sagawa and M. Ueda. Generalized Jarzynski equality under nonequilibrium
feedback control. Phys. Rev. Lett., 104(9):090602, 2010.

[89] T. Schmiedl and U. Seifert. Optimal finite-time processes in stochastic ther-
modynamics. Phys. Rev. Lett., 98:108301, 2007.

[90] Z. Schuss. Theory and Applications of Stochastic Differential Equations. Wiley,
New York, 1980.

[91] U. Seifert. Stochastic thermodynamics: principles and perspectives. Euro.
Phys. J. B. 64:423–431, 2008.

[92] M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande. Equilibrium free energies
from nonequilibrium measurements using maximum likelihood methods. Phys.
Rev. Lett., 91:140601, 2003.

[93] T. Speck and U. Seifert. Distribution of work in isothermal nonequilibrium
processes. Phys. Rev. E, 70(6):066112, 2004.

[94] F. H. Stillinger. Structure in aqueous solutions of nonpolar solutes from
the standpoint of scaled-particle theory. J. Sol. Chem., 2:141–158, 1973.
10.1007/BF00651970.

[95] S. X. Sun. Equilibrium free energies from path sampling of non-equilibrium
trajectories. J. Chem. Phys, 118:5759, 2003.

[96] M. E. Paulaitis T. L. Beck and L. R. Pratt. The Potential Distribution The-
orem and Models of Molecular Solutions. Cambridge University Press, 2006.

[97] K. Takara, H.-H. Hasegawa, and D. J. Driebe. Generalization of the second
law for a transition between nonequilibrium states. Phys. Lett. A., 375:88–92,
2010.

[98] G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in Monte
Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 23(2):187
– 199, 1977.

[99] S. Vaikuntanathan and C. Jarzynski. Dissipation and lag in irreversible pro-
cesses. EPL (Europhysics Letters), 87(6):60005 (6pp), 2009.

159



[100] M. Watanabe and W. P. Reinhardt. Direct dynamical calculation of entropy
and free energy by adiabatic switching. Phys. Rev. Lett., 65(26):3301–3304,
1990.

[101] J. D. Weeks. Connecting local structure to interface formation: A molecular
scale van der Waals theory of nonuniform liquids. Ann. Rev. Phys. Chem.,
53(1):533–562, 2002.

[102] J. D. Weeks, K. Katsov, and K. Vollmayr. Roles of repulsive and attractive
forces in determining the structure of nonuniform liquids: Generalized mean
field theory. Phys. Rev. Lett., 81(20):4400–4403, 1998.

[103] B. Widom. Some topics in the theory of fluids. J. Chem. Phys, 39:2808, 1963.

[104] R.H. Wood. Estimation of errors in free energy calculations due to the lag be-
tween the hamiltonian and the system configuration. J. Phys. Chem, 95:4838,
1991.

[105] D. Wu and D. A. Kofke. Rosenbluth sampled nonequilibrium work method
for calculation of free energies in molecular simulation. J. Chem. Phys.,
122:204104, 2005.

[106] F. M. Ytreberg and D. M. Zuckerman. Single-ensemble nonequilibrium path-
sampling estimates of free energy differences. J. Chem. Phys, 120:10876, 2004.

[107] D. M. Zuckerman and T. B. Woolf. Theory of a systematic computational
error in free energy differences. Phys. Rev. Lett., 89:180602, 2002.

[108] R. W. Zwanzig. High temperature equation of state by a perturbation method.
i. nonpolar gases. J. Chem. Phys, 22:1420, 1954.

160


